

Lecture Notes in Computer Science 4801
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Christine Parent Klaus-Dieter Schewe
Veda C. Storey Bernhard Thalheim (Eds.)

Conceptual
Modeling – ER 2007

26th International Conference on Conceptual Modeling
Auckland, New Zealand, November 5-9, 2007
Proceedings

13

Volume Editors

Christine Parent
University of Lausanne
1015 Lausanne, Switzerland
E-mail: christine.parent@unil.ch

Klaus-Dieter Schewe
Massey University
Private Bag 11 222, Palmerston North 5301, New Zealand
E-mail: k.d.schewe@massey.ac.nz

Veda C. Storey
Georgia State University
Box 4015, Atlanta, GA 30302, USA
E-mail: vstorey@gsu.edu

Bernhard Thalheim
Christian Albrechts University Kiel
Olshausenstr. 40, 24098 Kiel, Germany
E-mail: thalheim@is.informatik.uni-kiel.de

Library of Congress Control Number: Applied for

CR Subject Classification (1998): H.2, H.4, F.4.1, I.2.4, H.1, J.1, D.2, C.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-75562-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75562-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12172535 06/3180 5 4 3 2 1 0

Preface

Conceptual modeling is fundamental to the development of complex systems,
because it provides the key communication means between systems developers,
end-users and customers. Conceptual modeling provides languages, methods and
tools to understand and represent the application domain; to elicitate, conceptu-
alize and formalize system requirements and user needs; to communicate systems
designs to all stakeholders; to formally verify and validate system designs on
high levels of abstractions; and to minimize ambiguities in system development.
Initially, conceptual modeling mainly addressed data-intensive information sys-
tems and contributed to data modeling and database application engineering.
The area of conceptual modeling has now matured to encompass all kinds of
application areas such as e-applications (including e-business and e-learning),
web-based systems (including the semantic web and ubiquitous systems), life
science and geographic applications.

The annual International Conference on Conceptual Modeling serves as the
premiere forum for presenting and discussing research and applications in all ar-
eas associated with conceptual modeling. This year, the Call for Papers solicited
contributions dealing with logical and philosophical foundations of conceptual
modeling, information modeling concepts including ontologies, correctness in
modeling, web-based and mobile information systems, semi-structured data and
XML, information and database integration, information retrieval, organization
and evaluation, design methodologies and tools, reuse, re-engineering and reverse
engineering, quality assurance in conceptual modeling, conceptual change and
evolution, data warehousing and data mining, spatial and temporal modeling,
business process and workflow modeling, knowledge management, requirements
elicitation, and advanced applications.

This Call for Papers attracted 167 submissions from authors from 28 coun-
tries. Each paper was carefully reviewed by at least three members of the pro-
gram committee. Finally, the program committee accepted 37 research papers,
giving an acceptance rate of 22.2%. This volume contains these papers, presented
at the 26th International Conference on Conceptual Modeling (ER 2007), which
was held in Auckland, New Zealand, on November 5–8, 2007.

In addition, following a separate Call for Workshops, six workshops were se-
lected as co-located ER-workshops. A total of 43 research papers, including three
invited papers, were presented at the workshops. The average acceptance rate for
the co-located workshops was 33.3%. The workshop papers have been published
in a separate LNCS volume: LNCS 4802. Furthermore, the conference program
included 4 systems demonstrations, 1 panel, 6 tutorials, 32 poster presentations,
and 3 keynotes.

We are very happy that Profs. Egon Börger from the University of Pisa,
Enrico Franconi from the Free University of Bolzano-Bozen, and Peter Hunter

VI Preface

from the University of Auckland accepted our invitations to present keynotes to
this year’s conference.

Prof. Börger gave a presentation on The Abstract State Machine System De-
sign and Analysis Method: An Illustration by Modeling Workflow Patterns from
First Principles, in which he first surveyed the basic ingredients of the Abstract
State Machine method and its applications for the design and the validation
of complex computer-based systems, and then illustrated the method by the
definition of a small set of parameterized abstract models for workflow patterns.

Prof. Franconi gave a presentation on Conceptual Schemas and Ontologies for
Database Access: Myths and Challenges, in which he argued that well-founded
conceptual modeling and ontology design is required to support intelligent in-
formation access, and then demonstrated which are the technical consequences
of such choices, and the foundational and computational problems to be faced.

Prof. Hunter gave a presentation on Heart Modeling, Computational Physi-
ology and the IUPS Physiome Project, in which he outlined the major goal of
the Physiome project to use computational modeling to analyze integrative bi-
ological function in terms of underlying structure and molecular mechanisms.
He argued for the need to develop supporting XML markup languages (CellML
& FieldML) for encoding models, and software tools for creating, visualizing
and executing these models, focusing in particular on the development of the
Auckland heart model.

Many people contributed to the success of ER 2007. We are most grateful to
all keynote speakers, authors of submitted papers, posters, tutorials and panels,
and members of the program committees of the main ER conference and its
associated workshops. Thanks are due to the chairs of the workshops, tutori-
als, panels, and posters and demonstrations, and the industry chair: Jean-Luc
Hainaut, Elke Rundensteiner, Sven Hartmann, Alberto Laender, John Roddick,
Leszek Maciaszek, and John Grundy, whose efforts contributed to the creation
of an attractive program at a very high quality level. We would like to express
our thanks to the local organizers Gill Dobbie and Patricia Rood and their col-
laborators, without whom this conference would not have come to life. Thanks
are also due to Tok Wang Ling and Steve Liddle, who supported the conference
from the steering committee. Finally, we offer our special thanks to our publicity
chair and webmaster Markus Kirchberg, who maintained the conference web-
site and the conference reviewing system, took care of all communication with
the public, the program committee members and authors, and finally composed
this proceedings volume as well as all other documentation associated with the
conference.

November 2007 Christine Parent
Klaus-Dieter Schewe

Veda Storey
Bernhard Thalheim

Conference Organization

General Chair

Bernhard Thalheim (Christian-Albrechts-University Kiel, Germany)

Program Committee Co-chairs

Christine Parent (University of Lausanne, Switzerland)
Klaus-Dieter Schewe (Massey University, New Zealand)
Veda C. Storey (Georgia State University, USA)

Organization Chair

Gillian Dobbie (University of Auckland, New Zealand)

Steering Committee Liaison

Tok Wang Ling (National University of Singapore, Singapore)

Publicity Chair

Markus Kirchberg (Massey University, New Zealand)

Workshop Co-chairs

Jean-Luc Hainaut (University of Namur, Belgium)
Elke A. Rundensteiner (Worcester Polytechnic Institute, USA)

Tutorial Co-chairs

Sven Hartmann (Massey University, New Zealand)
Alberto H.F. Laender (UFMG, Brazil)

Panel Chair

John F. Roddick (Flinders University, Australia)

Industrial Chair

John Grundy (University of Auckland, New Zealand)

VIII Organization

Demonstration and Poster Chair

Leszek Maciaszek (Macquarie University, Australia)

Treasurers

Patricia Rood (University of Auckland, New Zealand)
Stephen W. Liddle (Brigham Young University, USA)

Workshops

Conceptual Modelling for Life Sciences Applications (CMLSA)
Yi-Ping Phoebe Chen, Deakin University, Australia
Sven Hartmann, Massey University, New Zealand

Foundations and Practices of UML (FP-UML)
Juan Trujillo, University of Alicante, Spain
Jeffrey Parsons, Memorial University of Newfoundland, Canada

Ontologies and Information Systems for the Semantic Web (ONISW)
Mathias Brochhausen, IFOMIS, Germany
Martin Doerr, FORTH, Greece
Hyoil Han, Drexel University, USA

Quality of Information Systems (QoIS)
Samira Si-Säıd Cherfi, CEDRIC-CNAM, France
Geert Poels, University of Ghent, Belgium

Requirements, Intentions and Goals in Conceptual Modelling (RIGiM)
Colette Rolland, Université Paris 1 Panthéon Sorbonne, France
Eric Yu, University of Toronto, Canada

Semantic and Conceptual Issues in Geographic Information Systems
(SeCoGIS)
Esteban Zimanyi, Université Libre de Bruxelles, Belgium
Michela Bertolotto, University College Dublin, Ireland

Tutorials

Agent-Oriented Modelling of Distributed Systems by Leon Sterling and
Kuldar Taveter (University of Melbourne, Australia)

Conceptual Modeling for Virtual Reality by Olga De Troyer, Frederic
Kleinermann, and Bram Pellens (Vrije Universiteit Brussel, Belgium)

Know your Limits: Enhanced XML Modeling with Cardinality Con-
straints by Sebastian Link and Thu Trinh (Massey University, New Zealand)

Modeling and Engineering Adaptive Complex Systems by Leszek A.
Maciaszek (Macquarie University, Australia)

Organization IX

Selfish-brain Theory: Challenges in the Top-down Analysis of Metabolic
Supply Chains by Dirk Langemann (University of Lübeck, Germany)

The CIDOC Conceptual Reference Model A New Standard for
Knowledge Sharing by Martin Doerr (FORTH, Greece)

Program Committee

Witold Abramowicz, Poland
Sabah Saleh Al-Fedaghi, Kuwait
Valeria de Antonellis, Italy
Catriel Beeri, Israel
Boualem Benatallah, Australia
Sonia Bergamaschi, Italy
Leopoldo Bertossi, Canada
Mokrane Bouzeghoub, France
Kankana Chakrabarty, Australia
Roger Chiang, USA
Isabelle Comyn-Wattiau, France
Lois M.L. Delcambre, USA
Debabrata Dey, USA
Gillian Dobbie, New Zealand
Martin Doerr, Greece
Dov Dori, Israel
Dirk Draheim, Germany
Daniela Durakova, Czech Republic
Antje Düsterhöft, Germany
Hans-Dieter Ehrich, Germany
Ramez Elmasri, USA
David W. Embley, USA
Vadim Ermolayev, Ukraine
Ulrich Frank, Germany
Andrew Gemino, Canada
Aditya K. Ghose, Australia
Paulo Goes, USA
Angela Eck Soong Goh, Singapore
Hele-Mai Haav, Estonia
Jean-Luc Hainaut, Belgium
Sven Hartmann, New Zealand
Roland Hausser, Germany
Stephen J. Hegner, Sweden
Brian Henderson-Sellers, Australia
Carlos A. Heuser, Brazil
Annika Hinze, New Zealand
Carlos Hurtado, Chile
Sushil Jajodia, USA

Wolfgang H. Janko, Austria
Christian S. Jensen, Denmark
Manfred A. Jeusfeld, Netherlands
Paul Johannesson, Sweden
Gerti Kappel, Austria
Kamalakar Karlapalem, India
Yasushi Kiyoki, Japan
Tosiyasu Laurence Kunii, Japan
Alberto H.F. Laender, Brazil
Chiang Lee, Taiwan
Maurizio Lenzerini, Italy
Qing Li, China
Stephen W. Liddle, USA
Tok Wang Ling, Singapore
Oscar Pastor López, Spain
Pericles Loucopoulos, UK
Johann A. Makowsky, Israel
Salvatore T. March, USA
Heinrich C. Mayr, Austria
Pavle Mogin, New Zealand
Mukesh K. Mohania, India
Renate Motschnig-Pitrik, Austria
Moira Norrie, Switzerland
Jyrki Nummenmaa, Finland
Andreas Oberweis, Germany
Antoni Olivé, Spain
Christine Parent, Switzerland
Jeffrey Parsons, Canada
Zhiyong Peng, China
Barbara Pernici, Italy
Jaroslav Pokorný, Czech Republic
Alexandra Poulovassilis, UK
Sandeep Purao, USA
Martin Purvis, New Zealand
P. Radhakrishna, India
Sudha Ram, USA
John F. Roddick, Australia
Colette Rolland, France

-

X Organization

Gustavo H. Rossi, Argentina
Matti Rossi, Finland
Klaus-Dieter Schewe, New Zealand
Arne Sølvberg, Norway
Il-Yeol Song, USA
Stefano Spaccapietra, Switzerland
Srinath Srinivasa, India
Veda C. Storey, USA
Markus Stumptner, Australia
Vijayan Sugumaran, USA
Yuzuru Tanaka, Japan
Dimitri Theodoratos, USA

Alexei Tretiakov, New Zealand
Olga De Troyer, Belgium
Juan Trujillo, Spain
X. Sean Wang, USA
Roel J. Wieringa, Netherlands
Mary-Anne Williams, Australia
Jeffrey Xu Yu, China
Eric Yu, Canada
Yanchun Zhang, Australia
Shuigeng Zhou, China
Esteban Zimanyi, Belgium

External Referees

Birger Andersson, Sweden
Danilo Ardagna, Italy
Guilherme Tavares de Assis, Brazil
Cecilia Bastarrica, Chile
Dizza Beimel, Israel
Domenico Beneventano, Italy
Maria Bergholtz, Sweden
Devis Bianchini, Italy
Flavio Bonfatti, Italy
Serge Boucher, Switzerland
Cinzia Cappiello, Italy
Eugenio Capra, Italy
Moisés Gomes de Carvalho, Brazil
Bo Chen, Singapore
Chi-Wei Chen, Taiwan
Xing Chen, Japan
Samira Si-Säıd Cherfi, France
Yu-Chi Chung, Taiwan
Shalom Cohen, Israel
Cesar Collazos, Chile
Theodore Dalamagas, Greece
Clodoveu A. Davis Jr., Brazil
Marie Duzi, Czech Republic
Eyas El-Qawasmeh, Jordan
Petr Gajdoš, Czech Republic
Yunjun Gao, China
Françoise Gire, France
Shantanu Godbole, India
Cesar Gonzalez-Perez, Spain
Jaap Gordijn, Netherlands

Georg Grossmann, Australia
Michael Grossniklaus, Switzerland
Francesco Guerra, Italy
Hakim Hacid, France
Yanan Hao, Australia
John Horner, USA
Siv Hilde Houmb, Netherlands
Yuan-Ko Huang, Taiwan
Weng Jianshu, Singapore
Jürgen Jung, Germany
Hima Prasad Karanam, India
Horst Kargl, Austria
Roland Kaschek, New Zealand
Zoubida Kedad, France
Ritu Khare, USA
Markus Kirchberg, New Zealand
George Koliadis, Australia
Woralak Kongdenfha, Australia
Subodha Kumar, USA
Peep Küngas, Estonia
Nadira Lammari, France
Ki Jung Lee, USA
Chien-han Liao, Taiwan
Baoping Lin, China
Hai Liu, China
Jiangang Ma, Australia
Federica Mandreoli, Italy
Da Chung Mao, Taiwan
Riccardo Martoglia, Italy
Michele Melchiori, Italy

Organization XI

Sergio L.S. Mergen, Brazil
Mirella Moura Moro, Brazil
Hamid Motahari, Australia
Saikat Mukherjee, India
Wei Ni, Singapore
Mirko Orsini, Italy
Byung-Kwon Park, Korea
Reinhard Pichler, Austria
Pierluigi Plebani, Italy
Dimitris Plexousakis, Greece
Fabio Porto, Switzerland
Nicolas Prat, France
Werner Retschitzegger, Austria
Shourya Roy, India
Seung Hwan Ryu, Australia
Denise Salvi, Italy
Ramesh Sankaranarayanan, USA
Carola Schauer, Germany
Hanno Schauer, Germany
Vladimir A. Shekhovtsov, Ukraine
Avi Soffer, Israel
Stefanos Souldatos, Greece
Jonas Sprenger, Germany

Veronika Stefanov, Austria
Volker Stix, Austria
Piotr Stolarski, Poland
I-Fang Su, Taiwan
Roman Szturc, Czech Republic
Puay-Siew Tan, Singapore
James F. Terwilliger, USA
Bernhard Thalheim, Germany
Christian Thomsen, Denmark
Dalia Tiesyte, Denmark
Eran Toch, Israel
Yung-Chiao Tseng, Taiwan
Perelman Valeria, Israel
Maurizio Vincini, Italy
Helmut Wanek, Austria
Xiaoying Wu, USA
Liang Xu, Singapore
Ming Xu, China
Wugang Xu, USA
Michael Zakharyaschev, UK
Jelena Zdravkovic, Sweden
Guoying Zhang, USA

Organized by

Massey University, New Zealand
The University of Auckland, New Zealand

Sponsored by

The ER Institute

In Cooperation with

ACM SIGMIS
ACM SIGMOD

Table of Contents

Keynotes

Modeling Workflow Patterns from First Principles . 1
Egon Börger

Heart Modeling, Computational Physiology and the IUPS Physiome
Project . 21

Peter J. Hunter

Conceptual Schemas and Ontologies for Database Access: Myths and
Challenges . 22

Enrico Franconi

Data Warehousing and Data Mining

Multidimensional Data Modeling for Business Process Analysis 23
Svetlana Mansmann, Thomas Neumuth, and Marc H. Scholl

Mining Hesitation Information by Vague Association Rules 39
An Lu and Wilfred Ng

A Model Driven Modernization Approach for Automatically Deriving
Multidimensional Models in Data Warehouses . 56

Jose-Norberto Mazón and Juan Trujillo

Design Methodologies and Tools

Cost-Based Fragmentation for Distributed Complex Value Databases . . . 72
Hui Ma and Markus Kirchberg

From Business Models to Service-Oriented Design: A Reference Catalog
Approach . 87

Amy Lo and Eric Yu

Teaching a Schema Translator to Produce O/R Views 102
Peter Mork, Philip A. Bernstein, and Sergey Melnik

Building a Tool for Cost-Based Design of Object-Oriented Database
Schemas . 120

Joachim Biskup and Ralf Menzel

XIV Table of Contents

Information and Database Integration

Generic Schema Mappings . 132
David Kensche, Christoph Quix, Yong Li, and Matthias Jarke

Relational Data Tailoring Through View Composition 149
Cristiana Bolchini, Elisa Quintarelli, and Rosalba Rossato

On the Discovery of Preferred Work Practice Through Business Process
Variants . 165

Ruopeng Lu and Shazia Sadiq

Information Modelling Concepts and Ontologies

Towards Automated Reasoning on ORM Schemes: Mapping ORM into
the DLRidf Description Logic . 181

Mustafa Jarrar

From Declarative to Imperative UML/OCL Operation Specifications . . . 198
Jordi Cabot

An Ontological Metamodel of Classifiers and Its Application to
Conceptual Modelling and Database Design . 214

Jeffrey Parsons and Xueming Li

Integrity Constraints

Handling Inconsistency of Vague Relations with Functional
Dependencies . 229

An Lu and Wilfred Ng

Querying Incomplete Data with Logic Programs: ER Strikes Back 245
Andrea Cal̀ı

Prioritized Preferences and Choice Constraints . 261
Wilfred Ng

Logical Foundations of Conceptual Modelling

Reasoning over Extended ER Models . 277
A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and
M. Zakharyaschev

On Order Dependencies for the Semantic Web . 293
David Toman and Grant Weddell

Collection Type Constructors in Entity-Relationship Modeling 307
Sven Hartmann and Sebastian Link

Table of Contents XV

Patterns and Conceptual Meta-modelling

Schema Exchange: A Template-Based Approach to Data and Metadata
Translation . 323

Paolo Papotti and Riccardo Torlone

A Conceptual Modeling Methodology Based on Niches and
Granularity . 338

Sonia Berman and Thembinkosi Daniel Semwayo

As We May Link: A General Metamodel for Hypermedia Systems 359
Beat Signer and Moira C. Norrie

Requirements Elicitation

A Goal Oriented Approach for Modeling and Analyzing Security
Trade-Offs . 375

Golnaz Elahi and Eric Yu

Rapid Business Process Discovery (R-BPD) . 391
Aditya Ghose, George Koliadis, and Arthur Chueng

Ontology-Driven Business Modelling: Improving the Conceptual
Representation of the REA Ontology . 407

Frederik Gailly and Geert Poels

A Comparison of Two Approaches to Safety Analysis Based on Use
Cases . 423

Tor St̊alhane and Guttorm Sindre

Using Unified Modeling Language for Conceptual Modelling of
Knowledge-Based Systems . 438

Mohd Syazwan Abdullah, Ian Benest, Richard Paige, and
Chris Kimble

Tracing the Rationale Behind UML Model Change Through
Argumentation . 454

Ivan J. Jureta and Stéphane Faulkner

Reuse and Reengineering

Exploring Alternatives for Representing and Accessing Design
Knowledge About Enterprise Integration . 470

Karthikeyan Umapathy and Sandeep Purao

Mining and Re-engineering Transactional Workflows for Reliable
Executions . 485

Walid Gaaloul, Sami Bhiri, and Armin Haller

XVI Table of Contents

Cross: An OWL Wrapper for Reasoning on Relational Databases 502
Pierre-Antoine Champin, Geert-Jan Houben, and Philippe Thiran

Semi-structured Data and XML

Augmenting Traditional Conceptual Models to Accommodate XML
Structural Constructs . 518

Reema Al-Kamha, David W. Embley, and Stephen W. Liddle

VERT: A Semantic Approach for Content Search and Content
Extraction in XML Query Processing . 534

Huayu Wu, Tok Wang Ling, and Bo Chen

A Conceptual Model for Multidimensional Analysis of Documents 550
Franck Ravat, Olivier Teste, Ronan Tournier, and Gilles Zurlfluh

Web Information Systems and XML

Automatic Hidden-Web Table Interpretation by Sibling Page
Comparison . 566

Cui Tao and David W. Embley

A Fine-Grained XML Structural Comparison Approach 582
Joe Tekli, Richard Chbeir, and Kokou Yetongnon

Fine-Grained Compatibility and Replaceability Analysis of Timed Web
Service Protocols . 599

Julien Ponge, Boualem Benatallah, Fabio Casati, and
Farouk Toumani

Author Index . 615

Modeling Workflow Patterns from First

Principles

Egon Börger

Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

Abstract. We propose a small set of parameterized abstract models
for workflow patterns, starting from first principles for sequential and
distributed control. Appropriate instantiations yield the 43 workflow
patterns that have been listed recently by the Business Process Model-
ing Center. The resulting structural classification of those patterns into
eight basic categories, four for sequential and four for parallel workflows,
provides a semantical foundation for a rational evaluation of workflow
patterns.

1 Introduction

In [3] we have provided Abstract State Machine (ASM) models for the 43 work-
flow pattern descriptions that have been presented recently in [8] by the Business
Process Modeling Center. Our goal there was to make the underlying relevant
questions and implicit parameters explicit and to turn the patterns into a precise
and truly abstract form. To easen the validation of these ASM ground models, in
the sense defined in [1], we esssentially followed the order of presentation adopted
in [8] and only hinted at the most obvious streamlining the ASM models offer
for the classification presented in [8].

In this paper we revisit those workflow pattern ASMs and define eight basic
workflow patterns, four for sequential and four for distributed control, from
which all the other patterns can be derived by parameter instantiation.1 This
provides a conceptual basis for a rational workflow pattern classification that
can replace the partly repetitive listing presented in [8].

We use again the ASM method to provide a high-level, both state-based and
process-oriented view of workflow patterns. This provides a solid semantic foun-
dation for reasoning about workflow functionality. In the ASM models the behav-
ioral interface is defined through actions performed with the help of submachines
that remain largely abstract. The parameterization exploits the possibility the
ASM method offers the specifier to build ‘models with holes’, that is to leave

1 We omit here the four so-called State-Based Patterns in [10], which concern “business
scenarios where an explicit notion of state is required” and are only loosely connected
to workFLOW. Exploiting the most general character of the ASM notion of state,
these four state-based patterns can be expressed by rather simple ASMs.

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 1–20, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 E. Börger

parts of the specification either as completely abstract parameters or to accom-
pany them by assumptions or informal explanations, which are named, but ver-
ified respectively detailed only at later refinement stages. The parameterization
allows one in particular to leave the design space open for further refinements
to concrete pattern instantiations.

Most of what we use below to model workflow patterns by ASMs is self-
explanatory, given the semantically well-founded pseudo-code character of
ASMs, an extension of Finite State Machines (FSMs) by a general notion of
state. For a recent tutorial introduction into the ASM method for high-level
system design and analysis see [2], for a textbook presentation, which includes
a formalized version of the definition of the semantics of ASMs, see the Asm-
Book [6]. For sequential patterns we use mono-agent (so-called sequential) ASMs,
for patterns of distributed nature multiple-agent asynchronous (also called dis-
tributed) ASMs.

We make no attempt here to provide a detailed analysis of the basic concepts
of activity, process, thread, of their being active, enabled, completed etc., which
are used in [8] without further explanations. It seems to suffice for the present
purpose to consider an activity or process as some form of high-level executable
program, which we represent here as ASMs. Threads are considered as agents
that execute activities. An active activity, for example, is one whose executing
agent is active, etc. The quotes below are taken from [8] or its predecessor [10].

We start with the more interesting case of parallel control flow patterns, fol-
lowed by the more traditional patterns for sequential control flow known from
programmming.

2 Parallel Control Flow Patterns

The patterns related to parallel control flow can be conceptually categorized
into four types: splitting one flow into multiple flows, merging multiple flows
into one flow, forms of interleaving and trigger variations. As Andreas Prinz has
pointed out, there are good reasons to use instead a classification into splitting
and merging only. Interleaving appears then as parameter for different instances
of splitting, whereas triggering is considered as belonging to start patterns in
the context of distributed (not mono-agent sequential) computations. We do not
claim to have a unique answer to the classification problem. What we believe is
important is to start with a small number of basic patterns out of which more
complex patterns can be obtained by composition and refinement.

2.1 Parallel Split Patterns

We quote the description of the parallel split pattern:

A point in the workflow process where a single thread of control splits
into multiple threads of control which can be executed in parallel, thus
allowing activities to be executed simultaneously or in any order.

Modeling Workflow Patterns from First Principles 3

This description contains two not furthermore specified parameters, which we
represent by two sets Activity and Thread capturing the underlying activities and
the threads executing them. It is left open whether Activity is declared as static
or as dynamic, thus providing for static instantiations and for dynamic ones,
whether as known at design time or as known only at the moment of executing
the parallel split. In contrast the set Thread has to be declared as dynamic,
since multiple threads of control have to be created without committing to the
precise nature of the underlying parallelism, which is left unspecified in the above
pattern description.

The parallelism may be further specified as an interleaving execution, using
one of the interleaving patterns of Sect. 2.3, or as a simultaneous synchronous
or as asynchronous execution. The latter two cases can be expressed using syn-
chronous respectively asynchronous (also called distributed) ASMs. The partic-
ular choice can be left open if we create for each a ∈ Activity a new thread to
execute a. For this purpose we use a function new that is assumed to provide a
fresh element each time it is applied to a set. To provide a handle for expressing
the possible independence of the execution mechanisms for different threads, we
explicitly name a third parameter, namely a machine that triggers the execution
of an activity by a thread. For the representation of such a mechanism we avoid
committing to a particular framework, e.g. Petri nets where triggering is tradi-
tionally represented by placing tokens that enable a transition. This is the reason
why we introduce an abstract machine TriggerExec(t , a). It is not further-
more specified except for requiring that its call triggers enables the execution of
activity a by thread t .

ParallelSplit(Activity, Thread ,TriggerExec) =
forall a ∈ Activity let t = new(Thread) in TriggerExec(t , a)

This pattern is widely used in various forms. A well-known one is represented
by the Occam instruction [7] to spawn finitely many parallel subprocesses of a
given process p, which matches this pattern exactly. See the OccamParSpawn-
rule in [6, p.43], where TriggerExec(t , a) describes the initialization of a by
linking it to the triggering process p as its parent process, copying from there
the current environment, setting a to run and p to wait (for all the spawned
subprocesses to terminate). This instance of ParallelSplit uses as underlying
parallelism the concept of asynchronous ASMs.

An instance with synchronous parallelism takes the following form, where all
the activities in question are executed simultaneously, e.g. as action of one agent.
This is already captured by the default parallelism of basic non-distributed ASMs
so that it suffices to instantiate TriggerExec as not depending on the thread
parameter (whereby the creation of new threads can simply be deleted):

SyncParSplit(Activity , TriggerExec) = forall a ∈ Activity TriggerExec(a)

In [8] other parallel split patterns are discussed for multiple instances of one
activity. One of the descriptions runs as follows.

4 E. Börger

Within the context of a single case (i.e., workflow instance) multiple
instances of an activity can be created, i.e. there is a facility to spawn off
new threads of control. Each of these threads of control is independent
of other threads.

This so-called Multiple Instances Without Synchronization pattern, which ap-
parently comes with an asynchronous understanding of the underlying paral-
lelism, is an instance of ParallelSplit where Activity is further specified to
be a multiset of multiple instances of one activity act . Formally Activity =
MultiSet(act , Mult) where Mult denotes the number of occurrences of act in the
multiset and determines the multitude with which new threads for the execution
of instances of act are to be created and triggered to execute act .

MultInstWithoutSync(act , Mult , Thread ,TriggerExec) =
ParallelSplit(MultiSet(act , Mult), Thread ,TriggerExec)

In [10] some variations of this pattern appear, which essentially differ by their
interpretations on the static or dynamic character of the Mult itude parameter.
In the ASM framework this is merely a matter of how the parameter is declared.
Since in the formulation of these pattern variants some additional conditions ap-
pear that have to do with synchronization features, we postpone their discussion
to Sect. 2.2 where combinations of split and join patterns are discussed.

2.2 Merge Patterns

The following characterization seems to capture what is common to all the syn-
chronization and merge patterns in [8]:

A point in the workflow process where multiple parallel subprocesses/
activities converge into one single thread of control ... once ... completed
some other activity needs to be started.

The general scheme appears to be that one has to perform a specific con-
vergence action that characterizes the start of the merge phase, namely when a
MergeEvent occurs, and then to complete the merge by some further actions. To
represent these two successive and possibly durative aspects of a merge we use
separate abstract machines StartMerge and CompleteMerge. To capture
that multiple actions may be involved to complete a merge cycle, we formalize
the above description by the following control state ASM Merge, i.e. an ASM
all of whose rules have the form pictorially depicted in Fig. 1. Here i , j1, . . . , jn
denote the control states corresponding to the internal states of an FSM (Finite
State Machine), condν (for 1 ≤ ν ≤ n) the guards and ruleν the rule actions.

The control state ASM Merge switches between two modes mergeStart ,
MergeCompl and takes the merge event predicate and the two submachines
for starting and completing the merge as not furthermore specified abstract
parameters.

Modeling Workflow Patterns from First Principles 5

n

cond 1

cond nrule

1rule

i

j

jn

1

if ctl state = i then
if cond1 then

rule1

ctl state := j1
· · ·

if condn then
rulen

ctl state := jn

Fig. 1. Control state (FSM like) ASM rules

Fig. 2. General Merge Pattern ASM Merge

In accordance with the understanding of activities as executed by agents rep-
resenting threads, we name explicitly also these underlying agents since they
are the ones to be merged (not really the activities). We use for this a pa-
rameter exec denoting for every a ∈ Activity the agent exec(a) executing a,
if there is one. It typically serves as parameter for defining the merge event
MergeEv .

Merge(Activity, exec, MergeEv ,StartMerge,CompleteMerge) =
if ctl state = mergeStart and MergeEv(exec) then

StartMerge

ctl state := mergeCompl
if ctl state = mergeCompl then

CompleteMerge

ctl state := mergeStart

Various forms of synchronizing merge patterns, whether with or without syn-
chronization, can be described as instances of the general merge pattern ASM
Merge. We illustrate this here by deriving the various merge patterns that
appear in [8].

6 E. Börger

Discriminators. One class of patterns in [8] that represent instances of the
two-phase merge pattern Merge are the so-called Discriminator patterns. They
present the durative character of a merging phase together with two additional
basic merge features, namely merging with or merging without synchronization.
The so-called Structured Discriminator pattern is described as follows:

The discriminator is a point in a workflow process that waits for one
of the incoming branches to complete before activating the subsequent
activity. From that moment on it waits for all remaining branches to
complete and “ignores” them. Once all incoming branches have been
triggered, it resets itself so that it can be triggered again...

To view this pattern as an instance of Merge, essentially we have to instan-
tiate MergeEv to the check whether there is “one of the incoming branches to
complete”. Really this is a shorthand for expressing that a thread executing the
activity a associated to a branch has reached a completion point for that activity,
formally whether Completed(a, exec(a)).

As a cosmetic adaptation one may rename the control states mergeStart and
mergeCompl to reflect the basic intention of the discriminator pattern as alter-
nation between a waitingToProceed mode, namely until a first incoming branch
completes, and a reset mode, during which all remaining branches will com-
plete “without synchronization”. Similarly one may rename StartMerge and
CompleteMerge to Proceed respectivelyReset.

Speaking about waiting “for one of the incoming branches to complete” leaves
the case open where more activities complete simultaneously. We formalize the
pattern so that this latter more general case is contemplated, where multiple
activities that complete together may be synchronized. In doing this we fore-
see that the way to Proceed may be parameterized by the set of incoming
branches whose activities have been the first to be simultaneously completed.
Note that this formalization allows one to refine the ‘synchronization’ to choosing
one among the simultaneously completed activities. This leads to the following
instantiation of Merge by Fig. 3.

Fig. 3. Discriminator control-state ASM

Modeling Workflow Patterns from First Principles 7

Discriminator(Activity, exec, Completed ,Proceed,Reset) =
Merge(Activity, exec, MergeEv ,Proceed(ComplAct),Reset)

where
MergeEv =| ComplAct |≥ 1
ComplAct = {a ∈ Activity | Completed(a, exec(a))}

The variant Structured N-out-of-M Join discussed in [8] is the very same
Discriminator machine, replacing the cardinality threshold 1 by N and let-
ting M =| Activity |2. The pattern discussed in [8] under the name Gener-
alized AND-Join is the same as Structured N-out-of-M Join with additionally
N = M .

Reset appears in the above quoted description of the structured discrimina-
tor as a durative action of waiting for other activities to complete. It suffices to
refine Reset to the following machine Structured Discriminator Reset.
To check whether “all incoming branches have been triggered”, one has to dis-
tinguish the activities which have not yet been detected as completed. Thus
one needs a NotYetDetected test predicate, which initially is satisfied by ev-
ery element of the set Activity and is updated until it becomes empty. In the
description below init , exit denote the initial respectively final control state
of the refined machine. As Fig. 4 shows, for the replacement of Reset by
Structured Discriminator Reset we identify init with the reset mode, in
which it is called by Discriminator, and exit with the initial mode
waitingToProceed .

waiting
ForOtherAct
ToComplete

there is a
NotYetDetected

Activity

there is a
NotYetDetected

Completed
Activity

MARKASDETECTED
(NotYetDetectedComplAct)

yes

no

MARKAS
UNDETECTED

(Activity)

Fig. 4. Structured Discriminator Reset

2 | A | denotes the cardinality of set A.

8 E. Börger

StructuredDiscriminatorReset =
if mode = init then

MarkAsUnDetected(Activity)
mode := waitingForOtherActToComplete

if mode = waitingForOtherActToComplete then
if NotYetDetected �= ∅ then let A = ComplAct ∩ NotYetDetected

if A �= ∅ then MarkAsDetected(A)
else mode := exit

where
MarkAsDetected(A) = (forall a ∈ A NotYetDetected(a) := false)
MarkAsUnDetected(A) = (forall a ∈ A NotYetDetected(a) := true)
ComplAct = {a ∈ Activity | Completed(a, exec(a))}

The variations called Cancelling Discriminator and Cancelling N-out-of-M
Join are described in [8] by the additional requirement that “Triggering the dis-
criminator (join) also cancels the execution of all of the other incoming branches
and resets the construct”. This comes up to define the following instances of
Reset:

CancellingDiscriminatorReset =
forall a ∈ Activity \ ComplAct Cancel(exec(a))

In [8] some more variations, coming under the names Blocking Discriminator
and Blocking N-out-of-M Join, are described by the additional requirement that
“Subsequent enablements of incoming branches are blocked until the discrim-
inator (join) has reset.” It comes up to declare Completed as a set of queues
Completed(a) of completion events (read: announcing the completion of some
thread’s execution) for each activity a, so that in each discriminator round only
the first element fstout to leave a queue is considered and blocks the others. This
leads to the following refinement step:

refine the abstract completion predicate to not Empty(Completed(a)),
refine the updates of NotYetDetected(a) by replacing a by
fstout(Completed(a)) (under the additional guard that fstout(Completed(a))
is defined),
for exiting, i.e. in the last else branch of StructuredDiscriminator −
Reset, add the deletion of the completion events that have been considered
in this round:

forall a ∈ Activity Delete(fstout(Completed(a)), Completed(a))
In [8] also variations of the preceding discriminator pattern versions are presented
that work in concurrent environments. This is captured in our model by the fact
that we have parameterized it among others by Activity andCompleted , so that
it can execute in an asynchronous manner simultaneously for different instances
of these parameters.

Synchronizing Merge. This pattern too presents two merge components, one
with and one without synchronization. It is described in [8] as follows:

Modeling Workflow Patterns from First Principles 9

A point in the workflow process where multiple paths converge into
one single thread. If more than one path is taken, synchronization of
the active threads needs to take place. If only one path is taken, the
alternative branches should reconverge without synchronization. It is
an assumption of this pattern that a branch that has already been
activated, cannot be activated again while the merge is still waiting
for other branches to complete. ... the thread of control is passed to
the subsequent branch when each active incoming branch has been
enabled.

This is a merge pattern instance where the threads, which execute the activities
associated to branches and are described as Active, have to be synchronized,
whereas the remaining threads have to “reconverge without synchronization”.
The synchronization event denotes the crucial pattern parameter “to decide
when to synchronize and when to merge” and to determine the branches “the
merge is still waiting for ... to complete”. Nevertheless no definition of threads
being Active, Activated or Enabled is given, so that in particular it is unclear
whether by interpreting enabledness as completion this pattern reduces to the
structured discriminator pattern. Since a decision is needed, we choose to for-
malize the synchronization event in terms of enabledness of active branch activ-
ities by instantiating the MergeEvent in Merge correspondingly. As a cosmetic
change we rename StartMerge and CompleteMerge to Converge re-
spectively Reconverge. The iterative nature of the not furthermore speci-
fied Reconverge machine can be formalized by a structured version, as done
for the discriminator Reset submachine. In this case the description of this
pattern in fact is just another wording for the structured version of the
discriminator.

SynchronizingMerge(Activity , exec, Active, SyncEnabled ,Converge,Reconverge) =
Merge(Activity , exec, MergeEv ,Converge(Active),Reconverge(Activity \ Active)

where
MergeEv =forall a ∈ Activity if Active(exec(a)) then SynEnabled(exec(a))

The assumption “that each incoming branch of a synchronizer is executed only
once” relates each a ∈ Activity to a unique executing thread exec(a). It is natu-
ral to assume that at the beginning of the execution of a, SyncEnabled(exec(a))
is false and that after having become true during this execution, it is reset
to false by Converge respectively Reconverge, thus resetting
SynchronizingMerge for the next synchronization round.

The machine SynchronizingMerge has been further simplified in [8] to
a pattern called Synchronizer. This can be defined as an instantiation of
SynchronizingMerge by declaring all activities to be active (i.e.
Active(exec(a)) holds for each a ∈ Activity when the pattern is used) and re-
converging to be empty (Reconverge = skip).

The Acyclic Synchronizing Merge pattern presented in [8] is another variation
described by the following additional requirement:

10 E. Börger

Determination of how many branches require synchronization is made
on the basis of information locally available to the merge construct. This
may be communicated directly to the merge by the preceding diverging
construct or alternatively it can be determined on the basis of local data
such as the threads of control arriving at the merge.

This variation is easily captured by refining the MergeEvent predicate to check
whether the necessary synchNumber of to be synchronized enabled and active
branches has been reached:

AcyclSynchrMerge = SynchronizingMerge where
MergeEv= | {a∈Activity | Active(exec(a)) and SyncEnabled(exec(a))} |≥
synchNumber

Another variation called General Synchronizing Merge is described in [8]
by relaxing the firing condition from “when each active incoming branch has
been enabled” through the alternative “or it is not possible that the branch
will be enabled at any future time”. To reflect this restriction it suffices
to relax SyncEnabled(exec(a)) in MergeEv by the disjunct “or
NeverMoreEnabled(exec(a))”, but obviously the crux is to compute such a pred-
icate. It “requires a (computationally expensive) evaluation of possible future
states for the current process instance” [8, pg.71].

Simple and Thread Merge. The Simple Merge pattern described in [10] is
an example of merging without synchronization. Its description runs as follows.

A point in the workflow process where two or more alternative branches
come together without synchronization. It is an assumption of this pat-
tern that none of the alternative branches is ever executed in parallel.

This is an instance Simple Merge of the Merge ASM where the two control
states are identified and we set CompleteMerge = skip. In [8] the description
is weakened as follows, withdrawing the uniqueness condition.

The convergence of two or more branches into a single subsequent branch.
Each enablement of an incoming branch results in the thread of control
being passed to the subsequent branch.

This weakening can be made explicit by incorporating into the StartMerge

submachine of SimpleMerge a choice among two or more branches that try
to converge simultaneously, using one of the selection patterns discussed in
Sect. 3.4. In [8] two more variations are discussed under the names Thread Merge
with Design/Run-Time Knowledge, where a merge number MergeNo appears
explicitly:

At a given point in a process, a ... number of execution threads in a
single branch of the same process instance should be merged together
into a single thread of execution

Modeling Workflow Patterns from First Principles 11

This number is furthermore specified to be either “nominated” or “not known
until run-time”, which is a question of how the number is declared. As to the
definition of ThreadMerge, it can be obtained as follows, reusing the instan-
tiation of Merge to Simple Merge and refining the MergeEv further by an
analogous condition as the one used for AcyclSynchMerge above:

ThreadMerge(Activity, exec, MergeEnabled ,Proceed, MergeNo) =
Merge(Activity, exec, MergeEv ,Proceed, skip)

where
MergeEv = (| {a ∈ Activity and MergeEnabled(exec(a))} |= MergeNo)
mergeStart = mergeCompl

Thus SimpleMerge appears as ThreadMerge with MergeNo = 1 under
the mutual-exclusion hypothesis.

RelaxSimpleMerge is the variant of ThreadMerge with cardinality check
| A |≥ 1 and Proceed refined to forall a ∈ A Proceed(a).3 At a later
point in [10] this pattern is called Multi-Merge and described as follows: “A
point in the workflow process where two or more branches reconverge without
synchronization. If more than one branch gets activated, possibly concurrently,
the activity following the merge is started for every activation of every incoming
branch.”4

To capture the two Thread Merge variants it suffices to instantiate Activity
to the set of execution threads in the considered single branch of a process
and to declare MergeNo as static respectively dynamic. It is unclear whether
there is a difference worth the two namings between the Synchronizer and
the ThreadMerge pattern besides considering in the latter only the “execution
threads in a single branch of the same process instance”.

Coupled Split and Join Patterns. For the instantiation of ParallelSplit

to the pattern MultInstWithoutSync for multiple instances without synchro-
nization (see Sect. 2.1) three variations appear in [10]. They derive from different
interpretations of the static or dynamic nature of the Mult itude parameter and
from adding a join component to the split feature.

For the Multiple Instances With a Priori Design Time Knowledge pattern
the set Mult is declared to be known a priori at design time. In addition the
following is required:

3 It comes natural to assume here that when Proceed(a) is called,
MergeEnabled(exec(a)) changes to false and exec(a) to undefined . This guar-
antees that each completed activity triggers “the subsequent branch” once per
activity completion. One way to realize this assumption is to require such an update
to be part of Proceed(a); another possibility would be to add it as update to go
in parallel with Proceed(a).

4 It is possible that the relaxed form of Simple Merge was intended not to allow
multiple merge-enabled branches to proceed simultaneously, in which case it either
implies a further selection of one a ∈ A to Proceed(a) as proxy for the others or a
sequentialization of Proceed(a) for all a ∈ A.

12 E. Börger

... once all instances are completed some other activity needs to be
started.

These two requirements can be captured by using the two phases of the Merge

machine, one for the (unconditioned)5 splitting action and one to Proceed upon
the completion event, when all newly created agents have Completed their run
of the underlying activity. Since in [8] also a variation is considered under the
name Static N-out-of-M Join for Multiple Instances, where to Proceed only N
out of Mult = M activity instances need to have completed, we make here the
cardinality parameter explicit. It can then be specialized to N =| Agent(act) |.
The variation Static Cancelling N-out-of-M Join for Multiple Instances in [8]
can be obtained by adding a cancelling submachine.

MultInstNMJoin(act , Mult ,Thread , Completed , TriggerExec,Proceed,N) =
Merge(MultiSet(act , Mult), −, true,

MultInstWithoutSync(act , Mult ,Thread , TriggerExec),
if CompletionEv then Proceed)

where
CompletionEv = (| {t ∈ Thread | Completed(t , act)} |≥ N)

MultInstAPrioriDesignKnowl

(act , Mult ,Thread , Completed , TriggerExec,Proceed) =
MultInstNMJoin

(act , Mult ,Thread , Completed , TriggerExec,Proceed, | Thread(act) |)

The pattern Multiple Instances With a Priori Run Time Knowledge is the
same except that the Mult itude “of instances of a given activity for a given
case varies and may depend on characteristics of the case or availability of re-
sources, but is known at some stage during runtime, before the instances of
that activity have to be created.” This can be expressed by declaring Mult for
MultInstAPrioriRunKnowl as a dynamic set.

The Multiple Instances Without a Priori Run Time Knowledge pattern is the
same as Multiple Instances With a Priori Run Time Knowledge except that for
Mult itude it is declared that “the number of instances of a given activity for a
given case is not known during desing time, nor is it known at any stage during
runtime, before the instances of that activity have to be created”, so that “at any
time, whilst instances are running, it is possible for additional instances to be
initiated” [8, pg.31]. This means that as part of the execution of a Run(a, act),
it is allowed that the set Agent(act) may grow by new agents a′ to Run(a′, act),
all of which however will be synchronized when Completed . Analogously the
pattern Dynamic N-out-of-M Join for Multiple Instances discussed in [8] is a
variation of Static N-out-of-M Join for Multiple Instances.

The Complete Multiple Instance Activity pattern in [8] is yet another varia-
tion: “... It is necessary to synchronize the instances at completion before any
subsequent activities can be triggered. During the course of execution, it is pos-
sible that the activity needs to be forcibly completed such that any remaining
5 As a consequence the parameter exec plays no role here.

Modeling Workflow Patterns from First Principles 13

instances are withdrawn and the thread of control is passed to subsequent
activities.”

To reflect this additional requirement it suffices to add the following machine
to the second submachine of MultInstAPrioriDesignKnowl:

if Event(ForcedCompletion) then
forall a ∈ (Thread(act) \ Completed) do Cancel(a)
Proceed

2.3 Interleaving Patterns

As observed by Andreas Prinz and mentioned above, interleaving should perhaps
be considered as parameter for different forms of parallelism and not as pattern.
Interleaving is described in [8] as follows:

A set of activities is executed in an arbitrary order: Each activity in the
set is executed, the order is decided at run-time, and no two activities
are executed at the same moment (i.e. no two activities are active for
the same workflow at the same time).

We illustrate some among the numerous ways to make this description rig-
orous, depending on the degree of detail with which one wants to describe the
interleaving scheme. A rather liberal way is to execute the underlying activities
one after another until Activity has become empty, in an arbitrary order, left
completely unspecified:

InterleavedPar(Activity) = choose act ∈ Activity
act
Delete(act , Activity)

A more detailed scheme forsees the possibility to impose a certain schedul-
ing algorithm for updating the currently executed activity curract . The function
schedule used for the selection of the next not-yet-completed activity comes with
a name and thus may be specified explicitly elsewhere. For example, to capture
the generalization of this pattern in [8, pg.34], where the activities are partially
ordered and the interleaving is required to respect this order, schedule can sim-
ply be specified as choosing a minimal element among the not-yet-completed
activities.

ScheduledInterleaving(Activity, Completed , schedule) =
if Completed(curract) then curract := schedule({a ∈ Activity | not
Completed(a)})

A more sophisticated interleaving scheme could permit that the execution
of activities can be suspended and resumed later. A characteristic example ap-
pears in [9, Fig.1.3] to describe the definition of the multiple-thread Java in-
terpreter using a single-thread Java interpreter. It can be paraphrased for the
workflow context as follows, assuming an appropriate specification of what it

14 E. Börger

means to Suspend and to Resume an activity and using an abstract predicate
ExecutableRunnable that filters the currently executable and runnable activities
from Activity.

InterleaveWithSuspension

(Activity , ExecutableRunnable,Execute,Suspend,Resume) =
choose a ∈ ExecutableRunnable(Activity) if a = curract then Execute(curract)

else
Suspend(curract)
Resume(a)

The generalization from atomic activities to critical sections, proposed in [8]
as separate pattern Critical Section, is a straightforward refinement of the ele-
ments of Activity to denote “whole sets of activities”. Also the variation, called
Interleaved Routing, where “once all of the activities have completed, the next
activity in the process can be initiated” is simply a sequential composition of
Interleaved Parallel Routing with NextActivity.

There is a large variety of other realistic interpretations of Interleaved Parallel
Routing, yielding pairwise different semantical effects. The informal requirement
description in [10,8] does not suffice to discriminate between such differences.

2.4 Trigger Patterns

Two basic forms of trigger patterns are discussed in [8], called Transient Trigger
and Persistent Trigger. The description of Transient Trigger reads as follows:

The ability for an activity to be triggered by a signal from another part
of the process or from the external environment. These triggers are tran-
sient in nature and are lost if not acted on immediately by the receiving
activity.

Two variants of this pattern are considered. In the so-called ‘safe’ variant,
only one instance of an activity ‘can wait on a trigger at any given time’. In the
unsafe variant multiple instances of an activity ‘can remain waiting for a trigger
to be received’.6

The description of the Persistent Trigger goes as follows:

... These triggers are persistent in form and are retained by the workflow
until they can be acted on by the receiving activity.

Again two variants are considered. In the first one ‘a trigger is buffered until
control-flow passes to the activity to which the trigger is directed’, in the second
one ‘the trigger can initiate an activity (or the beginning of a thread of execution)
that is not contingent on the completion of any preceding activities’.

We see these patterns and the proposed variants as particular instantiations
of one Trigger pattern, dealing with monitored events to trigger a process and
6 Note that this safety notion is motivated by the Petri net framework underlying the

analysis in [8].

Modeling Workflow Patterns from First Principles 15

instantiated depending on a) whether at a given moment multiple processes wait
for a trigger and on b) the time that may elapse between the trigger event and
the reaction to it. We add to this the possibility that in a distributed envi-
ronment, at a given moment multiple trigger events may yield a simultaneous
reaction of multiple ready processes. We leave the submachines for Buffering
and UnBuffering abstract and only require that as result of an execution of
Buffer(a) the predicate Buffered(a) becomes true. For notational reasons we
consider monitored events as consumed by the execution of a rule.7

Trigger =
TriggerEvent

TriggerReaction

where
TriggerEvent = if Event(Trigger(a)) then Buffer(a)
TriggerReaction =

if not Empty(Buffered ∩ Ready) then
choose A ⊆ Buffered ∩ Ready forall a ∈ A do

a
UnBuffer(a)

The two variants considered for thePersistentTrigger differ fromeach other only by
the definition of Ready(a), meaning in the first case WaitingFor(Trigger(a)) and
in the second case curract = a (‘process has reached the point to execute a’), where
curract is the activity counter pointing to the currently to be executed activity.

For the Transient Trigger it suffices to stipulate that there is no buffering,
so that Buffered coincides with the happening of a triggering event. Upon the
arrival of an event, TriggerEvent and TriggerReaction are executed si-
multaneously if the event concerns a Ready(a), in which case (and only in this
case) it triggers this activity.

TransientTrigger = Trigger where
Buffer = UnBuffer = skip
Buffered(a) = Event(Trigger(a))

The difference between the safe and unsafe version is in the assumption on how
many activity (instances) may be ready for a trigger event at a given moment
in time, at most one (the safe case) or many, in which case a singleton set A is
required to be chosen in TriggerReaction.

3 Sequential Control Flow Patterns

The patterns related to sequential control flow can be conceptually
categorized into four types: sequencing of multiple flows, iteration of a flow,

7 This convention allows us to suppress the explicit deletion of an event from the set
of active events.

16 E. Börger

begin/termination of a flow and choice among (also called sequential split into)
multiple flows. These patterns capture aspects of process control that are well
known from sequential programming.

3.1 Sequence Patterns

We find the following description for this well-known control-flow feature:
“An activity in a workflow is enabled after the completion of another activity

in the same process”.
One among many ways to formalize this is to use control-state ASMs, which

offer through final and initial states a natural way to reflect the completion
and the beginning of an activity. If one wants to hide those initial and final
control states, one can use the seq-operator defined in [5] for composing an
ASM A1 seq A2 out of component ASMs Ai (i = 1, 2).

Sequence(A1, A2) = A1 seq A2

A related pattern is described as follows under the name Milestone:

The enabling of an activity depends on the case being in a specified state,
i.e. the activity is only enabled if a certain milestone has been reached
which did not expire yet.

This rather loose specification can be translated as follows:

Milestone(milestone, Reached , Expired , act) =
if Reached(milestone) and not Expired(milestone) then act

3.2 Iteration Patterns

For arbitrary cycles the following rather loose description is given:

A point in a workflow process where one or more activities can be done
repeatedly.

For the elements of Activity to be repeatedly executed, it seems that a
StopCriterion is needed to express the point where the execution of one instance
terminates and the next one starts. The additional stipulation in the revised
description in [8] that the cycles may “have more than one entry or exit point”
is a matter of further specifying the starting points and the StopCriterion for
activities, e.g. exploiting initial and final control states of control-state ASMs.
The Iterate construct defined for ASMs in [5] yields a direct formalization of
this pattern that hides the explicit mentioning of entry and exit points.

ArbitraryCycles(Activity, StopCriterion) =
forall a ∈ Activity Iterate(a) until StopCriterion(a)

In [8] two further ‘special constructs for structured loops’ are introduced,
called Structured Loop and Recursion. The formalization of StructuredLoop

comes up to the constructs while Cond do M respectively do M until Cond ,

Modeling Workflow Patterns from First Principles 17

defined for ASMs in [5]. For an ASM formalization of Recursion we refer to [4]
and skip further discussion of these well known programming constructs.

3.3 Begin/Termination Patterns

In [10] the following Implicit Termination pattern is described.

A given subprocess should be terminated when there is nothing else to
be done. In other words, there are no active activities in the workflow
and no other activity can be made active (and at the same time the
workflow is not in deadlock).

The point of this patterns seems to be to make it explicit that a subprocess
should Terminate depending on a typically dynamic StopCriterion. This varies
from case to case. It may depend upon the subprocess structure. It may also
include global features like that “there are no active activities in the workflow
and no other activity can be made active”; another example is the projection of
the run up-to-now into the future, namely by stipulating that the process should
terminate “when there are no remaining work items that are able to be done
either now or at any time in the future” [8, pg.25]. Such an abstract scheme is
easily formulated as an ASM. It is harder to define reasonable instances of such a
general scheme, which have to refine the StopCriterion in terms of (im)possible
future extensions of given runs.

Termination(P , StopCriterion,Terminate) =
if StopCriterion(P , Activity) then Terminate(P)

In [8] the following variation called Explicit Termination is discussed.

A given process (or sub-process) instance should terminate when it
reaches a nominated state. Typically this is denoted by a specific end
node. When this end node is reached, any remaining work in the pro-
cess instances is cancelled and the overall process instance is recorded as
having completed successfully.

It is nothing else than the instantiation of Termination by refining a) the
StopCriterion to currstate = exit , expressing that the current state has reached
the end state, and b) Terminate(P) to include Cancel(P) and marking the
overall process parent(P) as CompletedSuccessfully.

Related to termination patterns are the so-called cancellation patterns.
The Cancel Activity pattern is described as follows:

An enabled activity is disabled, i.e. a thread waiting for the execution of
an activity is removed.

Using an association agent(act) of threads to activities allows one to delete
the executing agent, but not the activity, from the set Agent of currently active
agents:

18 E. Börger

CancelAct(act , Agent , exec) =
let a = exec(act) in if Enabled(a) then Delete(a, Agent)

The Cancel Case pattern is described as follows: “A case, i.e. workflow in-
stance, is removed completely (i.e., even if parts of the process are instantiated
multiple times, all descendants are removed).”

If we interprete ‘removing a workflow instance’ as deleting its executing
agent,8 this pattern appears to be an application of CancelAct to all the
Descendants of an act ivity (which we assume to be executed by agents), where
for simplicity of exposition we assume Descendant to include act .

CancelCase(act , Agent , exec, Descendant) =
forall d ∈ Descendant(act) CancelAct(d , Agent , exec)

For the Cancel Region pattern we find the following description in [8]: “The
ability to disable a set of activities in a process instance. If any of the activities
are already executing, then they are withdrawn. The activities need not be a
connected subset of the overall process model.”

CancelRegion is a straightforward variation of CancelCase where
Descendant(p) is defined as the set of activities one wants to cancel in the
process instance p. Whether this set includes p itself or not is a matter of how
the set is declared. The additional requirement that already executing activities
are to be withdrawn is easily satisfied by refining the predicate Enabled(a) to
include executing activities a. The question discussed in [8] whether the deletion
may involve a bypass or not is an implementation relevant issue, suggested by
the Petri net representation of the pattern.

An analogous variation yields an ASM for the Cancel Multiple Instance Ac-
tivity pattern, for which we find the following description in [8]: “Within a given
process instance, multiple instances of an activity can be created. The required
number of instances is known at design time. These instances are independent of
each other and run concurrently. At any time, the multiple instance activity can
be cancelled and any instances which have not completed are withdrawn. This
does not affect activity instances that have already completed.” Here it suffices
to define Descendant(p) in CancelCase as the set of multiple instances of an
activity one wants to cancel and to include ‘activity instances which have not
yet completed’ into the Enabled predicate of CancelAct.

3.4 Selection Patterns

A general workflow selection pattern named Multichoice is described in [8] as
follows:

A point in the workflow process where, based on a decision or workflow
control data, a number of branches are chosen.

8 To delete the activity and not only its executing agent would imply a slight variation
in the ASM below.

Modeling Workflow Patterns from First Principles 19

Besides the parameter for the set Activity of subprocesses among which to
choose, we see here as second parameter a ChoiceCriterion,9 used to “choose
multiple alternatives from a given set of alternatives” that have to be executed
together. It may take workflow control data as arguments. Using the non deter-
ministic choose construct for ASMs yields the following formalization:

MultiChoice(Activity, ChoiceCriterion) =
choose A ⊆ Activity ∩ ChoiceCriterion

forall act ∈ A
act

An equivalent wording for this machine explicitly names a choice function, say
select , which applied to Activity ∩ ChoiceCriterion yields a subset of activities
chosen for execution:

Choice(Activity, ChoiceCriterion, select) =
forall act ∈ select(Activity ∩ ChoiceCriterion)

act

The Exclusive Choice pattern is described in [8] as follows, where the addi-
tional assumption is that each time an exclusive choice point is reached (read:
ExclChoice is executed), the decision criterion yields exactly one a ∈ Activity
that fulfills it:

A point in the workflow process where, based on a decision or workflow
control data, one of several branches is chosen.

This is a specialization of Choice where the range of the select function is
requested to consist of singleton sets.

We also find the following description of a Deferred Choice:

A point in the workflow process where one of several branches is chosen.
In contrast to the XOR-split, the choice is not made explicitly (e.g.
based on data or a decision) but several alternatives are offered to the
environment. However, in contrast to the AND-split, only one of the
alternatives is executed ... It is important to note that the choice is
delayed until the processing in one of the alternative branches is actually
started, i.e. the moment of choice is as late as possible.

This is captured by an instance of ExclChoice ASM where the
ChoiceCriterion is declared to be a monitored predicate because the decision
for the choice may depend on runtime data.

9 The revised version of the multi-choice pattern in [8, pg.15] describes the selection
as “based on the outcome of distinct logical expressions associated with each of the
branches”. This can be reflected by the parameterization of ChoiceCriterion with
the set Activity , e.g. to represent a disjunction over the “distinct logical expressions
associated with each of the (activity) branches”.

20 E. Börger

4 Conclusion and Outlook

We have identified a few elementary workflow patterns that help to structure
the variety of individually named workflow patterns collected in [10,8]. We hope
that this provides a basis for an accurate analysis and evaluation of practically
relevant control-flow patterns, in particular in connection with business pro-
cesses and web services, preventing the pattern variety to grow without rational
guideline.

Acknowledgement. We thank Andreas Prinz and three anonymous referees
for valuable criticism of previous versions of this paper.

References

1. Börger, E.: The ASM ground model method as a foundation of requirements
engineering. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS,
vol. 2772, pp. 145–160. Springer, Heidelberg (2003)

2. Börger, E.: The ASM method for system design and analysis. A tutorial intro-
duction. In: Gramlich, B. (ed.) Frontiers of Combining Systems. LNCS (LNAI),
vol. 3717, pp. 264–283. Springer, Heidelberg (2005)

3. Börger, E.: A critical analysis of workflow patterns. In: Prinz, A. (ed.) ASM 2007,
Grimstadt (Norway) (June 2007), Agder University College (2007)

4. Börger, E., Bolognesi, T.: Remarks on turbo ASMs for computing functional equa-
tions and recursion schemes. In: Börger, E., Gargantini, A., Riccobene, E. (eds.)
ASM 2003. LNCS, vol. 2589, pp. 218–228. Springer, Heidelberg (2003)

5. Börger, E., Schmid, J.: Composition and submachine concepts for sequential ASMs.
In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 41–60.
Springer, Heidelberg (2000)

6. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

7. INMOS. Transputer Implementation of Occam – Communication Process Archi-
tecture. Prentice-Hall, Englewood Cliffs, NJ (1989)

8. Russel, N., ter Hofstede, A., van der Aalst, W.M.P., Mulyar, N.: Work-
flow control-flow patterns. A revised view. BPM-06-22 (July 2006), at
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/

9. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, Heidelberg (2001)

10. van der Aalst, W.M., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow
patterns. Distributed and Parallel Databases 14(3), 5–51 (2003)

http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/

Heart Modeling, Computational Physiology and

the IUPS Physiome Project

Peter J. Hunter

Auckland Bioengineering Institute (ABI), University of Auckland, New Zealand
p.hunter@auckland.ac.nz

Abstract. The Physiome Project of the International Union of Physio-
logical Sciences (IUPS) is attempting to provide a comprehensive frame-
work for modelling the human body using computational methods which
can incorporate the biochemistry, biophysics and anatomy of cells, tissues
and organs. A major goal of the project is to use computational modelling
to analyse integrative biological function in terms of underlying structure
and molecular mechanisms. To support that goal the project is develop-
ing XML markup languages (CellML & FieldML) for encoding models,
and software tools for creating, visualizing and executing these models.
It is also establishing web-accessible physiological databases dealing with
model-related data at the cell, tissue, organ and organ system levels. Two
major developments in current medicine are, on the one hand, the much
publicised genomics (and soon proteomics) revolution and, on the other,
the revolution in medical imaging in which the physiological function of
the human body can be studied with a plethora of imaging devices such
as MRI, CT, PET, ultrasound, electrical mapping, etc. The challenge for
the Physiome Project is to link these two developments for an individ-
ual - to use complementary genomic and medical imaging data, together
with computational modelling tailored to the anatomy, physiology and
genetics of that individual, for patient-specific diagnosis and treatment.

References

[1] Hunter, P.J., Borg, T.K.: Integration from proteins to organs: The Physiome
Project. Nature Reviews Molecular and Cell Biology 4, 237–243 (2003)

[2] Crampin, E.J., Halstead, M., Hunter, P.J., Nielsen, P.M.F., Noble, D., Smith, N.P.,
Tawhai, M.: Computational physiology and the Physiome Project. Exp. Physiol. 89,
1–26 (2004)

[3] Hunter, P.J., Nielsen, P.M.F.: A strategy for integrative computational physiology.
Physiology 20, 316–325 (2005)

[4] Hunter, P.J.: Modeling living systems: the IUPS/EMBS Physiome Project. Pro-
ceedings of the IEEE 94, 678–691 (2006)

[5] http://www.cellml.org

C. Parent et al. (Eds.): ER 2007, LNCS 4801, p. 21, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.cellml.org

Conceptual Schemas and Ontologies for

Database Access: Myths and Challenges

Enrico Franconi

Faculty of Computer Science, Free University of Bozen-Bolzano,
Piazza Domenicani 3, I-39100 Bozen-Bolzano BZ, Italy

franconi@inf.unibz.it

Abstract. First, I will argue that well-founded conceptual modelling
and ontology design is required to support intelligent information access.
Then, I will show which are the technical consequences of such choices,
and how the foundational and computational problems to be faced are
non-trivial. The arguments are based on the use of classical logics and
description logics as a formal tools for the framework, and I will make
use of languages and examples taken from the Entity-Relationship arena.

C. Parent et al. (Eds.): ER 2007, LNCS 4801, p. 22, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multidimensional Data Modeling

for Business Process Analysis

Svetlana Mansmann1, Thomas Neumuth2, and Marc H. Scholl1

1 University of Konstanz, P.O.Box D188, 78457 Konstanz, Germany
{Svetlana.Mansmann,Marc.Scholl}@uni-konstanz.de

2 University of Leipzig, Innovation Center Computer Assisted Surgery (ICCAS),
Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany

Thomas.Neumuth@medizin.uni-leipzig.de

Abstract. The emerging area of business process intelligence attempts
to enhance the analytical capabilities of business process management
systems by employing data warehousing and mining technologies. This
paper presents an approach to re-engineering the business process mod-
eling in conformity with the multidimensional data model. Since the
business process and the multidimensional model are driven by rather
different objectives and assumptions, there is no straightforward solution
to converging these models.

Our case study is concerned with Surgical Process Modeling which is
a new and promising subdomain of business process modeling. We for-
mulate the requirements of an adequate multidimensional presentation
of process data, introduce the necessary model extensions and propose
the structure of the data cubes resulting from applying vertical decom-
position into flow objects, such as events and activities, and from the
dimensional decomposition according to the factual perspectives, such
as function, organization, and operation. The feasibility of the presented
approach is exemplified by demonstrating how the resulting multidimen-
sional views of surgical workflows enable various perspectives on the data
and build a basis for supporting a wide range of analytical queries of vir-
tually arbitrary complexity.

1 Introduction

Conventional business process management systems, focused on operational de-
sign and performance optimization, display rather limited analysis capabilities
to quantify performance against specific metrics [1]. Deficiencies of business pro-
cess modeling (BPM) approaches in terms of supporting comprehensive analysis
and exploration of process data have been recognized by researchers and prac-
titioners [1,2]. The new field of Business Process Intelligence (BPI), defined as
the application of performance-driven management techniques from Business In-
telligence (BI) to business processes, claims that the developing convergence of
BI and BPM technologies will create value beyond the sum of their parts [3].
However, no straightforward guidelines for converging the flow-oriented process
specification and the snapshot-based multidimensional design are in existence.

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 23–38, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

24 S. Mansmann, T. Neumuth, and M.H. Scholl

To be admitted into an OLAP (On-line Analytical Processing) system, the
descriptions of the business processes have to undergo the transformation im-
posed by the underlying multidimensional data model. However, the source and
the target models are driven by rather conflicting and partially incompatible
objectives: business process modeling is concerned with operational efficiency
and workflow behavior, whereas OLAP enables aggregation over accumulated
numerical data modeled as a set of uniformly structures fact entries.

In medical engineering “the term Surgical Workflows refers to the general
methodological concept of the acquisition of process descriptions from surgical
interventions, the clinical and technical analysis of them” [4]. One of the major
challenges is the acquisition of accurate and meaningful Surgical Process Models
(SPM). Surgical Process Models are “simplified pattern of a surgical procedure
that reflect a predefined subset of interest of the real intervention in a formal
or semi-formal representation“[5]. Formalization of the SPM recording scheme is
required to support both, manual and automatic data acquisition, and to apply
state-of-the-art analysis and visualization techniques for gaining insight into the
data.

Use cases of Surgical Workflows are manifold, ranging from supporting the
preoperative planning by retrieving similar precedent cases to the postoperative
exploration of surgical data, from analyzing the optimization potential with re-
spect to instruments and systems involved to verifying medical hypotheses, for
education purposes, answering qualitative and quantitative queries, etc. What-
ever abstraction approach is adopted, there is a need for an unambiguous de-
scription of concepts that characterize a surgical process in a way adequate for
modeling a wide range of different workflow types and surgical disciplines.

The prevailing process modeling standards, such as Business Process Mod-
eling Notation (BPMN) [6] and the reference model of Workflow Management
Coalition (WfMC) [7], are too general to address the domain-specific require-
ments adequately. Multidimensional modeling seems a promising solution as it
allows to view data from different perspectives and at different granularity and
define various measures of interest. To identify the major design challenges, we
proceed by inspecting the fundamentals of the involved modeling techniques.

1.1 Multidimensional Data Model

Multidimensional data model emerged as an alternative to the relational data
model optimized for quantitative data analysis. This model categorizes the data
as facts with associated numerical measures and descriptive dimensions charac-
terizing the facts [8]. Facts can thus be viewed as if shaped into a multidimen-
sional cube with dimensions as axes and measure values as the cube cells. For
instance, a surgical process can be modeled as a fact entry SURGERY charac-
terized by dimensions Location, Surgeon, Patient, and Discipline. Members of a
dimension are typically organized in a containment type hierarchy (e.g., location
↗ hospital ↗ city) to support multiple granularities.

Relational OLAP structures the data cubes according to the star or snowflake
schema [9]. Both schemas are composed of a fact table and the associated

Multidimensional Data Modeling for Business Process Analysis 25

dimension tables. In the star schema, for each dimension, its whole hierarchy is
placed into a single table, whereas the snowflake schema extracts each hierarchy
level into a separate table and uses foreign keys for mapping child-parent rela-
tionships between the members. Within a dimension, the attributes that form the
hierarchy are called dimension levels, or categories. Other descriptive attributes
belonging to a particular category are property attributes. For instance, hospital
and city are categories of the dimension location, whereas hospital name and city
code are property attributes of the respective categories. Dimension levels along
with parent-child relationships between them are referred to as the intension,
or schema, of a dimension whereas the hierarchy of its members, i.e., the actual
data tree, forms its extension.

1.2 Business Process Modeling and Workflow Management

BPM and Workflow Management (WfM) foster a process-oriented perspective
on organizations that comprises activities and their relationships within and be-
yond an organization context. Relationships may be specified using control flow
(consecutive, parallel, or alternative execution) and/or hierarchical decompo-
sition; the organizational context comprises organizational units and resources
[10]. The differentiation in the definition of business processes vs. workflows
lies in the levels of abstraction: while business processes are mostly modeled in
a high-level and informal way, workflow specifications serve as a basis for the
largely automated execution and are derived by refining the business process
specification [11]. A workflow is specified in terms of work steps, denoted activ-
ities, which are either automated or include a human part. The latter type is
assigned roles filled by human actors at runtime. The role of the WfM system
is to determine the (partial) invocation order of activities. Therefore, a formal
specification of control flow and data flow is required.

Coexistence of different workflow specification methods is common in practice.
We restrain ourselves to naming a few techniques applicable in the context of
Surgical Workflows and refer the interested reader to [12] for a detailed overview.
Net-based, or graph-based, methods enjoy great popularity due to their ability
to visualize processes in a way understandable even for non-expert users. Espe-
cially the activity and state charts are frequently used to specify a process as an
oriented graph with nodes representing the activities and arcs defining the or-
dering in which these are performed. Logic-based methods use temporal logic to
capture the dynamics of the system. Finally, Event-Condition-Action rules are
used for specifying the control flow between activities in the conditional form.

Surgical Process Modeling, classified as a specific domain of BPM [4], adopts
the concepts from both WfM and BPM. The WfM approach of decomposing a
workflow into activities is useful for providing a task-oriented surgery perspec-
tive. However, since surgical work steps are predominantly manual and involve
extensive organizational context, such as participants, their roles, patients and
treated structures, instruments, devices and other resources, etc., high-level BPM
abstractions enable modeling such domain-specific elements.

26 S. Mansmann, T. Neumuth, and M.H. Scholl

2 Related Work

Relevant work can be subdivided into the following categories: 1) enhancing
business process analysis by employing the data warehousing approach, 2) ex-
tending the OLAP technology to support complex scenarios, and 3) approaches
to surgical workflow analysis.

Grigori et al. present a BPI tool suite built on top of the HP Process Manager
(HPPM) and based on a data warehouse approach [2]. The process data is mod-
eled according to the star schema, with process, service, and node state changes
as facts and the related definitions as well as temporal and behavioral character-
istics as dimensions. While this approach focuses on the analysis of process exe-
cution and state evolution, we pursue the task-driven decomposition into logical
work steps, in which horizontal characteristics, or the factual perspectives[13],
extended by means of domain-specific taxonomies serve as dimensions.

An approach to visual analysis of business process performance metrics, called
impact factors, is given in [14]. The proposed visualization interface VisImpact
is especially suitable for aggregating over large amounts of process-related data
and is based on analyzing the process schema and instances to identify business
metrics. The selected impact factors and the corresponding process instances are
presented using a symmetric circular graph to display the relationships and the
details of the process flows.

Pedersen et al. have made remarkable contributions in the field of multidi-
mensional modeling for non-standard application domains. In [15], a medical
cases study concerned with patient diagnosis is used to demonstrate the analysis
requirements not supported by traditional OLAP systems. The proposed model
extensions aim at supporting non-summarizable hierarchies, symmetric treat-
ment of dimensions and measures, and correct aggregation over imprecise or
incomplete data. In [16], Jensen et al. present the guidelines for designing com-
plex dimensions in the context of spatial data such as mobile, location-based
services.

In a previous work [17] we analyzed the limitations of conventional OLAP
systems and the underlying data model in handling complex dimension hierar-
chies and proposed model extensions at the conceptual level and their relational
mapping as well their implementation in a prototype frontend tool. A compre-
hensive classification of dimensional hierarchies, including those not addressed
by current OLAP systems, formalized at both the conceptual model and the
logical level, may be found in [18].

Interdisciplinary research in the field of surgical workflow modeling, analysis
and visualization is carried out at the Innovation Center Computer Assisted
Surgery (ICCAS) located in Leipzig, Germany. Recent results and findings of
the ongoing projects may be found in [4,5].

3 Case Study: Surgical Workflows

Surgeons, medical researchers and engineers work jointly on obtaining a well-
defined formal Surgical Process Model that would enable managing huge volumes

Multidimensional Data Modeling for Business Process Analysis 27

SurgeryID
StartTime
StopTime

Surgery

Name
BirthDate
Sex

Patient
Name
Position
Degree

Participant

Description
Discipline

Diagnosis Therapy

Description
Actor

1

ActivityID
Activity

Actuator

* *

1

*

1

*
*

Description
TreatedStructure

Description
Action 1

Name
Type

Instrument

Type
Data

*

Input Output

StateID
Value

State

* *

Type
System

*

EventID
Type

Event

Description
StartTime
StopTime

Component

Description
Phase

Type
Behavior

1
*

* *

*
*

*

*

*

1
1 1

1

Operating Theater
Hospital
City
Country

Location

Name
Status

Recorder

*

1*

1*

workflow
level

work step
level

* 1

Fig. 1. Recording scheme of a surgical process model as a UML class diagram

of intervention models in a single data warehouse in a uniform manner and
querying that data for analytical purposes. A basic recording scheme of a surgery
in UML class notation is shown in Figure 1. The diagram denotes a further stage
of the scheme presented by Neumuth et al. in [4]. The use of UML offers an
implementation-independent view of the process scheme and is a widely accepted
specification standard for both BPM [19] and data warehouse design [20]. The
upper part of the diagram contains the characteristics describing the surgery as
a whole and corresponding to the dimensions of analysis for aggregating across
multiple surgical interventions (for instance, to query the number of patients
treated by a particular surgeon). Classes in the lower part of the diagram belong
to the intra-surgical level, i.e., they represent elements constituting a surgical
procedure.

To obtain the structure of a workflow recording scheme whilst avoiding the
information overload, we employ vertical and horizontal process decomposition.

Vertical decomposition corresponds to identifying core elements of a process.
Here, we account for two complementary data acquisition practices in the field
of SPM, namely a task-driven, or temporal, and an system-based structuring.
Activities represent surgical tasks, or work steps, similarly to the corresponding
WfM concept. Examples of activities are “irrigation of a vessel with a coagu-
lator” or “cutting at the skin with a scalpel”. Sequential ordering of activities
symbolizes the acquired surgical intervention [4]. System-based structuring uses
the concepts of System, State, and Event to capture the state evolution of in-
volved systems and events that trigger state transitions. The concept of a system
is very generic and may refer to a participant or his/her body part, a patient or a
treated structure, an instrument or a device, etc. For instance, the gaze direction
of surgeon’s eyes can be modeled as states, while surgeon’s instructions may be
captured as events. To reflect the heterogeneous nature of the notion system, we

28 S. Mansmann, T. Neumuth, and M.H. Scholl

modeled it as an abstract superclass as shown in Figure 1. Another superclass
Component enables uniform treatment of the two data acquisition practices in
part of their common properties, e.g., to retrieve the entire output generated in
the coarse of a surgery, whether by its activities, system states or events.

Horizontal decomposition of a process is conceptually similar to identifying the
dimensions of a data cube and is drawn by recognizing different complementary
perspectives in a workflow model, following the factual perspective categorization
[13]. Further details on each perspective are given in the next section.

4 From Process Flows to Data Cubes

Transformation from the semantically rich BPM notation into a data cube can
be seen as a reduction of the complete set of extensible process elements, such
as various types of flow and connecting objects, to a rigid format that forces
decomposition into a set of uniformly structured facts with associated dimen-
sions. We proceed in three steps: 1) identify the main objectives of the business
process analysis, 2) provide the overall mapping of generic BPM concepts, such
as activity, object, resource, event etc. into the multidimensional data model,
and 3) transfer the application-specific characteristics into the target model.

Subjects, or focal points, of the analysis are mapped to facts. In business
process analysis, the major subjects of the analysis are the process itself (pro-
cess level) as well as its components (intra-process level). Process level analysis is
concerned with analyzing the characteristics of the process as a whole and aggre-
gating over multiple process instances. Back to our case study, sample analytical
tasks at this level are the utilization of hospital locations, surgery distribution
by discipline, surgeon ranking, etc. At the intra-process level, occurrence, be-
havior and characteristics of process components, such as activities, actors, and
resources are analyzed. Examples from the surgical field are the usage of instru-
ment and devices, work step duration, occurrence of alarm states, etc.

4.1 Handling Generic BPM Constructs

The conceptual design of a data warehouse evolves in modeling the structure
of business facts and their associate dimensions. Once major fact types have
been defined, aggregation hierarchies are imposed upon dimensions to enable
additional granularities. In what follows we present a stepwise acquisition of the
multidimensional perspective of a process.

Determining the Facts. As the fact entries within a data cube are required
to be homogeneous, i.e., drawn from the same set of dimensions, applications
dealing with multiple heterogeneous process types have to place each type into a
separate cube. In our scenario, surgery is the only process type, but if we had to
add a different type, e.g., a routine examination of a patient, the corresponding
fact entries would be stored separately from surgical facts.

At the process element level, we suggest modeling work steps, or activities,
as facts while other components, such as resources and actors, are treated as

Multidimensional Data Modeling for Business Process Analysis 29

dimensional characteristics of those facts. However, in many contexts, process
activities may be rather heterogeneous in terms of their attributes. To preserve
homogeneity within the fact type, we propose to extract each homogeneous group
of activity types into a separate fact type. To account for common characteristics
of all activity types, generalization into a common superclass is used.

Determining the Dimensions. Dimensions of a fact are a set of attributes
determining the measure value of each fact entry. These attributes are obtained
via a horizontal decomposition along the factual perspective categories of work-
flow modeling defined in [13]. Availability and contents of particular perspective
categories as well as their number depend on the type of process at hand. Our
approach to transforming the fundamental factual perspectives into dimensions
is as follows:

1. The function perspective describes recursive decomposition of process into
subprocesses and tasks. This composition hierarchy is mapped into a dimen-
sion of Activity, such as Phase in our case study.

2. The operation perspective describes which operations are supported by a task
and which applications implement these operations. In case of a surgical work
step, operations are mapped to the dimension Action (e.g., “cut”, “suction”,
“stitch up”, etc.) and the applications are represented by Instrument.

3. The behavior perspective defines the execution order within the process. Be-
havior can be subdivided into temporal (along the timeline), logical (paral-
lelism, synchronization, looping) and causal. Temporal characteristics, such
as StartTime and StopTime, are used as time dimensions. Relationships be-
tween pairs of components (a reflexive association of Component with Behav-
ior in Figure 1) are more complex and will be discussed in the next section.

4. The information perspective handles the data consumed and produced by
the workflow components. These resources can be mapped to (Input) and
(Output) dimensions.

5. The organization perspective specifies which resource is responsible which
task. Organization dimensions may involve human actors, systems, and de-
vices. Back to the surgical activity case, an example of such resource is
Participant (e.g., “surgeon”, “assistant”, etc.).

5 Challenges of the Multidimensional Modeling

Apart from the standard OLAP constraints, such as normalization of the di-
mension hierarchies and avoidance of NULL values in the facts, the following
domain-specific requirements have been identified:

– Many-to-many relationships between facts and dimensions are very common.
For instance, during a single surgery, multiple surgical instruments are used
by multiple participants.

– Heterogeneity of fact entries. Treating Component elements as the same fact
type would disallow capturing of subclass specific properties, while modeling

30 S. Mansmann, T. Neumuth, and M.H. Scholl

each subclass as a separate fact type would disable treating heterogeneous
elements as the same class for querying their common characteristics.

– Interchangeability of measure and dimension roles. In a classical OLAP sce-
nario the measures of interest are known at design time. However, “raw”
business process data may contain no explicit quantitative characteristics.
The measure of interest varies from one query to another. Therefore, it is
crucial to enable the runtime measure specification from virtually any at-
tribute. For instance, a query may investigate the number of surgeries per
surgeon or retrieve the distribution of surgeons by discipline.

– Interchangeability of fact and dimension roles. Surgery has dimensional char-
acteristics of its own (location, patient, etc.) and therefore, deserves to be
treated as a fact type. However, with respect to single work steps, Surgery
clearly plays the role of a dimension (e.g., events may be rolled-up to
surgery).

5.1 Terminology

In this work, we adopt the notation proposed by Pedersen et al. [15] by simpli-
fying and extending it to account for BPM particularities.

An n-dimensional fact schema is a pair S = (F , {Di, i = 1, . . . , n}), with F as
the fact schema and {Di} as the set of corresponding dimension schemata.

A dimension schema is a four-tuple D = ({Cj , j = 1, . . . , m}, �D, �D, ⊥D),
where {Cj} are the categories, or aggregation levels, in D, with the distinguished
top and bottom category denoted �D and ⊥D, respectively, and �D being the
partial order on the Cjs.

The top category of a dimension corresponds to an abstract root node of the
data hierarchy and has a single value referred to as ALL (i.e., �D = {ALL}).

A non-top dimension category is a pair C = ({Ak, k = 1, . . . , p}, ĀC) where ĀC
is the distinguished hierarchy attribute, i.e., whose values represent a level in the
dimension hierarchy, whereas {Ak} is a set of property attributes functionally
dependent on ĀC , i.e., ∀Ak ∈ C : Ak = f(ĀC).

A fact schema is a triple F = ({Ā⊥}F , {Mq, q = 1, . . . , t}, ĀF), where {Ā⊥}
is a set of bottom-level hierarchy attributes in the corresponding dimension
schema {Di} (i.e., ∀C = ⊥Di : ĀC ∈ {Ā⊥}F), {Mq} is a set of measure
attributes, defined by its associated dimensions, such that ∀Mq ∈ F : Mq =
f({Ā⊥}F), and ĀF is an optional fact identifier attribute.

We allow the set of measure attributes to be empty ({Mq} = ∅), in which
case the resulting fact schema is called factless [9] and the measures need to be
defined dynamically by applying the desired aggregation function to any category
in {Di}. The fact identifier attribute plays the role of a single-valued primary
key, useful for specifying the relationship between different fact schemata.

Multidimensional Data Modeling for Business Process Analysis 31

SURGERY

Location

SurgeryID

Recorder

Patient

Participant

Discipline

StartTime

StopTime

Phase Actuator

Data STATE
StartTime

StopTime

StateID

System

Data

Description

Value

EVENT
StartTime

StopTime

EventID

Type Data

Description

ACTIVITY

Instrument

TreatedStructure

ActivityID Description

LEGEND

 fact

 dimension

 fact identifier

 roll-up relationship

Action

StartTime

StopTime

Fig. 2. Vertical decomposition of the surgical workflow into a fact hierarchy

5.2 Fact Constellation vs. Fact Hierarchy and Fact Generalization

In our usage scenario, fact table modeling is an iterative process starting with a
coarse definition of the basic fact types with their subsequent refinement under
the imposed constraints. Vertical decomposition of a surgical process results in
two granularity levels of the facts, as depicted in Figure 2:

– Surgery. Each surgical case along with its attributes and dimensional char-
acteristics represents the top-level fact type.

– Activity, State, and Event. The three types of workflow components have
their specific sets of dimensions and are thus treated as distinct fact types.

At this initial stage, we disregarded existence of many-to-many relationships
between facts and dimensions. However, disallowance of such relationships is
crucial in the relational context as each fact entry is stored as a single data
tuple with one single-valued attribute per dimension. Consider the problem of
modeling Participant as a dimension of Surgery: most surgeries involve multiple
participants, hence, it is impossible to store the latter as a single-valued attribute.

Our solution is based on a popular relational implementation of a non-strict
dimension hierarchy by means of bridge tables [9]. A bridge table captures a non-
strict ordering between any two categories by storing each parent-child pair. Back
to our example, a many-to-many relationship between Surgery and Participant
as well as that between Surgery and Discipline are extracted each into a separate
table, as shown in Figure 3. We denote such extracted fact-dimensional fragments
satellite facts to stress their dependent nature. Availability of the fact identifier
attribute SurgeryID facilitates the connection of the satellite fact to its base fact

SURGERY

SurgeryID

Recorder

Patient
SURGERY_PARTICIPANT

SurgeryID

Participant LEGEND

 satellite fact

 foreign key

SURGERY_DISCIPLINE

SurgeryID

DisciplineLocation

StartTime

StopTime

Fig. 3. Extracting many-to-many relationships into “satellite” facts

32 S. Mansmann, T. Neumuth, and M.H. Scholl

COMPONENTStartTime

StopTime ComponentIDData

Description

STATESystem

Value

StateID

ACTIVITYPhase

Actuator

ActivityID

Type

EVENT

EventID

Type

COMPONENT_BEHAVIOR

Behavior

InputComponent

OutputComponent

Action

InstrumentTreatedStructure

Fig. 4. Using generalization (dashed lines) for unifying heterogeneous categories

table; a natural join between the two fact tables is necessary in order to obtain
the entire multidimensional view of Surgery.

Another phenomenon worthwhile consideration is the presence of parent-child
relationships between fact types, such as the hierarchy Activity ↗ Surgery. Similar
to a hierarchical dimension, Activity records can be rolled-up to Surgery.

A fact hierarchy relationship between Fj and Fi, denoted Fj ↗ Fi, is a special
case of the fact constellation in which the fact schema Fi appears to serve as
a dimension in Fj , such that ĀF i ∈ {Ā⊥}Fj .

So far, the three workflow component types have been modeled as separate
fact types Activity, State, and Event. However, these heterogeneous classes have
a subset of common characteristics that qualify them to be generalized into
superclass fact type Component, resulting in a fact generalization depicted in
Figure 4. A simple relational implementation of Component can be realized by
defining a corresponding view as a union of all subclass projections onto the
common subset of schema attributes.

Fj is a fact generalization of Fi, denoted Fj ⊂ Fi, if the dimension and measure
sets of Fj are a subset of the respective sets in Fi:
{Ā⊥}Fj ⊂ {Ā⊥}Fi ∧ (∀Mq ∈ Fj : Mq ∈ Fi).

An obvious advantage of the generalization is the ability to treat heteroge-
neous classes uniformly in part of their common characteristics. A further ad-
vantage is the ability to model the behavior of components with respect to each
other (see Behavior class in Figure 1) in form of a satellite fact table Compo-
nent Behavior depicted in Figure 4.

5.3 Modeling Dimension Hierarchies

A key strategy in designing dimension hierarchies for OLAP is that of sum-
marizability, i.e., the ability of a simple aggregate query to correctly compute a
higher-level cube view from a set of precomputed views defined at lower aggrega-
tion levels. Summarizability is equivalent to ensuring that 1) facts map directly
to the lowest-level dimension values and to only one value per dimension, and
2) dimensional hierarchies are balanced trees [21]. Originally motivated by per-
formance considerations, the summarizability has regained importance in the

Multidimensional Data Modeling for Business Process Analysis 33

SurgeryID
SURGERY

date

weekday
month

quarter

semi-
annual

week

year

room

Tperiod

building

hospital

city

country

Tlocation

recorder

Trecorder

patient

birthday

age
group

sex

Tpatient

ComponentID
COMPONENT

SURGERY_PARTICIPANT

participant

position degree

Tparticipant

start
time

minute

stop
time

hour

descriptiontype

Ttype Tdescription

ActivityID
ACTIVITY

COMPONENT_BEHAVIOR

behavior

Tbehavior

dataoutput
actuator

phase

Tphase

instrument

Tinstrument

type

treated
structute

COMPONENT_DATA

input

input/
output

TI/O

type

Tdata

position

SURGERY_DISCIPLINE

diagnosis
sub-
discipline

therapy

discipline

TdisciplineTdiagnosis

action

Ttherapy

EventID
EVENT

type

Ttype

StateID
Value

STATE

system

Ttype

type

Taction

stop
time

start
time

Fig. 5. A (simplified) Dimensional Fact Model of a surgical workflow scheme

context of visual OLAP as it ensures the generation of a proper browser-like
navigation for visual exploration of multidimensional cubes [17].

The resulting structure of the entire surgery scheme (with some simplifica-
tions) in terms of facts, dimension hierarchies, and the relationships between
them is presented in Figure 5 in the notation similar to the Dimensional Fact
Model [22]. Solid arrows show the roll-up relationships while dashed arrows ex-
press the “is a” relationships, namely the identity in case of a satellite fact and
the generalization in case of a fact hierarchy. The chosen notation is helpful
for explicitly presenting all shared categories, and therefore, all connections and
valid aggregation paths in the entire model.

We limit ourselves to naming a few non-trivial cases of dimensional modeling.

Multiple alternative hierarchies. The time hierarchy in the dimension Period is
a classical example of alternative aggregation paths, such as date ↗ month and
date ↗ week. These paths are mutually exclusive, i.e., within the same query,
the aggregates may be computed only along one of the alternative paths.

Parallel hierarchies in a dimension account for different analysis criteria, for
example, the member values of Patient can be analyzed by age or by sex criteria.
Apparently, such hierarchies are mutually non-exclusive, i.e., it is possible to
compute the aggregates grouped by age and then by sex, or vice versa.

Generalization hierarchies are used to combine heterogeneous categories into a
single dimension. System is an example of a superclass, which allows to model
the belonging of the categories Instrument, TreatedStructure, and Actuator to the
dimension System of the fact type STATE, as shown in Figure 4.

34 S. Mansmann, T. Neumuth, and M.H. Scholl

Fact as dimension. In the case of a fact hierarchy or a satellite fact, the whole n-
dimensional fact schema S of the basis fact is included as a hierarchical dimension
into its dependent fact. For instance, COMPONENT treats SURGERY as its
dimension, while the dimensions Patient, Location, etc. of the latter are treated
as parallel hierarchies [18] within the same dimension.

Dimension inclusion is a special case of shared dimensions, in which dimension
Dj represents a finer granularity of dimension Di, or formally, Di ⊂ Dj if ∃Ck ∈
Dj : Ck � ⊥Di. For example, TreatedStructure in ACTIVITY rolls up to Patient
in SURGERY. Dimension inclusion implies that all categories in Di become valid
aggregation levels of Dj .

The guidelines for modeling complex dimensions are provided in [15,18,17].

5.4 Runtime Measure Specification

Define new measure

Cancel OK

Name Number of participants

Attribute

DISTINCT

Function SUM

Drag any category in here

Define new measure

Hospital

Fig. 6. Defining a measure

Compulsory elements of any aggregate query are
1) a measure specified as an aggregate function
(e.g., sum, average, maximum etc.) and its input
attribute, and 2) a set of dimension categories to
use as the granularity of the aggregation. Conven-
tional OLAP tools require the set of the available
measures within a cube to be pre-configured at
the metadata level. It is also common to provide
a wizard for defining a new measure, however, lim-
iting the selection of qualifying attributes to the
set Mq of fact schema F , i.e., to the actual measure attributes encountered
in the fact table. In our scenario, the measure definition routine needs to be
modified to account for the following phenomena:

– The fact schema is factless, i.e., {Mq} = ∅.
– Each non-satellite fact schema disposes of a fact identifier attribute ĀF

belonging neither to the measure nor to the dimension set of F .
– Any attribute of a data cube, whether of the fact table itself or of any of its

dimensions, can be chosen as an input for a measure. Examples of commonly
queried measures are the total number of patients operated, average num-
ber of surgeries in a hospital, most frequent diagnoses, number of distinct
instruments per surgery, etc.

In accordance with the above requirements, we propose to enable runtime
measure specification by the analyst as a 3-step process, depicted in Figure 6:

1. Selecting an aggregate function from the function list;
2. Specifying the measure attribute: in a visual interface, this can be done via a

“drag&drop” of a category from the navigation, as shown in Figure 6, where
Hospital category is being dragged into the measure window;

3. Specifying whether the duplicates should be eliminated from the aggregation
by activating the DISTINCT option.

Multidimensional Data Modeling for Business Process Analysis 35

SurgeryID
hospital

SURGERY

city

country

Tlocation

recorder

Trecorder

patient

birthday

age
group

sex

Tpatient

position

...

patientparticipant

start
time

minute

stop
time

actuatorphase

Tphase

Tinstrument

type

treated
structute

action

Taction

instrument
ACTIVITY_INSTRUMENT

ACTIVITY

COMPONENT

descriptiontype

Ttype Tdescription

SURGERY...

...... ...

Fig. 7. Changes in the conceptual schema caused by deriving a measure from a dimen-
sion category: (left) number of hospitals, (right) number of instruments

Optionally, the newly defined measure may be supplied with a user-friendly
name. As long as no user-defined measure is specified, the default setting of
COUNT(*), i.e., simple counting of the qualifying fact entries, is used. In terms
of the conceptual model, derivation of a measure from virtually any element
of the n-dimensional fact schema is equivalent to re-designing the entire
schema.

Let us consider an example of analyzing the number of hospitals, i.e., using
category Hospital from dimension Location as the measure attribute. Obviously,
to support this measure, SURGERY facts need to be aggregated to the Hospital
level, Hospital turns into a measure attribute within SURGERY and the bottom
granularity of Location changes from Room to City. The resulting data schema
is shown in Figure 7 (left). Location granularities below Hospital simply become
invalid in the defined query context.

A more complicated example of selecting the number of instruments to serve
as a measure is presented in Figure 7 (right). Instrument category is turned into
a measure attribute of the fact table ACTIVITY INSTRUMENT. From this per-
spective, all upper-level facts, such as ACTIVITY and SURGERY, are treated as
dimension categories. Thus, the analyst may pursue any aggregation path valid
in the context of the chosen measure. For example the number of instruments
can be rolled-up to SURGERY, Action, Phase, etc.

In practice, the schemata of the designed data cubes remains unchanged and
only a virtual view corresponding to the adjusted schema is generated to support
querying user-defined measures. For frequently used measures, materialization
of the respective view may improve the performance.

6 Results

The feasibility of our model can be shown by implementing it into a relational
OLAP system and running domain-specific queries against the accumulated
data. We present an application case of analyzing the use of instruments in
the surgical intervention type discectomy. The goal of a discectomy is partial

36 S. Mansmann, T. Neumuth, and M.H. Scholl

Measures
! COUNT(ActivityID) ! AVG(StopTime – StartTime)

Dimensions SurgeryID
Instrument A B C D A B C D
coaugulator 7 17 4 8 00:00:31 00:00:23 00:00:34 00:00:27

dissector 3 3 14 4 00:00:56 00:00:16 00:00:25 00:00:45

forceps 12 3 7 10 00:01:50 00:00:32 00:00:54 00:01:51

hook 15 7 7 12 00:01:14 00:01:01 00:00:31 00:00:47

punch 9 22 10 9 00:02:38 00:00:35 00:00:46 00:01:27

scalpel 2 3 2 2 00:00:53 00:01:23 00:00:22 00:01:09

suction tube 6 26 2 2 00:14:42 00:00:12 00:16:29 00:11:21

Total 54 81 46 47 00:03:15 00:00:37 00:02:52 00:02:32

Fig. 8. Results of sample aggregate queries 1 und 2 as a pivot table

removal of the herniated intervertebral disc. Typical expert queries in this sce-
nario focus on the occurrence of particular instruments, frequency of their usage
throughout the surgery, and duration of usage periods. Figure 8 shows a pivot
table with the results of the following two queries:

Query 1. For each of the interventions of type discectomy, find the instruments
used by the surgeon and the frequency of their occurrence (i.e., the number of
activities in which that instrument is used).

The measure of this query, i.e., the number of activities (COUNT(DISTINCT
ActivityID)), is rolled-up by SurgeryID and Instrument with a selection con-
dition along Discipline. The input data cube is obtained by joining the fact ta-
bles SURGERY and ACTIVITY with their respective satellites SURGERY DISCIPLINE
and ACTIVITY INSTRUMENT and joining the former two with each other via
COMPONENT. The left-hand half of the table in Figure 8 contains the computed oc-
currence aggregates, with Instrument mapped to the table rows and SurgeryID
as well as the measure COUNT(DISTINCT ActivityID) in the columns.

Query 2. For each of the interventions of type discectomy, calculate the mean
usage times of each instrument used by the surgeon (i.e., the average duration
of the respective activities).

The duration of a step corresponds to the time elapsed between its start and end,
so that the measure can be specified as (AVG(StopTime-StartTime)). The rollup
and the filtering conditions are identical to the previous query. The resulting
aggregates are contained in the right-hand half of the pivot table.

Other examples of surgical queries supported by our proposed multidimen-
sional design for Surgical Workflows are ‘How much time does the surgeon spend
on action X?’, ‘At which anatomical structures has instrument Y been used?’,
or ‘Which input is needed to execute a particular work step?’.

Multidimensional Data Modeling for Business Process Analysis 37

7 Conclusion

In this work we applied the data warehousing approach to business process anal-
ysis. Conventional BPMS are rather limited in the types of supported analysis
tasks, whereas data warehousing appears more suitable when it comes to man-
aging large amounts of data, defining various business metrics, and running com-
plex queries. The case study presented in this work is concerned with designing
a recording scheme for acquiring process descriptions from surgical interventions
for their subsequent analysis and exploration.

As the business process model and the multidimensional model are based on
different concepts, it is crucial to find a common abstraction for their conver-
gence. We propose to map the vertical decomposition of a process into temporal
or logical components to fact entries at two granularity levels, namely, at the
process and at the work step level. Horizontal decomposition according to the
factual perspectives, such as function, organization, operation, etc., is used to
identify dimensional characteristics of the facts.

We evaluated the relational OLAP approach against the requirements of our
case study and proposed an extended data model that addresses such challenges
as non-quantitative and heterogeneous facts, many-to-many relationships be-
tween facts and dimensions, runtime definition of measures, interchangeability
of fact and dimension roles, etc. The proposed model extensions can be easily
implemented using current OLAP tools, with facts and dimensions stored in
relational tables and queried with standard SQL. We presented a prototype of
a visual interface for the runtime measure definition and concluded the work
by producing the results of sample analytical queries formulated by the domain
experts and run against the modeled surgical process data warehouse.

Acknowledgement

We would like to thank Oliver Burgert from ICCAS at the University of Leipzig
as well as Christos Trantakis and Jürgen Meixensberger from the Neurosurgery
Department at the University Hospital of Leipzig for their expert support.

References

1. Dayal, U., Hsu, M., Ladin, R.: Business process coordination: State of the art,
trends, and open issues. In: VLDB 2001: Proc. 27th Int.Conf. on Very Large Data
Bases, pp. 3–13 (2001)

2. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.-C.: Business
process intelligence. Computers in Industry 53(3), 321–343 (2004)

3. Smith, M.: Business process intelligence. Intelligent Enterprise, Online (December
2002), http://www.intelligententerprise.com/021205/601feat2 1.jhtml

4. Neumuth, T., Strauß, G., Meixensberger, J., Lemke, H.U., Burgert, O.: Acquisi-
tion of process descriptions from surgical interventions. In: Bressan, S., Küng, J.,
Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 602–611. Springer, Heidelberg
(2006)

http://www.intelligententerprise.com/021205/601feat2_1.jhtml

38 S. Mansmann, T. Neumuth, and M.H. Scholl

5. Neumuth, T., Trantakis, C., Eckhardt, F., Dengl, M.: Supporting the analysis
of intervention courses with surgical process models on the example of fourteen
microsurgical lumbar discectomies. International Journal of Computer Assisted
Radiology and Surgery 2(1), 436–438 (2007)

6. OMG (Object Management Group): BPMN (Business Process Modeling Nota-
tion) 1.0: OMG Final Adopted Specification, Online (February 2006), http://
www.bpmn.org

7. WfMC (Workflow Management Coalition): WfMC Standards: The Workflow
Reference Model, Version 1.1, Online (January 1995), http://www.wfmc.org/
standards/docs/tc003v11.pdf

8. Pedersen, T.B., Jensen, C.S.: Multidimensional database technology. IEEE Com-
puter 34(12), 40–46 (2001)

9. Kimball, R., Reeves, L., Ross, M., Thornthwaite, W.: The Data Warehouse Life-
cycle Toolkit. John Wiley & Sons, Inc., New York (1998)

10. Jung, J.: Meta-modelling support for a general process modelling tool. In: DSM
2005: Proc. 5th OOPSLA Workshop on Domain-Specific Modeling, pp. 602–611
(2005)

11. Muth, P., Wodtke, D., Wei§enfels, J., Weikum, G., Kotz-Dittrich, A.: Enterprise-
wide workflow management based on state and activity charts. In: Proc. NATO
Advanced Study Institute on Workflow Management Systems and Interoperability,
pp. 281–303 (1997)

12. Matousek, P.: Verification of Business Process Models. PhD thesis, Technical Uni-
versity of Ostrava (2003)

13. Jablonski, S., Bussler, C.: Workflow Management. Modeling Concepts, Architec-
ture and Implementation. International Thomson Computer Press (1996)

14. Hao, M.C, Keim, D.A, Dayal, U.: Business process impact visualization and
anomaly detection. Information Visualization 5, 15–27 (2006)

15. Pedersen, T.B., Jensen, C.S., Dyreson, C.E.: A foundation for capturing and query-
ing complex multidimensional data. Information Systems 26(5), 383–423 (2001)

16. Jensen, C.S., Kligys, A., Pedersen, T.B., Timko, I.: Multidimensional data model-
ing for location-based services. The VLDB Journal 13(1), 1–21 (2004)

17. Mansmann, S., Scholl, M.H.: Empowering the OLAP technology to support com-
plex dimension hierarchies. International Journal of Data Warehousing and Min-
ing 3(4), 31–50 (2007)

18. Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model: From con-
ceptual modeling to logical representation. Data & Knowledge Engineering 59(2),
348–377 (2006)

19. Hruby, P.: Structuring specification of business systems with UML (with an em-
phasis on workflow management systems). In: Proc. OOPSLA’98 Business Object
Workshop IV, Springer, Heidelberg (1998)

20. Luján-Mora, S., Trujillo, J., Vassiliadis, P.: Advantages of uml for multidimensional
modeling. In: ICEIS 2004: Proc. 6th Int. Conf. on Enterprise Information Systems,
pp. 298–305 (2004)

21. Lenz, H.-J., Shoshani, A.: Summarizability in OLAP and statistical data bases.
In: SSDBM 1997: Proc. of 9th Int. Conf. on Scientific and Statistical Database
Management, pp. 132–143 (1997)

22. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: A conceptual
model for data warehouses. International Journal of Cooperative Information Sys-
tems 7(2-3), 215–247 (1998)

http://www.bpmn.org
http://www.bpmn.org
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.wfmc.org/standards/docs/tc003v11.pdf

Mining Hesitation Information by
Vague Association Rules

An Lu and Wilfred Ng

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Hong Kong, China
{anlu,wilfred}@cse.ust.hk

Abstract. In many online shopping applications, such as Amazon and eBay,
traditional Association Rule (AR) mining has limitations as it only deals with
the items that are sold but ignores the items that are almost sold (for example,
those items that are put into the basket but not checked out). We say that those
almost sold items carry hesitation information, since customers are hesitating to
buy them. The hesitation information of items is valuable knowledge for the de-
sign of good selling strategies. However, there is no conceptual model that is able
to capture different statuses of hesitation information. Herein, we apply and ex-
tend vague set theory in the context of AR mining. We define the concepts of
attractiveness and hesitation of an item, which represent the overall information
of a customer’s intent on an item. Based on the two concepts, we propose the
notion of Vague Association Rules (VARs). We devise an efficient algorithm to
mine the VARs. Our experiments show that our algorithm is efficient and the
VARs capture more specific and richer information than do the traditional ARs.

1 Introduction
Association Rule (AR) mining [1] is one of the most important data mining tasks. Con-
sider the classical market basket case, in which AR mining is conducted on transactions
that consist of items bought by customers. There are many items that are not bought
but customers may have considered to buy them. We call such information on a cus-
tomer’s consideration to buy an item the hesitation information of the item, since the
customer hesitates to buy it. The hesitation information of an item is useful knowledge
for boosting the sales of the item. However, such information has not been considered
in traditional AR mining due to the difficulty to collect the relevant data in the past.
Nevertheless, with the advance in technology of data dissemination, it is now much
easier for such data collection. A typical example is an online shopping scenario, such
as “Amazon.com”, which we are able to collect huge amount of data from the Web
log that can be modelled as hesitation information. From Web logs, we can infer a cus-
tomer’s browsing pattern in a trail, say how many times and how much time s/he spends
on a Web page, at which steps s/he quits the browsing, what and how many items are
put in the basket when a trail ends, and so on. Therefore, we can further identify and
categorize different browsing patterns into different hesitation information with respect
to different applications.

There are many statuses of a piece of hesitation information (called hesitation sta-
tus (HS)). Let us consider a motivating example of an online shopping scenario that

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 39–55, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

40 A. Lu and W. Ng

involves various statuses: (s1) HS of the items that the customer browsed only once and
left; (s2) HS of the items that are browsed in detail (e.g., the figures and all specifica-
tions) but not put into their online shopping carts; (s3) HS of the items that customers
put into carts and were checked out eventually. All of the above-mentioned HSs are
the hesitation information of those items. Some of the HSs are comparable based on
some criterion, which means we can define an order on these HSs. For example, given
a criterion as the possibility that the customer buys an item, we have s1 ≤ s2 ≤ s3.
The hesitation information can then be used to design and implement selling strategies
that can potentially turn those “interesting” items into “under consideration” items and
“under consideration” items into “sold” items.

Our modelling technique of HSs of an item rests on a solid foundation of vague
set theory [2,3,4]. The main benefit of this approach is that the theory addresses the
drawback of a single membership value in fuzzy set theory [5] by using interval-based
membership that captures three types of evidence with respect to an object in a universe
of discourse: support, against and hesitation. Thus, we naturally model the hesitation
information of an item in the mining context as the evidence of hesitation with respect to
an item. The information of the “sold” items and the “not sold” items (without any hes-
itation information) in the traditional setting of AR mining correspond to the evidence
of support and against with respect to the item. For example, if a customer bought an
item 5 times, hesitated to buy (when different HSs are not distinguished) it 2 times, and
did not browse it 3 times (in 10 visits), then we can obtain a vague membership value,
[0.5, 0.7] (where 0.7 = 1 − 3/10), for the item. When we distinguish different HSs,
say the customer hesitated to buy the item 2 times in HSs s1 once and s2 once, where
s1 ≤ s2 ≤ s3. Then the vague membership value for s1 is [0.5, 0.6] and that for s2 is
[0.6, 0.7]. As for s3, since there is no hesitation evidence for it, and s2 ≤ s3, its vague
membership value is a single point, [0.7, 0.7].

To study the relationship between the support evidence and the hesitation evidence
with respect to an item, we propose attractiveness and hesitation of an item, which are
derived from the vague membership in vague sets. An item with high attractiveness
means that the item is well sold and has a high possibility to be sold again next time.
An item with high hesitation means that the customer is always hesitating to buy the
item due to some reason (e.g., the customer is waiting for price reduction) but has a
high possibility to buy it next time if the reason is identified and resolved (e.g., some
promotion on the item is provided). For example, given the vague membership value,
[0.5, 0.7], of an item, the attractiveness is 0.6 (the median of 0.5 and 0.7) and the hesi-
tation is 0.2 (the difference between 0.7 and 0.5), which implies that the customer may
buy the item next time with a possibility of 60% and hesitate to buy the item with a
possibility of 20%.

Using the attractiveness and hesitation of items, we model a database with hesitation
information as an AH-pair database that consists of AH-pair transactions, where A
stands for attractiveness and H stands for hesitation. Based on the AH-pair database,
we then propose the notion of Vague Association Rules (VARs), which capture four
types of relationships between two sets of items: the implication of the attractive-
ness/hesitation of one set of items on the attractiveness/hesitation of the other set of
items. For example, if we find an AH-rule like “People always buy quilts and

Mining Hesitation Information by Vague Association Rules 41

pillows(A) but quit the process of buying beds at the step of choosing delivery
method(H)”. Thus, there might be something wrong with the delivery method for beds
(for example, no home delivery service provided) which causes people hesitate to buy
beds. To evaluate the quality of the different types of VARs, four types of support and
confidence are defined. We also investigate the properties of the support and confidence
of VARs, which can be used to speed up the mining process.

Our experiments on both real and synthetic datasets verify that our algorithm to
mine the VARs is efficient. Compared with the traditional ARs mined from transac-
tional databases, the VARs mined from the AH-pair databases are more specific and
are able to capture richer information. Most importantly, we find that, by aggregating
more transactions into an AH-pair transaction, our algorithm is significantly more ef-
ficient while still obtaining almost the same set of VARs. The concept of VARs is not
limited to the online shopping scenario. In our experiments, we demonstrate that VARs
are applied to mine Web log data.

Organization. This paper is organized as follows. Section 2 gives some preliminaries
on vague sets and ARs. Section 3 introduces VARs and presents the related concepts.
Section 4 discusses the algorithm that mines VARs. Section 5 reports the experimental
results. Section 6 discusses the related work and Section 7 concludes the paper.

2 Preliminaries

2.1 Vague Sets

Let I be a classical set of objects, called the universe of discourse, where an element of
I is denoted by x.

)(1
i

x

)(
i

x

)(1 x

)(x

i
x

Fig. 1. The True (α) and False (β) Membership Functions of a Vague Set

Definition 1 (Vague Set). A vague set V in a universe of discourse I is characterized
by a true membership function, αV , and a false membership function, βV , as follows:
αV : I → [0, 1], βV : I → [0, 1], where αV (x) + βV (x) ≤ 1, αV (x) is a lower
bound on the grade of membership of x derived from the evidence for x, and βV (x) is a
lower bound on the grade of membership of the negation of x derived from the evidence

42 A. Lu and W. Ng

against x. Suppose I = {x1, x2, . . . , xn}. A vague set V of the universe of discourse I is
represented by V =

∑n
i=1[α(xi), 1−β(xi)]/xi, where 0 ≤ α(xi) ≤ (1−β(xi)) ≤ 1.�

The grade of membership of x is bounded to [αV (x), 1−βV (x)], which is a subinterval
of [0, 1] as depicted in Fig. 1. For brevity, we omit the subscript V from αV and βV .

We say that [α(x), 1−β(x)]/x is a vague element and the interval [α(x), 1−β(x)] is
the vague value of the object x. For example, [α(x), 1−β(x)] = [0.5, 0.7] is interpreted
as “the degree that the object x belongs to the vague set V is 0.5 (i.e. α(x)) and the
degree that x does not belong to V is 0.3 (i.e. β(x)).” For instance, in a voting process,
the vague value [0.5,0.7] can be interpreted as “50% of the votes support the motion,
30% are against, while 20% are neutral (abstentions).”

2.2 Median Memberships and Imprecision Memberships

In order to compare vague values, we introduce two derived memberships: median
membership and imprecision membership [4]. Note that given a vague value [α(x), 1−
β(x)], we have unique median membership Mm(x) and imprecision membership
Mi(x), and vice versa.

Median membership is defined as Mm = 1
2 (α + (1 − β)), which represents the

overall evidence contained in a vague value. It can be checked that 0 ≤ Mm ≤ 1.
Obviously, the vague value [1,1] has the highest Mm, which means the corresponding
object definitely belongs to the vague set (i.e., a crisp value). While the vague value
[0,0] has the lowest Mm, which means that the corresponding object definitely does not
belong to the vague set.

Imprecision membership is defined as Mi = ((1 − β) − α), which represents the
overall imprecision of a vague value.It can be checked that 0 ≤ Mi ≤ 1. The vague
value [a, a](a ∈ [0, 1]) has the lowest Mi which means that the membership of the
corresponding object is exact (i.e., a fuzzy value). While the vague value [0,1] has the
highest Mi which means that we do not have any information about the membership of
the corresponding object.

The median membership and the imprecision membership are employed in this paper
to measure the attractiveness and the hesitation of an item with respect to a customer.

2.3 Association Rules

Let I = {x1, x2, . . . , xn} be a set of items 1. An itemset is a subset of I . A transaction
is an itemset. We say that a transaction Y supports an itemset X if Y ⊇ X . For brevity,
we write an itemset X = {xk1 , xk2 , . . . , xkm} as xk1xk2 . . . xkm .

Let D be a database of transactions. The frequency of an itemset X , denoted as
freq(X), is the number of transactions in D that support X . The support of X , denoted
as supp(X), is defined as freq(X)

|D| , where |D| is the number of transactions in D. X

is a Frequent Itemset (FI) if supp(X) ≥ σ, where σ (0 ≤ σ ≤ 1) is a user-specified
minimum support threshold.

Given the set of all FIs, the set of ARs is obtained as follows: for each FI Y and
for each non-empty subset X of Y , we generate an AR, r, of the form X ⇒ Y − X .

1 We refer to the terms item and object interchangeably in this paper.

Mining Hesitation Information by Vague Association Rules 43

The support of r, denoted as supp(r), is defined as supp(Y) and the confidence of r,
denoted as conf (r), is defined as supp(Y)

supp(X) . We say that r is a valid AR if conf (r) ≥ c,
where c (0 ≤ c ≤ 1) is a user-specified minimum confidence threshold.

3 Vague Association Rules

In this section, we first propose the concept of Hesitation Statuses (HSs) of an item and
discuss how to model HSs. Then we introduce the notion of Vague Association Rules
(VARs) and four types of support and confidence used in order to fully evaluate their
quality. Some properties of VARs that are useful to improve the efficiency of mining
VARs are presented.

3.1 Hesitation Information Modeling

A Hesitation Status (HS) is a specific state between two certain situations of “buying”
and “not buying” in the process of a purchase transaction.

Here we use a more detailed example of placing an order with “Amazon.com” [6]
to illustrate the idea of HS. There are following nine steps, which forms a queue, to
place an order: (s1) Find the items you want; (s2) Add the items to your shopping cart;
(s3) Proceed to checkout; (s4) Sign in; (s5) Enter a shipping address; (s6) Choose a
shipping method; (s7) Provide a password and payment information; (s8) Review and
submit your order; (s9) Check your order status.

A customer may quit the ordering process at any step for some reason, for example,
forgetting the sign name or password. Therefore, the HSs with respect to different quit-
ting steps are different, since the more steps a customer goes, the higher possibility the
customer buys the item.

However, some HSs are incomparable. For example, a customer may put an item
into the wishing list if the item is out of stock. The HS in this case is incomparable to
the HS of the item with respect to quitting order at step 6, since we lack evidence to
support any ordered relationship between these two HSs.

We now formally model the hesitation information of an item as follows.

Definition 2 (Hesitation and Overall Hesitation). Given an item x ∈ I and a set of
HSs S = {s1, s2, . . . , sw} with a partial order ≤ . The hesitation of x with respect to an
HS si ∈ S is a function hi(x) : I → [0, 1], such that α(x) + β(x) +

∑w
i=1 hi(x) = 1,

where hi(x) represents the evidence for the HS si of x. The overall hesitation of x with
respect to S is given by H(x) =

∑w
i=1 hi(x). �

It can be easily checked from the above definition that H(x) = 1 − α(x) − β(x). S
can also be represented by a Hasse Diagram whose vertices are elements in S and the
edges correspond to ≤. All components in S can be partitioned into two groups of HSs:
a Chain Group (CG) consists of connected components that are chains (including the
case of a singleton HS node), and a Non-Chain Group (NCG) consists of components
that are non-chains (not chains).

In order to capture the hesitation evidence and the hesitation order ≤, a subinterval
of [α(x), 1−β(x)] is used to represent the customer’s intent of each item with respect to

44 A. Lu and W. Ng

different HSs. To obtain the intent value, the idea of linear extensions of a partial order is
used. However, computing the number of extensions is a #P-complete problem [7]. An
algorithm that generates all of the linear extensions of a partially ordered set in constant
amortized time is given in [8]. In real applications, say the online-shopping scenario,
we can simplify ≤ in order to reduce the computation complexity. From now on, we
assume that a component G in the NCG is a chain of Incomparable Chain Sets (ICSs),
{ICS1 ≤ ICS2 ≤ · · · ≤ ICSl}, where ICSi ∈ G is a set of chains satisfying the
following condition: the parent (child) HSs of the top (bottom) elements in all chains,
if any, are in the same ICS.

Note that this condition implies that the parent (child) HS of a chain in the top (bot-
tom) ICS is an empty set.

We now present an algorithm that partitions a component G in NCG into different
ICSs in Algorithm 1.

Algorithm 1. PartitionNCG(G)
1. i := 1;
2. while G �= ∅
3. Let ICSi be the set of all minimal HS s ∈ G;
4. forall s ∈ ICSi do
5. Search the longest chain segment of s such that each HS (excluding s itself)

in it has a unique child, and the child has a unique parent;
6. Put all HSs of the chain segment in ICSi if any;
7. G := G − ICSi; i := i + 1;
8. return the result {ICS1 ≤ ICS2 ≤ · · · ≤ ICSi}.

Example 1. Let S = {s1, . . . , s17}, and its Hasse diagram consists of four components
as shown in Fig. 2. We see that the component g2 is in CG, since it is a chain, and the
components g1, g3, and g4 are in NCG, where different ICSs are represented by the
dashed ellipses. Consider the component g1, s1 is the only element in ICS1, since it
has more than one parent (i.e. s2 and s3) and the longest chain segment of s1 (according
to Line 5 of Algorithm 1) contains itself only, while s2 and s3 are in ICS2, since they
are the top HSs and have no parents. Thus, we partition g1 into the chain of ICSs as

s
10

(g
3
)(g

2
)

s
6

s
7

s
8

s
9

s
4

s
5

(g
1
)

s
1

s
2

s
3

s
16

s
11

s
15

s
14

s
13

s
17

s
12

(g
4
)

ICS
1

ICS
1

ICS
1

ICS
2

ICS
2

ICS
3

ICS
3

ICS
2

Fig. 2. The Hasse Diagram of the Ordered Set of HSs

Mining Hesitation Information by Vague Association Rules 45

ICS1 ≤ ICS2. Consider the component g3, s6 is the only element in ICS1. s9 and s7
are the minimal HSs in ICS2. s8 is also in ICS2, since it has a unique child s7 and s7
has a unique parent s8. s10 is not in ICS2, since it has two children (i.e. s8 and s9).
Consider the component g4, s11 and s12 are in ICS1, since they both have more than
one parents. s13, s14 and s15 are in ICS2 and finally, the top HSs s16 and s17 form
ICS3. �

Given a set of purchase transactions, we can aggregate the transactions to obtain the
intent of each item with respect to different HSs. Although aggregating the transactions
may lose some exact information of the items for customers, in many cases the overall
knowledge is more useful than the details of every transaction. For example, in our
online shopping scenario, by aggregating the data we alleviate the problem of high cost
of mining on huge log data sets.

Definition 3 (Intent and Overall Intent). Given a set of HSs, (S, ≤), the intent of an
item x with respect to an HS si ∈ S, denoted as int(x, si), is a vague value [αi(x), 1−
βi(x)] which is a subinterval of [α(x), 1 − β(x)] and satisfies the following conditions:

1. (1 − βi(x)) = αi(x) + hi(x).
2. For each ICSj in the chain ICS1 ≤ ICS2 ≤ · · · ≤ ICSj ≤ · · · ≤ ICSl, of

an NCG component G, we assume a linear extension of G (s1 ≤ s2 ≤ · · · ≤
sm) such that there exists a segment (sp+1 ≤ · · · ≤ sp+q) consistent with all
the chains in ICSj , where 1 ≤ p + 1 and p + q ≤ m. The intent for ICSj ,

denoted as [αICSj(x), 1 − βICSj (x)], is given by αICSj(x) = α(x)+(1−β(x))
2 −

1
2

∑m
k=1 hk(x) +

∑p
k=1 hk(x), 1 − βICSj (x) = αICSj (x) +

∑p+q
k=p+1 hk(x).

3. – If si is in a chain of the CG, s1 ≤ s2 ≤ · · · ≤ si ≤ · · · ≤ sn, then for 1 ≤ i ≤ n,
we define
αi(x) = α(x)+(1−β(x))

2 − 1
2

∑n
k=1 hk(x) +

∑i−1
k=1 hk(x).

– If si is in a chain of ICSj , sg ≤ sg+1 ≤ · · · ≤ si ≤ · · · ≤ sv, where ((p + 1) ≤
g ≤ v ≤ (p + q)), then for g ≤ i ≤ v, we define

αi(x) =
αICSj

(x)+(1−βICSj
(x))

2 − 1
2

∑v
k=g hk(x) +

∑i−1
k=g hk(x).

The overall intent of x, denoted as INT (x), is the interval [α(x), 1 − β(x)]. �

Condition 1 shows the relationship among (1 − βi(x)), αi(x) and hi(x). Together with
condition 3, we can determine the intent [αi(x), 1 − βi(x)], since hi(x), α(x) and
(1 − β(x)) are given parameters.

The formulas in condition condition 3 are similar, which are defined to ensure that
the numerical order of median membership of the HSs is consistent with the order of
HSs. This also fits for the cases in most real life applications.

Example 2. Table 1 shows the transactions of a single customer derived from an online
shopping system, where we use 1 and 0 to represent that an item is bought and not
bought (without any hesitation information), as in the traditional AR mining setting.
The set of HSs is given by S = {s1 ≤ s2, s1 ≤ s3, s4 ≤ s5}, that is, the graphs g1 and
g2 in Fig. 2.

In Table 1, given 10 transactions, we have 7 buy and 1 not buy and 2 HSs (s1 and s3)
for an item A. Consider g1 = {s1 ≤ s2, s1 ≤ s3}, we have one of its linear extension

46 A. Lu and W. Ng

Table 1. Ten Transactions of a Cus-
tomer

TID A B C D

1 1 s4 s4 s1

2 1 0 s1 0
3 1 1 s1 s3

4 0 s5 s3 s3

5 s1 1 s2 s2

6 1 0 s5 s3

7 s1 s5 s3 s3

8 1 0 s4 s5

9 s3 0 0 0
10 1 s5 1 s5

Table 2. An Intent Database for Different HSs

H A B C D

h1(x) [0.6,0.8] [0.4,0.4] [0.25,0.45] [0.1,0.2]
h2(x) [0.85,0.85] [0.4,0.4] [0.55,0.65] [0.4,0.5]
h3(x) [0.8,0.9] [0.4,0.4] [0.5,0.7] [0.25,0.65]
h4(x) [0.75,0.75] [0.2,0.3] [0.35,0.55] [0.3,0.3]
h5(x) [0.75,0.75] [0.3,0.6] [0.55,0.65] [0.3,0.5]

H(x) [0.6,0.9] [0.2,0.6] [0.1,0.9] [0,0.8]

Table 3. An AH-pair Database for Different HSs

H A B C D

h1(x) <0.7,0.2> <0.4,0> <0.35,0.2><0.15,0.1>

h2(x) <0.85,0> <0.4,0> <0.6,0.1> <0.45,0.1>

h3(x)<0.85,0.1> <0.4,0> <0.6,0.2> <0.45,0.4>

h4(x) <0.75,0> <0.25,0.1><0.45,0.2> <0.3,0>

h5(x) <0.75,0> <0.45,0.3> <0.6,0.1> <0.4,0.2>

H(x)<0.75,0.3> <0.4,0.4> <0.5,0.8> <0.4,0.8>

s1 ≤ s2 ≤ s3. Since ICS1 = {s1} and ICS2 = {s2, s3}, we have int(A, s1) =
[0.6, 0.8], int(A, s2) = [0.85, 0.85] and int(A, s3) = [0.8, 0.9], according to Definition
3. As s4 and s5 is a chain in CG, we then obtain int(A, s4) = int(A, s5) = [0.75, 0.75].
Thus, we obtain all the intent of A for the HSs in S as shown in the first column of Table
2 and in Fig. 3. It can be checked that s2, s4 and s5 are single points, since the hesitation
evidence is zero for them. The intent database of all items (A, B, C, D) for different HSs
(s1, . . ., s5) can be similarly determined, which is shown in Table 2 and also illustrated
by Fig. 3. Note that the values in the last row of the table are [α(x), 1−β(x)], indicating
the overall hesitation H(x). �

Given the intent of an item for an HS, we further define the attractiveness of the item
which represents the overall evidence for it with respect to an HS.

Definition 4 (Attractiveness and Overall Attractiveness). The attractiveness of x
with respect to an HS si, denoted as att(x, si), is defined as the median membership of
x with respect to si, that is, 1

2 (αi(x) + (1 − βi(x))). The overall attractiveness of x is
a function ATT (x) : I → [0, 1], such that ATT (x) = 1

2 (α(x) + (1 − β(x))). �

Given the intent [αi(x), 1 − βi(x)] of an item x for an HS si, we have a one-one cor-
responding pair of the attractiveness and hesitation of x, called the AH-pair, denoted
as 〈att(x, si), hi(x)〉. Attractiveness and hesitation are two important concepts, since
people may have special interest in finding ARs with items of high attractiveness (sold
well) or high hesitation (almost sold).

We now define an AH-pair transaction and an AH-pair database.

Definition 5 (AH-Pair Transaction and Database). An AH-pair transaction T is a
tuple <v1, v2, . . . , vm> on an itemset IT = {x1, x2, . . . , xm}, where IT ⊆ I and

Mining Hesitation Information by Vague Association Rules 47

3

1
4 5

2

5

4

1 2 3

3

1

4

1

23
5

4

2 5

Fig. 3. Intent for Different HSs of Items

vj = 〈MA(xj), MH(xj)〉 is an AH-pair of the item xj with respect to a given HS or
the overall hesitation, for 1 ≤ j ≤ m. An AH-pair database is a sequence of AH-pair
transactions. �

We can transform the intent database shown in Table 2 to its equivalent AH-pair
database shown in Table 3 without losing any information and present the attractive-
ness and hesitation of the items directly.

We can further calculate AH-pairs directly without calculating the intent first, and
the calculation process can be simplified. Since att(x, si) = αi(x) + 1

2hi(x), and
hi(x) is known, the three conditions in Definition 3 can be replaced by three equivalent
conditions. Formally, we give the method of calculating AH-pairs as follows.

The AH-pair of an item x with respect to an HS si, 〈att(x, si), hi(x)〉, satisfies the
following conditions:

1. Assume the same setting as stated as condition 2 of Definition 3.
The attractiveness for ICSj , denoted as att(x, ICSj), is given as follows.
att(x, ICSj) = ATT (x) − 1

2

∑m
k=1 hk(x) +

∑p
k=1 hk(x) + 1

2

∑p+q
k=p+1 hk(x),

2. If si is in a chain of the CG, s1 ≤ s2 ≤ · · · ≤ si ≤ · · · ≤ sn, for 1 ≤ i ≤ n, we
define att(x, si) = ATT (x) − 1

2

∑n
k=1 hk(x) +

∑i−1
k=1 hk(x) + 1

2hi(x).
3. If si is in a chain of ICSj , sg ≤ sg+1 ≤ · · · ≤ si ≤ · · · ≤ sv, where ((p + 1) ≤

g ≤ v ≤ (p + q)), for g ≤ i ≤ v, we define att(x, si) = att(x, ICSj) −
1
2

∑v
k=g hk(x) +

∑i−1
k=g hk(x) + 1

2hi(x). �

The following proposition states the relationship between the hesitation order of two
HSs and the attractiveness for them of an item.

Proposition 1. If si ≤ sj , then att(x, si) ≤ att(x, sj).

Proof. It follows directly from the method of calculating AH-pairs above. �

48 A. Lu and W. Ng

The following proposition states the relationship between the overall attractiveness and
hesitation, and the attractiveness and hesitation for different HSs.

Proposition 2. Given S = {s1, s2, . . . , sw}, ATT (x)H(x) =
∑w

i=1 att(x, si)hi(x).

Proof Sketch. We first prove the case that S contains CG components only, where con-
dition 2 in the method of calculating AH-pairs above applies to all chains in S. Then
we extend the proof to the case that S includes both CG and NCG components, where
condition 3 applies for the chains of ICSs in NCG. When S contains CG components
only, for any chain, (s1 ≤ · · · ≤ si ≤ · · · ≤ sn), in S, we have ATT (x)−att(x, si) =
1
2

∑n
k=1 hk(x)−∑i−1

k=1 hk(x)− 1
2hi(x) = 1

2 (hi+1(x)+hi+2(x) · · ·+hn(x)−h1(x)−
h2(x)− · · ·−hi−1(x)). It can be checked that

∑n
i=1(ATT (x)− att(x, si))hi(x) = 0.

Then we extend this conclusion to the whole S, since any chains in S satisfies this
conclusion, that is to say, we have

∑w
i=1(ATT (x) − att(x, si))hi(x) = 0. Thus,

ATT (x)H(x) =
∑w

i=1 att(x, si)hi(x). When S contains both CG and NCG com-
ponents, since each ICSj of NCG in condition 3 can be regarded as the case of CG in
condition 2, in a similar way, we can check that the conclusion also holds for the case
including NCG components. �

Proposition 2 indicates that the sum of the product of attractiveness and hesitation with
respect to all HSs preserves the product of overall attractiveness and hesitation.

3.2 Vague Association Rules and Their Support and Confidence

We now present the notion of VARs and define the support and confidence of a VAR.

Definition 6 (Vague Association Rule). A Vague Association Rule (VAR), r = (X ⇒
Y), is an association rule obtained from an AH-pair database. �

Based on the attractiveness and hesitation of an item with respect to an HS, we can de-
fine different types of support and confidence of a VAR. For example, if we have special
interest in the association between well-sold items (high attractiveness) and almost-sold
items (high hesitation). Then, with some analysis between the former and the latter, we
may make some improvements to boost the sales of the latter. For this purpose, we de-
fine Attractiveness-Hesitation (AH) support and AH confidence of a VAR to evaluate
the VAR. Similarly, we can obtain the association between an itemset with high hes-
itation and another itemset with high attractiveness, between two itemsets with high
attractiveness, and between two itemsets with high hesitation for different purposes.
Accordingly, we define four types of support and confidence to evaluate the VARs as
follows.

Note that here A (or H) can refer to either the overall attractiveness (or hesitation),
or the attractiveness (or hesitation) of a given HS.

Definition 7 (Support). Given an AH-pair database, D, we define four types of sup-
port for an itemset Z or a VAR X ⇒ Y , where X ∪ Y = Z , as follows.

1. The A-support of Z , denoted as Asupp(Z), is defined as
∑

T ∈D

∏

z∈Z
MA(z)

|D| .

2. The H-support of Z , denoted as Hsupp(Z), is defined as
∑

T ∈D

∏

z∈Z
MH (z)

|D| .

Mining Hesitation Information by Vague Association Rules 49

3. The AH-support of Z , denoted as AHsupp(Z), is defined as
∑

T ∈D

∏

x∈X,y∈Y
MA(x)MH (y)

|D| .

4. The HA-support of Z , denoted as HAsupp(Z), is defined as
∑

T ∈D

∏

x∈X,y∈Y
MH (x)MA(y)

|D| .

Z is an A (or H or AH or HA) FI if the A- (or H- or AH- or HA-) support of Z is
no less than the (respective A or H or AH or HA) minimum support threshold σ. �

Definition 8 (Confidence). Given an AH-pair database, D, we define the confidence
of a VAR, r = (X ⇒ Y), where X ∪ Y = Z , as follows.

1. If both X and Y are A FIs, then the confidence of r, called the A-confidence of r

and denoted as Aconf (r), is defined as Asupp(Z)
Asupp(X) .

2. If both X and Y are H FIs, then the confidence of r, called the H-confidence of r

and denoted as Hconf (r), is defined as Hsupp(Z)
Hsupp(X) .

3. If X is an A FI and Y is an H FI, then the confidence of r, called the AH-
confidence of r and denoted as AHconf(r), is defined as AHsupp(Z)

Asupp(X) .
4. If X is an H FI and Y is an A FI, then the confidence of r, called the HA-

confidence of r and denoted as HAconf(r), is defined as HAsupp(Z)
Hsupp(X) . �

Table 4. An AH-pair database on items with respect to s1

CID A B C D

1 <0.7,0.2> <0.4,0> <0.35,0.2> <0.15,0.1>

2 <0.9,0.2> <0.7,0.2> <0.6,0.8> <0.5,0.8>

3 <0.7,0.1> <0.8,0.4> <0.4,0.7> <0.5,0.9>

4 <0.8,0> <0.9,0> <0.5,0.9> <0.4,0.7>

5 <1,0> <0.9,0.1> <0.4,0.8> <0.6,0.8>

Table 5. The Four Types of Support
and Confidence of A ⇒ B

A H AH HA
supp 0.618 0.016 0.112 0.06
conf 0.754 0.16 0.137 0.6

Example 3. Given the AH-pair database in Table 4 with respect to a given HS s1 for
customers with different CID , let σ = 0.5 and c = 0.5. Note that the first line in Table
4 is from the first line in Table 3, which represents the AH-pairs of different items for
HS s1 with respect to the customer with CID 1. Then, Asupp(A) = (0.7 + 0.9+ 0.7 +
0.8 + 1)/5 = 0.82, AHsupp(A ⇒ D) = (0.7 × 0.1 + 0.9 × 0.8 + 0.7 × 0.9 + 0.8 ×
0.7 + 1 × 0.8)/5 = 0.556, AHconf(A ⇒ D) = 0.556

0.82 = 0.678. Similarly, we calculate
AHsupp(A ⇒ B) = 0.112 ≤ σ, AHconf (A ⇒ B) = 0.137 ≤ c. Thus, A ⇒ D is a
valid VAR with respect to AH-support and AH-confidence, but A ⇒ B is not. �

We also compute all the four types of support and confidence of A ⇒ B as shown in
Table 5. It shows that A ⇒ B is a valid VAR with respect to A-support and
A-confidence, but not a valid VAR with respect to other types of support and
confidence.

Problem Description. Given an AH-pair database D with respect to an HS si or the
overall hesitation, σ and c, the problem of VAR mining is to find all VARs r such that
supp(r) ≥ σ and conf(r) ≥ c, where supp and conf are one of the A-, H-, AH-, and
HA- support and confidence. �

50 A. Lu and W. Ng

Note that the thresholds σ and c can be different for different types of VARs. Here-
after, we just set them to be the same for different types of VARs, and this can be easily
generalized to the case of different thresholds.

We give some properties of VARs which can be used to design an efficient algorithm
for mining VARs. The following proposition states that the support defined for a certain
itemset with respect to HSs has the anti-monotone property.

Proposition 3. Given two different HSs si and sj , let suppi (confi) and suppj (confj)
be the corresponding support (confidence) with respect to different HSs. The following
statements are true.
1. If si ≤ sj , then Asuppi(Z) ≤ Asuppj(Z).
2. If si ≤ sj and ∀y ∈ Y , hi(y) ≤ hj(y), then AHsuppi(Z) ≤ AHsuppj(Z).
3. If ∀x ∈ X , hi(x) ≤ hj(x) and si ≤ sj , then HAsuppi(Z) ≤ HAsuppj(Z).
4. If ∀z ∈ Z , hi(z) ≤ hj(z), then Hsuppi(Z) ≤ Hsuppj(Z).

Proof. It follows from Definition 7 and Proposition 1. �

According to Proposition 3, when we find the support of an itemset with respect to
an HS to be less than σ, we can prune the same itemset in the mining search space.
The pruning applies to all the HSs less than or equal to, or in the same ICS with the
original HS.

The following proposition states that the support defined for an itemset in an AH-pair
database with respect to a certain HS has the anti-monotone property.

Proposition 4. If X⊆X ′, then Asupp(X ′)≤Asupp(X) and Hsupp(X ′)≤Hsupp(X).

Proof. Since X ⊆ X ′ and 0 ≤ MA(x) ≤ 1 (x ∈ X ′), we have
∏

x∈X′
MA(x) ≤

∏

x∈X

MA(x). Thus Asupp(X ′) =

∑

T∈D

∏

x∈X′
MA(x)

|D| ≤
∑

T ∈D

∏

x∈X

MA(x)

|D| = Asupp(X).

And we also have AHsupp(X ′) ≤ AHsupp(X), since AHsupp(X ′) = Asupp(X ′)
and AHsupp(X) = Asupp(X). Similarly, we can prove the cases of Hsupp and
HAsupp. �

According to Proposition 4, when we find the support of an itemset to be less than σ,
we can prune all its supersets in the mining search space. We can obtain greater pruning
by the following two propositions.

Proposition 5. Given an item x, MH (x)
2 ≤ MA(x) ≤ 1 − MH (x)

2 .

Proof. Since α(x) ≥ 0, MH (x)
2 = (1−β(x))−α(x)

2 ≤ (1−β(x))+α(x)
2 = MA(x). Since

β(x)≥0, MA(x) = α(x)+(1−β(x))
2 ≤ α(x)+(1+β(x))

2 = 1− (1−β(x))−α(x)
2 = 1− MH(x)

2 .

Proposition 6. Given a VAR, r = (X ⇒ Y), where |X | = m and |Y | = n, we have

1. (1
2)m Hsupp(r) ≤AHsupp(r) ≤ 2nAsupp(r);

2. (1
2)n Hsupp(r) ≤ HAsupp(r) ≤ 2mAsupp(r);

3. AHconf(r) ≤ 2nAconf (r);
4. (1

2)nHconf (r) ≤ HAconf (r).

Proof Sketch. The proof follows from Proposition 5. �

Mining Hesitation Information by Vague Association Rules 51

By Proposition 6, we can prune VARs according to the relationship among different
support and confidence. For example, if we have 2nAsupp(r) < σ, then AHsupp(r) ≤
2nAsupp(r) < σ; thus, we can prune r directly without computing AHsupp(r).

4 Mining Vague Association Rules

In this section, we present an algorithm to mine the VARs. We first mine the set of all
A, H , AH and HA FIs from the input AH-pair database with respect to a certain HS or
the overall hesitation. Then, we generate the VARs from the set of FIs.

Let Ai and Hi be the set of A FIs and H FIs containing i items, respectively. Let
AiHj be the set of AH FIs containing i items with A values and j items with H values.
Note that AiHj is equivalent to HjAi. Let CW be the set of candidate FIs, from which
the set of FIs W is to be generated, where W is Ai, Hi, or AiHj .

Algorithm 2. MineVFI(D, σ)
1. Mine A1 and H1 from D;
2. Generate CA2 from A1, CA1H1 from A1 and H1, and CH2 from H1;
3. Verify the candidate FIs in CA2 , CA1H1 and CH2 to give A2, A1H1 and H2, respectively;
4. for each k = 3, 4, . . ., where k = i + j, do
5. Generate CAk from Ai−1 and CHk from Hi−1, for i = k;
6. Generate CAiHj from Ai−1Hj , for 2 ≤ i < k, and from A1Hj−1, for i = 1;
7. Verify the candidate FIs in CAk , CHk , and CAiHj to give Ak, Hk, and AiHj ;
8. return all Ai, Hj , and AiHj mined;

The algorithm to compute the FIs is shown in Algorithm 2. We first mine the set of
frequent items A1 and H1 from the input AH-pair database D. Next, we generate the
candidate FIs that consists of two items (Line 2) and compute the FIs from the candidate
FIs (Line 3). Then, we use the FIs containing (k − 1) items to generate the candidate
FIs containing k items, for k ≥ 3, which is described as follows.

For each pair of FIs, x1 · · · xk−2y and x1 · · · xk−2z in Ak−1 or Hk−1, we generate
the itemset x1 · · ·xk−2yz into CAk

or CHk
. For each pair of FIs, x1 · · · xi−2uy1 · · · yj

and x1 · · · xi−2vy1 · · · yj in Ai−1Hj , or x1y1 · · · yj−2u and x1y1 · · · yj−2v in A1Hj−1,
we generate the itemset x1 · · ·xi−2uvy1 · · · yj or x1y1 · · · yj−2uv into CAiHj .

After generating the candidate FIs, we obtain the FIs as follows. For each Z ∈ CAk

(or Z ∈ CHk
), if ∃X ⊂ Z , where X contains (k−1) items, X �∈ Ak−1 (or X �∈ Hk−1),

then we remove Z from CAk
(or CHk

). For each Z = x1 · · · xiy1 · · · yj ∈ CAiHj , if
∃i′, where 1 ≤ i′ ≤ i, (Z − {xi′}) �∈ Ai−1Hj ; or ∃j′, where 1 ≤ j′ ≤ j, (Z −
{yj′}) �∈ AiHj−1, then we remove Z from CAiHj . Here, the anti-monotone property
[1] of support is applied to prune Z if any of Z’s subsets is not an FI. After that, the
support of the candidate FIs is computed and only those with support at least σ are
retained as FIs.

52 A. Lu and W. Ng

Finally, the algorithm terminates when no candidate FIs are generated and returns
all FIs.

After we mine the set of all FIs, we generate the VARs from the FIs. There are four
types of VARs. First, for each A or H FI Z , we can generate the VARs X ⇒ Y , ∀X, Y
where X ∪ Y = Z , using the classical AR generation algorithm [1]. Then, for each AH
(or HA) FI Z = (X ∪Y), where X is an A FI and Y is an H FI, we generate two VARs
X ⇒ Y and Y ⇒ X . The confidence of the VARs can be computed by Definition 8.

After we generate all the VARs with respect to the given HS or overall hesitation,
we can repeat our algorithm on the mi-pair database of different HS. Properties in
Proposition 3 can be used to prune itemsets if the current HS has the relationships
indicated in Proposition 3 with the original HS.

5 Experiments

In this section, we use both real and synthetic datasets to evaluate the efficiency of the
VAR mining algorithm and the usefulness of the VARs. All experiments are conducted
on a Linux machine with an Intel Pentium IV 3.2GHz CPU and 1GB RAM. Due to
space limitation, the experimental results are related to the overall hesitation.

5.1 Experiments on Real Datasets

For the first set of experiments, we use the Web log data from IRCache [9], which is the
NLANR Web Caching project.

We first preprocess the Web log and identify the browsing trails of each user. Then,
we define the weight, Wwp, of a Web page, wp, in a trail as the product of the time spent
on wp and the position of wp in the trail. If wp appears more than once in the trail, we
sum up its weights. Finally, we normalize the weights of the Web pages within a trail.
Thus, Wwp measures the degree that wp satisfies the user. Given two thresholds HL

and HU (0 ≤ HL ≤ HU ≤ 1), we can classify Web pages into three categories: target
(if Wwp ≥ HU), non-target (if Wwp ≤ HL), and transition (if HL < Wwp < HU).
The three categories correspond to the three statuses of items, i.e., 1, 0 and h (overall
hesitation), respectively.

Since the Web log data contain a huge number of different Web sites, we only report
the result on the Web log of a single Web site (www.google.com) from all nine IRCache
servers on a single day (Aug. 29, 2006). We identify 6066 trails and aggregate them by
the user ID (the remote host). The corresponding AH-pair database consists of 263
AH-pair transactions and 260 items (i.e., Web pages). Here we set HL to be 0.01 and
HU to be 0.7.

When σ= 0.001 and c=0.9, we obtain only one VAR: http://gmail.google.com/,
http://gmail.google.com/mail/ ⇒ http://mail.google.com/mail/, with HA-support of
0.003 and HA-confidence of 0.99. This VAR shows that http://gmail. google.com/ and
http://gmail.google.com/mail/ always play the role of transition pages to the target page
http://mail.google.com/mail/. As a possible application, we can add a direct link from
the transition pages (http://gmail.google.com/ or http://gmail.google.com /mail/) to the
target page (http://mail.google.com/mail/) to facilitate the user traversal of the Web site.

Mining Hesitation Information by Vague Association Rules 53

Actually, by typing either the URL of the two transition pages in a Web browser, it is
redirected to the URL of the target page, where the redirect mechanism serves as a
special kind of direct link.

If we set c to be 0.7, we obtain more VARs as follows:

1. H1A1: http://google.com/ ⇒ http://www.google.com/ (0.001, 0.77)
2. H1A1: http://gmail.google.com/ ⇒ http://mail.google.com/mail/ (0.004, 0.86)
3. A2H1: http://mail.google.com/mail/, http://gmail.google.com/mail/

⇒ http://gmail.google.com/ (0.001, 0.77)
4. A2H1: http://mail.google.com/mail/, http://gmail.google.com/

⇒ http://gmail.google.com/mail/ (0.001, 0.84)
5. H1H1: http://gmail.google.com/ ⇒ http://gmail.google.com/mail/ (0.003, 0.75)

In each VAR, the number in the bracket shows the support and confidence of the
VAR. We find that, in the first two H1A1 rules, the transition page is redirected to
the target page. The next two A2H1 rules show that http://gmail.google.com/mail/ and
http://gmail.google.com/ can both play the role of transition or target pages, while
http://mail.google.com/mail/ is always the target page with high confidence (above 0.7).
The last H1H1 rule shows that both of the two pages are transition pages. We may com-
bine them together or delete one of them to make the website more concise.

In order to compare with the traditional ARs, we also test on the database that con-
tains all the trails without distinguishing the Web pages by their weights and aggregat-
ing the pages by user. At σ= 0.0008 and c=1, 70 ARs are returned. Among them, 59
ARs (84%) contain the entrance page (www.google.com), which is not that interesting.
Among the remaining ARs, the following rule is found:
http://mail.google.com/, http://gmail.google.com/, http://gmail.google.com/mail/
⇒ http://mail.google.com/mail/ with support 0.001 and confidence 1, which is similar
to one of the VARs we find.

The above results show the effectiveness of mining VARs, since the traditional AR
mining approach returns many ARs but it is hard for the user to tell which ARs are more
important for practical uses, while mining VARs can find more specific rules directly.

5.2 Experiments on Synthetic Datasets

We test on the synthetic datasets to evaluate the efficiency and the scalability of our al-
gorithm. We modify the IBM synthetic data generator [10] by adding “hesitation” items.
The ID and the number of “hesitation” items in each transaction are generated accord-
ing to the same distributions as those for the original items. We generate a dataset with
100000 transactions and 100 items. We use a parameter Step to represent the number of
transactions which are aggregated to give an AH-pair transaction.

We first test the algorithm under different values of Step. Fig. 4 and Fig. 5 report the
running time and the number of FIs. From Fig. 4, the running time increases with the
decrease in the value of σ due to the larger number of FIs generated. We also find that,
for the same value of σ, the running time decreases significantly with the increase in
the value of Step. This is because we aggregate more transactions to a single AH-pair
transaction and hence the number of AH-pair transactions is smaller in the database.
However, Fig. 5 shows that the number of FIs for the different Step values varies only

54 A. Lu and W. Ng

0

50

100

150

200

250

300

350

400

0 1 2 3 4

lg(Step)

R
u

n
n

in
g

 T
im

e
 (

s
e
c
.)

MinSupp=0.02

MinSupp=0.03

MinSupp=0.04

MinSupp=0.05

MinSupp=0.1

Fig. 4. Running Time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1 2 3 4

lg(Step)

N
u

m
b

e
r

o
f

F
Is

MinSupp=0.02

MinSupp=0.03

MinSupp=0.04

MinSupp=0.05

MinSupp=0.1

Fig. 5. Number of FIs

slightly (note that all the five lines are nearly horizontal in Fig. 5). This result shows
that we can actually aggregate more transactions to give the AH-pair transactions so
that we can improve the efficiency of the mining operation but still obtain the same set
of FIs and hence the VARs.

6 Related Work

We are aware of a number of studies that extend the traditional AR mining for un-
certain data in different applications, such as mining fuzzy ARs. However, there is no
modelling of hesitation information in an application [11,12,13]. Fuzzy ARs are pro-
posed to handle quantitative items in the form “X is A” ⇒ “Y is B”, where X , Y are
the set of items and A, B are fuzzy concepts represented by fuzzy sets. For example,
“position is senior” ⇒ “salary is high”.

Although the formulas of different kinds of support and confidence in VARs seem
to relate to their counterparts in fuzzy ARs, VARs and fuzzy ARs are fundamentally
different. VARs focus on the associations between crisp itemsets based on the attrac-
tiveness and hesitation of items, while fuzzy ARs do not consider hesitation information
and focus on the associations between fuzzy concepts.

In our previous works, we extend the concepts of Functional Dependency (FD),
Chase procedure [14], SQL and AR in standard relational databases by applying vague
set theory in order to handle the widely existent vague information, and propose VFD
[3], VChase [15], VSQL [4] and VAR [16], respectively. In [16], a basic approach to
incorporate the hesitation information into the ARs is given. However, the modelling of
hesitation information with respect to different HSs is newly developed in this paper.

7 Conclusion

We model hesitation information by vague set theory in order to address a limitation
in traditional AR mining problem, which ignores the hesitation information of items in
transactions. We propose the notion of VARs that incorporates the hesitation informa-
tion of items into ARs. We define two important concepts, attractiveness and hesitation,

Mining Hesitation Information by Vague Association Rules 55

of an item with respect to different HSs, which reflect the overall information of a cus-
tomer’s intent on the item. We also define different types of support and confidence for
VARs in order to evaluate the quality of the VARs for different purposes. An efficient
algorithm is proposed to mine the VARs, while the effectiveness of VARs is also re-
vealed by experiments on real datasets. As for future work, mining VARs in different
applications is an interesting topic that deserves further study. For example, different
ranking scores together with clickthrough data of a search result can be modelled as an
object having different HSs. In this case VARs can be minded to reflect different users’
preferences.

Acknowledgements. We would like to thank Yiping Ke and James Cheng for their
valuable comments on this topic.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in
large databases. In: SIGMOD Conference, pp. 207–216 (1993)

2. Gau, W.-L., Buehrer, D.J.: Vague sets. IEEE Transactions on Systems, Man, and Cybernet-
ics 23(2), 610–614 (1993)

3. Lu, A., Ng, W.: Managing merged data by vague functional dependencies. In: Atzeni, P., Chu,
W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 259–272. Springer,
Heidelberg (2004)

4. Lu, A., Ng, W.: Vague sets or intuitionistic fuzzy sets for handling vague data: Which one
is better? In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER
2005. LNCS, vol. 3716, pp. 401–416. Springer, Heidelberg (2005)

5. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
6. Amazon.com Help, http://www.amazon.com/gp/help/customer/display.

html?nodeId=524700
7. Brightwell, G., Winkler, P.: Counting linear extensions. Order 8, 225–242 (1991)
8. Pruesse, G., Ruskey, F.: Generating linear extensions fast. SIAM J. Comput. 23, 373–386

(1994)
9. NLANR, http://www.ircache.net/

10. Data Mining Project. The Quest retail transaction data generator (1996), http://www.
almaden.ibm.com/software/quest/

11. Kuok, C.M., Fu, A.W., Wong, M.H.: Mining fuzzy association rules in databases. SIGMOD
Record 27, 41–46 (1998)

12. Au, W., Chan, K.C.C.: Mining fuzzy association rules in a bank-account database. IEEE
Trans. Fuzzy Systems 11, 238–248 (2003)

13. Chen, G., Wei, Q.: Fuzzy association rules and the extended mining algorithms. Inf. Sci. 147,
201–228 (2002)

14. Levene, M., Loizou, G.: A Guided Tour of Relational Databases and Beyond. Springer, Hei-
delberg (1999)

15. Lu, A., Ng, W.: Handling inconsistency of vague relations with functional dependencies. In:
ER (2007)

16. Lu, A., Ke, Y., Cheng, J., Ng, W.: Mining vague association rules. In: DASFAA, pp. 891–897
(2007)

http://www.amazon.com/gp/help/customer/display.html?nodeId=524700
http://www.amazon.com/gp/help/customer/display.html?nodeId=524700
http://www.ircache.net/
http://www.almaden.ibm.com/software/quest/
http://www.almaden.ibm.com/software/quest/

A Model Driven Modernization Approach for

Automatically Deriving Multidimensional
Models in Data Warehouses

Jose-Norberto Mazón and Juan Trujillo

Dept. of Software and Computing Systems
University of Alicante, Spain

{jnmazon,jtrujillo}@dlsi.ua.es

Abstract. Data warehouses integrate several operational sources to pro-
vide a multidimensional (MD) analysis of data. Therefore, the develop-
ment of a data warehouse claims for an in-depth analysis of these data
sources. Several approaches have been presented to obtain multidimen-
sional structures from data sources in order to guide this development.
However, these approaches assume that a wide documentation of the
data sources is available and only provide informal guidelines to sup-
port the discovery of MD elements. Therefore, this task may become
highly difficult for complex and large data sources (e.g. legacy systems).
To overcome these problems, we consider the development of the data
warehouse as a modernization scenario that addresses the analysis of the
available data sources, thus discovering MD structures to either derive
a data-driven conceptual MD model or reconcile a requirement-driven
conceptual MD model with data sources. Specifically, we use concepts
from Architecture Driven Modernization (ADM) in order to automati-
cally perform the following tasks: (i) obtain a logical representation of
data sources (ii) mark this logical representation with MD concepts, and
(iii) derive a conceptual MD model from the marked model. Finally, we
have provided a case study based on a real world project in order to
exemplify the application of our approach.

1 Introduction

Data warehouses (DW) integrate heterogeneous data sources in multidimensional
(MD) structures (i.e. facts and dimensions) in support of the decision-making
process [1,2]. Importantly, current approaches for developing DWs claim for an
in-depth analysis of these data sources in order to discover MD structures for
(i) directly deriving a conceptual MD model from data sources [3,4], or (ii)
reconciling data sources with a conceptual MD model previously defined from
information requirements [5,6,7].

However, any kind of data sources (including data legacy systems) normally
present two main problems in real world DW projects: they are too large and
complex, and not enough documentation is provided. Due to this fact, the anal-
ysis of these data sources is not only a tedious and time-consuming task for
designers, but also it may become unattainable in large DW projects.

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 56–71, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Model Driven Modernization Approach 57

Considering these problems, analyzing data sources to discover MD elements
is not a trivial task in DW projects and several ad-hoc mechanisms that ease
the designer labour have been developed up to now (see Section 2). Unfortu-
nately, they only provide informal guidelines to support the discovery of MD
elements from well-documented data sources, which prevents their automatiza-
tion. Hence, current approaches may be difficult to use for non-expert designers
in the application domain of the DW project, especially in advanced information
systems1. Furthermore, although these approaches suggest the development of a
data-driven conceptual MD model from the analysis of data sources, they do not
take into account this data analysis as a fundamental component of a wider de-
velopment framework in order to reconcile these sources with user requirements.

On the other hand, software modernization is described as the process of un-
derstanding and evolving existing software assets for several purposes, such as
software improvement or migration to a new platform or technology [9]. Modern-
ization facilitates the analysis, redesign and redeployment of existing information
systems when (i) it does not deliver the expected support to achieve business
goals, (ii) the required changes are not as simple as a maintenance task, and
(iii) not enough documentation is available. Therefore, software modernization
requires an initial reverse engineering stage in which the elements of the existing
information system and their relationships are captured in a conceptual model
which guides the development of the new software system [10]. Lately, the Model
Driven Architecture (MDA) [11] has been proven useful for reverse engineering,
since it allows developers to manage models at different levels of abstraction in
an easy and structured way with a high degree of automatization. Specifically,
an arising standard named Architecture Driven Modernization (ADM) [12] aims
at the integration of MDA and reverse engineering.

In order to solve the above-mentioned problems, we propose a modernization
approach for the development of DWs based on ADM. The shaded area of Fig. 1
summarizes this approach, which comprises several tasks. The first step is to an-
alyze the existing data sources to obtain their logical representation. Afterwards,
the discovery of MD elements in this logical representation must be performed,
thus deriving a logical model whose elements are related to MD concepts by
means of a marked model. Then, we can either directly obtain a conceptual MD
model or use the marked model to reconciliate data sources with a previously
defined conceptual MD model from information requirements, thus obtaining a
mixed model [6,7]. It is worth noting that our modernization approach is part of
an overall MDA framework for the development of DWs [13,14,15]. Within this
framework (see Fig. 1), the conceptual MD model drives the following design
stages (i.e. logical and physical) in order to implement the DW.

1 Advanced information systems play a crucial role in the new generation of DWs [8].
This new generation of systems requires a high degree of expertise and experience in
DW developers to analyze data sources, since they involve new and more complex
data types than the traditional and simple alphanumerical data, such as special-
ized data structures used in GIS (Geographic Information Systems) or data streams
related to Business Process Monitoring (BPM).

58 J.-N. Mazón and J. Trujillo

DATA
SOURCES

LOGICAL
MODEL OF

DATA SOURCES

MIXED MD
CONCEPTUAL MODEL

USER
REQUIREMENTS

MD LOGICAL
MODEL

MD PHYSICAL
MODEL

MARKED
MODEL

DATA-DRIVEN MD
CONCEPTUAL MODEL

REQUERIMENTS-DRIVEN
MD CONCEPTUAL MODEL

Fig. 1. Our modernization approach for DW development

The motivation of our modernization approach is twofold. On one hand,
we propose how to directly obtain a conceptual MD model from existing data
sources. On the other hand, the logical model marked with the discovered MD
elements can be used to reconcile data sources with a conceptual MD model spec-
ified from user requirements, which completes our previous work [6,7], where we
assumed that the data sources had been manually marked with MD concepts.

The remainder of this paper is structured as follows. Section 2 briefly describes
current approaches for discovering MD elements from operational data sources.
Section 2 also describes relations between ADM and the development of DWs.
Section 3 describes our approach for using modernization in DW development.
Finally, we point out our conclusions and sketch some future work in Section 4.

2 Related Work

There are several approaches that propose discovering MD elements from the
analysis of data sources in order to derive a conceptual MD model. Most of
them [3,4,16,17] suggest mechanisms, as algorithms or guidelines, to specify a
conceptual MD model starting from an operational database described by an
Entity-Relationship (ER) model. However, these mechanisms have to be man-
ually applied to discover certain MD elements (such as facts), and only the
discovery of strict hierarchies are done automatically (by navigating through
the ER model along many-to-one relationships), thus resulting costly to apply
when the designer is not an expert in DW development. Furthermore, they make
a number of assumptions on the initial ER schema that limit their applicability
to certain MD structures. For example, these approaches only take into account
the definition of strict hierarchies, but they do not consider other important kind
of hierarchies, such as non-strict or generalized hierarchies.

Only in the algorithm proposed in [18], the level of automation to discover
MD elements in an ER model has been increased. Unfortunately, the output of
this algorithm is not a conceptual MD model, but a set of candidate models,
and although a complete set of steps is described to choose the most appropriate
model, the success in choosing the right model highly depends on designer’s
expertise in the application domain.

Apart from the level of automatization, every of these current approaches
presents a major drawback: it is assumed that well-documented ER diagrams

A Model Driven Modernization Approach 59

are available. Unfortunately, the operational data sources are usually real legacy
systems and the documentation is not generally available or it can not be ob-
tained [19]. Moreover, if the data sources are complex, although the documen-
tation exists it may be not easily understandable. Therefore, the application of
these approaches is unfeasible if data sources are too large and complex, even
though if expert designers in the application domain take part in the develop-
ment process.

To the best of our knowledge, the only attempt to ameliorate the above-
presented problems has been proposed in [20] where a set of algorithms is pre-
sented to automatically discover MD structures in the data sources. Furthermore,
this approach suggests a “metadata obtainer” as a reverse engineering stage in
which relational metadata is obtained from data sources. However, this approach
is based on analyzing data instances, which could be unsuitable for large data
sources or advanced information systems due to the huge amount and complex-
ity of data. Finally, this approach is not based on standard techniques to specify
the different models, so it could be difficult to apply.

To overcome all these problems, in this paper we propose the use of ADM in
the development of DWs. ADM suggests several scenarios in which it could be
successfully applied. Interestingly, ADM suggests a scenario for DW development
in which the main task is the identification of relevant data that needs to be
analyzed, reconciled, validated and loaded into the DW. However, it only focuses
on the integration of data and it does not provide mechanisms to specify a
conceptual MD model that drives the implementation of the envisaged DW. Due
to this fact, we deeply believe that a scenario for applying ADM to DWs should
aim at analyzing existing data sources to obtain a more reliable and adaptable
logical representation. From this representation, a conceptual MD model can be
then easily obtained by increasing the level of abstraction. Therefore, we propose
that ADM be used for (i) describing a data reverse engineering stage for DWs
that only takes into account the data schema and some useful measures (instead
of considering all data instances) in order to obtain a logical representation of
data sources, (ii) defining a set of formal transformations that are automatically
applied to mark the logical representation of data sources with MD concepts
as a previous step for deriving a conceptual MD model, and (iii) allowing the
designer the possibility of applying a mixed approach in order to reconcile user
requirements and data sources.

3 A Modernization Approach for Data Warehouses

The development of a DW starts when the information needs of decision mak-
ers are not properly delivered by available operational data sources. Then, this
development can be described as a modernization scenario in which a DW is
designed from existing data sources in support of the decision making process.

The most challenging task of this modernization scenario is related to data re-
verse engineering. This task addresses the analysis of the available data sources,
thus discovering MD structures to either directly deriving a conceptual MD

60 J.-N. Mazón and J. Trujillo

model from data sources or reconciling data sources with a conceptual MD
model previously defined from requirements2. In our modernization approach,
ADM [12] is used to accomplish this data reverse engineering task.

ADM is an OMG (Object Management Group) standard which addresses the
integration of MDA and reverse engineering [21]. MDA is useful for reverse engi-
neering because it provides mechanisms to establish different models at different
levels of abstraction in order to focus on particular concerns within the system.
Specifically, MDA encourages defining a Platform Independent Model (PIM)
which contains no specific information about the platform or the technology
that is used to implement the system. Then, this PIM can be transformed into
a Platform Specific Model (PSM) in order to include information about a spe-
cific technology or platform. Afterwards, each PSM is transformed into code to
obtain the final implementation. The transformations between these models are
performed in an automatic way by means of a transformation language such as
Query/View/Transformation (QVT) [22]. Therefore, ADM advocates the use of
MDA concepts (such as PIM, PSM and transformations between them) to facil-
itate the automatic analysis of existing software systems in order to obtain their
corresponding conceptual models (i.e. obtaining a PIM from a PSM that has
been previously obtained from the implementation of an information system).

In our modernization approach, the following tasks are performed (see Fig. 2):
first data sources are analyzed and their logical representations are specified in
a PSM. Before deriving the conceptual MD model in a PIM, the PSM is marked
with MD concepts in order to associate every element with their corresponding
MD element. A set of QVT relations has been developed for both marking the
PSM and obtaining the PIM in an automatic way.

DATA
SOURCES

PSM PIMMARKED
PSM

PHYSICAL LEVEL LOGICAL LEVEL CONCEPTUAL LEVEL

Fig. 2. Obtaining a conceptual MD model from data sources

3.1 Obtaining a PSM

In this section, we describe how to obtain a PSM from existing operational data
sources. In common scenarios, data sources can be implemented according to
a plethora of techniques, such as relational databases, XML files or even text
files. For the sake of clarity, we assume a specific scenario in which a relational
database has been implemented in the Oracle DataBase Management System

2 In this paper, we focus on deriving a conceptual MD model from data sources, since
the reconciliation process has been already covered in [6,7].

A Model Driven Modernization Approach 61

(DBMS). Within a relational DBMS, all the information about data structures
is stored in a data dictionary, so a relational model of the implemented database
can be specified from such data dictionary. Then, our PSM is based on a rela-
tional approach and it is specified by using CWM (Common Warehouse Meta-
model) [23].

In addition, several measures are obtained from the database schema. These
measures will be later considered in a set of defined QVT relations to properly
discover MD elements.

Data Dictionary. A data dictionary is a repository of all the relevant metadata
of the elements stored in a database. Each DBMS has its own way of storing
definitions and representations of data elements, but they contain information
about integrity constraints, space allocation or general database structures. Al-
though we focus on the Oracle data dictionary, any other data dictionary could
be used, since (i) a CWM representation of the data sources could be obtained
and (ii) the proposed measures could be calculated.

Oracle data dictionary consists of a set of tables in which metadata is stored in
two levels: the internal level that contains the data dictionary tables themselves
and the external level that provides several views of the internal level tables,
thus allowing us to access metadata. Then, the required metadata for deriving
a relational PSM can be extracted from the data dictionary by querying the fol-
lowing views: USER TABLES (data about tables), USER TAB COLUMNS (data about
columns in each table), USER CONSTRAINTS (data about constraints in a table),
USER CONS COLUMNS (data about constraints defined on columns).

We assume that the existing database was developed taking into account the
definition of every required constraint (such as primary or foreign keys) in order
to implement a schema in third normal form. This can be assumed since these
constraints can be easily discovered [24].

Relational PSM. The relational metamodel of CWM is a standard to represent
the structure of a relational database, thus allowing us to model tables, columns,
primary keys, foreign keys, and so on. An excerpt of the relational metamodel
is shown in Fig. 3.

This metamodel is used to specify a relational representation of the data
sources from the Oracle data dictionary in a PSM. Furthermore, a set of three
measures is obtained from the data dictionary. Specifically, these measures are
used in the QVT relations in order to know which elements of the data sources
represent facts. The following measures are obtained:

– Number of instances per table (NIT). It is the amount of rows in a table.
– Insert frequency of each table (IFT). It is the average of inserts in a table.
– Number of measures of each table (NMT). It is the quantity of numerical

columns of a table.

From the Data Dictionary to the PSM. The process of obtaining a re-
lational PSM from the Oracle data dictionary has been implemented by using

62 J.-N. Mazón and J. Trujillo

ColumnSet

NamedColumnSet

Table ForeignKey

Column

PrimaryKey

UniqueKey

UniqueConstraint

KeyRelationship

Attribute

StructuralFeature

/ownedElement

/namespace

/namespace /keyRelationship

/feature

/ownedElement

/uniqueKey/feature

/feature

/uniqueKey/keyRelationship

/owner

0..1

*

1..*

0..1

*

*

0..1
0..1

* 1

1..* *

Fig. 3. Part of the relational CWM metamodel

Java in the Eclipse framework. Within this process, the java.sql.Connection
interface is used to connect with the Oracle database and execute the required
SQL statements in order to obtain metadata from the data dictionary. From
this metadata, the corresponding PSM is obtained by using a developed CWM
plugin for Eclipse within Borland Together Architect (BTA) CASE tool.

To illustrate our approach, an excerpt from a real DW project is considered.
This project is related to the information system of a hotel. We focus on the
operational data sources that support the booking business process. Within this
process a customer books a room in the hotel for a certain date. These book-
ings contain the following data: number of nights, price per night, discount and
total cost of the booking. Regarding the customer, the database contains data
about identification number, name, gender, data of birth, city and country. It is
interesting to know the name and the population of the city and the name of
the country. Finally, a hotel room is in certain floor of the building and it has
an area. A room belongs to one certain type: single or double. For a single room
the size of the bed is stored, while for a double room, the possibility of having
an extra bed is stored.

The Oracle data dictionary is queried to obtain the metadata of the data
sources that support this booking business process. After obtaining all the re-
quired metadata, the corresponding PSM is derived by using Eclipse facilities
and a CWM plugin within BTA. Figure 4 shows the PSM (already marked)
deriving from the hotel information system in BTA. A more detailed model is
shown in Fig. 5.

3.2 Obtaining a PIM

Once a relational PSM of data sources and the corresponding set of measures
have been obtained, a conceptual MD representation has to be derived in a PIM.
This derivation process is composed of two tasks: marking the PSM and deriving
a conceptual MD model from the marked PSM. In the former task, every element
of the PSM is marked as a certain MD element to ease the development of the

A Model Driven Modernization Approach 63

Fig. 4. Part of the marked PSM obtained from operational sources in BTA

latter task. QVT transformations have been defined to automatically perform
both tasks. As final step, since a DW stores historical data, it is recommended
to add a temporal dimension in the conceptual MD model of the DW [2].

MD Profile. The PIM is based on our UML (Unified Modeling Language) [25]
profile for conceptual MD modeling presented in [26]. This profile contains the
necessary stereotypes in order to elegantly represent main MD properties at the
conceptual level by means of a UML class diagram in which the information
is clearly organized into facts and dimensions. These facts and dimensions are
represented by Fact (represented as) and Dimension classes (represented
as), respectively. Fact classes are defined as composite classes in shared
aggregation relationships of n Dimension classes. The minimum cardinality in
the role of the Dimension classes is 1 to indicate that every fact must be always
related to all the dimensions. However, the many-to-many relationships between
a fact and a specific dimension can be specified by means of the cardinality 1...n
in the role of the corresponding Dimension class.

64 J.-N. Mazón and J. Trujillo

Customer_DIM:
Table

ID_Customer_D:
Column

PK_Customer:
PrimaryKey

/owner

/namespace

/feature

/ownedElement

/feature

/uniqueKey

Gender_DA:Column

DateOfBirth_DA: Column

/owner

/feature

/feature

City: Column
/feature

FK_ToCity:
ForeignKey

/ownedElement

/namespace

/uniqueKey

Population_DA:
Column

/feature

City_BASE: Table Name_D: Column

PK_City:
PrimaryKey

/owner

/namespace

/feature

/ownedElement

/feature

/uniqueKey

/owner

/keyRelationship

/feature

Country_BASE: TableName_D: Column

PK_Country:
PrimaryKey

/feature

/ownedElement

/owner

Country: Column

FK_ToCountry:
ForeignKey

/namespace/feature

Booking_FACT:
Table

Nights_MEASURE:Column

Discount_MEASURE: Column

Price_MEASURE: Column
/owner

/feature

/feature

/feature

PK_Booking:
PrimaryKey

/namespace /ownedElement

FK_To_Customer:
ForeignKey

Customer: Column
/feature

/ownedElement

/namespace

/keyRelationship

/uniqueKey

/feature

/feature

/feature

Name_DA: Column
/feature

/keyRelationship

/uniqueKey

/keyRelationship

Date:Column

Room:Column

Total_MEASURE: Column/feature

/uniqueKey

/uniqueKey

/feature

/owner

/feature /feature

FK_To_Room:
ForeignKey

/keyRelationship

Floor_DA:
Column

/feature

Room_BASE: TableNumber_D: Column

PK_Room:
PrimaryKey

/owner

/feature

/ownedElement

/owner

Area_DA:
Column/feature

/namespace/feature

/uniqueKey

/uniqueKey

Single_BASE:
Table

Number_D:
Column

PK_Single:
PrimaryKey

/owner

/namespace

/feature

/ownedElement

/feature

/uniqueKey

FK_SToRoom:
ForeignKey

Double_BASE:
Table

Number_D:
Column

PK_Double:
PrimaryKey

/owner

/namespace

/feature

/ownedElement

/feature

/uniqueKey

/owner

ExtraBed_DA: Column
/feature

FK_DToRoom:
ForeignKey

BedSize_DA: Column
/feature

/owner

/ownedElement

Fig. 5. Marked PSM derived from operational data sources

A fact is composed of measures or fact attributes (FactAttribute stereotype,
). Furthermore, derived measures (and their derivation rules) can also be ex-

plicitly represented as tagged values of a FactAttribute.
With respect to dimensions, each level of a classification hierarchy is spec-

ified by a Base class (). Every Base class can contain several dimension
attributes (DimensionAttribute stereotype,) and must also contain a Descrip-
tor attribute (D stereotype,). An association with a Rolls-UpTo stereotype
(<<Rolls-UpTo>>) between Base classes specifies the relationship between two
levels of a classification hierarchy. Within this association, role R represents the
direction in which the hierarchy rolls up, whereas role D represents the direc-
tion in which the hierarchy drills down. Due to flexibility of UML, we can also
consider non-strict hierarchies (an object at a hierarchy’s lower level belongs
to more than one higher-level object) and generalized hierarchies (a hierarchy’s
level has subtypes to model additional features). These characteristics are speci-
fied, respectively, by means of the cardinality of the roles of the associations and
by means of the generalization/specialization relationships of UML.

Although in this section we focus on describing a subset of this UML profile
(see Fig. 6), the whole profile is defined in [26].

QVT Relations to Obtain a Marked PSM. To ameliorate the complexity of
obtaining a conceptual MD model as a PIM, a previous step is needed to relate
every element in the relational PSM to MD concepts. This step is achieved
by marking every element of the PSM as MD elements. Marking models is a
technique that provides mechanisms to extend elements of the models in order

A Model Driven Modernization Approach 65

+ownedAttribute+class

0..1 *

2..*

Class

Classifier

Generalization

Property

aggregation: AggregationKind

upper: UnlimetedNatural (from MultiplicityElement)

lower: Integer (from MultiplicityElement)

type: Type (from TypedElement)

Property

aggregation: AggregationKind

upper: UnlimetedNatural (from MultiplicityElement)

lower: Integer (from MultiplicityElement)

type: Type (from TypedElement)

Association
<<enumeration>>

AggregationKind

none

shared

composite

<<enumeration>>

AggregationKind

none

shared

composite

11

*

+general

+specific

+generalization

+memberEnd

+association

0..1

<<stereotype>>

Rolls-upTo

<<stereotype>>

Fact

<<stereotype>>

Dimension

<<stereotype>>

Base

<<stereotype>>

FactAttribute

<<stereotype>>

DimensionAttribute

<<stereotype>>

Descriptor

Fig. 6. Extension of the UML with the stereotypes used in this paper

to capture additional information [11]. Marks are widely used in MDA to prepare
a model in order to guide a transformation.

A mark represents a concept from one model, which can be applied to an
element of other different model. Our marks then indicate how every element
of the relational PSM must be matched with certain MD element. Later, this
marking will allow us to properly specify the PIM by easily discovering different
complex MD structures in the PSM, such as different kind of hierarchies. In
our approach, the PSM is marked by appending a suffix to the name of each
element according to the conceptual MD elements of the above-described profile.
Table 1 shows how the relational model of data sources must be marked. A QVT
transformation has been developed to properly identify the MD elements in the
PSM and perform the marking. This transformation includes several heuristics
that make use of the measures defined in Section 3.1 in order to automatically
mark every relational element in a reliable way.

Table 1. Marks applied to the relational PSM

Mark PSM element PIM element
FACT Table Fact

DIM Table Dimension

BASE Table Base

MEASURE Column FactAttribute

DA Column DimensionAttribute

D Column Descriptor

We would like to recall that this marked model can also be used to reconciliate
data sources with a conceptual MD model specified from user requirements, as
considered in our previous works [6,7], where the models of the data sources were
supposed to be manually marked.

66 J.-N. Mazón and J. Trujillo

Next, the discovery of the different MD elements in the PSM is described: first
facts must be discovered (and their respective fact attributes), then dimensions
and hierarchy levels (and their respective descriptors and dimension attributes).
To this aim, a set of QVT relations has been developed. However, due to space
constraints, only one sample QVT relation is shown: DiscoverFacts. The re-
sulting marked PSM for our case study is shown in Fig. 4 and Fig. 5.

Discovering Facts. A fact is related to a business process that is typically sup-
ported by operational data sources [2]. These data sources store measures of the
business process that are useful for supporting the decision making process. A
fact then contains all the numerical measures from the data sources related to
a business process in order to support their analysis. Therefore, a table in the
PSM is marked as a fact according to the following heuristics that are based on
the measures described in Section 3.1:

– A table is much larger than other tables, because it stores data about oper-
ational activities of a business process. This heuristic is applied by using the
NIT measure.

– A table is frequently updated to reflect that it stores data related to dy-
namic events of a business process. This heuristic is applied by using the
IFT measure.

– A table stores measures related to the business process. This heuristic is
applied by using the NMT measure.

These heuristics are included in the DiscoverFacts relation as functions in
the when clause. This relation (shown in Fig. 7) marks tables of the PSM as facts
provided that the heuristics are true. Once this relation holds, fact attributes and
dimensions have to be discovered according to the statements in the where clause.

In our example, once this QVT relation is applied, the Booking table is marked
as a fact (see Fig. 4 and Fig. 5).

Discovering Fact Attributes. When a table corresponds to a fact, their columns
are either foreign keys that reference to a table (which corresponds to a dimen-
sion) or fact attributes. These fact attributes are measures whose values are

t1: Table
name=n_t

<<domain>>

REL

C E

DiscoverFactAttributes t1,t2 ;

DiscoverDimensions t1,t2 ;

()

()

where

DiscoverFacts

greaterThanNITAvg t1.NIT ;()

greaterThanIFTAvg(t1.IFT);

greaterThanNMTAverage(t1.NMT);

when

REL t2: Table

name=n_t+’_FACT’

<<domain>>

Fig. 7. QVT relation that marks tables as facts

A Model Driven Modernization Approach 67

analyzed to support the decision making process. Therefore, a column that be-
longs to a table marked as a fact is marked as a fact attribute provided that (i)
its type is numerical and (ii) it is not a foreign key.

Discovering Dimensions. A dimension represents the context for analyzing a
fact. Actually, the set of dimensions related to a fact determines every measure
of the fact. Therefore, a table is marked as a dimension if a table marked as a
fact has a column that, at the same time, takes part in a primary key and is a
foreign key to the table marked as a dimension.

Discovering Bases. Every table that has not been marked as a fact or dimension
should be marked as base. Later, when the PIM is defined, the relations between
the tables marked as bases will be useful to model the required kind of hierarchy.

Discovering Dimension Attributes and Descriptors. The columns of each table
marked as a dimension or as a base can be considered either as dimension at-
tributes or descriptors. A column is marked as a descriptor if it is a primary key.
Otherwise, it is marked as a dimension attribute.

QVT Relations to Obtain a PIM. Once the marked PSM is obtained, a
set of QVT relations can be applied to derive a PIM for MD modeling. These
QVT relations allow us to obtain different MD structures as facts and their
relations with dimensions or different kind of hierarchies. After applying these
QVT relations to the marked PSM by using BTA, the conceptual MD model
of Fig. 8 has been derived. Nevertheless, for the sake of clarity, a complete
representation of this PIM is also shown in Fig. 9.

Obtaining Facts and Dimensions. From the marked PSM, the fact and dimension
classes (according to our UML profile for conceptual MD modeling) are easily
obtained. Moreover, the cardinality between every discovered fact and a specific
dimension must also be considered, since two possibilities arise:

– Many-to-one: the minimum cardinality in the role of a dimension class is 1
to indicate that every fact must always be related to one dimension. This
cardinality appears in the marked PSM when a table marked as a fact has
a foreign key to a table marked as a dimension.

– Many-to-many: it can be specified by means of the cardinality 1...n in the
role of the corresponding dimension. This cardinality appears in the marked
PSM when a table marked as a fact has two foreign keys: one that refers to
a table marked as a dimension and other that refers to a table marked as a
fact. The columns that take part in the foreign key form a primary key for
the table, thus representing a bridge table [2].

Obtaining Hierarchies. Preliminarily, we recall that within a conceptual MD
model the terminal dimension levels of a fact are those that are immediately
attached to the dimensions, i.e. those bases that provide the finest level of detail
within each dimension. Then, the first step for obtaining a hierarchy is to create

68 J.-N. Mazón and J. Trujillo

Fig. 8. PIM in BTA

Date

Customer

Customer

<<Descriptor>> ID

<<DimensionAttribute>> Name

<<DimensionAttribute>> DateBirth

Country

<<Descriptor>> Name

City

<<Descriptor>> Name

+r

+d

<<Rolls-upTo>>

+r

+d

<<Rolls-upTo>>Single

<<DimensionAttribute>> BedSize

<<Descriptor>> Number

Double

<<DimensionAttribute>> ExtraBed

<<Descriptor>> Number

Booking

<<FactAttribute>> Price

<<FactAttribute>> Nights

<<FactAttribute>> Discount

<<FactAttribute>> / Total

Room

<<Descriptor>> Number

<<DimensionAttribute>> Floor

<<DimensionAttribute>> Area

Room

Fig. 9. PIM obtained from the marked PSM

REL MD

C E

ObtainGeneralizedHierarchies

ObtainDimensionAttributes(t2,b2);

ObtainDescriptors(t2,b2);

where

b1: Base
<<domain>>

b2: Base
name=n_t2

t1: Table
<<domain>>

c1: Column

t2: Table
name=n_t2

fk: ForeignKey

c2: Column

pk1: PrimaryKey

pk2: PrimaryKey

:Generalization

specific

general

when

t1.feature->select(c|c.uniqueKey->includes(pk1))=t2.feature->select(c|c.uniqueKey->includes(pk2));

Fig. 10. QVT relation that obtains generalized hierarchies

a base class that is associated to its corresponding dimension class. This base
class is the terminal dimension level and it stores every element that belongs to
the table marked as a dimension.

A Model Driven Modernization Approach 69

Then, starting from a dimension already discovered, we can discover several
levels of the hierarchy by following the foreign keys. Different QVT relations
have been developed for deriving every kind of hierarchy (non-strict, generalized,
etc.). Due to space constraints, we focus on defining how to model generalized
hierarchies. These hierarchies are described in the marked model by making
the primary key of the supertype a foreign key in the tables representing the
subtypes as shown in the relation ObtainGeneralizedHierarchies in Fig. 10.

In our example, once this QVT relation is applied, the generalized hierar-
chy related to the Room dimension is created (see Fig. 8 and Fig. 9), since in
the marked PSM (see Fig. 4 and Fig. 5) the primary key of the Room table
(supertype) is referenced by tables Double and Single (subtypes).

4 Conclusions and Future Work

In this paper, we have presented a modernization approach for the development
of DWs. Our approach is based on ADM (Architecture Driven Modernization) in
order to analyze the operational data sources and obtain a PSM whose elements
are marked with MD concepts. This marked model can be used either for directly
deriving a PIM (i.e. a conceptual MD model) from data sources or for reconciling
data sources with a previously defined PIM from decision makers’ requirements.
Within our modernization approach, we focus on the following tasks: (i) data
sources are analyzed and their logical representation is specified in a PSM, (ii)
the PSM is marked with MD concepts, and finally (iii) a PIM is derived from
the marked PSM. Several metamodels (such as UML or CWM) have been used
to define the required models and a set of QVT relations has been developed
for both marking the PSM and obtaining the PIM, thus performing this data
reverse engineering task in an automatic way.

The final objective of ADM is to define a set of interoperability metamodels
that facilitate the analysis and transformation of existing information systems.
This standard plans to incorporate new metamodels to facilitate the analysis,
identification and measurement of relevant data. Our intention is using these
metamodels together with the current used MDA concepts (i.e. PIM, PSM and
transformation between them) and standards (i.e. CWM, UML and QVT).

On the other hand, in the present work we focus on obtaining a relational
PSM of a data dictionary. However, other kind of data sources can be taken into
account according to different platforms or technologies, thus taking advantage
of ADM. For example, COBOL files should be considered [27] since a lot of
information systems still store data in these kinds of files.

Acknowledgements

This work has been partially supported by the METASIGN (TIN2004-00779)
project from the Spanish Ministry of Education and Science, and by the DADS
(PBC-05-012-2) project from the Castilla-La Mancha Ministry of Education and

70 J.-N. Mazón and J. Trujillo

Science (Spain). Jose-Norberto Mazón is funded by the Spanish Ministry of
Education and Science under a FPU grant (AP2005-1360).

References

1. Inmon, W.: Building the Data Warehouse. Wiley & Sons, Chichester (2002)

2. Kimball, R., Ross, M.: The Data Warehouse Toolkit. Wiley & Sons, Chichester
(2002)

3. Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: A conceptual
model for data warehouses. Int. J. Cooperative Inf. Syst. 7(2-3), 215–247 (1998)

4. Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual data warehouse mod-
eling. In: 2nd Int. Workshop on Design and Management of Data Warehouses,
DMDW 2000

5. Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for data
warehouse design. 8th Int. Workshop on Data Warehousing and OLAP, DOLAP,
47–56 (2005)

6. Mazón, J.N., Trujillo, J., Lechtenbörger, J.: A set of QVT relations to assure the
correctness of data warehouses by using multidimensional normal forms. In: Em-
bley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 385–398.
Springer, Heidelberg (2006)

7. Mazón, J.N., Trujillo, J., Lechtenbörger, J.: Reconciling requirement-driven data
warehouses with data sources via multidimensional normal forms. Data & Knowl-
edge Engineering (doi:10.1016/ j.datak.2007.04.004)

8. Rizzi, S., Abelló, A., Lechtenbörger, J., Trujillo, J.: Research in data warehouse
modeling and design: dead or alive? In: 9th Int. Workshop on Data Warehousing
and OLAP, DOLAP, pp. 3–10 (2006)

9. Seacord, R., Plakosh, D., Lewis, G.: Modernizing Legacy Systems: Software Tech-
nologies, Engineering Processes and Business Practices. Addison-Wesley, London,
UK (2003)

10. Olivé, A.: Conceptual schema-centric development: A grand challenge for informa-
tion systems research. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 1–15. Springer, Heidelberg (2005)

11. OMG.: MDA Guide, 1.0.1., http://www.omg.org/cgi-bin/doc?omg/03-06-01
12. OMG: Architecture Driven Modernization (ADM) http://adm.omg.org/
13. Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Applying MDA to the develop-

ment of data warehouses. In: 8th Int. Workshop on Data Warehousing and OLAP,
DOLAP, pp. 57–66 (2005)

14. Mazón, J.N., Pardillo, J., Trujillo, J.: Applying transformations to model driven
data warehouses. DaWaK 2006. LNCS, vol. 4081, pp. 13–22. Springer, Heidelberg
(2006)

15. Mazón, J.N., Trujillo, J.: An MDA approach for the development of data ware-
houses. Decision Support Systems (doi:10.1016 /j.dss.2006.12.003)

16. Böhnlein, M., vom Ende, A.U.: Deriving initial data warehouse structures from
the conceptual data models of the underlying operational information systems. In:
2nd Int. Workshop on Data Warehousing and OLAP, DOLAP, pp. 15–21 (1999)

17. Moody, D.L., Kortink, M.A.R.: From enterprise models to dimensional models: a
methodology for data warehouse and data mart design. In: 2nd Int. Workshop on
Design and Management of Data Warehouses, DMDW (2000)

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://adm.omg.org/

A Model Driven Modernization Approach 71

18. Phipps, C., Davis, K.C.: Automating data warehouse conceptual schema design and
evaluation. In: 4th Int. Workshop on Design and Management of Data Warehouses,
DMDW 2000, pp. 23–32 (2000)

19. Alhajj, R.: Extracting the extended entity-relationship model from a legacy rela-
tional database. Inf. Syst. 28(6), 597–618 (2003)

20. Jensen, M.R., Holmgren, T., Pedersen, T.B.: Discovering multidimensional struc-
ture in relational data. In: Kambayashi, Y., Mohania, M.K., Wöß, W. (eds.)
DaWaK 2004. LNCS, vol. 3181, pp. 138–148. Springer, Heidelberg (2004)

21. van den Heuvel, W.J.: Matching and adaptation: Core techniques for MDA-(ADM)-
driven integration of new business applications with wrapped legacy systems.
Workshop on Model-Driven Evolution of Legacy Systems (2004)

22. OMG: MOF 2.0 Query/View/Transformation. (2005), http://www.omg.org/
cgi-bin/doc?ptc/2005-11-01

23. OMG: Common Warehouse Metamodel Specification 1.1, http://www.omg.org/
cgi-bin/doc?formal/03-03-02

24. Soutou, C.: Relational database reverse engineering: Algorithms to extract cardi-
nality constraints. Data Knowl. Eng. 28(2), 161–207 (1998)

25. OMG: Unified Modeling Language Specification 2.0, http://www.omg.org/
cgi-bin/doc?formal/05-07-04

26. Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional mod-
eling in data warehouses. Data Knowl. Eng. 59(3), 725–769 (2006)

27. Hick, J.M., Hainaut, J.L.: Strategy for database application evolution: The DB-
MAIN approach. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.)
ER 2003. LNCS, vol. 2813, pp. 291–306. Springer, Heidelberg (2003)

http://www.omg.org/cgi-bin/doc?ptc/2005-11-01
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01
http://www.omg.org/cgi-bin/doc?formal/03-03-02
http://www.omg.org/cgi-bin/doc?formal/03-03-02
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?formal/05-07-04

Cost-Based Fragmentation for Distributed

Complex Value Databases

Hui Ma and Markus Kirchberg

Information Science Research Centre, Massey University,
Private Bag 11 222, Palmerston North, New Zealand

{h.ma,m.kirchberg}@massey.ac.nz

Abstract. The major purpose of the design of distributed databases is
to improve system performance and to increase system reliability. Frag-
mentation and allocation play important roles in the development of a
cost-efficient system. This paper addresses the problem of fragmentation
in the context of complex value databases, which cover the common as-
pects of object-oriented databases, object-relational databases and XML.
In this paper, we present a cost-based approach for horizontal and ver-
tical fragmentation. Our approach is based on a cost model that takes
the structure of complex value databases into account.

1 Introduction

Fragmentation and allocation are the main techniques used in the design of
distributed databases. The research problems for fragmentation and allocation
have been investigated in the context of the relational model and object-oriented
model. With the current popularity of web information systems that often sup-
port web-based database application, including object-oriented databases,
object-relational databases and databases based on the eXtensible Markup
Language (XML), it is desired to have efficient and effective database design
techniques that take into account the common aspects of these complex data
models.

In the literature, fragmentation and allocation have been studied since the
1970s. They are often dealt with independently disregarding the fact that both
design procedures rely on similar input information to achieve the same objec-
tives, i.e. improve system performance and increase system reliability. Horizontal
fragmentation is either performed with a set of minterm predicates [3, 8, 21] or
with a set of predicates grouped according predicate affinities [1, 4, 22]. Horizon-
tal fragmentation with minterm predicates often results in a big number of frag-
ments, which will later be allocated to a small number of network nodes. Thus,
fragment recombination is needed to match the required number of horizontal
fragments, which is less or equal to the number of network nodes. Affinity-based
horizontal fragmentation approaches cannot guarantee an optimal system per-
formance as data locality information is lost while computing predicate affinities.
In fact, neither of two approaches include local data availability as an objective
of fragmentation.

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 72–86, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Cost-Based Fragmentation for Distributed Complex Value Databases 73

For vertical fragmentation, algorithms proposed in the literature are either
cost-driven or affinity-based. In the context of the relational model, cost-driven
approaches are based on cost models, which measure the total number of disk ac-
cesses to the database [5, 7]. Affinity-based approaches group attributes according
to attribute affinities [11, 17, 19, 20, 21]. Navathe et al [18] propose mixed frag-
mentation, which also uses affinities as the main parameters for both horizontal
and vertical fragmentation. In the context of object-oriented data models, frag-
mentation is mainly affinity-based and different affinities, e.g. method affinities,
attribute affinities or instance variable affinities [2, 9, 12], are used as parameters.
Attribute affinities only reflect the togetherness of attributes accessed by applica-
tions. Vertical fragmentation based on affinities may reduce the number of disk ac-
cesses, but has never been proven to increase system performance. For distributed
databases, transportation costs dominate the total query costs. This means that
improving local data availability, which in turn reduces data transportation re-
quirements, plays an important role towards improving system performance.

It is our aim to overcome the shortcomings of exiting approaches for both
horizontal and vertical fragmentation. In this paper, we discuss both types of
fragmentation in the context of complex value databases and present correspond-
ing cost-based approaches. Thus, we extend earlier work as presented in [14, 16].
In short, we will incorporate all query information and also including site in-
formation by using a simplified cost model for fragmentation. This way, we
can perform fragmentation and fragment allocation simultaneously. Properties
of our approach include a low computational complexity and increased system
performance.

The remainder of this paper is organised as follows: In Section 1, we briefly
introduce a complex value data model. In Section 2, we define fragmentation
techniques for the complex value data model. In Section 3, we present a cost
model for complex value databases. In Section 4, we propose a cost-based design
approach for horizontal and vertical fragmentation. We conclude with a short
summary in Section 5.

1.1 Complex Value Databases

We define complex values on the basis of a type system. Using abstract syntax,
types can be defined by

t = b | 1l | (a1 : t1, . . . , an : tn) | a : {t} | a : [t] (1)

with pairwise different labels a1, . . . , an. Here b represents a not further specified
collection of base types, which may include BOOL, CARD , INTEGER, DECI-
MAL, DATE , etc. Furthermore, (·) is a record type constructor, {·} a set type
constructor, [·] a list type constructor and 1l is a trivial type.

Each type t defines a set of values, its domain dom(t), as follows:

– The domain dom(bi) of a base type bi is some not further specified set Vi,
e.g. dom(BOOL) = {T,F}, dom(CARD) = {0, 1, 2, . . .}, etc.

– We have dom(1l) = {�}.

74 H. Ma and M. Kirchberg

– We have dom((a1 : t1, . . . , an : tn)) = {(a1 : v1, . . . , an : vn) | vi ∈ dom(ti)}
for record types.

– For set types we have dom(a : {t}) = {a : {v1, . . . , vk} | vi ∈ dom(t)}.
– For list types we have dom(a : [t]) = {a : [v1, . . . , vk] | vi ∈ dom(t)}, i.e.

elements may appear more than once and are ordered.

In the following, we use the term atomic attribute to refer to an attribute with
a base type as domain, and the term complex attribute to denote an attribute
with a domain of a record type, set type or list type.

On the basis of this type system, we can define database schemata, which are
sets of database types. A database type of level k has a name E and consists of
a set comp(E) = {r1 : E1, . . . , rn : En} of components with pairwise different
role names ri and database types Ei on levels lower than k with at least one
database type of level exactly k − 1, a set attr(E) = {a1, . . . , am} of attributes,
each associated with a data type dom(ai) as its domain, and a key id(E) ⊆
comp(E) ∪ attr(E). We shall write E = (comp(E), attr(E), id(E)). A database
schema is a finite set S of database types such that for all E ∈ S and all
ri : Ei ∈ comp(E) we also have Ei ∈ S. That is, schemata are closed under
component references.

Given a database schema S, we associate two types t(E) and k(E), called
representation type and key type, respectively, with each E = ({r1 : E1, . . . , rn :
En}, {a1, . . . , ak}, {ri1 : Ei1 , . . . , rim : Eim , aj1 , . . . , aj�

}) ∈ S:

– The representation type of E is the tuple type t(E) = (r1 : k(E1), . . . , rn :
k(En), a1 : dom(a1), . . . , ak : dom(ak)).

– The key type of E is the tuple type k(E)=(ri1 : k(Ei1), . . . , rim : k(Eim), aj1 :
dom(aj1), . . . , aj�

: dom(aj�
)).

Finally, a database db over a schema S is an S-indexed family {db(E)}E∈S such
that each db(E) is a finite set of values of type t(E) satisfying two conditions,
with one as that whenever t1, t2 ∈ db(E) coincide on their projection to id(E),
they are already equal; while the other one is that for each t ∈ db(E) and each ri :
Ei ∈ comp(E) there is some ti ∈ db(Ei) such that the projection of t onto ri is ti.

Example 1. The following is the complex value database schema for a simple
university application:

Department = (∅, {dname, homepage, contacts}, {dname})
Lecturer = ({in: Department}, {id, name, email, phone, homepage},{id})
Paper = (∅, {no, ptitle, level, points}, {no})
Lecture = ({paper: Paper}, {semester, schedule}, {paper: Paper, semester})

with dom(schedule) = {slot : (time: TIME , day: STRING, room: STRING)} in
the database type Lecture. All other domains have been omitted.

The corresponding representation types for the university database schema
are as follows:

t(Department) = (dname: STRING, homepage: URI , contacts: {contact:
(location: STRING, phone: CARD)})

Cost-Based Fragmentation for Distributed Complex Value Databases 75

t(Lecturer) = (in: (dname: STRING), id: STRING, name: (fname: STRING,
lname: STRING, titles: {title: STRING}), email: EMAIL,
phone:(areacode: CARD , number: CARD) homepage: URI)

t(Paper) = (no: CARD , ptitle: STRING, level: CARD , points: CARD)
t(Lecture) = (paper: (no: CARD), semester: STRING, schedule: {slot:

(time: TIME , day: STRING, room: STRING)})

1.2 A Query Algebra and Heuristic Query Optimisation

For complex value databases, to describe fragmentation and its effect on query op-
timisation, we need a query algebra. It is sufficient to take the recursive algebra
for nested relations discussed in [6], because it allows to access data values at any
level of complex values without any special navigational operation or flattening the
complex values. Also, most of the query optimisation techniques developed for the
relational algebra can be applied to queries expressed in the recursive algebra.

In the recursive algebra, the selection operation σpathi=c(db(E)) allows to
define selection conditions on an attribute at any level using a path expression.
The project operation πpathi(db(E)) permits projections on attributes at all
levels without restructuring. The join operation db(E1) ��pathi db(E2) allows
two instances to be joined on any attribute level defined by the path pathi.
pathi is a list of attribute names starting from a top attribute name or reference
name of a representation type, e.g. ai, ai.aij or ri.ai.

2 Schema Fragmentation

Let us now introduce operations for fragmentation. Similar to the relational
approach to horizontal fragmentation, we utilise the fact that each database
type E defines a set db(E) in a database db. Thus it can be partitioned into
disjoint subsets.

2.1 Horizontal Fragmentation

As in any database db, the database type E is associated with a finite set db(E).
We obtain an easy generalisation of relational horizontal fragmentation. For this
let E be some database type. Take boolean-valued functions ϕi (i = 1, . . . , n)
such that for each database db we obtain

db(Fi) =
n⋃

i=1

σϕi(db(E))

with disjoint sets σϕi(db(E)). We then replace E in the schema by n new
database types Fi, all with the same definition as E.

Example 2. Let us consider an instance db(Department) (as outlined in
Table 1) of database type Department from Example 1. Horizontal
fragmentation with two predicates ϕ1 ≡ contacts.contact.location = ‘Turitea’
and ϕ2 ≡ contacts.contact.location �= ‘Turitea’ results in two fragments
db(Turitea Department) and db(No Turitea Department) as outlined in
Table 1.

76 H. Ma and M. Kirchberg

Table 1. Horizontal Fragmentation of db(Department)

db(Department)
dname homepage contacts

location phone

Information is.massey.ac.nz
Turitea 063566199

Wellington 045763112

Computer cs.massey.ac.nz
Turitea 063563188

Albany 098132699

Education ed.massey.ac.nz
Napier 068355202

Albany 094437900

db(Turitea Department)
dname homepage contacts

location phone

Information is.massey.ac.nz Turitea 063566199

Computer cs.massey.ac.nz Turitea 063563188

db(No Turitea Department)
dname homepage contacts

location phone

Information is.massey.ac.nz Wellington 045763112

Computer cs.massey.ac.nz Albany 098132699

Education ed.massey.ac.nz
Napier 068355202

Albany 094437900

2.2 Vertical Fragmentation

Taking a database type E = ({r1 : E1, . . . , rn : En}, {a1, . . . , ak}, {ri1 : Ei1 , . . . ,
rim : Eim , aj1 , . . . , aj�

}), vertical fragmentation on E replaces E with a set of
new types F1, . . . , Fm with Fj = ({rj

1 : Ej
1 , . . . , r

j
n : Ej

n}, {aj
1, . . . , a

j
k}, {rj

i1
:

Ej
i1

, . . . , rj
im

: Ej
im

, aj
j1

, . . . , aj
j�

}) such that:

– the components and attributes will be distributed:

{E1, . . . , En} =
m⋃

j=1

{Ej
1 , . . . , E

j
ni

}, {a1, . . . , ak} =
m⋃

j=1

{aj
1, . . . , a

j
ni

},

– db(E) is split into db(F1), . . . , db(Fm) such that db(E) could be reconstructed
by using the join operation on all the instances:

db(E) = db(F1) �� . . . �� db(Fm).

Using the query algebra, vertical fragmentation could be written as db(Fj) =
πFj (db(E)) for all j ∈ {1, . . . , m}. To meet the criteria of reconstructivity, it is

Cost-Based Fragmentation for Distributed Complex Value Databases 77

Table 2. An Instance of Lecture

db(Lecture)
paper semester schedule

no time day room

157111 0702
10am Monday SSLB1

1pm Wednesday SSLB5

157221 0701
9am Tuesday AH1

10am Friday AH2

157331 0701
1pm Tuesday SSLB3

3pm Thursday SSLB2

db(Lecture Time)
paper semester schedule

no I time day

157111 0702
1 10am Monday

2 1pm Wednesday

157221 0701
1 9am Tuesday

2 10am Friday

157331 0701
1 1pm Tuesday

2 3pm Thursday

db(Lecture Venue)
paper semester schedule

no I room

157111 0702
1 SSLB1

2 SSLB5

157221 0701
1 AH1

2 AH2

157331 0701
1 SSLB3

2 SSLB2

required that the key type k(E) is part of all types Fj . In addition, when projec-
tion is applied on attributes of a tuple type within a set type, e.g. {(ai1, . . . , ain)},
an index I should be inserted as an arrogate attribute in the set constructor be-
fore fragmentation. This index should later be attached to each of the vertical
fragments to ensure the reconstructivity.

Example 3. Let us consider the database type Lecture from Example 1 and
alter the representation type tLecture to tLecture

′ by attaching an index attribute
as a subattribute of attribute ‘slot’. Assume that we are given two subtypes
tLecture Time and tLecture Venue, each containing a subset of the attributes from
tLecture:
tLecture

′ = (paper: (no: CARD), semester: STRING, schedule: {slot: (I : CARD ,
time TIME , day: STRING, room: STRING)});

tLecture Venue = (paper: (no: CARD), semester: STRING, schedule: {slot:
(I :CARD , room: STRING)});

tLecture Time = (paper: (no : CARD), semester: STRING, schedule: {slot: (I :
CARD , time: TIME , day: STRING)}).

Accordingly, we get the two vertical fragments that result from project
operations:

db(Lecture Time) = πtLecture Time
(db(Lecture)) and

db(Lecture Venue) = πtLecture Venue
(db(Lecture)).

Analogously, the instances of type Lecture and the resulting fragments are
shown in Table 2.

78 H. Ma and M. Kirchberg

3 A Cost Model

In order to measure system performance, we need a cost model to compute total
query costs for the queries represented by query trees. In this section, we first
present formulae for estimating the sizes of intermediate results for all interme-
diate nodes in the query tree. These sizes determine the costs for retrieving data
for the next step, i.e. the operation associated with the predecessor in the query
tree, and the costs for the transportation of data between nodes. Afterwards, we
present a cost model for measuring system performance.

3.1 Size Estimation

In order to estimate the size of leaf nodes and intermediate nodes that are of
complex values, we first look at types t, and estimate the size s(t) of a value
of type t, which depends on the context. Then, the size of an instance db(E) is
nE · s(t(E)), where nE is the average number of elements in db(E).

Let si be the average size of elements for a base type bi. This can be used to
determine the size s(t) of an arbitrary type t, i.e. the average space needed for
it on storage. We obtain:

s(t) =

⎧
⎪⎨

⎪⎩

si if t = bi
∑n

i=1 s(ti) if t = (a : t1, . . . , an : tn)
r · s(t′) if t = {t′} or t = [t′].

In the last of these cases, r is the average number of elements in sets, t = [t′]
or t = 〈t′〉, respectively, within a value of type t.

Then, for E = ({r1 : E1, . . . , rn : En}, {a1, . . . , ak}, id(E)) we obtain:

s(t(E)) =
n∑

i=1

s(t(Ei)) +
k∑

j=1

s(ai).

The calculation of sizes of database instances applies also to the intermediate
results of all queries. However, we can restrict our attention to the nodes of
selection and projection, as the other nodes in the query tree will not be affected
by fragmentation and subsequent heuristic query optimisation [16].

– The size of a selection node σϕ is p · s, where s is the size of the successor
node and p is the probability that a tuple in the successor will satisfy ϕ.

– The size of a projection node πX is (1 − c) · s · s(tX)
s(t)

where t is the represen-

tation type of a complex value database type associated with the successor
node, and tX is the representation type associated with the projection node.

For sizes of results for other algebra operations, refer to the work in [13].

Cost-Based Fragmentation for Distributed Complex Value Databases 79

3.2 Query Processing Costs

Taking the cost model in [15], we now analyse the query costs in the case of
fragmentation. For the convenience of discussion, we briefly present the cost
model first. The major objective is to base the fragmentation decision on the
efficiency of the most frequent queries.

Fragmentation results in a set of fragments {F1, . . . , Fn} of average sizes
s1, . . . , sn. If the network has a set of nodes N = N1, . . . , Nk we have to al-
locate these fragments to one of the nodes, which gives rise to a mapping
λ : {1, . . . , n} → {1, . . . , k}, which we call a location assignment . This decides
the allocation of leaves of query trees, which are fragments. For each interme-
diate node v in each relevant query tree, we must also associate a node λ(v).
λ(v) indicates the node in the network that the intermediate query result, which
corresponds to v, will be stored at.

Given a location assignment λ, we can compute the total costs of query pro-
cessing. Let the set of queries be Qm = {Q1, . . . , Qm}, each of which is executed
with a frequency fj . The total costs of all the queries in Qm are the sum of
the costs of each query multiplied by its frequency. The cost of each query are
composed of two parts, the storage costs and transportation costs. Storage costs
measure the costs of retrieving the data back from secondary storage. Those
costs depend on the size of the intermediate results and on the assigned loca-
tions, which determine the storage cost factors. The transportation costs provide
a measure for data transmission between two nodes of the network. Such trans-
portation costs depend on the sizes of the involved sets and on the assigned
locations, which determine the transport cost factor between every pair of sites.

Costsλ(Qm) =
m∑

j=1

(storλ(Qj) + transλ(Qj)) · fj

=
m∑

j=1

(
∑

h

s(h) · dλ(h) +
∑

h

∑

h′

cλ(h′)λ(h) · s(h′)) · fj

where h ranges over the nodes of the query tree for Qj , s(h) are the sizes of the
involved sets, and di indicates the storage cost factor for node Ni (i = 1, . . . , k),
h′ runs over the predecessors of h in the query tree, and cij is the transportation
cost factor for data transport from node Ni to node Nj (i, j ∈ {1, . . . , k}).

Because transportation costs dominate the total query costs, we can develop
cost minimisation heuristics by considering query frequencies, transportation
cost factors and the size of data that need to be transfered between network
sites. As discussed in [16, 14, 15], the allocation of fragments to sites according to
cost minimisation heuristics already determines the location assignment provided
that an optimal location assignment is given prior to the fragmentation.

4 A Cost-Based Methodology for Fragmentation

In this section, we present a cost-based approach for horizontal and vertical
fragmentation. In each of the following sections, we first define some terms to

80 H. Ma and M. Kirchberg

facilitate the discussion of fragmentation. Then, we present algorithms for frag-
mentation based on the analysis on the cost model in Section 3. In the following,
we assume a database instance db(E) with a representation type t(E) being ac-
cessed by a set of the most frequent queries Qm = {Q1, . . . , Qj, . . . , Qm}, with
frequencies f1, . . . , fm, respectively.

4.1 A Cost-Based Approach for Horizontal Fragmentation

Given a list of sorted queries, which access the instance of a given database
type, by decreasing frequency Q = [Q1, . . . , Qj , . . . , Qm], we obtain a set of sim-
ple predicates needed for horizontal fragmentation using Num Simple Predicates
[15]. Let Φm = {ϕ1, . . . , ϕm} be the chosen set of simple predicates defined on a
database type E. Then, the set of normal predicates N m = {N1, . . . , Nn} on rela-
tion schema E is the set of all satisfiable predicates of the form Nj ≡ ϕ∗

1∧· · ·∧ϕ∗
m,

where ϕ∗
i is either ϕi or ¬ϕi. Normal predicates can be represented in the fol-

lowing form:
Nj =

∧

i∈J

ϕi ∧
∧

i/∈J

¬ϕi.

with J ⊆ {1, . . . , m} as a set of indices of a subset of all simple predicates. Let
fi be the frequency of predicate ϕi, Jθ = {i|i ∈ J ∧ ϕi executed at site θ} be
a subset of indices of all simple predicates, executed at site Nθ. We define the
following terms:

Definition 1. An atomic horizontal fragment Fj is a fragment that is defined
by a normal predicate:

Fj = σNj (E).

Definition 2. The request of an atomic fragment at site θ is the sum of fre-
quencies of predicates issued at site θ:

requestθ(Fj) =
k∑

j=1,j∈Jθ

fj .

Definition 3. The pay of allocating an atomic horizontal fragment at a site θ
is the costs of accessing the atomic horizontal fragment by all queries from sites
other than θ:

payθ(Fj) =
k∑

θ′=1,θ′ �=θ

requestθ′(Fj) · cθθ′ .

With the terms defined above, we now present an algorithm of horizontal frag-
mentation as shown in Table 3. The algorithm first finds the site that has the
biggest value of pay of each atomic fragment and then allocates the atomic frag-
ment to the site. A fragmentation schema and fragment allocation schema can
be obtained simultaneously.

An evaluation has been conduced with satisfiable results. For detailed discus-
sion of horizontal fragmentation refer to [15].

Cost-Based Fragmentation for Distributed Complex Value Databases 81

Table 3. Algorithm for Horizontal Fragmentation

Input: Φy = {ϕ1, . . . , ϕy} /* a set of simple predicates
a set of network nodes N = {1, . . . , k} with cost factors cij

Output: Horizontal fragmentation and allocation schema{FH1, . . . , FHk}
Method: for each θ ∈ {1, . . . , k}

FHθ = ∅
endfor
define a set of normal predicates N y using Φy

define a set of atomic horizontal fragments Fy using N y

for each atomic fragment Fj ∈ Fy , 1 ≤ i ≤ 2y do
for each node θ ∈ {1, . . . , k} do

calculate requestθ(Fj)
calculate payθ(Fj)

endfor
choose w such that payw(Fj) = min(pay1(Fj), . . . , payk(Fj))

/* find the minimum value
λ(Fj) = Nw /* allocate Fj to the site of the smallest pay
define FHθ with FHθ =

⋃
{Fj : λ(Fj) = Nθ}

endfor

4.2 A Cost-Based Approach for Vertical Fragmentation

In this section, we adapt the cost-efficient vertical fragmentation approach from
[10, 14] to complex value databases. We start with some terminology, continue
to present a vertical fragmentation design methodology and, finally, illustrate it
with an example.

If db(E) is vertically fragmented into a set of fragments {FV 1, . . . , FV u, . . . ,
FV ki}, each of the fragments will be allocated to one of the network nodes
N1, . . . , Nθ, . . . , Nk. Note that the maximum number of fragments is k, i.e.
ki ≤ k. Let λ(Qj) indicate the site issuing query Qj, atomic(E) = {a1, . . . , an}
indicate the set of atomic attributes of E, fji be the frequency of the query Qj

accessing ai. Here, fji = fj if the attribute ai is accessed by Qj . Otherwise,
fji = 0.

Definition 4. The request of an attribute at a site θ is the sum of frequencies
of all queries at the site accessing the attribute:

requestθ(ai) =
m∑

j=1,λ(Qj)=θ

fji.

Definition 5. The pay of allocating an attribute ai to a site θ measures the
costs of accessing attribute ai by all queries from sites θ′ other than site θ:

payθ(ai) =
k∑

θ′=1,θ �=θ′

m∑

j=1,λ(Qj)=θ

fji · cθθ′.

82 H. Ma and M. Kirchberg

Table 4. Algorithm for Vertical Fragmentation

Input: the AUFM of E
atomic(E) = {a1, . . . , an} /* a set of atomic attribute
PATH(E) = {pathi, . . . , pathn} /* a set of path of all atomic attributes
a set of network nodes N = {1, . . . , k} with cost factors cij

Output: vertical fragmentation and fragment allocation schema {FV 1, . . . , FV k}
Method: for each θ ∈ {1, . . . , k} let atomic(FV θ) = k(E) endfor

for each attribute ai ∈ atomic(E), 1 ≤ i ≤ n do
for each node θ ∈ {1, . . . , k}

do calculate requestθ(ai)
endfor
for each node θ ∈ {1, . . . , k}

do calculate payθ(ai)
endfor
choose w such that payw(ai) = mink

θ=1 payθ(ai)
atomic(FV w) = atomic(FV w) ∪ {ai} /* add ai to FV w

PATH(FV w) = PATH(FV w) ∪ {pathi} /* add pathi to PATH(FV w)
endfor
for each θ ∈ {1, . . . , k}, FV w = πPATH(FV w)(db(E)) endfor

In order to record query information, we use an Attribute Usage Frequency Ma-
trix (AUFM), which records frequencies of queries, the set of atomic attributes
accessed by the queries and the sites that issue the queries. Each row in the
AUFM represents one query Qj ; the head of each column contains the set of
attributes of a given representation type t(E), the site issuing the queries and
the frequency of the queries. Here, we do not distinguish between references and
attributes, but record them in the same matrix. The values on a column indicate
the frequencies fji of the queries Qj that use the corresponding atomic attribute
ai grouped by the site that issues the queries. Note that we treat any two queries
issued at different sites as different queries, even if the queries themselves are
the same. The AUFM is constructed according to optimised queries in order
to record all the attribute requirements returned by queries as well as all the
attributes used in some join predicates. If a query returns all the information of
an attribute then all its sub-attributes are accessed by the query.

With the AUFM as an input, we now present a vertical fragmentation al-
gorithm as described in Table 4. For each atomic attribute at each site, the
algorithm first calculates the request and then calculates the pay. At last, all
atomic attributes are clustered to the site that has the lowest value of the pay.
Correspondingly, a set of path expressions for each vertical fragment are ob-
tained. Vertical fragmentation is performed by using the sets of paths. A vertical
fragmentation and an allocation schema are obtained simultaneously.

Using the algorithm in 4 we can always guarantee that the resulting vertical
fragmentation schema meet the criteria of correctness rules. Disjointness and
completeness are satisfied because all atomic attributes occur and only occur
in one of the fragments. Reconstruction is guaranteed because all fragments are
composed of key attributes. In addition, if an attribute with a domain of a type

Cost-Based Fragmentation for Distributed Complex Value Databases 83

Table 5. Attribute Usage Frequency Matrix

site queryfrequency in id name email phone homepage
dname fnamelname titles areacodenumber

title

length 20 20 20 · 8 20 · 8 2 · 15 · 830 · 8 10 20 50 · 8
1 Q1 20 20 20 20 20 20 20 20 20 20

Q4 50 0 0 50 0 0 50 0 0 0

2 Q2 30 0 0 0 30 30 0 0 0 30
Q5 70 0 0 0 0 70 0 70 0 0

3 Q3 100 0 0 0 100 0 0 100 100 0

Table 6. Attribute Request Matrix

request in id name email phone homepage
dname fname lname titles areacode number

title

request1(ai) 20 20 70 20 20 70 20 20 20

request2(ai) 0 0 0 30 100 0 70 0 30

request3(ai) 0 0 0 100 0 0 100 100 0

inside a set type is decomposed, an index is attached to the attribute before
vertical fragmentation, which will then be attached to each of fragments.

Example 4. We now illustrate the algorithm using an example. Assume there
are five queries that constitute the 20% most frequently executed queries, which
access an instance of database type Lecturer from three different sites:

– Query 1 πlecturer(σname.titles�‘Professor′(Lecturer)) issued at site 1 with
f1 = 20,

– Query 2 πtitles, homepage(Lecturer) issued at site 2 with f2 = 30,
– Query 3 πname.lname, phone(Lecturer) issued at site 3 with f3 = 100,
– Query 4 πfname, email(Lecturer) issued at site 1 with f4 = 50, and
– Query 5 πtitles, areacode(Lecturer) issued at site 2 with f5 = 70.

In order to perform vertical fragmentation using the design procedure as in-
troduced in Section 4.2, we first construct an Attribute Usage Frequency Matrix
as shown in Table 5. Secondly, we compute the request for each attribute at each
site, the results of which are shown in the Attribute Request Matrix in Table 6.
Thirdly, assuming the values of transportation cost factors are: c12 = c21 = 10,
c13 = c31 = 25, c23 = c32 = 20, we can now calculate the pay for each at-
tribute at each site using the values of the request from Table 6. The results are
shown in an Attribute Request Matrix in Table 6 and an Attribute Pay Matrix
in Table 7.

84 H. Ma and M. Kirchberg

Table 7. Attribute Pay Matrix

pay in id name email phone homepage
dname fname lname titles areacode number

title

pay1(ai) 0 0 0 2800 1000 0 3200 2500 300

pay2(ai) 200 200 700 2200 200 700 2200 2200 200

pay3(ai) 500 500 1750 1100 2500 1750 1900 500 1100

site 1 1,2,3 1 3 2 1 3 3 2

Once atomic attributes are grouped and allocated to sites, we get a set of
paths for each site to be used for vertical fragmentation:

– db(FV 1) = πid, in.dname, name.fname, email(db(Lecture)),
– db(FV 2) = πid, name.titles.title, homepage(db(Lecture)) and
– db(FV 3) = πid, name.lname, phone(db(Lecture))

We now look at how the system performance is changed due to the outlined
fragmentation by using the cost model presented above. Assume that the average
number of lecturers is 20 and the average number of titles for each lecturer is 2.
With the average length of each attribute given in Table 5, we can compute the
total query costs. Assume that distributed query processing and optimisation
are supported, then, selection and projection should be processed first locally to
reduce the size of data transported among different sites. In this case, the op-
timised allocation of db(Lecturers) is site 2, which leads to total query costs
of 16,680,000 while the total query costs after the vertical fragmentation and
allocation are 4,754,000, which is about one fourth of the costs before the frag-
mentation. This shows that vertical fragmentation can indeed improve system
performance.

4.3 Discussion

In order to obtain optimised fragmentation and allocation schemata for com-
plex value databases, a cost model should be involved to evaluate the system
performance. However, due to the complexity of fragmentation and allocation
it is practically impossible to achieve an optimal fragmentation and allocation
schema by exhaustively comparing different fragmentation schemata and allo-
cation schemata using the cost model. However, from the cost model above,
we observe that the less the value of the pay of allocating an attribute or an
atomic fragment to a site the less the total costs will be to access it [14]. This
explains that the proposed cost-based fragmentation approach above can at least
determine a semi-optimal vertical fragmentation schema.

5 Conclusion

In this paper, we presented a cost-driven approach for fragmentation in complex
value databases. This approach takes into consideration the structure of complex

Cost-Based Fragmentation for Distributed Complex Value Databases 85

value databases. Furthermore, algorithms are presented for each of the fragmen-
tation techniques used in distribution design to obtain fragmentation schemata,
which can indeed improve the system performance.

A related problem left for future work is a design methodology to integrate
the use horizontal and vertical fragmentation techniques in design distributed
databases.

References

[1] Bellatreche, L., Karlapalem, K., Simonet, A.: Algorithms and support for hor-
izontal class partitioning in object-oriented databases. Distributed and Parallel
Databases 8(2), 155–179 (2000)

[2] Bellatreche, L., Simonet, A., Simonet, M.: Vertical fragmentation in distributed
object database systems with complex attributes and methods. In: Thoma, H.,
Wagner, R.R. (eds.) DEXA 1996. LNCS, vol. 1134, pp. 15–21. Springer, Heidel-
berg (1996)

[3] Ceri, S., Negri, M., Pelagatti, G.: Horizontal data pertitioing in database design.
In: Proc. the ACM SIGMOD International Conference on Management of Data,
pp. 128–136. ACM Press, New York (1982)

[4] Cheng, C.-H., Lee, W.-K., Wong, K.-F.: A genetic algorithm-based clustering
approach for database partitioning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C 32(3), 215–230 (2002)

[5] Chu, P.-C.: A transaction oriented approach to attribute partitioning. Information
Systems 17(4), 329–342 (1992)

[6] Colby, L.S.: A recursive algebra and query optimization for nested relations. In:
SIGMOD ’89: Proceedings of the 1989 ACM SIGMOD international conference on
Management of data, Portland, Oregon, United States, pp. 273–283. ACM Press,
New York, NY, USA (1989)

[7] Cornell, D., Yu, P.: A vertical partitioning algorithm for relational databases. In:
International Conference on Data Engineering, Los Angeles, California, pp. 30–35
(1987)

[8] Ezeife, C.I., Barker, K.: A comprehensive approach to horizontal class fragmenta-
tion in a distributed object based system. Distributed and Parallel Databases 3(3),
247–272 (1995)

[9] Ezeife, C.I., Barker, K.: Vertical fragmentation for advanced object models in a
distributed object based system. In: Proceedings of the 7th International Confer-
ence on Computing and Information, pp. 613–632. IEEE Computer Society Press,
Los Alamitos (1995)

[10] Hartmann, S., Ma, H., Schewe, K.-D.: Cost-based vertical fragmentation for xml.
In: DBMAN 2007, Springer, Heidelberg (to appear 2007)

[11] Hoffer, J.A., Severance, D.G.: The use of cluster analysis in physical database
design. In: Proceedings of the First International Conference on Very Large Data
Bases, Framingham, MA (Septemper 1975)

[12] Karlapalem, K., Navathe, S.B., Morsi, M.M.A.: Issues in distribution design of
object-oriented databases. In: IWDOM, pp. 148–164 (1992)

[13] Ma, H.: Distribution design in object oriented databases. Master’s thesis, Massey
University (2003)

86 H. Ma and M. Kirchberg

[14] Ma, H., Schewe, K.-D., Kirchberg, M.: A heuristic approach to vertical fragmen-
tation incorporating query information. In: Vasilecas, O., Eder, J., Caplinskas, A.
(eds.) Proceedings of the 7th International Baltic Conference on Databases and
Information Systems, pp. 69–76. IEEE Computer Society Press, Los Alamitos
(2006)

[15] Ma, H., Schewe, K.-D., Wang, Q.: A heuristic approach to cost-efficient fragmen-
tation and allocation of complex value databases. In: Bailey, G.D.J. (ed.) Pro-
ceedings of the 17th Australian Database Conference, Hobart, Australia. CRPIT
49, pp. 119–128 (2006)

[16] Ma, H., Schewe, K.-D., Wang, Q.: Distribution design for higher-order data mod-
els. Data and Knowledge Engineering (to appear 2007)

[17] Muthuraj, J., Chakravarthy, S., Varadarajan, R., Navathe, S.B.: A formal ap-
proach to the vertical partitioning problem in distributed database design. In:
Proceedings of the Second International Conference on Parallel and Distributed
Information Systems, San Diego, CA, USA, January 1993, pp. 26–34 (1993)

[18] Navathe, S., Karlapalem, K., Ra, M.: A mixed fragmentation methodology for
initial distributed database design. Journal of Computer and Software Engineer-
ing 3(4) (1995)

[19] Navathe, S.B., Ceri, S., Wiederhold, G., Dour, J.: Vertical partitioning algorithms
for database design. ACM TODS 9(4), 680–710 (1984)

[20] Navathe, S.B., Ra, M.: Vertical partitioning for database design: A graphical al-
gorithm. SIGMOD Record 14(4), 440–450 (1989)

[21] Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Alan Apt,
New Jersey (1999)

[22] Zhang, Y.: On horizontal fragmentation of distributed database design. In:
Orlowska, M., Papazoglou, M. (eds.) Advances in Database Research, pp. 121–130.
World Scientific Publishing, Singapore (1993)

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 87–101, 2007.
© Springer-Verlag Berlin Heidelberg 2007

From Business Models to Service-Oriented Design:
A Reference Catalog Approach

Amy Lo1 and Eric Yu2

1 Department of Computer Science, University of Toronto,
Toronto, Canada

ayylo@cs.utoronto.ca
2 Faculty of Information Studies, University of Toronto,

Toronto, Canada
yu@fis.utoronto.ca

Abstract. Service-oriented architecture (SOA) is rapidly becoming the
dominant paradigm for next generation information systems. It has been
recognized, however, that the full benefits of SOA would not be realized unless
its capabilities are exploited at the business level. In the business arena,
innovations in e-business have led to the identification and classification of
business models and analysis of their properties. To ease the transition from
business design to service-oriented system design, we propose a reference
catalog approach. Recurring business designs are collected, pre-analyzed, and
documented as a set of reference business models, following a standardized
template. Each reference business model is realized through a set of service-
oriented design patterns. The i* framework is the basis for modeling and
analysis at both the business and service design level, taking advantage of its
agent orientation for modeling service relationships, and its goal orientation to
facilitate adaptation from generic patterns to specific needs.

Keywords: Service-oriented design, business models, business modeling
techniques, agent and goal-oriented conceptual modeling.

1 Introduction

As the Internet gives rise to many new business opportunities and dramatically
changes the traditional ways of conducting business, the concept of business models
has become a tool of interest in the e-business world to capture new ways of doing
business [2]. As we expect the concept of SOA will further revolutionize how
enterprises use the Internet for business interaction and integration, new types of
business models will emerge and have great impact on the underlying IT
infrastructure. Consequently, design options will multiply rapidly, and technical
system design will need to interact more closely with business design to explore and
select among various alternatives, creating the need of conceptual modeling
techniques to assist in capturing the design properties and bridging the gap between
the two different levels of concepts.

In recent years, the Information Systems (IS) community recognized the demand
for business models and started to develop modeling techniques for this purpose

88 A. Lo and E. Yu

[7, 16, 17]. However, our research on existing literature indicates that the idea of
business models has not yet had widespread impact on IS modeling, and the following
question remains unclear: How can business model reasoning be used more
effectively and efficiently in guiding the design process of an SOA implementation?

Although the value of business model design and analysis has been gradually
realized, business design knowledge is often underused in existing modeling
approaches. However, to improve the design and analysis process over time, it is
important to capture repeatable solutions and be able to apply them to similar
problems in the future. Our approach is to express and capture recurring business
models and patterns in an expandable reference catalog, which consists of two parts: a
set of reference business models and a set of business service patterns.

This paper first identifies the importance of business models and the use of
business modeling techniques, and explains the relevance of the i* modeling
framework [25] in this context. Then, it proposes a business model driven SOA
system design methodology, which is an application of the i* framework to business
modeling and SOA design. Its main idea is to maintain a set of reference business
models in a reference catalog, so that common design knowledge in recurring
business models can be reused to solve similar business problems and help define the
technical specifications.

2 Business Models and Business Modeling

The concept of business models became popular in the late 1990’s, and has been
considered to be central in the discussion of e-business, as the success or failure of a
firm is often attributed to the viability of its business model. Despite its popular
usage, there is no agreement on what the term should precisely encompass [18]. In the
business literature, business models refer to the actual design of business, such as a
method of doing business [19] or a company’s business architecture [22]. On the
other hand, business models in the IS engineering literature are representation of
business concepts in the real world, often with the aid of some graphical notation and
business modeling techniques. The notion of business modeling, as discussed in this
paper, refers to the analysis and design process of business level concepts using
business models in the IS engineering sense.

So far, the study on business models in the business literature has focused on
descriptive aspects, such as what concepts can be expressed in them and how business
practices from the real world can be captured as types of business models with a name
and textual descriptions. Thus, its focus is less on the design and analytical powers of
business modeling. On the other hand, the notion of business models in the IS
engineering community is a tool for representing the business concepts, such that they
can be properly expressed, designed and analyzed using various conceptual modeling
techniques. Thus, the soundness of a business model in this sense would relate to how
accurately it reflects the reality; whereas the soundness of a business model in the
business community would be measured by how well it helps a company to
successfully conduct its business.

 From Business Models to Service-Oriented Design: A Reference Catalog Approach 89

3 i* for Business Modeling

A number of existing business modeling techniques has been studied in [12],
including an extended version of Unified Modeling Language (UML) [5], the
Business Model Ontology (BMO) [16, 17], the Business Modeling Method (BMM)
[14], the e3value framework [7], and a value network approach [1]. The result of the
study shows that business goals and strategic interactions between business actors are
often missing or underused in the design and analysis process of business models.
However, as discussed in the business model literature such as [2], [6] and [13], a
sound business model should effectively express and deliver the vision and objectives
of the business, as well as model actor relationships and interactivity, because in the
real world, consumers and other partners are actively co-producing values with the
organization through various interactions.

Therefore, we turn to the i* modeling framework [25], because it offers a set of
agent and goal-oriented notation and analysis techniques that are highly relevant for
modeling and analyzing business concepts, which are not offered by the other
approaches mentioned above. Its notation, as shown in Fig. 1, captures business
objectives and goals in terms of softgoals and goals, and models strategic
relationships among business actors as dependencies, which can be in terms of a goal,
resource, task, or softgoal. Using this framework also adds value to the model design
process because it provides techniques to explore unmet goals, establish alignment
between objectives and activities, and perform alternative exploration and evaluation.
These are advantages for designing and analyzing business models using the proposed
reference catalog, because usually reference models do not fit exactly to specific cases
and need adaptation. Therefore, the i* goal models provide analysis and reasoning
behind the model design, thus facilitating the adaptation from generic business
models to specific business cases. In addition, the Tropos design process [3, 23],
which extends the i* framework, offers an integrated set of technical system design
models that can be systematically derived from i* models, further aids the alignment
of business level concepts and technical design models.

Furthermore, we adapted the notation of i* to include the modeling of business
services, as shown in the legend of Fig. 2, because both the business and IT
communities have proposed to analyze and design business operations as a set of
discrete processes and services, which leverages the principles of SOA to achieve
flexibility, agility and responsiveness to changing business needs [4, 8].

Fig. 1. Major modeling concepts in the i* framework

90 A. Lo and E. Yu

4 The Reference Catalog Approach

The proposed approach consists of a set of pre-analyzed, reusable, structured and
connected model components that will be provided in a reference catalog, as
described in the following sections.

4.1 Reference Business Models

A reference business model, as defined in [2], is a model that provides a generalized
representation of a business model. It can be referenced or used as a basis for
adaptation to the business of a specific company.

A sample set of reference business models for the reference catalog includes:
Direct-to-Consumer, Full-Service Provider, Intermediary, Shared Infrastructure and
Value Chain Integrator. Each of these represents a particular way of conducting

Table 1. The set of components in a reference business model

No. Component Name Component Description
1 Name A unique name to identify the model in the reference

catalog.
2 Summary A brief description of the reference business model.
3 Key business drivers The major issues that motivate the use of this model.
4 Solution Description of how this model solves the issues listed as the

key business drivers.
5 Potential advantages A list of potential advantages that this model targets to

deliver.
6 Challenges and

limitations
A list of challenges and limitations that might be caused by
the implementation of this model.

7 Key business actors A list of key business actors that are involved in this model,
and their roles.

8 Strategic dependencies Strategic dependencies between the different business
partners.

9 Revenue model A description of how business participants can generate
revenue by participating in this model.

10 Related models Other reference business models that are similar to this
model.

11 Sources The source where this model is defined or proposed.
12 Examples Examples of model usage in the real world.
13 i* Strategic

Dependency (SD)
business model

A graphical representation of the reference business model,
indicating the business actors, business goal dependencies,
business collaborations and value exchanges.

14 i* Strategic Rationale
(SR) Business Model

A more comprehensive graphical representation of the
reference business model, indicating the internal business
objectives and activities of business actors.

15 Business Services The business services that are identified from the i* SR
business model.

16 Extended Actor
Diagram

A diagram that shows the architectural structure of the set of
IT services and other subsystems.

 From Business Models to Service-Oriented Design: A Reference Catalog Approach 91

business, thus companies wishing to implement a particular business model similar to
one expressed in the catalog can retrieve the reusable model components from it to
aid its business and technical system design process. These models are adapted from
the set of e-business models proposed in [20] and [24]. A sample reference catalog
containing details can be found in the appendix of [12]. The Value Chain Integrator
business model is extracted from this catalog and used here as an example.

4.2 Reference Model Template

In the reference catalog, each reference business model is defined using a
standardized template, which consists of the set of components listed in Table 1. The
first 12 are general descriptions that help users to find a reference business model
from the catalog that best fit their purpose, and the rest are pre-analyzed and generic
models created using the i* framework, which are effective tools for the
representation and analysis of business concepts. In the following sections, we will
describe in more detail each type of these model components.

The i* Strategic Dependency (SD) Business Model. The i* SD business model
provides a graphical representation of the reference business model, indicating the
business actors, business goal dependencies, business collaborations and value
exchanges. The SD model provides a high level of abstraction showing only external
relationships among actors, suitable for browsing and selecting from the catalog.

The i* Strategic Rationale (SR) Business Model. The i* SR business model
provides a more comprehensive graphical representation of the reference business
model, indicating the internal business objectives and activities of business actors.
The SR model contains the details needed by business model designers to adapt the
reference model to a particular business under question, by modifying goals, tasks and
dependency relationships, and analyze it using i* techniques to explore and evaluate
various design options. For completeness, the SR model includes all relationships
with external actors, which allows the SD model to be generated from the SR simply
by hiding the internal elements of each business actor. An example SR model for the
Value Chain Integrator reference business model is shown in Fig. 2.

Business Services. Each reference business model also comes with a set of business
services, which are identified from the SR business model. They are organized in a
table (exemplified in Table 2), in which each row links to a business service pattern in
the second part of the catalog. The purpose of this separation between reference
business models and business service patterns is that business service patterns often
recur in business models, such as the Place Order service in the Value Chain
Integrator example, hence referring to patterns in a separate section will avoid
duplicate entries and increase reusability of model components.

Then, for each business service that is identified from the SR models, model
designers may use the corresponding business service pattern and associated
collaboration diagrams to further analyze and design how their specific service can be
carried out, while guided by design options and rationales that are collected from
previous experience or other experts.

92 A. Lo and E. Yu

F
ig

. 2
. A

n
ex

am
pl

e
i*

 S
R

 m
od

el
 f

or
 th

e
V

al
ue

 C
ha

in
 I

nt
eg

ra
to

r
re

fe
re

nc
e

m
od

el

 From Business Models to Service-Oriented Design: A Reference Catalog Approach 93

Table 2. Business Services used in the Value Chain Integrator business model

Service in SR model
 Requester Provider

Business Service
Pattern

Place (Product) Order Customer Supplier Place Order Service
Place (Service) Order Supplier Value Chain Integrator Place Order Service
Place (Service) Order Value Chain

Integrator
Complementor Place Order Service

Request Status Customer Value Chain Integrator Obtain Data Service

Fig. 3. An extended actor diagram for the Supplier actor

Extended Actor Diagrams. We then use an extended actor diagram to illustrate the
IT services or subsystems that each business actor needs for the business model to
work. This diagram can be generated using the Tropos methodology as described in
[11], where each of the actor’s tasks is modeled in a task dependency, of which the
fulfillment is dependent on a subsystem within the actor. As shown in Fig. 3 below,
the actor diagram illustrates the architectural structure of the technical system that
needs to be implemented by the business actor Supplier. It also guides the identi-
fication of IT services that the actor should provide, e.g., the Place (Product) Order
service that will be used by its customers.

4.3 Business Service Patterns

The second part of the reference catalog contains a set of business service patterns.
Each business service pattern consists of the following components:

94 A. Lo and E. Yu

• A diagram illustrating the recurring business service
• Design rationales, if any
• One or more derived business collaboration diagrams
• Optional business process models corresponding to each business collaborat-

ion diagram.

These components capture common patterns of dependencies and collaborations
between business partners, as well as provide design alternatives and reasoning to
help analysts design strategic business services that will benefit them in their specific
case. They are further explained in the following sections using the Value Chain
Integrator example. Additional diagrams and details of the example may be found in
[12], but are not included here due to space limitations.

Business Service Pattern Diagram. When a recurring business service is found in
the i* business models, it is captured and added to the reference catalog as a business
service pattern in terms of generic business actors, such as service consumer and
provider, and generic dependency relationships. For instance, the Place Order service
occurred several times in the Value Chain Integrator model, and therefore is specified
as a service pattern in the catalog with the diagram in the Fig. 4 below.

Fig. 4. The recurring Place Order service pattern

Design Rationales. Design options and the reasoning behind each business service
may also be recorded in the design rationale section under each service pattern,
because they will be helpful when designing the same or a similar business service
again in the future. For instance, the Place Order service pattern can support various
payment options, and they are recorded in Table 3.

Table 3. Payment options for the Place Order service.

No. Design Options Description, Intentions or Concerns
1 Pay-per-use

(immediate payment)
Fees are incurred according to usage rates, and
payment must be made at the time of usage.

2 Pay-per-use
(periodic invoice)

Fees are incurred according to the usage rates, and
fee statements are sent to the user periodically.

3 Subscription-based Users of the service are charged periodically, such
as daily, monthly or annually, and the subscription
fees are incurred irrespective of actual usage rates.

 From Business Models to Service-Oriented Design: A Reference Catalog Approach 95

Fig. 5. The business collaboration diagram for the Place Order service pattern that supports
both the immediate online payment and periodic invoice payment options

Business Collaboration Diagrams. There is at least one business collaboration
diagram for each business service pattern to illustrate the sequence of business activities
and resource exchanges involved in the service. Each one of them can be generated
based on the method described in [10], where the task originating or receiving the
service request is decomposed into more specific tasks performed in sequential order,
and the interactions between business partners are shown as information or resources
being transferred between them. An example is shown in Fig. 5.

Business Process Models. Business process models are optional, but in cases where a
business service can be automated by IT services, a business process model can be
used for generating process definitions that can be implemented and executed via IT
service orchestration engines. For instance, some collaboration activities, such as the
delivery of products, can only be done manually; whereas a Place Order service can
be done electronically and be automated. There are various options for constructing a
business process model, such as using the Unified Modeling Language (UML).

5 Guided Design Via Reference Model

The agent- and goal-orientation of i* modeling provides support during the adaptation
of a reference business model (taken from the reference catalog) to a specific case.

96 A. Lo and E. Yu

Fig. 6 outlines the procedure for this adaptation process. The process begins by
selecting a reference business model from the reference catalog based on business
drivers that relate to the company’s specific needs. Then, to decide whether a reference

Fig. 6. A flowchart showing the procedure to adapt reference business model components to a
specific case

 From Business Models to Service-Oriented Design: A Reference Catalog Approach 97

business model is an appropriate one to start with, we assess the potential advantages
of implementing the model as well as the challenges and limitations it may bring.
Once a reference business model is selected, we instantiate i* SD and SR models
from the reference models, and refine them based on the company’s characteristics
and design decisions. The refinement process can be guided by design rationales
recorded in the reference catalog from previous cases, as well as the i* techniques that
are described in the next section. Next, business service patterns are extracted from
the i* models, and are further analyzed and designed using business collaboration
diagrams, either to be created or derived from the existing ones in the reference
catalog. Then, potential IT services are identified from the set of business services,
and for each of them, business process models are derived. The set of IT services,
described in an extended actor diagram, along with the corresponding business
process models will then be passed to the technical design and development process.
Lastly, new model components and design rationales generated during the process
will be added back to the catalog for future reference. In [12], the adaptation process
is illustrated with a real world case study from the literature.

5.1 Business Model Instantiation

As explained earlier, the proposed approach begins with the selection of a reference
business model that is similar to the business model to be implemented by the
company under study. Then, the next step is to instantiate and refine the i* SD and SR
business models for this specific case by adding in the case’s specific properties and
by applying the i* analysis and reasoning techniques. A refined i* SR model is shown
in Fig. 7, which analyzes and designs a supplier’s product shipping process using its
specific organizational structure, such as its extra business roles as sales/shipping
agent, warehouse and loading dock; while keeping the goals of improving efficiency
and reliability in mind. The refinement process using the i* analysis and reasoning
techniques are described in the following sections.

Goal Analysis. This involves the addition of missing business goals that are relevant
to the specific case, as well as the removal of goals that are irrelevant but given in the
original model. Once the high-level goals are determined, they can be decomposed
into more specific sub-goals as appropriate. The supplier in the example has the same
high-level goals as in the reference business models, therefore no changes are needed.

Task Decomposition and Means-Ends Reasoning. Tasks in the original models are
examined to see whether they are relevant to the business goals of our specific case.
Irrelevant tasks are removed, and new tasks are added for goals that have not been
addressed. Also, given more details in the company’s scenario, some tasks can be
decomposed into more specific subtasks. For instance, the outsource shipping task of
the supplier in our example can be delegated to different roles in the company, i.e. the
shipping agent is responsible for requesting shipping support from the transport
consolidator, whereas the loading dock confirms the pickup of products. This helps
the business analyst to analyze the business processes, as well as to check that all
complicated tasks can be fulfilled.

98 A. Lo and E. Yu

F
ig

. 7
. A

 r
ef

in
ed

 i*
 S

R
 m

od
el

 w
ith

 q
ua

li
ta

ti
ve

 e
va

lu
at

io
n

la
be

ls
 f

or
 a

 s
pe

ci
fi

c
bu

si
ne

ss
 c

as
e

 From Business Models to Service-Oriented Design: A Reference Catalog Approach 99

Alternative Exploration and Evaluation. The i* framework supports the explorat-
ion and evaluation of various design alternatives in achieving the same set of business
goals by evaluating the contributions of business activities to goals. For example,
outsource shipping is one of many options to fulfill the ship product task. Therefore,
the business analyst can later replace this by another alternative, such as handle
shipping internally, and see how this option contributes to the company’s business
objectives. The contribution links from options to goals will provide a qualitative
evaluation for each alternative.

Feasibility Analysis. To verify that the instantiated business models are feasible, the
refined SR model can be analyzed using the evaluation propagation rules defined in
[9]. The evaluation labels, such as the ones shown in fig. 7, provide the results of the
evaluation process and indicate any unachievable tasks or unfulfilled business goals.
Initial label values are assigned to elements that involve design decisions, and then
they are propagated to other elements via contribution or dependency links. For
example, since it is the supplier’s decision to outsource its shipping process, the
outsource shipping task should have initial value ‘satisfied’. To see the effect of this
decision, the propagation rules are applied to label its neighboring elements, including
the business goals that it affects. According to the resulting model, outsourcing should
help the supplier to satisfy its need to ship products, as well as partially fulfilling its
needs to reduce shipping cost and provide fast and reliable delivery.

This analysis process not only helps to check for capability issues, semantic errors
or inconsistencies, but also allows the designer to discover any unintentional
omissions or misrepresentations of important business concepts after refining the
business models.

5.2 Service Identification and Design

After the business models are analyzed and refined, the next step is to use these
models to guide service identification and design. Service patterns, design rationales,
business collaboration diagrams and business process models are all captured in the
reference catalog to aid the analysis. Although there are a number of business services
identified in the business models, not all of them can be implemented by IT services.
For instance, the delivery of products in the case study cannot be automated but must
be done manually; whereas interaction between the supplier and transport
consolidator can be automated, because shipping request can be stored and sent
electronically, and its design and implementation can be guided by the Place Order
service model components provided in the reference catalog.

6 Conclusions and Future Work

This paper discussed the importance of business modeling in the context of both
business and service-oriented design, and adopted the agent and goal-oriented i*
framework as the conceptual modeling framework in this context. It also proposed a
reference catalog approach that offers guidance and reusable knowledge to bridge the
gap between the business and service design processes. This approach provides a set
of pre-analyzed, reusable, structured and connected model components, and

100 A. Lo and E. Yu

illustrated how the i* modeling techniques are useful in the analysis and reasoning
process for business modeling, helping business and system designers to adapt
reference business models to specific cases. A number of other approaches, including
an extended version of Unified Modeling Language (UML) [5], the Business Model
Ontology (BMO) [16, 17], the Business Modeling Method (BMM) [14], and the
e3value framework [7] also intended to support the business modeling process.
However, these existing approaches are not agent and goal-oriented, and lack the
modeling and analysis techniques that are needed for pre-analyzing reference business
models and adapting them to specific business cases.

Future works for this research include a more in-depth evaluation of the i* business
modeling techniques and the proposed adaptation process, and to validate it in
practice. Also, tool support will be needed to help constructing, analyzing and
refining business and service model components, as well as storing and accessing
reference business models in the proposed catalog. Possible tools that can be extended
for these purposes include OpenOME [15] and TAOM4E [21], which are existing
tools developed for constructing i* models.

Lastly, the sample set of reference business models mentioned in this paper is
expected to be preliminary and incomplete. To maintain an ongoing expansion of the
reference catalog, experts can be invited to join the effort in refining and adding new
models and components to the catalog as the business models and strategies evolve in
the real world. Therefore, workable solutions to recurring business problems and best
practices can be shared among members in the community.

Acknowledgments. Financial support from the Natural Sciences and Engineering
Research Council of Canada (NSERC) and Bell University Laboratories is gratefully
acknowledged.

References

1. Allee, V. A Value Network Approach for Modeling and Measuring Intangibles. Presented
at Transparent Enterprise, Madrid. Available at http://www.vernaallee.com. November
2002.

2. Alt, R., Zimmermann, H.D. Preface: Introduction to Special Edition - Business Models. In
Journal on Electronic Markets - Anniversary Edition: Business Models, Vol 11(1), 2001.

3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A. TROPOS: An
Agent-Oriented Software Development Methodology. In Journal of Autonomous Agents
and Multi-Agent Systems, Kluwer Academic Publishers, May 2004.

4. Brown, J.S., Hagel III, J. Flexible IT, Better Strategy. In McKinsey Quarterly, McKinsey
& Group, No. 4, pp.50-59, 2003.

5. Eriksson, H.E., Penker, M. Business modeling with UML: Business Patterns at Work.
Wiley Interscience - John Wiley & Sons, 2000.

6. Essler, U., Whitaker, R. Rethinking E-commerce Business Modelling in Terms of
Interactivity. In Journal on Electronic Markets, Vol 11(1):10-16, 2001.

7. Gordijn, J., Akkermans, J.M. Value-based Requirements Engineering: Exploring
Innovative e-Commerce Ideas. In Requirements Engineering, vol. 8(2), pp. 114-134, July
2003.

 From Business Models to Service-Oriented Design: A Reference Catalog Approach 101

8. Hagel III, J., Brown, J.S. Your Next IT Strategy. Harvard Business Review, Volume 79,
Issue 9, October 2001.

9. Horkoff, J. Using i* Models for Evaluation. Master’s Thesis, Department of Computer
Science, University of Toronto, 2006.

10. Kazhamiakin, R., Pistore, M., Roveri, M. A Framework for Integrating Business Processes
and Business Requirements. In Enterprise Distributed Object Computing Conference,
Eighth IEEE International (EDOC'04), Monterey, California, pp. 9-20, September 20-24,
2004.

11. Lau, D., Mylopoulos, J. Designing Web Services with Tropos. In Proceedings of the 2004
IEEE International Conference on Web Services, San Diego, California, USA, July 6-9,
2004.

12. Lo, A. From Business Models to Service-Oriented Design: A Reference Catalog
Approach. Master’s Thesis, Department of Computer Science, University of Toronto,
October 2006.

13. Magretta, J. Why Business Models Matter. In Harvard Business Review, Vol. 80, Issue 5,
p86, 7p, 1c, May 2002.

14. Montilva, J.C., Barrios, J.A. BMM: A Business Modeling Method for Information
Systems Development. In the Clei Electronic Journal, Vol. 7, No. 2, Paper 3, December
2004.

15. OpenOME - an Open-Source Requirements Engineering Tool. Available at
http://www.cs.toronto.edu/km/openome/.

16. Osterwalder, A. The Business Model Ontology: A Proposition in a Design Science
Approach. PhD thesis, University of Lausanne - HEC, Lausanne, Switzerland, 2004.

17. Osterwalder, A., Pigneur, Y. An Ontology for e-Business Models. Chapter in Value
Creation from E-Business Models, W. Currie (Ed), Butterworth-Heinemann, 2004.

18. Osterwalder, A., Pigneur, Y., Tucci, C.L. Clarifying Business Models: Origins, Present,
and Future of the Concept. In Communications of the AIS, Vol. 15, Article, May 2005.

19. Rappa, M. Business Models on the Web. Available at Managing the Digital Enterprise
website: http://digitalenterprise.org/, May 2003.

20. Straub, D. Business Models and Strategic Planning For NE. In Chapter 8 of Foundations
of Net-Enhanced Organizations, the Wiley Series on Net-Enhanced Organizations, 2004.

21. TAOM4E – a Tool for Agent Oriented Visual Modeling for the Eclipse Platform.
Available at: http://sra.itc.it/tools/taom4e/.

22. Timmers, P. Electronic Commerce: Strategies and Models for Business-to-Business
Trading. Wiley Interscience, New York, 1999.

23. Tropos - a Requirements-Driven Development Methodology for Agent Software.
Available at: http://www.troposproject.org/.

24. Weill, P., Vitale, M. R. Place to Space: Migrating to e-Business Models. Harvard Business
School Press, 2001.

25. Yu, E.S.K. Towards modeling and reasoning support for early-phase requirements
engineering. In Proceedings of the 3rd IEEE International Symposium on Requirements
Engineering (RE’97), Annapolis, USA, pp. 226 -235, IEEE Computer Society Press, 1997.

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 102–119, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Teaching a Schema Translator to Produce O/R Views

Peter Mork1, Philip A. Bernstein2, and Sergey Melnik2

1 The MITRE Corporation and
2 Microsoft Research

pmork@mitre.org, {philbe,melnik}@microsoft.com

Abstract. This paper describes a rule-based algorithm to derive a relational
schema from an extended entity-relationship model. Our work is based on an
approach by Atzeni and Torlone in which the source EER model is imported
into a universal metamodel, a series of transformations are performed to
eliminate constructs not appearing in the relational metamodel, and the result
is exported. Our algorithm includes novel features that are needed for practi-
cal object to relational mapping systems: First, it generates forward- and re-
verse-views that transform instances of the source model into instances of the
target and back again. These views automate the object-to-relational (O/R)
mapping. Second, it supports a flexible mapping of inheritance hierarchies to
flat relations that subsumes and extends prior approaches. Third, it propagates
incremental updates of the source model into incremental updates of the tar-
get. We prove the algorithm’s correctness and demonstrate its practicality in
an implementation.

1 Introduction

Object-to-relational (O/R) mapping systems are now mainstream technology. The
Java Data Objects (JDO) specification is supported by many vendors of Enterprise
Java Beans [20]. The Hibernate system is in widespread use [17]. Ruby on Rails in-
cludes the Active Record package [29]. And Microsoft recently released an ER-to-
relational mapper in the next version of ADO.NET [1].

Developers often start building new applications by designing a conceptual model
E of the application and translating it into a relational schema R to persist the data. In
JDO and Hibernate, E is expressed as a set of Java classes. In ADO.NET, E is ex-
pressed in the Entity Data Model (EDM), a variant of the extended entity-relationship
(EER) model [6]. Thus, the object-oriented (OO) constructs in E can include inheri-
tance, associations, complex types, and nested collections, all of which have to be
mapped to relational structures.

The problem of translating schemas between metamodels, or schema definition
languages, has received attention in [2][3][9][16][23][25][26]. However, published
approaches lack solutions to several issues that are required for practical applications:
bidirectional semantic mappings, flexible translation of inheritance hierarchies, and
incremental schema modification. These problems are non-trivial. They require archi-
tectural and algorithmic advances, which are the main subject of this paper. A pre-
liminary, short description of the work reported here appears in [5].

 Teaching a Schema Translator to Produce O/R Views 103

Our basic strategy follows the rule-based approach of Atzeni and Torlone in [2].
Using this approach, we define a universal metamodel that has all of the main
modeling constructs in the metamodels of interest, in our case EER and relational.
New constructs can be added to the universal metamodel to support a new metamodel
or extend an existing one. We then define a collection of transformation rules. For
example, one simple rule transforms an entity type into a complex type (e.g., a rela-
tion). The goal is to execute a series of transformation rules whose composition
eliminates from the source model all modeling constructs absent in the target meta-
model. The result of this translation step is exported into the desired syntax.

Our first contribution is the generation of instance-level transformations between
the source schema and generated target schema. While there are solutions to this
problem (e.g., [3][25][26]), they require passing the instances through an intermediate
generic representation. This is impractical for large databases and does not generate
the view definitions that are required to drive EER-to-relational mapping systems. We
take a different approach. We augment each transformation rule applied in the transla-
tion step to generate not only target schema elements but also forward- and reverse-
views that describe how each eliminated construct of the source model is represented
in the target. We have proved that these views are correct, i.e., do not lose informa-
tion, and give one example proof in this paper.

The series of transformation rules executed in the translation step produces a series
of elementary views. These views are composed via view unfolding to generate the
final forward- and reverse-views between the source and target schemas. The correct-
ness of the composition is ensured by the correctness of the elementary views. The
composed views are expressed in terms of the universal metamodel. They are fed into
a component that translates them into the native mapping language.

Our second contribution is a rich set of transformations for inheritance mapping. It
allows the data architect to decide on the number of relations used for representing a
sub-class hierarchy and to assign each direct or inherited property of a class inde-
pendently to any relation. These transformations allow a per-class choice of inheri-
tance mapping strategy. They subsume all inheritance mapping strategies we know of,
including horizontal and vertical partitioning [22], their combinations, and many new
strategies. The transformations are driven by a data structure called a mapping matrix.
We present algorithms for populating mapping matrices from per-class annotations of
the inheritance hierarchy and generating provably correct elementary views. The
complexity of inheritance mapping is encapsulated in a single transformation rule.
Since the final views are obtained by composition, inheritance mappings do not inter-
fere with mapping strategies for other EER constructs.

Our third contribution is a technique for propagating incremental updates of the
source model into incremental updates of the target. To do this, we ensure that an
unchanged target object has the same id each time it is generated, so we can reuse the
previous version instead of creating a new one. This avoids losing a user’s customiza-
tions of the target and makes incremental updating fast. This practical requirement
arises when the schema translation process is interactive. A data architect analyzes
different translation choices, switching back and forth between the source and target
schemas, which may be large and thus require careful on-screen layout. Since it is
unacceptable to regenerate the target schema and discard the layout information after
changes in the schema translation, incremental update propagation is required.

104 P. Mork, P.A. Bernstein, and S. Melnik

Finally, we discuss the implementation of our O/R translation algorithm. We de-
veloped an extensible, rule-driven core that can be customized to specific model-
translation tasks with moderate effort. To support efficient rule execution, we wrap
the native meta-model APIs so that the rules directly manipulate the objects represent-
ing the model elements, avoiding the conversion penalty often incurred by using rule-
based systems.

The rest of this paper is structured as follows. Section 2 describes our universal
metamodel. Section 3 specifies our syntax for transformations and gives an example
correctness proof for one of them. Section 4 describes how we support multiple
strategies for mapping inheritance hierarchies into relations. Section 5 explains how
we do incremental updating. Section 6 discusses our implementation. Section 7 dis-
cusses related work and Section 8 is the conclusion.

2 Metamodel

Before we can define any transformation rules, we need to describe the universal
metamodel in which they are expressed. The universal metamodel we use in this pa-
per, called U, is similar to the universal metamodel in [21]. U supports most of the
standard constructs found in popular metamodels, enough to illustrate our techniques.
It is not intended to be complete, i.e., capture all of the features of rich metamodels
such as XSD or SQL with complex constraints and triggers, but it can easily be ex-
tended to incorporate additional features.

Table 1 lists the basic constructs of U and examples of their use in popular
metamodels. We base our discussion of the semantics of U on its relational schema
shown in Fig. 1. A detailed description and formal semantics for U appear in [24].

In U there are three simple types: Atomic types are called lexicals, which we
assume to be uniform across all metamodels. The remaining simple types are
collections, either lists or sets of some base type. For example, in SQL, apart from
lexicals, the only simple type is a set whose base type is a tuple.

Complex types are either structured types (e.g., relations) or abstract types (e.g.,
entities). Complex types are related to other types via attributes and containment. For
an attribute A The domain of A is the complex type on which A is defined, and the
range of A is the type associated with A. An attribute can have minimum and
maximum cardinality constraints. For example, in SQL every attribute’s domain must
be a structured type and its maximum cardinality must be one. A containment is
similar to an attribute; it establishes a (named) structural relationship between the
parent type and the child type such that each such instance of the child type is nested
within an instance of the parent type.

The constraints supported by U include key constraints, inclusion dependencies
and generalizations. Each key constraint consists of a set of attributes that uniquely
identify instances of some complex type. Multiple candidate keys can be defined for a
complex type, but at most one primary key can be defined. An inclusion dependency
establishes a relationship between a key and another complex type. For each attribute
in an inclusion dependency there is a corresponding attribute in the related key. For
any instance of a model containing an inclusion dependency, the projection of the

 Teaching a Schema Translator to Produce O/R Views 105

Table 1. Relationships among common metamodels

Construct SQL EER Java XSD

Lexical Type int, varchar scalar int, string integer, string
Structured Type tuple element
Abstract Type entity class complex type

List Type array list
Set Type table
Attribute column attribute, relationship field attribute

Containment aggregation nesting

Simple types include lexicals and collections:
 LexicalType(TypeID, TypeName)
 ListType(TypeID, TypeName, BaseType)
 SetType(TypeID, TypeName, BaseType)

Complex types can be structured or abstract:
 StructuredType(TypeID, TypeName)
 AbstractType(TypeID, TypeName)
Complex types have attributes and can be nested:
 Attribute(AttrID, AttrName, Domain, Range, MinCard, MaxCard)
 Containment(ConID, AttrName, Parent, Child, MinCard, MaxCard)

 Domain/Parent must be a complex type.
 Range/Child can be any type.
 Min/MaxCard are Zero, One or N and apply to the range/child.

A key indicates a set of attributes that identify a complex object:
 KeyConstraint(KeyID, TypeID, IsPrimary)

 TypeID references the type for which this is a key.
 Primary indicates if this is the primary key for the type.

 KeyAttribute(KeyAttrID, KeyID, AttrID)
 KeyID references the key for which this is an attribute.
 AttrID references an attribute of the associated type.

An inclusion dependency establishes a subset relationship:
 InclusionDependency(IncID, TypeID, KeyID)

 TypeID references the type for which this dependency holds.
 KeyID references the associated key.

 InclusionAttribute(IncAttrID, IncID, AttrID, KeyAttrID)
 IncID references the inclusion for which this is an attribute.
 AttrID references an attribute of the associated type.
 KeyAttrID: references a key attribute of the key of the superset type.

Generalization is used to extend a type or construct a union:
 Generalization(GenID, TypeID, IsDisjoint, IsTotal)
A type can serve as the parent for multiple generalizations.
Disjoint and Total tells whether children are disjoint and cover the parent.
 Specialization(SpecID, GenID, TypeID)

 GenID references the parent generalization.
 TypeID references the associated specialized type.

Fig. 1. Relational schema for universal metamodel U

106 P. Mork, P.A. Bernstein, and S. Melnik

inclusion attributes must be a subset of the projection of the key attributes. Finally, a
generalization establishes a relationship between a complex type (the supertype) and
a set of more specialized subtypes. Each subtype inherits any attributes or
containment relationships associated with the supertype.

3 Transformations

Using the Atzeni-Torlone approach, schema translation has four steps: (1) manually
or automatically generate a valid transformation plan consisting of a sequence of
transformations (2) import the source model (3) [translation step] execute the trans-
formations in the plan, and (4) export the result. In this section and the next, we ex-
plain step (3), the transformations, which is the core of the algorithm and where most
of our innovations lie. Due to lack of space, we omit a description of step (1), our A*-
based algorithm for automatic generation of a transformation plan; it appears in [24].
We briefly discuss steps (2) and (4) in Section 6 on Implementation.

3.1 Defining a Transformation

Each step of a transformation plan is a transformation that removes certain constructs
from the model and generates other constructs plus view definitions. A transforma-
tion is a triple of the form <D, F, R> where D is a set of rules that expresses a model
transformation, F is a rule that produces an elementary forward view that expresses
the target model as a view over the source, and R is a rule that produces an elementary
reverse view that expresses the source as a view over the target.

Rules in D contain predicates, each of which is a construct in U. Each rule is of
the form “<body> ⇒ <head>”, where <body> and <head> are conjunctions of predi-
cates. For example, the following is a simplified version of the rule that replaces an
abstract type, such as a class definition, by a structured type, such as relation defini-
tion:

AbstractType(id, name) ⇒ StructuredType(newAS(id), name)

AbstractType and StructuredType are predicates from Fig. 1, and id and name are vari-
ables. The Skolem function newAS(id) generates a new type ID for the structured type
definition based on the abstract type’s id. Skolem function names are prefixed by
“new” to aid readability.

The semantics of a rule in D with body b and n terms in the head is defined by a
Datalog program with n rules, each with one term in the head implied by b. For ex-
ample, A(x, y) ⇒ B(x), C(f(y)) is equivalent to the Datalog program B(x) :- A(x, y) and
C(f(y)) :- A(x, y). We chose our rule syntax because it is less verbose than Datalog when
many rules have the same body, which arises often in our transformations. In essence,
each rule is a tuple-generating dependency [11] or a second-order dependency without
equalities [12], if the Skolem functions are considered existentially quantified.

For some rules, expressing them in logic is impractical, because they are too ver-
bose or hard to understand. Such rules can be implemented in an imperative language.
But for succinctness and clarity, we use only the logic notation in this section.

 Teaching a Schema Translator to Produce O/R Views 107

Some of the rules in each model transformation D also populate a binary predicate
Map, whose transitive closure identifies all of the elements derived from a given
source element. For example, adding Map to the rule that replaces an abstract type by
a structured type, we get:

AbstractType(id, name) ⇒ StructuredType(newAS(id), name), Map(id, newAS(id))

Map(id, newAS(id)) says that the element identified by id is mapped to a new element
identified by newAS(id).

After executing all of the transformations, we can extract from the transitive clo-
sure of Map those tuples that relate source elements to target elements. Tools that
display the source and target models can use this mapping to offer various user-
oriented features, such as the ability to navigate back and forth between correspond-
ing elements or to copy annotations such as layout hints or comments.

Rules add tuples to the head predicates but never delete them. Since we need to de-
lete tuples that correspond to constructs being replaced in a model, we use a unary
predicate Delete that identifies elements to delete. After all rules of a transformation
are executed, a non-rule-based post-processing step deletes the elements identified in
Delete predicates. For example, in the rule that replaces an abstract type by a struc-
tured type, the predicate Delete removes the abstract type being replaced, as follows:

 AbstractType(id, name) ⇒ StructuredType(newAS(id), name), Map(id, newAS(id)), Delete(id)

The rules in a model transformation D are schema-level mappings. Forward- and
reverse-views are instance-level mappings. The predicates and variables in a view are
variables in the rules of D. For example, a simplified version of the forward-view for
replacing an abstract type by a structured type is “id(x) ⇒ newAS[id](x)”. This rule says
that if x is the identifier of an instance (i.e., an object) of the abstract type identified
by id, then it is also the identifier of an instance (i.e., a tuple) of the structured type
identified by newAS[id]. Notice that we use the same identifier to denote two different
types of items, namely objects and tuples, which enables us to express instance-level
mappings between them.

To generate such views in rules, we can define predicates that create their compo-
nents, such as the following:

ViewHead(newRule(newAS(id)), newPredicate(id, "x"))
ViewBody(newRule(newAS(id)), newPredicate(newAS(id), "x"))

We can then conjoin these to the head of the rule that replaces an abstract type by a
structured type. However, in this paper we will use the simpler and more readable
notation “id(x) ⇒ newAS[id](x)”.

We represent a model before and after a transformation as a model graph. Its nodes
correspond to simple and complex types. Its edges correspond to attributes. For ex-
ample, on the left side of Fig. 2, R is a structured type with attributes k and a. The
value of k is a lexical type and the value of a is a structured type S with attributes b
and c. An instance of a model graph is an instance graph, which is comprised of a set
of values for each node and a set of value pairs for each edge. A view defines how to
populate the nodes and edges of one instance graph from those of another.

A transformation is correct if the forward-view converts every instance IS of the
source schema into a valid instance IT of the target schema, and the reverse-view

108 P. Mork, P.A. Bernstein, and S. Melnik

converts IT back into IS without loss of information. That is, the composition of the
forward- and reverse-views is the identity. Unlike [9][13], we do not require the con-
verse; there may be instances of the target model that cannot be converted into in-
stances of the source. Our definition of correctness is more stringent than [26], which
requires only that the forward view generates a valid instance of the target.

Sections 3.2–3.3 define two of the main transformations to convert from EER to
SQL. For each transformation, we give its model transformation and its forward-
/reverse-views. We write the views as instance transformations and omit the verbose
rule predicates that would generate them. Since the forward- and reverse-views for the
first transformation are inverses of each other, correctness is immediately apparent.
We give a detailed correctness argument for the transformation of Section 3.3.

3.2 Convert Abstract to Structured Type

This transformation replaces each abstract type with a structured type. To preserve
object identity, a new oid attribute is added to the structured type, unless the abstract
type already included a primary key. The model transformation rules are as follows:

 AbstractType(id, name)
 ⇒ StructuredType(newAS(id), name), Map(id, newAS(id)), Delete(id)

 AbstractType(id, name), ¬KeyConstraint(_, id, “True”)
 ⇒ Attribute(newOID(id), “oid”, newAS(id), “Int”, “1”, “1”),
 KeyConstraint(newASKey(id), newAS(id), “True”),
 KeyAttribute(newASKeyAttr(id), newASKey(id), newOID(id))

We are careful in our use of negation, as in ¬KeyConstraint above, to ensure that
stratification is possible.

The forward view is: id(x) ⇒ newAS[id](x), newOID[id](x, newID(x)). The last predi-
cate says that newOID[id] is an attribute whose value for the tuple x is newID(x).

The reverse view is: newAS[id](x) ⇒ id(x). Notice that we do not need to map back
the new oid attribute of the structured type, since it is not needed for information
preservation of the source abstract type. It is immediately apparent that the forward-
and reverse-views are inverses of each other and hence are correct.

3.3 Remove Structured Attribute

This transformation replaces an attribute
a that references a structured type S all
of whose attributes are lexicals. It re-
places a by lexical attributes that
uniquely identify a tuple of S. If S has a
primary key, then a is replaced by the
key attributes of S and there is an inclu-
sion dependency from the new attributes
to that key. Otherwise, a is replaced by all of S’s attributes. (If the latter is desired
even if S has a primary key, then a user-defined tag on a can be used to ask that the
latter rule be applied.) The transformation is applied iteratively to eliminate nested
types.

R

S

T
int

int

int

k
a

b
c

d

R

S

T
int

int

int

k

b
d

d

⇒

d
b

Fig. 2. Removing structured attributes

 Teaching a Schema Translator to Produce O/R Views 109

For example, consider three structured types: R, S and T (see Fig. 2). R references
S using attribute a and has primary key k (an Int). S has no primary key, but it has two
attributes b (an Int) and c (which references T). T has a primary key attribute d (an
Int). Applying the transformation to S.c replaces that attribute by S.d and adds an
inclusion dependency from S.d to T.d. Now all attributes of S are lexicals. So we can
apply the transformation again to replace R.a by R.b and R.d.

The model transformation rules are as follows (we use an underscore in a slot for
an existential variable that appears only once in the rule, to avoid useless variables):

 StructuredType(domain, name),
 Attribute(id, _, domain, range, _, “One”), ¬ LexicalType(range, _)
 ⇒ MixedTypeHelper(domain, name)

 Attribute(id, name1, domain, range1, min1, “One”),
 StructuredType(range1, name), ¬MixedTypeHelper(range1, name),
 Attribute(attr, name2, range1, range2, min2, “One”), Min(min1, min2, min)
 ⇒ Attribute(newSA(id, attr), newName(name1, name2), domain, range2, min, “One”) ,
 Map(id, newSA(id, attr)), Delete(id)

 Attribute(id, _, _, range, _, “One”), KeyAttribute(keyAttr, key, id), StructuredType(range, _),
 Attribute(attr, _, range, _, _, “One”)
 ⇒ KeyAttribute(newSAKeyAttr(keyAttr, attr), key, newSA(id, attr)),
 Map(keyAttr, newSAKeyAttr(keyAttr, attr)), Delete(keyAttr)

The first rule identifies all “mixed” structured types—those types that reference
another complex (i.e., non-lexical) type. In Fig. 2 S is a mixed type, but T is a “leaf”
type. The second rule replaces an attribute (id) that references a leaf type (such as c)
with the attributes (newSA(id, attr)) of the leaf type (in this case d). The third rule up-
dates any key constraints that referenced the old attribute to reference the new attrib-
ute. After the first iteration, S becomes a leaf type, and attributes that reference it
(such as a) are replaced by attributes of S. Thus, a is replaced with attributes b and d.

For each id and attri that satisfy the second model transformation rule, there is a
forward view:

 id[x, z], attri[z, y] ⇒ newSA(id, attri)[x, y]

In the following reverse view, either attr1 … attrk are the attributes in the key of
structured type range1, or range1 has no key and k attributes in total:

newSA(id, attr1)[x, t1], attr1(s, t1), ..., newSA(id, attrk)[x, tk], attrk(s, tk) ⇒ attr[x, s]

To explain the above view definitions and argue their correctness, we simplify the
notation by replacing the terms id, attri, and newSA(id, attri) in the view definitions by
the symbols a, bi, and abi, yielding the following:

a(r, s), bi(s, t) ⇒ abi(r, t) // forward views
ab1(r, t1), b1(s, t1), ... abk(r, tk), bk(s, tk) ⇒ a(r, s) // reverse view

Structure S has n attributes, k of which are key attributes (if there is a key). The at-
tribute R.a that refers to the structure S is replaced by new attributes that correspond
one-to-one with the attributes of S. To show that the forward- and reverse-views are

110 P. Mork, P.A. Bernstein, and S. Melnik

correct, we need to show that their composition is the identity. We form the composi-
tion by substituting the forward view for each abi in the reverse view, yielding:

 a(r, s1), b1(s1, t1), b1(s, t1), ..., a(r, sk), bk(sk, tk), bk(s, tk) ⇒ a(r, s)

Since a is a function, a(r, si)=a(r, sj) for all i,j. So s1 = s2 = … = sk. Replacing the si’s by
s1 we get:

 a(r, s1), b1(s1, t1), b1(s, t1), ..., a(r, s1), bk(s1, tk), bk(s, tk) ⇒ a(r, s)

Since b1, … bk is either a key or comprises all the attributes of s, we have s = s1. Re-
placing the s1’s by s we get:

 a(r, s), b1(s, t1), ..., bk(s, tk) ⇒ a(r, s)

Since there must exist values for t1, ..., tk in s, the above rule reduces to a(r, s) :- a(r, s),
which is the identity.

3.4 Additional Transformations

In addition to the transformations in Sections 3.2-3.3, we have a transformation to
replace a multi-valued attribute by a join relation and another to eliminate contain-
ments. They are quite simple, like converting an abstract type to a structured type, and
are described in detail in [24]. We also implemented transformations to address more
target metamodels. We provide a brief summary of some of them:

Convert structured types to abstract types. This transformation is the inverse of the
one presented in Section 3.2.

Replace an attribute with a maximum cardinality of N by a new attribute with a
maximum cardinality of One. If the range of the old attribute was T, the range of the
new attribute is a set of T. The difference between the old and new attributes is evi-
dent when the attribute participates in a key constraint. A multi-valued attribute pro-
vides multiple unique key values, one for each value of the attribute; a set-valued
attribute provides a single key value, namely, the set itself.

Replace a list of T with a set of indexed structures. The new structured type has
two attributes, Index and Value. The range of the former is Integer and the latter is T.
This transformation creates an explicit association between values and their original
positions in the list.

Stratify sets. This transformation takes a set of sets and converts it into a set of indexed
structures; each nested set is assigned a unique identifier, which is associated with the
values in that set. This transformation is needed to support the nested relational model.

Remove multiple-containment. If type T is contained in multiple parent types, then
create a new specialization of T. Each old containment relationship is transformed into
a new containment that references exactly one of the new specializations of T. For
example, if type A is contained in both B and C, then create types B-A and C-A, which
are contained in B and C, respectively.

3.5 Composing Transformations

The execution of a transformation plan is a sequence of n transformations. The first
transformation takes the initial model m0 as input and the last transformation produces
the final model mn as output. Our goal is to generate a forward view VF that defines mn

 Teaching a Schema Translator to Produce O/R Views 111

as a function of m0 and a reverse view VR that defines m0 as a function of mn. Given
the forward- and reverse-views, this can be done incrementally. The initial
transformation from m0 to m1 defines the initial views VF and VR. Suppose we have
forward- and reverse-views VF and VR for the first i-1 transformations. For the ith
transformation, its forward view vf and reverse view vr are composed with VF and VR,

i.e., VF ◦ vf and VR ◦ vr, using ordinary view unfolding, thereby generating VF and VR.

4 Inheritance Mappings

So far, we have assumed that all instances of a given source model construct are
transformed using the same transformation rule. We now consider a more general
strategy for mapping inheritance hierarchies of abstract types into structured types
that allows the user to customize the transformation. Since this is the familiar object-
to-relational mapping problem, we use the terms class and relation instead of abstract
type and structured type.

Several strategies for mapping classes to relations exist. For example, consider the in-
heritance hierarchy in Fig. 3. Typical strategies for mapping these classes to flat relations
include the following [17]: relation per concrete class (a.k.a. horizontal partitioning), in
which each relation contains one
column for every attribute, inherited
or otherwise; relation per subclass
(a.k.a. vertical partitioning), in which
each relation contains a column only
for the class’ directly defined attrib-
utes; and relation per hierarchy, in
which one relation stores all classes
with a discriminator column to indi-
cate which rows are in which con-
crete classes.

These simple strategies reflect
only a few of the storage possibili-
ties. For example, in Fig. 3, the
designer has indicated that the sys-
tem should partition Person (and its

subclasses) using a horizontal strategy (⇔). However, Employee (and its subclasses)

should be partitioned vertically (⇕), except for Full-Time whose attributes should be
stored with those of the base class (∅).

Based on these declarations, we automatically generate the inheritance mapping
shown in Table 2. Each column of this table corresponds to a class. Each of the first 4
rows corresponds to a database relation. (The rows rel and attr* are discussed below.)
Reading down a column, we can easily verify that every concrete class’ (non-key)
attributes are stored in some relation. Reading across a row, we can determine the
relational structure. For example, because of horizontal partitioning, relation C con-
tains all attributes (direct and inherited) of Customer. Similarly, vertical partitioning is
used for Employee, so E is the only relation to contain salary and hire information.

Person (⇔)
- id: primary key
- name: string

Customer
- account: currency

Employee (⇕)
- salary: currency
- hire: date

Full-Time (∅)
- exempt: boolean

Part-Time
- hours: number

Employee is
abstract.
Other classes
are concrete.

Fig. 3. An inheritance hierarchy

112 P. Mork, P.A. Bernstein, and S. Melnik

Table 2. A mapping matrix from classes to relations

 Person Customer Full-Time Part-Time

P id, name id, name id, name
C id, name, account
E id, salary, hire, exempt id, salary, hire

PT id, hours
rel {P} {C} {P, E} {P, E, PT}

attr* id, name id, name, account id, name, salary, hire, exempt id, name, salary, hire, hours

For a given hierarchy, let C be the set of all classes in the (source) hierarchy and let
R be the set of target relations. The predicate c(x) indicates that x is a direct instance
of c∈C. Similarly, r(x) indicates that x is a tuple of r∈R.

A mapping matrix M describes how to map the attributes of classes to attributes of
relations. The mapping matrix contains one column for each concrete c∈C and one
row for each r∈R. Each cell M[r, c] of the mapping matrix indicates which attributes
of c appear in r. For example, to map a class’s direct and inherited attributes to one
relation (a.k.a., horizontal partitioning), all of the attributes of c appear in a single cell
of M. To flatten a hierarchy, R contains a single relation, so M has just one row.

To explain the construction of view definitions from M, we need some additional
notation: PK(c) returns the primary key of c, attr*(c) returns the direct and indirect
attributes of c, rel(c) returns the relations used to store instances of c (the non-empty
cells of column c), and r.a refers to attribute a of relation r. Flagged is the set of all
relations that contain a flag attribute, the values of which are type identifiers. The type
identifier of c is TypeID(c).

The forward-view for this transformation can be directly inferred from M. For each
attribute a in a cell M[r, c] the forward-view is: c(x), a(x, y) ⇒ r(x), r.a(x, y). The re-
verse-view is more complex and is based on the following constraints on M.

a)
Rr

cattrcrM
∈

=)(*],[

b) r ∈ rel(c) → PK(c) ⊆ M[r,c]
c) rel(c1) = rel(c2) → c1 = c2 ∨ rel(c1) ⊆ Flagged

Constraint (a) says that every attribute of c must appear in some relation. Con-
straint (b) guarantees that an instance of c stored in multiple relations can be recon-
structed using its primary key, which we assume can be used to uniquely identify
instances. Constraint (c) says that if two distinct classes have the same rel(c) value,
then each of them is distinguished by a type id in Flagged.

To test these constraints in our example, consider the last two rows of Table 2.
Constraint (a) holds since every attribute in the bottom row appears in the correspond-
ing column of M. Constraint (b) holds because id appears in every non-empty cell.
Constraint (c) holds because no two classes have the same signature.

Constraint (c) guarantees that the mapping is invertible, so there exists a correct re-
verse-view for the mapping. There are two cases: For a given c∈C, either there is
another class c′ with rel(c′) = rel(c), or not. If so, then there exists r ∈ (rel(c)∩
Flagged), so we can use r.flag to identify instances of c:

r(x), r.flag(x, TypeID(c)) ⇒ c(x)

∪

 Teaching a Schema Translator to Produce O/R Views 113

Otherwise, rel(c) is unique, so the instances of c are those that are in all rel(c) rela-
tions and in no other relation, that is:

c(x)r(x)r(x) ⇒¬∧∧
∉∈ rel(c)rcrelr)(

In relational algebra, this is the join of all r∈rel(c) composed with the anti-semijoin of
r∉rel(c), which can be further simplified exploiting the inclusion dependencies be-
tween the relations in rel(c). In both cases, the reverse view is an inverse of the for-
ward view. The reverse-view for a given attribute is read directly from the mapping
matrix. It is simply the union of its appearances in M:

{ r.a(x, y) ⇒ c.a(x, y) | c∈C, r∈R, a∈M[c,r] }

The mapping matrix M is very general, but can be hard to populate to satisfy the re-
quired constraints (a)-(c) above. So instead of asking users to populate M, we offer
them easy-to-understand class annotations from which M is populated automatically.

Each class can be annotated by one of three strategies: ⇕, ⇔, or ∅. Strategy ⇕ does
vertical partitioning, the default strategy: each inherited property is stored in the rela-

tion associated with the ancestor class that defines it. Strategy ⇔ yields horizontal
partitioning: the direct instances of the class are stored in one relation, which contains
all of its inherited properties. Strategy ∅ means that no relation is created: the data is
stored in the relation for the parent class. The strategy selection propagates down the
inheritance hierarchy, unless overridden by another strategy in descendant classes.
These annotations exploit the flexibility of the inheritance mapping matrices only
partially, but are easy to communicate to schema designers.

 procedure PopulateMappingMatrix(c: class, r: target relation)

 if (strategy(c) ∈ {⇕,⇔}) then r = 〈new relation〉 end if // 1
 if (c is concrete) then

 M[r, c] = M[r, c] ∪ 〈key attributes of c〉 // 2

 if (strategy(c) = ⇔)
 then M[r, c] = M[r, c] ∪ 〈declared and inherited attributes of c〉 // 3
 else
 toPlace = attrs = 〈declared and inherited non-key attributes of c〉 // 4

 for each relation rp created for ancestor class of c, traversing bottom-up
 for each cell M[rp, p] do
 M[rp, c] = M[rp, c] ∪ (M[rp, p] ∩ toPlace) // 5
 toPlace = toPlace – M[rp, p]
 end for

 end for
 M[r, c] = M[r, c] ∪ toPlace // 6

 end if
 end if
 for each child c′ of c do PopulateMappingMatrix(c′, r) end for // 7
 return

Fig. 4. PopulateMappingMatrix generates a mapping matrix from an annotated schema

114 P. Mork, P.A. Bernstein, and S. Melnik

Let strategy(c) be the strategy choice for class c. For a given annotated schema, the
mapping matrix is generated by the procedure PopulateMappingMatrix in Fig. 4
(for brevity, we focus on strategy annotations for classes only, omitting attributes).

The root classes must be annotated as ⇕ or ⇔. For every root class c,
PopulateMappingMatrix(c, undefined) should be called. After that, for each two equal
columns of the matrix (if such exist), the first relation from the top of the matrix that
has a non-empty cell in those columns is added to Flagged.

The steps of the algorithm are as follows:

1. Each class labeled horizontal or vertical requires its own relation
2. A relation that contains concrete class c must include c’s key so that c can be reas-

sembled from all relations that store its attributes.
3. This is the definition of horizontal partitioning
4. These are the attributes of c that need to be assigned to some relation
5. These attributes have already been assigned to a relation rp, so use that relation.
6. The remaining attributes of c are assigned to c’s target relation
7. Now populate the matrix for c’s children

5 Incremental Updating

Translating a model between metamodels can be an interactive process, where the
user incrementally revises the source model and/or various mapping options, such as
the strategy for mapping inheritance. Typically, a user wants to immediately view
how design choices affect the generated result. The system could simply regenerate
the target model from the revised input. However, this regeneration loses any
customization the user performed on the target, such as changing the layout of a dia-
grammatic view of the model or adding comments. We can improve the user’s ex-
perience in such scenarios by translating models in a stateful fashion: the target model
is updated incrementally instead of being re-created from scratch by each modifica-
tion. This incremental updating also improves performance. For example, our
implementation uses a main memory object-oriented database system, in which a full
regeneration of the target schema from a large source model can take a minute or so.

Let m0 be a source model and m1, …, mn be a series of target model snapshots ob-
tained by an application of successive transformations (i.e., a transformation plan).
Each transformation is a function that may add or delete schema elements. Let fi be a
function that returns new elements in mi+1 given the old ones in mi. Since fi uses
Skolem functions to generate new elements, whenever it receives the same elements
as input, it produces the same outputs. Clearly, invoking a series of such functions f1,
…, fn preserves this property. That is, re-running the entire series of transformations
on m0 yields precisely the same mn as the previous run, as the functions in effect cache
all generated schema elements.

Now suppose the user modifies m0 producing m0′. When m0′ is translated into a
target model, the same sequence of transformations is executed as before. In this way,
no new objects in the target model are created for the unchanged objects in the source
model. Previously-created objects are re-used; only their properties are updated. For
example, renaming an attribute in the source model causes renaming of some target
model elements (e.g., attribute or type names), but no new target objects are created.

 Teaching a Schema Translator to Produce O/R Views 115

The mechanism above covers incremental updates to m0. Deletion is addressed as
follows. Let mn be the schema generated from m0. Before applying the transforma-
tions to m0′, a shallow copy mcopy of mn is created which identifies all of the objects in
mn. All transformations are re-run on m0′ to produce mn′. If an element is deleted from
m0 when creating m0′, then some elements previously present in mcopy might not ap-
pear in mn′. These target elements can be identified by comparing mcopy to mn′. They
are marked as “deleted,” but are not physically disposed of. If they appear in mn at
some later run, the elements are resurrected by removing the “deleted” marker. Thus,
the properties of generated objects are preserved upon deletion and resurrection. In
our implementation, for small changes to the source model, this incremental regenera-
tion of the target takes a fraction of a second.

6 Implementation

Our implementation runs inside an integrated development environment. It has a
graphical model editor and an in-memory object-oriented database system (OODB)
that simplifies data sharing between tools and supports undo/redo and transactions.

The EER model and schemas are stored as objects in the OODB. We wrote
relational wrappers that expose an updateable view of the objects. The wrappers are
generic code that use reflection and on-the-fly generated intermediate language code.
We then wrote rules that translate between those wrappers and the relational represen-
tation of U. As others have noted [2][23][25], this translation is very straightforward;
since there is a 1:1 mapping between constructs of the source and target metamodels
and universal metamodel (i.e., U), the translation rules are trivial.

We wrote our own rules engine, partly because of limitations on the functionality
of Datalog engines that were available to us and partly because we wanted native
support for rules with compound heads (see Section 3). It supports Skolem functions
and user-defined functions. We used the latter to generate forward- and reverse-views.

The size of our implementation is summarized in Fig. 5 (viewed best in the elec-
tronic version in color). The rule engine is more than half of our code. It includes the
calculus representation, in-memory processing, view unfolding, and parser. The main
routines include the rules and plan generator (described in [24]). We coded a few
rules in C#, such as the rule to remove structured attributes since the recursion was

500

67001500

300

1100

800
900

U-Metamodel representation

Rule execution engine

Main ModelGen routines

Other imperative code

Mapping inheritance structures

Import/export for EER & SQL

SQL generation

Fig. 5. Code size (in lines of code)

116 P. Mork, P.A. Bernstein, and S. Melnik

0

200

400

600

800

1000

1200

M1 M2 M3 M4

time (ms)

Export the model

Remove inheritance
(imperative)
In-line non-lexical references
(imperative)
Add keys (imperative)

Delete attributes referencing
dangling types
Update references to objects
mapped to new objects
Replace multi-valued attrs. with
join table
Remove containment

Remove multiple containment

Load the model

Execution steps:

16

145

234

267

Fig. 6. Execution times in milliseconds

hard to understand. The logic for mapping inheritance structures into relations in-
cludes populating the mapping matrix from class annotations and generating reverse-
views with negation when necessary. The import/export routines include 120 lines of
rules; the rest is in C#.

Our implementation is relatively fast. Execution times for four models are shown
in Fig. 6. These models use a custom EER model―a rather rich one. For example, it
permits a class to contain multiple classes, requiring us to use our transformation that
eliminates multiple containment. The number of elements in each model is shown
above each bar. The execution time was measured in milliseconds and averaged over
30 runs on a 1.5 GHz machine. The largest model, M4, generates 32 relations―not a
huge model, but the result fills many screens.

7 Related Work

The problem of translating data between metamodels goes back to the 1970’s. Early
systems required users to specify a schema-specific mapping between a given source
and target schema (e.g., EXPRESS [30]). Later, Rosenthal and Reiner described
schema translation as one use of their database design workbench [28]. It is generic
but manual (the user selects the transformations), its universal metamodel is less ex-
pressive (no inheritance, attributed relationships, or collections), and mappings are not
automatically generated.

Atzeni and Torlone [2] showed how to automatically generate the target schema.
They introduced the idea of a repertoire of transformations over models expressed in a
universal metamodel (abbr. UMM), where each transformation replaces one construct
by others. They used a UMM based on one proposed by Hull and King in [19]. They
represented transformation signatures as graphs but transformation semantics was hid-
den in imperative procedures. They did not generate instance-level transformations, or

 Teaching a Schema Translator to Produce O/R Views 117

even schema-level mappings between source and target models, which are main con-
tributions of our work.

Two recent projects have extended Atzeni and Torlone’s work. In [25], Papotti and
Torlone generate instance translations via three data-copy steps: (1) copy the source
data into XML, in a format that expresses their UMM; (2) use XQuery to reshape the
XML expressed in the source model into XML expressed in the target model; and (3)
copy the reshaped data into the target system. Like [2], transformations are imperative
programs. In [3], Atzeni et al. use a similar 3-step technique, except transformations
are Datalog rules: (1) copy the source database into their relational data dictionary; (2)
reshape the data using SQL queries that express the rules; and (3) copy it to the target.

In contrast to the above two approaches, we generate view definitions that directly
map the source and target models in both directions and could drive a data transfor-
mation runtime such as [1][17]. The views provide access to the source data using the
target model, or vice versa, without copying any data at all. If they were executed as
data transfer programs, they would move data from source to target in just one copy
step, not three. This is more time efficient and avoids the use of a staging area, which
is twice the size of the database itself to accommodate the second step of reshaping
the data. Moreover, neither of the above projects offer flexible mapping of inheritance
hierarchies or incremental updating of models, which are major features our solution.

Transformation strategies from inheritance hierarchies to relations, such as hori-
zontal and vertical partitioning, are well known [15][22]. However, as far as we
know, no published strategies allow arbitrary combinations of vertical and horizontal
partitioning at each node of an inheritance hierarchy, like the one we proposed here.

Hull’s notion of information capacity [18] is commonly used for judging the in-
formation preservation of schema transformations. In [18] a source and target schema
are equivalent if there exists an invertible mapping between their instances. Our for-
ward- and reverse-views are examples of such mappings.

Using a UMM called GER, Hainaut has explored schema transformations for EER
and relational schemas in a sequence of papers spanning two decades. He presented
EER and relational transformations in [13]. Although instance transformations were
mentioned, the focus was on schema transformations. Instance mappings for two
transformations are presented in [14] as algebraic expressions. In this line of work,
instance transformations are mainly used for generating wrappers in evolution and
migration scenarios. An updated and more complete description of the framework is
in [16].

Poulovasilis and McBrien [27] introduce a universal metamodel, based on a hyper-
graph. They describe schema transformation steps that have associated instance trans-
formations. Boyd and McBrien [9] apply and enrich these transformations for
ModelGen. Although they do give a precise semantics for the transformations, it is
quite low-level (e.g., add a node, delete an edge). They do not explain how to abstract
them to a practical query language, nor do they describe an implementation.

Another rule-based approach was proposed by Bowers and Delcambre [7][8]. They
focus on the power and convenience of their UMM, Uni-Level Descriptions, which
they use to define model and instance structures. They suggest using Datalog to query
the set of stored models and to test the conformance of models to constraints.

Barsalou and Gagopadhyay [4] give a language (i.e., UMM) to express multiple
metamodels. They use it to produce query schemas and views for heterogeneous

118 P. Mork, P.A. Bernstein, and S. Melnik

database integration. Issues of automated schema translation between metamodels and
generation of inheritance mappings are not covered.

Claypool and Rundensteiner [10] describe operators to transform schema structures
expressed in a graph metamodel. They say the operators can be used to transform
instance data, but give no details.

8 Conclusion

In this paper, we described a rule-driven platform that can translate an EER model
into a relational schema. The main innovations are the ability to (i) generate provably-
correct forward and reverse view definitions between the source and target models,
(ii) map inheritance hierarchies to flat structures in a more flexible way, and (iii)
incrementally generate changes to the target model based on incremental changes to
the source model. We implemented the algorithm and demonstrated that it is fast
enough for interactive editing and generation of models. We embedded it in a tool for
designing object to relational mappings. Commercial deployment is now underway.

References

[1] ADO.NET, http://msdn.microsoft.com/data/ref/adonetnext/
[2] Atzeni, P., Torlone, R.: Management of Multiple Models in an Extensible Database De-

sign Tool. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS,
vol. 1057, pp. 79–95. Springer, Heidelberg (1996)

[3] Atzeni, P., Cappellari, P., Bernstein, P.: ModelGen: Model Independent Schema
Translation. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M.,
Boehm, K., Kemper, A., Grust, T., Boehm, C. (eds.) EDBT 2006. LNCS, vol. 3896,
pp. 368–385. Springer, Heidelberg (2006)

[4] Barsalou, T., Gangopadhyay, D.: M(DM): An Open Framework for Interoperation of
Multimodel Multidatabase Systems. ICDE, 218–227 (1992)

[5] Bernstein, P., Melnik, S., Mork, P.: Interactive Schema Translation with Instance-Level
Mappings (demo), VLDB, pp. 1283–1286 (2005)

[6] Blakeley, J., Muralidhar, S., Nori, A.: The ADO.NET Entity Framework: Making the
Conceptual Level Real. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS,
vol. 4215, pp. 552–565. Springer, Heidelberg (2006)

[7] Bowers, S., Delcambre, L.M.L.: On Modeling Conformance for Flexible Transformation over
Data Models, Knowl. Transformation for the Semantic Web (at 15th ECAI), pp. 19–26.

[8] Bowers, S., Delcambr, L.M.L.: The Uni-Level Description: A Uniform Framework for
Representing Information in Multiple Data Models. In: Song, I.-Y., Liddle, S.W.,
Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 45–58. Springer,
Heidelberg (2003)

[9] Boyd, M., McBrien, P.: Comparing and Transforming Between Data Models Via an In-
termediate Hypergraph Data Model. J. Data Semantics IV, 69–109 (2005)

[10] Claypool, K.T., Rundensteiner, E.A.: Sangam: A Transformation Modeling Framework.
DASFAA, pp. 47–54 (2003)

[11] Fagin, R.: Multivalued Dependencies and a New Normal Form for Relational Databases.
ACM TODS 2(3), 262–278 (1977)

 Teaching a Schema Translator to Produce O/R Views 119

[12] Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing Schema Mappings:
Second-Order Dependencies to the Rescue. ACM TODS 30(4), 994–1055 (2005)

[13] Hainaut, J.-L.: Entity-Generating Schema Transformations for Entity-Relationship Mod-
els. ER, 643–670 (1991)

[14] Hainaut, J.-L.: Specification preservation in schema transformations-Application to
semantics and statistics. Data Knowl. Eng. 16(1), 99–134 (1996)

[15] Hainaut, J.-L., Hick, J.-M., Englebert, V., Henrard, J., Roland, D.: Understanding the Im-
plementation of IS-A Relations. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157,
pp. 42–57. Springer, Heidelberg (1996)

[16] Hainaut, J.-L.: The Transformational Approach to Database Engineering. In: Lämmel, R.,
Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 89–138. Springer,
Heidelberg (2006)

[17] Hibernate, http://www.hibernate.org/
[18] Hull, R.: Relative Information Capacity of Simple Relational Database Schemata. SIAM

J. Comput. 15(3), 856–886 (1986)
[19] Hull, R., King, R.: Semantic Database Modeling: Survey, Applications and Research Is-

sues. ACM Comp. Surveys 19(3), 201–260 (1987)
[20] Java Data Objects, http://java.sun.com/products/jdo
[21] Jeusfeld, M.A., Johnen, U.A.: An Executable Meta Model for Re-Engineering of Data-

base Schemas. Int. J. Cooperative Inf. Syst. 4(2-3), 237–258 (1995)
[22] Keller, A.M., Jensen, R., Agrawal, S.: Persistence Software: Bridging Object-Oriented

Programming and Relational Databases. SIGMOD, 523–528 (1993)
[23] Kensche, D., Quix, C., Chatti, M.A., Jarke, M.: GeRoMe. A Generic Role Based Meta-

model for Model Management. In: Meersman, R., Tari, Z. (eds.). OTM 2005. LNCS,
vol. 3781, pp. 1206–1224. Springer, Heidelberg (2005)

[24] Mork, P., Bernstein, P.A., Melnik, S.: A Schema Translator that Produces Object-to-
Relational Views. Technical Report MSR-TR-36. (2007), http://research.microsoft.com

[25] Papotti, P., Torlone, R.: An Approach to Heterogeneous Data Translation based on XML
Conversion. CAiSE Workshops 1, 7–19 (2004)

[26] Papotti, P., Torlone, R.: Heterogeneous Data Translation through XML Conversion. J. of
Web Eng 4(3), 189–204 (2005)

[27] Poulovassilis, A., McBrien, P.A.: General Formal Framework for Schema Transforma-
tion. Data Knowl. Eng. 28(1), 47–71 (1998)

[28] Rosenthal, A., Reiner, D.: Tools and Transformations? Rigorous and Otherwise? for
Practical Database Design. ACM TODS 19(2), 167–211 (1994)

[29] Ruby on Rails, http://api.rubyonrails.org/
[30] Shu, N.C., Housel, B., Taylor, R., Ghosh, S., Lum, V.: EXPRESS: A Data EXtraction,

Processing, and REStructuring System. ACM TODS 2(2), 134–174 (1977)

Building a Tool for Cost-Based Design of
Object-Oriented Database Schemas

Joachim Biskup and Ralf Menzel

Universität Dortmund, 44221 Dortmund, Germany
{biskup,menzel}@ls6.cs.uni-dortmund.de

Abstract. In the traditional waterfall approach for building a software
application, the phases of requirements analysis, design, implementation,
testing, and maintenance follow one another. Aiming at the efficiency of
a database application, we see that the outcome of the implementation
phase decisively determines how much time the execution of queries and
updates requires and how much space is needed to store the application
data. But, these costs of the application result from decisions made not
only in the implementation phase but also before that during the design
phase. In this paper, we describe a tool to support the cost-based design
of database applications. Based on earlier research where we designed
a cost-model for an abstract object-oriented database machine, the tool
shall provide its user with cost estimates during the design phase. We
discuss which modifications and additions to our cost-model we use to
build the tool. Specifically, we portray how we adapt the tool to a con-
crete DBMS. After picturing a design process that employs our tool, we
conclude by assessing the achievements of the present work and how we
benefited from our earlier underlying research.

1 Introduction

For any database application, following the ideal waterfall model of software en-
gineering [10, 11], a conceptual design resulting in a conceptual schema should
strictly precede the implementation in terms of classes (relations), access struc-
tures (sortings, search trees, . . .), storage management (realms, disks, . . .), and
further low-level features. Besides the general reasons, there are more specific jus-
tifications as well: (1) In general, a well “normalized” conceptual schema already
exhibits good overall efficiency since its instances will never contain redundant
data and thus avoid “anomalies” [6, 8, 14]. (2) Usually, a database application
supports many different and diverse clients, some of them even still unknown at
design time, and the conceptual design should be “neutral”, giving all of them a
uniform and firm basis [13].

In practice, however, often a spiral model turns out to be more appropriate,
permitting to reinspect and revise the decisions taken in previous steps. Again,
there are general justifications for deviating from the ideal, mainly accepting
the common failure to correctly and completely specify all requirements in ad-
vance. In fact, one may argue that a full specification is never achievable due

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 120–131, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Building a Tool for Cost-Based Schema Design 121

to the overall complexity. Besides such general justifications, there might also
be more specific arguments regarding database applications: (1) For a specific
situation, the stated efficiency claim on “normalized schema” might not be valid.
(2) For a specific application, some clients might be discretionarily favoured over
others.

Now, accepting that conceptual design and implementation might be inter-
twined, the database administrator needs a design tool to analyse the require-
ments and options on both layers, their mutual interactions, and the potential
trade-offs [12]. Unfortunately, traditional database design tools [1, 7, 15] do not
satisfy this urgent need. Though this shortcoming might purposely originate from
the waterfall paradigm, a deeper fundamental problem appears as an obstacle
as well. The vocabulary of conceptual schema design languages does not provide
the needed expressiveness for dealing with the items on the implementation layer
and their analysis in terms of actual execution costs of queries and updates, not
to mention for considering the impact of an optimiser on these costs.

Our preparatory research [2, 3, 4] aimed at providing means to resolve the
fundamental problem. The work reported in this paper directly addresses the
administrator’s need. More specifically, previously we designed the following:

– a unifying vocabulary for both layers, enabling to relate concepts of object-
oriented database schemas with an abstract database machine for operations
on instances [2];

– a cost model for the abstract database machine, offering to predict the ex-
pected performance of operations on instances in term of consumption of
abstract time and abstract space [3];

– a framework for determining and comparing the expected costs before and
after a schema transformation, e.g., for a normalization step, in terms of the
costs of the operations on instances of the two schemas involved [4].

Currently, we are building an experimental design tool of the needed kind,
called CBOODT (for Cost-Based Object-Oriented Design Tool). More specifi-
cally, in this paper we deal with the following issues:

– We outline the architecture of CBOODT, and explain the basic design deci-
sions (Sect. 2).

– We reflect the actual achievements of our preparatory research and, where
needed, suggest appropriate adjustments for the sake of the overall usefulness
of CBOODT (Sect. 3).

– We show how we adapt CBOODT to a concrete DBMS by instantiating the
system dependent cost parameters of our cost model (Sect. 4).

– We develop a high-level guideline for an administrator to employ CBOODT,
describing a typical workflow (Sect. 5).

– We critically validate our approach, in particular, reinspecting the abstract
database machine, the cost model, the cost framework for schema transfor-
mations as well as the new schema design tool (Sect. 6).

122 J. Biskup and R. Menzel

2 Architecture of CBOODT

A simple conceptual object-oriented schema design tool allows its user to define
classes, their attributes and types. Tools that are more elaborate often support
the application of schema transformations. Besides such ordinary schema design
tasks, we want our tool to support additional functions that enable the user to
base design decisions on expected query time costs of a later implementation. In
particular the user of the tool shall be able to exercise cost estimates to guide
the application of schema transformations.

The time cost estimates build on our cost model [3]. This cost model allows
us to calculate cost estimates for a machine program. For this calculation several
cost parameters are used as input.

As an exemplary schema transformation we will work with pivoting [5] for
our experimental design tool. In our implementation, we use an extended version
of the schema transformation that not only transforms a schema consisting of
classes, their attributes and types but also transforms access structures, queries,
and cost parameters that depend on the schema.

Taking the theoretical results of our earlier research, we face two main prob-
lems in their practical implementation.

First, there exists a multitude of cost parameters. We would like to spare the
user the trouble of providing many cost parameters that might not be decisive
for a cost evaluation under consideration. We achieve this by providing default
values for all cost parameters (even if these defaults can sometimes only be wild
guesses). But we annotate cost estimates when default values are used. This
enables the user to provide proper values and re-evaluate the costs.

Second, the cost model operates on machine programs. It is cumbersome for
the user to express them. When he is working at the conceptual layer, he surely
prefers to use high-level queries to represent the behaviour of the modelled appli-
cation. Therefore the user of CBOODT can input (restricted) high-level queries.
The tool translates them into machine programs. For this we need a (simple)
query optimiser.

Figure 1 shows the architecture of CBOODT. It consists of three components.
In its centre is the schema design component that contains several packages. The
schema package and its sub-packages model the data structures that represent
schemas and all things that can be part of a schema: classes, indexes, queries,
machine programs, and (application dependent) cost parameters. The cost es-
timation package contains the algorithms of our cost model to calculate cost
statements for machine programs. The query optimiser package enlists the cost
estimation package to translate high-level queries into machine programs. The
schema transformation package contains the routines to do pivoting.

The user interface component provides the facilities to control the design com-
ponents. It allows the user to define classes, indexes, and queries; export and
import schemas; provide cost parameters; and activate schema transformations.
The user is shown a graphical representation of the schema. The queries and their
costs are listed. The user can select a schema transformation for consideration.
Early versions of CBOODT will then display the costs after the transformation

Building a Tool for Cost-Based Schema Design 123

Fig. 1. CBOODT architecture

Fig. 2. Importing an existing concrete DBMS application

for all the queries. Given this information, the user can decide to apply a trans-
formation. Later versions of the tool can improve user support by proposing
profitable transformations or even sequences of transformtions.

The DBMS adapter component allows to connect to a specific DBMS and an
existing database application. It allows to import schemas and statistics, i.e.,
application dependent cost parameters (Fig. 2). In addition, it allows to export

124 J. Biskup and R. Menzel

Fig. 3. Exporting an application

schemas by translating classes, indexes and queries into DDL and DML state-
ments of the DBMS system (Fig. 3). Furthermore it supplies system dependent
cost parameters.

3 Abstract Database Machine, Cost Model, and Schema
Transformations Revisited

The basis of our cost model is an abstract object-oriented database machine [2].
The type system of the machine is inductively defined. Depending on the domain
used there are some scalar types, e.g., string, integer, boolean. For the application
we can define object types by providing attribute type assignments. An attribute
type assignment specifies the value types for all attributes of the object type. A
value type is either a scalar type, an object identifier type, or a set type. For
every object type there is a corresponding object identifier type, while set types
are available for every scalar type and every object identifier type.

In our theoretical research we assumed that types are given implicitly, i.e.,
that types have value semantics. But, using object types and object identifier
types the type system allows for cyclic type structures. For practical purposes,
it is difficult to set up such cyclic structures when the identity of an object type
is defined by how it assigns value types for its attributes. Therefore in our tool
we use names to identify object types, independent of possible changes to their
attribute type assignments.

The operations of our abstract object-oriented database machine work on
streams. A stream is a sequence of lists of values. A machine program is a
sequence of machine program steps. Each step performs one machine operation.
The input and output streams of steps are held in channels, which are stream-
typed variables. The cost model uses its cost functions and cost parameters to
annotate the channels and steps of a machine program with cost statements.
The sum of all step cost statements is the total cost statement for the machine
program.

Building a Tool for Cost-Based Schema Design 125

Fig. 4. Cost estimation

Fig. 5. Transformation

In CBOODT we want to enable the user to provide high-level queries instead of
machine programs. A query optimiser is used to translate the high-level queries
into the machine-programs that the cost estimation needs to do its work (Fig. 4).

For the implementation of CBOODT, we made the following adjustments to
our cost model.

As mentioned in Sect. 2 we want the tool to provide default cost parameters.
To facilitate this the tool manages the confidence level for each cost parameter
value. Between “specified by user” and “default” there can be further levels like
“derived from other parameters”, “used type-based parameter in place of class-
based parameter” or, “produced by transformation”.

To work with confidence levels for cost parameters we enrich the cost state-
ments. To the cost estimate we add which cost parameters were used to calcu-
late the cost estimate and with which confidence level these parameters were
available.

Our model provides the stream type for every channel. In CBOODT we addi-
tionally carry along in the channel cost statement the information from which
classes and attributes the stream originated. With this information available, we

126 J. Biskup and R. Menzel

can improve the quality of cost parameters by using more specific class-based
and attribute-based parameters instead of just type-based parameters.

In CBOODT we implement pivoting as schema transformation. Formerly we
specified how pivoting acts on classes. In our tool a schema contains classes, in-
dexes, queries, cost parameters and machine programs. To transform a complete
schema, we extend pivoting to handle indexes, queries and cost parameters as
well. The machine programs of the transformed schema can be produced by the
use of the query optimiser (Fig. 5).

4 Adapting CBOODT to a Concrete DBMS

The design of our abstract cost model contains cost parameters that allow to
characterise the database application and the concrete DBMS. The parameters
that describe the database application are managed by our tool as the cost
parameters in the schema. The parameters that describe the concrete DBMS are
managed by the DBMS adapter. Tables 1 and 2 show these cost parameters as
given by our previous work.

The cost parameters in Table 2 are type-based. As we said above, in CBOODT,
we have class and attribute information available in our channel cost statements
and can therefore use class-based and attribute-based parameters instead. In
particular, we can derive them by introducing simpler parameters for sizes in
bytes of all scalar types and for the size of an OID, and a parameter that gives
the bytes per block. When we need to know the size of a set we can refer to the
application dependent cost parameter that gives the average multiplicity for the
attribute involved.

Furthermore we introduce two cost parameters to convert the abstract time
estimates into real time estimates: one parameter, Tb, that gives the time re-
quired for a block access and one parameter, Tv, for the time required per value
access. Table 3 summarises all new parameters.

In our first version of CBOODT that doesn’t estimate space costs, we don’t
need a value for na. But we must provide the values for the following parameters:

Table 1. System dependent cost parameters

parameter description relevant for

na: fraction of a block that is needed for the non-data part
of an access structure per element of the stored set.

space

nOID: number of object identifiers that fit into one block. scan, space
nmem: size of memory that is reserved for sorting and similar

operations.
sort, product,
join0

nfiles: maximum number of open files for sorting. sort
η(n): number of block accesses required to locate an element

using an access structure for a set with n elements.
write, delete,
access

Building a Tool for Cost-Based Schema Design 127

Table 2. Cost parameters derivable from domain dependent parameters

parameter description relevant for

nt: average number of blocks for an object of type t. activate, write,
delete, access,
space

n(t1,...,tn): average number of blocks for a value list of type
(t1, . . . , tn).

duplicate, sort,
product, join0

Table 3. CBOODT’s new system and domain dependent cost parameters

parameter description

bts : average number of bytes for a value of the scalar type ts.
bOID: average number of bytes for an object identifier.
bblock: number of bytes of a block.
Tb: average number of seconds per block access.
Tv: average number of seconds per value access.

nOID, nmem, nfiles, η(n), bts , bOID, bblock, Tb, Tv. For most of them we can find
the values in the documentation or the data dictionary of the concrete DBMS.
When this is not the case, we can derive the values from time measurements for
queries and updates on test data. This is most likely necessary for the parameters
nfiles, η(n), Tb, and Tv.

Our design tool contains an DBMS adapter for the object-relational DBMS
Oracle. When we import and export schemas, we must take care to translate
between the object-relational model of Oracle and the object model of our tool.
In the first version of CBOODT we will only use a subset of the modelling possi-
bilities provided by Oracle. Especially when we import an existing Oracle appli-
cation we map relations into suitable classes. For this we provide the possibility
to mark classes as relationship classes. This causes them to be exported as rela-
tions. But there is the restriction that it is not possible to use OIDs to refer to
objects of relationship classes.

5 An Administrator’s Workflow

Figure 6 depicts the way that a database designer should leverage CBOODT.
Based on the requirements analysis, he designs the application schema by spec-
ifying classes and queries. Then he provides the first application dependent
cost parameters. We recommend to provide the sizes for all class extensions.
After that he can use CBOODT to evaluate cost estimates for all specified
queries. When the cost estimates are based on too many default values for cost
parameters he should consider providing additional cost parameters and then

128 J. Biskup and R. Menzel

Fig. 6. An administrator’s workflow

reevaluate the cost estimates. Typically, the database designer will want to re-
place defaults for parameters that describe multiplicities of associations. Most
other parameters only have to be provided when the need for fine-tuning arises.

The cost estimates can give different kinds of hints how to improve the schema.
First, some queries could profit from adding an index to the schema. Second,
some queries could profit from transforming the schema.

After the database designer decides to change the schema as suggested by the
cost evaluation, he should reevaluate the cost estimates, which, in turn, might
induce him to provide further application statistics.

For an existing database application, the DBMS adapter component can be
used to import a database schema and its statistics. In this way, the adapter
supports the application schema design and application statistics specification
sub-steps of the design step. Furthermore, the DBMS adapter can translate the
classes, indexes and queries of the conceptual design schema into DML and DDL

Building a Tool for Cost-Based Schema Design 129

statements of a database system. In this way it supports the database schema
export sub-step of the implementation step.

6 Validation and Conclusions

In this paper we presented a cost-based object-oriented design tool CBOODT.
The tool is based on earlier work where we developed an abstract object-oriented
database machine and a cost model for the database machine. For the practical
implementation we made some adjustments to the theoretical preparations. In
particular, we added or changed the following:

– We introduced default values and confidence levels for cost parameter values.
This enables the user of the tool to provide parameter values only when it
is necessary.

– In our original object model the object types have a value semantic, i.e.,
the identity of an object type is defined by how it assigns value types to
attributes. For the practical purpose of the implementation of CBOODT,
we gave identifying names to object types. This makes it possible to eas-
ily specify cyclic type structures. And in cases where we have differently
named types with identical attribute type assignments, we get distinct cost
parameters and thus improved expressiveness.

– Besides this, we increased the expressiveness of cost parameters by enrich-
ing channel cost statements with the information from which classes and
attributes the values in the channels originate. This way we can supply the
cost functions with class and attribute specific parameters where we formerly
used type specific parameters.

– A major change to our cost estimation framework was the addition of a
query optimiser. This enables the user to specify high-level queries instead
of machine programs and thus greatly enhances the attractiveness for the
user. In addition, we can improve on the differential cost statements from
earlier research [4] where we worked without an optimiser. In the next version
of CBOODT, we plan to enhance the optimiser to support not only queries
but also updates.

In all, our earlier theoretical research proved to be a solid foundation for the im-
plementation of CBOODT. More than this, we judge that our abstract database
machine and its cost model are fit to support future enhancements of CBOODT,
as outlined in the following.

In general, we expect that the cost parameters of our generic cost functions
give us enough latitude to appropriately model the cost characteristics of a con-
crete DBMS. When this should not suffice for a particular concrete DBMS, our
cost model allows to replace the generic cost functions with DBMS specific cost
functions. In a similar way we could extend our database machine with fur-
ther machine operations that, e.g., represent different (join) algorithms available
to the concrete DBMS. We consider to add appropriate extensions to a future
version of CBOODT.

130 J. Biskup and R. Menzel

A further possibility to adapt our cost model that we plan for a future ver-
sion of CBOODT is to parameterise the behaviour of the optimiser. On the one
hand, we could restrict the acceptable machine programs to trees instead of the
more general directed acyclic graphs. Or we could restrict the use of operations.
For instance, when we want to model a system that allows to store only one
intermediate result, we can restrict the use of the duplicate operation so that
a machine program can contain more than one duplicate operation only if all
outputs of earlier duplicate operations are used before a new one can appear.
On the other hand we can fine tune the adaption to a concrete DBMS by adding
system specific compound operations (e.g., for semi-join) and appropriate cost
functions.

We even assess that our cost model is flexible enough that it is possible to
change the underlying abstract object-oriented database machine and its type
system. For a DBMS like Oracle, we can extend our object model to get an
object-relational model. This would require an appropriate extension of the type
system and the addition of operations to manipulate relations. Altogether we
would need about four new operations for reading a relation, writing a relation,
deleting from a relation, and accessing a relation through an index. For each
new operation we would need new cost functions and probably some new cost
parameters.

References

[1] Agrawal, S., Chaudhuri, S., Kollár, L., Marathe, A.P., Narasayya, V.R., Syamala,
M.: Database Tuning Advisor for Microsoft SQL Server 2005. In: Nascimento,
M.A., et al. (eds.) [9], pp. 1110–1121 (2005)

[2] Biskup, J., Menzel, R.: An abstract database machine for cost driven design of
object-oriented database schemas. In: Caplinskas, A., Eder, J. (eds.) ADBIS 2001.
LNCS, vol. 2151, pp. 25–28. Springer, Heidelberg (2001)

[3] Biskup, J., Menzel, R.: A flexible cost model for abstract object-oriented database
schemas. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS,
vol. 2503, pp. 444–462. Springer, Heidelberg (2002)

[4] Biskup, J., Menzel, R.: Optimising abstract object-oriented database schemas. In:
Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 528–543.
Springer, Heidelberg (2006)

[5] Biskup, J., Menzel, R., Polle, T., Sagiv, Y.: Decomposition of relationships
through pivoting. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157, pp. 28–41.
Springer, Heidelberg (1996)

[6] Cerpa, N.: Pre-physical data base design heuristics. Information and Manage-
ment 28(6), 351–359 (1995)

[7] Dageville, B., Das, D., Dias, K., Yagoub, K., Zaït, M., Ziauddin, M.: Automatic
SQL tuning in Oracle 10g. In: Nascimento, M.A., et al. (eds.) [9], pp. 1098–1109.

[8] Lee, H.: Justifying database normalization: a cost/benefit model. Information Pro-
cessing & Management: an International Journal 31(1), 59–67 (1995)

[9] Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A.,
Schiefer, K.B. (eds.): Proceedings of the 30th International Conference on Very
Large Data Bases, Toronto, Canada, August 27–September 3. Morgan Kaufmann,
San Francisco (2004)

Building a Tool for Cost-Based Schema Design 131

[10] Parnas, D.L., Clements, P.C.: A rational design process: How and why to fake it.
IEEE Transactions on Software Engineering 12(2), 251–257 (1986)

[11] Royce, W.W.: Managing the development of large software systems. In: Proceed-
ings, IEEE WESCON, pp. 1–9. The Institute of Electrical and Electronics Engi-
neers, Inc. (August 1970)

[12] Martin Steeg. RADD/raddstar: A Rule-based Database Schema Compiler, Evalu-
ator, and Optimizer. PhD thesis, Fakultät Mathematik, Naturwissenschaften und
Informatik der Brandenburgischen Technischen Universität Cottbus (2000)

[13] Tsichritzis, D., Klug, A.C.: The ANSI/X3/SPARC DBMS framework report of
the study group on database management systems. Information Systems 3(3),
173–191 (1978)

[14] Tupper, C.: The physics of logical modeling. Database Programming & De-
sign 11(9) (September 1998)

[15] Zilio, D.C., Rao, J., Lightstone, S., Lohman, G., Storm, A., Garcia-Arellano, C.,
Fadden, S.: DB2 Design Advisor: Integrated automatic physical database design.
In: Nascimento, M.A., et al. (eds.) [9], pp. 1087–1097

Generic Schema Mappings

David Kensche, Christoph Quix, Yong Li, and Matthias Jarke

RWTH Aachen University, Informatik 5 (Information Systems), 52056 Aachen, Germany
{kensche,quix,liyong,jarke}@i5.informatik.rwth-aachen.de

Abstract. Schema mappings come in different flavors: simple correspondences
are produced by schema matchers, intensional mappings are used for schema
integration. However, the execution of mappings requires a formalization based
on the extensional semantics of models. This problem is aggravated if multiple
metamodels are involved. In this paper we present extensional mappings, that
are based on second order tuple generating dependencies, between models in
our Generic Role-based Metamodel GeRoMe. By using a generic metamodel,
our mappings support data translation between heterogeneous metamodels. Our
mapping representation provides grouping functionalities that allow for complete
restructuring of data, which is necessary for handling nested data structures such
as XML and object oriented models. Furthermore, we present an algorithm for
mapping composition and optimization of the composition result. To verify the
genericness, correctness, and composability of our approach we implemented a
data translation tool and mapping export for several data manipulation languages.

1 Introduction

Information systems often contain components that are based on different models or
schemas of the same or intersecting domains of discourse. These different models of
related domains are described in modeling languages (or metamodels) that fit certain re-
quirements of the components such as representation power or tractability. For instance,
a database may use SQL or an object oriented modeling language. A web service de-
scribed in XML Schema may be enriched with semantics by employing an ontology of
the domain. All these different types of models have to be connected by mappings stat-
ing how the data represented in one model is related to the data represented in another
model. Integrating these heterogeneous models requires different means of manipula-
tion for models and mappings which is the goal of a Model Management system. [3]. It
should provide operators such as Match that computes a mapping between two models
[17], ModelGen that transforms models between modeling languages [1], or Merge that
integrates two models based on a mapping in between [16].

An important issue in a model management system is the representation of mappings
which can be categorized as intensional and extensional mappings. Intensional map-
pings deal with the intended semantics of a model and are used, for example, in schema
integration [16]. If the task is data translation or data integration, extensional mappings
have to be used [9]. In this paper, we will deal only with extensional mappings as our
goal is to have a generic representation for executable mappings.

An extensional mapping can be represented as two queries which are related by
some operator (such as equivalent or subset) [9]. As the query language depends on

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 132–148, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Generic Schema Mappings 133

the modeling language being used, the question of mapping representation is tightly
connected to the question how models are represented. In schema matching systems,
which often represent the models as directed labeled graphs, mappings are represented
as pairs of model elements with a confidence value which indicates their similarity
[17]. Such mappings can be extended to path morphisms on tree schemas which can
be translated into an executable form but have limited expressivity [12]. Other existing
mapping representation rely on the relational model, e.g. tuple generating dependencies
(tgds), GLAV mappings [11] or second order tgds [4]. For a nested relational model, a
nested mapping language has been proposed [5].

Each mapping representation has its strengths and weaknesses regarding the require-
ments for a mapping language [3]: (i) mappings should be able to connect models
of different modeling languages; (ii) the mapping language should support complex
expressions between sets of model elements (m:n mappings); (iii) support for the nest-
ing of mappings (to avoid redundant mapping specificiations) and nested data struc-
tures should be provided; (iv) mappings should have a rich expressiveness while being
generic across modeling languages; (v) mappings should support the data translation
between the instances of the connected models. While the mapping representations
mentioned above fulfill these requirements for the (nested) relational model, they fail at
being generic as they do not take into account other modeling languages. The goal
of this paper is to define a mapping representation which is generic across several
modeling languages and still fulfills the requirements regarding expressiveness and
executability. This allows for a generic implementation of model management oper-
ators which deal with these mappings. Furthermore, each mapping language has its
own characteristics regarding questions such as composability, invertability, decidabil-
ity, and ability to be executed. Using a generic mapping representation, such questions
can be addressed once for the generic mapping representation and do not have to be
reconsidered for each combination mapping and modeling language.

A prerequisite for a generic representation of mappings is a generic representation
of models. We developed the role based generic metamodel GeRoMe [7]. It provides
a generic, but yet detailed representation of data models originally represented in dif-
ferent metamodels and is the basis for our model management system GeRoMeSuite
[8]. GeRoMeSuite provides a framework for holistic generic model management; un-
like other model management systems it is neither limited by nature to certain modeling
languages nor to certain model management operators. The generic mapping language
shown here is the basis for the data translation component of GeRoMeSuite and can be
translated into a specific data manipulation language such as SQL.

The main contributions of our work define also the structure of the paper. After re-
viewing related work in section 2, we will define in section 3 a generic mapping repre-
sentation based on the semantics of GeRoMe. We adapt second order tuple generating
dependencies (SO tgds, [4]) originally defined for relational models to mappings be-
tween GeRoMe models which also allow for complex grouping and nesting of data. To
show the usefulness and applicability of our mapping representation, we will present in
section 4 an algorithm for mapping composition, and, in section 5, algorithms to trans-
late our generic mapping representation into executable mappings. The evaluation of
our approach with several examples of the recent literature is shown in section 6.

134 D. Kensche et al.

2 Background

Mappings: Extensional mappings are defined as local-as-view (LAV), global-as-view
(GAV), source-to-target tuple generating dependencies (s-t tgds) [9,12], second order
tuple generating dependencies (SO tgds) [4], or similar formalisms.

Clio [6] defines mappings over a nested relational model to support mappings be-
tween relational databases and XML data. However, it would still be difficult to extend
this mapping representation to express a mapping between other models, such as UML
models, because there is simply no appropriate query language. On the other hand, it is
always possible to compose these mappings, because the composition of such mappings
is equivalent to the composition of queries [14].

Besides being not generic, another drawback of these basic mappings is pointed out:
they do not reflect the nested structure of the data [5]. This leads to an inefficient exe-
cution of the mappings and redundant mapping specifications as parts of the mapping
have to be repeated for different nesting levels. Furthermore, the desired grouping of the
target data cannot be specified using basic mappings which leads to redundant data in
the target. Fuxman et al. [5] proposed a nested mapping language which addresses these
problems. The desired nesting and grouping of data can be expressed in the mapping
specification. Another form of basic mappings based on a Prolog-like representation is
used by Atzeni et al. [1]. These mappings are generic as they are based on a generic
metamodel, but they require the data to be imported to the generic representation as
well. This leads to an additional overhead during execution of the mappings.

Mapping Composition: In general, the problem of composing mappings has the fol-
lowing formulation: given a mapping M12 from model S1 to model S2, and a mapping
M23 from model S2 to model S3, derive a mapping M13 from model S1 to model S3
that is equivalent to the successive application of M12 and M23 [4].

Mapping composition has been studied only for mappings which use the Relational
Data Model as basis. Fagin et al. [4] proposed a semantics of the Compose operator
that is defined over instance spaces of schema mappings. To this effect, M13 is the
composition of M12 and M23 means that the instance space of M13 is the set-theoretical
composition of the instance spaces of M12 and M23. Under this semantics, which we
will also adopt in this paper, the mapping composition M13 is unique up to logical
equivalence. Fagin et al. also explored the properties of the composition of schema
mappings specified by a finite set of s-t tgds. They proved that the language of s-t tgds
is not closed under composition. To ameliorate the problem, they introduced the class
of SO tgds and proved that (i) SO tgds are closed under composition by showing a
mapping composition algorithm; (ii) SO tgds form the smallest class of formulas (up to
logical equivalence) for composing schema mappings given by finite sets of s-t tgds; and
(iii) given a mapping M and an instance I over the source schema, it takes polynomial
time to calculate the solution J which is an instance over the target schema and which
satisfies M . Thus, SO tgds are a good formalization of mappings.

Another approach for mapping composition uses expressions of the relational alge-
bra as mappings [2]. The approach uses an incremental algorithm which tries to replace
as many symbols as possible from the “intermediate” model. As the result of mapping

Generic Schema Mappings 135

composition cannot be always expressed as relational algebra expressions, the algorithm
may fail under certain conditions which is inline with the results of [4].

Executable Mappings: Executable mappings are necessary in many meta-data inten-
sive applications, such as database wrapper generation, message translation and data
transformation [12]. While many model management systems were used to generate
mappings that drive the above applications, few of them were implemented using ex-
ecutable mappings. Because executable mappings usually drive the transformation of
instances of models, Melnik et al. [12] specified a semantics of each operator by re-
lating the instances of the operator’s input and output models. They also implemented
two model management system prototypes to study two approaches to specifying and
manipulating executable mappings. In the first implementation, they modified Rondo’s
[13] language to define path morphisms and showed that it is possible to generate ex-
ecutable mappings in a form of relational algebra expressions. On the positive side,
this system works correctly whenever the input is specified using path morphisms, and
the input is also closed under operators which return a single mapping. However, the
expressiveness of path morphisms is very limited. To overcome this limitation, they
developed a new prototype called Moda [12] in which mappings are specified using
embedded dependencies. The expressiveness is improved in the second implementa-
tion, but it suffers from the problem that embedded dependencies are not closed under
composition. Because of this problem, the output of the Compose operator may not be
representable as an embedded dependency and thus a sequence of model management
operators may not be executable in the system. Although they further developed a script
rewriting procedure to ameliorate this problem, it has not been completely solved.

3 Mapping Representation

Before we define the representation of mappings for GeRoMe models, we first present
the main concepts of GeRoMe using an example (section 3.1). As mappings relate in-
stances of models, we have to define how instances of a GeRoMe model can be repre-
sented, i.e. defining a formal semantics for GeRoMe as described in section 3.2. This
representation forms the basis for our mapping representation presented in section 3.3.

3.1 The Generic Metamodel GeRoMe

Our representation of mappings is based on the generic role based metamodel GeRoMe
[7], which we will introduce briefly here. GeRoMe provides a generic but detailed rep-
resentation of models originally expressed in different modeling languages. In GeRoMe
each model element of a native model (e.g. an XML schema or a relational schema) is
represented as an object that plays a set of roles which decorate it with features and
act as interfaces to the model element. Fig. 1 shows an example of a GeRoMe model
representing an XML schema.

The grey boxes in fig. 1 denote model elements, the attached white boxes represent
the roles played by the model elements. XML Schema is in several aspects different
from “traditional” modeling languages such as EER or the Relational Metamodel. The
main concept of XML Schema “element” represents actually an association between the

136 D. Kensche et al.

Student

University

UniType

StudType

Schema

sname

ID

As

As

OS

OS

Ag
At

OE

CE

OE

CE

NS

OS uname

Ag

At

StringD

At

IntD

Fig. 1. GeRoMe representation of an XML schema

nesting and the nested complex type. This is true for all elements except those which
are allowed as root element of a document. In the GeRoMe representation of an XML
schema, the root element is an association between the schema node and the top-level
complex type, as there is no complex type in which the root element is nested. In the
example of fig. 1 1, the element University is an association between the model
element Schema and the complex type UniType. The fact that the University
element is an association is described by the Association (As) role which connects the
ObjectSet (OS) roles of Schema and UniType via two anonymous model elements
playing a CompositionEnd (CE) and an ObjectAssociationEnd (OE) role, respectively.
The same structure is used for the element Student which is an association between
the complex types UniType and StudType. The two complex types have also at-
tributes; therefore, they play also the Aggregate (Ag) role which links these model el-
ements to their attributes. The model elements representing attributes play an Attribute
(At) role which refers also to the type of the attributes which are, in this example, simple
domains denoted by the Domain (D) role.

It is important to emphasize that this representation is not to be used by end users.
Instead, it is a representation employed internally by model management applications,
with the goal to generically provide more information to model management operators
than a simple graph based model.

3.2 GeRoMe Semantics: Instances of a GeRoMe Model

Before we can formally define GeRoMe mappings, we first need to define the formal
semantics of GeRoMe instances. Our mappings are second-order tuple generating de-
pendencies (SO tgds) which requires that the instances are represented as a set of logical
facts. In addition, the semantics should also capture all the structural information that
is necessary to reflect the semantics of the model. To fulfill both requirements, the se-
mantics should contain facts that record literal values of an instance of a model and
also facts that describe the structure of that instance. To record the literal values of an
instance, value predicates are used to associate literal values with objects. To describe
the structure of an instance, we identify Attribute and Association as the roles which
essentially express the structure of instances.

1 XML documents may have only one root element. Thus, the schema needs to have another
element “Universities” to allow for a list of universities in the XML document. For reasons
of simplicity, we omitted this extra element in our example and assume that XML documents
may have multiple elements at the top-level.

Generic Schema Mappings 137

<University uname="RWTH">
<Student sname="John"

ID="123"/>
</University>

inst(#0,Schema),
inst(#1,UniType), av(#1,uname,‘RWTH’),
inst(#2,StudType),
av(#2,sname,‘John’), av(#2,ID, 123),
inst(#3,University), inst(#4,Student),
part(#3,parentU , #0), part(#3,childU , #1),
part(#4,parentS , #1), part(#4,childS , #2)

Fig. 2. XML document and its representation as GeRoMe instance

Definition 1 (Interpretation of a GeRoMe model). Let M be a GeRoMe model with
A being the set of all literal values, and T the set of all abstract identifiers
{id1, . . . , idn}. An interpretation I of M is a set of facts DM , where:

– ∀ objects (represented by the abstract identifier idi) which are an instance of model
element m: inst(idi, m) ∈ DM ,

– ∀ elements m playing a Domain role and ∀ values v in this domain: {value(idi, v),
inst(idi, m)} ⊆ DM (idi is an abstract ID of an object representing the value v).

– ∀ elements m playing an Aggregate role and having the attribute a, and the instance
idi has the value v for that attribute: {attr(idi, a, idv), value(idv, v)} ⊆ DM .

– ∀ model elements m playing an Association role in which the object with identifier
o participates for the association end ae: part(idi, ae, o) ∈ DM .

Thus, each “feature” of an instance object is represented by a separate fact. The abstract
IDs connect these features so that the complete object can be reconstructed. For the
example from fig. 1, an instance containing a university and a student is defined as
show in fig. 2. As the predicates attr and value often occur in combination, we use the
predicate av as a simplification: av(id1, a, v) ⇔ ∃id2attr(id1, a, id2)∧ value(id2, v).
In addition, we labeled the association ends with “parent” and “child” to make clear
which association end is referred to. The first inst-predicate defines an instance of
the schema element which represents the XML document itself. Then, two instances
of the complex types and their attributes are defined. The last three lines define the
associations and the relationships between the objects defined before.

As the example shows, association roles and attribute roles are not only able to de-
fine flat structures, e.g. tables in relational schemas, but also hierarchical structures,
e.g. element hierarchies in XML schemas. Compared to the original definition of SO
tgds, which were only used to represent tuples of relational tables, our extension to the
original SO tgds significantly improves the expressiveness of SO tgds.

3.3 Formal Definition of GeRoMe Mappings

Based on the formal definition of GeRoMe instances, the definition of GeRoMe map-
pings as SO tgds is straightforward. We extend the definition of a mapping between two
relational schemas in [4] to the definition of a mapping between two GeRoMe models:

Definition 2 (GeRoMe Mapping). A GeRoMe model mapping is a triple M =
(S,T, Σ), where S and T are the source model and the target model respectively, and
where Σ is a set of formulas of the form: ∃f((∀x1(ϕ1 → ψ1))∧. . .∧(∀xn(ϕn → ψn)))

138 D. Kensche et al.

Student

Universitysname

ID

Ag

At

uname
Ag

At

At

Key1
Inj

Id

Key2Id

uni
At

FKConst
FK

Inj

Ref

Fig. 3. GeRoMe representation of a relational schema

∃f, g ∀o0, o1, o2, o3, o4, u, s, i
inst(o1,University) ∧ part(o1,parentU , o0) ∧ part(o1,childU , o2) ∧
inst(o3,Student) ∧ part(o3,parentS , o2) ∧ part(o3,childS , o4) ∧
av(o2,uname, u) ∧ av(o4,sname, s) ∧ av(o4,ID, i) →

inst(f(u),University) ∧ inst(g(i),Student),
av(f(u),uname, u) ∧ av(g(i),sname, s) ∧ av(g(i),ID, i) ∧ av(g(i),uni, u)

Fig. 4. Mapping between XML and relational schema

where f is a collection of function symbols, and where each ϕi is a conjunction of atomic
predicates and/or equalities over constants defined in S and variables, and ψi is a con-
junction of atomic predicates over constants defined on T, variables, and function sym-
bols. Valid atomic predicates are those defined in def. 1. Furthermore, we require that
every element name in these atomic predicates is a constant, i.e. the second arguments
of inst, attr and part predicates are constants.

To show an example of a mapping between models originally represented in two differ-
ent modeling languages, we define in fig. 3 a GeRoMe model representing a relational
schema that corresponds to the XML schema in fig. 1. The schema contains two rela-
tions University(uname) and Student(id,sname,uni). The keys uname
and id are defined in GeRoMe using separate model elements representing the key con-
straint. These model elements play an Injective (Inj) role to indicate that an attribute is
unique, and an Identifier (Id) role to specify the aggregate for which the attribute is the
key. The foreign key constraint between Student and University is also repre-
sented by a separate model element which plays a Foreign Key (FK) role. The FK role
points to a Reference (Ref) role which is played by the attribute that references the key
of the other relation.

Now, we can define a mapping using the XML schema as source and the relational
schema as target (cf. fig. 4). The predicates in the conditional part of the rule correspond
to the instance predicates shown in fig. 2, now just with variables instead of constants.
A remark has to be made about the variables o0 to o4: these variables represent abstract
identifiers (to be named abstract variables in the following), their main function is to
describe (implicitly) the structure of the source data; in the example we can see, that
the student element o3 is nested under the university element o1. In other approaches
for mapping representation (e.g. [5]), this is done by nesting different sub-expressions
of a query. Although nested mappings are easier to understand, they are less expressive
than SO tgds [5]. In addition, several tasks dealing with mappings such as composition,

Generic Schema Mappings 139

inverting, optimization, and reasoning have to be reconsidered for nested mappings (e.g.
it is not clear how to compose nested mappings and whether the result composing two
nested mappings can be expressed as a nested mapping). As our approach is based on
SO tgds, we can leverage the results for SO tgds for our generic mapping representation.

Similarly to the abstract variables on the source side, the functions f and g represent
abstract identifiers on the target side and therefore describe the structure of the gener-
ated data in the target. We will call such functions (which generate abstract identifiers)
in the following abstract functions. Abstract functions can be understood as Skolem
functions which do not have an explicit semantics; they are interpreted by syntactical
representation as term. Please note that abstract variables and abstract functions just
specify the structure of data, there will be no values assigned to abstract variables or
evaluation of abstract functions during the execution of a mapping. Instead, as we will
present in section 5, abstract identifiers and functions determine the structure of the
generated code to query the source and to insert the data in the target.

To describe the structure of the target data, it is important to know which values
are used to identify an object. According to the definition of the relational schema,
universities are identified by their name (u) and students by their ID (i); that is why we
use u and i as arguments of the abstract functions f and g. We will explain below that
for nested data these functions will usually have more than one argument.

In addition to abstract functions, a mapping can also contain “normal” functions for
value conversions or some other kind of data transformation (e.g. concatenation of first
and last name). While executing a mapping, these functions must be actually evaluated
to get the value which has to be inserted into the target.

The example shows also that only variables representing values occur on both sides
of the implication. Abstract variables will be used only on the source side of a mapping
as they refer only to source objects, abstract functions will appear only on the target
side as they refer only to objects in the target. This implies that for the execution of the
mapping, we need to maintain a table with the values extracted from the source, and
then generate the target data using these values according to the mapping.

Grouping and Nesting: The generation of complex data structures which can be ar-
bitrarily nested is an important requirement for a mapping representation. In order to
show that our mapping language is able to express complex restructuring operations
in a data transformation, we use an example that transforms relational data into XML.
The relational schema is as in fig. 3 with the exception that we now assume that stu-
dents may study at multiple universities. To have a schema in 3NF, we add a relation
Studies with two foreign keys uni and id. The foreign key from the Student re-
lation is removed. On the target side, the data should be organized with students at the
top level, and the list of universities nested under each student. The mapping between
the updated relational and XML schemas is shown in fig. 5.

The source side is almost identical with the target side of the previous mapping: the
abstract functions f and g have been replaced with the abstract variables o1 and o2; a
variable o3 for the Studies relation and the corresponding av predicates have been
added. On the target side, we first generate an instance of the Student element; as
students are identified by their ID, the abstract function f has only i as argument. f ′(i)

140 D. Kensche et al.

∃f, f ′, g, g′, d ∀o1, o2, o3, u, s, i
inst(o1,University) ∧ inst(o2,Student), inst(o3,Studies)
av(o1,uname, u) ∧ av(o2,sname, s) ∧ av(o2,ID, i) ∧ av(o3,uni, u) ∧ av(o3,id, i) →

inst(f(i),Student) ∧ part(f(i),parentS , d()) ∧ part(f(i),childS , f ′(i)) ∧
av(f ′(i),sname, s) ∧ av(f ′(i),ID, i) ∧
inst(g(i, u),University) ∧ part(g(i, u),parentU , f ′(i)) ∧
part(g(i, u),childU , g′(i, u)) ∧ av(g′(i, u),uname, u)

Fig. 5. Mapping from relational data to XML

represents an instance of StudType2 for which we also define the attribute values
of sname and ID. Thus, if a student studies at more than one university and therefore
occurs multiple times in the result set of the source, only one element will be created for
that student and all universities will be correctly grouped under the Student element.

On the other hand, we must make sure that there is more than one University
element for each university, as the universities have to be repeated for each student.
This is guaranteed by using both identifiers (of the nesting element Student and the
nested element University, i and u) as arguments of the abstract function g. Finally,
we assign a value to the attribute uname of the instance g′(i, u) of UniType, similarly
as before for the instance of StudType.

Constructing Mappings: Our mappings have a rich expressivity, but are hard to un-
derstand in their formal representation, even for an information system developer who
is used to working with modeling and query languages. As mentioned above, GeRoMe
should not replace existing modeling languages, users will still use the modeling lan-
guage that fits best their needs. GeRoMe is intended as an internal metamodel for model
management applications. This applies also to the GeRoMe mappings, users will not de-
fine mappings using the SO tgds as defined above, rather they will use a user interface
in which they can define the mappings graphically.

As part of our model management system GeRoMeSuite [8], we are currently devel-
oping mapping editors for the various forms of mappings. In these mapping editors, the
models are visualized as trees (based on the hierarchy of associations and aggregations),
and the mapping can be defined by connecting elements of the trees. However, such a
visualization of models and mappings has limited expressivity (it roughly corresponds
to the path morphisms and tree schemas used in Rondo [13]) as not every model can
be easily visualized as a tree. Even an XML schema can break up the tree structure by
having references between complex types.

Our current design for an editor for extensional mappings also visualizes models as
trees. In addition, mappings as nested structures to represent their possibly complex
grouping and nesting conditions. Still, an appropriate representation of complex map-
pings is an active research area [18], and we have to evaluate whether our design will
be accepted by users.

2 The inst predicate has been omitted as it is redundant: f ′(i) is declared as child of a Student
element; thus, it is an instance of StudType according to the schema definition.

Generic Schema Mappings 141

4 Mapping Composition

Composition of mappings is required for many model management tasks [2]. In a data
integration system using the global-as-view (GAV) approach, a query posed to the in-
tegrated schema is rewritten by composing it with the mapping from the sources to
the integrated schema. Schema evolution is another application scenario: if a schema
evolves, the mappings to the schema can be maintained by composing them with an
“evolution” mapping between the old and the new schema.

According to [4], the composition of two mappings expressed as SO tgds can be
also expressed as SO tgd. In addition, the algorithm proposed in [4] guarantees, that
predicates in the composed SO tgd must appear in the two composing mappings. Thus,
the composition of two GeRoMe mappings is always definable by a GeRoMe mapping.
It is important that GeRoMe mappings are closed under composition, because otherwise
the Compose operator may not return a valid GeRoMe mapping.

In the following, we will first show the adaptation of the algorithm of [4] to GeRoMe,
which enables mappings between heterogeneous metamodels. In the second part of this
section, we address an inherent problem of the composition algorithm, namely that the
size of the composed mapping is exponential in the size of the input mappings. We
have developed some optimization techniques which reduce the size of the composed
mapping using the semantic information given in the mapping or model.

Composition Algorithm: The composition algorithm shown in fig. 6 takes two
GeRoMe mappings M12 and M23 as input. The aim is to replace predicates on the
left hand side (lhs) of Σ23, which refer to elements in S2, with predicates of the lhs of
Σ12, which refer only to elements in S1. As the first step, we rename the predicates in
such a way that the second argument (which is always a constant) becomes part of the

Input: Two GeRoMe mappings M12 = (S1,S2, Σ12) and M23 = (S2,S3, Σ23)
Output: A GeRoMe mapping M13 = (S1,S3, Σ13)

Initialization: Initialize S12 and S23 to be empty sets.
Normalization: Replace in Σ12 and Σ23 predicates P (x, c, y) (or P (x, c)) where P ∈

{inst, attr, av, part} with P.c(x, y) (or P.c(x)); replace implications in Σ12 of the form
φ → p1 ∧ . . . ∧ pn with a set of implications φ → p1, . . . , φ → pn. Put the resulting
implications into S12 and S23, respectively.

Composition: Repeat until all predicates on the lhs of implications in S23 do not refer to S2:
Let χ be an implication of the form ψ → φ ∈ S23 with a predicate P.c(y) in ψ and
φ1(x1) → P.c(t1), . . . , φn(xn) → P.c(tn) be all the implications in S12 with predicate
P.c on the rhs (x, y and ti being vectors of variables and terms, respectively). If there is
no such implication, remove χ from S23 and consider the next predicate. Remove χ from
S23. For each implication φi(xi) → P.c(ti), create a copy of this implication using new
variable names, and replace P.c(y) in ψ with φi(xi)∧θi where θi are the component-wise
equalities of y and ti and add the new implication to S23.

Remove Variables: Repeat until all variables originally from Σ23 are removed: For each im-
plication χ in S23, select an equality y = t introduced in the previous step and replace all
occurences of y in χ by t.

Create Result: Let S23 = {χ1, . . . , χr}. Replace the predicates with their original form (e.g.
P.c(x, y) with P (x, c, y)). Then, Σ13 = ∃g(∀z1χ1 ∧ . . . ∧ ∀zrχr) with g being the set
of function symbols appearing in S23 and zi being all the variables appearing in χi.

Fig. 6. Algorithm Compose

142 D. Kensche et al.

predicate name. This lets us avoid considering the constant arguments of a predicate
when we are looking for a “matching” predicate, we can just focus on the predicate
name. Then, we replace each implication in Σ12 with a set of implications which just
have one predicate on the right hand side (rhs). We put the normalized implications
from Σ12 with the updated predicate names into S12. For the implications in Σ23, we
just need to change the predicate names, and then we insert them into S23.

The next step performs the actual composition of the mappings. As long as we have
an implication in S23 with a predicate P.c(y) in the lhs that refers to S2, we replace it
with every lhs of a matching implication from S12. Moreover, we have to add a set of
equalities which reflect the unification of the predicates P.c(y) and P.c(ti).

During the composition step, the size of the resulting mapping may grow exponen-
tially. As a first step towards a simpler result, we remove in the next step the variables
which were originally in M23. This reduces the number of equalities in the mapping.
The final step creates the composed mapping as one formula from the set of implica-
tions S23. The following theorem states that the algorithm produces actually a correct
result. Due to space restrictions, we cannot show the proof of the theorem (the full proof
is given in [10]), it is based on the correctness of the composition algorithm in [4].

Theorem 3. Let M12 = (S1,S2, Σ12) and M23 = (S2,S3, Σ23) be two GeRoMe
mappings. Then the algorithm Compose(M12, M23) returns a GeRoMe mapping
M13 = (S1,S3, Σ13) such that M13 = M12 ◦ M23.

Semantic Optimization of the Composition Result: We realized that the composed
mapping has on the lhs many similar sets of predicates. The reason for this is that we
replace a predicate in S23 with a conjunction of predicates in S12 and the same set of
predicates in S12 may appear multiple times. Although the result is logically correct,
the predicates on the lhs of the composition seems to be duplicated. We show in the
following that both undesired implications and duplicated predicates can be removed.

A detailed inspection of our mapping definition reveals that only variables repre-
senting values correspond to values in an instance of the underlying model. All other
arguments are either constants which correspond to names in a model or terms which
correspond to abstract identifiers that identify GeRoMe objects. These abstract identi-
fiers and the functions that return an abstract identifier are interpreted only syntactically.
Thus, we are able to formulate the following conditions for abstract functions:

∀f∀g∀x∀y(f
= g) → f(x)
= g(y), f, g are abstract functions
∀x∀y(f(x) = f(y) → x = y), f is an abstract function

The first statement says that different abstract functions have different ranges. Using this
statement, we can remove implications which have equalities of the form f(x) = g(y)
on the lhs, because they never can become true. The second statement says that an
abstract function is a bijection, i.e. whenever two results of an abstract function are
equal, then the inputs are equal, too. This statement can be used to reduce the number
of predicates in the composed mapping, e.g. if f(o) = f(p) is contained in the lhs of
an implication, then we can infer that o = p and therefore replace all occurences of o
with p (or vice versa). This will produce identical predicates in the conjunction, dupli-
cates can then be removed without changing the logical meaning of the formula. Other

Generic Schema Mappings 143

optimizations use the constraint information of the model to reduce the complexity of
the composed mapping, e.g. keys or cardinality constraints.

5 Mapping Execution

In this section we first describe the architecture of our data translation tool before we
explain how we generate queries from a set of generic mappings and how we use these
queries to produce target data from source data.

Fig. 7 shows the architecture of our data translation tool. Given the mapping and the
source model as input, the code generator produces queries against the source schema.
An implementation of this component must be chosen, so that it produces queries in the
desired data manipulation language. In the same way, the target model code generator
produces updates from the mapping and the target GeRoMe model.

Given the generated queries and updates the query executor produces variable assign-
ments from the evaluation of the queries against the source data. The update executor
then receives these generic variable assignments as input and produces the target data.
Hence, components related to source and target respectively are only loosely coupled
to each other by the variable assignments whereas the query/update generator and the
executor components have to fit to each other.

Our query generation is based on the model transformations between native meta-
models and GeRoMe. We now exemplarily introduce our algorithm for generating
XQueries from our generic mappings (cf. fig. 8). However, our tool transforms data
arbitrarily between relational and XML schemas; these generation and execution com-
ponents can also be replaced by components that handle other metamodels (e.g. OWL
or UML).

The element hierarchy T describes the structure that is queried for, the condition set
P contains select and join conditions and the return set R assigns XQuery variables for
values of attributes and simple typed elements in the source side of the mapping. The
last step uses the computed data to produce the actual XQuery where fname will be
replaced with the actual XML file name when the query is executed.

We now generate an XQuery from the mapping in fig. 4 that can be used to query the
document in fig. 2. In fig. 4, we omitted the term specifying the document element for

GeRoMe
mapping

Source model
code generator

Target model
code generator

Queries for
the source

data

Updates
for the

target data

Source
data

Target
data

Source query
executor

Target update
executor

Variable
assignment

Source
GeRoMe Model

Target
GeRoMe Model

Fig. 7. The architecture of the data translation tool

144 D. Kensche et al.

Input: An implication χ in an SO tgd Σ with source schema σ
Output: A set of XQuery queries over σ.

Initialization: T = Open = Close = R = ∅
Find document variable: This is the only variable symbol S that occurs in a term of the form

inst(S,Schema) on the lhs of χ where Schema is the name of the schema element. Add
(S, “/”) as the root to T and add it to Open.

Construct element hierarchy T : Repeat the following until Open = ∅. Let (X, path) ∈
Open. For each subformula inst(Id, name) ∧ part(Id, ae1, X) ∧ part(Id, ae2, Y) on
the lhs of χ where Id, X, and Y are variable symbols, name, ae1 and ae2 are GeRoMe
element names, and there is no path′ with (Y, path′) ∈ Close, add (Y, path/name) to
Open and add it as a child to (X, path) in T with label name. Finally, remove (X, path)
from Open and add it to Close.

Construct return set R: For each term av(X, a, V) on the lhs of χ, where X , V are variable
symbols, a is a constant name of an attribute, and (X, path) ∈ T , add (V , “$X/@a”)
to R. For each term value(X, V) on the lhs of χ, where X , V are variable symbols and
(X, path) ∈ T , add (V , “$X/text()”) to R.

Construct condition set P : V1 = V2 on the lhs of χ with (V1, path1) ∈ R∧(V2, path2) ∈ R
specifies an explicit join condition. Add “path1 eq path2” to P . If (V, path1) ∈ R ∧
(V, path2) ∈ R this specifies an implicit join condition. Add “path1 eq path2” to P . For
each term value(V, c) on the lhs of χ, where c is a constant, add “V eq c” to P .

Produce XQuery: Let T = (doc, “/”)[(e1,1, p1,1, l1,1)[(e2,1, p2,1, l2,1)[. . .], . . . ,
(e2,k2 , p2,k2 , l2,k2)]] be the computed element tree, where (e, p, l)[. . . , (e′, p′, l′), . . .]
means (e′, p′) is a child of (e, p) with label l′ in T . Let (v1, path1), (v2, path2),
. . . , (vn, pathn) ∈ R, and p1,1, p2, . . . , pn ∈ P . The XQuery query for χ is:

for $e1,1 in fn:doc(fname)/l1
for $e2,1 in $e1,1/l2,1 ...
for $e2,k2 in $e1,1/l2,k2

for $e3,1 in $e2,i3,1 /l3,1 ...
where p1 and p2 and . . . and pn

return <result> < v1 >path1</v1 > . . . < vn >pathn</vn > </result>

Fig. 8. Algorithm XQueryGen

brevity and simplicity. Assume the lhs of the mapping contains a term inst(o0, Schema).
Then o0 is the variable referencing the document element. Therefore, we put (o0, /) as
the root into T and also into Open.

Now, we construct the element hierarchy T . For (o0, /) in Open the required pat-
tern is satisfied by the subformula inst(o1,University)∧part(o1 ,parentU , o0)∧
part(o1,childU , o2) We add (o2, /University) to Open and also add it to T as a
child of (o0, /) with label University. As no other subformula satisfies
the pattern, we remove (o0, /) from Open and add it to Close. We get Open =
{(o2, /University)}, T = (o0, /)[(o2, /University,University)] and
Close = {(o0, /)}. We repeat the step for (o2, /University). The result for
T after this step is (o0, /)[(o2, /University,University)[(o4, /University/
Student,Student)]]. The last iteration does not add any elements.

Three variables on the lhs of χ are assigned by the query, u, s and i. Accord-
ing to the rules described in the algorithm, we add (u, /University/@uname),
(s, /University/Student/@sname) and (i, /University/Student/@ID)
to the return set R. There are no join or select conditions in the mapping, therefore,
the condition set for this mapping remains empty. The assignments to the variables u,

Generic Schema Mappings 145

s and i that are returned by the query are used as input when executing the rhs of the
mapping. The XQuery generated from χ is:

for $o2 in fn:doc(fname)/University
for $o4 in $o2/Student

return <result>
<u>$o2/@uname</u> <s>$o4/@sname</s> <i>$o4/@ID</i>

</result>

6 Evaluation

Correctness and Performance: To evaluate mapping composition we used nine com-
position problems drawn from recent literature [4,12,14]. The original mappings had to
be translated manually into our representation before composing. The results of com-
position were logically equivalent to the documented results. The same set of problems
had been used to evaluate the performance of our implementation. As was proven in
[4] the computation time of composition may be exponential in the size of the input
mappings. Fig. 9 displays the time performance of our composition implementation.

NI12 MP23 IC TT(ms)
3 3 2 200
6 4 3 420
6 4 4 605
3 3 1 372
5 5 1 391
5 5 1 453
7 7 4 1324
15 6 99 16122
15 9 288 100170

Note: NI12: the number of implications in the nor-
malized S12

MP23: the maximum number of predicates in
each implication in Σ23

IC: the number of implications in the un-
optimized composition

TT : the total run time of running the compo-
sition algorithm 200 times.

Fig. 9. Time performance of the composition algorithm

The upper bound of the number of implications in the non-optimized composition
is O(

∑
i(I

Pi)), where I is the number of implications in the normalized Σ12 and Pi

is the number of source predicates in each implication in Σ23. In the second step of
our composition algorithm, a predicate on the left hand side of χ can have at most I
matched implications in S23. Since only one implication is generated for each matched
implication, after replacing the predicate, the number of implications in S23 will in-
crease at most at the factor of I . Repeat the same reasoning for every source predicate
in Σ23 will lead to the stated upper bound. In table 9, we listed, for each test case, the
I , the maximum of Pi, the size of the un-optimized composition and its running time.
It can be seen that the execution time may indeed be exponential in the size of input
mappings. Even though composing mappings may be expensive, the performance is
still reasonable. It takes about 80 milliseconds to run a test that generates in total 99
implications and about half a second for a test which generates 288 implications.

146 D. Kensche et al.

To evaluate mapping execution we defined seven test cases between relational data-
bases and XML documents. The performance was linear in the size of the output and
thus, our framework does not impose a significant overhead to data exchange tasks.
These tests included also executing the composition of two mappings from a relational
to an XML Schema and back. The result was an identity mapping and execution of the
optimized result was about twice as fast as subsequent execution of the mappings. Our
tests showed that our mapping execution yields the desired results satisfying both, the
logical formalisms and the grouping semantics specified in the mappings. All tests were
run on a Windows XP machine with a P4 2.4GHz CPU and 512MB memory.

Comparison with Other Mapping Representations: Source-to-target tuple-
generating-dependencies (s-t tgds) and GLAV assertions are used to specify mappings
between relational schemas. They are strict subsets of our adaptation of SO tgds. Every
s-t tgd has a corresponding GeRoMe mapping but not vice versa. GeRoMe mappings
can express nested data structures, e.g. XML data, while s-t tgds can not.

Path-conjunctive constraints [15] are an extension of s-t tdgs for dealing with nested
schemas. However, they may suffer from several problems [5]. First, the same set of
paths may be duplicated in many formulas which induces an extra overhead on map-
ping execution. Second, grouping conditions cannot be specified, leading to incorrect
grouping of data. Nested mappings [5] extend path-conjunctive constraints to address
the above problems. Nested mappings merge formulas sharing the same set of high level
paths into one formula, which causes mapping execution to generate less redundancy in
the target. In addition, nested mappings provide a syntax to specify grouping conditions.
Compared to nested mappings, GeRoMe mappings are also able to handle nested data
and specify arbitrary grouping conditions for elements. Furthermore, the language of
SO tgds is a superset of the language of nested mappings [5]. Since every SO tgd speci-
fied for relational schemas can be transformed into a corresponding GeRoMe mapping,
our mapping language is more expressive than the nested mapping language.

Like path-conjunctive constraints, a GeRoMe mapping cannot be nested into another
GeRoMe mapping. Therefore, a common high-level context has to be repeated in dif-
ferent formulas of a GeRoMe mapping. Again, this leads to less efficient execution.
However, duplication in target data is overcome by grouping conditions. We may also
borrow from the syntax of nested mappings to allow nested mapping definitions.

7 Conclusion

In this paper we introduced a rich mapping representation for mappings between models
given in our Generic Role-based Metamodel GeRoMe [7]. Our mapping language is
closed under composition as it is based on second order tuple-generating dependencies
[4]. The mapping language is generic as it can be used to specify mappings between
any two models represented in our generic metamodel. Moreover, mappings can be
formulated between semistructured models such as XML schemas and are not restricted
to flat models like relational schemas. Another feature of the proposed language is that
it allows for grouping conditions that enable intensive restructuring of data, a feature
also supported by nested mappings [5] which are not as expressive as SO tgds.

Generic Schema Mappings 147

To verify the correctness and usefulness of our mapping representation we imple-
mented an adapted version of the composition algorithm for second order
tuple-generating dependencies [4]. Furthermore, we developed a tool that exports our
mappings to queries and updates in the required data manipulation language and then
uses them for data translation. As an example, we showed an algorithm that translates
the lhs of a generic mapping to a query in XQuery. The components for mapping export
and execution can be arbitrarily replaced by implementations for the required meta-
model. The evaluation showed that both, mapping composition and mapping execution,
yield the desired results with a reasonable time performance.

In the future we will develop techniques for visualizing our mappings with the goal to
implement a graphical editor for generic, composable, structured extensional mappings.
This editor will be integrated into our holistic model management system GeRoMeSuite
[8]. We will also investigate the relationship between our extensional mappings and
intensional mappings that are used for schema integration [16].

Acknowledgements. The work is supported by the Research Cluster on Ultra High-
Speed Mobile Information and Communcation UMIC (www.umic.rwth-aachen.de).

References

1. Atzeni, P., Cappellari, P., Bernstein, P.A.: Model-independent schema and data translation. In
EDBT. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Boehm,
K., Kemper, A., Grust, T., Boehm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 368–385.
Springer, Heidelberg (2006)

2. Bernstein, P.A., Green, T.J., Melnik, S., Nash, A.: Implementing mapping composition. In:
Proc. VLDB 2006, Seoul, pp. 55–66 (2006)

3. Bernstein, P.A., Halevy, A.Y., Pottinger, R.: A vision for management of complex models.
SIGMOD Record 29(4), 55–63 (2000)

4. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema mappings: Second-order
dependencies to the rescue. ACM Trans. Database Syst. 30(4), 994–1055 (2005)

5. Fuxman, A., Hernández, M.A., Ho, C.T.H., Miller, R.J., Papotti, P., Popa, L.: Nested map-
pings: Schema mapping reloaded. In: Proc. VLDB 2006, Seoul, pp. 67–78 (2006)

6. Hernández, M.A., Miller, R.J., Haas, L.M.: Clio: A semi-automatic tool for schema mapping.
In: Proc. ACM SIGMOD, p. 607. ACM Press, New York (2001)

7. Kensche, D., Quix, C., Chatti, M.A., Jarke, M.: GeRoMe: A generic role based metamodel
for model management. Journal on Data Semantics VIII, 82–117 (2007)

8. Kensche, D., Quix, C., Li, X., Li, Y.: GeRoMeSuite: A system for holistic generic model
management. In: Proc. 33rd Int. Conf. on Very Large Data Bases (to appear 2007)

9. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233–246 (2002)
10. Li, Y.: Composition of mappings for a generic meta model. Master’s thesis, RWTH Aachen

University (2007)
11. Madhavan, J., Halevy, A.Y.: Composing mappings among data sources. In: Proc. VLDB,

pp. 572–583. Morgan Kaufmann, San Francisco (2003)
12. Melnik, S., Bernstein, P.A., Halevy, A.Y., Rahm, E.: Supporting executable mappings in

model management. In: Proc. SIGMOD Conf, pp. 167–178. ACM Press, New York (2005)
13. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: A programming platform for generic model

management. In: Proc. SIGMOD, pp. 193–204. ACM Press, New York (2003)

www.umic.rwth-aachen.de

148 D. Kensche et al.

14. Nash, A., Bernstein, P.A., Melnik, S.: Composition of mappings given by embedded depen-
dencies. In: Li, C. (ed.) PODS, pp. 172–183. ACM Press, New York (2005)

15. Popa, L., Tannen, V.: An equational chase for path-conjunctive queries, constraints, and
views. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 39–57. Springer,
Heidelberg (1998)

16. Quix, C., Kensche, D., Li, X.: Generic schema merging. In: Krogstie, J., Opdahl, A.,
Sindre, G. (eds.) CAiSE 2007. LNCS, pp. 127–141. Springer, Heidelberg (2007)

17. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB
Journal 10(4), 334–350 (2001)

18. Robertson, G.G., Czerwinski, M.P., Churchill, J.E.: Visualization of mappings between
schemas. In: Proc. SIGCHI, pp. 431–439 (2005)

Relational Data Tailoring Through View Composition�

Cristiana Bolchini, Elisa Quintarelli, and Rosalba Rossato

Dipartimento di Elettronica e Informazione – Politecnico di Milano
Piazza Leonardo da Vinci, 32 – 20133 Milano, Italy

{bolchini,quintare,rossato}@elet.polimi.it

Abstract. This paper presents a methodology to derive views over a relational
database by applying a sequence of appropriately defined operations to the global
schema. Such tailoring and composition process aims at offering personalized
views over the database schema, so as to improve its ability to support the new
needs of customers, support evolutionary software development, and fix existing
legacy database design problems. The process is driven by the designer’s knowl-
edge of the possible operational contexts, in terms of the various dimensions that
contribute to determine which portions of the global schema are relevant with
respect to the different actors and situations. We formally introduce some opera-
tors, defined on sets of relations, which tailor the schema and combine the inter-
mediate views to derive different final views, suitable for the different envisioned
situations. The application to a case study is also presented, to better clarify the
proposed approach.

1 Introduction

The development of complex systems dealing with huge amounts of information re-
quires a careful design phase, where all actors need be identified together with all the
elements that may determine what portion of the entire data they should have access to
in the various situations. Actually, this is not so much a matter of privacy and security,
as of efficiency and usability, when too much information may cause confusion rather
than knowledge.

In the relational scenario, the above problem consists in designing appropriate views
to provide different, selected data access to portions of the entire data schema. Yet,
if the number of elements, or dimensions, determining the subset of data interesting
for each given context, is high, the designer’s task may be quite complex, since all
possible contexts for a target scenario have to be examined and, for each one of them,
the associated view has to be defined.

The aim of our proposal is the definition of a systematic methodology that first sup-
ports the designer in identifying, for a given application scenario, the dimensions for
characterizing the context and their possible values, and then, once the designer has
identified partial views with respect to such context dimensions, combines them to pro-
duce the final views, one for each possible context. We refer to this view production
process as schema tailoring, since it amounts to cutting out the appropriate data portion
which fits each possible context.

� This research is partially supported by the MIUR projects ESTEEM and ARTDECO.

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 149–164, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

150 C. Bolchini, E. Quintarelli, and R. Rossato

Our claim is that, even for small application scenarios (such as the running example
introduced below), where the number of dimensions driving the tailoring of the schema
is quite small, the resulting number of possible contexts is rather high: as a consequence,
the adoption of the proposed approach not only helps the designer consider all possi-
ble situations, with no omission, but also automatically performs the (computationally
significant) view generation task.

The rest of this paper is organized as follows. Section 2 presents the overall scenario,
together with the motivations of our work and its contribution with respect to related
studies. Section 3 introduces the view definition methodology and the necessary oper-
ators supporting view composition. The application to a real example is discussed in
order to validate the approach and its feasibility. Future work and concluding remarks
are reported in the last section.

2 Background, Motivations and Rationale

The proposed methodology aims at providing the database designer with a systematic
approach to view design, in a scenario where different database users, situations and
other elements (altogether called dimensions) affect the choice of the subset of data to
be considered interesting and made available to such actors.

In order to define the methodology, three elements are necessary:

a) a model expressing the dimensions, and their values, driving schema tailoring. The
model should be able to capture the dimensions as well as all the possible contexts
deriving from their instantiations;

b) a strategy for identifying for each dimension, independently of the others, a relevant
portion of data on the entire schema – the so-called partial views; and

c) a set of operators for combining the partial views to derive the final view(s) associ-
ated with each context.

In previous work [2,4], we have presented a context model, called Context Dimension
Tree, which takes care of point (a), whereas in this paper we focus on the last two
points, where the Context Dimension Tree is used to create and compose views for data
tailoring purposes.

Let us consider the case of a real estate agency storing data related to its agents,
estates and owners and wanting to support the agents in their work (in office and also
on-site, when they take prospective clients to visit the properties), and to promote its
business on the Web. The agency database stores also information on the closed con-
tracts (rents and sales), to provide the supervisor with an overview of the situation.
The scenario, although simple, has four different actors: supervisors, agents, buyers
and sellers. Supervisors must have a global view of the business, in terms of the estates
the agency deals with, and of the agents’ work. Agents are in charge of the visits and
of acquiring new estates for the agency portfolio. The corporate database is also the
source for a Web site to promote business, and views need be designed to provide all
and only the necessary data. In this paper we base our considerations on the relational
data model, thus the real estate database is composed by the tables reported in Fig. 1.

Relational Data Tailoring Through View Composition 151

OWNER(IdOwner, Name, Surname, Type, Address,City, PhoneNumber)
ESTATE(IdEstate, IdOwner, Category, Area, City, Province, RoomsNumber,

Bedrooms, Garage, SquareMeters, Sheet, CadastralMap)
CUSTOMER(IdCustomer, Name, Surname, Type, Budget, Address, City, PhoneNum)
AGENT(IdAgent, Name, Surname, Office, Address,City,Phone)
AGENDA(IdAgent, Data, Hour, IdEstate, ClientName)
VISIT(IdEstate, IdAgent, IdCustomer, Date, ViewDuration)
SALE(IdEstate, IdAgent, IdCustomer, Date, AgreePrice, Status)
RENT(IdEstate, IdAgent, IdCustomer, Date, RatePrice, Status, Duration)
PICTURE(IdPicture, IdEstate, Date, Description, FileName)

Fig. 1. The database schema

su
pe
rv
is
or

ag
_i
d bu
ye
r

role situation

in
_o
ffi
ce

on
_s
ite

time

to
da
y

interval

t_
ra
ng
e_
va
r

interest-topic

estates

agents visits

typ
e

co
m
m
er
ci
al

re
si
de
nt
ia
l

re
nt

sa
le

n_bedrooms

va
l

ca
te
go
ry

pr
ic
e_
ra
ng
e

p_
ra
ng
e_
va
r

zo
ne
_i
d

se
l_
id zone

agent seller

Fig. 2. The Context Dimension Tree

The first step of our approach consists in specifying the context dimensions charac-
terizing the possible contexts in this application scenario, also listing the expected val-
ues, according to the methodology presented in [4]. More precisely, our context model,
the Context Dimension Tree, is an extension of the context model presented in [6], and
is used to systematically describe the user needs, and to capture the context the user is
acting in. It plays a fundamental role in tailoring the target application data according to
the user information needs. Once the possible contexts have been designed, each must
be connected with the corresponding view definition. In this way, when the context be-
comes current, the view is computed and delivered to the user. The various ways to
operate such design-time connection are the subject of this paper.

Fig. 2 shows the Context Dimension Tree we have elaborated for our real estate
agency, better explained below.

2.1 Background

The Context Dimension Tree is a tree T = 〈N,E,r〉, whose nodes are the context di-
mensions and their values. The set of nodes N is partitioned into the subsets ND, NC and
NA. The two main types of nodes are: dimension nodes, ND, black, and concept nodes,
NC, white. NA is the set of attributes, whose explanation we postpone for the moment.

152 C. Bolchini, E. Quintarelli, and R. Rossato

The root’s children are the top dimensions, which capture the different characteristics
of the users and of the context they are acting in; in our example, the top dimensions
are the database user’s role, his or her situation, the current interest topic and the time
span of interest. A dimension value can be further analyzed with respect to different
viewpoints (sub-dimensions), generating a subtree in its turn. For example, the interest
topic “estates” can be analyzed w.r.t. the price range, the category, the business type,
the zone and the number of bedrooms.

The root r of the tree is a concept node: it models all the possible contexts, thus
represents the entire dataset, before tailoring.

The edge set E is partitioned into the two subsets ER and EA: ER contains sub-element
of arcs, whereas EA contains attribute of arcs.

Coherently with the meaning of dimension and concept nodes, each “generation”
contains nodes of the same color, and colors are alternated while descending the tree:
∀e = 〈n,m〉 ∈ ER, either n ∈ ND ∧ m ∈ NC or n ∈ NC ∧ m ∈ ND; i.e., a dimension node
has concept nodes as children and a concept node has dimension nodes as children.

We consider now attribute nodes: ∀n ∈ NA,∀e = 〈m,n〉 ∈ EA, m ∈ ND ∪NC; i.e., the
parent of an attribute node is either a dimension node or a concept node. In the first
case, the attribute represents a parameter, while in the second case it represents a vari-
able. Consider the sub-dimensions of estates: while category and type have white
children (i.e., their values), price range only features a small square, an em attribute
node; this attribute is a selection parameter whose instances represent the possible val-
ues of the price range dimension, e.g., a price interval. Thus, dimension branching
can be represented in both ways: either by explicitly drawing the values as white nodes,
or by indicating a parameter whose instances are the dimension values. This does not
modify the expressive power of the model: rather, it makes it more readable, and more
usable for the designer.

Also white nodes may feature a variable indicating how to select a specific set of
data instances. As an example, consider the ag id variable associated with the agent
role: it is an identifier used, at run-time, to select the data related to a specific agent.

Attribute nodes are leaves, i.e., ∀n ∈ NA, ¬∃m s.t.〈n,m〉 ∈ E . Moreover, according
to the meaning of attribute nodes, each attribute node is an only child: ∀n ∈ NA, ∀e =
〈m,n〉 ∈ EA, if ∃e1 = 〈m,n1〉 ∈ E then n = n1.

Dimension nodes without concept children must have an attribute child, i.e., ∀n ∈
ND such that ¬∃e = 〈n,m〉 ∈ ER then ∃e1 = 〈n,m1〉 ∈ EA. Indeed, black nodes must
necessarily feature either white children or the parameter node, whose values are those
of the corresponding subdimension. Thus, leaf nodes can only be either attribute nodes
or white nodes.

Finally, in order to simplify the discussion, we also introduce, although redundant,
two more sets: ND, which identifies dimension nodes that have an attribute child (i.e.,
ND = {n ∈ ND|
 ∃e = 〈n,m〉 ∈ ER}); context elements c are in NC ∪ND, which identifies
either a concept node (white node), such as the supervisor, or a dimension node (black
node) with a parameter (such as price range($p range var)).

The tree is formalized in [2], and can be specified in several ways; in particular we
propose an ontological representation in the OWL language [12], and an XML repre-
sentation based on a DTD [5].

Relational Data Tailoring Through View Composition 153

The complex structure originating from the composition of the context elements of a
Context Dimension Tree is called a context or configuration, and determines a portion
of the entire data set, i.e., a chunk, specified at design-time, to be selected later, at run-
time, when the corresponding context becomes active. A context is expressed as a tuple
of context elements, each of them described with the form

dim name : value

where dim name is the name of a (sub-)dimension, and value is a value for that dimen-
sion. The values for each context element may be at any level in the tree, thus allowing
for different levels of granularity. Note that sibling white nodes are mutually exclusive
since they represent orthogonal concepts, while sibling black nodes represent the differ-
ent (sub-)dimensions which define a concept. Therefore, when building a configuration,
for each top dimension, at each level, only one white node among each set of siblings,
and any number of black siblings may be included.

Note that a context can lack some dimension value(s): this means that those dimen-
sions are not taken into account to tailor data, i.e., the view corresponding to that con-
figuration does not filter the data for these dimension(s).

Let us consider the situation of an agent ($ag id=“XYZ”) ready to take prospec-
tive buyer clients to visit the residential estates properties located in the “Piola” area
($zone id=“Piola”). The current context (or configuration) C is composed by the
nodes

〈 role : agent(“XYZ”),

category : residential,

type : sale,

zone : zone(“Piola”),

situation : on site,

time : today(getdate())〉

wherefrom we have to derive the specification of the information related to the interest-
ing properties.

Such configuration must be associated at design time with the (definition of the)
piece of data which must become available when C occurs, and the same must be done
for each possible (and reasonable) configuration. Note that the instantiation of the zone
is based on the value “Piola”, appropriately fed to the system at run time: this is an
example of use of a variable, to be suitably used by the run-time system.

The designer can also express constraints or preferences on the possible combina-
tions of the context elements; in fact, not all of them make sense for a given scenario,
thus, if we combinatorially generate the complete set, many configurations must be dis-
carded. Hence, the tree model is enriched by introducing forbid constraints: they allow
the context designer to specify configurations that are not significant, thus discarding
those that would represent semantically meaningless context situations or would be ir-
relevant for the application. For example, such a constraint can be established to forbid
that the buyer role’s context contains interest topics related to the agents’ administra-
tive data.

154 C. Bolchini, E. Quintarelli, and R. Rossato

The introduction of these constraints, not further discussed here, allows the designer
to represent with the Context Dimension Tree all and only the significant contexts for
the given application scenario.

2.2 Goal and Contributions

Once the Context Dimension Tree has been designed, the subsequent work of the de-
signer can take two different directions, one more time-consuming but allowing for a
more precise view definition, the second one more automatic but more prone to possible
errors, thus to be verified a-posteriori.

When the first strategy is adopted, once the configurations are combinatorially derived
the designer associates each of them with the corresponding portion of the information
domain schema. This is called configuration-basedmapping, and can be done by directly
writing a query in the language supported by the underlying database, or by selecting
these portions by means of a graphical interface which will derive the corresponding
view. This process is already supported by a tool we have developed [3]; however, as it
can be expected, even after excluding the meaningless configurations by means of the ap-
propriate constraints, a medium-size Context Dimension Tree originates a huge number
of configurations (e.g., in our running example there are 816 significant contexts), thus
the task of associating each significant context with its view is unpractical. Moreover,
if the context model changes, e.g., if a new concept is inserted, a high number of new
configurations will have to be generated from its combination with the other concepts,
and the designer will have to redefine all the mappings for these. Similarly, also a change
in the underlying database schema will require a complete revision of all derived views.

To overcome the limitations of this first approach, in this work we formalize a
compositional strategy, called node-based mapping, whereby the designer selects the
schema portion to be associated with each context element and then the system will
combine them within the configurations. In this paper we first define the possible poli-
cies to associate schema portions with context elements, then introduce the appropriate
logical operators to derive the view associated with a configuration. Different combi-
nation policies will also be presented, involving the use of proper operators, such as
intersection or union of schemata and instances, to produce the final result.

The proposed approach to relational data tailoring taking into account all these as-
pects has been implemented in another tool we developed, supporting the user in all
steps of the methodology.

2.3 Related Work

In the past years, the view definition process has been exhaustively investigated in the
database literature; the first models and view-design methodologies were for relational
databases [8].

When focusing on the relational model of data, a few solutions have been presented
to introduce the notion of context in the data being modeled, by means of additional
attributes explicitly defining the context (e.g., space and time characteristics) the data
belongs to.

In [15] the authors present a Context Relational Model as an extension of the rela-
tional one: the notion of context is treated as a first-class citizen that must be modeled

Relational Data Tailoring Through View Composition 155

and can be queried by using standard SQL expressions. A lot of attention is devoted to
the investigation of instance changes on the basis of context dimension values. This is
a significant difference with respect to our approach, where the context model is aimed
at data tailoring, that is the extraction of the relevant portion of a relational schema for
a given context.

In [16] the authors introduce a context-aware system that uses context, described as
a finite set of context parameters, to provide relevant information and/or services to its
users. The proposed system supports preference queries whose results depend on con-
text. Users express their basic preferences by associating a degree of interest between
attribute values and instances of a context parameter; basic preferences are combined to
compute aggregate preferences, that reflect the users’ selection with respect to a more
complex notion of context. The approach is more focused on personalization of query
answering, however, the context-dependent view definition process is not performed at
design time, but is guided by the available user’s preferences.

The success of XML has motivated, in the recent years, the necessity of proposals
that are independent of the underlying data model: the problem of view definition for
XML has been formalized in [1,7], and some other works in the XML area are [10,20].
Some other view models based on ontologies have been proposed in [17,18] in the
Semantic Web Area.

All the above cited models follow the classical notion of view extraction process;
thus, the state-of-the-art in view design needs to be extended to consider also user’s
activity, tasks, and intentions: the user’s context.

In [9,13,14,19] the authors propose formal frameworks for specifically addressing
the problem of view design for XML and ontological data sources, guided by a notion
of context; in [14] some conceptual operators are formalized for constructing concep-
tual context dependent views on XML data; the notion of context is related to facts
of data warehouses and the operators extract information related to a single specific
fact, without combining different views. In our opinion, the notion of context we use in
this paper is much more articulated (mutual exclusive and orthogonal dimensions are
modeled) and thus, we need to define operators both to extract and to combine partial
views; the composition step is required to obtain views suitable to represent the relevant
portion of data for a notion of context that depends on more than one perspective.

3 View Definition

In this section we describe the way to derive a view for each possible context, by starting
from the representation of the application context by means of a Context Dimension
Tree and by adopting a node-based mapping strategy. The process is composed by two
main steps, detailed in the rest of the section:

– Relevant area assignment: a partial view, expressed as a set of relational algebra
expressions, is associated with each context element;

– View composition by algebraic operators: the previously defined partial views, as-
sociated with the context elements in a configuration, are properly combined to
automatically obtain a final view defining all the information relevant for that con-
figuration.

156 C. Bolchini, E. Quintarelli, and R. Rossato

3.1 Relevant Area Assignment

In this section we formalize the way to associate a partial view with each context ele-
ment c (c ∈ NC ∪ND). In this step, the designer annotates the Context Dimension Tree
by labeling each context element with the partial view assigned to it via the mapping

R el : NC ∪ND →℘(V) (1)

where V is the set of views on the global database, and each partial view V ∈ ℘(V)
is a set of relational algebra expressions ei, each one of them recursively defined as
follows:

ei
def= R j|πatt(ei)|σθ(ei)|ei �θ e j|ei ��θ e j (2)

where R j is a relation belonging to the global schema, and att and θ are shorthands to
denote a set of attributes and a boolean condition, respectively.

Relevant Area Policies
When tailoring the relevant area (partial view) for a given context element c, two poli-
cies have been identified:

a) Maximal relevant area: the partial view V for c contains all the schema portions
that might be related to that element. For example, the maximal relevant area for
the estate would be

R el(estate) = {ESTATE,OWNER,VISIT,SALES,RENT,AGENDA,PICTURE}

thus, the partial view associated with the estate element includes all the informa-
tion that is related, in some way, to estates; that is, besides the ESTATE and PIC-
TURE tables, which contain all and only information on the estates, the view also
contains all the further information related to properties, including the OWNER,
VISIT, SALES, RENT, and AGENDA tables.

b) Minimal relevant area: the partial view V of a given context element c contains
only the portions of the global schema that are strictly related to c.
For example, for the estate interest topic, the minimal relevant area would be

R el(estate) = {ESTATE,PICTURE}

which only includes tables ESTATE and PICTURE.

Independently of the adopted policy, an important consideration on the relationships
among partial views associated with context elements must be highlighted. More pre-
cisely, the hierarchical structure of the Context Dimension Tree has been designed with
the aim of increasing the detail level adopted to select data while descending the sub-
tree related to each context dimension. Indeed, while descending a sub-tree rooted in a
dimension, we add details in specifying how to use that dimension to tailor data. Thus,
in our opinion it is desirable that the partial view for a node n contain the partial view of
each descendant m of n. We say that a node n is more abstract than m, and write n ≺ m,
if and only if m ∈ Descendant(n).

Relational Data Tailoring Through View Composition 157

Notation. Given a generic relation R, we denote with Sch(R) its schema, i.e., its name
and the set of its attributes. Moreover, given two relations Ri and R j, we say that Sch(Ri)
is a sub-schema of Sch(R j), and write Sch(Ri) ⊆ Sch(R j), if and only if the attributes
of Ri are a (sub-)set of the attributes of R j.

The containment relationship between partial views is defined as follows:

Definition 1. Let w and k be context elements and R el(w), R el(k) the corresponding
partial views. R el(w) ⊆ R el(k) if and only if:

∀Ri ∈ R el(w)∃R j ∈ R el(k) s.t. Sch(Ri) ⊆ Sch(R j) (3)

Based on the philosophy of the Context Dimension Tree and its hierarchical structure
to support a refinement of the tailoring criteria as the depth of the tree increases, we
introduce the following assumption, used throughout this paper.

Assumption 1. For each pair of context elements n and m in a Context Dimension Tree,
if n ≺ m then R el(n) ⊇ R el(m).

To satisfy Assumption 1, given two context elements n and m in a Context Dimension
Tree such that n ≺ m, and supposing the designer has set R el(n) = {R1, . . . ,Rk}, then
each relation Si in R el(m) = {S1, . . . ,St}, with t ≤ k, is recursively defined as follows:

Si
def= R j|πatt(Si)|σθSi|Si �θ S j|Si �θ R (4)

where R j ∈ R el(n), and R is a relation of the global database.

Example 1. Let us now explain our assumption about containment of partial views re-
lated to two context elements, one element a descendant of the other. The partial view
for the estate interest-topic is a view containing all the information available in the
database regarding properties and related information. Formally, using the maximal area
policy, we have:

R el(estate) = {ESTATE,OWNER,VISIT,SALES,RENT,AGENDA,PICTURE}
The partial view for the residential category is a set of views further restricting
R el(estate) only to information about the residential estates:

R el(residential)={σCategory=“Residential”ESTATE,OWNER�(σCategory=“Residential”ESTATE),

VISIT � (σCategory=“Residential”ESTATE),SALE � (σCategory=“Residential”ESTATE),

RENT � (σCategory=“Residential”ESTATE),AGENDA � (σCategory=“Residential”ESTATE),

PICTURE � (σCategory=“Residential”ESTATE)} �

Context Dimension Tree Traversal During Relevant Area Assignment
In our opinion and experience, the maximal area policy is intended to assign the widest
possible view for each context element of the Context Dimension Tree; consequently,
it is more natural for the designer, once this policy is selected, to perform the relevant
area assignment phase by navigating the Context Dimension Tree top-down (from the
root to the leaves). This actually means that the view for the root node is the entire

158 C. Bolchini, E. Quintarelli, and R. Rossato

database, and the partial view for a node m is defined by restricting the partial view
of its nearest white ancestor. Thus, this phase is performed by navigating the Context
Dimension Tree top-down and by specifying for each node m a view (R el(m)) on the
(previously defined) view (R el(n)) of its parent n, according to the recursive definition
reported in Equation 4.

On the contrary, the minimal area policy should be used when the designer prefers to
specify more detailed views, i.e., the minimal partial view, for each context element of
the Context Dimension Tree; thus, when this policy has been chosen, in order to be ad-
herent with the spirit of the Context Dimension Tree, it is recommended to perform the
relevant area assignment phase by navigating the Context Dimension Tree bottom-up.
This means that the partial views are defined by starting from the leaf context elements
and the view of a non-leaf node can be obtained by composing the partial views associ-
ated with its children.

The composition is obtained by using the double-union operator (introduced later
in the paper) and possibly including additional portions of the global database that
the designer considers useful for the more general (non-leaf) context element. For ex-
ample, when using the minimal policy, R el(estates) can be obtained by combining
R el(price range), R el(zone), R el(category), R el(type), and R el(n bedrooms).

In the node-based mapping approach, whose dynamics is shown in Fig. 3, once each
context element has an associated partial view (Relevant Area Assignment Phase of
Fig. 3), the next step consists in automatically composing for each configuration its final

Global DatabaseContext Dimension Tree
Table1 Table2 Table3

Table4 Table5

A
pp

lic
at

io
n

D
es

ig
n

P
ha

se
R

el
ev

an
tA

re
a

A
ss

ig
nm

en
t P

ha
se

Table1 Table2

Table4 Table5

Table1 Table2 Table3

Table4 Table5

V
ie

w
 C

om
po

si
tio

n
P

ha
se

partial view for
context element ce1

partial view for
context element ce2

partial view for
context element ce3

partial view for
context element ce4

ce1 ce2

ce3
ce4

(Context)
Configuration

Table1 Table2

Table4

logical operators
for view composition

Table1 Table3

Table4

Table2 Table1 Table2 Table3

Table4

, , , , ,

Fig. 3. The node-based mapping strategy

Relational Data Tailoring Through View Composition 159

view, computed as a combination of the partial views corresponding to each context
element in the configuration (View Composition Phase of Fig. 3). The combination is
performed by means of opportunely defined operators acting on sets of views.

This node-based mapping approach is more efficient than the configuration-based
mapping previously developed, yet it is less precise in the definition of the final view
associated with a configuration. Thus, we also consider, although not further discussed
here, the possibility to integrate additional information in the resulting view, should the
designer deem the automatic procedure to have excluded some relevant information.

Example 2. Let us assume the designer has mapped the buyer role to a view describing
both commercial and residential flats and houses, that is, the ESTATE table deprived of
the IdOwner and CadastralMap attributes. Formally:

R el(buyer) = {ΠZ ESTATE,PICTURE}

where

Z={IdEstate,Category,Area,City,Province,RoomsNumber,Bedrooms,Garage,SquareMeters}.
The residential category has a partial view describing residential flats and houses,

that is:

R el(residential)={σCategory=“Residential”ESTATE, PICTURE�(σCategory=“Residential”ESTATE)}

The view for the configuration C = 〈role : buyer,category : residential〉 is ob-
tained by applying a suitable operator for view composition between R el(buyer) and
R el(residential). �

We have defined two possible operators for view composition, based on the union and
the intersection relational algebra operators, discussed in the next section.

3.2 Logical Operators for View Composition

The context-defined views on a relational database may be written by using relational
algebra or, equivalently, in SQL. In order to compose different partial views, and au-
tomatically gather all and only the information of interest with respect to a specific
context, we need to introduce a suite of new algebraic operators which work on sets of
relations. These operators combine tuples of relations selected by the designer during
the partial views definition; therefore, in order to maintain the identity of each tuple
during manipulation, we include for each relation in a partial view, its primary key at-
tribute(s). Let A and B be two sets of relations, and SA and SB the corresponding sets
of relational schemata.

Double Union Operator: The double union A � B between two set of relations A
and B returns the union of (1) the set of all relations Ri whose schema is in (SA −
SB)

⋃
(SB − SA) and (2) a sort of intersection between RA and RB for each pair of

relations RA ∈ A and RB ∈ B , having a common sub-schema. In this way we preserve
selection conditions which have possibly been applied on the same tables in the defini-
tion phase of both A and B , as we will prove in Theorem 1. Formally:

160 C. Bolchini, E. Quintarelli, and R. Rossato

Definition 2. Let A and B be sets of relations.

A �B =

{

R

∣
∣
∣
∣
∣

(R ∈ A ∧ ¬∃R′ ∈ B, Sch(R)∩Sch(R′)
= /0) ∨
(R ∈ B ∧ ¬∃R′ ∈ A, Sch(R)∩Sch(R′)
= /0) ∨
(R = πS(RA)∩πS(RB), RA ∈ A, RB ∈ B,S = Sch(RA)∩Sch(RB)
= /0)

}

According to its formal definition, the Double Union Operator is commutative and as-
sociative.

Property 1. Let A and B be two sets of relations. For each pair of relations RA ∈ A and
RB ∈ B such that RA = ΠZA(σθA(R)) and RB = ΠZB(σθB(R)), with R a relation obtained
from the global database, ZA ⊆ Sch(R), ZB ⊆ Sch(R), the selection conditions θA and
θB are preserved by the application of A �B .

Proof. RA and RB are obtained by considering only those tuples of R that satisfy the
selection conditions θA and θB, restricted on the sub-schemata ZA and ZB, respectively.
Let Z = ZA ∩ ZB be the (possibly empty) common sub-schema of RA and RB; then,
according to the definition of �, the relation Y , defined as follows, belongs to A �B :

Y = πZ(RA) ∩ πZ(RB)

= πZ(πZA(σθA
(R))) ∩ πZ(πZB(σθB

(R)))

By starting from the fact that Z ⊆ ZA, Z ⊆ ZB and according to the known equivalence
transformation between relational algebra expressions, we can conclude that

Y = πZ(σθA ∧ θB(R)) ∈ A �B

that is, both conditions θA and θB are preserved in the resulting relation included in
A �B . �

Example 3. Assume the partial views of the residential category and the buyer role
reported in Example 2 (minimal area policy). The view associated with the configura-
tion C = 〈role : buyer,category : residential〉 obtained by applying the Double
Union operator between R el(buyer) and R el(residential) is the following:

R el(C) = R el(buyer)�R el(residential)

={σCategory=“Residential”(ΠZ(ESTATE)),(PICTURE)�σCategory=“Residential”((ESTATE))}
where Z = {IdEstate, Category, Area, City, Province, RoomsNumber, Bedrooms, Garage,
SquareMeters}. �
Example 4. Assume the relevant area for the residential category as in Example 3,
and for the agent role the minimal relevant area containing his/her data and agenda:

R el(agent($ag id)) = {σIdAgent=$ag id(AGENT),σIdAgent=$ag id(AGENDA)}
The view associated with C = 〈role : agent($ag id),category : residential〉 ob-
tained by applying the Double Union operator between R el(agent($ag id)) and
R el(residential) is:

R el(C) = R el(agent($ag id))� R el(residential)

= {σIdAgent=$ag id(AGENT),σIdAgent=$ag id(AGENDA),

σCategory=“Residential”(ESTATE),(PICTURE)� σCategory=“Residential”((ESTATE))} �

Relational Data Tailoring Through View Composition 161

Double Intersection Operator: The double intersection A � B between two sets of
relations A and B , applies the intersection operator ∩ of relational algebra to the maxi-
mal common sub-schemata of the pairs of relations RA and RB, belonging to A and B ,
respectively, where either Sch(RA) ⊆ Sch(RB) or viceversa.

On the result produced by the application of such intersections, the union operator
∪ is iteratively applied to pairs of the obtained relations having the same schema, since
the Double Intersection can generate more than a single relation with the same schema;
this final step aims at removing such duplicates.

Definition 3. Let A and B be sets of relations.

a) Let S be computed as follows:

S = {X |X = πS(XA)∩πS(XB) s.t. XA ∈ A , XB ∈ B ,S = Sch(XA)∩Sch(XB)
= /0)}
b) A �B is recursively obtained as follows:

A �B =
{

R

∣
∣
∣
∣
(R = R1 ∪R2, ∀R1,R2 ∈ S s.t. Sch(R1) = Sch(R2)) ∨
(R ∈ S ∧
 ∃R′ ∈ S s.t. Sch(R) = Sch(R′))

}

According to its formal definition, the Double Intersection Operator is commutative and
associative too.

Example 5. The partial view associated with the agent role in case of maximal area
policy is

R el(agent($ag id)) = {σIdAgent=$ag id AGENT,σIdAgent=$ag id AGENDA,

VISIT,SALES,RENT,OWNER,CUSTOMER,ESTATE,PICTURE}
Consider now the context of an agent$ag id specified by the configurationC=〈role :

agent($ag id),category : residential〉. The view obtained by applying the Double
Intersection operator between R el(agent($ag id)) and R el(residential), whose
partial view is that reported in Example 1, is the following:

R el(C) = R el(agent($ag id))� R el(residential)

= {σCategory=“Residential”ESTATE,OWNER � (σCategory=“Residential”ESTATE),

VISIT � (σCategory=“Residential”ESTATE),SALES � (σCategory=“Residential”ESTATE),

RENT � (σCategory=“Residential”ESTATE),PICTURE � (σCategory=“Residential”ESTATE),

(σIdAgent=$ag id(AGENDA))� (σCategory=“Residential”ESTATE)} �

For the sake of clarity, in the examples we have used configurations with two context
elements only, yet the commutative and associative properties of the introduced Double
Union and Double Intersection operators allow their application to configurations C
with any number of context elements.

These logical operators have been defined to support our methodology for view com-
position, a problem deeply formalized from a theoretical point of view in [11]; never-
theless they are general-purpose integration operators, appropriate for any schema and
instance integration over relational schemata. Within our context-driven methodology,
a few properties useful for the final view composition phase can be derived.

162 C. Bolchini, E. Quintarelli, and R. Rossato

View Composition Properties
The mapping and the compositional operators used to obtain a context-dependent view
allows us to prove the following properties. The next two theorems show how, given
the view for a configuration C related to a context described by k context elements (i.e.
C = 〈V1, . . . ,Vk〉), we can obtain the view for a configuration with an additional context
element w.r.t. C (i.e. C′ = 〈V1, . . . ,Vk,Vk+1〉), by simply composing (by Double Union
or Double Intersection) the partial view of Vk+1 with R el(C).

Property 2. Let R el(〈V1, . . . ,Vk〉) be the partial view defined for the configuration C =
〈V1, . . . ,Vk〉 w.r.t. the maximal area policy. Then:

R el(〈V1, . . . ,Vk,Vk+1〉) = R el(〈V1, . . . ,Vk〉)� R el(Vk+1)

Proof. Starting from the fact that � is a commutative and associative operator, by ap-
plying its definition to a set of k + 1 operands we obtain:

R el(〈V1, . . . ,Vk,Vk+1〉) = R el(V1)�. . .� R el(Vk)� R el(Vk+1)

= (R el(V1)� · · ·� R el(Vk))� R el(Vk+1)

= R el(〈V1, . . . ,Vk〉)� R el(Vk+1) �

Property 3. Let R el(〈V1, . . . ,Vk〉) be the partial view defined for the configuration C =
〈V1, . . . ,Vk〉 w.r.t. the minimal area policy. Then:

R el(〈V1, . . . ,Vk,Vk+1〉) = R el(〈V1, . . . ,Vk〉)� R el(Vk+1)

Proof. The proof is the same of Theorem 2 where the operator � is replaced with �. �

The next theorem extends the containment relationships between partial views of CDT
context elements (see Assumption 1) to views.

Property 4. Let C = 〈V1, . . . ,V, . . . ,Vk〉 be a configuration and V,W two context elements
such that V ≺ W. Then:

R el(〈V1, . . . ,V, . . . ,Vk〉) ⊇ R el(〈V1, . . . ,W, . . . ,Vk〉)
Proof. This result is independent of the operator used to compose partial views. Let us
now consider the case of composition by means of the Double Intersection operator.
According with Assumption 1, since V ≺ W, then R el(V) ⊇ R el(W). Hence:

R el(〈V1, . . . ,V, . . . ,Vk〉) = R el(V1)�. . .� R el(V)� R el(Vk)

⊇ R el(V1)� · · ·� R el(W)� R el(Vk)

= R el(〈V1, . . . ,W, . . . ,Vk〉) �

The view associated with a specific context can include or not some portions of the
global database on the basis of (i) the width of the partial views specified during the
tailoring process for each context element and (ii) the operator used to combine partial
views.

The different policies that can be adopted to identify the relevant area associated
with a context element impose the use of different operators for combining such partial
views to obtain the final ones. These operators can be applied for two purposes: (i) to
derive the view associated with a configuration, starting from the partial views, and (ii)
to define the partial view associated with non-leaf nodes, as discussed for the bottom-up
navigation of the Context Dimension Tree during the relevant area assignment phase.

Relational Data Tailoring Through View Composition 163

4 Closing Remarks and Future Work

The approach presented in this paper aims at providing a semi-automatic support to
view definition in a relational database scenario, taking into account various possible
users, situations and interests that lead to the selection of different portions of the global
schema and data. To this end, we have formally introduced a group of logical opera-
tors which allow the combination of partial views incrementally derived on the global
schema.

A prototype tool has been developed to support the designer in all the phases of the
methodology, from the design of the Context Dimension Tree and the Relevant Area
Assignment to the automatic View Composition phase. The designer can then review
the obtained views associated with the significant configurations corresponding to the
application contexts, and eventually introduce modifications to fulfill her/his needs.

These operators and their application have been here presented within the relational
framework; current research is focused on the extension of this methodology to other
scenarios, characterized by semi-structured sources, to cope with nowadays variety of
information representations.

Acknowledgements. The authors wish to thank Prof. Letizia Tanca for the helpful dis-
cussions.

References

1. Abiteboul, S.: On Views and XML. In: Proc. 18th ACM SIGACT-SIGMOD-SIGART Symp.
on Principles of Database Systems, pp. 1–9. ACM Press, New York (1999)

2. Bolchini, C., Curino, C., Quintarelli, E., Schreiber, F.A., Tanca, L.: Context information for
knowledge reshaping. Int. Journal on Web Engineering and Technology (to appear 2007)

3. Bolchini, C., Curino, C.A., Orsi, G., Quintarelli, E., Schreiber, F.A., Tanca, L.: CADD: a
tool for context modeling and data tailoring. In: Proc. IEEE/ACM Int. Conf. on Mobile Data
Management - Demo Session, May 7-11, ACM Press, New York (2007)

4. Bolchini, C., Quintarelli, E.: Filtering mobile data by means of context: a methodology. In:
Meersman, R., Tari, Z., Herrero, P. (eds.). OTM 2006 Workshops. LNCS, vol. 4278, pp.
1986–1995. Springer, Heidelberg (2006)

5. Bolchini, C., Quintarelli, E.: Filtering mobile data by means of context: a methodology. In:
Proc. 2nd Int. Workshop on Context Representation and Reasoning, pp. 13–18 (2006)

6. Bolchini, C., Schreiber, F.A., Tanca, L.: A methodology for very small database design. In-
formation Systems 32(1), 61–82 (2007)

7. Cluet, S., Veltri, P., Vodislav, D.: Views in a large scale of XML repository. In: Proc. 27th
Int. Conf. on Very Large Data Bases, pp. 271–289 (2001)

8. Elmasri, R., Navathe, S.: Fundamentals of database systems, 4th edn. Pearson/Addison Wes-
ley (2004)

9. Ghidini, C., Giunchiglia, F.: Local Models Semantics, or contextual reason-
ing=locality+compatibility. Artificial Intellicence 127(2), 221–259 (2001)

10. Liefke, H., Davidson, S.B.: View maintenance for hierarchical semistructured data. In: Kam-
bayashi, Y., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp. 114–125.
Springer, Heidelberg (2000)

11. Madhavan, J., Halevy, A.Y.: Composing mappings among data sources. In: Aberer, K.,
Koubarakis, M., Kalogeraki, V. (eds.) Databases, Information Systems, and Peer-to-Peer
Computing. LNCS, vol. 2944, pp. 572–583. Springer, Heidelberg (2004)

164 C. Bolchini, E. Quintarelli, and R. Rossato

12. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview, W3C Rec-
ommendation (2004)

13. Rajugan, R., Chang, E., Dillon, T.S.: Ontology views: A theoretical perspective. In: Meers-
man, R., Tari, Z., Herrero, P. (eds.). OTM 2006 Workshops. LNCS, vol. 4278, pp. 1814–1824.
Springer, Heidelberg (2006)

14. Rajugan, R., Dillon, T.S., Chang, E., Feng, L.: A Layered View Model for XML Repositories
and XML Data Warehouses. In: Proc. IEEE 5th Int. Conf. on Computer and Information
Technology, pp. 206–215. IEEE Computer Society Press, Los Alamitos (2005)

15. Roussos, Y., Stavrakas, Y., Pavlaki, V.: Towards a context-aware relational model. In: Proc.
Context Representation and Reasoning - CRR’05, pp. 7.1–7.12 (2005)

16. Stefanidis, K., Pitoura, E., Vassiliadis, P.: Modeling and storing context-aware preferences.
In: Manolopoulos, Y., Pokorný, J., Sellis, T. (eds.) ADBIS 2006. LNCS, vol. 4152, pp. 124–
140. Springer, Heidelberg (2006)

17. Volz, R., Oberle, D., Studer, R.: Implementing views for light-weight web ontologies. In:
Proc. IEEE 7th Int. Database Engineering and Applications Symp., pp. 160–169. IEEE Com-
puter Society Press, Los Alamitos (2003)

18. Volz, R., Oberle, D., Studer, R., Staab, S.: Views for light-weight web ontologies. In: Proc.
ACM Symp. on Applied Computing, pp. 1168–1173. ACM Press, New York (2003)

19. Wouters, C., Rajugan, R., Dillon, T.S., Rahayu, J.W.R.: Ontology extraction using views for
semantic web. In: Web Semantics and Ontology, pp. 1–40. Idea Group Pub., USA (2005)

20. Zhuge, Y., Garcia-Molina, H.: Graph structured views and their incremental maintenance.
In: Proc. IEEE 14th Int. Conf. on Data Engineering, pp. 116–125. IEEE Computer Society
Press, Los Alamitos (1998)

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 165–180, 2007.
© Springer-Verlag Berlin Heidelberg 2007

On the Discovery of Preferred Work Practice Through
Business Process Variants

Ruopeng Lu and Shazia Sadiq

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia
{ruopeng,shazia}@itee.uq.edu.au

Abstract. Variance in business process execution can be the result of several
situations, such as disconnection between documented models and business
operations, workarounds in spite of process execution engines, dynamic change
and exception handling, flexible and ad-hoc approaches, and collaborative
and/or knowledge intensive work. It is imperative that effective support for
managing process variance be extended to organizations mature in their BPM
(Business Process Management) uptake so that they can ensure organization
wide consistency, promote reuse and capitalize on their BPM investments.
Process variants are complex objects that contain features of different
dimensions, such as variant design or variant execution data. This paper
provides a technique for effective utilization of the adaptations manifested in
process variants. In particular, we will present a facility for discovery of
preferred variants through effective search and retrieval based on the notion of
process similarity, where multiple aspects of the process variants are compared
according to specific query requirements. The major advantage of this approach
is the ability to provide a quantitative measure for the similarity between
process variants, which further facilitates various BPM activities such as
process reuse, analysis and discovery.

Keywords: Business process variants, business process similarity, process
discovery, flexible workflows, business process analysis.

1 Introduction

In recent years, there have been many efforts towards providing agile business
process management (BPM) support [4, 9, 11]. Business process management
systems (BPMS) have been recognized as a substantial extension to the legacy of
workflow management systems (WFMS). While a typical WFMS supports process
design, deployment and enactment, BPMS extend WFMS functionality by facilitating
process diagnosis activities. Process diagnosis refers to BPM activities including
business process analysis (BPA) and process discovery [2]. These post-executional
activities are intended to identify and resolve operational process problems, discover
preferred work practices, and provide business intelligence. Furthermore, new
requirements emerging from the flexibility and dynamism of business processes
require support for instance adaptation [11], which further impacts on the design,

166 R. Lu and S. Sadiq

Fig. 1. The extended BPMS lifecycle supporting instance adaptation and process improvement

execution and especially the diagnosis activities of BPM, and eventually will
contribute to process evolution/improvement (cf. Fig. 1).

Instance adaptation is an emerging paradigm due to various reasons such as the
frequent change in underlying business objectives and operational constraints, and the
emergence of unexpected events that cannot be handled by predefined exception
handling policies [9, 11]. Consequently, the execution of process instances needs to
be changed at runtime causing different instances of the same business process to be
handled differently according to instance specific conditions.

The typical consequence of instance adaptation is the production of a large number
of process variants [6, 11]. An executed process instance reflects a variant of
realization of process constraints, and provides valuable knowledge of organization at
the operational level. There is evidence that work practices at the operational level are
often diverse, incorporating the creativity and individualism of knowledge workers
and potentially contributing to the organization’s competitive advantage [5]. Such
resources can provide valuable insight into work practice, help externalize previously
tacit knowledge, and provide valuable feedback on subsequent process design,
improvement, and evolution.

Nevertheless, the way that domain experts reason about the situation during
instance adaptation cannot be truly reconstructed using computational techniques.
Building a repository to systematically capture, structure and subsequently deliberate
on the decisions that led to a particular design is a more pragmatic way to approach
the problem. We observe that a process variant at least contains information from the
following dimensions:

− Structural dimension contains the process model based on which the process
instance is executed. For a given process variant, the instance-specific process
model is adapted from the design time model during instance adaptation.

− Behavioral dimension contains executional information such as the set of tasks
involved in the process execution (may differ from structural dimension due to
choice constructs), the exact sequence of task execution, the performers and their

 On the Discovery of Preferred Work Practice Through Business Process Variants 167

roles in executing these tasks, the process-relevant data, execution duration of the
process instance and constituent tasks.

− Contextual dimension contains descriptive information (annotations) from the
process modeler about the reasoning behind the design of a particular process
variant.

In the meantime, there are various occasions in the BPM lifecycle when precedents
of process variants need to be retrieved. This is due to two main reasons. Firstly is to
assist instance adaptation, i.e., retrieve and reuse precedent process variants according
to current runtime conditions such that the knowledge from the past under similar
situation is utilized to provide reference to current process instance adaptation [5].
Secondly is to support process analysis and diagnosis, typically analyzing deviations
from process models, and generalization of general process model from process
variants [2]. Using appropriate analysis techniques, a collection of sufficiently similar
process variants could be generalized as the preferred/successful work practice, and
consequently contribute to the design of a given instance and may lead to process
improvement/evolution.

In our previous work, we have developed a reference architecture for managing
such process variants for effective retrieval [6, 7]. The contribution of this paper is on
the approach for utilizing the retained process variants, based on a practical measure
for process variant similarity. In particular, we propose a query formalization
technique where the properties of process variants to be retrieved can be structurally
specified. We also present a progressive refinement technique for processing the
retrieval query.

An essential concept in this regard is the definition of similarity between process
variants in terms of their features in various dimensions. In other words, how to
characterize the degree of match between similar process variants. This is a hard
problem in general due to the informal nature of commonly adopted process
description languages, and more so due to the subjectivity in process model
conceptualization. For example, questions such as how to measure the similarity
between two process variants having different process models but same sequence of
task execution can come forth. From the behavioral perspective two variants are
equivalent since the have the same execution behavior, while are dissimilar from the
structural perspective. Thus variants can share features in one dimension but be
dissimilar in another dimension, making an objective evaluation of similarity rather
difficult. At the same time, it is desirable that the similarity between the variants can
be quantified, i.e., to be able to define a metric space to indicate the degree of
similarity or dissimilarity.

The rest of the paper is organized as follows. Section 2 will provide background
concepts for the process variant repository (PVR). In section 3, we define the schema
for process variants, based on which various types of queries and their formalization
are discussed in section 4. In section 5, we propose a quantitative measure for
defining process variants similarity, covering structural, behavioral and contextual
dimensions. The progressive-refinement technique for query processing is discussed
in section 6. Related work is presented in section 7, followed by the conclusion and
future work in section 8.

168 R. Lu and S. Sadiq

2 Reference Architecture for Process Variant Repository

Process Variant Repository (PVR) provides a well-formed structure to store past
process designs, as well as an instrument to utilize process variants as an information
resource. The capture of executed process variants in the repository and the
subsequent retrieval of preferred process variants are the two major functions of PVR.

Fig. 2 presents an overview of the PVR reference architecture. In Step1-2 as
annotated in Fig. 2, the properties of an executed process variant is retained in the
repository according to the schema provided by PVR. Later, a query is formulated to
specify variant retrieval requirements (Step3). The query requirement is formulated
with the help of the query processing component. In Step4, variants are searched to
find matching variants according to query requirements. The goal of this step is to
retrieve a set of sufficiently similar process variants. In Step5, the best matches are
selected from the set of initial matches according to the degree of similarity compared
to the query. The further selection process involves a ranking process. Step 4-5 will be
repeated if a progressive refinement approach is taken, where the initial query
definition is refined in order to obtain a more restrictive set of results.

Fig. 2. Reference architecture of PVR

3 Schema of Process Variants

We consider a process variant an instance level adaptation of a business process. The
creation of instance level adaptations is facilitated by flexible process execution
environments [11]. In this paper, we do not focus on the flexible process management
system, except to assume that each process variant in PVR could be represented by a
potentially unique process model. The particular design of a variant is reflective of a
knowledge worker’s preferred work practice. However, (given groups of) variants are
derived from a common design time process model and hence can have a significant

 On the Discovery of Preferred Work Practice Through Business Process Variants 169

overlap as well. In the rest of this paper, we refer to the process model as the runtime
model adapted for a particular process variant. Before we present the schema of
process variant, we first define two important concepts, including process model and
execution sequence.

Definition 1 (Process Model). A process model W is a pair (N, E), which is defined
through a directed graph consisting a finite set of nodes N, and a finite set of flow
relations (edges) E⊆N×N. Nodes are classified into tasks T and coordinators C, where
N=C∪T, and C∩T=∅. Task is the set of tasks in W, and C contains coordinators of
the type {Begin, End, Fork, Synchronizer, Choice, Merge}, which have typical
workflow semantics [13].

Fig. 3. Example process models of process variants

Fig. 3 presents example process models of different process variants. Suppose these
process variants belong to a network diagnosis process in a Telco company, and tasks
T1,…,T8 correspond to a list of network testing activities. For example, T1 represents
“Send Test Message”, T2 represents “Test Hub201”, and T3 “Test ExchangeA30” etc.
In the rest of this paper, we omit the full task names for clarity. Given a process
model W and a task Ti∈T, Trigger(W, Ti) denotes the set of tasks that can be triggered
by task Ti in W as the result of execution. E.g., Trigger(We, T1)={T2}. For tasks
followed by a Fork (AND-SPLIT) or a Choice (XOR-SPLIT) coordinator, we consider
that all subsequent tasks after the coordinator can be triggered. E.g., Trigger(Wa,
T1)=Trigger(Wb, T1)={T2, T3}. Disable(W, Ti) denotes the set of tasks disabled as the
consequence of executing Ti, which is defined to realize the semantics of the Choice

170 R. Lu and S. Sadiq

coordinator. For example, Disable(Wb, T2)={T3} and Disable(Wb, T3) ={T2}, which
means either T2 or T3 is executed but not both.

The process models shown in Fig. 3 are derived from the common design time
process model during instance adaptation, and hence sharing some properties in
common. E.g. activities consisting the process models are chosen from a fixed set of
tasks {T1, ..., T8}, T1 is always the first task, and T5 is always executed after T2, to
name a few. At the same time many differences exist as can be observed in the figure.

An execution sequence of a process variant is referred to as the trace of execution
in a process model, which reflects the actual order of task executions at runtime.
Typically, a process model with parallel (Fork) or alternative branches (Choice)
contains more than one possible execution sequences. For example, sequences <T1,
T2, T6, T5>, <T1, T2, T5, T6>, <T1, T3, T4, T6, T5> and <T1, T3, T4, T5, T6> are
four possible execution sequences in Wb (cf. Fig. 3), since T2 and <T3, T4> are in
alternative branches, and T5, T6 in parallel branches. Note however that for a given
process instance, there is exactly one execution sequence resulting from execution.

We follow the general mathematical definition to define an execution sequence: A
finite sequence s={s1, s2, …, sn} is a function with the domain {1, 2,…, n}, for some
positive integer n. The i-th element of s is denoted by si.

Definition 2 (Execution Sequence). An execution sequence sW of a process model W
is a finite sequence of tasks T’ ⊆ T in W, which is defined by the sequence <T1, T2, …,
Tn>, n ≥ 1.

Note that the subscripts i of T in sW are task identifiers, which do not indicate the
order of sequence elements. Thus, we use the angle brackets “<” and “>” to denote
the order in an execution sequence. For example, given sW=<T1, T3, T2>, s1

W=T1,
s2

W=T3, and s3
W= T2. Note that in some process model W, it is possible that n≥|sW|, for

some execution sequence sW=<T1, T2, … , Tn>. E.g., in Wd, a possible execution
sequence is <T1, T2, T2, T3, T4, T5, T6>, where T2 has been executed twice due to
the loop structure. The superscript W of an execution sequence sW for a process model
W can be omitted if no ambiguity is caused.

Besides the process model and execution sequence, the schema of a process variant
should define a list of runtime properties.

Definition 3 (Process Variant). A process variant V is defined by (id, W, sW, R, D, T,
C, M), where

– id is the identifier for the process variant;
– W is the process model (N, E) for V defined on the task set T⊆N;
– sW is the execution sequence of tasks T in V based on W;
– R={R1, …, Rm} is a finite set of resource instances allocated to V;
– D={D1, …, Dk} is a finite set of process-relevant data items related to V;

– T={T1, …, Tn} is the set of tasks in V. ∀Ti∈T, Ti=<ni, ri, Ti
-, Ti

+>, where ni is the
identifier of Ti. ri ∈R is the resource instance allocated to task Ti. Ti

- and Ti
+ are the

time stamps when task Ti commenced and completed execution;
– C is an annotation that textually describes the design of the variant;
– M is the set of modeler(s) who participated in the instance adaptation for V.

 On the Discovery of Preferred Work Practice Through Business Process Variants 171

The schema for process variants contains instance level (id, W, sW, R, D, C, M) and
task level features (T). The id can be combined with the variant symbol V, i.e., V10
denotes variant V with the feature (id, 10). Occasionally we omit the subscript i for V
when there is no ambiguity. Each element in V is referred to as a feature of V. In this
way, the schema of process variant is defined by a list of features from structural,
behavioral and contextual dimensions. The process variant repository is the set of all
collected process variants, that is PVR={V1, …, Vn}.

PVR is expected to contain a large numbers of process variants. Table 1 shows
some example process variants in PVR based on the graphical process models
presented in Fig. 3. Only the variant id, process model W and execution sequence s is
shown for simplicity. It is likely that many process variants can have the same process
model (if the design time process model is adapted in the same way), while the
execution sequences are different. For example, V1 and V8 have the same process
model Wa, while due to instance-specific runtime conditions, the execution sequences
are different. However, V1 and V5 have the same execution sequence although their
process models differ. This observation leads to an interesting problem when defining
similarity of process variants regarding W and s, which will be discussed in section 5.

Table 1. Tabular view of a typical PVR showing the first three features

id W sW …
V1 Wa <T1, T2, T3, T6, T4, T5>
V2 Wc <T1, T3, T2, T4, T7, T5>
V3 Wd <T1, T2, T2, T3, T4, T5, T6>
V4 Wb <T1, T2, T5, T6>
V5 Wd <T1, T2, T3, T6, T4, T5>
V6 We <T1, T2, T3, T4, T6, T8>
V7 We <T1, T2, T3, T5, T7, T8>
V8 Wa <T1, T3, T4, T2, T6, T5>
… … … …

4 Query Formulation

A query is a structural expression of search criteria representing partial or complete
description for a process variant, or multiple process variants sharing similar features.
Based on different retrieval requirements, a query may contain a single feature, or
multiple features from the same or different dimension. For example, a multi-feature
query can be to find all process variants in which execution duration is less than 3
hours, or any performers of role senior engineer were involved. Such queries can be
expressed by a typical structural query language, and can mostly be satisfied using
well established techniques.

Unlike traditional query systems however, the search criteria for process variants
may also include reference to complex structural features. e.g., task Test Hub201 (T2)
and Test ExchangeA30 (T3) were executed immediately after Send Test Message (T1),
and Test Hub430 (T4) was performed in parallel with Test ServerII (T7) etc. (cf. Wc
in Fig. 3), or simply having the same process model as given in the query. Queries
containing multi-dimension features can be e.g., tasks T1, T2 and T3 were performed

172 R. Lu and S. Sadiq

by a senior engineer in sequence, and finished execution within 1 day (cf. We in
Fig. 3), or having execution sequence <T1, T3, T4, T5, T6> and tasks T5 and T6 were
in parallel branches in the process model (cf. Wb in Fig. 3). We are specifically
interested in providing a facility to find process variants for queries that provide
complex criteria, as in the above examples.

We propose that the structural query requirement be expressed in a way that is in
like with the query-by-example (QBE) paradigm, where a process model WQ is
presented in the query containing the desired structural features, and the objective is
to retrieve all process variants with a process model W similar to WQ. WQ can
resemble a complete process model (cf. Wa

Q in Fig. 4), which specifies the exact
structure required for the process variants to be retrieved; or a partial process model
(cf. Wb

Q in Fig. 4), which contains a fragment of the process model characterizing the
desired structural features to be retrieved. Based on the above discussion, we define
the schema for a query as follows:

Definition 4 (Query). Let F be the set of all features in PVR. A query Q is defined by
the set of query features {F1

Q, …, Fk
Q}, where ∀Fi

Q∈F, Fi
Q corresponds to a feature

defined in the schema of V. The function Type maps a query feature into one of the
process variant features, i.e., Type:F→TYPE, where TYPE={id, W, s, R, D, T, C, M}.

Fig. 4. Example of structural query features, Wa
Q as a complete process model and Wb

Q as a
partial process model

5 Similarity of Process Variants

In order to determine the degree of match between the desired and actual process
variants, the similarity measure is defined.

5.1 Overall Similarity

It is desirable that given a query Q with one or more query features {F1
Q, …, Fk

Q},
and a process variant V described by the list of features {F1

V, …, Fk
V}according to the

variant schema (Def. 3), applying a similarity function Sim(V, Q) yields a quantitative
figure that indicates the degree of match between V and Q. Nevertheless, each
different type of feature has specific semantics, e.g., the similarity measure for
execution sequence and allocated resources should be different. For each different
feature Fi, a similarity function sim(Fi

V, Fi
Q) should be defined according to the

specific semantics of Fi. The overall similarity score Sim(V, Q) is the sum of the
similarity score for each pair of comparable features (Fi

V, Fi
Q), i.e., Fi

V, Fi
Q∈F and

Type(Fi
V)=Type(Fi

Q).

 On the Discovery of Preferred Work Practice Through Business Process Variants 173

We define the metric space for process variant similarity (and for each similarity
function sim) in the interval of real numbers between 0 and 1, where 0 indicates
complete dissimilarity, 1 indicates complete matching, and a number between 0 and 1
indicates partial matching. For all similarity functions sim defined in PVR, the
following properties [15] should hold:

− Non-negativity, i.e., ∀Fi, Fj∈F, sim(Fi, Fj)≥0
− Symmetry, i.e., ∀Fi, Fj∈F, sim(Fi, Fj)=sim(Fj, Fi)
− Reflexivity, i.e., ∀Fi∈F, sim(Fi, Fi)=1
− Triangle Inequality, i.e.,∀Fi, Fj, Fk∈F, sim(Fi, Fk)≤sim(Fi, Fj)+sim(Fj, Fk)

In order to distinguish different similarity functions, we append the feature type to
the function symbol sim, e.g., sim_F1 denotes the similarity function defined for
feature F1.

Definition 5 (Overall Similarity). Let Q={F1
Q, …, Fk

Q}, k ≥ 1 be a query, V=(W, s,
R, D, T, C, M) be a process variant described by the list of feature {F1

V, …, Fk
V}. Let

sim_Fi: F
V×FQ→{0, …, 1} be a similarity function for a feature type in TYPE. Then

the overall similarity (Sim) between the process variant V and the query Q is given as:

∑
=

=
k

i

Q
i

V
ii FFFsim

Q
QVSim

1

),(_
||

1
),((1)

whereby (Fi
V, Fi

Q) is a pair of comparable features.

For features in behavioral and contextual dimension (including s, R D, T, C and M),
the similarity function can be defined based on known techniques. For example,
simple set membership can be used to compare resources specified in the query to
resources utilized in the variant. Similarly, Euclidean distance can be used to define
similarity between execution sequences [14]. The matching for these features is
referred to as simple matching. Implementation detail for the similarity measure of
these features is outside the scope of this paper.

5.2 Structural Similarity

As mentioned in section 4, structural feature of process variants is described by a
complete or partial process model. Structural aspect is arguably the most important
aspect of a process variant. Defining the similarity based on the metric space is useful
for quantifying the degree of match for structural features, especially for ranking
partial matching process models. At the same time, there have been several proposals
[1, 14] for graph similarity matching that satisfy our metric space requirements.

Nevertheless, we argue that graph-based similarity measure alone is inadequate for
determining complex matching involving structural features in PVR. This is primarily
due to the specialized structural relationships within process graphs, i.e. graphs may
be structurally different but semantically similar. It is desirable that the similarity of
process models can be quantified to some extent, such that when the closeness of the
query process model and process variant model cannot be visually observed, partial

174 R. Lu and S. Sadiq

matching variants can be presented using a ranking function to produce a similarity
score base on the metric space.

Furthermore, as we have discovered in section 3, it is often the case that exact
matching execution sequences may result from completely different process models.
While from the same process model, different execution sequences can be derived.
There has been study towards the interplay between the similarity of design time
process models and actual execution sequences, which advocates defining structural
similarity according to typical execution behaviors as reflected by a chosen set of
execution sequences [1]. According to the typical behaviors, the more ‘useful’
fragments of the process model are assigned more weight towards the overall
structural similarity score.

Based on this observation, we propose to define the structural similarity according
to both the structural and the execution behavior of the process model, i.e., the
execution sequence. Given the structural feature (as described by a process model) WQ
of a query Q, to retrieve all process variants V in which its process model W is similar
to WQ. Our approach is to first qualify the initial structural matches between a
particular W and WQ, based on three structural relationships, where complete and
(near perfect) partial matches can be visually identified. We then apply a ranking
algorithm (similarity function) for the (not so perfect) partial matching process
models and produce a similarity score between each such model and WQ (presented in
section 6). As for the first step, we utilize three structural relationships [12] between
W and WQ.

Definition 6 (Structural Similarity). Let W=(N, E) be the process model of a
process variant V, and WQ=(NQ, EQ) be a query process model. W is said to be
structurally equivalent to WQ if N=NQ and E=EQ. W is said to structurally subsume WQ
if NQ⊆N, and WQ preserves the structural constraints between nodes NQ as specified in
W. W is said to structurally imply WQ if NQ=N, and WQ preserves the structural
constraints between nodes NQ as specified in W.

Additionally, if W and WQ conform to equivalent relationship, then they also conform
to subsume and imply relationship. Given a query process model WQ, a variant
process model variant W is said to be a complete match to WQ if equivalent or
subsume relationship holds between W and WQ. (Imply relationship holds means near
prefect partial matches.) The technique to determine complete match is by
SELECTIVE_REDUCE [6], which applies graph reduction techniques to determine
the match between W and WQ. The algorithm is to reduce a variant W that holds the
equivalent or subsume relationship with WQ, into a structurally identical (not empty)
graph as the WQ. The rationale of the technique is to firstly eliminate from N all task
nodes that are not contained in NQ, and secondly to reduce redundant flow relations in
EQ using reduction rules. Due to the space limit, the algorithm is not elaborated
further. Please refer to [6] for detailed description.

Fig. 5 shows the results of applying SELECTIVE_REDUCE to process variant
models Wa to We (cf. Fig. 3) against structural query process model Wa

Q (cf. Fig. 4). In
Fig. 5, the reduced process model RWc from Wc is structurally equivalent to Wa

Q,
which is considered as a complete match.

 On the Discovery of Preferred Work Practice Through Business Process Variants 175

Begin

End

Fork

Sync

T5

T1

T2 T3

T4

Begin

End

T1

Fork

Sync

T2 T3

T5

Begin

T1

Choice

Merge

T2 T3

T4

T5

End

Begin

Sync

T1

Merge

Choice

T5

Fork

End

T2

T3 T4

Begin

Sync

T1

Choice

T5

End

T2

T4

T3

Fork Fork

Merge Merge

RWa RWb RWc RWd RWe

T4

Fig. 5. Reduced process models against query feature WQ from process variants Wa, Wb, Wc, Wd
and We after applying SELECTIVE_REDUCE. The reduced process models consist of only
tasks {T1, T2, T3, T4, T5} as in WQ.

6 Process Variant Retrieval

In this section, the progressive refinement approach for query execution including the
ranking technique for partial matches is presented. A detail example is provided for
illustrating the retrieval process for queries inclusive of all three dimensions.

6.1 Process Variant Retrieval Based on Progressive-Refinement

In the query processing approach, given a query Q={F1
Q, …, Fk

Q}, a candidate set of
process variants CVQ={V1, V2,…, Vm} is first chosen from PVR, where each Vi ∈ CVQ
is described by a set of corresponding features {F1

Vi, …, Fk
Vi}. When a query feature

Fj
Q∈Q is to be compared, all Vi∈CVQ are collected according to the value of feature

Fj
Vi which is comparable to Fj

Q. Each different Fj
Vi is then compared with Fj

Q. For all
Vi where Fj

Vi is a complete match to Fj
Q, Vi will remain in the candidate set CVQ.

While for those containing partial matching features can be ranked according to the
similarity score of sim_Fj(Fj

Vi, Fj
Q). The process variants with “the most similar”

partial matching feature can also remain in CVQ. The process variants not “similar
enough” are removed from CVQ. This process is repeated until all Fj

Q∈Q have been
compared, or the ideal result set is obtained. The overall similarity score can be
calculated for each process variant Vi in the result set by applying Sim(Vi, Q). Fig. 7
provides an illustration for this approach.

176 R. Lu and S. Sadiq

Result Set

Candidate
Process
Variants

Query
Feature Filtering

Ranking

Partial Matches Complete Matches

Query

Top-rank
Partial Matches

Candidates

Reduced
Candidates

Repository

Process
Variants

Fig. 6. Progressive-refinement query processing approach

For simple matching features, we can apply similarity function sim to produce a
ranking for partial matches. The filtering step for complex matching involving
structural features however, is to apply SELECTIVE_REDUCE, which qualifies the
structural relationship between the reduced process variant models and the query
process model, when complete matches (equivalent or subsume) and near perfect
partial matches (imply) can be identified. The ranking step is to provide measurable
result that fits in the metric space for ranking partial matches.

We have adapted the so-called behavioral precision and recall approach from [1]
for ranking partial structural matches. The rationale of the ranking technique called
RANK_STRUCTURAL, is to calculate the structural similarity between a reduced
variant process model RW and the query process model WQ with reference to the
collection of all execution sequences S from partial matching variants. The two
models are compared according to how well each different execution sequence fits in
both models. In this way, applying RANK_STRUCTURAL for W and WQ produces a
relative similarity score with regard to rest of reduced variant models W in CVQ.

Given the candidate set of process variants CVQ containing reduced partial
matching models RW and the set of all execution sequences S from CVQ, each
sequence s in S is associated with the number of appearance count(s) in CVQ, and is
denoted by Δ (cf. Table 2). The algorithm takes as inputs a reduced process variant
model RW, the query process model WQ, and Δ, and produces a similarity score sim
between RW and WQ with reference to Δ. Functions Trigger and Disable given in
Def. 1 are utilized. The RANK_STRUCTURAL procedure is shown in Fig. 7.

TW and TQ is given the current set of triggered tasks as the result of executing task
Tj in RW and WQ respectively in step 5 and 6. For each task Tj in a sequence s, step 7
accumulates the proportion of tasks in WQ triggered by Tj which are also triggered by
Tj in RW. Step 8 accumulates the similarity score (resulting from step 7) for RW and
WQ in each sequence s, which is weighted by the number of appearance of s in CVQ
divided by the length of s. After all different sequences in Δ have been accounted for,
the final similarity score is scaled according to the total number of sequences in Δ and

 On the Discovery of Preferred Work Practice Through Business Process Variants 177

Procedure RANK_STRUCTURAL
Input RW, WQ¸ Δ
Output sim
1. sim, counter← 0
2. TW, TQ ← Ø
3. For each different sequence s in Δ
4. For each task Tj in s, j ← 0, …, |s-1|
5. TW = (TW – {Tj} – Disable(RW, Tj)) ∪ Trigger(RW, Tj)
6. TQ = (TQ – {Tj} – Disable(WQ, Tj)) ∪ Trigger(WQ, Tj)

7.
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∩+←
||

||

TQ

TQTW
countercounter

8. counter
s

scount
simsim ×+←

||

)(

9. counter ← 0

10. Return sim
scount

×
∑ |)(|

1

Fig. 7. Algorithm RANK_STRUCTURAL

returned (step 10). Note that |TQ| may evaluate to 0. We postulate in such case 0/0=0,
and 1/0=0.

The output of RANK_STRUCTURAL satisfies our metric space requirements
(section 5). The complexity of the algorithm is bound by the number of tasks in WQ
and the number of different sequences in Δ.

6.2 Example

Suppose it is required to retrieve process variants that any performer of role senior
engineer was involved in executing a process model similar to Wa

Q, and its execution
duration is less than 3 hours. A query Q={F1

Q, F2
Q, F3

Q} containing multi-dimension
features is formulated. F1

Q={senior engineer} is the resource feature. F2
Q={<3 hours}

is the temporal feature derived from the task level features in T. Lastly, F3
Q= Wa

Q is
the structural feature of Q, as defined by the query user.

The initial candidate set CVQ={V1, V2, …, Vm} is first chosen from PVR. ∀Vi ∈
CVQ, Vi={F1

Vi, F2
Vi, F3

Vi}, where F1
Vi=role(Vi), F2

Vi=duration(Vi), and F3
Vi=Wi. role is

a function defined to extract the roles of performers in R for a given V. duration is a
function giving the execution duration of V. These functions can be defined in an
application-specific way, e.g., duration(V)=|Tn

+−T1
-|, where Tn

+ is the completion time
stamp of the last task executed in W of V and T1

- is the start time stamp of the first task
in its execution sequence. We can start filtering process variants in CVQ by F1

Vi.
Applying sim_F1(F1

Vi, F1
Q) for each Vi∈CVQ the set of complete matching variants

can be identified, i.e., sim_F1(F1
Vi, F1

Q)=1 if F1
Vi=F1

Q={senior engineer}. As we are
only interested in exact matches in F1

Q and F2
Q, CVQ is updated with the set of

process variants having complete matching feature F1
Vi (when all partial matching

variants are removed from CVQ). Similarly, CVQ is further filtered by applying

178 R. Lu and S. Sadiq

sim_F2(F2
Vi, F2

Q) for each remaining Vi∈CVQ. Suppose |CVQ|=150 after filtering by
F1

Q and F2
Q, and for all F3

Vi in CVQ there are 5 common process models {Wa, Wb, Wc,
Wd, We} as shown in Fig. 3.

For filtering by the structural feature F3
Q, we first aggregate all Vi in CVQ

according to F3
Vi, i.e., Wi (cf. the first two columns in Table 3). Then we apply

SELECTIVE_REDUCE to each different Wi, yields reduced variant models {RWa,
RWb, RWc, RWd, RWe} (cf. Fig. 5). The equivalent relationship between RWc and Wa

Q
is identified. As a result, for all Vi∈CVQ where F3

Vi=Wc are complete matches to F3
Q,

and the rest are partial matches. We apply RANK_STRUCTURAL to the partial
matches against Wa

Q to provide the similarity ranking. The collection of execution
sequences and counters Δ from all Wi in CVQ is generated as shown in Table 2.

Table 2. The list of all execution sequences S and their counters from reduced partial matching
process models which forms Δ. In this case S contains 7 different execution sequences, from
150 process variants.

s count(s)
<T1, T2, T2, T3, T4, T5> 5
<T1, T2, T3, T4, T5> 30
<T1, T3, T2, T4, T5> 25
<T1, T3, T4, T2, T5> 45
<T1, T2, T3, T4> 15
<T1, T2, T3, T5 > 10
<T1, T2, T5> 20

Table 3 shows the ranked result of applying RANK_STRUCTURAL to the each
partial matches Wi against Wa

Q. A pre-defined similarity threshold1 (e.g., sim≥0.72)
may be set to define the minimal matching score. In this case, for all Vi∈CVQ where
F3

Vi∈{Wc, Wa, Wd}, e.g., {V2, V1, V8, V3, V5, …} remain in the final result set CVQ.

Table 3. Similarity ranking details for reduced partial matching process models against Wa
Q

W Variants V structural similarity
Wc {V2, …} 1.00
Wa {V1, V8, …} 0.90
Wd {V3, V5, …} 0.73
Wb {V4, …} 0.71
We {V6, V7, …} 0.67

7 Related Work

The issue of managing business processes as an information resource was first
brought into attention in [5], which points out that process models containing

1 The similarity threshold can be determined at runtime with respect to the distribution of

partial similarity ranking, or pre-determined through a variety of statistical analysis
techniques from historical matching results.

 On the Discovery of Preferred Work Practice Through Business Process Variants 179

constraints, procedures and heuristics of cooperate knowledge should be regarded as
intellectual assets of enterprises. It is quite often nowadays that a large amount of
variances are produced during business process execution. Managing such process
variants and subsequently reusing the knowledge from the variants needs to be
supported explicitly. In many cases, the source of these variants is the system
execution log that stores event-based data for traces of different process executions.
As a result, various process mining techniques [3] have been proposed, aiming at
reconstructing meaningful process models from executional data. The reconstructed
process models can then be used to facilitate a range of process redesign and auditing
activities such as to compare with the design models such that the runtime behaviors
such as exception handlings and derivations can be discovered and diagnosed. In
addition, more specific techniques have been proposed to represent and utilize change
logs [10] which specifically capture the events and conditions of changes and trace of
modification to the process model.

The proposed approach sets apart from the process mining approach, with the
emphasis on supporting knowledge acquisition and process discovery. In particular, it
supports the reuse of past instances of process execution to achieve new operational
goals in similar situations. Compared to a typical process execution log, the repository
in PVR has a richer schema defined to provide an appropriate characterization to
describe the preferred work practices represented through process variants, and
subsequently facilitate processing queries with complex requirements for process
variants retrieval. An essential concept in process retrieval is the definition of process
equivalence, particularly regarding the structural similarity between two given
process models. There have been many proposals for defining process equivalence
based on single aspect, such as structural similarity [8], or (execution sequence as)
behavioral similarity [14]. It has been shown that the similarity definition in structural
and behavioral aspect should be combined to be a more practical approach [1]. The
key distinction of our approach is to formally address the issue of process similarity
with regard to process variant properties in multiple dimensions (multi-modality).

8 Conclusion and Future Work

Variations in work practice often represent the competitive differentiation within
enterprise operations. In this paper we have argued for the value of variants in
business process management platforms. We have focused on the process similarity
concept in the scenario of managing process variants as an information resource. In
particular, the presented methods provide effective means of searching and matching
process variants against a given query from simple to complex aspects, and generate
result sets that can be conveniently ranked, thereby empowering process designers to
tap into effective precedents. The main contribution of this paper is to lay a theoretical
foundation for query specification and processing for effective search and retrieval of
process variants. The proposed approach is intended, but not limited to assist in
dynamic instance adaptation and process discovery. In a border scope, the process
variant repository (PVR) and its retrieval techniques provides reference for
implementing similar functionalities in process aware information systems (PAIS).

180 R. Lu and S. Sadiq

As the foremost step in future work we plan to implement the query processing
approach such that empirical evaluation for the effectiveness of the algorithm can be
performed and scalability and complexity analysis can be rigorously conducted.

References

1. van der Aalst, W.M.P., de Medeiros, A.K., Alves Weijters, A.J.M.M.: Process
Equivalence: Comparing Two Process Models Based on Observed Behavior. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) Proc. of 4th International Conference on Business
Process Management (2006)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business Process Management:
A Survey. In: van der Aalst, W.M.P., H. M. ter Hofstede, A., Weske, M. (eds.) Proc. of
International Conference on Business Process Management (2003)

3. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data & Knowledge
Engineering 47, 237–267 (2003)

4. van der Aalst, W.M.P., Weske, M.: Case handling: a new paradigm for business process
support. Data & Knowledge Engineering 53(2), 129–162 (2005)

5. Leymann, F., Altenhuber, W.: Managing Business Processes as an Information Resource.
IBM Systems Journal 33(2) (1994)

6. Lu, R., Sadiq, S.: On Managing Process Variants as an Information Resource. Technical
Report, No.464. School of Information Technology and Electrical Engineering, University
of Queensland (2006)

7. Lu, R., Sadiq, S.: A Reference Architecture for Managing Business Process Variants. In:
Proc. of 9th International Conference on Enterprise Information Systems (2007)

8. Madhusudan, T., Zhao, L., Marshall, B.: A Case-Based Reasoning Framework for
Workflow Model Management. Data Knowledge Engineering 50(1), 87–115 (2004)

9. Rinderle, S., Reichert, M.: Data-Driven Process Control and Exception Handling in
Process Management Systems. In: Proc. 18th International Conference on Advanced
Information Systems Engineering (2006)

10. Rinderle, S., Reichert, M., Jurisch, M., Kreher, U.: On Representing, Purging, and
Utilizing Change Logs in Process Management Systems. In: Dustdar, S., Fiadeiro, J.L.,
Sheth, A.P. (eds.) Proc. of 4th International Conference on Business Process Management
(2006)

11. Sadiq, S., Sadiq, W., Orlowska, M.: A Framework for Constraint Specification and
Validation in Flexible Workflows. Information Systems 30(5) (2005)

12. Sadiq, W., Orlowska, M.E.: On Business Process Model Transformations. In: Laender, A.,
Liddle, S., Storey, V. (eds.) Proc. of 19th International Conference on Conceptual
Modeling (2000)

13. WFMC. Workflow management coalition terminology & glossary. Technical Report
WFMC-TC-1011, Workflow Management Coalition (1999)

14. Wombacher, A., Rozie, M.: Evaluation of Workflow Similarity Measures in Service
Discovery. In: Schoop, M., Huemer, C., Rebstock, M., Bichler, M. (eds.) Service Oriented
Electronic Commerce. LNI, vol. 80, GI (2006)

15. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space
Approach. Springer, Heidelberg (2006)

Towards Automated Reasoning on ORM Schemes
Mapping ORM into the DLRidf Description Logic

Mustafa Jarrar�

STARLab, Vrije Universiteit Brussels, Belgium
Department of Computer Science, University of Cyprus

Abstract. The goal of this article is to formalize Object Role Modeling (ORM)
using the DLR description logic. This would enable automated reasoning on the
formal properties of ORM diagrams, such as detecting constraint contradictions
and implications. In addition, the expressive, methodological, and graphical ca-
pabilities of ORM make it a good candidate for use as a graphical notation for
most description logic languages. In this way, industrial experts who are not IT
savvy will still be able to build and view axiomatized theories (such as ontolo-
gies, business rules, etc.) without needing to know the logic or reasoning foun-
dations underpinning them. Our formalization in this paper is structured as 29
formalization rules, that map all ORM primitives and constraints into DLR, and
2 exceptions of complex cases. To this end, we illustrate the implementation of
our formalization as an extension to DogmaModeler, which automatically maps
ORM into DIG and uses Racer as a background reasoning engine to reason about
ORM diagrams.

1 Motivation and Background

This article proposes to formalize ORM (Object Role Modeling [8]) using the DLR de-
scription logic. This would enable automated reasoning to be carried out on the formal
properties of ORM diagrams, such as detecting constraint contradictions and implica-
tions. In addition, the expressive, methodological, and graphical power of ORM make
it a good candidate for use as a graphical notation for most description logic languages.
With this, non-IT trained industrial experts will be able to build axiomatized theories
(such as ontologies, business rules, etc.) in a graphical manner, without having to know
the underpinning logic or foundations.

ORM is a conceptual modeling method that allows the semantics of a universe of
discourse to be modeled at a highly conceptual level and in a graphical manner. ORM
has been used commercially for more than 30 years as a database modeling methodol-
ogy, and has recently becoming popular not only for ontology engineering but also as a
graphical notation in other areas such as the modeling of business rules, XML-Schemes,
data warehouses, requirements engineering,web forms, etc1.
� The author is currently moving from Brussels to Nicosia and soon will be affiliated only with

the university of Cyprus.
1 Many commercial and academic tools that support ORM solutions are available, including the

ORM solution within Microsoft’s Visio for Enterprise Architects, VisioModeler, NORMA,
CaseTalk, Infagon, and DogmaModeler. DogmaModeler and its support for ontology engi-
neering will be presented later in this paper.

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 181–197, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

182 M. Jarrar

ORM has an expressive and stable graphical notation. It supports not only n-ary
relations and reification, but as will be shown in this article it supports a fairly com-
prehensive treatment of many “practical” and “standard” business rules and constraint
types. Furthermore, compared with, for example, EER or UML, ORM’s graphical nota-
tion is more stable since it is attribute-free; in other words, object types and value types
are both treated as concepts. This makes ORM immune to changes that cause attributes
to be remodeled as object types or relationships.

ORM diagrams can be automatically verbalized into pseudo natural language sen-
tences. In other words, all rules in a given ORM diagram can be translated into fixed-
syntax sentences. For example, the mandatory constraint in section 2.3 is verbalized
as: “Each Professor must WorksFor at least one University”. The subset constraint in
section 2.8 is verbalized as: “If a Person Drives a Car then this Person must be Au-
thorizedWith a DrivingLicense”. Additional explanation can be found in [21] and [11],
which provide sophisticated and multilingual verbalization templates. From a method-
ological viewpoint, this verbalization capability simplifies communication with non-IT
domain experts and allows them to better understand, validate, or build ORM diagrams.
It is worthwhile to note that ORM is the historical successor of NIAM (Natural Lan-
guage Information Analysis Method), which was explicitly designed (in the early 70’s)
to play the role of a stepwise methodology, that is, to arrive at the ”semantics” of a
business application’s data based on natural language communication.

Indeed, the graphical expressiveness and the methodological and verbalization capa-
bilities of ORM makes it a good candidate for a graphical notation for modeling and
representing ontologies and their underpinning logic.

ORM’s formal specification and semantics are well-defined (see e.g. [7][26][27][5]).
The most comprehensive formalization in first-order logic (FOL) was carried out by
Halpin in [7]. Later on, some specific portions of this formalization were reexamined,
such as subtypes[12], uniqueness[9], objectification[10], and ring constraints [8]. Since
reasoning on first order logic is far complex, namely undecidable[1], the above formal-
izations do not enable automated reasoning on ORM diagrams, which comprises e.g.
detection of constraint contradictions, implications, and inference.

In [19] and [20], we presented a reasoning approach based on heuristics (called
pattern-based reasoning) for detecting the common constraint contradictions in ORM.
This approach was designed to be user friendly and easy to apply in interactive mod-
eling. It indicates not only constraint contradictions, but also a clear explanation about
the detected contradictions, the causes, and suggestions on how to resolve these contra-
dictions. Although this reasoning approach is easy to apply specially by non-IT domain
experts, in comparison with DL-based reasoning, but it cannot be complete. In other
words, there is no guarantee that by passing the predefined patterns, that the ORM
schema is satisfiable. Please refer to [20] for more details on this approach and for
a comparison (and a synergy) between the pattern-based and the DL-based reasoning
mechanisms.

Enable automated and complete reasoning can only be done in description logic.
This papers maps all ORM primitives and constraints into the DLRifd Description
Logic, which is an expressive and decidable fragment of first-order logic. Our mapping
is based on the ORM syntax and semantics specified in [7] and [8].

Towards Automated Reasoning on ORM Schemes 183

The remainder of the paper is organized as follows. In the following section, we give
a quick overview about the DLR description logic. Section 2 presents the complete
formalization of ORM using DLR. In section 3, we illustrate the implementation of
this formalization as an extension to DogmaModeler and present some related work.
Finally, the conclusions and directions for future work are presented in section 4.

Remark: In this paper, we focus only on the logical aspects of reusing ORM for ontol-
ogy modeling. The conceptual aspects (i.e. ontology modeling versus data modeling)
are discussed in [15] [17] [22] [16], while a case study that uses the ORM notation can
be found in [23].

The DLR Description Logic
Description logics are a family of logics concerned with knowledge representation. A
description logic is a decidable fragment of first-order logic, associated with a set of
automatic reasoning procedures. The basic constructs for a description logic are the
notion of a concept and the notion of a relationship. Complex concept and relationship
expressions can be constructed from atomic concepts and relationships with suitable
constructs between them. The expressiveness of a description logic is characterized by
the constructs it offers. The simplest description logic is called FL−[1], which offers
only the intersection of concepts, value restrictions, and a simple form of existential
quantification. In other words, a TBox in FL− is built as a set of inclusion assertions of
the following forms: C, D → A | C � D | ∀R.C | ∃R.

In this paper, we use the DLRifd description logic[3], which is an extension to
DLR. DLRifd is an expressive description logic, and allows the majority of the prim-
itives and constraints used in data modeling to be represented [1], including n-ary
relations, identification, and functional dependencies. The basic constructs of DLR
are concepts and n-ary relations (n ≥ 2). Let A denote an atomic concept, and P
an atomic n-ary relation. Arbitrary concepts, denoted by C in DLR and arbitrary
relations denoted by R, can be built according to the following syntax respectively:
C ::= �1 | A | ¬C | C1�C2 | (≤ k[i]R), and R ::= �n | P | (i/n : C) | ¬R | R1�R2,
where n denotes the arity of the relations P, R, R1 and R2, i denotes a component of
a relationship, and k denotes a non-negative integer. Relations in DLR are well-typed,
which means that only relations of the same arity n can be used in expressions like
R1 �R2 and i ≤ n whenever i denotes a component of a relation of arity n. The follow-
ing are abbreviations: ⊥ for ¬�1; C1
C2 for ¬(¬C1 �¬C2); C1 ⇒ C2 for ¬C1
C2;
(≤ k[i]R) for ¬(≤ k − 1 [i]R); ∃[i]R for (≥ 1[i]R); ∀[i]R for ¬∃[i]¬R; and (i : C)
for (i/n : C) if n is clear from the context.

The semantics of DLR is specified as follows. An interpretation I is constituted
by an interpretation domain �I , and an interpretation function .I that assigns to each
concept C a subset CI of �I and to each R of arity n a subset RI of (�I)n. t[i] denotes
the i-th component of tuple t.

�I
n ⊆ (�I)n �I

1 = �I

P I ⊆ �I
n AI ⊆ �I

(i/n : C)I = {t ∈ �I
n|t[i] ∈ CI} (¬C)I = �I\CI

(¬R)I = �I
n\RI (C1 � C2)I = CI

1 ∩ CI
2

(R1 � R2)I = RI
1 ∩ RI

2 (≤ k[i]R)I = {a ∈ �I | �{t ∈ RI |t[i] = a} ≤ k}

184 M. Jarrar

A DLR TBox is constituted by a finite set of inclusion assertions, where each
assertion has the form: C1 � C2 or R1 � R2 , with R1 and R2 of the same ar-
ity. Beside these inclusion assertions in DLR, DLRifd allows identification id and
functional dependencies fd assertions to be expressed, which have the following form:
(id C [r1]R1, ..., [rn]Rn) and (fd R r1, ..., rh → rj). Furthermore, another use-
ful extension that has been recently included in DLR-Lite [2] which we shall use in
this paper, is inclusion between projections of relations, which has the following form:
R2[rj1 , ..., rjk

] R1[ri1 , ..., rik
]. Inclusion, identification id and functional dependen-

cies fd shall be explained later in this paper.

2 The Formalization of ORM Using DLRifd

2.1 Object-Types

ORM allows a domain to be modelled by using object-types that play certain roles.
There are two kinds of object-types in ORM: Non-Lexical Object-Types (NOLOT) and
Lexical Object-Types (LOT). Both object-types are depicted as ellipses in ORM’s nota-
tion. a LOT is depicted as a dotted-line ellipse and a NOLOT is a solid-line ellipse2. We
represent both NOLOTs and LOTs as classes in DLR. To distinguish between NOLOT
and LOT in a DLR knowledge base, we introduce four classes: LEXICAL, STRING,
NUMBER, and BOOLEAN. The class LEXICAL is considered to be a super-type of
the other three classes, while the other three classes are considered to be disjoint. Un-
less specified, each LOT is mapped by default into the class STRING. We shall return
to this issue later in the paper.

2.2 Roles and Relationships

ORM supports n-ary relationships, where n ≥ 1. Each argument of a relationship in
ORM is called a role. The examples below show binary and ternary relationships. For
example, the binary relationship has two roles, WorksFor and Employs. The formal-
ization of the general case of an ORM n-ary relationship[7] is: ∀x1...xn(R(x1...xn) →
A1(x1) ∧ ... ∧ An(xn)). DLR supports n-ary relationships, where n ≥ 2. Each argu-
ment of a relationship in DLR is called a component [1]. As shown in the examples
below, we represent a relationship in ORM as a relationship in DLR; thus, a role in
ORM is seen as a component of a relationship in DLR.

For people who are familiar with ORM, the formalization of ORM roles and rela-
tionships shown in the examples seems to be trivial. However, people who are familiar
with description logics may not find it intuitive. This is because, unlike ORM, the com-
ponents of relationships in description logics are typically not used and do not have
linguistic labels. For example, one expects to see the binary relationship in the exam-
ple below represented in description logic as, Person ∀WorksFor.University,
and University ∀Employs.Person. In this case, both WorksFor and Employs

2 Although they are not exactly similar, the notions of LOT and NOLOT in ORM can be, for the
sake of simplicity, compared to the concepts of ’Attribute’ and ’Class’ in UML.

Towards Automated Reasoning on ORM Schemes 185

are two different relationships. This formalization requires an additional axiom to state
that both relations are inverse to each other: WorksFor Employs−. ORM schemes
formalized in this way are not only lengthy, but also become more complex when re-
lationships other than binary are introduced. As will be shown later, our method of
formalizing ORM roles and relationships will make the formalization of the ORM
constraints intuitive and more elegant. Rule-1 formalizes ORM n-ary relations, where
n ≥ 2.

Remark: When mapping an ORM schema into a DLR knowledge base: Each role in
the ORM schema should have a unique label within its relationship. In case a role label
is null, an automatic label is assigned, such as r1, r2, etc. In case of a relationship
having the same labels of its roles, such as ColleagueOf/ColleagueOf , new labels
are assigned to these roles, such as: ColleagueOf − r1, ColleagueOf − r2. Usually,
ORM relationships do not have labels; thus, a unique label is automatically assigned,
such as: R1, R2, etc.

ORM unary roles. Unlike DLR, ORM allows the representation of unary relations.
The relationship in the example below means that a person may smoke. The population
of this role is either true or false. In first-order logic, this fact can be formalized [7] as:
∀x(Smokes(x) → Person(x)). To formalize ORM unary roles in DLR,we introduce
a new class called BOOLEAN, which can take one of two values: either TRUE or
FALSE. Each ORM unary fact is seen as a binary relationship in DLR, where the
second concept is BOOLEAN. Rule-2 presents the general case formalization of ORM
unary fact types.

2.3 Mandatory Constraints

There are two kinds of mandatory constraints in ORM: roles and disjunctive.

Role Mandatory. The role mandatory constraint in ORM is depicted as a dot on the
line connecting a role with an object type. The example below indicates that, in every
interpretation of this schema, each instance of the object-type Professor must work
for at least one University. Rule-3 presents the general case formalization of the role
mandatory constraint.

186 M. Jarrar

Disjunctive Mandatory. The disjunctive mandatory constraint is used to constrain a set
of two or more roles connected to the same object type. It means that each instance of
the object type’s population must play at least one of the constrained roles. For example,
the disjunctive mandatory in the example below means that each account must be owned
by at least a person, a company, or both. Rule-4 presents the general case formalization
of a disjunctive mandatory constraint.

2.4 Uniqueness Constraints

We distinguish between three types of uniqueness constraints in ORM: role uniqueness,
predicate uniqueness, and external uniqueness.

Role Uniqueness. Role uniqueness is represented by an arrow spanning a single role in
a binary relationship. As shown in the example below, the uniqueness constraint states
that, in every interpretation of this schema, each instance of a Professor must work for
at most one University, i.e. each occurrence is unique. Rule-5 presents the general case
formalization of the role uniqueness constraint.

Predicate Uniqueness. An arrow spanning more than a role in a relationship of arity
n represents predicate uniqueness. As shown in the example below, the uniqueness
constraint states that, in any population of this relationship, the person and subject pair
must be unique together. The general case of this constraint is formalized in FOL[7]
as: ∀x1, .., xi, .., xn, y(R(x1, .., xi, .., xn) ∧ R(x1, .., y, xi+1, .., xn) → xi = y). We
formalize this uniqueness constraint using the notion of functional dependency fd in
DLRifd [3], which has the form: (fd R r1, ..., rh → rj); where R is a relation, and
r1, ..., rh, rj denote roles in R. The notion of functional dependency requires two tuples
of a relationship that agree on the constrained components r1, ..., rh to also agree on the
un-constrained component rj . The set of the constrained roles (on the the left-side of
the fd assertion) uniquely determines the un-constrained role (which is on the the right
side of the assertion).

Towards Automated Reasoning on ORM Schemes 187

Notice that our formalization excludes the following cases:

– Role uniqueness in a binary relationship: Although it is theoretically possible to use
the above formalization in case of a binary relationship, we keep the formalization
of this case separate (see rule-5) for implementation reasons. This is because: 1)
rule-5 is supported in most description logic reasoners while rule-6 is not imple-
mented in any reasoner yet, and 2) reasoning on functional dependencies cannot be
performed on TBox only. In other words, as functional dependencies in DLRifd

are seen as extra assertions (i.e. outside the TBox), the reasoning process to check
whether the fd assertions are violated is reduced to ABox satisfiability. If there is
no ABox, one cannot reason over the fd assertions.

– A single role uniqueness in an n−ary relationship where (n > 2), since it is always
a non-elementary fact type. This case is considered an illegal constraint in ORM
(see [8], chapter 4), with [3] proving that it leads to undecidability in reasoning.
Therefore, this case is ruled out in our formalization.

External Uniqueness. External uniqueness constraints (denoted by “U”) apply to roles
from different relationships. The roles that participate in such a uniqueness constraint
uniquely refer to an object type. As shown in the example below, the combination of
(Author, Title, Edition) must be unique. In other words, different values of (Author,
Title, Edition) refer to different Books. Formalizing this constraint in description logic
is possible using the notion of identity id in DLRifd [3]. In case the external uniqueness
is defined on binary relationships and the common concept to be constrained is directly
connected to these relations, the formalization is direct. In other cases, the formalization
becomes more complex. We shall try to simplify and explain this complexity in the
following.

The notion of identity id in DLRifd has the form: (id C [r1]R1, ..., [rn]Rn), where
C is a concept, each Ri is a relation, and each ri is a role in Ri that is connected to C.
The identity id in DLRifd states that two instances of the concept C cannot agree on
the participation in R1, ..., Rn via their roles r1, ..., rn, respectively. See [3] for more
details on this. In ORM, the intuition of external uniqueness is that the combination of
r1, ..., rn in R1, ..., Rn respectively must be unique. The formalization of the general
case [7] of this constraint (see the figure in rule-7) is: ∀x1, x2, y1..yn(R1(x1, y1) ∧ ... ∧
Rn(x1, yn) ∧ (R1(x2, y1) ∧ ... ∧ Rn(x2, yn) → x1 = x2).

This allows one to define uniqueness on roles that are not directly connected to a
common concept. For example, although the external uniqueness in the second example
below means that the combination of {CountryCode, CityCode} must be unique, it does
not tell us that the combination is unique for which concept. In other words, the notion
of “common concept” is not explicitly regarded, neither in the ORM graphical notation
nor in its underlying semantics [7] [9] [26]. To interpret the external uniqueness (i.e. the

188 M. Jarrar

semantics) in this example, a join path should be performed on R4 − R1 and R5 − R2.
In other words, although the notion of “common concept” does not exist in ORM, it is
assumed that there must be a join path between the constrained roles. If this path cannot
be constructed, then the external uniqueness is considered illegal [9], i.e. an error in the
ORM schema. The construction of such join paths becomes more complex (even for
human eyes) in large schemes or when objectified (i.e. reified) predicates are involved.
[27] shows many cases of complex external uniqueness.

We formalize the general case of external uniqueness using the notion of id in
DLRifd, but we use the concept Top as the common concept C (see rule-7). As shown
in the examples, the formalization (using Top) means that any two individuals must
agree on their participation in roles: [WrittenBy]R1, [Has]R2 and [Has]R3. Although
the use of the Top concept yields a simple and elegant formalization, intensive ABox
reasoning may be required. In practice, we recommend using the Uniquest algorithm
[27]. This algorithm is designed to compute the shortest join path connecting the con-
strained roles for an external uniqueness constraint, no matter what its level of com-
plexity is. The result is a derived relation, which represents the shortest join path. This
derived relation can then be used instead of the concept Top in rule-7.

2.5 Frequency Constraints

In the following we formalize the Frequency Constraints. We distinguish between fre-
quency constraints that span 1) a single role, which we call “role frequency” constraints,
and 2) multiple roles, which we call “multiple-role frequency” constraints.

Role Frequency Constraints. A frequency constraint (min − max) on a role is used
to specify the number of occurrences that this role can be played by its object-type. A
frequency constraint on the ith role of an n-ary relation is formalized [7] as: ∀x[x ∈
R.i → ∃n,mz(R(z) ∧ zi = x)]. For example, the frequency constraint in the exam-
ple below indicates that if a car has wheels, then it must have at least 3 and at most 4
wheels. We formalize this constraint by conjugating ⊥ to the (min − max) cardinal-
ity, i.e. either there is no occurrence, or it must be within the (min−max) range, which

Towards Automated Reasoning on ORM Schemes 189

is the exact meaning in ORM. Rule-8 presents the general case mapping rule of a role
frequency constraint.

Multiple-role Frequency Constraints. A multiple-role frequency constraint spans
more than one role (see the second example). This constrain means that, in the pop-
ulation of this relationship, A and C must occur together (i.e. as a tuple) at least 3 times
and at most 6 times. Up to our knowledge, such a cardinality constraint cannot be for-
malized in description logic. However, this constraint is extremely rare in practice, [8]
presents an example of this constraint and shows that it can be remodeled and achieved
by a combination of uniqueness and single-role frequency constraints, which are in-
deed cheaper to compute and reason about. Exception-1 presents the general case of a
multiple-role frequency constraint and its formalization in first order logic [7].

2.6 Subtypes

Subtypes in ORM are proper subtypes. For example, we say that B is a proper subtype
of A if and only if the population of B is always a subset of the population of A, and
A �= B. This implies that the subtype relationship is acyclic; hence, loops are illegal
in ORM. To formalize this relationship in DLR, we introduce an additional negation
axiom for each subtype relation. For example, (Man Is-A Person) in ORM is formalized
as: (Man Person) � (Person � Man). Rule-9 presents the general case formal-
ization of ORM subtypes. Notice that “ �” is not part of the DLR syntax. However, it
can be implemented by reasoning on the ABox to make sure that the population of A
and the population B are not equal.

Remark: Subtypes in ORM should be well-defined, which means that users should
introduce some rules explicitly to define a subtype. Such definitions are not part of the
graphical notation and are typically written in the FORMAL language [7]. The idea of
the ORM FORMAL language is similar to the idea the OCL language for UML. For
example: if one states that (Man Is-A Person), then a textual rule on Man is defined e.g.
“who has Gender=’Male”’. Since such rules are not part of the graphical notation, we
do not include them in our formalization. We assume that textual rules that are not part
of the ORM graphical notation are written in DLR directly.

Total Constraint. The total constraint (�) between subtypes means that the population
of the supertype is exactly the union of the population of these subtypes (see rule-10).

Exclusive Constraint. The exclusive constraint (⊗) between subtypes means the pop-
ulation of these subtypes is pairwise distinct, i.e. the intersection of the population of
each pair of the subtypes must be empty (see Rule-11).

190 M. Jarrar

2.7 Value Constraints

The value constraint in ORM indicates the possible values (i.e. instances) for an object
type. A value constraint on an object type A is denoted as a set of values {s1, ..., sn}
depicted near an object type, which indicate that (∀x[A(x) ≡ x ∈ {s1, ..., sn}]) [7].
Value constraints can be declared only on lexical object types LOT, and values should
be well-typed, i.e. its datatype should be either a string such as {′be′,′ 39′,′ it′,′ 32′} or
a number such as {1, 2, 3}. Notice that quotes are used to distinguish string values from
number values. As discussed earlier, if a LOT has no value constraint on it, then it is, by
default, seen as a subtype of LEXICAL. If it has a value constraint, it must be a subtype
of either the STRING or the NUMBER classes.

Outlook: We plan to extend our formalization of the ORM value constraint to include
other data types, such as real, integer, and boolean, which are not discussed in this paper.

2.8 Subset Constraint

The subset constraint (→) between roles (or sequences of roles) is used to restrict the
population of these role(s), since one is a subset of the other. See the examples below.
The first example indicates that each person who drives a car must be authorized by a
driving license: ∀x(x ∈ R2.Drives → x ∈ R1.AuthorizedWith) [7]. If an instance
plays the subsuming role, then this instance must also play the subsumed role. Rule-14
formalizes a subset constraint between two roles. A subset constraint that is declared
between all roles in a relationship and all roles in another relationship implies that the
set of tuples of the subsuming relation is a subset of the tuples of the subsumed rela-
tion. See the second example below. Rule-15 formalizes of a subset constraint between
two relations. ORM also allows subset constraints between tuples of (not necessarily
contiguous) roles as shown in rule-16, where each ith and jth roles must have the same
type. The population of the set of the jth roles is a subset of the population of the set
of the ith roles. The FOL formalization of the general case of this constraint [7] is :
∀x1...xk[∃y(R2(y) ∧ x1 = yi1 ∧ ... ∧ xk = yik) → ∃z(R1(z) ∧ x1 = zj1 ∧ ... ∧ xk = zjk)].

To formalize this constraint in description logic, we use the recent extension to
DLR-Lite [2] that allows inclusion assertions between projections of relations of the
forms: R2[rj1 , ..., rjk

] R1[ri1 , ..., rik
], where R1 is an n-ary relation, ri1 , ..., rik

∈
{r1, ..., rn}, and rip �=riq if rp �=rq; R2 is an m-ary relation, rj1 , ..., rjk

∈ {r1, ..., rm},

Towards Automated Reasoning on ORM Schemes 191

and rjp �= rjq if rp �= rq . Using this extension, any ORM set-comparison constraint for-
malized hereafter between two sets of (not contiguous) roles becomes direct. Rule-16
shows the subset general case.

2.9 Equality Constraint

Similar to the subset constraint, the equality constraint (↔) between roles, relations, or
sequences of roles is formalized in the following rules.

2.10 Exclusion Constraint

Similar to the subset and quality constraints, the exclusion constraint (⊗) between roles,
relations, or sequences of roles is formalized in the following rules.

2.11 Ring Constraint

In the following we formalize the Ring Constraints. ORM allows ring constraints to be
applied to a pair of roles (i.e. on binary relations) that are connected directly to the same
object-type, or indirectly via supertypes. Six types of ring constraints are supported by
ORM: symmetric (sym), asymmetric (as), antisymmetric (ans), acyclic (ac), irreflexive
(ir), and intransitive (it).

192 M. Jarrar

Symmetric Ring Constraint (sym). The symmetric constraint states that if a relation
holds in one direction, it should also hold on the other direction, such as “colleague of”
and “partner of”. R is symmetric over its population iff ∀x, y[R(x, y) −→ R(y, x)].
The example shown in rule-23 illustrates the symmetric constraint and its general case
formalization in DLR.

Asymmetric Ring Constraint (as). The asymmetric constraint is the opposite of the
symmetric constraint. If a relation holds in one direction, it cannot hold on the other;
an example would be “wife of” and “parent of”. R is asymmetric over its population iff
∀xy, R(x, y) −→ ¬R(y, x) The example shown in rule-24 illustrates the asymmetric
constraint and its general case formalization in DLR.

Antisymmetric Ring Constraint (ans). The antisymmetric constraint is also an oppo-
site to the symmetric constraint, but not exactly the same as asymmetric; the difference
is that all asymmetric relations must be irreflexive, which is not the case for antisym-
metric. R is antisymmetric over its population iff ∀xy, x �= y ∧ R(x, y) −→ ¬R(y, x)
(see the example in rule-25). To formalize this constraint (and some other constraints
below) in description logic, we use the concept (∃R.Self) that has been introduced re-
cently to the SROIQ description logic and RIQ [13]. The semantics of this concept
simply is: (∃R.Self)I = {x |< x, x >∈ RI}. Notice that this concept is not yet in-
cluded in the DLR description logic that we use in this paper. However, as [13] shows,
this concept can be added without causing difficulties in reasoning. Rule-25 illustrates
the antisymmetric constraint and its general case formalization.

Irreflexive Ring Constraint (ac). The irreflexive constraint on a relation states that
an object cannot participate in this relation with himself. For example, a person can-
not be the “parent of” or “sister of” himself. R is Irreflexive over its population iff
∀x, ¬SisterOf(x, x). As discussed above, formalizing this constraint in description
logic is also possible using the concept ∃R.Self . Rule-26 illustrates the irreflexive
constraint and its general case formalization in description logic.

Acyclic Ring Constraint (ac). The acyclic constraint is a special case of the irreflex-
ive constraint; for example, a Person cannot be directly (or indirectly through a chain)
ParentOf himself. R is acyclic over its population iff ∀x[¬Path(x, x)]. In ORM, this
constraint is preserved as a difficult constraint. “Because of their recursive nature,
acyclic constraints maybe expensive or even impossible to enforce in some database
systems.”[8]. Indeed, even some highly expressive description logics support notions
such as n-tuples and recursive fixed-point structures, from which one can build sim-
ple lists, trees, etc. However, to our knowledge, acyclicity with any depth on binary
relations cannot be represented.

Intransitive Ring Constraint (ac). A relation R is intransitive over its population iff
∀x, y, z[R(x, y) ∧ R(y, z) −→ ¬R(x, z)]. If Person X is FatherOf Person Y , and Y
is FatherOf Z , then it cannot be that X is FatherOf Z . We formalize this constraint
using the notion of role-composition in description logic. The composition of the two

Towards Automated Reasoning on ORM Schemes 193

relations R and S (written as R ◦S) is a relation, such that: RI ◦SI = {(a, c)|∃b.(a, b) ∈
RI ∧ (b, c) ∈ SI}. Hence, any composition with R itself (R ◦ R) should not imply R,
see rule-28.

2.12 Objectified Relations

An objectified relation in ORM is a relation that is regarded as an object type, receives
a new object type name, and is depicted as a rectangle around the relation. To help
explain predicate objects in ORM, we use a familiar example (see figure 26 [8]). In this
example, each (Person, Subject) enrollment is treated as an object that scores a rating.
Predicate objects in ORM are also called objectified relationship types or nested fact
types. The general case of predicate objects in ORM is formalized in [7] as: ∀x[A(x) ≡
∃x1, ..., xn(R(x1, ..., xn) ∧ x = (x1, ..., xn))] In addition to this axiom, it is assumed
that there must be a uniqueness constraint spanning all roles of the objectified relation,
although it is not explicitly stated in the diagram. This is to indicate that e.g. each person
may enroll in many subjects, and the same subject may be enrolled by many persons;
see [8] or the recent [10] for more details.

Predicate objects in ORM can be formalized using the notion of reification in
DLRifd. Reifying an n-ary relationship into a DLRifd concept is done by representing
this concept with n binary relations, with one relationship for each role[4]. To under-
stand this reification, one can imagine the “Enrollment” example by remodeled into two
binary relations, one for the role “Enrolls” and one for the role “EnrolledBy”. The new
concept “Enrollment” is defined in the example below. In this definition: ([$1]Enrolls

and [$1]EnrolledBy) specify that the concept “Enrollment” must have all roles “En-
rolls” and “EnrolledBy” of the relationship, (≤ 1[$1]Enrolls and ≤ 1[$1]EnrolledBy)
specify that each of these roles is single-valued, and (∀[$1](Enrolls ⇒ $2 : Student)

and ∀[$1]((EnrolledBy ⇒ $2 : Subject)) specify the object type each role belong to.
The last identity id assertion is to specify a uniqueness constraint spanning all roles
(i.e. “Enrolls” and “EnrolledBy”). Rule-29 presents the general case formalization of
the objectified predicates in DLRifd.

194 M. Jarrar

3 Implementation and Related Work

In this section, we illustrate the implementation of the formalization presented in this
paper. The formalization is implemented as an extension to the DogmaModeler [15].
DogmaModeler is an ontology modeling tool based on ORM. In DogmaModeler, ORM
diagrams are mapped automatically into DIG, which is a description logic interface
(XML-based language) that most reasoners (such as Racer, FaCT++, etc) support. Dog-
maModeler is integrated with the Racer description logic reasoning server which acts
as a background reasoning engine. See a screen shot of DogmaModeler below. The first
window shows an ORM diagram, while the second window shows the reasoning results
on this digram. The results indicate that the role “Person Reviews Book” cannot be sat-
isfied. DogmaModeler currently implements three types of reasoning services: schema
satisfiability, concept satisfiability, and role satisfiability. The other types of reasoning
services that are being implemented or are scheduled to be implemented include con-
straint implications, inference, and subsumption. Please refer to [18] for the technical
details of DogmaModeler’s mapping into DIG.

The main problem we faced during the implementation is that several ORM con-
straints cannot be mapped into DIG; that is, these constraints were not yet supported by
any description logic reasoner. Each formalization rule that could not be implemented
is marked by “Not supported by any DL reasoner yet” in the previous section.

One may notice that, in the first place, we did not map ORM into OWL, the stan-
dard web ontology language. The reason is that OWL is based on a description logic
called SHOIN [14], rather than the DLRifd that we use in this paper. Compared
with DLRifd, SHOIN does not support n-ary relations, identification, functional de-
pendencies, and projection of relations, among other things. This implies that several
ORM constraints cannot be formalized in SHOIN , and thus cannot be supported in
OWL. These constraints are: predicate uniqueness, external uniqueness, set-comparison

Towards Automated Reasoning on ORM Schemes 195

constraints (subset, equality, and exclusion) between single roles and between not con-
tiguous roles, objectification, as well as n-ary relationships.

Notice that without these constraints, mapping ORM into OWL becomes direct,
based on our formalization. In other words, formalizing ORM using SHOIN /OWL
can be seen as a subset of the formalization presented in this paper. All formaliza-
tion rules can hold for SHOIN /OWL except {rules-6,7,14,16,17,19,20,22, and 29}.
The syntax of some rules need to be modified such as Rule-1: A1 ∀R.A2, Rule-2:
A ∀R.BOOLEAN , Rule-4: A ∃R1.C1

 ∃Rn.Cn, etc. Actually, what
DogmaModeler currently maps into DIG is what can be mapped into OWL. A Dog-
maModeler functionality to export OWL in this way (i.e. as a subset of ORM) will be
released in the near future.

3.1 Related Work

Similar to our work, there have been several efforts to reuse the graphical notation of
UML and EER for ontology modeling. Some approaches, such as [24], considered this
to be a visualization issue and did not consider the underpinning semantics. Others
(e.g. [25]) are motivated only to detect consistency problems in conceptual diagrams.
We have found the most decent work in formalizing UML in [4], and in [1] for EER.
These two formalization efforts have studied the FOL semantics of UML and EER and
mapped it into the DLRifd description logic, which we use in this paper. It is also worth
noting that the ICOM tool was one of the first tools to enable automated reasoning with
conceptual modeling. ICOM [6] supports ontology modeling using a graphical notation
that is a mix of the UML and the EER notations. ICOM is fully integrated with the
FaCT description logic reasoning server, which acts as a background inference engine.

4 Conclusion and Future Work

In this paper, we have formalized ORM using the DLRifd description logic. Our for-
malization is structured into 29 formalization rules which map all ORM primitives and
constraints, except for two complex cases (see exception 1 and 2). We have shown
which formalization rules can be implemented by current description logic reasoning
engines, and which can be mapped into SHOIN /OWL. We have illustrated the imple-
mentation of our formalization as an extension to the DogmaModeler. Hence, we have
explained how ORM can be used as as a graphical notation for ontology modeling with
the reasoning being carried out by a background reasoning engine.

Various issues remain to be addressed. These include extending our formalization
to cover more datatypes besides the String, Number, and Boolean types; implement-
ing additional types of reasoning services, specifically constraint implications and in-
ferencing; developing a functionality in DogmaModeler to export OWL; studying the
computational complexity of ORM constraints; and last but least, is to extend the ORM
graphical notation to include some description of logical notions, such as the composi-
tion of relations and intersection and union between relations.

Acknowledgment. This research was initiated during my visit to Enrico Franconi at the
Free University of Bozen-Bolzano, which was funded by the Knowledge Web project

196 M. Jarrar

(FP6-507482). I am indebted to Enrico for his very valuable suggestions, contribu-
tions, and encouragement. I am also indebted to Sergio Tessaris, Terry Halpin, and Rob
Shearer for their valuable comments and feedback on the final version of this paper.
I wish to thank Diego Calvanese, Maurizio Lenzerini, Stijn Heymans, Robert Meers-
man, Ian Horrocks, Alessandro Artale, Erik Proper, Marijke Keet, and Jeff Pan for their
comments and suggestions during this research. This research is partially funded by the
SEARCHiN project (FP6-042467, Marie Curie Actions).

References

1. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, D.N.P.: The Description Logic
Handbook: Theory, Implementation and Applications. Cambridge University Press, Cam-
bridge (2003)

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. In: Doherty, P., Mylopoulos, J., Welty, C. (eds.) Pro-
ceedings of the 10th International Conference on Principles of KnowledgeRepresentation
and Reasoning (KR2006), Menlo Park, California, pp. 178–218. AAAI Press, Stanford, Cal-
ifornia, USA (2006)

3. Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification constraints and functional de-
pendencies in description logics. In: Proceedings of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI2001), pp. 155–160 (2001)

4. Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning on uml class diagrams. Artificial
Intelligence 168(1), 70–118 (2005)

5. de Troyer, O.: A formalization of the binary object-role model based on logic. Data and
Knowledge Engineering 19, 1–37 (1996)

6. Franconi, E., Ng, G.: The i.com tool for intelligent conceptual modelling. In: 7th Int. WS on
Knowledge Representation meets Databases(KRDB’00), Springer, Heidelberg (2000)

7. Halpin, T.: A logical analysis of information systems: static aspects of the data-oriented
perspective. PhD thesis, University of Queensland, Brisbane, Australia (1989)

8. Halpin, T.: Information Modeling and Relational Databases. Morgan Kaufmann, San Fran-
cisco (2001)

9. Halpin, T.: Join constraints. In: Halpin, T., Siau, K., Krogstie, J. (eds.) Proceedings of the 7th
International IFIP WG8.1 Workshop on Evaluation ofModeling Methods in Systems Analy-
sis and Design (EMMSAD’02) (June 2002)

10. Halpin, T.: Objectification. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, Springer, Heidelberg (2005)

11. Halpin, T., Curland, M.: Automated verbalization for orm 2. In: Meersman, R., Tari, Z. (eds.).
OTM 2006 Workshops, Springer, Heidelberg (2006)

12. Halpin, T., Proper, E.: Subtyping and polymorphism in object-role modelling. Data and
Knowledge Engineering 15(3), 251–281 (1995)

13. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proceeding of the
10th International Conference on Principles of Knowledge Representation and Reasoning
(KR 2006) (2006)

14. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics.
In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp.
161–180. Springer, Heidelberg (1999)

15. Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD thesis, Vrije
Universiteit Brussel, Brussels, Belgium (May 2005)

Towards Automated Reasoning on ORM Schemes 197

16. Jarrar, M.: Towards the notion of gloss, and the adoption of linguistic resources informal
ontology engineering. In: Proceedings of the 15th international conference on World Wide
Web (WWW2006), May 2006, pp. 497–503. ACM Press, New York (2006)

17. Jarrar, M., Demey, J., Meersman, R.: On using conceptual data modeling for ontol-
ogy engineering. Journal on Data Semantics (Special issue on Best papers from the
ER/ODBASE/COOPIS2002 Conferences) 2800, 185–207 (2003)

18. Jarrar, M., Eldammagh, M.: Reasoning on orm using racer. Technical report, Vrije Univer-
siteit Brussel, Brussels, Belgium (August 2006)

19. Jarrar, M., Heymans, S.: Unsatisfiability reasoning in orm conceptual schemes. In: Illarra-
mendi, A., Srivastava, D. (eds.) Proceeeding of International Conference on Semantics of a
Networked World, Munich, Germany, March 2006, vol. LNCS, Springer, Heidelberg (2006)

20. Jarrar, M., Heymans, S.: On pattern-based ontological reasoning. International Journal on
Artificial Intelligence Tools (2007)

21. Jarrar, M., Keet, M., Dongilli, P.: Multilingual verbalization of orm conceptual models
and axiomatized ontologies. Technical report, Vrije Universiteit Brussel, Brussels, Belgium
(February 2006)

22. Jarrar, M., Meersman, R.: Formal ontology engineering in the dogma approach. In: Meers-
man, R., Tari, Z. (eds.). OTM 2002. LNCS, vol. 2519, pp. 1238–1254. Springer, Heidelberg
(2002)

23. Jarrar, M., Verlinden, R., Meersman, R.: Ontology-based customer complaint management.
In: Meersman, R., Tari, Z. (eds.). OTM 2003 Workshops. LNCS, vol. 2889, pp. 594–606.
Springer, Heidelberg (2003)

24. Cranefield, P.S., Hart, L., Dutra, M., Baclawski, K., Kokar, M., Smith, J.: Uml for ontology
development. Knowl. Eng. Rev. 17(1), 61–64 (2002)

25. Simmonds, J., Bastarrica, M.C.: A tool for automatic uml model consistency checking. In:
Proceedings of the 20th IEEE/ACM international Conference on Automated softwareengi-
neering, pp. 431–432. ACM Press, New York (2005)

26. van Bommel, P., ter Hofstede, A.H.M., van der Weide, T.P.: Semantics and verification of
object-role models. Information Systems 16(5), 471–495 (1991)

27. van der Weide, T.P., ter Hofstede, A.H.M., van Bommel, P.: Uniquest: determining the se-
mantics of complex uniqueness constraints. Comput. J. 35(2), 148–156 (1992)

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 198–213, 2007.
© Springer-Verlag Berlin Heidelberg 2007

From Declarative to Imperative UML/OCL
Operation Specifications

Jordi Cabot

Estudis d'Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya
Rbla. Poblenou 156. E08018 Barcelona, Spain

jcabot@uoc.edu

Abstract. An information system maintains a representation of the state of the
domain in its Information Base (IB). The state of the IB changes due to the
execution of the operations defined in the behavioral schema. There are two
different approaches for specifying the effect of an operation: the imperative
and the declarative approaches. In conceptual modeling, the declarative
approach is preferable since it allows a more abstract and concise definition of
the operation effect and conceals all implementation issues. Nevertheless, in
order to execute the conceptual schema, declarative specifications must be
transformed into equivalent imperative ones.

Unfortunately, declarative specifications may be non-deterministic. This
implies that there may be several equivalent imperative versions for the same
declarative specification, which hampers the transformation process. The main
goal of this paper is to provide a pattern-based translation method between both
specification approaches. To facilitate the translation we propose some
heuristics that improve the precision of declarative specifications and help
avoid non-determinism in the translation process.

1 Introduction

A Conceptual Schema (CS) must include the definition of all relevant static and
dynamic aspects of the domain [12]. Static aspects are collected in structural
diagrams. Dynamic aspects are usually specified by means of a behavioral schema
consisting of a set of system operations [14] (also known as domain events [19]) that
the user may execute to query and/or modify the information modeled in the structural
diagram. Without loss of generality, in this paper we assume that structural diagrams
are expressed using object-oriented UML class diagrams [21] and that operations are
specified in OCL [20].

There are two different approaches for specifying an operation effect: the
imperative and the declarative approaches [28]. In an imperative specification, the
conceptual modeler explicitly defines the set of structural events to be applied over
the Information Base (IB). The IB is the representation of the state of the domain in
the information system. A structural event is an elementary change (insertion of a
new object, update of an attribute,…) over the population of the IB.

In a declarative specification, a contract for each operation must be provided. The
contract consists of a set of pre and postconditions. A precondition defines a set of

 From Declarative to Imperative UML/OCL Operation Specifications 199

conditions on the operation input and the IB that must hold when the operation is
issued while postconditions state the set of conditions that must be satisfied by the IB
at the end of the operation. In conceptual modeling, the declarative approach is
preferable since it allows a more abstract and concise definition of the operation effect
and conceals all implementation issues [28].

CSs must be executable in the production environment (either by transforming
them into a set of software components or by the use of a virtual machine) [18]. To be
executable, we must translate declarative behavior specifications into equivalent
imperative ones.

The main problem hindering this translation is that declarative specifications are
underspecifications [28] (also called non-deterministic), that is, in general there are
several possible states of the IB that satisfy the postcondition of an operation contract.
This implies that a declarative specification may have several equivalent imperative
versions. We have a different version for each set of structural events that, given a
state of the IB satisfying the precondition, evolve the IB to one of the possible states
satisfying the postcondition.

The definition of a postcondition precise enough to characterize a single state of
the IB is cumbersome and error-prone [4,26]. For instance, it would require
specifying in the postcondition all elements not modified by the operation. There are
other ambiguities too. Consider a postcondition as o.at1=o.at2+o.at3, where o
represents an arbitrary object and at1, at2 and at3 three of its attributes. Given an initial
state s of the IB, states s’ obtained after assigning to at1 the value of at2 + o.at3 satisfy
the postcondition. However, states where at2 is changed to hold the o.at1 - o.at3 value
or where, for instance, a zero value is assigned to all three attributes satisfy the
postcondition as well. Strictly speaking, all three interpretations are correct (all satisfy
the postcondition), though, most probably, only the first one represents the behavior
the conceptual modeler meant when defining the operation.

In this sense, the main contribution of this paper is twofold:

1. We present several heuristics to clarify the interpretation of declarative
operation specifications. We believe these heuristics represent usual modelers’
assumptions about how the operation contracts should be interpreted when
implementing the operations.

2. We define a set of patterns that use these heuristics in order to automatically
translate an operation contract into a corresponding imperative operation
specification.

As far as we know ours is the first method addressing the translation of UML/OCL
operation contracts. Note that the high expressiveness of both languages increases the
complexity of the translation process. We believe that the results of our method
permit to leverage current model-driven development methods and tools by allowing
code-generation from declarative specifications, not currently provided by such
methods. Our translation is useful to validate the specification of the operations as
well. After defining the operation contract, conceptual modelers could check if the
corresponding imperative version reflects their aim and refine the contract otherwise.

200 J. Cabot

The rest of the paper is organized as follows. Section 2 introduces the running
example and some basic UML and OCL definitions. Section 3 presents our set of
heuristics and Section 4 the list of translation patterns. Section 5 covers some
inherently ambiguous declarative specifications. Section 6 sketches some
implementation issues. Finally, Section 7 compares our approach with related work
and Section 8 presents some conclusions and further research.

2 Running Example

As a running example throughout the rest of the paper we will use the CS of Fig. 1
aimed at (partially) representing a simple e-commerce application. This CS is
expressed by means of a UML class diagram [21]. Class diagrams consist of a set of
classes (i.e. entity types) related by means of a set of associations (i.e. relationship
types). Reified relationship types are called association classes in UML. Class
instances are referred to as objects while association instances are known as links.

The CS contains information on sales (class Sale) and the products they contain
(class Product and association class SaleLine). Sales are delivered in a single
shipment (class Shipment and association DeliveredIn) but shipments may include
several sales.

The CS includes also the contract of the replanShipment operation. This operation
checks if shipments to be delivered soon have all their sales ready and replan them
otherwise. The operation behavior is specified in OCL [20]. OCL is a formal high-
level language used to write expressions on UML models. OCL admits several
powerful constructs like iterators (forAll, exists,…) and operations over collections of
objects (union, select,…). In OCL the implicit parameter self refers to the object over
which the operation is applied. The dot notation is used to access the attributes of an
object or to navigate from that object to the associated objects in a related class (the
related class is identified by its role name in the association or the own class name
when the name is not ambiguous).

For instance, in the precondition the expression self.shippingDate returns the value
of the shippingDate attribute while self.sale returns the sales delivered in the shipment
represented by the self variable. The exist iterator applied over this set of sales returns
true if at least one sale satisfies the expression not readyForShipment.

In the postcondition we specify that there are two different ways of replanning the
shipment depending on the value of the urgent attribute. We may either simply
postpone the shipment until the new date given as an input (when it is not urgent) or
to generate a new shipment to hold the sales that are not ready yet (and proceed with
the usual shipment for the remaining ones). The expression sh1.oclIsNew() indicates
that in the final state a new object (represented by the variable sh1) must exist and
sh1.oclIsTypeOf(Shipment) indicates that this object must be instance of Shipment.
The includesAll expression determines that shipment sh1 must contain all non-ready
sales (computed with the expression self.sale@pre->select(not readyForShipment),
where @pre indicates that self.sale is evaluated in the previous state, that is, in the
state of the IB at the beginning of the operation execution), and so forth.

 From Declarative to Imperative UML/OCL Operation Specifications 201

 SaleDeliveredIn
1..*

id : Natural
expectedShDate: Date
amount: Money
shippingAddress:Address
readyForShipment:Boolean

context Shipment::replanShipment(newDate:Integer)

 pre: self.shippingDate>today() and self.shippingDate<today()+7 and self.sale->exists(not readyForShipment)

 post: if self.urgent

 then

 sh1.oclIsNew() and sh1.oclIsTypeOf(Shipment) and sh1.shippingDate=newDate

 and sh1.id=generateNewId() and sh1.airTransport=self.airTransport

 and sh1.urgent=true and sh1.sale->includesAll(self.sale@pre->select(not readyForShipment))

 and self.sale->excludesAll(self.sale@pre->select(not readyForShipment))

 and sh1.sale->forAll(s| s.expectedShDate=sh1.shippingDate)

 else self.shippingDate=newDate and self.sale->forAll(s| s.expectedShDate=self.shippingDate)

 endif

SaleLine

0..1
Shipment

id: Natural
shippingDate: Date
airTransport: Boolean
urgent: Boolean

Product
id : Natural
name: String
price: Money

1..**

quantity: Natural

Fig. 1. Our running example

3 Interpreting Declarative Specifications: A Heuristic Approach

Given the contract of an operation op and an initial state s of an IB (where s verifies
the precondition of op) there exist, in general, a set of final states sets’ that satisfy the
postcondition of op. All implementations of op leading from s to a state s’ ∈ sets’ must
be considered correct. Obviously, s’ must also be consistent with all integrity
constraints in the schema, but, assuming a strict interpretation of operation contracts
[24], the verification of those constraints need not to be part of the contract of op.

Even though, strictly speaking, all states in sets’ are correct, only a small subset
accs’ ⊂ sets’ would probably be accepted as such by the conceptual modeler. The other
states satisfy the postcondition but do not represent the behavior the modeler had in
mind when defining the operation. In most cases |accs’| = 1 (i.e. from the modeler
point of view there exists a single state s’ that really “satisfies” the postcondition).

The first aim of this section is to detect some common OCL operators and
expressions that, when appearing in a postcondition, increase the cardinality of sets’,
that is, the expressions that cause an ambiguity problem in the operation contract. We
also consider the classical frame problem, which, roughly, appears because
postconditions do not include all necessary conditions to state which parts of the IB
cannot be modified during the operation execution. Obviously, some of the problems
could be avoided by means of reducing the allowed OCL constructs in the contracts
but we will assume in the paper that this is not an acceptable solution.

Ideally, once the conceptual modeler is aware of the ambiguities appearing in an
operation op, he/she should define the postcondition of op precise enough to ensure
that accs’ = sets’. However, this would require specifying the possible state of every
single object and link in the new IB state which is not feasible in practice [4,26].

Therefore, the second aim of this section is to provide a set of heuristics that try to
represent common assumptions used during the specification of operation contracts.
Each heuristic disambiguates a problematic expression exp that may appear in a

202 J. Cabot

postcondition. The ambiguity is solved by providing a default interpretation for exp
that identifies, among all states satisfying exp, the one that, most probably, represents
what the modeler meant when defining exp.

With these heuristics, modelers do not need to write long and cumbersome
postconditions to clearly specify the expected behavior of the operation. They can rely
on our heuristic to be sure that, after the operation execution, the new state will be the
one they intended. Our heuristics have been developed after analyzing many
examples of operation contracts of different books, papers and, specially, two case
studies ([11] and [23]) and comparing them, when available, with the operation
textual description. Due to lack of space we cannot provide herein the list of examples
we have examined.

In what follows we present our set of heuristics and discuss their application over
our running example.

3.1 List of Heuristics

Each heuristic may target different OCL expressions. Note that other OCL
expressions can be transformed into the ones tackled here by means of first
preprocessing them using the rules presented in [8]. In the expressions, capital letters
X, Y and Z represent arbitrary OCL expressions of the appropriate type (boolean,
collection,…). The letter o represents an arbitrary object. The expression r1.r2…rn-1.rn
represents a sequence of navigations through roles r1..rn.

Heuristic 1: Nothing else changes

- OCL expressions: −
- Ambiguity: Possible values for objects and links not referenced in the

postcondition are left undefined.
- Default interpretation: Objects not explicitly referenced in the postcondition

should remain unchanged in the IB (they cannot be created, updated or deleted
during the transition to the new IB state). Links not traversed during the
evaluation of the postcondition cannot be created nor deleted. Besides, for those
objects that do appear in the postcondition, only those attributes or roles
mentioned in the postcondition may be updated.

Heuristic 2: The order of the operands matters

- OCL expressions: X.a=Y (and in general any OCL binary operation)
- Ambiguity: There are three kinds of changes over an initial state resulting in a

new state satisfying the above equality expression. We can either assign the value
of expression Y to a, assign a to Y or assign to a and Y an alternative value c. In
X.a, a represents an attribute or role of the objects returned by X.

- Default interpretation: In the new state a must have taken the value of b.
Otherwise (that is, if the modeler’s intention was to define that b should take the
value of a) he/she would have most probably written the expression as Y.b = X.a.
Note that if either operand is a constant value or is defined with the @pre
operator (referring to the value of the operand in the previous state) just a
possible final state exists because the only possible change is to assign its value

 From Declarative to Imperative UML/OCL Operation Specifications 203

to the other operand (as usual, we assume that the previous state cannot be
modified). This applies also to other ambiguities described in this section.

Heuristic 3: Do not falsify the if clause

- OCL expressions: if X then Y else Z | X implies Y
- Ambiguity: Given an if-then-else expression included in a postcondition p, there

are two groups of final states that satisfy p: 1 – States where the if and the then
condition are satisfied or 2 – States where the if condition is false while the else
condition evaluates to true. Likewise with expressions using implies.

- Default interpretation: To evaluate X and enforce Y or Z depending on the true
value of X. Implementations of the operation that modify X to ensure that X
evaluates to false are not acceptable (even if, for some states of the IB, it could be
easier to falsify X in order to always avoid enforcing Y).

Heuristic 4: Change only the last navigation in a navigation chain

- OCL expressions: X.r1.r2…rn-1.rn=Y (or any other operation over objects at rn)
- Ambiguity: This expression may be satisfied in the final state by

adding/removing links to change the set of objects obtained when navigating
from rn-1 to rn, by changing any intermediate role navigation ri or by changing the
value of Y.

- Default interpretation: To add/remove the necessary links on the association
traversed during the last navigation (rn-1.rn) in the navigation chain.

Heuristic 5: Minimum insertions over the includer collection and no changes on
the included one

- OCL expressions: X->includesAll(Y) | X->includes(o)
- Ambiguity: All final states where, at least, the objects in Y (or o) have been

included in X satisfy these expressions. However, states that, apart from those
objects, add other objects to X also satisfy them as well as states where Y
evaluates to an empty set (or o is null) since by definition all collections include
the empty collection.

- Default interpretation: The new state s’ should be obtained by means of adding to
the initial state s the minimum number of links needed to satisfy the expression,
that is, a maximum of Y->size() links must be created (just one for includes
expressions). States including additional insertions are not acceptable and neither
states where Y is modified to ensure that it returns an empty result.

Heuristic 6: Minimum deletions from the excluder collection and no changes on
the excluded one

- OCL expressions: X->excludesAll(Y) | X->excludes(o)
- Ambiguity: All final states where, at least, the objects in Y (or o) have been

removed from the collection of objects returned by X satisfy these expressions.
However, states that, apart from those objects, remove other objects from X also
satisfy them as well as states where Y evaluates to an empty set (or o is null)
since then, clearly, X excludes all objects in Y.

204 J. Cabot

- Default interpretation: The desired behavior is the one where the new state s’ is
obtained by means of removing from the initial state s the minimum number of
links required to satisfy the expression and where Y has not been modified to
ensure that it returns an empty set. Therefore, in s’ a maximum of Y->size() links
may be deleted (or just one, for excludes expressions).

Heuristic 7: Do not empty the source collection of iterator expressions

- OCL expressions: X ->forAll(Y) (and, in general, all other iterator expressions)
- Ambiguity: There are two possible approaches to ensure that a forAll expression

is satisfied in the new state of the IB. We can either ensure that all elements in X
verify the Y condition or to ensure that X results in an empty collection since a
forAll iterator over an empty set always returns true.

- Default interpretation: To ensure that all elements in X verify Y (and not to force
X to be empty).

Heuristic 8: Minimum number of object specializations

- OCL expressions: o.oclIsTypeOf(Cl) | o.oclIsKindOf(Cl)
- Ambiguity: These expressions require o to be instance of class Cl (or instance of

a subtype of Cl when using oclIsKindOf). Therefore, new states where Cl is
added to the list of classes that o is an instance of satisfy the expression.
However, states where additional classes have been added or removed from o
(assuming multiple classification) satisfy the expression as well.

- Default interpretation: The object o should only be specialized to Cl during the
transition to the new state.

Heuristic 9: Minimum number of object generalizations

- OCL expressions: not o.oclIsTypeOf(Cl) | not o.oclIsKindOf(Cl)
- Ambiguity: These expressions establish that, in the new state, o cannot be an

instance of Cl (for oclIsTypeOf expressions) or an instance of Cl subtypes (for
oclIsKindOf expressions). Therefore all states verifying this condition are valid
even if they add/remove other classes from the list of classes where o belongs.

- Default interpretation: The object o should only be generalized to a supertype of
Cl. If Cl has no supertypes, o must be completely removed from the IB.

3.2 Interpretation of ReplanShipment Using Our Heuristics

The expected behavior of replanShipment explained in Section 2 is just one of the
(many) possible interpretations of replanShipment that satisfy its postcondition. Our
heuristics prevent these alternative interpretations and ensure the described behavior.

As an example, heuristic 3 discards states where the value of the urgent attribute
has been set to false (for instance, to avoid creating the new shipment), heuristic 2
ensures that variable sh1 is initialized with the values of the self variable (and not the
other way around), heuristic 7 discards states where the expression self.sale->forAll is
satisfied by means of removing all sales from self and so forth.

 From Declarative to Imperative UML/OCL Operation Specifications 205

4 Patterns for a Declarative to Imperative Translation

Given a declarative specification of an operation op with a contract including a
precondition pre and a postcondition post, the generated imperative specification for
op follows the general form:

op(param1…paramn) { [if pre then] translate(post) [endif] }

where translate(post) is the (recursive) application of our translation patterns over
post. Testing the precondition is optional. Although usually added in object-oriented
programming (defensive programming approach), it can be regarded as a redundant
check [17] (the client should be responsible for calling op only when pre is satisfied).

The main purpose of our translation patterns is to draw from the postcondition
definition a minimal set of structural events that, when applied over an initial state of
the IB (that satisfies the precondition), reach a final state that verifies the
postcondition. A set of structural events is minimal if no proper subset suffices to
satisfy the postcondition [29].

When facing ambiguous OCL expressions, our patterns use the previous heuristics
to precisely determine the characteristics of the desired final state and generate the
needed structural events accordingly. This ensures that the final state, apart from
satisfying the postcondition, is acceptable from the modeler’s point of view. Getting
rid of ambiguities also guarantees the determinism of the translation process.

As a result, the translation produces an imperative specification of the initial
operation that could be used as an input for model-driven development tools in order
to (automatically) generate its implementation in a given technology platform.

For the sake of simplicity we focus on the generation of the modifying structural
events. We do not provide a translation for queries appearing in the postcondition into
a set of primitive read events. Since queries do not modify the state of the IB, their
translation is straightforward (and, in fact, most imperative languages for UML
models allow expressing queries in OCL itself or in some similar language, see [16]).

For each pattern we indicate the OCL expression/s targeted by the pattern and its
corresponding translation into a set of structural events. Our patterns do not address
the full expressivity of the OCL but suffice to translate most usual OCL expressions
appearing in postconditions. Additional OCL expressions can be handled with our
method if they are first transformed (i.e. simplified) into equivalent OCL expressions
(using the transformation rules presented in [8]) covered by our patterns.

4.1 Structural Events in the UML

The set of structural events allowed in UML behavior specifications is defined in the
UML metamodel Actions packages [21] (structural events are called actions in the
UML). The list of supported events1 is the following:

- CreateObject(Class c): It creates a new instance of c. This new instance is
returned as an output parameter.

- DestroyObject(Object o): It removes o from the IB. Optionally, we may indicate
in the event that all links where o participated must be removed as well.

1 For the sake of clarity, we distinguish between events over attributes and events over association

ends (i.e. roles). UML unifies both concepts under the notion of structural feature.

206 J. Cabot

- AddAttributeValue(Attribute at, Object o, Object value): It adds value to the list
of values for the attribute at of o (attributes may be multivalued in UML)

- RemoveAttributeValue(Attribute at, Object o): It removes all values of attribute at
in object o.

- CreateLink(Association a, Object o1, …, Object on): It creates a new link for the
association a relating objects o1..on.

- CreateLinkObject(Association a, Object o1, …, Object on): It creates a new link
object (i.e. an association class instance) in a relating objects o1..on.

- DestroyLink(Association a, Object o1, …, Object on): It removes from a the link
(or link object) between objects o1..on.

- RemoveLinkValue(AssociationEnd ae, Object o): It removes from o the values of
the association end (i.e. role) ae. This event removes all links of the association
ae.association (that returns, according to the UML metamodel, the association
where ae belongs) where o participates.

- ReclassifyObject(Object o, Class[] newClasses, Class[] oldClasses): It adds to
the list of classes of o the classes specified in newClasses and removes those in
oldClasses. Note that this event permits performing several generalizations and
specializations at the same time.

Table 1. List of patterns. Column N indicates the pattern number. Expression describes the
OCL expression targeted by each pattern and Translation the imperative code excerpt generated
for it. In the patterns, Bi stands for a boolean expression, o for an object variable and X and Y
for two arbitrary OCL expressions of the appropriate type. o.r represents a navigation from o to
the associated objects in the related class playing the role r.

N Expression Translation Description

1
B1 and … and Bn

Translate(B1);
…
Translate(Bn);

A set of boolean expressions linked by
ANDs are transformed by translating each
single expression sequentially.

2
if B1 then B2 else B3

if B1 then Translate(B2);
else Translate(B3);

We translate both B2 and B3 and execute
them depending on the evaluation of B1
(according to heuristic 3, a translation
trying to falsify B1 is not acceptable).

3
o.at=Y (where at is a
univalued attribute)

RemoveAttributeValue(at,o);
AddAttributeValue(at,o,Y);

We assign to the attribute at of o the value
Y. The previous value is removed.
Following heuristic 2, Y cannot be
modified.

4
o.at=Y (where at is
multivalued)

RemoveAttributeValue (at,o);
foreach val in Y do
 AddAttributeValue(at,o,val);
endfor;

First, all previous values of o.at are
removed. Then we assign one of the values
of Y to each slot of at.

5 o.r = Y (where r is a
role with a ‘1’ max
multiplicity)

RemoveLinkValue(r,o);

CreateLink(r.association, o,Y);

A new link relating o and Y in the
association r.association is created
(r.association retrieves the association
where r belongs to).

6
o.r=Y (when o. r may
return many objects)

RemoveLinkValue (r,o);
foreach o’ in Y do
CreateLink(r.association,o,o’);
endfor;

We create a new link between o and each
object in Y.

 From Declarative to Imperative UML/OCL Operation Specifications 207

Table 1. (continued)

8
X->forAll(Y)

foreach o in X do
 if not (o.Y) then Translate(o.Y)
 endif;
endfor;

We ensure that each element affected by
the forAll iterator verifies the Y condition.
According to heuristic 7, objects
included in X cannot be removed.

9 o.oclIsNew() and
o.oclIsTypeOf(Cl)

1
0

o.oclIsNew() and
Cl.allInstances()->
includes(c)

o:=CreateObject(Cl);

The translation creates a new object of
type Cl. This new object is stored in the
original postcondition variable. If Cl is
an association class CreateLinkObject is
used instead.

1
1

not
o.oclIsTypeOf(OclAny)

1
2

not o.oclIsKindOf(Cl)
(Cl has no supertypes)

1
3

Cl.allInstances()
 ->excludes(o)
(Cl has no supertypes)

DestroyObject (o);

o is deleted from the IB. This event
deletes also all links where o participates.
(OclAny is the common supertype of all
classes in an UML model).

1
4

o.oclIsTypeOf(Cl) ReclassifyObject(o,Cl,Cl.gener
alization.specific);

The class Cl is added to o. Moreover, if
Cl has subtypes (retrieved using the
navigation generalization.specific of the
UML metamodel) these subtypes must be
removed from o (oclIsTypeOf is satisfied
iff Cl and the type of o coincide).

1
5

o.oclIsKindOf(Cl) ReclassifyObject(o,Cl,[]); Cl is added to the list of classes of o.

1
6

not o.oclIsTypeOf(Cl)
(Cl<>OclAny)

1
7

not o.oclIsKindOf(Cl)
(Cl has supertypes)

1
8

Cl.allInstances()
 -> excludes(o)
(Cl has supertypes)

ReclassifyObject(o, [], Cl);

o is removed from Cl but may remain
instance of other classes in the model

1
9 o.r->includesAll(Y)

foreach o’ in Y do
CreateLink(r.association, o, o’)
endfor;

A new link is created between o and
each object in Y. If o.r is a navigation
towards an association class,
CreateLinkObject is used instead.

2
0

o.r->includes(Y) CreateLink(r.association,o,Y);
A link is created between o and the
single object returned by Y

2
1

o.r->excludesAll(Y)
foreach o’ in Y
DestroyLink(r.association,o,o’)
endfor;

All links between o and the objects in
Y are destroyed.

2
2

o.r->excludes(Y) DestroyLink(r.association, o,Y)
The link between o and the object in Y
is removed.

2
3 o.r->isEmpty(Y)

foreach o’ in o.r@pre
DestroyLink(r.association,o,o’)e
ndfor;

All links between o and the objects
returned by o.r in the previous state
are removed.

208 J. Cabot

4.2 List of Patterns

Table 1 presents our list of translation patterns. The translation is expressed using a
simple combination of OCL for the query expressions, the above structural events
and, when necessary, conditional and iterator structures.

4.3 Applying the Patterns

Fig. 2 shows the translation of the replanShipment operation (Fig. 1). Next to each
translation excerpt we show between brackets the number of the applied pattern.

 context Shipment::replanShipment(newDate:Date)

{

if self.shippingDate>today() and self.shippingDate<today()+7 and self.sale->exists(not readyForShipment)

then
 if self.urgent (2)

 then (1)

 sh1:=CreateObject(Shipment); (9)

 AddAttribueValue(shippingDate, sh1, newDate)); AddAttribueValue(id, sh1, generateNewId()); (3)

 AddAttribueValue(airTransport, sh1, self.airTransport); AddAttribueValue(urgent, sh1, true); (3)

 foreach o in self.sale@pre->select(not readyForShipment) CreateLink(DeliveredIn,sh1,o); endfor; (19)
 foreach o in self.sale@pre->select(not readyForShipment) DestroyLink (DeliveredIn, self, o); endfor; (21)
 foreach o in sh1.sale (8)

 if not o.expectedShDate=sh1.shippingDate

 then AddAttributeValue(expectedShDate,o,sh1.shippingDate); (3) endif;
 endfor;
 else

 AddAttributeValue(shippingDate,self,newDate); (3)

 foreach o in self.sale (8)

 if not o.expectedShDate=self.shippingDate

 then AddAttributeValue(expectedShDate,o,self.shippingDate); (3) endif;

 endfor;
 endif;
endif;
}

Fig. 2. Imperative version of replanShipment

5 Translating Inherently Ambiguous Postconditions

In some sense, all postconditions can be considered ambiguous. However, for most
postconditions, the heuristics provided in Section 3 suffice to provide a single
interpretation for each postcondition.

Nevertheless, some postconditions are inherently ambiguous (also called non-
deterministic [2]). We cannot define heuristics for them since, among all possible
states satisfying the postcondition, there does not exist a state clearly more
appropriate than the others. As an example assume a postcondition including an
expression a>b. There is a whole family of states verifying the postcondition (all

 From Declarative to Imperative UML/OCL Operation Specifications 209

states where a is greater than b), all of them equally correct, even from the modeler
point of view or, otherwise, he/she would have expressed the relation between the
values of a and b more precisely (for instance saying that a=b+c).

We believe it is worth identifying these inherent ambiguous postconditions since
most times the conceptual modeler does not define them on purpose but by mistake.
Table 2 shows a list of expressions that cause a postcondition to become inherently
ambiguous. We also provide a default translation for each expression so that our
translation process can automatically translate all kinds of postconditions.
Nevertheless, for these expressions user interaction is usually required to obtain a
more accurate translation since the default translation may be too restrictive. For
instance, for the second group of ambiguous expressions, the user may want to
provide a specific constant value instead of letting the translation tool to choose an
arbitrary one.

Table 2. List of inherently ambiguous expressions and their possible translation

Expression Ambiguity description Default Translation

B1 or … or Bn
At least a Bi condition should be true but it
is not defined which one(s)

To ensure that B1 is true

X<>Y, X>Y, X>=Y,

X<Y, X<=Y
The exact relation between the values of X
and Y is not stated

To assign to X the value of Y plus/less a
constant value of the appropriate type

X+Y=W+Z

(likewise with -,*,/,…)
The exact relation between the values of
the different variables is not stated

To translate the expression X = W+Z-Y

X->exists(Y) An element of X must verify Y but it is not
defined which one

To force the first element of X to verify Y
(a total order relation must exist)

X->any(Y)=Z Any element of X verifying Y could be the
one equal to Z

To assign the value of Z to the first
element of X verifying Y

X.at->sum()=Y There exist many combinations of single
values that once added result in Y

To assign to each object in X a value
Y/X-> size() in its attribute at

X->asSequence() There are many possible ways of
transforming a collection of elements X
into an (ordered) sequence of elements

Order in the sequence follows the total
order of the elements in X (a total order
relation on X must exist)

X.r->notEmpty() The condition states that the navigation
through the role r must return at least an
object but it is not stated how many nor
which ones.

To assign a single object. The assigned
object will be the first object in the
destination class (a total order relation on
the destination class must exist)

op1() = op2() The return value of op1 and op2 must
coincide. Depending on their definition
several alternatives may exist.

Application of previous patterns
depending on the specific definition of
each operation

6 Tool Implementation

A prototype implementation of the translation presented in this paper has been
developed. Given the XMI file representing the CS and the set of OCL operation

210 J. Cabot

contracts in a textual form (parsed using the Dresden OCL toolkit [9]), the prototype
translates the selected operations.

More specifically, the translation is obtained by means of traversing in preorder the
OCL binary tree resulting from representing the OCL postcondition as an instance of
the OCL metamodel [20]. For each tree node (where each node represents an atomic
subset of the OCL expression: an operation, a constant, an access to an attribute, etc),
the prototype chooses and applies the appropriate pattern. The complexity of the
translation process is O(log n), being n the number of nodes of the tree.

Due to lack of space we cannot show this tree representation nor the details of the
preorder traversal algorithm actually performing the translation.

7 Related Work

Two kinds of related work are relevant here: approaches devoted to the problem of
improving the precision of declarative specifications (Section 7.1) and model-driven
development methods and tools that may include facilities for generating code from
operation contracts (Section 7.2).

7.1 Methods to Interpret Declarative Specifications

Methods aimed at disambiguating declarative specifications can be classified in three
main groups: (1) methods that extend the contract with additional information, (2)
methods that add implicit semantics to the contract expressions and (3) methods that
try to characterize all possible new states satisfying the contract postcondition and let
the modeler choose the one he/she prefers. This latter group (see [27] and [22] as
examples) is not so well-explored and, currently, no method exists that is able to
handle contracts defined in a language as expressive as the OCL.

Regarding the first group of methods, several formal languages (such as Z, VDM
or JML) force the conceptual modeler to define in the contracts a new clause
indicating which objects and links cannot change during the operation execution
(frame axioms). [13] adapts the notion of frame axioms to OCL contracts. [4] uses a
slightly different approach and asks modelers to specify which operations could have
effected a change to a particular element. Other approaches, such as [2], combine the
OCL with imperative extensions to clarify the semantics of the contract. The main
limitations of all these approaches are: (1) they burden the modeler with the task of
defining additional information in the contracts, (2) the addition of new elements to
the structural diagram may require changing the frame axioms (now there are more
elements that “cannot change”) and (3) the high expressiveness of the OCL limits
their feasibility (for instance, postconditions may state, both, additions and removals
over the set of objects returned by a navigation; it is not clear how frame axioms
could be used to deal with this situation).

These problems can be avoided when adding implicit semantics to the expressions
appearing in a postcondition, as we do in our heuristics proposal. We are aware that
our heuristics require some strong assumptions about how the postconditions are
specified, yet we believe the assumptions reflect the way conceptual modelers tend to
(unconsciously?) specify the postconditions. We are not the first ones in proposing the

 From Declarative to Imperative UML/OCL Operation Specifications 211

use of default semantics to simplify ambiguity problems of operation contracts. [4]
recognizes that frame axioms could be (semi)automatically generated from the
postcondition if assuming some implicit semantics. [26] proposes some basic
assumptions regarding object (and collection) creations and removals. [6] proposes a
minimal change heuristic (the preferred final state is the one with fewer changes wrt
the initial one). However, this simple heuristic does not suffice to cover all possible
ambiguities (see the different ambiguities commented in Section 3). Some ambiguous
OCL expressions and their default interpretation were presented in a preliminary
paper [7].

As a trade-off, this kind of methods requires modelers to agree in a given
semantics when defining the contracts (either the ones we have assumed in our
heuristics or alternative ones). We reckon that alternative approaches could be helpful
when dealing with the inherently ambiguous postconditions of Section 5.

7.2 Methods for Code-Generation from Declarative Specifications

As far as we know, ours is the first approach to deal with the declarative-to-
imperative translation of OCL operation specifications. Most methods and tools only
support imperative specifications (see [16] as a representative example).

There exist several OCL tools allowing the definition of operation contracts (see,
among others, [3,5,10,9]). However, during the code-generation phase, contracts are
simply added as validation conditions. They are transformed into if-then clauses that
check at the beginning and at the end of the operation if the pre and postconditions are
satisfied (and raise an exception otherwise). The actual implementation of the
operation must be manually defined. [1] checks the correctness of an implementation
with respect to its contract but does not generate it.

A similar problem is faced in the database field when computing a sequence of
updates that make the database to satisfy a given query (see [29] as an example). A
typical example is the integrity maintenance problem (see [15] for a survey).
Nevertheless, the limited expressivity of these methods (in terms of, both, the
constraint definition language and the different types of structural events supported)
prevents directly reusing them in the translation of UML/OCL operations.

8 Conclusion and Further Research

We have proposed a new method to transform an operation contract (declarative
specification) into a set of structural events (imperative specification). The
transformation process uses several heuristics that help draw the events from the OCL
expressions included in the contract whenever their interpretation may be ambiguous.

Our translation may be useful to leverage current model-driven development tools,
which up to now only support code-generation from imperative specifications. It may
also be helpful for validation purposes, since modelers could immediately check
which would be the implementation of their declarative specifications.

Our translation process has been validated against two case studies of real-life
applications, a Car Rental System [11] and an e-marketplace system [23] as well as
with other examples appearing in different books, papers and tutorials. Our patterns

212 J. Cabot

have proven to be complete enough to translate most of the examples. Moreover,
during the analysis we have detected several inherently ambiguous postconditions. In
most cases, and according to the contract information in natural language, the original
modelers were unaware of such ambiguities. We believe this is an additional benefit
of applying our method.

As a further work, we plan to extend our translation process by combining the
basic patterns presented up to now (this has been the main flaw of the method
detected during its validation) and by considering the integrity constraints in the
generation process to ensure that the generated implementation is consistent with the
constraints and, at the same time, that the operation effect is preserved [25]. We are
also interested in studying the applicability of our method in the reverse process, that
is, in the translation from imperative to declarative specifications. Finally, we plan to
work on the integration of our results and our prototype within an existing model-
driven development tool.

Acknowledgements

Thanks to the anonymous referees and the people of the GMC group (especially to
Anna Queralt) for their useful comments to previous drafts of this paper. This work
was partially supported by the Ministerio de Ciencia y Tecnologia and FEDER under
project TIN2005-06053.

References

1. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool, Integrating object
oriented design and formal verification. Software and Systems Modeling 4, 32–54 (2005)

2. Baar, T.: OCL and Graph-Transformations - A Symbiotic Alliance to Alleviate the Frame
Problem. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 20–31. Springer,
Heidelberg (2006)

3. Babes-Bolyai. Object Constraint Language Environment 2.0, http://lci.cs.ubbcluj.ro/ocle/
4. Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure specifications.

IEEE Transactions on Software Engineering 21, 785–798 (1995)
5. Borland. Borland® Together® Architect (2006)
6. Broersen, J., Wieringa, R.: Preferential Semantics for Action Specifications in First-order

Modal Action Logic. In: Proc. of the ECAI’98 Workshop on Practical Reasoning and
Rationality (1998)

7. Cabot, J.: Ambiguity issues in OCL postconditions. In: Proc. OCL for (Meta-) Models in
Multiple Application Domain (workshop co-located with the MODELS’06 Conference),
Technical Report, TUD-FI06-04-Sept (2006)

8. Cabot, J., Teniente, E.: Transformation Techniques for OCL Constraints. Science of Computer
Programming (to appear), Available online: http://dx.doi.org/10.1016 /j.scico.2007.05.001

9. Dresden. Dresden, OCL Toolkit, http://dresden-ocl.sourceforge.net/index.html
10. Dzidek, W.J., Briand, L.C., Labiche, Y.: Lessons Learned from Developing a Dynamic

OCL Constraint Enforcement Tool for Java. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS,
vol. 3844, pp. 10–19. Springer, Heidelberg (2006)

 From Declarative to Imperative UML/OCL Operation Specifications 213

11. Frias, L., Queralt, A., Olivé, A.: EU-Rent Car Rentals Specification. LSI Technical
Report, LSI-03-59-R (2003)

12. ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema and
Information Base (1982)

13. Kosiuczenko, P.: Specification of Invariability in OCL. In: Nierstrasz, O., Whittle, J.,
Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 676–691. Springer,
Heidelberg (2006)

14. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Process, 2nd edn. Prentice-Hall, Englewood Cliffs (2001)

15. Mayol, E., Teniente, E.: A Survey of Current Methods for Integrity Constraint
Maintenance and View Updating. In: Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I.,
Métais, E. (eds.) ER 1999. LNCS, vol. 1727, pp. 62–73. Springer, Heidelberg (1999)

16. Mellor, S.J., Balcer, M.J.: Executable UML. Object Technology Series. Addison-Wesley,
London, UK

17. Meyer, B.: Object-oriented software construction, 2nd edn. Prentice-Hall, Englewood
Cliffs (1997)

18. Olivé, A.: Conceptual Schema-Centric Development: A Grand Challenge for Information
Systems Research. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 1–15. Springer, Heidelberg (2005)

19. Olivé, A., Raventós, R.: Modeling events as entities in object-oriented conceptual
modeling languages. Data Knowl. Eng. 58, 243–262 (2006)

20. OMG: UML 2.0 OCL Specification. OMG Adopted Specification (ptc/03-10-14)
21. OMG: UML 2.0 Superstructure Specification. OMG Adopted Specification (ptc/03-08-02)
22. Penny, D.A., Holt, R.C., Godfrey, M.W.: Formal Specification in Metamorphic

Programming. In: Prehn, S., Toetenel, H. (eds.) VDM 1991. LNCS, vol. 551, pp. 11–30.
Springer, Heidelberg (1991)

23. Queralt, A., Teniente, E.: A Platform Independent Model for the Electronic Marketplace
Domain. LSI Technical Report, LSI-05-9-R (2005)

24. Queralt, A., Teniente, E.: Specifying the Semantics of Operation Contracts in Conceptual
Modeling. Journal on Data Semantics VII, 33–56 (2006)

25. Schewe, K.-D., Thalheim, B.: Towards a theory of consistency enforcement. Acta
Informatica 36, 97–141 (1999)

26. Sendall, S., Strohmeier, A.: Using OCL and UML to Specify System Behavior. In: Object
Modeling with the OCL, The Rationale behind the Object Constraint Language, pp. 250–
280. Springer, Heidelberg (2002)

27. Wahls, T., Leavens, G.T., Baker, A.L.: Executing Formal Specifications with Concurrent
Constraint Programming. Autom. Softw. Eng. 7, 315–343 (2000)

28. Wieringa, R.: A survey of structured and object-oriented software specification methods
and techniques. ACM Computing Surveys 30, 459–527 (1998)

29. Wüthrich, B.: On Updates and Inconsistency Repairing in Knowledge Bases. In: Proc. 9th
Int. Conf. on Data Engineering, pp. 608–615 (1993)

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 214–228, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Ontological Metamodel of Classifiers and Its
Application to Conceptual Modelling and Database

Design

Jeffrey Parsons1 and Xueming Li2

1 Faculty of Business Administration
Memorial University of Newfoundland

St. John’s, NL, Canada A1B 3X5
jeffreyp@mun.ca

2 Department of Computer Science
Memorial University of Newfoundland

St. John’s, NL, Canada A1B 3X5
xueming@cs.mun.ca

Abstract. Classification is a key concept in conceptual modeling. However, the
recognition that there might be different kinds of classes has received limited
attention in conceptual modeling research. Most work has focused on the con-
cept of role. However, confusion exists on the definition, properties, and repre-
sentation of role. In this paper, we propose a metamodel of classifiers based on
ontological foundations. We focus on the notion of role in the object-oriented
and conceptual modeling literature. The metamodel conforms to the fundamen-
tal role features identified in the literature and handles several problems associ-
ated with role modeling. Furthermore, we contrast conceptual models created
using our metamodel to those created using traditional ER or class modeling
approaches, and highlight the database design implications of the differences.
Using examples, we demonstrate that relational database schemata generated
using our approach are more stable with respect to changing requirements.

1 Introduction

Identifying classes can be seen as the central activity in conceptual modeling. Ac-
cording to Sowa, “the selection of categories determines everything that is repre-
sented in a computer application or in an entire family of applications.” [21, p. 51].
However, most research on the issue treats the construct of “class” uniformly. In re-
ality, to represent the semantics of important real world phenomena it might be
useful to distinguish different “kinds” of types. In this paper, we present an onto-
logically-grounded metamodel of classifiers for conceptual modeling, based on
Bunge’s ontology [2][3], OntoClean methodology [10][27][11][12], and Guizzardi
et al.’s ontological profile [13][14]. We use these ideas to distinguish different
kinds of types, and explore implications of the metamodel for conceptual modeling
and database design.

An Ontological Metamodel of Classifiers and Its Application to Conceptual Modelling 215

2 Roles

Role is a fundamental notion for our conceptualization of reality. However, a lot of
confusion exists on the definition, properties, and representation of role. Most role
models in the literature have been primarily based on implementation considerations.
However, Steimann argues that the role concept naturally complements those of ob-
ject and relationship, standing on the same level of importance [22][23][24].

2.1 What Is a Role?

Sowa introduces the notion of role as capturing a particular pattern of relationships:
“Subtypes of Entity are of two kinds: natural types, which have no required set of lin-
guistic associations; and role types, which are subtypes of natural types in some par-
ticular pattern of relationships” [20]. For example, Person is a natural type, and
Teacher is a subtype of Person in the role of teaching. Sowa further proposes a test for
distinguishing role types from natural types: (1) τ is a natural type if something can
be identified as type τ in isolation; (2) τ is a role type if something can only be
identified as type τ by considering some other entity, action, or state.

Guarino argues that Sowa’s test for distinguishing role types from natural types is
“too vague to capture intended meaning” [9]. For example, Car is a natural type since
it is essentially independent. However, it is also a role type according to Sowa be-
cause the existence of a car implies the existence of its engine, which is a part of the
car. Guarino therefore proposes a criterion for distinguishing role types from natural
types: concept A is called a role concept if it is founded (concept A is founded on an-
other concept B if any instance ‘a’ of A has to be necessarily associated to an instance
‘b’ of B which is not related to ‘a’ by a part-of relation) but not rigid (concept A is
rigid if it contributes to the very identity of its instances in such a way that, if ‘a’ is an
instance of A in a particular world, it must be an instance of A in any possible world
in order to keep its identity). A concept is called a natural concept if it is independent
and rigid.

The OntoClean methodology introduces a set of highly general ontological notions
(rigidity, identity, unity, and dependence) as meta-properties to analyze ontological
semantics of various types as well as their relationship [10][27][11][12]. It distin-
guishes eight different kinds of types based on different combinations of these
metaproperties. Moreover, in [13][14], Guizzardi et al. propose a UML profile for on-
tology representation and conceptual modeling based on a theory of classifiers [14].

Based on OntoClean and Guizzardi et al.’s ontological profile, we propose that a
concept A is called a role if it is founded and anti-rigid; it is called a natural concept
if it is independent and rigid; it is called a phase if it is independent and anti-rigid.

2.2 Three Different Ways of Representing Roles

There are three different viewpoints on the representation of roles: as named places in
relationships; as a form of generalization/specialization; and as separate instances ad-
joined to the entities playing the roles [22].

216 J. Parsons and X. Li

2.2.1 Roles as Named Places in Relationships
This view is taken by ER and UML by assigning role names to the entity types par-
ticipating in relationships. This practice is useful when, in a conceptual model, more
than one place in a relationship is played by the same entity type. However, Steimann
argues that the main problem with viewing roles as named places in relationships is
that, since roles are not modeled as explicit types, “it fails to account for the fact that
roles come with their own properties and behavior” [22, p. 88]. Furthermore, since
roles are mere labels of types, we argue it is impossible to construct role type gener-
alization/specialization hierarchies leading to better-organized conceptual models.

2.2.2 Roles as a Form of Generalization/Specialization
As discussed in section 2.1, Sowa views role types as subtypes of natural types in
some particular pattern of relationships. However, in [1], Al-Jadir and Leonard argue
using a number of implementation level examples that inheritance is not flexible
enough with respect to object dynamics and schema evolution. A conceptual obstacle
with this view is the difficulty of representing roles allowing multiple disjoint types
[13][22]. As a consequence, Steimann argues to separate natural types and role types
into different type hierarchy and to relate them using a “role-filler” relationship [22].

2.2.3 Roles as Separate Instances Adjoined to the Entities Playing the Roles
In this view, role types are treated as independent types whose instances are existen-
tially dependent on its players (instances of natural types), have role specific state and
behavior with separate identity different from their players. A player and its roles are
related by a played-by relation, thus role instances act as bridges between relation-
ships and its related players [4][8][16][28]. As argued by Steimann in [25] and
Masolo et al. in [17], this view is mostly motivated to model some real world situa-
tions such as a person plays exactly three employee roles simultaneously, with differ-
ent salary and office number – the so-called counting problem. This approach is
problematic because, from an ontological perspective, an object in a conceptual model
should correspond to a distinct real world thing [22]. Moreover, requiring each role
instance to have a unique identity is artificial.

3 A Metamodel of Classifiers for Conceptual Modeling

In this section, we propose an ontological metamodel of classifiers. Figure 1 summa-
rizes our metamodel. Ontologically, natural type, phase type, and role type model
different kinds of functional schemata [2] of the same real world things viewed from
different perspectives. For clarity, we call instances of a natural type objects, instances
of a role type roles, and instances of a phase type phases. Note that, unlike natural
types and phase types, there are relationships among role types (because role types are
externally dependent, whereas natural/phase types are not). Each role type must associ-
ate to at least one other role type (could be the same role type), since roles are based on
mutual properties. For example, role type Student must be related to a role type Uni-
versityEnrolled. Instances of natural types and phase types can exist in isolation from
any external entities. For an instance of a natural/phase type to interact with other enti-
ties in a particular context, it must become an instance of a role type. Since

An Ontological Metamodel of Classifiers and Its Application to Conceptual Modelling 217

Natural Type Role Type

plays

Phase Type

* *

1..*
1..*

generalizes

generalizes

generalizes

generalizes

Fig. 1. The classifier metamodel

instances of role types are also instances of natural/phase types, roles can also play
roles [18].

4 Implications for Conceptual Modeling

In this section, we explore implications of our metamodel for object-oriented and con-
ceptual modeling as well as information system design and implementation. In par-
ticular, we compare it with traditional approaches to conceptual database modeling in
order to demonstrate conceptual and practical usefulness of our approach.

4.1 Representing Intrinsic and Mutual Property in UML Diagrams

In Bunge’s ontology, a value property of a thing is either an intrinsic property, or a
nonbinding mutual property. Intrinsic properties are relatively stable properties of
things over their lifetime. In contrast, nonbinding mutual properties are less stable
properties in that they can be acquired/dropped by things. Evermann proposes to use
attributes of association classes to represent mutual properties [7][6]. Following that
idea, since an individual intrinsic property is owned by a thing exclusively, in a UML
class diagram Bunge-attribute functions representing general intrinsic properties are
modeled as attributes of an ordinary class/type placed in the attribute compartment of
the class/type. We may call these UML attributes intrinsic attributes.

On the other hand, an individual nonbinding mutual property is shared by multiple
things, say, for example, A and B. Neither A nor B owns this individual nonbinding
mutual property exclusively. As a result, in a UML class diagram, Bunge-attribute
functions representing general nonbinding mutual properties shared between things
are modeled as attributes placed in the attribute compartment of an association class
connecting classes/types whose instances model these things. That is to say, the at-
tribute compartment of an association class between two or more classes/types in a
UML class diagram contains a list of attributes each of which models a Bunge-
attribute function representing a general nonbinding mutual property shared by things
modeled by the functional schemata corresponding to these interconnecting
classes/types. We may call these UML attributes mutual attributes.

218 J. Parsons and X. Li

4.2 Representing Natural, Phase, and Role Types in UML Class Diagrams

Furthermore, since natural and phase types are externally independent whereas role
types are externally dependent, natural and phase types have only intrinsic properties,
and role types have only mutual properties shared with other role types. Thus the at-
tribute compartment of a role type in a UML diagram should be empty. All the (mu-
tual) attributes of the role type are placed in the association class of the association
connecting this role type to other role type(s) with which it shares these attributes.
Consequently, in a UML conceptual model, we proposed that a role type cannot occur
without being related to other role type(s). This rule conforms to the idea that roles
imply patterns of relationships, since roles depends on external entities [19][20].

Person

SSN
Name
BirthDate

Employment

Salary
StartDate
OfficePhone

 1..* 1..*

work for

plays
Company

CName
CAddress

played by

supervise

 1..* 1

Team

Team#
TeamMember

played by

Supervision

Goal

Employee

TeamLeader

Employer

SupervisedTeam

Fig. 2. A UML diagram illustrating natural types and their role types

An example UML diagram illustrating natural types and their role types is shown
in Figure 2 (rectangle for natural/phase type and oval for role type). In this figure,
Person, Company, and Team are natural types, Employee, Employer, TeamLeader,
and SupervisedTeam are role types. A team leader, who is a person, is also an em-
ployee working for an employer which is a company. Thus in addition to his/her own
mutual attribute (Goal of association class Supervision), he/she also inherits mutual
attributes Salary, StartDate and OfficePhone of association class Employment from
Employee.

Note that as argued by Wand, Storey, and Weber in [26], in our approach it is not
possible for a role type to have optional associations with other role type(s). This is
because, for an instance of a natural/phase type to be an instance of a role type, it
must have some mutual attributes shared with other entities. For example, a person
cannot be an employee without working for an employer.

In addition to natural types and role types, phase types are also useful in object-
oriented and conceptual modeling. Examples of phase types include Child, Teenager,
and Adult of Person, or Town and Metropolis of City. In a phase type partition of
a natural type or phase type, the subtypes should be constructed such that they are

An Ontological Metamodel of Classifiers and Its Application to Conceptual Modelling 219

mutually disjoint and constitute a total partition of this supertype, i.e., an instance of
the supertype should have a corresponding instance in exactly one phase subtype.
Figure 3 shows a conceptual model including a phase type partition Child, Teenager,
and Adult of natural type Person. It indicates that only adult persons can be employees.

Person

SSN
Name
BirthDate Employment

Salary
StartDate
OfficePhone

 1..* 1..*

work for

playsChild Teenager Adult

Company

CName
CAddress

played by

Employee Employer

Fig. 3. A conceptual model with a phase type partition

4.3 Object Migration

Since a natural type is rigid, its instances cannot migrate to other natural types in a
natural type hierarchy. Phase types however, are anti-rigid, so their instances may mi-
grate to other phase types in the partition of a phase/natural type hierarchy during
their lifetime when the distinguishing intrinsic attribute(-s) is changed. An instance of
a natural/phase type may become an instance of a role type when it participates in a
relationship, thus acquiring some mutual attribute(-s) (It still remains an instance of
the natural/phase type). It may further acquire more mutual attributes, thus becoming
an instance of a sub role type or a new role type, or it may lose some mutual attributes
thus migrate to a super role type or not be an instance of a role type any more.

For example, in Figure 4, Person, Man, and Woman are natural types; Child, Teen-
ager, and Adult are phase types. Note that here and elsewhere our notation here uses
the same subtyping mechanism for phases as for natural types, but the notation could
be extended to distinguish these concepts. Usually an instance of Man cannot migrate
to Woman in his lifetime. But an instance of Child may possibly migrate to Teenager
and Adult at some point in time. For role types, in Figure 2, a person may acquire mu-
tual properties Salary, StartDate and OfficePhone shared with an employer thus be-
come an employee. An employee may acquire mutual property Goal shared with a
supervised team thus become a team leader.

In a phase type partition of a natural/phase type, object migration between these
phase types is subject to some dynamic integrity constraints. For example, in the par-
tition Child, Teenager, and Adult of Person, a person who is a child may migrate from
Child to Teenager and further from Teenager to Adult during his/her lifetime, but the
reverse direction of migration is forbidden. Similarly, in some role type partitions of

220 J. Parsons and X. Li

Person

Child AdultTeenager

Woman

Man

Fig. 4. An example of natural type and phase type partitions

role types (such as UndergraduateStudent and GraduateStudent of Student), instances
of a role subtype may migrate to other role subtypes subject to some constraints (e.g.,
an undergraduate student can migrate to GraduateStudent, but not vice versa).

4.4 The Counting Problem

The counting problem [17][22][28] refers to situations in which instances counted in
their roles yield a greater number than the same instances counted by the objects play-
ing the roles. For example, if we count the number of persons served by Air Canada
in 2006, we may count 1,000,000 but if we count passengers, we may count
3,000,000.

Existing conceptual modeling languages do not differentiate intrinsic attribute from
mutual attribute, nor do they require that all the attributes of a role type should be
mutual attributes that are shared by all entities participating in the relationship. Con-
sequently in their approaches, intrinsic attributes which actually are attributes of natu-
ral/phase type can occur in a role type, and moreover a role type does not have to be
related to other role type(s). This practice may cause unstable conceptual models in
the situations that a natural/phase type instance can play two or more roles of the
same role type simultaneously, i.e. the counting problem. For example, in the Entity-
Relationship approach (ER), there is only entity type, no explicit role type. Role types
are represented as named places in relationships. As a result, all intrinsic and mutual
attributes are placed by modelers in entity types or relationship types arbitrarily.
Figure 5 illustrates an ER conceptual model adapted from [5].

Employee

Name

LName

MInit

Fname

SSN

O fficePhone

Salary

StartDate

Fig. 5. An ER conceptual model reflecting the ‘counting problem’ (from [5])

An Ontological Metamodel of Classifiers and Its Application to Conceptual Modelling 221

The attributes OfficePhone, Salary and StartDate model Bunge-attribute functions
representing general nonbinding mutual properties between, say, employees and em-
ployers. In contrast, the attributes Name and SSN model Bunge-attribute functions
representing actually general intrinsic properties of persons that play role type Em-
ployee. These intrinsic attributes are still valid even after a person ceases to be an em-
ployee and thus loses all mutual attributes valid only in the employment relationship.
Therefore, instead of belonging to Employee, they should be placed in an additional
natural type Person. Figure 6 shows the corresponding model using our metamodel.

Person

Name: FName
 MInit
 LName
SSN

Employment

Salary
StartDate
OfficePhone

 1..* 1..*

work for

plays
Employee Employer

Fig. 6. The corresponding model of Figure 6 using our metamodel

In situations where a person cannot have more than one job at the same time (e.g. a
person cannot be a secretary and a technician simultaneously), when mapping concep-
tual models in Figure 5 and Figure 6 to a relational database schema, we get one rela-
tion Employee and two relations Person and Employment respectively. It is usually
not necessary to map also Employee and Employer in Figure 6 to two relations in a
relational database schema because they have no intrinsic attributes.

However, in situations where, for example, a person can be a secretary and techni-
cian simultaneously with different office phones, salaries, and start dates, the corre-
sponding relational database schema of the conceptual model in Figure 5 must be
modified. Now attributes OfficePhone, Salary, and StartDate of Employee are multi-
valued and when mapping this conceptual model to a relational database schema, we
need to create a new relation R which includes the three attributes OfficePhone, Sal-
ary and StartDate, plus the primary key SSN of Employee as a foreign key in R. The
primary key of R is the combination of all four attributes. Thus, unlike in the previous
situations, the resulting relational database schema has two relations. It is thus clear
that, using ER approach, it is possible that the resulting relational database schema
has to evolve after it has already been in existence for some time.

In contrast, for the conceptual model in Figure 6, when a person can be a secretary
and a technician at the same time, this fact has no impact on the resulting relational
database schema at all. One may simply insert into Employment relation two different
records of a person with different employers in order to differentiate different jobs
held by the same person. Thus the relational database schema resulting from the con-
ceptual model in Figure 6 is more stable with respect to requirements change and thus
more suited to capture evolutionary aspects of real world applications.

222 J. Parsons and X. Li

Our approach resembles the Object Role Modeling (ORM) approach proposed by
Halpin in [15]. Unlike ER modeling (and our approach), ORM does not use attributes.
As argued by Halpin, “The first problem with using attributes in the initial models is
that they are often unstable. … So do not agonize over whether to model a particular
feature as an attribute or relationship. Just model it as a relationship”. However, ORM
is not based on formal ontological foundations. As a result, it does not distinguish in-
trinsic attributes from mutual ones. In our approach, intrinsic attributes are owned by
a class/type exclusively and thus should not be modeled as relationships.

4.5 A More Complicated Example

In this section, we present a more complicated example with multiple inheritance.
Figure 7 is an ER diagram with a generalization/specialization lattice adapted from
[5, p. 84] for a university database. Attributes SSN, Name, Sex, Address, and Birth-
Date are intrinsic attributes of natural type Person. Attributes Salary, MajorDept, and
PercentTime are mutual attributes of role types Employee, Student, and StudentAssis-
tant respectively. These mutual attributes cannot be owned exclusively by the role
types. A corresponding conceptual model of Figure 7 based on our metamodel is
illustrated in Figure 8.

In Figure 8, Person and University are natural types (We add to University a key
attribute Name). Student, Employee, StudentAssistant, Employer, StudentEmployer,
and UniversityEnrolled are all role types. Mutual attribute Salary is shared by Em-
ployee (which is played by Person) and Employer (which is played by University).
Similarly, mutual attribute MajorDept is shared by Student (which is played by Per-
son) and UniversityEnrolled (which is played by University). Also, mutual attribute
PercentTime is shared by StudentAssistant (which is a subtype of role types Em-
ployee and Student) and StudentEmployer (which is a subtype of role types Employer
and UniversityEnrolled).

Person

Name

SSN

Sex
Address

O

StudentEmployee

Salary MajorDept

StudentAssistant

PercentTime

BirthDate

Fig. 7. A generalization/specialization lattice for a university database

An Ontological Metamodel of Classifiers and Its Application to Conceptual Modelling 223

Person

SSN
Name
Sex
Address
BirthDate

plays played by

Employment

Salary

plays

1..* 1..*
University

Name

plays
Enrollment

MajorDept

1..* 1..*

StudentEmployment

PercentTime

1..* 1..*

Employee Employer

UniversityEnrolled

StudentAssistant StudentEmployer

Student

Fig. 8. The corresponding model of Figure 7 using our metamodel

It is clear that the conceptual model in Figure 8 expresses more real world seman-
tics than Figure 7. These real world semantics are implicit in Figure 7, existing only in
modelers’ mind, while in Figure 8 they are represented explicitly. We deem this a
positive aspect of our approach because one of the detrimental effects of the lack of
rich, formal languages specific to conceptual modeling is that information system
“development projects might begin without explicitly modelling the application
domain and instead must rely on implicit assumptions of developers” [7, p 147].
Moreover, in Figure 8, the identifier attribute Name of the newly created natural type
University is important because it will be used later as part of a combined key attrib-
ute to identify each relationship instance of relationship types Employment, Enroll-
ment, and StudentEmployment associated to the role types played by University.

4.6 Union Type (Category) vs. Role Type

In conceptual database modeling, a union type or category is a subclass (in a single su-
perclass/subclass relationship with more than one superclass, each of which represents
a different entity type) which represents a collection of objects that is (a subset of)
the union of distinct entity types [5]. For example, Figure 9 (adapted from [5, p. 86])
illustrates two union types Owner and Registered_Vehicle. An owner may own a num-
ber of registered vehicles, and a registered vehicle may be owned by a number of own-
ers. An owner of a vehicle can be a person, a bank, or a company. Similarly, a regis-
tered vehicle can be a car or a truck.

In a UML model, a subclass may have multiple superclasses. The extension of the
subclass is the intersection of the extensions of all superclasses. On the other hand,
the extension of a category is (a subset of) the union of the extensions of all super-
classes. Each instance of the category must belong to only one superclass.

224 J. Parsons and X. Li

Person

Name SSN
BirthDate

U

Owner

U

TruckCar

CYear

Bank

BName BAddress

Company

CName CAddress

O wns

M

Registered_Vehicle

N

LienO rRegular

VehicleID VehicleID

CModel

CStyle

CYear

CModel
Tonnage

PurchaseDate

Fig. 9. Two union types: Owner and Registered_Vehicle

Person

SSN
Name
BirthDate

Bank

BName
BAddress

Company

CName
CAddress

Car

VehicleID
CModel
CYear
CStyle

Truck

VehicleID
CModel
CYear
Tonnage

1..*

1..*

plays

plays

played by

plays

played by

Ownership

PurchaseDate
LienOrRegular

Owner

Registered_Vehicle

Fig. 10. The corresponding model of Figure 10 using our metamodel

However, we suggest that, instead of being a new modeling concept, a union type
or category is actually a role type in our metamodel (which is anti-rigid and depend-
ent). Consequently, we may model Owner and Registered_Vehicle as role types in
our metamodel. Figure 10 illustrates the corresponding model based on our meta-
model. In Figure 10, Person, Bank, and Company are natural types that can play role

An Ontological Metamodel of Classifiers and Its Application to Conceptual Modelling 225

type Owner. Similarly, Car and Truck are natural types that can play role type Regis-
tered_Vehicle. Since a role type recruits its instances from natural/phase types, an
owner can be a person, bank, or company. Similarly, a registered vehicle can be a car
or a truck. All attributes of the relationship Owns (PurchaseDate and LienOrRegular)
are placed in association class Ownership.

Also note that, unlike Figure 9, in Figure 10 the cardinality constraint of Owner
and Registered_Vehicle in relationship Owns is 1..*. This is because, as we discussed
in section 4.2, a role type cannot have optional associations with other role type(s).

4.7 Integrity Constraints

In ER, relationship types usually have certain constraints that limit the possible com-
binations of entities that may participate in the corresponding relationship set. Among
them, the participation constraint “specifies whether the existence of an entity de-
pends on its being related to another entity via the relationship type” [5, p. 57]. There
are two types of participation constraints – total and partial. An example for total par-
ticipation constraint is every employee must work for an employer. An example for
partial participation constraint is not every employee manages a department. Total
participation is a necessary condition for existence dependency. However, as indicated
before, in our model, a role type cannot have optional associations (or partial partici-
pation) with other role type(s). In fact, in the example for partial participation con-
straint, instead of role type Employee, it is role type Manager that has a management
relationship with role type ManagedDepartment. In this case, the relationship type
management is total participation for both Manager and ManagedDepartment.

In a phase type partition of a natural or phase type, the phase subtypes should be
constructed such that they are mutually disjoint and constitute a total partition of this
supertype, i.e., any instance of the supertype should have a corresponding instance in
exactly one phase subtype. For example, in Figure 11, phase subtypes Child, Teen-
ager, and Adult are mutually disjoint and partition the natural type Person.

Person

Child AdultTeenager

{complete, disjoint}

Fig. 11. An example of a phase type partition of natural type Person

Because a phase type partition is a total partition, in a relational database schema,
if we insert an entity into a relation that represents the supertype of a phase type parti-
tion, this entity must also be inserted into exactly one relation that represents an ap-
propriate phase subtype. For example, in Figure 11, if we insert a person entity that is
a child into relation Person, this entity is mandatorily inserted into relation Child. On
the other hand, if we delete an entity from a set of relations that represent a phase type

226 J. Parsons and X. Li

partition (i.e., this entity does not belong to any phase subtype of the partition any
more), this entity must also be deleted from the relation representing the supertype of
the phase type partition. In Figure 11, if an adult becomes deceased thus deleted from
relation Adult, he or she cannot belong to any phase subtype of partition Person any
more, thus is mandatorily deleted from relation Person.

Moreover, Wieringa et al. [28] argue that, to construct taxonomic structures, for
each is-a partition of a class the classification principle that governs the division in its
subtypes should be clear, unambiguous, singular, and uniform. Following the princi-
ple, in natural type hierarchies, partitions should be constructed such that its subtypes
are mutually disjoint. For example, in Figure 12, natural subtypes Car and Truck are
mutually disjoint, as are subtypes Man and Woman.

Vehicle

Car Truck

Person

Man Woman

{incomplete, disjoint} {complete, disjoint}

 (a) (b)

Fig. 12. An example of (a) a partial natural type partition, (b) a total natural type partition

Note that a natural type partition does not necessarily exhaust its supertype.
Figure 12 (a) illustrates a partial natural type partition Truck and Car of Vehicle,
Figure 12 (b) illustrates a total natural type partition Man and Woman of Person.
Consequently, in a relational database schema, if we insert an entity into a relation
that represents the supertype of a natural type partition, this entity does not necessar-
ily have to be inserted into a relation that represents a natural subtype. For example, in
Figure 12 (a), if we insert an entity that is a motorcycle into relation Vehicle, this en-
tity does not have to be inserted into either Car or Truck.

On the other hand, if we delete an entity from any relation that represents a subtype
of a natural type partition, it must also be deleted from the relation representing the
supertype of the partition. For example, in Figure 12(b), if a man/woman entity is de-
leted from relation Man/Woman, he/she must be deleted from relation Person.

Student

UndergraduateStudent GraduateStudent

{complete, overlapping}

Fig. 13. An example of a total role partition of role type Student

An Ontological Metamodel of Classifiers and Its Application to Conceptual Modelling 227

Compared with natural/phase type partition, usually a role type partition can be
overlapping. This is because an object or phase may play multiple roles simultane-
ously. For example, in Figure 13, if a person can be an undergraduate student in one
university and a graduate student in another, then this partition is overlapping. Fur-
thermore, a role type partition can be partial or total. Figure 13 illustrates a total parti-
tion: every student is either an undergraduate student or a graduate student, or both.

5 Conclusion

This paper proposes a metamodel of classifiers based on distinguishing the notions of
natural type, phase type, and role type. We then use the metamodel to suggest exten-
sions to UML class diagrams to capture these distinctions. We further show that the
distinctions enable class models to express domain semantics more clearly, and iden-
tify some integrity constraints that can be inferred when models adhere to the meta-
model.

This approach also has important implications for database design models and can
lead to more flexible design that accommodate changing requirements. Further re-
search is needed to examine these implications. In addition, the distinctions we
propose among classes lead to diagrams that appear to be more complex than those
constructed using traditional approaches. Since conceptual models are important for
communication and validation of requirements, work is needed to determine whether
the additional complexity impairs or improves the usefulness of models in supporting
communication.

References

[1] Al-Jadir, L., Leonard, M.: If we refuse the inheritance. In: Bench-Capon, T.J.M., Soda,
G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677, Springer, Heidelberg (1999)

[2] Bunge, M.: Treatise on Basic Philosophy, vol. 3, Ontology I: The Furniture of the World,
Boston: Reidel (1977)

[3] Bunge, M.: Treatise on Basic Philosophy vol. 4, Ontology II: A World of Systems, Bos-
ton: Reidel (1979)

[4] Dahchour, M., Pirotte, A., Zimanyi, E.: A role model and its metaclass implementation,
Information Systems. 29(3), 235–270 (2004)

[5] Elmasri, R., Navathe, S.: Fundamentals of Database Systems, 3rd edn. AddisonWesley,
London, UK (2000)

[6] Evermann, J.: The Association Construct in Conceptual Modelling - An Analysis Using
the Bunge Ontological Model. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005.
LNCS, vol. 3520, pp. 33–47. Springer, Heidelberg (2005)

[7] Evermann, J., Wand, Y.: Ontology based object-oriented domain modelling: fundamental
concepts. Requirements Eng. 10(2), 146–160 (2005)

[8] Gottlob, G., Schrefl, M., Rock, B.: Extending Object-Oriented Systems with Roles. ACM
Trans. Inf. Syst. 14(3), 268–296 (1996)

[9] Guarino, N.: Concepts, attributes and arbitrary relations. Data & Knowledge Engineer-
ing 8, 249–261 (1992)

228 J. Parsons and X. Li

[10] Guarino, N., Welty, C.: An overview of OntoClean. In: Staab, S., Studer, R. (eds.) Hand-
book on Ontologies, pp. 151–159. Springer, Heidelberg (2004)

[11] Guarino, N., Welty, C.: Evaluating ontological decisions with OntoClean, Commun.
ACM 45(2), 61–65 (2002)

[12] Guarino, N., Welty, C.: A formal ontology of properties. In: Dieng, R. (ed.) Proceedings
of the 12th Int. Conf. On Knowledge Engineering and Knowledge Management. LNCS,
Springer, Heidelberg

[13] Guizzardi, G., Wagner, G., Guarino, N., McBrien, P., Rizopoulos, N.: An Ontologically
Well-Founded Profile for UML Conceptual Models. In: Persson, A., Stirna, J. (eds.)
CAiSE 2004. LNCS, vol. 3084, pp. 112–126. Springer, Heidelberg (2004)

[14] Guizzardi, G., Wagner, G., Sinderen, M.: A Formal Theory of Conceptual Modeling Uni-
versals, WSPI (2004)

[15] Halpin, T.A.: Business rules and object-role modeling, DBP&D 9(10) (October 1996)
[16] Loebe, F.: An Analysis of Roles - Toward Ontology-Based Modelling, Master’s Thesis,

University of Leipzig (2003)
[17] Masolo, C., Guizzardi, G., Vieu, L., Bottazzi, E., Ferrario, R.: Relational Roles and Qua-

individuals. In: Roles, an interdisciplinary perspective, AAAI Fall Symposium (2005)
[18] Renouf, D.W., Henderson-Sellers, B.: Towards a Role-Based Framework Approach for

User Interfaces. Australian Computer Journal 28(3), 96–106 (1996)
[19] Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addi-

son-Wesley, New York (1984)
[20] Sowa, J.F.: Using a lexicon of canonical graphs in a semantic interpreter. In: Evens,

M.W. (ed.) Relational Models of the Lexicon, pp. 113–137. Cambridge University Press,
Cambridge (1988)

[21] Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foun-
dations, Thomson Learning (2000)

[22] Steimann, F.: On the representation of roles in object-oriented and conceptual modeling.
Data & Knowledge Engineering 35, 83–106 (2000)

[23] Steimann, F.: A radical revision of UML’s role concept. In: Evans, A., Kent, S., Selic, B.
(eds.) UML 2000. LNCS, vol. 1939, pp. 194–209. Springer, Heidelberg (2000)

[24] Steimann, F.: Role = Interface: A merger of concepts. Journal of Object-Oriented Pro-
gramming 14(4), 23–32 (2001)

[25] Steimann, F.: The Role Data Model Revisited. In: Roles, an interdisciplinary perspective,
AAAI Fall Symposium (2005)

[26] Wand, Y., Storey, V., Weber, R.: An Ontological Analysis of the relationship Construct
in Conceptual Modeling. ACM Transactions on Database Systems 24(4), 494–528 (1999)

[27] Welty, C., Guarino, N.: Supporting ontological analysis of taxonomic relationships. Data
& Knowledge Engineering 39(1), 51–74 (2001)

[28] Wieringa, R., Jonge, W., de Spruit, P.: Using Dynamic Classes and Role Classes to
Model Object Migration. Theory and Practice of Object Systems 1(1), 61–83 (1995)

Handling Inconsistency of Vague Relations with
Functional Dependencies

An Lu and Wilfred Ng

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Hong Kong, China
{anlu,wilfred}@cse.ust.hk

Abstract. Vague information is common in many database applications due to
internet-scale data dissemination, such as those data arising from sensor networks
and mobile communications. We have formalized the notion of a vague relation
in order to model vague data in our previous work. In this paper, we utilize Func-
tional Dependencies (FDs), which are the most fundamental integrity constraints
that arise in practice in relational databases, to maintain the consistency of a vague
relation. The problem we tackle is, given a vague relation r over a schema R and
a set of FDs F over R, what is the “best” approximation of r with respect to
F when taking into account of the median membership (m) and the imprecision
membership (i) thresholds. Using these two thresholds of a vague set, we define
the notion of mi-overlap between vague sets and a merge operation on r. Satis-
faction of an FD in r is defined in terms of values being mi-overlapping. We show
that Lien’s and Atzeni’s axiom system is sound and complete for FDs being satis-
fied in vague relations. We study the chase procedure for a vague relation r over
R, named VChase(r, F), as a means to maintain consistency of r with respect to
F . Our main result is that the output of the procedure is the most object-precise
approximation of r with respect to F . The complexity of VChase(r, F) is poly-
nomial time in the sizes of r and F .

1 Introduction

Fuzzy set theory has long been introduced to handle inexact and imprecise data by
Zadeh’s seminal paper in [1]. In fuzzy set theory, each object u ∈ U is assigned a
single real value, called the grade of membership, between zero and one. (Here U is
a classical set of objects, called the universe of discourse.) In [2], Gau et al. point out
that the drawback of using the single membership value in fuzzy set theory is that the
evidence for u ∈ U and the evidence against u ∈ U are in fact mixed together. In
order to tackle this problem, Gau et al. propose the notion of Vague Sets (VSs), which
allow using interval-based membership instead of using point-based membership as
in FSs. We have shown in our previous work [3] that the interval-based membership
generalization in VSs is more expressive in capturing vague data semantics.

In a vague relation, each object with a vague membership belongs to a VS. A vague
membership (also called a vague value) is a subinterval [α(u), 1 − β(u)] of the unit in-
terval [0,1], where 0 ≤ α(u) ≤ 1−β(u) ≤ 1. A true (false) membership function α(u)

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 229–244, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

230 A. Lu and W. Ng

(β(u)) is a lower bound on the grade of membership of u derived from the evidence for
(against) u.

In order to compare two vague values, we define the median membership, Mm =
(α + 1 − β)/2, which represents the overall evidence contained in a vague value, and
the imprecision membership, Mi = (1 − β − α), which represents the overall impre-
cision of a vague value. With Mm and Mi, we have the one-to-one correspondence
between a vague value, denoted by [α, 1 − β], and a mi-pair vague value, denoted by
< Mm, Mi >, for a given object. We further extend the notion of mi-overlap to VSs.

Integrity constraints ensure that changes made to the database do not result in a loss
of data consistency. The notion of a Functional Dependency (FD) [4], the most fun-
damental integrity constraints, being satisfied in a vague relation can be formalized in
terms values being mi-overlapping rather than equal. We show that Lien’s and Atzeni’s
axiom system [5,4] is sound and complete for FDs being satisfied in vague relations. A
vague relation is said to be consistent with respect to a set of FDs F if it satisfies F .
We define the chase procedure for a vague relation r over R, named V Chase(r, F), to
tackle the consistency problem with respect to F , defined on vague relations [3]. Our
main result is that the output of the procedure is the most object-precise (or O-precise
in our notation) approximation of r with respect to F .

Here we give a motivating example. Consider a vague relation schema R = {S, T },
where S stands for the evidence of a sensor ID and T stands for the temperature moni-
tored by a sensor. Here S and T are vague concepts, their values are all represented
by VSs. Suppose the attributes S and T share the common universes of discourse,
U = {0, 1, . . . , 10}. A vague relation r1 over R is shown in Table 1, where the at-
tributes S and T are vague. The VS <0.8,0.1>/0 means the evidence for “the sensor
ID is 0” is 0.8 and the imprecision for it is 0.1. The median membership threshold C
and the imprecision membership threshold I are called the mi-thresholds. For simplic-
ity, we only show the elements in the values of S and T that satisfy the mi-thresholds.
Intuitively, this means that the elements in the relation all have strong evidence relative
to the thresholds. The saying that two VSs mi-overlap means they have at least one
common object which satisfies the mi-thresholds (i.e., 0.8 ≥ C and 0.1 ≤ I in this
example). We regard two mi-overlapping VSs are similar to each other to some extent
and extend the classical FD concept to vague relations. Suppose that the FD S → T is
specified as a constraint, meaning that same sensor reads same temperature in a vague
sense.

We assume a vague relation r1 over R, where the current temperature may be ob-
tained from different sensors. Thus, at any given time the information may be inconsis-
tent. It can be verified that r1 satisfies S → T and is consistent. Suppose later a vague
tuple was inserted into r1, we have the vague relation r2 shown in Table 2. It can be
verified that r2 does not satisfy S → T and is inconsistent, since the evidence of S
shows that the two tuples have the common object 0 mi-overlapped, but the values of
T do not have a common object and thus do not mi-overlap. The vague relation r2 can
be approximated by the less O-precise relation r3, shown in Table 3. It can be verified
that r3 satisfies S → T and is consistent. The vague relation r3 (one tuple) is in fact the
most O-precise approximation of r2. The transformation from r2 to r3 is based on the
VChase procedure introduced later.

Handling Inconsistency of Vague Relations with Functional Dependencies 231

Table 1. Sensor relation r1

S T
<0.8,0.1>/0 <0.9,0>/0

Table 2. Sensor relation r2

S T
<0.8,0.1>/0 <0.9,0>/0
<0.9,0.2>/0 <0.8,0.1>/1

Table 3. Sensor relation r3

S T
<0.9,0.1>/0 <0.9,0>/0 +

<0.8,0.1>/1

We define the merge operation which replaces each attribute value in r by the mi-
union of all attribute values with respect to the same reflexive and transitive closure un-
der mi-overlap. This leads to a partial order on merged vague relations and the notion of
a vague relation being less O-precise than another vague relation. This partial order in-
duces a lattice on the set of merged vague relations, which we denote by MERGE(R),
based on object-equivalence (O-equivalence for short) classes. We define the VChase
procedure for a vague relation r over R as a means of maintaining consistency of r with
respect to F . We investigate the properties of the VChase procedure showing amongst
other results that it outputs a consistent vague relation. The output of VChase is unique.
VChase can be computed in polynomial time in the sizes of r and F , and the procedure
commutes with the merge operation.

The main contributions of this paper are fourfold. First, we develop the notions of
median membership and imprecision membership to capture the essential information
and in maintain consistency of vague data. Second, we define a partial order on merged
vague relations which induces a lattice based on O-equivalence classes. We also define
a partial order based on the vague values which induces a complete semi-lattice in each
O-equivalence class. Third, we extend the satisfaction of an FD in a vague relation in
terms values being mi-overlapping rather than equal and show that Lien’s and Atzeni’s
axiom system is sound and complete for FDs being satisfied in vague relations. Finally,
we propose the chase procedure for a vague relation r over R, named VChase, as a
means of maintaining consistency of r with respect to a set of FDs F . Our main re-
sult is that the output V Chase(r, F) of the VChase procedure is the most O-precise
approximation of r with respect to F .

The rest of the paper is organized as follows. Section 2 presents some basic con-
cepts related to mi-pair, which are used to enhance vague sets and their operations. In
Section 3, we discuss the merge operation, based on the less O-precise order. In Section 4,
FDs and the V Chase procedure of vague relations are introduced. In Section 5, we give
a semantic characterization of the V Chase procedure of a vague relation, which is also
consistent with respect to a set of FDs. Related work is presented in Section 6. And in
Section 7, we offer our concluding remarks.

2 Vague Sets and Mi Memberships

In [6,3,7], some basic concepts related to the vague relational data model are given. Here
we explain how and why the median membership and the imprecision membership are
useful to represent vague data. We assume throughout V is a vague set and U is the
universe of discourse for V .

232 A. Lu and W. Ng

2.1 Median Memberships, Imprecision Memberships and Mi-Pair Vague Sets

In order to compare vague values, we need to introduce two derived memberships for
discussion. The first is called the median membership, Mm = (α + 1 − β)/2, which
represents the overall evidence contained in a vague value and is illustrated in Fig. 1.

Definition 1 (Median membership). The median membership of an object u ∈ U in
a vague set V , denoted by MV

m(u), is defined by MV
m(u) = (α(u) + 1 − β(u))/2.

Whenever V and u are understood from context, we simply write Mm.

It can be checked that 0 ≤ Mm ≤ 1. In addition, the vague value [1,1] has the highest
Mm, which means the corresponding object totally belongs to V (i.e. a crisp value). The
vague value [0,0] has the lowest Mm, which informally means that the corresponding
object “totally” does not belong to V (i.e. the empty vague value). The higher Mm is,
the more crisp the vague value represents.

1

(1)/2
m

Fig. 1. Median membership of a vague
set

1

1i

Fig. 2. Imprecision membership of a
vague set

The second is called the imprecision membership, Mi = (1 − β − α), which repre-
sents the overall imprecision of a vague value and is illustrated in Fig. 2.

Definition 2 (Imprecision membership). The imprecision membership of an object
u ∈ U in a vague set V , denoted by MV

i (u), is defined by MV
i (u) = 1 − β(u) − α(u).

Whenever V and u are understood from context, we simply write Mi.

It can be checked that 0 ≤ Mi ≤ 1. In addition, the vague value [a, a](a ∈ [0, 1]) has
the lowest Mi which means that we know exactly the membership of the corresponding
object (that is, reduced to a fuzzy value). The vague value [0,1] has the highest Mi,
which informally means that we know “nothing” about the precision of the correspond-
ing object. The higher Mi is, the more imprecise the vague value represents.

Proposition 1. The median membership and the imprecision membership of an object
satisfy the inequality: Mi

2 ≤ Mm ≤ (1 − Mi

2).

Proposition 1 shows that the median and imprecision memberships actually relate to
each other.

Handling Inconsistency of Vague Relations with Functional Dependencies 233

Definition 3 (Mi-pair Vague Set). An mi-pair VS vague set, in U = {u1, u2, . . ., un}
is characterized by a median membership function, MV

m , and an imprecision member-
ship function, MV

i , where MV
m : U → [0, 1], and MV

i : U → [0, 1]. V is given as
follows: V =

∑n
i=1 < MV

m(ui), MV
i (ui) > /ui. <MV

m(ui), MV
i (ui)>/ui is called

an element of V and <MV
m(ui), MV

i (ui)> is called the (mi-pair) vague value of the
object ui.

Using Mm and Mi, we have a one-to-one correspondence between a vague value,
[α, 1−β], and mi-pair vague value, <Mm, Mi>. From now on, a vague set or a vague
value refers to an mi-pair vague set or an mi-pair vague value, respectively.

Table 4. A sensor vague relation r

S T L

t1 <0.7,0.4>/0 + <0.5,1>/3 <0.8,0.3>/0 + <0.6,0.1>/1 <0.4,0.3>/0 + <0.6,0.3>/1
t2 <0.8,0.1>/0 + <0.1,0.1>/1 <0.9,0.1>/1 + <0.5,0.1>/2 <0.6,0.6>/0 + <0.5,0.2>/2
t3 <0.9,0.2>/1 + <0.5,0.1>/2 <0.3,0.2>/2 <0.2,0.2>/0
t4 <0.5,0.1>/3 + <0.8,0.2>/4 <0.4,0.4>/3 <0.4,0.2>/3

Example 1. Let R = {S, T, L} be a vague relation schema, where S stands for a sensor
ID, T stands for the temperature monitored by a sensor and L stands for a location area
ID. A sensor vague relation r having 4 tuples {t1, t2, t3, t4} is shown in Table 4. For
those vague elements not listed in the relation, we assume they all have a special vague
value <0, 1>, which represents the boundary of all vague values, since any median
membership is greater than or equal to 0 and any imprecision membership is less than
or equal to 1.

2.2 Existence and Overlap of Vague Sets

We next define the concepts of an mi-existing VS and overlapping VSs. The underly-
ing idea is to check if vague values satisfy the predefined mi-thresholds: C as a crisp
threshold (0 ≤ C ≤ 1), and I as an imprecision threshold (0 ≤ I ≤ 1).

Definition 4 (Mi-existing). Given V and the mi-thresholds C and I , if ∃u ∈ U ,
such that MV

m(u) ≥ C and MV
i (u) ≤ I , then u is an mi-existing object, <MV

m(u),
MV

i (u)>/u is an mi-existing element, and V is an mi-existing VS under C and I .

By Definition 4, it follows that V is not mi-existing if all the objects in V are not
mi-existing under C and I .

Definition 5 (Mi-overlap). Given two vague sets V1 and V2, if ∃u ∈ U , such that
MV1

m (u) ≥ C and MV2
m (u) ≥ C, MV1

i (u) ≤ I and MV2
i (u) ≤ I , then V1 and V2

mi-overlap under mi-thresholds C and I , denoted by V1 ∼mi V2(C, I). u is called the
common mi-existing object of V1 and V2 under C and I . Otherwise, V1 and V2 do not
mi-overlap under C and I , denoted by V1 �∼mi V2(C, I). We simply write V1 ∼mi V2
and V1 �∼mi V2, if C and I are known from the context.

234 A. Lu and W. Ng

By Definition 5, it follows that V1 and V2 do not mi-overlap if there is no common
mi-existing object of V1 and V2 under C and I .

Example 2. Given C=0.2 and I=0.9, it can be checked that t1[L] and t2[L] in Table 4
mi-overlap, i.e. t1[L] ∼mi t2[L](0.2, 0.9). However, if C=0.2 and I=0.5, we find that
t1[L] and t2[L] do not mi-overlap, that is, t1[L] �∼mi t2[L](0.2, 0.5).

Using the mi-existing objects of VSs, we define mi-union and mi-intersection of VSs.

Definition 6 (Mi-union). Given two vague sets V1 and V2 under the mi-thresholds C
and I , the mi-union of V1 and V2 is a vague set V3, written as V3 = V1 ∨ V2, whose
median membership and imprecision membership functions are related to those of V1
and V2 given as follows. Let u ∈ U .

1. If u is an mi-existing object in both V1 and V2,
MV3

m (u) = max(MV1
m (u), MV2

m (u)), MV3
i (u) = min(MV1

i (u), MV2
i (u));

2. If u is an mi-existing object in V1 but not in V2,
MV3

m (u) = MV1
m (u), MV3

i (u) = MV1
i (u);

3. If u is an mi-existing object in V2 but not in V1,
MV3

m (u) = MV2
m (u), MV3

i (u) = MV2
i (u);

4. If u is not an mi-existing object in both V1 and V2,
MV3

m (u) = MV1
m (u), MV3

i (u) = MV1
i (u), if MV1

m (u) ≥ MV2
m (u);

MV3
m (u) = MV2

m (u), MV3
i (u) = MV2

i (u), otherwise.

Since the fourth case of Def. 6 adopts the vague value from either V1 or V2, dependent
on which has the higher median membership, it guarantees that the mi-union of two
non-mi-existing elements cannot “upgrade” to an mi-existing element. That is to say,
it always keeps the elements that do not satisfy mi-thresholds to be non-mi-existing.

Definition 7 (Mi-intersection). Using the same set of notations of Definition 6, the
mi-intersection of VSs V1 and V2 is a VS V3, written as V3 = V1 ∧ V2, is defined as
follows:

1. If u is an mi-existing object in both V1 and V2,
MV3

m (u) = max(MV1
m (u), MV2

m (u)), MV3
i (u) = min(MV1

i (u), MV2
i (u));

2. If u is an mi-existing object in V1 but not in V2,
MV3

m (u) = MV2
m (u), MV3

i (u) = MV2
i (u);

3. If u is an mi-existing object in V2 but not in V1,
MV3

m (u) = MV1
m (u), MV3

i (u) = MV1
i (u);

4. If u is not an mi-existing object in both V1 and V2,
MV3

m (u) = MV1
m (u), MV3

i (u) = MV1
i (u), if MV1

m (u) ≥ MV2
m (u);

MV3
m (u) = MV2

m (u), MV3
i (u) = MV2

i (u), otherwise.

Note that the cases 1 and 4 in Definition 7 are identical to their counterparts in
Definition 6.

Handling Inconsistency of Vague Relations with Functional Dependencies 235

3 Merge Operation of Vague Relations

In this section, we define the merge of a vague relation r as the operation which replaces
each attribute value (represented by a VS) in r by the mi-union of all attribute values
with respect to the same reflexive and transitive closure under mi-overlap. This leads
to the concept of a less object-precise partial order on merged vague relations.

From now on, we let R = {A1, A2, . . . , Am} be a relation schema and r be a vague
relation over R. We also assume common notation used in relational databases [4] such
as the projection of a tuple t[A].

The semantics of a vague set, t[Ai], where t ∈ r and Ai ∈ R, are that an object
u ∈ Ui has the vague value <Mm(u), Mi(u)> in t[Ai]. The intuition is that, for those
objects which are not mi-existing, we regard their memberships are too weak to con-
sider in the process of chasing the inconsistency with respect to a set of FDs.

We now define the merge operation which replaces each attribute value of a tuple in a
vague relation by the mi-union of all attribute values with respect to the same reflexive
and transitive closure under mi-overlap.

Definition 8 (Merged relation). Given A ∈ R and mi-thresholds C and I , we con-
struct a directed graph G = (V, E), where V = πA(r). An edge (t1[A], t2[A]) is in
E iff t1[A] ∼mi t2[A](C, I). Let G+ = (V +, E+) be the reflexive and transitive clo-
sure of G. The merge of r, denoted by merge(r), is the vague relation resulting from
replacing each t[A] by

∨{t[A]′|(t[A], t[A]′) ∈ E+} for all A ∈ R.

We let MERGE(R) be a collection of all merged relations over R under C and I .

Example 3. Given C=0.2 and I=0.9, the vague relation merge(r), is shown in
Table 5, where r is shown in Table 4. For example, since t1[L] ∼mi t2[L](0.2, 0.9)
and t2[L] ∼mi t3[L](0.2, 0.9), we replace t1[L], t2[L] and t3[L] by <0.6,0.2>/0 +
<0.6,0.3>/1 + <0.5,0.2>/2. Note that the first two tuples in r (t1 and t2) have been
merged into a single tuple (t′1) in merge(r). With different mi-thresholds C and I ,
we may have different merge results. If we set C=0.2 and I=0.5, then t1[L] �∼mi

t2[L](0.2, 0.5). In this case, we obtain merge(r) shown in Table 6. We see that the
first two tuples (t′1 and t′2) are not merged.

Table 5. A relation merge(r) under C = 0.2 and I = 0.9

S T L

t′
1 <0.8,0.1>/0 +

<0.1,0.1>/1 +
<0.5,1>/3

<0.8,0.3>/0 + <0.9,0.1>/1 +
<0.5,0.1>/2

<0.6,0.2>/0 + <0.6,0.3>/1 +
<0.5,0.2>/2

t′
2 <0.9,0.2>/1 +

<0.5,0.1>/2
<0.8,0.3>/0 + <0.9,0.1>/1 +
<0.5,0.1>/2

<0.6,0.2>/0 + <0.6,0.3>/1 +
<0.5,0.2>/2

t′
3 <0.5,0.1>/3 +

<0.8,0.2>/4
<0.4,0.4>/3 <0.4,0.2>/3

236 A. Lu and W. Ng

Table 6. A relation merge(r) under C = 0.2 and I = 0.5

S T L

t′
1 <0.8,0.1>/0 + <0.1,0.1>/1 +

<0.5,1>/3
<0.8,0.3>/0 + <0.9,0.1>/1 +
<0.5,0.1>/2

<0.4,0.2>/0 +
<0.6,0.3>/1

t′
2 <0.8,0.1>/0 + <0.1,0.1>/1 +

<0.5,1>/3
<0.8,0.3>/0 + <0.9,0.1>/1 +
<0.5,0.1>/2

<0.6,0.6>/0 +
<0.5,0.2>/2

t′
3 <0.9,0.2>/1 + <0.5,0.1>/2 <0.8,0.3>/0 + <0.9,0.1>/1 +

<0.5,0.1>/2
<0.4,0.2>/0 +
<0.6,0.3>/1

t′
4 <0.5,0.1>/3 + <0.8,0.2>/4 <0.4,0.4>/3 <0.4,0.2>/3

There are two levels of precision we consider in vague sets for handling inconsistency.
The first is the object-precision, which intuitively means the precision according to the
cardinality of a set of mi-existing objects. The second is, given the same object, the
vague values have different mi precision, which we term the value-precision.

We first define a partial order named less object-precise on VSs based on mi-existing
objects and extend this partial order to tuples and relations in MERGE(R).

Definition 9 (Less object-precise and object-equivalence). We define a partial order,
less object-precise (or less O-precise for simplicity) between two vague sets V1 and V2
as follows:

V1 �O V2 if the set of mi-existing objects in V1 is a superset of the set of those in
V2. We say that V1 is less O-precise than V2.

We extend �O in r as follows. Let t1, t2 ∈ r. t1 �O t2 if ∀Ai ∈ R, t1[Ai] �O t2[Ai].
We say that t1 is less O-precise than t2.

Finally, we extend �O in MERGE(R) as follows: Let r1, r2 ∈ MERGE(R).
r1 �O r2 if ∀t2 ∈ r2, ∃t1 ∈ r1 such that t1 �O t2. We say that r1 is less O-precise
than r2.

We define an object-equivalence between V1 and V2, denoted as V1
.=O V2, iff V1 �O

V2 and V2 �O V1. Similar definitions of object-equivalence are extended to tuples and
relations.

Thus, an object-equivalence relation on MERGE(R) induces a partition of
MERGE(R), which means all vague relations equivalent to each other are put into
one O-equivalence class. Given any two vague relations in an O-equivalence class of
MERGE(R), each tuple in one vague relation has a one-to-one correspondence in the
other vague relation. With in an O-equivalence class of MERGE(R), we still have to
consider the second level of precision as follows:

Definition 10 (Less value-precise and value-equivalence). Let V1
.=O V2. We define

a partial order, less value-precise (or less V -precise for simplicity), between V1 and V2
as follows:

Let a = <MV1
m , MV1

i > and b = < MV2
m , MV2

i > be the respective vague values of
a common mi-existing object u in V1 and V2. If MV1

m ≤ MV2
m and MV1

i ≥ MV2
i (that

is, a is less crisp and more imprecise than b), then we say a is less V -precise than b,
denoted as a �V b.

Handling Inconsistency of Vague Relations with Functional Dependencies 237

V1 �V V2 if the vague value of each mi-existing object in V1 is less V -precise than
that of the same object in V2. We say that V1 is less V -precise than V2.

We extend �V in r as follows. Let t1, t2 ∈ r and t1
.=O t2. t1 �V t2 if ∀Ai ∈ R,

t1[Ai] �V t2[Ai]. We say that t1 is less V -precise than t2.
Finally, we extend �V in an O-equivalence class of MERGE(R) as follows. Let

r1
.=O r2. r1 �V r2 if ∀t1 ∈ r1, ∃t2 ∈ r2 such that t1 �V t2. We say that r1 is less

V -precise than r2.
We define a value-equivalence, denoted as V1

.=V V2 iff V1 �V V2 and V2 �V V1.
Similar definitions are extended to tuples and relations.

According to Definition 10, we define V -join ∪ and V -meet ∩ under �V of vague val-
ues of a given object, that is, < Mx

m, Mx
i > ∪ < My

m, My
i > = < max{Mx

m, My
m},

min{Mx
i , Mx

i } > and < Mx
m, Mx

i > ∩ < My
m, My

i > = < min{Mx
m, My

m},
max{Mx

i , Mx
i } >. It is easy to check that the less V -precise order �V induces a com-

plete semi-lattice by using ∪ and ∩ as shown in Fig. 3.
It can be checked that <1,0> is the top element according to the less V -precise order.

Note that for some mi-pair vague values, V -meet may cause the corresponding vague
value [α(u), 1 − β(u)] beyond the legal range [0,1], which is not valid. From now on,
we restrict our discussion to the V -meet that gives rise to valid vague values as a result.

Given any mi-thresholds C and I , if <C, I> is a valid vague value, then we can use
<C, I> as a cut-off boundary to construct a complete lattice, rather than the original
complete semi-lattice shown in Fig. 3, induced by the less V -precise order �V . For
example, given <C, I> = <0.5, 0.5> (or <0.6, 0.4>), which is a valid vague value,
in the dotted-line region in Fig. 3, all vague values form a complete lattice, since given
any two values in the enclosed region, we have their greatest lower bound and lowest
upper bound. However, if <C, I> is not a valid vague value, then we have a complete
semi-lattice, since some values in the enclosed region constructed by <C, I> do not
have their greatest lower bound. For instance, in the dotted-line region with respect to
an invalid vague value <0.1, 0.3>, all vague values form a complete semi-lattice, since
for <0.1, 0.2> and <0.2, 0.3>, we do not have their greatest lower bound.

From Definition 9, we can deduce that MERGE(R) is a lattice based on
O-equivalence classes with respect to �O. In this lattice, each node is an O-equivalence
class, in which all vague relations are O-equivalent. The top node is the O-equivalence
class of ∅O, i.e. the set of vague relations with an empty set of tuples. The bottom node
is the O-equivalence class, in which all vague relations have only one tuple and all
mi-existing objects in vague relations form the universes of discourse.

Example 4. For simplicity we just assume U = {0, 1} and R = A, we construct the
lattice for MERGE(R) under C=0.5 and I=0.5 according to O-equivalence classes.
As shown in Fig. 4, all O-equivalence classes (the nodes represented by circles) form
a lattice based on �O. Each node in the lattice is actually the set of all vague relations
(represented by tables with single attribute) which are O-equivalent to each other. For
instance, r1 and r2 are two vague relations with two tuples such that r1

.=O r2. Simi-
larly, we have r3

.=O r4, where r3 and r4 are two vague relations with only one tuple.
Inside each node, based on �V in Definition 10, all vague relations in the node form a
complete lattice (when the cut-off boundary is a valid vague value) or a complete semi-
lattice (when the cut-off boundary is not a valid vague value). In the complete (semi-)

238 A. Lu and W. Ng

<0,0>

<0.1,0>

<0.2,0>

<0.3,0>

<0.4,0>

<0.5,0>

<0.6,0>

<0.7,0>

<0.8,0>

<0.9,0>

<1,0>

<0.9,0.1> <0.9,0.2>

<0.8,0.1> <0.8,0.2> <0.8,0.3> <0.8,0.4>

<0.7,0.1> <0.7,0.2> <0.7,0.3> <0.7,0.4> <0.7,0.5> <0.7,0.6>

<0.6,0.1> <0.6,0.2> <0.6,0.3> <0.6,0.4> <0.6,0.5> <0.6,0.6> <0.6,0.7> <0.6,0.8>

<0.5,0.1> <0.5,0.2> <0.5,0.3> <0.5,0.4> <0.5,0.5> <0.5,0.6> <0.5,0.7> <0.5,0.8> <0.5,0.9> <0.5,1>

<0.4,0.1> <0.4,0.2> <0.4,0.3> <0.4,0.4> <0.4,0.5> <0.4,0.6> <0.4,0.7> <0.4,0.8>

<0.3,0.1> <0.3,0.2> <0.3,0.3> <0.3,0.4> <0.3,0.5> <0.3,0.6>

<0.2,0.1> <0.2,0.2> <0.2,0.3> <0.2,0.4>

<0.1,0.1> <0.1,0.2>

A cut-off boundary <0.5,0.5> (a valid vague value)
leading to a complete lattice

A cut-off boundary <0.6,0.4> (a valid vague value)
leading to a complete lattice

A cut-off boundary <0.1,0.3> (an invalid vague value)
leading to a complete semi-lattice

Fig. 3. A complete semi-lattice of vague values of an object u

��

<0.5,0.5>�0

<0.6,0.5>�0<0.5,0.4>�0

<1,0>�0

<0.5,0.5>�1

<0.6,0.5>�1<0.5,0.4>�1

<1,0>�1

<1,0>�0
<1,0>�1

<0.5,0.5>�0�<0.5,0.5>�1

<1,0>�0�<1,0>�1

<0.5,0.5>�0
<0.5,0.5>�1

r1

r2

r3

r4

Fig. 4. A lattice of MERGE(R) under C=0.5
and I=0.5

<0.5,0.4>�0

<0.6,0.4>�0<0.5,0.3>�0

<1,0>�0

<0.5,0.4>�1

<0.6,0.4>�1<0.5,0.3>�1

<1,0>�1

<1,0>�0
<1,0>�1

<0.5,0.4>�0�<0.5,0.4>�1

<1,0>�0�<1,0>�1

<0.5,0.4>�0
<0.5,0.4>�1

��

Fig. 5. A lattice of MERGE(R) under C=0.5
and I=0.4

<0.5,0.5>�0�<0.5,0.5 >�1

<1,0>�0�<1,0>�1

<0.5,0.4>�0�<0.5,0.5 >�1 <0.5,0.5>�0�<0.5,0.4 >�1

<0.5,0.4>�0�<0.5,0.4 >�1

<0.6,0.5>�0�<0.5,0.5 >�1 <0.5,0.5>�0�<0.6,0.5 >�1

<0.6,0.5>�0�<0.6,0.5 >�1

rb

rt

Fig. 6. A lattice within the bottom node of the lattice of MERGE(R) of Fig. 4

lattice, the top element is the vague relation in which all vague values of objects are
<1,0>, and if the cut-off boundary <C,I> is a valid vague value, then the bottom ele-
ment is the vague relation in which all vague values of objects are <C,I>. For example,

Handling Inconsistency of Vague Relations with Functional Dependencies 239

in the lattice shown in Fig. 6, which is the bottom node of the lattice in Fig. 4, each ta-
ble represents a single attribute vague relation. The top is the single attribute vague
relation rt with one tuple <<1,0>/0+<1,0>/1>. The bottom is the vague relation rb

with single tuple <<0.5,0.5>/0+<0.5,0.5>/1>, and the vague value of each object is
<C,I>.

Given different mi-thresholds, a lattice induced by �V exists inside each node. For
instance, we have the lattice of MERGE(R) under C=0.5 and I=0.4 as shown in
Fig. 5. The bottom elements in each node are different from those in Fig. 4, since the
mi-thresholds are different.

Now, we extend the mi-existing of VSs given in Definition 4 to tuples as follows: t[X]
is mi-existing, if ∀A ∈ X , t[A] is mi-existing, where X ⊆ R. We also extend the
concept of mi-overlap given in Definition 5 to tuples t1, t2 ∈ r under mi-thresholds C
and I as follows: t1[X] ∼mi t2[X](C, I), if ∀A ∈ X , t1[A] ∼mi t2[A](C, I) where
X ⊆ R.

Example 5. We can verify that t1 ∼mi t2(0.2, 0.9) in the relation shown in Table 4.

4 Functional Dependencies and Vague Chase

Functional Dependencies (FDs) being satisfied in a vague relation r can be formalized
in terms values being mi-overlapping rather than equal. The VChase procedure for r is
a means of maintaining consistency of r with respect to a given set of FDs.

4.1 Functional Dependencies in Vague Relations

We formalize the notion of an FD being satisfied in a vague relation. Lien’s and Atzeni’s
axiom system is sound and complete for FDs being satisfied in vague relations.

Definition 11 (Functional dependency). Given mi-thresholds C and I , a Functional
Dependency over R (or simply an FD) is a statement of the form X →C,I Y , where
X, Y ⊆ R. We may simply write X → Y if C and I are known from context. An
FD X → Y is satisfied in a relation r, denoted by r � X → Y , if ∀t1, t2 ∈ r,
t1[X] ∼mi t2[X](C, I), then t1[Y] ∼mi t2[Y](C, I), or t1[Y] or t2[Y] are not mi-
existing.

A set of FDs F over R is satisfied in r, denoted by r � F , if ∀X → Y ∈ F , r � X →
Y . If r � F we say that r is consistent with respect to F (or simply r is consistent if
F is understood from context); otherwise if r �� F then we say that r is inconsistent
with respect to F (or simply r is inconsistent). We let SAT (F) denote the finite set
{r ∈ MERGE(R)|r � F}.

Example 6. Let F = {S →0.2,0.9 TL, L →0.2,0.9 S} be a set of FDs over R, where
R is the relation schema whose semantics are given in Example 1. We can verify that
r � S →0.2,0.9 TL but that r �� L →0.2,0.9 S, where r is the relation shown in Table 4.
Thus r ∈ SAT ({S →0.2,0.9 TL}) but r �∈ SAT (F). Consider also merge(r) shown

240 A. Lu and W. Ng

in Table 5, we have merge(r) ∈ SAT ({S →0.2,0.9 TL}) but merge(r) �∈ SAT (F).
If we change the mi-thresholds from 0.2 and 0.9 to 0.2 and 0.5, the result is different.
Let F = {S →0.2,0.5 TL, L →0.2,0.5 S} be a set of FDs over R. We can verify that
r �� S →0.2,0.5 TL and that r �� L →0.2,0.5 S. Thus r �∈ SAT ({S →0.2,0.5 TL})
and r �∈ SAT (F). Consider also merge(r) shown in Table 6, we have merge(r) �∈
SAT ({S →0.2,0.5 TL}) and merge(r) �∈ SAT (F).

We say that F logically implies an FD X →C,I Y over R written F � X →C,I Y ,
whenever for any domain D, ∀r ∈ RELD(R), if r � F holds then r � X → Y also
holds.

Here we state the well known Lien’s and Atzeni’s axiom system [5,4] for incomplete
relations as follows:

1. Reflexivity: If Y ⊆ X , then F � X → Y .
2. Augmentation: If F � X → Y holds, then F � XZ → Y Z also holds.
3. Union: If F � X → Y and F � X → Z hold, then F � X → Y Z holds.
4. Decomposition: If F � X → Y Z holds, then F � X → Y and F � X → Z hold.

Definition 12 (Soundness and Completeness of Axiom system). Whenever an FD
X → Y can be proven from F using a finite number of inference rules from Lien’s and
Atzeni’s axiom system [4], we write F � X → Y .

Lien’s and Atzeni’s axiom system is sound if F � X → Y implies F � X → Y .
Correspondingly, Lien’s and Atzeni’s axiom system is complete if F � X → Y implies
F � X → Y .

The proof of the following theorem is standard [4], which we establish a counter exam-
ple relation to show that F �� X → Y but F �� X → Y . Due to lack of space, we omit
all proofs in this paper. However, all proofs will be contained in the full version of it.

Theorem 1. Lien’s and Atzeni’s axiom system is sound and complete for FDs being
satisfied in vague relations.

4.2 Vague Chase

We define the chase procedure for maintaining consistency in vague relations. Assum-
ing that a vague relation r is updated with information obtained from several different
sources, at any given time the vague relation r may be inconsistent with respect to a set
of FDs F . Thus we input r and F into the VChase procedure and its output, denoted by
V Chase(r, F), is a consistent relation over R with respect to F . The pseudo-code for
the algorithm V Chase(r, F) is presented in Algorithm 1.

We call an execution of line 6 in Algorithm 1 a VChase step, and say that the VChase
step applies the FD X → Y to the current state of V Chase(r, F).

Example 7. The vague relation V Chase(r, F) is shown in Table 7, where r is shown
in Table 4 and F = {S →0.2,0.9 TL, L →0.2,0.9 S} is the set of FDs over R.
We can verify that V Chase(r, F) |= F , i.e. V Chase(r, F) is consistent, and that
V Chase(r, F) = V Chase(merge(r), F), where merge(r) is shown in Table 5. If

Handling Inconsistency of Vague Relations with Functional Dependencies 241

Algorithm 1. V Chase(r, F)
1: Result := r;
2: Tmp := ∅;
3: while Tmp �= Result do
4: Tmp := Result;
5: if X →C,I Y ∈ F , ∃t1, t2 ∈ Result such that t1[X] ∼mi t2[X](C, I), t1[Y] and t2[Y]

are mi-existing but t1[Y] �∼mi t2[Y](C, I) then
6: ∀A ∈ (Y − X), t1[A], t2[A]:=t1[A] ∨ t2[A];
7: end if
8: end while
9: return merge(Result);

Table 7. Vague relation V Chase(r, F) under C=0.2 and I=0.9

S T L

<0.8,0.1>/0 + <0.9,0.2>/1 <0.8,0.3>/0 + <0.9,0.1>/1 <0.6,0.2>/0 + <0.6,0.3>/1
+ <0.5,0.1>/2 + <0.5,1>/3 + <0.5,0.1>/2 + <0.5,0.2>/2
<0.5,0.1>/3 + <0.8,0.2>/4 <0.4,0.4>/3 <0.4,0.2>/3

Table 8. Vague relation V Chase(r, F) under C=0.2 and I=0.5

S T L

<0.8,0.1>/0 + <0.9,0.2>/1 <0.8,0.3>/0 + <0.9,0.1>/1 <0.4,0.2>/0 + <0.6,0.3>/1
+ <0.5,0.1>/2 + <0.5,1>/3 + <0.5,0.1>/2 + <0.5,0.2>/2
<0.5,0.1>/3 + <0.8,0.2>/4 <0.4,0.4>/3 <0.4,0.2>/3

F = {S →0.2,0.5 TL, L →0.2,0.5 S} is the set of FDs over R, we can also verify
that V Chase(r, F) |= F , which is as shown in Table 8, and that V Chase(r, F) =
V Chase(merge(r), F), where merge(r) is shown in Table 6.

From Tables 7 and 8, we see that different mi-thresholds C and I may give rise to
different VChase results (the corresponding values of L in the first tuple).

The next lemma shows that V Chase(r, F) is less O-precise than merge(r) and unique.
Its complexity is polynomial time in the sizes of r and F .

Lemma 1. The following statements are true:

1. VChase(r, F) �O merge(r).
2. VChase(r, F) is unique.
3. VChase(r, F) terminates in polynomial time in the sizes of r and F .

The next theorem shows that the VChase procedure outputs a consistent relation and
that it commutes with the merge operation.

Theorem 2. The following two statements are true:
1. VChase(r, F) � F, i.e. VChase(r, F) is consistent.
2. VChase(r, F) = VChase(merge(r), F).

242 A. Lu and W. Ng

5 The Most O-Precise Approximation of a Vague Relation

The V Chase(r, F) procedure can be regarded as the most O-precise approximation
of r, which is also consistent to F . In this section, we first define the join of vague
relations, which corresponds to the least upper bound of these relations in the lattice
MERGE(R) based on O-equivalence classes. (Recall the lattices shown in Figures 4
and 5.) Next, we define the most O-precise approximation of r with respect to F to be
the join of all the consistent and merged relations which are less O-precise than r. Our
main result is that V Chase(r, F) is the most O-precise approximation of r with respect
to F . Thus, the VChase procedure solves the consistency problem in polynomial time
in the size of r and F .

We now define the join operation on relations in the lattice of MERGE(R) based
on O-equivalence classes.

Definition 13 (Join operation). The join of two vague relations, r1, r2∈MERGE(R),
denoted by r1 � r2, is given by

r1 � r2 = {t|∃t1 ∈ r1, ∃t2 ∈ r2 such that ∀A ∈ R, t1[A] ∼mi t2[A](C, I),
t[A] = t1[A] ∧ t2[A]}.

It can be verified that the O-equivalence class that consists of r1 � r2 is the least upper
bound with respect to the O-equivalence classes of r1 and r2 in MERGE(R). From
now on we will assume that r1, r2 ∈ MERGE(R).

The next theorem shows that if two relations are consistent then their join is also
consistent.

Theorem 3. Let r1, r2 ∈ SAT (F). Then r1 � r2 ∈ SAT (F).

The most O-precise approximation of a vague relation r over R with respect to F is the
join of all consistent relations s such that s is a merged relation that is less O-precise
than r.

Definition 14 (Most O-precise approximation). The most O-precise approximation
of a vague relation r with respect to F , denoted by approx(r, F), is given by

⊔{s|s �O

merge(r) and s ∈ SAT (F)}.

The next lemma shows some desirable properties of approximations.

Lemma 2. The following statements are true:

1. approx(r, F) is consistent.
2. approx(r, F) �O merge(r).
3. approx(r, F)

.=O merge(r) iff r is consistent.

The next theorem, which is the main result of this section, shows that output of the
VChase procedure is equal to the corresponding most O-precise approximation. Thus,
the vague relation V Chase(r, F), which is shown in Table 7, is the most O-precise
approximation of r with respect to F , where r is the relation over R shown in Table 4
and F is the set of FDs over R specified in Example 6.

Theorem 4. V Chase(r, F) .=O approx(r, F).

Handling Inconsistency of Vague Relations with Functional Dependencies 243

6 Related Work

The problem of maintaining the consistency with respect to FDs of a relational database
is well-known. However, in many real applications, it is too restrictive for us to have
FDs hold in relations. For example, the salary of employees is approximately deter-
mined by the number of working years. The discovery of meaningful but approximate
FDs is an interesting topic in both data mining and database areas [8]. Thus, many re-
search works on approximate FDs have been proposed [9,10,11]. In order to deal with
uncertain information including missing, unknown, or imprecisely known data, prob-
ability theory [12,13,14,15], fuzzy set and possibility theory-based treatments [16,17]
have been applied to extend standard relational databases and FDs [18,19,20,21,22].
Based on vague set theory, we apply some useful parameters such as the median and
imprecision memberships to characterize uncertain data objects. The parameters are
used to extend various concepts such as satisfaction of FDs in vague relations.

The work in [23] introduces the notion of imprecise relations and FDs being satisfied
in imprecise relations in order to cater for the situation when the information may be
obtained from different sources and therefore may be imprecise. However, we apply
the interval-based vague memberships, which capture positive, neutral and negative
information of objects, and extend the “equally likely objects” assumption used in [23].
The imprecise set in [23] can also be considered as the O-equivalent VS in our work.

7 Conclusion

In this paper, we extend FDs to be satisfied in a vague relation. We define the mi-overlap
between vague sets and the merge operation of a vague relation r which replaces each
attribute value in r by the mi-union of all attribute values with respect to the same re-
flexive and transitive closure under mi-overlap. We also define a partial order on merged
vague relations which induces a lattice on the set of merged vague relations based on
O-equivalence classes. Inside each O-equivalence class, we define a partial order based
on the vague values of mi-existing objects which induces a complete semi-lattice. Sat-
isfaction of an FD in a vague relation is defined in terms values being mi-overlapping
rather than equality. Lien’s and Atzeni’s axiom system is sound and complete for FDs
being satisfied in vague relations. We define the chase procedure VChase as a means
of maintaining consistency of r with respect to F . Our main result is that VChase out-
puts the most O-precise approximation of r with respect to F and can be computed
in polynomial time in the sizes of r and F . Our result suggests a mechanical way that
maintains the consistency of vague data. It is both interesting and challenging to use
the VChase result to provide more effective and efficient evaluation of SQL over vague
relations as a future work.

References

1. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
2. Gau, W.-L., Buehrer, D.J.: Vague sets. IEEE Transactions on Systems, Man, and Cybernet-

ics 23, 610–614 (1993)

244 A. Lu and W. Ng

3. Lu, A., Ng, W.: Vague sets or intuitionistic fuzzy sets for handling vague data: Which one
is better? In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER
2005. LNCS, vol. 3716, pp. 401–416. Springer, Heidelberg (2005)

4. Atzeni, P., Antonellis, V.D.: Relational Database Theory. Benjamin/Cummings (1993)
5. Lien, Y.E.: On the equivalence of database models. J. ACM 29, 333–362 (1982)
6. Lu, A., Ng, W.: Managing merged data by vague functional dependencies. In: Atzeni, P., Chu,

W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 259–272. Springer,
Heidelberg (2004)

7. Lu, A., Ng, W.: Mining hesitation information by vague association rules. In: Parent, C.,
Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 39–55.
Springer, Heidelberg (2007)

8. Bra, P.D., Paredaens, J.: Horizontal decompositions for handling exceptions to functional
dependencies. In: Advances in Data Base Theory, pp. 123–141 (1982)

9. Kivinen, J., Mannila, H.: Approximate inference of functional dependencies from relations.
Theor. Comput. Sci. 149, 129–149 (1995)

10. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: Tane: An efficient algorithm for dis-
covering functional and approximate dependencies. Comput. J. 42, 100–111 (1999)

11. King, R.S., Legendre, J.J.: Discovery of functional and approximate functional dependencies
in relational databases. JAMDS 7, 49–59 (2003)

12. Barbar, D., Garcia-Molina, H., Porter, D.: The management of probabilistic data. IEEE Trans.
Knowl. Data Eng. 4, 487–502 (1992)

13. Dey, D., Sarkar, S.: A probabilistic relational model and algebra. ACM Trans. Database
Syst. 21, 339–369 (1996)

14. Ross, R., Subrahmanian, V.S., Grant, J.: Aggregate operators in probabilistic databases. J.
ACM 52, 54–101 (2005)

15. Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.S.: Probview: A flexible proba-
bilistic database system. ACM Trans. Database Syst. 22, 419–469 (1997)

16. Bosc, P., Prade, H.: An introduction to the fuzzy set and possibility theory-based treatment of
flexible queries and uncertain or imprecise databases. In: Motro, A., Smets, P. (eds.) Uncer-
tainty Management in Information Systems: From Needs to Solutions, pp. 285–324. Kluwer
Academic Publishers, Dordrecht (1996)

17. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Un-
certainty. Plenum Press, New York (1988)

18. Dey, D., Sarkar, S.: Generalized normal forms for probabilistic relational data. IEEE Trans.
Knowl. Data Eng. 14, 485–497 (2002)

19. Raju, K.V.S.V.N., Majumdar, A.K.: Fuzzy functional dependencies and lossless join de-
composition of fuzzy relational database systems. ACM Trans. Database Syst. 13, 129–166
(1988)

20. Bosc, P., Dubois, D., Prade, H.: Fuzzy functional dependencies and redundancy elimination.
JASIS 49, 217–235 (1998)

21. Intan, R., Mukaidono, M.: Fuzzy functional dependency and its application to approximate
data querying. In: Desai, B.C., Kiyoki, Y., Toyama, M. (eds.) IDEAS, pp. 47–54. IEEE Com-
puter Society, Los Alamitos (2000)

22. Brown, P., Haas, P.J.: Bhunt: Automatic discovery of fuzzy algebraic constraints in relational
data. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) Databases, Information Systems,
and Peer-to-Peer Computing. LNCS, vol. 2944, pp. 668–679. Springer, Heidelberg (2004)

23. Levene, M.: Maintaining consistency of imprecise relations. Comput. J. 39, 114–123 (1996)

Querying Incomplete Data with Logic Programs:

ER Strikes Back

Andrea Cal̀ı1,2

1 Computing Laboratory
University of Oxford

Wolfson Building, Parks Road
Oxford OX13QD, United Kingdom

2 Faculty of Computer Science
Free University of Bozen-Bolzano

piazza Domenicani 3
I-39100 Bolzano, Italy
ac@andreacali.com

Abstract. Since Chen’s Entity-Relationship (ER) model, conceptual
modelling has been playing a fundamental role in relational data design.
In this paper we consider an extended ER model enriched with cardinality
constraints, disjunction assertions, and is-a relations among both entities
and relationships; we present a framework in which the data underlying an
ER schema can be directly queried through the schema by using suitable
predicates. In this setting, we consider the case of incomplete data, which
is likely to happen, for instance, when data from different sources are inte-
grated. We address the problem of providing correct answers to conjunc-
tive queries by reasoning on the schema. Based on previous results about
decidability of the problem, we provide a query answering algorithm based
on rewriting the initial query into a recursive Datalog query, in which the
information about the schema is encoded. We finally give some complexity
results, and we show extensions to more general settings.

1 Introduction

Conceptual data models, and in particular the Entity-Relationship (ER)
model [13], have been playing a fundamental role in database design. With the
emerging trends in data exchange, information integration, semantic web, and
web information systems, the need for dealing with inconsistent and incomplete
data has arisen; In this context, it is important to provide consistent answers
to queries posed over inconsistent and incomplete data [2]. It is worth noticing
here that inconsistency and incompleteness of data is considered with respect to
a set of constraints (a.k.a. data dependencies); in data integration and exchange
such constraints, rather than expressing properties that hold on the data, are
used to represent properties of the domain of interest.

We address the problem of answering queries over incomplete data, where
queries are conjunctive queries expressed over a conceptual schema. As for the
conceptual model, we follow [13], and we adopt a well-known (and widely adopted

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 245–260, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

246 A. Cal̀ı

in practice) formalism that we call Extended Entity-Relationship (EER) Model,
able to represent classes of objects with their attributes, relationships among
classes, cardinality constraints in the participation of entities in relationships,
and is-a relations among both classes and relationships. We provide a formal
semantics to our conceptual model in terms of the relational database model,
similarly to what is done in [24]; this allows us for formulating conjunctive queries
over EER schemata. In the presence of data that are incomplete w.r.t. to a set of
constraints, we need to reason about the dependencies in order to provide con-
sistent answers; we do this in a model-theoretic fashion, following the approach
of [2,5]. In this paper we present an algorithm, based on encoding the informa-
tion about the conceptual schema into a rewriting of the query, that computes
the consistent answers to queries posed on EER schemata, where the data are
incomplete w.r.t. the schema. The class of relational constraints we deal with
does not fall in cases (in the relational model) for which answering is known
to be decidable [7]. Though the decidability of the problem is straightforwardly
derived from a work that addresses containment in the context of a Description
Logics that is able to capture the EER model [11], our technique can be used in
practice, without resorting to costly manipulations of the data: we operate at a
purely intensional level, reasoning on queries and schemata, and only querying
the data at the last step. Moreover, our technique yelds an upper bound for the
complexity of the problem that is better than the one provided by [11].

The paper is organised as follows. We give necessary preliminaries, including
the EER model, in Section 2; in Section 3 we show how to answer queries with
the chase, a formal tool to deal with dependencies; the query rewriting technique
is described in 4, together with extensions to more general cases. Section 5
concludes the paper, discussing related works.

2 Preliminaries and Notation

In this section we give a formal definition of the relational data model, database
constraints, conjunctive queries and answers to queries on incomplete data, and
the EER formalism, that we use as a conceptual modelling language.

2.1 Data Model, Constraints and Queries

The relational data model. In the relational data model [14], predicate sym-
bols are used to denote the relations in the database, whereas constant symbols
denote the objects and the values stored in relations. We assume to have two
distinct, fixed and infinite alphabets Γ and Γf of constants and fresh constants
respectively, and we consider only databases over Γ ∪Γf . We adopt the so-called
unique name assumption, i.e. we assume that different constants denote different
objects. A relational schema R consists of an alphabet of predicate (or relation)
symbols, each one with an associated arity denoting the number of arguments of
the predicate (or attributes of the relation). When a relation symbol R has arity
n, it can be denoted by R/n. A relational database (or simply database) D over

Querying Incomplete Data with Logic Programs: ER Strikes Back 247

a schema R is a set of relations with constants as atomic values. We have one
relation of arity n for each predicate symbol of arity n in the alphabet R. The
relation RD in D corresponding to the predicate symbol R consists of a set of
tuples of constants, that are the tuples satisfying the predicate R in D. When,
given a database D for a schema R, a tuple t = (c1, . . . , cn) is in RD, where
R ∈ R, we say that the fact R(c1, . . . , cn) holds in D. Henceforth, we will use
interchangeably the notion of fact and tuple.

Integrity constraints. Integrity constraints are assertions on the symbols of
the alphabet R that are intended to be satisfied in every database for the schema.
The notion of satisfaction depends on the type of constraints defined over the
schema. A database D over a schema R is said to satisfy a set of integrity con-
straints Σ expressed over R, written D |= Σ, if every constraint in Σ is satisfied
by D. The database constraints of our interest are inclusion dependencies (IDs)
and key dependencies (KDs) (see e.g. [1]). We denote with overlined uppercase
letters (e.g. X̄) both sequences and sets of attributes of relations. Given a tuple
t in relation RD, i.e. a fact R(t) in a database D for a schema R, and a set of
attributes X̄ of R, we denote with t[X̄] the projection (see e.g. [1]) of t on the
attributes in X̄ .

(i) Inclusion dependencies (IDs). An inclusion dependency between relations
R1 and R2 is denoted by R1[X̄] ⊆ R2[Ȳ]. Such a constraint is satisfied in
a database D iff for each tuple t1 in RD

1 there exists a tuple t2 in RD
2 such

that t1[X̄] = t2[Ȳ].
(ii) Key dependencies (KDs). A key dependency over relation R is denoted by

key(R) = K̄, where K̄ is a subset of the attributes of R. Such a constraint
is satisfied in a database D iff for each t1, t2 ∈ RD we have t1[K̄] �= t2[K̄].
Observe that KDs are a special case of functional dependencies (FDs) [1].

Queries. A relational query is a formula that specifies a set of data to be re-
trieved from a database. In the following we will refer to the class of conjunctive
queries. A conjunctive query (CQ) Q of arity n over a schema R is written in
the form Q(X̄) ← body(X̄, Ȳ) where: Q belongs to a new alphabet Q (the
alphabet of queries, that is disjoint from both Γ , Γf and R); Q(X̄) is the head
of the conjunctive query, denoted head(Q); body(X̄, Ȳ) is the body of the con-
junctive query, denoted body(Q), and is a conjunction of atoms involving the
variables X̄ = X1, . . . , Xn and Ȳ = Y1, . . . , Ym, and constants from Γ ; the pred-
icate symbols of the atoms are in R, the number of variables of X̄ is called the
arity of Q. Every variable appearing more than once in Q (more than once in the
body, or both in the body and in the head) is called distinguished variable (DV);
every othervariable is called non-distinguished variable (NDV). We denote with
Var(Q) the set of all variables of Q. Given a database D, the answer to Q over
D, denoted ans(Q, D,), is the set of n-tuples of constants (c1, . . . , cn), such that,
when substituting each xi with ci, for 1 ≤ i ≤ n, the formula ∃Ȳ .body(X̄, Ȳ)
evaluates to true in D, where ∃Ȳ is a shorthand for ∃Y1 · · · ∃Ym.

A Datalog query Π of arity n consists of: (i) A collection of rules of the
form head(x̄) ← body(X̄, Ȳ), where body(X̄, Ȳ) is a conjunction of atoms

248 A. Cal̀ı

whose predicate symbols are either relation symbols in R or the head symbol H ,
and involve X̄ = X1, . . . , Xn and Ȳ = Y1, . . . , Ym, where Xi and Yj are either
variables or values of Γ ; at least one rule in Π must have the predicate H in the
head. (ii) A special rule ρ (belonging to the above collection) Given a Datalog
query Π , the evaluation Π(D) of Π over a database D (which is a set of facts), is
the evaluation of the special rule ρ, taken as a CQ, over the minimum Herbrand
model of Π ∪D [1]. We recall that the Herbrand base HB of a Datalog program
Π is the set of all ground (without variables) atoms that can be formed with
the predicate symbols from Π ; a Herbrand interpretation is a subset of HB , and
it is a Herbrand model of Π if it a model for Π ; it can be proved that positive
Datalog programs admit a unique minimal Herbrand model.

Homomorphism. Given two sets of atoms (posibly ground, i.e., without vari-
ables) A and B, a homomorphism μ from A to B is a function from the symbols
(variables and constants, but not relation symbols) of A to those of B that sends
each constant to itself, and induces a well-defined map from A to B, that is if
R(X1, . . . , Xn) is in A, then R(μX1, . . . , μ(Xn)) is in B.

Querying incomplete data. In the presence of incomplete data, a natural
way of considering the problem of query answering is to adopt the so-called
sound semantics or open-world assumption [26,21]. In this approach, the data
are considered sound but not complete, in the sense that they constitute a piece
of correct information, but not all the relevant information. More formally, we
consider all databases that satisfy the dependencies, and we consider as answers
to a query those that are true in all such databases.

Definition 1. Consider a relational schema R with a set of IDs Σ, and a
database D for R, with D |= ΣK ; let Q be a conjunctive query of arity n over
R. A n-tuple t belongs to the answers to Q w.r.t. D and Σ, which are denoted
by ans(Q, Σ, D), if and only if, for every database B for R such that B |= Σ
and B ⊇ D, we have t ∈ Q(B).

We will see that, under the database dependencies we consider in this paper, the
problem of query answering is mainly complicated by two facts: (i) the number
of databases that satisfy Σ and that include D can be infinite; (ii) there is no
bound to the size of such databases.

2.2 The Conceptual Model

In this section we present the conceptual model we shall deal with in the rest
of the paper, and we give its semantics in terms of relational database schemata
with constraints. Our model incorporates the basic features of the ER model [13]
and OO models, including subset (or is-a) constraints on both entities and re-
lationships. Henceforth, we will call our model Extended Entity-Relationship
(EER) model. An EER schema consists of a collection of entity, relationship,
and attribute definitions over an alphabet of symbols, partitioned into entity,
relationship and attribute symbols. The model is the same as the one in [4], and
it can be summarised as follows: (1) entities can have attributes; an attribute can

Querying Incomplete Data with Logic Programs: ER Strikes Back 249

Employee Dept

Manager

dept nameemp name

Manages

Works in1 2

since
[1, 2]

1 2

(1, 1)

(1, 1)

Fig. 1. EER schema for Example 1

be mandatory (instances have at least one value for it), and functional (instances
have at most one value for it); (2) entities can participate in relationships; a par-
ticipation of an entity E in a relationship R can be mandatory (instances of E
participate at least once), and functional (instances of E participate at most
once); (3) is-a relations can hold between entities and between relationships;
in the latter case, assuming the relationships to have both arity n, a permuta-
tion of (1, . . . , n) specifies the correspondence between the attributes of the two
relationships in the is-a relation. We refer the reader to [4] for further details.

Example 1. Consider the EER schema shown in Figure 1, depicted in the usual
graphical notation for the ER model (components are indicated by integers for
the relationships). The schema describes employees working in departments of
a firm, and managers that are also employees, and manage departments. Man-
agers who manage a department also work in the same department, as imposed
by the is-a among the two relationships; the permutation [1, 2] labelling the ar-
row denotes that the is-a holds considering the components in the same order (in
general, any permutation of (1, . . . , n) is possible for an is-a between two n-ary re-
lationships). The constraint (1, 1) on the participation of Employee in Works In
imposes that every instance of Employee participates at least once (mandatory
participation) and at most once (functional participation) in Works In; the same
constraints hold on the participation of Manager in Manages .

The semantics of an EER schema is defined by specifying all constraints imposed
by EER constructs on databases that satisfy that schema. First of all, we for-
mally define a database schema from an EER diagram. Such a database schema
is defined in terms of predicates : we define a relational database schema that
encodes the properties of an EER schema C.

(a) Each entity E in C has an associated predicate E of arity 1.
(b) Each attribute A for an entity E in C has an associated predicate A of

arity 2, associating attribute values to entity instances.
(c) Each relationship R among the entities E1, . . . , En in C has an associated

predicate R of arity n.
(d) Each attribute A for a relationship R among the entities E1, . . . , En in C

has an associated predicate A of arity n + 1, associating attribute values to
n-tuples of entity instances.

The conjunctive queries are formulated using the predicates in the relational
schema we obtain from the EER schema as described above.

250 A. Cal̀ı

Table 1. Derivation of relation constraints from an EER schema

EER construct Relational constraint
attribute A/2 for an entity E A[1] ⊆ E[1]

attribute A/(n + 1) for a relationship R/n A[1, . . . , n] ⊆ R[1, . . . , n]

relationship R with entity E as i-th component R[i] ⊆ E[1]

mandatory attribute A/2 of entity E E[1] ⊆ A[1]

mandatory attribute A/(n + 1) of relationship R/n R[1, . . . , n] ⊆ A[1, . . . , n]

functional attribute A/2 of entity E key(A) = {1}
functional attribute A/(n + 1) of a relationship R/n key(A) = {1, . . . , n}
is-a relation between entities E1 and E2 E1[1] ⊆ E2[1]

is-a relation between relationships R1 and R2,
where components 1, . . . , n of R1 correspond to
components j1, . . . , jn of R2

R1[1, . . . , n] ⊆ R2[j1, . . . , jn]

mandatory participation as i-th component of an
entity E in a relationship R

E[1] ⊆ R[i]

functional participation as i-th component of an
entity E in a relationship R

key(R) = {i}

Example 2. Consider again the EER schema of Example 1. The elements
(predicates) of such a schema are manager/1, employee/1, dept/1, works in/2,
manages/2, emp name/2, dept name/2, since/3. Suppose we want to know the
names of the managers who manage the toy department (named toy dept). The
corresponding conjunctive query is

Q(X) ← manager(X), emp name(X, Z), manages(X, Y), dept(Y),
dept name(Y, toy dept)

Once we have defined the database schema R for an EER schema C, we give the
semantics of each construct of the EER model; this is done by specifying what
databases (i.e. extension of the predicates of R) satisfy the constraints imposed
by the constructs of the EER diagram. We do that by making use of relational
database constraints, as shown in Table 1.

The class of constraints we obtain, which is a subclass of key and inclusion
dependencies, is a class of relational database dependencies, that we shall call
conceptual dependencies (CDs) [4] for obvious reasons.

3 Query Answering with the Chase

In this section we introduce the notion of chase, which is a fundamental tool
for dealing with database constraints [22,23,27,18].; then we show some relevant
properties of the chase under conceptual dependencies (CDs) regarding conjunc-
tive query answering, that will pave the way for the query rewriting technique
that will be presented in the next section.

The chase of a conjunctive query [22,18] is a key concept in particular in the
context of functional and inclusion dependencies. Intuitively, given a database,

Querying Incomplete Data with Logic Programs: ER Strikes Back 251

its facts in general do not satisfy the dependencies; the idea of the chase is to
convert the initial facts into a new set of facts constituting a database that satis-
fies the dependencies, possibly by collapsing facts (according to KDs) or adding
new facts (according to IDs). When new facts are added, some of the constants
need to be fresh, as we shall see in the following. The technique to construct a
chase is well known (see, e.g., [18]); however we detail this technique here.

3.1 Construction of the Chase

Consider a database instance D for a relational schema R, and a set Σ of de-
pendencies on R; in particular, Σ = ΣI ∪ ΣK , where ΣI is a set of inclusion
dependencies and ΣK is a set of key dependencies. In general, D does not satisfy
Σ, written D �|= Σ. In this case, we construct the chase of D w.r.t. Σ, denoted
chaseΣ(D), by repeatedly applying the rules defined below. We denote with
chase∗

Σ(D) the part of the chase that is already constructed before the rule is
applied.

Inclusion Dependency Chase Rule. Let R, S be relational symbols in R.
Suppose there is a tuple t in Rchase∗

Σ(D), and there is an ID σ ∈ ΣI of the form
R[ȲR] ⊆ S[ȲS]. If there is no tuple t′ in SD such that t′[X̄S] = t[X̄R] (in this
case we say the rule is applicable), then we add a new tuple tchase in SD such
that tchase [X̄S] = t[X̄R], and for every attribute Ai of S, with 1 ≤ i ≤ m and
Ai /∈ X̄S , tchase [Ai] is a fresh value in Γf that follows, according to lexicographic
order, all the values already present in the chase.

Key Dependency Chase Rule. Let R be a relational symbol in R. Suppose
there is a KD κ of the form key(R) = X̄ . If there are two distinct tuples t, t′ ∈
Rchase∗

Σ(D) such that t[X̄] = t′[X̄] (in this case we say the rule is applicable),
make the symbols in t and t′ equal in the following way. Let Ȳ = Y1, . . . , Y� be
the attributes of R that are not in X̄; for all i ∈ {1, . . . , �}, make t[Yi] and t′[Yi]
merge into a combined symbol according to the following criterion: (i) if both
are constants in Γ and they are not equal, halt the process; (ii) if one is in Γ
and the other is a fresh constant in Γf , let the combined symbol be the non-fresh
constant; (iii) if both are in Γf , let the combined symbol be the one preceding
the other in lexicographic order. Finally, replace all occurrences in chase∗

Σ(D)
of t[Yi] and t′[Yi] with their combined symbol.

In the following, we will need the notion of level of a tuple in the chase; intu-
itively, the lower the level of a tuple, the earlier the tuple has been constructed
in the chase. Given a database instance D for a relational schema R, and a set
Σ of KDs and IDs, the level of a tuple t in chaseΣ(D), denoted by level(t), is
defined as follows: (1) if t is in D then level(t) = 0; (2) if t2 is generated from t1
by application of the ID chase rule, and level (t1) = k, then level (t2) = k +1; (3)
if a KD is applied on a pair of tuples t1, t2, they collapse into a new tuple that
gets the minimum of the levels of t1 and t2. The algorithm to construct the chase
is as follows. We call chase of a relational database D for a schema R, according
to a set Σ of KDs and IDs, denoted chaseΣ(D), the database constructed from
the initial database D, by repeatedly executing the following steps, while the KD

252 A. Cal̀ı

and ID chase rules are applicable. (1) while there are pairs of tuples on which
the KD chase rule is applicable, apply the KD chase rule on a pair, arbitrarily
chosen; (2) if there are tuples on which the ID chase rule is applicable, choose
the one at the lowest level and apply the ID chase rule on it.

As we pointed out before, the aim of the construction of the chase is to make
the initial database satisfy the KDs and the IDs [4], somehow repairing the
constraint violations. It is easy to see that chaseΣ(D) can be infinite only if the
set if IDs in Σ is cyclic [1,18]. In the following we will show how the chase can
be used in computing the answers to queries over incomplete databases under
dependencies.

3.2 Query Answering and the Chase

In their milestone paper [18], Johnson and Klug proved that, under FDs and
IDs, a containment between two conjunctive queries Q1 and Q2 can be tested
by verifying whether there is a query homomorphism from the body of Q2 to
the chase of the database obtained by “freezing” Q2, i.e. turning its conjuncts
into facts, that sends head(Q2) to the frozen head of Q1. To test containment of
CQs under IDs alone or key-based dependencies (a special class of KDs and IDs),
Johnson and Klug proved that it is sufficient to consider a finite portion of the
chase. The result of [18] was extended in [7] to a broader class of dependencies,
strictly more general than keys with foreign keys: the class of KDs and non-
key-conflicting inclusion dependencies (NKCIDs) [3], that behave like IDs alone
because NKCIDs do not interfere with KDs in the construction of the chase. The
above results can be straightforwardly extended to answering on incomplete
databases, since, as it will be shown later, the chase is a representative of all
databases that satisfy the dependencies and are a superset of the initial data.

In a set of CDs, IDs are not non-key-conflicting (or better key-conflicting),
therefore the decidability of query answering cannot be deduced from [18,7],
(though it can derived from [11], as we shall discuss later). In particular, under
CDs, the construction of the chase has to face interactions between KDs and
IDs; this can be seen in the following example, taken from [4].

Example 3. Consider again the EER schema Example 1. Suppose we have an
initial (incomplete) database, with the facts manager(m) and works in(m, d).
If we construct the chase, we obtain the facts employee(m), manages(m, α1),
works in(m, α1), dept(α1), where α1 is a fresh constant. Observe that m cannot
participate more than once to works in, so we deduce α1 = d. We must therefore
replace α1 with d in the rest of the chase, including the part that has been
constructed so far.

In spite of the potentially harmful interaction between IDs and KDs, analogously
to the case of IDs alone [6], it can be proved that the chase is a representative
of all databases that are a superset of the initial (incomplete) data, and satisfy
the dependencies; therefore, it serves as a tool for query answering.

Note. In the following, we shall make the explicit assumption that the initial,
incomplete database satisfies the KDs in the set of constraints. This is not a

Querying Incomplete Data with Logic Programs: ER Strikes Back 253

limitation, since initial violations of KDs can be treated in a separate way, as
we explain in Section 4.4.

Lemma 1. Consider a relational schema R with a set of CDs Σ, and a database
D for R, with D |= ΣK . Then, for every database B for R such that B |= Σ
and B ⊇ D, we have that there exists a homomorphism that sends all tuples of
chaseΣ(D) to tuples of B.

Proof (sketch). Similarly to what is done for the analogous result in [6], the
result is proved by induction on the application of the ID chase rule, and of the
subsequent applications of the KD chase rule. �

Theorem 1. Consider a relational schema R with a set of CDs Σ, and a
database D for R, with D |= ΣK ; let Q be a conjunctive query over R. We
have that Q(chaseΣ(D)) = ans(Q, Σ, D).

Proof (sketch). The theorem is proved by considering a generic database B such
that B |= Σ and B ⊇ D; by Lemma 1 we derive the existence of a homomorphism
μ that sends the facts of chaseΣ(D) to those of B; if t ∈ Q(chaseΣ(D)), there is a
homomorphism λ from the atoms of body(Q) to chaseΣ(D); the composition λ◦μ
witnesses Q(chaseΣ(D)) ⊆ ans(Q, Σ, D); the other inclusion Q(chaseΣ(D)) ⊇
ans(Q, Σ, D) is proved similarly. �

Notice that Theorem 1 does not lead to an algorithm for query answering (unless
in special cases), since the chase may have infinite size.

4 Answering Queries by Rewriting

In this section we present an efficient technique for computing query answering
on incomplete data in the presence of CDs; such technique is based on query
rewriting; in particular, the answers to a query are obtained by evaluating a
query, which is obtained by rewriting the original one according to the depen-
dencies, over the initial incomplete data.

4.1 Query Rewriting

The result of [4] indeed extends to our setting, ensuring decidability of query
answering: the consistent answers to a CQ Q over a database D can be computed
by evaluating Q over the initial segment of the chase of D, whose size, defined by
a maximum level δM , depends on the query and on the constraints: in particular,
δM = |Σ| · W !, where W is the maximum number of attributes involved in an
ID in Σ, and |Σ| is the number of CDs in Σ. However, this strategy would not
be efficient in real-world cases, where D has a large size. Our plan of attack
is then to rewrite Q according to the CDs on the schema, and then evaluating
the rewritten query over the initial data: this turns out to be more efficient
in practice, since the size of the data is usually much larger than the size of
the schema and dependencies. In particular, the rewritten query is expressed in

254 A. Cal̀ı

Datalog, and it is the union of two set of rules, denoted ΠΣI and ΠΣK , that take
into account IDs and KDs respectively, plus a set of rules Πeq that simulates
equality. Finally, function symbols present in the rules will be eliminated to
obtain a Datalog rewriting.

Consider a relational schema R with a set Σ of CDs, with Σ = ΣI ∪ ΣK ,
where ΣI and ΣK are sets of IDs and KDs respectively. Let Q be a CQ over R;
we construct Πeq , ΠΣI and ΠΣK in the following way.

Encoding equalities. We introduce a binary predicate eq/2 that simulates the
equality predicate; to enforce reflexivity, simmetry and transitivity we introduce
in Πeq the rules

(a) eq(Xi, Xi) ← R(X1, . . . , Xn) for all R in R and for all i ∈ {1, . . . , n}
(b) eq(Y, X) ← eq(X, Y)
(c) eq(X, Z) ← eq(X, Y), eq(Y, Z)

Encoding key dependencies. For every KD key(R) = {k} (notice from
Section 2.2 that in the case of CDs all keys are unary), with R of arity n,
we introduce in ΠΣK the rule

eq(Xi, Yi) ← R(X1, . . . , Xk−1, Xk, Xk+1, . . . , Xn),
R(Y1, . . . , Yk−1, Yk, Yk+1, . . . , Yn), eq(Xk, Yk)

for all i s.t. 1 ≤ i ≤ n, i �= k.

Encoding inclusion dependencies. The encoding of a set ΣI of IDs into a
set ΠΣI of rules is done in two steps. Similarly to [5,3], every ID is encoded by a
logic programming rule ΠΣI with function symbols, appearing in Skolem terms
that replace existentially quantified variables in the head of the rules; intuitively,
they mimick the fresh constants that are added in the construction of the chase.
We consider four cases that are possible for an ID σ in a set of CDs:

(1) σ is of the form R1[1] ⊆ R2[1], with R1/1, R2/1: we introduce in ΠΣI the
rule R2(X) ← R1(X).

(2) σ is of the form R1[k] ⊆ R2[1], with R1/n, R2/1, 1 ≤ k ≤ n: we introduce
in ΠΣI the rule R2(Xk) ← R1(X1, . . . , Xn).

(3) σ is of the form R1[1, . . . , n] ⊆ R2[j1, . . . , jn], with R1/n, R2/n, where
(j1, . . . , jn) is a permutation of (1, . . . , n): we introduce in ΠΣI the rule
R2(Xj1 , . . . , Xjn) ← R1(X1, . . . , Xn).

(4) σ is of the form R1[1] ⊆ R2[k], with R1/1, R2/n, 1 ≤ k ≤ n: we introduce
in ΠΣI the rule R2(fσ,1(X), . . . , fσ,j−1(X), X, . . . , fσ,m(X)) ← R1(X).

Query maquillage. For technical reasons, and in particular because we need
to deal with equalities among values in a uniform way, we need some maquillage
(that we call equality maquillage) on Q: for every DV X appearing m ≥ 2
times in body(Q), replace the m occurrences of X with m distinct variables
X1, . . . , Xm, not appearing elsewhere in Q, and add (as conjuncts) to body(Q) the
atoms eq(X1, X2), eq(X2, X3), . . . , eq(Xm−1, Xm). Henceforth, we shall denote
with Qeq the query after the maquillage.

Querying Incomplete Data with Logic Programs: ER Strikes Back 255

The following result states that the encoding of IDs by means of the above
rules captures the correct inference of facts that is done in the sound semantics.

Theorem 2. Consider a relational schema R with a set of IDs ΣI , a database
D for R, with D |= ΣK , and a conjunctive query Q over R. Then, the Datalog
program Π = Qeq ∪ΠΣI ∪ΠΣK ∪Πeq ∪D, where Qeq is the special rule, is such
that Π(D) = ans(Q, Σ, D), where we compute Π(D) excluding from the result
the tuples containing terms with function symbols.

Proof (sketch). It can be shown that the minimal Herbrand model of Π ∪ D
coincides with chaseΣ(D), modulo renaming of the Skolem terms into fresh
constants. By applying Theorem 1, the thesis follows. �

4.2 Elimination of Function Symbols

Now, we want to transform the set of rules Π in another set which has pure
(positive) Datalog rules without function symbols. To do that, we adopt a strat-
egy somehow inspired by the elimination of function symbols in the inverse rules
algorithm [16] for answering queries using views. The problem here is more com-
plicated, due to the fact that function symbols may be arbitrarily nested in the
minimal Herbrand model of the program. The idea here is to rely on the fact
that there is a finite numbers δM of levels in the chase that is sufficient to answer
a query [4]. We shall construct a Datalog program that mimicks only the first
δM levels of the chase, so that the function symbols that it needs to take into
account are nested up to δM times. The strategy is based on the “simulation”
of facts with function symbols in the minimal Herbrand model of Π ∪ D (where
D is an initial incomplete database) by means of ad-hoc predicates that are
annotated so as to represent facts with function symbols.

More precisely, in order to represent facts of the form R(t1, . . . , tn), where a
term ti ∈ {t1, . . . , tn} is of the form f

(i)
1 (f (i)

2 (. . . f (i)
m (di) . . .)), where di is a con-

stant, we introduce a new annotated relation symbol Rη̄ (η̄ is called annotation)
of the same arity n as R. Notice that all function symbols have arity 1 by con-
struction. The annotation of the new predicate is η̄ = η1, . . . , ηn: the i-th element,
corresponding to the term ti, is of the form ηi = f

(i)
1 (f (i)

2 (. . . f (i)
m (•) . . .)), where d

has been replaced with •. The constant di appears as the i-th argument of the fact
corresponding to R(t1, . . . , tn), that is of the form Rη̄(d1, . . . , dn). For example,
a fact R(fσ,1(d), d, fσ,3(d)) will be represented by a fact Rfσ,1(•),•,fσ,3(•)(d, d, d).

Now, to have a program that yelds the function-free facts as described above,
we construct suitable rules that make use of annotated predicates. The idea here
is that we want to take control of the nesting of function symbols in the minimal
Herbrand model of the program, by explicitly using annotated predicates that
represent facts with function symbols; this is possible since we do that only
for the (ground) atoms that mimick facts that are in the first δM levels of the
chase of the incomplete database. Here we make use of the fact, that is not
difficult to prove, that the minimal Herbrand model of Π ∪ D coincides with
chaseΣ(D), modulo renaming of the Skolem terms into fresh constants (see proof

256 A. Cal̀ı

of Theorem 2). Therefore, we are able to transform a (part of a) chase into the
corresponding (part of the) minimal Herbrand model.

To do so, we construct a “dummy chase”, and transform it, in the following
way. Consider a relational schema R with a set ΣI of IDs, a database D and a
query Q over R:

(1) construct a dummy database for R by adding a dummy fact R(c1, . . . , cn)
for every relation R/n ∈ R; we denote such a database with B;

(2) we construct chaseΣI (B) up to level δM ; we denote this initial segment of
the chase by chaseδM

ΣI
(B) (dummy chase);

(3) we transform chaseδM

ΣI
(B) by replacing every fact with the corresponding

atom in the minimal Herbrand model of ΠΣI ∪ B; we obtain a set of atoms
(with function symbols) that we denote with H ;

(4) we replace every atom of H with its function-free version that makes use of
annotated predicates.

Now, for every pair of atoms f1, f2 in H such that f2 is derived from f1 by
application of the ID chase rule, we introduce the rule f ′

2 ← f ′
1, where f ′

1, f
′
2 are

obtained from f1, f2 (respectively) by replacing every constant with a distinct
variable.

Example 4. Consider Example 2; in the dummy chase, we introduce, among the
others, the fact employee(c). Since this fact generates, according to the ID σ that
is employee[1] ⊆ works in[1], the fact works in(c, fσ,2(c)) (after the transformation
of the fresh constants into Skolem terms). Such fact becomes, after introducing
the annotated predicate, works in•,fσ,2(•)(c, c). Therefore, we introduce the rule
works in•,fσ,2(•)(X, X) ← employee(X).

Let us initially denote with ΠDC the rules obtained from the dummy chase in
the way described above; we then iteratively apply the following rewriting rule,
adding rules to ΠDC . Preliminarly, we need some notation: we denote with X̄[h]
the h-th term of a sequence X̄, and with η̄[h] the h-th element of an annotation
η̄ (which is in turn a sequence).

Algorithm for the elimination of function symbols. If there is a rule
p(X̄) ← p1(X̄1), . . . , p(X̄k) in Π ∪ ΠDC and:

(1) there are rules in ΠDC ∪ Π having predicates of the form pη̄1
1 , . . . , pη̄k

k in
their head;

(2) if for some i, j, h, k it holds that X̄i[h] = X̄j [k], then η̄i[h] = η̄j [k];

then add to ΠDC the rule pη̄(Ȳ) ← pη̄1
1 (Ȳ1), . . . , p

η̄k

k (Ȳk), where:

(1) if X̄[h] = X̄j [k] then η̄[h] = η̄i[k] and Ȳ [h] = Ȳj [k];
(2) if X̄[h] is a constant then η̄[h] = • (to consider the cases where rules have

constants in their head);
(3) if η̄i[h] = η̄j [k] then Ȳi[h] = Ȳj [k].

Querying Incomplete Data with Logic Programs: ER Strikes Back 257

Example 5. Consider Example 2; we have the rule

eq(X1, X2) ← manages(X1, Y1), manages(X2, Y2), eq(X1, X2)

If there are rules having eqf(•),•, managesf(•),• and manages•,g(•) in the head
(we have used f, g as function symbols to have a not too heavy notation here),
then we add the rule

eqf(•),•(X1, X2)←managesf(•),•(X1, Y1), manages•,g(•)(X2, Y2), eqf(•),•(X1, X2)

Finally, we denote with ΠQ,Σ the program Qeq ∪Πeq ∪ΠΣK ∪ΠDC , where ΠDC

is the result of the addition of rules in the function symbol elimination, and the
special rule is the one having Q•,...,•

eq in the head: the choice on the special rule
is important to exclude terms with function symbols from the answer.

Theorem 3. Consider a relational schema R with a set of CDs Σ, a database
D for R, with D |= ΣK , and a conjunctive query Q over R. Then, the Datalog
program ΠQ,Σ, where the special rule is the one having Q•,...,•

eq in the head, is
such that ΠQ,Σ(D) = ans(Q, Σ, D).

Proof (sketch). The proof is based on the the fact that the minimal Herbrand
model of ΠQ,Σ ∪D is a representation of the part of the minimal Herbrand model
of Qeq ∪ Πeq ∪ ΠΣI ∪ ΠΣK ∪ D that represents the first δM levels of chaseΣ(D).
From Theorem 2, and knowing from [4] that the first δM levels of chaseΣ(D)
suffice for computing the consistent answers to a query, the thesis follows. �

4.3 (Brief) Considerations on Complexity

We focus on data complexity, i.e. the complexity w.r.t. the size of the data, that
is the most relevant, being the size of the data usually larger than that of the
schema. We recall that the evaluation of a Datalog program is polynomial in data
complexity [15]; therefore, being our rewriting in Datalog, we can compute all
answers to a CQ in time polynomial w.r.t. the size of the data. This tractability
of query answering suggests that our algorithm can be efficient in practical cases.

4.4 Extensions of Results

Dealing with inconsistencies. First of all, as we mentioned in Section 3.2,
we have always assumed that the initial, incomplete database satisfies the KDs
derived from the EER schema. This assumption does not limit the applicability
of our results, since violations of KDs can be treated at least in two ways. (1)
Data cleaning (see, e.g., [17]): a preliminary cleaning procedure would eliminate
the KD violations; then, the results from [4] ensure that no violations will occur
in the chase, and we can proceed with the techniques presented in the paper. (2)
Strictly sound semantics : according to the sound semantics we have adopted,
from the logical point of view, strictly speaking, a single KD violation in the
initial data makes query answering trivial (any tuple is in the answer, provided
it has the same arity of the query); this extreme assumption, not very usable in

258 A. Cal̀ı

practice, can be encoded in suitable rules, that make use of inequalities, and that
can be added to our rewritings. We refer the reader to [8] for the details. (3)
Loosely-sound semantics : this assumption is a relaxation of the previous one,
and is reasonable in practice. Inconsistencies are treated in a model-theoretic
way, and suitable Datalog¬ rules (that we can add to our programs without any
trouble, obtaining a correct rewriting under this semantics) encode the reasoning
on the constraints. Again, we refer the reader to [8] for further details.

Adding disjointness. Disjointness between two classes, which is a natural ad-
dition to our EER model, can be easily encoded by exclusion dependencies (EDs)
(see, e.g. [20]). The addition of EDs to CDs is not problematic, provided that
we preliminarly compute the closure, w.r.t. the implication, of KDs and EDs,
according to the (sound and complete) implication rules that are found in [20].
After that, we can proceed as in the absence of EDs.

5 Discussion

Summary of results. In this paper we have presented a conceptual model
based on the ER model, and we have given its semantics in terms of the rela-
tional database model with integrity constraints. We have considered conjunctive
queries expressed over conceptual schemata, and we have tackled the problem of
consistently answering queries in such a setting, when the data are incomplete
w.r.t. the conceptual schema. We have provided a query rewriting algorithm
that transforms a CQ Q into a new (Datalog) query that, once evaluated on
the incomplete data, returns the consistent answers to Q. This query rewriting
approach keeps the computation at the intensional level, thus avoiding costly
manipulations of the data.

Related work. As pointed out earlier, query answering in our setting is tightly
related to containment of queries under constraints, which is a fundamental
topic in database theory [12,11,18,19]. [5] deals with conceptual schemata in the
context of data integration, but the cardinality constraints are more restricted
than in our approach, since they do not include functional participation con-
straints and is-a among relationships. Other works that deal with dependencies
similar to those presented here is [9,10], however, the set of constraints consid-
ered in these works, represented by the Description Logic language DL-Lite, is
not comparable to CDs, since it contains some more expressive constructs, but
the is-a relation among relationships (which we believe is the major source of
complexity) is not considered in it. Also [25] addresses the problem of query
containment using a formalism for the schema that is more expressive than the
one presented here; however, the problem here is proved to be coNP-hard; our
approach, which we believe is more close to real-world cases, achieves better
computational complexity by providing a technique that is usable in practice.
In [11], the authors address the problem of query containment for queries on
schemata expressed in a formalism that is able to capture our EER model; in
this work it is shown that checking containment is decidable and its complexity

Querying Incomplete Data with Logic Programs: ER Strikes Back 259

is exponential in the number of variables and constants of Q1 and Q2, and dou-
ble exponential in the number of existentially quantified variables that appear
in a cycle of the tuple-graph of Q2 (we refer the reader to the paper for further
details). Since the complexity is studied by encoding the problem in a different
logic, it is not possible to analyse in detail the complexity w.r.t. |Q1| and |Q2|,
which by the technique of [11] is in general exponential. If we export the results
of [11] to our setting, we get an exponential complexity w.r.t. the size of the
data for the decision problem1 of answering queries over incomplete databases.
Our work provides a more detailed analysis of the computational cost, showing
that the complexity complexity upper bound is polynomial w.r.t. the size of the
data; moreover, we provide a technique that does more than solving the decision
problem of query answering: it computes all answers to a query in the presence
of incomplete data.

Future work. As a future work, we plan to extend the EER model with more
constraints which are used in real-world cases, such as covering constraints or
more sophisticated cardinality constraints. We also plan to further investigate
the complexity of query answering, providing a thorough study of complexity,
including lower complexity bounds. Also, we are working on an implementation
of the query rewriting algorithm, so as to test the efficiency of our technique on
large data sets.

Acknowledgments. This work was partially supported by the EPSRC project
“Schema mappings and services for data integration and exchange”. I am
grateful, for various reasons, and in alphabetical order, to: Leopoldo Bertossi,
Benedetto Cal̀ı, Jan Chomicki, God, and Michael Kifer.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ.
Co, London, UK (1995)

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proc. of PODS 1999, pp. 68–79 (1999)

3. Cal̀ı, A.: Query answering and optimisation in information integration. PhD thesis,
Università di Roma “La Sapienza” (February 2003)

4. Cal̀ı, A.: Containment of conjunctive queries over conceptual schemata. In: Lee,
M.L., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 270–
284. Springer, Heidelberg (2006)

5. Cal̀ı, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: Accessing data integration
systems through conceptual schemas. In: Kunii, H.S., Jajodia, S., Sølvberg, A.
(eds.) ER 2001. LNCS, vol. 2224, Springer, Heidelberg (2001)

6. Cal̀ı, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: Data integration under
integrity constraints. Information Systems 29, 147–163 (2004)

7. Cal̀ı, A., Lembo, D., Rosati, R.: On the decidability and complexity of query an-
swering over inconsistent and incomplete databases. In: Proc. of PODS 2003, pp.
260–271 (2003)

1 The decision problem of query answering amounts to decide whether, given a query
Q and a tuple t, t belongs to the answers to Q.

260 A. Cal̀ı

8. Cal̀ı, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints
in data integration systems. In: Proc. of IJCAI 2003, pp. 16–21 (2003)

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Proc. of AAAI 2005, pp. 602–607
(2005)

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proc. of the 10th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR 2006), pp. 260–270
(2006)

11. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query con-
tainment under constraints. In: Proc. of PODS’98, pp. 149–158 (1998)

12. Edward, P.F.: Containment and minimization of positive conjunctive queries in
OODB’s. In: Edward, P.F. (ed.) Proc. of PODS’92, pp. 202–211 (1992)

13. Chen, P.: The Entity-Relationship model: Toward a unified view of data. ACM
Trans. on Database Systems 1(1), 9–36 (1976)

14. Codd, E.F.: A relational model of data for large shared data banks. Comm. of the
ACM 13(6), 377–387 (1970)

15. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Computing Surveys 33(3), 374–425 (2001)

16. Duschka, O.M., Genesereth, M.R.: Answering recursive queries using views. In:
Oliver, M. (ed.) Proc. of PODS’97, pp. 109–116 (1997)

17. Hernández, M.A., Stolfo, S.J.: Real-world data is dirty: Data cleansing and the
merge/purge problem. J. of Data Mining and Knowledge Discovery 2(1), 9–37
(1998)

18. David, S., Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries
under functional and inclusion dependencies. J. of Computer and System Sci-
ences 28(1), 167–189 (1984)

19. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satis-
faction. In: Phokion, G. (ed.) Proc. of PODS’98, pp. 205–213 (1998)

20. Lembo, D.: Dealing with Inconsistency and Incompleteness in Data Integration.
PhD thesis, Dip. di Inf. e Sist., Univ. di Roma “La Sapienza” (2004)

21. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS 2002,
pp. 233–246 (2002)

22. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. on Database Systems 4, 455–469 (1979)

23. Maier, D., Sagiv, Y., Yannakakis, M.: On the complexity of testing implications of
functional and join dependencies. J. of the ACM 28(4), 680–695 (1981)

24. Markowitz, V.M., Makowsky, J.A.: Identifying extended entity-relationship object
structures in relational schemas. IEEE Trans. Software Eng. 16(8), 777–790 (1990)

25. Ortiz, M., Calvanese, D., Eiter, T.: Characterizing data complexity for conjunctive
query answering in expressive description logics. In: Proc. of the 21st Nat. Conf.
on Artificial Intelligence (AAAI 2006) (2006)

26. Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic
and Databases, pp. 119–140. Plenum Publ.Co. (1978)

27. Vardi, M.: Inferring multivalued dependencies from functional and join dependen-
cies. Acta Informatica 19, 305–324 (1983)

Prioritized Preferences and Choice Constraints

Wilfred Ng

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Hong Kong
wilfred@cse.ust.hk

Abstract. It is increasingly recognised that user preferences should be addressed
in many advanced database applications, such as adaptive searching in databases.
However, the fundamental issue of how preferences impact the semantics and
rankings in a relation is not resolved. In this paper, we model a user preference
term involving one attribute as a hierarchy of its underlying data values and for-
malise the notion of Prioritized Preferences (PPs). We then consider multiple
user preferences in ranking tuples in a relational table. We examine the impact of
a given set of PPs on possible choices in ranking a database relation and develop
a new notion of Choice Constraints (CCs) in a relation, r. Given two PPs, X and
Y , a CC, X ≤ Y , is satisfied in r, if the choice of rankings according to Y is no
less than that of X. Our main results are related to these two notions of PPs and
CCs and their interesting interactions with the well-known Functional Dependen-
cies (FDs). First, we exhibit a sound and complete set of three inference rules for
PPs and further prove that for each closed set of PPs, there exists a ranking that
precisely satisfies these preferences. Second, we establish a sound and complete
set of five inference rules for CCs. Finally, we show the soundness and complete-
ness of two mixed systems of FD-PPs and FD-CCs. All these results are novel
and fundamental to incorporating user preferences in database design and mod-
elling, since PPs, CCs and FDs together capture rich semantics of preferences in
databases.

1 Introduction

Preference is an important and natural constraint that captures human wishes when
seeking information. However, the semantics of preferences were not adequately stud-
ied until the recent work in [7,8,2,14]. In these papers, the fundamental nature of differ-
ent preferences in the form of “I like A better than B” is modelled by a set of orderings
defined over data. Still, the impact of preferences as a semantic constraint is not ade-
quately addressed in many ways. For example, in database modelling, traditional con-
straints like Functional Dependencies (FDs) capture the semantics of the hard fact only,
but preferences do not have such semantics as constraints that represent a priority of
choices. However, as information becomes abundant over the web, there is a practical
need for generating a ranking that satisfies some user preferences in the search result
[7,8]. In addition, although FDs are widely recognized as the most important integrity
constraint in databases, the interactions of FDs with preferences, to our knowledge,
have never been studied in literature.

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 261–276, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

262 W. Ng

In our modelling, we assume that a user preference is expressed in a sequence of
attributes that associate with their respective preference terms. We call the attributes
involved in preference terms preference attributes. The underlying idea is that a user
preference is inherent to the ordering relationship between the data projected onto the
preference attributes, and thus a preference hierarchy can be devised to capture the
choices of preference rankings. Our approach is to transform a relation to a preference
relation, r, which has only natural numbers according to the level of the preference hi-
erarchy. Then a ranking of tuples, ≤r, can be arbitrary defined on r whereas the consis-
tency of (r, ≤r) is determined by the lexicographical order of the preference attributes.
The following example illustrates the use of a preference relation.

Example 1. Suppose a second-hand car relation is defined by the preference attributes
PRICE RANGE, ENGINE POWER and MILEAGE USED, which assert
the preferences specified by Y OUTH CHOICE (the choice of young customers).
The preference increases with first the price range and then the engine power and fi-
nally the car’s mileage. We adopt the PREFERRING clause proposed in [7] to express
the preference terms, which essentially impose an order over their corresponding data
domains. The three terms together the respective preference hierarchies are assumed to
be prioritized as follows:

First priority: LOWEST(price) ⇒ $5001 − 6000 < $4001 − 5000 < $1001 − 2000.
Second priority: HIGHEST(power) ⇒ 1000cc < 2000cc < 3000cc.
Third priority: mileage AROUND 30,000km⇒10000km < 20000km < 30000km.

A preference relation, r, is generated by mapping the data values in the car relation
to natural numbers according to the level of the preference hierarchies of the given pref-
erence terms, which is shown in the right-hand side of Figure 1. The overall preference
ranking (which is unique in this simplified example but may be more than one in gen-
eral) in the last column, Rank, is determined by the lexicographical order of PRICE,
ENGINE and MILEAGE, which is consistent with the tuple ordering, t1 <r · · · <r t5.
Note that some attributes are abbreviated in the table due to width limits.

PRICE ENGINE MILEAGE

t1 1001-2000 1500cc 20000km
t2 4001-5000 3000cc 30000km
t3 4001-5000 2000cc 20000km
t4 4001-5000 1500cc 10000km
t5 5001-6000 3000cc 10000km

=⇒

PRICE ENGINE MILEAGE Rank

t1 1 3 2 1
t2 2 1 1 2
t3 2 2 2 3
t4 2 3 3 4
t5 3 1 3 5

Fig. 1. Transforming the second-hand car relation into a preference relation according to the
preference terms of Y OUTH CHOICE

Middle-class adult customers may have different preferences. This gives rise to a
different preference relation as shown in Figure 2, where the preference ranking (i.e.
Rank) is not consistent with the tuple ranking (i.e. <r). The preference terms of
MIDDLE CLASS CHOICE are assumed to be reprioritized as follows:

Prioritized Preferences and Choice Constraints 263

First priority: price AROUND $4000-$5000.
Second priority: HIGHEST(power).
Third priority: LOWEST(mileage).

Finally, pensioner customers may have another set of preference terms, which give
rise to the different preference relation and ranking shown in Figure 3. The preference
terms are assumed to be reprioritized as follows:

First priority: LOWEST(price).
Second priority: mileage BETWEEN 20,000km AND 30,000km.
Third priority: power AROUND 2000cc.

PRICE ENGINE MILEAGE Rank

t1 3 3 2 5
t2 1 1 3 1
t3 1 2 2 2
t4 1 3 1 3
t5 2 1 1 4

Fig. 2. MIDDLE CLASS CHOICE

PRICE ENGINE MILEAGE Rank

t1 1 2 1 1
t2 2 3 1 3
t3 2 1 1 2
t4 2 2 2 4
t5 3 3 2 5

Fig. 3. PENSIONER CHOICE

Any tuple ranking is trivially satisfied in a preference relation r when there are no
imposed preference terms. When preference terms are stated by the users, we check if
the tuple ranking in r are consistent with a (any) lexicographical order of the sequence
of the preference attributes. This gives rise to the notion of Prioritized Preferences (PPs)
(cf. see Definition 6 in [7] for the motivation for prioritized preferences), and in order
to have PP satisfied in r, tuple rankings are restricted to the set of preference rankings.
This also gives rise to another notion of Choice Constraints (CCs) being satisfied in
a relation. Given two PPs, X and Y , a CC, X ≤ Y , is satisfied in r, if the choice
of preference rankings according to Y is no less than that of X . We focus on three
interesting problems related to the semantics of preferences in relations:

1. When there is a tuple ranking that satisfies a set of PPs, what are the rules governing
such preference satisfaction?

2. When there is more than one possible tuple ranking that satisfies different PPs, what
are the rules of governing the ranking possibilities (CCs)?

3. What are the interactions between FDs, PPs and CCs?

Our main contribution is related to the above problems. We present a spectrum of
interesting axiom systems in this paper. With respect to preference satisfaction, we ex-
hibit a sound and complete set of three inference rules for PPs. It is further proved that
for each closed set of PPs, there exists a ranking that satisfies these preferences and
no others. With respect to the choice of tuple rankings for a given set of PPs, we es-
tablish a sound and complete set of five inference rules for CCs. Finally, we study the
interactions between PPs and FDs, and between CCs and FDs and formally show the

264 W. Ng

soundness and completeness of two mixed systems of FD-PPs and FD-CCs. All these
results are novel and fundamental to incorporating user preferences in database design
and modelling, since PPs, CCs and FDs together capture rich semantics of preferences
in many database applications in reality.

The rest of the paper is organised as follows. In Section 2, we present some prelimi-
nary concepts and notation. In Section 3, we present a sound and complete system with
respect to PP satisfaction. In Section 4, we introduce the concept of CCs and present
a sound and complete system with respect to CC satisfaction. In Section 5, we discuss
the interactions between FDs and PPs and those between FDs and CCs. We present two
sound and complete systems of FD-PPs and FD-CCs. In Section 6, we review some
related work. In Section 7, we give our concluding remarks.

2 Preliminaries

We assume throughout that X and Y are sequences of attributes and that X ∼ Y
indicates the fact that X and Y have the same elements. XY denotes the concatenation
of X and Y (appending Y to X). A prefix of X , denoted as pre(X), is a sequence of the
form 〈A1, . . . , Am1〉, where X = 〈A1, . . . , Am〉 and 1 ≤ m1 ≤ m. A shuffle of X and
Y , denoted as shu(X, Y), is defined as a sequence of the form 〈C1, . . . , Cm+n〉, where
there exists two subsequences of attributes 〈Ci1 , . . . , Cim〉 = X and 〈Cj1 , . . . , Cjn〉 =
Y , and the order of the attributes in X and Y is preserved in shu(X, Y).

Lexicographical ordering is a fundamental property of prioritized preferences as il-
lustrated in Example 1, where the preference in Y OUTH CHOICE can be mod-
elled as a lexicographical ordering of the Cartesian product of the domains PRICE ×
ENGINE × MILEAGE in the preference relation in Figure 1.

We assume the usual terminologies and notation used in the relational data model
[1]. In particular, let R = {A1, . . . , An} be the relation schema and t[Ai] (1 ≤ i ≤ n)
denote the projection of t onto attribute Ai. A relation r defined over R is a finite set of
tuples over R. We define r[Ai] = {t[Ai] | t ∈ r}.

Note that preference terms such as “BETWEEN AND”, “HIGHEST”, “LOWEST”
and “IN” as defined in [7] are equivalent to defining a partial ordering over the tuples
induced by the involved preference attributes. Thus, we are able to map the data val-
ues into natural numbers according to a preference hierarchy, resulting in a preference
relation.

We now assume a relation having one preference attribute, R = {A}, to illustrate the
idea. We first denote by H(r, A) a partition of r, which is a set of pairwise disjoint non-
empty subsets of r such that

⋃
T∈H(r,A) T = r, and we call the element T ∈ H(r, A)

a preference level of r induced by A. A preference hierarchy of r induced by A is a
linearly ordered partition of r, corresponding to the preference term p imposed on A.

Example 2. Consider r = {a, b, c, d, e, f} (6 tuples), where a ≤p
A c, b ≤p

A c, c ≤p
A e,

d ≤p
A e and d ≤p

A f . We now show two possible internal hierarchies, H(r, A) =
{T1, T2, T3}, given in Figure 4, in which each tuple is represented by a node.

Using the bottom-up partition approach, we successively collect the sets of minimal
tuples in the subsets of r and construct the preference hierarchy as illustrated in

Prioritized Preferences and Choice Constraints 265

a b

c d

e f

T1

T2T3

Partition
starting from

minimal
elements

(a) Bottom-up partition

a b

c d

e f

T3

T2

T1

Partition
starting from

maximal
elements

(b) Top-down partition

Fig. 4. Two possible preference hierarchies H(r, A)

Figure 4(a). We remark that this method of constructing the preference hierarchy is
essentially a matter of convention and another possibility is shown in Figure 4(b) as a
comparison. The two conventions can also be used to represent the “like less” and “like
more” preferences.

The idea of a preference hierarchies can be straightforwardly generalized to multiple
preference attributes. Algorithm 1 shows how to generate a preference relation arising
from the preference terms. Essentially, the algorithm collects the minimal tuples of a
relation (or its subset) with respect to each preference order using a bottom-up partition.

Algorithm 1. (PREFERENCE RELATION(r, X))

Input: A relation r, a set of preference attributes X and a set of preference
orderings ≤p

A for all A ∈ X.
Output: A preference relation of r.
1. begin
2. for all A ∈ X, do
3. i = 0;
4. do until r[A] = ∅
5. Increment i;
6. Obtain Ti as the set of minimal tuples (wrt ≤p

A) of r[A];
7. r[A] := r[A] − Ti and H(r, A) := {T1 <h · · · <h Ti};
8. for all t ∈ r, A ∈ X, do
9. Map t[A] to n in r whenever t[A] ∈ Tn and Tn ∈ H(r, A);
10. return r (with mapped natural numbers on r[X]);
11. end

Definition 1 (Preference Relation). Given a relation r over R, a prioritized prefer-
ence, X ⊆ R and a set of preference terms over X . A preference relation, (r, ≤r), is
the relation (with mapped natural numbers on r[X] returned by Algorithm 1) together
with a tuple ranking, ≤r. From now on, we simply call a preference relation a relation
whenever no ambiguity arises.

266 W. Ng

The preference hierarchy generated in Step 7 by Algorithm 1 is unique and therefore
Definition 1 is well-defined. The uniqueness of the result of Algorithm 1 is due to the
fact that Tn is the unique set of all minimal tuples of r[A] according to ≤p

A. Intuitively,
a level Tn ∈ H(r, A) captures the “equivalent choices” with respect to a preference
term and the hierarchy observes the order arising from the preference term imposed on
A. In the special case of linearly ordered preference terms such as HIGHEST(power) or
LOWEST(price), Tn is the singleton containing the nth tuple sorted in numerical order.

In our running example, the preference hierarchies of PRICE, MILEAGE and
ENGINE POWER corresponding to the Y OUTH CHOICE are {{t1} <h {t2,
t3, t4} <h {t5}}, {{t2, t5} <h {t3} <h {t1, t4}} and {{t2} <h {t1, t3} <h {t4, t5}},
respectively.

3 Preferences and Choices

In this section, we present the notion of a Prioritized Preference (PP) and its satisfaction
over a relation.

The semantics of a preference with multiple attributes, X , is defined according to
lexicographical orderings, denoted as ≤lex

X , on the Cartesian product of the mapped
numerical values via the preference hierarchies of the attributes.

Definition 2 (Prioritized Preference and Choice). A prioritized preference (or simply
a preference), X , is a sequence of attributes obtained from a relation schema, R. A
preference, X , is satisfied in a relation, (r, ≤r) over R, denoted as (r, ≤r) |= X , if
for all t1, t2 ∈ r, t1[X] <lex

X t2[X] implies that t1 <r t2. We call any distinct ≤r

such that (r, ≤r) |= X a choice of rankings wrt X (or simply a choice whenever (r,
≤r) and X are understood), and denote the number of such distinct ranking choices as
| choice(r, X) |. In particular, if the choice is unique, we call the satisfaction arising
from the choice the unique satisfaction.

Notably, PPs allow the same attribute appearing several times in a preference X. This is
necessary for studying the inference rules later on, since some rules may infer PPs hav-
ing repeated attributes. However, by removing the repeated occurrence of a particular
attribute after its first occurrence in a preference, we can obtain an “equivalent prefer-
ence” in which each attribute appears at most once. This also implies there exists only
a finite number of distinct PPs (up to equivalence) for a given relational schema.

The following proposition follows directly from Definition 2. It means that if a re-
lation satisfies a unique choice, its tuples are simply ordered by ≤lex

X . Remarkably, if
X = R the satisfaction must be unique, since ≤lex

R is a linear order on r. In addition,
if we have all distinct (integer) values for all tuples under any attribute A ∈ X , the
satisfaction is also unique. This follows that for any arity-1 relation, i.e. | R |= 1, the
satisfaction, if any, must also be unique.

Proposition 1. Given X = A1 · · · An. If | choice(r, X) |= 1, then, for all t1, t2 ∈ r,
t1 <r t2, if and only if ∃k, 1 ≤ k < n, such that t1[A1 · · · Ak] = t2[A1 · · · Ak] and
t1[Ak+1] < t2[Ak+1]. �

Prioritized Preferences and Choice Constraints 267

PRICE MILEAGE ENGINE Rank 1 Rank 2

t1 1 1 1 1 1
t2 2 2 2 4 4
t3 2 1 1 2 3
t4 2 1 1 3 2
t5 3 1 2 5 5

Fig. 5. Two choices or rankings satisfying the preference terms

For example, it can be checked that the second-hand car relation has a unique satisfac-
tion according to (unique) Rank in Figures 1 to 3. However, we may have another set
of preference terms, which gives rise to two possible preference rankings, Rank 1 and
Rank 2, shown in the two right columns of Figure 5. The preference terms are assumed
to be prioritized as follows:

First priority: LOWEST(price).
Second priority: mileage LESS THAN 30,000km.
Third priority: power BETWEEN 1500cc AND 2000cc.

In other words, the relation in the above example should rank as {t1 <r t4 <r t2 <r

t3 <r t5} or {t1 <r t4 <r t3 <r t2 <r t5} in order to satisfy the imposed preference,
i.e. we have | choice(r, (price, mileage, power)) |= 2.

We now illustrate some non-trivial aspects of preference satisfaction in the following
example (assuming usual numerical order 0 < 1).

Example 3. Let r = {t1 <r t2} and X = ABCD as given in Figure 6. It is straight-
forward to check that r |= BC but not r |= CB and that r |= ABC but not r |= AC.
However, we will prove later some interesting but non-trivial result such as that r |= AB
and r |= DC imply r |= ADB and r |= ADBC, as also illustrated in r.

The interesting interactions in the above example motivate our work of establish-
ing a set of inference rules for deriving preferences. In the subsequent discussion,
we assume preference satisfaction is restricted to a unique choice of ranking (i.e.,
| Choice(r, X) |= 1) and say that (r, ≤r) |=u X if (r, ≤r) |= X and there exists
no distinct ≤′

r such that (r, ≤′
r) |= X . The study of a unique choice of ranking is im-

portant, since it affects the way to store and index a preference relation. It may also lead
to more efficient evaluation of search queries, for example if the user asks follow-up
questions based on existing preference and ranking then we need to evaluate only one
relation.

A B C D

t1 1 0 1 0
t2 1 1 0 1

Fig. 6. r |= BC but r �|= CB; r |= ABC but r �|= AC

268 W. Ng

We now begin to formalise the notion of PP satisfaction as follows.

Definition 3 (PP Satisfaction and Implication). Given a set of preferences, P , and a
relation, (r, ≤r), we say that (r, ≤r) logically implies P , denoted as (r, ≤r) |=u P , if
and only if ∀X ∈ P , (r, ≤r) |=u X . In addition, we say that P logically implies X ,
denoted as P |= X , if for any (r, ≤r), (r, ≤r) |=u P implies that (r, ≤r) |=u X .

From now on, we may lighten the notation of (r, ≤r) and simply use r to mean a
preference relation if ≤r can be understood.

An axiom system [1] for preferences over relations is a set of inference rules that can
be used to derive new preferences from P . We denote by P � X the fact that either
X ∈ P or X can be inferred (or derived) from P by using one or more of the inference
rules in Definition 4.

Definition 4 (Inference Rules for Prioritized Preferences). Let P be a set of prefer-
ences over R, A ∈ R. Let X, Y be non-empty sequences of attributes obtained from R.
The inference rules for preferences are defined as follows:

(PP1) Expansion: If P � X , then P � XA.
(PP2) Shuffle: If P � X and P � Y , then P � shu(X, pre(Y)).
(PP3) Compression: If P � XAY AZ , then P � XAY Z .

Unlike most known database constraints, P consists of no reflexivity rule in
Definition 4, since there is no trivial preference satisfaction in relations. We also re-
mark that the axiom system comprising these rules is minimal, since the three rules
given in Definition 4 are independent.

Lemma 1. The axiom system comprising inference rules PP1-PP3 is sound for the
satisfaction of PPs in relations. �

We now show in next theorem that the axiom system comprising the inference rules in
Definition 4 is sound and complete for preference satisfaction in preference relations.
The underlying idea in this proof is first to assume that a preference, X , cannot be
inferred from the axiom system and then to present a relation as a counter-example
in which all the preferences of P ′ hold except for X (cf. see Theorem 3.21 in [1]).
The result is significant since it indicates that the axiom system can be employed as a
theorem-proving tool for preferences.

Theorem 1. The axiom system comprising rules PP1 to PP3 is sound and complete for
preference satisfaction in relations.

Proof. We now establish the completeness by showing that if P �� X , then P �|= X .
Equivalently for the latter, it is sufficient to exhibit a relation as a counter-example, rc,
such that rc |=u P but rc �|=u X . Assuming that L is the largest prefix of X such that
P � LQ for some Q ⊆ R. Let us call this the L-assumption.

There are two cases to consider.
In the first case, we assume that L = X . We consider the relation rc = {t1 <r t2}

shown in Figure 7. Obviously, we have rc �|=u X , since choice(rc, X) is not unique.

Prioritized Preferences and Choice Constraints 269

It remains to show that rc |=u P . Assume to the contrary that rc �|=u P . So ∃X ′ ∈ P
such that rc �|=u X ′. By the construction of rc, we have X ′ ⊆ X (as a set inclusion).
By the L-assumption and PP2, it follows that P � LX ′. So, we have P � L by PP3,
which is a contradiction, since we derive X from P .

X R − X

t1 0 · · · 0 0 · · · 0
t2 0 · · · 0 1 · · · 1

Fig. 7. A counter-example relation rc used
in the case of L = X

L B R − BL

t1 0 · · · 0 1 0 · · · 0
t2 0 · · · 0 0 1 · · · 1

Fig. 8. A counter-example relation rc used in the
case of L �= X

In the second case, we assume that L �= X . Let X = LBQ′ where B �∈ L and
BQ′ ⊆ R. Using a similar technique of the first case, we construct the relation rc

shown in Figure 8, in which rc �|=u X .
We now show that rc |=u P . We assume to the contrary that ∃p ∈ P such that

rc �|=u p, where p = X ′. By the construction of rc, we have the following two possible
cases concerning X ′.

(Case of X ′ ⊆ L). By PP1, we expand p by attaching the attribute B. It follows that
P � X ′B. By the L-assumption and PP2, it follows that P � LX ′BQ. We thus have
P � LBQ. But LB is the prefix of X and strictly contains L. This leads to a contradic-
tion, since we violate the L-assumption.

(Case of X ′ �⊆ L). Let X ′ = V BW where V ⊆ L and W ⊆ R. By the L-assumption
and PP2, it follows that P � LX ′. So by PP3 we have P � LBW . But LB is the prefix
of X . This leads to the same contradiction, since we also violate the L-assumption. �

4 Choice Constraints

In this section, we consider the case of more than one ranking of r that satisfy X and
formalize the notion of a Choice Constraint (CC) and their satisfaction in relations. We
formulate five inference rules that are proved to be sound and complete for CCs.

Definition 5 (Choice Constraint). Let X and Y be two sequences of non-empty at-
tributes obtained from R. The Choice Constraint (CC), Y ≤ X , is satisfied in r,
written as r |= Y ≤ X , if and only if, | choice(r, Y) |≤| choice(r, X) |. Given a
set of CCs, C, we say that r logically implies C, denoted as r |= C, if and only if
∀(Y ≤ X) ∈ C, r |= Y ≤ X . In addition, we say that C logically implies Y ≤ X ,
denoted as C |= Y ≤ X , if for any r, r |= C implies r |= Y ≤ X .

The study of CCs is related to maintaining the preference rankings in a database,
since user preference terms may be removed or added. This is particular important
for cache-conscious systems in a client-server architecture, in this case some possible

270 W. Ng

rankings should be evaluated first in order to have quick response in the query eval-
uation. For example, referring to the PENSIONER CHOICE ranking given in
Figure 3, if the user is willing to drop the third priority of engine power, then we have
two choices. However, dropping the second priority of mileage used does not offer more
choices. It can be checked that the relation satisfies the CC, PRICE, ENGINE ≤
PRICE, MILEAGE.

We are now ready to define a particular axiom system for CC satisfaction in relations.

Definition 6 (Inference Rules for Choice Constraints). Assume that X, Y, Z are non-
empty sequences of attributes obtained from R.

(CC1) Reflexivity: C � X ≤ X .
(CC2) Expansion: If C � X ≤ Y and X is a subsequence of W , then C � W ≤ Y .
(CC3) Transitivity: If C � X ≤ Y and C � Y ≤ Z , then C � X ≤ Z .
(CC4) Pseudo Augmentation: If C � Y ≤ XY , then C � Y Z ≤ XY Z .
(CC5) Permutation: If X ∼ X ′, Y ∼ Y ′ and C � X ≤ Y , then C � X ′ ≤ Y ′.

Note that CCs do not have usual augmentation as FDs. The counter example in Figure 9
shows that the statement if C � B ≤ A, then C � BC ≤ AC is false. It can also be
checked that | choice(r, A) | = | choice(r, B) |= 2 but | choice(r, AC) |= 1 and
| choice(r, BC) |=| choice(r, CB) |= 2.

A B C

t1 0 1 0
t2 0 0 1
t3 1 0 1

choice(r, A) = {t1 <r t2 <r t3; t2 <r t1 <r t3}
choice(r, B) = {t2 <r t3 <r t1; t3 <r t2 <r t1}
choice(r, AC) = {t1 <r t2 <r t3}
choice(r, BC) = {t2 <r t3 <r t1; t3 <r t2 <r t1}
choice(r, CB) = {t1 <r t2 <r t3; t1 <r t3 <r t2}

Fig. 9. r |= B ≤ A but r �|= BC ≤ AC

Lemma 2. The following three inference rules can be derived from CC1 - CC5.

(CC6) Projection I: If Z is a subsequence of X , then C � X ≤ Z .
(CC7) Projection II: If C � X ≤ Y and Z is a subsequence of Y , then C � X ≤ Z .
(CC8) Pseudo Union: If C � X ≤ XY and C � X ≤ XZ , then C � X ≤ XY Z .

Lemma 3. The axiom system comprising inference rules CC1-CC5 is sound for the
satisfaction of CCs in relations. �

We now establish the completeness of the rules given in Definition 6. First, we introduce
two technical concepts of CC closure and CC cover for establishing the result. Given C,
a CC closure, denoted as C+, is given by C+ = {X ≤ Y | C � X ≤ Y }. A CC cover
of C, denoted as cover(C), is the set of CCs that have maximal sets of attributes on the
right side. Formally, cover(C) = {X ≤ Y | X ≤ Y ∈ C+ and ∀(X ≤ Z) ∈ C+,
Z ⊆ Y (as sets)}.

Clearly, C and C+ are equivalent. The following lemma shows that C and cover(C)
are equivalent with respect to CC inferencing.

Prioritized Preferences and Choice Constraints 271

Lemma 4. C � X ≤ Y if and only if cover(C) � X ≤ Y .

Proof. The proof of the “if” part is trivial by the definition of C+, since C � C+ and
cover(C) ⊆ C+. The “only if” part can be established as follow: let (X ≤ Y) ∈ C.
Then ∃(X ≤ Z) ∈ cover(C) such that Y ⊆ Z . If Y �= Z , then we apply CC7 and thus
it follows that cover(C) � X ≤ Y . �
Theorem 2. The axiom system comprising inference rules CC1 to CC5 is sound and
complete for the satisfaction of CCs in relations.

Proof. Let X+ = {Y | X ≤ Y ∈ cover(C)} and Y =
⋃

Y ∈X+(Y − X). We now
define an equivalence relation E on Y as follows: for any pair of attributes A1, A2 ∈ R,
A1 ≈E A2 if, for any Y ∈ X+, A1 ∈ Y iff A2 ∈ Y . Let C is an equivalence class (a
set of attributes) induced by E . The collection of all E = (C −X), P = {E1, . . . , En},
forms a partition of Y . We now construct a counter example relation rc = {t0 <r t1 <t

· · · <t tn} as follows. Let E0 = X . We generate an ith tuple for each Ei (0 ≤ i ≤ n)
as ti[A] = 0 whenever A ∈ Ei, ti[A] = i whenever A ∈ R−(X ∪Y), and 1 otherwise.
The schema of rc is valid, since all E ∈ (P ∪ {X}) do not overlap.

By Lemma 3, we know that CC1 to CC5 are sound for CCs. We prove the complete-
ness by showing that if C �� X ≤ Y , then C �|= X ≤ Y . Equivalently for the latter, it
is sufficient to exhibit a relation rc, such that rc |= C but rc �|= X ≤ Y . Let rc be the
relation shown in Figure 10.

X E1 E2 · · · En R − (X ∪ Y)

t0 0 · · · 0 1 · · · 1 1 · · · 1 · · · 1 · · · 1 0 · · · 0
t1 1 · · · 1 0 · · · 0 1 · · · 1 · · · 1 · · · 1 1 · · · 1
t2 1 · · · 1 1 · · · 1 0 · · · 0 · · · 1 · · · 1 2 · · · 2
...

...
...

...
. . .

...
...

tn+1 1 · · · 1 1 · · · 1 1 · · · 1 · · · 0 · · · 0 n + 1 · · · n + 1

Fig. 10. A relation rc showing that C �|= X ≤ Y

We first show that rc |= C. Suppose to the contrary that rc �|= C and thus there exists
a CC, V ≤ W ∈ C, such that rc �|= V ≤ W . From the definition of X+ and P , V and
W do not cross more than one E. It follows from the construction of rc that ∃A ∈ W
such that A ∈ R − (X ∪ Y) and that V ⊆ X or V ⊆ Ei (as sets). In the first case,
it follows by CC5 and CC6 that C � X ≤ V . By CC3, it follows that C � X ≤ W .
Thus, it follows that C � X ≤ A by CC6 again. This leads to a contradiction, since
A ∈ (X ∪ Y). In the second case, it follows by the definition of Ei and by CC5 and
CC6 that C � X ≤ Ei. By CC6, it follows that C � X ≤ V . By CC3, it follows that
C � X ≤ W . Thus, A ∈ (X ∪ Y). This leads to the same contradiction again as the
first case.

We conclude the proof by showing that rc �|= X ≤ Y . Suppose to the contrary that
rc |= X ≤ Y ; by the construction of rc, Y ⊆ Ei (as sets). It follows by definition of
Ei and by CC6 that C � X ≤ Ei. By CC3 and CC5, it follows that C � X ≤ Y . This
leads to a contradiction, since we assume C �� X ≤ Y . �

272 W. Ng

5 Interaction Rules

In this section we investigate the interactions between FDs and PPs in Section 5.1 and
those between FDs and CCs in Section 5.2.

We first state Armstrong’s axiom, which is known to be sound and complete for FDs
[1]. We also need to adapt the axiom to this context as follows.

Definition 7 (Armstrong’s Axiom System). Let X, Y, Z be non-empty sequences of
attributes obtained from R, A ∈ R and F be a set of FDs.

(FD1) Reflexivity: If Y ⊆ X , then F � X → Y .
(FD2) Augmentation: If F � X → Y , then F � XA → Y A.
(FD3) Transitivity: If F � X → Y and F � Y → Z , then F � X → Z .
(FD4) Permutation: If X ∼ X ′, Y ∼ Y ′, and F � X → Y , then F � X ′ → Y ′.

5.1 Interactions Between FDs and PPs

We show that the axiom system that consists of PP rules in Definition 4, Armstrong’s
rules in Definition 7 and three new FD-PP interaction rules in Definition 8 is sound and
complete for FDs and PPs.

Now, we present the“mixed rules” for the interactions between FDs and PEs.

Definition 8 (Inference Rules for Interactions between FDs and PPs). Let Γ be a
mixed set FDs and PPs.

(FD-PPl) Superkey: If Γ � X , then Γ � X → R.
(FD-PP2) Absorption: If Γ � X → A and Γ � XAY , then Γ � XY .
(FD-PP3) Generation: If Γ � X → A and Γ � XY , then Γ � XAY .

Similar to the concept of implication used in PPs and CCs, we say r |= Γ , if and only
if r |= γ for all γ ∈ Γ . Notably, the statement actually means r |= f for any FD f ∈ Γ
and r |=u X and for any PP X ∈ Γ .

Lemma 5. The three interaction rules PF1 to PF3 are sound for the satisfaction of both
FDs and PPs in relations. �

We now show that the collection of the inference rules {PP1, PP2, PP3, FD1, FD2, FD3,
FD4, FD-PP1, FD-PP2, FD-PP3} is a sound and complete set of rules for proving the
implications of FDs and PPs taken together.

Theorem 3. The axiom system comprising inference rules PP1 to PP3, FD1 to FD4,
and FD-PP1 to FD-PP3 is sound and complete for the satisfaction of both PPs and FDs
in relations.

Proof. We only need to prove the completeness. Let Γ = Γf ∪ Γp where Γf is the set
of all FDs and Γp is the set of all PPs. We now establish the completeness by showing
that if Γ �� γ, then Γ �|= γ, where γ is either f (an FD) or p (a PP). Equivalently for the
latter, it is sufficient to exhibit a relation as a counter-example, rc, such that rc |= Γ but
rc �|= γ. We let Γp2f = {X → R | X ∈ Γp}.

Prioritized Preferences and Choice Constraints 273

X+ R − X+

t1 0 · · · 0 0 · · · 0
t2 0 · · · 0 1 · · · 1

Fig. 11. A counter example relation rc used
in the case γ = X → A

R

t1 1 · · · 1
t2 0 · · · 0

Fig. 12. A counter example relation rc used in the
case γ = X when Γp = ∅

(Case of γ = f .) Let γ = X → A. By FD-PP1, we have Γ � Γp2f ∪ Γf . Let X+ =
{B | Γp2f ∪ Γf � X → B}. By the assumption of Γ �� γ, it follows that A /∈ X+. We
consider the relation rc = {t1 <r t2} shown in Figure 11. Clearly, rc �|=u X → A. We
proceed to show rc |= Γ . It is straightforward to check that rc |= Γf . It remains for us to
show that rc |=u Γp. Assume to the contrary that there exists p ∈ Γp such that rc �|=u p.
Let p = Z . By construction of rc, Z ⊆ X+. It follows that Γp2f ∪ Γf � X → Z . But
Z → R ∈ Γp2f . By FD3, it follows that X → R. Thus, X+ = R and A ∈ X+. This
leads to a contradiction, since by assumption, A /∈ X+. This completes the proof of
this case, since we have shown rc |= Γf ∪ Γp.

(Case of γ = p.) Let γ = X . There are two cases concerning Γp to consider.
First, if Γp = ∅, then the relation rc in Figure 12 satisfies rc |= Γf but rc �|=u X .
Second, if Γp �= ∅, then we assume that X0 is the largest prefix of X such that

Γ � X0Q for some Q ⊆ R. Let us call this the X-assumption. We consider two further
cases concerning X0.

(Case 1:) When X0 = X , we let X+ = {B | Γf � X → B} and Γ � Z . We
use again the relation shown in Figure 11. (But note that the definition of X+ in this
case is not the same.) It is clear that rc �|=u X but rc |= Γf . It remains for us to
show that rc |=u Γp. Assume to the contrary that there exists p ∈ Γp such that rc �|=u

p. Let p = Z . By construction of rc, Z ⊆ X+. But X0 = X and thus, from the
X-assumption, it follows that Γ � XQ. By Γf � X → X+ and FD-PP3, it follows
that Γ � XX+Q. By PP2, it follows that Γ � XX+ZQ. By FD-PP1, Γ � Z → R.
Thus, we have Γ � Z → Q. By FD-PP2, it follows that Γ � XX+Z and by PP3 it
follows that Γ � XX+. Thus, it follows that Γ � X , since Γ � X → X ′. This is a
contradiction to the assumption of Γ �� X .

X+ A R − X+A

t1 0 · · · 0 1 0 · · · 0
t2 0 · · · 0 0 1 · · · 1

Fig. 13. A counter example relation rc used in the case γ = X when Γp �= ∅ (Case 2)

(Case 2:) When X0 �= X , we let X = X0AQ where A /∈ X0. We let X+ = {B |
Γf � X0 → B}. Note that A /∈ X+. Otherwise, it follows that Γf � X0 → A and by
assumption Γ � X0Q, it follows that Γ � X0AQ by FD-PP3. This leads to a violation
of the X-assumption. We now consider the relation, rc, shown in Figure 13. Clearly,

274 W. Ng

rc |= Γf but rc �|=u X . It remains for us to show that rc |=u Γp. Assume to the contrary
that there exists p ∈ Γp such that rc �|=u p. Let p = Z . By construction of rc, we have
the following two possible cases of Z .

(Case of Z ⊆ X+.) A contradiction can be established similar to the proof of Case 1
when X = X0.

(Case of Z �⊆ X+.) Let Z = V AW where V ⊆ X+ and W ⊆ R. Since Γ � X0Q and
Γ � V AW , it follows by PP2 that Γ � X0V AWQ. Since Γf � X0 → X+, it follows
by FD-PP3 that Γ � X0X

+V AWQ. Thus, by PP3 it follows that Γ � X0X
+AWQ.

Finally, by FD-PP2 and Γf � X0 → X+, it follows that Γ � X0AWQ. This leads to a
contradiction, since we violate the X-assumption. �

5.2 Interactions Between FDs and CCs

We establish two new interaction rules for CCs and FDs. We show that the axiom system
that consists of CC rules in Definition 6, Armstrong’s rules in Definition 7 and the new
FD-CC interaction rules in Definition 9 is sound and complete for FDs and CCs.

Definition 9 (Inference Rules for Interactions between FDs and CCs). Let Σ be a
mixed set FDs and CCs.

(FD-CC1) Reverse: If Σ � X → Y and Σ � Y ≤ X , then Σ � Y → X .
(FD-CC2) Transformation: If Σ � X → Y , then Σ � X ≤ Y .

Lemma 6. The inference rules FD-CC1 and FD-CC2 are sound for the satisfaction of
both FDs and CCs in relations. �

We now prove the axiom system is sound and complete for unary CCs and unary FDs.

Theorem 4. The axiom system comprising inference rules CC1-CC5, FD1-FD4 and
CC-FD1-CC-FD2 is sound and complete for the satisfaction of both CCs and FDs in
relations.

Proof. We only need to prove the completeness. Let Σ = Σf ∪ Σc where Σf is the set
of all FDs and Σc is the set of all CCs. We now establish the completeness by showing
that if Σ �� σ, then Σ �|= σ, where σ is either f (an FD) or c (an CC). Equivalently for
the latter, it is sufficient to exhibit a relation as a counter-example rc, such that rc |= Σ
but rc �|= σ. We let Σf2c = {Y ≤ X | X → Y ∈ Σf}, which can be derived by the
rule FD-CC1.

(Case of σ = c.) We now show that Σ |= σ if and only if Σc ∪ Σf2c |= σ. For the “if”
part: by CC-FD1, it follows that Σ |= Σc ∪ Σf2c. Thus, Σ |= σ. For the “only if” part:
assume that Σc ∪ Σf2c �|= σ. We need to show that Σ �|= σ.

Let σ = X ≤ Y and X+
f = {A | Σf � X → A}. We then modify the relation based

on Figure 10 such that ∀t ∈ rc, t[A] = 1 whenever A ∈ X+
f . It follows by FD-CC2

that X+
f ⊆ X ∪ Y . Then, we can show that the following claim is true.

(∗) Claim: If rc �|= X → Y and rc |= X ≤ Y , then rc �|= Y → X .

Prioritized Preferences and Choice Constraints 275

By using the claim (∗), we are able to check that rc |= Σf . The proof of rc |= Σc

but rc �|= X ≤ Y is similar to Theorem 2.
The result then follows by Theorem 2, since the set of inference rules for CCs in

Definition 6 is complete.

(Case of σ = f .) Let FD be X → Y . It can be shown that if Σ |= X → Y , then Σf |=
X → Y , or else Σf |= Y → X . Assume that Σf |= X → Y . The result immediately
follows by Armstrong’s axiom. Otherwise, by the completeness of Armstrong’s axiom
it follows that Σ � Y → X . It also follows by FD-CC2 that Σ |= X ≤ Y , since we
assume that Σ |= X → Y . Thus, it follows by the case of (σ = c) in this proof that we
have Σ � X ≤ Y . The result follows, since by FD-CC1 we have Σ � X → Y . �

6 Related Work

In literature, there is abundant work on data dependencies in relational databases [1]
but they have not been used to capture user preferences. It is worth mentioning that
in [5,6] the axiom system for partial order dependencies is co-NP, which has limited
the applicability of order comparison dependencies for decades. Here, with a given
set of user preference terms, we override the partial order with a preference hierarchy
and generate a preference relation, which simplifies much complex technicalities in
establishing the axiom systems.

Preferences are receiving much attention in querying, since DBMSs need to provide
better information services in advanced applications [7,8]. In partiuclar, preference SQL
[8] is equipped with a “preferring” clause that allows user to specify soft constraints
reflecting multiple preference terms.

Our previous work [14] proposes Preference Functional Dependencies (PFDs) as
an extension of FDs in relations, which captures the relationship between preferences
and preference-dependent data. We emphasize that the constraints considered in this
paper are entirely different from PFDs. We study the inference rules for preference
constraints (PPs and CCs) in their own right. We neither incorporate preferences into
FDs nor classify attributes as the assumptions in [14]. However, we thoroughly study
the interactions between PPs, CCs and FDs.

7 Concluding Remarks

We model preference terms as partial orderings on a sequence of attributes and study
the implication problem of preference satisfaction in a relation. We first formalize the
concept of Prioritized Preferences (PPs), which is a sequence of preference attributes
used for ranking a relation. We then establish a novel sound and complete inference sys-
tem for PPs. The ranking choice is formalized as a set of possible rankings in a relation
that satisfies a PP. We propose the concept of Choice Constraints (CCs) which capture
the fact that the ranking choice resulting from one preference is less than or equal to
another. We then establish a sound and complete inference system for CCs. Finally, we
present interesting results on interactions between Functional Dependencies (FDs) and
PPs, and between FDs and CCs. The main result of this paper is fundamental, which

276 W. Ng

paves the way to transform the implication problem into a finite procedure for deriving
PPs, CCs and FDs from a given set of such constraints. With the established axiom sys-
tems, efficient algorithms for checking various kinds of preference satisfaction are to
be considered in our future work. It is also interesting to study how to infer and handle
vague user preference [10,11], since in real life the user may not be willing to detail and
check all the preferences when querying.

Acknowledgements. This work is partially supported by RGC CERG under grant No.
HKUST6185/03E and DAG04/05.EG10.

References

1. Atzeni, P., De Antonellis, V.: Relational Database Theory. Benjamin Cummings Publishing
Company, Inc (1993)

2. Chomicki, J.: Preference formulas in relational queries. ACM Transaction Database Sys-
tem 28(4), 427–466 (2003)

3. Chomicki, J.: Semantic Optimization Techniques for Preference Queries. Information Sys-
tems 32, 670–684 (2006)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Co., New York (1979)

5. Ginsburg, S., Hull, R.: Order Dependency in the Relational Model. Theoretical Computer
Science 26(1-2), 149–195 (1983)

6. Ginsburg, S., Hull, R.: Sort Sets in the Relational Model. Journal of the Association for
Computing Machinery 33(3), 465–488 (1986)

7. Kießling, W., Köstler, G.: Preference SQL - Design, Implementation, Experiences. In: Bres-
san, S., Chaudhri, A.B., Lee, M.L., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002.
LNCS, vol. 2590, Springer, Heidelberg (2003)

8. Kießling, W., Köstler, G.: Foundations of Preference in Database Systems. In: Bressan, S.,
Chaudhri, A.B., Lee, M.L., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002. LNCS,
vol. 2590, Springer, Heidelberg (2003)

9. Mannila, H., Raiha, K.-J.: The Design of Relational Databases. Addison-Wesley, London,
UK (1992)

10. Lu, A., Ng, W.: Mining hesitation information by vague association rules. In: Parent, C.,
Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 39–55.
Springer, Heidelberg (2007)

11. Lu, A., Ng, W.: Handling Inconsistency of Vague Relations with Functional Dependencies.
In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801,
pp. 229–244. Springer, Heidelberg (2007)

12. Ng, W.: Ordered Functional Dependencies in Relational Databases. Information Sys-
tems 24(7), 535–554 (1999)

13. Ng, W.: An Extension of the Relational Data Model to Incorporate Ordered Domains. ACM
Transactions on Database Systems 26(3) (2001)

14. Ng, W.: Preference Functional Dependencies for Managing Choices. In: Embley, D.W.,
Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 140–154. Springer, Heidelberg
(2006)

Reasoning over Extended ER Models

A. Artale1, D. Calvanese1, R. Kontchakov2, V. Ryzhikov1, and M. Zakharyaschev2

1 Faculty of Computer Science
Free University of Bozen-Bolzano

I-39100 Bolzano, Italy
lastname@inf.unibz.it

2 School of Comp. Science and Inf. Sys.
Birkbeck College

London WC1E 7HX, UK
{roman,michael}@dcs.bbk.ac.uk

Abstract. We investigate the computational complexity of reasoning over var-
ious fragments of the Extended Entity-Relationship (EER) language, which in-
cludes a number of constructs: ISA between entities and relationships, disjointness
and covering of entities and relationships, cardinality constraints for entities in re-
lationships and their refinements as well as multiplicity constraints for attributes.
We extend the known EXPTIME-completeness result for UML class diagrams [5]
and show that reasoning over EER diagrams with ISA between relationships is
EXPTIME-complete even without relationship covering. Surprisingly, reasoning
becomes NP-complete when we drop ISA between relationships (while still allow-
ing all types of constraints on entities). If we further omit disjointness and cov-
ering over entities, reasoning becomes polynomial. Our lower complexity bound
results are proved by direct reductions, while the upper bounds follow from the
correspondences with expressive variants of the description logic DL-Lite, which
we establish in this paper. These correspondences also show the usefulness of
DL-Lite as a language for reasoning over conceptual models and ontologies.

1 Introduction

Conceptual modelling formalisms, such as the Entity-Relationship model [3], are used
in the phase of conceptual database design, where the aim is to capture at best the
semantics of the modelled application. This is achieved by expressing the constraints
that hold on the entities, attributes and relationships, which represent the domain of
interest, through suitable constructors provided by the conceptual modelling language.
Thus, on the one hand it would be desirable to make such a language as expressive
as possible in order to represent as many aspects of the modelled reality as possible.
On the other hand, when using an expressive language, the designer faces the problem
of understanding complex interactions that may occur between different parts of the
conceptual model under construction and the constraints therein. Such interactions may
force, e.g., some class (or even all classes) in the model to become inconsistent in the
sense that there cannot exist a database state satisfying all constraints in which the
class (respectively, all classes) is populated by at least one object. Or a class may turn

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 277–292, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

278 A. Artale et al.

out to be a subclass of another one, even though this is not explicitly asserted in the
model. To understand the consequences, both explicit and implicit, of the constraints in
the conceptual model being constructed, it is essential to provide automated reasoning
support, especially in those application scenarios where models may become very large
and/or have complex interactions between constraints.

In this paper, we address these issues and investigate the computational complexity
of reasoning in conceptual modelling languages equipped with various forms of con-
straints. Our analysis is carried out in the context of the Extended Entity-Relationship
(EER) language [14], where the domain of interest is represented through entities (repre-
senting sets of objects), possibly equipped with attributes, and relationships (represent-
ing relations among objects). Note, however, that all of our results can also be adapted
to other conceptual modelling formalisms, such as UML class diagrams1. Specifically,
the kind of constraints that will be taken into account in this paper are the ones typically
used in conceptual modelling, namely:

– ISA relations between both entities and relationships;
– disjointness and covering (referred to as the Boolean constructors in what follows)

between both entities and relationships;
– cardinality constraints for participation of entities in relationships;
– refinement of cardinalities for sub-entities participating in relationships; and
– multiplicity constraints for attributes.

The hierarchy of EER languages considered in the paper is shown in the table below
together with the complexity results for reasoning in these languages (all our languages
include cardinality, refinement and multiplicity constraints).

entities relationships
lang. ISA disjoint covering ISA disjoint covering complexity

C1 � C2 C1 � C2 � ⊥ C = C1 � C2 R1 � R2 R1 � R2 �⊥ R=R1 � R2

ERfull + + + + + + EXPTIME [5]
ERisaR + + + + − − EXPTIME

ERbool + + + − − − NP
ERref + + − − − − NLOGSPACE

In our investigation we exploit the tight correspondences between conceptual mod-
elling formalisms, such as the ER model, and variants of Description Logics (DLs) [11].
DLs [2] are a family of logics studied in knowledge representation that are specifically
tailored towards the representation of structured class-based information; quite often
these logics enjoy nice computational properties.

It was shown [5] that reasoning with respect to UML class diagrams is an EXPTIME-
complete problem, and it is easy to see that this result carries over to ERfull diagrams
as well (cf., e.g., [11]). The upper complexity bound result is established by encoding
UML class diagrams in an expressive variant of DL, DLRifd, reasoning in which is
known to be in EXPTIME (cf., [7]). The proof of the lower bound is by reduction of

1 See, e.g., http://www.uml.org/

http://www.uml.org/

Reasoning over Extended ER Models 279

reasoning over knowledge bases in the DL ALC [2], which is an EXPTIME-complete
problem. The reduction proposed in [5] makes use of both ISA and the Boolean con-
structors between relationships. Here we strengthen this result by showing that even if
we drop the Booleans between relationships from ERfull (obtaining the language de-
noted by ERisaR) reasoning still stays EXPTIME-complete.

We then prove that reasoning in the language ERbool, which essentially corresponds
to ERisaR without ISA between relationships, can be done in NP, and is also NP-
complete. Thus, quite surprisingly, ISA between relationships turns out to be a major
source of complexity for reasoning over schemas, making it jump from NP to EXP-
TIME. To prove the NP upper complexity bound we again exploit the correspondence
with DLs: specifically, we resort to DL-Litebool, the Boolean extension of the tractable
DL DL-Lite [8,9], reasoning in which is an NP-complete problem [1]: we show that
ERbool schemas can be captured by knowledge bases in DL-Litebool so that the rea-
soning services carry over. The lower complexity bound is shown by a polynomial
reduction of the satisfiability problem in propositional calculus.

Finally, we further restrict the language of ERbool by dropping the covering con-
structor and obtaining the language called ERref. We prove that the reasoning problem
for ERref is NLOGSPACE-complete. The NLOGSPACE membership is shown by reduc-
tion to reasoning in DL-Litekrom, the Krom fragment of DL-Litebool, which is known to
be NLOGSPACE-complete [1]. Hardness for NLOGSPACE follows from a reduction of
the graph reachability problem to reasoning in ERref.

The correspondence between conceptual modelling languages like ERbool and ERref

and the DL-Lite family of DLs, developed and exploited in this paper, shows that both
DL-Litebool and DL-Litekrom are useful languages for reasoning over conceptual models
and ontologies, even though they are not equipped with all the constructors that are
typical of rich ontology languages such as OWL and its variants [4].

Our analysis is similar in spirit to [13], where the consistency checking problem
for the EER model equipped with forms of inclusion and disjointness constraints is
studied and a polynomial-time algorithm for the problem is given (assuming constant
arities of relationships). Such a polynomial-time result is incomparable with the one
for ERref, since ERref lacks both ISA and disjointness for relationships (both present
in [13]); on the other hand, it is equipped with cardinality and multiplicity constraints.
We also mention [16], where reasoning over cardinality constraints in the basic ER
model is investigated and a polynomial-time algorithm for strong schema consistency
is given, and [10], where the study is extended to the case when ISA between entities
is also allowed and an exponential algorithm for entity consistency is provided. Note,
however, that in [16,10] the reasoning problem is analysed under the assumption that
databases are finite, whereas we do not require finiteness in this paper.

The paper is organised as follows. In Section 2, we introduce some members of
the DL-Lite family. Section 3 is devoted to the formal definition of the conceptual
modelling language ERfull and the relevant reasoning problems. In Sections 4-6, we
present the main results of the paper by establishing the computational complexity of
reasoning over various fragments of ERfull: ERisaR, ERbool and ERref, respectively.
Section 7 concludes the paper.

280 A. Artale et al.

2 The DL-Lite Languages

We consider the extension DL-Litebool [1] of the description logic DL-Lite [8,9].
The language of DL-Litebool contains concept names A0, A1,. . . and role names P0, P1,
. . . . Complex roles R and concepts C of DL-Litebool are defined as follows:

R ::= Pi | P−
i ,

B ::= ⊥ | Ai | ≥ q R,

C ::= B | ¬C | C1 � C2,

where q ≥ 1. Concepts of the form B are called basic concepts. A DL-Litebool knowl-
edge base, K, is a finite set of axioms of the form C1 � C2.

A DL-Litebool interpretation is a structure of the form

I =
(
Δ, AI

0 , AI
1 , . . . , P I

0 , P I
1 , . . .

)
, (1)

where Δ is a nonempty set, AI
i ⊆ Δ and P I

i ⊆ Δ × Δ, for all i. The role and concept
constructors are interpreted in I as usual:

(P−
i)I = {(y, x) ∈ Δ × Δ | (x, y) ∈ P I

i }, (inverse role)

⊥I = ∅, (the empty set)

(≥q R)I =
{
x ∈ Δ | �{y ∈ Δ | (x, y) ∈ RI} ≥ q

}
, (‘at least q R-successors’)

(¬C)I = Δ \ CI , (‘not in C’)

(C1 � C2)I = CI
1 ∩ CI

2 , (‘both in C1 and C2’)

where �X denotes the cardinality of the set X . The standard abbreviations
 := ¬⊥,
∃R := (≥ 1 R) and ≤ q R := ¬(≥ q + 1R) we need are self-explanatory and cor-
respond to the intended semantics. We say that an interpretation I satisfies an axiom
C1 � C2 if CI

1 ⊆ CI
2 . A knowledge base K is satisfiable if there is an interpretation I

that satisfies all the members of K (such an interpretation I is called a model of K). A
concept C is satisfiable w.r.t. a knowledge base K if there is a model I of K such that
CI = ∅.

We also consider a sublanguage of DL-Litebool, the Krom fragment DL-Litekrom,
where only axioms of the following form are allowed:

B1 � B2 or B1 � ¬B2 or ¬B1 � B2,

where B1, B2 are basic concepts (i.e., are of the form ⊥, Ai or ≥ q R).
The following result is proved in [1] and will be used later on:

Theorem 1. The concept and KB satisfiability problem is NP-complete for DL-Litebool

KBs and NLOGSPACE-complete for DL-Litekrom KBs.

3 The Conceptual Modelling Language

In this section, we define the notion of a conceptual schema by providing syntax and se-
mantics for the fully-fledged conceptual modelling language ERfull (the formalisation

Reasoning over Extended ER Models 281

adopted here is based on previous presentations in [2,3,11]). First citizens of a con-
ceptual schema are entities, relationships and attributes. Arguments of relationships—
specifying the part played by an entity when participating in a particular relationship—
are denoted by means of so-called role names. Given a conceptual schema, we make the
following assumptions about names: relationship and entity names are unique; attribute
names are local to entities (i.e., the same attribute can be used by different entities but
its type must be the same); role names are local to relationships (this freedom will be
limited when considering conceptual models without sub-relationships).

3.1 Syntax

In what follows we make use of the notion of labelled tuples. Let X be a finite set
{x1, . . . , xn} of labels and Y a finite set. An X-labelled tuple over Y is simply a
(total) function T : X → Y . For x ∈ X , we write T [x] to refer to the element y ∈ Y
labelled by x. Given y1, . . . , yn ∈ Y , the expression 〈x1 : y1, . . . , xn : yn〉 stands for
the X-labelled tuple T over Y such that T [xi] = yi, for 1 ≤ 1 ≤ n. We also write
(xi, yi) ∈ T if T [xi] = yi. The set of all X-labelled tuples over Y is denoted by
TY (X).

Definition 1 (ERfull Syntax). An ERfull conceptual schema Σ is a tuple

(L, REL, ATT, CARDR, CARDA, REF, ISA, DISJ, COV),

where

– L is the disjoint union of alphabets E for entity symbols, A for attribute symbols,
R for relationship symbols, U for role symbols, and D for domain symbols. We
will call the tuple (E , A, R, U , D) the signature of the schema Σ.

– REL : R → ⋃
ν⊆U ,ν �=∅ TE(ν) is a (total) function that assigns to every relation sym-

bol a tuple over the entity symbols labelled with a nonempty set of role symbols:
REL(R) = 〈U1 : E1, . . . , Um : Em〉, where m is the arity of R. Note that the roles
Ui are pairwise distinct while the entities Ei can be repeated.

– ATT : E → ⋃
α⊆A TD(α) is a (total) function that assigns to every entity symbol a

tuple over the domain symbols labelled with some (possibly empty) set of attribute
symbols: ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉.

– CARDR : R×U×E → N×(N∪{∞}) is a partial function defining cardinality con-
straints. The value of CARDR(R, U, E) may be defined only if (U, E) ∈ REL(R).

– CARDA : A × E → N × (N ∪ {∞}) is a partial function defining multiplicity for
attributes. The value of CARDA(A, E) may be defined only if (A, D) ∈ ATT(E),
for some D ∈ D.

– REF : R × U × E → N × (N ∪ {∞}) is a partial function defining refinement of
cardinality constraints for sub-entities (see ISA below). The value of REF(R, U, E)
may be defined only if E ISA E′ and (U, E′) ∈ REL(R). Note that REF subsumes
classical cardinality constraints (CARDR).

– ISA is the union of two binary relations ISAE and ISAR, where ISAR ⊆ E × E and
ISAR ⊆ R×R. These two binary relations define the ISA hierarchy on entities and
relationships, respectively.

282 A. Artale et al.

– DISJ is the union of two binary relations DISJE and DISJR, where DISJE ⊆ 2E × E
and DISJR ⊆ 2R × R. The intended meaning of, say, ({E1, . . . , En}, E) ∈ DISJE

is ‘E1, . . . , En are disjoint sub-entities of E.’
– COV is the union of two binary relations COVE and COVR, where COVE ⊆ 2E × E

and COVR ⊆ 2R × R. The intended meaning of, say, ({E1, . . . , En}, E) ∈ COVE

is ‘E1, . . . , En are covering sub-entities of E.’

We additionally require that the relations ISAR, DISJR and COVR may only be defined
for relationships of the same arity.

In what follows we use E1 ISA E2 as a shortcut for (E1, E2) ∈ ISA (similarly for
ISAE and ISAR) and {E1, . . . , En} DISJ E as a shortcut for ({E1, . . . , En}, E) ∈ DISJ

(similarly for DISJE , DISJR, COV, COVE and COVR).

3.2 Semantics

The following definition specifies the set-theoretic semantics of ERfull schemas.

Definition 2 (ERfull Semantics). Let Σ be an ERfull conceptual schema and BD, for
D ∈ D, a collection of disjoint countable sets called basic domains. An interpretation
for Σ is a pair B = (ΔB ∪ ΛB, ·B), where

– ΔB is a nonempty set, the interpretation domain;
– ΛB =

⋃
D∈D ΛB

D, with ΛB
D ⊆ BD for each D ∈ D, is the active domain such that

ΔB ∩ ΛB = ∅;
– ·B is a function such that

(i) DB = ΛB
D, for each D ∈ D;

(ii) EB ⊆ ΔB , for each E ∈ E ;
(iii) RB ⊆ TΔB(ν), where ν = {Ui ∈ U | (Ui, Ei) ∈ REL(R)}, for each R ∈ R;
(iv) AB ⊆ ΔB × ΛB, for each A ∈ A.

An interpretation B of a schema Σ is called a legal database state if it satisfies the
following conditions:

1. For each R ∈ R with REL(R) = 〈U1 : E1, . . . , Um : Em〉 and each r ∈ RB, we
have r = 〈U1 : e1, . . . , Um : em〉 with ei ∈ EB

i , for each 1 ≤ i ≤ m. In the fol-
lowing, we adopt the convention to denote such a labelled tuple r as (e1, . . . , em),
and we may use r[i] instead of r[Ui] to denote the Ui/i-component of r—i.e., we
simplify the notation by adopting for tuples a positional notation instead of the one
based on role names.

2. For each E ∈ E with ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉, each (e, a) ∈ ΔB × ΛB

and each 1 ≤ i ≤ h, if (e, a) ∈ AB
i then a ∈ DB

i .
3. For each R ∈ R with REL(R) = 〈U1 : E1, . . . , Um : Em〉 and each 1 ≤ i ≤ m, if

CARDR(R, Ui, Ei) = (α, β) then, for all e ∈ EB
i ,

α ≤ �{(e1, . . . , ei, . . . , em) ∈ RB | ei = e} ≤ β. (2)

4. For each E ∈ E with ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉 and each 1 ≤ i ≤ h, if
CARDA(Ai, E) = (α, β) then α ≤ �{(e, a) ∈ AB

i } ≤ β, for all e ∈ EB .

Reasoning over Extended ER Models 283

5. For each R ∈ R with REL(R) = 〈U1 : E1, . . . , Um : Em〉, each 1 ≤ i ≤ m and
each E ∈ E with E ISAEi, if REF(R, Ui, E) = (α, β) then (2) holds for all e ∈ EB.

6. For all E1, E2 ∈ E , if E1 ISAE E2 then EB
1 ⊆ EB

2 (similarly for relationships).
7. For all E, E1, . . . , En ∈ E , if {E1, . . . , En} DISJE E then EB

i ⊆ EB, for every
1 ≤ i ≤ n, and EB

i ∩ EB
j = ∅, for all 1 ≤ i < j ≤ n (similarly for relationships).

8. For all E, E1, . . . , En ∈ E , {E1, . . . , En} COVE E implies EB =
⋃n

i=1 EB
i (simi-

larly for relationships).

3.3 Reasoning Problems

Reasoning tasks over conceptual schemas include verifying whether an entity, a
relationship, or a schema is consistent, or checking whether an entity (relationship)
subsumes another entity (relationship, respectively). The model-theoretic semantics as-
sociated with a conceptual schema allows us to define formally the following reasoning
tasks:

Definition 3 (Reasoning services). Let Σ be an ERfull schema.

Schema consistency. Σ is consistent if there exists a legal database state B for Σ such
that EB = ∅, for some entity E ∈ E .

Strong (schema) consistency. Σ is strongly consistent if there exists a legal database
state B for Σ such that EB = ∅, for every entity E ∈ E .

Entity consistency. An entity E ∈ E is consistent w.r.t. a schema Σ if there exists a
legal database state B for Σ such that EB = ∅.

Relationship consistency. A relationship R ∈ R is consistent w.r.t. a schema Σ if
there exists a legal database state B for Σ such that RB = ∅.

Entity subsumption. An entity E1 ∈ E subsumes an entity E2 ∈ E w.r.t. a schema Σ
if EB

2 ⊆ EB
1 , for every legal database state B for Σ.

Relationships subsumption. A relationship R1 ∈ R subsumes a relationship R2 ∈ R
w.r.t. a schema Σ if RB

2 ⊆ RB
1 , for every legal database state B for Σ.

The reasoning tasks of Schema/Entity/Relationship consistency and Entity subsump-
tion are reducible to each other. Indeed, that Entity subsumption is equivalent to Entity
satisfiability is shown in [5]. Schema consistency can be reduced to Entity consistency
by extending Σ as follows: let O∗ be a fresh entity symbol, E∗ = E ∪ {O∗} and
COV∗ = COV∪{(E , O∗)}. Clearly, Σ is consistent iff O∗ is consistent w.r.t. Σ∗. For the
converse reduction Σ is extended as follows: let O∗ be a fresh entity symbol and RE a
fresh relationship symbol, E∗ = E∪{O∗}, COV∗ = COV∪{(E , O∗)}, R∗ = R∪{RE},
REL(RE) = 〈U1 : E, U2 : O∗〉, CARDR(RE , U2, O

∗) = (1, ∞). Clearly, E is consis-
tent w.r.t. Σ iff Σ∗ is consistent.

Relationship consistency can be reduced to Entity consistency by extending Σ as
follows: let O∗ be a fresh entity symbol, E∗ = E ∪ {O∗}, ISAE

∗ = ISAE ∪ {(O∗, E)}
and REF∗ extends REF so that REF∗(R, U, O∗) = (1, β), where E is an entity with
(U, E) ∈ REL(R) and β is such that CARDR(R, U, E) = (α, β). Relationship R is
consistent w.r.t. Σ iff entity O∗ is consistent w.r.t. Σ∗. For the converse reduction,

284 A. Artale et al.

let RE be a fresh relationship symbol with REL(RE) = 〈U1 : E, U2 : E〉. Then E is
consistent iff RE is consistent.

Finally, we note that, in absence of the covering constructor, Schema consistency
cannot be reduced to a single instance of Entity consistency, though it can be reduced
to several Entity consistency checks.

4 Reasoning over ERisaR Schemas

The modelling language ERisaR is the subset of ERfull without the Booleans between
relationships (i.e., DISJR = ∅ and COVR = ∅) but with the possibility to express ISA be-
tween them. In this section we show that reasoning in ERisaR is an EXPTIME-complete
problem. The upper bound follows from [5]. The lower bound is established by reduc-
ing concept satisfiability w.r.t. ALC knowledge bases, which is known to be EXPTIME-
complete [2], to entity consistency w.r.t. ERisaR conceptual schemas.

We remind the reader that ALC concepts C are defined as follows:

C ::= Ai | ¬C | C1 � C2 | C1 � C2 | ∃Pi.C | ∀Pi.C,

where the last two constructors are interpreted in I of the form (1) by taking

(∃Pi.C)I = {x ∈ Δ | ∃y ∈ Δ ((x, y) ∈ P I
i ∧ y ∈ CI)},

(∀Pi.C)I = {x ∈ Δ | ∀y ∈ Δ ((x, y) ∈ P I
i → y ∈ CI)}.

An ALC knowledge base is a finite set of ALC concept inclusions C1 � C2. It is easy
to show (see, e.g., [5, Lemma 5.1]) that one can convert, in a satisfiability preserving
way, an ALC KB K into a primitive KB K′ that contains only axioms of the form:

A � B, A � ¬B, A � B � B′, A � ∀R.B, A � ∃R.B,

where A, B, B′ are concept names and R is a role name, and the size of K′ is linear
in the size of K. Thus, concept satisfiability w.r.t. primitive ALC KBs is EXPTIME-
complete [5].

Let K be a primitive ALC KB. We illustrate a satisfiable preserving mapping from
K into an ERisaR schema Σ(K): the first three forms of axioms are dealt with in a way
similar to [5]. Axioms of the form A � ∀R.B are encoded in [5] using disjointness and
covering (along with ISA) between relationships, which are unavailable in ERisaR. In
order to stay within ERisaR, we propose to use reification of ALC roles (which are bi-
nary relationships) to encode the last two forms of axioms. This approach is illustrated
in Fig. 1: in (a), A � ∀R.B is encoded by reifying the binary relationship R with the
entity CR so that the functional relationships R1 and R2 give the first and second com-
ponent of the reified R, respectively; a similar encoding is used to capture A � ∃R.B
in (b). The following lemma shows that ISA between relationships—and so conceptual
schemas in ERisaR—are enough to encode ALC axioms.

Lemma 1. A concept name E is satisfiable w.r.t. a primitive ALC KB K iff the entity
E is consistent w.r.t. the ERisaR schema Σ(K).

Reasoning over Extended ER Models 285

A � ∃R.B

A � ∀R.B

.

.

CR

CRA

CR
A

A

A

B

O

R1

R2

RA1

R
A1

RA2

1,1

1,1

1, 1 1, 1

1, 1cov

disj

(a)

CR

CRAB
AB

O

R1

R2

RAB1RAB2

1,1

1,1

1, 1 1, n1, 1

(b)

Fig. 1. Encoding axioms: (a) A � ∀R.B; (b) A � ∃R.B

Proof. (⇐) Let B = (ΔB, ·B) be a legal database for Σ(K) such that EB = ∅. We
construct a model I = (ΔI , ·I) of K with EI = ∅ by taking ΔI = ΔB , AI = AB, for
all concept names A in K, and RI = (R−

1 ◦ R2)B, for all role names R in K, where ◦
denotes the binary relation composition. Clearly, EI = ∅. Let us show that I is indeed
a model of K. The cases of axioms of the form A � B, A � ¬B and A � B � B′ are
treated as in [5]. Let us consider the remaining two cases.

Case A � ∀R.B. Let o ∈ AI and o′ ∈ ΔI with (o, o′) ∈ RI . We show that o ∈
(∀R.B)I . Since RI = (R−

1 ◦ R2)B, there is o′′ ∈ ΔB with (o, o′′) ∈ (R−
1)B and

(o′′, o′) ∈ RB
2 . Then o′′ ∈ CB

R and, by the covering constraint, o′′ ∈ CB
RA

∪ CB
RA

. We

claim that o′′ ∈ CB
RA

. Indeed, suppose otherwise; then o′′ ∈ CB
RA

, and so there is a

unique a ∈ ΔB such that (o′′, a) ∈ RB
A1

and a ∈ A
B

; it follows from RB
A1

⊆ RB
1

and the cardinality constraint on CR that a = o, contrary to o ∈ AB = AI and the
disjointness of A and A. Since o′′ ∈ CB

RA
, there is a unique b ∈ ΔB with (o′′, b) ∈ RB

A2
and b ∈ BB. From RB

A2 ⊆ RB
2 and the cardinality constraint on CR, we conclude that

b = o′. Thus, o′ ∈ BB = BI and o ∈ (∀R.B)I .

Case A � ∃R.B. Let o ∈ AI . Since o ∈ AI = AB, there is o′ ∈ ΔB with (o, o′) ∈
(R−

AB1)
B and o′ ∈ CB

RAB
. As RB

AB1 ⊆ RB
1 , we have (o, o′) ∈ (R−

1)B , and, as o′ ∈
CB

RAB
, there is o′′ ∈ ΔB such that (o′, o′′) ∈ RB

AB2 ⊆ RB
2 and o′′ ∈ BB = BI . Thus,

as RI = (R−
1 ◦ R2)B , we obtain (o, o′′) ∈ RI and o′′ ∈ BI , i.e. o ∈ (∃R.B)I .

(⇒) Let I = (ΔI , ·I) be an ALC model of K such that EI = ∅. We construct a legal
database state B = (ΔB, ·B) for Σ(K) such that EB = ∅. Let ΔB = ΔI ∪ Γ , where
Γ is the disjoint union of the ΔR = {(o, o′) ∈ ΔI | (o, o′) ∈ RI}, for all ALC role

names R. We set AB = AI and A
B

= (¬A)I , for all concept names A, OB = ΔI , for
the entity O, and CB

R = ΔR, for all ALC role names R.

286 A. Artale et al.

Next, for every ALC axiom of the form A � ∀R.B, we set

– CB
RA

= {(o, o′) ∈ ΔR | o ∈ AI}, CB
RA

= {(o, o′) ∈ ΔR | o ∈ (¬A)I},

– RB
1 = {((o, o′), o) ∈ ΔR × ΔI | (o, o′) ∈ RI},

– RB
2 = {((o, o′), o′) ∈ ΔR × ΔI | (o, o′) ∈ RI},

– RB
A1 = {((o, o′), o) ∈ RB

1 | o ∈ AI}, RB
A1

= {((o, o′), o) ∈ RB
1 | o ∈ (¬A)I},

– RB
A2 = {((o, o′), o′) ∈ RB

2 | o ∈ AI},

and, for every ALC axiom of the form A � ∃R.B, we set

– CB
RAB

= {(o, o′) ∈ ΔR | o ∈ AI and o′ ∈ BI},
– RB

1 = {((o, o′), o) ∈ ΔR × ΔI | (o, o′) ∈ RI},
– RB

2 = {((o, o′), o′) ∈ ΔR × ΔI | (o, o′) ∈ RI},
– RB

AB1 = {((o, o′), o) ∈ RB
1 | (o, o′) ∈ CB

RAB
}.

– RB
AB2 = {((o, o′), o′) ∈ RB

2 | (o, o′) ∈ CB
RAB

}.

It is now easy to show that B is a legal database state for Σ(K) and EB = ∅.

Since reasoning over ALC knowledge bases is an EXPTIME-complete problem [2] and
ERisaR is a sub-language of ERfull, which is also EXPTIME-complete [5], we obtain
the following result:

Theorem 2. Reasoning over ERisaR schemas is EXPTIME-complete.

5 Reasoning over ERbool Schemas

Denote by ERbool the sublanguage of ERfull without ISA and the Booleans between re-
lationships (i.e., ISAR = ∅, DISJR = ∅ and COVR = ∅). We also impose an extra restric-
tion on REL: reusing the same role symbol by different relations is not allowed. More
precisely, there is no U ∈ U such that (U, E′) ∈ REL(R′) and (U, E′′) ∈ REL(R′′), for
some distinct R′, R′′ ∈ R and some E′, E′′ ∈ E . This restriction does make sense in
ERbool, since the language does not allow for sub-relationships.

We first define a polynomial translation τ of ERbool schemas into DL-Litebool knowl-
edge bases. Then we show that an entity E is consistent w.r.t. an ERbool schema Σ iff
the translation of the entity, E, is satisfiable w.r.t. the knowledge base τ(Σ). The latter
problem is known to be in NP (Theorem 1).

Let Σ be an ERbool schema. Given an entity, domain or relationship symbol N from
E ∪ D ∪ R, let N be a DL-Litebool concept name. Similarly, for an attribute or role
symbol N ∈ A ∪ U , let N be a DL-Litebool role name. The translation τ(Σ) is defined
as the following set of DL-Litebool concept inclusions:

τ(Σ) = τdom ∪
⋃

R∈R

[
τR

rel ∪ τR
cardR

∪ τR
ref

] ∪
⋃

E∈E

[
τE

att ∪ τE
cardA

] ∪

⋃

E1,E2∈E
E1 ISAE2

τE1,E2
isa ∪

⋃

E1,...,En,E∈E
{E1,...,En}DISJE

τ
{E1,...,En},E
disj ∪

⋃

E1,...,En,E∈E
{E1,...,En}COVE

τ{E1,...,En},E
cov ,

Reasoning over Extended ER Models 287

where

– τdom =
{
D � ¬X | D ∈ D, X ∈ E ∪ R ∪ D, D = X

}
;

– τR
rel =

{
R � ∃U, ≥ 2 U � ⊥, ∃U � R, ∃U

− � E | (U, E) ∈ REL(R)
}

;

– τR
cardR

=
{
E � ≥ α U

− | (U, E) ∈ REL(R), CARDR(R, U, E) = (α, β), α = 0
}

∪{
E � ≤ β U

− | (U, E) ∈ REL(R), CARDR(R, U, E) = (α, β), β = ∞}
;

– τR
ref =

{
E � ≥ α U

− | (U, E) ∈ REL(R), REF(R, U, E) = (α, β), α = 0
}

∪ {
E � ≤ β U

− | (U, E) ∈ REL(R), REF(R, U, E) = (α, β), β = ∞}
;

– τE
att =

{∃A
− � D | (A, D) ∈ ATT(E)

}
;

– τE
cardA

=
{
E � ≥ α A | (A, D) ∈ ATT(E), CARDA(A, E) = (α, β), α = 0

}

∪ {
E � ≤ β A | (A, D) ∈ ATT(E), CARDA(A, E) = (α, β), β = ∞}

;

– τE1,E2
isa =

{
E1 � E2

}
;

– τ
{E1,...,En},E
disj =

{
Ei � E | 1 ≤ i ≤ n

} ∪ {
Ei � ¬Ej | 1 ≤ i < j ≤ n

}
;

– τ
{E1,...,En},E
cov =

{
Ei � E | 1 ≤ i ≤ n} ∪ {

E � E1 � · · · � En

}
.

Clearly, the size of τ(Σ) is polynomial in the size of Σ (under the same coding of the
numerical parameters).

Lemma 2. An entity E is consistent w.r.t. an ERbool schema Σ iff the concept E is
satisfiable w.r.t. the DL-Litebool KB τ(Σ).

Proof. (⇒) Let B = (ΔB ∪ ΛB, ·B) be a legal database state for Σ such that EB = ∅,
where {BD}D∈D are the domain sets. Define a model I = (ΔI , ·I) of τ(Σ) by taking
ΔI = ΔB ∪ΛB ∪Γ , where Γ is the disjoint union of the ΔR = {(e1, . . . , em) ∈ RB},

for all relationships R ∈ R, and setting D
I

= DB , for every D ∈ D, E
I

= EB , for

every E ∈ E , A
I

= AB , for every A ∈ A, R
I

= ΔR, for every R ∈ R, and, for every
U ∈ U such that there is R ∈ R with REL(R) = 〈U1 : E1, . . . , Um : Em〉 and U = Ui

for some i with 1 ≤ i ≤ m,

U
I

= {((e1, . . . , em), ei) ∈ ΔR × ΔB | (e1, . . . , em) ∈ RB}. (3)

Clearly, E
I = ∅. We now prove that I is indeed a model of τ(Σ). We guide the

proof by considering the translation of the various statements in Σ.

1. We show I |= τdom. For any two distinct D1, D2 ∈ D, we have DB
1 ∩ DB

2 = ∅,
and so I |= D1 � ¬D2. For all D ∈ D and E ∈ E , since EB ⊆ ΔB , DB ⊆ ΛB

and ΔB ∩ ΛB = ∅, we have I |= D � ¬E. Next, for all D ∈ D and R ∈ R, as

DB ⊆ ΛB, R
I

= ΔR ⊆ Γ and Γ ∩ ΛB = ∅, we have I |= D � ¬R.
2. REL(R) = 〈U1 : E1, . . . , Um : Em〉. Consider all axioms in τR

rel ∪ τR
cardR

∪ τR
ref:

(a) R � ∃Ui. Let r ∈ R
I

. Then r is of the form (e1, . . . , em) ∈ RB. By (3),

(r, ei) ∈ Ui
I

, and so r ∈ ∃Ui
I

.

(b) ≥ 2Ui � ⊥. Suppose that there are (r, e), (r, e′) ∈ Ui
I

such that e = e′.
By (3), r is of the form (e1, . . . , em) and e = ei = e′, contrary to e = e′.

288 A. Artale et al.

(c) ∃Ui
− � Ei. Let e ∈ (∃Ui

−
)I . Then (r, e) ∈ Ui

I
for some r ∈ ΔI . Since Ui

may be involved only in one relation (R in this case) and in view of (3), r is of
the form (e1, . . . , em) ∈ RB and ei = e. By the semantics of R, e ∈ EB

i , from

which e ∈ Ei
I

.
(d) ∃Ui � R. Let r ∈ (∃Ui)I . Then (r, e) ∈ Ui

I
for some e ∈ ΔI . Since Ui may

be involved only in one relation (R in this case) and by (3), r is of the form

(e1, . . . , em) ∈ RB and e = ei. Therefore, r ∈ R
I

.

(e) E � ≥ α U
−
i (when CARDR(R, Ui, Ei) = (α, β) and α = 0). Let e ∈ E

I
i .

Then e ∈ EB
i . We have �{(e1, . . . , em) ∈ RB | ei = e} ≥ α and, by (3), we

obtain �{r | (r, e) ∈ U
I
i } ≥ α, from which e ∈ (≥ αU

−
i)I .

(f) E � ≤ β U
−
i (when CARDR(R, Ui, Ei) = (α, β) and β = ∞). The proof is

similar to the previous case.
(g) E � ≥ α U

−
i (when REF(R, Ui, Ei) = (α, β) and α = 0). The proof is

similar to case 2e.
(h) E � ≤ β U

−
i (when REF(R, Ui, Ei) = (α, β) and β = ∞). The proof is

similar to case 2e.
3. ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉. Let us consider all axioms in τE

att ∪ τE
cardA

:

(a) ∃Ai
− � Di. Let a ∈ (∃Ai

−
)I . Then there is e ∈ ΔI such that (e, a) ∈ Ai

I
.

As Ai
I

= AB
i , we have e ∈ ΔB and a ∈ ΛB. It follows that a ∈ DB

i .

(b) E � ≥ α Ai (when CARDA(Ai, E) = (α, β) and α = 0). Let e ∈ E
I

.
Then e ∈ EB . Thus, �{a | (e, a) ∈ AB} ≥ α and �{a | (e, a) ∈ AI} ≥ α.
Therefore, e ∈ (≥ α Ai)I .

(c) E � ≤ β Ai (when CARDA(Ai, E) = (α, β) and β = ∞). The proof is
similar to the previous case.

4. E1 ISA E2. We have E
I
1 = EB

1 ⊆ EB
2 = E

I
2 , and so I |= τE1,E2

isa .
5. {E1, . . . , En} DISJ E. We have EB

i ⊆ EB , for 1 ≤ i ≤ n, and EB
i ∩ EB

j = ∅ for

1 ≤ i < j ≤ n. Hence, I |= τ
{E1,...,En},E
disj .

6. {E1, . . . En} COV E. Similarly to the previous case.

Thus, I |= τ(Σ).

(⇐) Let T = (ΔT , ·T) be a model of τ(Σ) such that E
I = ∅. Without loss of general-

ity, we may assume that T is a tree model (see, e.g., [12,6]). We construct domain sets
{BD}D∈D and a legal database state B = (ΔB ∪ ΛB, ·B) for the ERbool schema Σ by

taking BD = ΛB
D = DB = D

T
, for D ∈ D, ΛB =

⋃
D∈D ΛB

D and ΔB = ΔT \ ΛB;

further we set EB = E
T

, for every E ∈ E , AB = A
T ∩ (ΔB × ΛB), for every A ∈ A,

and, for every R ∈ R with REL(R) = 〈U1 : E1, . . . , Um : Em〉, we set

RB =
{
(e1, . . . , em) ∈ TΔT ({U1, . . . , Um}) |

∃r ∈ R
T

such that (r, ei) ∈ Ui
T

for 1 ≤ i ≤ m
}
.

Observe that the function ·B is as required by Definition 2 and EB = ∅. We show now
that B satisfies every assertion of the ERbool schema Σ.

Reasoning over Extended ER Models 289

1. REL(R) = 〈U1 : E1, . . . , Um : Em〉. Let (e1, . . . , em) ∈ RB. Then there exists

r ∈ R
T

such that (r, ei) ∈ Ui
T

, for 1 ≤ i ≤ m. Since T |= ∃Ui
− � Ei, we obtain

ei ∈ Ei
T

, and so ei ∈ EB
i , for 1 ≤ i ≤ m.

2. ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉. Let (e, ai) ∈ ΔB × ΛB with (e, ai) ∈ AB
i , for

1 ≤ i ≤ h. Then (e, ai) ∈ Ai
T

. As T |= ∃Ai
− � Di, we have ai ∈ Di

T
, from

which ai ∈ DB
i ⊆ ΛB.

3. CARDR(R, U, E) = (α, β). Then we have REL(R) = 〈U1 : E1, . . . , Um : Em〉
such that Ui = U and Ei = E, for some Ui and Ei, 1 ≤ i ≤ m. We have to show
that, for every e ∈ EB,

α ≤ �{(e1, . . . , em) ∈ RB | ei = e} ≤ β.

Consider the lower and upper bounds.
(a) We may assume that α = 0. Since T |= E � ≥ α U

−
and EB = E

T
,

there exist at least α distinct r1, . . . , rα ∈ ΔT such that (rj , e) ∈ U
T

, for

1 ≤ j ≤ α. Since T |= ∃U � R, we have r1, . . . , rα ∈ R
T

. And since
T |= R � ∃Ui and T |= ≥ 2Ui � ⊥, for all 1 ≤ i ≤ m, there are uniquely

determined ej
k ∈ ΔT such that (rj , e

j
k) ∈ Uk

T
and ej

i = e, for all 1 ≤ j ≤ α

and 1 ≤ k ≤ m. Since T is a tree-like model, we have ej
k = ej′

k′ whenever
k = i, k′ = i and either k = k′ or j = j′. Therefore, we have shown that

exactly one tuple corresponds to each object in R
T

and vice versa. Then, by
construction, (ej

1, . . . , e
j
m) ∈ RB and ej

i = e, for all 1 ≤ j ≤ α. It follows that
�{(e1, . . . , em) ∈ RB | ei = e} ≥ α.

(b) We may assume that β = ∞. The proof is similar to the previous item.
4. CARDA(A, E) = (α, β). Let e ∈ EB = E

T
. Consider the lower and upper bounds:

(a) We may assume α = 0. Since T |= E � ≥ α A and T |= ∃A
− � D, for some

D with (A, D) ∈ ATT(E), we have �{a ∈ DB | (e, a) ∈ A
T } ≥ α. Finally, as

AB = A
T ∩ (ΔB × ΛB), we obtain �{a | (e, a) ∈ AB} ≥ α.

(b) We may assume β = ∞. The proof is similar to the previous case.
5. REF(R, U, E) = (α, β). The proof is the same as in case 3.

6. E1 ISA E2. This holds in B since T |= E1 � E2 and Ei
B = Ei

T
, for i ∈ {1, 2}.

7. {E1, . . . , En} DISJ E. This holds in B since T |= Ei � E, for all 1 ≤ i ≤ n, and

T |= Ei � ¬Ej , for all 1 ≤ i < j ≤ n, and EB
i = Ei

T
, for 1 ≤ i ≤ n.

8. {E1, . . . En} COV E. Similar to the previous case.

It follows from this lemma and the mutual reducibility between the various reasoning
problems in ERbool that we have the following complexity result:

Theorem 3. Reasoning over ERbool conceptual schemas is NP-complete.

Proof. The upper bound follows from Lemma 2 and Theorem 1. To prove NP-hardness
we provide a polynomial reduction of the 3SAT problem, which is known to be NP-
complete, to the entity consistency problem. Let an instance of 3SAT be given by a set
φ of 3-clauses ci = a1

i ∨ a2
i ∨ a3

i over some finite set Λ of literals. We define an ERbool

schema Σφ as follows:

290 A. Artale et al.

– the signature L of Σφ is given by E = {a | a ∈ Λ} ∪ {c | c ∈ φ} ∪ {φ,
}, A = ∅,
R = ∅, U = ∅, D = ∅;

– φ ISA c, for all c ∈ φ;

– (E \ {
}) COV
, {a, ¬a} COV
, for all a ∈ Λ,
{a1

i , a
2
i , a

3
i } COV ci, for all ci ∈ φ, ci = a1

i ∨ a2
i ∨ a3

i ;

– {a, ¬a} DISJ
, for all a ∈ Λ;

– ATT, REL, CARDR, CARDA, REF are empty functions.

Now we show the following claim:

Claim. φ is satisfiable iff the entity φ is consistent w.r.t. the schema Σφ.

(⇒) Let J |= φ. Define a legal database state B = (ΔB, ·B) by taking ΔB = {o},

B = {o} and, for every E ∈ E \ {
}, E
B

= {o} if J |= E and E
B

= ∅ if
J |= E. We show that B is indeed a legal database state for Σφ. Since J |= φ, we
have J |= ci for all ci ∈ φ, and, by construction, cBi = {o}. This means that every
ISA assertion in Σφ is satisfied by B. Consider now some ci ∈ φ. Then J |= ak

i for

at least one of a1
i , a

2
i or a3

i , which means that ak
i

B
= {o}. It follows that the assertion

{a1
i , a

2
i , a

3
i } COV ci holds in B. The assertion (E \ {
}) COV
 holds, since E

B ⊆ {o},

φ
B

= {o} and
B = {o}, for every E ∈ E \ {
}. It should also be clear that every
assertion {a, ¬a} COV
, for a ∈ Λ, holds in B. Since only one of a, ¬a is satisfied by
J , the other one will be interpreted in B as the empty set, so every assertion in DISJ

holds, too. Thus, B is a legal database state for Σφ, with φ
B = ∅.

(⇐) Let B = (ΔB, ·B) be a legal database state for Σφ such that o ∈ φ
B

, for some
o ∈ ΔB. Construct a model J for φ by taking, for every propositional variable p in φ,

J |= p iff o ∈ pB. We show that J |= φ. Indeed, as o ∈ φ
B

and φ ISA ci, we have
o ∈ ci

B, for 1 ≤ i ≤ n. Since, for every ci, we have {a1
i , a

2
i , a

3
i } COV ci, there is ak

i

in ci such that o ∈ (ak
i)B. Now, if ak

i is a variable then, by the construction of J , we

have J |= ak
i , and so J |= ci. Otherwise, ak

i = ¬p and, since {ak
i , p} DISJ
, o ∈ pB.

Therefore, by the construction of J , J |= p, i.e., J |= ak
i , and so J |= ci.

6 Reasoning over ERref Schemas

Denote by ERref the modelling language without the Booleans and ISA between rela-
tionships, but with the possibility to express ISA and disjointness between entities (i.e.,
ISAR = ∅, COVR = ∅, DISJR = ∅ and COVE = ∅). Thus, ERref is essentially ERbool

without the covering constructor.
In this section we show that checking entity consistency in ERref is an NLOGSPACE-

complete problem. Consider the reduction τ from Section 5. It is not difficult to check
that τ is logspace bounded. At the same time, for every ERref schema Σ, the knowledge
base τ(Σ) is a DL-Litekrom knowledge base, because we do not have τcov in this case.
Thus, as a consequence of Lemma 2, the problem of entity consistency for ERref can
be logspace reduced to the NLOGSPACE-complete problem of concept satisfiability

Reasoning over Extended ER Models 291

w.r.t. DL-Litekrom knowledge bases [1]. So the entity consistency problem w.r.t. ERref

schemas is in NLOGSPACE as well.
To establish the lower bound, we consider the reachability problem in oriented

graphs, or the MAZE problem, which is known to be NLOGSPACE-hard; see, e.g., [15].
Let G = (V, E, s, t) be an instance of MAZE, where s, t are the initial and terminal ver-
tices of (V, E), respectively. We can encode this instance in ERref using the following
schema ΣG:

u ISA v, for all (u, v) ∈ E, and {s, t} DISJ O,

where O is a fresh entity. Clearly, we have the following:

Claim. The terminal node t is reachable from s in G = (V, E, s, t) iff the entity s is
not consistent w.r.t. ΣG.

As NLOGSPACE=CONLOGSPACE (by the Immerman-Szelepcsényi theorem; see, e.g.,
[15]) and the above reduction is logspace bounded, it follows that the problem of entity
consistency in ERref is NLOGSPACE-hard. This result coupled with the membership in
NLOGSPACE showed above gives us the following complexity result:

Theorem 4. The entity consistency problem for ERref is NLOGSPACE-complete.

7 Conclusion

This paper provides new complexity results for reasoning over Extended Entity-Relati-
onship (EER) models with different modelling constructors. Starting from the EXP-
TIME result [5] for reasoning over the fully-fledged EER language, we prove that
the same complexity holds even if we drop the Boolean constructors (disjointness
and covering) on relationships. This result shows that ISA between relationships (with
the Booleans on entities) is powerful enough to capture EXPTIME-hard problems. To
illustrate that the presence of relationship hierarchies is a major source of complexity
in reasoning, we show that avoiding them makes reasoning in ERbool an NP-complete
problem. Another source of complexity is covering constraints: indeed, we show that
without relationship hierarchies and covering constraints reasoning problem is
NLOGSPACE-complete.

The paper also establishes a tight correspondence between conceptual modelling
languages and the DL-Lite family of description logics. Such a correspondence shows
the usefulness of DL-Lite for representing and reasoning over conceptual models and
ontologies.

Acknowledgements. The authors were partially supported by the EU funded projects
Tones, KnowledgeWeb and InterOp and the U.K. EPSRC grant GR/S63175. We are
grateful to the referees for their helpful remarks and suggestions.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-Lite in the light of
first-order logic. In: Proc. of the 22nd Nat.Conf. on Artificial Intelligence (AAAI 2007)
(2007)

292 A. Artale et al.

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.: The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University Press,
Cambridge (2003)

3. Batini, C., Ceri, S., Navathe, S.B.: Conceptual Database Design, an Entity-Relationship Ap-
proach. Benjamin and Cummings Publ. Co. (1992)

4. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language reference. W3C Recommen-
dation, Available at (February 2004), http://www.w3.org/TR/owl-ref/

5. Berardi, G.D., Calvanese, D., Giacomo, D.: Reasoning on UML class diagrams. Artificial
Intelligence 168(1–2), 70–118 (2005)

6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical
Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

7. Calvanese, G.D., Giacomo, D.: Expressive description logics. In: Baader. F., et al. (eds.) [2],
ch.5, pp. 178–218 (2003)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable
description logics for ontologies. In: Proc. of the 20th Nat. Conf. on Artificial Intelligence
(AAAI 2005), pp. 602–607 (2005)

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. In: Proc. of the 10th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2006), pp. 260–270 (2006)

10. Calvanese, D., Lenzerini, M.: On the interaction between ISA and cardinality constraints.
In: Proc. of the 10th IEEE Int. Conf. on Data Engineering (ICDE’94), pp. 204–213. IEEE
Computer Society Press, Los Alamitos (1994)

11. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation formalisms. J.
of Artificial Intelligence Research 11, 199–240 (1999)

12. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides 35 (1997)
13. Di Battista, G., Lenzerini, M.: Deductive entity-relationship modeling. IEEE Trans. on

Knowledge and Data Engineering 5(3), 439–450 (1993)
14. ElMasri, R.A., Navathe, S.B.: Fundamentals of Database Systems, 5th edn. Addison Wesley

Publ.Co. (2007)
15. Kozen, D.: Theory of Computation. Springer, Heidelberg (2006)
16. Lenzerini, M., Nobili, P.: On the satisfiability of dependency constraints in entity-relationship

schemata. Information Systems 15(4), 453–461 (1990)

http://www.w3.org/TR/owl-ref/

On Order Dependencies for the Semantic Web

David Toman1,2 and Grant Weddell1

1 David R. Cheriton School of Computer Science

University of Waterloo, Canada

{david,gweddell}@uwaterloo.ca
2 Faculty of Computer Science

Free University of Bozen-Bolzano, Italy

david@inf.unibz.it

Abstract. We consider the problem of adding both equality and order

generating dependencies to Web ontology languages such as OWL DL

that are based on description logics. Such dependencies underlie a num-

ber of problems that relate, for example, to web service composition, to

document ordering, and to lower level algorithmic issues in service plan

generation and evaluation.

1 Introduction

RDF underlies a vision of the Semantic Web in which both data and metadata
are viewed as a set of subject/property/object triples that can be associated with
web resources denoted by Universal Resource Identifiers (URIs) [13]. To support
reasoning, there has been a progression of further standards for inferring the
existence of additional triples. This is accomplished by adding interpretations
for particular RDF properties. For example, in the case of property subClassOf ,
the RDF Schema standard mandates inferring the triple

x/subClassOf /ITEM

from the pair of triples

x/subClassOf /SALEITEM

and
SALEITEM/subClassOf /ITEM, (1)

where ITEM and SALEITEM are now viewed as concepts.
The current best practices for these standards, measured in terms of estab-

lished reasoning technology, are the description logic (DL) based fragments of
the OWL web ontology language, called OWL Lite and OWL DL [22]. Building

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 293–306, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

294 D. Toman and G. Weddell

on RDF Schema, they enable a collection of triples to encode more general con-
cepts such as anything not on sale or an item with a reliable supplier. In this
paper, we use a more abstract and compact syntax developed for description log-
ics in which collections of triples encoding such concepts can be specified more
succinctly as

¬SALEITEM

and as
ITEM � ∀Supplier .RELIABLE,

respectively. We do this also for subClassOf RDF triples, such as (1) above,
which we now refer to as inclusion dependencies, and write instead as

CONCEPT1 � CONCEPT2. (2)

For example, (1) above is now written SALEITEM � ITEM.
A collection of inclusion dependencies of the form (2) defines an OWL DL

ontology that can be used by other protocols for the semantic web, such as the
RDF query language SPARQL [15]. In this setting, XML can be used as a trans-
port language for RDF in the sense that an XML document is an ordered forest
of RDF triples that in turn encode OWL DL concepts and inclusion dependen-
cies. However, the significance of ordering in XML is currently beyond any real
capacity of OWL DL, or even full OWL, to account for any consequent logical
significance, e.g., to inform a SPARQL query engine by way of an ontology that
the order in which various ITEM concepts occur in a document correlates in
some way with their Price.

An obvious approach to remedy this is to reconsider the underlying descrip-
tion logic for OWL DL, to consider in particular how concept descriptions can
be enriched to capture metadata relating to order. Knowledge of the relevance
of document order in XML would not only be useful to a SPARQL query en-
gine in helping to address lower level algorithmic and performance issues, e.g.,
avoiding sort costs when reporting on the supplier for a given item in order of
increasing cost, but also by other web services that reason in turn about web
service composition in which attributes are used to abstract temporal artifacts
such as events.

In this paper, we consider a new concept constructor for description logics
with the potential of endowing OWL DL with an ability to capture knowledge
about ordering. Instances of this constructor are called path order dependencies
(PODs). They are a generalization of path functional dependencies (PFDs) that
have been considered in the context of a DL dialect called DLF [19,20,21], which
we also use. This dialect is feature based and therefore more functional in style
as opposed to the more common role based derivatives of ALC such as OWL
DL. As a consequence, it is much easier to incorporate PODs.

Example 1. To illustrate using PODs, consider an ontology of ITEM concepts
of relevance, say, to an online supplier of photography equipment. The supplier

On Order Dependencies for the Semantic Web 295

maintains an XML document of the ITEM concepts in such a way that sub-
trees defining the concepts satisfy a major sort on their ProductCode feature
and a minor sort on their Price feature. This knowledge can now be captured
by an inclusion dependency using two instances of the proposed POD concept
constructor as follows:

ITEM � (ITEM : {DocOrder<} → {ProductCode≤})
� (ITEM : {DocOrder<,ProductCode=} → {Price≤}).

As a second example, the supplier in question can capture an inherent ordering
for SALEITEM concepts in which their relative ordering by virtue of their Price
is preserved by their DiscountPrice by adding the following:

SALEITEM � ITEM
� (SALEITEM : {Price<} → {DiscountPrice<}.

Note that, in comparison to OWL DL, DLF is a worthwhile basis for study
since it is already sufficient to simulate the DL dialect ALCQI in an intuitive
fashion using role reification [19]. In essentially the same way, ALCQI can in
turn simulate SHIQ without transitive roles, a large subset of OWL DL that
includes OWL Lite. With regard to the above hypothetical metadata about item
ordering in a document, the examples are expressed in terms of the DL dialect
DLFDreg, the extension of DLF considered in this paper.

Our contributions relate to DLFDreg and are as follows.

1. We define a guarded condition for PODs for which the associated implication
problem remains decidable and indeed unchanged from DLF ; and

2. We show how a slight relaxation of this condition leads to undecidability.

1.1 Related Work

In addition to OWL DL, description logics have been used extensively as a for-
mal way of understanding a large variety of languages for specifying meta-data,
including ER diagrams, UML class and object diagrams, relational database
schemata, and so on [14].

The form of order dependencies introduced in this paper is a generalization of
a relational variant [17], and is also a generalization of regular PFDs introduced
in [19]. Less expressive first order PFDs were introduced and studied in the
context of object-oriented data models [8,23]. An FD concept constructor was
proposed and incorporated already in Classic [4], an early DL with a PTIME
reasoning procedure, without changing the complexity of its implication prob-
lem. The generalization of this constructor to PFDs alone leads to EXPTIME
completeness of the implication problem [10]; this complexity remains unchanged
in the presence of additional concept constructors common in rich DLs such as
roles, qualified number restrictions, and so on [17,18].

296 D. Toman and G. Weddell

In [5], the authors consider a DL with functional dependencies and a general
form of keys added as additional varieties of dependencies, called a key box. They
show that their dialect is undecidable for DLs with inverse roles, but becomes
decidable when unary functional dependencies are disallowed. This line of inves-
tigation is continued in the context of PFDs and inverse features, with analogous
results [20]. We therefore disallow inverse features in this paper to exclude an
already known cause for undecidability.

PFDs have also been used in a number of applications in object-oriented
schema diagnosis and synthesis [2,3], in query optimization [6,9] and in the se-
lection of indexing for a database [16].

Order dependencies have been considered in the context of the relational
model [7], and as a special case of constraint-generating dependencies for the
relational model [1]. A form of key dependency with left hand side feature paths
has been considered for a DL coupled with various concrete domains [12,11]. In
this case, the authors explore how the complexity of satisfaction is influenced
by the selection of a particular concrete domain together with various syntactic
restrictions on the key dependencies themselves. Note that this earlier work
strictly separates objects that serve as “domain values,” and can therefore be
ordered, from abstract objects such as tuples. This makes such approaches less
applicable in the RDF setting in which no such distinction exists, where both
objects and values can in turn be object-attribute-value triples.

The remainder of the paper is organized as follows. Section 2 that follows
defines the syntax and semantics for DLFDreg. Our main results are then pre-
sented in Section 3. We conclude with a summary and a discussion of remaining
issues and open problems in Section 4.

2 Definitions

The syntax and semantics of the DLFDreg dialect of description (or feature)
logics are given by the following.

Definition 2 (Syntax and Semantics of DLFDreg). Let F be an arbitrary
finite set of attribute names. We define a path language L to be a regular language
over the alphabet F . We use regular expressions as the surface syntax for such
languages with Id standing for the empty word in L. We use L≈ to denote a
regular language in which every word Pf∼ ∈ L≈ is a concatenation of a word
from Pf ∈ L with a symbol ∼∈ {<, ≤, =, ≥, >}. We denote by L∼ the regular
sublanguage {Pf∼ | Pf∼ ∈ L≈} in which all words end with the same symbol ∼.

Let C be primitive concept description(s). We define derived concept descrip-
tions using the grammar in Figure 1. A concept formed by an application of
the final production in the grammar is called a regular path order dependency
(POD).

An inclusion dependency C is an expression of the form D � E.
The semantics of expressions is given with respect to a structure (Δ, ≤, ·I),

where Δ is a domain of “objects”; ≤ is a linear order on Δ; and (.)I an in-

On Order Dependencies for the Semantic Web 297

Syntax: Semantics: Defn of “(·)I
”

D ::= C (C)I ⊂ Δ

| D1 � D2 (D1)
I ∩ (D2)

I

| ∀L.D
⋂

Pf∈L{x : (Pf)I(x) ∈ (D)I}
| ¬D Δ \ (D)I

E ::= D

| E1 � E2 (E1)
I ∩ (E2)

I

| E1 � E2 (E1)
I ∪ (E2)

I

| ∀L.E
⋂

Pf∈L{x : (Pf)I(x) ∈ (E)I}
| D : L≈

1 → L≈
2 {x : ∀ y ∈ (D)I .

∧
Pf∼∈L≈

1
(Pf)I(x)∼(Pf)I(y)

⇒
∧

Pf∼∈L≈
2

(Pf)I(x)∼(Pf)I(y)}

Fig. 1. Syntax and Semantics of DLFDreg

terpretation function that fixes the interpretations of primitive concepts to be
subsets of Δ and of primitive attributes in F to be total functions over Δ.
The interpretation is extended to words over F as follows: (Id)I = λx.x and
(f. Pf)I = (Pf)I ◦ (f)I , and to derived concept descriptions, cf. Figure 1.

An interpretation satisfies an inclusion dependency C of the form D � E if
(D)I ⊆ (E)I .

A terminology T consists of a finite set of inclusion dependencies. The logical
implication problem asks if T |= C holds; that is, if all interpretations that satisfy
each constraint in T must also satisfy C (the posed question).

Note that the notation Pf∼ ∈ L≈ stands for the fact that the path (string) Pf∼

belongs to the language L≈. The paths are in turn interpreted as (compositions
of) total functions over the domain Δ. Hence the conjunctions in the semantic
definition of a POD range over all words in an appropriate regular language and
define order among objects in the range of their interpretations.

The two-level syntax is needed to prevent any occurrence of a POD on the left-
hand side of an inclusion dependency or within the scope of negation. Removing
this restriction leads to undecidability [21].

Example 3. Recall our introductory example relating to ITEM concepts main-
tained by a hypothetical online supplier. Now suppose the supplier has a second
XML document containing a sequence of subtrees encoding SUPPLIES concepts,
and that this document satisfies the following property:

a traversal of the root nodes for the SUPPLIES elements correlates with
a major sort of the ITEM component of each element, and a minor sort
of the wholesale price.

298 D. Toman and G. Weddell

When added to a terminology, the following inclusion dependency formally cap-
tures this property:

SUPPLIES � ∀Iref .ITEM
� (SUPPLIES : {DocOrder<} → {Iref ≤})
� (SUPPLIES : {DocOrder<, Iref =} → WholesalePrice≤).

To paraphrase the final line: if the first of a pair of arbitrary SUPPLIES concepts
precedes the second in a given document and if both refer to the same items, then
the wholesale price of the first will not exceed the wholesale price of the second.

3 Reasoning in DLFDreg

The question of logical implication is central to the use of logic-based approaches
to conceptual modeling of the artifacts in the semantic Web. This section shows
the main results relating to the logical implication problem with respect to
PODs.

3.1 Undecidability for General Order Dependencies

The general implication problem for DLFDreg is, unfortunately, undecidable:

Proposition 4 ([21]). The implication problem for DLFDreg becomes unde-
cidable when dependencies of the form D : {} → {f=} are allowed. This is
the case even when all dependencies are restricted to finite languages and are
equality-generating.

Path-functional dependencies with empty left-hand sides allow one to simulate
nominals—concept descriptions whose interpretation must correspond to a sin-
gleton set; this can be enforced, e.g., for a concept C, by the inclusion dependency
C � C : {} → {Id=}.

Decidability can be reobtained by requiring any regular languages occurring
in PFDs to be non-empty [19]. However, this restriction does not suffice for the
more general case of PODs.

Theorem 5. The implication problem for DLFDreg is undecidable. This re-
main true when all regular languages occurring in PODs are non-empty.

Proof: (sketch) The above dependency with an empty left-hand side can be
simulated by the order dependency C : Id≤ → {Id=}. The remainder follows
from a reduction of a tiling problem to the implication problem, expanding on
the reduction proposed in [21]. �

3.2 Decidability for Guarded Order Dependencies

To regain decidability, we define a subset of PODs called guarded PODs. In-
tuitively, we require all the PODs appearing in the terminology to be satisfied

On Order Dependencies for the Semantic Web 299

by trees whose nodes are ordered by the ≤ relation top-down and left-to-right
(breadth-first).

Definition 6 (Guarded Order Dependency)
An order dependency D1 � D2 : L≈

1 → L≈
2 is guarded if it satisfies the following

conditions:

1. if = ⊆ ∼ for all Pf∼ ∈ L≈
1 then also = ⊆ ∼ for all Pf∼ ∈ L≈

2 ,
2. if < ⊆ ∼ for all Pf∼ ∈ L≈

1 then also < ⊆ ∼ for all Pf∼ ∈ L≈
2 , and

3. if > ⊆ ∼ for all Pf∼ ∈ L≈
1 then also > ⊆ ∼ for all Pf∼ ∈ L≈

2 ,

where ⊆ denotes set inclusion among the interpretations of the binary relations
denoted by {<, ≤, =, ≥, >}.

For the remainder of the paper, we assume all PODs are guarded. The ramifi-
cation of definition is that guarded order dependencies in a terminology cannot,
on their own, lead to inconsistency. This is in contrast to the general case where,
e.g., � � � : {f<} → {f>} is not satisfiable.

To aid the decision procedure for the guarded case, we simplify terminologies
of DLFDreg implication problems as follows:

Definition 7. A DLFDreg implication problem T |= C is simple if each inclu-
sion dependency in T is of the form D1 � D2 or the form D1 � D2 : L≈

1 → L≈
2 .

In the former case, the dependency is described as pure; in the latter case, the
dependency is called an order dependency.

It is easy to see that unrestricted implication problems can be always reduced to
reasoning w.r.t. simple terminologies only—called simple implication problems:

Lemma 8. Let T be an arbitrary DLFDreg terminology and C an arbitrary
subsumption constraint. Then there is a simple terminology T ′ such that T |= C
if and only if T ′ |= C.

Proof: (sketch) T ′ introduces additional primitive concept descriptions to
name subconcepts on the right-hand sides of concept descriptions in T . �

For each simple DLFDreg implication problem T |= C, we define a correspond-
ing DLFreg satisfiability problem. There are two cases to consider depending
on C.

Pure Posed Questions. For simple terminologies that use guarded ordered
dependencies only and for a pure constraint C, the logical implication problem
can be reduced to the implication problem that does not involve ordered depen-
dencies:

300 D. Toman and G. Weddell

Lemma 9. Let T be a simple DLFDreg terminology and C a pure inclusion
dependency. Also let T ′ be the set of all pure inclusion dependencies in T . Then
T |= C if and only if T ′ |= C.

Proof: Consider a tree model of T ′∪{¬C} with nodes ordered by their breadth-
first traversal number. This model satisfies all (possible) guarded order depen-
dencies, hence it is a model of T ∪ {¬C}. The other direction is immediate as
T ′ ⊆ T . �

The decidability of this problem is then an immediate consequence of the fol-
lowing proposition, since T ′ is a DLFreg terminology.

Proposition 10 ([19]). The implication problem for DLFreg is decidable and
complete for EXPTIME.

In addition, whenever T �|= D � D′, there is a F -tree with nodes labeled by
sets of concept descriptions that serves as a model of T and whose root label
contains the concepts D and ¬D′.

General Posed Questions. Due to the undecidability issues connected with
allowing order dependencies in the scope of negation, it is not possible to ex-
press a negation of a posed question as a concept description. We develop an
alternative solution, based on construction in [8,24]. We introduce the solution
by an example.

Example 11. Consider a terminology T and a posed question of the form D �
D′ : L≈

1 → L≈
2 . To falsify such an order dependency, two objects are needed,

one in the interpretation of D and another in the interpretation of D′. Hence,
by Lemma 9, both D and D′ must be satisfiable with respect to T ′, the pure
part of T . Note that the two models witnessing the satisfiability of D and D′,
if they exist, are F -trees that differ only in the labeling of nodes by concept
descriptions.

To simulate the two models and the effects of the posed question using only
a single F -tree, we define a DLFreg terminology consisting of the following
components that simulate the effects of the original assertions in this new inter-
pretation:

– T ′
1 and T ′

2 , that are two copies of T ′ in which all primitive concept descrip-
tions C have been renamed to C1 and C2, respectively;

– T1,2, that captures the effects of order dependencies in T on the two inter-
pretations. These effects are captured by auxiliary primitive concept descrip-
tions Aux∼1,2 and DLFreg constraints of the form

((D1 � D′
2) � (D′

1 � D2)) � (∀L<
1 .Aux<

1,2) � . . . � (∀L>
1 .Aux>

1,2) �
(∀L<

2 .Aux<
1,2) � . . . � (∀L>

2 .Aux>
1,2)

On Order Dependencies for the Semantic Web 301

�������	A

f

��

�������	B

f

��

�
� �

�
�
�� �

f

���
�
�

�������	

f

����
��
��
��
��
��
��
�� g

���
��

��
��

�
�������	C′

f

����
��
��
��
��
��
��
�� g

���
��

��
��

�
�������	C

f

����
��
��
��
��
��
��
�� g

���
��

��
��

�

�������	

≥

≤

�������	 �������	

�������	

<

>

�������	 �������	

Fig. 2. Counterexample for Example 12

created for each D � D′ : L≈
1 → L≈

2 ∈ T where L≈
i = L<

i ∪ . . . ∪ L>
i is a

partition of L≈
i according to the order predicate associated with the indi-

vidual words (and for i = 1, 2). Intuitively, membership in Aux∼1,2 concepts
stands for the ∼ relationship between corresponding objects in the two tree
interpretations that are encoded by this model.

– A terminology A of auxiliary assertions that govern the interactions of the
Aux∼1,2 concepts in accordance with the axioms of linear order. In addition,
assertions governing the existence of nodes in the copies of the tree are also
included here (e.g., the fact that in an actual counterexample, such as the
one in Figure 2, the rightmost root node is not necessarily present).

Counterexamples to the posed question D � D′ : L≈
1 → L≈

2 are then captured
as objects satisfying the concept

D1�D′
2�(∀L<

1 .Aux<
1,2)�. . .�(∀L>

1 .Aux>
1,2)�¬((∀L<

2 .Aux<
1,2)�. . .�(∀L>

2 .Aux>
1,2)).

Hence the logical implication is reduced to concept satisfiability w.r.t. a modified
terminology.

However, allowing arbitrary DLFDreg inclusion dependencies as posed ques-
tions, e.g., in which order dependencies occur within other positive concept con-
structors, involves an additional construction which extends an earlier form used
in the simpler case of path-functional dependencies [21]:

Example 12. A counterexample to the constraint

A � (B : {ff<} → {fg<}) � ∀{f}.(C : {f>} → {g>})

302 D. Toman and G. Weddell

is shown in Figure 2. Observe with this case that the distinct C object must
occur at different levels when compared to an A-rooted forest. Such a coun-
terexample, however, cannot be constructed in the presence of a terminology
{B � ∀{f}.C, C � C : {f>} → {g>}}. Hence the example posed question is a
logical consequence of this terminology.

The examples suggest a need for multiple root objects in counterexample inter-
pretations, with the roots themselves occurring at different levels. Our overall
strategy is to therefore reduce a logical implication problem to a negation of a
consistency problem in an alternative formulation in which objects in a satisfying
counterexample denote up to � possible copies in a counterexample interpretation
for the original problem, where � is the number of occurrences of PODs in the
posed question.

To encode this one-to-many mapping of objects, we require a general way to
have � copies of concepts occurring in a given membership problem. We therefore
write Di to denote the concept description D in which all primitive concepts C
are replaced by Ci. For a simple terminology T we then define

T i = {Ndi � Di � Ei | D � E ∈ T pure}, and

T i,j = {Ndi � Ndj � Di � D′
j � (�

L∼
1 ⊆L≈

1

∀L∼
1 .Aux∼0,i) � (�

L∼
2 ⊆L≈

2

∀L∼
2 .Aux∼0,i),

Ndi � Ndj � Dj � D′
i � (�

L∼
1 ⊆L≈

1

∀L∼
1 .Aux∼0,i) � (�

L∼
2 ⊆L≈

2

∀L∼
2 .Aux∼0,i)

| D � D′ : L≈
1 → L≈

2 ∈ T }.

For a concept description E we define

ToCon(E) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0 if E (= D) is POD free,

ToCon(E1) � ToCon(E2) if E = E1 � E2,

ToCon(E1) � ToCon(E2) if E = E1 � E2,

∀L.ToCon(E1) if E = ∀L.E1, and

¬(Ndi � Di � (�
L∼

1 ⊆L≈
1

∀L∼
1 .Aux∼0,i)) � (�

L∼
2 ⊆L≈

2

∀L∼
2 .Aux∼0,i)

otherwise, when E = D : L≈
1 → L≈

2

where i in the last equation is the index of the POD in the original posed
question.

In the above, we have introduced primitive concepts Aux∼i,j , 0 ≤ i �= j ≤ �, to
express that the ith and jth object copies are related by ∼, and Ndi, 0 ≤ i ≤ �,
to assert that the ith copy exists. The following auxiliary sets of constraints are
therefore defined to account for the axioms of equality and of linear orders, and
for the fact that features in DLFDreg denote total functions.

On Order Dependencies for the Semantic Web 303

A(�) = {Aux∼i,j � Aux∼j,k � Aux∼i,k | 0 ≤ i < j < k ≤ � }
∪ {Aux<

i,j � Aux=
i,j � ⊥, Aux<

i,j � Aux>
i,j � ⊥,

Aux=
i,j � Aux>

i,j � ⊥ | 0 ≤ i �= j ≤ � }
∪ {� � Aux<

i,j � Aux=
i,j � Aux>

i,j | 0 ≤ i �= j ≤ � }
∪ {Aux=

i,j � Aux=
j,i, Aux<

i,j � Aux>
j,i | 0 ≤ i �= j ≤ � }

∪ {Aux≤i,j � Aux<
j,i � Aux=

i,j ,

Aux=
i,j � Aux≤i,j , Aux<

i,j � Aux≤i,j | 0 ≤ i �= j ≤ � }
∪ {Aux≥i,j � Aux>

j,i � Aux=
i,j ,

Aux=
i,j � Aux≥i,j , Aux>

i,j � Aux≥i,j | 0 ≤ i �= j ≤ � }
∪ {(Aux=

i,j � Ci) � Cj | 0 ≤ i �= j ≤ � and C a primitive concept}
∪ {Aux=

i,j � ∀f.Aux=
i,j | 0 ≤ i �= j ≤ � and f ∈ F a primitive feature}

∪ {Ndi � ∀f.Ndi | 0 ≤ i ≤ � and f ∈ F a primitive feature}

Theorem 13. Let T be a simple terminology and D � E an inclusion depen-
dency containing � occurrences of the POD concept constructor. Then T |= D �
E if and only if

(
⋃

0≤i≤�

Ti) ∪ (
⋃

0≤i<j≤�

Ti,j) ∪ A(�) |= (Nd0 � D0 � ¬ToCon(E)) � ⊥.

Proof: (sketch) Given an interpretation I such that I |= T and I �|= D � E
we construct an interpretation J as follows. First, in the construction, we use a
many-to-one map δ : ΔI → ΔJ to associate objects in I with those in J . The
range of δ serves as the domain of the interpretation J . For the counterexample
object o ∈ (D �¬E)I we set δo ∈ (Nd0)J . Then, for all o ∈ Δ and 0 ≤ i �= j ≤ �
we define the map δ and the interpretation I as follows:

– δo ∈ (Ndi)J ∧ (f)I(o) = o′ ⇒ δo′ ∈ (Ndi)J ∧ (f)J (δo) = δo′,
– δo ∈ (Ndi)J ∧ o ∈ (D)I ⇒ δo ∈ (D)J for D a POD free concept,
– δo = δo′ ∧ δo ∈ (Ndi)J ∧ δo′ ∈ (Ndj)J ∧ (Pf)I(o) ∼ (Pf)I(o′) ⇒ δo ∈

(Aux∼i,j)
J , and

– δo ∈ (Ndi)J ∧ o �∈ (D : L≈
1 → L≈

2)I where D : L≈
1 → L≈

2 is the i-th POD
constructor in E. Thus there must be o′ ∈ Δ such that o′ ∈ (D)I and
the pair o, o′ falsifies the POD; we set δo = δo′ and δo′ ∈ (¬(Ndi � Di �
(�L∼⊆L≈

1
∀L∼.Aux∼0,i)) � (�L∼⊆L≈

2
∀L∼.Aux∼0,i))

J .

Note that, due to the syntactic restrictions imposed on the uses of POD con-
structors, a complement of an POD can be enforced only in the counterexample
of the description E. Spurious occurrences of negated PODs in the interpretation
I are therefore ignored as the interpretation itself satisfies all PODs in T .

304 D. Toman and G. Weddell

It is easy to verify that δo ∈ (Nd0 � D0 � ¬ToCon(E))J for o ∈ (D � ¬E)I .
By inspecting all inclusion dependencies in T we have J |= Ti as I |= T .
Furthermore, the construction of J enforces J |= A(�).

On the other hand, given a tree-shaped interpretation J of (Nd0�D0�ToCon(E))
that satisfies all assertions in

(
⋃

0≤i≤�

Ti) ∪ (
⋃

0≤i<j≤�

Ti,j) ∪ A(�),

we construct an interpretation I of T that falsifies D � E as follows:

– ΔI = {(o, i) : o ∈ (Ndi)J , 0 ≤ i ≤ � and o �∈ (Aux=
j,i)J for any 0 ≤ j < i},

– (f)I((o, i)) = (o′, j) whenever (f)J (o) = o′ where j is the smallest integer
such that o ∈ (Aux=

j,i)
J if such value exists and i otherwise; and

– (o, i) ∈ (D)I whenever (o, i) ∈ ΔJ and o ∈ (Di)J .

The values (o, i) ∈ ΔJ are ordered by the breadth-first number of o in I and
then consistently with the interpretation of the Aux∼i,j descriptions in I.

It is easy to verify that (o, 0) falsifies D � E whenever o belongs to (Nd0 � D0 �
¬ToCon(E)), and such an object must exist by our assumptions. Also, I |= T ,
as otherwise by cases analysis we get a contradiction with J |= (

⋃
0≤i≤� Ti) ∪

(
⋃

0≤i<j≤� Ti,j) ∪ A(�). �

Corollary 14. The implication problem for guarded DLFDreg is decidable and
EXPTIME-complete.

Proof: Follows immediately from Proposition 10 and Theorem 13 above. �

4 Summary

In this paper, we have explored the possibility of adding a very general form
of equality and order generating dependencies based on regular languages to
Web ontology languages deriving from description logics. In particular, we have
introduced a description logic dialect called DLFDreg that incorporates such
dependencies as a new concept constructor, and have explored the computational
properties of the associated implication problems.

4.1 Remaining Issues and Open Problems

The negative results that relate to the possibility of admitting nominals to
DLFDreg is unfortunate indeed [21], since OWL DL requires this ability. An
important open problem is to devise other restrictions on the PODs concept

On Order Dependencies for the Semantic Web 305

constructor or on occurrences of this constructor in an implication problem that
allows effective reasoning in the presence of nominals.

Another direction of research leads towards tractable dialects. Again, prelim-
inary investigations suggest that there might be a polynomial time procedure
for the implication problem for a fragment of DLFDreg that excludes nega-
tion, disallows defined concepts, and requires ordering concepts that occur in
terminologies to satisfy a syntactic condition similar to the regularity condition
in [10].

References

1. Baudinet, M., Chomicki, J., Wolper, P.: Constraint-generating dependencies. J.

Comput. Syst. Sci. 59(1), 94–115 (1999)
2. Biskup, J., Polle, T.: Decomposition of Database Classes under Path Functional

Dependencies and Onto Constraints. In: Foundations of Information and Knowl-

edge Systems, pp. 31–49 (2000)
3. Biskup, J., Polle, T.: Adding inclusion dependencies to an object-oriented data

model with uniqueness constraints. Acta Informatica 39, 391–449 (2003)
4. Borgida, A., Weddell, G.: Adding Uniqueness Constraints to Description Log-

ics (Preliminary Report). In: International Conference on Deductive and Object-

Oriented Databases, pp. 85–102 (1997)
5. Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification Constraints and Func-

tional Dependencies in Description Logics. In: Proc. of the 17th Int. Joint Conf.

on Artificial Intelligence (IJCAI), pp. 155–160 (2001)
6. De Haan, D., Toman, D., Weddell, G.: Rewriting Aggregate Queries using Descrip-

tion Logics. In: Description Logics 2003, pp. 103–112. CEUR-WS vol.81 (2003)
7. Ginsburg, S., Hull, R.: Order Dependency in the Relational Model. TCS 26, 149–

195 (1983)
8. Ito, M., Weddell, G.: Implication Problems for Functional Constraints on

Databases Supporting Complex Objects. Journal of Computer and System Sci-

ences 49(3), 726–768 (1994)
9. Khizder, V.L., Toman, D., Weddell, G.: Reasoning about Duplicate Elimination

with Description Logic. In: Rules and Objects in Databases (DOOD, part of

CL’00), pp. 1017–1032 (2000)
10. Khizder, V.L., Toman, D., Weddell, G.: On Decidability and Complexity of De-

scription Logics with Uniqueness Constraints. In: International Conference on

Database Theory ICDT’01, pp. 54–67 (2001)
11. Lutz, C., Areces, C., Horrocks, I., Sattler, U.: Keys, Nominals, and Concrete Do-

mains. In: Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI), pp.

349–354 (2003)
12. Lutz, C., Milicic, M.: Description Logics with Concrete Domains and Functional

Dependencies. In: European Conference on Artificial Intelligence (ECAI), pp. 378–

382 (2004)
13. Resource Description Framework (RDF), http://www.w3.org/RDF/
14. Sattler, U., Calvanese, D., Molitor, R.: Relationships with other formalisms. In: The

Description Logic Handbook: Theory, Implementation, and Applications, vol. 4, pp.

137–177. Cambridge University Press, Cambridge (2003)

http://www.w3.org/RDF/

306 D. Toman and G. Weddell

15. SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/
16. Stanchev, L., Weddell, G.: Index Selection for Embedded Control Applications

using Description Logics. In: Description Logics 2003, vol. 81, pp. 9–18. CEUR-

WS (2003)

17. Toman, D., Weddell, G.: On Attributes, Roles, and Dependencies in Description

Logics and the Ackermann Case of the Decision Problem. In: Description Logics

2001, vol. 49, pp. 76–85. CEUR-WS (2001)

18. Toman, D., Weddell, G.: Attribute Inversion in Description Logics with Path Func-

tional Dependencies. In: Description Logics 2004, vol. 104, pp. 178–187. CEUR-WS

(2004)

19. Toman, D., Weddell, G.: On Reasoning about Structural Equality in XML: A

Description Logic Approach. Theoretical Computer Science 336(1), 181–203 (2005)

20. Toman, D., Weddell, G.: On the Interaction between Inverse Features and Path-

functional Dependencies in Description Logics. In: Proc. of the 19th Int. Joint

Conf. on Artificial Intelligence (IJCAI), pp. 603–608 (2005)

21. Toman, D., Weddell, G.: On Keys and Functional Dependencies as First-Class

Citizens in Description Logics. In: Proc. of the Third Int. Joint Conf. on Automated

Reasoning (IJCAR), pp. 647–661 (2006)

22. Web Ontology Language (OWL) (2004), http://www.w3.org//OWL/
23. Weddell, G.: A Theory of Functional Dependencies for Object Oriented Data Mod-

els. In: International Conference on Deductive and Object-Oriented Databases, pp.

165–184 (1989)

24. Weddell, G.: Reasoning about Functional Dependencies Generalized for Semantic

Data Models. TODS 17(1), 32–64 (1992)

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org//OWL/

Collection Type Constructors in

Entity-Relationship Modeling

Sven Hartmann and Sebastian Link�

Information Science Research Centre, Massey University, New Zealand
{s.hartmann,s.link}@massey.ac.nz

Abstract. Collections play an important part in everyday life. There-
fore, conceptual data models should support collection types to make
data modeling as natural as possible for its users. Based on the funda-
mental properties of endorsing order and multiplicity of its elements we
introduce the collection types of rankings, lists, sets and bags into the
framework of Entity-Relationship modeling. This provides users with
easy-to-use constructors that naturally model different kinds of collec-
tions. Moreover, we propose a transformation of extended ER schemata
into relational database schemata. The transformation is intuitive and
invertable introducing surrogate attributes that preserve the semantics
of the collection. Furthermore, it is a proper extension to previous trans-
formations, and results in a relational database schema that is in Inclu-
sion Dependency Normal Form. In addition, we introduce a uniqueness
constraint that identifies collections uniquely and guarantees referential
integrity at the same time.

1 Introduction

The Entity-Relationship (ER) model has evolved into one of the most popular
conceptual data models since its introduction in the late 1970s [5]. It is estab-
lished as an excellent communication tool between systems analysts, database
designers, managers and potential database users during the crucial process of
identifying user information requirements. The ER model provides a well-defined
semantics that is vital for a successful implementation of the information system
under consideration, and offers modeling features that very much resemble the
structure of natural languages [8].

Complex application domains, such as CAD/CAM, meta-modeling, hyper-
media, office automation and life sciences, have resulted in the introduction of
extended ER features [16,18]. These aim at providing natural modeling capabil-
ities that adequately reflect complex object types that are inherent in everyday
life activities. The most popular of these modeling constructors are the tuple and
cluster constructor that represent aggregation and disjoint union [6,18]. Other
kinds of very common complex objects are collections such as lists, sets, and

� This research is supported by the Marsden Fund Council from Government funding,
administered by the Royal Society of New Zealand.

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 307–322, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

308 S. Hartmann and S. Link

bags. Such constructors are present in many other data models including se-
mantic data models [9], the nested relational data model [13], object-oriented
data models [2], semi-structured data models [1] and XML [4], as well as sequence
data models [11] and spatio-temporal data models [15]. In order to serve as a
conceptual data model for these various approaches it is essential that the ER
model supports these constructors in such a way that users are able to naturally
take advantage of these extended capabilities. A further motivation to incorpo-
rate collection types into the framework of ER modeling is that they represent
very often the modeling counterpart of plurals in natural languages [8].

Contributions. Since different types of collections do occur in everyday life
conceptual data models should directly support the modeling of collections.
Therefore, we introduce collection type constructors into the formal framework
of Entity-Relationship modeling. Our constructors have a well-defined seman-
tics and are very simple to utilise. Indeed, a collection type U has just a single
object type component C that can model either finite lists, sets or bags of ob-
jects over C. The popularity of the ER model in the conceptual design phase is
mainly due to its well-defined, intuitive and simple-to-use features. We strongly
believe that our collection type constructors extend and enhance these charac-
teristics further. In order to implement the conceptual design the conceptual
database schema is usually mapped to a logical schema. The question is then
how to map collection types and collections to object types and objects, respec-
tively, of the logical data model. Our second objective is to address this question
for the relational model of data which is still the de-facto standard model for
most commercial database systems. While there are many different ways of im-
plementing such a transformation our choice has several distinctive features: i)
it extends the standard transformation of ER schemata [3,6,18] to relational
database schemata to encompass collection types; ii) it is invertable preserv-
ing the semantics inherent in the collections at hand by introducing surrogate
attributes that describe the membership relation of objects and collections, the
position of an object within a list, and the multiplicity of an object within a bag;
iii) the resulting relational database schema is in Inclusion Dependency Normal
Form with respect to its functional and inclusion dependencies [10]. Finally, we
propose an additional constraint that uniquely identifies collections within the
relational database, and guarantees referential integrity at the same time.

Related Work. Complex-value databases have been studied extensively in the
database literature [13], and we do not attempt to cite every work. It is there-
fore surprising that relatively little work has been done on extending the ER
approach in this direction. Although nested attributes (multivalued attributes)
have been introduced on the attribute level [14,16,18] the term collection type
usually refers only to set-valued attributes. While tuple and cluster construc-
tors are well-known features of ER modeling [18] collection constructors have
not been properly investigated yet. This restricts the modeling capabilities un-
necessarily, as we will demonstrate in this paper. Modeling collections has been
discussed in other data models such as UML and ORM [7] but there is no provi-

Collection Type Constructors in Entity-Relationship Modeling 309

sion of direct constructors for different collections. Instead, an annotation of the
conceptual schema is proposed that guides the mapping process from conceptual
to lower levels. In sharp contrast, our approach provides constructors for directly
modeling collections, and our invertable transformation automatically encodes
the structural properties of these collections into the relational database schema.
It is therefore different from a simple flattening of complex structures. An alter-
native approach to modeling collections [17] encodes the structural properties
of collections within an extensional uniqueness constraint. Our proposed trans-
formation automatically derives a single constraint that identifies collections
uniquely and guarantees referential integrity at the same time. Thus, the struc-
tural properties of collections are directly modeled on the conceptual model, and
our transformation automatically encodes their distinctive properties on the log-
ical level. It is therefore our strong belief that collection type constructors are
very natural and useful features that increase the modeling capabilities of the
ER approach without complicating the underlying theory.

2 Entity-Relationship Modeling

Since we intend to introduce new constructors into the ER framework, and since
many different ER models do exist we will use this section to provide a common
framework and to fix the semantics of the basic ER data model [5] and many of
its extensions [3,6,18].

Entity Types. An entity type E = (attr(E), id(E)) consists of a name E, a finite
and non-empty set of attributes attr(E) such that each attribute A ∈ attr(E)
has a domain dom(A), and a key id(E) ⊆ attr(E) whose elements are called
key attributes. An entity over E is a mapping e : attr(E) → ⋃

A∈attr(E)
dom(A)

such that e(A) ∈ dom(A) holds for all A ∈ attr(E). An entity set Et over E is a
finite set of entities over E that satisfy the unique key value property, i.e., for all
e1, e2 ∈ Et with e1(A) = e2(A) for all A ∈ id(E) we must have e1 = e2. We use
ent(E) to denote the set of all entities of an entity type E. We do not consider
weak entity types due to their lack of a formal foundation and the problems
caused by the identification of weak entities [18, pp.34-38].

Example 2.1. We can specify an entity type Client as follows: its attribute
set is attr(Client) = {Name, Birthday, Address, Phone} with domain assign-
ment dom(Name)=STRING, dom(Birthday)=DATE, dom(Address)=STRING,
and dom(PHONE)=NUMBER. The key attributes of Client are id(Client) =
{Name, Birthday}. An entity set may consist of the following three clients:

(John Fox, 08/08/1980, 88 Main Street, 3508888),
(John Fox, 02/12/1967, 23 Te Awe Awe, 3539465), and

(Lisa Hunter, 02/12/1967, 7 Park Ave, 356 1154).

Note that none of these clients has the same values on all key attributes. ��

310 S. Hartmann and S. Link

Relationship Types. A relationship type R = (comp(R), attr(R), id(R)) con-
sists of a name R, a finite, non-empty set of components comp(R), a finite
set of attributes attr(R) such that each attribute A ∈ attr(R) has a domain
dom(A), and a key id(R) ⊆ comp(R) ∪ attr(R) whose elements are called key
components and key attributes, respectively. A relationship over R is a map-
ping r : comp(R) ∪ attr(R) → ⋃

E∈comp(R)
ent(E) ∪ ⋃

A∈attr(E)
dom(A) such that

r(E) ∈ ent(E) for all E ∈ comp(R) and r(A) ∈ dom(A) for all A ∈ attr(E).
A relationship set Rt over R is a finite set of relationships over R that satisfy
the unique key value property, i.e., for all r1, r2 ∈ Rt with r1(X) = r2(X) for
all X ∈ id(R) we must have r1 = r2. We refer to entity and relationship types
jointly as object types. Note that we use set semantics to describe relationships
[18]. At the moment, comp(R) consists of entity types only. However, we will
discuss other options for components shortly.

Example 2.2. Let Copy=({CopyNo,Title,Year,Director},{CopyNo}) be an en-
tity type and let Rental=({Client,Copy}, {RentalDay, DueDay},{Copy,
RentalDay}) be a relationship type. The two relationships

((John Fox,08/08/1980,88 Main Street,3508888),(001.001,The
Godfather,F.F.Coppola, 1972),04/01/2007,06/01/2007),

((John Fox,02/12/1967,23 Te Awe Awe,3539465),(001.002,The
Godfather,F.F.Coppola, 1972),05/01/2007,06/01/2007).

form a relationship set over Rental. ��

Relationship Types with Role Names. It may well occur that a relation-
ship type must be used to model relationships between objects of the same
component. In order to avoid confusion we associate distinct role names with
the components. Role names can also be utilised to improve the readability of the
ER diagram. As an example, we may specify the relationship type Descendant

with components comp(Descendant) = {Child : Client, Parent : Client},
an empty attribute set and key id(Descendant) = comp(Descendant).

Specialisation and Generalisation. Sometimes, objects in the target of the
database can be represented by more than just a single abstract concept. The
idea to derive a subtype from a more general supertype is known as specialisa-
tion. A subtype inherits all features of its supertype, but often adds some new
properties. A subtype U may be modelled as a unary relationship type whose
single component is just its supertype C. Clearly, U may have some additional
attributes, and we may use C as the key for U , i.e. U = ({C}, attr(U), {C}).
Note that every object of type C gives rise to at most one object of type U .

Occasionally, it is desirable to model alternatives, e.g., having a relationship to
various kinds of objects. The idea to derive a new abstract concept that is more
general than several other abstract concepts is known as generalisation. A cluster
type U consists of a finite, non-empty set comp(U) of components C1, . . . , Cn,
normally n ≥ 2. We denote this cluster type by C1 ⊕ · · · ⊕ Cn. Clusters model

Collection Type Constructors in Entity-Relationship Modeling 311

disjoint unions, i.e., an object set I(U) associated with a cluster type U is the

disjoint union of its component’s object sets I(U) =
n⋃

i=1
{(i, o) | o ∈ I(Ci)}.

Higher-Order Relationship Types. So far, we have only allowed entity types
to occur as components of relationship types. However, best practice suggests to
allow also relationship types and cluster types to occur as components of another
relationship type. For convenience, we call these kinds of types jointly object
types. Entity types are object types without components while all other object
types have at least one component. We need to ensure that the components of
an object type are well-defined. For that we assign an order to each object type.
Let U be an object type with component set comp(U). The order of U is 0 if
U is an entity type, and k if all components of U have order less than k and at
least one of its components has order k −1. It is simple to extend the definitions
of relationship and relationship set, correspondingly [18].

An Entity-Relationship schema (ER schema) is a finite set S of object types
such that for each object type U in S and each of its components C or p : C in
comp(U) we have that the object type C belongs to S as well. An instance I of
an ER schema S assigns each object type U in S an object set I(U) such that
for each relationship type or cluster type U in S, for each of its components C
or p : C, and for each object o ∈ I(U) we have that o(C) or o(p : C) belongs
to I(C). An Entity-Relationship diagram (ER diagram) of an ER schema S is
a directed graph with the elements of S as nodes, and with edges from a node
U to a node C for all components C ∈ comp(U), and edges from node U to
node C labelled with p for all components p : C ∈ comp(U). An example of an
ER-diagram is given in Figure 1.

Nested Attributes. Due to lack of space we will not go into details concerning
the treatment of nested attributes [14,16,18].

3 Syntax, Semantics and Examples of Collection Types

In database practice it becomes often desirable to model collections of objects.
For example, a course might be taught by more than a single lecturer and the
readings of this course may consist of a ranking of books. In such cases it is
advantageous to have an abstract concept modeling a finite collection of objects
of the same type. That is, we would like to derive a new object type from a given
one by applying some kind of collection constructor. On the basis of endorsing
an order between elements of a collection and/or multiplicity of elements within
a collection we can naturally distinguish between four kinds of collections:

1. lists in which duplicates are allowed and order matters,
2. sets in which duplicates are not allowed and order does not matter,
3. bags in which duplicates are allowed and order does not matter, and
4. rankings (also known as ordered sets) in which duplicates are not allowed

and order does matter.

312 S. Hartmann and S. Link

A list-,set-,bag- or ranking-type U has a single component C, i.e. comp(U) =
{C}. We use the following notation for collection types: double brackets allow
duplicates while single brackets disallow duplicates. We write {·} to represent
the absence of order, and [·] to represent its presence. Consequently, we denote
a list type by U [[C]], a set type by U{C}, a bag type by U{{C}} and a ranking
type by U [C], respectively. We write U(C) to refer to a collection type without
emphasising its particular type, i.e., (·) denotes one of the four collection brack-
ets. The object set I(U) associated with a collection type U(C) is just a set of
finite lists (sets, bags, or rankings, respectively) of objects in I(C). The key of
a collection type U(C) is the collection type U(C) itself: to identify any collec-
tion within a set I(U) of collections we need to know the collection. Collection
types are visualised using a circle around the corresponding bracket and draw-
ing a (labelled) edge to its component. Figure 1 shows an example. An object
type may now refer to an entity, relationship, cluster or collection type, and an
object to an entity, relationship or a collection. The definitions of higher-order
relationship type, ER schema and ER diagram carry over. For an instance I of
an ER schema S we add the requirement that for each collection type U in S,
and for its single component C or p : C, for each collection O ∈ I(U) we have
that every o ∈ O belongs to I(C). Note that this does not add any additional
requirement for the empty collection in I(U).

Examples of Rankings. An object of a ranking type U [C] is a finite ranking
of C-objects, i.e., the C-objects in the ranking are totally orderded and the
same C-object cannot occur more than once in the same ranking. Examples in
which ranking types are useful modeling constructs can be found in everyday life.
As a simple example consider an entity type Website with attributes Name,
Contents, URL and Size. The key of Website is simply URL. The result of a
web-search can then be modelled by a ranking of websites, i.e., we define the
ranking type WebSearch[Website].

Examples of Lists. An object of a list type U [[C]] is a finite list of C-objects, i.e.,
the C-objects in the list are totally orderded and the same C-object may occur
repeatedly in the same list. A very simple example is a bit sequence in which we
have an entity type Bit with a single (key) attribute value with domain {0, 1}.
The list type Sequence[[Bit]] models all finite lists of bits, i.e., 0, 1-values.

Examples of Sets. An object of a set type U{C} is a finite set of C-objects,
i.e., the C-objects in the set occur precisely once and there is no order be-
tween them. The set type is significant whenever there is no preference be-
tween the elements and only the occurrences of distinct elements matter. For
instance, one may be interested in the collection of all distinct articles a cus-
tomer bought, or the collection of all students a professor has supervised. As
a simple example we look at profiles of customers that purchase MP3s. In this
particular case customers will not buy the same MP3 more than once (since
they can copy it afterwards). Moreover, the order in which the customer se-
lects the MP3s of a single purchase is not of interest. We may obtain the en-
tity type MP3=({song,artist,album,genre},{song,artist}), and the relationship

Collection Type Constructors in Entity-Relationship Modeling 313

type Player with component set {Customer,Order{MP3}}, attribute set
{day,price} and key {Customer,Order{MP3},day}.

Examples of Bags. An object of a bag type U{{C}} is a finite bag of C-objects,
i.e., a C-object in the bag may occur repeatedly but there is no order between
them. A simple example for using bag types are shopping profiles in which cus-
tomers buy articles. The emphasis in this example is on the total price of the
purchase. It therefore matters how many times the same article is purchased.
We may use an entity type Product with attributes p-ID, name, description
and price where p-ID forms the key, and a relationship type Shopping with
components Customer and bag type Bag{{Product}}, attributes time and
type-of-payment, and key {Customer,time}.

An Example. Consider the following ER schema of a university example:

– Academic=({Name, Phone, Office}, {Name}),
– Book=({ISBN, Price, Title}, {ISBN}),
– Course=({No, Title}, {No}),
– Staff{Academic}, Readings[Book]
– Teaching=({Course,Lecturers:Staff,Tutors:Staff,Readings},{Year},

{Course,Lecturers:Staff,Year})

Note that the key on Teaching says that in every year the same course can-
not be taught by the same set of lecturers. The corresponding ER diagram is
illustrated in Figure 1.

EACHINGT
READINGS

OOKBCOURSE

PhoneOffice
No Title

ISBN

TitleName

{ }
STAFF

[]

Year

Price

ACADEMIC

Tutors

Lecturers

Fig. 1. ER diagram

4 Transformation to the Relational Model

An ER schema is the result of the conceptual design phase and serves as input for
the following design steps, in particular the logical design phase. The framework
of the latter is the relational model of data (RDM). Therefore, one needs to
transform an ER schema with its abstract concepts into an RDM schema that
uses flat relation schemata only. While the collection type constructors provide
simple-to-use modeling features the transformation will actually reveal how these
features can be implemented in relational tables. Our transformation does not
simply flatten any nested structures but preserves the structural properties of
collections, and makes therefore the mapping invertable.

314 S. Hartmann and S. Link

4.1 Notions from the Relational Model of Data

In order to describe our transformation for collection types we will repeat fun-
damental notions from the RDM and summarise the transformation of object
types different from collection types. This will also illustrate how neatly our
extension fits into the current framework, and how the modeling capabilities
extend without changing much of the underlying theory.

Let D denote a set of domains, i.e., a set of countably infinite sets. A relation
schema R consists of a finite set attr(R) of attributes and a domain assignment
dom : attr(R) → D. A tuple over a relation schema R (for short: an R-tuple)
is a mapping t : attr(R) → ⋃

D∈D
D with t(A) ∈ dom(A) for all A ∈ attr(R). A

relation over a relation schema R is a finite set r of R-tuples. For X ⊆ R let
t[X] denote the projection of t on X . A relational database schema is a finite,
non-empty set S of relation schemata. An instance I of a relational database
schema S assigns to each R ∈ S a relation I(R) over R. A key on a relation
schema R is a subset K ⊆ attr(R) restricting relations r over R to satisfy
t1[K]
= t2[K] for all t1, t2 ∈ r. A key K is called minimal if and only if no
proper subset of K is a key. A foreign key on a relation schema R in a schema
S is a sequence of attributes A1, . . . , An ∈ attr(R) together with a minimal key
K = {B1, . . . , Bn} of some relation schema S ∈ S with dom(Ai) = dom(Bi)
(i = 1, . . . , n) restricting instances I of S to satisfy the inclusion dependency
R[A1, . . . , An] ⊆ S[B1, . . . , Bn], i.e., for each tuple t ∈ I(R) there must exist
a tuple t′ ∈ I(S) with t[Ai] = t′[Bi] for all i = 1, . . . , n. We use the notation
[A1, . . . , An] ⊆ S[B1, . . . , Bn] for a foreign key on R.

4.2 Transformation of Entity and Relationship Types

The transformation starts with entity types, and then continues with relationship
types of order 1, then 2 and so on.

An entity type is simply just a different notation of a relation schema. The
transformation is therefore very simple. The entity type E = (attr(E), id(E))
leads to a relation schema E′ with attr(E′) = attr(E). The domain assignment
for the attributes of E and E′ is the same. Furthermore, E leads to a minimal
key id(E) on E′. Consider entity types as relationship types of order 0. For the
entity types of the university example from Figure 1 we obtain

– Academic
′ = {Name, Phone, Office} with minimal key {Name},

– Book
′ = {ISBN, Price, Title} with minimal key {ISBN},

– Course
′ = {No, Title} with minimal key {No}.

Suppose that we have transformed all relationship types of order n, and let
R = (comp(R), attr(R), id(R)) be a relationship type of order n + 1. For each
component S ∈ comp(R) we choose pairwise disjoint sets

k attr(S) = {S.A | A key attribute of S′}
of new attribute names not occurring in attr(R). Similarly, for a component
r : S ∈ comp(R) we choose k attr(r : S) = {r.A | A key attribute of S′}. The
relationship type R results in the new relation schema R′ with

Collection Type Constructors in Entity-Relationship Modeling 315

attr(R′) =
⋃

X∈comp(R)
k attr(X) ∪ attr(R).

For the domain assignment we have dom(S.A) = dom(A), dom(r.A) = dom(A),
and dom(A) remains unchanged for A ∈ attr(R). Furthermore, R leads to the
minimal key

⋃

X∈id(R)∩comp(R)

k attr(X) ∪ (id(R) ∩ attr(R)) on R′

and each component S ∈ comp(R) defines a foreign key

[S.A1, . . . , S.An] ⊆ S′[A1, . . . , An]

on R′. In case of role names each component r : S ∈ comp(R) defines a for-
eign key [r.A1, . . . , r.An] ⊆ S′[A1, . . . , An] on R′. The transformation of an ER
instance into its corresponding relational database instance is straightforward.

4.3 Transformation of Cluster Types

Clusters are used in conceptual design to model alternatives. The RDM does
not provide a similar concept and one therefore transforms ER schemata with
clusters into equivalent ER schemata without clusters [18]. This is only necessary
as a pre-processing step before the actual transformation takes place. In general,
clusters provide a convenient way to model objects in the target of the database.
We do not recommend to avoid clusters as the size of an ER schema increases
dramatically, and will therefore become much harder to comprehend.

4.4 Transformation of Collection Types

In the following we use U ′ to denote the name of the relation schema that
corresponds to U(C). For each collection type U(C) the set attr(U ′) of attributes
of U ′ contains the set

k attr(C) =
{{C.A | A is key attribute of C′}, if C is not a collection type

{C′
ID}, otherwise.

and an additional surrogate attribute U ′
ID. The attribute U ′

ID identifies col-
lections and, therefore, enables us to associate objects with collections in flat
relations. The domain dom(U ′

ID) is a set of surrogates.
Elements of bags may occur multiple times. Thus, a bag type U{{C}} defines

an additional attribute U ′
Mul in attr(U ′). It accommodates the information on

the multiplicity of a bag’s elements, and its domain is the set of positive integers.
Elements of rankings and lists have a position. Thus, a ranking or list type

U(C) defines an additional attribute U ′
Pos in attr(U ′). It accommodates the

information on the position of an ordered collection’s elements, and its domain
is the set of non-negative integers.

In summary, for each collection type U(C) in the ER schema, a relation
schema U ′ with attributes k attr(C)∪{U ′

ID} is generated. For ordered collection
types this relation schema will also contain an attribute U ′

Pos, and for a bag type
also U ′

Mul. For the collection types of the example from Figure 1 we obtain

316 S. Hartmann and S. Link

– Staff
′ = {Academic.Name, Staff′

ID}, and
– Readings

′ = {Book.ISBN, Readings′ID, Readings′Pos}.

Keys. An ordered collection type U(C) defines the minimal key {U ′
ID, U ′

Pos} on
U ′. That is, a tuple over U ′ is uniquely identified by the collection (the value
in the U ′

ID-column) and the position in this collection (the value in the U ′
Pos-

column). The difference between rankings and lists is that elements in a ranking
uniquely determine the position within the ranking. In a list, however, the same
element may occur in different positions. Thus, ranking types U [C] result in the
specification of a further minimal key, namely k attr(C) ∪ {U ′

ID} on U ′.
A bag type U{{C}} defines the minimal key k attr(C)∪{U ′

ID}. That is, a tuple
over U ′ is uniquely identified by the bag (the value in the U ′

ID-column) and the
values that identify the element of the bag (the values in the k attr(C)-columns).
In other words, every element of every bag has a fixed multiplicity.

A set type U{C} defines the minimal key attr(U ′). That is, a tuple over U ′

can only be uniquely identified by the set (the value in the U ′
ID-column) and the

values that identify the element of the set (the values in the k attr(C)-columns).
This is a consequence of the fact that the same element may occur in different
sets, and different sets may have different elements.

In the university example, the minimal key on Staff
′ is Staff

′ itself, and
the minimal keys on Readings

′ are

{Readings′ID, Readings′Pos} and {Book.ISBN, Readings′ID}.

Foreign Keys. Let U(C) denote an arbitrary collection type. If the object type
C is not a collection type, then C defines a foreign key [C.A1, . . . , C.An] ⊆
C′[A1, . . . , An] on U ′. In the university example, the foreign key on Staff

′ is
[Academic.Name] ⊆ Academic

′[Name], and the foreign key on Readings
′ is

[Book.ISBN] ⊆ Book
′[ISBN].

If C is the collection type V (D), then k attr(C) = {V ′
ID} and V ′

ID uniquely
identifies the collection but not the V ′-tuple since the same V ′

ID-value may be
associated with different D-objects in the V ′-relation (namely with all the ele-
ments of the collection V ′

ID denotes). Consequently, we do not obtain a foreign
key in this case. It is important to note at this point that we also do not specify
the inclusion dependency U ′[V ′

ID] ⊆ V ′[V ′
ID]. The reason for this is the empty

collection. Without the use of null values an empty collection of type U(C)
cannot be modelled in the U ′-relation since empty collections do not have any
elements. However, in the V ′

ID-column of a U ′-relation we may use a surrogate
value to represent the empty collection. This surrogate value cannot occur in the
V ′

ID-column of the V ′-relation. On the other hand, the use of the null value not
exists for k attr(C)-values permits the introduction of a U ′

ID-value for the empty
collection in the U ′-relation. However, no attributes in k attr(C) can then be
used as key attributes, and we would have to deal with incomplete information.
Therefore, we prefer not to represent the empty collection in the U ′-relation.

A Uniqueness Constraint. We will now introduce an additional constraint for
those relation schemata that result from the transformation of collection types.

Collection Type Constructors in Entity-Relationship Modeling 317

The purpose of the U ′
ID attribute is to define the membership of elements in col-

lections and to uniquely identify collections in the relational database instance.
That is, any two U ′

ID-entries in the database instance are the same precisely
when they denote the same collection. In fact, if two different surrogate values
from dom(U ′

ID) occur in any relation, then these surrogate values denote differ-
ent collections of type U(C). That is, there must be a C-object t which separates
the two collections in the U ′-relation. Let S′ denote the relational database
schema obtained from transforming all object types of the ER schema S. The
active domain adomS′(U ′

ID) is the union of all those values from dom(U ′
ID) that

occur in any U ′
ID-column of an R-relation for any R ∈ S′.

∀id1, id2 ∈ adomS′(U ′
ID).(id1
= id2 ⇒ ∃t ∈ ∏

A∈k attr(C)
dom(A).

((id1, t) ∈ U ′[UID, k attr(C)] ∧ (id2, t) /∈ U ′[UID, k attr(C)])∨
((id1, t) /∈ U ′[UID, k attr(C)] ∧ (id2, t) ∈ U ′[UID, k attr(C)])).

By abuse of notation U ′[X] denotes the projection of the U ′-relation to the
attributes in X ⊆ U ′. Our uniqueness constraint really serves two purposes.
Firstly, it guarantees that each collection can be identified uniquely by its sur-
rogate from dom(U ′

ID). Note that this is similar to the extensional uniqueness
constraint, introduced by ter Hofstede et al. [17], which says that two sets are
equal if and only if they have the same extension (i.e. the same elements). Sec-
ondly, our uniqueness constraint guarantees referential integrity over the RDM
schema, i.e., it is a weak inclusion dependency saying that every element from
adomS′(U ′

ID) must also occur in the U ′
ID-column of the U ′-relation or denotes

the empty collection. Notice that the constraint also eliminates the possibility
that the empty collection is denoted by different surrogates. The uniqueness
constraint is specified on the active domain of the U ′

ID attribute in those U ′

that result from a collection type U(C). In the university example we obtain the
following uniqueness constraint on the active domain of Staff′

ID:

∀id1, id2 ∈ adom(Staff′
ID).(id1
= id2 ⇒ ∃t ∈ dom(Academic.Name).

((id1, t) ∈ Staff
′ ∧ (id2, t) /∈ Staff

′) ∨ ((id1, t) /∈ Staff
′ ∧ (id2, t) ∈ Staff

′)).

Accordingly, we can define the uniqueness constraint for the active domain of
Readings′ID.

4.5 Object Types with Collection Type Components

The transformation described in Section 4.2 remains the same in the presence
of collection types in the ER schema S taking into consideration the definition
of k attr(X) from Section 4.4. The only difference is now that a collection type
component U of the relationship type R does not define an inclusion dependency
R′[U ′

ID] ⊆ U ′[U ′
ID] on R′. In fact, the unique surrogate value from adomS′(U ′

ID)
that may violate such an inclusion dependency is treated as if it denotes the
corresponding empty collection. The relationship type Teaching from the uni-
versity example in Figure 1 results in the relation schema Teaching

′ with

318 S. Hartmann and S. Link

– attributes Course.No, Lecturers:Staff′
ID, Tutors:Staff′

ID, Readings′ID, Year,
– minimal key {Course.No, Lecturers:Staff′

ID, Year}, and
– foreign key [Course.No] ⊆ Course

′[No].

Notice that we cannot specify any of the following inclusion dependencies:

– Teaching
′[Lecturers:Staff′

ID] ⊆ Staff
′[Staff′

ID],
– Teaching

′[Tutors:Staff′
ID] ⊆ Staff

′[Staff′
ID],

– Teaching
′[Readings′ID] ⊆ Readings

′[Readings′ID].

Rather than formalising the transformation of collections from the ER in-
stance into flat relations we will use this section to illustrate this mapping by
some examples. Therefore, consider the following, artificially small, ER database
over our university schema.

Course

No Title

157266 Data Modeling

157357 IS Security

Book

Title ISBN Price

ER Modeling 3540654704 138.-

DB Design 0201565234 90.-

Cryptography 0130914290 87.-

Viruses 0471007684 123.-

Academic

Name Office Phone

Sven 2.09 7308

Sebastian 2.10 2717

Ernie 2.33 0077

Bert 2.33 0077

Readings

[3540654704, 0201565234]

[0130914290, 0471007684]

Staff

{Sven, Sebastian}
{Sebastian}
{Ernie,Bert}

∅

Teaching

Course Year Readings Lecturers:Staff Tutors:Staff

157266 2007 [3540654704, 0201565234] {Sven, Sebastian} {Ernie, Bert}
157357 2007 [0130914290, 0471007684] {Sebastian} ∅

This database will be transformed into the following relational database. We omit
the representations of Course

′,Book
′ and Academic

′ since these are just the
same relations as the ones over Course, Book and Academic, respectively.

Readings
′

ISBN Readings′
ID Readings′

Pos

3540654704 1 1

0201565234 1 2

0130914290 2 1

0471007684 2 2

Staff
′

Name Staff′
ID

Sven 2

Sebastian 2

Sebastian 1

Ernie 3

Bert 3

Teaching
′

CourseNo Year Readings′
ID Lecturers:Staff′

ID Tutors:Staff′
ID

157266 2007 1 2 3

157357 2007 2 1 0

Collection Type Constructors in Entity-Relationship Modeling 319

Notice how the nested Staff-relation is represented as Staff
′-relation: every

non-empty set S in the Staff-relation is represented by a unique surrogate nS ∈
dom(Staff′

ID), and for every element e ∈ S the tuple (e, nS) ∈ dom(Name) ×
dom(Staff′

ID) represents this membership in the Staff
′-relation.

Notice that the active domain of Staff′
ID consists of 0, 1, 2, 3 where 0 denotes

the empty set. In fact, the value 0 is the unique surrogate that violates the
inclusion dependency Teaching

′[Tutors:Staff′
ID] ⊆ Staff

′[Staff′
ID].

4.6 Another Example for Mapping Collection Types and Collections

In order to illustrate the transformation for ER schemata in which collection
types are nested we consider the following simple example of an ER schema:

Website=({URL,Name,Size},{URL}), and the two collection types
Search[Website] and Monitor{{Search}}.

Our transformation yields the following relational database schema

– Website
′={URL,Name,Size} with minimal key {URL},

– Search
′ = {Website.URL,Search

′
ID,Search

′
Pos} with

minimal keys {Search
′
ID,Search

′
Pos} and {Website.URL,Search

′
ID},

and foreign key [Website.URL] ⊆ Website
′[URL]

– Monitor
′ = {Search

′
ID,Monitor

′
ID,Monitor

′
Mul} with

minimal key {Search
′
ID,Monitor

′
ID}.

For the database instance level we consider the following ER instance.

Website

URL Name Size

http://www.sigmod.org/ SIGMOD Website 27.9 KB

http://www.acm.org/ ACM Website 26.75 KB

http://www.westwardlook.com/ Westward Website Unknown

Search

[http://www.sigmod.org/,http://www.acm.org/,http://www.westwardlook.com/]

[http://www.sigmod.org/,http://www.westwardlook.com/]

[]

Monitor

{{ [http://www.sigmod.org/,http://www.acm.org/,http://www.westwardlook.com/],
[], [], [], [http://www.sigmod.org/, http://www.westwardlook.com/],

[http://www.sigmod.org/,http://www.westwardlook.com/] }}
{{ [http://www.sigmod.org/,http://www.westwardlook.com/],
[http://www.sigmod.org/,http://www.westwardlook.com/],

[http://www.sigmod.org/,http://www.westwardlook.com/] }}

This ER database can be represented as the following relational database. We
omit the representation of Website

′ since this is just the same relation as the
one over Website.

320 S. Hartmann and S. Link

Search
′

Website.URL Search
′
ID Search

′
Pos

http://www.sigmod.org/ 1 1

http://www.acm.org/ 1 2

http://www.westwardlook.com/ 1 3

http://www.sigmod.org/ 2 1

http://www.westwardlook.com/ 2 2

Monitor
′

Monitor
′
ID Search

′
ID Monitor

′
Mul

1 0 3

1 1 1

1 2 2

2 2 3

Note that the value 0 in the Search
′
ID-column of the Monitor

′-relation de-
notes the empty ranking [] since it is not present in the Search

′
ID-column of

the Search
′-relation. The active domain of Search

′
ID is {0, 1, 2}.

5 Properties of the Transformation

Our transformation enjoys several nice properties. Firstly, it is a proper extension
of the standard transformation for ER schemata that only include relationship
types and cluster types of any order [18].

Secondly, it preserves the semantics of its collection types, i.e., the values
stored on the surrogate attributes that occur in a relation schema permit the
reconstruction of the original collection in a straightforward manner. Basically,
two objects belong to the same collection over I(U) precisely when they have
been assigned the same U ′

ID-value in the U ′-relation. Moreover, the U ′
Pos-value

determines the position of an object in a ranking or a list. Finally, the U ′
Mul-

value denotes the multiplicity of an object within a bag. These properties make
the transformation invertable. However, for a collection type U(C) it cannot be
decided whether the empty collection was an element of I(U) given the corre-
sponding U ′-relation. If U(C) is the component of another object type O and a
surrogate violates the inclusion dependency O′[U ′

ID] ⊆ U ′[U ′
ID], then the unique-

ness constraint tells us that this surrogate represents the empty collection in the
corresponding O′-relation. According to the definition of an ER instance the
empty collection must have been an element of I(U). Mappings from relational
databases to ER databases without collections have been studied previously [12].

Thirdly, some of the semantics of collections is reflected by keys on relation
schemata that result from the transformation. For instance, since every C-object
in a ranking over U [C] determines its position within the ranking we obtain the
functional dependency {U ′

ID} ∪ k attr(C) → U ′
Pos, i.e., U ′

ID and k attr(C) form
a minimal key on U ′. In lists, however, a C-object may occur in several positions
of the list, but the list and the position within this list uniquely determine
the C-object in this position (this is also true for rankings), i.e., {U ′

ID, U ′
Pos}

Collection Type Constructors in Entity-Relationship Modeling 321

forms a minimal key on U ′. Moreover, a bag and its C-object element together
uniquely determine the multiplicity of the C-object, i.e., {U ′

ID}∪k attr(C) forms
a minimal key for U ′. In the special case of a set the multiplicity of an element is
fixed to 1, and therefore there is no need for the surrogate attribute U ′

Mul (this is
a good example for a non-standard functional dependency, namely ∅ → U ′

Mul).
Fourthly, the transformation results in a relational database schema that is

in Inclusion-Dependency Normal Form with respect to the set of functional and
inclusion dependencies obtained. Thus, it enjoys several desirable semantic prop-
erties [10] such as the absence of value and attribute redundancies and update
anomalies. In fact, the transformation shows that the only functional dependen-
cies defined on any of the resulting relation schemata are keys, and the inclusion
dependencies are non-circular (due to the strict hierarchy of ER schemata) and
key-based. It should be noted, however, that our uniqueness constraint implies
some kind of weak inclusion dependency that is not key-based. It is future work to
investigate the precise impact of the uniqueness constraints on design desiderata.

Finally, the transformation involving collection types does not result in a
unique database instance since there are several choices for the values on the
surrogate attributes. However, if the uniqueness constraint is satisfied, then it
does not matter what these values are. Collections can be uniquely identified,
and the relationship between different tables is guaranteed to be meaningful. In
fact, every value occurring within the active domain of U ′

ID either denotes the
empty collection or it occurs in the relation over U ′ and references a unique col-
lection. This results in a generalisation of the extensional uniqueness constraint
introduced by ter Hofstede et al. [17].

6 Conclusion and Future Work

Entity-Relationship models use tuple- (aggregation) and cluster constructors to
generate more complex object types from simpler ones. Collection types, how-
ever, have not been introduced into the formal framework of Entity-Relationship
modeling. Previous work on this subject has either suggested to encode proper-
ties of collections into constraints [17] or annotate conceptual schemata and leave
the burden of their implementation to lower design phases [7]. These solutions
make it unnecessarily difficult for the designer to model collections naturally,
and therefore to discuss the approximation of the target database with its users.
This, in turn, defeats the purpose of a conceptual data model. In order to over-
come these shortcomings we have introduced four collection type constructors
into the ER framework. These have a well-defined semantics, and are intuitive
and easy to use. The implementation of the collection types in relational ta-
bles can be done automatically by a transformation algorithm that enjoys many
desirable properties.

In the future we would like to investigate the applicability of collection types
to mappings into other data models such as XML [4] and sequence data models
[11]. Several relational database management systems are now object-relational.
It might be interesting to provide mapping algorithms that directly take into

322 S. Hartmann and S. Link

account the collection types supported by such systems. It seems also desirable to
provide query languages for the extended ER model, and to investigate integrity
constraints in the presence of collection types.

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, San Francisco
(2000)

2. Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., Zdonik, S.: The
object-oriented database system manifesto. In: Proceedings of the International
Conference on Deductive and Object-Oriented Databases, pp. 40–57 (1989)

3. Batini, C., Ceri, S., Navathe, S.B.: Conceptual Database Design: An Entity-
Relationship Approach. Benjamin Cummings (1992)

4. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
markup language (XML) 1.0 (third edition) W3C recommendation 04 (february
2004), http://www.w3.org/TR/2004/REC-xml-20040204/

5. Chen, P.P.: The entity-relationship model: Towards a unified view of data. Trans-
actions on Database Systems 1, 9–36 (1976)

6. Elmasri, R., Navathe, S.: Fundamentals of Database Systems, 4th edn. Addison-
Wesley, London, UK (2003)

7. Halpin, T.: Modeling collections in UML and ORM. In: EMMSAD (2000),
http://www.orm.net/pdf/EMMSAD2000.pdf

8. Hartmann, S., Link, S.: English sentence structures and EER modeling. In: The
Fourth Asia-Pacific Conference on Conceptual Modelling. Conferences in Research
and Practice in Information Technology, vol. 67, pp. 27–35 (2007)

9. Hull, R., King, R.: Semantic database modeling: Survey, applications and research
issues. ACM Computing Surveys 19(3) (1987)

10. Levene, M., Vincent, M.: Justification for inclusion dependency normal form. IEEE
Trans. Knowl. Data Eng. 12(2), 281–291 (2000)

11. Li, J., Ng, S., Wong, L.: Bioinformatics adventures in database research. In: Cal-
vanese, D., Lenzerini, M., Motwari, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp.
31–46. Springer, Heidelberg (2003)

12. Markowitz, V., Makowsky, J.: Identifying extended entity-relationship object struc-
tures in relational schemas. IEEE Trans. Softw. Eng. 16(8), 777–790 (1990)

13. Paredaens, J., De Bra, P., Gyssens, M., Van Gucht, D.: The Structure of the
Relational Database Model. Springer, Heidelberg (1989)

14. Parent, C., Spaccapietra, S.: Complex objects modeling: An entity-relationship-
approach. In: Nested Relations and Complex Objects. LNCS, vol. 361, pp. 272–296.
Springer, Heidelberg (1987)

15. Parent, C., Spaccapietra, S., Zimányi, E.: Spatio-temporal conceptual models: Data
structures + space + time. In: ACM-GIS, pp. 26–33 (1999)

16. Schek, H., Scholl, M.: The relational model with relation-valued attributes. Inf.
Syst. 11(2), 137–147 (1986)

17. ter Hofstede, A., van der Weide, T.: Deriving identity from extensionality. Interna-
tional Journal of Software Engineering and Knowledge Engineering 8(2), 189–221
(1998)

18. Thalheim, B.: Entity-Relationship Modeling: Foundations of Database Technology.
Springer, Heidelberg (2000)

http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.orm.net/pdf/EMMSAD2000.pdf

Schema Exchange: A Template-Based Approach

to Data and Metadata Translation

Paolo Papotti and Riccardo Torlone

Università Roma Tre
{papotti,torlone}@dia.uniroma3.it

Abstract. In this paper we study the problem of schema exchange, a
natural extension of the data exchange problem to an intensional level.
To this end, we first introduce the notion of schema template, a tool for
the representation of a class of schemas sharing the same structure. We
then define the schema exchange notion as the problem of (i) taking a
schema that matches a source template, and (ii) generating a new schema
for a target template, on the basis of a set of dependencies defined over
the two templates. This framework allows the definition, once for all,
of generic transformations that work for several schemas. A method for
the generation of a “correct” solution of the schema exchange problem is
proposed and a number of general results are given. We also show how
it is possible to generate automatically a data exchange setting from a
schema exchange solution. This allows the definition of queries to migrate
data from a source database into the one obtained as a result of a schema
exchange.

1 Introduction

In the last years, we have witnessed an increasing complexity of database appli-
cations, especially when several data sources need to be accessed, transformed
and merged. There is a consequent growing need for advanced tools and flexible
techniques supporting the management, the exchange, and the integration of
different and heterogeneous sources of information.

In this trend, the data exchange problem has received recently great attention,
both from a theoretical [12,13] and a practical point of view [19]. In a data
exchange scenario, given a set of correspondences between a source and a target
schema, the goal is the automatic generation of queries able to transform data
over the source into a format conforming to the target.

In this paper, we address the novel problem of schema exchange, which nat-
urally extends the data exchange scenario to sets of similar schemas. To this
aim, we first introduce the notion of schema template, which is used to rep-
resent a class of different database schemas sharing the same structure. Then,
given a set of correspondences between the components of a source and a target
template, the goal is the translation of any data source whose schema conforms
to the source template into a format conforming to the target template. This
framework allows the definition, once for all, of “generic” transformations that

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 323–337, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

324 P. Papotti and R. Torlone

works for different but similar schemas, such as the denormalization of a pair of
relation tables based on a foreign key between them.

To tackle this problem, we introduce a formal notion of solution for a schema
exchange setting and propose a technique for the automatic generation of so-
lutions. This is done by representing constraints over templates and correspon-
dences between them with a special class of first order formulas, and then using
them to generate the solution by chasing [2] the source schema. Moreover, we
show how it is possible to generate automatically a data exchange setting from
a schema exchange solution. This allows the definition of a set of queries to mi-
grate data from a source database into the database obtained as a result of the
schema exchange.

From a practical point of view, in our scenario the user can: (i) describe a
collection of databases presenting structural similarities, by means of a source
template T1, (ii) define the structure of a possible transformation of the source
through a target template T2, (iii) define how to exchange information from the
source to the target by means of simple correspondences, graphically represented
by lines between T1 to T2, and (iv) translate any data source over a schema
matching with T1 into a format described by a schema matching with T2.

We advocate that the relational model is adequate for implementing such
approach. In particular we show how existing repositories for relational database
management systems can be profitably used for such purpose. In fact, templates
can be stored in tables and can be then queried using a standard relational query
language, independently of whether or not they are associated with some data.

To our knowledge, the notion of schema exchange studied in this paper is
new. In general, we can say that our contribution can be set in the framework of
metadata management. Metadata can generally be thought as information that
describes, or supplements, actual data. Several studies have addressed metadata
related problems, such as, interoperability [15,20], annotations and comments on
data [7,10,14], data provenance [9], and a large list of more specific problems, like
data quality [17]. While the list is not exhaustive, it witnesses the large interest
in this important area and the different facets of the problem.

Most of the proposed approach focus on a specific kind of metadata and are
not directly applicable to other cases without major modifications. Bernstein
set the various problems within a very general framework called model manage-
ment [3,4,5]. In [6] the authors show the value of this framework to approach
several metadata related problems, with a significant reduction of programming
effort. Our contribution goes in this direction: as in model management, schemas
and mappings are treated as first class citizens. In particular, the schema ex-
change problem has some points in common with the ModelGen operator. The
ModelGen operator realizes a schema translation from a source data model Ms

to a target data model Mt. For instance, the ModelGen operator could be used
to translate an Entity-Relationship schema into a schema for an XML document
(e.g., a DTD). Several approaches to this problem have been proposed in the last
years [1,8,16,18]. In this paper, we provide a novel contribution to this problem
by studying a framework for schema translation with a clear and precise se-

A Template-Based Approach to Data and Metadata Translation 325

mantics, that can be at the basis of an innovative tool supporting an important
activity of model management.

The structure of the paper is as follows. In Section 2 we briefly set the basic
definitions and recall some results of the data exchange problem. In Section 3,
we introduce the notions of template and schema exchange and we show how
they can be implemented with the relational database technology. In Section 4
we describes how templates and schemas are related and, in Section 5 we show
how a data exchange problem can be obtained from a schema exchange setting.
Finally, in Section 6, we draw some conclusions and sketch future directions of
research.

2 Preliminaries

2.1 Basics

A (relational) schema S is composed by a set of relations R(A1, . . . , An), where
R is the name of the relation and A1, . . . , Ak are its attributes. Each attribute is
associated with a set of values called the domain of the attribute. An instance of
a relation R(A1, . . . , An) is a set of tuples, each of which associates with each Ai

a value taken from its domain. An instance I of a schema S contains an instance
of each relation in S.

A dependency over a schema S is a first order formula of the form: ∀x(φ(x) →
χ(x)) where φ(x) and χ(x) are formulas over S, and x are the free variables of
the formula, ranging over the domains of the attributes occurring in S.

As usual, we will focus on two special kind of dependencies: the tuple gen-
erating dependencies (tgd) and the equality generating dependencies (egd), as
it is widely accepted that they include all of the naturally-occurring constraints
on relational databases. A tgd has the form: ∀x(φ(x) → ∃y(ψ(x,y)) where φ(x)
and ψ(x,y) are conjunction of atomic formulas, whereas an egd has the form:
∀x(φ(x) → (x1 = x2)) where φ(x) is a conjunction of atomic formulas and x1,
x2 are variables in x.

2.2 Data Exchange

In the relational-to-relational data exchange framework [12], a data exchange
setting is described by M = (S,T, Σst, Σt), where: (i) S is a source schema,
(ii) T is a target schema, (iii) Σst is a finite set of s-t (source-to-target) tgds
∀x(φ(x) → ∃y(χ(x,y))) where φ(x) is a conjunction of atomic formulas over S
and χ(x,y) is a conjunction of atomic formulas over T, and (iv) Σt is a finite
set of tgs or egds over T. Given an instance I of S, a solution for I under M
is an instance J of T such that (I, J) satisfies Σst ∪ Σt. A solution may have
distinct labeled nulls denoting unknown values.

In general, there are many possible solutions for I under M . A solution J is
universal if there is a homomorphism from J to every other solution for I under
M . A homomorphism from an instance I to an instance J is a function h from
constant values and nulls occurring in I to constant values and nulls occurring

326 P. Papotti and R. Torlone

in J such that: (i) it is the identity on constants, and (ii) (with some abuse of
notation) h(I) ⊆ J .

In [13] it was shown that a universal solution of I under M can be obtained
by applying the chase procedure to I using Σst ∪ Σt. This procedure takes as
input an instance I and generates another instance by applying chase steps
based on dependencies in Σst ∪ Σt. There are two kinds of chase steps: (1) a
tgd ∀x(φ(x) → ∃y(ψ(x,y))) can be applied to I if there is a homomorphism
h from φ(x) to I; in this case, the result of its application is I ∪ h′(ψ(x,y)),
where h′ is the extension of h to y obtained by assigning fresh labeled nulls to
the variables in y; (2) an egd φ(x) → (x1 = x2) can be applied to I if there is a
homomorphism h from φ(x) to I such that h(x1) �= h(x2); in this case, the result
of its application is the following: if one of h(x1) and h(x2) is a constant and
the other is a variable then the variable is changed to the constant, otherwise
the values are equated unless they are both constants, since in this case the
process fails. The chase of I is obtained by applying all applicable chase steps
exhaustively to I.

3 Schema Exchange Semantics

In this section we define the schema exchange problem as the application of the
data exchange problem to templates of schemas.

3.1 Schema Templates

We fix a finite set C of construct names. A construct C(p0, p1, . . . pk) has a name
C in C and a finite set p1, . . . , pk of distinct properties, each of which is associated
with a set of values called the domain of the property. In principle, the set C
can contain construct names from different data models so that we can define
transformations between schemas of different models. In this paper however, for
sake of simplicity, we focus on schema exchange between schema templates of
relational schemas; the approach can be extended to other types of templates,
but challenging issues already arise in the relational case.

Therefore, we fix the following relational construct names and properties:

Construct Names Properties (domain)
Relation (or R) name (strings)
Attribute (or A) name (strings), nullable (booleans), in (strings)

AttributeKey (or AK) name (strings), in (strings)
AttributeFKey (or AFK) name (strings), in (strings), refer (strings)

Note that the Relation construct is associated only to the name property, whose
domain is a set of strings. The same domain is also associated with the property
in of the constructs Attribute, AttributeKey and AttributeFKey, and the property
refer of the construct AttributeFKey: these properties are used to specify refer-
ences between constructs. Clearly, other properties can be considered for every
construct. For instance, we could associate the properties type and has default
with the construct Attribute.

A Template-Based Approach to Data and Metadata Translation 327

Basically, a template is a set of constructs with a set of dependencies associ-
ated with them, which are used to specify constraints over single constructs and
semantic associations between different constructs.

Definition 1 (Template). A (schema) template is a pair (C, ΣC), where C
is a finite collection of constructs and ΣC is a set of dependencies over C.

Example 1. An example of a template T = (C, ΣC) contains the following set
of constructs:

C = { Relation(name), AttributeKey(name, in), Attribute(name, nullable, in),
AttributeFKey(name, in, refer)}

and the dependencies:

ΣC = { d1 = AttributeKey(nK , nR) → Relation(nR),
d2 = Attribute(nA, u, nR) → Relation(nR),
d3 = AttributeFKey(nF , nR, n′

R) → Relation(nR), Relation(n′
R),

d4 = Attribute(nA, u, nR) → (u = true)}
The tgds d1 and d2 state the membership of keys and attributes to relations,
respectively. The dependency d3 states the membership of a foreign key to a
relation and its reference to another relation. Finally, the egd d4 states that we
are considering only relations with attributes that allow null values.

For simplicity, in the following we will omit the membership dependencies be-
tween constructs (like d1, d2 and d3 in Example 1), assuming that they belong
to ΣC.

Let us now introduce the notion of e-schemas. Basically, an e-schema corre-
sponds to the encoding of a (relational) schema and is obtained by instantiating
a template.

Definition 2 (E-schemas). An e-schema component S over a construct C is a
function that associates with each property p1, . . . , pk of C a value ai taken from
its domain. A e-schema S over a template (C, ΣC) is a finite set of e-schema
components over constructs in C that satisfy ΣC.

Example 2. A valid e-schema for the template of Example 1 is the following:

Relation
name
EMP
DEPT

AttributeKey
name in

EmpName EMP
DeptNo DEPT

Attribute
name nullable in
Salary true EMP
Building true DEPT

AttributeFKey
name in refer
Dept EMP DEPT

It is easy to see that this e-schema represents a relational table EMP with EmpName
as key, Salary as attribute and Dept as foreign key, and a relational table DEPT
with DeptNo as key and Building as attribute.

328 P. Papotti and R. Torlone

Note that e-schemas in Example 2 remind the common way commercial
databases use to store metadata in catalogs. We can therefore easily verify
whether a relational schema stored in a DBMS matches a given template defi-
nition: this can be done by querying the catalog of the system and checking the
satisfaction of the dependencies.

In the following, an e-schema component over a construct C(p1, . . . , pk) will
be called a relation component if C = Relation, an attribute component if C =
Attribute, a key component if C = AttributeKey, a foreign key component if
C = AttributeFKey. Moreover, we will denote an e-schema component over a
construct C(p1, . . . , pk) by C(p1 : ai, . . . , pk : ak). Alternatively, we will use, for
each construct, a tabular notation with a column for each property.

3.2 Schema Exchange

Given a source template T1 = (C1, ΣC1), a target template T2 = (C2, ΣC2), and
a set ΣC1C2 of source-to-target dependencies, that is, a set of tgds on C1 ∪ C2,
we denote a schema exchange setting by the triple (T1, T2, ΣC1C2).

Definition 3 (Schema exchange). Let (T1, T2, ΣC1C2) be a schema exchange
setting and S1 a source e-schema over (C1, ΣC1). The schema exchange problem
consists in finding a finite target e-schema S2 over (C2, ΣC2) such that S1 ∪ S2
satisfies ΣC1C2 . In this case S2 is called a solution for S1 or, simply a solution.

Example 3. Consider a schema exchange problem in which the source template
T1 = (C1, ΣC1) and the target template T2 = (C2, ΣC2) are the following:

C1 = { Relation(name), AttributeKey(name, in), Attribute(name, in)}

C2 = { Relation(name), AttributeKey(name, in), Attribute(name, in),
AttributeFKey(name, in, refer)}

with the corresponding membership constraints in ΣC1 and in ΣC2 .
Assume now that we would like to split relations over T1 into a pair of relations

over T2 related by a foreign key. This scenario is graphically shown (informally)
in Figure 1 and is precisely captured by the following set of tgds ΣC1,C2 :

ΣC1,C2 = { Relation(nR), AttributeKey(nK , nR), Attribute(nA, nR) →
Relation(nR), AttributeKey(nK , nR), AttributeFKey(nF , nR, n′

R),
Relation(n′

R), AttributeKey(nF , n′
R), Attribute(nA, n′

R)}
Consider now the following e-schema valid for T1:

Relation
name
EMP

AttributeKey
name in

EmpName EMP

Attribute
name in

DeptName EMP
Floor EMP

A Template-Based Approach to Data and Metadata Translation 329

Relation (
name
AttributeKey (

name)
AttributeFKey (

name)
)
Relation (

name
AttributeKey (

name)
Attribute (

name)
)

Relation (
name
AttributeKey (

name)
Attribute (

name)
)

T
1 T

2

Fig. 1. Schema exchange scenario for Example 3

This e-schema has one relation called EMP with EmpName as key and two at-
tributes: DeptName and Floor. A possible solution S′

1 for this setting is:

Relation
name
EMP
N0
N2

AttributeKey
name in

EmpName EMP
N1 N0
N3 N2

Attribute
name in

DeptName N0
Floor N2

AttributeFKey
name in refer
N1 EMP N0
N3 EMP N2

where N0, . . . , N3 are labelled nulls. This solution contains three relations: EMP,
N0 and N2. Relation EMP has EmpName as key and N1, N3 as foreign keys for N0 and
N2, respectively. Relation N0 has N1 as key and DeptName as attribute. Finally,
relation N2 has N3 as key and Floor as attribute. There are several null values
because the dependencies in ΣC1,C2 do not allow the complete definition of the
target e-schema.

Consider now another solution S′
2:

Relation
name
EMP
N0

AttributeKey
name in

EmpName EMP
N1 N0

Attribute
name in

DeptName N0
Floor N0

AttributeFKey
name in refer
N1 EMP N0

with N0 and N1 as labelled nulls. This solution contains two relations named EMP
and N0. Relation EMP has EmpName as key and N1 as foreign key, relation N0 has
N1 as key and DeptName and Floor as attributes.

Two issues arise from Example 3: which solution to choose and how to generate
it. Solution S′

2 in the example seems to be less general than S′
1. This is captured

precisely by the notion of homomorphisms. In fact, it is easy to see that, while
there is a homomorphisms from S′

1 to S′
2, there is no homomorphism from S′

2 to
S′

1. It follows that S′
2 contains “extra” information whereas S′

1 is a more general
solution. As in data exchange [12,13], we argue that the “correct” solution is the
most general one, in the sense above. This solution is called universal.

330 P. Papotti and R. Torlone

Definition 4 (Universal solution). A solution S of the schema exchange
problem is universal if there exists a homomorphism from S to all other so-
lutions.

The following result follows from analogous results of the data exchange
problem.

Theorem 1. Let (T1, T2, ΣC1C2) be a data exchange setting and S1 be an
e-schema over T1. The chase procedure over S1 using ΣC1C2 ∪ ΣC2 terminates
and generates a universal solution.

4 Decoding and Encoding of Relational Schemas

In this section we describe how the notion of e-schema introduced in Section 3
can be converted into a “standard” relational schema, and vice versa.

4.1 Relational Decoding

Basically, the transformation of an e-schema in a relational schema requires the
definition of formulas that describe the semantics of the various components of
an e-schema, according to the intended meaning of corresponding constructs.

Let S be an e-schema over a template T = (C, ΣC). The relational decoding
of S, denoted by R-Dec(S), is a pair (S, ΣS) where:

– S contains a set of objects R(A1, . . . , An) for each relation component S ∈ S
such that:

• S(name) = R and
• R = Si(in) for the attribute components S1, . . . , Sk in S such that

Si(name) = Ai.
– ΣS contains an egd over R(A1, . . . , An) ∈ S of the form:

R(x1, x2, . . . , xn), R(x1, x
′
2, . . . , x

′
n) → (x2 = x′

2, . . . , xn = x′
n)

for each key component S ∈ S such that:
• S(name) = A1 and
• S(refer) = R.

– ΣR contains a tgd over a pair of relation schemas R(A1, . . . , Ak, . . . , An) and
R′(A′

k, A′
1, . . . , A

′
n) in S of the form:

R(x1, . . . , xk, . . . , xm) → R′(xk, x′
1, . . . , x

′
n)

for each foreign key component S ∈ S such that:
• S(name) = Ak,
• S(in) = R,
• S(refer) = R′, and
• R′ = S′(in) for the key component S′ in S such that S′(name) = A′

k.

A Template-Based Approach to Data and Metadata Translation 331

Example 4. Let us consider the e-schema S of Example 2 reported below:

Relation
name
EMP
DEPT

AttributeKey
name in

EmpName EMP
DeptNo DEPT

Attribute
name nullable in
Salary true EMP
Building false DEPT

AttributeFKey
name in refer
Dept EMP DEPT

The relational representation of S is: R-Dec(S) = (S, ΣS) where:

S = {EMP(EmpName, Salary, Dept), DEPT(DeptNo, Building)}
ΣS = { EMP(x1, x2, x3), EMP(x1, x

′
2, x

′
3) → (x2 = x′

2, x3 = x′
3),

DEPT(x1, x2), DEPT(x1, x
′
2) → (x2 = x′

2),
EMP(x1, x2, x3) → DEPT(x3, x

′
2)}

In the same line, a procedure for the encoding of a relational schema, that is for
the transformation of a relational schema (S, ΣS) into an e-schema S, can also
be defined. This procedure will be illustrated in the following section.

4.2 Relational Encoding

Let S be a relational schema with a set of dependencies ΣS. The encoding of S,
denoted by R-Enc(S, ΣS), is an e-schema S such that:

– for each relation R(A1, . . . , An) in S, S has a relation component m such that
m(name) = R and, for each attribute Ai ∈ R, S has an attribute component
mi such that:

• mi(name) = Ai,
• mi(nullable) =true if Ai is nullable,
• mi(in) = R;

– for each egd in ΣS of the form:

R(x1, x2, . . . , xn), R(x1, x
′
2, . . . , x

′
n) → (x2 = x′

2, . . . , xn = x′
n)

over a relation schema R(A1, . . . , An) ∈ S, S has a key component m such
that:

• m(name) = Ai, and
• m(in) = R;

– for each tgd in ΣS of the form:

R(x1, . . . , xk, . . . , xm) → R′(xk, x′
1, . . . , x

′
n)

over a pair of relation schemas R(A1, . . . , Ak, . . . , Am) and R′(A′
1, . . . , A

′
n)

in S, S has a foreign key component m such that:
• m(name) = Ak,
• m(in) = R, and
• m(refer) = R′.

332 P. Papotti and R. Torlone

5 From Schema to Data Exchange

In this section we propose a transformation process that generates a data ex-
change from a given schema exchange setting.

5.1 Metaroutes and Value Correspondences

Before discussing the transformation process, two preliminary notions are
needed. First of all, in order to convert the schema exchange setting into a
data exchange setting, we need to keep track of the correspondences between
the source schema and the solution of the schema exchange problem. This can
be seen as an application of the data provenance problem to schema exchange.
To this end, by extending to our context a notion introduced in [11], we make use
of metaroutes to describe the relationships between source and target metadata.

Definition 5. Let S be an e-schema and Σ be a set of dependencies. A
metaroute for S is an expression of the form:

I0 →σ1,h1 I1 . . . In−1 →σn,hn In

where I0 ⊆ S and, for each Ii−1 →σi,hi Ii (1 ≤ i ≤ n), it is the case that Ii is the
result of the application of a chase step on Ii−1 based on the dependency σi ∈ Σ
and the homomorphism hi.

Note that, since a reduced number of elements are involved in schema exchange,
we can store all the metaroutes and we do not need to compute them partially
and incrementally as in [11].

Metaroutes and homomorphisms are then used to derive value correspon-
dences between source and target schemas.

Definition 6. A value correspondence over two schemas S and S′ is a triple
v = (t ∈ R, t′ ∈ R′, t.Ai = t′.Aj) where R ∈ S, R′ ∈ S′, and Ai = Aj is a set of
equalities over the attributes of R and R′, respectively.

5.2 The S-D Transformation Process

Given a relational database over a schema S1 and schema exchange setting
(T1, T2, ΣC1C2) such that the encoding S1 of S1 is an instance of T1, we aim
at generating a target database over a schema S2 such that the encoding S2 of
S2 is a universal solution for S1. We call such generation process S-D transfor-
mation and it can be summarized as follows.

1. S1 is encoded into an e-schema S1;
2. the chase procedure is applied to S1 using ΣC1C2 and metaroutes are gener-

ated during the execution of the procedure: each chase step based on the de-
pendency σi ∈ Σ and the homomorphism hi adds an element Ii−1 →σi,hi Ii

to the metaroute;
3. the result S2 of the chase procedure is decoded into a schema S2;

A Template-Based Approach to Data and Metadata Translation 333

4. for each attribute A occurring in S2: (i) we select the metaroute I0 →σ1,h1

I1 . . . In−1 →σn,hn In such that A occur in In, and (ii) A is annotated in S1
and S2 with h−1(A), where h = h1 ◦ . . . ◦ hn;

5. the annotations of the attributes in S1 and S2 are used to derive value
correspondences between them;

6. a data exchange setting is generated from S1 and S2 using the generated
value correspondences, on the basis of the method presented in [19].

Relation (
name
AttributeKey (

name)
Attribute (

name)
)
Relation (

name
AttributeKey (

name)
AttributeFKey (

name)
Attribute (

name)
)

Relation (
name
AttributeKey (

name)
Attribute (

name)
)

T
1

T
2

Fig. 2. Schema exchange scenario for Example 5

Example 5. Let us consider the schema exchange setting described graphically
in Figure 2 and represented by the following set of tgds ΣC1,C2 :

{ v1 = Relation(nr), AttributeKey(nk, nr), Attribute(na, nr), Relation(n′
r),

AttributeKey(n′
k, n′

r), Attribute(n′
a, n′

r), AttributeFKey(nf , n′
r, nr) →

Relation(n′
r), AttributeKey(n′

k, n′
r), Attribute(n′

a, n′
r), Attribute(nf , n′

r),
Attribute(na, n′

r) }
Intuitively, the only constraint occurring in ΣC1,C2 specifies that the target
is obtained by joining two source relations according to a foreign key defined
between them. Now consider the following source schema:

S = {DEPT(id, dname), EMP(id, ename, dep)}
ΣS = { DEPT(x1, x2), DEPT(x1, x

′
2) → (x2 = x′

2),
EMP(x1, x2, x3), EMP(x1, x

′
2, x

′
3) → (x2 = x′

2, x3 = x′
3),

EMP(x1, x2, x3) → DEPT(x3, x
′
1)}

The encoding of S is the e-schema S that follows:

Relation
name

s1 DEPT
s2 EMP

AttributeKey
name in

s3 id DEPT
s4 id EMP

Attribute
name in

s5 dname DEPT
s6 ename EMP

AttributeFKey
name in refer

s7 dep EMP DEPT

334 P. Papotti and R. Torlone

Let {s1, . . . , s7} be the e-components of S. The application of the chase based
on the given tgd produces the set of e-schema components {t1, . . . , t5}:

Relation
name

t1 EMP

AttributeKey
name in

t2 id EMP

Attribute
name in

t3 ename EMP
t4 dep EMP
t5 dname EMP

The metaroute generated by this chase step is: {s1, . . . , s7} →v1,h1 {t1, . . . , t5},
where h1 is the homomorphism:

{ nr �→DEPT, nk �→id, na �→dname, n′
r �→EMP, n′

k �→id, n′
a �→ename, nf �→dep}

The chase ends successfully and produces an e-schema S′ whose decoding is the
schema (S′, ΣS′) where:

S′ = {EMP(id, ename, dep, dname)}
ΣS′ = { EMP(x1, x2, x3, x4), EMP(x1, x

′
2, x

′
3, x

′
4) → (x2 = x′

2, x3 = x′
3, x4 = x′

4)}
Now, on the basis of the above metaroute, source and target schema can be
annotated as follows:

S = {DEPT(id[nk], dname[na]), EMP(id[n′
k], ename[n′

a], dep[nf])}
S′ = {EMP(id[n′

k], ename[n′
a], dep[nf], dname[na])}

The value correspondences between S and S′ easily follow:

vc1 = (d ∈ S.DEPT, e ∈ S′.EMP, d.dname = e.dname)
vc2 = (e ∈ S.EMP, e′ ∈ S′.EMP, e.id = e′.id, e.ename = e′.ename, e.dep = e′.dep)

We then obtain the data mapping scenario reported graphically in Figure 3. In
the spirit of [19] we are now able to automatically generate a data exchange
setting. Given the source schema S, the target schema S′ with its constraints,
and the value correspondences we obtain the following tgd:

t1 = S.EMP(ss, en, d), S.DEPT(d, dn) → S′.EMP(ss, en, d, dn)

EMP (
id
ename
dep
dname

)

DEPT (
id
dname

)
EMP (

id
ename
dep

)

S S’

Fig. 3. Data exchange scenario for Example 5

A Template-Based Approach to Data and Metadata Translation 335

A number of general results can be shown. First, the fact that the output of
the S-D process is a “correct” result, that is, the solution of the data exchange
problem reflects the semantics of the schema exchange problem given as input.
In order to introduce the concept of correctness in this context, a preliminary
notion is needed.

Given a tgd t, an encoding of t is the tgd obtained by applying the encoding
procedure defined in Section 4 considering the atoms of the formula as they were
relational schemas and using the dependencies in ΣS for the left side of t and the
dependencies ΣS′ for the right side of t. Note that the tgd we obtain is defined
on templates.

For instance, given the tgd t1 of the example above, the encoding of t1 is the
following tgd on templates:

v2 = Relation(EMP), AttributeKey(ss, EMP), Attribute(en, EMP),
AttributeFKey(d, EMP, DEPT), Relation(DEPT), AttributeKey(d, DEPT),
Attribute(dn, DEPT) → Relation(EMP), AttributeKey(ss, EMP),
Attribute(en, EMP), Attribute(d, EMP), Attribute(dn, EMP)

This tgd v2 is different from the original tgd v1 for the schema exchange
scenario described in Example 5. However, it can be verified that they generate
the same output S′ on the given input S. This exactly captures the fact that the
data exchange problem obtained as output fulfils the semantics of the schema
exchange problem given as input.

This intuition is captured by the following correctness result.

Theorem 2. Let (S,S′, ΣSS′) be the output of the S-D transformation process
when (T1, T2, ΣC1C2) and S are given as input and let Σ be the set of s-t tgds
obtained by encoding the s-t tgds in ΣSS′. The e-schema S′ is a universal solution
of the schema exchange setting (T1, T2, Σ).

The following completeness result can also be shown. We say that a data ex-
change setting is constant-free if no constants are used in formulas.

Theorem 3. Any constant-free data exchange setting can be obtained from the
S-D transformation process over some schema exchange setting.

6 Conclusion and Future Work

We have introduced the schema exchange problem, a generalization of data ex-
change. This problem consists of taking a schema that matches a source tem-
plate, and generating a new schema for a target template, on the basis of a set
of dependencies defined over the two templates. To tackle this problem, we have
presented a method for the generation of a “correct” solution of the problem
and a process aimed at automatically generating a data exchange setting from
a schema exchange solution.

We believe that several interesting directions of research can be pursued within
this framework. We just sketch some of them.

336 P. Papotti and R. Torlone

– Expressive power of the framework. A challenging issue to be investigated
is the precise identification of the class of schema and data transformations
that can be defined with the framework we have defined. This is clearly
related with the formulas used to express the mappings between templates.
For instance, it is an open problem to identify the formalism needed to
express a schema exchange that operates over a specific number of columns.

– Metaquerying. A template is actually a schema and it can therefore be
queried. A query over a template is indeed a meta query since it operates
over meta-data. There are a number of meta-queries that are meaningful.
For instance, we can retrieve with a query over a template the pairs of rela-
tions that can be joined, being related by a foreign key. Also, we can verify
whether there is a join path between two relations.

– Special class of solutions. Given a schema exchange problem, can we ver-
ify whether all the solutions of the problem satisfy some relevant property?
For instance, we would like to obtain only relations that are acyclic or sat-
isfy some normal form. We are also investigating under which conditions
a schema exchange problem generates a data exchange setting with certain
properties, e.g., the fact that the dependencies belong to some relevant class.

– Combining data and metadata. The framework we have presented can be
extended to support mappings and constraints involving data and metadata
at the same time. This scenario also allows the user to specify the transfor-
mation of metadata into data and vice versa. For instance, we could move
the name of a relational attribute into a tuple of a relation.

References

1. Atzeni, P., Cappellari, P., Bernstein, P.A.: Model-independent schema and data
translation. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopou-
los, M., Boehm, K., Kemper, A., Grust, T., Boehm, C. (eds.) EDBT 2006. LNCS,
vol. 3896, pp. 368–385. Springer, Heidelberg (2006)

2. Beeri, C., Vardi, M.Y.: A Proof Procedure for Data Dependencies. J. ACM 31(4),
718–741 (1984)

3. Bernstein, P.A.: Applying Model Management to Classical Meta Data Problems.
In: CIDR, pp. 209–220 (2003)

4. Bernstein, P.A., Melnik, S.: Model Management 2.0: Manipulating Richer Map-
pings. In: Bernstein, P.A., Melnik, S. (eds.) SIGMOD, pp. 1–12 (2007)

5. Bernstein, P.A., Levy, A.Y., Pottinger, R.A.: A Vision for Management of Complex
Models. SIGMOD Record 29(4), 55–63 (2000)

6. Bernstein, P.A., Rahm, E.: Data Warehouse Scenarios for Model Management. In:
Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920, pp.
1–15. Springer, Heidelberg (2000)

7. Bhagwat, D., Chiticariu, L., Tan, W.C., Vijayvargiya, G.: An Annotation Manage-
ment System for Relational Databases. In: VLDB, pp. 900–911 (2004)

8. Bowers, S., Delcambre, L.M.L.: The uni-level description: A uniform framework
for representing information in multiple data models. In: Song, I.-Y., Liddle,
S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 45–
58. Springer, Heidelberg (2003)

A Template-Based Approach to Data and Metadata Translation 337

9. Buneman, P., Khanna, S., Tan, W.C.: Why and Where: A Characterization of
Data Provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS,
vol. 1973, pp. 316–330. Springer, Heidelberg (2000)

10. Buneman, P., Khanna, S., Tan, W.C.: On Propagation of Deletion and Annotations
Through Views. In: PODS, pp. 150–158 (2002)

11. Chiticariu, L., Tan, W.C.: Debugging Schema Mappings with Routes. In: VLDB,
pp. 79–90 (2006)

12. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Trans.
Database Syst. 30(1), 174–210 (2005)

13. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and
Query Answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

14. Geerts, F., Kementsietsidis, A., Milano, D.: MONDRIAN: Annotating and query-
ing databases through colors and blocks. In: ICDE, pp. 82–93 (2006)

15. Lakshmanan, L.V.S., Sadri, F., Subramanian, S.N.: SchemaSQL: An extension to
SQL for multidatabase interoperability. ACM Trans. Database Syst. 26(4), 476–519
(2001)

16. McBrien, P., Poulovassilis, A.: Data Integration by Bi-Directional Schema Trans-
formation Rules. In: ICDE, pp. 227–238 (2003)

17. Mihaila, G., Raschid, L., Vidal, M.-E.: Querying “quality of data” metadata. In:
IEEE META-DATA, IEEE Computer Society Press, Los Alamitos (1999)

18. Papotti, P., Torlone, R.: Heterogeneous Data Translation through XML Conver-
sion. J. Web Eng. 4(3), 189–204 (2005)

19. Popa, L., Velegrakis, Y., Miller, R.J., Hernández, M.A., Fagin, R.: Translating
Web Data. In: Bressan, S., Chaudhri, A.B., Lee, M.L., Yu, J.X., Lacroix, Z. (eds.)
CAiSE 2002 and VLDB 2002. LNCS, vol. 2590, pp. 598–609. Springer, Heidelberg
(2003)

20. Wyss, C.M., Robertson, E.: Relational Interoperability. TODS 30(2) (2005)

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 338–358, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Conceptual Modeling Methodology Based on Niches
and Granularity

Sonia Berman and Thembinkosi Daniel Semwayo

Computer Science Department, University of Cape Town, South Africa
{sonia,dsemwayo}@cs.uct.ac.za

Abstract. This paper presents a methodology for conceptual modeling which is
based on a new modeling primitive, the niche, and associated constructs
granularity and reconciliation. A niche is an environment where entities interact
for a specific purpose, playing specific roles, and according to the norms and
constraints of that environment. Granularity refers to the relative level of power
or influence of an entity within a niche. Reconciliation is a relationship from N
entities onto one reconciled entity, and represents explicitly a situation where
two or more different perspectives of the same entity have been reconciled, by
negotiation, into a single consensus view. The methodology we propose
provides a systematic method of designing conceptual models along with
a process for normalising inappropriate relationships. Normalising is a
prescriptive process for identifying and remedying inconsistencies within a
model based on granularities. Drawing on a number of case studies, we show
how niches and granularity make complexity easier to manage, highlight
inaccuracies in a model, identify opportunities for achieving project goals, and
reduce semantic heterogeneity.

1 Introduction

Conceptual modeling is a difficult task. It requires a group of people, typically from
different fields of expertise, to understand a complex situation and to agree on an
appropriate set of abstractions that captures correctly and completely the
characteristics and interactions of the entities involved. While data models such as the
ER model or UML provide many useful constructs to simplify this problem, there is
little prescriptive guidance on how to develop a model, or how to evaluate one that
has been designed. Errors and omissions in a conceptual model can have far-reaching
consequences, as physical systems that are built from these models can be faulty;
incorrect or incompatible data can be collected; and data can be integrated and
analysed inappropriately leading to invalid conclusions about the real world.

We aim to improve on conceptual modeling by proposing a methodology that can
address these problems, specifically:

• providing mechanisms to handle complexity so as to reduce inaccuracies and
omissions in the model

• prescribing a sequence of steps to carry out, and constraints to check, so that the
task is tackled in a systematic way

 A Conceptual Modeling Methodology Based on Niches and Granularity 339

• reducing semantic heterogeneity – the phenomenon whereby different people use
different terms for the same concept, or use the same term with subtly different
meanings - as occurs particularly with multi-disciplinary teams

• where applicable, depicting the situation in a way that highlights where
interventions can achieve project goals – i.e. where there is an opportunity for
improving the real-world situation being modeled

In studying a number of projects where we acted as consultants, we realized that
many of the modeling problems arose because entities and relationships were
described in isolation, rather than in the context of the particular sphere in which they
operated. As a result, much was omitted from the models altogether because certain
interaction contexts weren’t considered at all, and because the different roles that
entities play in different contexts were not recognised. We accordingly introduce
early in the methodology the notion of a niche (system context or sphere of operation)
to ensure that such errors and omissions are minimized. We further observed that
missing entities and roles were more likely to be noticed when the team was asked to
consider the relative levels of influence (power, impact or status) of entities in each
context. This often showed e.g. how an individual can have greater influence in one
niche in which s/he operates than in another niche, because of different roles s/he
plays in these different contexts. We have named this meta-property of an entity
within a niche its granularity or granular level, and the methodology requires that
designers assign granularities to entities after niches have been determined.
Constraints on relationships involving entities of differing granularity (unequal
relationships) are then checked: either they are modeling errors or else they are
anomalies in the real world. Such anomalies highlight a vital aspect of the domain
being modeled, namely interactions which are suboptimal. In many domains, such as
the socio-economic projects we have tackled, a key objective is to improve the status
quo; interaction anomalies indicate precisely where improvements are possible. In
addition to niches and granularity, we propose a reconciles relationship which serves
to explicitly document where semantic heterogeneity has been identified and resolved.
This indicates where and how differing views of the same entity have been replaced
by a consensus view after negotiation among the design team.

In sections 2 and 3, the paper describes the new modeling constructs and the
proposed methodology. Thereafter we discuss experiments in which the methodology
has been applied, highlighting advantages and disadvantages noted during those
workshops and case studies. Section 5 presents related work, and we conclude with a
summary of the main ideas and some suggestions for future research.

2 New Modeling Primitive and Associated Constructs

In this section we introduce the niche modeling primitive and its associated
constructs: granularity and reconciliation. We show why they are needed, how to
recognise them and introduce them into a model, and when to do so. We also discuss
what effects, if any, poor use of the new constructs would have.

340 S. Berman and T.D. Semwayo

2.1 Niches

When describing the entities in a domain and the relationships between them, it is
important to bear in mind the different contexts in which interactions occur. In any
project, it is important that no interaction context is forgotten, and that the entities and
their relationships are accurately depicted by taking into account the conditions and
norms that apply in that specific context. Drawing on the biological notion, we define a
niche as a specific context in which entities interact for a specific functional purpose,
favouring particular individuals or groups, and behaving according to the conventions
and constraints of that particular environment. In a niche there is a stable pattern of
behaviour and structuring of the community, and interactions take place accordingly. A
niche frequently exhibits emergent properties, which are attributes that do not
necessarily apply to the individual members but do apply to the niche as a whole.

A niche can be defined as a 7-tuple (S, T, M, N, H, A, P) where

S is a spatial location occupied by this niche
T is a time interval
M is a non-empty set of member entities present at location S for part of time

interval T
N is a non-empty set of interactions between entities, the normal behaviour in

that niche
H is a hierarchical structuring of the entities M based on relative impact/

influence/power
i.e. H is a function mapping every m in M onto a granular level g i.e. H(m)=g

A is a set of attributes of the niche which aren’t attributes of its members M
P is a possibly empty set of environmental parameters that hold at location S

during time T

An example of a niche attribute is its functional purpose or its quality/performance.
The environmental parameters describe domain conditions that make the niche viable
– e.g. in an ecological domain these would be climate factors, whereas in a business
domain these would be political and economic factors. We note further the following
niche constraints:

If m ∈ M then H(m) is unique i.e. every entity has exactly one granular level in a
niche.

If m1 ∈ M and m2 ∈ M and m1 is-part-of m2 then H(m1) ≤ H(m2.)
If m1 ∈ M, m2 ∈ M, R ∈ N and R(m1,m2) then ∃t ∈ T s.t. In(S,t,m1) and

In(S,t,m2) i.e. for two entities to interact in a niche they must exist in that niche at the
same time.

For all m ∈ M, ∃t ∈ T s.t. In(S,t,m) = false i.e. entities do not have to remain in a
niche throughout its existence.

Considering the familiar example of an academic environment, it should be clear that
individuals behave differently in a staff meeting (administration) than they would in a
research meeting, because these are two different niches. An academic might play the
role of subordinate in a staff meeting if she were a junior lecturer, the role of critic at a
research paper presentation, and the role of student in a meeting with her thesis
supervisor. In each of these niches we can identify relationships between academics, but

 A Conceptual Modeling Methodology Based on Niches and Granularity 341

the nature of these relationships varies according to the niche in which the interaction
takes place. The functional purpose of the staff meeting, the paper presentation and the
supervision meeting differs, with interactions favouring the head of department, the
speaker and the supervisor, respectively. Even in this simple example it is evident that,
without considering these niches, modelers may well have used only one “meeting”
relationship between academic staff entities, and failed to recognise the different roles
that they play and the extra data that should be collected accordingly.

To determine the niches in a domain, it is generally best to examine the life-cycle of
the key entities and the value chain of that domain. The value chain concept was first
used for business system modeling [1] but has since been applied in other contexts. It
comprises the sequence of core, value-adding activities of a system. For example, in the
business world, the niches would be purchasing, infrastructure, production, sub-
contracting, management, marketing, etc. In education the niches would be application,
registration, tuition, examination, qualification, administration, infrastructure, etc. Some
niches will be sufficiently well understood by designers to be modeled directly, but
most will be too complex and require decomposition into sub-niches, resulting in one or
more hierarchies comprising niches nested within each other. Most conceptual modelers
are able to identify the value chain for their project, to identify those nodes which
require further decomposition, and to find appropriate sub-niches for these – simply
because they are familiar with the domain and hence with its processes and sub-
sections. What is the danger of choosing the wrong niches? If designers can articulate
for each niche its functional purpose, favoured members and behavioural norms, then
there is little chance that the niche is not a valid context or environment within the
project domain. But even if a “wrong niche” should be included, it still gives the same
modeling benefits: it forces designers to think about where their entities and
relationships will be found, how this affects their behaviour, what exists around them,
how these influence each other, which entities are more favoured, and for what purpose
they interact; producing a better model as a result. It focuses the mind not only on what
entities exist in a relationship, but also on where, why and how they interact. Including
entity life-cycles and domain value chain diagrams ensures that all contexts - the full
scope of the project - is modeled, reducing the risk of significant omissions.

Because of its usefulness in identifying niches, we include a value chain diagram
(figure 1) as part of our model, where any node can be shown at the head of a
hierarchy of sub-niches into which it has been divided.

Logistics In Production Processing Storage LogisticsOut
Market &
Logistics
Research

Sales

Internal value
chain

Fig. 1. Value chain diagram

342 S. Berman and T.D. Semwayo

Logistics In Production Processing Storage LogisticsOut

Market &
Business

model
Research

Sales

Business
Ownership

Model

Workers Trust
<GL1>

Bjatladi
Community CPA

<GL1>

Farm
Worker
<GL0>

Strategic partner
(Henley Farm

Properties)
<GL2>

Zebediela Estate
Joint Venture Co.

<GL2>

owns<50%>

owns<35%>

paysDividend

paysDividend

paysDividend

Community
Member
<GL0.>

owns<15%>

liaise

Fig. 2. Niche model showing business ownership of an agricultural estate property

The model for each niche or sub-niche is drawn below the niche, as shown in
figure 2.

2.2 Granularity

An important property of a relationship is the relative level of influence, power or
impact of the entities involved. We call this the granular level or granularity of the
entity, which is always given relative to a base entity – the main object in the project –
which has granularity zero. Entities with similar impact, influence or power would thus
also have granularity 0, those with less would have granularity of -1, those with even less
have granularity of -2, and so on; while those with greater influence have granularity of
+1, those with still more influence have +2, etc. Granularity is relative, it is not meaningful
as an absolute measure but only in comparison with other entities, as it reflects the level at
which an entity operates in a particular context relative to others in that niche.

For example, where humans interact, their relative power, status or influence
indicates their granularity. In most institutions, status or ranking within the hierarchy is
well-known, and interactions between individuals with very different granularity
(status) rarely if ever occur. If we are to model a niche correctly, we must take
cognisance of the granularity of entities in a relationship in order to determine whether
the correct entities are being modeled in that context. To take the familiar example of a
university model, a relationship between the Vice-Chancellor and a student is contrary
to the norms and constraints of the environment, unless that student is a particular
student such as a StudentLeader who has higher status/granularity than his peers. In an
agricultural example, rainfall has higher granularity (impact or influence) than a farmer,
so if these two entities appear in a relationship there is again an anomaly that should be

 A Conceptual Modeling Methodology Based on Niches and Granularity 343

addressed – here the rainfall entity should be replaced by another that operates at the
correct level of influence and scale for the farm context, such as a local water source
like a dam or irrigation channel. Modeling with entities at the correct granular level for
the niche/context reduces the chances of collecting incorrect data, such as rainfall
figures for an area rather than information about farm dams and irrigation systems.
Similarly, collecting data about students who meet with the Vice-Chancellor would be
useless without information about the student body they represent. Thus we see that
granularity aids the designer in finding the right abstractions to represent real-world
phenomena, by making it far more likely that entities at the right level for the
niche/context will be used.

By annotating entities with their granularity (denoted GL for Granular Level and
written after the entity name, as shown in figure 2) the relationships in a model can be
studied to detect inequalities or anomalies, which imply that there is either a problem
in the model or in the real world situation. Often modelers will realise in such cases
that they have failed to recognise that an entity is playing a particular role in some
context/niche, different from its other interactions in other niches. This in turn will
highlight the need for either a generalisation hierarchy (e.g. MonopolySupplier is-a
Supplier, or StudentLeader is-a Student) or an aggregation (e.g. Supplier is-part-of
SupplierGroup, or Student is-part-of StudentCommitee) to be added to the model, and
the entity in the relationship replaced with a new entity such as MonopolySupplier or
SupplierGroup. If granularity is not taken into account in modeling, data is typically
collected for the entities at differing resolutions, and so some of the data goes unused.

As granularity is a measure of gravitas or influence, it is only applicable to entities,
not relationships; only to the actors or agents that are involved in interactions
according to their power/impact/status. The granularity of an aggregate or composite
entity cannot be less than the granularity of any of its component parts. For example,
a Union entity representing an organised group of people cannot have lower
granularity than its constituent union member entities. There is no corresponding
constraint for is-a (subtype/generalization) hierarchies; if S is-a T then an S may have
greater influence/power than a T entity, or it may have less, depending on the nature
of the specialization. For example, StudentLeader is-a Student with higher granularity
than Student in many niches, but StudentTeacher is-a Teacher with lower granularity
than Teacher in many niches.

Like many aspects of modeling, granularity assignment is subjective. It will require
the design team interrogating the clients or domain experts about relative levels of
influence, just as they would ask them about other aspects of relationships such as
cardinality or participation constraints. Modeling a niche however reduces
subjectivity significantly, as the context and scale of activity is defined. We note
further that incorrect use of granularity in a model will not introduce new modeling
errors. It would mean that entities in a relationship are depicted as having equal
influence when in fact the one has less power/impact than the other. Essentially the
model is then no worse than it would have been if granularity were not used at all – a
modeling error or omission remains undetected because there has also been an error in
granularity assignment. The chances of this occurring when a domain is well
understood are slight however, because granularity is considered for every

344 S. Berman and T.D. Semwayo

relationship, and again when checking the level associated entities across aggregation
/ composition hierarchies. Lastly we note that granularity will not add value to
conceptual modeling if the application is so simple that multiple levels do not exist;
while checking relative impact/status of entities in such systems may not provide new
insights, however, it will cause developers to carefully consider design decisions they
have made. Most systems are more complex than they appear to be however, so such
simple systems will be rare. Granularity is useful in separating concerns when
complexity is revealed even in a simple study – for example in a retail scenario,
small-businesses and big-businesses differ in granularity and exhibit different roles,
attributes and relationships in different contexts.

2.3 Reconciliation

Semantic heterogeneity is a well-known problem in modeling and design. It refers to
two kinds of situation: one where different individuals use different terms without

Small holder
farming ousehold
Unit

Household Family unit

Family Unit
familyName gender

HOH
family Size
socialStatus
granLevel=

Household
familyName location totalIncome #formally

Emp

granLevel=

h

Fig. 3. Reconciliation example

 A Conceptual Modeling Methodology Based on Niches and Granularity 345

realising that they have the same real-world object in mind; the other where people all
use the same term for a concept without realising that they have differing ideas of
what exactly is meant by that term. Thus e.g. a botanist may speak of miombo
scrubland and a geographer of tree-bush savanna without realising that they are
referring to the same thing, since a botanist describes vegetation according to function
and the dominant species in the area whereas a geographer provides a structural
description according to the relative proportions of tree, bush and grass. Or two
individuals may discuss “household” without realising that the economist means a
unit with an income and location, while the sociologist has in mind a group of people
living together with a range of ages, incomes, genders, etc.

When niches and granularity are used in modeling, we find that semantic
heterogeneity is detected and resolved as a bonus side-effect. For example, when
granularity is considered, the difference between a geologist’s and an engineer’s concept
of a rock profile becomes evident because the geologist works at a much bigger scale or
granularity than does the engineer. When designing in the context of a financial niche,
the economists’ notion of a household as an income-generating object is the view shared
by the whole team; and when modeling the sociological niche all designers see the
household as a group of separate individuals with different ages, genders, etc. We
represent explicitly in our models the reconciling of entities wherever this occurs: if e.g.
Household is an entity with different attributes in different niche models, the reconcile
diagram shows how a consolidated Household entity is derived from these, as shown in
figure 3.

In this example, differences in granularity would have led the design team to
realise that the household of the sociological niche was in fact a composition of
people, one of whom is the head-of-household who was viewed as “the household”
itself in the financial niche. By representing this in a reconcile diagram as well, the
possibility of different interpretations is highlighted and the chances of incorrect
future development or data collection are reduced. The utility of this construct lies
therefore in explicitly including as part of a model the fact that people had different
perceptions of an entity, to indicate the similarities and differences between these
views, and to show how the differing views were unified. Without this, future model
users will be unaware that there are different ways of looking at the entity, let alone
how to relate each others’ perspectives to their own.

3 The Design Methodology

In our experience, conceptual modeling is typically done by groups of individuals
who first discuss and agree on their goal and objectives as a project team, and then
brainstorm the entities involved and the relationships between them. A complex
picture emerges, which the team must then improve upon in order to remove errors,
redundancy and inconsistency; to discover and remedy omissions; and to decide
which abstractions to use in depicting the situation. As this is a complex process, a
consultant or facilitator is typically engaged to manage and assist.

346 S. Berman and T.D. Semwayo

3.1 A Systematic Approach to Conceptual Modeling

We propose a methodology which requires a facilitator, skilled in conceptual
modeling, to guide the team, and which commences in the normal way as described
above. The steps of the methodology are as follows:

1. Define the goal of the project, and list the objectives to be met in order to achieve
this goal.

2. Draw a value chain diagram depicting the main contexts or niches (spheres of
operation) in which interactions take place.

3. Consider each node of the value chain, and draw an ER model for the entities and
interactions that take place in this context. If a node is too large or complex,
decompose it into sub-niches first and develop a model for each sub-niche. We call
the resulting set of models the niche models.

4. Choose a key entity, that is central to the project goal and that occurs in most (if
not all) niche models, and assign this a granularity of zero. For each niche model
in which this key entity appears, assign granularities to all other entities, based on
their relative level of influence/power – those with less influence being assigned
negative granularities, etc. For any remaining niche model, assign granularities to
entities in a similar way. Flag relationships involving entities of different
granularity. An example is shown in figure 4.

5. Normalize flagged relationships: identify missing generalizations (role
identification) or aggregations (composite entities), remedying the model and
removing the relationship flag wherever these are found. For each relationship that
is still flagged, consider whether this is an opportunity for achieving a project
objective. If so, introduce the corresponding intervention in the model by adding
dashed entities and relationships to represent these proposed changes to the status
quo. Any relationships that are still flagged represent unsolved problems in the real
world. The result of normalising the model of figure 4 is shown in figure 5. Here,
specific operational staff for providing direct help to farmers have been identified
through normalization.

6. Finally, create reconcile diagrams to record every situation where divergent views
of the same entity were merged, or were resolved through generalisation, aggregat-
ion or composition.

We distinguish sortals from other entities – these are ontological entities like
“person” that inarguably exist independent of context, and have a stable set of
attributes. Other entities in the model are aggregations, compositions or specialisation
of sortals. Sortals are useful for obtaining cross-niche perspectives, since the same
sortal will appear in several niches corresponding to different roles played in different
contexts. An over-arching view of the niche models is easily formulated by taking
some key entity and looking at all the relationships in which it participates. If all
occurrences of the subtypes of a sortal are considered across all niches, one gets a
global picture of the interactions that such entities can be involved in. In one case
study, for example, this highlighted the fact that an individual could be a community
member, a leader, a shareholder and a director, and be financially rewarded repeatedly
in each separate role.

 A Conceptual Modeling Methodology Based on Niches and Granularity 347

Dept. Of Water
<GL1>

Dept. of
Agric <GL1>

landBlock
<GL0>

cattleCamp
<GL0>

isOn

livestock
<GL0>

supports

keptIn

water
Resource
<GL0>

supplies

supportsSupply
&ManagementOf

agricultural
Enterprise <GL0>

isA

Dept. of Enviro
<GL1>

supports
ManagementOfi

Dept. of Lands
<GL1>

supports
AdministrationOf

farmer
<GL0>

owns

trust
<GL0>

owns

Fig. 4. Flags highlight cross-granular relationships in a niche model

3.2 Relationship Normalisation

Normalisation in step five of the methodology involves examining the entities in each
flagged relationship to detect any missing specialisations or aggregations. Where these
do not apply, this means the relationship is problematic in the real world, rather than
being a modeling error. In this case, normalisation requires that the project team apply
their mind to this opportunity or challenge that has just been highlighted. If they come
up with a practical solution, they include it in the model as a possible
intervention/strategy (denoted using dashed lines); otherwise the flags remain, as
annotations that highlight anomalous relationships in the system. The designers thus
leave a flag in place whenever they have checked that the correct entities are indeed
being used and the relationship does in reality involve entities of unequal
power/influence. In projects where a goal is to improve the system being modeled, the
team would first look for ways of remedying the situation, and only leave the flag in
place where these do not exist. When our methodology is not followed, intervention
strategies suggested in such projects are often doomed to fail precisely because the
niche is not taken into account; suggestions don’t address problems in the context of the
sphere of operation, and the crucial factor of relative impact levels is not considered.

As an example, a relationship between a farmer and a bank would be flagged
because the granularity (power/influence) of the bank is greater than that of the
farmer. This can be remedied by an intervention such as the introduction of a farmer’s
union or grouping of some sort, which would have more influence than a single
individual. In other situations specialisation, rather than composition, is needed. A
flagged relationship between Field and HighValueCrop is an example, where the

348 S. Berman and T.D. Semwayo

Fig. 5. Normalised relationships, with intervention opportunities/plans shown using dotted
rectangles

 A Conceptual Modeling Methodology Based on Niches and Granularity 349

latter has a higher granularity because it represents a crop which is sold on global
rather than local markets. To handle this flagged relationship requires that the Field be
a special type of field that can support a HighValueCrop, e.g. one which is irrigated
and treated appropriately. Thus a specialisation of Field, called say HighValueField,
is required here. Additional entities and relationships providing the extra inputs that
such a field requires (irrigation etc.) have to be added to the model at the same time.
This might be an intervention opportunity, or it might simply be rectifying a modeling
error – if in fact the fields being modeled are already being irrigated and treated, this
aspect may simply have been omitted in the model, despite being crucial to the
production of a HighValueCrop. The flagging of cross-granularity relationships
brings the problem to the modeler’s attention, thus increasing the chance of such an
omission being remedied. Similarly, in the previous example, it is possible that a
farmer’s union does already exist but was erroneously omitted from the model; the
flagged relationship highlights the need to model that the bank is approached by a
group representative rather than an individual. For the example in figure 5,
relationships between high-level government departments and the lower-granularity
entities that they support have a considerable gap in power/influence level. The
intervention that emerges, viz. to consult the appropriate official in that department, is
explicitly added to the model, but using dashed notation to indicate a future plan
rather than an existing situation.

Note that these normalisation examples also illustrate how semantic heterogeneity
is reduced as a natural side-effect of using our methodology. Often designers use the
same term but have different subtypes in mind, e.g. all will speak of a “field”, but
some will have in mind a HighValueField (irrigated, fertilised, etc.) and others not; or
they will all use the word “farmer” but some will mean subsistence-farmer and others
commercial-farmer. Our methodology brings such discrepancies to light and ensures
that the generalisation hierarchy for “field” or “farmer” is added to the model. In
step 6, reconcile diagrams are also produced, so that there is a record of the fact that
conflicting definitions of “field” and “farmer” have been resolved, and how.

4 Experiments

While the model and methodology were still being developed, we applied it in a
number of projects involving multi-disciplinary teams. In these initial experiments,
which we call the workshops, we explained the new concepts, facilitated application
of the methodology, and then pointed out the benefits of our approach. We evaluated
the usability of the methodology through questionnaires and interviews. As a result of
these three initial workshops the model, methodology and tools were improved
considerably based on observations and feedback.

Then, after the model and methodology had been developed, we used them in a
number of case studies for clients in the field. As it isn’t possible to “prove” that a
methodology is beneficial, these case studies were done in an attempt to demonstrate
by example the validity, applicability, and advantages of our methodology over
conventional modeling practices. In each case study therefore, the initial design
produced by the team was compared to the final model obtained after applying our
methodology, in order to discover any differences and identify which benefits and
shortcomings, if any, were introduced using our approach.

350 S. Berman and T.D. Semwayo

4.1 Initial Workshops

Our initial experiments were conducted while the model and methodology were being
refined. By observing novices discussing, questioning and applying our approach we
were able to evaluate its usability and identify ways in which it could be improved or
extended. For each of the workshops we drew up a pro forma plan of our expectations
beforehand, started the workshop by introducing the new concepts, facilitated
application of the methodology by the team while a co-worker observed, and obtained
feedback from participants through questionnaires and interviews.

The aims of the workshops were to:

1. determine whether participants appreciated the danger of inaccurate and
incomplete models

2. discover whether participants felt that they knew how to solve such problems
3. establish the validity of niches, granularity and reconciles
4. assess the applicability of the methodology
5. evaluate the usability of our approach
6. elicit user perceptions of the model and methodology
7. gauge whether the methodology reduced semantic heterogeneity

At the first workshop a multi-disciplinary team from such diverse fields as computer
science, engineering, ecology, geography, zoology, geology, biology and financial
management, tackled the problem of integrated coastal zone management. In this
workshop, as a first step, only granularity was introduced; the project was small enough to
manage complexity by modeling within a single broad context, without niches. With the
aid of the facilitator (ontological engineer), the team assigned granularities to entities and
normalised cross-granular relationships; they were even able to identify interventions to
improve the status quo. For example, a relationship between the DistrictTourismAuthority
and the CommunityOrganisation, entities with different granularity, led to the team
identifying a potential strategic partnership to remove this anomaly.

At the start of the workshop, nine of the fifteen participants were aware of the dangers
of modeling errors. Of these nine however, only two realised that such errors would not be
“automatically” corrected in software. After the workshop, all but one of the participants
were convinced of the dangers of poor modeling. All but one were convinced that
granularity was valid and useful, while 13 of the 15 felt it was applicable in their domain
(2 unsure). On a rating scale from 1 to 5, two subjects chose 5 (our approach much better
than other methodologies), 12 chose 4 (better), and one chose 3 (same as others).
Comments noted i.a. the following benefits: “improved data classification”, “the modeling
process (is) more specific”, “assist in focusing (the) project”, and “able to minimise risk”.
From observations during the workshop, it was clear that normalisation involving
specialisation hierarchies for different roles contributed significantly to a reduction in
semantic heterogeneity. Clearly a key factor in avoiding semantic heterogeneity lies in
distinguishing between entities and entity roles.

In the second workshop a team of engineers and geologists, amongst others, modeled a
gold mining project using the full methodology, including niches and granularity, under
the guidance of a facilitator. Granularity was particularly useful here because of the natural
tendency for engineers to describe rocks and related objects at a far smaller scale than do
geologists. Participants were able to model with niches, and found them particularly useful
for defining emergent properties, i.e. properties of the group or niche that cannot be traced

 A Conceptual Modeling Methodology Based on Niches and Granularity 351

back to properties of the individuals in that niche. It was also noted that niches and
granularity helped the team to define attributes at the correct scale or level of detail,
because the context and impact level was taken into account. Usability results were similar
to the first workshop: all but one were convinced that granularity was valid and useful.
Five subjects felt the methodology was applicable in their field, three were unsure and one
thought is was not applicable in his domain. On the rating scale of 1 to 5, one participant
rated the methodology 3 (same as others), three people rated it 4 (better than others) and
five participants rated it 5 out of 5 (much better than other methodologies).

The third workshop was a follow-up study in which the same group who had
attended workshop one, set about refining and extending the model they had produced
there. It was encouraging to see that they had assimilated the ideas to the extent that
they required only a brief introduction to remind them how the methodology worked.
They also found using niches helpful in handling the increased complexity of the
extended task. Overall the workshops indicated that the model and methodology were
usable and broadly applicable, and led to improvements not only in the methodology
itself but also in the toolkit we used to support the process.

4.2 Modeling Toolkit

In the first workshop, we customised the Poseidon UML modeling tool [2] to suit our
model, and the facilitator used this during the modeling exercise. It was discovered that
participants who were not computer scientists struggled to understand these diagrams,
which hampered rather than helped the process, because of its sophisticated interface
and the richness of the diagrams and repositories it displayed. For the next workshop,
we used a far simpler tool which was geared specifically to support our methodology.
Surprisingly, the use of this simpler tool during the design was still problematic, with
discussion often relating to the tool rather than the task at hand. For the final workshop
we used a tablet on which designs were hand-drawn, and found that this worked far
better. The facilitator would input these hand-drawn diagrams to our simple tool each
night, and discuss this with the group the next morning. At that stage the team was not
attempting to be creative but rather to understand the implications of what they had
previously designed, and were able to assimilate lessons learned from inputting
diagrams into the tool. Thus we conclude that a tool should not be used during creative
design phases, but rather when a design is being reviewed, evaluated and refined.

4.3 Case Studies

Using our methodology we have developed models for the following projects: a system
for monitoring sustainability in land reform projects; a citrus farm development study;
an eco-tourism investigation; a knowledge base for the Department of Water and
Forestry; a feasibility study for the establishment of a land and water management
regional database; a small business linkages system for the City of Cape Town and for
the provincial government; and a strategy development tool for the South African Land
Reform Programme. In this section we briefly describe aspects of one case study to
illustrate some of the benefits of using our approach.

The Eastern Cape Development Corporation (ECDC) exists to improve the standard
of living of a South African rural community, the Dwesa Cwebe. The community,
represented by a Dwesa Cwebe Land Trust (DCLT), has a joint venture company with
the ECDC - called the Operational Structure (OPS) - each owning 50% of the shares.

352 S. Berman and T.D. Semwayo

OPS owns the local Haven Bashe hotel which is operated by a private entrepreneur. It is
hoped that in the long run the ECDC will relinquish ownership in OPS.

4.3.1 Initial Conceptual Model
The multi-disciplinary project team first used the conventional approach of stating
project objectives, brainstorming to identify pertinent entities, and then drawing up a
conceptual model indicating these entities and the relationships between them. We
first outline this initial modeling that took place. Two objectives were identified to
meet the project goal:

1. Create employment opportunities linked to the Haven Bashe hotel
2. Create employment opportunities linked to the Dwesa Cwebe nature reserve

lodges and chalets.

Brainstorming was then done as a team, to share ideas and explore the problem
collectively, mind-mapping the thoughts that emerged. From this mind-map a con-
ceptual model was drawn as shown in figure 6.

Bashe Haven
Hotel

Restaurant Hotel Rooms

Deswa Cwebe
Community

Employee

ECDC

OPS Co.

Hotel Leasee

DCLT

owns 50% ofowns 50% of

owns

leases

part of part of

works in

cleans

member of

cleans

Hotel
Administration

Unit

works in

Lodges

Nature Reserve

is in

part of

Fig. 6. Original conceptual data model, before applying our methodology

 A Conceptual Modeling Methodology Based on Niches and Granularity 353

It was observed that

• No more then 50 persons are employed by the hotel and surrounding Nature Reserve.
The community has a population of 2382 households. Unemployment is therefore rife.

• Although the DCLT owns 50% of the hotel, it has not been able to leverage the full
potential offered by the tourism industry.

The model provided a static, given, hopeless situation from the community’s point of view.

4.3.2 Applying the Methodology
At this stage our methodology was applied by the team, with the author as facilitator. First,
the value chain, niches and sub-niches were identified for the project, as shown in figure 7.

Logistcics
in

Services
Logistcics

out

Laundry &
room cleaning

service

Hotel
accomodation

Restaurant

Catering
service

Restaurant
cleaning
service

Pub

Tourist shop
supplies

Hike toursNature
reserve game

drives

Nature
reserve
ancillary
services

Pub
management

services

Fig. 7. Haven Bashe Project value chain and niches

Catering
service

Enterprenuer
<GL1>

Employee
<GL0>

Restaurant
property
<GL1>

Chef
<GL0>

OPS
Co.

<GL2>ECDC
<GL2>

DCLT
<GL1>

Bashe Haven
Hotel

Co <GL2>

Hotel
manager
<GL2>

Bashe
Haven
Hotel

Property
<GL2>

owns

owns part of

owns part of

runs

reports to

works for

works for

Restaurant
<GL1>

Is a

Fig. 8. Catering Service niche model, with cross-granular relationships flagged

354 S. Berman and T.D. Semwayo

Fig. 9. Revised model, after normalisation had yielded some innovative interventions

It was clear that the use of the value chain and its decomposition into sub-niches
was considerably broadening the team’s view of the problem, and bringing new
aspects to bear that had not emerged in the earlier brainstorming or modelling
sessions. Models were then drawn up for each sub-niche, granularities assigned to
entities, and cross-granular relation-ships flagged. The resulting model for the
Catering Service niche is shown in figure 8.

After normalising the flagged relationships, the model was refined to obtain that of
figure 9. In so doing, intervention opportunities were identified. An idea emerged of
forming a catering company part-owned by the chef and other restaurant employees.
This effectively gave greater influence/power to those community members working
in the restaurant. As a direct result of distinguishing the service niche from the
broader project context, a strategy of forming separate enterprises serving the tourism
industry was born, thus better leveraging opportunities offered by the hotel and nature
reserve; and at the same time giving the workers from the community part ownership
of these service enterprises.

There were several other situations where benefits arose from identifying and
exploring specific niches and examining the granularity of the entities interacting
there. For example, it was established that there was a relationship between the hotel
lessee and the ECDC (nepotism) and this was a source of friction with the DCLT,
resulting in an environment so fraught with suspicion and non-cooperation that it
almost paralysed the project. As another example, the granularities of the “equal
partners” in the joint venture company differed, since the ECDC, being a quasi-
government organization, were in a privileged position (with access to information
such as future plans, etc.) and were more highly skilled than the members of the
Trust. Relations between the ECDC and the DCLT were particularly acrimonious
with all parties seeing the DCLT as a “poor relation”. Another strategy emerged in
trying to resolve this difference in granularity: it was decided that the ECDC and the

 A Conceptual Modeling Methodology Based on Niches and Granularity 355

DCLT form a consortium that owned the OPS, so that they could be a single entity
working together, rather than being seen as two rivals.

As a result of studying granularities and identifying intervention opportunities such
as those illustrated above, the objectives of the Haven Bashe project were re-stated as
follows:

1. Participate in the opportunities provided for the Haven Bashe hotel as employees
and owners

2. Participate in the tourism industry by providing tourist related services inside and
outside the Dwesa Cwebe nature reserve.

This represented a significant shift in the expected strategic outcomes compared to the
original approach. From this and many other case studies, our methodology was seen
to be highly useful in developing better models and in identifying ways of achieving
project goals.

5 Related Work

In a previous paper [3] we proposed using niches in GIS system design. This paper
follows on that work, describing a model and methodology for using niches,
granularity and reconciliations that we have used extensively in many real-world
projects. We are not aware of any other model that incorporates such modeling
constructs, nor of any comparable methodology. In ecological modeling the focus is
on spatial granularity, the cartographic scale of representation, at the expense of other
important variables such as time, context and functional granularity. For example, [4]
emphasise the importance of describing ecological entities at the relevant spatio-
temporal scale, and state that “There is no reason to assume that concepts, theories or
components, defined on some scale of resolution, will necessarily be applicable to
ecosystem phenomena at some other scale level” [5]. In geographical information
system modeling, recent thinking [6] is that the traditional approach of identifying
separate layers or themes (e.g. vegetation, rainfall, slope) is inadequate because
ecosystems are not disjoint but are connected wholes. [5] proposes that the rate of
change within an ecosystem be used to group ecological processes into functional
hierarchies. For example, bio-chemical processes such as photosynthesis occur within
short time spans, while tree growth takes years, soil erosion decades, and denudation
hundreds of years.

In [7] an ecosystem is defined as a system describing the relationships of
organisms to their physical environment and to one another. A niche (also called a
habitat, ecotope, biotope or micro-landscape) is an ecological whole with its own
meta-properties, containing members that interact under specific environmental
conditions, and favouring particular members or groups of members [7]. They refer to
a niche as “a location in space that is defined additionally by a specific constellation
of ecological parameters such as degree of slope, exposure to sunlight, soil fertility,
foliage density, and so on”.

The suggestion that the functional niche be used as a fundamental unit of investigating
ecological systems appears in [8,9]. Smith [7] defines an ecological niche as a
containment space bounded by spatial and/or temporal parameters favouring specific

356 S. Berman and T.D. Semwayo

groups of members. That entities interact with each other according to the ecosystem
or environment in which they exist is also recognised by [9] who refers to niches as
socio-economic units, and physical behavioural units. While these researchers
advocate that niches are used in studying ecological phenomena, they offer no
suggestions for incorporating this into conceptual models, nor do they propose any
method for using them in the design process. They also give no indication as to
whether they have put their idea into practice when tackling real problems. This paper
therefore takes their work further by presenting a way of including niches in a model
and methodology, and by reporting on its successful usage in a number of workshops
and case studies.

Our methodology differs from other conceptual modeling methods not only in its
use of niches, granularity and reconciliation, but also in the starting point of design.
Booch[10] begins with a description of the system’s function and structure, as do
others such as OPM[11] and Insyde[12]. Many UML-based methodologies
[13,14,15,16,17] commence with a problem description and a set of use cases, and
thus also focus on processes rather than on the value chain and the environments in
which interactions occur. Most modeling methodologies offer little guidance to
designers, with steps indicating what to do when (e.g. identify entities, then subtypes,
then relationships [18], or specify process-events, then objects, then constraints[12])
but not how to do so, with little if any help in detecting errors or omissions. A few
like [12,18] mention the problem of semantic heterogeneity, but fail to include this
explicitly in the model. A methodology that offers more guidance than most is
TCM[19] which uses noun-phrase analysis to detect possible entities, verb-phrase
analysis to detect potential associations, Chen’s English Sentence Structure to
determine attributes [20] and class category lists[21,22,23,24,25] to validate entities.
TCM gives elimination rules to for entities and for associations. It also recommends
that class categories (a given list of entity kinds such as person-role, event, etc.) be
used as a checklist to detect omissions. However it does not take context or sphere of
operation into account, and does not provide guidelines for discovering when
inappropriate entities or entity roles have been used.

6 Conclusion

Conceptual modeling requires dealing with complexity, handling semantic
heterogeneity (where different individuals use different vocabularies or attach subtly
different meanings to terms), and choosing appropriate abstractions to represent the
real world. A systematic, prescriptive method of undertaking such a difficult task is
clearly needed. This paper presented such a methodology for conceptual modeling. It
comprises the following six steps: setting objectives; identifying niches; designing
niche models; assigning and checking granularities; normalising relationships; and
recording reconciliations.

We introduced the notion of a niche as a basis for the methodology because of the
importance of taking immediate context into account during design. A niche is an
environment with a particular functional purpose that favours specific entities, in
which interactions take place according to set norms and constraints. Within each
niche we model not only entities, attributes and relationships, but also the granularity

 A Conceptual Modeling Methodology Based on Niches and Granularity 357

of entities. This we define as the relative level of influence, power or impact of the
entity compared with others in the environment. This is an important tool for
detecting errors and omissions in a model, because during the normalization process
all relationships involving entities of differing granularity are systematically checked
and remedied where necessary. We show how these remedial actions lead to the
identification of missing aggregates or composition entities, or indicate the need for
new specializations/roles for an entity. Without the use of granularity and
normalization, such modeling inaccuracies typically go undetected. We further show
that normalization can identify intervention opportunities were the status quo in the
real world can be improved, because it highlights anomalies that exist and requires
designers to think creatively about such problems.

Our methodology has been applied in a number of case studies and shown to be
valid, applicable and useable. It improved the quality of models produced and also
greatly reduced semantic heterogeneity. By virtue of modeling in the context of a
specific niche, the chances of seeing a situation with discipline-specific biases are
vastly reduced. Furthermore, normalizing cross-granularity relationships causes two
different views of an entity to be recognized as different roles that the entity plays in
different niches, and this is then resolved in the corresponding generalisation
hierarchy. As a final step, the methodology requires that all instances in which
semantic heterogeneity was resolved be explicitly recorded using a simple reconciles
relationship that we developed for this purpose.

In future, we plan to investigate the potential of our model and methodology across
a more diverse set of case studies. While we have applied them in many different
situations, these have thus far all been socio-ecological projects. We need to explore
the methodology in other domains, particularly in the business world. Another aspect
that needs further work is that of defining more precisely the role of the facilitator
(ontological engineer). Until now, the author has acted as facilitator, and questions
remain as to how a facilitator should best be trained for such work and, once trained,
how best s/he should proceed before, during and after each modeling session. A
further important part of the research is the creation of domain ontologies from the
models produced with our methodology. We have already done this for socio-
economic upliftment projects, where we are now re-using our ontology in new
projects quite successfully. However the general problem of converting models that
incorporate niches, granularity and reconciliations into a suitable ontology needs
further exploration.

References

1. Porter, M.E.: Competitive Advantage: Creating and Sustaining Superior Performance. Free
Press, New York (1985)

2. Poseidon for UML, Community Edition, http://www.gentleware.com
3. Semwayo, D.T., Berman, S.: Representing ecological niches in a conceptual model. In:

Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.-q., Grandi, F., Mangina,
E.E., Song, I.-Y., Mayr, H.C. (eds.). ER 2004 LNCS, vol. 3289, pp. 31–42. Springer,
Heidelberg (2004)

358 S. Berman and T.D. Semwayo

4. Cheng, T., Molenaar, M.: A process-oriented spatio-temporal data model to support
physical environmental modeling. In: Cheng, T., Molenaar, M. (eds.) Proceedings of the
8th International symposium on spatial data handling, pp. 418–430 (1997)

5. O’neill, R.V., DeAngelis, D.L., et al.: A hierarchical concept of ecosystems. Princeton
University Press, Princeton (1986)

6. Smith, B., Varci, A.C.: The Formal Structure of Ecological Contexts, in Modeling and
using Context. In: Bouquet, P., Brezillon, P., Serafini, L. (eds.) Proceedings of the Second
International and Interdisciplinary Conference, pp. 339–350. Springer, Heiderberg (1999)

7. Smith, B.: Objects and their Environments: From Aristotle to Ecological Ontology.
Communications of the ACM 45(2), 79–79 (2002)

8. Raper, J.: Defining Spatial Socio-Economic Units: Retrospective and Prospective, in Life
& Motion of Socio-economic units, Taylor Francis, 2001 Multidimensional Geographic
Information Science. Taylor Francis (2000)

9. Frank, A., Raper, J., Cheylan (eds.): Life and motion of socio-economic units. Taylor
Francis (2001)

10. Booch, G.: Object-Oriented Analysis and Design with Applications, 2nd edn. Benjamin
Cummings (1994)

11. Liu, H., Gluch, D.P.: Conceptual Modeling with the Object-Process Methodology in
Software Architecture. Journal for Computing Sciences in Colleges, 10–21 (2004)

12. King, R., McLeod, D.: A Database Design Methodology and Tool for Information
Systems, ACM Trans. ACM Trans. on Office Information Systems 3(1), 2–21 (1985)

13. Maciaszek, L.A.: Requirement Analysis and System Design: Developing Information
Systems with UML. Addison-Wesley, London, UK (2001)

14. Rosenberg, D.: Use Case Driven Object Modeling with UML: A Practical Approach.
Addison-Wesley, London, UK (1999)

15. Rumbaugh, J., Blaha, M., et al.: Object-Oriented Modeling and Design. Prentice-Hall,
Prentice (1991)

16. Siau, L.: Unified Modeling Language: Systems Analysis, Design and Development Issues.
Idea Publishing, USA (2001)

17. Stevens, P., Pooley, R.: Using UML: Software Engineering with Objects and Components.
Addison-Wesley, London, UK (1999)

18. Teorey, J.J., Yang, D., Fry, J.P.: A Logical Design Methodology for Relational Databases
Using the Extended Entity-Relationship Model. Computing Surveys 18(2), 197–222
(1986)

19. Song, I.-Y., Yano, K., Trujillo, J., Mora, S.L.: A Taxonomic Class Modelling
Methodology for Object-Oriented Analysis. In: Proc. EMMSAD (2003)

20. Chen, P.P.: English Sentence Structure and Entity-Relationship Diagrams. Information
Sciences, 127–149 (1983)

21. Bahrami, A.: Object-Oriented Systems Development. McGraw-Hill, New York (1999)
22. Larman, C.: Applying UML and Patterns, 2nd edn. Prentice-Hall, Prentice (2001)
23. Richter, C.: Designing Flexible Object-Oriented Systems with UML. Macmillan Technical

Publishing (1999)
24. Ross, R.G.: Entity Modeling: Techniques and Applications, Database Research Group Inc

(1988)
25. Starr, L., Executable, U.M.L.: Executable UML: How to Build Class Models. Prentice

Hall, Prentice (2001)

As We May Link: A General Metamodel for

Hypermedia Systems

Beat Signer and Moira C. Norrie

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

{signer,norrie}@inf.ethz.ch

Abstract. Many hypermedia models have been proposed, including
those specifically developed to model navigational aspects of web sites.
But few hypermedia systems have been implemented based on metamod-
elling principles familiar to the database community. Often there is no
clear separation between conceptual and technical issues in the models
and their implementations are not based on an explicit representation of
a metamodel. This results in a loss of generality and uniformity across
systems. Based on principles of metamodel-driven system development,
we have implemented a platform that can support various categories of
hypermedia systems through the generality and extensibility of the meta-
model. We present our metamodel and show how it generalises concepts
present in a range of hypermedia and link server systems.

1 Introduction

The vision presented by Vannevar Bush in his paper As We May Think [1] is
often accredited as being the origin of hypermedia systems. Since then, many
hypermedia models and systems have been developed, but they are all based
on the same underlying model of information spaces as interlinked collections
of resources. Variations abound according to the precise nature of the links and
resources, how they can be authored and accessed and also the application do-
mains considered. This has led to numerous categories of systems including open
hypermedia, adaptive hypermedia, physical hypermedia and spatial hypermedia.
Of course, the most famous of all hypermedia systems is the World Wide Web
and the hypermedia community has actively investigated ways of extending the
underlying technologies and tools to enable more advanced and flexible features
to be supported. At the same time, hypermedia models have been adopted by the
web engineering community as a basis for modelling navigation and adaptation
in model-based approaches to web site development.

However, a study of the hypermedia literature reveals a lack of clear, concep-
tual models that are general and flexible enough to support the development of
a wide range of hypermedia systems and applications. In some cases, conceptual
and technical issues are combined into the same model, while other approaches
integrate application-specific concepts into the core of the model. Further, in con-
trast to database systems, implementations are rarely metamodel-driven. This

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 359–374, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

360 B. Signer and M.C. Norrie

means that a metamodel is not represented explicitly in the system resulting in,
not only a loss of flexibility, but also the introduction of major restrictions in
the model during the implementation process.

Our goal was to produce a general platform for the development of hypermedia
systems based on principles of metamodel-driven engineering and extensibility.
This meant defining a core link metamodel that is general enough to support
features of many different systems and free from implementation issues. In ad-
dition, the core metamodel was designed with extensibility in mind so any type
of resource and link could be supported. For example, in the implemented sys-
tem, we currently support text and XHTML documents, images, videos, Flash
movies, databases, RFIDs, interactive paper documents and program compo-
nents as resources that can be linked together. In addition, each type of resource
can have one or more selectors defined to enable links to and from elements
within resources. We support both navigational and structural links as well as
links with multiple targets, multiple sources and also links over links.

In this paper, we present our metamodel and show how it generalises existing
hypermedia models in terms of supporting concepts of these models either di-
rectly in the core model or through extensibility. At the same time, we use this
as an example to show the benefits that can be attained by using a conceptual
metamodel as the basis for system engineering.

We start in Sect. 2 by describing the range of existing hypermedia models
and systems in order to identify the requirements of a general metamodel and
also highlight some of the problems of existing model definitions. Section 3 then
presents the core of our metamodel in terms of link concepts. In Sect. 4, we show
how a user model is integrated into the core metamodel. The concept of layers
is introduced in Sect. 5 and we describe how this can be used to support nested
links. Section 6 shows how the core model was extended to support structural
links as well as navigational links. In Sect. 7, we discuss some key features of the
implementation. Concluding remarks are given in Sect. 8.

2 Background

Over the last two decades a variety of hypermedia models for different domains
and purposes have been proposed. We first review some of the best known in
order to show the variety of features supported and part of the history of how
these models evolved. We then discuss some general limitations of the proposed
models and implementations in order to motivate our approach for a general
metamodel supporting different hypermedia domains.

In an attempt to generalise concepts from different hypertext systems, the
Dexter hypertext reference model [2] introduced three abstraction layers. The
storage layer describes a network of interlinked nodes (components) whereas the
within-component layer deals with the content and structure within those nodes.
User interaction with hypermedia content is handled by the runtime layer. A lim-
itation of the Dexter model is the fact that all data has to be encapsulated within
the components and data not forming part of the hypermedia structure itself

As We May Link: A General Metamodel for Hypermedia Systems 361

cannot be addressed. Furthermore, the Dexter model does not specify in detail
how anchors can be used to address parts of composite components. The DeVise
Hypermedia (DHM) system [3] for cooperative hypermedia addressed some of
these limitations by extending the Dexter model. Around the same time, the
Amsterdam Hypermedia Model (AHM) [4] added concepts of time and context
to the Dexter model to investigate ways of combining multimedia and hypertext
concepts to support the linking of dynamic multimedia information. In addi-
tion to the original navigational hypermedia models, spatial [5] and taxonomic
hypermedia [6] models were also investigated in the mid-90s.

Adaptive hypermedia systems enable the content and link structure to be
adapted dynamically based on the user context by integrating a user concept
into the model [5]. AHAM [7] is a reference model for adaptive hypermedia
systems that extends the storage layer of the Dexter model with a user model.

Open Hypermedia architectures address interoperability between hypermedia
systems and the Open Hypermedia Protocol (OHP) was developed for the ex-
change of navigational link information. OHP was specified using DTDs resulting
in a lack of detail due to the limited expressiveness of the chosen “specification
language”. The Fundamental Open Hypertext Model (FOHM) [8], an extension
of OHP, attempts to provide a common data model for navigational, spatial and
taxonomic hypermedia by providing operations for these three domains. How-
ever, a drawback of FOHM is its limitation to exactly those three domains, ignor-
ing other existing hypermedia domains. The issue of limited extensibility in terms
of structural abstractions necessary to support different hypermedia domains
was addressed by Component-based Open Hypermedia Systems (CB-OHS) [9].
In many open hypermedia systems, the controlled sharing of information seems
to be difficult since the majority of approaches do not consider user management
and the issues of data and link ownership in their core model.

A distinguishing feature of open hypermedia systems is the fact that they
use external link servers to deal with links between resources. Managing links
separately from resources allows for greater flexibility in supporting features
such as bidirectional links, multi-source and multi-target links and link groups.
Importantly, it also enables the removal of the sharp distinction between the
authors and users of links since users can create links between resources with-
out having access rights to modify those resources. Well known link servers
include Chimera [10], Microcosm [11] and Hyper-G along with its successor
Hyperwave [12]. Similar issues of embedding links in resources as opposed to
managing them separately arose in the context of the World Wide Web and
the hypermedia community have contributed to the development of the XML
Linking Language (XLink) [13] which allows links to be managed separately as
well as providing more flexibility in terms of defining and accessing links. The
XLink standard is based on the Hypermedia/Time-based Structuring Language
(HyTime) [14]. As part of the Semantic Web initiative, the Annotea project [15]
uses these ideas to allow users to create and share annotations of web resources.

More recently, physical hypermedia models for bridging the physical and dig-
ital worlds have been proposed. For example, HyperReal [16] is a mixed reality

362 B. Signer and M.C. Norrie

model that introduces the concept of map components for managing geograph-
ical data. In addition, existing hypermedia solutions have also been challenged
by new ideas such as the structural computing approach that treats structure as
a first-class citizen and no longer puts the focus on the data [17].

As outlined, there is a wide variety of hypermedia models and systems. While
there have been some attempts to provide reference models such as Dexter and
FOHM, most hypermedia models and systems are isolated solutions for specific
domains (e.g. navigational or spatial hypertext) or even specific applications.
Although the Dexter model was instrumental in providing a common vocabulary,
its specification is not detailed enough to enable information exchange between
different systems based on the Dexter model or one of its extensions. Many
models for hypermedia systems have claimed to be general and extensible and
yet these have often disappeared only to be replaced by another hypermedia
model. There is little or no support for evolution between these models with the
result that applications and data are lost between implementations.

In our opinion, one of the causes for this situation is the lack of well-defined
conceptual models on which implementations are based. Often models are pre-
sented as a mix of architectural, technical and conceptual features. As a result,
the concepts become obfuscated and restrictions are introduced unnecessarily
due to technicalities of the envisaged implementation.

Designing a system around a well-defined conceptual metamodel leads to in-
creased generality and flexibility of both the model and the system. The use of
metamodels as a basis for specifying and implementing hypermedia models is
not widespread. In the field of web engineering where hypermedia models have
been adapted to model navigation and adaptivity in web sites, metamodels are
more commonly used and there have been efforts to define common metamodels
(e.g. [18]). However, in this case, the metamodels tend to be focussed on the
specific needs of web engineering.

Summarising, we feel that there is a need for a general framework to sup-
port the development of different categories of hypermedia systems and that
this framework should be based on a general, extensible metamodel for hyper-
media. The core of this metamodel has to be powerful enough to support the
specification and modelling of different hypermedia domains in terms of a small
set of fundamental link concepts. The development of the framework should be
based on an implementation of the metamodel with the explicit representation
of concepts of the metamodel in terms of metadata. While such a metamodel-
driven approach to implementation is well-known to the conceptual modelling
and database communities, along with its advantages in terms of flexibility and
support for evolution, it is relatively rare to find it outside these communi-
ties and, in particular, in hypermedia systems. The result is that often model
concepts are mapped to implementation-specific approximations that introduce
restrictions and the model itself is hard-coded and static.

In the remainder of the paper, we present such a metamodel, the resource-
selector-link (RSL) model, and describe how it was used to implement a general
cross-media information platform called iServer [19]. We highlight how the RSL

As We May Link: A General Metamodel for Hypermedia Systems 363

model generalises concepts found in the range of hypermedia models mentioned
above. Further we show how extensibility for domain-specific requirements is
supported through a combination of concept specialisation in the metamodel
and plug-in components in the architecture.

3 Link Metamodel

Our general metamodel for hypermedia systems was defined using the seman-
tic, object-oriented data model OM [20]. OM is a data model that integrates
concepts from both entity relationship and object-oriented data models. The
OM model is intended as a basis for efficient data management as well as se-
mantic expressiveness, and a family of object-oriented database platforms have
been realised based on this model including the OMS Java data management
system [21]. Using OM together with OMS allowed us to directly implement
the metamodel and we were able to exploit powerful features of the OM model
such as multiple classification and ordered collections in the metamodelling pro-
cess. For that reason, we choose to use the OM modelling notation here rather
than a more commonly used alternative. However, it is important to note that,
even if another implementation platform were used, it would prove beneficial to
base the system design on our OM metamodel which provides rich classification
structures over objects and associations together with a full operational model.

The OM model supports information modelling through a two-level structure
of classification and typing, dealing with these on separate layers. Typing deals
with representation and entities are represented by objects with attributes, meth-
ods and triggers defined for the corresponding object types. Classification deals
with semantic roles and a particular classification is represented by a named
collection of objects with a specified member type. In addition, OM provides a
high-level association construct which enables associations between entities to
be classified and manipulated directly.

The OM model differs from many conceptual models in that it is intended as
an operational model for data management as well as for system design. Thus
the OM model defines a full operational model over objects, collections and as-
sociations as well as constructs for their definition. The expressive features of the
OM model enable us to capture the semantics of application domains in terms of
a simple, but powerful set of constructs. Its support for the direct representation
and manipulation of associations is particularly useful in supporting link man-
agement in systems that offer hypermedia functionality. For more details about
the OM model and its additional features please refer to [20].

In this section, we focus on the core link functionality of our general model
whereas other parts of the RSL metamodel are presented in Sect. 4 to Sect. 6. The
schema of the core link model is shown in Fig. 1. The shaded rectangular shapes
denote collections of objects (classification) where the name of the collection is
given in the unshaded part and the name of the associated type in the shaded
part. The type serves both as a constraint on membership in the collection and
also as the default view of objects accessed through that collection. Thus, links

364 B. Signer and M.C. Norrie

entity

link

Links

selector

Selectors

resource

Resources

(1,*)(1,*)

(1,1) (0,*)

(0,*) (0,*)

RefersTo

HasTargetHasSource

partition

HasProperties

parameter

Properties
(0,*) (0,*)

HasResolver

contextResolver

Context
ResolversEntities

(0,*) (0,*)

Fig. 1. Core link metamodel

are represented by objects of type link grouped into the Links collection. The
shaded ovals represent associations between entities of two collections.

The most general concept within our hypermedia metamodel is the generic no-
tion of an entity (similar to components in the Dexter model). Note that all in-
stances of entities are further classified and grouped by the collection Entities.
While an entity represents only an abstract concept, there are three specific forms
of entities described by three different subtypes: the resource, the selector and
the link types.

The simplest type of entity is the resource type representing an entire infor-
mation unit. While a resource is still an abstract concept, all types of media
to be handled by the hypermedia system have to provide a specific extension of
the resource type based on a plug-in mechanism. Our implementation of the
hypermedia model, known as iServer, currently supports a variety of different
resource types for web pages, movie and sound clips, images, Flash movies, phys-
ical objects marked with RFID tags as well as interactive paper. Note that we
have a subtyping relationship between the resource and entity type but the
specialisation of resources is also reflected in the model by designing Resources
as a subcollection of the Entities collection.

Often we want to define links between not only entire resources but also spe-
cific parts of resources. For example, the anchor of a link within a web page
addresses a specific part of an HTML document using the href anchor tag.
Therefore, as a second subtype of the entity type, we introduce the concept
of a selector which is a construct enabling parts of the related resource to be
addressed (similar to reference objects in FOHM [8]). Again the specialisation of
Entities is reflected by the Selectors subcollection. An association RefersTo
represents the fact that a selector is always associated with exactly one resource,
whereas each resource can have more than one referencing selector. The cardi-
nality constraints specified at the source and target points of the associations
indicate the possible level of participation of individual objects. Thus (1,1)
at the source point of the RefersTo association indicates that each selector is
always associated with exactly one resource, whereas the (0,*) cardinality con-
straint at the target means that each resource can have zero or more referencing

As We May Link: A General Metamodel for Hypermedia Systems 365

selectors. A selector is an abstract concept that has to be extended to sup-
port concrete types of media. For example, the selector to address parts of an
XHTML document resource could be an XPointer expression, whereas the se-
lector to specify parts of a movie clip could be a temporal selector with a start
and an end time.

After providing a mechanism to allow entities to be referenced by a link, we
now provide a specification for the links themselves. A link within our hyper-
media metamodel is always directed and leads from one or more sources to one
or more targets. A source may either be an entire resource or parts of a re-
source addressed by a selector. This is reflected in the model by making the
collection Entities the target collection of both the HasSource and HasTarget
associations. Furthermore, the (1,*) cardinality constraint at the source point
of both associations indicates that each link must have at least one and possibly
many sources and targets. In this way, we support multi-target links as well as
links with multiple sources. The (0,*) at the target point of the HasSource and
HasTarget associations specifies that there is no limit on the number of links
for which an entity may be the source or target. Note that by ensuring that
each link has at least one source and target entity, we prevent any occurrence of
dangling links as proposed in the Dexter model and guarantee that the system
is always in a consistent state where links can be resolved. For cases where the
source or target entity is not available at link creation time, special placeholder
elements could be used and replaced at a later time.

While there are many existing hypermedia models dealing with multi-target
links, we found that links with multiple source anchors are not supported by
most systems. However, from our experience of integrating information across
different digital and physical information spaces, we can say that the concept
of multi-source links is very powerful. For example, if the same information is
published on different output channels (e.g. a web page and an interactive paper
document) the semantics of a single link is maintained by associating it with
two different sources for the two different types of media triggering the link
resolution. Also note that since the underlying OM model provides bidirectional
associations as a higher-level construct, all the associations used within the cross-
media link model are also bidirectional. This enables us to, not only get all the
link targets for a specific link source, but also to find the corresponding link
sources given a specific target object.

By also modelling Links as a subcollection of Entities, we gain the flexibility
to create links whose sources or targets are defined by other links. This means
that we can annotate any link with supplementary information. While other
systems also support the annotation of links with additional information, our
approach of using the metamodel’s link functionality for annotating links entails
the advantage that links can not only be annotated with textual information
but with any arbitrary entity. This means that we can use resources, parts of
resources or even other links to annotate a link. For example, we could have a web
page with links to additional information and these links could then be annotated
by other users with textual comments or links to different web resources etc. A

366 B. Signer and M.C. Norrie

final remark about the three core concepts (resource, selector and link) is that a
partition is specified over the Resources, Selectors and Links subcollections
to denote that each entity belongs to exactly one of these three categories.

To provide some additional flexibility for future extensions, each entity can
be associated with a set of properties which are stored as a set of string tuples
in an entity’s property attribute. These properties, represented by key/value
pairs, are not predefined by a system implementing the model. They can be
defined individually to customise an entity’s behaviour for specific application
domains. For example, one could define a link property onActivatewhich would
represent the action to be taken when a link is activated. Possible values could
be openInline to open the link target within the current resource or openNew to
display the link target in a separate view. This is similar to concepts in XLink [13]
where the actuate attribute is used to define the traversal behaviour and the
show attribute defines where a link should be shown (e.g. in the same or in a new
window). However, we try to be as flexible as possible by not predefining a set of
properties but rather introducing an abstract property set which can be extended
for specific domains. Another example is to provide a flexible “typing” of links
by introducing a property with the name type and assigning the appropriate
values to it as proposed in the Dexter model. For instance, we could introduce
a special type for links which represent annotations and treat them in a specific
way. As an alternative, we could also introduce domain- or application-specific
subcollections of Links as a means of classifying links. This combination of being
able to associate properties to links and also classifying them provides a very
flexible and powerful way of representing link taxonomies.

Finally, our core model provides functionality for the context-dependent han-
dling of entities. Each entity can be associated with a set of context resolvers
which are then used to compute an entity’s visibility. A contextResolver basi-
cally returns a boolean value representing an entity’s accessibility based on data
managed by the hypermedia model as well as any other available contextual
information. If multiple context resolvers are associated with a single entity, the
entity will only be visible if all context resolvers return positive feedback. While
the context resolver is an abstract concept, various domain- and application-
specific context resolver extensions can be registered with the system.

By introducing the concept of context-dependent information at the very core
of our model (i.e. at the entity level), we gain the flexibility of having context-
dependent resources, selectors and links operating independently of each other.
For example, a link with multiple targets may be accessible in a given context
while, for the same context, some of its target entities may be inaccessible. The
implementation of adaptive hypermedia functionality mentioned in the previous
section is just one of the domains that can be supported by the context resolver
concept. Entities can be easily tagged with different properties which will then
be used in the decision process of specific context resolvers. A built-in context
resolver for handling access rights has to be provided by all systems implementing
our hypermedia metamodel and is presented in the next section as part of the
user management component.

As We May Link: A General Metamodel for Hypermedia Systems 367

4 User Model

In order to support both personalisation and the sharing of links and resources,
we need a notion of data ownership combined with different levels of access
rights. While most early hypermedia systems did not deal with an explicit rep-
resentation of users as part of the model, some adaptive hypermedia models
(e.g. AHAM [7]) introduced the concept of user models in the core of the sys-
tem. However, while those user models typically deal with the aggregation and
storage of user access patterns, our user model only provides functionality for
managing data ownership and access rights at the entity level. The richer user
models investigated by the adaptive hypermedia community could be integrated
as a domain-specific extension of our metamodel. Note that even more recent
link models such as the XLink standard do not provide the concept of data own-
ership nor do they deal with the definition of link access rights. By defining the
access rights at the entity level, we can define individual permissions for links,
resources and selectors. The representation of the fundamental user management
component in our model is illustrated in Fig. 2.

user

Users

parameter

Preferences

group

Groups

entity

Entities

(0,*)

(0,*)

(0,*)
(0,*)

(0,*)

HasMembers

AccessibleTo

individual

IndividualsCreatedBy

InaccessibleTo

(0,*)

(0,*)

(0,*)

(1,1)

partition

Has
Preferences

(0,*)

Fig. 2. User management

A user can either be an individual or a group. Users can be classified in
different groups represented by the collection Groups, where a group itself can
be part of other groups. Each entity is created by exactly one individual user
having full control over its content. Note that the collaborative authoring of links
and resources is possible due to the fact that the creator can define read and
write access rights for other groups of users or individuals. The two associations
AccessibleTo and InaccessibleTo are introduced to define access rights in a
flexible way. The set of individuals having access to a specific entity is defined
by the groups and individuals associated by AccessibleTo minus the groups
and individuals defined through the InaccessibleTo association. In addition,
there exists a constraint that access rights defined for an individual always have
priority over access rights that have been defined for a group. More formally,
a group G is defined by some subgroups Gi and some individuals Ik that it

368 B. Signer and M.C. Norrie

contains, i.e. G = {G1, . . . , Gm, I1, . . . , In}. The expanded set of individuals who
are members of a group is given by

E (G) =
⋃

g∈G

E (g) with E (I) ≡ {I}.

For a specific entity e, let Ga(e) denote the set of groups explicitly specified as
having access to e and Gx(e) those explicitly denied access. Correspondingly, let
Ia(e) denote the set of individuals explicitly specified as having access to e and
Ix(e) those explicitly denied access. Then A (e), the set of individuals having
access to entity e is defined as

A (e) = Ia(e) ∪ (E (Ga(e)) \ E (Gx(e)) \ Ix(e)).

This allows us to define complex access rights for an individual entity of the
form “the entity should be visible to everybody except one specific group of
users and two particular individuals”. The activation of a link may depend on
the user and even the user role. An author of a cross-media application based on
our hypermedia metamodel may not only define different selectors for different
users but also link the same selector to different information resources based on
the user profile. Note that a specific context resolver can be used for ensuring
entity access control based on the presented user model.

5 Layers

We have already introduced the concept of a selector to address parts of a re-
source as a link source or target entity. However, so far we have not explained how
we deal with the case that the parts of a resource defined by different selectors
overlap. For example, we could have one selector which specifies a paragraph
within an XHTML document, while another selector specifies a word within
that paragraph. The overlapping selectors can create a link resolution problem
in terms of not knowing which link to activate when the word is selected. This
is the problem of supporting so-called nested links. In the case of HTML, this
problem does not arise as overlapping anchors are not allowed, but this is also
quite restrictive and therefore a number of hypermedia models support some
form of overlapping anchors (strictly nested and/or partly overlapping). But,
even if nested link anchors are supported, it is often the case that the link res-
olution behaviour in the case of overlapping anchors cannot be specified. For
example, the XLink specification allows for nested and overlapping link anchors
but does not provide any functionality to control their behaviour. To become
more flexible in defining the semantics of nested link source and target anchors,
we introduce the concept of layers shown in Fig. 3.

Each selector is associated with exactly one layer and we do not allow overlap-
ping selectors on the same layer, thereby forcing overlapping link source selectors
to be defined on separate layers. In the case that a concrete selection would re-
turn several links by activating multiple overlapping selectors, by definition, the
link bound to the selector on the uppermost layer will be selected.

As We May Link: A General Metamodel for Hypermedia Systems 369

selector resource
(1,1) (0,*)

RefersTo

layer

Layers

OnLayer |HasLayers|

Selectors Resources

(1,1)

(0,*) (0,*)

(0,*)

layer

Active
Layers

Fig. 3. Layers

The OM model supports collections of four different behaviours—sets, bags,
rankings and sequences—to cater for collections with and without multiple oc-
currences of elements and with or without an explicit ordering. This also applies
to associations. A selector’s associated resource defines the set of available layers
over the association |HasLayers|and the vertical bars indicate that this is a totally
ordered association (ranking) that provides an explicit ordering of the layers. Fur-
thermore, it is possible to activate and deactivate specific layers by adding them
to or removing them from the ActiveLayers collection. The order defined by this
association is used to choose the appropriate layer in the case that a selection ad-
dresses multiple overlapping selectors. Note that a selector can only be associated
with a layer defined by its related resource over the |HasLayers| association.

Specific layers may be activated, deactivated and dynamically reordered en-
abling us to generate context-dependent links by resolving a particular selection
to different selectors depending on the current set of active layers and the order
of layering defined by the associated resource. An application may also control
the navigational behaviour by switching the active layer set as a result of a user
repeatedly providing the same selection.

6 Structural Links

As explained earlier, links are already first class objects in our model. By using
links to describe structural components as well as navigational relationships
between different resources, we place structure on the same level as resources
and navigational links. Note that we do not give priority to structure over data
as sometimes proposed by structural computing [17] but rather consider them
to be on the same level.

In Fig. 4, we present an extension of our metamodel that distinguishes between
structural and navigational links between resources. The collection Links intro-
duced in Sect. 3 is partitioned into Navigational Links and Structural Links.
By modelling structural links as a subcollection of regular links, they can be used to
define a structure over arbitrary entities (e.g. resources, selectors and even links).

370 B. Signer and M.C. Norrie

entity

link

Links
(1,*)(1,*)

(0,*) (0,*)

HasTargetHasSource

Entities

link

Structural
Links

link

Navigational
Links

|HasChild|

partition

structure

Structures

(1,*)

(0,*)

HasElements
(1,1) (1,*)

Fig. 4. Navigational and structural links

All structures are handled by the Structures collection and a single structure
is related to its structural links by the HasElement association. It is necessary
to have such an explicit grouping of structure elements since parts of structures
might be reused by other structures as shown later in this section. Furthermore,
structural links are a specialisation of general links since we have to introduce
an order for the substructure relationship. For example, if we want to model the
structure of a document with different chapters and sections within a chapter,
we have to know the order of the chapter within the entire document as well
as the order of the sections within the chapters. The order over such substruc-
ture relationships is introduced by the ordered |HasChild| subassociation of the
HasTarget association. Therefore, the Structures and |HasChild| components
provide us with information about all of the components belonging to a specific
structure as well as their structural relationships.

A first type of structure that can be defined based on the new concepts is
a structural relationship of different resources. An example of such a structure
over data is a regular document containing chapters, sections, paragraphs etc. It
is up to an application to define different domain-specific structures. Note that
since we have a clear separation of data and structure, it is possible to reuse the
same resource in different structures by transclusion as suggested by Nelson [22].
The context-dependent link resolution, discussed earlier as an example to sup-
port adaptive hypermedia, is also available for structural links. Therefore, the
structure of a specific resource may change based on the user accessing it or any
other context resolver-based adaptation.

Structural links can not only be defined directly over resources but we can also
define a structure over structures. It is important to know that each structural
link within a structure defines a substructure containing the structural link’s
source elements and all of its children (recursively). This implies that we can
superimpose any structure on top of existing structural components and, of
course, the structural composition of data and substructures can also be com-
bined. Note that to address a substructure we do not define a structural link to
the structure element but rather to the corresponding structural link defining
the substructure. An example of such a reuse of a substructure component could

As We May Link: A General Metamodel for Hypermedia Systems 371

be a chapter of a document (e.g. a technical specification in an appendix) that
is structurally referenced by different documents.

Last but not least, we can also specify a structure over links. This enables us
to put different navigational links in relation to each other. A simple example
would be the structure of an ordered list of navigational links defined by a
single structural link. Such an ordered list of navigational links could be used
to represent trails and tours, which are two well-known concepts available in
many hypermedia models and systems. While we have indicated some examples
for structure over data, structure over structures and structure over links, it is
beyond the scope of this paper to discuss the potential applications of structural
links in detail. We also point out that we are still investigating the implications
of this powerful concept for different domains.

7 Implementation

The RSL metamodel presented in this paper is implemented using the OMS Java
data management system [21]. The resulting iServer platform [19] for cross-media
information management has been used over the last five years in a variety of
projects for linking digital and physical information resources and, specifically,
for the implementation of the iPaper framework [23] for interactive paper.

Since the metamodel was implemented on the OMS Java data management
system, the iServer platform provides a Java API for accessing data as well
as metadata. We have also implemented a Web Service interface providing the
same functionality as the Java API to offer a more general language indepen-
dent programming interface for the iServer platform. Other extensions include a
distributed version of the platform where different distributed iServer instances
can exchange link information based on peer-to-peer technology.

Different media-specific plug-ins for the resource and selector concepts have
been developed including plug-ins for XHTML documents, movie and sound
clips, still images, Flash movies, physical hypermedia based on RFID tagged
physical objects and interactive paper. For a given resource type, there may
be varying types of selectors based on the requirements of specific applications.
In Table 1, we suggest time spans to be used as a candidate for movie selec-
tors. However, a specific application might need to link movies based on spatial
information within the movie whereas others might need to define links based
on a combination of temporal and spatial information. The iServer architecture
therefore supports the definition of different selectors for a single resource type.

To illustrate the flexibility of the iServer model and framework, we would like
to provide some more details about the iWeb resource plug-in for linking XHTML
documents. Similar to other link server approaches proposed by the hypertext
community, our iWeb plug-in uses iServer as an external link repository for
web pages. In contrast to most existing link servers, the iServer-based approach
results in a flexible cross-media solution capable of integrating arbitrary digital
or physical resources.

372 B. Signer and M.C. Norrie

Table 1. iServer plug-ins

Medium Resource Selector

paper document page shape

web page XHTML document XPointer

movie mpeg file, avi file etc. time span

movie mpeg file, avi file etc. shape

sound mp3 file, wav file etc. time span

image gif file, jpeg file etc. shape

database database workspace query

physical object RFID space RFID tag

The definition of a selector for XHTML documents was straightforward since
we could build on work already done in the context of XLink [13]. XLink uses
the XML Pointer Language (XPointer) to address a specific part of an XML
document. By using XPointer expressions as XHTML selectors within the iServer
framework, we can define any part of an XHTML document as a link source or
link target. However, as explained earlier, we obtain some additional features
not available in the XLink language such as the well-defined semantics for multi-
layered link resolution or the link ownership and access right control.

To integrate the link metadata stored in iServer with existing XHTML pages,
we implemented an extension for the Firefox web browser. When a new web page
is requested by the user, it is first downloaded from the server and immediately
visualised in the browser. In a second step, the iWeb browser extension starts
to parse the web page and augment it with supplemental link information that
is acquired by contacting the iServer Web Service based on specific JavaScript
functionality. As soon as the integrated web page has been rendered by the
browser extension, the page gets redisplayed in the browser’s main window.

The general resource and selector concepts together with the multi-layer func-
tionality have proven to be powerful enough to support the integration of dig-
ital and physical objects. Different authoring tools haven been developed for
creating and browsing link information managed by the iServer platform. For
example, the iWeb Firefox extension can be used to augment arbitrary XHTML
web documents in a similar way to the Annotea [15] project. Another authoring
tool developed based on QuickTime technology enables parts of movie clips
to be linked based on temporal selectors. An active component mechanism
implemented on top of the iServer platform supports links to pieces of pro-
gram code that can used as link targets and are executed when a link is acti-
vated [23].

A wide variety of applications have been developed using the iServer platform.
These include several applications which use the iPaper plug-in to support inter-
action between paper and digital resources including an interactive guide for the
Edinburgh festivals [24], PaperPoint [25], a paper-based interface for PowerPoint
presentations and Print-n-Link [26], a system to support the reading of scientific

As We May Link: A General Metamodel for Hypermedia Systems 373

publications. In addition, iServer has been used to support a number of interac-
tive media installations designed by artists.

Although the system has been extended significantly over the last few years,
this always happened as an evolutionary rather than a revolutionary process.
This means that, even if the core of the model was extended, all applications
evolved with the changes of the model due to our database-driven approach and
even our first applications are still operational. For example, the recent exten-
sion of the framework to support structural links did not affect the operation
of existing applications or the data managed by these applications. However,
any new or existing application can now make use of the new structural links
functionality. For instance, an application for the publishing of interactive paper
documents now uses the structural link functionality to define a domain-specific
document model.

8 Conclusion

We have presented RSL, a general metamodel for hypermedia systems dealing
with data, structure and navigation information based on a core set of link
concepts. Our conceptual modelling approach led naturally to a very general
and flexible link model that integrates various concepts of existing hypermedia
models. In addition, the RSL model caters for cross-media linking and provides
extensibility for the introduction of new resource types. To show the flexibility of
the model, we also described the iServer framework for cross-media information
spaces which is based on RSL and supports a rich variety of applications.

References

1. Bush, V.: As We May Think. Atlantic Monthly 176(1), 101–108 (1945)
2. Halasz, F.G., Schwartz, M.: The Dexter Hypertext Reference Model. Communica-

tions of the ACM 37(2) (1994)
3. Grønbæk, K., Trigg, R.H.: Design Issues for a Dexter-based Hypermedia System.

Communications of the ACM 37(2), 40–49 (1994)
4. Hardman, L., Bulterman, D.C.A., van Rossum, G.: The Amsterdam Hypermedia

Model: Adding Time and Context to the Dexter Model. Communications of the
ACM 37(2), 50–62 (1994)

5. Brusilovsky, P.: Methods and Techniques of Adaptive Hypermedia. User Modeling
and User-Adapted Interaction 6(2–3), 87–129 (1996)

6. Parunak, H.: Don’t Link Me In: Set Based Hypermedia for Taxonomic Reasoning.
In: Proc. of Hypertext ’91, San Antonio, USA, pp. 233–242 (December 1991)

7. Bra, P.D., Houben, G.J., Wu, H.: AHAM: A Dexter-Based Reference Model for
Adaptive Hypermedia. In: Proc. of Hypertext 1999, Darmstadt, Germany (Febru-
ary 1999)

8. Millard, D., Moreau, L., Davis, H., Reich, S.: FOHM: A Fundamental Open Hy-
pertext Model for Investigating Interoperability between Hypertext Domains. In:
Proc. of Hypertext 2000 (May 2000)

9. Nürnberg, P.J., Leggett, J.J., Wiil, U.K.: An Agenda for Open Hypermedia Re-
search. In: Proc. of Hypertext 1998, Pittsburgh, USA, pp. 198–206 (June 1998)

374 B. Signer and M.C. Norrie

10. Anderson, K.M., Taylor, R.N., E. J., Whitehead, J.: Chimera: Hypermedia for
Heterogeneous Software Development Environments. ACM Transactions on Infor-
mation Systems 18(3), 211–245 (2000)

11. Hall, W., Davis, H.C., Hutchings, G.: Rethinking Hypermedia: The Microcosm
Approach. Kluwer Academic Publishers, Dordrecht (1996)

12. Maurer, H.: Hyperwave: The Next Generation Web Solution. Addison-Wesley, Lon-
don, UK (1996)

13. De Rose, S.J: XML Linking. ACM Computing Surveys 31(4) (1999)
14. Newcomb, S.R., Kipp, N.A., Newcomb, V.T.: The “HyTime”: Hypermedia/Time-

based Document Structuring Language. Communications of the ACM 34(11), 67–
83 (1991)

15. Kahan, J., Koivunen, M.R., Prud’Hommeaux, E., Swick, R.R.: Annotea: An Open
RDF Infrastructure for Shared Web Annotations. In: Proc. of WWW10, 10th In-
ternational World Wide Web Conference, Hong Kong (May 2001)

16. Romero, L., Correia, N.: HyperReal: A Hypermedia Model for Mixed Reality. In:
Proc. of Hypertext 2003, Nottingham, UK, pp. 2–9 (August 2003)

17. Nürnberg, P.J., schraefel, m.c: Relationships Among Structural Computing and
Other Fields. Journal of Network and Computer Applications 26(1), 11–26 (2003)

18. Koch, N., Kraus, A.: Towards a Common Metamodel for the Development of Web
Applications. In: Lovelle, J.M.C., Rodŕıguez, B.M.G., Gayo, J.E.L., Ruiz, M.d.P.P.,
Aguilar, L.J. (eds.) ICWE 2003. LNCS, vol. 2722, pp. 497–506. Springer, Heidelberg
(2003)

19. Signer, B.: Fundamental Concepts for Interactive Paper and Cross-Media Informa-
tion Management. PhD thesis, ETH Zurich, Switzerland (2006)

20. Norrie, M.C.: An Extended Entity-Relationship Approach to Data Management
in Object-Oriented Systems. In: Proc. of ER ’93, 12th International Conference on
the Entity-Relationship Approach, Arlington, USA, pp. 390–401 (1993)

21. Kobler, A., Norrie, M.C.: OMS Java: A Persistent Object Management Framework.
In: Java and Databases. Hermes Penton Science, pp. 46–62 (May 2002)

22. Nelson, T.: Literary Machines. Mindful Press (1982)
23. Norrie, M.C., Signer, B., Weibel, N.: General Framework for the Rapid Devel-

opment of Interactive Paper Applications. In: Proc. of CoPADD 2006, 1st Inter-
national Workshop on Collaborating over Paper and Digital Documents, Banff,
Canada, pp. 9–12 (2006)

24. Belotti, R., Decurtins, C., Norrie, M.C., Signer, B., Vukelja, L.: Experimental Plat-
form for Mobile Information Systems. In: Proc. of MobiCom 2005, 11th Annual
International Conference on Mobile Computing and Networking, Cologne, Ger-
many, pp. 258–269 (August 2005)

25. Signer, B., Norrie, M.C.: PaperPoint: A Paper-Based Presentation and Interactive
Paper Prototyping Tool. In: Proc. of TEI 2007, First International Conference
on Tangible and Embedded Interaction, Baton Rouge, USA, pp. 57–64 (February
2007)

26. Norrie, M.C., Signer, B., Weibel, N.: Print-n-Link: Weaving the Paper Web. In:
Proc. of DocEng 2006, ACM Symposium on Document Engineering, pp. 34–43.
Amsterdam, The Netherlands (2006)

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 375–390, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Goal Oriented Approach for Modeling and Analyzing
Security Trade-Offs

Golnaz Elahi1 and Eric Yu2

1 Department of Computer Science, University of Toronto, Canada, M5S 1A4
gelahi@cs.toronto.edu

2 Faculty of Information Studies, University of Toronto, Canada, M5S 3G6
yu@fis.utoronto.edu

Abstract. In designing software systems, security is typically only one design
objective among many. It may compete with other objectives such as
functionality, usability, and performance. Too often, security mechanisms such
as firewalls, access control, or encryption are adopted without explicit
recognition of competing design objectives and their origins in stakeholder
interests. Recently, there is increasing acknowledgement that security is
ultimately about trade-offs. One can only aim for “good enough” security, given
the competing demands from many parties. In this paper, we examine how
conceptual modeling can provide explicit and systematic support for analyzing
security trade-offs. After considering the desirable criteria for conceptual
modeling methods, we examine several existing approaches for dealing with
security trade-offs. From analyzing the limitations of existing methods, we
propose an extension to the i* framework for security trade-off analysis, taking
advantage of its multi-agent and goal orientation. The method was applied to
several case studies used to exemplify existing approaches.

Keywords: Security Trade-offs, Trade-off Analysis, Goal Modeling, Goal
Model Evaluation.

1 Introduction

“Security is about trade-offs, not absolutes.”
 Ravi Sandhu

In designing software systems, security is typically only one design objective among
many. Security safeguards may conflict with usability, performance, and even
functionality. For example, if usability concerns are not addressed in the design of a
secure system, users respond by circumventing security mechanisms [29, 30].
Achieving a balance between the intrusiveness of security mechanisms [25] and
usability goals is an important consideration in designing successful secure software
systems. Security goals can have their own contradictions because confidentiality,
integrity, privacy, accountability, availability, and recovery from security attacks often
conflict fundamentally. For example, accountability requires a strong audit trail and
end-user authentication, which conflicts with privacy needs for user anonymity [25].

376 G. Elahi and E. Yu

Ultimately, security is about balancing the trade-offs among the competing goals of
multiple actors. In current practice, security designers often adopt security mechanisms
such as firewalls, access control, or encryption without explicit recognition of, and
systematic treatment of competing design objectives originating from various
stakeholders. This motivates the question: what conceptual modeling techniques can be
used to help designers analyze security trade-offs to achieve “good enough” security?

The remaining parts of the paper are structured as follows. In section 2, we
consider the criteria for a suitable conceptual modeling technique for dealing with
security trade-offs. In section 3, a number of existing approaches to security trade-off
analysis are reviewed and compared to the introduced criteria. From analyzing the
limitations of existing methods, we propose a conceptual modeling technique for
modeling and analyzing security trade-offs in a multi-actor setting. In section 4, the
meta-model of security concepts is introduced, and proposed extensions and
refinements to the i* notation are presented. In section 5, we describe the goal model
evaluation and trade-off analysis technique. Section 6 summarizes the results of some
case studies. Finally, section 7 discusses results and limitations of the approach.

2 Conceptual Modeling Criteria for Security Trade-Offs Analysis

Trade-off analysis in software design refers to achieving the right balance among
many competing goals. When some goals are not sufficiently satisfied, designers need
to explore further alternatives that can better achieve those goals without
detrimentally hurting others. Each potential solution can have positive effects on
some goals while being negative on others. A careful and systematic process for
security trade-off analysis can be very challenging, because a wide range of security
mechanisms, solutions and frameworks need to be considered.

To support security trade-off analysis a conceptual modeling technique should
model three kinds of concepts: i) Goals, ii) Actors and iii) Security specific concepts.

i) Goals: Security trade-offs are conflicts among design objectives that originate from
stakeholder goals. While selecting a solution among security alternatives is difficult, the
more fundamental problem is that designers need to decide about alternatives security
mechanisms subject to multiple factors such as cost, time-to-market, non-functional
requirements (NFRs), security policies, standards, and individual goals of various
stakeholders. Therefore, the “goal” concept is a basic modeling construct required in the
conceptual modeling technique for dealing with trade-offs. The technique should
provide means for structuring the contributions to goals and modeling the extents and
measures of goals satisfaction, contribution and competition. The measures could be
quantitative or qualitative. Quantitative approaches can greatly simplify decision
making, but can be difficult to apply due to lack of agreed metrics or unavailability of
accurate measures. The modeling technique should be able to support analysis despite
inaccurate or incomplete knowledge about goals.
ii) Actors: Design objectives typically come from multiple sources and stakeholders
such as system’s users, administrators, top managers, project managers, and
customers. The conceptual modeling technique should be able to model multiple
actors that impose competing goals on the designer, and should provide means to

 A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs 377

trace back goals to the actors. The modeling technique should be able to model trade-
offs that occur within a single actor or across multiple actors.
iii) Security Specific Concepts: The conceptual modeling technique that enables
security trade-off analysis should model security specific concepts such as threats,
vulnerabilities, and safeguards. Threats can be viewed as malicious actors’ goals.
Conflicts among stakeholders’ goals are usually unavoidable, and the designer needs
to balance the trade-offs among conflicting goals. In contrast, threats and attacks must
be mitigated. In addition, decision makers need a measurable expression of the
security level of solutions [21]; therefore, the modeling technique should provide
means to model to what extent attacks are successful, how attacks influence on goals,
whether countermeasures control the threats, and whether the goals are at risk.

The modeling concepts need to be accompanied with a procedure for evaluating
security alternatives. The proper trade-off analysis method should evaluate the impact
of each alternative on goals and potential threats. It should answer to what extent the
goals are satisfied or denied, threats are contained, and vulnerabilities are patched.
The procedure should be able to analyze the trade-offs in the face of incomplete or
inaccurate knowledge about goals’ contributions and security measures.

3 Existing Approaches to Security Trade-Off Analysis

Many approaches have been proposed to model security aspects of the software
systems. The notion of “abuse case” [14] and UMLsec modeling language [15] are
examples of security specific conceptual modeling approaches for modeling security
requirements and aspects of the system.

In recent years, agent and goal oriented frameworks in Requirements Engineering
have emerged as new approaches to the analysis and design of complex software
systems. Examples of such frameworks are KAOS [1], the NFR framework [10], the
i* framework [7], and Tropos [2]. Several approaches such as [3, 5, 6, 16, 17, 18]
propose frameworks for modeling and analyzing security concepts by taking
advantage of agent and goal oriented techniques. The majority of these approaches
employ qualitative trade-off analysis, while [16] suggests a quantitative approach for
analyzing security requirements. In [22], probabilistic inference on security influence
diagrams is used to support trade-off analysis using Bayesian Belief Nets (BBN). The
approach in [23] proposes a framework of core security requirements artefacts to
describe the security requirements. The meta-model of the core artefacts includes
concepts such as assets, threats, security goals, functional requirements, and security
requirements. In [20], using the core security artefacts, the authors propose a
framework for security requirements elicitation and analysis.

In this section, we review three selected methods for modeling and analyzing
security trade-offs as representative of existing approaches. We study Architecture
Tradeoff Analysis Method (ATAM) [11] as a general purpose and widely used
architectural trade-off analysis method which considers security. We study agent and
goals oriented approaches for dealing with security trade-offs. Security Verification
and security solution Design Trade-off analysis (SVDT) [21] and Aspect-Oriented
Risk-Driven Development (AORDD) [27] are studied as representatives of
quantitative analysis methods. We study how well these approaches are matched with
the criteria discussed in the previous section.

378 G. Elahi and E. Yu

3.1 ATAM

Bass et al. [11] introduces a framework to model quality attributes and architectural
options using the notion of scenarios and tactics respectively. A quality attribute scenario
is a quality-attribute-specific requirement, and consists of six parts: Source of stimulus,
Stimulus, Environment, Artifact, Response, and Response measure. Achievement of
quality scenarios relies on tactics. ATAM is an evaluation method to analyze whether an
architecture decision satisfies particular quality goals. ATAM helps designers to prioritize
scenarios and evaluate alternative tactics using a “Quality Attribute Utility Tree”.
Scenarios that have at least one high priority of importance or difficulty are chosen for a
detail analysis to examine if the selected tactics satisfy the scenario.

The result of the analysis is an “Architectural Approach Analysis” table for each
quality scenario. In this table, evaluators identify and record sensitivity, tradeoff, risks
and non-risks points for alternative tactics. Sensitivity and tradeoff points are
architectural decisions that have effect on one or more quality attributes, the former
positively and the latter negatively. In ATAM, a risk is defined as an architectural
decision that may lead to undesirable consequences, and non risk points are defined in
the opposite way. The conceptual elements related to trade-offs in ATAM may be
captured in a meta-model as in Fig. 1.

Fig. 1. Meta-model of trade-off elements in ATAM

3.2 SVDT/AORDD Approach

Houmb et al. [21] propose the SVDT approach using UMLsec for modeling security
solutions. UMLsec is used to specify security requirements, and UMLsec tools verify
if the design solutions satisfy the security requirements. Design solutions that pass the
verification are then evaluated using security solution design trade-off analysis. A
complementary framework on AORDD provides a risk assessment process and cost-
benefic trade-off analysis. AORDD and SVDT use BBN to compute Return on
Security Investment (RoSI).

Fig. 2 illustrates the relationship between the main concepts involved in AORDD
risk assessment, which specifies the structure of the inputs to the AORDD cost-
benefit trade-off analysis. The result of risk assessment is a list of misuses which need
security treatments. This list, alternative security treatments, and fixed trade-off
parameters such as budget, time-to-market, and policies are fed into the BBN to
compute the RoSI.

 A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs 379

Fig. 2. ARODD risk assessment main concepts and relation [27]

3.3 Secure Tropos/i*

The proposed approaches in [3, 5, 6, 17, 18] take advantage of the i* and Tropos
frameworks. In these approaches, systems are modeled as intentional agents collaborat-
ing or competing with each other to achieve their goals. Security issues arise when some
actors, while striving to achieve their own goals, intentionally or unintentionally
threaten other actors’ goals; therefore, agent and goal oriented approaches provide a
suitable basis for dealing with competing goals of multiple actors.

The approach in [3] suggests using relationships among strategic actors for analyzing
security requirements. In [3], potential attackers of the systems are distinguished from

Fig. 3. Part of Tropos meta-model for goals and related concepts [31]

380 G. Elahi and E. Yu

other actors of the system. [5] proposes a methodological framework for dealing with
security requirements based on the i* notation. In [6], a framework known as Secure
Tropos for modeling and analyzing security requirements based on the notions of trust,
ownership, and permission delegation is developed. In [17, 18], the “threat” and
“security constraint” modeling elements are added to the i* meta-model. “Threat”
elements are employed in the “security diagram” to express potential violation against
the security goals, and “security constraints” are used to impose security requirements
on actors’ dependencies. The meta-model of related concepts to the Tropos goal model,
which is the core of all these approaches, is depicted in Fig. 3.

3.4 Limitations of Existing Approaches

In ATAM, trade-offs among quality scenarios and tactics in the “Architectural
Approach Analysis” table are indirect and implicit, since trade-off and risk points,
instead of referring to quality scenarios, refer to affected quality properties. ATAM
lacks considering the impact of each tactic on stimuli of security scenarios (attacks).
The impact of tactics on quality attributes are not captured qualitatively or a
quantitatively. Finally, the framework of scenarios, tactics and ATAM method does
not provide means to model and analyze security concepts specifically.

SVDT and AORDD rely on quantitative computation and probabilistic inference
for trade-off analysis. This requires the software designers obtain the quantitative
measures of the impact of misuses and solutions. The major limitation is the
inaccuracy or unavailability of qualitative data on the impact of misuses and solutions
especially in the early stages of the development lifecycle.

Generally, the suggested BBN topologies in SVDT and AORDD do not consider
a more general source of trade-off inputs such as NFRs and functionalities, and the
trade-off inputs to the designed BBN are limited to factors such as budget, laws and
regulation. Besides, the AORDD meta-model of risk assessment concepts (Fig. 2)
does not consider the relation between “security risk treatment” and other entities
such as “security requirement”, “threat”, and “vulnerability”. The AORDD meta-
model could be strengthen by considering more general concepts such as goals,
other quality requirements, and actors.

In SVDT and AORDD, the trade-off inputs and information are given to a BBN,
and the final RoSI is computed automatically, which makes the analysis efficient.
Since, the relationships between various states of the variables are specified in terms
of the node probability matrix in BBN, this automatic trade-off analysis process can
be traced by the designer. However, it may be difficult for the designer to follow what
aspects of the design caused the difference in the final results.

Although agent and goal oriented approaches provide a proper conceptual basis for
modeling and analyzing security trade-offs, a mechanism for such analysis has not
been elaborated in these frameworks. The method in [5] lacks a direct and explicit
way to model the competition among malicious and non-malicious actors’ goals, and
trade-off modeling among goals is limited to the non-malicious actors. The proposed
framework in [6] does not support modeling security concepts such as malicious
behavior. In [17, 18], threats are modeled explicitly as a distinct construct in the
“security diagram”, but they are not traced to the threats’ source actors, and the
relation between countermeasures and threats are not elaborated.

Table 1 summarizes a comparison of the studied approaches based on the evaluat-
ion criteria from section 2.

 A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs 381

Table 1. A comparison of existing approaches based on the criteria of the conceptual modeling
technique for security trade-off analysis

Method
Requirement

ATAM SVDT/AORDD i*/Tropos

Goals
Expressed in terms

of scenarios

Limited to security
requirements and

fixed BBN
parameters

Explicit goals

Relations of goals
Not model
explicitly

Limited to UMLsec
models

Modeled using
contribution links

Extents of goal
satisfaction

Not expressed Quantitatively Qualitatively

Goals contribution
structure

Utility tree doesn’t
capture the

contributions of
scenarios

Not modeled
Modeled in terms of

sub goals and
contribution links

Multiple actors

Expressed
implicitly by

multiple stimuli
sources

Not modeled
Modeled in terms of
agents/actors/ roles/

positions

Trade-off within a
single actor or
across actors

Single actor Single actor
Single and multiple

actors

Security Specific
Trade-off
Concepts

Not modeled
Some concepts are

modeled
Some concepts are

modeled

Trade-off analysis
method

Qualitative analysis Quantitative analysis
Qualitative and

quantitative analysis

4 The Security Trade-Offs Modeling Notation

We propose a meta-model of security concepts for systematically addressing security
trade-offs (Fig. 4), considering the limitations of existing approaches and reviewing
well known security knowledge sources such as NIST’s guidelines and standards like
[19], CERT [26], and widely used textbooks such as [4, 13]. The core of the meta-
model is the concepts of goals and actors guided by the criteria of the conceptual
modeling technique that enables security trade-offs analysis.

The proposed notation builds upon the i* framework which provides a notation to
model actors, their goals and intentional dependencies and competitions among the
actors. Actors achieve goals on their own or depend on each other for goals to be
achieved, tasks to be performed, and resources to be furnished. Quality goals, which
do not have clear-cut criteria for satisfaction degree, are modeled as softgoals. Means-
ends relation between goals and tasks is used to model alternative ways to achieve a
goal [8]. However, the i* notation lacks explicit modeling constructs for concepts
such as threats and vulnerabilities. In this section, we propose some extensions to the
i* notation, which provide conceptual structures for modeling and analyzing security
trade-offs.

382 G. Elahi and E. Yu

Fig. 4. Meta-model of security concepts used in proposed modeling notation

Fig. 5. Example of a multi-actor system modeled using the proposed notation

 A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs 383

4.1 Malicious Actor, Goals and Tasks

Actors depend on, or compete with each other to achieve their goals. Meanwhile,
malicious actors try to achieve their own goals. Representing a malicious actor with a
different modeling construct in i* was first employed in [3] by highlighting them with
a black shadow rectangle. This notation was used to model malicious goals in [5]. We
make use of this notation in which malicious goals, softgoals, tasks, and actors are
highlighted by a black shadow rectangle. By distinguishing malicious modeling
elements from non-malicious ones, we emphasize studying the attackers’ goals and
tasks. Although attacker’s behavior might be partially unknown and generic, an
important aspect of trade-off analysis depends on studying attackers’ options and the
risks they pose to other actors’ goals.

A security threat is any malicious behavior that interferes with the achievement of
other actors’ goals. For example, in Fig. 5, Malicious Employee is the malicious actor
whose goal is to Commit a fraud under someone else’s name, either through the local
network or over the Internet. Threats might be unintentional or caused by natural
disasters. In this paper, we mainly focus on the security threats caused by actors with
malicious intent.

4.2 Assets, Services and Vulnerabilities Points

An asset is any thing that has a value for the organization [13]. Physical resources,
information, and people can be counted as assets. In this way, the asset concept is
well matched with the “resource” modeling element in i*. Assets can be the services
an organization offer or receive, and in this case, can be represented by tasks or goals
that actors offer to the “depender” actors.

In security analysis, a vulnerability point is any weakness in, or back door to the
system [13]. For example, it is said that buffer overflow and password cracking are
the most common vulnerability points of many computer systems [4]. Generally, a
vulnerability point corresponds to an asset or service, and attackers usually try to
achieve malicious goals through a vulnerability to reach an asset. In the i* notation,
tasks are usually decomposed to goals, softgoals, other tasks, and resources. In this
way, harm of an attack can be indicated by the cost of the failed task that relies on the
compromised assets. In a similar approach in [20, 23], threats are described in terms
of assets, the action that exploits the assets, and the subsequent harm.

Although vulnerability that arises from dependencies among actors is a
fundamental concept in i* in [5], there is no explicit modeling construct in i* to
represent vulnerability points. We add the vulnerability point modeling element to i*,
accompanied with a graphical notation to connect a vulnerability point to the
corresponding attacks, and to attach it to a resource. For example, in Fig. 5, to protect
confidentially employees are authenticated by the host. Hence, Password is one of the
employees’ assets they need to protect. On the other hand, Password losing is one of
the most important vulnerability points in computer systems. Sniffing for password is an
attack against the goal of Protect password. Through this attack and Password losing
vulnerability point, the goal of Fraud under someone else’s name can be satisfied, and
the attacker gains a valuable asset: the Password.

384 G. Elahi and E. Yu

4.3 Relation Between Attacks and Security Mechanisms

In the i* notation, relation between softgoals and other elements is modeled by
contribution links [7]. If an element hurts a softgoal, yet not enough to prevent it, the
contribution link type is “-“. If the element is sufficient to prevent a softgoal, the
contribution link type is “--". This qualitative approach is used to model the impact of
attacks on softgoals and the impact of security mechanisms on malicious tasks and
goals. In security engineering, various mechanisms have different effects on attacks.
Contribution of mechanisms to attacks are categorized as 1) Prevent 2) Detect 3)
Recover [13]. These categories are added as attributes on the contribution links.
“Detect” and “Recover” contribution links may partially mitigate the effect of attacks.
Mechanisms which are related to the attacks with “Detect” contribution links can not
control any attack. Similarly, “Recover” contribution links indicate that the mechanisms
can not control the attack either, but the mechanism would be used to recover the
system after the attack. This link would be useful to express availability and integrity
goals that rely on recovering the system after the failure. To sufficiently counteract an
attack, security mechanisms must be related to the attack with a “Prevent” contri-
bution link.

4.4 Expressing Trade-Offs by the Proposed Conceptual Structure

The proposed approach provides the means to model goals, and trace them back to the
source actors. In this approach, trade-offs among goals are modeled by contribution
links. Through contribution link types of -, --, + and ++ [10], the qualitative effect of
alternative solutions are propagated to the other goals. The i* notation offers the
conceptual structure to model trade-offs between refined sub-goals of high level goals
as well. For example, in Fig. 5, the employee can Use root password on local machines
to completely prevent the attack of Sniffing for password [4]. However, this security
solution contributes negatively to the Access to host remotely goal, and it has negative
influence on the Usability softgoal consequently. In this way, the trade-off among
usability and security is modeled through relationships among their refined sub-goals.

5 Trade-Off Analysis and Decision Making

In the previous section, we proposed a conceptual modeling technique for modeling
security trade-offs. In this part, we propose a trade-off analysis method for use with
the trade-off model. Designers need to balance the trade-offs to mitigate the security
risks and yet satisfy the goals of multiple actors. A goal is at risk when it may be
denied (partially or fully) by the successful behavior of malicious actors. Partially or
fully denial of goals are expressed through contribution links of type “-“ and “--“.
Hence, for trade-off analysis designers need to examine available alternative security
solutions, and verify the impacts of each one on attacks and goals to finally select the
one which fits with goals of multiple actors. Goal model evaluation is the procedure
to ensure that actors’ top level goals are satisfied by the choices they have made [12].
The security goal model evaluation, consisting of interactive qualitative reasoning, is
based on the method proposed in [10] and refined in [12]. Fig. 6 depicts the proposed
security trade-off analysis procedure.

 A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs 385

Fig. 6. Security trade-off analysis procedure

In the first step, evaluator assumes that attackers are successful in performing tasks
and satisfying their goals, since attackers are usually external actors that designer has no
sure knowledge of their abilities and skills. Therefore, the leaf nodes in attackers’ goal
model are labeled fully satisfied. This assumption does not imply that the risk of attacks
is definite, as it is possible that evaluation of attackers’ goal model yields to denial of
higher goals of attacker. The leaf labels are propagated to upper goals. Once the impact
of malicious actors’ behavior is propagated to the entire goal model, the evaluator
assigns labels to the tasks and goals that operationalize security mechanism (step 7).
This label indicates the evaluator’s judgment about the success of the actor in
performing a security task or achieving a security goal. This judgment could be based
on knowledge of previous experiences, empirical studies, or subjective knowledge [21].

In step 9, the goal model indicates which goals are fully or partially satisfied or
denied for the examined security solution. The procedure iterates until a security
design solution is found that, based of the evaluator’s perception, satisfies an
acceptable configuration of goals. However, the evaluator may prefer to examine
further alternatives to select the security design solution that satisfies more goals.
After evaluating an alternative, the status of some goals may be unknown, prompting
the designer to elaborate on the models (step 10). In case of conflict of goals, other
alternatives should be examined to resolve the conflicts (step 11). An example of
security goal model evaluation is shown in Fig. 7.

Propagation of the labels is based on the contribution types and rules summarized
in Table 2. [12] provides details about aggregation rules for multiple contributions.
The rules provided in Table 2 are merely valid for the “Prevent” contribution type, as
we discussed earlier that recovering from, or detecting an attack do not lead to
controlling the attack.

386 G. Elahi and E. Yu

Fig. 7. Part of the attacker and countermeasures model for the Guardian Angel case study
annotated with the evaluation steps introduced in Fig. 6

Table 2. Evaluation labels and propagation rules from [10, 12]

Child Node Contribution Type (Prevent)

Label Name Symbol ++ + - - - ?

Satisfied
Weakly Satisfied

Conflict
Unknown

Weakly Denied
Denied

6 Case Studies

In developing the proposed notation, we modeled a number of NIST guidelines [19]
and security engineering knowledge in [4], using the extended i* notation. In addition
to example cases, we applied the notation to three example cases originally used to
illustrate other approaches to security trade-offs [28]. In the first example case, we
modeled and analyzed the eSAP system, an agent-based health and social care
system, which was used as the case study system in [16, 17, 18]. In the second
example case system, we modeled and analyzed a simple Course Registration system,
using the proposed extensions to the i* and the framework proposed in [11]. Due to
space limitations, we present only a third case study in the following. Details of the
case studies can be found in [28].

 A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs 387

The Guardian Angel (GA) [9] is a patient and physician supporting system using
software agents, which is studied in [5]. In vulnerability analysis in [5], each
dependency is examined as a potential threat against the system. In this approach,
each actor is studied in two roles: its regular role, and its potential malicious role. One
of the actors in the dependency relation is substituted by its corresponding attacker.
For each malicious actor, a number of attacks and threats are identified, the impact of
threats and corresponding security safeguards are added to the goal model. However,
resulting models do not capture goals and intentions of the attacker. The goal model
evaluation is limited to evaluating impact of security safeguards on threats, while the
safeguards may affect other goals such as performance and usability. Generally,
the approach in [5] does not consider modeling security mechanisms in terms of the
trade-offs they impose to the other goals.

Fig. 7 gives a part of the trade-off models and analysis of GA system using the
proposed approach in this paper. The model captures the potential intentions behind
an attack, since deciding among different countermeasures depends on the attacker’s
goals. For example, the designer needs to differentiate between goals of a professional
hacker and intentions of a curious kid to select proper security mechanisms. The
resulting goal model captures the effects of each alternative attack on malicious and
non-malicious actors’ goals and softgoals. As a result, the designer can evaluate the
risk of threats, and select a more appropriate countermeasure for attackers’ behavior
based on the consequence of malicious actors’ behavior. In the goal model of Fig. 7,
the designer decides to employ Authentication and Authorization with Password based
Authentication (Steps 6 and 7). The goal model evaluation yields a fully satisfied
Privacy goal with Confidentiality partially satisfied, while Performance is partially
denied.

7 Conclusion and Future Work

In this paper, we began by considering the criteria for a conceptual modeling
technique that enables designers to model and analyze security trade-offs among
competing goals of multiple actors to achieve a good-enough security level. We
studied existing approaches to trade-off analysis, and identified limitations of these
approaches. Based on the evaluation criteria and limitation of previous works, we
proposed extensions to the i* notation for modeling and analyzing security trade-offs
of a multi-actor system. The proposed modeling notation is accompanied with a
qualitative trade-off analysis procedure based on goal model evaluation methods. The
procedure provides the designers with assessment of security mechanisms’ impact on
actors’ goals and threats. Table 3 gives the comparison of the proposed approach with
the evaluation criteria.

Although the i* notation provides the proper basis for modeling and analyzing
trade-offs, the models become complex and inefficient when the goal models scale.
Another limitation of the proposed approach is that a comprehensive source of
knowledge of security mechanisms and corresponding contributions does not exist.

388 G. Elahi and E. Yu

Table 3. Comparison of proposed approach with the conceptual modeling technique’s criteria

Method Requirements Suggested approach

Goals Modeled using goals and softgoals elements of i*

Relations of goals
Modeled using i* goal dependency modeling. Competition
and trade-offs are modeled by contribution links and
relation between attacks and goals.

Extents and measures of
goals

Modeled qualitatively by contribution links of type -, - -, +,
++

Inaccurate or incomplete
knowledge

Modeled by unknown contribution links, and goal model
evaluation propagates them to related elements

Goals contribution structure
Structured by sub-goals, task decomposition, contribution
links

Multiple actors
Multiple malicious and non malicious actors can be
modeled

Trade-off within a single
actor or across actors

Trade-off within a single actor or across actors can be
modeled

Security specific trade-off
concepts

Modeled by security extensions to i* notation derived from
the meta-model

Trade-off analysis method
Security goal model evaluation technique supports
qualitative trade-off analysis

In future work, we aim to conduct empirical studies of how security designers make
trade-offs in practice, and to adapt the proposed systematic trade-off analysis
framework for integration into everyday design practice. We will also build a security
requirements and design knowledge base to gather and catalogue reusable knowledge
about security trade-offs. Tool support for managing and applying security knowledge
will also be studied.

Acknowledgments. Financial support from Natural Science and Engineering
Research Council of Canada and Bell University Labs is gratefully acknowledged.

References

1. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-Directed Requirements Acquisition.
The Science of Computer Programming 20, 3–50 (1993)

2. Castro, J., Kolp, M., Mylopoulos, J.: A requirements-driven development methodology, In
Proc. of the 13th Int. Conf. on Advanced Information Systems Engineering, CAiSE’01. In:
Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 108–
123. Springer, Heidelberg (2001)

3. Liu, L., Yu, E., Mylopoulos, J.: Analyzing Security Requirements as Relationships among
Strategic Actors. In: 2nd Symp. on Requirements Engineering for Information Security
(SREIS) (2002)

4. Anderson, R.: Security Engineering: a guide to Building dependable Distributed systems.
John Wiley and Sons, Chichester (2001)

 A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs 389

5. Liu, L., Yu, E., Mylopoulos, J.: Security and Privacy Requirements Analysis within a
Social Setting. In: IEEE Joint Int. Conf. on Requirements Engineering, pp. 151–161. IEEE
Computer Society Press, Los Alamitos (2003)

6. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling Security Requirements
through Ownership, Permission and Delegation. In: 13th IEEE Int. Requirements
Engineering Conf, pp. 167–176. IEEE Computer Society Press, Los Alamitos (2005)

7. Yu, E.: Modeling Strategic Relationships for Process Reengineering, PhD thesis,
Department of Computer Science, University of Toronto, Canada (1995)

8. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. In: Proc. of the 3rd IEEE Int. Symp. on Requirements Engineering, pp. 226–
235 (1997)

9. Szolovits, P., Doyle, J., Long, W.J.: Guardian Angel: Patient-Centered Health Information
Systems: MIT/LCS/TR-604, Available at: http://www.ga.org/ga

10. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishing, Dordrecht (2000)

11. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison
Wesley, London, UK (2003)

12. Horkoff, J.: Using i* Models for Evaluation, Masters Thesis, University of Toronto,
Department of Computer Science (2006)

13. Pfleeger, C.P., Pfleeger, S.L.: Security in Computing, 3rd edn. Prentice-Hall, Englewood
Cliffs (2002)

14. McDermott, J., Fox, C.: Using Abuse Case Models for Security Requirements Analysis.
In: McDermott, J., Fox, C. (eds.) Proc.15th. IEEE Annual Computer Security Applications
Conf., pp. 55–64. IEEE Computer Society Press, Los Alamitos (1999)

15. Jürjens, J.: Secure Systems Development with UML. Springer Academic Publishers,
Germany (2004)

16. Bresciani, P., Giorgini, P., Mouratidis, H.: On Security Requirements Analysis for Multi-
Agent Systems. In: Lucena, C., Garcia, A., Romanovsky, A., Castro, J., Alencar, P.S.C.
(eds.) Software Engineering for Multi-Agent Systems II. LNCS, vol. 2940, pp. 35–48.
Springer, Heidelberg (2004)

17. Mouratidis, H., Giorgini, P., Manso, G., Philp, I.: A Natural Extension of Tropos
Methodology for Modelling Security. In: Proc. of the Workshop on Agent-oriented
methodologies, at OOPSLA, pp. 91–103 (2002)

18. Mouratidis, H., Giorgini, P.: Manso, Modelling Secure Multiagent Systems. In: the 2nd
Int. Conf. on Autonomous Agents and Multiagent Systems, pp. 859–866 (2003)

19. Grance, T., Stevens, M., Myers, M.: Guide to Selecting Information Technology Security
Products, Recommendations of the National Institute of Standards and Technology, NIST
Special Publication 800–836 (2003)

20. Haley, C.B., Moffett, J.D., Laney, R., Nuseibeh, B.: A framework for security
requirements engineering. In: Software Engineering for Secure Systems Workshop
(SESS’06), pp. 35–42 (2006)

21. Houmb, S.H., Georg, G., Jürjens, J., France, R.: An Integrated Security Verification and
Security Solution Design Trade-off Analysis. In: Integrating Security and Software
Engineering: Advances and Future Visions, pp. 190–219. IDEA Group Publishing, USA
(2007)

22. Johnson, P., Lagerstrom, R., Norman, P., Simonsson, M.: Extended Influence Diagrams
for Enterprise Architecture Analysis. In: Enterprise Distributed Object Computing
Conference, EDOC ’06. 10th IEEE Int., pp. 3–12. IEEE Computer Society Press, Los
Alamitos (2006)

390 G. Elahi and E. Yu

23. Moffett, J.D., Haley, C.B., Nuseibeh, B.: Core Security Requirements Artefacts,
Department of Computing, The Open University, Milton Keynes UK, Technical Report
2004/23 (2004)

24. Mayer, N., Rifaut, A., Dubois, E.: Towards a Risk-Based Security Requirements
Engineering Framework, 11th Int. Workshop on Requirements Engineering: Foundation
for Software Quality (REFSQ’05) (2005)

25. Sandhu, R.: Good-Enough Security: Toward a Pragmatic Business-Driven Discipline,"
IEEE Internet Computing, Vol. IEEE Internet Computing 07(1), 66–68 (2003)

26. US-CERT Vulnerability Notes Database, United States Computer Emergency Readiness
Team, http://www.kb.cert.org/vuls

27. Houmb, S.H., Georg, G.: The Aspect-Oriented Risk-Driven Development (AORDD)
Framework. In: Proc. of the Int. Conf. on Software Development (SWDC.REX), pp. 81–
91 (2005)

28. Elahi, G., Yu, E.: A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs,
Technical Report, University of Toronto, Department of Computer Science, Available (2007),
at http://istar.rwth-aachen.de/tiki-index.php?page=Security+Requirements+Engineering

29. Sasse, M.A.: Computer Security: Anatomy of a Usability Disaster, and a Plan for
Recovery, Workshop on Human-Computer Interaction and Security Systems, CHI 2003,
Fort Lauderdale (2003)

30. De Witt, A.J., Kuljis, J.: Aligning Usability And Security-A Usability Study Of Polaris. In:
Proc. of the Symp. On Usable Privacy and Security (2006)

31. Susi, A., Perini, A., Mylopoulos, J.: The Tropos Metamodel and its Use. Informatica 29,
401–408 (2005)

Rapid Business Process
Discovery (R-BPD)

Aditya Ghose, George Koliadis, and Arthur Chueng

Decision Systems Lab (DSL)
School of Computer Science and Software Engineering

University of Wollongong, NSW 2522 Australia
{aditya,gk56,ac83}@uow.edu.au

Abstract. Modeling is an important and time consuming part of the Business
Process Management life-cycle. An analyst reviews existing documentation and
queries relevant domain experts to construct both mental and concrete models of
the domain. To aid this exercise, we propose the Rapid Business Process Dis-
covery (R-BPD) framework and prototype tool that can query heterogeneous in-
formation resources (e.g. corporate documentation, web-content, code e.t.c.) and
rapidly construct proto-models to be incrementally adjusted to correctness by
an analyst. This constitutes a departure from building and constructing models
toward just editing them. We believe this rapid mixed-initiative modeling will in-
crease analyst productivity by significant orders of magnitude over traditional
approaches. Furthermore, the possibility of using the approach in distributed
and real-time settings seems appealing and may help in significantly improving
the quality of the models being developed w.r.t. being consistent, complete, and
concise.

1 Introduction

Modeling is an important, expensive, time-consuming and labour-intensive part of the
business process lifecycle. The first major step in managing a business process is dis-
covery (or understanding) [1] [2]), with subsequent improvement initiatives driven by
a need to “understand existing processes and evolve these processes in ways that main-
tain their strengths” [3]. In this paper we report on a project to build a tool-kit that
would shift the focus in modeling from model-building to model-editing. Our aim is
to address the model acquisition bottleneck, a version of the well-known knowledge
acquisition bottleneck [4]. Our guiding premise is that most organizations maintain en-
terprise repositories of (sometimes legacy) documents and models which can provide
rich sources of information that could be mined to extract “first-cut” process models.
Our premise is also that by extracting such “first-cut” models (henceforth referred to
as proto-models) and presenting them to an analyst for editing, such a toolkit can sig-
nificantly enhance analyst productivity. Given that organizations are often loathe to in-
vest the resources required for significant modeling exercises, the availability of such a
toolkit can make modeling-in-the-large a viable option in many instances.

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 391–406, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

392 A. Ghose, G. Koliadis, and A. Chueng

We classify the artefacts (henceforth called source artefacts) typically available in an
enterprise repository into two categories: text and model. Text artefacts are documents
such as memos, manuals, requirements documents, design documents, mission/vision
statements, meeting minutes etc. Model artefacts could be models in a variety of nota-
tions, including UML design models, or enterprise models or rule models. We define
two categories of model extraction techniques: text-to-model extraction (for extract-
ing process models from text artefacts) and model-to-model extraction (for extracting
process models from models in other notations). We describe the R-BPD (Rapid Busi-
ness Process Discovery) toolkit in which instances of these extraction techniques have
been implemented. Additional R-BPD examples and code fragments that could not be
included in this paper due to space constraints are available at [5].

The R-BPD can potentially extract a large number of (sometimes small) process
proto-models from an enterprise repository. Some of these proto-models might in fact
be alternative descriptions of the same process. We describe heuristic techniques for es-
tablishing model identity to deal with such situations. When multiple models that seem
to describe the same process are identified, we need to cross-validate these against
each other. We use model consistency as a basis for cross-validation, i.e., alternative
consistent descriptions of the same process are viewed as supporting each other. We
define a lightweight structural check for consistency and provide examples. Finally,
we describe how the R-BPD toolkit can also support traceability and change
management.

Our research relies, for its conceptual foundations, on several other areas of inquiry.
Knowledge acquisition and modeling “can be the most time consuming portion of the
knowledge engineering process” [6], and has been termed as the “bottleneck” in expert
systems design [7]. This issue covers the inherent difficulties (inc. time and resources
required) in eliciting complete and concise knowledge from experts.

Some of the major considerations include:

– the choice of approach (or combination) to use for acquiring specific types of
knowledge, as captured by the differential access hypothesis [7] [8];

– the tradeoff between the acquirability (i.e. usability by a particular audience) and
expressive power (or applicability) of languages used to represent knowledge [6],
which may be reduced via the combined use of multiple languages and views on a
domain of interest;

– and, bias that “is the result of cognitive heuristics” and is mostly introduced when:
individual or group experience is overestimated; there is inappropriate emphasis on
specific phenomena; small sample sizes are used; there is over-confidence in levels
of certainty; or, there is over-estimation of data completeness [9].

Automated knowledge acquisition shells provide an interesting approach toward a
solution. Such shells iteratively construct and propose queries to experts to discover
computable representations of the domain [10]. In particular, the Requirements Appren-
tice [11] project contributes a system (as a mediator) for applying knowledge acquisi-
tion techniques to support the “transition between informal and formal specifications...”
[11]. The apprentice “avoids involvement with the surface syntax of natural language
[specifications]” [11] to ensure the “deeper” problems in natural language understand-
ing are not encountered.

Rapid Business Process Discovery (R-BPD) 393

A growing body of literature has been established on Workflow Mining [12]. These
approaches focus on extracting meaningful process models by analyzing event logs that
are generated by transactional information systems. They have also been extended to
mine social networks [13] and decision junctions [14]. In [15], an extended scope for
workflow mining is proposed, which allows for the discovery of activities and social
phenomena in combination with traditional approaches that capture precedence rela-
tionships between activities. Activities are induced from similar sets of ordered database
transactions. Once activities are discovered, traditional mining techniques are applied to
business process traces to discovery precedence relationships. In addition, the approach
used to induce activities is applied to the discovery of roles by analyzing the similarity
between the behaviors of actors.

The area of multi-viewpoint software engineering [16] [17] [18] provide method-
ological and automated approaches for checking and resolving consistency among dis-
tributed modeling perspectives. In particular, [3] describes a means for managing incon-
sistencies among distributed process descriptions. Our work contributes an automated
means and tool for managing inconsistencies during the rapid discovery of processes
and process architectures.

Model Driven Architecture (MDA) is primarily concerned with the automated trans-
formation of models from abstract domain descriptions directly into implementable so-
lutions (see [19] for a taxonomy of approaches). Our approach for model-to-model
translation (see Section 3) extends and partially automates the constrained development
method we presented in [20] for managing business process model (BPMN, see Figure
4) lifecycles with organizational models (i*, see Figure 3). In essence, [20] described
an methodology to managing process lifecycles with explicit high-level organizational
models by guiding the derivation or maintenance of one type of model given the avail-
ability of the other. This was achieved by: 1/ Establishing a correspondence between
elements within the models that describe aspects of the process; 2/ Annotating sets of
elements common to both models with semantics in natural language (with the intent
of automated translation into structured, formal notation); 3/ Applying specific rules
and procedures for determining consistency between such models; and, 4/ Using the re-
sults of the consistency check to help guide refinement and co-evolution of the models
toward correctness.

To date, we have also developed the Enterprise Process Lifecycle Management
(EPLM) toolkit (see Figure 1) above a commercial CASE platform [21] for experimen-
tation. The EPLM partially automates the procedures described in [20]. This paper ex-
tends [20] by contributing a means to rapidly extract and identify partial proto-process
models from a variety of sources and incrementally combine them toward completeness
and correctness.

In [22], an approach for discovery is described, which proposes a three-layered lan-
guage for representing business processes and the use of model checking techniques
for verifying constructed models against business requirements that are specified a-
priori. They presume the correctness of the requirements provided and cannot resolve
inconsistencies, manage change and evaluate correctness within and across the inter-
relationships between models constructed in a such a variety of languages.

394 A. Ghose, G. Koliadis, and A. Chueng

Fig. 1. Enterprise Process Life-cycle Manager (EPLM) Prototype

2 Text-to-Model Extraction

To support process discovery, we employ both text-to-model and model-to-model trans-
lation as follows. The examples presented follow from an R-BPDTk test case based on
a tutorial provided by BEA Systems [23].

The intent of our approach for text-to-model extraction is to look for cues within text
documents that suggest ”snippets” of process models. In the R-BPDTk, we use two sets
of techniques for text-to-model extraction:

– Template-Based Extraction: Here we construct templates of commonly occurring
textual cues for processes, and extract proto-models by scanning documents for
instances of these patterns. For example, one such cue that we currently use in the
R-BPDTk simply extracts sentences that conform to the pattern:

“If < condition/event >, [then] < action >.”
For example. “If the credit check fails, the customer service representative is as-
signed the task of notifying the customer to obtain correct credit information, and
the process becomes manual from this point on.

– Information extraction-based: Here we use NLP toolkits such as NLTk [24] to
extract verb phrases, verbs, temporal connectives etc. as the building blocks for
process models.

For example we can extract noun phrases (np) such as “the customer”, verb
phrases (vp) such as “notifying”, and extract possible activities (a) by looking for
< vp, np > pairs or possible role/assignments from < np, a > pairs where np
refers to an actor.

Both these approaches provide a rapid means to extract, interpret and summarize
the knowledge contained within text documents. This is not to say that the machine
interpretation will always be valid, however analyst support and automated identifica-
tion and cross-validation functions will help to unearth inconsistencies (e.g. where the

Rapid Business Process Discovery (R-BPD) 395

np in an assignment pair is found to be an inanimate object rather than an actor - also
see Section 4). In addition, other advanced and efficient methods are available that may
help in reducing errors, for example when interpreting temporal relationships [25].

Fig. 2. R-BPDTk Prototype

The following fragment shows output from the R-BPD tool that assigns an activity
to a role. The activity in question is “check customer credit information” and the role in
question is that of “customer service representative”. A combination of template-based
extraction and analysis using the NLTk toolkit is used to identify both the role and its
relationship to the activity.

(assignment:
(np:
(’a’, ’at’)
(’customer’, ’nn’)
(’service’, ’nn’)
(’representative’, ’nn’))

(’,’, ’,’)
(’who’, ’wpo’)
(activity:
(vp: (’checks’, ’vbz’))
(np:

(’the’, ’at’)
("customer’s", ’nn$’)
(’credit’, ’nn’)
(’information’, ’nn’))))

396 A. Ghose, G. Koliadis, and A. Chueng

This second fragment indicates a precedence relationship between two activities -
specifically that “order cancellation” may only occur prior to “shipping”.

(rule:
(’before’, ’cs’)
(activity: (vp: (’shipping’, ’vbg’)))
(’,’, ’,’)
(np_act:
(np: (’the’, ’at’) (’order’, ’nn’))
(’can’, ’md’)
(’be’, ’be’)
(activity:

(vp: (’cancelled’, ’vbd’))
(pp: (’by’, ’in’)

(np: (’notification’, ’nn’)))
(pp: (’from’, ’in’) (np: (’the’, ’at’)

(’customer’, ’nn’)))))
(’.’, ’.’))

3 Model-to-Model Extraction

The intent of model-to-model extraction is to obtain elements of process models that
might be described in other existing models. For instance, a sequence diagram can be
viewed as a fine-grained proto-process model. We can conceive of the following two
alternative approaches for model-to-model extraction:

– Syntactic mappings between notations: In this approach, hand-crafted mapping
functions are used to map models in a variety of different notations (e.g., use case
diagrams, sequence diagrams, state diagrams etc.) to a process modeling notation.
Our current work is primarily based on this approach. Let Ni and Nj be two dis-
tinct modeling notations. Let fsyn

Ni,Nj
: MNi → MNj where MNi and MNj are

the sets of all possible models expressible in Ni and Nj respectively, be a func-
tion that maps a model in Ni to a model in Nj . That is, the function generates an
Nj model that expresses as much of the input model (in Ni) as can be expressed
in Nj . We shall refer to such functions as syntactitc transformation functions and
note that such functions can be realized using QVT languages in the model-driven
architectures framework (although our current implementation does not use a QVT
language). We provide a complete example of a syntactic transformation function
below, and outline another instance.

Consider an i* [26] in Figure 3, mapped to the BPMN process model [27] in
Figure 4. In this case, the function fsyn

i∗,BP mapped: activities in i* to process models
in BPMN; the child nodes of activities in an i* model to activities within the BPMN
process model; actors in an i* model to pools/lanes in the BPMN model; and, re-
source dependencies between activities in the i* model to message flow links in the
BPMN model. The BPMN model could then be easily edited to refine sequencing
information and additional activities, that may also trigger some change in the i*
model if a reverse mapping were applied.

Rapid Business Process Discovery (R-BPD) 397

– Mappings based on semantic correspondences: Here we would rely on semantic
correspondences that exist between languages to establish what statements can be
said in another language, and how they should be represented syntactically. In this
case, analyst involvement will mainly be required where either Ni or Nj is an in-
formal notation. Where the semantics for both Ni and Nj are well-understood, we
would require a function fsem

Ni,Nj
: SemNi → SemNj , where SemNi and SemNj

represent the semantic domains of Ni and Nj respectively. Our current implemen-
tation does not adopt this approach but [20] provides some preliminary indications
of how an analyst-driven “mized” approach might look like.

Fig. 3. A Partial Organizational Model

Fig. 4. An Outbound Package Process

The following describes a syntactic transformation function that maps UML Interac-
tion Diagrams to BPMN models:

1. Represent each object in the UML interaction diagram as a pool within the BPMN
model.

398 A. Ghose, G. Koliadis, and A. Chueng

2. Traverse the lifeline of each object in the UML interaction diagram from beginning
to end, creating activities within the corresponding BPMN pool using the following
rules. The sequence of these activities in the BPMN model reflect the sequence of
the corresponding interactions on the lifeline.
(a) For each internal message along the lifeline, include an activity within the ob-

jects associated pool labeled with the < MessageLabel > as the activity label.
(b) For each outgoing call interaction along the lifeline, include an activity within

the pool associated with the corresponding object of the following form:
Request < MessageLabel >.

(c) For each incoming call interaction along the lifeline, include an activity within
the pool within the pool associated with the corresponding object of the fol-
lowing form: Receive < MessageLabel > Request.

(d) For each outgoing call interaction return along the lifeline, include an activity
within the pool within the pool associated with the corresponding object of the
following form: Return < MessageLabel >.

(e) For each incoming call interaction return along the lifeline, include an activity
within the pool within the pool associated with the corresponding object of the
following form: Receive < MessageLabel >.

(f) For each outgoing interaction along the lifeline guarded by a state invariant,
include an exclusive-OR decision gateway in the sending objects’ pool in the
BPMN model in the contiguous sequence prior to the Request / Return mes-
sage of that outgoing interaction, and after the prior activity in the object’s
lifeline. Label the flow on the BPMN model between the exclusive gateway
and the aforementioned Request / Return message with the conditional ex-
pression. The decision gateway thus obtained may violate BPMN syntax - for
instance, in Figure 6, the decision gateway labelled with the guard condition
order.CreditCheck=’Approved’ does not actually achieve an X-OR split. Such
models are nonetheless of interest because they are proto-models and it is as-
sumed that they would be edited/refined by analysts.

3. For each interaction between two objects in the interaction diagram, introduce a
message flow link between the corresponding activities in the BPMN model and
label the message flow with the argument[s] of the interaction.

Figure 6 is an example of a BPMN model thus extracted from a UML interaction
digram (depicted in Figure 5).

As another instance of a syntactic transformation function, consider an i* [26] in
Figure 3, mapped to the BPMN process model [27] in Figure 4. In this case, the func-
tion fsyn

i∗,BP mapped: activities in i* to process models in BPMN; the child nodes of
activities in an i* model to activities within the BPMN process model; actors in an i*
model to pools/lanes in the BPMN model; and, resource dependencies between activ-
ities in the i* model to message flow links in the BPMN model. The BPMN model
could then be easily edited to refine sequencing information and additional activi-
ties, that may also trigger some change in the i* model if a reverse mapping were
applied.

Rapid Business Process Discovery (R-BPD) 399

Fig. 5. Process Sales Order Interaction Diagram

Fig. 6. BPMN Proto-Process Model Extracted from Sales Order Interaction Diagram

4 Model Identity and Cross-Validation

Distinct process models obtained via model-to-model extraction and text-to-model ex-
traction might actually describe the same process. This presents both an opportunity and
a challenge. The opportunity lies in the ability to cross-validate distinct models of the
same process against each other. The challenge relates to the problem of establishing

400 A. Ghose, G. Koliadis, and A. Chueng

model identity, i.e., determining whether two distinct process models refer to the same
process.

Determing model identity is a difficult problem. The R-BPD tool generates proto-
models from multiple sources. Consider a process model m1 generated from one or
more text documents and process model m2 extracted from one or more legacy UML
Interaction Diagrams. m1 and m2 might indeed be alternative descriptions of the same
process, but determing whether this is the case is the problem of model identity. One
approach would be to relegate that decision to the analyst. It would, however, be use-
ful if the tool were able to establish tentative identity relationships between distinct
process models and use these to perform cross-validation across models (discussed be-
low). The process of establishing model identity can be decomposed into three steps.
First, we need to resolve naming conflicts (i.e., the use of distinct names for the same
concept - “shipment” and “consignment” for instance). We use an enterprise ontol-
ogy for this purpore. Second, we need to resolve abstraction conflicts, which relates to
the problem of describing the same process at varying levels of abstraction. Here too
we require an enterprise ontology. Within such an ontology, background rules such as
Performs1(ProcessingSystem, Read, Order)∧Performs2(ProcessingSystem,
AppendID, Order) ⇒ Performs3(ProcessingSystem, Recieve, Order) permit
us to relate finer-grained descriptions of a process (containing, say, Step1 and Step2)
with more abstract descriptions of the same process (containing Step3) (this rule corre-
sponds to the natural language statement “The order is recieved by a processing system,
which reads the data and appends an ID number to the order.”).

Having resolved naming conflicts and having established relationships between de-
scriptions at different levels of abstraction, the third step involves actually establish-
ing whether two process models indeed describe the same process. In general terms,
this involves devising a similarity function that takes as input a pair of process mod-
els and produces as output a similarity measure. If the similarity measure meets a
pre-specified threshold, the two models are deemed to describe the same process. In
the current implementation of the R-BPD tool, we use a simple structural similarity
function the exploits a graph encoding of BPMN models (our approach resembles that
of [28] in some respects). In the resulting digraph (V, E), each node is of the form
< ID, nodetype, owner > and each edge is of the form << u, v >, edgetype >.
Each event, activity or gateway in a BPMN model maps to a node, with the nodetype
indicating whether the node was obtained from an event, activity or gateway respec-
tively in the BPMN model. The ID of nodes of type event or activity refers to the ID
of the corresponding event or activity in the BPMN model. The ID of a gateway type
node refers to the condition associated with the corresponding gateway in the BPMN
model. The owner attribute of a node refers to the role associated with the pool from
which the node was obtained. The edgetype of an edge can be either control or mes-
sage depending on whether the edge represents a control flow or message flow in the
BPMN model. To obtain a similarity measure between two process models, we first en-
code the process models into digraphs di and dj as described above. We then compute
the total number of nodes plus edges on which the two digraphs thus obtained agree,
denoted by | intersect(di, dj) |. Note that we assume that both naming conflicts and
abstraction conflicts have been resolved via reference to the enterprise ontology. We

Rapid Business Process Discovery (R-BPD) 401

relax the identity requirement for nodes in relation to the owner attribute - two nodes
are also deemed to be identical if they agree on the ID and nodetype and the owner
attribute of at least one of the nodes is null. This permits us to deal with proto-models
where some owner roles are yet to be assigned. The similarity measure is given by
min(| intersect(di, dj) |/| di |, | intersect(di, dj) |/| dj |), where for a digraph d,
| d | represents the total number nodes and edges in d. The threshold is a tunable pa-
rameter - setting it low would generate a large number of potentially incorrect identity
relationships, while setting it too high might lead to potential identities being ignored
by the tool. The similarity measure described above is one of several that could be used
in this context, reflecting alternative intuitions and it is not our intention to suggest that
this might be the best similarity measure to use. Much remains to be done in explor-
ing the effectiveness of alternative means of assessing similarity and suggesting model
identity.

When an identity relation is indicated between a pair of process models extracted
from distinct source artefacts, it is useful to cross-validate these models, i.e., to deter-
mine if the models support each other. In our current implementation, we use model
consistency as the basis for cross-validation. If a pair of process models deemed to rep-
resent the same process is mutually consistent, then they are viewed supporting each
other. On the other hand, an inconsistent pair of models of the same process generates
a trigger for analysts to manually check the corresponding source artefacts and also to
manually resolve the inconsistency. We outline below a lightweight, structural approach
to determining process model consistency that has been implemented in our tool. We
note that a semantic approach to consistency would be more desirable, but is somewhat
difficult due to the absence of consensus on the most effective means of describing
BPMN semantics.

In the context of formal languages, two distinct theories in the language are deemed
to be consistent if and only if a model (in the sense of model-theoretic semantics) exists
that satisfies both theories. In our context, process models may be viewed as (syntac-
tic) theories, or descriptions of processes, while individual process instances may be
viewed as playing the role of semantic models (snapshots of the world being syntacti-
cally described). A pair of process models may therefore be deemed to be consistent if
a process instance exists that satisfies both models. The consistency check that we have
implemented performs lightweight, structural analysis of the digraphs obtained from
BPMN models in the manner described above.

Let m1 and m2 be two graphical process models that we have initially determined
to be identical. As with the similarity measure, we assume that naming and abstraction
conflicts have been resolved with reference to an enterprise ontology. As before, we
will permit pair of nodes to be deemed to be identical even if the owner role for one of
them is undefined. We say that m1 is consistent with m2 (with d1 and d2 representing
the corresponding digraphs, respectively) iff the following properties hold:

1. The sub-graphs within d1 and d2 defined by the nodes common to d1 and d2 are
isomorphic.

2. For each incoming edge connecting a common node to a node that does not belong
to the intersection in one digraph, there does not exist a corresponding incoming
edge connecting the same common node in the other. Similarly, for each outgoing

402 A. Ghose, G. Koliadis, and A. Chueng

edge connecting a common node to a node that does not belong to the intersection
in one digraph, there does not exist a corresponding outgoing edge connecting the
same common node in the other.

Fig. 7. BPMN Proto-Process Model Fragments Extracted from Text

Example: Figure 8 (mT) summarizes some fragments of a Sales Order proto-process
model that has been extracted from a sample text using the R-BPD prototype. The
(ontological) correspondences established in Table 1 between mU (Figure 6) and mT

(Figure 8) provide an initial basis with which to determine consistency.
Application of the consistency check reveals the following:

– In mT , the node and edge pair “credit check passes →” , and the mU “CreditCheck
= Approved → node and edge pair violate consistency rule (2).

– In mT the node and edge pair “[submits an order for goods] →” , and the mU

“[Request process(Order)] → (Portal)” also violate consistency rules (2).

Such inconsistencies that arise during discovery may be either resolved in an auto-
mated or mediated manner. Given much of the available information has been extracted
and summarized, such inconsistencies require only minimal analyst involvement and
may even help unearth previously unknown and valuable process change information
[3]. During the resolution of the first inconsistency (Figure 8 (a)), the analyst has chosen
to differentiate the previously identified node and place it under control of ‘the system’
with the subsequent activity. Such information would in most cases be only available to
an expert within the domain and may place the change out of scope of the R-BPDTk.
Finally, the second inconsistency results in an update of the domain ontology signify-
ing an association between “CDExpress”, “portal”, and “the system”. The acquisition

Rapid Business Process Discovery (R-BPD) 403

Fig. 8. Analyst Meditation and Inconsistency Resolution

Table 1. Figures 6 and 8 Correspondence

Figure 6 (UML) Figure 8 (Text)
Roles Portal the system

Customer Service the customer service representative
Customer a customer

Nodes Request process(Order) submit an order for goods
order.CreditCheck=Approval credit check passes

of such information would be valuable during subsequent or revised iterations of dis-
covery.

The R-BPD procedure continues until the correspondences and combinations of
proto-process models have been established up-to some fixed-point. We can then ap-
ply additional metrics to determine where further analyst mediation may be required.

5 Managing Traceability and Change During R-BPD

The extraction of process models from artefacts in an enterprise repository helps estab-
lish critical traceability links, which can be leveraged in a variety of ways. If a proto-
model is deemed to be incorrect by an analyst and is found to have been extracted from
a live artefact, an immediate alert (to the owners of the artefact, e.g., the authors of
a document) is triggered. such an alert does not oblige revision of the source artefact
- it merely signals that disagreements (between the analyst in question and the arte-
fact owners) on the process being described might exist and might require resolution.
The actual resolution of such a disagreement is outside the scope of our tool. Similar
alerts can also be issued to the owners of the source artefacts of process models that
are changed for other extraneous reasons. Such alerts may be viewed as suggestions to

404 A. Ghose, G. Koliadis, and A. Chueng

revisit these source artefacts in light of the changes made to the process models ex-
tracted from them.

6 Experimental Evaluation Using R-BPDTk

In preliminary experimental evaluation, we explored the effectiveness of: (1) an imple-
mented interaction diagram to BPMN extraction module; and (2) an implemented text
to BPMN extraction module. We ran each with ten sets of inputs (ten interactions di-
agrams in the former instance and ten pieces of text in the latter). For simplicity, the
implementations were configured to generate one process proto-model for each input.
The ten proto-models generated in each instance were evaluated by an independent an-
alyst, who partitioned the set into usable and non-usable subsets.

The preliminary results look promising:

– The analyst found all of the ten sequence diagram translations into proto-process
models extremely useful in developing subsequent business process models.

– The analyst found three proto-models to be useless from our set of ten proto-models
extracted from text. Of these three however, one description actually contained
close to no process relevant knowledge, suggesting that the problem did not reside
in our tool.

– Seven of the ten proto-models extracted from text were deemed to be useful by the
analyst.

– Finally, two of the ten proto-models extracted from text were deemed to be ex-
tremely useful in extracting the aspects of the process described in the text.

These results indicate that the combination of both models will yield significantly
improved results during subsequent experiments. We are currently pursuing the inte-
gration of such modules with a capability to incorporate and propagate analyst edits
across the system during iterations of business process model discovery.

7 Conclusion

We have discussed the R-BPD method for rapidly discovering business process knowl-
edge from a wide variety of sources. The approach can work in conjunction with any
means for eliciting or extracting information, including the choice of notation used
(which may help improve differential access and acquirability). R-BPD allows for the
rapid extraction and summarization of process knowledge from large samples of arti-
facts, as well as the possibility of distributed elicitation and negotiation of consistency
among domain experts. In future work we propose to extend the toolkit to enable finer
grained traceability between process models and source artefacts, relating elements of
an extracted process model to components of source artefacts (such as paragraphs of
text, or elements of a UML interaction diagram). This would permit a more sophisti-
cated set of functionalities driven by analyst edits to generated proto-models. We also
propose to explore alternative, and possibly semantic, notions of model identity and
consistency. Finally, industry-scale empirical evaluation needs to be conducted.

Rapid Business Process Discovery (R-BPD) 405

References

1. Smith, H., Fingar, P.: Business Process Management: The Third Wave. Meghan-Kiffer Press,
Tampa, FL (2003)

2. van der Aalst, W.M., ter Hofstede, A.H., Weske, M.: Business process management: A sur-
vey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS,
vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

3. Sommerville, I., Sawyer, P., Viller, S.: Manging process inconsistency using viewpoints.
IEEE Transactions on Software Engineering 25, 784–799 (1999)

4. Gruber, T.R.: Automated knowledge acquisition for strategic knowledge. Machine Learn-
ing 4, 293–336 (1989)

5. RBPD: Rapid model discovery project, http://www.dsl.uow.edu.au/projects/
rmd/

6. Boose, J.H.: Knowledge aquisition, methods, and mediating representations. In: First
Japanese Knowledge Aquisition for Knowledge-Based Systems Workshop (JKAW’90)
(1990)

7. Hoffman, R.R., Shadbolt, N.R., Burton, M., Klein, G.: Eliciting knowledge from experts:
A methodological analysis. Organizational Behaviour and Human Decision Processes 62,
129–158 (1995)

8. Young, R.M., Gammack, J.: The role of psychological techniques and intermediate represen-
tations in knowledge elicitation. In: Proceedings of the First European Workshop on Knowl-
edge Acquisition and Knowledge-based Systems (1987)

9. Shore, B.: Bias in the development and use of an expert system: Implications for lifecycle
costs. Industrial Management and Data Systems 4, 18–26 (1996)

10. Hoffman, R.R.: Bibliography: Automated knowledge elicitation, representation, and instan-
tiation. In: Bibliography: Automated knowledge elicitation, representation, and instantiation,
pp. 346–358. Erlbaum, Hillsdale, NJ (1992)

11. Reubenstein, H.B., Waters, R.C.: The requirements apprentice: Automated assistance for
requirements acquisition. IEEE Trans. Softw. Eng. 17(3), 226–240 (1991)

12. de Medeiros, A., van der Aalst, W., Weijters, A.: Workflow mining: Current status and future
directions. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.). OTM 2003. LNCS, vol. 2888,
Springer, Heidelberg (2003)

13. van der Aalst, W.M.P., Song, M.: Mining social networks: Uncovering interaction patterns in
business processes. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080,
pp. 244–260. Springer, Heidelberg (2004)

14. Rozinat, A.W.M.P.v.d.A.: Decision mining in prom. In: Business Process Management.
(2006) 420–425

15. Ellis, C.A., Rembert, A.J., Kim, K.-H., Wainer, J.: Beyond worflow mining. In: Dustdar, S.,
Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, Springer, Heidelberg (2006)

16. Sommerville, I., Sawyer, P.: Viewpoints: Principles, problems and a practical approach to
requirements engineering. Annals of Software Engineering 3, 101–130 (1997)

17. Easterbrook, S., Nuseibeh, B.: Using viewpoints for inconsistency management. BCS/IEE
Software Engineering Journal, 31–43 (January 1996)

18. Easterbrook, S., Finkelstein, A., Kramer, J., Nuseibeh, B.: Co-ordinating distributed view-
points: the anatomy of a consistency check. Technical Report 94/7, Department of Comput-
ing, Imperial College, London (1994)

19. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: Proc. OOP-
SLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture
(2003)

http://www.dsl.uow.edu.au/projects/rmd/
http://www.dsl.uow.edu.au/projects/rmd/

406 A. Ghose, G. Koliadis, and A. Chueng

20. Koliadis, G., Vranesevic, A., Bhuiyan, M., Krishna, A., Ghose, A.: A combined approach for
supporting the business process model lifecycle. In: Proc. of the 10th Pacific Asia Conference
on Information Systems (PACIS’06) (2006)

21. Holocentric (2007), http://www.holocentric.com
22. Xu, K., Lianchen, L., Wu, C.: A three-layered method for business process discovery and its

application in manufacturing industry. Computers in Industry 58, 265–278 (2007)
23. BEA: Introduction to business process management and the sample workflows. Accessed:

27.02.07 (2007), http://edocs.bea.com/wli/docs70/bpmtutor/ch1.htm
24. Klein, E.: Computational semantics in the natural language toolkit. In: Proceedings of the

2006 Australasian Language Technology Workshop (ALTW2006), pp. 26–33 (2006)
25. Pham, S., Hoffmann, A.: Efficient knowledge acquisition for extracting temporal relations.

In: Proceedings of the Australasian language technology workshop, pp. 87–95 (2005)
26. Yu, E.: Models for supporting the redesign of organizational work. In: Proceedings of Conf.

on Organizational Computing Systems (COOCS’95), Milpitas, CA: USA, August 13-16
1995, pp. 225–236 (1995)

27. White, S.: Business process modeling notation (bpmn), Technical report, OMG Final
Adopted Specification 1.0 (2006), http://www.bpmn.org

28. Lu, R., Sadiq, S.: Managing process variants as an information resource. In: Dustdar, S.,
Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, Springer, Heidelberg (2006)

http://www.holocentric.com
http://edocs.bea.com/wli/docs70/bpmtutor/ch1.htm
http://www.bpmn.org

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 407–422, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Ontology-Driven Business Modelling: Improving the
Conceptual Representation of the REA Ontology

Frederik Gailly and Geert Poels

Faculty of Economics and Business Administration, Ghent University, Belgium
{Frederik.Gailly,Geert.Poels}@UGent.be

Abstract. Business modelling research is increasingly interested in exploring
how domain ontologies can be used as reference models for business models.
The Resource Event Agent (REA) ontology is a primary candidate for
ontology-driven modelling of business processes because the REA point of
view on business reality is close to the conceptual modelling perspective on
business models. In this paper Ontology Engineering principles are employed to
reengineer REA in order to make it more suitable for ontology-driven business
modelling. The new conceptual representation of REA that we propose uses a
single representation formalism, includes a more complete domain axiomatizat-
ion (containing definitions of concepts, concept relations and ontological
axioms), and is proposed as a generic model that can be instantiated to create
valid business models. The effects of these proposed improvements on REA-
driven business modelling are demonstrated using a business modelling
example.

1 Introduction

Business modelling is a research domain that is gradually moving to more in depth
analyses that aim at providing toolkits for representing, analysing, assessing and
changing business models [1]. The goal of business modelling is to create
semantically faithful and pragmatically usable representations of business domain
artefacts (e.g. transactions, processes, value chains). As Ontology also aims at
creating real-world representations, business domain ontologies (e.g. [2-8]) may offer
support for business modelling in the sense that their representation can be seen as a
reference model for concrete business models. This reference model describes
concepts, concept relations and axioms that are potentially relevant for business
models. Ontology-driven business modelling thus means that a business domain
ontology is used to constrain the contents and structure of the business model, thereby
helping to identify and organize relevant objects, relationships and other knowledge
[9]. When emphasizing their use for ontology-driven business modelling, we will
refer to business domain ontologies as business modelling ontologies.

The Resource Event Agent (REA) ontology [5] is one such ontology that has been
proposed as a business modelling ontology. The origin of REA is an accounting data
model [10] that has been extended first into an enterprise information architecture and
later into a full-scale business domain ontology. This gradual development and
extension in scope has resulted in the coexistence of multiple conceptualizations that

408 F. Gailly and G. Poels

all provide partial (and not necessarily consistent) views of REA and that are
represented in different (and not always compatible) formats. This lack of a definite
reference for business modellers, preferably in a representation format useful for
business modelling, may hinder REA’s application as a business modelling ontology.
This paper therefore proposes a new conceptual representation of REA with the goal
of increasing the applicability of REA as a business modelling ontology. The
development of this new conceptual representation was guided by proven Ontology
Engineering principles as recommended in a new business domain ontology
reengineering methodology [11].

The paper also elaborates a business modelling example to illustrate that the newly
developed representation offers a better reference for business modellers than the
current REA representations. The example illuminates the interpretation problems
that may arise when instantiating the generic business model that can be inferred from
the currently available REA representations and shows that these problems are
avoided when using our proposal. The paper emphasizes especially that the inclusion
of basic domain axioms in the generic business model makes the business model
instantiations more correct.

In the next section we motivate the choice of REA as our object of study. REA is
also compared to alternative business modelling ontologies. Section three briefly
discusses the Ontology Engineering principles on which the development of a new
conceptual representation for REA is based. The currently available representations of
REA are summarized in section four. The business modelling example is also
introduced in that section. The new conceptual representation of REA is presented in
the fifth section and is subsequently used as a reference for the same business
modelling example as in section four, thereby illustrating the value of our proposal
(i.e. less interpretation problems and a more complete model). Section six ends with
conclusions.

2 REA as a Business Modelling Ontology

The three main business modelling ontologies are REA [5], the e3-value ontology [4],
and the e-Business Model Ontology (e-BMO) [6]. Although these ontologies all focus
on the creation and transfer of economic value (which is why they are sometimes
called business model ontologies [7] to distinguish them from so-called enterprise
model ontologies (or generic enterprise models) like TOVE [2] and EO [3] that are
more focused on organizational structure, activities and management [7]), they have a
different purpose.

Considering the envisioned applications of business modelling we can roughly
distinguish two groups of business modelling ontologies: on the one hand e3-value
and e-BMO that mainly approach a business model as a conceptual representation of a
business ‘case’ (i.e. the management perspective [1]) and on the other hand REA that
regards the business model as the core of the conceptual schema of a business
software or database application. The REA point of view is closer to the conceptual
modelling perspective on ‘business’ models and together with its level of detail makes
REA the primary candidate for ontology-driven modelling of single or interrelated
business processes. It must be noted that given its origin in data modelling, the

 Ontology-Driven Business Modelling 409

resulting models can be characterized as structural models (i.e. domain models) rather
than behavioural models (i.e. process models). It must also be noted that, given
REA’s accountability and control perspective on business reality (which clearly
influences REA’s conceptualization of business reality), REA business models are
particulary useful in the development of intra/inter-enterprise systems that focus on
accounting information processing.

REA’s potential as a business modelling ontology has been recognized by a
number of international standardization efforts for e-collaboration systems (e.g. ISO
Open-EDI initiative, UN/CEFACT, OAG, eBTWG). REA was the basis for the
business process ontology in the UMM business process and information model
construction methodology [12], the ECIMF system interoperability enabling
methodology [13] and the Open-EDI business transaction ontology which is part of
the ISO/IEC 15944-4 standard.

Apart from the aforementioned initiatives (in which the REA developers were
actively involved), there are few documented accounts of REA-driven business
modelling in practice (although REA is taught in accounting information systems or
database courses in more than 100 business schools or faculties [14]). In [15] we
identified plausible reasons for this lack of wide-scale application of REA in
ontology-driven business modelling and system engineering: the ontological concepts
and the relations between the concepts are not strictly defined, the ontological axioms
are confusing (mixing up types and instances of concepts), and there is neither a
generally accepted conceptualization nor a uniform representation of the ontology.
Furthermore, the view on REA expressed in textbooks such as [16] differs in some
aspects from the ‘official’ view of the REA developers as in [17, 18] which is still
different from REA’s adoption in international standards like ISO/IEC 15944-4.

The success of ontology-driven business modelling depends in large extent on the
quality of the conceptual backbone: the business domain ontology. Ontology research
has proposed sound methodological guidelines for developing ontologies. However
REA was developed in an ad-hoc manner and the developers focused more on the
theoretical background of the ontology (events accounting and Micro-Economic
theories) than on the representation, formalization and computational correctness of
the ontology (although they did perform in [5] an ontological analysis using Sowa’s
classification of ontological categories). It is our position that applying sound
Ontology Engineering principles to existing business domain ontologies to redesign
them, will improve these ontologies and will increase their capability as a driver for
business modelling.

3 Redesigning Business Domain Ontologies

Based on the METHONTOLOGY framework [19] we have published in [11] a three-
phased reengineering methodology for business domain ontologies. The first phase is
Reverse Engineering during which the conceptualization of the business domain
ontology is recovered starting from the currently available representations, in
whatever format they are available. In the following Restructuring phase the
recovered conceptualization is redesigned by applying ontology evaluation and
redesign techniques. The resulting redesigned conceptualization is subsequently

410 F. Gailly and G. Poels

transformed into a reengineered, formal ontology representation during the Forward
Engineering phase.

The reengineering activities of these phases have been executed for the REA-
ontology and have resulted in a formal REA-ontology representation. The Reverse
Engineering and Restructuring of REA are described in sections four and five
respectively. In the current section (section three) we explain the Ontology
Engineering principles that were used during the Restructuring phase and that resulted
in an improved conceptual representation of the REA-ontology. These principles were
chosen in function of our goal, i.e. improving REA as a business modelling ontology.
We wish to stress that our aim was not to evaluate or change the content of the REA-
ontology, but to improve the representation of REA’s conceptualization of business
reality to make it more suitable as a generic business model.

The mapping rules that were subsequently used to Forward Engineer this
improved conceptual representation into a formal representation in OWL can be
found in [11] and are not repeated here.

3.1 Ontology Modelling Using Conceptual Modelling Languages

A first principle is to model domain ontologies using conceptual modelling languages
(e.g. ER, UML, ORM …) [20-22]. Conceptual modelling languages help
conceptualizing the ontology (i.e. creating a conceptual representation) because they
offer representations that are close to how humans perceive the world [23]. We see at
least three advantages of using a well-defined graphical modelling language such as
UML for conceptually representing a business modelling ontology:

• A graphical representation balances understandability and precision. For the
average business modeller an UML diagram is easier to understand than a formal
representation in a knowledge representation language, but still causes less
interpretation problems and ambiguity than an informal, textual description. Using
a graphical conceptual modelling language, ontology developers can make domain
semantics explicit whilst still being able to effectively communicate these
semantics to the business modeller.

• UML can be used both for representing the ontology and for representing business
models, allowing for a smoother transition between description (ontology) and
specification (model). In fact, by using a common representation language the
ontology may act as a generic model that can be instantiated to obtain a concrete
business model.

• There exist mapping rules in both directions between UML and the knowledge
representation (or web ontology) languages RDF and OWL [24]. The formalization
of an ontology’s conceptual representation will therefore be facilitated if UML is
used as the ontology modelling language.

3.2 Ontology Restructuring Based on the DOGMA Double Articulation
Principle

The ontology double articulation principle proposed by Jarrar [25] stipulates that a
domain ontology should be divided into a domain axiomatization and a number of
application axiomatizations. The domain axiomatization represents the ontology’s

 Ontology-Driven Business Modelling 411

intended meaning which is shared and public. An application axiomatization specifies
which parts of the domain axiomatization are relevant for an intended application and
adds application-specific rules that constrain the relevant concepts. The DOGMA
approach to ontology engineering [22] captures the domain axiomatization in an
ontology base and the different application axiomatizations in a commitment layer.

The distinction between an ontology base and a commitment layer within the
conceptual representation of a business domain ontology is highly relevant for
ontology-driven business modelling. For instance, the Model-Driven Architecture
(MDA) prescribes the use of a Computation-Independent Model (CIM) as an
abstraction of the system from the end user’s viewpoint. The CIM is a representation
of the problem domain focusing on the system requirements rather than a
representation of the software artefacts in the solution space for that problem domain.
If a business application is developed, then the CIM is what we have called a business
model and business modelling ontologies can be used to develop the CIM.

The CIM typically contains a domain model which describes the concepts of the
domain, their relations and the domain rules that apply, and a requirements model
which adds application-specific issues. According to [26] domain ontologies can be
employed for representing the domain model of the CIM, but the parts of the CIM
that deal with requirements are application-specific and cannot be grasped by
ontologies. We agree with this in so far that only the domain axiomatization,
represented as a generic business model, should be used for developing the CIM’s
domain model (through instantiation). Therefore the ontology base should be
application-independent. However, the application-specific parts of the CIM together
with the domain model form a business model whose development can also be driven
by the business modelling ontology’s commitment layer on condition that it contains
appropriate mechanisms for mediating between the domain axiomatization and the
intended application.

Business domain ontologies would benefit from the double articulation principle as
it would increase the reusability of their ontology base (because of application-
independence) as well as their applicability for ontology-driven business modelling.

4 Current Conceptualization of REA

The Reverse Engineering of REA was mainly an ontology ‘unification’ effort, focus-
ing on the commonalities in the existing representations and underlying interpretat-
ions. In case of doubt we referred to the ‘official’ version of the ontology as described
by the REA developers in their most recent papers (i.e. [17, 18]).

4.1 Reverse Engineering: Ontology Unification

The conceptualization of a business process according to REA originates in the REA
accounting data model developed by McCarthy [10]. This model was originally
conceived as a semantic data model for creating accounting databases. According to
this model there are three kinds of objects that can be identified in any economic
exchange or conversion process: Economic Resources, Economic Agents and
Economic Events. The REA ontology further extended this classification with the

412 F. Gailly and G. Poels

Commitment concept which refers to a promise or obligation of economic agents to
perform an economic event in the future (e.g. accepting a sales order is a promise to
deliver the ordered goods or services) and the Contract concept which refers to a
collection of mutual commitments and applicable terms (e.g. an accepted sales order
obliges the enterprise to deliver and the customer to pay). Table 1 gives an overview
of the definitions of the basic operational REA concepts related to the business
process level.

Table 1. Definitions of basic operational REA concepts – business process level

Concept Definition
Economic
Resource

A thing that is scarce and has utility for economic agents and is something
users of business applications want to plan, monitor and control.

Economic Agent Is an individual or organization capable of having control over economic
resources, and transferring or receiving the control to or from other
individuals or organizations.

Economic Event Represents either an increment or a decrement in the value of economic
resources that are under control of the enterprise.

Commitment Is a promise or obligation of economic agents to perform an economic
event in the future

Contract Is a collection of increment and decrement commitments and terms.

In [5, 18] a knowledge layer has been proposed on top of the operational business
process level. The typification abstraction is used to provide concept descriptions that
apply to a kind of objects (e.g. describing the characteristics of different types of sales
like cash sales, credit sales, etc.). The type images of the operational concepts are
named Economic Resource Type, Economic Agent Type, Economic Event type,
Commitment Type and Contract Type [17, 18]. A second abstraction used is grouping
which refers to the group-membership special form of aggregation and groups objects
together in collections based on something they have in common. For each
operational concept group images can be defined, instead of or jointly with type
images. These group images are not explicitly named in the ontology.

Figure 1 (UML class diagram) is another representation of REA that shows named
concept relations. Economic resources are associated with the economic events that cause
their inflow or outflow (stockflow relationships). Economic events that result in resource
inflows (e.g. purchases) are paired by economic events that result in resource outflows
(e.g. cash disbursements) (duality relationships). The participation relationships provide
and receive identify the economic agents involved in economic events.

A commitment specifies a promise to perform some type of economic event and
will eventually be related to an economic event of the specified type by a fulfilment
relationship. Reciprocity relationships are analogous to duality relationships, but
relate commitments instead of economic events. These reciprocity relationships can
be reified as contracts (the Contract concept is not shown in figure 1). Both
commitments and contracts can also be typified (i.e. the Commitment Type and
Contract Type concepts, again not shown in figure 1). Specify relationships exist
between commitments and the economic agent types that are scheduled to participate
in some type of economic event. They also exist between commitments and the
economic resource types that are needed or are expected by future economic events. It

 Ontology-Driven Business Modelling 413

is also possible that a commitment specifies the actual economic resource or
economic agents involved in some type of economic event, but this special case
(called reservation relationship for the relation between commitments and economic
resources in [5, 18]) has not been included in figure 1. Finally, the relations between
type images (or group images if relevant) are referred to as policy relationships, as
they express business policies (e.g. which type of agent can or should be involved in
which type of event).

Fig. 1. REA concept relations at the business process level (partly)

Next to the REA concepts and relationships between the concepts, the ontology
also includes three axioms which are only defined in a textual format in the REA
literature:

• Axiom 1 (the stockflow axiom): At least one inflow event and one outflow event
exist for each economic resource; conversely inflow and outflow events must affect
identifiable resources.

• Axiom 2 (the duality axiom): All events effecting an outflow must be eventually
paired in duality relationships with events effecting an inflow and vice-versa.

• Axiom 3 (the participation axiom): Each economic event needs to have at least
one provide and one receive relationship with an economic agent.

4.2 Business Modelling Example

The business modelling example represented in this section by means of an REA-
model is the order and sale process of an online bookstore like Amazon.com or
BarnesandNoble.com. This process does not include purchase and delivery activities.
This means that we assume for simplicity’s sake that all books offered for sale are
available and that the bookshop has a contract with different types of couriers that
take care of delivery. The business model is described from the viewpoint of the
bookstore and could be used for the development of a system that registers the order
and sale of books as well as payment collection. The customer orders one or more

414 F. Gailly and G. Poels

book titles which are added to his purchase cart. At the end of the order the customer
must go to his purchase cart and select the sale type which determines how the order
will be delivered and will be paid for. The actual sale is only registered when the
products are delivered to the customer and a delivery notification from the courier is
received. Important to notice is that the order commitment has a specify relationship
with the customer and not with a customer type because the order identifies the
customer to which must be delivered.

Fig. 2. REA-model for an order and sale process of an online bookshop

The REA business model example of figure 2 has been developed by a naive
business modeller and reflects a subjective (and wrong) interpretation of some of the
REA axioms. The modeller has for instance enforced the duality axiom by making the
paidFor relationship one-to-one and mandatory for both roles, thereby ensuring that
each sale must be paid for and that each payment relates to a sale. However, in
practice, it could be that a payment has not yet resulted in a delivery of the books
when the customer uses a credit card for the payment of the books. Vice versa,
ordered books may have been delivered, but the payment not collected in the sense
that the account balance has not been augmented yet. The example also shows a strict
(but wrong) interpretation of the stockflow axiom in the sense that every economic
resource must have an inflow relationship with an economic event and an outflow
relationship with an economic event. However, a book copy may have been delivered
to the bookshop by a publisher (outside the scope of the model) but may not have
been sent to a customer yet, so a mandatory relationship with a sale event is a too
strong constraint.

The REA-model is also not complete because an order also creates a commitment
for the customer to pay for the ordered books. The generic model that can be derived
from figure 1 does not explicitly show that dual economic events fulfill reciprocal
commitments, so this omission is understandable.

 Ontology-Driven Business Modelling 415

One could argue that the incompleteness and incorrectness of the model could
easily be avoided and that a non-naive modeller would not make these mistakes. This
is true, but the point we wish to make here is that the currently available REA
representations do not seem helpful to avoid such problems. Hence they provide
insufficient guidance for ontology-driven business modelling.

5 Improved Conceptual Representation of REA

Based on the Ontology Engineering principles described in section three the REA
conceptualization described in the previous section can be restructured in order to
make the REA-ontology better suited for ontology-driven business modeling.

5.1 Restructuring Phase: Ontology Redesign

We have used the UML class diagram of figure 1 as the basis for an improved
conceptual REA representation (see figure 3). Adding some new classes, relationships
and multiplicities to figure 1 makes it possible to include the basic REA axioms. At
the same time, the definition of the concept relations can be made more explicit,
complete and consistent. The additional classes are specializations of existing classes:
Increment Economic Event, Decrement Economic Event, Increment Commitment,
Decrement Commitment, Increment Economic Event Type, and Decrement Economic
Event Type. Less commonly used, but supported by UML 2.0, is the specialization of

Fig. 3. The redesigned REA conceptualization (ontology base)

416 F. Gailly and G. Poels

associations: inflow(Type) and outflow(Type) as specializations of the stockflow(Type)
association and provide and receive as specializations of the participation association.
The specializations of the stockflow(Type) and participation associations redefine
their parent associations by specializing the types of the association ends and/or
adding additional multiplicity constraints.

These new classifications add formerly implicit semantics to the conceptual
representation. The diagram shows, for instance, that inflows relate increment events to
resources, outflows relate decrement events to resources, increment events fulfil increment
commitments, decrement events fulfil decrement commitments, increment commitments
specify increment economic event types and decrement commitments specify decrement
economic event types. While common-sense, none of these semantics has been explicitly
represented in the current REA representations. Incorporating these relations in a generic
business model allows constraining the structure of concrete business models.

The extensions make it also possible to represent the basic REA axioms using
multiplicities, further constraining the business models that can be considered as
‘valid’ w.r.t. REA. The main problem with the axioms as originally formulated is that
it not always clear whether they are defined at the operational level or at the
knowledge level, i.e. whether they apply to instance concepts or type concepts. The
REA axioms are explicitly specified in the class diagram as follows:

• The stockflow axiom consists of two parts. The first part states that at least one inflow
event and one outflow event exist for every economic resource. However, a company
can own a resource it has acquired but not used, consumed or sold yet. Clearly, the
first part of the axiom must be interpreted at the knowledge level and actually means
that each type of economic resource must be related by at least one type of inflow
relationship to an increment economic event type and by at least one type of outflow
relationship to a decrement economic event type. As a result the first part of the
axiom can be represented by a relationship between Economic Resource Type and
Increment Event Type and a relationship between Economic Resource Type and
Decrement Event Type. The participation of Economic Resource Type objects in
both types of relationships is mandatory.

• The second part of the axiom states that inflow and outflow events must affect
identifiable resources. This can be modelled at the operational level and is
represented by a mandatory participation of Increment Economic Event objects in
inflow relationships and a mandatory participation of Decrement Economic Event
objects in outflow relationships.

• The duality axiom prescribes that all events effecting an outflow must be
eventually paired in duality relationships with events effecting an inflow and vice-
versa. This axiom can only be modelled at a knowledge level because it could for
example be possible that in reality the purchase of a product has not yet been paid
by the company. At the knowledge level however we can say that every sale must
result in a payment (given certain boundary conditions that exclude for instance
philanthropic behaviour). In our class diagram this constraint is added by making
the participation in the dualityType relationships mandatory for both roles.

• The participation axiom implies that each economic event must have a provider and a
receiver. This axiom can be modelled on the operational level by making the participat-
ion of Economic Event objects in provide and receive relationships mandatory.

 Ontology-Driven Business Modelling 417

The redesigned conceptual representation makes it also possible to add additional
domain axioms that can be inferred from existing descriptions. For instance,
analogously to the duality axiom, there could be a reciprocity axiom which defines
that every increment commitment must be paired with at least one decrement
commitment, and vice versa. Important to notice is that this new axiom can be defined
at the operational level because of the economic reciprocity principle of capitalist
market economies (i.e. this principle underlies every contract).

Following the double articulation principle, policy relationships should be removed
from the ontology base and stored in a commitment layer because they are used to
model application-specific rules. According to Geerts and McCarthy [18] “the policy
definitions are essentially non-normative in nature; i.e. there are no domain-specific
rules to structure the descriptions that are part of the policy infrastructure”. Based on
this observation we conclude that policy relationships are not part of the business
domain axiomatization but that they can be used to add application-specific
constraints to the business domain axiomatization. Also cardinality heuristics for the
different concept relations (see e.g. [27]) logically belong to a commitment layer and
not to the ontology base.

Figure 3 must therefore be considered as the ontology base of the improved conceptual
REA representation and the business models that are deployed based on this reference
model can be considered as specific application axiomatizations. It is important to notice
that the multiplicities shown in figure 3 are only used to define ontological axioms. The

Fig. 4. REA-model for an order and sale order process using the redesigned REA conceptualization

418 F. Gailly and G. Poels

relationship ends where no multiplicities are shown, have no participation or cardinality
constraints that directly result from REA domain axioms. Likewise, the stockflowType
and dualityType relationships are only added to allow for the definition of axioms. Their
semantics as policy specifications would be considered an application axiomatization.
Important to notice is also that the inclusion of these relationship types makes it necessary
to add typify relationships between the association(s) (classes) at the operational and
knowledge levels. These typify relationships are hidden in figure 3 in order to reduce the
complexity of the class diagram.

5.2 Business Modelling Example Based on the Redesigned REA
Conceptualization

Figure 4 presents the REA-model of the order and sale process of an online bookshop,
but now based on an instantiation of the improved REA conceptual representation.
During the instantiation process, multiplicity constraints can be strengthened but not
weakened. Therefore, the generic business model shown in figure 3 forces the business
modeller to take basic business laws (captured in the REA axioms) into account in a
manner that relies less on the modeller’s subjective interpretation of business reality.

The main improvements in the REA-model of the online bookshop’s order and sale
process can be summarized as follows:

• One of the most distinguishing characteristics of the REA-ontology is the enforcement
of the principle of economic reciprocity. The instantiation of the generic business
model forces the business modeler to explicitly distinguish between an increment
economic commitment (commitmentToPay) and a decrement economic commitment
(commitmentToDeliver). These commitments and the reciprocity relationship between
them could be collapsed into a contract (order), but anyway the inclusion of specify (or
reservation) and fulfill relationships for both reciprocal parts of the contract would lead
to a more complete business model, allowing for more business applications than the
model in figure 2 (e.g. the reservation relationship between commitmentToPay and
account allows the budgeting of incoming cash flows).

• At the knowledge level the modeling of the decrement economic event type
saleType forces the developer to also include an increment economic event type
(paymentType) which adds to the model the different types of payment the
customer can choose from. For every saleType there is at least one valid
paymentType and vice-versa.

• The generic business model in figure 3 also avoids the interpretation problems that
may arise with the formerly only informally described REA axioms. For instance,
business modellers will feel no need to specify the duality axiom at the operational
level, as it is automatically present when instantiating the knowledge level
concepts and relations of figure 3. Hence, according to figure 4, there can be a sale
without a corresponding payment and vice-versa. The complete execution of an
order can at all times be controlled by referring to the reciprocal commitments that
are fulfilled by these events.

• Likewise, figure 4 reflects a correct interpretation of the stockflow axiom and
allows book copies to exist even if they are not related to sales. The knowledge
level shows that the bookshop only offers book titles that it can sell (though not

 Ontology-Driven Business Modelling 419

shown in the figure, the economic resource type book title may be further typified
such that in application axiomatizations book types can be distinguished and
related to sales types, e.g. modes of delivery).

6 Conclusion: Contribution, Related Work and Future Research

This paper proposed a new conceptual representation of the REA ontology that
increases the applicability of this business domain ontology as a business modelling
ontology. This new representation, developed using Ontology Engineering principles,
is an improvement over the existing, heterogeneous and partial REA representations.
The new REA representation is uniform (using a single representation formalism),
unified (including definitions of concepts, concept relations and axioms) and more
useful for ontology-driven business modelling. The proposed UML class diagram
makes the semantics of REA’s business conceptualization explicit and thus presents
an understandable reference model for business modellers.

A major change that we introduced was the incorporation of basic business domain
axioms in the class diagram, instead of describing them separately (and informally) as
in the ‘old’ REA. The class diagram thus acts as a generic business model for
generating and validating concrete business models. Instantiating this generic model
constrains the business modeller’s subjective interpretation of business reality and
assures that basic business laws are respected in the generated models.

The restructured REA conceptualization also provides a better basis for further
analysis, comparison and consensus amongst researchers on REA’s domain
axiomatization (hence making the ontology more shared). It may, for instance,
improve the reference ontology of business model ontologies (REA, e3-value and
e-BMO) proposed in [7]. The purpose of this reference ontology is not to present an
all encompassing ontology of the business domain, but to compare the three
component ontologies, relate them, and identify opportunities for extension and
revision. To integrate REA in the reference ontology a choice had to be made between
different views on REA as found in the literature (in particular [28], [16], and [12]
were used, though these references do not present the ‘official’ and latest REA
version as found in [17, 18]). Many mappings of REA into the reference ontology are
based on the explicit distinction between increments and decrements or between
inflows and outflows. By using our improved REA representation, this distinction
would be incorporated by means of specialization structures and not by attributes as
currently done. Using our representation as the REA reference model would make the
reference ontology more up-to-date and semantically richer and would facilitate the
inclusion of the basic REA axioms into the reference ontology.

In related work [11] we proposed a representation of our restructured REA
conceptualization in OWL-DL. The use of this web ontology language (grounded in
Description Logics) operationalizes REA such that it can be used at run-time by so-called
ontology-driven information systems [9] to support information integration and system
interoperability. The formal specification of REA (based on UML-OWL mapping rules)
would not have been possible without a uniform and unified conceptual representation.

This work was further extended in [29] where we used OMG’s UML-OWL profile
[30] for graphically representing the REA-ontology. Using this profile makes the

420 F. Gailly and G. Poels

back-and-forward transformations between graphical and machine-readable ontology
representations straightforward and automatic. Ontology-driven business models can
now be very easily represented in a formal ontology language such as OWL offering
opportunities to be validated by reasoners and to be queried by ontology query
languages (e.g. for auditing and internal control purposes). Specifically for REA
business models, a lot of useful information about the business domain which would
normally be hard-coded in business applications can now be added to a machine-
readable representation of the business model. For instance, a semantic rule language
like SWRL could now be used to specify business policies that are executed by rule
engines to update the company’s ontology. In [29] we also experimented with the
knowledge representation framework Protégé and the owlViz and ontoViz ontology
visualization plug-ins to obtain a more structured presentation of the REA-ontology
that can be used for further analysis and application in business modelling.

Future work can extend this research in at least three directions. Firstly, our
redesign of REA was aimed at increasing REA’s applicability as a business modelling
ontology by improving its representation as a generic business model. However, we
did not evaluate or change the content of the ontology (i.e. the question of external
validity). For this evaluation, an ontological analysis can be conducted (this is another
well-known Ontology Engineering principle (see e.g. [31])). REA’s ontological
analysis using Sowa’s classification in [5] is a starting point, but should be repeated
using other upper-level ontologies (e.g. SUMO, BWW, Dolce, OntoClean, GFO, …).

Secondly, a clear limitation of the current study is that the improved usefulness of
our new conceptual representation for REA-driven business modelling is not
empirically tested (it is merely illustrated using a toy example). We believe that the
proposed changes should also be evaluated by business modellers in order to measure
and demonstrate the benefits of using our proposed representation instead of the ‘old’
version(s). In future work we plan to use the user evaluations based quality model for
conceptual models developed by Maes and Poels [32] for this purpose.

Thirdly, the generalizability of our reengineering methodology must be
investigated. It is clear that the different ontology engineering principles and
techniques employed in each of the reengineering phases depend on the specific
reengineering goal, but we must also evaluate whether the methodology itself is
independent of the business domain ontology to which it is applied. We will therefore
also reengineer other business domain ontologies than REA and eventually the
reengineered formal and conceptual representations of these ontologies will be used
for the development of small scale applications in the context of ontology-driven
systems and ontology-driven system development in order to demonstrate the value of
the reengineered business domain ontologies for business.

References

1. Pateli, A.G., Giaglis, G.M.: A research framework for analysing eBusiness models.
European Journal of Information Systems 13, 302–314 (2004)

2. Fox, M.S.: The TOVE Project: A Common-sense Model of The Enterprise. In: Belli, F.,
Radermacher, F. (eds.) Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems, pp. 25–24. Springer, Berlin (1992)

 Ontology-Driven Business Modelling 421

3. Ushold, M., King, M., Moralee, S., Zorgios, Y.: The Enterprise Ontology. The Knowledge
Engineering Review: Special Issue on Putting Ontologies to Use 13, 31–89 (1998)

4. Gordijn, J.: Value based requirements engineering: Exploring innovative e-commerce
ideas. Vrije Universiteit, Amsterdam (2002)

5. Geerts, G.L., McCarthy, W.E.: An Ontological Analysis of the Economic Primitives of the
Extended-REA Enterprise Information Architecture. International Joural of Accounting
Information Systems 3, 1–16 (2002)

6. Osterwalder, A.: The Business Model Ontology - a proposition in a design science
approach. Ecole des Hautes Etudes Commerciales. University of Lausanne, Lausanne
(2004)

7. Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma, T., Johannesson, P., Grégoire,
B., Schmitt, M., Dubois, E., Abels, S., Hahn, A., Gordijn, J., Weigand, H., Wangler, B.:
Towards a Reference Ontology for Business Models. In: Embley, D.W., Olivé, A., Ram,
S. (eds.) ER 2006. LNCS, vol. 4215, Springer, Heidelberg (2006)

8. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, New York (2006)
9. Guarino, N.: Understanding, building and using ontologies. International Journal of

Human-Computer Studies 46, 293–310 (1997)
10. McCarthy, W.E.: The REA Accounting Model: A Generalized Framework for Accounting

Systems in A Shared Data Environment. The Accounting Review, 554–578 (july 1982)
11. Gailly, F., Poels, G.: Towards Ontology-driven Information Systems: Redesign and

Formalization of the REA Ontology. In: Gailly, F., Poels, G. (eds.). BIS 2007. LNCS,
vol. 4439, Springer, Heidelberg (2007)

12. UN/CEFACT: UN/CEFACT Modeling Methodology (UMM) User Guide. (2003)
13. ECIMF: E-Commerce Integration Meta-Framework. Final draft. ECIMF Project Group

(2003)
14. McCarthy, W.E.: The REA Modelling Approach to Teaching Accounting Information

Systems. Issues in Accounting Education 18, 427–441 (2003)
15. Gailly, F., Poels, G.: Towards a Formal Representation of the Resource Event Agent

Pattern International Conference on Enterprise Systems and Accounting (ICESAcc),
Greece (2006)

16. Hruby, P.: Model-driven design using business patterns. Springer, New York (2006)
17. Geerts, G., McCarthy, W.E.: The Ontological Foundation of REA Enterprise Information

Systems (2005)
18. Geerts, G., McCarthy, W.E.: Policy-Level Specification in REA Enterprise Information

Systems. Journal of Information Systems Fall (2006)
19. Gómez-Pérez, A., Rojas, M.D.: Ontological Reengineering and Reuse. In: Fensel, D.,

Studer, R. (eds.) 11th European Workshop on Knowledge Acquisition, Modeling and
Management, pp. 139–156. Springer, Heidelberg (1999)

20. Kogut, P., Cranefield, S., Hart, L., Dutra, M., Baclawski, K., Kokar, M.K., Smith, J.: UML
for ontology development. Knowledge Engineering Review 17, 61–64 (2002)

21. Spaccapietra, S., Parent, C., Vangenot, C., Cullot, N.: On Using Conceptual Modeling for
Ontologies. In: Bussler, C.J., Hong, S.-k., Jun, W., Kaschek, R., Kinshuk, Krishnaswamy,
S., Loke, S.W., Oberle, D., Richards, D., Sharma, A., Sure, Y., Thalheim, B. (eds.) Web
Information Systems – WISE 2004 Workshops. LNCS, vol. 3307, pp. 22–23. Springer,
Heidelberg (2004)

22. Spyns, P.: Object Role Modelling for ontology engineering in the DOGMA framework. In:
Meersman, R., Tari, Z., Herrero, P. (eds.) On the Move to Meaningful Internet Systems
2005: OTM 2005 Workshops. LNCS, vol. 3762, pp. 710–719. Springer, Heidelberg (2005)

422 F. Gailly and G. Poels

23. Mylopoulos, J.: Information modeling in the time of the revolution. Information
Systems 23, 127–155 (1998)

24. OMG: Ontology Definition Metamodel (ODM) - Sixth Revised Submission to OMG/ RFP
ad/2003-03-40. Object management Group (2006)

25. Jarrar, M.: Towards Methodological Principles for Ontology Engineering. STARLAB.
Vrije Universiteit Brussel, Brussel (2005)

26. Assmann, U., Zchaler, S., Wagner, G.: Ontologies, Meta-Models, and the Model-Driven
Paradigm. In: Calero, C., Ruiz, F., Piattini, M. (eds.) Ontologies for Software Engineering
and Software Technology (2006)

27. Dunn, C.L., Cherrington, J.O., Hollander, A.S.: Enterprise Information Systems: A Pattern
Based Approach. McGraw-Hill, New York (2005)

28. Geerts, G., McCarthy, W.E.: An Accounting Object Infrastructure for Knowledge Based
Enterprise Models. IEEE Intelligent Systems and Their Applications 14, 89–94 (1999)

29. Gailly, F., Laurier, W., Poels, G.: Positioning REA as a Business Domain Ontology.
Resource Event Agent -25 (REA-25) Conference, Newark, Delaware, USA (2007)

30. Ontology, O.M.G.: Definition Metamodel: OMG Adopted Specification (ptc/06-10-11).
Object Management Group (2006)

31. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. Springer,
Heidelberg (2004)

32. Maes, A., Poels, G.: Evaluating Quality of Conceptual Models Based on User Perceptions.
In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, Springer,
Heidelberg (2006)

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 423–437, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Comparison of Two Approaches to Safety Analysis
Based on Use Cases

Tor Stålhane and Guttorm Sindre

Dept. of Computer and Info. Science, Norwegian Univ. of Sci. and Tech (NTNU)
{stalhane,gutters}@idi.ntnu.no

Abstract. Engineering has a long tradition in analyzing the safety of
mechanical, electrical and electronic systems. Important methods like HazOp
and FMEA have also been adopted by the software engineering community.
The misuse case method, on the other hand, has been developed by the software
community as an alternative to FMEA and preliminary HazOp for software
development. To compare the two methods misuse case and FMEA we have
run a small experiment involving 42 third year software engineering students.
In the experiment, the students should identify and analyze failure modes from
one of the use cases for a commercial electronic patient journals system. The
results of the experiment show that on the average, the group that used misuse
cases identified and analyzed more user related failure modes than the persons
using FMEA. In addition, the persons who used the misuse cases scored better
on perceived ease of use and intention to use.

Keywords: Safety engineering, FMEA, misuse cases, experiment.

1 Introduction

Due to the growing dependency of IT, an increasing number of safety-critical
software systems are being developed and fielded, and potentially disastrous problems
with these systems tend to stem more from requirements defects than from coding
errors [1]. Similar concerns can be raised for security. Safety and security analysis are
complex disciplines in their own right, demanding their own expertise and sometimes
applying heavyweight methods. It is a challenge that many pieces of software for
which there are safety or security concerns will be developed by mainstream software
developers not having such expertise and perhaps not being able to apply these
heavyweight methods [2]. As noted by Lutz [3], better integration of formal and
informal methods is one important direction for the engineering of safe software
systems, and so is better integration between safety engineering and mainstream
software engineering. While formal methods have advantages in supporting rigorous
analysis, informal methods may enable increased creativity and the involvement of
diverse groups of stakeholders in the safety engineering process.

This paper concerns itself with modelling approaches in the informal end of the
spectrum, and especially with a focus on integrating the safety analysis with mainstream
software engineering approaches. Over the last decade, use cases [4] have grown in
popularity to become a major technique in early stage of software requirements analysis.

424 T. Stålhane and G. Sindre

To achieve an informal approach to the development of safety related software systems,
integrated with mainstream software engineering practices, it seems natural to
investigate if safety techniques could be based on use cases. There are two ways to
achieve this:

• Combining use cases with one or more safety techniques, e.g., let use case
diagrams and textual use cases be the input to existing safety analysis techniques.

• Adapting use cases to deal with safety directly, for instance by extensions of
diagrams and / or textual descriptions

An interesting topic for research would be the relative merits of these two
alternative approaches – when would it be most feasible to combine use cases with
existing safety techniques, and when would it be most feasible to use adaptations of
use cases to analyze safety with one integrated modelling technique? This paper tries
to explore this question, by means of an experimental comparison of these two
alternatives. Notably, the need for more experimental evaluations of modelling
approaches was explicitly called for in a panel at ER’06 [5].

The rest of the paper is structured as follows: Section 2 reviews related work.
Section 3 presents the two techniques compared in the experiment. Section 4 presents
the experimental design, and section 5 presents the results from the experiment.
Section 6 discusses threats to validity, whereupon section 7 concludes the paper and
indicates some directions for future work.

2 Related Work

The idea of combining use cases or scenarios with safety analysis is not entirely new.
[6] proposed to apply use cases as input for performing safety analysis by means of
the safety engineering techniques Functional Hazard Assessment (FHA) [7] and
HazOp [8]. A similar combination of use cases and FHA is also discussed in [9].
More generally, the application of use cases to analyze safety and express safety cases
is recommended in [10], and [11] discusses informally some industrial experiences
with using UML for developing mission-critical systems. [12] proposes a
formalization of use cases to deal with the specification of fault-tolerant systems.

Abuse cases [2] and misuse cases [13] are slight extensions to use cases, used to
capture negative functionality - events that should not happen in the system. These
techniques were originally proposed for eliciting security requirements, but misuse
cases have also been considered in connection with safety, [14], [15]. In the CORAS
project, misuse cases was combined with other UML notations such as sequence
diagrams, also specifically adapted for safety analysis [16].

Other adaptations of UML have also been proposed to address safety concerns, but
then on the design level. [17] discusses some extensions to UML specifically for
modelling safety constraints, primarily achieved by profiles of packages, class and
component diagrams. [18] briefly discusses an application of Safe-UML for
modelling in the railway domain, and a more detailed UML profile for modelling
safety critical systems in this domain is proposed in [19]. In [20], UML design models
consisting of activity diagrams and state machines are used as a starting point for a so-
called “exploration game” to improve the models to better address safety hazards. Use

 A Comparison of Two Approaches to Safety Analysis Based on Use Cases 425

cases and FMEA have been used together to analyse system robustness [21]. FMEA
has also been used to analyse process reliability and has turned out to be a methods
that is easy to learn and use [22].

For security aspects, there are also several additional adaptations of UML. For
instance, [23] and [24] look at adaptations of UML class diagrams and activity
diagrams to design secure data warehouses and business processes, respectively, and
[25] and [26] look at secure systems design by means of UML more in general. In
[27], inverted icons à la misuse case diagrams are also employed to extend UML
activity diagrams, to capture negative actions of attackers in business processes.
Similarly, [28] indicates that inverted icons can also be used to capture dependability
threats in other types of conceptual models, such as information models and Petri net
based workflow models.

Of the above works, many are mainly related to design, i.e., analyzing safety or
security of a system where the design is already known or at least outlined, whereas
our work is focused on an early identification of hazards based on available use case
diagrams. Most closely related to our work are therefore [6] – combining use cases
with traditional safety analysis techniques – and [14], [15], [16] – combining use
cases with misuse cases for safety analysis. This paper is different from the above in
that it compares two such approaches, while previous papers primarily present their
own modelling approach. A somewhat related paper comparing approaches is [29],
but this used a case study rather than a controlled experiment, analyzed security, not
safety, and partly looked at different modelling approaches, comparing misuse cases
with Common Criteria and Attack Trees. Some comparison between misuse cases and
various safety approaches is also provided in [30], but in that paper the comparison is
primarily from the perspective of misuse cases and it is also purely conceptual, not
backed by any empirical results on the effectiveness of the various representations.

3 The Techniques to be Compared

3.1 Misuse Cases

Misuse cases [13] were originally proposed for eliciting security requirements, but they
have also been used for safety analysis, misuse cases then being accidents causing harm
in the system [14]. The diagram of Fig. 1 shows the human operator functions related to
an automated system used to keep the water level in a tank constant while delivering
steam to an industrial process. This is done by filling the tank through one valve and
emptying it through another valve when needed. If the pressure in the tank becomes too
high, a relief valve should open automatically as the pressure exceeds the critical
pressure pre-set by the operator. The operator may also manually empty the tank (for
instance if the relief valve fails to work when the pressure becomes too high) or
manually fill the tank (if the automatic adjustment of water level does not work). A
misuse case such as “Set too high pressure” may have a “threatens” relationship to one
or more use cases (in this case “Set critical pressure”). It is also possible that one misuse
case may “aggravate” the effect of another, or that a use case may have a “mitigates”
relationship to that misuse case. Such relationships are not exemplified in Figure 1.

426 T. Stålhane and G. Sindre

Fig. 1. Example safety-oriented misuse case diagram for a boiler tank system

An example of a textual representation is shown in Table 1. Here, threats
(corresponding to misuse cases) can be added in a third column called “Threats”, and
mitigations can be added in a fourth column. An essential idea of misuse case analysis
is that the representation format causes only a limited overhead if use cases are
already applied in a project, which is often the case in mainstream software projects.
Moreover, the informality and simplicity of the technique makes it suitable for
supporting brainstorming about threats at an early stage of development. For a more
complete coverage of misuse case analysis, the reader is referred to [13] and [15].

3.2 Failure Mode and Effect Analysis

FMEA [31] is short for Failure Mode Effect Analysis, a method that tries to identify
how a component or system can fail (the failure modes) and then analyze the effect of
these identified failure modes. The FMEA process consists of the following steps:

• Decide the level where we want to identify components. For the experiment reported
here, the granularity of component was a use case function. If using FMEA in a later
development stage where, e.g., the proposed architecture or detailed design is
known, the design modules could have been components in the analysis.

• Identify the failure modes. A failure mode is a way the component can fail –
deliver a wrong result. Again we can choose several levels. If an operator is
entering a numerical value we can choose between several alternatives, e.g., just
one failure mode for “wrong value”, or two failure modes: “too high value” and
“too low value”. Usually, we should only split a failure mode such as “wrong
number” up into several failure modes if they will have different effects.

 A Comparison of Two Approaches to Safety Analysis Based on Use Cases 427

Table 1. Column format use case with safety issues for the boiler

Use case name “Empty tank manually”
User actions System response Threats Mitigations
 System alarms

operator of high
pressure

System fails to raise
alarm;
Operator fails to notice
alarm

2 independent alarms;
Use both sound and
blinking lights

Operator issues
command to empty
tank

 Operator fails to react
(e.g., incapacitated?)
Operator gives wrong
command, e.g., filling
tank

Alarm backup
operator;
Auto sanity check,
disallow filling at high
pressure

 System opens
valve to sewer

System fails to relay
command to valve;
Valve is stuck

Operator reads
pressure

 Operator misreads
and stops tank
emptying too soon

Maintain alarm
blinking until situation
normal

 Pressure returns
to normal

This is not achieved,
see exceptions

Operator stops tank
emptying and logs
the event. This ends
the use case.

Exceptional paths

 Opening valve is
insufficient to
normalize
pressure

Operator issues
command to reduce
temperature

 Operator gives wrong
command, e.g.,
increase temperature

Automatic sanity
check, disallow temp
increase at high
pressure

 Pressure returns
to normal

Operator logs the
event. This ends the
use case.

All identified failure modes are registered in an FMEA table, see Table 2 for an
example. For each failure mode, the following information is included:

• Consequences of each failure mode. FMEA identifies three types of
consequences (1) local consequences - related to the component that we are
analyzing, (2) system consequences - related to the system we are analyzing and
which the component is a part of, and (3) global consequences – not decided by
the failing component or system alone but a relationship between the system and
the environment it is operating in. In the experiment, the participants were asked
to consider only local and system consequences.

• Corrective action – identification of possible barriers and mitigations of each
failure mode. There are several ways to handle an identified failure mode. We
can use (1) removal – remove the possibility of this particular failure mode, (2)
barriers – prevent this particular failure mode from having a dangerous effect

428 T. Stålhane and G. Sindre

and (3) mitigations – reduce the effect of this particular failure mode. In the
experiment, participants could use all three strategies but only on a high level of
description – i.e., they were not expected to design or describe the solution in
any detail.

• P – probability index. This index indicates how probable it is that this failure
mode occurs.

• C – failure consequence. This index indicates how severe the effect of the
failure mode will be if it becomes a failure event.

• R – failure risk. This index is the product of a failures consequence and its
probability, i.e. we have R = P * C.

The P, C, and R columns were not used in the experiment, on the grounds that
assigning numerical values for the likelihood of failures would be little more than
speculation from the participants’ perspective. Table 2 shows two example FMEA
tables, in the format used in the experiment. The failure modes are from the same
example as the misuse case diagram of Figure 1 and the textual misuse case of Table 1,
concentrating on the use case functions “Empty tank manually” and “Set critical
pressure”, respectively.

Table 2. FMEA tables for two of the use case functions of Fig. 1

Unit Empty tank manually
Failure mode Local effect System effect Corrective action
Valve will not
open

Cannot empty tank Accident – too
high pressure

Valve will not
close

Cannot fill tank No steam
delivered

• Valve status indicator
• Duplicate valve
• Must be possible to turn

valve without motor

Unit Set critical pressure
Failure mode Local effect System effect Corrective action
Pressure set too
high

Too high pressure in
the tank

Accident – too
high pressure

Reasonability check on
pressure. Cannot exceed
defined, hard coded limit

Pressure set too
low

Too low pressure in
the tank

No steam
delivered

Reasonability check on
pressure. Cannot go below
defined, hard coded limit

One of the important ideas behind use cases is that it should serve as a vehicle of
communication between users and software developers. The FMEA method is easy to
use and easy to learn and should thus be a good method to combine with use cases.

4 The Experiment

4.1 Research Approach

Our experiment was a combination of a quantitative and a qualitative study. The goal
of the experiment was to study two methods for failure mode analyses – FMEA and
Misuse Case (MUC). We will arrive at our conclusions based on the answer to the
research questions:

 A Comparison of Two Approaches to Safety Analysis Based on Use Cases 429

• RQ1 – do we identify more failure modes when using one of the methods? If the
answer is yes – is one of the methods uniformly better, i.e., outperforming the
other method for all types of failure modes?

• RQ2 – is one of the methods better than the other when it comes to important
characteristics such as easy to learn, and easy to use?

The data analysis for RQ1 consists of two steps (1) categorizing the failure modes
into a common set for both methods and (2) a t-test used to compare the two data sets.
We will answer RQ1 by use of t-tests – one for the total number of failure modes
identified from each method and one for the number of failure modes identified in
each of the three categories primary user, system, and secondary user.

The data analysis for RQ2 is done by using the t-test on the coded scores in the
usual way – using a Likert scale where strongly disagree to strongly agree is coded as
1 to 5. The questions used to answer RQ2 were based on the TAM model [32].

We have observed that there are purists who do not like to use the t-test on Likert
scale data, but we are not going to repeat this discussion. Instead the reader is referred
to [33] where this discussion is summed up and, hopefully, brought to an end.

4.2 Experiment Design

The students participating in the experiment were randomly divided into two groups,
one using FMEA for the analysis task and the other using MUC. Both groups solved
their tasks under equal conditions - same room, same time-frame. The experiment
consisted of four steps, namely (1) studying the four page tutorial describing the
respective methods, (2) filling in the pre-experiment questionnaire, (3) performing an
FMEA or a Misuse Case (MUC) analysis, with the help of the tutorial, and (4) filling
in the post-experiment questionnaire. We allocated 20 minutes for studying the
tutorial and completing the pre-experiment questionnaire, 50 minutes for doing the
analysis and 10 minutes for completing the post-experiment questionnaire. Based on
our own observations, no group seemed to have problems with finishing their tasks
within the allocated time frame.

The students were instructed to identify as many failure modes as possible. A
failure mode was defined as any system event that could threaten the well being of
one or more patients.

Fig. 2. The use case diagram that was input for the experiment

430 T. Stålhane and G. Sindre

The use case to be analyzed stems from a system for electronic patient journals and
is shown in the use case diagram of Figure 2. The doctor has five functions – he can
review (i.e., read and update) the patient’s treatment plan, the patient’s drug data, the
diagnosis and other documents, and order tests from the lab. The lab sends test results
back to the doctor.

5 Experiment Results and Analysis

5.1 Identified Failure Modes

A simple t-test (Table 3) shows that the MUC is better than FMEA when it comes to
number of failure modes identified, with a p-value less than 0.01 which is
satisfactory. The standard deviation for the whole data set is 2.87, giving an effect
size of (8.48 – 5.86) / 2.87 = 0.91, which is a moderate (0.6) to large (1.2) effect [34].

Table 3. Comparison of failure mode identification by the two techniques

 FMEA MUC

Mean 5,86 8,48

Variance 5,33 7,96

Observations 21,00 21,00

Hypothesized Mean Difference 0,00

df 38

t Stat -3,29

P(T<=t) one-tail 0,00

t Critical one-tail 1,69

P(T<=t) two-tail 0,00

t Critical two-tail 2,02

Table 4. Comparison of system-internal failure modes identified by the two techniques

 FMEA System MUC System

Mean 2,76 3,29

Variance 2,99 5,21

Observations 21,00 21,00

Hypothesized Mean Difference 0,00

df 37

t Stat -0,84

P(T<=t) one-tail 0,20

t Critical one-tail 1,69

P(T<=t) two-tail 0,41

t Critical two-tail 2,03

 A Comparison of Two Approaches to Safety Analysis Based on Use Cases 431

The failure modes identified stem from three distinct areas – the doctor, which is
the main user, the computer system, and the lab – the secondary user. Splitting the
data according to these three categories, only the first category (doctor-related failure
modes) shows a significant difference. The t-test summary of Table 4 shows the result
from comparing the failure modes related to the system itself.

In order to check the influence of factors like the participants’ experience with
writing use cases or using other UML related methods, we performed a best subset
regression analysis with the answers to the pre-experiment questionnaire as
independent variables and the number of failure modes identified as the dependent
variable. The regression analysis showed us that there exists no set of pre-experiment
factors which gave an adjusted R2 greater than 0.13. A sequence of ANOVAs
confirms this conclusion. The only factor that gave a p-value less than 0.10 was the
experiment type – FMEA vs. MUC. Even pre-experiment question 5 which asked for
the participants’ experience with making use cases gave us a p-value of 0.53.

The next question is then – is MUC uniformly better than or as good as FMEA?
The easy way to answer this question is to start with a bar plot. The bar plots for the
three areas of analysis – primary user failures, system failures, and secondary user
failures – are shown below. From left to right we see the number of failure modes
identified for primary user, system and secondary user. The grey bars show the
FMEA results while the black bars show the MUC results.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13

0

2

4

6

8

10

12

14

16

18

1 2 3 4
0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13

0

2

4

6

8

10

12

14

16

18

1 2 3 4

Fig. 3. Number of identified failure modes for primary user, system and secondary user

If we interpret “much more” as more than 25% more, and only consider the failure
modes that are identified by at least half of the participants in at least one of the
groups, the most important differences are:

• For primary user, the persons that used MUC found much more of the failure
modes 3, 6, 7, 8 and 9 – select wrong test (3), set incorrect drug dosage (6),
incorrect review of drug data (7), diagnosis (8) or document (9). All in all MUC
is better than FMEA for 11 out of 13 failure modes – approximately 85%.

• For the system, the persons that used MUC found much more of the failure
modes 1, 2, 3, 4 and 6 – show incorrect info on treatment plan (1), drug data (2),
diagnosis (3) or document (4) and test results not arriving. The persons that used
FMEA found much more of the failure modes 8 and 9 – data not available (8)

432 T. Stålhane and G. Sindre

and data lost (9). All in all MUC is better than FMEA for 8 out of 13 failure
modes – approximately 61%.

• For the secondary user, the persons that used MUC found much more of the
failure mode 1 – lab enters wrong results. All in all MUC is better than FMEA
for 3 out of 4 failure modes – 75%.

From these observations, we see a pattern. MUC is significantly better for
identification of failure modes related to the primary user. The analysis of system
failure modes also shows that MUC usually is much better than FMEA when it comes
to identifying failure modes related to the user’s interaction with the system. The
only cases where FMEA performs better are related to the network communication.
The network was not included in the use case but became a natural part of the results
from the FMEA.

5.2 Learning and Using the Methods

In order to answer RQ2 – is one of the two methods FMEA and MUC easier to use –
we used the TAM model [32] with the three factors Perceived ease of use (PEOU),
Perceived usefulness (PU) and Intention to use (IU) – see Fig. 4. We used a post-
experiment questionnaire with four questions for each factor to measure them.

The answers to the questionnaire were scored on a five point Likert scale. We have
used t-test to compare the scores given by the MUC group and the FMEA group – see
Table 5. Using a p-value of 0.10 we got the following results:

• PEOU – questions Q1, Q3, Q7 and Q8. For all but one question, the MUC group
scored higher than the FMEA group. For the last question (Q8), the scores were
the same.

• ITU – questions Q4, Q6, Q9 and Q12. For all but one question, the MUC group
scored higher than the FMEA group. For the last question (Q12), the scores
were the same.

• PU – questions Q2, Q5, Q10 and Q11. For the first question, the MUC group
did better, while the scores were the same for the three last questions.

Based on the summary above it is reasonable to claim that MUC is better than
FMEA for perceived ease of use and intention to use, while they are equally good
when it comes to perceived usefulness.

Perceived
Ease of

Use

Perceived
Usefulness

Intention
to Use

Actual
Usage

Perceived
Ease of

Use

Perceived
Usefulness

Intention
to Use

Actual
Usage

Fig. 4. The factors in the TAM model

 A Comparison of Two Approaches to Safety Analysis Based on Use Cases 433

All the response mean values were larger for the MUC group than for the FMEA
group. From Table 5, we see that eight of the effects are in the range 0.2 to 0.6 which
falls in the category small to medium. Two effects are even smaller – Q10 and Q11.
The only questions which generate a medium to large effect – 0.6 to 1.2 – are Q6 and
Q7. A simple correlation analysis of all answers to the post-experiment questionnaire
also shows that the correlation between Q6 and Q7 are small – 0.15 for the FMEA
group and 0.00 for the MUC group.

Table 5. Effect sizes for MUC vs. FMEA for the TAM questions

Question
id

Question area
Effect

size
Q1 The method was easy to learn 0.4
Q2 The method helped me to identify threats 0.5
Q3 The method was easy to understand 0.6
Q4 I will use the method in the future for similar problems during my studies 0.5
Q5 The method worked better than just using common sense 0.4
Q6 I will use the method in the future for similar problems at work 0.7
Q7 I was never confused when using the method 0.9
Q8 The method made the search for threats more systematic 0.3
Q9 I would support a suggestion for using the method at work 0.5

Q10 The diagrams and tables were easy to draw 0.1
Q11 The method helped me to focus on the important threats 0.1

Q12
If I worked as a freelance I would use this method in a discussion with my
customer

0.3

The small effect sizes may lead us to assume that the participants answered the
questions at random. However, if this was the case we have an equal probability of
getting a higher score for FMEA users and for MUC users for each question. If the
participants answered the questions randomly, the probability of getting a higher
score for MUC than for FMEA for all 12 questions is 2-12 or less than 0.002. We will
thus reject the idea of random answers.

6 Threats to Validity

We will use the categories defined in [35] as a starting point for our discussion on
threats to validity. We will look at each threat in a short section before giving a sum-
up of our validity claims.

6.1 Conclusion Validity

Conclusion validity is concerned with our ability to draw the right conclusions about
the relationship between the treatment and the outcome. An important question here is
sample size. We have claimed a medium to large effect – ES = 0.9. We will denote
the type I error probability by α and the type II error probability by β. The following
relationship holds:

2

2
2/)(4

ES

uu
N βα +

= (1)

434 T. Stålhane and G. Sindre

If we use α = 0.05 and β = 0.20, we get N = 26/0.92 which gives use an N-value of
32. Since we have 42 participants, we have a sufficient number of observations for
our conclusion.

For the post-experiment questions, the situation is different. In only one case is the
effect size large enough to be observed with a sample size of 42. In one other case, the
effect size is almost large enough.

6.2 Internal Validity

Internal validity is concerned with the relationship between treatment and outcome –
was it the treatment that caused the outcome? The analysis reported in section 5.1
shows that using the method MUC or FMEA explain the difference, while factors like
UML experience and use case experience did not explain the observed differences in
the number of failure modes identified. Thus, we are confident that it was the
difference in analysis method that caused the observed differences in the number of
failure modes identified.

For the post-experiment questionnaire, the situation is more difficult. There are no
combinations of pre-experiment factors that can explain more than 25% of the
variation in observed values for any of the post-experiment questions. The variation in
experiment type can only explain the observed variations for two of these questions.

6.3 Construct Validity

Construct validity is concerned with the relationship between theory and observations –
was the experiment realistic? The realism of the experiment is lacking in two ways: (1)
little training with a new method and (2) the quality of the result has no influence,
neither on a real product nor on the participant’s working situation. However, the above-
mentioned threats will influence both groups in the same way. Since we are only
looking for differences between two methods and not for any absolute measure of
efficiency this should not influence our conclusions of the two methods’ relative merits.

6.4 External Validity

External validity is concerned with generalization – where and when are the
conclusions applicable and can we generalize from our experiments to industrial
practice? The important problem here is whether we can generalize our results to the
software industry. Experiments on defect detection performed by Runeson [36] found
no significant difference between graduate students and professionals. As shown by
[37] generalization is not a question of students vs. professional developers – it is
mainly a question of level of competence. UML competence did not seem to
influence the results. The only competence that could influence the results in a
significant way is the domain competence – in our case competence related to hospital
work and working with patient journals.

6.5 Our Claims to Validity

Based on the discussions above, we claim that there are no serious threats to validity
for our conclusions on the number of identified failure modes – RQ1. For factors

 A Comparison of Two Approaches to Safety Analysis Based on Use Cases 435

related to ease of use, we see problems related to conclusion validity due to the small
effect sizes.

7 Conclusion and Future Work

Our research questions were whether one of the two methods MUC or FMEA was
better than the other one for identifying failure modes and if one of the methods was
easier to learn and to use. Based on the data analysis and the identified threats to
validity, we offer the following conclusions: When the system’s requirements are
described as use cases

• MUC is better than FMEA for analysing failure modes related to user
interactions.

• FMEA is better than MUC for analysing failure modes related to the inner
working of the system.

• MUC will create less confusion and in general be easier to use than FMEA.

In order to reap maximum benefits, both methods should be used together – MUC
for the user interfaces and FMEA for the rest of the system.

Those who used MUC in the experiment found the method easier to understand.
They were seldom confused and were more willing to use their method again than
were the participants who used the FMEA.

There are still a lot of data from our experiment that are not analysed – especially
data pertaining to identified consequences and suggested mitigations. These data will
be analysed later. In addition, we want to study how easy it is to use the results from
MUC and FMEA to implement the small example system including possible
mitigations.

References

1. Firesmith, D.G.: Engineering Safety Requirements, Safety Constraints, and Safety-Critical
Requirements. Journal of Object Technology 3, 27–42 (2004)

2. McDermott, J., Fox, C.: Using Abuse Case Models for Security Requirements Analysis.
In: Dignum, F.P.M., Greaves, M. (eds.) Issues in Agent Communication. LNCS,
vol. 1916, Springer, Heidelberg (2000)

3. Lutz, R.R.: Software Engineering for Safety: A Roadmap. In: Finkelstein, A. (ed.) The
Future of Software Engineering, pp. 213–226. ACM Press, New York (2000)

4. Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: Object-Oriented Software
Engineering: A Use Case Driven Approach. Addison-Wesley, Boston (1992)

5. Poels, G., Burton-Jones, A., Gemino, A., Parsons, J., Ramesh, V.: Experimental Research
on Conceptual Modeling: What Should We Be Doing and Why? In: Embley, D.W., Olivé,
A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 544–547. Springer, Heidelberg (2006)

6. Allenby, K., Kelly, T.: Deriving Safety Requirements Using Scenarios. In: Nuseibeh, B.,
Easterbrook, S. (eds.) Fifth IEEE International Symposium on Requirements Engineering
(RE’01), Toronto, Canada, pp. 228–235. IEEE Computer Society Press, Los Alamitos
(2001)

436 T. Stålhane and G. Sindre

7. Guidelines, S.A.E.: Methods for Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment. Society of Automotive Engineers (1996)

8. Redmill, F., Chudleigh, M., Catmur, J.: System Safety: HAZOP and Software HAZOP.
Wiley, Chichester, UK (1999)

9. Kim, H.-K., Chung, Y.-K.: Automatic Translation from Requirements Model into Use
Cases Modeling on UML. In: Gervasi, O., Gavrilova, M., Kumar, V., Laganà, A., Lee,
H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 769–777.
Springer, Heidelberg (2005)

10. Hause, M.: Use-cases to aid safe design. Electronics Systems and Software 2, 38–41
(2004)

11. Pettit IV, R.G., Street, J.A.: Lessons Learned Applying UML in the Design of Mission-
Critical Software. In: Nunes, N.J., Selic, B., Rodrigues da Silva, A., Toval Alvarez, A.
(eds.) UML Modeling Languages and Applications. LNCS, vol. 3297, pp. 129–137.
Springer, Heidelberg (2005)

12. Ebnenasir, A., Cheng, B.H.C., Konrad, S.: Use Case-Based Modeling and Analysis of
Failsafe Fault-Tolerance. In: Glinz, M. (ed.) 14th IEEE International Requirements
Engineering Conference (RE’06), St.Louis, USA, pp. 343–344. IEEE Computer Society
Press, Los Alamitos (2006)

13. Sindre, G., Opdahl, A.L.: Eliciting Security Requirements with Misuse Cases.
Requirements Engineering 10, 34–44 (2005)

14. Alexander, I.F.: Initial Industrial Experience of Misuse Cases in Trade-Off Analysis. In:
Pohl, K. (ed.) 10th Anniversary IEEE Joint International Requirements Engineering
Conference (RE’02), Essen, Germany, pp. 9–13. IEEE Computer Society Press, Los
Alamitos (2002)

15. Alexander, I.F.: Misuse Cases, Use Cases with Hostile Intent. IEEE Software 20, 58–66
(2003)

16. Gran, B.A., Fredriksen, R., Thunem, A.P.-J.: An Approach for Model-Based Risk
Assessment. In: Heisel, M., Liggesmeyer, P., Wittmann, S. (eds.) SAFECOMP 2004.
LNCS, vol. 3219, pp. 311–324. Springer, Heidelberg (2004)

17. Jürjens, J.: Developing Safety-Critical Systems with UML. In: Stevens, P., Whittle, J.,
Booch, G. (eds.) (UML 2003). LNCS, vol. 2863, pp. 144–159. Springer, Heidelberg
(2003)

18. Hungar, H.: UML-basierte Entwicklung sikkerheitskritische Systemen im Bahnbereich.
Dagstuhl Workshop on Model-Based Development of Embedded Systems, Dagstuhl,
Germany (January, 9-13), pp. 63-64. Tech Univ Braunschweig (2006)

19. Berkenkötter, K., Hannemann, U., Peleska, J., HYBRIS,: HYBRIS - Efficient
Specification and Analysis of Hybrid Systems - Part III: RCSD - A UML 2.0 Profile for
the Railway Control System Domain (Draft Version). Univ. Bremen, Germany (2006)

20. Tenzer, J.: Exploration games for safety-critical system design with UML 2.0. In:
Fernandez, E.B., et al. (eds.): 3rd International Workshop on Critical Systems
Development with UML, CSDUML’04, Lisbon, Portugal, 12 Oct, Technical Report
I0415. pp. 41-55. Technische Universität München, (2004)

21. Stålhane, T., Pham, H.T.: Assessment and Analysis of Robustness for a Web-Based
System. In: Isaias, P., et al. (eds.) IADIS International Conference on WWW/Internet,
Murcia, Spain, 5-8 October, IADIS Press (2006)

22. Lauritzen, T., Stålhane, T.: Safety Methods in Software Process Improvement. In:
Richardson, I., Abrahamsson, P., Messnarz, R. (eds.) Software Process Improvement.
LNCS, vol. 3792, pp. 95–105. Springer, Heidelberg (2005)

 A Comparison of Two Approaches to Safety Analysis Based on Use Cases 437

23. Fernandez-Medina, E., Trujillo, J., Villaroel, R., Piattini, M.: Extending UML for
Designing Secure Data Warehouses. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W.
(eds.) ER 2004. LNCS, vol. 3288, Springer, Heidelberg (2004)

24. Rodriguez, A., Fernandez-Medina, E., Piattini, M.: Capturing Security Requirements in
Business Processes through a UML 2. In: Roddick, J.F., Benjamins, V.R., Si-Saïd Cherfi,
S., Chiang, R., Claramunt, C., Elmasri, R., Grandi, F., Han, H., Hepp, M., Lytras, M.,
Mišić, V.B., Poels, G., Song, I.-Y., Trujillo, J., Vangenot, C. (eds.). ER 2006. LNCS,
vol. 4231, Springer, Heidelberg (2006)

25. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling Language for
Model-Driven Security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.). UML 2002.
LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

26. Jürjens, J.: Sound methods and effective tools for model-based security engineering with
UML. In: Inverardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, pp. 322–331.
Springer, Heidelberg (2006)

27. Sindre, G.: Mal-activity diagrams to capture attacks on business processes. In: Sawyer, P.,
Paech, B., Heymans, P. (eds.). REFSQ 2007. LNCS, vol. 4542, pp. 355–366. Springer,
Heidelberg (2007)

28. Sindre, G., Opdahl, A.L.: Capturing Dependability Threats in Conceptual Modelling. In:
Krogstie, J., et al. (eds.) Conceptual Modelling in Information Systems Engineering, pp.
247–260. Springer, Heidelberg (2007)

29. Diallo, M.H., Romero-Mariona, J., Sim, S.E., Richardson, D.J.: A Comparative Evaluation
of Three Approaches to Specifying Security Requirements. REFSQ’06, Luxembourg
(2006)

30. Sindre, G.: A look at misuse cases for safety concerns. In: Henderson-Sellers, B., et al.
(eds.) IFIP WG8.1 Working Conference on Situational Method Engineering:
Fundamentals and Experiences (ME’07), Geneva, Switzerland. IFIP Series, Springer,
Heidelberg (2007)

31. Stamatis, D.H.: Failure Mode and Effect Analysis: FMEA from theory to execution.
American Society for Quality (ASQ), Milwaukee, Wisconsin (1995)

32. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User Acceptance of Computer Technology: A
Comparison of Two Theoretical Models. Management Science 35, 982–1003 (1989)

33. Tukey, J.W.: Data analysis and behavioral science or learning to bear the quantitative’s
man burden by shunning badmandments. In: Jones, L.W. (ed.) The Collected Works of
John W. Tukey, Wadsworth, Monterey, CA. Tukey, vol. III, pp. 187–389 (1986)

34. Hopkins, W.G.: A New View of Statistics. University of Queensland, Australia, Brisbane
(2001)

35. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.:
Experimentation in Software Engineering: An Introduction. Kluwer Academic, Norwell,
MA, USA (2000)

36. Runeson, P.: Using Students as Experiment Subjects – An Analysis on Graduate and
Freshmen Student Data. In: Linkman, S. (ed.) 7th International Conference on Empirical
Assessment & Evaluation in Software Engineering (EASE’03), pp. 95–102. Keele
University, Staffordshire, UK (2003)

37. Arisholm, E., Sjøberg, D.I.K.: Evaluating the Effect of a Delegated versus Centralized
Control Style on the Maintainability of Object-oriented Software. IEEE Transactions on
Software Engineering 30, 521–534 (2004)

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 438–453, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Using Unified Modeling Language for Conceptual
Modelling of Knowledge-Based Systems

Mohd Syazwan Abdullah1, Ian Benest2, Richard Paige2, and Chris Kimble2

1 Faculty of Information Technology, Universiti Utara Malaysia (UUM),
06010 UUM-Sintok, Kedah, Malaysia

syazwan@uum.edu.my
2 Department of Computer Science, University of York,

Heslington, York, YO10 5DD, United Kingdom
{idb,paige,kimble}@cs.york.ac.uk

Abstract. This paper discusses extending the Unified Modelling Language by
means of a profile for modelling knowledge-based system in the context of
Model Driven Architecture (MDA) framework. The profile is implemented us-
ing the eXecutable Modelling Framework (XMF) Mosaic tool. A case study
from the health care domain demonstrates the practical use of this profile; with
the prototype implemented in Java Expert System Shell (Jess). The paper also
discusses the possible mapping of the profile elements to the platform specific
model (PSM) of Jess and provides some discussion on the Production Rule
Representation (PRR) standardisation work.

1 Introduction

Knowledge-based systems (KBS) were developed for managing codified knowledge
(explicit knowledge) in Artificial Intelligence (AI) systems [1]. These were known as
expert systems and were originally created to emulate human expert reasoning [2].
KBS are developed using knowledge engineering (KE) techniques [2], which are
similar to those used in software engineering (SE), but they emphasise knowledge
rather than data or information processing. Both KE and SE development processes
have the same objective: to develop the system given the user requirements, in order
to solve a particular problem related to the domain [2]. Systems development in SE
involves the following iterative stages regardless of the methodology adopted: gather-
ing and analysing user requirements, designing the system by translating user re-
quirements into a software specification using conceptual models, coding the software
specification into computer programs, testing the program to ensure the agreed results
are produced, implementing the system and maintaining the system throughout its
intended life span.

The KE processes for constructing a KBS in general are: requirements analysis
involving identifying the scope for the KBS, designing the system by identifying the
sources of expert knowledge for the KBS and how to represent them, acquiring the
knowledge from the expert through knowledge acquisition techniques and construct-
ing the knowledge base with instances of the domain knowledge, coding the system
on target application languages or shells, testing the system to ensure the inference

 Using Unified Modeling Language for Conceptual Modelling of KBS 439

mechanism is working properly and producing the correct results, implementing the
system incrementally and performing maintenance on the system [5, 26, 29]. In com-
parison with SE, the KE has one additional stage: that of knowledge acquisition (KA).
This stage is vital in KBS development as the KBS is designed around the domain
expert’s knowledge of solving problems for a particular task, such as diagnosis, as-
sessment and so on. The acquired knowledge is then used to populate the knowledge
base in the form of rules, with which the system will perform reasoning. However, in
SE there is no KA stage as the system is intended to capture information rather than
reason with it and the actual dataset of the database will be populated by the system
user when the system is deployed [26, 29]. Therefore, it may be concluded that the
KA stage differentiates the SE and KE domains when developing software systems.

Central to this is the conceptual modelling of the system during the analysis and
design stages of KBS development (known as knowledge modelling). A number of
KE methodologies have emphasised the use of models, for example: CommonKADS,
Model-based and Incremental Knowledge Engineering (MIKE), Knowledge Acquisi-
tion and Representation Language (KARL) and others [3]. KBS continue to evolve as
the need to have a stable technology for managing knowledge grows; its current role
as an enabler in knowledge management initiatives has led to its wider acceptance [4].
It has matured from a non-scalable technology [1, 5]. Once restricted to the research
laboratory, it is now used for demanding commercial applications and is a tool widely
accepted by industry [6, 7]. As a result, the Object Management Group (OMG), which
governs object-oriented software modelling standards, has started the standardisation
process for production rule representation (PRR) [8] and knowledge-based engineer-
ing (KBE) services [9]. The standardisation of PRR is vital as it allows interoperabil-
ity of rules between different inference engines – much needed by industry [10, 11].

The major problem with conceptual modelling of KBS (known as knowledge mod-
elling) is that there is no standard language available to model the knowledge for
developing a KBS. Most of the languages used are adapted from SE. The languages
used in knowledge modelling are project based using a mix of notations such as Uni-
fied Modeling Language (UML), Integrated Definition Method (IDEF), Structured
Analysis and Design Technique (SADT) etc. The SE community has adopted UML as
the de facto standard for modelling object-oriented systems and the KE community
should do the same. This would be beneficial in the long-term as KBS can be easily
integrated into other enterprise systems [4] particularly if their designs were based on
a standard language; it would help facilitate communication and sharing of blueprints
among developers [12].

Research has shown that neither technical nor economic factors determine whether
KBS technology will be successfully adopted, but rather it is the organisational and
managerial environment that is the main determinant [13, 14]. Gill [13] highlights one
of the problems: the management of the development team. KBS projects are special-
ised in nature requiring team members to have knowledge of both the problem do-
main and the development tools. As a result, the team members are skilful individuals
and the success of the project is threatened if one or more leave the team mid-way
through the development or during the maintenance period. But a KBS that is de-
signed using an appropriate, well-understood, standard language for conceptual mod-
elling along with a methodologically sound representation technique should be readily
understood by new team members. Conceptual models (CM) are a description of the

440 M.S. Abdullah et al.

software system at different level of abstractions [15] and are popular in SE domain
for providing an overview of concepts and relationships of the real-world, eliminate
costly errors during analysis and design stages prior to construction and facilitates
better communications between different people in the project team [16]. The impor-
tance of CM in software systems development are reflected through Model Driven
Architecture (MDA) technique as models rather than codes have become the impor-
tant artifacts of software development [17].

This paper is organised thus. Section 2 discusses the UML extensibility mechan-
icsm. Section 3 describes the knowledge modelling profile, and section 4 illustrates
how the profile can be used to develop a KBS. Section 5 provides some discussion
and finding on the use of the profile in PRR standardisation, while section 6 con-
cludes with directions for future work.

2 UML, Model Driven Architecture and UML Profile Mechanism

UML is a general-purpose modelling language [18] that may be used in a wide range
of application domains. Although UML is very popular and widely used as the model-
ling language for business applications, its use for knowledge modelling is limited.
This is due to the fact that the usage of UML in modelling KBS has not been stan-
dardised [8], as there is no commonly agreed consensus on what KBS and KE con-
cepts should be represented in a KBS design, and how rules should be defined and
modelled. Nevertheless, there have been several attempts to use UML for knowledge
modelling but such comprehensive efforts are only reflected in CommonKADS [26].
UML can be extended to model domains that it does not currently support, by extend-
ing the modelling features of the language in a controlled and systematic fashion.

The OMG’s Model Driven Architecture (MDA) – a model-driven engineering
framework – provides integration with, and interoperability between, different models
developed using its standards [18] (such as UML, Meta-Object Facility (MOF), and
others). The growth of MDA will fuel the demand for more meta-models to cater for
domain specific modelling requirements [18, 19]. Profiles have defined semantics
and syntax, which enables them to be formally integrated into UML, though of course
they must adhere to the profile requirements proposed by OMG. Previous profile
development for knowledge modelling has concentrated only on certain task types
such as product design and product configuration [20]. In contrast, the work described
here emphasises the development of a generic profile for modeling the design knowl-
edge of a KBS. Developing a meta-model for knowledge modelling will enable it to
be integrated into the MDA space allowing the relation between the knowledge mod-
els and other language models to be understood. It provides for seamless integration
of different models in different applications within an enterprise. The OMG [21, 22]
defines two mechanisms for extending UML: profiles and meta-model extensions.
Both extensions have (unfortunately) been called profiles [18].

The “lightweight” extension mechanism of UML [22] is profiles. It contains a pre-
defined set of Stereotypes, TaggedValues, Constraints, and notation icons that collec-
tively specialize and tailor the existing UML meta-model. The main construct in the
profile is the stereotype that is purely an extension mechanism. In the model, it is
marked as «stereotype» and has the same structure (attributes, associations, operations)

 Using Unified Modeling Language for Conceptual Modelling of KBS 441

as that defined by the meta-model. However, the usage of stereotypes is restricted;
changes in the semantics, structure, and the introduction of new concepts to the meta-
model are not permitted [23]. The “heavyweight” extension mechanism for UML
(known as the meta-model extension) is defined through the MOF specification [24]
which involves the process of defining a new meta-model [23]. This approach should be
favoured if the semantic gap between the core modelling elements of UML and the
newly defined modelling elements is significant [18].

The work presented in this paper exploits the profile extension using the XMF (eX-
ecutable Meta-modelling Framework) approach [25] as we believe that the knowledge
modelling concepts can be modelled by tailoring existing UML meta-models without
having to introduce new meta-concepts to UML. Furthermore, this will enable the
profile to have readily available tool support, which will be a significant advantage
for knowledge modellers in adopting UML over other languages. The OMG only
specifies what profiles should constitute and not how to design them. By adopting the
XMF approach, the profile development is structured into well-defined stages that are
easy to follow and methodologically sound. The XMF is a newly developed object-
oriented meta-modelling language, and is an extension to existing standards for meta-
models such as MOF and UML. XMF offers an alternative approach in profile design,
which allows modification, or addition, of new modelling constructs; and these are
easily integrated into the core meta-model of UML. This work uses the XMF ap-
proach in designing the profile and implementing it in the Mosaic tool. Although
XMF core meta-model differs slightly from UML meta-model, and the same is true
for Eclipse ECore meta-model, nevertheless the fundamentals are still the same. Fur-
thermore, the knowledge modelling profile only extends the UML meta-class Class
and Associations. However, only the profile concepts’ extension to Class can be de-
fined using Mosaic, as associations are implemented as built-in modelling features
which are directly available to use at the model level.

3 UML Profile for Knowledge Modelling

The concepts for the knowledge modelling profile are re-used from the existing BNF
definition of the CommonKADS Conceptual Modelling Language (CML) [26]; this
provides a well-defined and well-established main set of concepts for the domain. Most
of these elements are generally adopted in the KBS literature [1, 27-29] and are widely
used for representing concepts in KBS in the KE domain. The Knowledge Modelling
profile was implemented using the XMF Mosaic by defining a meta-profile that allows
for the definition of the knowledge modelling profile stereotypes, which in turn enables
the construction of a knowledge model as an instance of the profile meta-model. To
achieve this, the profile is defined as an extension to the XCore meta-model (the XMF-
Mosaic’s MOF based meta-model, similar to the definition of the UML meta-model) in
the form of a meta-package for the profile. An important feature of the stereotypes is the
inheritance of the modelling capabilities of UML meta-class elements. Meta-package is
a mechanism in XMF-Mosaic that enables the content of the profile package to be
viewed as an instance of the XCore meta-model class. The profile meta-model used here
is the derived meta-model of CommonKADS and defined as the complete knowledge
modelling abstract syntax meta-model in [32] as shown in Figure 1.

442 M.S. Abdullah et al.

<<DomainConcept>>

name: String

<<Task>>

Class
(From UML Core)

name: String
decomposition: String

<<TaskMethod>>

name: String
Inference_dynamic_input: Arraylist []
Inference_dynamic_output: Arraylist []
Inference_static_input: Arraylist []
Category : InferenceCategory

<<Inference>>

transfer:
CommunicationCategory

<<TransferFunction>>

Static_input: Arraylist []

<<StaticRole>>Dynamic_input: Arraylist []
Dynamic_output: Arraylist []

<<DynamicRole>>

Class
(From UML Core)

<<Method>>
1..*

0..1

*

<<Transfer_role>>

*

<<knowledge
elements>>

<<Inference_inoutput>>

1..*

1..*

1..*

<<Facts>>

<<Domain_rules>>

1..*

<<Decision Table>>

antecedent: String
consequent: String
connection: String

<<ProductionRule>>

<<Rule_Instance>>

Knowledge Modelling Profile

<<FactBase>>

<<instances>>

<<InferenceTM>>

name: String

<<Rule>>

<<Inference_static>>

name: String

<<KnowledgeBase>>

name: String
number_of_rule: Int

<<Tuple>>
<<Organised>>1..*

1..*

1..*

provide
obtain
receive
present

<<enumeration>>
CommunicationCategory

forward
backward

<<enumeration>>
InferenceCategory

All associations in the profile are
extensions to the UML association class

<<Transfer>>

0..1

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

Fig. 1. Abstract syntax meta-model for knowledge modeling profile

The discussion of XCore meta-model here is related to implementing the profile in
the XMF-Mosaic tool. Although the knowledge modelling profile meta-model is in
UML, it is compatible with XMF-Mosaic because the elements that the profile ex-
tends are the standard MOF features in both tools. Furthermore, using various UML
tools in implementing a UML profile is different as these tools have distinct imple-
mentation procedures or concepts in defining the profile in the tool, but this does not
change the profile definition. Figure 2 shows the knowledge modelling profile stereo-
types defined in XMF-Mosaic.

A Concept class is used to represent structural things and these have attributes con-
tained in them; it is similar to class in the UML meta-model. When the attributes are
used in rules they are known as knowledge elements. A Concept is linked to the Rule
class in the model. Concepts are diagrammatically associated with FactBase; as the
values of the attributes are stored here and are extracted during the reasoning process
of the inference. The instances of each attribute, contained in the FactBase class, are
accessed by the dynamic role, which passes them to the inference process that
matches the premise with the consequent part of an implication rule.

 Using Unified Modeling Language for Conceptual Modelling of KBS 443

Fig. 2. Extension of the UML with stereotypes for the Profile

Task class defines the reasoning function and specifies the overall input and output
of the task. Each task will have an associated task method that executes the task. The
structure of the task, its task method, and the set of associated inference processes can
be defined with the knowledge model from the problem-solving method library. The
task-type, knowledge model, will help in identifying the inference structure needed to
perform the desired task. Task method can be decomposed into sub-tasks for certain
task-types. Task method class will specify the type of inference that is to be per-
formed. The control structure of the method captures the inference reasoning strategy,
which is described using an activity diagram. If the inference process requires addi-
tional input, either from the user or from an external entity, the task method will in-
voke a transfer function. Such functions are used to transfer additional information
between the reasoning processes.

The Dynamic Role class specifies the ‘information’ flow of attribute instances from the
concepts. It also specifies the outputs that arise from executing the inference sets. The
output of this inference process is the ‘result’ of matching the antecedent of the rule with
the consequent part. Depending on what the KBS is reasoning about, if it is not the final
output of the system, then the output can be used in another inference. The Static Role
class is the function responsible for fetching the collection of domain knowledge (rules)
from the knowledge base prior to an active inference. Inferences do not access the knowl-
edge base directly, but request the necessary rules related to the particular inference from
the static roles. In some KBS shells this is similar to posting the rules to the inference
process or similar to setting which rule should be fired. This allows the inference process
to handle a specific reasoning task and invoke those rules that are appropriate.

An Inference class executes a set of algorithms for determining the order in which
a series of non-procedural, declarative statements are to be executed. The inference
process infers new knowledge from information/facts that are already known. The
Task Method invokes this. The input (information/fact) used by this process is
provided by the dynamic role. The result of the inference process is then passed to the

444 M.S. Abdullah et al.

dynamic role. The knowledge element used in the inference is accessed through the
Static Role, which fetches the group of rules from the knowledge base. There are
several different inference processes for a given task, most of which are run in the
background by the inference engine. The knowledge base class contains domain
knowledge, represented as rules, which are used by the inference process. The con-
tents of the knowledge base are organized in tuples (records). A tuple is used to group
rules according to their features. This allows the partitioning of the knowledge base
into modules that enables the inference process to access the rules faster. The main-
tainability of the rules is enhanced when it is organised in this manner.

The Rule class of the profile describes the modelling of rules within the domain con-
cept. Rule class is used to represent knowledge elements in KBS and is viewed as ‘infor-
mation about information’. Rule class allows for rules to be in different formats. There are
two types of rule: implication rule, and decision table. An implication rule is of the form:
‘if-then’ premise followed by an action. This type of representation is widely used in KBS;
they are known as production rules. A decision table is an addition to the rule class. It is
introduced here because certain rules are best expressed in the form of a decision table,
even though they are usually converted to flattened production rules. This paper only
concentrates on rule-based KBS as it is the one widely adopted by industry [10, 11] and is
the focus of OMG’s PRR [8] and KBE [9] standardisation work.

4 Case Study – The Clinical Practice Guidelines KBS

The purpose of this case study was to show the usefulness of the knowledge modelling
profile in capturing the KBS requirements and to see the implementation value of the
profile when building a KBS from scratch. To demonstrate that the profile is capable in
bridging the gap between domain analysis and system implementation, a prototype KBS
was built using the Java Expert System Shell (Jess) [29]. The possible mapping between
the profile elements and Jess meta-model is also presented. The case study is based on
the Clinical Practice Guideline (CPG) recommendations for managing patients with
venous leg ulcers described in [30]. The CPG contains recommendations for assessment
of ulcers patients, the management of treatment using compression therapy, cleaning
and dressing of the ulcers, education and training of care through sharing of knowledge
and quality assurance issues related to provision of leg ulcer care. Each of these catego-
ries is further divided into several related factors grouped together functionally. The
guideline is evidence-based and these recommendations are gathered from systematic
review reports complied by researchers in patient health care. The guideline contains
recommendation statements, which were graded based on the following three strength
of evidence: I- Generally consistent findings in a majority of multiple acceptable stud-
ies; II- Either based on a single acceptable study, or a weak or inconsistent finding in
multiple acceptable studies; and III- Limited scientific evidence which does not meet all
the criteria of acceptable studies of good quality.

4.1 Modelling and Development of Clinical Practice Guidelines KBS

The CPG recommendation was implemented as a KBS application for educational pur-
poses to list the recommendations based on evidence strength using the following classi-
fication (a) evidence strength only; (b) evidence strength and category; (c) category

 Using Unified Modeling Language for Conceptual Modelling of KBS 445

only; and (d) factors, evidence and category. The rules for the KBS was defined based
on these classifications (in the actual recommendation, each recommendation has a
brief explanation rather than ID as I1, II2, III4, etc which are much more convenient
for discussions.).

The first stage in modelling KBS applications is to determine the nature of the
problem [29] that the system should tackle and what the applicable task types avail-
able in the task catalogue are [2, 26]. The CPG can be regarded as a classification
task, since the system classifies the recommendation based on four pre-defined crite-
ria. To avoid any confusion, this task is referred to as a recommendation task, which
is implemented using the task method ‘match method’, which consists of a single
‘match’ inference. This is shown in the task decomposition diagram in figure 3.

match method

task recommendation

match
inference

task method

Legend

Inference

Task
Method

Task

match

[recommendation result]

[recommendation selection = right]

[recommendation selection = incorrect]

[user recommendation type selection]

user selection checking

Fig. 3. Task decomposition diagram for CPG
based on CommonKADS [26] notation

Fig. 4. CPG UML activity diagram

The control structure of this match method is shown using the activity diagram and is
shown in figure 4. This is a straight-forward reasoning system as there are no loops in
the recommendation matching process. The system user makes a recommendation type
selection, and the resulting selection combinations are checked to ensure that they are
valid. The selection is then matched with the recommendation value and the result is
obtained. If incorrect selections are made, the selection process is repeated. Once the
KBS task requirements and functionality have been determined, the knowledge model
of the system is constructed using the knowledge modelling profile stereotypes. Most of
the stereotypes of the profile were used, except for transfer function, as the CPG system
does not need any input from external sources during the reasoning process and does not
need any decision tables, as the rules for the system are represented by production rules.
Figure 5 shows the knowledge model of the CPG application.

The KBS domain concept ‘CPG’ is composed of the five category of recommenda-
tions which are represented as domain concept ‘CPGManagement’, ‘CPGCleansing’,
‘CPGQualityAssurance’, ‘CPGAssessment’ and ‘CPGEducation’ shown at the top
section of figure 5. Each of the domain concepts has three attributes (name, factors and
evidence strength) upon which four types of rules for the system were defined based on
their values. The instances of these attribute are stored in the fact base of the system
which are accessed by dynamic role to get the facts for the inference reasoning process.
The inference executes the reasoning task based on the task method specification which
only specifies a single inference execution for the CPG system. The production rules of
the system are stored in the knowledge base which are organised into tuples.

446 M.S. Abdullah et al.

Fig. 5. CPG knowledge model

Dynamic
Role

Knowledge
Base

StaticRoleInferenceTransfer
Function

Interface FactBase

upload facts

get facts

facts

inference matching facts

Recommendation

inference matching rules

Recommendation rules

requested rules

Recommendation rules

CPG Recommendation Result

Fig. 6. Sequence Diagram of CPG system

KBS design is very much different to that of a conventional system, as the overall
aim of the KBS is to gather the needed facts to fire the rules. In doing so, completing
the whole reasoning cycle involves activation of different processes and message
passing between objects. As a result, it is difficult to capture these vital information
using object diagram due to the fact that several snapshots are needed to gather the
whole picture. However, this limitation was solved with the aid of another type of
UML diagram, namely the sequence diagram. Using sequence diagrams, the process-
ing elements of the KBS gathered from the profile are listed as objects with an addi-
tional Interface object to model the flow of logic that captures the dynamic behaviour

 Using Unified Modeling Language for Conceptual Modelling of KBS 447

of the KBS as shown on figure 6. The input from the user is entered through the inter-
face which becomes the fact for the system when the recommendation type selection
question has been answered. These facts are gathered by dynamic role and the infer-
ence engine gets these facts and matches them with the rule gathered from the knowl-
edge base to provide the recommendation.

Table 2. Jess Program Summary for CPG System

;; Module MAIN
(deftemplate CPG) deftemplate S-C-F)
(deftemplate question)(deftemplate answer)
(deftemplate recommendation)
;;Module Question
(deffacts question-data)(defglobal ?*crlf* = "")
;; Module ask
(defmodule ask)(deffunction ask-user (?question
?type))(defmodule startup)
;; Module interview
(defmodule interview)
(defrule request-strength => assert ask strength)))
(defrule assert-user-fact
 (answer (ident strength)text ?i))(answer (ident
cate_gory) (text ?d))(answer (ident factors_type)
(text ?j))=> (assert (user (strength ?i) (cate_gory
?d)(factors_type ?j))))
;; Module recommend
(defmodule recommend)(defrule S-C-F-1-0-0
 user (strength ?i&:(= ?i 1))(cate_gory ?d&:
(= ?d 0))factors_type ?j&:(= ?j 0))) => assert
recommendation (S-C-F STR1) (explanation "Strength
equals 1 Recommendation (I1 , I2 , I3 , I4)"))))

;; Module report

The CPG prototype recommendation system was implemented using Java Expert
System Shell (Jess) rule engine, which is a popular variation of the CLIPS rule engine
developed in Java. Jess was chosen as the implementation platform as it is the refer-
ence implementation of the JSR 94 Java Rule Engine API that defines standard API
for Java developer to interact with a Java rule engine widely used in commercial
products and open source software projects.

The system receives the user input value for the strength, category and factor
which are the facts for the system to fire the rules through the interview module based
on the questions from the question module and the ask module performing error
checking on the answers. In the recommendation module, the CPG rules are defined
(evidence strength only; category only; evidence strength and category; and factors,
evidence and category) and these rules are matched against the facts to fire the acti-
vated recommendation rule. The report module produces the recommendation report
of the system which contains the explanation and the recommendation value. Table 2
presents portion of the Jess program summary for CPG system and the sample screen-
shot is shown in figure 7.

448 M.S. Abdullah et al.

Fig. 7. Sample screenshot of the CPG system

4.2 Possible Mapping of the Profile to Jess

One of the key motivations for the MDA is in providing transformations between mod-
els (i.e. from a Platform Independent Model (PIM) such as a UML model or a profile
model to Platform Specific Model (PSM) of a specific implementation platform such as
Jess). The meta-model of Jess which defines the PSM is shown in figure 8. The purpose
of this mapping is to translate a model of the profile into Jess implementation to prove
that the profile is capable in bridging the gap between domain analysis and system
implementation.

However, the profile meta-model elements cannot be directly mapped to all ele-
ments of the Jess meta-model and only partial mapping are technically possible. This
limitation is due to the declarative nature of expert system shells programming and
the need to have different level of abstraction between general KBS conceptual model
and detail model of the implementation platform to enable model transformation in
generating the specific program code. However, it is acknowledged that the knowl-
edge modelling profile was very useful in understanding the KBS requirements for
the CPG recommendations. This limitation is further discussed in detail on section 5.

Table 3 lists the possible mapping of the profile elements to the Jess. The domain
concept elements of the profile can be mapped to deftemplate, defclass or
definstance of Jess. However, for the CPG system, only deftemplate was
used to represent the CPG domain concept which has three different slots for strength,
factor type and category. The factbase element of the profile can be mapped to def-
facts and for the CPG system; the question-data were used to gather the needed
facts for the application. There are no direct mapping for task and task method to Jess
but defmodule can be used to divide the application into structured modules. To
perform the reasoning process, inference is activated through the function ‘run’,

 Using Unified Modeling Language for Conceptual Modelling of KBS 449

which is a Jess function that starts the pattern matching process. The dynamic role can
be mapped to the Jess function ‘assert’ which asserts all facts into the working mem-
ory of the inference engine. In the CPG system, this can be seen in the interview module
in getting the facts to the working memory and asserting the recommendations.

Defmodule

JESS Function

LHS RHS

Defrule

Defquery

Deffacts Constraint

Definstance

DefclassDeftemplate

Conditional
Elements

Constraint

*

0..

1..**

0..
0..*

*

*

JESS Program

name: string
comment: string

Construct

constructs

condition

JavaBean

action

constraints

constraintCE

action

JavaBean

0..*

0..*1

facts

1

deftemplate

function-call

name: string

Deffunction

name: string

Slot

Fig. 8. Jess Meta-model

Table 3. Possible mapping of the Knowledge Modelling

Profile Concepts mapping JESS Concepts
DomainConcept

=
Deftemplate (Frame) Slot, Defclass
Definstance

FactBase = Deffacts
Task ≈ Defmodule
Task Method ≈ Defmodule
Inference ≈ Deffunction – run ()
Dynamic role ≈ Deffunction – assert ()
Static Role ≈ Defmodule - focus
Transfer function ≈ Defunction
Knowledge base ≈ Defmodule - focus
Tuple ≈ Defmodule – focus (rules partition)
Rule = Defrule
• Implication Rule
o Antecedent
o Consequent

=
=
=

Defrule - LHS, RHS
Deffunction, Conditional Elements
Defquery

450 M.S. Abdullah et al.

There is no direct mapping for knowledge base and tuple, but the defmodule
constructs of Jess allows large number of rules to be physically organised into logical
groups. Modules also provide a control mechanism that only allows the module that
has the focus to fire the rule in it, and only one module can be in focus at a time. In
the CPG system, the recommend module is used to organise the rules into knowledge
base and static role can be mapped to the focus function of Jess since all the CPG
rules for the inference engine are contained here. The role of transfer function in ob-
taining additional information can be mapped to the defmodule construct that im-
plements the appropriate functions to get this information.

Table 4. CPG ‘S-C-F-1-0-0’ rule

1 defrule S-C-F-1-0-0
2 user (strength ?i&:(= ?i 1))
3 cate_gory ?d&:(= ?d 0))
4 factors_type ?j&:(= ?j 0)))
5 => assert recommendation S-C-F STR1) (explanation
6 "Strength equals 1 Recommendation I1,I2,I3,I4)"))))

The rule element of the profile can be mapped directly to the defrule construct
of Jess in which the antecedent part corresponds to the left-hand side (LHS) of the
rule and the consequent part corresponds to the right-hand side (RHS) of the rule. The
following example of manual mapping the CPG system rule ‘S-C-F-1-0-0’ shown
in table 4 would help demonstrate this better.

In line 1, we define the rule using defrule which states the name of the rule – in
this case strength = 1, category = null and factor = null S-C-F-1-0-0 which will list all
recommendation of strength values of 1. Line 2, 3 and 4 is the LHS of the rule
which consists of facts matching patterns and line 5 and 6 contains the function call
(RHS) which asserts the recommendations values.

5 Discussions Related to OMG PPR Standardisation Work

The following discussions are intended to provide useful information regarding KBS
modelling in the context of the OMG Production Rule Representation standardisation
work. The PPR work mainly requires the use of activity diagrams to model the relation-
ship between rulesets to action states. However, in this work we have identified that the
use of activity diagram is limited to model a particular process of the system. Further-
more, class diagram can only provide partial snaphots of the system at a particular point
in time which is less meaningful in complex inference cycles. To overcome this limita-
tion, we have used the sequence diagram which clearly helps to understand the flow of
logic in the system as shown in section 4.2.

The profile described in this paper would help in understanding how rules are re-
lated to the domain concept elements in the KBS and the processes that are involved
in activating the rule to fire with the help of activity and sequence diagram.

 Using Unified Modeling Language for Conceptual Modelling of KBS 451

Furthermore, the profile only shows the categories of rule which can be modelled in a
single diagram with the other model elements. Thus the profile would help overcome
the current problem of omitting rules from the model.

Mapping the profile to PSM is only limited to domain concept, factbase and impli-
cation rule. The rest of the profile elements are useful to describe the KBS and usually
implemented differently as runtime concepts in various rule engines. Nevertheless,
this proves that the most important work in designing and developing KBS is writing
the rules based on the domain concepts which attribute values stored in the fact base
will activate the rules. As such, the standardisation work in PRR should first empha-
sise on agreeing standard representation of rule elements in writing rules which are
portable across different inference engines.

6 Conclusion and Future Work

This paper presented an extension to UML using the (lightweight) profile mechanism
for knowledge modelling that allows the relevant structural properties of KBS to be
represented at conceptual level. This allows knowledge models to be built using an
object-oriented approach based on the standard modelling language that is widely
adopted. The profile was implemented in an object-oriented meta-modelling language
tool, XMF Mosaic that allows easier visual implementation of profile which diagrams
are similar to the common UML editors.

The profile has been successfully tested on several case studies. This includes de-
signs from scratch and re-engineering of existing KBS and the results are encourag-
ing. Currently work has concentrated on building an Eclipse plug-in to support the
profile as it is a popular implementation tool for UML profiles. The plug-in allows
profile-compliant diagrams to be drawn and validated, and XML or XMI representa-
tions produced. The infrastructure in the Eclipse makes this mapping straightforward
to implement. The future work in this area involves studying how to automate the
generation of Jess code from the profile elements that can be mapped to Jess meta-
model. The work in automating the generation of Jess code from models is still in a
work in progress [31].

References

1. Giarratano, J.C., Riley, G.D.: Expert Systems: Principles And Programming. Course
Technology, Boston, Massachusetts (2004)

2. Studer, R., Benjamins, R.V., Fensel, D.: Knowledge Engineering: Principles and methods.
Data & Knowledge Engineering, 25(1), 161–197 (1998)

3. Gomez-Perez, A., Benjamins, V.R.: Overview of Knowledge Sharing and Reuse Compo-
nents: Ontologies and Problem-Solving Methods. In: IJCAI-99 Workshop on Ontologies
and Problem-Solving Methods (KRR5), Stockholm, Sweden (1999)

4. Ergazakis, K., Karnezis, K., Metaxiotis, K., Psarras, I.: Knowledge Management in Enter-
prises: A Research Agenda. Intelligent Systems in Accounting, Finance and Manage-
ment 13(1), 17–26 (2005)

5. Awad, E.M.: Building Expert Systems: Principles, Procedures, and Applications. West
Publishing, Minneapolis (1996)

452 M.S. Abdullah et al.

6. Liebowtiz, J.: If you are a dog lover, build expert system; if you are a cat lover, build neu-
ral networks. Expert System with Applications 21, 63 (2001)

7. Preece, A.: Evaluating Verification and Validation Methods in Knowledge Engineering, in
Micro-Level Knowledge Management. In: Roy, R. (ed.) Evaluating Verification and Vali-
dation Methods in Knowledge Engineering, in Micro-Level Knowledge Management, R,
pp. 123–145. San Francisco, Morgan-Kaufman (2001)

8. Production, O.M.G.: Rule Representation - Request for Proposal, Object Management
Group: Needham, USA. p. 57 (2003)

9. Services, O.K.: for Engineering Design - Request for Proposal, Object Management
Group: Needham, MA, US. p. 32 (2004)

10. McClintock, C.: ILOG’s position on Rule Languages for Interoperability. In: W3C Work-
shop on Rule Languages for Interoperability, Washington, D.C, USA (2005)

11. Krovvidy, S., Bhogaraju, P., Mae, F.: Interoperability and Rule Languages. In: W3C
Workshop on Rule Languages for Interoperability, Washington, DC, USA (2005)

12. Abdullah, M.S., Benest, I., Evans, A., Kimble, C.: Knowledge Modelling Techniques for
Developing Knowledge Management Systems. In: Abdullah, M.S., Benest, I., Evans, A.
(eds.) 3rd European Conference on Knowledge Management, Dublin, Ireland (2002)

13. Gill, G.T.: Early Expert Systems: Where Are They Now? MIS Quarterly 19(1), 51–81
(1995)

14. Tsui, E.: The role of IT in KM: where are we now and where are we heading. Knowledge
Management 9(1), 3–6 (2005)

15. Juristo, N., Moreno, A.M.: Introductory paper: Reflections on Conceptual Modelling. Data
& Knowledge Engineering 33(2), 103–117 (2000)

16. Dieste, O., Juristo, N., Moreno, A.M., Pazos, J., Sierra, A.: Conceptual Modelling in Soft-
ware Engineering and Knowledge Engineering: Concepts, Techniques and Trends. In:
Chang, S.K. (ed.) Handbook of Software Engineering & Knowledge Engineering, pp.
733–766. World Scientific Publishing, Hackensack, NJ (2002)

17. Jézéquel, J.-M., Hussmann, H., Cook, S.: A Metamodel for the Unified Modeling Lan-
guage. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.). UML 2002. LNCS, vol. 2460,
Springer, Heidelberg (2002)

18. Muller, P.-A., Studer, P., Bezivin, J.: Platform Independent Web Application Modeling.
In: Stevens, P., Whittle, J., Booch, G. (eds.). UML 2003. LNCS, vol. 2863, Springer, Hei-
delberg (2003)

19. Brown, A.W.: Expert’s voice - Model driven architecture: Principles and practice. Soft-
ware and Systems Modelling 3(4), 314–327 (2004)

20. Abdullah, M.S., Kimble, C., Paige, R., Benest, I.: Developing UML Profile for Modelling
Knowledge-Based Systems. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003.
LNCS, vol. 3599, Springer, Heidelberg (2005)

21. OMG. UML 2.0 InfrastructureFinal Adopted Specification, [cited 2004 5 April], Available
from (2003), http://www.omg.org

22. OMG, Requirements for UML Profile. 1999, Object Management Group: Framingham,
MA. p. 8.

23. Perez-Martinez, J.E.: Heavyweight extensions to the UML metamodel to describe the C3
architectural style. ACM SIGSOFT Software Engineering Notes, 28–3 (2003)

24. OMG. MOF Specification version 1.4. 2002 [cited 2004 5 April], Available from,
http://www.omg.org

25. Clark, T., Evans, A., Sammut, P., Willians, J.: Metamodelling for Model-Driven Devel-
opment (draft) (To be published 2004), http://albini.xactium.com

 Using Unified Modeling Language for Conceptual Modelling of KBS 453

26. Schreiber, G., Akkermans, H., Anjewierden, A., De Hoog, R., Shadbolt, N., De Velde, W.:
Knowledge Engineering and Management: The CommonKADS Methodology. MIT Press,
Massachusetts (1999)

27. Cuena, J., Molina, M.: The role of knowledge modelling techniques in software develop-
ment: a general approach based on a knowledge management tool. International Journal of
Human-Computer Studies 52, 385–421 (2000)

28. Håkansson, A.: UML as an approach to Modelling Knowledge in Rule-based Systems. In:
The Twenty-first SGES International Conference on Knowledge Based Systems and Ap-
plied Artificial Intelligence (ES2001), Peterhouse College, Cambridge, UK (2001)

29. Friedman-Hill, E.: Jess in Action: Rule-Based System in Java. Manning Publications,
Greenwich, US (2003)

30. Clinical, R.C.N.: Practice Guidelines: The management of patients with venous leg ulcers.
Royal College of Nursing Institute, London (1998)

31. Wu, C.G. (2004) Modelling Rule-Based Systems with EMF. Accessed at http://www.
eclipse.org/articles

32. Abdullah, M.S., Profile, A U.: for Conceptual Modelling of Knowledge-Based Systems,
Unpublished PhD Thesis, University of York (2006)

Tracing the Rationale Behind UML Model

Change Through Argumentation

Ivan J. Jureta and Stéphane Faulkner

Information Management Research Unit (IMRU), University of Namur, Belgium
iju@info.fundp.ac.be, stephane.faulkner@fundp.ac.be

Abstract. Neglecting traceability—i.e., the ability to describe and fol-
low the life of a requirement—is known to entail misunderstanding and
miscommunication, leading to the engineering of poor quality systems.
Following the simple principles that (a) changes to UML model instances
ought be justified to the stakeholders, (b) justification should proceed in
a structured manner to ensure rigor in discussions, critique, and revi-
sions of model instances, and (c) the concept of argument instantiated
in a justification process ought to be well defined and understood, the
present paper introduces the UML Traceability through Argumentation
Method (UML-TAM) to enable the traceability of design rationale in
UML while allowing the appropriateness of model changes to be checked
by analysis of the structure of the arguments provided to justify such
changes.

1 Introduction

In a noted discussion of the traceability problem [10], Gotel and Finkelstein
define traceability as follows:

“Requirements traceability refers to the ability to describe and follow the life
of a requirement, in both a forwards and backwards direction (i.e., from its
origins, through its development and specification, to its subsequent deploy-
ment and use, and through all periods of on-going refinement and iteration in
any of these phases).”

Ensuring proper traceability through specialized concepts, techniques, and
methods is argued to reduce the number of iterations in the construction and
change of requirements engineering (RE) artifacts, thus helping keep the soft-
ware development project under time, budget, and other constraints. However,
if traceability is neglected, misunderstanding and miscommunication are bound
to appear, compounding the loss of implicit information guiding requirements
change and increasing the risk of poor project results [6,20,25].

This paper focuses on the problem of tracing the rationale behind changes
local to one or spanning across several different kinds of models in the Unified
Modeling Language (UML) [18]. To address the problem, the UML Traceability
through Argumentation Method (UML-TAM) is suggested to enable the trace-
ability of design rationale in UML while allowing the appropriateness of model

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 454–469, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Tracing the Rationale Behind UML Model Change Through Argumentation 455

changes to be checked by analysis of the structure of the arguments provided to
justify such changes.

As the related research efforts are numerous, the following section (§2) first
positions the present work within the relevant literature. The problem of interest
is then identified and contributions outlined (§3), and is followed by a description
of the case study (§4). The conceptual basis of UML-TAM is then presented (§5).
It is followed by an illustration of its use in the case study (§6). The paper closes
with conclusions and indications on directions for future effort (§7).

2 Background and Related Work

Complexity of the traceability problem, its span over the various activities in
software development, along with the trade-off between extensive traceability
and budget and time constraints make elusive the construction of an encom-
passing traceability approach still applicable to realistic settings—methods spe-
cialized for particular traceability sub-problems, combined with domain-specific
expertise on when and how to apply them in a given project seem to be the
choice in research and industry. In light of the various methods suggested in
related research efforts, situating the results of the present paper is facilitated
by classification over five taxonomic dimensions: traceability data types, scope,
degree of automation, conceptual foundations, and framework specificity. Each
is considered in turn below.

2.1 Traceability Data Types

Traceability data types, as suggested by Dömges and Pohl [6], distinguish meth-
ods according to the content of traceability information being recorded:

– Bi-directional links between the stakeholder expectations, derived require-
ments, and software components enable validation of system functionality
by stakeholders and impact analysis of requirements change on the system.
Ramesh and colleagues [25] indicate that such benefits can be achieved,
although at high initial cost of implementing and applying traceability poli-
cies. A framework allowing the capture of bi-directional links has been pro-
posed by Pohl [21] and later extended to allow configuration to project-
specific traceability needs [22], in both cases focusing on the recording of
what changes are made, by whom, when, and how.

– Contribution structures aim at clearly relating the requirements to stakehold-
ers to facilitate negotiation, search for additional information, and revision.
Gotel [11] introduced contribution structures in RE to allow the recording
of detailed information on stakeholders and the requirements they provide,
hence ensuring traceability of the requirements to the people and systems
from which these emanate.

– Design rationale records the reasoning that led to particular modeling and
other software development decisions, in the aim of arriving at a shared
understanding of models and other artifacts, and their purpose in the given

456 I.J. Jureta and S. Faulkner

project. Usually, a design rationale approach is employed to record such
traceability information (Louridas and Loucopoulos give an overview [16]).

– Process data which relates to the planning and control of activities in the
software development project.

2.2 Scope

Gotel and Finkelstein [10] introduce a separation of pre-Requirements Specifica-
tion (pre-RS) from post-RS traceability. Pre-RS, which concerns the life of stake-
holder expectations until they are converted to requirements, has been treated
in the various RE frameworks proposed over the last decade—for instance, the
introduction of goals in requirements models facilitates traceability, for goals
make explicit (at least in part) the rationale for the inclusion of more specific
requirements [30]. Post-RS focuses on the evolution of requirements in the steps
following RE, i.e., the various activities involved in deploying the requirements.
Automated traceability methods (below) focus on post-RS.

2.3 Degree of Automation

The degree of automation concerns the support allowed by or provided with a
traceability method to reduce manual effort and facilitate analyses of trace in-
formation. Haumer and colleagues [12] and Jackson [13] both suggest manual
traceability techniques focused on simplicity, while allowing rich trace recording
(e.g., video, audio, etc.). Such an approach becomes difficult to manage efficiently
for realistic systems, leading to, among other, Egyed’s proposal [7] where mod-
els and software are aligned using traces generated by observation of software
operation through the running of various test scenarios. Antoniol and colleagues
[1] and Pinheiro and Goguen [19] both rely on formal methods for traceability,
with the difficulty of avoiding obsolescence of formal trace specifications.

2.4 Conceptual Foundations

Conceptual foundations discriminate according to the main concepts employed
in recording traceability information (e.g., goals, scenarios, aspects). Egyed [7]
generates design traceability information by iteratively running test scenarios
on already operational software, so as to verify whether the models implement-
ing the tested functionality correspond to the behavior of the observed system.
A preliminary proposal from Naslavsky and colleagues [17] focuses on trace-
ability between scenarios and the use thereof to relate requirements to code.
Ubayashi and colleagues [28] propose a method for dealing with model evolu-
tion using model transformations based on aspect orientation, the main benefit
thereof being the separation of concerns over traceability information. Torenzo
and Castro [27] also seem to separate concerns, albeit through specialized views
and not aspects. In an overview of goal-oriented RE [30], Van Lamsweerde ob-
serves that the refinement links in goal refinement trees, in which an abstract
goal is made more precise through refinement, can be read as traceability links

Tracing the Rationale Behind UML Model Change Through Argumentation 457

making goal -orientation a favorable approach to aligning abstract and precise,
operational information about a system. The concept of argument appears in
design rationale approaches (for an overview, see [16]) which enable the record-
ing of reasoning behind decisions. For instance, Ramesh and Dhar [24] suggest
an approach involving concepts specialized for the RE: in addition to classi-
cal concepts—position, argument, issue—introduced in IBIS [5], REMAP [24]
integrates the notion of requirement, design object, decision, and constraint.

2.5 Framework Specificity

Framework specificity classifies approaches according to whether they are spe-
cialized or not for a particular software development framework. Briand and col-
leagues [3] suggest bi-directional links be extracted automatically from changes
in UML models, whereby each identified type of UML model refinement (each
refinement being a kind of model change) has associated traceability informa-
tion, thus facilitating impact analysis in model evolution. Letelier [15] suggests a
roughly defined metamodel of traceability information to collect when working
with UML and requirements expressed in textual form; the aim is to ensure that
bi-directional links are known during UML modeling, while very limited support
is provided for design rationale recording.

3 Problem Outline and Contributions

The work presented in the remainder enables the recording of design rationale
behind changes local to one or spanning across several different kinds of UML
models. It is thus framework-specific and both pre- and post-RS (this depending
on how UML is employed), while relying on the concept of argument. Because
informally or formally expressed information is allowed into arguments to allow
adaptability of the method to project specificities, automation is limited, this
entailing selective application of the method. The present work is a response to
the following observations, each highlighting a difficulty in current research:

– UML traceability rarely aims to record the rationale behind modeling de-
cisions, and when this is attempted, as in Letelier’s work [15], very limited
attention is given to what kind of rationale information is to be recorded
and how, and if/how it can be analyzed.

– Automated traceability by taxonomies of UML change/refinement types
lacks the recording of design rationale—in the efforts cited in §2, traceability
information answers what changes are made, but not why they are made.
It is therefore possible to determine who, when, and how made a particular
appropriate or inappropriate decision, but it is difficult/impossible to deter-
mine why the decision is made, hence limiting the potential to learn from
mistakes or reinforce appropriate modeling behavior.

– Framework-independent traceability methods that use arguments in record-
ing design rationale, such as REMAP [24] only provide techniques for trace
capture—how to analyze such information remains unknown.

458 I.J. Jureta and S. Faulkner

Following the simple principles that (a) changes to UML model instances
ought be justified to the stakeholders, (b) justification should proceed in a struc-
tured manner to ensure rigor in discussions, critique, and revisions of model
instances, and (c) the concept of argument instantiated in a justification pro-
cess ought to be well defined and understood, the present paper introduces the
UML Traceability through Argumentation Method (UML-TAM) for capturing
and analyzing design rationale in UML modeling. The salient properties of the
method are:

– Adaptability. Both informal and formal, and qualitative and quantitative
information is allowed into arguments, to ensure that few constraints are
placed on the stakeholders employing it to record design rationale.

– Active rationale analysis. Where available methods focus on ensuring design
rationale is recorded (passive rationale traceability), UML-TAM provides
specialized analyses for confronting arguments and avoiding ill-structured
rationale which unavoidably leads to inappropriate modeling choices.

– Sound conceptual foundations. By relying on formal definitions of the concept
of argument established in AI, and using it as a central concept, UML-TAM
avoids ambiguity and aims to facilitate the learning of the method to the
stakeholders (it merely requires the understanding of the notion of argument
and the argumentation and justification processes).

– Justification of modeling choices. While recording arguments is certainly
relevant, confronting them through a justification process to discriminate
among alternative changes of model instances is critical. Justification thus
provides a means for selecting among alternative sets of arguments to arrive
at justifiably appropriate modeling choices.

4 Case Study

Following the classical meeting scheduler case study [29], a variant serves herein
to illustrate the salient features of the method.1 The aim is to design a system for
scheduling meetings and meeting rooms. A user can request a meeting room of a
chosen size and for a chosen period of time, and can schedule a meeting. A user
can cancel any of the mentioned two until the beginning of the meeting time.
An email is sent to participants any time the meeting is scheduled or canceled.
When defining a meeting, the user provides a list of attendees, meeting time
and room, and gives a brief description of the topic. It is further assumed that
there is a Post Office package which delivers messages to designated users, and
an Employee Management package which provides employee reference and email
address. Fig.1(a) shows the initial use case which represents most of the described

1 As noted above, UML-TAM is not intended for recording rationale behind all model-
ing decisions for it is not automated and thus impractical—contributions are primar-
ily conceptual and not related to efficiency per se in the present paper. An accessible
case study, appropriate for the constraints of the present format, thus introduces the
method, while scalability and cost to industrial projects are under study.

Tracing the Rationale Behind UML Model Change Through Argumentation 459

functionality but is incomplete and serves as a starting point in moving toward
a more extensive use case diagram to illustrate the use of UML-TAM in tracing
rationale for change. Fig.1(b) gives an initial class diagram, and is used in the
remainder to illustrate traceability within class diagram with UML-TAM.

(a) An initial use case diagram (b) An initial class diagram

Fig. 1. Some initial UML diagrams for the case study

5 Traceability Through Argumentation in UML-TAM

Returning to the initial use case digram in Fig.1(a), it is not difficult to notice
it is incomplete at least with regards to the following plausible situations:

– If the room of requested size is not available at the requested period, various
alternative responses by the system can be identified: e.g., it may record a
failed request for a room for statistics on room availability; another option is
to communicate the unavailability to the user and ask for a different period.

– If an attendee is added as a participant to a recurrent meeting, should the
system assume that this person is to attend all occurrences of the meeting in
the future, or should the user specify this? Same applies when an attendee
of a recurrent meeting is removed from the list of participants—does the
removal apply for all occurrences of the meeting or only the next one?

– A participant informed of a meeting may have another engagement for the
same period. Fig.1(a) gives no explicit mechanisms for ensuring the sched-
uler knows what participants to expect. The system could, e.g., connect to
employees’ electronic agendas and return availability information when the
scheduler adds a participant and the meeting period.

460 I.J. Jureta and S. Faulkner

It should be apparent from the above that providing a revised use case di-
agram alone—i.e., without additional information on why that particular revi-
sion is more adequate than another one—may be appropriate only in case the
stakeholders are of similar background, share a precise idea of what the system
is expected to do, and so on. In most realistic settings, however, this is not
satisfactory, for various stakeholders would participate, each bringing a differ-
ent perspective on the system grounded in different backgrounds and interests.
The very presence of alternatives in both system functionality and of options
in the representation of functionality (e.g., at the level of use cases: what to
wrap in an existing use case, what requires an additional use case, and so on)
makes it appropriate to make explicit the reasons (i.e., arguments) that aim to
justify the functionality and representation decisions. One thus observes that
three components are needed for ensuring traceability of rationale in UML: (1)
a design rationale approach (below: TAM-Design Rationale, TAM-DR), which
indicates when and how the engineer proceeds to making explicit the alterna-
tives in functionality and/or modeling; (2) an argumentation framework, which,
as soon as the alternatives are known, enables the argumentation of each al-
ternative, the confrontation and comparison of arguments, ending in a justified
choice of one alternative; (3) specialized means for connecting the content of
UML diagrams with the content of rationale traces (referred to in the remainder
as TAM-Connectors) produced through the use of the design rationale approach
and associated argumentation and justification techniques.

5.1 UML-TAM Design Rationale

Having identified an engineering problem, design rationale literature (and as
usual in problem solving) suggests the engineer should identify alternative so-
lutions, compare them according to some relevant criteria, subsequently choose
one alternative, and act upon the prescription given in the alternative. In the
classical IBIS approach [5], the aforementioned problem is termed issue whereas
positions (i.e., alternative solutions) resolve issues, and arguments support or
object to positions. A problem in the present setting appears whenever alter-
native system structures can be chosen to translate stakeholder expectations
into a UML representation, or when several modeling options exist for a chosen
alternative system structure (i.e., one knows what to model, but syntax and
semantics of the model permit various ways of modeling this). Based on work
from Louridas and Loucopoulos [16], which integrates common characteristics of
established design rationale approaches, a design rationale approach specialized
for rationale traceability in UML-TAM involves the following steps (see, Fig.2):

1. Problem setting consists of identifying a discrepancy between the content of
the given UML model instance and the content it should represent—e.g.,
some newly acquired information is not represented therein, or the given
representation uses questionable modeling choices.

2. Based on the problem statement produced in 1 above, problem analysis leads
to the identification of alternative solutions.

Tracing the Rationale Behind UML Model Change Through Argumentation 461

3. Evaluation then consists of providing arguments for or against each alterna-
tive solution. Such argumentation is followed by a justification of a choice of
(i.e., Decision on) a particular alternative.

4. Having selected the alternative, the affected UML model instances need to
be changed according to the adopted solution. The process is reinitiated as
new problems are identified.

As shown in Fig.2, content of alternatives and arguments can give itself rise
to new problem statements. Activities of the given process rely mainly on the
domain- and problem-specific knowledge of the stakeholders. Argumentation and
justification activities require specialized concepts and techniques outlined in
§5.2 and §5.3. The use of the given concepts and techniques is exemplified in §6.

Fig. 2. Overview of the UML-TAM design rationale process

5.2 UML-TAM Argumentation Framework

Argumentation modeling literature [4] in the artificial intelligence field focuses
on formalizing commonsense reasoning in the aim of automation. An argumen-
tation model is a static representation of an argumentation process, which can
be seen as a search for arguments, where an argument consists of a set of rules
chained to reach a conclusion. Each rule can be rebutted by another rule based
on new information. To formalize such defeasible reasoning, elaborate syntax
and semantics have been developed (e.g., [4,26,2]) commonly involving a logic
to formally represent the argumentation process and reason about argument in-
teraction. A structured argumentation framework (i.e., a model and processes
employing the model) is needed herein for a rigorous justification process in the
Evaluation step of TAM-DR. To arrive at a structured argumentation system,
the concept of argument is first defined below, followed by a set of argument
relationships, and the justification process.

Argument. Assuming a first-order language L defined as usual, let K be a
consistent set of formulae (i.e., K �� ⊥), each a piece of information, and let
K ≡ KN ∪ KC. Members of the set KN, called necessary knowledge, represent
facts about the universe of discourse and are taken to be formulae which contain

462 I.J. Jureta and S. Faulkner

variables. Necessary knowledge is assumed unquestionable. The set KC, called
contingent knowledge, are information that can be put in question or argued for.
It is then said that the knowledge a stakeholder a can use in argumentation is
given by the pair (Ka, Δa), where Ka is a consistent subset of K (i.e., Ka ⊂ K
and Ka �� ⊥), and Δa is a finite set of defeasible rules of the form α ↪→ β. The
relation ↪→ between formulae α and β is understood to express that “reasons to
believe in the antecedent α provide reasons to believe in the consequent β”. In
short, α ↪→ β reads “α is reason for β”.

Let A a set of stakeholders, K ≡ ⋃
a∈A Ka, and Δ ≡ ⋃

a∈A Δa. Given (Ka, Δa)
and P ⊂ Δ↓

a, where Δ↓
a is a set of formulae from Δa instantiated over constants

of the formal language, P is an argument for c ∈ KC, denoted 〈P, c〉K, if and only
if: 1) K ∪ P |∼ c (K and P derive c); 2) K ∪ P �� ⊥ (K and P are consistent);
and 3) � ∃P ′ ⊂ P, K ∪ P ′ |∼ c (P is minimal for K). Where “|∼” is called the
defeasible consequence [26] and is defined as follows. Define Φ = {φ1, . . . , φn}
such that for any φi ∈ Φ, φi ∈ K ∪ Δ↓. A formula φ is a defeasible consequence
of Φ (i.e., Φ |∼ φ) if and only if there exists a sequence B1, . . . , Bm such that
φ = Bm, and, for each Bi ∈ {B1, . . . , Bm}, either Bi is an axiom of L, or Bi is
in Φ, or Bi is a direct consequence of the preceding members of the sequence
using modus ponens or instantiation of a universally quantified sentence. This
argument definition is well-understood in the AI literature [4,23].

Argumentation. While an argument can be constructed by combining explic-
itly expressed knowledge (e.g., from a knowledge base), the aim here is to start
from a conclusion and build arguments that support it from the knowledge that
stakeholders provide and that can be related to the conclusion. Argumentation of
a conclusion R consists of recursively defining an argument tree ATR as follows:

1. Define R as the root of the tree ATR and set c = R;
2. Let 〈P, c〉. Identify p1, . . . , pn s.t. {p1, . . . , pn} = P , P ⊆ K ∪ Δ↓;
3. Define a node for each premise pi ∈ P and define an edge from that node to

c. Draw the edge “−→” if p ∈ K, or “ �−→” in case p ∈ Δ↓;
4. Set c = pi and repeat steps 2 and 3 for each i = 1, . . . , n, until the argument

tree has been constructed to a satisfactory extent.

Argument Relationships. Of particular interest in argumentation is to con-
front arguments and reject some conclusion in favor of other. It is therefore
necessary to define several simple relationships between arguments.

Two arguments 〈P1, c1〉 and 〈P2, c2〉 disagree, denoted by 〈P1, c1〉 �	K 〈P2, c2〉,
if and only if K ∪ {c1, c2} � ⊥.

Instead of seeking contradiction of conclusions, a counterargument relation
looks for incompatibility of a conclusion with the conclusion of a subargument
of another argument. 〈P1, c1〉 counterargues at c the argument 〈P2, c2〉, denoted
by 〈P1, c1〉 �↪→c 〈P2, c2〉, if and only if there is a subargument 〈P, c〉 of 〈P2, c2〉
such that 〈P2, c2〉 �	K 〈P, c〉 (i.e., 〈P, c〉 ⊂ 〈P2, c2〉 and K ∪ {c1, c} � ⊥).

In case two arguments are such that one counterargues the other, it is neces-
sary to determine which of the two is to be maintained. An argument 〈P1, c1〉
defeats at c an argument 〈P2, c2〉, denoted by 〈P1, c1〉 >>c 〈P2, c2〉, if and only if

Tracing the Rationale Behind UML Model Change Through Argumentation 463

there is a subargument 〈P, c〉 of 〈P1, c1〉 such that (1) 〈P1, c1〉 �↪→c 〈P2, c2〉 (that
is, 〈P1, c1〉 counterargues 〈P2, c2〉 at c); and (2) 〈P1, c1〉 �c 〈P, c〉 (〈P1, c1〉 is
more specific than 〈P, c〉). In a dialectical tree (see below), defeat is represented
by “ �−→” directed from the conclusion of the argument that defeats to the node
which is defeated. The specificity relation “�c” is an order relation over argu-
ments, defined so that arguments containing more information, i.e., which are
more specific, are preferred over other. An argument 〈P1, c1〉 is strictly more
specific than 〈P2, c2〉, denoted by 〈P1, c1〉 �c 〈P2, c2〉 if and only if (1) ∀e ∈ KC
such that KN ∪ {e} ∪ P1 |∼ c1 and KN ∪ {e} |�∼ c1, also KN ∪ {e} ∪ P2 |∼ c2; and
(2) ∃e ∈ KC such that: (2.1) KN ∪{e}∪P2 |∼ c2; (2.2) KN ∪{e}∪P1 |�∼ c1; (2.3)
KN ∪ {e} �� c2.

Justification. Argument defeat is employed when attempting to justify a par-
ticular conclusion. The justification process consists of recursively defining and
labeling a dialectical tree T 〈P, c〉 as follows:

1. A single node containing the argument 〈P, c〉 with no defeaters is by itself a
dialectical tree for 〈P, c〉. This node is also the root of the tree.

2. Suppose that 〈P1, c1〉 , . . . , 〈Pn, cn〉 each defeats 〈P, c〉. Then the dialectical
tree T 〈P, c〉 for 〈P, c〉 is built by placing 〈P, c〉 at the root of the tree and
by making this node the parent node of roots of dialectical trees rooted
respectively in 〈P1, c1〉 , . . . , 〈Pn, cn〉.

3. When the tree has been constructed to a satisfactory extent by recursive
application of steps 1 and 2 above, label the leaves of the tree undefeated
(U). For any inner node, label it undefeated if and only if every child of that
node is a defeated (D) node. An inner node will be a defeated node if and
only if it has at least one U node as a child. Do step 4 below after the entire
dialectical tree is labeled.

4. 〈P, c〉 is a justification (or, P justifies c) if and only if the node 〈P, c〉 is
labeled U .

Dialectical trees are shown in the UML-TAM traceability templates in Figures 4
and 5, in §6; arguments are drawn enclosed in boxes, a dialectical tree relates
such boxes with the defeat relationship. The content of arguments is informally
expressed, and can be replaced (pending some adjustments) with first-order for-
mulae. However, the informal character thereof does not affect the ability to man-
ually determine relationships between arguments, as they have been presented
above, and consequently to proceed to justification. Having formal foundations, as
suggested in the present subsection contributes to the precision of the conceptual
bases for the argumentation and justification activities.

5.3 UML-TAM Connectors

Connectors in UML-TAM relate information used and produced with the de-
sign rationale, and argumentation and justification techniques to the content of
the UML diagrams whose rationale traceability is to be ensured. Fig.3 shows
the metamodel, written in UML class diagram notation, integrating the rele-
vant concepts of UML-TAM and relating them to the UML 2.0 metamodel [18]

464 I.J. Jureta and S. Faulkner

Fig. 3. Metamodel relating UML-TAM to the UML 2.0 metamodel

through the UMLDiagram class. Although the illustration §6 discusses the trace-
ability in use case and class diagrams, the metamodel does not limit the potential
for bridging UML-TAM and other UML diagrams.

The part of the metamodel proper to UML-TAM integrates the concept of
ProblemStatement, AlternativeSolution, Argument, and Justification, each following the
definitions given in previous subsections. Note the ProblemStatement can be asso-
ciated to no UMLModelElement, which occurs when the ProblemStatement results in
the addition of new UMLModelElement instances into a UMLDiagram instance. The
metamodel is linked to a part of the metamodel underlying the bi-directional link
traceability approach from Briand and colleagues [3]: AtomicChange is a modifi-
cation applicable to the UML diagram, whose execution gives rise to a number
of traceability links to ensure that information about what changed and how is
captured. The types of atomic changes given in the figure are the basic ones,
whereby more extensive taxonomies are suggested by refining each of the four
activities, and this depending on the syntax of the underlying UML diagram [3].
An important practical consequence of the above metamodel is that UML-TAM
can be thus be combined to automated traceability methods and applied selec-
tively, when stakeholders explicitly identify problems which in turn entail the
use of UML-TAM for resolution.

As the content of arguments can be informal or formal, labels are used to
highlight the relevant elements of the UML model being mentioned in arguments,
alternative solutions, and/or problem statement. The UMLElementLabel concept
is thus introduced in the metamodel in Fig.3. In Fig.4, labels are placed within
arguments and the alternative solution, whereas the problem statement (the title
of the UML-TAM traceability template) does not contain explicit references to
elements of the use case diagram, and therefore contains no labels.

The approach to relate the UML artifacts and those produced in UML-TAM
is straightforward: as soon as a justified alternative solution is found, and the
stakeholders no longer provide arguments to defeat it (i.e., the justification pro-
cess ends), change is performed in the corresponding UML diagram. A tem-
plate is filled out—it contains a snapshot showing the original structure of the

Tracing the Rationale Behind UML Model Change Through Argumentation 465

Fig. 4. The modified use case diagram with accompanying rationale traceability infor-
mation produced with UML-TAM

466 I.J. Jureta and S. Faulkner

Fig. 5. The modified class diagram with accompanying rationale traceability informa-
tion produced with UML-TAM

part of the diagram that is being changed, the problem statement, the alterna-
tive solutions, the justification, and all arguments provided for each alternative
solution.

Tracing the Rationale Behind UML Model Change Through Argumentation 467

6 Applying UML-TAM

It has been observed earlier that the initial use case diagram shown in Fig.1(a)
is incomplete in several respects. Using UML-TAM, two changes were performed
leading to the use case diagram in Fig.4. There, labels are placed on the elements
of the diagram to relate them to traceability templates used in UML-TAM to
summarize information used and produced in moving from the initial version of
the diagram to that presented in Fig.4. Each template contains four parts: (i)
a label (e.g., T1, T2) for relating the elements of the diagram to the template;
(ii) a title, which is the problem statement requiring diagram change; (iii) the
dialectical tree for the justified alternative solution; and (iv) the dialectical trees
for the rejected alternative solutions. Following the metamodel in Fig.3, infor-
mation referring to UML diagram elements and appearing in the template is
labeled following the kind of UML element the information refers to.

Figures 4 and 5 are self-explanatory and show modified initial use case and
class diagrams obtained by applying UML-TAM. Each has been constructed
by applying the UML-TAM. Practical experience with UML-TAM that goes
beyond the simple, yet illustrative case presented here leads to several obser-
vations about the practical use of the proposed method. For instance, it has
been empirically observed that nonmonotonic reasoning is hard for humans [8].
Effort involved in finding arguments in UML-TAM is considerable and appears
to confirm the cited empirical result. Some techniques derived from theory are
particularly hard to apply in practice: for instance, comparing arguments for
specificity appeared counterintuitive and was thus seldom used. Prior experi-
ence and resources about the debated domain are relevant sources of arguments,
so that referring to these is suggested. Although the difficulties are considerable
when applying argumentation and justification, a significant benefit is that these
techniques lead to the externalization of information usually left implicit in UML
modeling. The information made explicit is available to a number of stakehold-
ers who can, through argumentation and justification, question and revise the
modeling decisions. Moreover, lessons can be learned from past modeling prob-
lems as sources of the problems (such as, e.g., fallacious argumentation) can be
identified by going back to the recorded arguments. UML-TAM is therefore of
interest for projects in which particularly high degree of rigor is required, as in
the case of, e.g., safety-critical systems.

7 Conclusion and Future Work

The UML Traceability through Argumentation Method presented herein intro-
duces rigorous argumentation and justification when tracing the rationale be-
hind UML modeling decisions. The main contributions are: (1) The information
about the design rationale used in modeling is usually lost or, when available,
stated in an unstructured manner. UML-TAM provides a simple, yet precise
means for representing this information, analyzing it for problematic rationale
(by justification), and using it to arrive at justifiably appropriate modeling de-
cisions. (2) Both qualitative and quantitative, informal and formal information

468 I.J. Jureta and S. Faulkner

can be put into arguments allowing the application of the method to a wide
range of settings. (3) When combined with traceability approaches focused on
answering how, what, when, and who modified a UML diagram, UML-TAM
allows answering and discussing why a change was needed. (4) By applying ar-
gumentation and justification activities, the modeler can claim that a modeling
choice is appropriate or not, while relying on solid and well understood concep-
tual foundations and rigorous processes for their use. Modeling choices can thus
be claimed as justified, or questioned through a step-by-step process. Follow-
ing the outline of related research efforts §2, the proposed method advances the
rationale traceability literature, while ensuring compatibility with approaches
focusing on traceability of other types of information—this is accomplished by
focusing the method on a precise traceability issue, proposing connection points
for relating the method to compatible approaches, and avoiding overlap with
related techniques.

Current effort includes the exploration of benefits of formalizing arguments in
combination with various UML formalizations, to attempt automated analysis of
argument and associated UML diagram structures. Experimentation is currently
performed to improve usability in industrial settings.

Acknowledgments. The authors thank Alex Borgida for insightful remarks on
the paper [14] presented at the 14th International Conference on Requirements
Engineering, which helped shape the ideas herein. The first author acknowledges
funding from the Belgian ICM/CIM Doctoral Fellowship Program.

References

1. Antoniol, G., Canfora, G., De Lucia, A.: Maintaining traceability during object-
oriented software evolution: a case study. In: Proc. Int. Conf. Softw. Maintenance
(1999)

2. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Intell. 128(1–
2), 203–235 (2001)

3. Briand, L.C., Labiche, Y., Yue, T.: Automated Traceability Analysis for UML
Model Refinements. Carleton Univ. Technical Report, TR SCE-06-06, ver.2 (Au-
gust 2006)

4. Chesñevar, C.I., Maguitman, A.G., Loui, R.P.: Logical Models of Argument. ACM
Comput. Surv. 32(4), 337–383 (2000)

5. Conklin, J., Begeman, M.L.: gIBIS: A hypertext tool for exploratory policy discus-
sion. ACM Trans. Inf. Syst., 6(4) (1988)

6. Dömges, R., Pohl, K.: Adapting Traceability Environments to Project-Specific
Needs. Comm. ACM 41(12), 54–62 (1998)

7. Egyed, A.: A Scenario-Driven Approach to Traceability. Proc. Int. Conf. Softw.
Eng., 123–132 (2001)

8. Ford, M., Billington, D.: Strategies in Human Nonmonotonic Reasoning. Compu-
tat. Intel. 16(3), 446–468 (2000)

9. Gotel, O.C.Z., Finkelstein, A.C.W.: An Analysis the Requirements Traceability
Problem. Tech. Rep. TR-93-41, Dept. of Computing, Imperial College (1993)

10. Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the requirements traceability
problem. In: Proc. Int. Conf. Req. Eng., pp. 94–101 (1994)

Tracing the Rationale Behind UML Model Change Through Argumentation 469

11. Gotel, O.C.Z.: Contribution Structures for Requirements Engineering. Ph.D. The-
sis, Imperial College of Science, Technology, and Medicine, London, England (1996)

12. Haumer, P., Pohl, K., Weidenhaupt, K., Jarke, M.: Improving Reviews by Extend-
ing Traceability. In: Proc. Annual Hawaii Int. Conf. on System Sciences (1999)

13. Jackson, J.: A Keyphrase Based Traceability Scheme. IEE Colloq. on Tools and
Techn. for Maintaining Traceability During Design (1991)

14. Jureta, I.J., Faulkner, S., Schobbens, P.-Y.: Justifying Goal Models. Proc. Int.
Conf. Req. Eng., 119–128 (2006)

15. Letelier, P.: A Framework for Requirements Traceability in UML-Based Projects.
In: Proc. Int. Worksh. on Traceability in Emerging Forms of Softw. Eng. (2002)

16. Louridas, P., Loucopoulos, P.: A Generic Model for Reflective Design. ACM Trans.
Softw. Eng. Meth. 9(2) (2000)

17. Naslavsky, L., Alspaugh, T.A., Richardson, D.J., Ziv, H.: Using Scenarios to Sup-
port Traceability. Proc. Int. Worksh. on Traceability in emerging forms of software
engineering, 25–30 (2005)

18. OMG. UML 2.0 Superstructure Specification. Object Management Group, Final
Adopted Specification ptc/03-08-02 (2003)

19. Pinheiro, F.A.C., Goguen, J.A.: An Object-Oriented Tool for Tracing Require-
ments. IEEE Software 13(2), 52–64 (1996)

20. Pohl, K.: Process-Centered Requirements Engineering. Advanced Software Devel-
opment Series. J.Wiley & Sons Ltd, Taunton, England (1996)

21. Pohl, K.: PRO-ART: Enabling Requirements Pre-Traceability. Proc. Int. Conf.
Req. Eng., 76–85 (1996)

22. Pohl, K., Dömges, R., Jarke, M.: Towards Method-Driven Trace Capture. Proc.
Conf. Adv. Info. Syst. Eng., 103–116 (1997)

23. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In: Gab-
bay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, Kluwer, Dordrecht
(2002)

24. Ramesh, B., Dhar, V.: Supporting systems development by capturing deliberations
during requirements engineering. IEEE Trans. Softw. Eng. 18(6), 498–510 (1992)

25. Ramesh, B., Stubbs, C., Powers, T., Edwards, M.: Implementing requirements
traceability: A case study. Annals of Softw. Eng. 3, 397–415 (1997)

26. Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and its
implementation. Artificial Intelligence 53, 125–157 (1992)

27. Toranzo, M., Castro, J.: A Comprehensive Traceability Model to Support the De-
sign of Interactive Systems. In: Guerraoui, R. (ed.) ECOOP 1999. LNCS, vol. 1628,
pp. 283–284. Springer, Heidelberg (1999)

28. Ubayashi, N., Tamai, T., Sano, S., Maeno, Y., Murakami, S.: Model evolution
with aspect-oriented mechanisms. In: Proc. Int. Worksh. Principles of Softw. Evol.
(2005)

29. van Lamsweerde, A., Darimont, R.: Massonet Ph.: The Meeting Scheduler Problem:
Preliminary Definition. Université catholique de Louvain (1992)

30. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour.
In: Proc. Int. Conf. Req, pp. 249–263 (2001)

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 470–484, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Exploring Alternatives for Representing and Accessing
Design Knowledge About Enterprise Integration

Karthikeyan Umapathy and Sandeep Purao

College of IST, Penn State University, University Park, PA
{kumapathy,spurao}@ist.psu.edu

Abstract. Enterprise integration refers to solutions that facilitate meaningful
interactions among heterogeneous legacy applications. The scale, complexity
and specificity of most enterprise integration efforts mean that design knowledge
for enterprise integration has resisted codification. Important exceptions to this
include: use of Business Process Models (BPM) to understand integration
requirements; and Enterprise Integration Patterns (EIP), which present designers
with abstract descriptions of recurring design tactics for integrating applications.
The two, however, can be at odds. BPM encourages the control flow perspective;
whereas EIP codifies an operational perspective. Mapping between the two to
develop coherent solutions, therefore, tends to be problematic. To bridge the gap,
we suggest an approach that builds on the theory of speech acts. We develop
essential components of such an approach, including a re-representation of EIP
as structures of speech acts, a characterization of tasks in BPM with action types,
and a mapping between speech acts and action types. These components are
accompanied by inference rules that produce a mapping between sets of tasks in
a business process and structures of speech acts to allow reasoning on
identification of appropriate EIPs for given set of tasks. We demonstrate
usefulness of the proposed approach by application to industry cases.

Keywords: Enterprise integration, design knowledge, patterns, business
process modeling, BPMN, speech acts, action types, ontology reasoner.

1 Introduction

Designing enterprise integration solutions is difficult for several reasons including
heterogeneity of platforms and programming languages, the autonomous nature of
legacy applications [1], diversity and complexity of systems [2], and difficulties
related to understanding requirements for integration [2].

To overcome these difficulties, designers can utilize many integration tactics [3].
These include the use of business process models (BPM) [4] and use of design
knowledge in the form of enterprise integration patterns (EIP) [5] to devise solutions in
response to the integration requirements. The two, BPM and EIP, however follow
different perspectives. BPM embody a control-flow perspective [4], whereas EIP describe
operational solutions abstracted to reflect codified wisdom from past experiences [5, 6].
Mapping the two, therefore, remains a challenge for enterprise integration solution
developers, who must exploit (a) knowledge of integration requirements as expressed in

 Exploring Alternatives for Representing and Accessing Design Knowledge 471

the BPM, (b) design knowledge as expressed in the EIP, and (c) rules or heuristics that
dictate application of the latter to the former.

In addition to the cognitive roadblocks that developers may face, the primitives
used by the two perspectives also tend to be different. The BPM techniques are used
for modeling business activities and dependencies among activities through constructs
such as sequencing, splits, joins, and iterations, i.e., they follow a control-flow
perspective [4]. The EIP [5], on the other hand, use constructs such as message,
channel, one-way, request-response and others that build abstract solutions to connect
systems that perform business activities, i.e. they follow an operational perspective
[6]. Translation across the two, therefore, remains a significant concern.

The objective of this paper is to explore a specific alternative, speech act theory [7]
and language-action perspective [8], for bridging this gap. We argue for and develop
several components towards this objective. Together, the contribution of these
components is to help enterprise integration solution developers to overcome this gap
between integration requirements and design knowledge about enterprise integration.
The paper reviews prior work; develops parsimonious sets of speech acts and action
types and mechanisms such as for rules and heuristics for inferring the mapping
between BPM fragments and EIPs. Three cases, of which one is described in
significant detail, demonstrate usefulness of the technique.

2 Background

The two elements, BPM and EIP address two sides of a solution approach for
enterprise integration. The first is useful for eliciting requirements; the second
provides abstract representations of design knowledge.

2.1 Eliciting Enterprise Integration Requirements

To understand how the existing systems
must interact, the tasks performed by these
systems must be identified and logically
interlinked to form end-to-end processes
[9]. These tasks typically represent the flow
of business tasks, decision points, events,
and the logic for executing a process.
Logical interlinking of these tasks,
therefore, follows control-flow constructs
defined by the Workflow Management
Coalition [10]. Representations for visually
depicting these tasks include BPM
techniques which are, in part, based on ideas
contained in Petri Nets [4], i.e. following
control constructs. Business Process
Modeling Notation (BPMN) [11] has been

proposed as a standard for modeling business processes. It provides graphical
notations for developing BPM that are easily understandable by all stakeholders [11].

Fig. 1. A business process fragment repre-
sented using BPMN

472 K. Umapathy and S. Purao

Fig 1 shows a fragment of BPM developed using BPMN. Business process models
developed using BPMN allow identification of tasks performed by disparate systems,
tasks that can be automated, kinds of exchanges that take place between systems and
areas where business rules need to be enforced [12]. BPM, therefore, help determine
how to integrate systems, and thus represent integration requirements.

2.2 Design Knowledge for Enterprise Integration

The design of a solution, however, requires drawing on insight, prior experience or
codified knowledge. The design activity, therefore, often involves identification of
issues and exploration of various design strategies that may address those issues [13].
Design strategies that can be employed to address specific design problems are known
as design knowledge [14]. Design knowledge typically consists of abstractions of
design strategies and their associated relationships [15]. Depending on the design
domain, these abstractions may consist of recurring patterns of geometrical,
topological, temporal, causal, and functional descriptions and relations [16].
Explicitly capturing design strategies in the form of patterns has been shown to aid in
transferring design knowledge to other designers [17].

The idea of patterns as a design solution was introduced by Christopher Alexander
in the building construction architectures domain [18], and first popularized in the
software design domain by Gamma et al. [19]. A pattern is domain-independent
abstraction of common design structure for recurring design problem. Each pattern
describes when it can be applied, its design constraints, consequences and trade-offs
of applying it in a particular contexts [19]. When related patterns are woven together
they form a “pattern language” which captures the relationship between solutions and
problems [5]. Patterns have been proposed for conceptual design [20], in different
domains for detailed design [19], and have been demonstrated to be viable for
conceptual design of new systems [21].

2.2.1 Enterprise Integration Patterns (EIP)
In the enterprise integration domain, such a pattern language, consisting of sixty-five
patterns has been proposed [5]. These patterns are abstract, i.e., they do not provide
implementation code or wrappers; instead, they provide recurring solutions that

designers can use to solve integration
problems. For instance, publish-subscribe
channel (shown in the fig 2) describes how
channels may be designed to deliver a
copy of a particular event to each receiver,
who may have subscribed to a channel.
Hohpe and Woolfe [5] organize the
patterns into seven categories: integration
styles, endpoint patterns, system
management patterns, channel patterns,
message construction patterns, routing
patterns, and transformation patterns. The

first three categories suggest different ways of exchanging documents, producing or
consuming messages and managing performance of messaging systems respectively;

Fig. 2. Publish-subscribe channel pattern

 Exploring Alternatives for Representing and Accessing Design Knowledge 473

while the last four categories outline different ways of integrating systems based on
how they transport, construct, route and transform messages respectively. Patterns
contained in these four categories, which focus on operational flow between
applications to suggest abstract solutions to integrate them [6], are the focus of this
research.

2.3 Problem: A Mismatch Between Control-Flow and Operational-Flow

As outlined earlier, this mismatch between the two perspectives between BPM and
EIP represents the key problem we address in this paper. One possibility to address
this problem includes analogical reasoning [22]. A prerequisite to this, however, is a
clear mapping between a problem domain and the solution domain [21]. With this
mapping, inferences may be drawn to apply the latter to the former. We explore the
feasibility of Language-Action to facilitate this mapping.

3 An Alternative Based on Language-Action Perspective

We start our arguments with the observation that a naive approach to accessing design
solutions (EIP) based on integration requirements (BPM) is to utilize structural
similarities between them [16]. For instance, a requirement with one-to-many
relationship (i.e., first task performed by single performer while following set of tasks
performed by two or more performers) would lead to choice of following patterns:
message router, publish-subscribe channel, content-based router, dynamic router,
recipient list, competing consumers, and message dispatcher. As the example
demonstrates, structural similarity alone cannot lead to appropriate selection of EIP.
Further, each pattern has a specific purpose and associated constrains of its usage
[23], which may make some of them more appropriate for a situation versus others,
Both functional and structural similarities must, therefore, be employed to access and
identify EIP for a set of requirements [16]. For instance with above example, if the
first performer is sending an event message to a set of performers who have
subscribed for that particular topic, then the appropriate pattern would be publish-
subscribe pattern.

We argue that the language-action perspective [8] and specifically, speech act
theory [7] is appropriate for representing such functional attributes of both BPM and
EIP. The speech acts represents a viable candidate for this mapping because they
focus on the use of language as performance of actions necessary to accomplish tasks,
and message exchanges that take place in aid of those actions [24]. Lim et al. [25]
suggest that, enterprise integration are represented by interactions among participants
in a business process. The EIP contain integration tactics to support such interactions
among participants [5]. These interactions can be operationalized with the use of
structures of speech acts [26], because speech acts codify different actions that
participants must perform to engage in these interactions [27] (e.g. promises, orders,
requests, declarations among others).

Following these arguments, we develop the mapping between BPM and EIP with
interactions as the starting point. An interaction is defined as a sequence of
interrelated speech acts performed by least two performers [26]; including an

474 K. Umapathy and S. Purao

‘initiator’ and a ‘responder’ [28]. Speech act theory [7] argues that language can be
used not only to describe a situation or fact, but also to perform action [29]. In our
case, speech acts represent performance of actions by each participant in an
interaction. Sequences of speech acts, thus, codify the interaction. An important
prerequisite for ensuring that appropriate speech acts are selected are action types
that reflect the performers’ intent [30]. Action types represent high-level business
actions performed by participants through means of communication directed towards
other participant(s) [31].

The mapping between BPM developed using BPMN notations and EIP, then, must
contain an element that identifies interactions in the business processes. Interactions
in the BPM can be identified by detecting a sequence of tasks in a business process,
where there are changes in the performer. Task(s) carried out by one performer
(initiator) are labeled as the first part of the interaction, and those carried out by the
other performer (responder) are identified as the second part of interaction. Each task
in the interaction with associated action type can be mapped against a small set of
possible speech acts. These interactions among speech acts (compiled from the set of
tasks) can be mapped against representation of EIPs as sequences of speech acts.
Fig 3 below provides overview of this mapping.

Fig. 3. Mapping sets of tasks against integration patterns

3.1 Components Facilitating Mapping

The components necessary for mapping described above include: (i) a parsimonious
set of speech acts appropriate for representing EIPs, (ii) representing EIPs as
sequences of speech acts, (iii) a set of action types that depict high-level business
actions to categorize tasks in BPMs, and (iv) associations between action types and
speech acts.

3.1.1 A Parsimonious Set of Speech Acts
To obtain this set of speech acts, we gathered an initial set of speech acts that are
relevant to the enterprise integration domain (see, for example, [30] and [24]). Moore
[30] suggests that speech act theory provides appropriate foundation for automated
electronic messaging systems and identifies 23 speech acts that can aid in this
automation. Johannesson and Perjons [24] develop design principles for modeling

 Exploring Alternatives for Representing and Accessing Design Knowledge 475

business processes in the context of enterprise integration domain and suggest 12
speech acts that can be used to represent different message types that are typically
found in the business processes. A combination of these two resources provided the
initial set of speech acts for our research. This initial set was examined, and speech
acts that were overlapping were discarded. The combined set was further refined by
aggregating speech acts that represented specializations of other speech acts. For
instance, the ‘Query’ speech act can encompass the ‘Request’ speech act as both
represent intent of the initiator asking for certain information or action from the
responder. The refinement resulted in 9 speech acts, which are: Acknowledge, Cancel,
Commit, Direct, Disagree, Fulfill, Inform, Propose, and Query. Table 1 provides brief
description of the parsimonious set of speech acts.

Table 1. A parsimonious set of speech acts

Speech Acts Description Source Comment
Acknowledge Acknowledge successful

completion of an exchange or
transaction

Moore 2001

Cancel Cancel an established
commitment or contract

Johannesson and
Perjons 2001 and
Moore 2001

Commit Committing to a course of action
or an obligation

Disagree Participant may disagree on an
issue with other participants

These two speech
acts were dropped
because they were
unemployable in the
context of EIP

Direct An attempt to get the recipient to
perform a desired action

Moore 2001

Fulfill Participants completing certain
material or economic actions

Inform Providing information that will be
useful for other participants
actions

Propose Proposing to create, change or
cancel a contract, commitment, or
any other economic event

Query Requesting for more information

Johannesson and
Perjons 2001 and
Moore 2001

3.1.2 Representing EIP with Speech Acts
The parsimonious set of speech acts was used to identify sequences of speech acts
that can represent each EIP of interest. Fig 4 shows a few examples, where an EIP is
represented as a sequence of speech acts along with the rationale.

We acknowledge this set of speech acts may not be comprehensive. It is not our
intent to arrive at a comprehensive list of speech acts. Any such claim is clearly
subject to empirical assessment. Instead, we focus on ensuring that the EIP of interest
can be described by this parsimonious set. We were able to devise structures of
speech to represent each EIP.

476 K. Umapathy and S. Purao

Fig. 4. Enterprise integration patterns as sequence of speech acts

3.1.3 Characterizing Task Types in BPM with Action Types
To categorize task types in BPM, high-level business actions were obtained from
different business activity behaviors described in the Unified Modeling Language
(UML) specification [32]. UML is widely used for modeling BPM and software
application design solutions [33]. The UML specification describes about 54 different
possible activities; each activity description was interpreted with respect to their
applicability to seven speech acts. From this review, we identified 16 different
activities relevant to this mapping. These 16 action types were transformed into their
simple forms, for easier comprehension. For instance, the ‘AcceptCallAction’ action
type was found relevant for the ‘Acknowledge’ speech act, and was transformed into
‘Accept call with no receipt send’. After this transformation, the 16 action types were
further reduced to 11 action types by aggregating action types that can encompass
other action types into single action type. For instance, ‘Accept call with no receipt

 Exploring Alternatives for Representing and Accessing Design Knowledge 477

send’ and ‘Accept event with no receipt send’ action types that are relevant to
‘Acknowledge’ speech act were aggregated into ‘Accept with no receipt send’ action
type. Table 2 provides shows the action types with mapping against speech acts.

Table 2. Mapping between speech acts and action types

Action Types Speech Acts
Accept with no receipt send Acknowledge
Reject with no receipt send Cancel
Invocation Direct
Declare completion of task Fulfill
Accept and send receipt
Provide information
Raise Exception
Reject and send receipt

Inform

Propose to perform task Propose
Request for Information
Request to cancel task

Query

3.1.4 Inferring Mapping Between BPM and EIP with Speech Acts
Armed with the choices and representations described above, it is possible to
construct mechanisms for inferring a mapping between requirements (BPM
fragments) and solutions (EIP). An infrastructure to implement this mapping would
require a knowledge base that captures relationship and constraints among concepts
such as task, action types, speech acts and EIP [34]. The ontology we develop allows
such a description of concepts and expresses relationships and constraints between
concepts [36] – it follows the view of an ontological representation as “an explicit
specification of a conceptualization” [35] The declarative formalism we use for this
purpose is the Web Ontology Language (OWL) [37].

An advantage of OWL is the ability to make inferences using the OWL knowledge
base with the use of OWL reasoners. We utilize Bossam OWL Reasoner [38] to make
inference on appropriate EIPs for a given set of tasks. Bossam is a RETE-based
forward chaining rule engine with native support for reasoning over OWL ontologies
[39]. The Bossam inference engine translates OWL classes and restrictions as facts,
i.e., relationships among action types, speech acts and EIPs are declared as a set of
facts. Rules can then be developed to make inferences about appropriate EIPs over
this declared set of facts.

A final input to the execution of rules in the Bossam OWL Reasoner is interactions
in the business process as an additional set of facts. The Bossam OWL Reasoner,
then, suggests a mapping between interactions identified and sequence of speech acts
that are appropriate for the identified interactions. The inference for each identified
interaction is constructed as a sequence of speech acts, which is then declared as an
additional set of facts to the Bossam OWL Reasoner. Bossam OWL Reasoner then
infers a mapping between the interactions and EIPs using this sequence of speech
acts. So far, more than 25 rules have been developed for this inference. Table 3 shows
an example.

478 K. Umapathy and S. Purao

Table 3. Heuristic for inferring mapping between EIP and BPMN with speech acts

Pattern Inference Rule
Aggregator If Interaction ind has Many to One association between initiator y and

responder b AND Relevant speech act for action performed by Initiator(s) y is
Inform AND Relevant speech act for action performed by Responder b is
Inform
Then Appropriate pattern for identified Interaction ind is Aggregator

Command
Message

If Interaction ind has One to One association between initiator y and
responder b AND Relevant speech act for action performed by Initiator(s) y is
Direct
Then Appropriate pattern for identified Interaction ind is Command Message

Point-to-
Point
Channel

If Interaction ind has One to One association between initiator y and
responder b
Then Appropriate pattern for identified Interaction ind is Point-to-Point
Channel

4 Application

The mapping developed was applied to three examples. The first was drawn from
ITSO Speedy Rentals scenario developed by IBM [40]; the second came from the
supply chain management (SCM) scenario [41] developed by the Web Services
Interoperability Organization (WS-I); and the third was the Widget-Gadget Corp
scenario developed by Hohpe and Woolfe [5]. The inference engine was used to
identify mappings for these examples. Table 4 shows a summary of results. Due to
space constraints, the first, drawn from IBM [40] is described in more detail.

Table 4. Summary of application of the mapping to the three examples

Case Source Interactions
Identified

BOSSAM
Rules invoked

Number of distinct
EIPs identified

1 IBM 11 8 3
2 WS-I 4 7 4
3 Hohpe and Woolfe 6 9 5

4.1 The Speedy Rentals Scenario from IBM

To demonstrate application the mapping developed in this paper, we use ITSO
Speedy Rentals scenario developed by IBM [40]. The particular business process
identified for this demonstration is the “Vehicle fulfillment process.” In this process,
the customer reserves a vehicle and reaches a rental agreement with ITSO Speedy
Rentals. The rental agency then reserves a vehicle based on customer's request. If the
vehicle is not available for the selected group, a vehicle from the next group level is
selected. When the vehicle is collected by the customer, a rental agreement is initiated
and its status is set to ‘active.’ The customer takes possession of the vehicle for the
agreed duration. If a vehicle is not returned at the planned date and time, the customer
must be contacted and a new return date, time, and location is confirmed. The existing

 Exploring Alternatives for Representing and Accessing Design Knowledge 479

rental agreement should be updated with the new details. At the time of the final
payment calculation, a discount will be applied to ITSO Speedy Rentals loyalty club
members. A final invoice is generated and given to the customer upon completion and
return. After receiving payment from customer, rental agreement is terminated. Fig 5
shows the model for the vehicle fulfillment process drawn with the BPMN notation.

Fig. 5. Business process model for vehicle fulfillment process

In this process, 11 interactions can be identified. The tasks are marked in the figure
and the interactions listed in table 5, columns 1 through 4. For each task in the
identified interactions, based on its action type appropriate speech act is identified by
declaring these tasks and action types as facts to the Bossam OWL reasoner. Running
Bossam OWL reasoner with this fact set allows generation of a mapping between
tasks and relevant speech acts. Table 5 shows these results. For instance, the action
type for task 1 is ‘Accept and send receipt’ as the customer accepts and enters into a
rental agreement. The associated speech act for ‘Accept and send receipt’ action type
is ‘Inform;’ therefore, the Bossam OWL Reasoner would map task 1 to the ‘Inform’
speech act.

The speech acts of initiator and responder forms a sequence of speech acts for each
interaction. These speech act sequences are declared as facts to the Bossam OWL
Reasoner. Running Bossam OWL reasoner with this set of facts provides a mapping
between interactions identified and EIPs appropriate for these interactions. For
instance, interaction 2 is a many-to-one interaction (2, 3 and 4), with the ‘Inform’
speech act for initiator and the ‘Acknowledge’ and ‘Inform’ speech acts for
responders. The Bossam OWL Reasoner suggests Content-Based Router as an
appropriate EIP for this interaction. Table 6 shows these results.

The EIPs identified for each interaction, thus, point to plausible implementation
strategies for connecting the performers for tasks involved in the interaction. For
example, interaction 2 requires performance of tasks from the vehicle reservation
system and the rental agent. The EIP identified, content-based router, suggests that the
capability of the vehicle reservation system be augmented to include such routing, and

480 K. Umapathy and S. Purao

the interface of the rental agent system be augmented to respond to such routing
messages. A further use of the results is to examine the capabilities required for a
performer system by examining all interactions in which it participates. For example,

Table 5. Speech act sequence for identified interactions for the speedy rental scenario

Interacti
ons

Tasks Performer Role Action Type Speech Act

1 Customer Initiator Accept and send
receipt

Inform 1

2 Vehicle
Reserve
System

Responder Provide information Inform

2 Vehicle
Reserve
System

Initiator Provide information Inform

3 Rental Agent Responder Accept with no receipt
send

Acknowledge

2

4 Rental Agent Responder Provide information Inform
4 Rental Agent Initiator Provide information Inform 3
1 Customer Responder Accept and send

receipt
Inform

3 Rental Agent Initiator Accept with no receipt
send

Acknowledge 4

5 Customer Responder Declare completion of
task

Fulfill

5 Customer Initiator Declare completion of
task

Fulfill 5

6 Rental Agent Responder Provide information Inform
6 Rental Agent Initiator Raise Exception Inform
7 Vehicle

Reserve
System

Responder Accept and send
receipt

Inform
6

8 Customer Responder Provide information Inform
8 Customer Initiator Provide information Inform 7
7 Vehicle

Reserve
System

Responder Accept and send
receipt

Inform

7 Vehicle
Reserve
System

Initiator Accept and send
receipt

Inform 8

9 Member
Discounts

Responder Provide information Inform

9 Member
Discounts

Initiator Provide information Inform 9

10 Invoice Responder Provide information Inform
10 Invoice Initiator Provide information Inform 10
11 Customer Responder Provide information Inform
11 Customer Initiator Provide information Inform 11
12 Rental Agent Responder Declare completion of

task
Fulfill

 Exploring Alternatives for Representing and Accessing Design Knowledge 481

the vehicle reservation system participates in interaction 1 (as responder), in
interaction 2 (as initiator), interaction 6 (as responder), interaction 7 (as responder),
and interaction 8 (as initiator). The different EIPs identified for these interactions
include: point-to-point channel, content-based router, and content enricher. Hohpe
and Woolfe [5] describe the capabilities and interfaces that different parties to these
patterns must possess. Such prescriptions can then guide the development of
integration solutions for each performer participating in the process.

Table 6. Enterprise Integration Patterns suggested for the identified interactions

Interactions Speech Act Sequence Patterns Identified
1 Inform, Inform Point-to-Point Channel
2 Inform, Acknowledge,

Inform
Content-Based Router

3 Inform, Inform Point-to-Point Channel
Content Enricher

4 Acknowledge, Fulfill Point-to-Point Channel
5 Fulfill, Inform Point-to-Point Channel
6 Inform, Inform, Inform Content-Based Router
7 Inform, Inform Point-to-Point Channel

Content Enricher
8 Inform, Inform Point-to-Point Channel
9 Inform, Inform Point-to-Point Channel

Content Enricher
10 Inform, Inform Point-to-Point Channel
11 Inform, Fulfill Point-to-Point Channel

5 Discussion

In this paper, we argue for, and develop essential components of, an approach to
facilitate the representation, translation and access to design knowledge about
enterprise integration. The components we develop include a parsimonious set of
speech acts and action types, both building on prior work that provides a basis for the
translation. The translation includes a re-representation of EIPs as structures of speech
acts, a characterization of tasks in BPM with action types, and a mapping between
speech acts and action types. These are accompanied by a set of rules that can be used
to infer the mapping between BPM and EIP. As a consequence of these
representations and rules, we demonstrate an approach to map integration
requirements (captured as BPMN specifications following a control-flow perspective)
against design knowledge (available as EIPs following the operational perspective).

Accessing and identifying appropriate design knowledge like EIP is merely a
starting point in the process of designing enterprise integration solutions. As
described towards the end of the previous section, after identifying appropriate EIP
for each interaction in the business process, the identified patterns must be considered
for each performer in the interaction, and then composed according to the interaction
sequences described in the business process. Such a composition of integration
patterns would describe conversations among systems that are being integrated. Thus,

482 K. Umapathy and S. Purao

possible design solutions suggested by integration patterns can be implemented using
web service conversation specifications. A possible mechanism to translate this
composition into a web service conversation specification is described in [42].

In this paper, we have also demonstrated applicability of this mapping and the
overall solution approach to multiple examples, including one in-depth, for the
Speedy Rental scenario developed by IBM. We are currently refining a research
prototype that will allow designers to develop business process models using BPMN,
access and select appropriate integration patterns, and convert them into web service
conversation specifications with the help of mechanisms described in this paper. We
believe that the approach we have outlined and its components, as described in this
paper would improve the quality and internal consistency of the design solution, and
reduce the effort required to access and select appropriate EIPs. As part of future
work, an empirical evaluation is planned to assess whether these outcomes can be
obtained.

References

1. Hasselbring, W.: Information System Integration. Communications of the ACM 43, 32–38
(2000)

2. Dalal, N.P., Kamath, M., Kolarik, W.J., Sivaraman, E.: Toward an Integrated Framework
for Modeling Enterprise Processes. Communications of the ACM 47, 83–87 (2004)

3. Themistocleous, M., Irani, Z., Kulj, J., Love, P.E.D.: Extending the information system
lifecycle through enterprise application integration: a case study experience. In: Annual
Hawaii International Conference on System Sciences, vol. 37, pp. 228–235. IEEE, Los
Alamitos (2004)

4. Aalst, W.M.P.: Business Process Management: A Survey. Business Process Management
(BPM): International Conference. In: van der Aalst, W.M.P., ter Hofstede, A.H.M.,
Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

5. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley, London, UK
(2004)

6. Aalst, W.M.P., Hofstede, A.H.M.t., Kiepuszewski, B., Barros, A.P.: Workflow Patterns.
Distributed and Parallel Databases 14, 5–51 (2003)

7. Searle, J.R.: Speech acts: An essay in the philosophy of language. Cambridge, Cambridge,
England (1969)

8. Weigand, H.: Two Decades of the Language-Action Perspective: Introduction.
Communications of the ACM 49, 44–46 (2006)

9. Zhu, J., Tian, Z., Li, T., Sun, W., Ye, S., Ding, W., Wang, C.C., Wu, G., Weng, L., Huang,
S., Liu, B., Chou, D.: Model-driven business process integration and management: A case
study with the Bank SinoPac regional service platform. IBM Journal of Research and
Development 48, 649–670 (2004)

10. Terminology, W.: Workflow Management Coalition Terminology & Glossary. The
Workflow Management Coalition Specification (1999). http://www.wfmc.org/standards/
docs/TC-1011_term_glossary_v3.pdf

11. BPMN: Business Process Modeling Notation Specification. Object Management Group,
Inc. (OMG) (2006), http://www.bpmn.org/Documents/OMG

12. Popkin, J.: Improving Regulatory Compliance With Business Process Modeling. Business
Integration Journal (2005), http://bijonline.com/index.cfm?section=article&aid=212

 Exploring Alternatives for Representing and Accessing Design Knowledge 483

13. Gero, J.S.: Design prototypes: a knowledge representation schema for design. AI
Magazine 11, 26–36 (1990)

14. Purcell, T., Sodersten, K.: Design Education, Reflective Practice, and Design Research.
Design Thinking Research Symposium Delft University of Technology, The Netherlands
(2001)

15. Kalay, Y., Swerdloff, L., Majkowski, B.: Process and Knowledge in Design Computation.
Journal of Architectural Education 43, 47–53 (1990)

16. Goel, A.K.: Design, analogy, and creativity. IEEE Expert 12, 62–70 (1997)
17. Schmidt, D.C.: Using design patterns to develop reusable object-oriented communication

software. Communications of the ACM 38, 65–74 (1995)
18. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings,

Construction. Oxford University Press, USA (1977)
19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, London, UK (1994)
20. Coad, P., North, D., Mayfield, M.: Object Models: Strategies, Patterns, and Applications.

Prentice-Hall, Englewood Cliffs (1995)
21. Purao, S., Storey, V.C., Han, T.: Improving Analysis Pattern Reuse in Conceptual Design:

Augmenting Automated Processes with Supervised Learning. Information Systems
Research 14, 269–290 (2003)

22. Gentner, D.: Structure-mapping: A theoretical framework for analogy. Cognitive Science:
A Multidisciplinary Journal 7, 155–170 (1983)

23. Vokáč, M., Tichy, W., SjØberg, D.I.K., Arisholm, E., Aldrin, M.: A Controlled
Experiment Comparing the Maintainability of Programs Designed with and without
Design Patterns-A Replication in a Real Programming Environment. Empirical Software
Engineering 9, 149–195 (2004)

24. Johannesson, P., Perjons, E.: Design Principles for Process Modelling in Enterprise
Application Integration. Information Systems 26, 165–184 (2001)

25. Lim, S.H., Juster, N., Pennington, A.: The Seven Major Aspects of Enterprise Modelling
and Integration: A Position Paper. ACM SIGGROUP Bulletin 18, 71–75 (1997)

26. Aakhus, M.: Felicity conditions and genre: Linking act and conversation in LAP style
conversation analysis. International Working Conference on the Language-Action
Perspective on Communication Modelling (2004)

27. Bach, K., Harnish, R.M.: Linguistic Communication and Speech Acts. MIT Press,
Cambridge, MA (1979)

28. Christiansson, M.-T.: Interaction Analysis - An important part of Inter-organizational
Business and IS development. International Working Conference on the Language-Action
Perspective on Communication Modelling (LAP) (1998)

29. Goldkuhl, G., Ågerfalk, P.J.: Actability: A Way to Understand Information Systems
Pragmatics. International Workshop on Organisational Semiotics, Staffordshire
University, Stafford, UK (2000)

30. Moore, S.A.: A Foundation for Flexible Automated Electronic Communication.
Information Systems Research 12, 34–62 (2001)

31. Lind, M., Goldkuhl, G.: Generic Layered Patterns for Business Modelling. International
Working Conference on the Language-Action Perspective on Communication Modelling
(LAP) (2001)

32. UML: Unified Modeling Language. Object Management Group (OMG) (2005),
http://www.uml.org/

484 K. Umapathy and S. Purao

33. Gardner, T.: UML Modeling of Automated Business Processes with a mapping to
BPEL4WS. European Workshop on Object Orientation and Web Services (EOOWS)
(2003)

34. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations, Brooks/Cole, Pacific Grove. CA (2000)

35. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition 5, 199–220 (1993)

36. Wang, X., Chan, C.W., Hamilton, H.J.: Design of Knowledge-Based Systems with the
Ontology-Domain-System Approach. International conference on Software Engineering
and Knowledge Engineering. ACM Press, New York (2002)

37. OWL: OWL Web Ontology Language Overview. W3C (2004), http://www.w3.org/
TR/owl-features/

38. Bossam: Bossam Rule/OWL Reasoner. Minsu Jang (2006), http://mknows.etri.
re.kr/bossam/FrontPage

39. Jang, M., Sohn, J.-C.: An Extended Rule Engine for OWL Inferencing. International
Workshop on Rules and Rule Markup Languages for the Semantic Web, Hiroshima,
Japan, pp. 128–138 (2004)

40. ITSO Speedy Rentals: Patterns: SOA Foundation - Business Process Management
Scenario. IBM (2006), http://www.redbooks.ibm.com/redbooks/pdfs/sg247234.pdf

41. Scenario, S.C.M.: Supply Chain Management Use Case Model. Web Services-Interoperability
Organization (2003), http://www.ws-i.org/SampleApplications/SupplyChainManagement/
2003-12/SCMUseCases1.0.pdf

42. Umapathy, K., Purao, S.: Designing Enterprise Solutions with Web Services and
Integration Patterns. IEEE International Conference on Services Computing (SCC), pp.
111–118. IEEE Computer Society Press, Los Alamitos (2006)

Mining and Re-engineering Transactional Workflows
for Reliable Executions�

Walid Gaaloul, Sami Bhiri, and Armin Haller

DERI – National University of Ireland
IDA Business Park, Galway, Ireland

{walid.gaaloul,sami.bhiri,armin.haller}@deri.org

Abstract. A continuous evolution of business process parameters, constraints
and needs, hardly foreseeable initially, requires from the business process man-
agement systems a continuous design and a reliable process model. In this paper,
we are interested in developing a reactive design through a process log analysis
ensuring process re-engineering and execution reliability.

We propose to analyse workflow logs to discover workflow transactional be-
havior and to improve and correct related recovery mechanisms subsequently.
Our approach starts by collecting workflow logs. Then, we build, by statistical
analysis techniques, an intermediate representation specifying elementary depen-
dencies between activities. These dependencies are refined to mine the transac-
tional workflow model. The analysis of the discrepancies between the discovered
model and the initially designed model enables us to detect design gaps, con-
cerning particularly the recovery mechanisms. Thus, based on this mining step,
we apply a set of rules on the initially designed workflow to improve workflow
reliability.

1 Introduction

The increasing use of Workflow Management Systems (WfMS) in companies expresses
their undeniable importance to improve the efficiencies of their processes and reduce
costs. In spite of an established potential, WfMS show some limits to ensure a correct
and reliable execution. Due to the complex design process and the initially unfore-
seeable character of other parameters which appear after the execution phase (users’
evolution needs, unexpected execution exception, etc), it is impossible to easily foresee
and initially realize all necessary parameters for a “perfect” design. The main problem
is how to ensure that the specified workflow model guaranties reliable executions and
efficient recovery mechanisms. Most previous approaches develop a set of techniques
to analyze and check model correctness in their respective workflow model [1,2,3]. Al-
though powerful, these approaches may fail to ensure reliable workflow execution in
some cases.

It is neither possible nor intended by workflow designers to model all failures: the
process description will become complex very soon [4]. Furthermore, workflow errors

� This material is based upon works supported by the EU funding under the SUPER project
(FP6-026850).

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 485–501, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

486 W. Gaaloul, S. Bhiri, and A. Haller

and exceptions are commonly not detected until the workflow model is executed. In
addition, a great diversification of company services and products lead to a continuous
process evolution. New requirements emerge and existing processes change (“the only
constant is change”). Consequently, the alignment of the processes to the observed evo-
lutions requires a permanent attention and reaction during process life cycle. To main-
tain this alignment it is important to detect changes, i.e. the deviations of the described
or prescribed behavior.

It is obvious that the discovery, and the analysis of workflow interactions at runtime,
would enable the designer to be alerted of design gaps and then better understand and
correct failure handling and recovery techniques. Indeed, this kind of analysis is very
useful in showing cause effect relationships and to analyse the discrepancies between
the discovered model and the initially designed model. These discrepancies can be used
to detect initial design gaps which may be used in a re-engineering process. In this
paper, we describe new workflow mining [5] techniques which are able to discover a
workflow model by log analysis, and allow to improve its transactional behavior. These
workflow mining techniques are suitable tools to detect process changes during the
execution which can reflect process evolution.

In this article, we will illustrate our ideas using a running example (see Figure 1)
showing the need for discovering transactional behavior to improve workflow reliabil-
ity. We consider a car rental scenario. This workflow acts as a broker offering to its
customers a set of choices made from their choices expressed in the Customer Require-
ments Specification (CRS) activity. The Customer Identity Check (CIC) activity checks
the customer ID while the Car checking availability (CCA) activity and the parking
localisation (PL) provide available cars information and the respective car rental com-
panies supplier. Afterwards, the customer makes his choice and agrees on rental terms
in the CA activity. Then, the customer is requested to pay either by credit card (CC), by
check (CH), or by cash (SH). Finally, the bill is sent to the customer by the send Bill
(SB) activity.

To deal with workflow failures and ensure a reliable execution, designers specify ad-
ditional transactional interactions (dotted arrow). In our example, it was specified that if
CA fails then DBC compensates already executed activities and the car rental discovery
process (CIC, CCA and PL) should be restarted. To ensure the payment if CC fails, we
specify that CH or SH as alternatives. Besides, SH has the capability to be (re)executed
until success in case of failure. As for the failures of CCA (the workflow instance does

Fig. 1. Example of workflow

Mining and Re-engineering Transactional Workflows for Reliable Executions 487

not find any car propositions), the workflow instance cancels the CIC execution and
restarts CCA execution to (re)specify the client requirements. Workflow designers did
not provide failure handling mechanisms for the other activities and suppose that these
activities never fail.

Let us suppose now that in reality (by observation of sufficient execution cases)
CCA never fails but CIC can fail. This means there is no need to specify a recovery
mechanism for CCA, but if CIC fails we should cancel concurrent activities of the car
rental discovery process and resume workflow execution. Starting from workflow logs
(sufficient workflow execution cases), we propose workflow mining techniques that
detect these transactional design gaps and provide help to correct them.

The remainder of this paper is structured as follows. First, we describe in section 2
the structure of workflow event logs. After that, we detail our approach for mining
workflow recovery techniques (section 3). We mainly proceed in two steps. First, we
discover workflow patterns using statistical analysis of logs. After that, we extract work-
flow transactional dependencies. Based on these mined results, we use a set of rules to
improve workflow failure handling and recovery, and consequently process reliability
(section 4). Finally, we discuss in section 5 related works, implementation and perspec-
tives issues, before concluding.

2 Workflow Event Log Analysis

2.1 Workflow Event Logs Structure

The workflow specification might not be concerned with the details of the internal ex-
ecution of activities. However, it has to deal, at least, with the externally visible com-
pletion events (such as cancelled, failed, and terminated). Currently, most WfMS log
all events occurring during process execution. We suppose that it is possible to record
events such as (i) each event is referred to one activity (i.e. a well defined step in the
workflow), (ii) each event refers to one case (i.e. a workflow instance), and (iii) events
are completely ordered. Thus, we expect that events are detectable and collectable,
which means that WfMS are required to capture and keep a workflow log. Any in-
formation system such as ERP, CRM, or WfMS using transactional systems offers this
information in a certain form [5]. Data warehouses storing these workflow logs were
proposed in the literature [6,7]. These data warehouses simplify and accelerate work-
flow mining techniques’ requests over these databases.

Definition 1 (WorkflowLog)
An EventStream represents the history of a worflow instance events as a tuple stream
(sequenceLog, SOccurrence) where:

SOccurrence : int is the instance number.
sequenceLog : Event* is an ordered events set belonging to a workflow instance,

where an event is defined as tuple e Event= (activityId, state)
A WorkflowLog is a set of EventStreams. WorkflowLog=(workflowID, {EventStreami, 0
≤ i ≤ number of workflow instances}) where EventStreami is the event stream of the
ith workflow instance.

488 W. Gaaloul, S. Bhiri, and A. Haller

Based on actual workflow log collecting propositions, we present, in Definition 1,
our workflow log model. A WorkflowLog is composed of a set of EventStreams . Each
EventStream traces the execution of one case (instance). It consists of a set of events
(Event) that captures the activities life cycle performed in a particular workflow in-
stance. An Event is described by the activity identifier and the activity execution result
state (canceled, failed and terminated). In the following we present an EventStream ex-
tracted from the workflow example of Figure 1 representing 5th workflow instance:

L = EventStream(5, [Event(“CRS”, terminated), Event(“CCA”, terminated),
Event(“CIC”, terminated), Event(“PL”, terminated), Event(“CA”, terminated),

Event(“CC”, terminated), Event(“SB”, terminated)]))

2.2 Logs Statistical Analysis

As workflow execution flows are described through event dependencies, we propose to
build, by analysing statistically the WorkflowLog, Statistical Dependency Tables (SDT)
reporting log elementary events dependencies. An elementary events dependency is a
relation linking an Event ei to an other Event ej and expresses that there is an
EventStream where the event ei precedes directly the occurrence of the event ej . These
tables, which are based on the frequency table [8], report for each event a, the fol-
lowing information: (i) The overall frequency of this event (denoted #a) and (ii) the
causal dependencies to previous events bi (denoted SDT (a, bi)). The size of SDT is
N*N, where N is the number of workflow events. The (m,n) table entry is the fre-
quency of the nth event immediately preceding the mth event. Table 1 represents a
fraction of the initial SDT of our motivating workflow example. For instance, in this
table SDT((SB, terminated), (SH, terminated))=0.35 expresses that if SB occurs
then we have 35% of chance that SH occurs directly before SB in the workflow logs.

We demonstrated in [9] a correlation between the workflow dependencies and the log
statistics expressed in SDT (Theorem 1). Thus, each dependency between two workflow
events is expressed by a positive value in the corresponding SDT entry. This expresses
a relation of equivalence between the positive entries in SDT and the dependencies
between the concerned events. Thus, the first event of this statistical dependency is con-
sidered as a pre-condition of the second and reciprocally the second event is considered
as a post-condition of the first.

THEOREM 1 (CORRELATION BETWEEN SDT AND ACTIVITIES DEPENDENCIES)
Let wft a workflow which does not contain short loop spanning only two activ-
ities. ∀a, b ∈ wft where a immediately precedes b ⇔ SDT ((b, terminated),
(a, terminated)) > 0 ∧ SDT ((a, terminated), (b, terminated)) = 0.

3 Transactional Workflow Mining

WfMS are expected to recognize and handle errors to support reliable and consistent
execution of workflows. However as [10] pointed out, the introduction of some kind
of transactions in WfMSs is unavoidable to guarantee reliable and consistent workflow
executions. Transactional workflows have been introduced in [11] to clearly recognize

Mining and Re-engineering Transactional Workflows for Reliable Executions 489

the relevance of transactions in the context of workflows. The integration of transactions
into workflows was motivated by research efforts concerning database transaction mod-
els for advanced applications [12]. In contrast to database transaction models, transac-
tional workflows focus on consistency issues from a business point of view rather than
from a database point of view. The motivation behind modelling workflow transactional
behavior is to add the capability in the workflow to handle exceptional circumstances
that would otherwise leave the workflow in an unacceptable state. Basically, the trans-
actional behavior is used in case of failures and define recovery mechanisms supporting
the automation of failure handling during runtime.

Within transactional workflow models, we distinguish between the control flow and
the transactional behavior which is described through the activity’s transactional prop-
erties and transactional flow depicting respectively the intra and the inter activity trans-
actional dependencies.

Control Flow: Within a workflow instance where all activities are executed without
failure or cancellation, the control flow defines activity dependencies. In order to en-
hance reusability and common comprehension, we use the workflow patterns [13] as an
abstract description of a reoccurring class of dependencies to describe the control flow
as a patterns composition.

Activities Transactional Properties: Every activity can be associated to a life cycle
statechart that models the possible states through which the executions of this activity
can go, and the possible transitions between these states. The transactional properties
of an activity depend on the intra-activity state dependencies. The main transactional
properties that we are considering are retriable and pivot [14] (Figure 2). An activity
a is said to be retriable (ar) iff it is sure to complete even if it fails. a is said to be
pivot (ap) iff once the activity successfully completes, its effects remain and cannot be
semantically undone or reactivated.

Fig. 2. Activity transactional properties

Transactional Flow: During the execution of a transactional workflow, it has to be
decided, after an activity execution failure (i.e observation of failed state), whether an
inconsistent state was reached. According to this decision either a recovery procedure
has to be started or the process execution can continue according to the control flow (if
the activity failure does not affect the execution of the workflow instance). Recovery
mechanisms which are specified by transactional dependencies allow the failed activity

490 W. Gaaloul, S. Bhiri, and A. Haller

to react to reach a coherent state. The goal is to recover the failed workflow to a seman-
tically acceptable state. Thus, the incoherent state of failure can be corrected and the
execution can resume thanks to the recovery mechanism which put the failed instance
to a coherent point. A coherent point is an execution step of the workflow (equivalent
to a save point in database transactions) which represents an acceptable intermediate
execution state. It is also a decision point where certain actions can be taken to either
solve the problem that caused the failure or choose an alternative execution path to
avoid this problem [15]. Designers define for each failed activity, according to their
business needs the localisation of the coherent point. For instance, in our example, in
case of CCA failures, it was specified that the workflow resumes its execution from the
coherent point located on CRS.

In the following, we describe a set of techniques and algorithms for transactional
workflow mining. We proceed in three steps by discovering: (i) the workflow patterns
composing its control flow (section 3.1), the transactional flow (section 3.2) and the
activities transactional properties (section 3.3) including its recovery mechanisms.

3.1 Mining Workflow Patterns

In this section we focus on discovering “elementary” routing workflow patterns: Se-
quence, AND-split, OR-split, XOR-split, AND-join, OR-join, and M-out-of-N patterns
composing the control flow. As we have mentioned, these patterns describe the control
flow interactions for activities executed without “exceptions” (i.e. they reached suc-
cessfully their terminated state). Thus, there is no need to use the events dependencies
relating to (failed or cancelled) states which concern only workflow transactional behav-
ior (see next sections). For these reasons, we need to filter workflow logs and take only
EventStreams executed without failures or cancellations. Thus, the minimal condition
to discover workflow patterns is to have workflow logs containing at least the termi-
nated event state. This feature allows us to mine control flow from “poor” logs which
contain only terminated event state. Thus, we build a control flow SDT (noted SCfT)
that captures only events dependencies with terminated state in successful executions.
Therefore we do not differentiate between activities dependencies and events depen-
dencies (i.e. we do not need to mention the event states as we are interested only in
terminated states).

However, SDT presents some problems to express correctly activity dependencies
especially relating to concurrent or parallel behavior. In the following, we detail these
issues and propose solutions to overcome them (more details can be found in [16]). If we
assume that each EventStream from a WorkflowLog stems from a sequential (i.e no con-
current behaviour) workflow, a zero entry in SDT represents a causal independence and
a non-zero entry a causal dependency (i.e. sequential or conditional dependency). How-
ever, in case of concurrent behavior EventStreams may contain interleaved events se-
quences from concurrent threads. As a consequence, some entries, in SDT, can indicate
non-zero entries that do not correspond to dependencies. For example, the EventStream
given in section 2 “suggests” causal dependencies between CCA and CIC erroneously
in one direction, and CIC and PL in another direction. Indeed, CIC comes just before
CCA and CIC comes immediately before PL in this EventStream. These relations will
be reported by erroneous entries which are different to zero in SDT. These entries are

Mining and Re-engineering Transactional Workflows for Reliable Executions 491

erroneous because there is no causal dependencies between these activities. Formally,
two activities A and B are concurrent iff SDT ((A, terminated), (B, terminated))
and SDT ((B, terminated), (A, terminated)) entries in SDT are different from zero.
Based on this definition we proposed in [16] an algorithm to discover activity paral-
lelism and mark related entries by a negative value (solution 1).

Besides, an activity might not depend on its immediate predecessor in the
EventStream, but it might depend on another “indirectly” preceding activity. As an ex-
ample of this behavior, CIC is logged between CCA and PL in the EventStream given in
section 2. As consequence, CCA does not occur always immediately before PL in the
workflow logs. Thus we will have SDT ((PL, terminated), (CCA, terminated))) <
1 which is an under-evaluated. In fact, the right value is 1 because the execution of PL
depends exclusively on CCA. To discover these indirect dependencies, we introduced
in [16] the notion of activity concurrent window [16]. An activity concurrent window
(ACW) is related to the activity of its last event and covers its directly and indirectly pre-
ceding activities (solution 2). Now using these two solutions, we can compute the SCfT
(Table 1) which will be used to discover workflow patterns.

Table 1. SCfT and activities Frequencies (#)

SCfT((x,y) CRS CIC CCA PL CA CC CH SH SB
CRS 0 0 0 0 0 0 0 0 0
CIC 1 0 -1 -1 0 0 0 0 0
CCA 1 -1 0 0 0 0 0 0
PL 0 -1 1 0 0 0 0 0 0
CA 0 1 0 1 0 0 0 0 0
CC 0 0 0 0 1 0 0 0 0
CH 0 0 0 0 1 0 0 0 0
SH 0 0 0 0 1 0 0 0 0
SB 0 0 0 0 1 0 0.43 0.35 0.22

#CRS = #CIC = #CCA = #PL = #CA = #SB = 100
#CC = 43#CH = 35#SH = 22

The last step is the identification of workflow patterns through a set of rules. Each
pattern has its own features which abstract statistically its causal dependencies, and rep-
resent its unique identifier. These rules allow, if a workflow log is complete, to discover
the set of workflow patterns included in the mined workflow. Our control flow min-
ing rules are characterized by a “local” workflow mining approach. Indeed, these rules
proceed through a local log analysis that allows us to recover partial results of mining
workflow patterns. To discover a particular workflow pattern we need only Events re-
lated to the activities of this pattern. Thus, even using only fractions of workflow logs,
we can discover correctly corresponding workflow patterns.

Due to the lack of space we present here only rules related to the XOR-split (A, B1,
B2, . . . , Bn) pattern which chooses after the A activity execution one of the {B1, B2,
. . . , Bn} activities (Table 2). We refer to our previous works [16,17] for the other pat-
terns mining rules. The XOR-split pattern rule specifies that (i) there is no concurrent

492 W. Gaaloul, S. Bhiri, and A. Haller

behavior between {B1, B2, . . . , Bn} through (∀0 ≤ i, j ≤ n; SCfT ((Ai, Aj) �=
−1) formula and (ii) the execution of A depends on the termination of one of the
{B1, B2, . . . , Bn} through (Σn

i=0 (#Ai)=#B ∧ Σn
i=0 SCfT ((B, Ai)=1) formula. For

instance, using Table 1 we mine that this pattern links CC, CH, SH and SB. In fact,
the SCfT’s entries of these activities indicate non concurrent behaviour between CC,
CH and SH (SCfT (CC, CH) = SCfT (CH, SH) = SCfT (SH, CC) �= -1) and
SB execution depends on the termination of CC, CH and SH (SCfT (SB, CC) +
SCfT (SB, CH) + SCfT (SB, SH) = 1).

Table 2. Mining rules of XOR-split workflow pattern

Pattern rules
XOR-split (Σn

i=0 (#Ai)=#B)∧(Σn
i=0 SCfT(B, Ai)=1)∧(0≤i, j≤n; SCfT (Ai, Aj) �= − 1)

3.2 Mining Activities Transactional Dependencies

Similar to the discovery of workflow patterns, we build statistical transactional depen-
dencies tables STrD that report only event dependencies captured after activity failures.
These dependencies provide a convenient way to specify and reason about workflow
transactional behavior expressed in terms of transactional properties and transactional
flow. To calculate these dependencies we use the same definition, except that we capture
only event dependencies after activity failures. In practical terms, each STrD is related
to an activity “act” and captures statistically workflow behavior after act fails. ITRact

is a STrD, built to capture transactional inter-activities dependencies after act failure.
We note that act’s dependencies before the failure are not reported in ITRact.

Definition 2 (Inter-activities transactional dependencies table)
We denote by ITRact inter-activity transactional dependencies table that reports
event dependencies after act failures. Each entry in ITRact(e1, e2) is an event de-
pendency where for i=1 or i=2:

�(ei.state= failed ∧ ei.activity = act;) ∨
�∃str : EventStream; Evti, Evtj : Event ∈ str| (Evtj .activity = act ∧

Evtj .state= failed ∧ Evti.activity = ei.activity ∧ Evti.state= ei.state ∧ Evti <
Evtj).

To build ITRact, we use only logs where act fails keeping only the events depen-
dencies after its failure. The dependencies located before act fails report the control
flow. We distinguish two types of inter-activities transactional dependencies in ITRact

(c.f. definition 2). The first category reports the event dependencies where we can find
the failed event of act (e.state= failed ∧ e.activity = act). The second category reports
any dependencies where there is an activity executed after the failure of act. In this set
of activities, we can find activities which are not in the discovered control flow. Indeed,
the recovery mechanisms can require, to compensate the act failure, “new” compensa-
tion activities which semantically undo act’s execution effects. Table 3.a represents a
fraction of ITRact of our motivating workflow example after CA fails.

Mining and Re-engineering Transactional Workflows for Reliable Executions 493

Table 3. Fractions of Statistical Transactional Dependencies tables of CA Activity

(a) ITRCA table (b)ATRCA tables

ITRCA CA,f DBC,t CIC,t CCA,t PL,t
CA,f 0 0 0 1 1

DBC,t 1 0 0 0 0
CIC,t 0 1
CCA,t 0 1
PL,t 0 0

ATRCIC
CA t f a

t 1 0 0
f 0 0 0
c 0 0 0

ATRCCA
CA t f a

t 1 0 0
f 0 0 0
c 0 0 0

ATRPL
CA t f a

t 1 0 0
f 0 0 0
c 0 0 0

t=terminated, f=failed, c=cancelled

After the failure of an activity, the recovery process can be initialized by an alternative
dependency that activates another activity, which is located through a related coherent
point, to resume instance execution. Table 4 describes the statistical log rules that enable
us to discover the alternative dependencies related to an activity Ai using ITRAi . These
dependencies are deduced if we observe a positive entry between the event reporting Ai

failure and the event reporting Aj execution in ITRAi . According to the localization
of Aj , we identify two types of alternative dependencies: a forward (respectively back-
ward) alternative if Aj is after (respectively before) Ai in the discovered control flow. If
Aj is is not in the discovered control flow then we mine an alternative forward (respec-
tively backward) if there is an activity Ak in the control flow such as Aj is executed
before Ak in ITRAi and Ak is after (respectively before) Ai in the control flow.

For instance in our motivating example, we can deduce from table 3.a that we have
a backward alternative dependency from CA to DBC (ITRCA ((DBC, terminated),
(CA, failed)) = 1 ∧ ITRCA ((CIC, terminated), (DBC, activate)) = 1 ∧ SCfT (CA,
CIC) > 0). Besides, we can observe the execution of a “new” activity (i.e, DBC)
which does not exist in the discovered control flow. Indeed, the backward or forward
recovery can also entail compensating the already terminated activities through “new”
activities which semantically undo the failed activity [18].

An activity failure can cause a cancellation (non-regular or abnormal end) of one
or more active activities. Table 4 describes the statistical log rules that specifies rules
to discover the cancellation dependencies of an activity Ai based on ITRAi . These
dependencies are deduced if we observe a positive entry between the event reporting
Ai failure and the event reporting the cancellation of Aj in ITRAi .

Table 4. Statistical log properties of inter-activity transactional dependencies

Dependencies Rules

depAlt(Ai, Aj)

ITRAi
((Aj , terminated), (Ai , failed)) �= 0

�Backward alternative: SCfT (Ai, Aj) > 0 ∨ ∃Ak| SCfT (Ai, Ak) > 0∧
ITRAi ((Ak , terminated), (Aj , failed))> 0
�Forward alternative: SCfT (Aj, Ai) > 0 ∨ ∃Ak| SCfT (Ak, Ai) > 0∧
ITRAi ((Ak , terminated), (Aj , failed))> 0

depCnl(Ai, Aj) ITRAi
((Aj , cancelled), (Ai , failed))> 0

494 W. Gaaloul, S. Bhiri, and A. Haller

3.3 Mining Activities Transactional Properties

The activity transactional properties are discovered through the STrD intra-activity
transactional dependencies table ATR (c.f. definition 3). Indeed, if activity act fails,
a table ATRA

act is built for each A activity executed after the failure of act to capture
the internal state dependencies between the events of A. Thus, ATRact extracts from
instances logs where act fails the dependencies between the internal events of its fol-
lowing activities. The table 3.b captures the intra-activities transactional dependencies
of CIC, CCA and PL after the failure of CA (ATRCIC

CA , ATRCCA
CA , ATRPL

CA). In partic-
ular, we observe that CIC could be re-executed after the failure of CA so far it reaches
terminated state (ATRCIC

CA (c,c)= 1).

Definition 3 (Intra-activities transactional dependencies table)
We denote by ATRA

act the Intra-activities transactional dependencies table that re-
ports the A’s intra-event dependencies after act failures. These dependencies are ex-
tracted from a workflow log projection taking only A events from instances related to
act failures. Each entry in ATRA

act is an event dependency where for i=1 or i=2 :
�(ei.activity = A;) ∧
�∃str : EventStream; Evti, Evtj : Event ∈ str| (Evtj.activity = act ∧

Evtj.state= failed ∧ Evti.activity = A ∧ Evti.state= ei.state ∧ Evtj.occurTime <
Evti.occurTime).

An activity a is retriable ar if it always finishes successfully after a finished number
of activations. This property defines a recovery mechanism which is generally used if
the failure of the retriable activity is without consequences. In other words, the general
effect of its failure does not influence the execution of the other activities. Thus, this type
of activity, that we can also call neutral activity or idempotent, can be executed multiple
times without consequences. Table 5 describes the statistical log rules that enable us
to discover the retriable transactional property of a based on ITRa. This property is
mined if we observe in ATRa

a an entry equal to 1 between the event reporting the state
failed of a and the event reporting the state terminated of a and we also observe in ITRa

an entry equal to 1 between the events failed and terminated of a.
An activity a is pivot ap if once it terminates without failure, it can not be re-

executed, thus its execution effects are persistent. Table 5 describes the statistical log
rules that enable to mine the transactional property pivot of a based on ITRa. This
property is mined if we do not observe any ATRa tables reporting a positive entry
between a’s terminated state and and a’s terminated, failed or cancelled state.

Now using these statistical specifications we can discover activity transactional prop-
erties from StrD tables. For instance, we can deduce from table 3.b that the CIC, CCA

Table 5. Statistical log properties of intra-activities transactional dependencies

properties rules
ar

ATRar

ar (terminated, failed)=1 ∧ ITRar ((ar, terminated, (ar, failed)) = 1

ap � ∃ act|(act �= ap ∧ ATRap

act(“x”, terminated) �= 0 ∧ (“x”= terminated ∨ “x”= failed ∨
“x”= canceled))

Mining and Re-engineering Transactional Workflows for Reliable Executions 495

and PL activities are not pivot. Indeed, these activities are re-executed after reaching a
terminated state when CA fails: (ATRCIC

CA (t,t)= ATRCCA
CA (t,t)= ATRPL

CA(t,t)= 1).

4 Transactional Behavior Re-engineering

In this section, we focus on the correction and the improvement of the transactional
behavior of the mined workflow. Basically, we use process mining for Delta Analysis
(section 4.2), i.e. to compare the real process, represented by the discovered workflow,
to the initially designed process. By comparing the initially designed process to the
discovered process, the discrepancies between these two models can be detected and
used to improve, in particular, the transactional behavior. We propose, thereafter, a set
of rules that allow to correct or to remove, if necessary, any erroneous or omittable
transactional behavior and thus to reduce the number of tries to resume workflow exe-
cution after an activity fails. By erroneous or useless transactional behaviors, we mean
initially designed transactional flow which is not necessary or does not coincide with
the execution. These transactional behaviors can simply be expensive and a cause for
additional errors. The correction and improvement rules (section 4.3) depend on trans-
actional consistency semantics (section 4.1). The transactional behavior specifications
must respect these semantic rules linking the control with the transactional flow.

4.1 Semantic Relations Within Recovery Mechanisms

The specification of the recovery mechanisms defined through the transactional behav-
ior should respect rules which are partially dependent on the control flow to ensure
reliable execution. Concretely, these semantic relations are described in Rule 1 and are
inspired from [19] which specifies and proves the potential transactional dependencies
of workflow patterns. The first rule expresses the fact that a cancellation dependence
can occur only between concurrent activities. Whereas the second rule specifies the
localisation of the coherent point for some patterns. The third rule specifies which ac-
tivities should be recoverable. The last rule is a consequence of the persistent feature of
the pivot activity. These relations are independently common to all transactional work-
flows applications. These relations can be enriched to include other rules dependent on
business semantics. Moreover, our transactional model can be extended. Indeed, further
transactional properties or transactional dependencies can be added which consequently
will restructure these semantic relations to integrate these modifications.

RULE 1 (SEMANTIC RELATIONS)
�R1: For the XOR-split, XOR-join and sequence patterns:

No cancellation dependency in these patterns;
�R2: For the AND-join and the M-out-of-N patterns:

No coherent point located in parallel activities;
�R3: Except parallel flow outside AND or XOR patterns compositions:

All activities should be recoverable in case of failure;
�R4: For the sequence, AND-split, XOR-split, OR-split, XOR-join:

No backward recovery for pivot activities.

496 W. Gaaloul, S. Bhiri, and A. Haller

4.2 Delta Analysis

At run time users can deviate from the initially designed workflow. Delta Analysis
(Figure 3) between the initially designed and the discovered process allow us to mon-
itor these deviations. The analysis of these deviations is fundamental for a new re-
engineering phase. Indeed, a deviation can become a current practice rather than to be
a rare exception. In this case, the correction and the reliability of the initially designed
process are uncertain and a re-engineering phase based on the discrepancies between
the two models is required.

Fig. 3. Delta analyse for workflow re-engineering

Independently of the chosen comparison technique [20,21], a delta analysis process
aims to detect the discrepancies between the discovered and the initial models. These
discrepancies can be exploited: (option 1) to motivate the process users to be closer
to the initially designed process if the discrepancies do not express a real evolution or
(option 2) to correct and improve the process model to be as close as possible to the
“execution” reality. We propose a set of rules to correct and improve the transactional
behavior according to option 2. These rules respect the semantic relations between the
transactional flow and the control flow as described in Rule 1. We note ant the transac-
tional behavior of the activity a at the initial design phase. adcvr indicates the discovered
transactional behavior of a. And, acr indicates the corrected transactional behavior or
improved a.

4.3 Correcting and Improving the Transactional Behavior

The correction rules (Rule 2) allow to remove the initially designed recovery mecha-
nisms which are not in the discovered workflow. These erroneous mechanisms can be
expensive for the WfMS which should provide the necessary means to support them.
The first three rules, witch are inspired from the semantic relation R3, express that
if we discover that an activity never fails then any recovery mechanisms initially de-
signed (for instance, retriable property, alternative or cancellation dependencies) are
not necessary and should be removed. The last rule S4 is inspired from the semantic
relation R1 indicating that suspension or cancellation dependencies can exist only be-
tween parallel activities. Thus, if we discover that two non-concurrent activities (e.g.
activities belonging to the parallel flows of the M-out-of-N or OR-split patterns, due to
their partial concurrent behavior) then we should suppress this transactional behavior.

Mining and Re-engineering Transactional Workflows for Reliable Executions 497

For instance, if you discover in our motivating example that CCA never fails it indicates
a discrepancy between the discovered model and the initially designed model. Then we
can conclude: (i) by applying S1, there is no need to specify CCA as recoverable and
thus, we suppress the alternative transactional dependency between CCA and CRS, (ii)
by applying S2, there is no need to cancel CIC when CCA fails. Thus, we suppress the
cancellation dependency between CIC and VSC. Figure 4 shows these corrections on
our motivating example crossed out.

RULE 2 (SUPPRESSING OMITTABLE TRANSACTIONAL BEHAVIORS)
�S1: �ITRadc

∧ ar
nt ⇒ a �c

cr;
�S2: �ITRadc

∧ depAlt(ant, bnt) ⇒ depAlt(acr, bcr) = false
�S3: �ITRadc

∧ depCnl(a, b) ⇒ depCnl(acr, bcr) = false
�S4: SCfT (bdc, adc) ≥ 0 ∧ depSus(ant, bnt) =true⇒ depSus(acr, bcr) = false

We also define rules proposing suggestions of recovery mechanisms for discovered
activities that failed without an initially designed recovery mechanisms (Rule 3). How-
ever, not every failed activity does necessarily require a recovery mechanism. The
choice of specifying a recovery mechanism depends on a designers business choice.
However, respecting R3 in Rule 1 we have to guarantee that if we discover that an ini-
tially designed activity can fail and induce the instance failure, a recovery mechanism
for this activity has to be defined.

RULE 3 (SUGGESTING ADDITIONAL RECOVERY MECHANISMS)
For each transactional activity a ∈ Wf a transactional workflow, which is not initially
recoverable but we discover that it fails, we propose the following suggestions as
recovery mechanism:

�A1.1: a is neutral ⇒ ar
cr

�A1.2: (b is a’s coherent point) ∧ SCfT (bdc, adc) > 0 ⇒ depAlt(acr, bcr) = true
�A1.3: (b is a’s coherent point)∧SCfT (adc, bdc)≥0∧b �pdc ⇒depAlt(acr, bcr) =true
�A2: SCfT (adc, bdc) = −1 ⇒ depAnl(acr, bcr) = true

The rules A1.1, A1.2 and A1.3 suggest three different propositions specifying re-
covery mechanisms for discovered failed activity. The rule A1.1 proposes to specify
the retriable property as recovery mechanism if the activity is neutral. The rule A1.2
suggests a forward alternative dependency in case we have an activity representing a
coherent point located after the failed activity. Rule A1.2 respects the semantic rule R2
that indicates that the coherent point should not be in concurrence with the failed ac-
tivity. The rule A1.3 suggests an alternative backward dependency in case we have an
activity representing a coherent point located before the failed activity. This rule A1.3
respects the semantic rule R2 that indicates that there are no pivot activities between
the coherent point and the failed activity. We note that the specification of the coherent
points and their localizations depend on the designer’s choices. Finally, A2 rule sug-
gests a transactional cancellation dependencies from the discovered failed activities to
its concurrent activities respecting the semantic rule R1.

498 W. Gaaloul, S. Bhiri, and A. Haller

For instance, if you discover in our workflow example the fact that VD can fail.
This induces a discrepancy between the discovered model and the initially designed
model which indicates that VD never fails. If you suppose that CIC is not neutral, we
can suggest: (i) by applying A1.2, a forward alternative recovery where the coherent
point is located on CA. (ii) otherwise by applying A1.3, we can suggest to specify
a backward recovery to CRS, if the concurrent activities CCA and PL are not pivot.
Finally, by applying A2, we can suggest to specify cancellation dependencies between
CIC and (CCA and PL). Figure 4 shows these suggestions on our motivating example
in green. These suggestions could be entirely or partially applied w.r.t to a designer’s
business choices.

Fig. 4. Correcting and improving transactional flow

5 Discussion

In this paper we have presented an original approach to ensure reliable workflow trans-
actional behavior. Different from previous works, our approach starts from effective
executions, while previous works use only specification properties which only reflect
the designer’s assumptions. Our approach allows to address process evolution require-
ments and to correct potential design errors after runtime. Indeed, our approach starts
from workflow logs and uses a set of mining techniques to discover the workflow con-
trol flow and the workflow transactional behavior. Then, based on Delta Analysis be-
tween the initially designed model and the discovered workflow, we use a set of rules
to improve its recovery mechanisms.

So far previous works in workflow mining seem to focus on control flow mining
perspectives. Van der Aalst et al. proposes in [5] an exhaustive survey. Compared to
existing works, our control flow mining approach dynamically deals with concurrent
behavior through concurrent windows that only requires additional calculus where it
is needed. Furthermore, we give an original control flow mining approach through the
discovery of workflow patterns which are well-known structures giving an abstract de-
scription of a recurrent class of control flow interactions. Besides, we propose a set of
control flow mining rules that are characterized by a workflow pattern discovery. These
rules proceed through a local log analysis that allow us to correctly recover partial re-
sults even if we have only fractions of a workflow log.

Mining and Re-engineering Transactional Workflows for Reliable Executions 499

A first discussion related to the workflow recovery issue was presented in [22]. The
necessity of workflow recovery concepts was partly addressed in [10]. Especially, the
concept of business transactions, introduced in [23], describes some basic workflow re-
covery ideas in detail. However, to the best of our knowledge, there are practically no
approaches in workflow mining that address the issue of failure handling and recovery,
except our works [24,17] which proposes techniques for discovering workflow transac-
tional behaviour. This paper may be seen as a first step in this area. Particulary there are
only few research activities in process re-engineering based on process logs analysis.
We can mention for example, recent work of van der Aalst et al. [25] for retrospective
checks of security violations which shows how a specific mining algorithm can be used
to support intrusion detection. In the same context, Rozinat et al. [26] are interested in
the potential use of log analysis to measure process alignments, i.e. to compare the exe-
cution behavior with the intended behavior. However, this work does not describe how
to use the results of this process alignment to improve or correct the process. In addi-
tion, there is other work related to process performance analysis for dynamic execution
checking [27].

We have implemented our workflow patterns mining approach as a plug-in within
the ProM framework which is a process mining plugable environment [17]. We are also
implementing our transactional flow mining and re-engineering in our WorkflowMiner
prototype. We have already implemented the control flow mining in this prototype.
Due to the lack of space we can refer to [28] for a thorough description on the
WorkflowMiner architecture. In our future work we are trying to enhance workflow re-
covery mining techniques by enriching workflow logs and extracting data flow depen-
dencies. We are also interested in applying process mining techniques in composite
Web services [29].

References

1. ter Hofstede, A.H.M., Orlowska, M.E., Rajapakse, J.: Verification problems in conceptual
workflow specifications. Data Knowl. Eng. 24(3), 239–256 (1998)

2. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers 8(1), 21–66 (1998)

3. Adam, N.R., Atluri, V., Huang, W.-K.: Modeling and analysis of workflows using petri nets.
J. Intell. Inf. Syst. 10(2), 131–158 (1998)

4. Eder, J., Liebhart, W.: Workflow recovery. In: Conference on Cooperative Information Sys-
tems, pp. 124–134 (1996)

5. van der Aalst, W.M.P., van Dongen, B.F.: Workflow mining: A survey of issues and ap-
proaches. In: Data and Knowledge Engineering (2003)

6. Eder, J., Olivotto, G.E., Gruber, W.: A data warehouse for workflow logs. In: Proceedings of
the First International Conference on Engineering and Deployment of Cooperative Informa-
tion Systems, pp. 1–15. Springer, Heidelberg (2002)

7. zur Muehlen, M.: Process-driven management information systems - combining data ware-
houses and workflow technology. In: Gavish, B. (ed.) Proceedings of the 4th Interna-
tional Conference on Electronic Commerce Research (ICECR-4), Dallas (TX), pp. 550–566.
Southern Methodist University (2001)

8. Cook, J.E., Wolf, A.L.: Event-based detection of concurrency. In: Proceedings of the 6th
ACM SIGSOFT international symposium on Foundations of software engineering, pp. 35–
45. ACM Press, New York (1998)

500 W. Gaaloul, S. Bhiri, and A. Haller

9. Gaaloul, W.: La Découverte de Workflow Transactionnel pour la Fiabilisation des
Exécutions. Phd thesis, Université Henri Poincaré - Nancy 1, LORIA(November 3, 2006)

10. Georgakopoulos, D., Hornick, M., Sheth, A.: An overview of workflow management: from
process modeling to workflow automation infrastructure. Distrib. Parallel Databases 3(2),
119–153 (1995)

11. Sheth, A., Rusinkiewicz, M.: On transactional workflows. Special Issue on Workflow and
Extended Transaction Systems IEEE Computer Society (1993)

12. Elmagarmid, A.K.: Database transaction models for advanced applications. Morgan Kauf-
mann Publishers Inc, San Francisco (1992)

13. van der Aalst, W.M.P., Barros, A.P., ter Hofstede, A.H.M., Kiepuszewski, B.: Advanced
Workflow Patterns. In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000. LNCS, vol. 1901,
pp. 18–29. Springer, Heidelberg (2000)

14. Elmagarmid, A., Leu, Y., Litwin, W.: A multidatabase transaction model for interbase. In:
Proceedings of the sixteenth international conference on Very large databases, pp. 507–518.
Morgan Kaufmann Publishers Inc, San Francisco (1990)

15. Du, W., Davis, J., Shan, M.-C.: Flexible specification of workflow compensation scopes. In:
Proceedings of the international ACM SIGGROUP conference on Supporting group work:
the integration challenge, pp. 309–316. ACM Press, New York (1997)

16. Gaaloul, W., Baı̈na, K., Godart, C.: Towards mining structural workflow patterns. In: Ander-
sen, K.V., Debenham, J.K., Wagner, R. (eds.) DEXA. LNCS, vol. 3588, pp. 24–33. Springer,
Heidelberg (2005)

17. Gaaloul, W., Godart, C.: A workflow mining tool based on logs statistical analysis. In: Mau-
rer, F., Ruhe, G. (eds.) SEKE, pp. 37–44 (2006)

18. Kiepuszewski, B., Muhlberger, R., Orlowska, M.E.: Flowback: providing backward recov-
ery for workflow management systems. In: Proceedings of the 1998 ACM SIGMOD inter-
national conference on Management of data, pp. 555–557. ACM Press, New York (1998)

19. Bhiri, S., Perrin, O., Godart, C.: Extending workflow patterns with transactional dependen-
cies to define reliable composite web services. In: AICT/ICIW, p. 145. IEEE Computer So-
ciety (2006)

20. van der Aalst, W.M.P.: Exterminating the dynamic change bug: A concrete approach to sup-
port workflow change. Information Systems Frontiers 3(3), 297–317 (2001)

21. Basten, T., van der Aalst, W.M.P.: Inheritance of behavior. J. Log. Algebr. Program. 47(2),
47–145 (2001)

22. Jin, W.W., Rusinkiewicz, M., Ness, L., Sheth, A.: Concurrency control and recovery of mul-
tidatabase work flows in telecommunication applications. In: Proceedings of the 1993 ACM
SIGMOD international conference on Management of data, pp. 456–459. ACM Press, New
York (1993)

23. Leymann, F.: Supporting business transactions via partial backward recovery in workflow
management systems. In: Proceedings of BTW 1995, pp. 51–70. Springer, Heidelberg (1995)

24. Gaaloul, W., Bhiri, S., Godart, C.: Discovering workflow transactional behaviour event-based
log. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS, vol. 3290, Springer, Heidelberg
(2004)

25. van der Aalst, W.M.P., de Medeiros, A.K.A.: Process mining and security: Detecting anoma-
lous process executions and checking process conformance. Electr. Notes Theor. Comput.
Sci. 121, 3–21 (2005)

26. Rozinat, A., van der Aalst, W.M.P.: Conformance testing: Measuring the fit and appropriate-
ness of event logs and process models. In: Business Process Management Workshops, pp.
163–176 (2005)

27. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.-C.: Business process
intelligence. Comput. Ind. 53(3), 321–343 (2004)

Mining and Re-engineering Transactional Workflows for Reliable Executions 501

28. Baı̈na, K., Gaaloul, W., ElKhattabi, R., Mouhou, A.: A new workflow patterns and perfor-
mance analysis tool. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, Springer,
Heidelberg (2006)

29. Rouached, M., Gaaloul, W., van der Aalst, W.M.P., Bhiri, S., Godart, C.: Web service min-
ing and verification of properties: An approach based on event calculus. In: Meersman, R.,
Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 408–425. Springer, Heidelberg (2006)

Cross: An OWL Wrapper for Reasoning on

Relational Databases

Pierre-Antoine Champin1, Geert-Jan Houben2, and Philippe Thiran3

1 LIRIS, Université Claude Bernard Lyon 1
pchampin@liris.cnrs.fr

2 Vrije Universiteit Brussel
Geert-Jan.Houben@vub.ac.be

3 Facultés Universitaires Notre-Dame de la Paix, Namur
pthiran@fundp.ac.be

Abstract. One of the challenges of the Semantic Web is to integrate
the huge amount of information already available on the standard Web,
usually stored in relational databases. In this paper, we propose a for-
malization of a logic model of relational databases, and a transformation
of that model into OWL, a Semantic Web language. This transformation
is implemented in Cross, as an open-source prototype. We prove a rela-
tion between the notion of legal database state and the consistency of
the corresponding OWL knowledge base. We then show how that trans-
formation can prove useful to enhance databases, and integrate them in
the Semantic Web.

1 Introduction

One of the challenges of the Semantic Web (SW) vision is to integrate, in a
machine-consumable form, the huge amount of information already available on
the standard Web. The long-term goal is to allow software agents to aggregate
information from heterogenous sources in order to handle complex user queries.
However, a great amount of the information available on the web is stored in re-
lational databases (RDBs). From that perspective, the Semantic Web can benefit
from the abundant literature on reverse engineering [1] and data integration [2]
in the field of RDBs. On the other hand, SW technologies shed a new light on
those classical problems, and provide new tools and methodologies, but also new
challenges to the field.

Enhancing RDBs with semantically rich languages is indeed not a new idea:
description logics (DLs), that happen to be one of the foundations of SW tech-
nologies, have already been considered as a unifying formalism for conceptual
data models [3,4]. However, the proposed approaches were not deployed on large-
scale legacy databases, notably because conceptual models of RDBs are not al-
ways available in practice. On the other hand, there have been some efforts to
bridge the gap between RDBs and SW languages, but paradoxically, they have

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 502–517, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Cross: An OWL Wrapper for Reasoning on Relational Databases 503

been neglecting the reasoning issue, either focusing on the syntactical level [5]
or undecidable formalisms [6].

Our goal is to draw experience from all those works to provide a sound and
practical approach to integrating RDBs in the SW. That approach will make
it possible 1/ to use SW technologies and tools for the benefit of database en-
gineering and re-engineering, and 2/ to smoothly integrate legacy RDBs in the
Semantic Web, possibly to perform data integration with other RDBs, native
RDF data sources, or even Web Services.

In this paper, we formally define an abstraction of RDBs, focusing on their
logical model, and show how this fits into OWL, an SW language based on
description logics. More precisely, we prove a relation between the notion of
legal database state and the consistency of the corresponding OWL knowledge
base. We then present Cross, an open-source implementation of our approach,
which introduces the notion of semantic values.

1.1 Running Example

Along the paper, we will use as a running example the database schema de-
scribed in Figure 1, which is a subset of the information system of an imaginary
university. That schema describes students, the courses they attend, and their
scholarship if any. It also represents the prerequisites between courses, and which
courses involve practical work (practical courses).

Fig. 1. An example RDB schema. PK represent primary keys. Arrows represent foreign
keys.

1.2 Structure of the Paper

In Section 2 we motivate our work by a number of use cases. We then give a
formal description of OWL in Section 3. Section 4 describes our formalization
of RDBs logical model, that we call the ODBC model. In Section 5, we define a
correspondence between both models and prove the equivalence between ODBC

504 P.-A. Champin, G.-J. Houben, and P. Thiran

weak legality and OWL consistency. We present in Section 6 Cross, a working
implementation of our approach. Finally we conclude and discuss some further
work.

2 Motivations

OWL [7] is a knowledge representation language based on description logics and
is a recomendation of the W3C. It has a well-defined formal semantics, that we
will recap in Section 3. Its high expressive power allows complex inferences to be
performed on OWL knowledge bases, hence the relevance of mapping relational
databases to OWL. More precisely, we consider three interesting directions for
such reasoning: schema reasoning and enriching, querying the data, and ensuring
interoperability.

Schema reasoning and enriching. As suggested by [3], converting models into
description logics brings the power of DL inference to those models, as well as
additional expressiveness. The first interest of our approach w.r.t. RDBs is indeed
to allow to reason about relational schemas1, and discover implicit relations
between their tables or columns.

But beyond reasoning about the schemas, mapping relational schemas to
OWL allows to express additional constraints about them. Such constraints
sometimes fit in the relational model but were omitted at design time; one can
add for example in our running example axioms stating that all students must
have a name. Sometimes, on the other hand, the constraints do not fit in the
relational model (e.g. like cardinality constraints): we can state for example that
no more than 30 students can attend a given course. We are aware that most
RDB management systems (RDBMSs) allow to express that kind of constraint
(e.g. using the CHECK or TRIGGER keywords from SQL), but this type of con-
straint is expressed in an imperative form, which makes it suited for consistency
checking but unfortunately not for reasoning.

Querying the data. What we just said about the schema is, in theory, also true for
the data: OWL inference engines do provide so-called A-box reasoning services,
and even elaborate query languages like SPARQL [8]. In practice, however, this
is only possible with knowledge bases of a modest size, far below the size of the
average corporate database. The main reason is that current inference engines
must load the whole knowledge base in memory in order to reason with it.
Research is being pursued on the field of distributed reasoning [9] in order to
overcome this limitation, but is still at a preliminary stage.

However, we believe that an OWL mapping of the sole schema of an RDB can
be used to reason about queries in order to optimize them. We will develop this
point in Section 6.3.
1 [3] actually advocate finite model reasonning for that purpose. Although OWL rea-

sonners currently do not provide that kind of reasonning, we believe that “classical”
OWL reasonning can nevertheless prove useful.

Cross: An OWL Wrapper for Reasoning on Relational Databases 505

Interoperability. Ontologies are widely recognized as a means to achieve inter-
operability between heterogeneous sources of data [10]. A wealth of approaches
has hence been proposed to map several relational schemas to a global ontology.
However, by first translating each relational schema into an ontology, we also
make a number of recent work on ontology aligning [11] applicable to legacy rela-
tional databases, with the opportunity to take advantage of additional knowledge
enriching the schema.

3 OWL Semantics and Inferences

We recap in this section the formal semantics of OWL [7], a recommendation
of the W3C to express ontologies on the SW, and present the inference services
that it enables2. Although OWL is usually represented in XML, we favor in this
paper a more compact notation which common in the DL literature [12].

Table 1. OWL constructors syntax and semantics. C and D denote concept expres-
sions; P denotes a property symbol; n denotes a natural integer; #s denotes the car-
dinality of set s.

Class constructors Syntax Semantics

Predefined classes � ΔI

⊥ ∅
Set operators C � D CI ∪ DI

C � D CI ∩ DI

¬C ΔI \ CI

Quantifiers ∃P.C {x | ∃(x, y) ∈ P I , y ∈ CI}
∀P.C {x | ∀(x, y) ∈ P I , y ∈ CI}

Cardinality restriction (≤ n P) {x | #{y | (x, y) ∈ P I} ≤ n}
(≥ n P) {x | #{y | (x, y) ∈ P I} ≥ n}
(= n P) {x | #{y | (x, y) ∈ P I} = n}

Property constructors Syntax Semantics

Property inverse P − {(x, y) | (y, x) ∈ P I}

In OWL, a domain of interest is modeled as a set of individuals, classes de-
noting sets of individuals, and properties denoting binary relationships between
individuals. OWL provides a number of constructors allowing to define complex
classes and properties from a set of atomic classes and properties (see table 1).
Features of the domain of interest are represented in an OWL knowledge base,
defined hereafter.
2 Actually, OWL has three dialects (called species): Lite, DL and Full. Only the first

two of them are description logics. OWL-Full, on the other hand has an expressive-
ness beyond the one of DLs, but no decidable inference algorithm. In the following,
mentions to OWL will only refer to its first two species. Note also that we omit on
purpose some features of OWL which are not relevant to this work.

506 P.-A. Champin, G.-J. Houben, and P. Thiran

Definition 1. An OWL knowledge base O is defined by 〈LO, TO, AO〉, where:

– LO is a finite alphabet partitioned into a set CO of class symbols, a set PO
of property symbols and a set OO of individual symbols.

– TO is a set of axioms as described in table 2, equivalent to the T -box in the
DL literature.

– AO is a set of facts as described in table 2, equivalent to the A-box in the
DL literature.

Table 2. Syntax and semantics for OWL axioms and facts. C and D denote concept
expressions; P and Q denote property expressions; i and j denote individual symbols;
S denote a set of individual symbols.

Syntax Semantics

Class axioms C � D CI ⊆ DI

Property P � Q P I ⊆ QI

axioms transitive(P) ∀x, y, z ∈ ΔI , (x, y) ∈ P I ∧ (y, z) ∈ P I

=⇒ (x, z) ∈ P I

Facts i : C iI ∈ CI

〈i, j〉 : P (iI , jI) ∈ P I

i = j iI = jI

i �= j iI �= jI

all-different(S) ∀i �= j ∈ S, iI �= jI

The semantics of an OWL knowledge base is defined by means of an interpreta-
tion I = (ΔI , ·I), consisting of an interpretation domain ΔI and an interpretation
function ·I . The latter maps every individual symbol i to an element iI ∈ ΔI , ev-
ery class C to a subset CI ⊆ ΔI , every property P to a relation P I ⊆ ΔI × ΔI ,
while respecting the semantics of constructors as defined in table 1. An interpreta-
tion is said to satisfy a statement (axiom or fact) if it verifies the semantics of that
statement as defined in table 2. An interpretation satisfying all the statements of
a knowledge base O is said to be a model of that knowledge base.

A knowledge base is said to be consistent if it has at least one model. An axiom
is said to be entailed by a knowledge base if every model of that knowledge base
satisfies that axiom. A class C is said to be satisfiable under a knowledge base if
that knowledge base does not entail C � ⊥, i.e. if there is at least one model I
such that CI is not empty. A class C is said to subsume another class D under
a knowledge base if that knowledge base entails D � C.

The problems of checking consistency, entailment, satisfiability and subsump-
tion, are provably decidable. Several inference engines are available for OWL;
we are using Pellet [13].

4 Formalizing the ODBC Model

In this section, we formalize the schema and data instance of relational databases.
Although this kind of formalization is classical for conceptual data models such

Cross: An OWL Wrapper for Reasoning on Relational Databases 507

as the Entity-Relationship model [3,14], it has never been proposed, to the best
of our knowledge, for logical data models. This makes former propositions dif-
ficult to apply for legacy databases where the conceptual model is not directly
available, while logical models are. Of course, such models vary amongst the
various RDBMS implementations. Nevertheless, they share a number of com-
mon notions, on which we chose to focus, and which makes it possible to port
an application from one system to another. Indeed, those notions are captured
by standard APIs for accessing arbitrary relational databases; this is why we
named our model after one of the most popular such API: ODBC. It is not how-
ever limited to that API; other standards such as JDBC provide basically the
same abstraction for relational databases, which demonstrates that the common
notions they both capture are widely accepted and robust.

In the following, tuple(S) denotes the set of all tuples on S (i.e. finite sequences
of elements of S) of any length (including 1); if t is a tuple, |t| is its length, and
we note e ∈ t if e is one of the elements of t.

Definition 2. An ODBC schema S is defined by 〈LS , fT
S , fD

S , CN
S , fC

S , f ref
S 〉,

where:

– LS is a finite alphabet partitioned into a set TS of table symbols, a set CS
of column symbols, a set US of uniqueness constraint symbols, a set FS
of foreign key constraint symbols and a set DS of domain symbols; each
domain symbol D has an associated pre-defined basic domain DBD . We do
not assume the various basic domains to be pairwise disjoint, and we suppose
that, given two basic domains d1 and d2, the set-relation between them is
known (inclusion, disjointness, etc.).

– fT
S : CS ∪ US ∪ FS → TS . Intuitively, each column, uniqueness constraint or

foreign key constraint belongs to a unique table.
– fD

S : CS → DS . Intuitively, each column has an associated datatype.
– CN

S ⊆ CS is a subset of the column symbols. Intuitively, it denotes the columns
that are required to have a value (marked NOT NULL in SQL schemas).

– fC
S : US∪FS → tuple(CS). Intuitively, each uniqueness constraint and foreign

key constraint K applies to an ordered tuple of columns. Those columns must
obviously all belong to the same table as K. Formally, it must hold that
∀c ∈ fC

S (K), fT
S (c) = fT

S (K).
– f ref

S : FS → US . Intuitively, each foreign key references columns with a
uniqueness constraint. It must hold, for every F in FS , that it references a
uniqueness constraint with the same number of columns, i.e. |fC

S (f ref
S (F))| =

|fC
S (F)|. Note that we assume without loss of generality that the order of the

columns in the foreign key matches the order of the columns in the referenced
uniqueness constraint.

– For each table T ∈ TS , there is at least one uniqueness constraint symbol
U ∈ US such that fT

S (U) = T and ∀Ci ∈ fC
S (U), Ci ∈ CN

S . U is known as the
primary key of T .

About the last point of that definition , we are aware that not all RDBMSs
impose the existence of a primary key for every table. However, the use of primary
keys is usually considered as good practice and rarely omitted.

508 P.-A. Champin, G.-J. Houben, and P. Thiran

Definition 3. An ODBC database state B corresponding to a schema S is de-
fined by 〈ΔB, ·B〉 where ΔB is a non-empty finite set assumed to be disjoint from
all basic domains (and sets of tuples over the basic domains), and ·B is a function
mapping:

– every domain D ∈ DS to the corresponding basic domain DBD ,
– every table symbol T ∈ TS to a subset TB of ΔB,
– every column symbol C ∈ CS to a relation CB ⊆ TB

C × V where
• TC = fT

S (C) is the table to which C belongs,
• V =

⋃
D∈DS

DBD is the union of all the basic domains.

It is furthermore assumed, for every table T , that no two rows have the same
values for the columns composing the primary key of T .

Intuitively, ΔB can be regarded as the set of objects represented by the database;
those objects are typically represented by table rows in the database, but a single
object may be represented in several tables (i.e. an element r ∈ ΔB may belong
to several TB). This allows in particular to take into account inheritance, which
can be simulated by some patterns in relational schemas, or is even explicitly
managed by some RDBMSs. Columns model attributes of those objects, hence
they are represented as relations between the set of objects and the basic data
domains.

The last sentence of the definition, stating that primary key constraints must
be satisfied by any database state (rather than legal ones only) may seem mis-
placed. However, we need rows to be identified in some way, so we assume that
this particular constraint os necessarily enforced (which, we already mentioned,
is most often the case).

Note that function ·B is not defined over constraint symbols (uniqueness or
foreign key); indeed, those symbols do not represent elements of a database
state, but merely constraints that must hold between its elements. However,
for convenience, we extend the definition of ·B on constraint symbols: for each
K ∈ US ∪ FS , if T = fT

S (K) and fC
S (K) = 〈C1, . . . , Ck〉:

KB=̇{(r, 〈v1, . . . , vk〉) | r ∈ TB, (r, vi) ∈ CB
i , i ∈ {1, . . . , k}}

Definition 4. A database state B is said to be legal for a schema S if it satisfies
the following conditions:

– For each C ∈ CS
• CB ⊆ fT

S (C)B × fD
S (C)B (range)

• ∀(r1, v1), (r2, v2) ∈ CB, r1 = r2 =⇒ v1 = v2 (functionality)
• ∀C ∈ CN

S , ∃r ∈ fT
S (C)B =⇒ ∃(r, v) ∈ CB (not null)

– For each U ∈ US , ∀(r1, t1), (r2, t2) ∈ UB, t1 = t2 =⇒ r1 = r2 (uniqueness)
– For each F ∈ FS , ∀(r, t) ∈ FB, ∃(r′, t) ∈ f ref

S (F)B (reference)

That definition of legality straightforwardly captures the constraints usually en-
forced by RDBMSs according to the definition of relational schemas. However,
it does not have an exact correspondence in OWL (we will explain that in the
next section). In the following, we will therefore need a weaker notion of legality,
defined thereafter.

Cross: An OWL Wrapper for Reasoning on Relational Databases 509

Definition 5. An database state B is said to be weakly legal for a schema S if
it satisfies all the conditions from definition 4, except for the reference condition.

5 From the ODBC Model to OWL

In this section, we propose a correspondence between the ODBC model and
the OWL model, and prove the equivalence between weak legality of an ODBC
database state and consistency of the corresponding OWL knowledge base.

Definition 6. Let S be an ODBC schema. The OWL knowledge base ψ(S) =
〈LO, TO, AO〉 is defined as follows.

The set CO of class symbols contains the following elements:

– the predefined symbols Row, and Data,
– for each table symbol T ∈ TS , a new class symbol ψ(T),
– for each domain symbol D ∈ DS , a new class symbol ψ(D).

The set PO of property symbols contains for each symbol S ∈ CS ∪ US ∪ FS ,
a new property symbol ψ(S).

The set TO contains the following axioms:

– the predefined axioms:

Row � ¬Data (6.1)
 � Row � Data (6.2)

– for each table symbol T ∈ TS , the axiom:

ψ(T) � Row (6.3)

– for each domain symbol D ∈ DS , the axiom:

ψ(D) � Data (6.4)

– for each domain symbol D1, D2 ∈ DS with DBD
1 ⊆ DBD

2 , the axiom:

ψ(D1) � ψ(D2) (6.5)

– for each domain symbol D1, D2 ∈ DS with DBD
1 ∩ DBD

2 = ∅, the axiom:

ψ(D1) � ¬ψ(D2) (6.6)

– for each symbol S ∈ CS ∪ US ∪ FS with T = fT
S (S), the axioms:

(≥ 1 ψ(S)) � ψ(T) (6.7)
 � (≤ 1 ψ(S)) (6.8)

510 P.-A. Champin, G.-J. Houben, and P. Thiran

– for each column symbol C ∈ CS with D = fD
S (C), the axiom:

 � ∀ψ(C).ψ(D) (6.9)

– for each column symbol C ∈ CN
S with T = fT

S (C), the axiom:

ψ(T) � ∃ψ(C). (6.10)

– for each symbol K ∈ US ∪ FS , the axiom:

 � ∀ψ(K).Data (6.11)

– for each symbol K ∈ US ∪ FS with T = fT
S (K) such that all columns Ci of

K are in CN
S :

ψ(T) � ∃ψ(K). (6.12)

– for each uniqueness constraint symbol U ∈ US , the axiom:

 �≤ 1 ψ(U) (6.13)

The sets OO of individual symbols and AO of facts are empty.

Intuitively, the transformation ψ maps every table row to an individual of class
Row and every data value to an instance of class Data3. Tables are mapped to
subclasses of Row, while domains are mapped to subclasses of Data. Columns
are mapped to functional properties between rows and values. The constraints
expressed in the schema are translated into corresponding OWL axioms.

Itis worth noting that, since axioms can not involve a set of properties, while
relational constraints (uniqueness and foreign key) may involve several columns,
ψ also creates a property for every constraint, whose values will be the tuple
of values associated to that constraint. In our running example, a row of table
Attends with values (sid : 1, cid : 2) will e.g. be mapped to an individual with
three properties: ψ(sid) with value 1, ψ(cid) with value 2, and ψ(attends fk)
with value (1, 2).

Definition 7. Let B be an ODBC database state corresponding to a schema S.
The OWL knowledge base ψ(B) = 〈LO, TO, AO〉 is defined as follows.

The sets CO of class symbols, PO of property symbols and TO of axioms are
defined according to ψ(S) (see definition 6).

The set OO of individual symbols contains the following elements:

– for each r ∈ ΔB, a new individual symbol ψ(r),
– for each v ∈ ⋃

S∈CS∪US∪FS
SBD , a new individual symbol ψ(v),

3 We represent data values with OWL instances rather than concrete values (literals)
because only the former allow to capture the semantics of a key (inverse-functional
properties). See [15] for a discussion on that issue.

Cross: An OWL Wrapper for Reasoning on Relational Databases 511

The set AO contains the following facts:

– for V = {ψ(v) | (r, v) ∈ ⋃
S∈CS∪US∪FS

SBD},

all-different(V) (7.1)

– for each T ∈ TS , for each r ∈ TB,

ψ(r) : ψ(T) (7.2)

– for each S ∈ CS ∪ US ∪ FS , for each (r, v) ∈ SB,

〈ψ(r), ψ(v)〉 : ψ(S) (7.3)

– for each S ∈ CS ∪ US ∪ FS , for each r ∈ fT
S (S)B such that �(r, v) ∈ SB:

ψ(r) : (≤ 0 ψ(S)) (7.4)

– for each v ∈ ⋃
C∈CS

CBD , for each D ∈ DS , if v ∈ DBD ,

ψ(v) : ψ(D) (7.5)

else:

ψ(v) : ¬ψ(D) (7.6)

Theorem 1. Let B be an ODBC database state corresponding to a schema S.
The corresponding OWL knowledge base ψ(B) has a model if and only if B is
weakly legal for S.

The proof of this theorem is not included because of space limitation. It can be
found in [16].

Limitation of the theorem. We now discuss and explain the reason of theorem 1
applying only to weakly legal database states, rather than strongly legal ones.
We recall that a weakly legal state is not required to satisfy the “reference” con-
straint, i.e. that it may contain foreign keys pointing to non-existent rows. One
may notice that the translation ψ of an ODBC schema into an OWL knowledge
base contains no axiom about the foreign keys; it is tempting to believe that that
limitation of the theorem would be alleviated by the addition of the following
axiom, for all F ∈ FS :

 � ∀ψ(F).(≥ 1 ψ(f ref
S (F))−)) (7.7)

which states that every foreign key property must point to the value of some
row for the corresponding uniqueness constraint. However, that axiom can be
validated by ψ(B) even if B does not satisfy the “reference” condition.

This is due to the fact that foreign key constraints in RDBMSs strongly rely on
the so called closed world assumption: any information absent from the database

512 P.-A. Champin, G.-J. Houben, and P. Thiran

is considered false. For example, in the schema given in Figure 1, assume a row
in Scholarship with value 123 for hid, while no row in Student has value 123
for sid. This is a violation of the foreign key constraint. On the other hand,
OWL reasoning is based on the open world assumption: any information absent
from the knowledge base is considered unknown, neither true nor false. So in
our example, the fact that AO does not contain an individual with value 123 for
ψ(sid) does not mean that such an individual does not exist, and since nothing
prevents its existence, there is a model I of ψ(B) containing that individual,
even if it has no corresponding row in B. The closed versus open world issue is a
well-known difference between database systems and knowledge representation
systems, and we will address it in more detail in the next section.

An inverse transformation. Another tempting idea is that, given an ODBC
schema S, any OWL knowledge base consistent with ψ(S) would correspond
to a weakly legal database state B. This happens to be wrong as well, for two
reasons. The first one is again related to the closed versus open world issue: a
consistent knowledge base may be underspecified with regard to the schema. For
example, a row may have no explicit value for a column C ∈ CN

S ; this is not
inconsistent as long as it is not stated either that the row does not have any
value for C4.

Another problem comes from the redundancy introduced by ψ in the knowl-
edge base: a uniqueness constraint U spanning two columns C1 and C2 is repre-
sented by a property of its own ψ(U), independent, in the OWL knowledge base,
of ψ(C1) and ψ(C2). It is therefore possible for an instance to have a tuple value
for ψ(U) different from its values for ψ(C1) and ψ(C2), which can of course not
be represented by a database state. Furthermore, this makes it possible for two
individuals to have different values for ψ(U) even if their values for ψ(C1) and
ψ(C2) are identical, making them artificially respect the uniqueness constraint.
For those two reasons, an inverse transformation ψ− can not exist in the general
case.

6 Cross: An Implementation

In this section, we present Cross, an implementation of our approach presented
before. This implementation is an open-source software, available at http://
liris.cnrs.fr/∼pchampin/dev/cross. We first stress a number of differences
between the theoretical model and the actual implementation, and develop the
most saillant of them: semantic values. Additionally we show the benefits of
using Cross in the motivating use cases described in Section 2.

6.1 Differences to the Theoretical Model

There are three differences between the theoretical model described above and
the actual implementation. In the following we describe those differences and
explain why they do not affect the validity of theorem 1.
4 A statement made by fact 7.4 for columns with null values in the database state.

http://liris.cnrs.fr/~pchampin/dev/cross
http://liris.cnrs.fr/~pchampin/dev/cross

Cross: An OWL Wrapper for Reasoning on Relational Databases 513

The first difference is an effort to reduce the redundancy in the OWL knowl-
edge base. In Section 5, we remarked that transformation ψ creates redundant
information by associating to every uniqueness constraint a property which is
independent of the properties associated to the columns concerned by that con-
straint. This is useful for multi-column constraints, because the axioms 6.13
guaranteeing the uniqueness can only apply to a single property. On the other
hand, for constraints spanning a single column, there is no need for an additional
property: the property associated to the column can represent the uniqueness
constraint as well, and axiom 6.13 can be applied directly to the column property.
This is what the implementation does, and it does the same for properties repre-
senting foreign keys. That difference makes definitions 6 and 7 and the proof of
theorem 1 a little more complex (they require to treat single-column constraints
differently from multi-columns constraints) but not significantly different.

The second difference is that, for the sake of completeness, the implemented
transformation includes an axiom similar to axiom 7.7, i.e. forcing foreign keys
to point to an existing value. We already explained in the discussion following
the proof (Section 5) that this is not sufficient to strengthen the theorem. How-
ever it does not weaken it either, because that axiom adds no real constraint
to the knowledge box: it demands the existence of an individual that no other
axiom generated by our approach prevents from existing. So if the knowledge
base without that axiom has a model, then it also has a model with the axiom.
The axiom may nevertheless prove useful in the reasoning tasks described in
Section 6.3, making explicit a constraint that is actually satisfied by legal
database states.

The third difference is about the representation of data. While the transfor-
mation presented in Section 5 straightforwardly creates an individual per row
and an individual per data value, Cross introduces an intermediate layer of in-
dividuals, as illustrated on Figure 2. While individuals of the rightmost layer
represent raw data values (in the figure: the number 1, the number 2), indi-
viduals of the new intermediate layer represent values in the context of a given
column. We call them semantic values, in the manner of [17]. Indeed, the num-
ber 1 must be treated differently when it represents, e.g., a length in meters or
a price in euro. In a sense, semantic values can be viewed as reifications of the
arcs from the straightforward transformation: they do not provide additional
information, but only express the same information in a more detailed fashion
(which will prove useful in Section 6.3). As a consequence, theorem 1 still holds
for the transformation with semantic values.

6.2 Dealing with Semantic Values

As we saw, Cross creates for each column C two OWL object properties. The
first one, noted φs(C), links the individual representing the row (row individual)
to the semantic value, while the second one, noted φd(C), links the semantic
value to its data value. In the straightforward transformation, ψ(C) captures all
the semantics of the column, while that semantics is somewhat split into φs(C)
and φd(C). For example, consider column Scholarship.amount; values for that

514 P.-A. Champin, G.-J. Houben, and P. Thiran

Fig. 2. An extract of table Attends (up-left), the straightforward transformation (up-
right), and the Cross transformation (down) with semantic values

column represent the yearly amount of money, in Euro, received by the holder
of the scholarship. In Cross, we can decide that the semantic value represents
the yearly amount of money, independently of the currency; hence φs(amount)
links a scholarship to the income it provides yearly, while φd(amount) links an
amount of money to its value in Euro (but another property could link the same
semantic value to its amount in US Dollars).

Note that our approach, though not incompatible, is different from the one
proposed by [17]. The latter is to attach attributes5 to columns and values
in order to make their semantics explicit. According to their model, all val-
ues for Scholarship.amount would have the attributes (Periodicity = ‘yearly‘,
Currency = ‘Euro‘). Such elicitation requires of course a precise ontology of
column attributes, which is not at all trivial. On the other hand, our approach
assumes a priori that all columns have a distinct semantics (each column has
its own “semantic value space”), and relies on human intervention to state dif-
ferently, if deemed relevant. With the appropriate OWL axiom, one can indeed
state that two columns happen to have the same semantics (e.g. two columns
representing a yearly amount of money). We believe that this approach is more
robust (because it assumes difference by default) and scalable (because it does
not require an ontology of column attributes). Of course, should such an ontol-
ogy be available, it could be used to formally document properties generated by
Cross: using OWL annotations, it would be possible with an appropriate vocab-
ulary to state that φs(amount) links to a yearly income as a semantic value,
while φd(amount) links to a value in Euro as an integer. We see that the two
approaches are actually complementary.

Given two columns C1 and C2, stating an equivalence between φs(C1) and
φs(C2) means that values for the two columns are commensurable, i.e. that they

5 The authors call them properties; we use the term “attribute” to avoid confusion
with OWL properties.

Cross: An OWL Wrapper for Reasoning on Relational Databases 515

have a common semantics (e.g. an amount of money), but that their values
are not necessarily comparable (e.g. in different currencies). On the other hand,
stating an equivalence between φd(C1) and φd(C2) means that the values are
comparable, but not necessarily that they have the same semantics (e.g. an in-
come and a price). Let us note that the boundary between φs and φd is not as
objective as it may seem. For example, we decided above that semantic values
for Scholarship.amount represent a yearly income, and that φd(amount) links
it to its value in Euro. But we could as well have decided that the semantic value
represents a periodic income, and that φd(amount) links it to its yearly value
in Euro. That would make semantic values of amount commensurable with any
other periodic income, whatever its periodicity.

6.3 Use Cases

In this section, we revisit the goals stated in Section 2 and show how Cross
contributes to their achievement.

Schema reasoning and enriching. The first interest of our approach is to be
able to express additional constraints on the ODBC schema and to reason about
them. OWL expressiveness goes beyond the one of SQL, for example, with re-
spect to relationships between classes: specialization, disjointness, or equivalence
can easily be expressed in OWL. While some patterns in an ODBC schema can
be used to simulate specialization (e.g. the primary key of PracticalCourse be-
ing a foreign key to Course), those patterns can not always be interpreted that
way (see as a counterexample Scholarship and Student). Such specialization
can be made explicit either directly (ψ(PracticalCourse) � ψ(Course)) or by
using columns (φs(pid) � φs(cid)); the latter is preferable, because it also allows
to properly identify the instances of the class6.

Querying the data. While RDBMSs are usually capable of checking the legality
of a database state, the use of an OWL inference engine to check the consistency
of the corresponding knowledge base could in theory take into account additional
constraints that are not known to the RDBMS. However, we already stressed
the fact that it is only feasible for databases of a limited size.

Cross may however prove useful, if not to query the data, to reason about the
queries themselves. It has been proved in [18] that some conjunctive queries on
an OWL knowledge base can be reduced to a class expression. For that kind of
queries, class satisfiability can be checked before executing, to ensure that the
query can actually hold results. Furthermore, class subsumption can be used
to test query containment, hence to help optimize queries by reusing cached
results of containing queries [19]. The originality of using OWL reasoning for
this purpose is its ability to take into account additional constraints expressed
6 Provided also that φd(pid) � φd(cid), i.e. stating that PracticalCourse identifiers

are special cases of Course identifiers. Any practical course with pid = x will be
recognized as having cid = x as well. Since cid is functional, it will be identified as
the course with cid = x.

516 P.-A. Champin, G.-J. Houben, and P. Thiran

in OWL, that would otherwise have been buried in triggers, CHECK constraints,
or application code.

Interoperability. Interoperability has been a primary goal in the development
of Cross. We argued that semantic values and the splitting of columns in two
OWL properties allow fine grain comparison of column semantics (commensu-
rable, comparable). Hence we believe that they provide a high flexibility for
aligning the generated ontology with other ones. Considering an ontology about
students and scholarship where US Dollar would be used instead of Euro. With-
out semantic values, we could only align classes representing scholarships, but
not their properties. With semantic values, we can nevertheless state that the
OWL property φs(amount) is equivalent to the corresponding property in the
other ontology: they indeed bear the same general meaning. On the other hand,
the fact that their numeric values can not be compared will be conveyed by the
fact that φd(amount) would not be aligned.

7 Conclusion and Perspectives

In this paper, we have proposed the ODBC model, a formalization of relational
databases focusing on their logic model. We have then presented a transforma-
tion of that model into OWL, a DL-based language designed for the Seman-
tic Web. This transformation is implemented by the Cross open-source proto-
type, which effectively introduces the interesting notion of semantic values. We
proved that the knowledge based produced by this transformation is consistent
if and only if the source database state is weakly legal (i.e. legal but regarding
foreign key constraints). Taking advantage of that result, we have shown how
that transformation can prove useful for the purpose of analysing legacy RDBs,
enhancing existing RDBs with additional constraints, and integrating them in
the SW.

A first direction for further work would be to try and strengthen the theorem,
to have an equivalence of OWL consistency with full legality, i.e. taking into
account foreign keys. This could actually be done by using an expressive feature
of OWL (the oneOf constructor, not mentioned in this paper), but would possi-
bly make the reasoning intractable. Another solution would be to propose, in a
similar way to finite model reasoning [3], an algorithm of closed world reasoning
which would not be allowed to create individuals.

We also want to get more experimental results for the Cross implementation.
Preliminary results7 are encouraging: the transformation of the schema of real
database (127 tables, 869 columns, 132 unicity constraints, no foreign key) took
around 1.5s; the resulting ontology was loaded in Pellet in about 9s, while rea-
soning took about 3s. Those results seem reasonable for a quite big schema.
We now plan to experiment on the use cases presented in Section 6.3 with that
database and a sample of other real databases.

7 On an Intel Core 2, 2.33GHz, with 2GB of memory.

Cross: An OWL Wrapper for Reasoning on Relational Databases 517

References

1. Hainaut, J., Henrard, J., Hick, J., Roland, D., Englebert, V.: Database Design
Recovery. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos, J. (eds.) CAiSE 1996.
LNCS, vol. 1080, pp. 272–300. Springer, Heidelberg (1996)

2. Halevy, A.Y., Ives, Z.G., Mork, P., Tatarinov, I.: Piazza: data management infras-
tructure for semantic web applications. In: WWW’03, pp. 556–567. ACM Press,
New York (2003)

3. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying Class-Based Representation For-
malisms. J. Artif. Intell. Res (JAIR) 11, 199–240 (1999)

4. Levy, A.Y., Rousset, M.C.: Combining horn rules and description logics in carin.
Artif. Intell. 104(1-2), 165–209 (1998)

5. Bizer, C.: D2R MAP - A Database to RDF Mapping Language. In: WWW 2003
(Posters) (2003)

6. de Laborda, C.P., Conrad, S.: Relational.OWL - A Data and Schema Represen-
tation Format Based on OWL. In: Hartmann, S., Stumptner, M. (eds.) APCCM
2005, vol. 43 of CRPIT, pp. 89–96. Australian Computer Society (2005)

7. Dean, M., Schreiber, G.: OWL Web Ontology Language. W3C Recommendation
(2004), http://www.w3.org/TR/owl-ref/

8. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C
Working Draft (2007), http://www.w3.org/TR/rdf-sparql-query/

9. Grau, B.C., Parsia, B., Sirin, E.: Combining OWL ontologies using ε-Connections.
Web Semantics: Science, Services and Agents on the WWW 4(1), 40–59 (2006)

10. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann,
H., Hübner, S.: Ontology-based integration of information — a survey of exist-
ing approaches. In: Stuckenschmidt, H. (ed.) IJCAI–01 Workshop: Ontologies and
Information Sharing, pp. 108–117 (2001)

11. Euzenat, J.: An API for ontology alignment. In: McIlraith, S.A., Plexousakis, D.,
van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Hei-
delberg (2004)

12. The Description Logic Handbook: Theory, Implementation, and Applications. In:
Baader, F., et al. (eds.) Description Logic Handbook. Cambridge University Press,
Cambridge (2003)

13. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
reasoner. Journal of Web Semantics (to appear)

14. Borgida, A., Lenzerini, M., Rosati, R.: Description Logics for Databases. DLHand-
book [12], 462–484

15. Champin, P.A.: Representing data as resources in rdf and owl. In: Arenas, M.,
Hidders, J. (eds.) EROW 2007. CEUR Workshop Proceedings (January 2007),
http://ceur-ws.org/Vol-229/

16. Champin, P.A., Houben, G.J., Thiran, P.: Wrapping relational databases on
the semantic web. Technical Report RR-LIRIS- 2007-012 (2007), http://
liris.cnrs.fr/publis/?id=2797

17. Sciore, E., Siegel, M., Rosenthal, A.: Using semantic values to facilitate interoper-
ability among heterogeneous information systems. ACM Transaction on Database
Systems 19(2), 254–290 (1994)

18. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the
description logic SHIQ. In: IJCAI 2007 (2007)

19. Stuckenschmidt, H.: Similarity-based query caching. In: Christiansen, H., Hacid,
M.-S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2004. LNCS (LNAI), vol. 3055,
pp. 295–306. Springer, Heidelberg (2004)

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-sparql-query/
http://ceur-ws.org/Vol-229/
http://liris.cnrs.fr/publis/?id=2797
http://liris.cnrs.fr/publis/?id=2797

Augmenting Traditional Conceptual Models

to Accommodate XML Structural Constructs

Reema Al-Kamha, David W. Embley, and Stephen W. Liddle

Brigham Young University, Provo, Utah 84602, USA

Abstract. Current graphical notations for XML Schema do not raise
the level of abstraction for XML schemata in the same way traditional
conceptual models raise the level of abstraction for data schemata. Tra-
ditional conceptual models, on the other hand, do not accommodate sev-
eral XML Schema structures. Thus, there is a need to enrich traditional
conceptual models with new XML Schema features. After establishing
criteria for XML conceptual modeling, we propose an enrichment to rep-
resent the XML features missing in traditional models. We argue that
our solution can be adapted generally for traditional conceptual models
and show how it can be adapted for two popular conceptual models.

1 Introduction

Many organizations are now storing their data using XML, and XML Schema
has become the predominant mechanism for describing valid XML document
structures. Moreover, the number of applications that use XML as their native
data model have increased. This increases the need for well-designed XML data
models and the need for a conceptual model for designing XML schemas.

Commercial tools such as Visual Studio .NET [11], Stylus Studio [16], and
XML Spy [15] each support proprietary graphical representions for XML struc-
tures. These tools include graphical XML Schema editors that use connected
rectangular blocks to present the schema. Although these products provide vi-
sual XML Schema editing tools, they do not raise the level of abstraction because
they only provide a direct view of an XML Schema document. Thus, these graph-
ical representations do not serve the objective of conceptualizing XML Schema
for modeling and design.

In systems modeling and design, traditional conceptual models have proven
to be quite successful for graphically representing data at a higher level of ab-
straction. Conceptual models represent components and their relationships to
other components in the system under study in a graphical way, at a conceptual
level of understanding. Popular conceptual models that achieve these objectives
are ER [4], extended ER models [17], and UML [3,18].

XML Schema, however, introduces a few features that are not explicitly sup-
ported in these and similar conceptual models. The most important of these
features include the ability to (1) order lists of concepts, (2) choose alternative
concepts from among several, (3) declare nested hierarchies of information, (4)
specify mixed content, and (5) use content from another data model.

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 518–533, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Augmenting Traditional Conceptual Models 519

This paper makes the following contributions. First, it proposes conceptual
representation for XML content structures that are not explicitly present in tra-
ditional conceptual models. Second, based on the underlying idea of the proposed
representation, it suggests ways to represent missing XML content structures in
two of the most popular conceptual models, ER and UML.

We present the details of our contributions as follows. Section 2 lists crite-
ria an XML conceptual model should satisfy. Section 3 describes the structural
constructs in XML Schema that are missing in traditional conceptual models.
Section 4 explains how we model these features of XML Schema in a modeling
language we call Conceptual XML (C-XML). Section 5 compares our proposal
with other proposals for ways to extend some traditional conceptual models to
represent some XML features and shows how to adapt C-XML representations
for traditional conceptual models. Section 6 summarizes and draws conclusions.

2 XML Modeling Criteria

Requirements for XML conceptual models have been presented in [19], [14], and
[10]. Some of these requirements cover general goals of conceptual modeling,
while others are specific to XML. General requirements include the following:

– Graphical notation. Notation should be graphical, user-friendly [10,14,19].
– Formal foundation. The model should be defined formally [10,14,19].
– Structure independence. The notation should ensure that the basics of the

conceptual model are not influenced by the underlying structure, but reflect
only the conceptual components of the data [10,14,19].

– Reflection of the mental model. The conceptual model must be consistent
with a designer’s mental conceptualization of objects and their interrelation-
ships [14]. For example, there should be no distinction between element and
attribute on the conceptual level, and hierarchies should not be required.

– N-ary relationship sets. The conceptual model should be able to represent
n-ary relationship sets at the conceptual level [10].

– Views. It should be possible to transform the model to present multiple user
views [10].

– Logical level mapping. There should be algorithms for mapping the concep-
tual modeling constructs to XML Schema [10,19].

– Constraints. The conceptual model should support common data constraints
such as cardinality and uniqueness constraints [14].

– Cardinality for all participants. The hierarchical structure of XML data re-
stricts the specification of cardinality constraints only to nested participants;
however, it should be possible to specify cardinality constraints for all par-
ticipants at the conceptual level [10].

– Ordering. The model should be able to order a list of concepts [10,14].
– Irregular and heterogeneous structure. The conceptual model should intro-

duce constructs for modeling irregular and heterogeneous structure [10].
– Document-centric data. The conceptual model should be able to represent

the mixed content and open content that XML Schema provides [10,14,19].

520 R. Al-Kamha, D.W. Embley, and S.W. Liddle

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
3 <xs:element name="StudentInfo">
4 <xs:complexType>
5 <xs:sequence>
6 <xs:choice>
7 <xs:element name="Name" type="xs:string"/>
8 <xs:sequence>
9 <xs:element name="FirstName" type="xs:string"/>
10 <xs:element name="MiddleName"

type="xs:string" minOccurs="0" maxOccurs="2"/>
11 <xs:element name="LastName" type="xs:string"/>
12 </xs:sequence>
13 </xs:choice>
14 <xs:sequence maxOccurs="5">
15 <xs:element name="School">
16 <xs:complexType>
17 <xs:sequence>
18 <xs:element name="SchoolName" type="xs:string"/>
19 <xs:element name="SchoolAddress" type="xs:string"/>
20 <xs:element name="SchoolID" type="xs:string"/>
21 <xs:element name="SchoolMascot"

type="xs:string" minOccurs="0"/>
22 </xs:sequence>
23 </xs:complexType>
24 <xs:key name="schoolKey">
25 <xs:selector xpath=".//School"/>
26 <xs:field xpath="SchoolName"/>
27 <xs:field xpath="SchoolAddress"/>
28 </xs:key>
29 <xs:key name="schoolIDKey">
30 <xs:selector xpath=".//School"/>
31 <xs:field xpath="SchoolID"/>
32 </xs:key>
33 </xs:element>
34 <xs:element name="GraduationDate" minOccurs="0">

35 <xs:complexType>
36 <xs:sequence>
37 <xs:element name="Month" type="xs:string"/>
38 <xs:element name="Year" type="xs:string"/>
39 </xs:sequence>
40 </xs:complexType>
41 </xs:element>
42 </xs:sequence>
43 <xs:element name="RecommendationLetter"

minOccurs="0" maxOccurs="3">
44 <xs:complexType mixed="true">
45 <xs:all>
46 <xs:element name="ProfessorName"

type="xs:string"/>
47 <xs:element name="ContactInfo">
48 <xs:complexType>
49 <xs:choice maxOccurs="2">
50 <xs:element name="PhoneNumber"

type="xs:string"/>
51 <xs:element name="Email"

type="xs:string"/>
52 <xs:element name="Fax"

type="xs:string"/>
53 </xs:choice>
54 </xs:complexType>
55 </xs:element>
56 </xs:all>
57 </xs:complexType>
58 </xs:element>
59 <xs:any namespace="##other" minOccurs="0"/>
60 </xs:sequence>
61 <xs:attribute name="StudentNumber"

type="xs:ID" use="required"/>
62 <xs:anyAttribute namespace="##any"/>
63 </xs:complexType>
64 </xs:element>
65 </xs:schema>

Fig. 1. Example of Choice/Sequence Structures in XML Schema

3 Missing Modeling Constructs

We now give an overview of the structural constructs in XML Schema that are
missing in traditional conceptual models.

The sequence structure specifies that the child concepts declared inside it
must appear in an XML document in the order declared. Each ordered child
concept can occur zero or more times constrained by minOccurs and maxOccurs
attributes. Likewise, the entire sequence itself can occur zero or more times.
The default value for both minOccurs and maxOccurs is always 1. The se-
quence construct may include several types of child constructs: element, group,
choice, sequence, and any. Lines 15–23 in Figure 1 specify that in a complying
XML document an element School contains a sequence of required SchoolName,
SchoolAddress, and SchoolID elements, and an optional SchoolMascot element.

The choice structure specifies that for each choice only one of the child con-
cepts declared within it can appear in an XML document. Each child concept in
the choice can occur zero or more times within the choice constrained by minOc-
curs and maxOccurs attributes. Likewise, the entire choice itself can occur zero
or more times. The default value for minOccurs and maxOccurs for both the
entire choice and the component children is 1. The choice construct may include
several types of child constructs: element, group, choice, sequence, and any. In
Figure 1, lines 47–55 specify that in a complying XML document an element
ContactInfo contains one or two choices, and each choice contains either one
PhoneNumber, one Email, or one Fax.

Augmenting Traditional Conceptual Models 521

By default, structural constructs in XML Schema can contain child elements,
but not text. To allow mixed content (child elements and text), XML Schema
provides a mixed attribute that can be set to true. In Figure 1, lines 43–58 show
an example of mixed content for a complex type. Setting mixed to true enables
character data to appear between the child elements of RecommendationLetter
in a complying XML document. Thus, the content of RecommendationLetter
(abbreviated as RL) may, for example, be “<RL> <ProfessorName> Dr. Jones
</ProfessorName> recommends this student. Email <ContactInfo><Email>
jones@univ.edu </Email> </ContactInfo> with questions.</RL>”.

The any and anyAttribute structures of XML Schema let designers reuse com-
ponents from foreign schemata or namespaces. The any structure allows the
insertion of any element belonging to a list of namespaces, and it can have
minOccurs and maxOccurs attributes to define the number of occurrences of
the any construct. The anyAttribute structure allows the insertion of any at-
tribute belonging to a list of namespaces. Both any and anyAttribute can have
namespace and processContents as attributes. The attribute namespace specifies
the namespaces that an XML validator examines to determine the validity of an
element in an XML document. The attribute processContents specifies how the
XML processor should handle validation against the elements specified by the
any or anyAttribute. In Figure 1, the any element in line 59 specifies that zero or
more elements from any other namespace can appear after the Recommendation-
Letter element. Further, the anyAttribute specification in line 62 indicates that
the StudentInfo element can have additional attributes from any namespace.

In XML Schema, it is possible to nest structural constructs, thus forming a
hierarchy of nested constructs. In Figure 1, for example, StudentInfo has the
attributes StudentNumber and anyAttribute, and it also contains the following
structures in order: first, either a Name or a sequence of one FirstName, zero
to two MiddleName’s, and one LastName; second, one to five sequences such
that each sequence includes one SchoolName, one SchoolAddress, and an op-
tional GraduationDate (the GraduationDate itself contains a Month followed by
a Year); third, an element RecommendationLetter that has two elements, Pro-
fessorName and ContactInfo (ContactInfo in turn contains one to two choices
such that in each choice either PhoneNumber or Email or Fax is specified); and
fourth, an optional any element.

4 C-XML

In this section we propose an enrichment to represent XML Schema content
structures that are usually missing in traditional conceptual models. Since hy-
pergraphs provide a general representation for conceptual models, we begin with
an augmented hypergraph whose vertices and edges are respectively object sets
and relationship sets, and whose augmentations consist of decorations that rep-
resent constraints. A hypergraph foundation is amenable to the requirements of
XML Schema, and thus this choice simplifies the correspondence between con-
ceptual models and XML Schema. We call our representation Conceptual XML
(C-XML).

522 R. Al-Kamha, D.W. Embley, and S.W. Liddle

We derive C-XML from OSM [6], a hypergraph-based conceptual model that
defines structure in terms of object sets (or concepts), relationship sets, and con-
straints over these object and relationship sets. Figure 2 shows a C-XML model
instance that corresponds to the XML schema of Figure 1. An object set with a
solid border indicates a nonlexical concept, a dashed border indicates a lexical
concept, and a double solid/dashed border indicates a mixed concept.1 A shaded
object set indicates a high-level object set that groups other object and relation-
ship sets into a single object set. Lines connecting object sets are relationship
sets. A participation constraint specifies how many times an object in a con-
nected relationship may participate in a relationship set. For the most common
participation constraints (0:1, 1:1, 0:*, and 1:*), C-XML uses graphical nota-
tion as a shorthand: (1) an “o” on a connecting relationship-set line designates
optional participation, while the absence of an “o”designates mandatory, and (2)
an arrowhead specifies a functional constraint, limiting participation of objects
on the tail side of the arrow to be at most one.

The sequence structure representation must be able to specify concepts in a
sequence in a particular order. Also, the representation must be able to specify
the minimum and maximum numbers of occurrence of the whole sequence and of
each child element within the sequence. For C-XML we let a bounded half circle
with a directional arrow represent a sequence. The sequenced child concepts
connect to the curved side, and the parent concept that contains the sequenced
child concepts connects to the flat side. We place participation constraints for
the entire sequence near the connection to the parent. We place participation
constraints for each child near the curved side of the sequence symbol. Note that
C-XML has participation constraints that represent the minimum and maximum
number of occurrences of the sequence in the relationship set between the parent
and the sequence. C-XML also allows participation constraints that represent the
minimum and maximum allowed occurrences of the sequence in the relationship
set between the sequence and each sequenced child concept.

The representation for choice is similar in appearance to the representation
for sequence, but instead of an arrow we use a vertical bar to indicate choice.

For any and anyAttribute we use a high-level object set to indicate that it
contains some content from another schema. XML Schema is not specific enough
to designate which concept, and thus we cannot specify which concept. We there-
fore name these concepts “any”. Conceptually, in C-XML whether the concept is
an attribute or an element does not matter, and we do not distinguish between
these cases.

We now evaluate C-XML with respect to the criteria for XML conceptual
models in Section 2.

1 In an XML document, the content string for a mixed concept might be interspersed
among a number of child nodes. However, in C-XML the mixed concept does not
explicitly specify how text and child elements can be interleaved. If the pattern for
interspersing chunks of the string among child nodes matters, then the user must
model text nodes explicitly (in combination with a sequence structure) rather than
use the generic mixed construct.

Augmenting Traditional Conceptual Models 523

Fig. 2. Sequence/Choice Structures for Figure 1

– Graphical notation. We have presented a sufficient graphical notation, but
this is just one possibility among many.

– Formal foundation. OSM has a solid formal foundation in terms of predicate
calculus (see Appendix A of [6]). In OSM, each object set maps to a one-
place predicate, and each n-ary relationship set (n ≥ 2) relationship set maps
to an n-place predicate. Each constraint (e.g. a participation constraint)
maps to a closed predicate-calculus formula. The appendix describes formal
representations for the added features for C-XML: sequence, choice, mixed
content, and general co-occurrence constraints.

– Structure independence. XML in general, and XML Schema in particular,
are strongly hierarchical in nature. C-XML is capable of representing the hi-
erarchical aspect of XML Schema, but C-XML is more general, flexible, and
conceptual. For example, C-XML allows multiple sequence and choice struc-
tures to be associated directly with a single concept (XML Schema allows
only one sequence or choice structure for the content of an element). Also,
C-XML supports the intermixing of ordinary relationship sets with sequence
and choice structures. From this conceptual structure, we can derive many
possible hierarchical representations. Similarly, C-XML defines generalized
versions of the concepts of sequence, choice, and mixed content. C-XML
provides a conceptual perspective that is structurally independent of XML
Schema.

– Reflection of the mental model. Given its structure independence and gener-
ality, C-XML is well suited to reflect the mental model (design) of a modeler.
C-XML can represent hierarchical and non-hierarchical structure. Concep-
tually, whether a concept is an attribute or an element does not matter, and
C-XML does not distinguish between them. C-XML is also able to represent
both sequences among related entities and non-sequences among related en-
tities. Choices among alternative related entities are also possible, and choice

524 R. Al-Kamha, D.W. Embley, and S.W. Liddle

is distinct from generalization/specialization so that neither is overloaded.
C-XML supports mixed content and open content. Finally, C-XML provides
for all XML cardinality constraints; indeed it provides for a very large spec-
trum of cardinality constraints [9] encompassing and going beyond those
provided by XML.

– N-ary relationship sets. C-XML supports n-ary relationship sets, (n ≥ 2).
– Views. High-level object sets constitute a formal view mechanism, as do high-

level relationship sets [6]. As described above, C-XML also can represent both
hierarchical and non-hierarchical views.

– Logical level mapping. We have implemented automatic conversions from
XML Schema to C-XML and vice versa.

– Constraints. C-XML supports several kinds of constraints: set, referential-
integrity, cardinality, and general constraints.

– Cardinality for all participants. C-XML goes further than XML Schema,
even allowing cardinality constraints for children of a sequence or choice.

– Ordering. C-XML explicitly supports ordering with its sequence construct.
– Irregular and heterogeneous structure. The features that give C-XML its

structure independence (described above) provide for the modeling of irreg-
ular and heterogeneous structure.

– Document-centric data. C-XML can represent both mixed and open content.

5 Augmenting ER and UML

A number of conceptual modeling languages for XML Schema have been de-
scribed in the literature. Sengupta and Mohan [12] and Necasky [10] present
fairly recent surveys. As we explain in this section, however, most of these ef-
forts do not support the full generality of XML Schema.

5.1 ER

Sengupta et al. [13] propose XER as an extension to the ER model for XML.
Figure 3 shows an example of XER; in fact, it shows the best that can be done

Fig. 3. Best Representation of Figure 1 using XER Notation

Augmenting Traditional Conceptual Models 525

Fig. 4. Possible Way to Represent XML Schema Document in Figure 1 in ER-XML

to represent the XML schema in Figure 1. As we will see, it does not capture all
the concepts and constraints in the XML schema in Figure 1.

XER represents an entity such as StudentInfo or GraduationDate using a
rectangle with a title area giving the name of the entity and the body giving the
attributes. For example, in Figure 1, Month and Year are sequenced elements
nested under the element GraduationDate, so in Figure 3 Month and Year are
represented as attributes for the GraduationDate entity. Multi-valued attributes
are also allowed; their multiplicity constraints are in parentheses. MiddleName,
for example, is a multi-valued attribute with a multiplicity (0,2). XML attributes
in an XER entity are prefixed with @, and key attributes are underlined. The
attribute StudentNumber is a key in Figure 1, so in Figure 3 it appears as an
underlined attribute with a prefix of @.

An XER entity can be ordered or unordered. Additionally, an XER entity can
be mixed.

– Ordered Entity. XER entities are ordered by default from top to bottom.
The ordered entity GraduationDate in Figure 3 indicates that its attributes
are ordered first Month, then Year.

– Unordered Entity. An unordered entity is represented by placing a question
mark (?) in front of the entity name. StudentInfo in Figure 3 is an unordered
entity.

– Mixed Entity. A mixed entity is represented in XER using a rounded rect-
angle. RecommendationLetter in Figure 3 is a mixed entity.

XER relationships denote a connection between two or more entities, but in
XER they can also denote that a complex entity contains a complex element as
one of its sub-elements. When an entity E in XER has an attribute A and this
attribute A by itself is an entity that contains other attributes, then A appears
in the XER diagram twice, once as an attribute inside the entity E, and once as
an entity A. In addition, there is a connection between the attribute A inside the
entity E and the entity A. If minA:maxA is the participation constraint on A

526 R. Al-Kamha, D.W. Embley, and S.W. Liddle

within E and minE:maxE is the participation constraint on E for A, minA:maxA
appears on the side of the attribute A within E, and minE:maxE appears on
the side of the entity A. For example, RecommendationLetter has two attributes
ProfessorName and ContactInfo, but ContactInfo by itself is an entity. Thus, a
relationship set appears between the attribute ContactInfo inside Recommenda-
tionLetter and the entity ContactInfo. A participation constraint of 1:1 appears
on the side of the attribute ContactInfo inside RecommendationLetter to denote
that RecommendationLetter has one ContactInfo, and a participation constraint
of 1:N appears on the ContactInfo entity side to denote that ContactInfo is for
one or more RecommendationLetters.2

XER represents the choice concept in XML Schema as a generalization/spe-
cialization. Generalization in XER refers to the concept of an entity that can
have different specialization entities in an ISA relationship. XER represents a
generalization using a covering rectangle containing the specialized XER entities.
This, the authors claim in [13], is equivalent to using the “xs:choice” tag in XML
Schema. In Figure 3 the rectangle representing the entity ContactInfo contains
the rectangles of entities of choice elements PhoneNumber, Email, and Fax.

Comparing the conceptual components for C-XML (e.g. Figure 2) and XER
(e.g. Figure 3), we see that several constructs and constraints are missing in XER.
First, XER lacks the ability to represent the minimum and maximum occurrence
of the whole sequence or choice within a containing entity when either of their
values is more than 1. For example, XER cannot represent the minimum and
maximum occurrence of 1 to 2 for the choice within the entity ContactInfo.
Second, XER has no representation for any and anyAttribute structures. For
example, in Figure 3 the entity StudentInfo is missing the anyAttribute, and
the sequence contained inside the StudentInfo entity does not have any. Third,
XER has no representation for composite keys. For example, in Figure 3 the
representation that SchoolName and SchoolAddress together constitute a key
for the entity School is missing. Fourth, although XER has a representation for
a single key, this representation only applies when the key for an entity is an
attribute of that entity. The representation cannot specify a key constraint for
an entity within the context of another entity.

Beyond these omissions, we have several concerns:

– Representing choice by generalization/specialization is problematic; the for-
mal definition of choice differs from the formal definition of generaliza-
tion/specialization. First, choice contains different types of alternative
concepts, but all the specialized concepts in generalization/specialization
hierarchies typically must have the same type. Second, in generalization/
specialization hierarchies any specialized concept inherits relationship sets
from its generalization concepts, while in choice, alternative concepts do
not inherit relationship sets. Third, the participation constraints for choice
allow alternative concepts to appear more than once, while in generaliza-
tion/specialization hierarchies specialized concepts can appear at most once.

2 Although ER more commonly uses look-across cardinality constraints, the designers
of XER have chosen to use participation constraints [13].

Augmenting Traditional Conceptual Models 527

– In XER it is not clear from [13] whether it is possible to represent an entity
without having a name for the entity. For Figure 3 we assume that we are
able to represent an entity in XER with a null name. Also, in XER it is not
clear whether it is possible to have an empty slot in an entity to indicate
that an attribute by itself is an entity without a name. We also assume for
Figure 3 that we are able to do so in XER. From [13] it is not clear whether
it is possible to have hierarchies of choice and sequence structures, but we
assume that this is possible as Figure 3 shows.

– In XER when an entity has an attribute and this attribute is also an entity,
the model instance in XER has an attribute and an entity with the same
name. This redundancy might cause problems if XER developers are able to
write the two names independently.

In light of these omissions and concerns, we extend XER, augmenting it with
constructs and constraints that are missing and resolving our concerns. Figure 4
shows our suggested way of representing the schema in Figure 1 in ER-XML,
our ER augmentation for XML. We add any and anyAttribute concepts to XER.
We have chosen to add a representation of any and anyAttribute as entities with
the name any. We also add minimum and maximum occurrence to sequence and
choice, placing this minimum and maximum in parentheses in the name slot,
following the name, if any, of the entity that declares the sequence or choice. We
have chosen to add a representation for key constraints by allowing functional de-
pendencies that must hold within entity sets or along paths of relationship sets.
Thus, for example, as Figure 4 shows, we can specify the composite key School-
Name, SchoolAddress by the functional dependency SchoolName, SchoolAddress
−→ School. Although we use the same notation for choice, we do not consider
the representation of choice in ER-XML to be a generalization concept. Finally,
we do not repeat attribute names, writing the name only in the entity that
represents the attribute.

5.2 UML

Conrad et al. [5] add features to UML to enable mappings from class diagrams
to XML DTDs. Figure 5 shows an example; in fact, it shows the best that can
be done to represent the XML schema in Figure 1. Unfortunately, it does not
capture all the concepts and constraints in the XML schema in Figure 1.

As described in [5], Conrad et al. augment UML aggregation so that it can
be transformed into a sequence construct or a choice construct. The designation
{sequence} specifies a left-to-right ordering of elements, and the designation
{choice} specifies a choice among elements. For a sequence the first constituent
element is marked as 1 , the second as 2 , and so forth. A sequence or choice con-
struct may have cardinality to represent the minimum and maximum occurrence
of the entire sequence or choice. For example, the class ContactInfo in Figure 5
has one to two choices {choice : 1..2} of the classes PhoneNumber, Email, and
Fax. For an any structure, the notation in [5] uses the «content» stereotype.

Comparing the conceptual components for C-XML (e.g. Figure 1) and ex-
tended UML presented in [5] (e.g. Figure 5), we see that several constructs are

528 R. Al-Kamha, D.W. Embley, and S.W. Liddle

Fig. 5. Best Representation of Figure 1 Using Conrad Notation

Fig. 6. Possible Way to Represent XML Schema Document in Figure 1 in UML-XML

missing. First, the extended UML in [5] does not support anyAttribute. For ex-
ample, in Figure 5 the class StudentInfo is missing the anyAttribute. Second,
the extended UML in [5] cannot represent mixed content. In Figure 5 the class
RecommendationLetter does not appear as having mixed content. Third, the ex-
tended UML in [5] lacks key constraints, although, in principle, we could specify
key constraints using OCL (the constraint language of UML).

Besides these omissions, we have concerns about the suggested representation
of sequence and choice in [5]. The suggested representations can only be applied
between classes, not between attributes. This is because Conrad et al. augment
UML aggregation for sequence and choice. Since the aggregation in UML applies
to classes, the notation forces attributes to be represented as classes. For example,
to represent the GraduationDate class as a sequence of Month and Year, would-
be attributes Month and Year must each become a class first.

To overcome these difficulties, we need to extend and adjust the representa-
tions in [5]. Figure 6 shows our suggested extensions and adjustments by ren-
dering Figure 1 in UML-XML, our UML augmentation for XML.

– We have chosen to represent the anyAttribute as an associated class with the
any content type rather than as a stereotype. For mixed content we use the
«mixed» stereotype. RecommendationLetter in Figure 6 is an example.

Augmenting Traditional Conceptual Models 529

– We suggest representing sequence and choice in a different way so that
we do not force attributes to be represented as classes. When attributes
in a class are ordered, we add the designation [Sequence] under the class
name to specify a top-to-bottom ordering of the attributes. We also add
minOccurs..maxOccurs, if needed, to express participation different from the
default. For example, in Figure 6, the designation [Sequence] is added un-
der GraduationDate. Similarly, we allow designating a choice construct by
adding [Choice minOccurs..maxOccurs], allowing minOccurs .. maxOccurs
to be omitted when it is 1..1, the default. For example, in Figure 6, the
designation [Choice 1..2] is added under ContactInfo.

– We add notation to denote that a class contains an attribute and that this
attribute is a class that contains other attributes. A connection appears that
connects an empty slot indicating the presence of an attribute inside the
class with the class containing other attributes. For example, we indicate
that ContactInfo is an attribute inside the class RecommendationLetter by
the connection inside RecommendationLetter that extends to ContactInfo.
Note also that ContactInfo by itself is a class that contains attributes. A
multiplicity of 1 is added to the ContactInfo class side and a multiplicity of
1..* is added to the ContactInfo attribute side in the RecommendationLetter
class to denote that ContactInfo is for 1 or more RecommendationLetters
and each RecommendationLetter has one ContactInfo.

– For the case when a sequence or choice is a complex attribute inside a class
C, the sequence or choice is represented as a class with no name but has
the designation [Sequence] or [Choice], and we connect the empty slot inside
the class C with the class that represents the sequence or choice. For ex-
ample, the class StudentInfo has a complex sequence attribute. Further, this
sequence by itself is a class that contains other attributes including another
complex choice attribute and a complex sequence attribute.

– We can specify key constraints in UML by using OCL. But, since this is
a common task, we have an alternative representation that we can add to
a diagram. We have chosen to add a representation for key constraints by
allowing functional dependencies which must hold within classes or along
paths of associations. Thus, for example, as Figure 6 shows, we can specify
the composite key SchoolName, SchoolAddress by the functional dependency
{SchoolName, SchoolAddress −→ School}.

5.3 ER-XML, UML-XML, and C-XML

Comparing ER-XML, UML-XML, and C-XML, we make the following obser-
vations according to the criteria for XML conceptual modeling we described in
Section 2. Criteria from Section 2 not listed here have equal validity among the
three models (e.g. all three have a graphical notation).

– Formal foundation. C-XML has a solid formal foundation in terms of predi-
cate calculus. ER-XML and UML-XML are respectively derived from XER as
described in [13] and UML as described in [5]. There is no formal foundation

530 R. Al-Kamha, D.W. Embley, and S.W. Liddle

for XER [10], and the underlying formalism of UML is not fully developed
[7]. In principle both could have complete formal foundations.

– Reflection of the mental model. ER-XML distinguishes attributes from enti-
ties and UML-XML distinguishes attributes from classes. C-XML represents
all concepts as object-set nodes in hypergraphs. Forcing attributes to be em-
bedded within an entity/class has the disadvantage that a user of UML-XML
or ER-XML has to decide before representing any concept whether it should
be an attribute or entity/class. Distinguishing between an attribute and an
entity/class is not necessary and may even be harmful as a mental-model
conceptualization. Goldstein and Storey [8] showed that this can be a major
source of errors in conceptual modeling.

– Views. Hypergraphs are typically more amenable to translations to various
views and even alternate XML schemas such as normalized XML schemas.
Further, although not discussed here, C-XML supports both high-level object
sets and high-level relationship sets as first class concepts [6]. Neither ER-
XML nor UML-XML supports high-level view constructs.

– Logical level mapping. We have implemented both a mapping from XML
Schema to C-XML and vice versa [1,2]. In principle mappings to and from
XML Schema and ER-XML as well as UML-XML are possible.

– Cardinality for all participants. The nesting representation for ER-XML and
UML-XML restricts the specification of cardinality constraints to only the
nesting participants. C-XML specifies cardinality constraints for all partici-
pants, beyond even those supported by XML Schema.

6 Conclusion

We have discussed the structural constructs in XML Schema that are missing
in traditional conceptual models. Our proposed solution is to enrich conceptual
models with the ability to order a list of concepts, choose alternative concepts
from among several, specify mixed content, and use content from another data
model. We presented our solution using C-XML, and we showed that our solution
can be adapted and used for the ER and UML languages.

We also presented requirements for conceptual modeling for XML. We based
these requirements on those presented in [10], [14], and [19]. We evaluated C-
XML against these requirements and showed that C-XML satisfies all of them,
which makes C-XML a good candidate for a conceptual modeling language for
XML. We also argued that ER-XML and UML-XML, our adaptations for ER
and UML, also largely satisfy these requirements, but do not satisfy them as
well as does C-XML.

We have implemented a modeling tool for C-XML, and we have implemented
conversions from XML Schema to C-XML and vice versa. Currently, we are
working on a formal proof that our conversions to and from C-XML and XML
Schema preserve information and constraints.

Augmenting Traditional Conceptual Models 531

Acknowledgments

This work is supported in part by the National Science Foundation under grant
number IIS-0083127 and by the Kevin and Debra Rollins Center for eBusiness
under grant number EB-05046.

References

1. AL-Kamha, R.: Translating XML Schema to Conceptual XML. Technical Report,
Computer Science Department, Brigham Young University (November 2006)

2. AL-Kamha, R.: Translating Conceptual XML to XML Schema. Technical Report,
Computer Science Department, Brigham Young University (in progress)

3. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley, Massachusetts (1999)

4. Chen, P.P.: The entity-relationship model—toward a unified view of data. ACM
Transactions on Database Systems 1(1), 9–36 (1976)

5. Conrad, R., Scheffner, D., Freytag, J.C.: XML conceptual modeling using UML.
In: Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920,
pp. 558–571. Springer, Heidelberg (2000)

6. Embley, D.W., Kurtz, B.D., Woodfield, S.N.: Object-oriented Systems Analysis: A
Model-Driven Approach. Prentice Hall, Englewood Cliffs, New Jersey (1992)

7. A Formal Semantics for UML Workshop (October 2006), http://www.cs.queensu.
ca/∼stl/internal/uml2/MoDELS2006/

8. Goldstein, R.C., Storey, V.C.: Some findings on the intuitiveness of entity-
relationship constructs. In: Proceedings of the Eighth International Conference
on Entity-Relationship Approach (ER 1989),Toronto, Canada, pp. 9–23, North-
Holland (October 1989)

9. Liddle, S.W., Embley, D.W., Woodfield, S.N.: Cardinality constraints in semantic
data models. Data & Knowledge Engineering 11(3), 235–270 (1993)

10. Necasky, M.: Conceptual modeling for XML: A survey. In: Proceedings of the
DATESO 2006 Annual International Workshop on Databases, Texts, Specifications
and Objects (DATESO 2006), Desna, Czech Republic, pp. 40–53 (April 2006)

11. Visual Studio.NET, Microsoft. http://www.msdn.microsoft.com/vstudio
12. Sengupta, A., Mohan, S.: Formal and Conceptual Models for XML Structures—The

Past, Present, and Future. Technical Report 137–1, Indiana University, Information
Systems Department, Bloomington, Indiana (April 2003)

13. Sengupta, A., Mohan, S., Doshi, R.: XER — extensible entity relationship model-
ing. In: Proceedings of XML 2003, Philadelphia, Pennsylvania (December 2003)

14. Sengupta, A., Wilde, E.: The Case for Conceptual Modeling for XML. Technical
Report No. 242, Computer Engineering and Networks Laboratory, ETH Zurich
(February 2006)

15. XMLSpy, Altova, http://www.xmlspy.com
16. Stylus Studio, http://www.stylusstudio.com/xml_schema_editor.html
17. Teorey, T.J., Yang, D., Fry, J.P.: A logical design methodology for relational

databases using the extended entity-relationship model. ACM Computing Sur-
veys 18(2), 197–222 (1986)

18. UML 2.0 superstructure specification (August 2005)
19. Wilde, E.: Towards conceptual modeling for XML. In: Proceedings of the Berliner

XML Tage 2005 (BXML2005), Berlin, Germany, pp. 213–224 (September 2005)

http://www.cs.queensu.ca/~stl/internal/uml2/MoDELS2006/
http://www.cs.queensu.ca/~stl/internal/uml2/MoDELS2006/
http://www.msdn.microsoft.com/vstudio
http://www.xmlspy.com
http://www.stylusstudio.com/xml_schema_editor.html

532 R. Al-Kamha, D.W. Embley, and S.W. Liddle

Appendix

Sequence
Figure 7 shows the schematic structure of a sequence. Exactly one parent object
set connects to a sequence of n children, n ≥ 0, with participation constraints
on the several connections as Figure 7 shows. A sequenced child may be ei-
ther an object set or a nested sequence or choice structure. In general, there
may be many sequences in a model instance, and since we do not explicitly
name sequence structures, we denote a particular sequence, the kth sequence,
by Sequencek. Let P be the name of the parent object set for Sequencek, and
let C1, ..., Cn be the names of the n child object sets or nested sequences or
choices that are sequenced within Sequencek. To impose order, we introduce
the unary predicate Order, which we can think of as an object set containing as
many ordinal numbers as we need 1, 2, We denote the minimum and max-
imum cardinalities of Sequencek according to Figure 7. Let min and max be,
respectively, the minimum and maximum number of occurrences of Sequencek

allowed for an object in P . Let minCi and maxCi , 1 ≤ i ≤ n, be, respectively,
the minimum and maximum number of allowed occurrences of Ci objects within
Sequencek. Let min′ and max′ be, respectively, the minimum and maximum
number of occurrences of Sequencek sequences in the relationship set between
P and Sequencek. Finally, let minSeqi and maxSeqi , 1 ≤ i ≤ n, be, respectively,
the minimum and maximum allowed occurrences of Sequencek in the relation-
ship set between Sequencek sequences and Ci (i.e. the number of Ci objects that
can be associated with Sequencek for a given order position). For Sequencek,
we have the following object sets, relationship sets, and constraints.

Fig. 7. Sequence Structure in C-XML

Object Sets:
P (x), Sequencek(x), Order(x), and C1(x), ..., Cn(x)

Relationship Sets:
P (x) contains Sequencek(y), C1(x) has Order(1) in Sequencek(y), ..., Cn(x)

has Order(n) in Sequencek(y)

Augmenting Traditional Conceptual Models 533

Referential Integrity:

– ∀x∀y(P (x) contains Sequencek(y) ⇒ P (x) ∧ Sequencek(y))
– ∀x∀y(C1(x) has Order(1) in Sequencek(y) ⇒ C1(x) ∧ Order(1) ∧

Sequencek(y))
– ...
– ∀x∀y(Cn(x) has Order(n) in Sequencek(y) ⇒ Cn(x) ∧ Order(n) ∧

Sequencek(y))

Participation Constraints:

– ∀x(P (x)⇒∃≥miny(P (x) contains Sequencek(y)))∧∀x(P (x)⇒∃≤maxy(P (x)
contains Sequencek(y)))

– ∀x(Sequencek(x) ⇒ ∃≥min′
y(P (y) contains Sequencek(x))) ∧

∀x(Sequencek(x) ⇒ ∃≤max′
y(P (y) contains Sequencek(x)))

– ∀x(Sequencek(x) ⇒ ∃≥minSeq1 y1 ... ∃≥minSeqn yn(
C1(y1) has Order(1) in Sequencek(x) ∧ ... ∧
Cn(yn) has Order(n) in Sequencek(x))) ∧
∀x(Sequencek(x) ⇒ ∃≤maxSeq1y1 ... ∃≤maxSeqn yn(
C1(y1) has Order(1) in Sequencek(x) ∧ ... ∧
Cn(yn) has Order(n) in Sequencek(x)))

– ∀x(C1(x) ⇒ ∃≥minC1 y(C1(x) has Order(1) in Sequencek(y))) ∧
∀x(C1(x) ⇒ ∃≤maxC1y(C1(x) has Order(1) in Sequencek(y))) ∧ ... ∧
∀x(Cn(x) ⇒ ∃≥minCn y(Cn(x) has Order(n) in Sequencek(y))) ∧
∀x(Cn(x) ⇒ ∃≤maxCn y(Cn(x) has Order(n) in Sequencek(y)))

Choice
The formalism for choice, which has a schematic structure similar to sequence,
is omitted due to space constraints.

Mixed Content
Formally, marking an object set P as mixed is a template for creating a rela-
tionship set to a lexical object set Text of type string: P [1] contains [1:*]Text.
The string associated with an object in a mixed object set may be interspersed
among direct child elements.

Generalized Co-occurrence:
A generalized co-occurrence constraint A1, ..., An → B1, ..., Bm is shorthand for
an ordinary co-occurrence constraint written over a high-level relationship set
connecting the object sets A1, ..., An, B1, ..., Bm. If the subgraph that connects
these object sets is unique, we can derive the corresponding high-level relation-
ship set automatically. Otherwise, in addition to specifying the co-occurrence
constraint, the user must also specify the derived relationship set using Prolog-
like syntax (e.g., r(A, B) :- r1(A, X), r2(X, B)). The formal definition of co-
occurrence constraints appears in Appendix A of [6].

VERT: A Semantic Approach for Content

Search and Content Extraction in XML Query
Processing

Huayu Wu, Tok Wang Ling, and Bo Chen

School of Computing, National University of Singapore
3 Science Drive 2, Singapore 117543

{wuhuayu,lingtw,chenbo}@comp.nus.edu.sg

Abstract. Processing a twig pattern query in XML document includes
structural search and content search. Most existing algorithms only fo-
cus on structural search. They treat content nodes the same as element
nodes during query processing with structural joins. Due to the high
variety of contents, to mix content search and structural search suffers
from management problem of contents and low performance. Another
disadvantage is to find the actual values asked by a query, they have to
rely on the original document. In this paper, we propose a novel algo-
rithm V alue Extraction with Relational Table (V ERT) to overcome
these limitations. The main technique of V ERT is introducing relational
tables to store document contents instead of treating them as nodes and
labeling them. Tables in our algorithm are created based on semantic
information of documents. As more semantics is captured, we can fur-
ther optimize tables and queries to significantly enhance efficiency. Last,
we show by experiments that besides solving different content problems,
V ERT also has superiority in performance of twig pattern query pro-
cessing compared with existing algorithms.

1 Introduction

XML plays an important role in information exchange nowadays. As a result,
how to process queries over XML documents efficiently attracts lots of research
interests. In most XML query languages (see, e.g. [2][3]), the queries are ex-
pressed as twig patterns. Finding all appearances of a twig pattern in an XML
document is a most significant operation in XML query processing.

Normally an XML query includes structural search and content search. E.g.
in a query

book[author = “Jack”]/title

book[author]/title is a structural search and author = “Jack” is a content
search. Most of existing works only focus on processing structural search ef-
ficiently and very few of them pay high attentions on contents. Content prob-
lems include how to properly manage contents, how to efficiently process content

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 534–549, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

VERT: A Semantic Approach for Content Search and Content Extraction 535

<book_store>
<book>

<ISBN>0-07-123057-2</ISBN>
<title>Database Management Systems</title>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<price>33</price>
<amount>20</amount>

</book>
<book>

<ISBN>0-07-124650-9</ISBN>
<title>Introduction to Database Systems</title>
<author>Bressan</author>
<author>Catania</author>
<price>17</price>
<amount>12</amount>

</book>
……

</book_store>

(a) An XML document

ISBN

book

price

>15

title

(b) A twig pattern query

Fig. 1. An example of XML document and twig pattern query

search during query processing and how to extract contents to answer the queries.
E.g. TwigStack [4] and its subsequent algorithm TwigStackList [9] are optimal
for processing path and twig pattern queries, but they all suffer from content
problems when they process queries with content predicates, because they treat
contents the same as other element nodes and perform structural search for the
whole query. Although some algorithms like [12] and [11] use subsequence match-
ings to avoid problems on content search , they still suffer from other problems
such as cost for content result fetching in XML databases.

In this paper, we propose a new algorithm to solve different kinds of content
problems in twig pattern query processing. Our contribution can be summarized
as follows:

– We propose a new algorithm, namely Value Extraction with Relational Table
(VERT). Our approach combines value contents to related element or at-
tribute nodes and only assigns label to the element or attribute. Instead of
organizing tremendous number of streams for different contents, e.g. streams
for value content ‘33’, ‘Gehrke’ and so on for document in Fig. 1(a), we adopt
relational tables to store value contents together with their associated ele-
ments or attributes. In this point of view, we can reduce the number of
labeled nodes and also we can solve the management problem of contents
raised in previous algorithms.

– Content search can be accomplished efficiently by SQL queries on corre-
sponding relational tables with proper indexes. Furthermore, after finding
the appearances of a twig pattern we can easily get the desired value con-
tents from tables. As a result, our approach need not consider the document
storage for final results.

536 H. Wu, T.W. Ling, and B. Chen

– Relational tables are created based on semantic information captured in
documents. As more semantics is captured, we can further optimize the
tables and queries to achieve better performance, as shown in Section 5.

– Besides solving content problems, we also present experimental results to
show the superiority of V ERT and subsequent optimizations over previous
algorithms in performance of twig pattern query processing.

The rest of the paper is organized as follows. We first describe some related
works in Section 2. After that we discuss background knowledge and motivation
for our work in Section 3. The V ERT algorithm with two semantics based
optimizations is presented in Section 4. We present the experimental results in
Section 5 and conclude our work in Section 6.

2 Related Work

In early work, Zhang et al. [14] proposed a multi − predicatemergejoin al-
gorithm based on (DocId, Start, End, Level) containment labeling of a XML
document. Later an improved stack-based structural join algorithm is proposed
by Al-Khalifa et al. [1]. These two algorithms, as well as most of prior works
decomposed a twig pattern into a set of binary relationships, e.g. parent-child
and ancestor-descendant relationships. Then twig pattern matching could be
done by matching each binary relationship and combining these basic binary
matches. The main problem of such approaches is that intermediate result size
may be very large, even when the input and final result sizes are more man-
ageable. To overcome this limitation, Bruno et al. [4] proposed a holistic twig
join algorithm, TwigStack, which could avoid producing a large size of inter-
mediate result. However, this algorithm is only optimal for a twig pattern with
only ancestor-descendent relationships. There are many subsequent works [9] [8]
[5] [10] [7] [13] to optimize TwigStack in terms of I/O, or extend TwigStack
for different kinds of problems. In particular, Lu et al. [9] introduced a list
structure to make it optimal for queries containing parent-child relationships.
However, all these existing works only focus on structural search. For content
search they either treat content node the same as element node, or consider how
contents are stored and perform a separate operation on content search. V iST
[12] and PRIX [11] transform twig pattern queries into sequences and perform
subsequence matchings for query processing. They can solve problems on con-
tent search, but they still do not pay attention to fetching content results of
twig pattern queries, and are not efficient in structural search comparing with
TwigStack.

3 Background and Motivations

3.1 Data Model and Twig Pattern

XML documents are commonly modelled as ordered trees, in which tree nodes
represent tags, attributes or text values, and edges represent element-subelement,

VERT: A Semantic Approach for Content Search and Content Extraction 537

element-attribute, element-content or attribute-value pairs. We call these binary
relationships parent-child relationships (denoted by “/”). Queries normally ap-
pear to be twig patterns. A twig pattern is a small tree whose nodes stand for
tags, attributes or contents in a document. Different from the parent-child re-
lationship in XML tree, edges in twig query can also be ancestor-descendent
relationships (denoted by “//”) which stand for that some other nodes may
appear on the path between the two nodes connected by “//”.

Given a twig pattern query Q, finding all the occurrences in an XML tree T
is the main operation for query processing. A match of Q in T is identified by
a mapping of nodes and edges from Q to T such that query node predicates are
satisfied by corresponding nodes in the document and the relationships between
query nodes are satisfied by corresponding relationships between nodes in the
document.

3.2 Motivations

TwigStack and its supplementary works are optimal for twig query processing
in many cases. In this section, we take TwigStack as an example and discuss
some drawbacks of existing algorithms regarding to contents, which motivate
our research.

Similar as most existing algorithms, TwigStack processes content search in
the same way as structural search. The problems regarding to contents in
TwigStack can be summarized as follows:

1. In TwigStack, all the nodes including elements, attributes and contents in
an XML tree are labeled and the labels are organized in streams. When we
build streams for contents, stream management is a problem. Consider a
bookstore document shown in Fig. 1(a). There are a large number of books
and each of them has a unique ISBN number. For each ISBN number there is
a stream, e.g. a stream for ‘0-07-123057-2’, another stream for ‘0-07-124650-
9’ and so forth. The problem is how to manage the tremendous number of
streams. When a query in Fig. 1(b) is issued, it is time consuming to get all
the streams with numeric names which are greater than 15. Although we can
organize streams using B+ tree, after finding all the corresponding streams,
to combine labels in them by document order is also time consuming.

2. Streams for contents do not have semantic meanings. This may cause ad-
ditional checking. When the query is interested in books with price of 20,
structural search scans the stream T20. Since in T20 we do not differentiate
price and quantity, we need check all the labels in this stream though many
of them stand for quantity and definitely do not contribute to final answer.

3. When we issue a query over an XML document, what we need is not all
the twig pattern appearances represented as tuples of labels, but the content
results of that query. Like in the query example above, after finding a certain
number of twig pattern appearances which contain element ISBN and title,
we need to find their actual values. Since value contents are stored as stream
names and it is not practical to get them using labels, they have to move

538 H. Wu, T.W. Ling, and B. Chen

into the document again. That is relevant to how to store and manage XML
document and is not negligible.

Our motivation is to avoid all these content problems raised in existing al-
gorithms. After that, twig pattern queries can be processed more efficiently not
only in content search, but also in entire execution.

4 VERT Algorithm

Some elements or attributes in XML documents describe certain properties of
their parent elements, e.g. title, price are properties of book in the bookstore
document. We use term property for such element or attribute, and term object
for the element described by property. In this section, we first present V ERT
algorithm to handle content problems and improve efficiency on content search.
Tables in V ERT store relationships between properties and their values. Then
in Section 4.4 we present another two approaches to optimize V ERT using
semantic information. Tables in these optimizations store relationships between
objects and their properties with values.

4.1 XML Document Parsing in VERT

In our first approach, we use tables to store labels of properties and their values.
When we parse an XML document, we only label elements and attributes, and
put these labels into corresponding streams in document order. Contents in
document are not labeled, instead we put them in relational tables together
with labels of their property nodes. We adopt interval encoding labeling scheme
in our approach (see [6]). The detailed algorithm Parser is presented as follows.

There are three major steps when we parse an XML document: labeling the
elements, constructing streams for different types of elements or attributes, and
inserting each pair of property and value content into relational tables. SAX
reads the documents to transform each tag and content into event and line
3 captures the next event if there are more events in SAX stream. Based on
different types of events, different operations are performed accordingly. Line
4-16 are executed if the event e is a starting element. In this case, the first 2
steps are processed. The system first constructs an object for this element and
assigns a label to it. It then puts the label into the stream for that tag. A stack
S is used to temporarily store the object so that when an ending tag is reached,
the system can easily know on which object the operation will be executed. At
line 9-14, the system analyzes the attributes for this element if any. Based on
the same operating steps, it labels the attributes and puts labels into streams.
The attribute values are treated in the same way as element contents. Line 17-18
is the case that the event is a content type. Then the content is simply bound
to the top object in S for further insertion used. When the event is an ending
element in line 19-25, last step is processed, which is popping the top object
from the S and inserting the label together with contents into the table for that

VERT: A Semantic Approach for Content Search and Content Extraction 539

Algorithm 1. Parser
1: initialize Stack S
2: while there are more events in SAX stream do
3: let e = next event
4: if e is a start tag then
5: //step 1: label elements
6: create object o for e
7: assign label to o
8: push o onto S
9: for all attributes attr of e do

10: //we parse attributes in the same way as elements.
11: assign label to attr
12: put label of attr into stream Tattr

13: insert the label of attr and the value of attr into table Rattr

14: end for
15: //step 2: put labels of elements into streams
16: put label of o into stream Te

17: else if e is a content value then
18: set e to be the child content of the top object in S
19: else if e is an end tag then
20: // step 3: Insert contents with their parent element into tables
21: pop o from S
22: if o contains child contents then
23: insert label of o together with its child contents into table Re

24: end if
25: end if
26: end while

object. A set of example tables are shown in Fig. 2(c). They are property-value
tables. The name of the tables are the property names and each table contains
two fields, the label of the property node and value content.

Example 1. Consider the XML data shown in Fig. 1(a), Parser assigns labels
to tags and the resulting labeled tree is shown in Fig. 2(a). Then all the labels
belonging to the same type of element in XML tree will be passed to the same
stream by document order as shown in 2(b). The contents in document together
with their parent elements will be stored in corresponding relational tables ac-
cording to the type of parent elements. Fig. 2(c) shows the resulting tables in
this example.

4.2 Query Processing with V ERT

Twig pattern query processing involving contents is composed of two parts. First
we analyze and rewrite the query. During this part, for each leaf node which is
a value content, a new stream for its parent property node is constructed using
the table of that property. In the second part, we process the new query using
existing efficient algorithms, e.g. TwigStack in new searching space.

540 H. Wu, T.W. Ling, and B. Chen

book_store

book

ISBN title author price quantity

0-07-123057-2

Database Management Systems

Ramakrishnan

author

Gehrke
33

20

book

ISBN title author price quantity

0-07-124650-9

Introduction to Database Systems

Bressan

author

Catani
17

12

(1:1000,1)

(2:15,2) (16:29,2)

(3:4,3) (5:6,3) (7:8,3) (9:10,3)(11:12,3)(13:14,3)(17:18,3)(19:20,3)(21:22,3)(23:24,3)(25:26,3) (27:28,3)

…

…

…

(a) Labeled XML tree

Tbook_store - (1:1000,1) …

Tbook - (2:15,2) (16:29,2) …

TISBN - (3:4,3) (17:18,3) …

Ttitle - (5:6, 3) (19:20,3) …

Tauthor - (7:8,3) (9:10,3) (21:22,3) (23:24,3) …

Tprice - (11:12,3) (25:26,3) …

Tquantity - (13:14,3) (27:28,3) …

(b) Streams for different elements

Introduction to
Database Systems

(19:20,3)

……

Database
Management Systems

(5:6,3)

ContentLabel

Rtitle

0-07-124650-9(17:18,3)

……

0-07-123057-2(3:4,3)

ContentLabel

RISBN

Bressan(21:22,3)

Catani(23:24,3)

Gehrke(9:10,3)

……

Ramakrishnan(7:8,3)

ContentLabel

Rauthor

17(25:26,3)

……

33(11:12,3)

ContentLabel

Rprice

12(27:28,3)

……

20(13:14,3)

ContentLabel

Rquantity

(c) Tables to store contents

Fig. 2. An example of labeled XML tree with resulting streams and tables by Parser

In the main algorithm V ERT , we first check for the validity of a given query
in line 2-4. Validity of a query Q is defined as whether Q is meaningful for
processing. Intuitively this validation can be accomplished by checking whether
all the content comparisons in query predicates have parent element. If there is
some content comparison in Q appearing in ancestor-descendance relationship
(‘//’) with an element, we consider Q is not meaningful and our algorithm rejects
such Q. Example 2 shows an invalid query. Line 6-12 recursively handle all
the content comparisons in two phases: creating new streams and rewriting the
predicates. In detail, Line 7-10 execute SQL selection on corresponding tables
based on the content comparison, and then put all the selected labels, which are
satisfied with the content comparison, into the new streams. Line 11 rewrites
the query in such a way that the content and their respective parent elements
or attributes are replaced by a new element which has an identical name as the
corresponding new stream. At the end of the algorithm, we use TwigStack or
other efficient algorithm to process the new query with new streams.

Example 2. Consider the twig pattern query in Fig. 3(a). The value node with
content comparison ‘>15’ only has an ancestor instead of a parent. In this case
we are not sure whether the query wants to get the books with price greater than

VERT: A Semantic Approach for Content Search and Content Extraction 541

Algorithm 2. VERT
1: //check the validity of queries
2: if The query Q is not valid then
3: reject Q
4: end if
5: //step 1: construct new streams and new queries
6: while there are more content comparisons in predicates of Q do
7: let c be the next content comparison, and p be its parent element or attribute
8: create a new stream Xp′ for p
9: select the labels based on content c from the table Tp for p

10: put the selected labels into Xp′

11: rewrite the predicates such that replace sub-structure p/c by p′

12: end while
13: //step 2: process new queries in new streams
14: process the rewritten Q using existing efficient algorithms like TwigStack

15, or with the quantity greater than 15. As a result, this twig pattern query is
considered invalid and by the line 2-4, V ERT rejects this query.

Example 3. The twig pattern query in Fig. 3(b) is valid. By V ERT we first find
the predicate with content comparison, price > 15 in this case. In line 7-10,
we execute SQL in table Rprice to get all the labels of element price having
value content greater than ‘15’. Since all the records in database are inserted in
document order, we can directly add resulting labels into a new stream Tprice′ ,
which contains all the labels for price with value greater than 15. Then we
rewrite the twig pattern query where the substructure with node price and its
child node ‘>15’ is replaced by price′. To clearly explain price′ in the new query,
we use price>15 in Fig. 3(c). Finally we process TwigStack on the new query
using Tprice′ for node price>15.

ISBN

book

>15title

(a) Invalid query

ISBN

book

price

>15

title

(b) Valid query

ISBN

book

price>15title

(c) Rewritten query of (b)

Fig. 3. Invalid and valid twig pattern queries

542 H. Wu, T.W. Ling, and B. Chen

4.3 Analysis of VERT

In this section, we will analyze our algorithm in four points of view: the manage-
ment of data including labeled nodes and streams, content extraction for both
predicates and final results, the size of streams to be searched and the number
of structural joins during query processing.

Data management: V ERT combines contents and their parent elements to-
gether, and avoids labeling content nodes separately. Suppose an XML docu-
ment is a full tree with height of h and each element has k children on average.
Then the number of labeled elements is (kh−1-1)/(k-1) and the number of
contents is kh−2. When the document is large, the proportion of contents to
the sum of elements and contents is around (k-1)/(2k-1). In our algorithm,
since contents are not labeled, the number of labeled nodes in memory will
be reduced nearly by half for large documents and then the size of each
stream will also be significantly narrowed down. Furthermore, since large
variety of contents are ignored, the number of streams for different types of
labeled nodes is limited to the number of element types. So the management
of tremendous number of streams in previous work as mentioned in Section 3
can be solved.

Value extraction: Consider the XML document in Fig. 1(a) and a query in
Fig. 3(b). When we extract the content ‘15’ to answer this query, in previous
approaches we need to move into the stream for content ‘15’. However, the
stream for ‘15’ contains different semantic labels like the price of a book and
the quantity of a book. To mix them together will cause unnecessary search.
Instead of searching in streams, V ERT handles contents in semantic tables.
In this case, we just move into the table for price and avoid searching for
content ‘15’ under quantity. Furthermore, after getting all the appearances
of ISBN and title tags which satisfy the constraint, we aim to find the value
contents under these tags. Previous approaches have to move into document
again to fetch them because the streams for such contents cannot contribute
to final result extraction. This depends how XML documents are stored and
is not negligible. V ERT can be very efficient to get the desired content
results without considering document storage because all the contents are
stored in tables instead of streams and we can directly get these contents
through SQL operations on tables. As a result, relational tables are not only
helpful in content search, but also usable to get desired contents based on
the labels found.

Stream searching reduction: Pre-processing contents is essential to reduce
the size of streams. Consider the query that we want to find the quantity
for a book with ‘ISBN = 0 − 07 − 123057 − 2’ on the bookstore docu-
ment. If the number of different books is b, the size of stream for element
ISBN is also b in previous approaches, as shown in Fig. 4(a). Then we need
O(b) to scan all the labels in ISBN stream. V ERT processes selection in
advance, such that the new stream for ISBN is created based on content
‘0-07-123057-2’. That means the new stream has only 1 label inside since
ISBN is the key for books. Fig. 4(b) shows the rewritten query and size of

VERT: A Semantic Approach for Content Search and Content Extraction 543

new stream. TISBN ′ is the new stream for element ISBN , and in Fig. 4(b)
we use ISBN0−07−123057−2 to explain ISBN ′. So when the selectivity of
an element is high, like in this example, V ERT also has high superiority to
previous algorithms because it significantly reduces the searching in stream.

Structural joins reduction: There are two factors driving the high perfor-
mance of V ERT . One is searching space reduction as mentioned above and
the other factor is number of structural joins reduction. Still consider the
example in Fig. 4. The rewritten query has only two parent-child relation-
ships need structural joins, while the original query has three. As we know
structural join is an expensive operation, the reduction of structural joins
leads a higher performance. Optimizations to further reduce size of streams
and number of structural joins will be discussed in next section.

ISBN

book

quantity

0-07-123057-2

ISBN0-07-123057-2

book

quantity

Fig. 4. Original and rewritten query examples in VERT

4.4 Optimizations for VERT

Tables in V ERT store label of each property and its value content. This ap-
proach differentiates contents by properties. However, there are still more se-
mantics can be captured. With more semantic information, we can improve the
performance by further reducing size of streams and number of structural joins
in most documents. This motivates two approaches of optimizations for V ERT .

Observation 1: Generally, after knowing the value on a certain property of an
object, most queries want to find that object and then get some other properties
of that object. For the query in Fig. 4, with the ISBN value we need to find
corresponding book and get the quantity of that book. After V ERT rewriting
the query, the size of stream for ISBN is significantly reduced. However the
size of stream for book is still b, which means we need to search all the b labels
in book stream although we know there is only one matches with the label in

544 H. Wu, T.W. Ling, and B. Chen

ISBN stream. As a result, we can further rewrite the query to get the object
book directly from property ISBN value.

Optimization 1: Instead of storing labels of property nodes and their value
contents, we can put the labels of objects with property values into tables. E.g.
in the bookstore document we put value contents for ISBN , title and so forth
with labels of corresponding book in object/property tables as shown in Fig. 5(a).
The ‘Label’ field of each table stores the label of object book and the following
‘Content’ corresponds the value contents of different properties in different ta-
bles, e.g. in Rbook/ISBN ‘Content’ in each tuple is the ISBN value of the book
with ‘Label’ in the same tuple. The query in Fig. 4(a) is rewritten accordingly,
as shown in Fig. 5(b), where Tbook′ is the new stream for element book and
bookISBN=0−07−123057−2 is to explain book′. In new tables, we can directly se-
lect the label for book based on ISBN number in Rbook/ISBN without considering
tags for element ISBN . Now we not only reduce the size of Tbook, but also re-
duce the number of structural joins to be 1. So we can get a higher performance
when we execute the new query.

Introduction to
Database Systems

(16:29,2)

……

Database
Management Systems

(2:15,2)

ContentLabel

Rbook/title

0-07-124650-9(16:29,2)

……

0-07-123057-2(2:15,2)

ContentLabel

Rbook/ISBN

Bressan(16:29,2)

Catani(16:29,2)

Gehrke(2:15,2)

……

Ramakrishnan(2:15,2)

ContentLabel

Rbook/author

17(16:29,2)

……

33(2:15,2)

ContentLabel

Rbook/price

12(16:29,2)

……

20(2:15,2)

ContentLabel

Rbook/quantity

bookISBN=0-07-123057-2

quantity

Fig. 5. Tables and queries in VERT optimization 1

However, this optimization may lose order information in some cases. If we
want to get all the authors’ names of a certain book, since we ignore the element
author and get all the name contents from Rbook/author, we cannot differentiate
the order in document. This limitation can be solved by adding ordinal number
to different contents if the order is important.

Observation 2: There are some queries with multiple predicates on a certain
element. E.g. a query on the bookstore document: find the ISBN number of the
book with title ‘Database Management Systems’ and price of 33. To answer this
query, V ERT with optimization 1 needs to find the books with title ‘Database

VERT: A Semantic Approach for Content Search and Content Extraction 545

Management Systems’ and books with price of 33 separately and join them to
get results. With semantic information, we know title and price are properties
of object book. If we have a table for this object which contains both of the
properties, books satisfying these two constraints can be found directly and
intermediate results can be avoided.

Optimization 2: A simple idea is to pre-merge tables in optimization 1 based on
the same objects. But for multi-value properties, like author in our example, it is
not practical to merge it with other properties. The information on multi-value
properties can be found in document schema. After knowing this, we can merge
all the single-value properties of an object into one table and keep tables for
multi-value properties remain as what they are in optimization 1. The resulting
tables for bookstore document is shown in Fig. 6. In Rbook, each label of book is
stored with all the single-value property contents of that book. When we process
queries with multiple predicates on a certain object, we can do selection in that
object table using these predicate constraints in one time. In this way, we can
even simplify the query and prune intermediate results.

…

17

33

Price

…

Introduction to
Database Systems

Database
Management Systems

Title

…

0-07-124650-9

0-07-123057-2

ISBN

12(16:29,2)

……

20(2:15,2)

QuantityLabel

Rbook

Catani(16:29,2)

Gehrke(2:15,2)

…

Bressan

Ramakrishnan

Author

(16:29,2)

…

(2:15,2)

Label

Rbook/author

Fig. 6. Tables in VERT optimization 2

Declarations: Optimizations of V ERT are based on semantics captured from
schema or document, or even declared by document owners. Generally, the more
semantic information known, the further our algorithm can be optimized and
the better performance can be achieved.

5 Experiments

In this section, we present experimental results on the performance of twig pat-
tern search under V ERT algorithms with and without optimizations, which
are introduced in section 4, and TwigStack. Final result extraction for each
query can be done simply by selection in corresponding tables in our approach,
however, in other algorithms it depends on the database implementation. The
comparison for final result extraction is not included in our experiments.

546 H. Wu, T.W. Ling, and B. Chen

5.1 Experimental Settings

Implementation and Hardware: We implemented all algorithms in Java.
The experiments were performed on a 3.0GHz Pentium 4 processor with
1G RAM under OS of Windows XP.

XML Data Sets: We used three real-world and synthetic data sets for our ex-
periments: NASA, DBLP and XMark. NASA is a 25 MB document with com-
plex DTD schema. DBLP data set is a 127MB fragment of DBLP database.
The characteristic of this data set is simple DTD schema and large data
sources. We also used XMark benchmark data with size of 110MB.

Queries: We selected three meaningful queries for each data set. All the queries
chosen contain predicates with content comparison, since content predicates
appear in most practical queries. Generally, there are three types of queries:
queries with predicates on equality comparison, queries with predicates on
range comparison and queries with multiple predicates on different compar-
isons. The queries are shown in Table 1.

Table 1. Experimental queries

Query Data Set XPath Expression

Q1 NASA //dataset//source/other[/date/year>‘1919’ and year<‘2000’]/author
/lastName

Q2 NASA //dataset/tableHead[//field/name=‘rah’]//tableLinks //title

Q3 NASA //dataset/history/ingest[/date[/year>‘1949’ and year<‘2000’]
[/month=‘Nov’][/day>‘14’ and day<‘21’]]/creator /lastName

Q4 DBLP /dblp/article[/author=‘Jim Gray’]/title

Q5 DBLP //proceedings[/year>‘1999’]/isbn

Q6 DBLP //inproceedings[/title=‘A Flexible Modelling Approach for Software
Reliability Growth’][/year=‘1987’][/author=‘Sergio Bittanti’]
/booktitle

Q7 XMark //regions/africa/item[/mailbox/mail/from=‘Libero Rive’]
/description

Q8 XMark //item[//mail/date>‘Sep’]/location

Q9 XMark //item[/location=‘United State’][/mailbox/mail[/date=
‘02/11/1999’][/to=‘Aamer Krolokowski’]]/description

5.2 Experimental Results and Analysis

Our experiments mainly compare the stream management and total execution
time between TwigStack and our approaches. The implementation of TwigStack
adopts B+ tree to organize streams, which ensures high performance of content
stream management. The number of labeled nodes and number of streams to be
managed for the three data sets under the two approaches are shown in Table 2.
This result validates the analysis about the data management in last section.

The experimental results of execution time for the three data sets are shown
in Fig. 7. From the results, we can see the execution time reduction is significant

VERT: A Semantic Approach for Content Search and Content Extraction 547

Table 2. Number of labeled nodes and streams using TwigStack and V ERT

Data Set Number of Labeled Nodes Number of Streams
TwigStack VERT TwigStack VERT

NASA 997,987 532,963 121,833 68

DBLP 6,771,148 3,736,406 388,630 37

XMark 5,215,282 2,048,193 353,476 75

0

10

20

30

40

50

Q4 Q5

Quer

E
xe

cu
ti

o
n

 t
im

e
(s

ec

TwigStack VE

VERT with optimization 1 VE
0

2

4

6

8

10

12

Q7 Q8 Q9

Queries

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

)

TwigStack VERT without optimization

VERT with optimization 1 VERT with optimization 2

0

1

2

3

4

5

6

Q1 Q2 Q3

Queries

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

)

TwigStack VERT without optimization

VERT with optimization 1 VERT with optimization 2

(a) NASA

0

2

4

6

8

10

Q7 Q8

Queries

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

)
TwigStack VERT without op

VERT with optimization 1 VERT with optim

0

1

2

3

4

5

Q1 Q

Que

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

)

TwigStack V

VERT with optimization 1 V

0

10

20

30

40

50

60

70

Q4 Q5 Q6

Queries

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

)

TwigStack VERT without optimization

VERT with optimization 1 VERT with optimization 2

(b) DBLP

0

1

2

3

4

5

Q1 Q

Que

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

)

TwigStack V

VERT with optimization 1 V

0

10

20

30

40

50

60

70

Q4 Q5 Q6

Queries

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

)

TwigStack VERT without optimization

VERT with optimization 1 VERT with optimization 2

0

2

4

6

8

10

12

Q7 Q8 Q9

Queries

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

)

TwigStack VERT without optimization

VERT with optimization 1 VERT with optimization 2

(c) XMark

Fig. 7. Execution time by TwigStack and VERT without optimizations, with opti-
mization 1 and with optimization 2 in three XML documents

for all the queries in DBLP document. This is in accord with our analysis in
section 4.3, that is our approach works quite well for such XML document that
has simple schema but large data sources. In DBLP document, there are only
several types of data like proceedings, thesis, articles and so forth. There are large
quantity of works under each type. The properties of each work type that appear
as sub-elements in document are mostly the same and depth of the data tree is
3. As a result, for DBLP data, when we rewrite the query to reduce the query
depth, we prune tremendous number of unnecessary tag checkings. Q2 in NASA
data set is another example for the reason why V ERT has higher performance
than other approaches. The tag ‘name’ appears quite frequently in document

548 H. Wu, T.W. Ling, and B. Chen

with different semantic meanings, however, in Q2 what we are interested is only
the field name. Instead of scanning all the ‘name’, our approach can move into
field names directly using semantic tables. In this way, the execution time can
be significantly reduced.

Comparing with optimization 1 and optimization 2 of V ERT , we can see
from the experimental result that for single-predicate queries there is no obvi-
ous difference. However, for multi-predicate queries, optimization 2 has a better
performance as shown in Q3, Q6 and Q9. This again proves our analysis in
Section 4.4.

6 Conclusion and Future Work

In this paper, we propose a novel algorithm V ERT to solve different content
problems raised in existing algorithms. Unlike TwigStack and its subsequent
algorithms, our approach uses semantic tables to do content search, and then
avoids the management of tremendous number data streams. Besides, V ERT
can efficiently extract contents for predicate comparisons during query process-
ing. Experimental results show that our method is much more efficient than
TwigStack for queries with content comparison as predicates. To answer the
query, our method need not consider how the document stored in database.
Instead, we can directly get the content results from tables.

One direction for future research to improve our algorithm is to discover more
semantics in XML document and combine the semantic information into rela-
tional tables. Queries can be processed more efficient based on semantic tables
and query rewriting by reducing unnecessary searches, number of structural joins
and intermediate results. Also, our relational approach gives a new scheme to
relate XML query processing algorithms to XML databases.

References

1. Al-Khalifa, S., Jagadish, H.V., Patel, J.M., Wu, Y., Koudas, N., Srivastava, D.:
Structural joins: A primitive for efficient XML query pattern matching. In: Proc.
of ICDE (2002)

2. Berglund, A., Chamberlin, D., Fernandez, M.F., Kay, M., Robie, J., Simeon, J.:
XML Path Language (XPath) 2.0. W3C Working Draft (2003)

3. Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Simeon, J.:
XQuery 1.0: An XML Query. W3C Working Draft (2003)

4. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: Optimal XML pattern
matching. In: Proc. of ACM SIGMOD, ACM Press, New York (2002)

5. Chen, T., Lu, J., Ling, T.W.: On boosting holism in XML twig pattern matching
using structural indexing techniques. In: Proc. of SIGMOD Conference (2005)

6. Grust, T.: Accelerating XPath location steps. In: Proc. of SIGMOD Conference
(2002)

7. Jiang, H., Lu, H., Wang, W.: Efficient processing of XML twig queries with OR-
predicates. In: Proc. of SIGMOD Conference (2004)

VERT: A Semantic Approach for Content Search and Content Extraction 549

8. Jiang, H., Wang, W., Lu, H., Yu, J.: Holistic twig joins on indexed XML documents.
In: Proc. of VLDB Conference (2003)

9. Lu, J., Chen, T., Ling, T.W.: Efficient processing of XML twig patterns with parent
child edges: a look-ahead approach. In: Proc. of CIKM (2004)

10. Lu, J., Ling, T.W., Chan, C., Chen, T.: From region encoding to extended dewey:
On efficient processing of XML twig pattern matching. In: Proc. of VLDB Confer-
ence (2005)

11. Rao, P.R., Moon, B.: PRIX: Indexing and Querying XML Using Prufer Sequences.
In: Proc. of ICDE (2004)

12. Wang, H., Park, S., Fan, W., Yu, P.S.: ViST: A Dynamic index method for querying
XML data by tree structures. In: Proc. of SIGMOD Conference (2003)

13. Yu, T., Ling, T.W., Lu, J.: Twigstacklistnot: A holistic twig join algorithm for twig
query with NOT-predicates on XML data. In: Lee, M.L., Tan, K.-L., Wuwongse,
V. (eds.) DASFAA 2006. LNCS, vol. 3882, Springer, Heidelberg (2006)

14. Zhang, C., Naughton, J., Dewitt, D., Luo, Q., Lohman, G.: On supporting con-
tainment queries in relational database management systems. In: Proc. of ACM
SIGMOD, ACM Press, New York (2001)

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 550–565, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Conceptual Model for Multidimensional Analysis of
Documents

Franck Ravat2, Olivier Teste1, Ronan Tournier1, and Gilles Zurlfluh2

1 IRIT, Université Toulouse 3, 118 route de Narbonne
F-31062 Toulouse Cedex 9, France

2 IRIT, Université Toulouse 1, 2 rue du doyen G. Marty
F-31042 Toulouse Cedex 9, France

{ravat,teste,tournier,zurfluh}@irit.fr

Abstract. Data warehousing and OLAP are mainly used for the analysis of
transactional data. Nowadays, with the evolution of Internet, and the develop-
ment of semi-structured data exchange format (such as XML), it is possible to
consider entire fragments of data such as documents as analysis sources. As a
consequence, an adapted multidimensional analysis framework needs to be pro-
vided. In this paper, we introduce an OLAP multidimensional conceptual model
without facts. This model is based on the unique concept of dimensions and is
adapted for multidimensional document analysis. We also provide a set of ma-
nipulation operations.

Keywords: Conceptual modelling, OLAP, Data warehouse, Document ware-
house, Multidimensional analysis.

1 Introduction

OLAP (On-Line Analytical Processing) systems allow analysts to improve decision-
making process by consulting and analysing aggregated historical business or scien-
tific data. Such analyses are based on a centralized data resource management system,
called a data warehouse [11].

1.1 Context and Motivation

The use of Multidimensional Databases (MDB) provides a global view of corporate
data warehouse, and allows decision makers to gain insight into an enterprise per-
formance through fast and interactive access to data. Within these databases,
multidimensional modelling [11] represent data as points in a multidimensional space.
To design MDBs, structures have been defined. These structures model data through
the concepts of subjects of analysis, named facts, linked to the concept of analysis
axes, named dimensions [11]. They compose a star schema [11]. Facts are groupings
of analysis indicators or measures. Dimensions are composed of hierarchically
ordered parameters which model the different detail levels or data granularities [11].

Transactional data may easily be processed because multidimensional analysis is
robust and it is a well-mastered technique on numeric-centric data warehouses [24].

 A Conceptual Model for Multidimensional Analysis of Documents 551

But decision support systems have only excavated the surface layers of the task. Only
20% of corporate information system data is transactional, i.e. numeric [27]. The
remaining 80%, namely “digital paperwork,” stays out of reach of OLAP technology
due to the lack of tools and resource management for non-numeric data such as text-
rich documents. In order to provide increased analysis capacities, decision support
systems should provide the use of 100% of all available data from corporate informa-
tion systems. Analysts should be able to integrate text-rich documents or web data
directly into the analysis process along with business data. Not taking into account
these data sources would inevitably lead to the omission of relevant information dur-
ing an important decision-making process or the inclusion of irrelevant information
and thus producing inaccurate analyses [27].

OLAP provides powerful tools and methods but within a rigid framework. Unfor-
tunately text is not as structured as data warehouse systems would tolerate. Recently,
XML technology has provided a wide framework for sharing and working with docu-
ments within corporate networks or over the web. Thus, documents stored as semi-
structured data were slowly integrated within data warehouses and repositories.
Document warehousing slowly emerged [24], e.g. Xyleme1. On-line text and docu-
ments are now becoming conceivable data sources for multidimensional analysis.

By multidimensional document analysis throughout this paper we mean to analyse
in an OLAP environment text-rich document data sources. To cope with the rigid
framework inherited from the context, i.e. the data warehouse environment, we shall
only consider structured or semi-structured sources (e.g. XML documents). For ex-
ample, conference proceedings, patient files from a hospital information system, qual-
ity control reports…

In text-rich documents, internal data is almost exclusively text. As this data type is
non-additive and non-numeric, traditional aggregation operations (sum, average…)
will not work, thus there is a necessity for adapted aggregation operations. [18] lists a
few ones inspired from text mining techniques and we defined in [21] an aggregation
function for keywords. Within this paper, as an illustration, we shall use:
TOP_KEYWORDS [18]. This aggregation function selects the major keywords of a text.

1.2 Motivating Example

In the following example, an analyst wishes to analyse the citations of some works of
a research institute. The analysis task would be counting each time an author is cited
in conference proceedings and display the results by author and by conference. For
example, in the following table (Table 1a), author A1 has been cited three times by ER
authors. The analyst may then wish to determine the range of the researcher’s works
and analyse the subjects of the publications where the researcher’s works are cited. As
this analysis does not rest on traditional numerical data, but on factual data, the ana-
lyst will use the TOP_KEYWORDS function in order to display the two main keywords
of the documents. These keywords will be aggregated per conference, hence giving a
list of subjects instead of a number of publications. For example, in Table 1b, the
three citations of the works of the author A1 in ER conferences are related to XML and
Documents topics. Author A3 has always been cited in the same context (data min-
ing), A3’s works have a narrower range than works of A1 and A2.

1 Xyleme Server from http://www.xyleme.com

552 F. Ravat et al.

Table 1. The number of times an author has been cited in a particular conference and the same
analysis with the major keywords of the publications that cite the authors

The combination of these analyses would be very complex to model using tradi-
tional multidimensional modelling. Firstly, the analysis of textual data is not taken
into account. Secondly, the analyst would need more than one data mart [11]. And
thirdly, multidimensional modelling approaches explode the document structure into
many separate elements requiring complex and tedious tasks from the data warehouse
administrator. The two following subsections present the related works, the objectives
and contributions of the paper.

1.3 Related Works

According to [5], two types of semi-structured documents may be found:

− Data-centric documents are raw data documents, mainly used by applications to
exchange data (as in e-business application strategies). In this category, one may
find lists and logs such as: invoices, orders, spreadsheets, or even “dumps” of data-
bases.

− Document-centric documents also known as text-rich documents are the traditional
paper documents, e.g. scientific articles, e-books, website pages.

The analysis of data-centric documents has been introduced in several propositions
such as [9]. See [29,28,17] for a more complete list of these works. Although all these
works consider textual data through the use of XML documents, these propositions do
no take into consideration the more complex document-centric documents. As a con-
sequence, this paper focuses on the analysis of document-centric documents.

We divide related works into two categories. The first category concerns multidi-
mensional modelling and may be divided into two approaches:

1. Traditional conceptual multidimensional modelling: lists of works may be found in
[25,22] and current issues are highlighted in [23]. Multidimensional modelling is
based on the concepts of facts and dimensions. These models, conceptually or logi-
cally oriented, have been conceived for numeric data analysis and do not deal with
documents where non-numeric data must be integrated. Extending these models is
possible but would require dimensions using abnormal hierarchies and complex
logical implementations.

2. Multidimensional modelling allowing complex data analysis: in [17] the authors
defines an xFACT, a complex hierarchical structure containing structured and un-
structured data (such as documents), where measures, called contexts, can be seen
as complex object data. In [3], the authors present a complete XML approach for

 A Conceptual Model for Multidimensional Analysis of Documents 553

modelling complex data analysis. Although this proposition takes into account
complex data, the authors only use data-centric documents.

Current multidimensional modelling propositions are incomplete as they address only
numeric analysis. To our knowledge there are no propositions taking into account
document-centric document properties.

The second category concerns the addition of document-centric documents into
multidimensional analysis. Within this category there are three approaches:

1. To assist multidimensional analysis by providing complementary documents: in
[19] the authors combine traditional numeric analysis and information retrieval
techniques to assist an analysis by providing documents relevant to the ongoing
analysis context. The user must then read all retrieved documents.

2. To provide multidimensional OLAP analysis of documents: in [15,16,10,27], the
authors present applications of document-centric document multidimensional
analysis using a star schema. The authors propose the use of traditional OLAP
framework to count documents according to keywords or topics organised into di-
mensions. These dimensions allow the user to analyse the number of documents
represented by each keyword according to several analysis axes. Using a keyword
dimension is limitative as no text analysis may be performed. In [27] the authors
classify dimensions according to categories, but exclusively work on document
meta-data (except for the keyword dimension). They neither take into account
document structures nor document contents. Although limited, some commercial
solutions start to appear, such as Text OLAP2.

3. To analyse textual data directly: in [12] the authors describe a document warehouse
where documents are grouped by structure families. Users can perform multidi-
mensional analysis on documents or on structures, but limited to numeric analysis
(numbers of documents or structure types). Finally, in [18], the authors describe a
logical model based on the xFACT and specific aggregation functions inspired by
text mining techniques for the multidimensional analysis of document-centric
documents. More complete than [26], the authors provide adapted aggregation
functions but do not detail them. The model lacks high level concepts that may eas-
ily be manipulated by decision makers. Moreover, apart from the informal descrip-
tion of aggregation functions, no adapted manipulation operations are presented.

These advanced propositions clearly show the limit of traditional models for ana-
lysing documents: 1) the suggested implementations never preserve document struc-
ture; 2) these structures remain unexploited; 3) non-numeric indicators cannot be
handled easily; and as a consequence, 4) no flexibility is provided to the user in
changing the focus of analysis.

So far, to our knowledge, there is no proposal for an adapted conceptual model for
document-centric document analysis. Up to now, apart from [18], research works are
based on quantitative analysis, e.g. the number of publications that contain a specific
keyword. Textual data is provided for analysis through dimensions modelling analysis
axes and not subjects of analysis. Analysis indicators (measures) are always numeric.

2 Text OLAP, Megaputer, Polyanalyst Suite from http://www.megaputer/com/products/pa

554 F. Ravat et al.

1.4 Aims and Contributions

In this paper, as a first step to a more global framework for integrating documents in
an OLAP system, we define a conceptual model adapted to the multidimensional
analysis of documents. The aim of this model is to provide the analyst with a simple
and adapted conceptual view [6], withdrawing all logical and physical constraints. In
order to manipulate the concepts of the model, OLAP operations are revised.

The model has been designed to be used for scientific data sets, like the IASI3 ar-
chive of the UMARF4 facility. Although the facility holds numeric data, it mainly
holds complex factual data (e.g. spectral data). Atmospheric research requires several
complex analyses with many facts and dimensions. This would lead to the design of
several data marts with a high redundancy between factual and dimensional data.
Moreover, in a traditional model, an extensive use of complex operations to convert
dimensions into facts and vice-versa would have been necessary [20]. Due to space
limitation, we shall use throughout this paper an example of analysis of scientific
publications and conference proceedings to monitor research activities.

The conceptual model has to ease the analyst’s tasks and take into account docu-
ment-centric documents characteristics. Firstly, these documents are composed of
tree-like hierarchically structured data. Secondly, a document might refer to itself or
to other documents (e.g. hypertext links). These links should be explicitly shown in
order to ease understanding and navigation through data during analyses. For exam-
ple, when analysing the references of a publication, the analyst has to clearly see (and
not to guess) that a reference is nothing else than another publication. And thirdly and
most important of all, when analysing documents, textual computer assisted analysis
does not necessarily make sense. That is, when analysing a particular subject, the
analyst may find himself in front of something lacking sense. Thus, the analyst must
be able to easily change the subject and not be restrained by predefined subjects of
analysis. In conclusion, the model needs to be: 1) able to represent document-centric
data specificities; 2) ease the representation avoiding to provide the analyst with pre-
defined and limited analysis solutions; and 3) ease manipulations of the concepts
through a set of operations. To answer these objectives, we define a Galaxy model
associated to a set of manipulation operations.

The rest of the paper is organized as follows: section 2 defines an adapted multidi-
mensional model; section 3 presents a set of multidimensional operations. Finally
section 4 concludes the paper and states future works.

2 Multidimensional Model

The model defined in the following section is based on a “factless multi-dimension”
representation of a constellation schema. In this model, there are only analysis axes,
named dimensions. These dimensions are gathered into groups to indicate compatible
dimensions for a common analysis.

3 IASI: Infrared Atmospheric Sounding Interferometer (http://smsc.cnes.fr/IASI/).
4 UMARF: Unified Meteorological Archive and Retrieval Facility of EuMetSat (European

Meteorology).

 A Conceptual Model for Multidimensional Analysis of Documents 555

2.1 Grouping Dimensions in “Galaxies”

A dimensional scheme is conceptual grouping of dimensions. It is a generalisation of
a constellation [11], and is nicknamed a “Galaxy” schema. Dimensions are grouped
around nodes that model the dimensions that may be used together in a same analysis.

Definition: A Galaxy G = (DG, StarG, LkG) where
− DG = {D1,…, Dn} is a set of dimensions,
− jD

i
G DStar 2→: is a function that associates each dimension Di to its linked

dimensions Dj∈DG (Dj≠Di). This expression models nodes cz that may be ex-

pressed through: {Dc1,…,Dcn}⊆DG | ∀i,j∈[c1..cn], i≠j, ∃ Di→2Dj∈StarG. This
represents dimensions compatible within a same analysis.5

− LkG = {g1, g2,…} is a set of functions associating some attribute instances to-
gether through links, where () ()jjii

D

y

D

v
D
x

D
u

G iaiag →: is the association of the in-

stance iDi
x of aDi

u with the instance iDj
y of av

Dj, where (Di=Dj) or (Di,Dj)∈DG |
Dj∈StarG(Di).

Links (LkG) represent “corresponds to” relationships between the values of the two
attributes of the link. They are used within expressions of manipulation operations.

Notations. We note Dj∈StarG(Di), the fact that Di and Dj are linked together.

2.2 Dimension Concept

A dimension models an analysis axis along which data may be analysed. A dimension
is characterized by hierarchically organised attributes, each attribute being a gradua-
tion of the analysis axis, i.e. detail levels or granularity levels.

Definition: A dimension D=(AD, HD, ID, IStarD) where:
− AD = {aD

1,…, aD
r} is a set of attributes,

− HD = {HD
1,…, HD

s} is a set of hierarchies,
− ID = {iD

1,…, iD
t} is a set of dimension instances. Each attribute has a value for

each instance aDi
u(i

Di
x), called an attribute instance.

− () ()**: nDDDD IIIIStar ××→ …1 is a function that associates the instances of the

D dimension to the instances of other linked dimensions through StarG
(∀k∈[1..n], Dk∈DG, Dk≠D and Dk∈StarG(D), i.e. Dk is associated/linked to D).6

A hierarchy represents an analysis perspective within a dimension. It models the
organisation of the different granularity levels, i.e. a particular view of the analysis
axis graduations. A hierarchy HD

i of D is an ordered list of attributes called parame-
ters. It is an acyclic elementary path starting with the parameter of finest granularity
and ending with one of coarsest granularity. Each parameter may be associated to
weak attributes which represent complementary information.

5 The notation 2E represents the powerset of E.
6 The notation (I)* represents a finite set of elements of I.

556 F. Ravat et al.

Definition: A hierarchy noted HD
i or H= (ParamH, WeakH) where:

− ParamH = <pH
1,…, pH

np> is an ordered set of attributes, called parameters,
which represent the levels of granularity of the dimension, ∀k∈[1..np], p

H
k∈AD

and pH
1 = aD

1 ;

−
HD ParamAHH ParamWeak −→ 2: is an application possibly associating weak

attributes to parameters, completing the parameter semantic.

Attributes are of two types: a parameter is the data of a particular level of detail,
e.g. a research institute or the country of a research institute; a weak attribute is com-
plementary data of a parameter, such as the name or the address of a research insti-
tute. All hierarchies of a dimension start with a common root parameter (∀Hi∈HD,
pHi

1 = aD
1) and end by a parameter representing the coarser granularity (pHi

np).
To answer to document structure specificity, hierarchies are semantically richer

than traditional hierarchies. This provides the analyst with a conceptual view as close
as possible as document representation. Thus, dimensions modelling documents may
use non-strict hierarchies [13].

Notations. pi∈H is a simplified notation for pi∈ParamH. Whenever possible, if the
context is obvious, notations HD, pH

i (…) will be simplified by H, pi (…).

2.3 Example

In order to analyse the activity of research institutes, a decision-maker analyses scien-
tific publications as well as reports produced by these institutes. To answer these
requirements, the galaxy G1 is created (see Fig. 1). It represents on the top part: arti-
cles published in a conference at a certain date and written by authors; and on the

Fig. 1. Example of a Galaxy scheme (G1): analysis of scientific publications and reports

 A Conceptual Model for Multidimensional Analysis of Documents 557

bottom part: scientific reports. Within this example, two recursive links may be used
to navigate through 1) the references of articles and 2) the institutes of authors.

Galaxy G1 example: DG1={DConferences, DArticles, DTime, DAuthors,…}
StarG1={DConferences→(DArticle, DTime, DAuthors),…}
LkG1={gReferences: a

Articles
References→aArticles

Article,…}
Dimension example: DConferences={AConferences, HConferences, IConferences, IStarConferences}
AConferences={aConference, aName, aPublisher, aStatus}; HConferences={HPu, HSt};
IConferences={iConference

1,… iConference
q}

IStarConferences={ iConference
k→{(iArticles

rk)
*, (iTime

sk)
*, (iAuthors

tk)
*} | ∀k∈[1..q],

 iConference
k∈IConferences ∧∃ iArticles

rk∈IArticles ∧ ∃ iTime
sk∈ITime ∧ ∃ iAuthors

tk∈IAuthors}
Hierarchy example: HPu={ParamHPu, WeakHPu}
ParamHPu=<aConference, aPublisher> and WeakHPu={ aConference→{aName}}

Dimensions are used to define multidimensional analyses with a set of manipula-

tion operations described in the following section. Links ease analysis expressions.

3 Multidimensional Operations

In order to manipulate concepts represented by the galaxy model, analysts need four
operations that slightly differ from traditional OLAP operations [20]. The operations
are based on the following needs:

− A focussing operation is necessary to select the subject of analysis projecting the
subject data on several analysis axes.

− To narrow the analysis spectrum the user needs an operation to select a particular
subset of data, thus reducing the whole quantity of analysed data.

− To take advantage of hierarchically ordered parameters, the user will need drilling
operations to change the level of detail of the analysed data. The user will need two
drilling operations: One to zoom into the details of the analysed data and the other
for reversing the process, zooming out of the data.

− To change the analysis criteria, an operation is necessary either to rotate the ana-
lysed subject around other analysis axes or to rotate the analysis axes around dif-
ferent subjects.

In some models, authors pointed out the necessity of symmetric treatment of pa-
rameters and measures to ease definition and conception of algebras or calculus
[2,4,8]. But some specific operations such as drilling did not operate symmetrically
between all attributes. This problem put aside with our model.

Notations. dom(Di) is the domain of the dimension Di, i.e. all ix∈ IDi. We note
(dom(Di))* a finite set of elements of dom(Di).The instances of a galaxy G, composed
of n dimensions, are represented by (1). All the instances of the attributes aj∈ADi of
dimension Di are represented by (2). We define an aggregation function fAGG (3)
where dom(fAGG(dom(Di))) corresponds to the domain of the aggregated values of the
domain of the dimension Di. In order to compare levels between parameters within a
hierarchy H, we introduce the function level (4).

558 F. Ravat et al.

() () () ()GdomDdomDdomDdom
n

i in ==×× ∏ =11 … (1)

() () () ()i

A

j jinii Ddom.aDdomaDdomaDdom
iD

==×× ∏ =11 .. … (2)7

()() ()()()
() ()mAGGm

jiAGGjiAGG

xxfxx

pDdomfdompDdomf

,,,,
..: *

…… 11

→ (3)

() ()
[] () ()np

H
j

H

pnp
HH

np
H

plevelp, level..nj

nplevel,,plevel,p,pParam

≤∈∀

==>=<

1 and

 1 ,Given 11 …… (4)

All operations produce compatible outputs. The focus operation generates as out-
put a subset of the galaxy, named sG, and this subset is used as input for all other
operations. In their turn these operations produce a subset, that allows chaining opera-
tions one after the other. The operation syntax is as follows:

OPERATION_NAME(input, operation_parameters) = output .

3.1 Focussing and Selection Operations

These two major manipulation operations allow the specification of analysis datasets.
Focussing is used to define an analysis subject and to project subject data on sev-

eral analysis axes. Concretely, this operation allows the specification of a subject of
analysis (DS) aggregating the analysis data through an aggregation function (fAGG) for
each selected measure according to the detail levels selected in the analysis axes.

Syntax: FOCUS(G, S, P)=sG where G is the input (a galaxy), S=(fAGG(DS.HS.pi)) is the
focused subject of analysis with the parameter pi of the hierarchy HS of dimension DS
aggregated through the function fAGG and P=((Dx.Hx, Paramx),(Dy.Hy, Paramy),…) is
the set of projection axes with Dx being the dimension selected as the first analysis
axis, Dy the second,… Hx is the current hierarchy of the axis represented by Dx, Hy is
the current hierarchy of Dy,… Paramx=<px_min,…,px_max> is an ordered set of
parameters of Hx, where given ParamHx=<p1,…,pnp>, levelHx(px_min)≥levelHx(p1) and
levelHx(px_max)≤levelHx(pnp). Paramx represents the selected parameters of Dx (it is a
subset of ParamHx). In the same way Paramy is a subset of ParamHy.

Conditions: ∀ Di∈P, Di∈StarG(DS), i.e. the dimensions selected as analysis axes are
linked to the dimension selected as subject (DS). The aggregation function fAGG must
be compatible with the parameter instances of pi that are to be aggregated.

Mathematically: Focus (7) = Aggregation (6) ◦Projection (5) where:

() ()() ()()∏ ∏∏ = =

∗

=
×⎯⎯⎯ →⎯ P

j k kji
PROJECTn

i i pDdompDSdomDdom
11

max
min .. (5)

7 We recall that ||ADi|| is the cardinality of ADi. Here, the number of attributes within ADi, i.e. r.

 A Conceptual Model for Multidimensional Analysis of Documents 559

()() ()()
()()() ()()∏ ∏

∏ ∏
= =

= =

∗

×

⎯⎯⎯⎯ →⎯×
P

j

j

jk kjiAGG

AGGREGATEP

j

j

jk kji

pDdompDSdomfdom

pDdompDSdom

1

1

max_

min_

max_
min_

..

..
(6)

()()() ()()∏ ∏∏ = ==
×⎯⎯⎯ →⎯ P

j

j

jk kjiAGG
FOCUSn

i i pDdompDSdomfdom)dom(D
11

max_
min_ .. (7)

We also define a simplified notation (8), where sG represents a subpart of the gal-
axy with a dimension designated as subject (SAGG) analysed (projected and aggre-
gated) according to the dimensions of the projection set (P).

() ()GFOCUS sdomGdom ⎯⎯⎯ →⎯ with () () ()PdomSdomsdom AGG
G ×= (8)

Example. Within the galaxy presented in figure 1 (G1), the analyst may use any dimen-
sion as a subject of analysis. Here, the analyst focuses his analysis on major keywords
of articles displayed by author and by year. We will suppose that the user uses a bi-
dimensional table to produce the output, [8,22]. The user will thus focus on a dimension
(DS) and project its data onto two analysis axes: a line dimension and the column di-
mension. The aggregation function TOP_KEYWORDS returns the two major keywords.
The following instruction produces the table displayed in the following figure.

FOCUS (G1, TOP_KEYWORDS(ARTICLES.HS.Section),
 ((TIME.HTime, <Year>), (AUTHORS.HA, <Author>))) = sG1

1

Fig. 2. Example of manipulations: focus instruction projecting analysis subject data onto two
analysis axes (years and authors)

Selection is used to restrict the analysis data. By specifying a restrictive predicate,
the user may restrict analysis data on an analysis axis or on the analysis subject. All
instances selected by a predicate p are maintained in the current data selection. All
other instances are removed. Notice that if this operation is applied directly on the
galaxy, this allows the removal of instances before aggregation process.

Syntax: SELECT(G, p)= sG’ or SELECT(sG, p)= sG’ where G (or sG) is the input and p is
a restrictive predicate on an attribute aj of a dimension Di.

Conditions: aj∈Di and Di∈StarG(DS).

Mathematically:

() () ()pdomGdomGdom SELECT ¬−⎯⎯⎯ →⎯ or () () ()pdomsdomsdom GSELECTG ¬−⎯⎯⎯ →⎯ (9)

The notation dom(¬ p) is the subset of the domain that does not satisfy the predicate
p. The reverse operation, UNSELECT(sG) = sG’, removes all restrictive predicates.

560 F. Ravat et al.

Example. In order to narrow the analysis spectrum, the analyst decides to reduce the
analysis to only Au1’s articles and to analyse major keywords only in introductions.
Using the previously defined subset of data (sG), the following instructions produce
the table (b) displayed in the following figure:

SELECT(SELECT(sG1
1, ARTICLE.Sec_Type=‘Introduction’),

 AUTHORS.Author=‘Au1’) = sG1
2

Fig. 3. Example of manipulations: application of two restrictions

3.2 Drilling Operations

Once an analysis has been specified, i.e. sG has been defined, the user may wish to
change the level of detail at which analysis data is being projected.

Using a drill-down operation, the analyst may zoom into more detailed data. This
operation consists in adding to the parameter list of a projection axis (Parami) a new
parameter pnew, from the current hierarchy, whose level is inferior to the lowest cur-
rently selected parameter (pmin).

Syntax: DRILLDOWN(sG, Di, pnew)=sG
1 where sG is the input, Di is a dimension of the

projection set P of sG, i.e. ∃(Di.Hi, Parami)∈P and pnew∈Hi.

Condition: The parameter must be of a lower level than the lowest one already se-
lected: levelHi(pnew)<levelHi(pmin)

Mathematically:

() () ()
() ()() ()∏∏ ∏ =′ ′

≠
= =

×=

××⎯⎯⎯⎯ →⎯
max

min
max

min
i_

i_k ki

P

ij
j kj

j_

j_k

newiAGG
DRILLDOWNG

.pDdom.pDdomPdom

.pDdomPdom)dom(Ss domDrillDown:

1 where

(10)

Note that, dom(P) represents the domains of the selected parameters of the dimen-
sions not taking part in the drilling operations (∀Dj | ∃(Dj.Hj, Paramj)∈P and j≠i) as
well as the domains of the selected parameters of the dimensions taking part in the
drilling operation (Di). We recall that Paramj=<pj_min,…,pj_max>.

The opposite operation, roll-up, is used to gain a more global view of the analysis
data. This operation is used to zoom out of the analysis data. This operation consists
in removing all parameters from the selected parameter list (Parami) whose levels are

 A Conceptual Model for Multidimensional Analysis of Documents 561

lower than a selected parameter. The operation will eventually add the parameter had
it not been in the list.

Syntax: ROLLUP(sG, Di, psup)= sG
1 where sG is the input, Di is a dimension of the pro-

jection set P of sG, i.e. ∃(Di.Hi, Parami)∈P and psup∈Hi.

Condition: The parameter must be of a higher level than the lowest one already se-
lected: levelHi(psup)>levelHi(pmin).

Mathematically: In the following, we express levelHi(psup)=sup

()
()() ()∏∏ ∏ =′ ′

≠
= =

××

⎯⎯⎯ →⎯
max_
sup

max_
min_ .. i

k ki

P

ij
j kj

j

jkAGG

ROLLUPG

pDdompDdom)dom(S

smRollUp: do

1

(11)

Here, ()∏ =′ ′
max_
sup .i

k ki pDdom is the domain of the parameters of the dimension taking part

in the drilling operation (Di). The domains of the parameters whose levels are inferior
to psup are removed (thus k’ minimal bound is levelHi(psup)=sup).

Example. As in traditional models, the drill-down operation could be used to display
the keywords by months rather than by year. But in our model, this operation may
also be applied on the current hierarchy of the focused dimension. This is critical
when textual aggregation functions produce results lacking sense as it enables users to
gain insight within the aggregation process. In the following example, rather than
analyzing keywords by section, the analyst decides to analyse then by subsections.
The following instruction produces the table displayed in the following figure:

DRILLDOWN(sG1
2, ARTICLE, Subsection) = sG1

3

Fig. 4. Example of manipulations: drilling on the focused dimension: Article

Drilling on the focused hierarchy allows powerful combination of 1) the usage of
the hierarchical model provided by the hierarchical structure of the dimension data;
and 2) the usage of the aggregation process allowing the summarisation of selected
data. Drilling on the focussed hierarchy may be seen as adding in the manipulation a
“third” analysis axis.

562 F. Ravat et al.

This operation allows the user to gain insight within the aggregation process. This
is due to the fact that textual aggregation functions do not operate like numeric aggre-
gation functions. Indeed, extracting the major keywords of an article does not neces-
sarily correspond to the extraction of the major keywords of each section. This is a
common problem of 1) holistic functions [7] which may not be computed from lower
results (e.g. median function); and 2) component ranking such as pointed out in [14]
where in an information retrieval framework different granularities tend to mess up
statistics. Physically, when drilling on textual data and using a holistic aggregation
function, aggregates are recomputed with the newly designated granularity of the
dataset. Thus the analyst may get a better understanding by seeing these different
aggregates.

3.3 Analysis Reorganisation Operation

In some cases, the user might wish to reorganise the analysed dataset. To do this, he
uses an operation that will change structural elements of the subpart of the galaxy sG.

The rotation operation replaces by a new dimension one of the dimensions of sG:
the analysis subject (DS), or one of the analysis axes, i.e. a dimension from the projec-
tion set (Di∈P).

Syntax: Rotate(sG, Dold, Dnew.Hnew, A)=sG
1 where sG is the input, Dold is the dimension

to be replaced, Dnew is the new dimension, Hnew its currently selected hierarchy and A
depends on Dold. If Dold=DS then A=f’AGG(pnew), else if Dold∈P then
A = Paramnew = <pnew_min,…, pnew_max> is a subset of ParamHnew.

Condition: If Dold=DS then ∀Dk∈P, Dk∈StarG(Dnew) and pnew∈Hnew. If Dold∈P then
Dnew∈StarG(DS) Paramnew⊆ParamHnew and levelHnew(pnew_min)<…<levelHnew(pnew_min)

Mathematically: If Dold=DS then the operation corresponds to (12), else if Dold∈P,
the operation corresponds to (13).

() ()()() ()PdompDdomfdomsdomRotate newnewAGG
ROTATEG ×′⎯⎯⎯ →⎯ .: (12)

()
() ()() ()knew

new

newk

P

oldj
j kj

j

jkAGG

ROTATEG

pDdompDdomSdom

sdomRotate

′=′
≠
= = ∏∏ ∏ ××

⎯⎯⎯ →⎯

..
:

max_
min_

max_
min_1

(13)

Notice that if Dold = Dnew, this allows to change one of the current selected hierar-
chy (HS, Hx, Hy…). Notice also that when rotating the subject of analysis, this is the
equivalent of FRotate [22] or DrillAcross operations [1].

3.4 The Use of Recursive Links

Links within the Galaxy may be used as paths to access particular data. They allow
flexibility when designating subparts of documents and simplify query specifications.
For example, the following operation sequence uses the link between Reference and
ARTICLE (see figure 1). It focuses on the major keywords of each section of articles
that are cited by Au1, i.e. the articles in reference sections of all Au1’s publications.

 A Conceptual Model for Multidimensional Analysis of Documents 563

SELECT (SELECT (FOCUS (TOP_KEYWORDS (ARTICLES.HR.Reference.Section),
((TIME.HTime, <Year>), (ARTICLE.Reference.AUTHORS.HA, <IdA>))), AUTHORS.IdA=‘Au1’),

ARTICLE.Reference.TIME.Year > 2005)

Where ARTICLE.Reference.AUTHORS are the authors of the articles referenced by
Au1’s publications, ARTICLE.Reference.TIME.Year are years of publication of the
referenced articles whereas TIME.Year are the years of publication of Au1’s articles.

As another example, the query that provides the table displayed in Table 1 is:

SELECT(FOCUS(TOP_KEYWORDS(ARTICLES.HS.Article),((ARTICLES.Reference.AUTHORS.HA,<Au-
thor,Institute>),(CONFERENCES.HConf,<Name>))),ARTICLES.References.AUTHORS.Institute=‘Inst1’)

Where ARTICLES.References.AUTHORS are the authors of the articles cited in the
conferences CONFERENCES.Name in the articles whose content is specified by
ARTICLES.Article. Notice that hierarchies are specified only in the focus operation to
allow drilling operations that follow the hierarchical structure of the parameters.

The links allow more flexibility when querying data sources that are intercon-
nected together, as the links may be used to thoroughly explore and analyse datasets.

4 Conclusion and Future Works

In this paper we have defined an adapted multidimensional conceptual model for the
analysis of text-rich documents. The model is based on a unique conceptual element:
a dimension. It is associated to a set of manipulation operations to allow multidimen-
sional OLAP analysis.

Contrarily to previous multidimensional models, this proposition has the advantage
of preserving the document structure as well as the links within these structures. The
usage of links allows thorough analysis of documents interconnected together such as
articles that reference other articles. Moreover, these links simplify the expression of
queries that would be very complex in other environments. The absence of factual
entity does not restrain the analyst with predefined subjects of analysis that might
produce analyses lacking sense on text-rich data sources. The associated manipulation
operations allow easy switching of the focus of the analysis subject. Hence, the user
may compensate the lack of accuracy in textual analysis by an increased flexibility
within this OLAP framework. The preservation of the document structure allows
analysts to use this structure in order to refine their analyses and perform fine tuning.
Notice that facts may still be represented within this model by very simple dimen-
sions, where each measure is a hierarchy with a unique parameter.

Due to lack of space we apologize for not having presented the logical level of this
framework. We are currently extending a prototype: GraphicOLAPSQL [22]. This
prototype is based on an Oracle 10g database, XML files for documents and a Java
interface. In our implementation, in order to maintain performance, each dimension is
linked to all other dimension instances allowing quick rotation around different sub-
jects, i.e. in the Oracle R-OLAP environment this is physically implemented through
VArrays and Nested Tables, depending on index sizes.

This conceptual model is the first step for a more complete framework. Throughout
this paper, we have suggested the use of a simple aggregation function
(TOP_KEYWORDS). As future works, we consider the specification of a set of adapted
aggregation functions such as AVG_KW [21] for document-centric document analysis.

564 F. Ravat et al.

In parallel, as the goal of the conceptual model is to ease the process of analysis, we also
intend to adapt and implement a graphical OLAP query language [22].

References

1. Abelló, A., Samos, J., Saltor, F.: Implementing operations to navigate semantic star sche-
mas. In: 6th ACM int. workshop on Data Warehousing and OLAP (DOLAP), pp. 56–62.
ACM, New York (2003)

2. Agrawal, R., Gupta, A., Sarawagi, S.: Modeling Multidimensional Databases. In: ICDE.
Int. Conf. on Data Engineering, pp. 232–243 (1997)

3. Boussaid, O., Messaoud, R.B., Choquet, R., Anthoard, S.: X-Warehousing: An XML-
Based Approach for Warehousing Complex Data. In: Manolopoulos, Y., Pokorný, J., Sel-
lis, T. (eds.) ADBIS 2006. LNCS, vol. 4152, pp. 39–54. Springer, Heidelberg (2006)

4. Cabibbo, L., Torlone, R.: A Systematic Approach to Multidimensional Databases. In:
SEBD. 5th Italian Symposium on Advanced Database Systems, pp. 361–377 (1997)

5. Fuhr, N., Großjohann, K.: A Query Language for Information Retrieval in XML Docu-
ments. In: 24th int. ACM SIGIR conf. on Research and development in information re-
trieval, pp. 172–180. ACM Press, New York (2001)

6. Golfarelli, M., Rizzi, S., Saltarelli, E.: WAND: A CASE Tool for Workload-Based Design
of a Data Mart. In: SEBD. 10th Italian Symposium on Advanced Database Systems, pp.
422–426 (2002)

7. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Total. In: ICDE. 12th Int. Conf. on
Data Engineering, pp. 152–159 (1996)

8. Gyssen, M., Lakshmanan, L.V.S.: A Foundation for Multi-Dimensional Databases. In:
VLDB. 23rd Int. Conf. on Very Large Data Bases, pp. 106–115 (1997)

9. Jensen, M.R., Møller, T.H., Pedersen, T.B.: Specifying OLAP Cubes On XML Data. In:
SSDBM. 13th Int. Conf. on Scientific and Statistical Database Management, pp. 101–112.
IEEE Computer Society Press, Los Alamitos (2001)

10. Keith, S., Kaser, O., Lemire, D.: Analyzing Large Collections of Electronic Text Using
OLAP. In: APICS 29th Conf. in Mathematics, Statistics and Computer Science, pp. 17–26
(2005)

11. Kimball, R.: The data warehouse toolkit, 2nd edn. John Wiley and Sons, Chichester (2003)
12. Khrouf, K., Soulé-Dupuy, C.: A Textual Warehouse Approach: A Web Data Repository.

In: Mohammadian, M. (ed.) Intelligent Agents for Data Mining and Information Retrieval,
pp. 101–124. Idea Publishing Group (2004)

13. Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model: From conceptual
modeling to logical representation. J. of Data & Knowledge Engineering (DKE) 59(2),
348–377 (2006)

14. Mass, Y., Mandelbrod, M.: Component Ranking and Automatic Query Refinement for
XML Retireval. In: Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS,
vol. 3493, pp. 73–84. Springer, Heidelberg (2005)

15. McCabe, C., Lee, J., Chowdhury, A., Grossman, D.A., Frieder, O.: On the design and
evaluation of a multi-dimensional approach to information retrieval. In: 23rd Int. ACM
SIGIR Conf. on Research and Development in Information Retrieval, pp. 363–365. ACM,
New York (2000)

 A Conceptual Model for Multidimensional Analysis of Documents 565

16. Mothe, J., Chrisment, C., Dousset, B., Alau, J.: DocCube: Multi-dimensional visualisation
and exploration of large document sets. J. of the American Society for Information Science
and Technology (JASIST) 54(7), 650–659 (2003)

17. Nassis, V., Rajugan, R., Dillon, T.S., Wenny Rahayu, J.: Conceptual Design of XML
Document Warehouses. In: Kambayashi, Y., Mohania, M.K., Wöß, W. (eds.) DaWaK
2004. LNCS, vol. 3181, pp. 1–14. Springer, Heidelberg (2004)

18. Park, B.K., Han, H., Song, I.Y.: XML-OLAP: A Multidimensional Analysis Framework
for XML Warehouses. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005. LNCS, vol. 3589,
pp. 32–42. Springer, Heidelberg (2005)

19. Pérez, J.M., Berlanga-Llavori, R., Aramburu-Cabo, M.J., Pedersen, T.B.: Contextualizing
data warehouses with documents. In: Decision Support Systems (DSS), Elsevier, Amster-
dam (in press, 2007), doi:10.1016/j.dss.2006.12.005

20. Rafanelli, M.: Operators for Multidimensional Aggregate Data. In: Rafanelli, M. (ed.)
Multidimensional Databases: Problems and Solutions, ch.5, pp. 116–165. Idea Group Inc
(2003)

21. Ravat, F., Teste, O., Tournier, R.: OLAP Aggregation Function for Textual Data Ware-
house. In: ICEIS. 9th Int. Conf. on Enterprise Information Systems, pp. 151–156.
INSTICC Press (June 2007)

22. Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Algebraic and graphic languages for OLAP
manipulations. Int. j. of Data Warehousing and Mining (DWM) (to appear, 2007)

23. Rizzi, S., Abelló, A., Lechtenbörger, J., Trujillo, J.: Research in data warehouse modeling
and design: dead or alive? In: DOLAP. 9th ACM Int. Workshop on Data Warehousing and
OLAP, pp. 3–10. ACM, New York (2006)

24. Sullivan, D.: Document Warehousing and Text Mining. Wiley John & Sons, Chichester
(2001)

25. Torlone, R.: Conceptual Multidimensional Models. In: Rafanelli, M. (ed.) Multidimen-
sional Databases: Problems and Solutions, ch.3, pp. 69–90. Idea Group Inc, USA (2003)

26. Tseng, F.S.C.: Design of a multi-dimensional query expression for document warehouses.
Information Sciences 174(1-2), 55–79 (2005)

27. Tseng, F.S.C., Chou, A.Y.H.: The concept of document warehousing for multi-
dimensional modeling of textual-based business intelligence. J. of Decision Support Sys-
tems (DSS) 42(2), 727–744 (2006)

28. Vrdoljak, B., Banek, M., Skočir, Z.: Integrating XML Sources into a Data Warehouse. In:
Lee, J., Shim, J., Lee, S.-g., Bussler, C., Shim, S. (eds.) DEECS 2006. LNCS, vol. 4055,
pp. 133–142. Springer, Heidelberg (2006)

29. Yin, X., Pedersen, T.B.: Evaluating XML-extended OLAP queries based on a physical al-
gebra. In: DOLAP. 7th Int. Workshop on Data Warehousing and OLAP, pp. 73–82. ACM,
New York (2004)

Automatic Hidden-Web Table Interpretation by

Sibling Page Comparison�

Cui Tao and David W. Embley

Brigham Young University, Provo, Utah 84602, USA

Abstract. The longstanding problem of automatic table interpretation
still illudes us. Its solution would not only be an aid to table processing
applications such as large volume table conversion, but would also be
an aid in solving related problems such as information extraction and
semi-structured data management. In this paper, we offer a conceptual
modeling solution for the common special case in which so-called sib-
ling pages are available. The sibling pages we consider are pages on the
hidden web, commonly generated from underlying databases. We com-
pare them to identify and connect nonvarying components (category la-
bels) and varying components (data values). We tested our solution using
more than 2,000 tables in source pages from three different domains—car
advertisements, molecular biology, and geopolitical information. Exper-
imental results show that the system can successfully identify sibling
tables, generate structure patterns, interpret tables using the generated
patterns, and automatically adjust the structure patterns, if necessary,
as it processes a sequence of hidden-web pages. For these activities, the
system was able to achieve an overall F-measure of 94.5%.

1 Introduction

The World Wide Web serves as a powerful resource for every community. Much
of this online information, indeed, the vast majority, is stored in databases on the
so-called hidden web.1 Hidden-web information is usually only accessible to users
through search forms and is typically presented to them in tables. Automatically
understanding hidden-web pages is a challenging task. In this paper, we introduce
a domain independent, web-site independent, unsupervised way to automatically
interpret tables from hidden-web pages.

Tables present information in a simplified and compact way in rows and
columns. Data in one row/column usually belongs to the same category or pro-
vides values for the same concept. The labels of a row/column describe this
category or concept.

Although a table with a simple row and column structure is common, tables
can be much more complex. Figure 1 shows an example. Tables may be nested
� Supported in part by the National Science Foundation under Grant #0414644.
1 There are more than 500 billion hidden-web pages. The surface web, which is indexed

by common search engines only constitutes less than 1% of the World Wide Web.
The hidden web is several orders of magnitude larger than the surface web [10].

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 566–581, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Automatic Hidden-Web Table Interpretation by Sibling Page Comparison 567

Fig. 1. A Sample Table from WormBase (http://www.wormbase.org)

or conjoined as are the tables in Figure 1. Labels may span across several cells to
give a general description as do Identification and Location in Table 4 of Figure 1.
Although labels commonly appear on the top or left, table designers occasionally
place labels on the right side of a table. In long tables, labels sometimes appear
at the end of a table or in the middle of a table, every few rows, in order to help
a reader find the correspondence between labels and data. Sometimes tables are
rearranged to fit the space available. Label-value pairs may appear in multiple
columns across a page or in multiple rows placed below one another down a
page. These complexities make automatic table interpretation challenging.

In this paper, we introduce a conceptual-modeling-based table interpreta-
tion system. We use a conceptual-modeling language to model both the input

568 C. Tao and D.W. Embley

(a) (b)

Fig. 2. Conceptual Model Instances for (a) An Input HTML Table and (b) An Output
Interpretation

tables and the output interpretations as suggested in [5]. When we do, the
table-interpretation problem becomes a problem of transforming one populated
conceptual-model instance to another.

Figure 2(a) shows the model instance for an HTML page containing one
or more tables. Each HTML table has a unique Table ID (e.g. the table num-
bers in Figure 1), and a unique Path in terms of the page’s DOM tree
(e.g. /html/table[4]/tbody/tr[1]/td[2]/table[1]/tbody/tr[6]/td[2]2). The tags
<table> and </table> delimit HTML tables in a web document. An HTML
Table has one or more Rows (delimited by <tr> tags); each Row has a Row#.
A Row has one or more Cells (delimited by <td> or <th> tags); each Cell
has a Cell#. Each Cell contains Content and may contain other HTML Tables.
The Content is the content of a cell, not between <table> and </table> tags.
The Content may consist of HTML tags, images, and strings. Using Figure 1 as
an example, Table 4 has three Rows, starting with Identification, Location, and
Function. In the first Row are two Cells. The Content of the first Cell is the
string “Identification”, and the content of the second Cell is an HTML Table,
Table 5, which has seven Rows and fourteen Cells, two of which contain tables,
Table 6 and Table 7.

As Figure 2(b) shows, to interpret an HTML table is to properly associate
table category labels with table data values, as the set of label-value pairs of the
table. The Path for a table’s interpretation is its path in an HTML page. We
model the label-value pairs according to Wang notation [14]. The Wang Notation
for a table is a set of Label-Value Pairs. Each Label-Value Pair contains one La-
bel and one Value. Each Label has one or more Label Sequences, one to describe

2 Each table has a unique path; each path does not necessary lead to an HTML table.

Automatic Hidden-Web Table Interpretation by Sibling Page Comparison 569

Fig. 3. A Second Sample Table from WormBase

each Dimension. A Label Sequence is a sequence of Label Components ordered
by their Sequence #’s. As an example, consider the value, 342 aa, that appears
in Table 7 of Figure 1. Table 7 is two-dimensional, as are many, if not most
HTML tables. The first dimension has the label sequence Identification.Gene
model(s).Amino Acids where the sequence #’s of the label sequence designate
identification as the first label component, Gene model(s) as the second, and
Amino Acids as the third. The second dimension has the label sequence Identi-
fication.Gene model(s).1 3.

Although automatic table interpretation can be complex, if we have another
page, such as the one in Figure 3, that has essentially the same structure, the
3 If a table has multiple records (usually multiple rows) and if the records do not have

labels, we add record numbers. The table under Identification.Gene model(s), for
example, has two records (two rows), but no row labels. We therefore label the first
record 1 and the second record 2.

570 C. Tao and D.W. Embley

system might be able to obtain enough information about the structure to make
automatic interpretation possible. We call pages that are from the same web site
and have similar structures sibling pages.4 The two pages in Figures 1 and 3 are
sibling pages. They have the same basic structure, with the same top banners
that appear in all the pages from this web site, with the same table title (Gene
Summary for some particular gene), and a table that contains information about
the gene. Corresponding tables in sibling pages are called sibling tables. If we
compare the two large tables in the main part of the sibling pages, we can see
that the first columns of each table are exactly the same. If we look at the cells
under the Identification label in the two tables, both contain another table with
two columns. In both cases, the first column contains identical labels IDs, NCBI
KOGs, ..., Putative ortholog(s). Further, the tables under Identification.IDs also
have identical header rows. The data rows, however, vary considerably. Generally
speaking, we can look for commonalities in sibling tables to find labels and look
for variations to find data values.

Given that we can find most of the label and data cells in this way, our
next task is to infer the general structure pattern of the web site and of the
individual tables embedded within pages of the web site. With respect to iden-
tified labels, we look below or to the right for value associations; we may also
need to look above or to the left. In Figure 1, the values for Identification.Gene
model(s).Amino Acids are below, and the values for Identification.Species are to
the right.

In addition to discovering the structure pattern for a web site, we can also dy-
namically adjust the pattern as we interpret the tables on each retrieved pages.
If the system encounters a table that varies from the pattern by having an addi-
tional or missing label, the system can change the pattern by either adding the
new label and marking it optional or marking the missing label optional. For
example, if we had not seen the extra Swissprot column in the sibling table of
Table 7 in Figure 3 in our initial pair of sibling pages, the system can add Swis-
sprot as a new label and mark it as optional. The basic label-value association
pattern is still the same.

By way of comparison with related work, we note that recent surveys [5,17]
describe the vast amount of research that has been done in table processing and
illustrate the challenges of the table interpretation problem. We focus in this
paper, however, only HTML tables. A number of HTML table extraction systems
use machine learning to recognize tables in web pages (e.g. [3,15]). Drawbacks of
machine learning approaches, however, are that they need training data, and they
need to be retrained for tables from different web sites. Other table interpretation
systems work based on some simple assumptions and heuristics (e.g. [2,6]). These
simple assumptions (labels are either the first row or the first column) are easily
broken in complex tables. More sophisticated table interpretation techniques
have appeared in recent papers [8,9,11]. None of this research makes use of

4 Hidden-web pages are usually generated dynamically from a pre-defined templates
in response to submitted queries. Therefore hidden-web pages usually have sibling
pages.

Automatic Hidden-Web Table Interpretation by Sibling Page Comparison 571

sibling tables, but is complementary to our work and could potentially be used
in conjunction with our work in future efforts to improve results for certain cases.

Other researchers have also tried to take advantage of sibling pages to deter-
mine page structure. RoadRunner [4] compares two HTML pages from one web
site and analyzes the similarities and dissimilarities between them in order to
generate extraction wrappers. It discovers data fields by string mismatches and
discovers iterators and optionals by tag mismatches. EXALG [1] uses equiva-
lence classes (sets of items that occur with the same frequency in sibling pages)
and differentiating roles to generate extraction templates for the sibling pages.
DEPTA [18] compares different records in a page instead of sibling pages and
tries to find the extraction template for the record. Our system fundamentally
differs from these approaches. These approaches focus on finding data fields.
They do not discover labels or try to associate data and labels. Our system
focuses on table interpretation. It looks for a table pattern in addition to data
fields. Furthermore, Our system also tries to find the general structure pattern
for the entire web site. It dynamically adjusts the structure pattern as it encoun-
ters new, yet-unseen structures.

We call our system TISP (Table Interpretation with Sibling Pages). We
present the details of TISP and our contribution to table interpretation by
sibling page comparison in the remainder of the paper as follows. Section 2
provides the details about how TISP analyzes a source page to find tables and
match them with tables in sibling pages. Section 3 explains how TISP infers the
general structure patterns of a web site and therefore how it interprets the tables
from the site. In Section 4, we report the results of experiments we conducted
involving sites for car advertisements, molecular biology, and geopolitical infor-
mation, which we found on the hidden web. In Section 5, we make concluding
remarks.

2 Sibling Table Recognition

After obtaining a source document, TISP first parses the source code and lo-
cates all HTML components enclosed by <table> and </table> tags (tagged
tables). When tagged tables are nested inside of one another, TISP finds them
and unnests them. In Figure 1, there are several levels of nesting in the large
rectangular table. The first level is a table with two columns. The first column
contains Identification, Location, and Function, and the second column contains
some complex structures. Figure 1 shows only the first three rows of this table—
one row for Identification, one for Location, and one for Function. (For the pur-
pose of being explicit in this paper, we assume that these three rows are the only
rows in this table.) The second column of the large rectangular table in Figure 1
contains three second-level nested tables, the first starting with IDs, the second
with Genetic Position, and the third with Mutant Phenotype. In the right most
cell of the first row is another table. There are also two third level nested tables.

We treat each tagged table as an individual table and assign a Table ID to it.
If the table is nested, we replace the table in the upper level with its ID number.

572 C. Tao and D.W. Embley

Tree1 Tree2

Fig. 4. DOM Trees for Table 7 in Figure 1 and its Sibling Table in Figure 3

By so doing, we are able to remove nested tables from upper level tables. As a
result, TISP decomposes the page in Figure 1 into a set of tables, each with an
ID and a path.

To compare and match tables, we first transform each HTML table into a
DOM tree. It is easy to transform our input in Figure 2(a) to a DOM tree,
indeed the conceptual-model instance abstractly models a DOM tree for the
tables within an HTML page. Tree1 in Figure 4 shows the DOM tree for Table 7
in Figure 1, and Tree2 in Figure 4 shows the DOM tree for its corresponding
table in Figure 3.

Tai [12] gives a well acknowledged formal definition of the concept of a tree
mapping for labeled ordered rooted trees. Let T be a labeled ordered rooted tree
and let T [i] be the ith node in level order of tree T. A mapping from tree T to
tree T ′ is defined as a triple (M, T, T ′), where M is a set of ordered pairs (i,
j), where i is from T and j is from T ′, satisfying the following conditions for all
(i1, j1), (i2, j2) ∈ M, where i1 and i2 are two nodes from T and j1 and j2 are
two nodes from T ′:

(1) i1 = i2 iff j1 = j2;
(2) T [i1] comes before T [i2] iff T ′[j1] comes before T ′[j2] in level order;
(3) T [i1] is an ancestor of T [i2] iff T ′[j1] is an ancestor of T ′[j2].

According to this definition, each node appears at most once in a mapping and
the order between sibling nodes and the hierarchical relation between nodes are
preserved. The best match between two trees is a mapping with the maximum
number of ordered pairs.

We use a simple tree matching algorithm introduced in [16] which was first
proposed to compare two computer programs in software engineering. It cal-
culates the similarity of two trees by finding the best match through dynamic
programming with complexity O(n1n2), where n1 is the size (number of nodes)
of T and n2 is the size of T ′. This algorithm counts the matches of all pos-

Automatic Hidden-Web Table Interpretation by Sibling Page Comparison 573

sible combination pairs of nodes from the same level, one from each tree, and
finds the pairs with maximum matches. The simple tree match algorithm returns
the number of these maximum matched pairs. The highlighted part in Tree1 in
Figure 4 shows the matched nodes for Tree1 with respect to Tree2 in Figure 4.
The highlighted nodes indicate a match.

In our research, we use the results of the simple tree matching algorithm for
three tasks: (1) we filter out those HTML tables that are only for layout; (2) we
identify the corresponding tables (sibling tables) from sibling pages; and (3) we
match nodes in a sibling-table pair.

We call the maximum number of matched nodes among the two trees the
match score. For each table in one source page, we obtain match scores and thus
a ranking for all tables in a sibling page. Sibling tables should have a one to
one correspondence. Based on the match score, we use the Gale-Shapley stable
marriage algorithm [7] to pair potential sibling tables one to one.

For a pair of potential sibling tables, we calculate the sibling table match
percentage, 100 times the match score divided by the number of nodes of the
smaller tree. The match percentage between the two trees in Figure 4, for ex-
ample, is 19 (match score) divided by 27 (tree size of Tree2), which, expressed
as a percentage, is 70.4%.

We classify potential sibling tables into three categories: (1) exact match or
near exact match; (2) false match; and (3) sibling-table match. We use two
threshold boundaries to classify potential sibling tables: a higher threshold be-
tween exact or near exact match and sibling-table match, and a lower threshold
between sibling-table match and false match. Usually a large gap exists between
the range of exact or near exact match percentages and the range of sibling-
table match percentages, as well as between the range of sibling-table match
percentages and the range of false match percentages. Using active learning
with boostrap selective sampling [13], we first set initial thresholds by empirical
observation (90% for the higher threshold and 20% for the lower threshold); then
TISP dynamically adjusts the two thresholds as needed during the classification
process as more sibling pages are considered.

In our example, Tables 1, 2, and 3 have match percentages of 100% with
their sibling tables. The match percentages for Tables 4, 5, 6 and 7, and their
corresponding sibling tables, are 66.7%, 58.8%, 69.2%, and 70.4% respectively.
Our example has no false matches. A false match usually happens when a table
does not have a corresponding table in the sibling page. In this case, we save the
table. When more sibling pages are compared, we might find a matching table
for this saved table.

3 Structure Patterns

The structure pattern of a table tells us how to transform the information con-
tained in the model instances in Figure 2(a) to the model instance in Figure 2(b),
and thus how to interpret a table.

574 C. Tao and D.W. Embley

Pattern 1:
<table>(<tbody>)?

<tr>(< (td|th) > {L})n

(<tr>(< (td|th) > {V })n)+

Pattern 2:
<table>(<tbody>)?

(< tr >< (td|th) > {L}(< (td|th) > {V })n)+

Pattern 3:
<table>(<tbody>)?

<tr>(< (td|th) > {L})n

(< tr >< (td|th) > {L}(< (td|th) > {V })(n−1))+

Fig. 5. Some Basic Pre-defined Pattern Templates

3.1 Pattern Templates

We use regular expression to describe table structure pattern templates. If we
traverse a DOM tree, which is ordered and labeled, in a preorder traversal, we can
layout the tree labels textually and linearly. We can then use regular-expression
like notation to represent the table structure patterns (see Figure 5). In both
templates and generated patterns we use standard notation: ? (optional), + (one
or more repetitions), and | (alternative). In templates, we augment the notation
as follows. A variable (e.g. n) or an expression (e.g. n-1) can replace a symbol
to designate a specific number of repetitions, which is unknown but fixed for the
expression as it is applied. A pair of braces { } indicates a leaf node. A capital
letter L is a position holder for a label and a capital letter V is a position holder
for value. The part in a box is an atomic pattern which we use for combinational
structural patterns in Section 3.4.

Figure 5 shows three basic pre-defined pattern templates. Pattern 1 is for
tables with n labels in the first row and with n values in each of the rest of the
rows. The association between labels and values is column-wise; the label at the
top of the column is the label for all the values in each column.

Pattern 2 is for tables with labels in the left-most column and values in the
rest of the columns. Each row has a label followed by n values. The label-value
association is row-wise; each label labels all values in the row.

Pattern 3 is for two-dimensional tables with labels on both the top and the
left. Each value in this kind of table associates with both the row header label
and the column header label.

3.2 Pattern Generation

To check whether a table matches any pre-defined pattern template, TISP tests
each template until it finds a match. When we search for a matching template,
we only consider leaf nodes and seek matches for labels and mismatches for

Automatic Hidden-Web Table Interpretation by Sibling Page Comparison 575

<table>
<tr> <td>Gene Model <td>Status <td>Nucleotides(coding/transcript)

<td>Protein <td>Amino Acids
(<tr><td>VGene Model<td>VStatus <td>VNucleotides(coding/transcript)

<td>VProtein <td>VAmino Acids)
+

Fig. 6. Structure Pattern for Table 7 in Figure 1

values. Variations, however, exist and we must allow for them. In tables, labels
or values are usually grouped. We are seeking for a structure pattern instead
of classifying individual cells. Sometimes we find a matched node, but all other
nodes in the group are mismatched nodes and agree with a certain pattern (e.g.
the highlighted record node in the second subtree in Tree1 in Figure 4.), TISP
should ignore the disagreement and assume the mismatched node is a node of
value too. Specifically, we calculate a template match percentage between a pre-
defined pattern template and a matched result, 100 times the number of leaf
nodes that agree with a pattern template divided by total number of leaf nodes
in the tree. We calculate the template match percentage between a table and
each pre-defined structure template. A match must satisfy two conditions: (1)
it must be the highest match percentage, and (2) the match percentage must
be greater than a threshold. Similar to the way we determine thresholds for
sibling table matches, we determine this template match percentage threshold
using active learning with boostrap selective sampling, with an initial threshold
of 80%.

Consider the mapped result in Figure 4 as an example. The highlighted nodes
are matched nodes in Tree1. Comparing the template match percentage for this
mapped result for the three pattern templates in Figure 5, we obtain 93.3%,
53.3%, and 80% respectively. Pattern 1 has the highest match percentage, and
it is greater than the threshold. Therefore we choose Pattern 1.

We now impose the chosen pattern, ignoring matches and mismatches. Note
that for the Tree1 in Figure 4, the first branch matches the part in Pattern 1 in
the first box and the second and the third branch, each match the part in the
second box, where n is 5. For Pattern 1, when n=1, we have a one-dimensional
table; and when n>1, we have a two-dimensional table for which we must gen-
erate record numbers.

After TISP matches a table with a pre-defined pattern template, it generates
a specific structure pattern for the table by substituting the actual labels for
each L and by substituting a placeholder VL for each value. The subscript L for
a value V designates the label-value pair for each record in a table. Figure 6
shows the specific structure pattern for Table 7 in Figure 1.

3.3 Pattern Usage

With a structure pattern for a specific table, we can interpret the table and all its
sibling tables. The path gives the location of the table, and the generated pattern

576 C. Tao and D.W. Embley

gives the label-value pairs. The pattern must match exactly in the sense that
each label string encountered must be identical to the pattern’s corresponding
label string. Any failure is reported to TISP. (In Section 3.5, we explain how
TISP reacts to a failure notification).

When the pattern matches exactly, TISP can generate the label sequence and
value for each label-value pair and thus can provide an interpretation for the
table. For our example, the chosen pattern is Pattern 1 with + (which allows for
multiple rows of values in the table). Thus, TISP needs to add another dimension
and add row numbers. Since the table is inside of other tables, TISP recursively
searches for the tables in the upper levels of nesting and collects all needed labels.

3.4 Pattern Combinations

It is possible that TISP cannot match any pre-defined template. In this case,
it looks for pattern combinations. Using Figure 7 as an example, assume that
TISP matches all the cells in the first and third column, but none in the second
and forth column. Comparing the template match percentage for this mapped
result for the three pattern templates in Figure 5, we obtain 50%, 75%, and
68.8% respectively. None of them is greater than the threshold, 80%. The first
two columns, however, match Pattern 2 perfectly, as do the last two columns.

Fig. 7. An Example for Pattern Combination from MutDB

In many cases, tables can be more complicated. Most complex tables do not
match to only one pre-defined pattern template, but do match to a combination
of several of them. Patterns can be combined row-wise or column-wise. In a row-
wise combination, one pattern template can appear after another, but only the
first pattern template has the header: < table > (< tbody >)?. Therefore, a row-
wise combined structure pattern has a few rows matching one template and other
rows matching another template. In a column-wise combination, we combine
different atomic patterns. If a pattern template has two atomic patterns, both
patterns must appear in the combined pattern, in the same order, but they can
be interleaved with other atomic patterns. If one atomic pattern appears after
another atomic pattern from a different pattern template, the < tr > tag at the
beginning is removed. Figure 8 shows two examples of pattern combinations.
Example 1 combines Pattern 2 and Pattern 1 row-wise. Example 2 combines
Pattern 2 with itself column-wise. This second pattern matches the table in
Figure 7, where n = m = 1, and the plus (+) is 4.

Automatic Hidden-Web Table Interpretation by Sibling Page Comparison 577

Example 1:
< table > (< tbody >)?

(< tr >< (td|th) >{L}(< (td|th) > {V })n)+

< tr > (< (td|th) > {L})m(< tr > (< (td|th) > {V })m)+

Example 2:
< table > (< tbody >)?

(< tr >< (td|th) >{L}(< (td|th) > {V })n< (td|th) >{L}(< (td|th) > {V })m)+

Fig. 8. Two Examples of Pattern Combinations

The initial search for combinations is similar to the search for single patterns.
TISP checks patterns until it finds mismatches, it then checks to see whether
the mismatched part matches with some other pattern. TISP first searches row-
wise for rows of labels and then uses these rows as delimiters to divide the
table into several groups. If it cannot find any row of labels, it repeats the
same process column-wise. TISP then tries to match each sub group with a pre-
defined template. This process repeats recursively until all sub-groups match
with a template.

For the example in Figure 7, TISP is unable to find any rows of labels, but
finds two columns of labels, the first and third column. It then divides the table
into two groups using these two columns and tries to match each group with
a pre-defined template. It matches each group with Pattern 2. Therefore, this
table matches column-wise with two combinations of Pattern 2.

3.5 Dynamic Pattern Adjustment

Given a structure pattern for a table, we know where the table is in the source
document (its path), the location of the labels and values, and the association
between labels and values. When TISP encounters a new sibling page, it tries to
locate each sibling table following the path, and then to interpret it by matching
it with the sibling table structure pattern. If the new table matches the structure
pattern regular expression perfectly, we successfully interpret this table. Other-
wise, we might need to do some pattern adjustment. There are two ways to
adjust a structure pattern: (1) adjust the path to locate a table, and (2) adjust
the generated structure pattern regular expression.

Although sibling pages usually have the same base structure, some variations
might exist. Some sibling pages might have additional or missing tables. Thus,
sometimes, following the path, we cannot locate the sibling table for which we
are looking. In this case, TISP searches for tables at the same level of nesting,
looking for one that matches the pattern. If TISP finds one, it obtains the path
and adds it as an alternative. Thus, for future sibling pages, TISP can (in fact,
always does) check all alternative paths before searching for another alternative
path. If TISP finds no matching table, it simply continues its processing with
the next table.

We adjust a table pattern when we encounter a variation of an existing table.
There might be additional or missing labels in the encountered variation. In this

578 C. Tao and D.W. Embley

<table>
<tr> <td>Gene Model <td>Status <td>Nucleotides(coding/transcript)

<td>Protein (<td>Swissprot)? <td>Amino Acids
(<tr><td>VGene Model<td>VStatus <td>VNucleotides(coding/transcript)

<td>VProtein (<td>VSwissprot)? <td>VAmino Acids)
+

Fig. 9. Structure Pattern for the Table in Figure 3

case, we need to adjust the structure pattern regular expression, to add the new
optional label or to mark the missing label as optional. Consider the table that
starts with Gene Model in Figure 3 (the sibling table of Table 7 in Figure 1) as
an example. The table matches the pattern in Figure 6 until we encounter the
label Swissprot. If we skip Swissprot, the next label Amino Acids matches the
structure pattern. In this case, we treat Swissprot as an additional label, and we
add it as an optional label as Figure 9 shows.

4 Experimental Results

We tested TISP for three different fields: car advertisements for commercial
data, molecular biology for scientific data, and interesting information about
U.S. states and about countries for geopolitical data. Most of the source pages
were collected from popular and well-known web sites such as cars.com, NCBI
database, Wormbase, MTB database, the CIA World Factbook, and the U.S.
Geological Survey. We tested more than 2,000 tables found in 275 sibling pages
in 35 web sites. For each web site, we randomly chose two sibling pages for initial
pattern generation. For the initial two sibling pages, we tested (1) whether TISP
was able to recognize HTML data tables and discard HTML tables used only for
layout, (2) whether it was able to pair all sibling tables correctly, and (3) whether
it was able to recognize the correct pattern template or pattern combination.
For the rest of sibling pages from the same web site, we tested (1) whether
TISP was able to interpret tables using the recognized structure patterns, (2)
whether it correctly detected the need for dynamic adjustment, and (3) whether
it recognized new structure patterns correctly.

We collected 75 sibling pages from 15 different web sites in the car-advertise-
ments domain for a total of 780 HTML tables.5 TISP correctly discarded all
uses of tables for layout and successfully paired all sibling tables. There were
no nested tables in this domain. Most of the web sites contained only one table
pattern, except for one site that had three different patterns. Two web sites
contained tables with structure combinations. TISP successfully interpreted all
tables from the generated patterns. No adjustment were needed, neither for any
path nor for any label.

5 The sibling pages in this domain are usually very regular. Indeed, we found no table
variations in any of the sites we considered. We, therefore, only tested five pages per
site.

Automatic Hidden-Web Table Interpretation by Sibling Page Comparison 579

We collected 100 sibling pages from 10 different web sites in the molecular bi-
ology domain for a total of 862 HTML tables. Among these tables, TISP falsely
classified three pairs of layout tables as data tables. TISP, however, successfully
eliminated these false sibling pairs during pattern generation because it was un-
able to find a matching pattern. No false patterns were generated. TISP was
able to recognize 28 of 29 structure patterns. TISP missed one pattern because
the table contained too many empty cells. If it had considered empty cells as
mismatches, TISP would have correctly recognize this pattern. As TISP pro-
cessed additional sibling pages, it found 5 additional sibling tables and correctly
interpreted all but one of them. The failure was caused by labels that varied
across sibling tables causing them, in some cases, to look like values. There were
5 path adjustments and 12 label adjustments—all of them correct. One table
was interpreted only partially correctly because TISP considered the irrelevant
information To Top as a header.

For the geopolitical information domain, we tested 100 sibling pages from 10
different web sites with 884 HTML tables. TISP correctly paired 100% of all
data tables and correctly discarded all layout tables. For initial pattern gener-
ation, TISP was able to recognize all 22 structure patterns. As TISP processed
additional sibling pages, it found one additional sibling table and correctly inter-
preted it. There were no path adjustments, but there were 22 label adjustments—
all of them correct. For two sets of sibling tables, TISP recognized the correct
patterns, but failed to recognize some implicit information that affects the mean-
ing of the tables. Therefore it interpreted the tables only partially correctly (i.e
its label components were only partially correct).

For measuring the overall accuracy of TISP, we computed precision (P), recall
(R), and an F-measure (F = 2PR/(P+R)). In its table recognition step, TISP
correctly discarded 155 of 158 layout tables and discarded no data tables. It
therefore achieved an F-measure of 99.0% (98.1% recall and 100% precision).
TISP later discarded these three layout tables in its pattern generation step,
but it also rejected two data tables, being unable to find any pattern for them.
It thus achieved an F-measure of 99.4% (100% recall and 98.8% precision). For
table interpretation, TISP correctly recognized 69 of 74 structure patterns. It
therefore achieved a recall of 93.2%. Of the 72 structure patterns it detected, 69
were correct. It therefore achieved a precision of 95.8%. Overall the F-measure
for table interpretation was 94.5% for the sites we tested.

We discuss the time performance of TISP in two phases: (1) initial pattern
generation from a pair of sibling pages and (2) interpretation of the tables in
the rest of the sibling pages. The time for pattern generation given a pair of
sibling pages consists of: (1) the time to read and parse the two pages and
locate all the HTML tables, (2) the time for sibling table comparisons, and (3)
the time to select from pre-defined structure templates and generate a pattern.
The complexity of parsing and locating HTML tables is O(n), where n is the
number of HTML tags. The simple tree matching algorithm has time complexity
O(m1m2), where m1 and m2 are the numbers of nodes of the two sibling trees.
To find the best match for each HTML table, we need to compare each table

580 C. Tao and D.W. Embley

with all the HTML tables in its sibling page. The time complexity is O(km1m2),
where k is the number of HTML tables in the sibling page. The time complexity
for finding the correct pattern for each matched sibling table is O(pl), where
p is the number of pattern templates and l is the number of leaf nodes in the
HTML table. If pattern combinations are involved, the complexity of template
discovery increases multiplicatively since for each subgroup we must consider
every template and find the best match. We conducted the experiment on a
Pentium 4 computer running at 3.2 GHz. The typical actual time needed for the
pattern generation for a pair of sibling pages was below or about one second.
The actual time reached a maximum of 15 seconds for a complicated web site
where pages had more than 20 tables.

The time for table interpretation for a single sibling web page when no ad-
justment is necessary consists of: (1) the time for locating each table and (2)
the time for processing the table with a pattern. The complexity of locating a
table is O(p), where p is the number of path possibilities leading to the table.
Each path possibility is itself logarithmic with respect to the number of nodes
in the DOM tree for the pages. The complexity of matching a located table with
the corresponding pattern is O(el), where e is the number of pattern entries (an
entry could be either a pattern label or a pattern value) of the pattern and l is
the number of leaf nodes in the HTML table’s DOM tree. The time to do adjust-
ments ranges from the time to do a simple label adjustment, which is constant,
to the time required to re-evaluate all sibling tables, which is the same as the
time for initial pattern generation. Overall, the typical actual time needed for
interpreting tables in one page was below one second. The actual time reached
a maximum of 19 seconds for a complicated web page with several tables and
several adjustments.

5 Concluding Remarks

In this paper we introduced TISP, which provides a way to automatically inter-
pret tables in hidden-web pages—pages which are almost always sibling pages.
By comparing data tables in sibling pages, TISP is able to find the location
of table labels and data entries, and pair them to infer the general pattern for
all sibling tables from the same site. Our experiments using source pages from
three different domains—car advertisements, molecular biology, and geopolitical
information—indicate that TISP can succeed in properly interpreting tables in
sibling pages. TISP achieved an F-measure for sibling table interpretation of
94.5%.

References

1. Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In: SIG-
MOD 2003. Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pp. 337–348. ACM Press, New York (2003)

Automatic Hidden-Web Table Interpretation by Sibling Page Comparison 581

2. Chen, H., Tsai, S., Tsai, J.: Mining tables from large scale HTML texts. In: Pro-
ceedings of the 18th International Conference on Computational Linguistics (COL-
ING 2000), Saarbrücken, German, pp. 166–172 (July-August 2000)

3. Cohen, W.W., Hurst, M., Jensen, L.S.: A flexible learning system for wrapping
tables and lists in HTML documents. In: Proceedings of the International World
Wide Web Conference (WWW 2002), Honolulu, Hawaii, pp. 232–241 (May 2002)

4. Crescenzi, V., Mecca, G., Merialdo, P.: RoadRunner: Towards automatic data ex-
traction from large web sites. In: Proceedings of the 27th International Conference
on Very Large Data Bases (VLDB 2001), Rome, Italy, pp. 109–118 (September
2001)

5. Embley, D.W., Hurst, M., Lopresti, D., Nagy, G.: Table processing paradigms: A
research survey. International Journal of Document Analysis and Recognition 8(2-
3), 66–86 (2006)

6. Embley, D.W., Tao, C., Liddle, S.W.: Automating the extraction of data from
HTML tables with unknown structure. Data & Knowledge Engineering 54(1), 3–
28 (2005)

7. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American
Mathematics Monthly 69, 9–14 (1962)

8. Gatterbauer, W., Bohunsky, P.: Table extraction using spatial reasoning on the
CSS2 visual box model. In: Proceedings of the 21st National Conference on Artifi-
cial Intelligence (AAAI 2006), Boston, Massachusetts, pp. 1313–1318 (July 2006)

9. Gatterbauer, W., Bohunsky, P., Herzog, M., Krupl, B., Pollak, B.: Towards domain-
independent information extraction from web tables. In: Proceedings of the 16th
International World Wide Web Conference (WWW 2007), Banff, Canada (in press,
2007)

10. Ipeirotis, P.G., Gravano, L., Sahami, M.: Probe, count, and classify: categorizing
hidden web databases. In: Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data (SIGMOD 2001), Santa Barbara, California,
pp. 67–78 (May 2001)

11. Pivk, A., Cimiano, P., Sure, Y.: From tables to frames. In: McIlraith, S.A., Plex-
ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 166–181.
Springer, Heidelberg (2004)

12. Tai, K.-C.: The tree-to-tree correction problem. Journal of the ACM 26(3), 422–433
(1979)

13. Thompson, C.A., Califf, M.E., Mooney, R.J.: Active learning for natural language
parsing and information extraction. In: Proceedings of 16th International Confer-
ence on Machine Learning, Bled, Slovenia, pp. 406–414 (June 1999)

14. Wang, X.: Tabular Abstraction, Editing, and Formatting. PhD thesis, Univeristy
of Waterloo (1996)

15. Wang, Y., Hu, J.: A machine learning based approach for table detection on the
web. In: Proceedings of the 11th International Conference on World Wide Web
(WWW 2002), Honolulu, Hawaii, pp. 242–250 (May 2002)

16. Yang, W.: Identifying syntactic differences between two programs. Software Prac-
tice and Experience 21(7), 739–755 (1991)

17. Zanibbi, R., Blostein, D., Cordy, J.R.: A survey of table recognition. International
Journal of Document Analysis and Recognition 7(1), 1–16 (2004)

18. Zhai, Y., Liu, B.: Web data extraction based on partial tree alignment. In: Pro-
ceedings of the 14th International Conference on World Wide Web (WWW 2005),
Chiba, Japan, pp. 76–85 (May 2005)

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 582–598, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Fine-Grained XML Structural Comparison Approach

Joe Tekli, Richard Chbeir, and Kokou Yetongnon

LE2I Laboratory UMR-CNRS, University of Bourgogne
21078 Dijon Cedex France

{joe.tekli,richard.chbeir,kokou.yetongnon}@u-bourgogne.fr

Abstract. As the Web continues to grow and evolve, more and more information
is being placed in structurally rich documents, XML documents in particular, so
as to improve the efficiency of similarity clustering, information retrieval and
data management applications. Various algorithms for comparing hierarchically
structured data, e.g., XML documents, have been proposed in the literature. Most
of them make use of techniques for finding the edit distance between tree
structures, XML documents being modeled as ordered labeled trees.
Nevertheless, a thorough investigation of current approaches led us to identify
several structural similarity aspects, i.e. sub-tree related similarities, which are
not sufficiently addressed while comparing XML documents. In this paper, we
provide an improved comparison method to deal with fine-grained sub-trees and
leaf node repetitions, without increasing overall complexity with respect to
current XML comparison methods. Our approach consists of two main
algorithms for discovering the structural commonality between sub-trees and
computing tree-based edit operations costs. A prototype has been developed to
evaluate the optimality and performance of our method. Experimental results, on
both real and synthetic XML data, demonstrate better performance with respect
to alternative XML comparison methods.

Keywords: XML, Semi-structured data, Structural similarity, Tree edit distance.

1 Introduction

W3C’s XML (eXtensible Mark-up Language) has recently gained unparalleled
importance as a fundamental standard for efficient data management and exchange.
Information destined to be broadcasted over the web is henceforth represented using
XML, in order to guarantee its interoperability. The use of XML covers data
representation and storage (e.g., complex multimedia objects), database information
interchange, data filtering, as well as web services interaction. Owing to the
unprecedented web exploitation of XML, XML-based comparison, especially for
heterogeneous1 documents, becomes a central issue in the information retrieval and
database communities. The applications of XML comparison are numerous and range
over: version control, change management and data warehousing (finding, scoring
and browsing changes between different versions of a document, support of temporal
queries and index maintenance) [4, 5, 6], XML retrieval (finding and ranking results

1 We denote by heterogeneous XML document one that does not conform to a given grammar

(DTD/XML Schema), which is the case of a lot of XML documents found on the web [13].

 A Fine-Grained XML Structural Comparison Approach 583

according to their similarity in order to retrieve the best results possible) [16, 22] as
well as the classification/clustering of XML documents gathered from the web against
a set of DTDs declared in an XML database (just as schemas are necessary in
traditional DBMS for the provision of efficient storage, retrieval, protection and
indexing facilities, the same is true for DTDs and XML repositories) [2, 6, 13].

A range of algorithms for comparing semi-structured data, e.g., XML-based
documents, have been proposed in the literature. Most of them make use of
techniques for finding the edit distance between tree structures, XML documents
being treated as Ordered Labeled Trees (OLT). Nonetheless, a thorough investigation
of the most recent and efficient XML structural similarity approaches [4, 6, 13] led us
to pinpoint certain cases where the edit distance outcome is inaccurate. These
inaccuracies correspond to undetected sub-tree structural resemblances, as we will see
in the motivating examples. The goal of our study here is to provide a fine-grained
XML comparison method able to efficiently detect XML structural similarity without
decreasing system performance. In short, we aim to build on existing approaches,
mainly those provided in [4, 13], in order to consider the various sub-tree structural
commonalities while comparing XML trees.

The remainder of this paper is organized as follows. Section 2 presents some
motivating examples. In Section 3, we review background and related work in XML
structural similarity. Section 4 develops our XML structural similarity approach.
Section 5 is devoted to present our prototype and experimental tests. Conclusions and
ongoing work are covered in Section 6.

2 Motivation

XML documents tend to have many optional and repeated elements. Such elements
induce recurring sub-trees of similar or identical structures. As a result, algorithms for
comparing XML document trees should be aware of such repetitions/resemblances so
as to efficiently assess structural similarity.

2.1 Undetected Sub-tree Similarities

Consider, for example, dummy XML trees A, B and C in Fig. 1. One can realize that
tree A is structurally more similar to B, than to C, the sub-tree A1, made up of nodes b,
c and d, appearing twice in B (B1 and B2) and only once in C (C1). Nonetheless, such
(sub-tree) structural similarities are left unaddressed by most existing approaches. For
instance, Chawathe’s2 edit distance process [4] permits applying changes to only one
node at a time (using node insert, delete and update operations, with unit costs), thus
yielding the same structural similarity value while comparing trees A/B and A/C.

− Dist(A, B) = Dist(A, C) = 3, which is the cost of three consecutive insert
operations introducing nodes b, c and d (e, f and g) in tree A transforming it into
B (C).

− Therefore, Sim(A, B) = Sim(A, C) = 0.25 where Sim = 1 / (1+Dist).

In theory, structural resemblances such as those between trees A/B and A/C could
be taken into consideration by applying generalizations of Chawathe’s approach [4],

2 Considered as a reference point for the latest tree edit distance algorithms [6, 13].

584 J. Tekli, R. Chbeir, and K. Yetongnon

developed by Nierman and Jagadish [13] and Dalamagas et al. [6] (introducing edit
operations allowing the insertion and deletion of whole sub-trees). Yet, our
examination of the approaches provided in [6, 13] led us to identify certain cases
where sub-tree structural similarities are disregarded:

− Similarity between trees A/D (sub-trees A1 and D2) in comparison with A/E.
− Similarity between trees F/G (sub-trees F1 and G2) relatively to F/H.
− Similarity between trees F/I (sub-tree F1 and tree I) in comparison with F/J.

In essence, the authors in [13] make use of the contained in relation between trees
(cf. Definition 2) so as to capture sub-tree similarities. Following [13], a tree A may
be inserted in T only if A is already contained in the source tree T. Similarly, a tree A
may be deleted only if A is already contained in the destination tree T. Therefore, the
approach in [13] captures the sub-tree structural similarities between XML trees A/B
in Fig. 1, transforming A to B in a single edit operation: (inserting sub-tree B2 in A, B2

occurring in A as A1), whereas transforming A to C would always need three
consecutive insert operations (inserting nodes e, f and g).

Fig. 1. Sample XML trees

Nonetheless, when the containment relation is not fulfilled, certain structural
similarities are ignored. Consider, for instance, trees A and D in Fig. 1. Since D2 is not
contained in A, it is inserted via four edit operations instead of one (insert tree), while
transforming A to D, ignoring the fact that part of D2 (sub-tree of nodes b, c, d) is
identical to A1. Therefore, equal distances are obtained when comparing trees A/D and
A/E, disregarding A/D’s structural resemblances:

− Dist(A, D) = CostIns(h) + CostIns(b) + CostIns(c) + CostIns(d) + CostIns(h) = 1+4 = 5
− Dist(A, E) = CostIns(h) + CostIns(e) + CostIns(f) + CostIns(g) + CostIns(h) = 1+4 = 5

h

i j

b

c d
H1

H2

a

m

g

h i j

G1

G2

a

m

b

c d f

a

b

c d e

Tree F

F1

a

b

c d h

e

f g h

a

b

c d h

b

c d h

Tree D

a

b

c d

e

f g

a

b

d

b

c d c

a

b

c d
A1

Tree A Tree C

B1 B2 C1 C2

D2D1 E2 E1

Tree E

Tree B

Tree I Tree G Tree H

Tree J

 A Fine-Grained XML Structural Comparison Approach 585

Likewise for the D to A transformation (tree D2 will not be deleted via a single
delete tree operation since it is not contained in the destination tree A), achieving
Dist(D, A) = Dist(E, A) = 5. Other types of sub-tree structural similarities that are
missed by [13]’s approach (and likewise missed by [4, 6]) can be identified when
comparing trees F/G and F/H, as well as F/I and F/J. The F, G, H case is different
than its predecessor (the A, D, F case) in that the sub-trees sharing structural
similarities (F1 and G2) occur at different depths (whereas with A/D, A1 and D2 are at
the same depth). On the other hand, the F, I, J case differs from the previous ones
since structural similarities occur, not only among sub-trees, but also at the sub-
tree/tree level (e.g., between sub-tree F1 and tree I).

Note that in [6], the authors complement their edit distance algorithm (which can
be viewed as a specialized version of [13]’s algorithm) with a repetition/nesting
reduction process, summarizing the XML documents prior to the comparison phase.
Such a reduction pre-processing transforms, for instance, tree B to A, thus yielding
Dist(A, B) = 0 which is not accurate (tree A is obviously different than B). While it
might be useful for structural clustering tasks, the reduction process yields inaccurate
comparison results in the general case, which is why it is disregarded in our
discussion. Therefore, we only consider [6]’s edit distance algorithm in our analysis.

2.2 The Special Case of Single Leaf Node Sub-trees

In addition, none of the approaches mentioned above is able to effectively compare
documents made of repeating leaf node sub-trees. For example, following [4, 6, 13],
the same structural similarity value is obtained when comparing document K, of
Fig. 2, to documents L and M, Sim(K, L) = Sim(K, M) = 0.5, having Dist(K, L) =
Dist(K, M) = 1.

− Dist(K, L) = CostIns(b) = 1
− Dist(K, M) = CostIns(c) = 1

However, one can realize that document trees K and L are more similar than K and
M, node b of tree K appearing twice in tree L, and only once in XML tree M. Likewise
for K/N with respect to K/O and K/P. Identical distances are attained when comparing
document trees K/N, K/O and K/P, Dist(K, N)=Dist(K, O)= Dist(K, P)=2, despite the
fact that the node b is repeated three times in tree N, twice in tree O and only appears
once in P.

− Dist(K, N) = CostIns(b) + CostIns(b) = 2
− Dist(K, O) = CostIns(b) + CostIns(c) = 2
− Dist(K, P) = CostIns(c) + CostIns(d) = 2

\

Fig. 2. XML documents consisting of leaf node sub-trees

b c d

a a

b b c

a

b b b c b

a a

b b

a

b

Tree K Tree L Tree M Tree N Tree O Tree P

586 J. Tekli, R. Chbeir, and K. Yetongnon

In this paper, we explicitly mention the case of leaf node repetitions since:

− Leaf nodes are a special kind of sub-trees: single node sub-trees. Therefore,
the study of sub-tree resemblances and repetitions should logically cover leaf
nodes, so as to attain a more complete XML similarity approach.

− Leaf node repetitions are usually as frequent as substructure repetitions (i.e.
non-leaf node sub-tree repetitions) in XML documents.

− Detecting leaf node repetitions is spontaneous in the XML context, and would
help increase the discriminative power of XML comparison methods, as shown
in the examples of Fig. 2 (which will be subsequently conferred in detail).

3 Related Work and Background

3.1 XML Data Model

XML documents represent hierarchically structured information and can be modeled
as Ordered Labeled Trees (OLTs)3 [20]. Nodes in a traditional DOM (Document
Object Model) ordered labeled tree represent XML elements and are labeled with
corresponding element tag names. Attributes mark the nodes of their containing
elements. However, to incorporate attributes in their similarity computations, some
approaches [13, 22] have considered OLTs with distinct attribute nodes, labeled with
corresponding attribute names. Attribute nodes appear as children of their
encompassing element nodes, sorted by attribute name, and appearing before all sub-
element siblings [13]. The authors in [7, 13] agree on disregarding element/attribute
values while studying the structural properties of heterogeneous XML documents.

3.2 Sate of the Art

Various methods, for determining structural similarities between hierarchically structured
data, particularly XML documents, have been proposed. Most of them derive, in one way
or another, the dynamic programming techniques for finding edit distance between
strings [11, 18, 19]. In essence, all these approaches aim at finding the cheapest sequence
of edit operations that can transform one tree into another. Nevertheless, tree edit distance
algorithms can be distinguished by the set of edit operations that are allowed as well as
overall complexity and performance levels. Early approaches in [17, 21] allow insertion,
deletion and relabeling of nodes anywhere in the tree. Yet, they are relatively complex.
For instance, the approach in [17] has a time complexity O(|A||B| depth(A) depth(B))
(where |A| and |B| denote tree cardinalities while depth(A) and depth(B) are the depths of
the trees). The authors in [3, 5] restrict insertion and deletion operations to leaf nodes and
add a move operator that can relocate a sub-tree, as a single edit operation, from one
parent to another. However, corresponding algorithms do not guarantee optimal results.
Recent work by Chawathe [4] restricts insertion and deletion operations to leaf nodes,
and allows the relabeling of nodes anywhere in the tree, while disregarding the move
operation. The overall complexity of [4]’s algorithm is of O(N2). Nierman and Jagadish
[13] extend the approach of [4] by adding two new operations: insert tree and delete tree
to allow insertion and deletion of whole sub-trees within in an OLT. This approach’s

3 In the following, tree designates ordered labeled tree.

 A Fine-Grained XML Structural Comparison Approach 587

overall complexity simplifies to O(N2) despite being conceptually more complex than its
predecessor. A specialized version of [13]’s algorithm is provided in [6]. Following [6],
tree insertion/deletion operations costs are computed as the sum of the costs of
inserting/deleting all individual nodes in the considered sub-trees, whereas in [13],
certain sub-tree similarities are considered (via the containment relation, cf. Definition 2)
while assigning operations costs. On the other hand, an original structural similarity
approach is presented in [7]. It disregards OLTs and utilizes the Fast Fourier Transform
to compute similarity between XML documents. Yet, the authors did not compare their
algorithm’s optimality to existing edit distance approaches. Another approach,
disregarding edit distance computations was introduced by Sanz et al. in [15]. It utilizes
specific indexing structures rather than tree edit distance. Experimental results in [15]
confirm that the approach is of linear complexity. Nonetheless, the authors in [15] do not
compare their algorithm’s optimality to existing approaches.

4 Proposal

Our XML structural similarity approach consists of two algorithms: i) an algorithm for
identifying the Commonality Between two Sub-trees (CBS)4, ii) and an algorithm for
computing the Tree edit distance Operations Costs (TOC). The TOC algorithm makes use
of CBS, its results being exploited via [13]’s main edit distance algorithm (cf. Appendix),
so as to identify the structural similarity between two XML documents (cf. Fig. 3). In the
following, we start by presenting some basic definitions required to develop each of our
algorithms.

Fig. 3. Simplified activity diagram of our XML structural similarity approach

4.1 Preliminary Definitions

Def. 1 - Ordered Labeled Tree: it is a rooted tree in which the nodes are ordered and
labeled. We denote by λ(T) the label of the root node of tree T. In the rest of this
paper, the term tree means rooted ordered labeled tree.

Def. 2 - Tree “Contained in” relationship: a tree A is said to be contained in a tree T
if all nodes of A occur in T, with the same parent/child edge relationship and node
order. Additional nodes may occur in T between nodes in the embedding of A (e.g.,
tree K in Fig. 2 is contained in tree A of Fig. 1).

Def. 3 - Sub-tree: given two trees T and T’, T’ is a sub-tree of T if all nodes of T’
occur in T, with the same parent/child edge relationship and node order, such as no

4 CBS can be applied to whole trees. However, in our study, its use is coupled with sub-trees.

TOC

CBS

Edit Distance
Tree T2

Tree T1

588 J. Tekli, R. Chbeir, and K. Yetongnon

additional nodes occur in the embedding of T’ (e.g., A1 in Fig. 1 is a sub-tree of A,
whereas tree K does not qualify as a sub-tree of A since nodes c and d occur in its
embedding in A).

Def. 4 - First level sub-tree: given a tree T with root p of degree k, the first level sub-
trees, T1, …, Tk of T are the sub-trees rooted at the children nodes of p: p1, …, pk.

Def. 5 - Ld-pair representation of a node: it is defined as the pair (l, d) where l and
d are respectively the node’s label and depth in the tree. We use p.l and p.d to refer to
the label and the depth of an ld-pair node p respectively.

Def. 6 - Ld-pair representation of a tree: it is the list, in preorder, of the ld-pairs of
its nodes (cf. Fig. 4). Given a tree in ld-pair representation T = (t1, t2, …, tn), T[i]
refers to the ith node ti of T. Consequently, T[i].l and T[i].d denote, respectively, the
label and the depth of the ith node of T, i designating the preorder traversal rank of
node T[i] in T.

Def. 7 - Structural commonality between sub-trees: given two sub-trees A = (a1,
…, am) and B = (b1, …, bn), the structural commonality between A and B, designated
by ComSubTree(A, B), is a set of nodes N = {n1, …, np} such that ∀ ni ∈ N, ni occurs
in A and B with the same label, depth and relative node order (in preorder traversal
ranking) as in A and B. For 1 ≤ i ≤ p ; 1 ≤ r ≤ m ; 1 ≤ u ≤ n:

(1) ni.l = ar.l = bu.l
(2) ni.d = ar.d = bu.d
(3) For any nj ∈ N / i ≤ j, ∃ as ∈ A and bv ∈ B such as:

• nj.l = as.l = bv.l
• nj.d = as.d = bv.d
• r ≤ s, u ≤ v

(4) There is no set of nodes N’ that satisfies conditions 1, 2 and 3 and is of larger
cardinality than N.

A1 = ((b, 0), (c, 1), (d, 1))
 A11 = (c, 0)
 A12 = (d, 1)

B1 = ((b, 0), (c, 1), (d, 1))
 B11 = (c, 0)
 B12 = (d, 0)

B2 = ((b, 0), (c, 1), (d, 1))
 B21 = (c, 0)
 B22 = (d, 0)

C1 = ((b, 0), (c, 1), (d, 1))
 C11 = (c, 0)
 C12 = (d, 0)

C2 = ((e, 0), (f, 1), (g, 1))
 C21 = (f, 0)
 C22 = (g, 0)

D1 = ((b, 0), (c, 1), (d, 1), (h, 1))
 D11 = (c, 0)
 D12 = (d, 0)
 D13 = (h, 0)

D2 = ((b, 0), (c, 1), (d, 1), (h, 1))
 D21 = (c, 0)
 D22 = (d, 0)
 D23 = (h, 0)

E1 = ((b, 0), (c, 1), (d, 1), (h, 1))
 E11 = (c , 0)
 E12 = (d, 0)
 E13 = (h, 0)

E2 = ((e, 0), (f, 1), (g, 1), (h, 1))
 E21 = (f, 0)
 E22 = (g, 0)
 E23 = (h, 0)

F1 = ((b, 0), (c, 1), (d, 1), (e, 1))
 F11 = (c, 0)
 F12 = (d, 0)
 F13 = (e, 0)

G1 = ((m, 0), (b, 1), (c, 2), (d, 2), (e, 2))
G2 = ((b, 0), (c, 1), (d, 1), (e, 1))

 G21 = (c, 0)
 G22 = (d, 0)
 G23 = (e, 0)

H1 = ((m, 0), (g, 1), (h, 2), (i, 2), (j, 2))
H2 = ((g, 0), (h, 1), (i, 1), (j, 1))

 H21 = (h, 0)
 H22 = (i, 0)
 H23 = (j, 0)

I1 = (c, 0) I2 = (d, 0)
J1 = (i, 0) J2 = (j, 0)

Fig. 4. Ld-pair representations of all sub-trees in Fig. 1, including single leaf node sub-trees

 A Fine-Grained XML Structural Comparison Approach 589

In other words, ComSubTree(A, B)5 identifies the set of matching nodes between
sub-trees A and B, node matching being undertaken with respect to the node label,
depth and relative preorder ranking. Please note that in the rest of the paper, the term
commonality always designates the structural commonality.

Def. 8 - Insert node: given a node x of degree 0 (leaf node) and a tree T with root
node p having first level sub-trees T1, …, Tm, Ins(x, i, p, l) is a node insertion applied
to T, inserting x as the ith child of p, thus yielding T’ with first level sub-trees T1, … ,
Ti-1, x, Ti+1, … , Tm+1, where l is the label of x.

Def. 9 - Delete node: given a leaf node x and a tree T with root node p, x being the ith
child of p, Del(x, p) is a node deletion operation applied to T that yields T’ with first
level sub-trees T1, … , Ti-1, Ti+1, … , Tm.

Def. 10 - Update node: given a node x in tree T, and a label l, Upd(x, l) is a node
update operation applied to x resulting in T’ which is identical to T except that in T’, x
bears l as its label. The update operation could be also formulated as follows: Upd(x,
y) where y.l denotes the new label to be assumed by x.

Def. 11 - Insert tree: given a tree A and a tree T with root node p having first level
sub-trees T1, …, Tm , InsTree(A, i, p) is a tree insertion applied to T, inserting A as the
ith sub-tree of p, thus yielding T’ with first level sub-trees T1, …, Ti-1, A, Ti+1, …, Tm+1.

Def. 12 - Delete tree: given a tree A and a tree T with root node p, A being the ith sub-
tree of p, DelTree(A, p) is a tree deletion operation applied to T that yields T’ with
first level sub-trees T1, … , Ti-1, Ti+1, … , Tm.

4.2 Commonality Between Sub-trees (CBS)

In order to capture the sub-tree structural similarities not well addressed by current
approaches, we identify the need to replace the tree contained in relation making up a
necessary condition for executing tree insertion and deletion operations in [13], by
introducing the notion of commonality between two sub-trees. Following Definition 7,
the problem of finding the structural commonality between two sub-trees SbTi and
SbTj is equivalent to finding the maximum number of matching nodes in SbTi and
SbTj (|ComSubTree(SbTi, SbTj)|). However, the problem of finding the shortest edit
distance between SbTi and SbTj comes down to identifying the minimal number of
edit operations that can transform SbTi to SbTj. Those are dual problems since
identifying the shortest edit distance between two sub-trees (trees) underscores, in a
roundabout way, their maximum number of matching nodes.

Therefore, we introduce in Fig. 5 our CBS algorithm, based on the edit distance
concept, to identify the structural commonality between sub-trees (similarly to the
approach provided in [12] in which Myers develops an edit distance based approach
for computing the longest common sub-sequence between two strings). Note that in
CBS, sub-trees are treated in their ld-pair representations (cf. Fig. 4). Using the ld-
pair tree representations, sub-trees are transformed into modified sequences (ld-pairs),
making them suitable for standard edit distance computations.

5 Our sub-tree structural commonality definition can be equally applied to whole trees (a sub-

tree being basically a tree). However, in this study, it is mostly utilized with sub-trees.

590 J. Tekli, R. Chbeir, and K. Yetongnon

Afterward, the maximum number of matching nodes between SbTi and SbTj,
|ComSubTree(SbTi, SbTj)|, is identified with respect to the minimum edit distance:

− Total number of deletions - we delete all nodes of SbTi except those having
matching nodes in SbTj:

Deletions
∑ = |SbTi| - |ComSubTree(SbTi , SbTj)|

− Total number of insertions - we insert into SbTi all nodes of SbTj except those
having matching nodes in SbTi:

Insertions
∑ = |SbTj| - |ComSubTree(SbTi , SbTj)|

− Following CBS, using constant unit costs (=1) for node insertion and deletion
operations, the edit distance between sub-trees SbTi and SbTj becomes as

follows: Dist[|SbTi|][|SbTj|] =
Deletions
∑ 1 +

Insertions
∑ 1 = |SbTi| + |SbTj| - 2

|ComSubTree(SbTi , SbTj)|

− Therefore,
| |+| | - [| |][| |]

| (,)| =
2

i j i j

i j

SbT SbT Dist SbT SbT
ComSubTree SbT SbT

For instance, |ComSubTree(A1,D1)| = 3 (nodes b, c, d), |ComSubTree(E2,G2)|= 1 (node
f). Note that applying CBS to leaf node sub-trees comes down to comparing two
labels: those of the leaf nodes at hand. For example:

− |ComSubTree(A11, B11)| = 1, A11 and B11 consisting of leaf node c,
− |ComSubTree(A11, B12)| = 0, A11 and B12 having different labels (λ(A11) =

A11[0].l = c whereas λ(B12) = B12[0].l = d).

Similarly, when computing the commonality between a leaf node sub-tree (e.g., A11)
and a non-leaf node sub-tree (e.g., B1), CBS comes down to comparing the label of the
former (e.g., λ(A11)) to the label of the root node of the latter (e.g., λ(B1)). For
example, |ComSubTree(A11, B1)| = 0, A11 and the root of B11 having different labels
(λ(A11) = A11[0].l = c whereas λ(B1) = B1 [0].l = b).

4.3 Tree Edition Operations Costs (TOC)

Our CBS algorithm, for the identification of the commonality between sub-trees, is to
be utilized in TOC: an algorithm dedicated to computing the tree edit distance
operations costs (insert tree and delete tree, cf. definitions 11 and 12). Consequently,
those costs will be exploited via [13]’s main edit distance approach (cf. Fig. 5)
providing an improved and more accurate XML structural similarity measure. TOC is
developed in Fig. 5 and consists of three main steps:

− Step 1 (lines 2-15) identifies the structural commonalities between each pair of
sub-trees in the source and destination trees respectively (T1 and T2), assigning
tree insert/delete operation costs accordingly.

− Step 2 (lines 16-20) identifies the structural commonalities between each sub-
tree in the source tree (T1) and the destination tree (T2) as a whole, updating
delete tree operation costs correspondingly.

− Step 3 (lines 21-25) identifies the structural commonalities between each sub-
tree in the destination tree (T2) and the source tree (T1) as a whole, modifying
insert tree operation costs accordingly.

 A Fine-Grained XML Structural Comparison Approach 591

Algorithm CBS()

Input: Sub-trees SbTi and SbTj (in ld-pair)
Output: |ComSubTree(SbTi, SbTj)|

Begin 1

Dist [][] = new [0...|SbTi|][0…|SbTj|]
Dist[0][0] = 0

For (n = 1 ; n ≤ |SbTi| ; n++) 5
 {Dist[n][0] = Dist[n-1][0] + CostDel(SbTi[n])}

For (m = 1 ; m ≤ |SbTj| ; m++)
 {Dist[0][m] = Dist[0][m-1] + CostIns(SbTj[m])}

For (n = 1 ; n ≤ |SbTi| ; n++) 10
 {

 For (m = 1 ; m ≤ |SbTj| ; m++)
 {

Dist[n][m] = min{
If (SbTi[n].d = SbTj[m].d &
 SbTi[n].l = SbTj[m].l) 15

{ Dist[n-1][m-1] },
Dist[n-1][m] + CostDel(SbTi[n]),
Dist[n][m-1] + CostIns(SbTj[m]) }

 }
 } 20

Return
| |+| | - [| |][| |]

i j i j
SbT SbT Dist SbT SbT

2

End // |CBS(SbTi, SbTj)|

Algorithm TOC()

Input: Trees T1 and T2
Output: Insert tree and delete tree operations costs

Begin 1

For each sub-tree SbTi in T1 //Going through
{ //all sub-trees in T1

CostDelTree(SbTi) =
i

x

x∑
Del

All nodes of SbT

Cost () //sub-trees in T1. 5

For each sub-tree SbTj in T2 //Going through
{ //all sub-trees in T2

CostInsTree(SbTj) =
j

x

x∑
Ins

All nodes of SbT

Cost ()

CostDelTree(SbTi) = Min{ CostDelTree(SbTi), 10

i ji

 i j

(,)

(| | , | |)

x

x ×∑
Del

All nodes of SbT

1
Cost ()

SbT SbT
1 +

Max SbT SbT

CBS
 }

CostInsTree(SbTj) = Min{ CostInsTree(SbTj),

i jj

 i j

(,)

(| | , | |)

x ×∑
Ins

All nodes of SbT

1
Cost ()

SbT SbT
1 +

Max SbT SbT

x CBS
}

}
} 15

For each sub-tree SbTi in T1 // Comparing sub-trees in T1
{ // to whole tree T2.

CostDelTree(SbTi) = Min{ CostDelTree(SbTi),

ii

 i

(,)

(| | , | |)

x

x ×∑
Del

All nodes of SbT 2

2

1
Cost ()

SbT T
1 +

Max SbT T

CBS
}

} 20

For each sub-tree SbTj in T2 // Comparing sub-trees in T2
{ // to whole tree T1.

CostInsTree(SbTj) = Min{ CostInsTree(SbTj),

jj

 j

(,)

(| | , | |)

x

x ×∑
Ins

All nodes of SbT 1

1

1
Cost ()

T SbT
1 +

Max T SbT

CBS
}

} 25

End

Algorithm EditDistance()

Input: Trees A and B
Output: Edit distance between A and B

Begin 1

M = Degree(A) //Number of 1st level sub-trees in A
N = Degree(B) //Number of 1st level sub-trees in B

Dist [][] = new [0...M][0…N] 5
Dist[0][0] = CostUpd(λ(A), λ(B))

For (i = 1 ; i ≤ M ; i++)
{ Dist[i][0] = Dist[i-1][0] + CostDelTree(Ai) }

For (j = 1 ; j ≤ N ; j++)
{ Dist[0][j] = Dist[0][j-1] + CostInsTree(Bj) } 10

For (i = 1 ; i ≤ M ; i++)
{

For (j = 1 ; j ≤ N ; j++)
{

Dist[i][j] = min{ 15
Dist[i-1][j-1] + EditDistance(Ai, Bj),
Dist[i-1][j] + CostDelTree(Ai),
Dist[i][j-1] + CostInsTree(Bj) }

 }
} 20

Return Dist[M][N]

End

Fig. 5. Our TOC and CBS algorithms, along with [13]’s Edit Distance algorithm

Steps 2 and 3 are introduced to capture, not only the structural similarities between

sub-trees, but also the similarities between the sub-trees and the overall structures of
the trees being compared. The relevance of steps 2 and 3 becomes obvious when one
of the trees involved in the comparison process shares structural similarities with one

592 J. Tekli, R. Chbeir, and K. Yetongnon

(or more) of the sub-trees encompassed in the other XML document tree (e.g., the F,
I, J case in Fig. 1, where tree I is structurally similar to sub-tree F1 of tree F).

Using CBS, TOC identifies the structural commonality between each and every pair
of sub-trees (SbTi, SbTj) in the two trees A and B being compared (step 1), as well as
their commonalities with the whole trees A and B, respectively (steps 2 and 3).
Consequently, those values are normalized via corresponding tree/sub-tree
cardinalities Max(|SbTi| , |SbTj|) to be comprised between 0 and 1:

−
i j

i j

(SbT , SbT)

Max(|SbT | , |SbT |)

CBS
= 0 When there is no structural commonality

between SbTi and SbTj : CBS(SbTi, SbTj) = 0

−
i j

i j

(SbT , SbT)

Max(|SbT | , |SbT |)

CBS
= 1 When the sub-trees are identical:

CBS(SbTi, SbTj) = |SbTi| = |SbTj|

For instance, 1 1

1 1

(A , D) 3
0.75

Max(|A | , |D |) 4

CBS
= = , 2 2

2 2

(E , G) 1
0.25

Max(|E | , |G |) 4

CBS
= = (cf. Fig. 1).

Thus, using the normalized commonality, tree operations costs would vary as follows:

Maximum insert/delete tree cost for sub-tree Sbi: Minimum insert/delete tree cost for sub-tree Sbi:

 CostInsTree/DelTree(Sbi) = Ins/Del
All nodes of SbTi

 Cost () 1
x

x ×∑ CostInsTree/DelTree(Sbi) = Ins/Del
All nodes of SbTi

1

2
Cost ()

x

x ×∑

Lemma 1. Following TOC, the maximal insert/delete tree operation cost for a given
sub-tree SbTi (attained when no sub-tree structural similarities with SbTi are identified
in the source/destination tree respectively) is the sum of the costs (unit costs, =1)6 of
inserting/deleting every individual node of SbTi (the proof is evident).

Lemma 2. Following TOC, the minimal insert/delete tree operation cost for SbTi
(attained when a sub-tree structurally identical to SbTi is identified in the
source/destination tree respectively) is equal to half its corresponding insert/delete
tree maximum cost.

Proof: The smallest sub-tree that can be treated via a tree operation is a sub-tree
consisting of two nodes. For such a tree, the minimum insert/delete tree operation
cost would be equal to 1 (its maximum cost being equal to 2), equivalent to the cost of
inserting/deleting a single node, which is the lowest tree operation cost attainable
following TOC.

The minimal tree operation cost is defined in such a way in order to guarantee that the
cost of inserting/deleting a non-leaf node sub-tree will never be less than the cost of
inserting/deleting a single node (single node operations having unit costs). In fact,
TOC is based on the intuition that tree operations are more costly than node

6 An intuitive and natural way has been usually used to assign single node operation costs and

consists of considering identical unit costs for insertion and deletion operations [4, 15].

 A Fine-Grained XML Structural Comparison Approach 593

operations. Consequently, for leaf node sub-trees, the maximum insert/delete tree
operation cost is equal to 1, the cost of inserting/deleting the single node at hand:

− CostInsTree/DelTree(SbTi) = CostIns/Del(x) × 1 = 1 , that is when SbTi is made of single node x

Likewise, the minimum cost for inserting/deleting a single node sub-tree is equal to
0.5, half its insert/delete maximum cost:

− CostInsTree/DelTree(SbTi) = CostIns/Del(x) × 1/2 = 0.5 , SbTi consisting of single node x

Note that in our approach, single node insertions/deletions are undertaken via tree
insert/delete operations (cf. definitions 11 and 12) applied on leaf node sub-trees. On
the other hand, insert/delete node operations (cf. definitions 8 and 9, which are
assigned unit costs as with traditional edit distance approaches) are only utilized to
compute tree insertion/deletion operations costs (cf. CBS and TOC in Fig. 5). They do
not however contribute to the dynamic programming procedure adopted in our edit
distance approach (similarly to [6, 13], cf. Edit Distance algorithm in Fig. 5).

Using TOC, we compute the costs of tree insertion and deletion operations based
on their corresponding trees’ maximum normalized commonality values (a maximum
commonality value inducing a minimum tree operation cost).

Therefore, instead of utilizing the contained in relation introduced in [13] (cf.
Definition 2) in order to permit or deny tree insertion/deletion operations (thus
disregarding certain sub-tree structural similarities while comparing two XML trees
as shown in Section 3), we permit the insertion and deletion of any/all sub-trees by
varying their corresponding tree insertion/deletion operation costs with respect to
their structural similarities with the source/destination trees/sub-trees respectively
(cf. similarity results in Table 1). Note that inserting/deleting the whole
destination/source trees is not allowed in our approach. In fact, by rejecting such
operations, one could not delete the entire source tree in one step and insert the
entire destination tree in a second step, completely ignoring the purpose of the
insert/delete tree operations.

Table 1. Distance/similarity values attained using our comparison approach for the various
XML comparison examples treated throughout the paper

 Our Approach
 Distance Similarity

N. & J. [13] Dalamagas et al.
[6]

Chawathe [4]

A/B 1.5 0.4
A/C 3 0.25

Detected Not detected Not detected

A/D 3.2856 0.2333
A/E 5 0.1667

Not detected Not detected Not detected

F/G 5.4106 0.1560
F/H 7 0.125

Not detected Not detected Not detected

F/I 4.2857 0.1892
F/J 6 0.1429

Not detected Not detected Not detected

K/L 0.5 0.6667
K/M 1 0.5

Not detected Not detected Not detected

K/N 1 0.5
K/O 1.5 0.4
K/P 2 0.3333

Not detected Not detected Not detected

594 J. Tekli, R. Chbeir, and K. Yetongnon

4.4 Efficiency w.r.t. Existing Approaches

In the previous paragraphs, the comparison of our method with existing tree XML
structural similarity approaches is done via examples. Here, we formalize the
comparison and show that existing methods are lower bounds of our approach.

Theorem. Let T1 and T2 be XML trees, and Sim(T1, T2) = 1 / 1 + Dist(T1, T2), then:

− SimChawathe(T1, T2) ≤ SimOur Approach(T1, T2)
− SimDalamagas et al.(T1, T2) ≤ SimOur Approach(T1, T2)
− SimN.&J(T1, T2). ≤ SimOur Approach(T1, T2)

Proof:

− Proving that Chawathe’s algorithm [4] is a lower bound of our XML
comparison method is straight forward. When computing the distance between
two trees using Chawathe’s approach [4], all sub-trees are inserted/deleted via
single node insertion/deletion operations regardless of the sub-tree similarities
at hand. The costs of these insertions/deletions are equivalent to the maximum
tree insertion/deletion operations’ costs following our TOC algorithm (cf.
Section 4.3), which yield a maximum edit distance, thus a minimum similarity
value between the trees being compared. In other words, Chawathe’s
algorithm [4] always yields similarity values lesser or equal to those computed
via our approach.

− Proving that Dalamagas et al.’s algorithm [6] is a lower bound of our XML
comparison method is also trivial. Indeed, the costs of tree insertion/deletion
operations in [6] are computed as the sum of the costs of inserting/deleting all
individual nodes in the considered sub-trees. These costs come down to the
maximum tree operations costs computed following our method. Consequently,
Dalamagas et al.’s algorithm [6] always yields similarity values that are lesser
or equal to those computed via our method. Recall that we do not consider
[6]’s repetition/nesting reduction process in our analysis (cf. Section 2.1).

− As for Nierman and Jagadish [13], tree insertion/deletion operations costs are
affected by the tree containment relation (cf. Definition 2). Maximum costs (i.e.
the costs of inserting/deleting all single nodes in the considered sub-trees) are
attained when the containment relation is not verified. Otherwise, tree
operations costs are minimal (the minimum tree operation cost is not formally
defined in [13]. Thus, for a given sub-tree, we consider that it is equal to half
its maximum tree operation cost so as to respect the intuition that tree
operations costs are always higher or equal than single node operations costs).
In other words, Nierman and Jagadish’s algorithm [13] only considers the
containment relation between sub-trees while varying tree operations costs.
However, our algorithm detects fined-grained structural similarities (i.e. sub-
tree commonalities) between sub-trees, among which the containment relation,
and varies tree operations accordingly. Thus, our approach is able to detect a
wider set or structural similarities and consequently yields higher similarity
values. In other words, when comparing two XML trees, Nierman and
Jagadish’s algorithm [13] yields similarity values that are lesser or equal to
those obtained via our XML structural comparison method.

 A Fine-Grained XML Structural Comparison Approach 595

4.5 Complexity Analysis

The overall complexity of our approach simplifies to O(|T1||T2|), where |T1| and |T2|
denote the cardinalities of the compared trees, and is computed as follows:

− CBS algorithm for the identification of the commonality between two sub-trees
is of complexity: O(|SbTi||SbTj|) where |SbTi| and |SbTj| denote the cardinalities
of the compared sub-trees.

− TOC algorithm for computing the costs of tree insert/delete operations,

which makes use of CBS, is time complexity:
1 2 1| | | | | |

1 1 1

(| | | |) + (| | | |)
T T T

i j i 2
i j i

O SbT SbT O SbT T

2| |

1

+ (| | | |)
T

j 1
j

O SbT T
.

Lemma 3. Let T1 and T2 be two ordered labeled trees, where
1Tn and

2Tn represent the

number of leafs in T1 and T2, SbTi and SbTj the sub-trees of T1 and T2 respectively.

Then TOC’s complexity:
1 2 1 2| | | | | | | |

1 1 1 1

 (| | | |) + (| | | |) + (| | | |)
T T T T

i j i 2 j 1
i j i j

 O SbT SbT O SbT T O SbT T
= = = =
∑ ∑ ∑ ∑ ,

simplifies to O(|T1||T2|).

Proof:

• Step 1 of TOC – Identifying the structural commonalities between each pair
of sub-trees in the source and destination trees:

1 2| | | |

1 1

 (| | | |) (| || |)
T T

i j 1 2
i j

(demonstrated in [9])O SbT SbT O T T
= =

≤∑ ∑

• Step 2 of TOC – Identifying the structural commonalities between each sub-
tree in the source tree (T1) and the whole destination tree (T2):

1 1| | | |

1 1

(| | | |) = | | (| |) < (| || |)
T T

i 2 2 i 1 2
i i

O SbT T T O SbT O T T
= =
∑ ∑

• Step 3 of TOC – Identifying the structural commonalities between the source
tree as a whole (T1) and each sub-tree in the destination tree (T2):

2 2| | | |

1 1

(| | | |) = | | (| |) < (| || |)
T T

j 1 1 j 1 2
j j

O SbT T T O SbT O T T
= =
∑ ∑

Note that the edit distance algorithm adopted from [13], which utilizes the results
attained by TOC (tree operations costs), is of complexity O(|T1||T2|).

5 Experimental Evaluation

In order to validate our structural similarity approach and compare its optimality with
alternative methods, we make use of structural clustering. In our experiments, we
adopt the well known single link hierarchical clustering techniques [8, 10] although
any form of clustering could be utilized. In order to evaluate clustering quality, we
make use of precision and recall metrics commonly used in information retrieval.
Having an a priori knowledge of which documents should be members of the

596 J. Tekli, R. Chbeir, and K. Yetongnon

appropriate cluster (mapping between original DTD clusters and the extracted
clusters), Dalamagas et al. [6] define precision PR and recall R as:

1

1 1
 +

n

ii
n n

i ii i

a
PR

a b

=

= =

∑
=
∑ ∑

 and
1

1 1
 +

n

i
i

n n

i ii i

a
R

a c

=

= =

∑
=
∑ ∑

 where:

− n is the total number of clusters in the clustering set considered,
− ai is the number of XML documents in Ci that indeed correspond to DTDi
− bi is the number of documents in Ci that do not correspond to DTDi (mis-

clustered)
− ci is the number of XML documents not in Ci, although they correspond to

DTDi (documents that should have been clustered in Ci).

Nonetheless, in addition to comparing one approach’s precision improvement to
another’s recall improvement, it is a common practice to compare F-values, F-value =
2 PR R/(PR+R). Therefore, as in traditional information retrieval evaluation, high
precision and recall, and thus high F-value (indicating in our case excellent clustering
quality) characterize a good similarity method.

5.1 Experimental Results

We conducted a battery of experiments on real and synthetic XML documents. Two
sets of 600 documents were generated from 20 real-case7

 and synthetic DTDs, using
an adaptation of the IBM XML documents generator8

. We varied the MaxRepeats
parameter to determine the number of times a node will appear as a child of its parent
node. For a real dataset, we considered the online version of the ACM SIGMOD
Record9

. Overall precision, recall and F-value results are reported in Table 2.

Table 2. Average PR, R and F-values obtained by varying the clustering level between [0, 1]

 SIGMOD Set 1 (MaxRepeats=5) Set 2 (MaxRepeats =10)
 PR R F-value PR R F-value PR R F-value

Chawathe [4] 0.8782 0.3910 0.6346 0.2502 0.4737 0.3619 0.2602 0.3809 0.3031
DCWS [6] 0.8782 0.3931 0.6356 0.2581 0.4838 0.3709 0.2779 0.3821 0.3061
N & J [13] 0.8637 0.4615 0.6626 0.2334 0.6162 0.4248 0.2234 0.4177 0.3271

Our approach 0.9086 0.4866 0.6706 0.2341 0.6262 0.4302 0.2203 0.4656 0.3458

Results, with respect to all three data sets, indicate that our approach yields

improved clustering quality (i.e. structural comparison quality) vis-à-vis current
alternative approaches. Note that the complete precision vs. recall curves, describing
the detailed behavior of each comparison method while varying the clustering level
(and which clearly reveal that our method achieves better combinations of precision
and recall, and thus higher clustering quality) are disregarded due to lack of space.

7 From http://www.xmlfiles.com and http://www.w3schools.com
8 http://www.alphaworks.ibm.com
9 Available at http://www.acm.org/sigmod/xml

 A Fine-Grained XML Structural Comparison Approach 597

5.2 Timing Results

Following the complexity analysis developed in Section 4.4, our XML structural
similarity method is linear in the number of nodes of each tree, and polynomial
(quadratic) in the size of the two trees being compared: O(|T1||T2|) (which can be
simplified to O(N2), N being the maximum number of nodes in trees T1 and T2). This
linear dependency on the size of each tree is experimentally verified, timing results
being presented in Fig. 6. Timing experiments were carried out on a PC with an Intel
Xeon 2.66 GHz processor (1GB RAM), running at 533 MHz. Fig. 6 shows that the
time to identify the structural similarity between two XML trees of various sizes
grows in an almost perfect linear fashion with tree size. Therefore, despite appearing
theoretically more complex, timing results demonstrate that our method’s complexity
is the same as the approaches by Nierman & Jagadish [13], Dalamagas et al. [6] as
well as Chawathe [4].

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800 900 1000

Number of nodes in tree T1

T
im

e
 (i

n
se

c
o

nd
s

)

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

1 0 0 0

Fig. 6. Timing results obtained using our comparison method

6 Conclusion

In this paper, we proposed a structure-based similarity approach for comparing XML
documents. Based on a tree edit distance technique, our approach captures fine-
grained structural similarities while comparing XML documents not fully addressed
in current approaches. Our theoretical study as well as our experimental evaluation
showed that the proposed method yields improved structural similarity results with
respect to existing alternatives, while having the same time complexity (O(N2)).

As continuing work, we are exploring the use of our approach in order to compare,
not only the structure of XML documents (element/attribute labels) but also their
information content (element/attribute values). In such a framework, XML schemas
might have to be integrated in the comparison process, schemas underlining
element/attribute data types which are required to compare corresponding
element/attribute values. We are also working on extending our approach to
encompass semantic similarity assessment between element/attribute node labels
while comparing XML documents (taking into account synonyms, antonyms,
acronyms, etc. in the edit distance process). In addition, we plan on releasing a public
web service version of our prototype.

Number of nodes
in tree T2

598 J. Tekli, R. Chbeir, and K. Yetongnon

References

1. Aho, A., Hirschberg, D., Ullman, J.: Bounds on the Complexity of the Longest Common
Subsequence Problem. Association for Computing Machinery 23(1), 1–12 (1976)

2. Bertino, E., Guerrini, G., Mesiti, M.: A Matching Algorithm for Measuring the Structural
Similarity between an XML Documents and a DTD and its Applications. Elsevier
Computer Science 29, 23–46 (2004)

3. Chawathe, S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change Detection in
Hierarchically Structured Information. In: Proc. of the ACM SIGMOD 1996, ACM Press,
New York (1996)

4. Chawathe, S.: Comparing Hierarchical Data in External Memory. In: VLDB 1999, pp. 90–
101 (1999)

5. Cobéna, G., Abiteboul, S., Marian, A.: Detecting Changes in XML Documents. In: Proc.
of the IEEE Int. Conf. on Data Engineering, pp. 41–52. IEEE Computer Society Press, Los
Alamitos (2002)

6. Dalamagas, T., Cheng, T., Winkel, K., Sellis, T.: A methodology for clustering XML
documents by structure. Information Systems 31(3), 187–228 (2006)

7. Flesca, S., Manco, G., Masciari, E., Pontieri, L., Pugliese, A.: Detecting Structural
Similarities Between XML Documents. In: Proc. of 5th SIGMOD Workshop on The Web
and Databases (2002)

8. Gower, J.C., Ross, G.J.S.: Minimum Spanning Trees and Single Linkage Cluster Analysis.
Applied Statistics 18, 54–64 (1969)

9. Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Approximate XML Joins. In:
Proceedings of ACM SIGMOD 2002, pp. 287–298 (2002)

10. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering Algorithms and Validity
Measures. In: SSDBM Conference, Virginia, USA (2001)

11. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Sov. Phys. Dokl. 6, 707–710 (1966)

12. Myers, E.: An O(ND) Difference Algorithm and Its Variations. Algorithmica 1, 251–266
(1986)

13. Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents. In:
Proceedings of the 5th SIGMOD Workshop on The Web and Databases (2002)

14. van Rijsbergen, C.J.: Information Retrieval. Butterworths, London (1979)
15. Sanz, I., Mesiti, M., Guerrini, G., Berlanga Lavori, R.: Approximate Subtree Identification

in Heterogeneous XML Documents Collections. In: Bressan, S., Ceri, S., Hunt, E., Ives,
Z.G., Bellahsène, Z., Rys, M., Unland, R. (eds.) XSym 2005. LNCS, vol. 3671, pp. 192–
206. Springer, Heidelberg (2005)

16. Schlieder, T.: Similarity Search in XML Data Using Cost-based Query Transformations.
In: Proceedings of 4th SIGMOD Workshop on The Web and Databases (2001)

17. Shasha, D., Zhang, K.: Approximate Tree Pattern Matching. In: Pattern Matching in
Strings, Trees and Arrays, ch. 14, Oxford University Press, Oxford (1995)

18. Wagner, J., Fisher, M.: The String-to-String correction problem. ACM J. 21, 168–173 (1974)
19. Wong, C., Chandra, A.: Bounds for the String Editing Problem. ACM J. 23(1), 13–16

(1976)
20. WWW Consortium, The Document Object Model, http://www.w3.org/DOM
21. Zhang, K., Shasha, D.: Simple Fast Algorithms for the Editing Distance Between Trees

and Related Problems. SIAM J. of Computing 18(6), 1245–1262 (1989)
22. Zhang, Z., Li, R., Cao, S., Zhu, Y.: Similarity Metric in XML Documents. In: Knowledge

Management and Experience Management Workshop (2003)

Fine-Grained Compatibility and Replaceability Analysis
of Timed Web Service Protocols

Julien Ponge1,2, Boualem Benatallah2, Fabio Casati3, and Farouk Toumani1

1 Univ. Clermont-Ferrand 2, France
{ponge,ftoumani}@isima.fr

2 UNSW, Sydney, Australia
boualem@cse.unsw.edu.au

3 Univ. of Trento, Italy
casati@dit.unitn.it

Abstract. We deal with the problem of automated analysis of web service pro-
tocol compatibility and replaceability in presence of timing abstractions. We first
present a timed protocol model for services and identify different levels of com-
patibility and replaceability that are useful to support service development and
evolution. Next, we present operators that can perform such analysis. Finally, we
present operators properties by showing that timed protocols form a new class of
timed automata, and we briefly present our implementation.

1 Introduction

Service-oriented architectures (SOAs) and web service technologies are emerging com-
puting paradigm for the development and integration of distributed applications [1].
They are based on the notion of services, which are loosely-coupled applications inter-
faces accessible via a programmatic API relying on open standards (e.g., XML, HTTP
or SOAP). The idea behind loose coupling is that services can be made generally acces-
sible to a community of users and clients, as opposed to being specifically developed
for certain clients, as it was the case in conventional, CORBA-style integration where
clients and services were often developed concurrently and by the same team. This ca-
pability comes at a price: the need of providing fairly detailed service descriptions, so
that (i) at design time, developers know how to write applications that can correctly
interact with the service, and (ii) at deployment or run time, it is possible to identify if
a client can correctly interact with a service.

Today, service descriptions typically include the interface definition, the transport-
level properties (both specified in WSDL), and business protocol definitions, that is,
the specification of possible message exchange sequences (conversations) that are sup-
ported by the service [2]. Protocols can be specified using WS-BPEL (Web Services
Business Process Execution Language) or any of the many other formalisms developed
for this purpose (e.g., [2, 3]). Providing such descriptions only solves part of the prob-
lem. To facilitate service development and interoperability there is the need for formal
methods and software tools that allow the automated analysis of service descriptions
to (i) identify which conversations can be carried out between two services, understand
mismatches between protocols and, if possible, create adapters to allow interactions

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 599–614, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

600 J. Ponge et al.

between incompatible services (called compatibility analysis), and (ii) manage service
evolution, that is, understand if a new version of a service protocol is compatible with
the intended clients (called replaceability analysis).

Such a need is widely recognized and many approaches have been developed, in-
cluding some by the authors. In particular, in our previous work we developed a simple
but expressive business protocol model based on state machines, an algebra for busi-
ness protocol analysis, and a set of operators to compare and manipulate protocols and
that form the basis for compatibility and replaceability analysis [4]. The operators have
been implemented within ServiceMosaic [5], a CASE tool environment that enables the
model-based design, development and management of Web services.

While previous approaches provide significant contributions to protocol analysis
(and, in general, to service specification analysis), little work has been done in the
context of timed protocols, that is, protocols that include time-related properties. This
limitation is significant: time is an essential ingredient of any real-life protocol specifi-
cation. There are countless examples of behaviors that involve timing issues in any kind
of protocol [2], from business protocol for web services (e.g., see the RosettaNet PIPs),
to interactions between traditional web-based services and users (see e-commerce web
sites such as Travelocity or Amazon), to lower level protocols such as TCP. Time-related
behaviors range from session timeouts to “logical” deadlines with different kinds of be-
haviors (e.g., seats reserved on a flight needs to be paid within n hours otherwise they
are released). In [2], we have identified extensions to protocol models suitable for rep-
resenting timing aspects. The extensions are based on an analysis of existing protocols
so that we could identify a modeling framework that is simple but expressive. More
specifically, we identified the need for representing two kinds of temporal constraints in
protocol descriptions: (i) time intervals during which an operation can be invoked and
(ii) deadline expirations. Such kinds of constraints can also model timing properties of
languages such as WS-BPEL and RosettaNet. The introduction of time aspects adds
significant complexity to the protocol analysis problem. Indeed, many formal models
enabling explicit representation of time exist (e.g., timed automata, timed petri-nets),
all showing extreme difficulties to handle algorithmic analysis of timed models. For ex-
ample, timed automata, which are today considered as a standard modeling formalism
to deal with timing constraints, suffer from undecidability of many problems such as
language inclusion and complementation that are fundamental to system analysis and
verification tasks [6]. Such problems have been shown to be very sensitive to several
criteria (e.g., density of the time axis, type of constraints, presence of silent transitions)
This paper extends our previous work in the following directions and makes the follow-
ing contributions:

1. We formally define timed protocols, an extension of business protocols that is suit-
able to represent both time intervals and deadline expirations constraints.

2. We define a framework for timed protocol analysis, introducing fine-grained classes
to study different degrees of compatibility and replaceability among protocols.

3. We define an algebra for protocol analysis and management by defining operators
that can manipulate and analyze timed protocols and that can be used to character-
ize the various compatibility and replaceability classes. We see this work as being
inspired, at least conceptually, by work done over the last 30 years in databases,

Fine-Grained Compatibility and Replaceability Analysis 601

leading to generic abstraction techniques such as relational algebras that eventually
generated the widespread adoption of the relational model. We argue that an alge-
bra for protocol analysis can bring to service-oriented computing similar benefits
to what relational algebra brought to relational databases.

4. We establish a semantic-preserving mapping from timed protocols to a new class
of timed automata [7] with a restricted form of ε transitions (i.e., "unobservable"
or silent transitions). Based on this mapping, we reuse and extend existing results
in timed automata theory to derive decidability results for our timed protocol oper-
ators. The obtained result is interesting by itself because timed protocols lead to an
innovative class of timed automata that includes ε transitions that strictly increase
the expressiveness of the automata (i.e., they cannot be removed without a loss of
expressiveness) and despite this fact, this class still exhibits a deterministic behav-
ior. Especially, the complementation problem is decidable for this class. To the best
of our knowledge, this is the first identified class of timed automata displaying such
a feature.

Due to a lack of space, proofs and additional technical details regarding this work
are omitted from this paper but are given in [8] which contains them in its appendix.

2 Timed Protocol Modeling

This section introduces first informally and then formally the model of timed business
protocols which extends business protocols [4] with timing-related abstractions.

2.1 Extending Business Protocols with Temporal Abstractions

We built our model upon the traditional state-machine formalism, which is commonly
used to model protocols and, more generally, to model the external behaviors of sys-
tems, due to the fact that they are simple and intuitive. In the model, states repre-
sent the different phases that a service may go through during its interaction with
a requester. Transitions can be associated with a message and/or a constraint. Tran-
sitions associated with a message must also indicate the message polarity, that de-
notes whether the message is incoming (plus sign) or outgoing (minus sign). They
are triggered when the associated message is sent (or received, depending on the po-
larity). A message corresponds to the invocation of a service operation or to its re-
ply. Hence, each state identifies a set of outgoing transitions, and therefore a set of
possible messages that can be sent or received when the conversation with a client is
in that state. For instance, the protocol depicted in Figure 1, inspired from the Ford
Credit web portal, specifies that a financing service is initially in the Start state, and
that clients begin using the service by sending a login message, upon which the ser-
vice moves to the Logged state (transition (login(+)). In the figure, the initial state
is indicated by an unlabeled entering arrow without source while final (accepting)
states are double-circled. Furthermore, the figure shows that the sequence of message
login(+) · selectV ehicle(+) · estimatePayment(+) is a conversation supported by
the protocol, while the conversation fullCredit(+) · selectV ehicle(+) is not. By

602 J. Ponge et al.

defining constraints on the ordering of the messages that a web service accepts, a pro-
tocol makes explicit to clients how they can correctly interact with a service without
generating errors due to incorrect sequencing of messages.

Constraints can also be associated to transitions. In this paper we focus on timing
abstractions, as we have identified two kinds of constraints that are often needed in
practice:

– C-Invoke constraints specify a time window within which a given transition can
be fired. Outside the window, the transition is disabled (exchanging the message
results in an error).

– M-Invoke constraints specify when a transition is automatically fired.

M-Invoke constraints can only be associated with implicit (as opposed to explicit)
transitions, which are used to model transitions that can occur without an explicit in-
vocation by requesters. Implicit transitions are analogous to the so-called silent or ε
transitions in automata theory [9]. We assume that implicit transitions are associated
with an empty message noted ε.

We use the term timed protocol to denote a business protocol whose definition con-
tains such temporal abstractions. Timed protocols must be deterministic, as the client
always needs to be able to determine in which state the service is, else much of the
purpose of the protocol specification is lost.

Continuing with the example, the financing service may need to specify that a full
credit application is accepted only if it is received 24 hours after a payment estimation
has been made. This behavior is specified by tagging the transition T14 : fullCredit (+)
with a time constraint C-Invoke(T13 ≤ 24h). This constraint indicates that transition

Fig. 1. A timed protocol of an online financing services

Fine-Grained Compatibility and Replaceability Analysis 603

T14 can only be fired within a time window [0h, 24h] after the execution of the transition
T13. The implicit transition T10, depicted in the figure using a dotted arrow, is associated
with constraint M-Invoke(T8 = 30d) to specify that once a pre-approval application
is approved (i.e., after transition T8 : approved(−) is fired which makes a service
entering state CreditApproved, a client has 30 days to use the credit, after that the
credit decision expires. Note that, the presence of an implicit transition at a given state
affects the timing constraints of the other explicit transitions that can be fired from this
state. In our example, the presence of the implicit transition T10 implies that transition
T9 : selectV ehicle(+) can only be executed within a time window [0d, 30d] after the
service has entered state CreditApproved.

2.2 Formalization

To formally define timed protocols, we first introduce the types of constraints used in
this paper. Let X be a set of variables referring to transition identifiers, i.e., if r is a
transition then xr ∈ X is variable referring to this transition. We consider the following
two kinds of time constraints defined over a set of variables X :

– C-Invoke(c) with c defined as follows: c ::= x op k | c ∧ c | c ∨ c with op ∈ {=
, �=, <, >, ≤, ≥}, x ∈ X and k ∈ Q

≥0, where Q
≥0 denotes the set of nonnegative

rational numbers.
– M-Invoke(c) is also defined with x ∈ X and k ∈ Q

≥0 as above but with the
restriction that c ::= x = k [∧(x �= k | c ∧ c)] (it is an equality with an optional
conjunction of equalities and inequalities).

We can now introduce a formal definition of timed protocols.

Syntax:

– S is a finite set of states, with s0 ∈ S being the initial state.
– F ⊆ S is the set of final states. If F = ∅, then P is said to be an empty protocol.
– M = Me ∪ {ε} is a finite set of messages Me augmented with the empty message

ε. For each message m ∈ Me, we define a function Polarity(P , m) which will be
positive (+) if m is an input message in P , and negative (−) if m is an output
message in P .

– X = {xr | ∃r ∈ R} is a set of variables defined over the set of transitions R.
– C is a set of time constraints defined over a set of variables X . The absence of a

constraint is interpreted as a constraint with the value of true.
– R ⊆ S2 × M × C is a finite set of transitions. Each transition (s, s′, m, c) identifies

a source state s, a target state s′, a message m and a constraint c. We say that
the message m is enabled from a state s. When m = ε, c must be a M-Invoke
constraint. Otherwise c must be either a C-Invoke constraint or true.

In the sequel, we use the notation R(s, s′, m, c) to denote the fact that (s, s′, m, c) ∈
R. To enforce determinism, we require that a protocol has only one initial state, and
that for every state s and every two transitions (s, s1, m1, c1) and (s, s2, m2, c2) en-
abled from s, we have either m1 �= m2 or c1 ∧ c2 ≡ false. To enforce preemption
of M-Invoke constraints over C-Invoke constraints, it is assumed that for each state

604 J. Ponge et al.

that offers implicit transitions, the explicit transitions satisfy C-Invoke constraints as
follows. They must satisfy the conjunction of all the Ti < ki constraints where Ti = ki

appears in a M-Invoke constraint. Otherwise, an explicit transition could still be fired
after all the implicit transitions have expired. Finally, we do not allow cycles only made
of implicit transitions as the system would enter an infinite loop.

Variable interpretation. To formally define the semantics of timed protocols we in-
troduce the notion of variable valuation. We consider as a time domain the set of
non-negative reals R

≥0. Let X be a set of variables with values in R
≥0. A (variable)

valuation V : X → R
≥0 is a mappings that assigns to each variable x ∈ X a time value

V(x). We note by Vt the variable valuation at an instant t. At the beginning (i.e., instant
t0 = 0) we assume that all the variables are set to zero, i.e., Vt0(xr) = 0, ∀xr ∈ X .
Then, a variable valuation at a time tj , is completely determined by a protocol execu-
tion. Consider for example an execution σ = s0 ·(m0, t0)·s1 . . . sn−1.(mn−1, tn−1)·sn

of a protocol P and let r be a transition in R. The valuation of a variable xr at time tj ,
with 0 < j ≤ n, is defined as follows:

Vtj (xr) =
{

0, if r = (sj−1, sj , mj−1, cj−1)
Vtj−1(xr) + tj − tj−1, otherwise

Given a variable valuationV and a constraint C-Invoke(c) (respectively, M-Invoke(c)),
we note by c(V), the constraint obtained by substituting each variable x in c by its
value V(x). A variable valuation V satisfies a constraint C-Invoke(c) (respectively,
M-Invoke(c)) iff c(V) ≡ true. In this case, we write V |= C-Invoke(c) (respectively,
V |= M-Invoke(c)).

Protocol semantics. We define the semantics of timed protocols using the notion of
timed conversation (this is inspired from timed words in [7]).

Let P = (S, s0, F , M, R, C) be a timed protocol. A correct execution (or simply, an
execution) of P is a sequence σ = s0 · (m0, t0) · s1 . . . sn−1 · (mn−1, tn−1) · sn such
that: (i) t0 ≤ t1 ≤ . . . ≤ tn (i.e., the occurrence of times increase monotonically),
(ii) s0 is the initial state and sn is a final state of P , and (iii) ∀j ∈ [1, n], we have:
R(sj−1, sj , mj−1, cj−1) and Vj−1 |= cj−1.

As an example, the sequence σ′=Start ·(login(+), 0)·Logged ·(preApproval (+), 1)
·PreApprovalApplication ·(approved (−), 3)·CreditApproved ·(ε, 33)·CreditExpired
is a correct execution of the financing service protocol depicted at figure 1. If σ =
s0 · (m0, t0) · s1 . . . sn−1 · (mn−1, tn−1) · sn is a correct execution of protocol P ,
then the sequence tr(σ) = (m0, t0) . . . (mn−1, tn−1) forms a timed trace which is
compliant with P . Continuing with the example, the execution σ′ of the financing ser-
vice protocol leads to the timed trace tr(σ′) = (login(+), 0) · (preApproval(+), 1) ·
(approved(−), 3) · (ε, 33). During an execution σ of a protocol P , the externally timed
observable behavior of P , hereafter called timed conversation of P and noted conv(σ),
is obtained by removing from the corresponding timed trace tr(σ) all the non observ-
able events (i.e., all the pairs (mi, ti) with mi = ε). For example, during the previous
execution σ′, the observable behavior of the financing service is described by the timed
conversation conv(σ′) = (login(+), 0) · (preApproval(+), 1) · (approved(−), 3). In
the following, given a protocol P , we denote by Tr(P) the (possibly infinite) set of
timed conversations of (or compliant with) P .

Fine-Grained Compatibility and Replaceability Analysis 605

Protocol interaction semantics. Timed conversations describe the externally observ-
able behavior of timed protocols and, as it will be shown below, are essential to analyze
the ability of two services to interact correctly. Let us consider the protocol P depicted
on Figure 1 and its reversed protocol P ′ obtained from P by reversing the polarity
of the messages (i.e., input messages becomes outputs and vice versa). We can ob-
serve that when P ′ interacts with P following a given timed conversation τ , P follows
exactly a similar conversation but with reversed polarities on the messages. If during
such an interaction the timed conversation of P ′ is (login(+), 0)·(selectVehicle(+), 1)
·(estimatePayment(+), 10)·(fullCredit (+), 30)·(accept(−), 100), then the timed
conversation of P ′ will be (login(−),0)·(selectVehicle(−),1)·(estimatePayment(−),
10)·(fullCredit (−), 30)·(accept(+), 100). In this case, we call the path (login, 0) ·
(selectV ehicle, 1)·(estimatePayment, 10)·(fullCredit, 30)·(accept, 100) a timed
interaction trace of P and P ′. Please note that the polarity of the messages that appear
in interaction traces is not defined, as in such traces each input message m of one pro-
tocol coincides with an output message m of the other protocol. More precisely, let
P and P ′ be two timed protocols and let τ = (a0, t0), . . . (an, tn) be a sequence of
events for which the messages polarities are not defined. Then τ is a timed interac-
tion trace of P and P ′ if and only if there exist two timed conversation σ1 and σ2
such that: (i) σ1 ∈ Tr(P) and σ2 ∈ Tr(P ′), and (ii) σ1 is the reverse conversation
of σ2 (i.e., the conversation obtained from σ2 by inverting polarity of messages), and
(iii) τ = Unp(σ1) = Unp(σ2), where Unp(σ) denotes the trace obtained from σ by
removing the messages polarities.

3 Timed Protocol Analysis

We target two types of protocol analysis, namely compatibility and replaceability anal-
ysis. Compatibility analysis consists in checking whether two services can interact cor-
rectly based on their protocol definitions (i.e., whether a conversation can take place
between the considered services), while replaceability analysis is concerned with the
verification of whether two protocols can support the same set of conversations (e.g., a
service can replace another in general or when interacting with specific clients). These
two kinds of analysis are useful for lifecycle management of web services as, for exam-
ple, to provide support for static and dynamic binding as well as in protocol evolution.
For both compatibility and replaceability, we have defined several classes to identify
different levels of compatibility and replaceability, as well as operators that can be ap-
plied to protocol definition to asses the level of compatibility and replaceability.

3.1 Compatibility Analysis

Compatibility analysis aims at characterizing whether two protocols (which typically
depict a service provider and service requester) can interact. It also defines to which
extent the compatibility is possible, as some conversations that a protocol supports may
not be supported by the other protocol. More specifically, the following compatibility
classes can be identified.

– Partial compatibility (or simply, compatibility): A timed protocol P1 is partially
compatible with another timed protocol P2 if there are some executions of P1 that

606 J. Ponge et al.

Fig. 2. Three protocols to illustrate protocols analysis

can interoperate with P2. In other words, partial compatibility implies that there
is at least one timed conversation σ of P1 which is "understood" by P2 (i.e., the
reversed conversation of σ is compliant with P2).

– Full compatibility: a protocol P1 is fully compatible with another protocol P2 if
all the executions of P1 can interoperate with P2, i.e., any conversation that can be
generated by P1 is understood by P2.

We illustrate compatibility analysis and its challenges on the examples below. Let
us consider the protocols P and P ′ depicted at figure 2. Abstracting from the timing
constraints, we can observe that P is fully compatible with P ′ (i.e., a · b · c and a · b · d
are valid interaction traces of the untimed versions of P and P ′). However, due to
the C-Invoke constraints specified on the transitions T3 of each protocol, P and P ′

cannot interact correctly. Indeed, P supports timed conversations of the form (a(−), 0)·
(b(+), t) · (c(+), t′), with t′ < t+5 while P ′ supports timed conversations of the form
(a(+), 0) · (b(−), t) · (c(−), t′), with t′ > t + 10. Hence, these two protocols cannot
interact correctly since P ′ will always send message c too late. Therefore, to be able
to interact correctly, two protocols must agree on the ordering of the messages to be
exchanged as well as on the corresponding timing constraints.

Let us now consider the protocols P and P ′′ of Figure 2. We can observe that when
interacting according to the timed interaction trace (a, 0) · (b, t), P moves to a non-
final state s2 while P ′′ moves to a final state s′′2 ending its conversation. However, due
the presence of the implicit transitions T4 and T5, P is able to terminate correctly its
execution by moving automatically to the final state s4 (i.e., it waits at state s2 for 8
hours and then moves automatically to state s3 where it waits for 4 hours before finally
moving automatically to the final state s4). Therefore, the two protocols P and P ′′ can
interact correctly following the interaction trace (a, 0) · (b, t).

The next example shows that implicit transitions can influence the identification of
final states and this naturally impacts compatibility analysis. We consider again proto-
cols P and P ′ of figure 2. After exchanging messages a and b, the two protocols move
to states s2 and s′2 respectively. If we consider the operations that are defined explicitly
at these two states, we can observe that s′2 provides an operation d(−) while state s2
does not enable any invocation of a d operation. Consequently, focusing compatibility

Fine-Grained Compatibility and Replaceability Analysis 607

checking only on these two states is not enough. Indeed, the presence of the implicit
transition T4 in P changes the service state automatically to the state s3 after 8 hours
from which d(+) can be fired. Consequently, P and P ′ can interact correctly following
timed interactions traces of the form (a, 0) · (b, t) · (c, t′), with t+8 < t′ ≤ t+10 (i.e.,
if a message d is sent between 8 and 10 hours after a message b).

3.2 Replaceability Analysis

Replaceability analysis aims at characterizing whether, and to which extent, a given
service can be replaced by another one. In such a situation, the substitute service can be
transparently used by clients of the original service without the need to change them be-
yond binding details such as the service URL. Like in the case of compatibility analysis,
replaceability analysis aims at supporting flexible schemes as one cannot realistically
expect to find services that are completely replaceable. We have identified the following
replaceability classes.

– Protocol equivalence w.r.t. replaceability: two business protocols P1 and P2 are
equivalently replaceable if they can be interchangeably used in any context and the
change is transparent to clients.

– Protocol subsumption w.r.t. replaceability: a protocol P2 is subsumed by another
protocol P1 w.r.t. replaceability if P1 supports at least all the conversations that P2
supports. In this case, protocol P1 can be transparently used instead of P2 but the
opposite is not necessarily true.

– Protocol replaceability w.r.t. a client protocol: A protocol P1 can replace another
protocol P2 with respect to a client protocol PC if P1 behaves as P2 when interact-
ing with a specific client protocol PC . This class is important in those cases where
we expect the service to predominantly interact with certain types of clients.

– Protocol replaceability w.r.t. an interaction role: Let PR be a business protocol.
A protocol P1 can replace another protocol P2 with respect to a role PR if P1
behaves as P2 when P2 behaves as PR. This replace-ability class allows to identify
executions of a protocol P2 that can be replaced by protocol P1 even when P1 and
P2 are not comparable with respect to any of the previous replace-ability classes.
This class is important when we want to assess replaceability when considering
only certain functionality of the service, e.g., the purchasing part of a supply chain
management service.

For all of the above classes, we can distinguish between full and partial replace-
ability. Full replaceability is as defined above. Partial replaceability is when there is
replaceability but only for some conversations and not others. For example, we have
partial replaceability with respect to a client protocol when protocol P1 can replace
another protocol P2 in at least some of the conversations that can occur with Pc.

As an example, consider a protocol P1 obtained from P ′′ of Figure 2 by reversing the
messages polarities. Such a protocol can be replaced by P of Figure 2. Indeed, the only
timed conversations supported by P1 are of the form (a(−), 0) · (b(−), t), with t > 0.
Such conversations are also supported by P . The opposite is however not true. Indeed,
P may support some conversations that contain the messages c or d while P1 does not.

608 J. Ponge et al.

However, we can observe that P1 can replace P when interacting with P ′′: the only
timed conversations of P that are understood by P ′′ are of the form (a(−), 0)·(b(−), t),
with t > 0. Such conversations are also supported by P1.

4 Protocol Operators

The discussion above concerning the compatibility and replaceability classes empha-
sized the need for operators to analyze and compare timed protocols. There is also a
need for understanding (when two timed protocols are neither equivalent nor compat-
ible) which conversations can take place and which ones cannot. This motivates the
development of a protocol algebra that enables the manipulation and analysis of timed
protocols.

We split the set of protocol operators in two categories: manipulation and compari-
son operators. The former category allows to compute protocols that captures a property
regarding a pair of protocols, for example to compute a protocol that captures all of the
common timed conversations of two protocols. The later category allows to compare
two protocols, for example to assess if they are equivalent or not. We define these oper-
ators below.

Manipulation operators are applied to protocols and result in protocols. We describe
their formal semantics in Table 1. The introduction of time does not change the defini-
tion compared to the case (untimed) business protocols of [4].

To illustrate these operators, Figure 3 shows three simple timed protocols P1, P2 and
P3 as well as the results when applying operators on them. For example, the protocol
P1 ‖TI P3 captures the timed conversations that are commonly supported by both P1
and P3: P1 does not support receiving a message c, hence it does not appear in P1 ‖TI
P3. Similarly P1 can only receive a b message within the 10 seconds that follow the
reception of a a message. Another example is the protocol P3 ‖TD P1 that captures
all the conversations that P3 supports, but that P1 doesn’t. This is why the C-Invoke
constraint of T2 in P3 ‖TD P1 is the negation of the one of T2 in P1 as P3 does not carry
a C-Invoke constraint on its transition T2. Similarly, P3 supports receiving c messages
while P1 does not.

Table 1. Protocol manipulation operators semantics

Operator name Symbol Semantics
Compatible Compo-
sition

‖TC P = P1 ‖TC P2 is a protocol P such that T ∈ Tr(P) iff T is
an interaction trace of P1 and P2

Intersection ‖TI P = P1 ‖TI P2 is a protocol P such that Tr(P) = Tr(P1) ∩
Tr(P2)

Difference ‖TD P = P1 ‖TD P2 is a protocol P that satisfies the following
condition: Tr(P) = Tr(P1) \ Tr(P2)

Projection
[
‖TC

]
Let P = P1 ‖TC P2.

[
P1 ‖TC P2

]
Pi

, with i ∈
{1, 2}, is the protocol obtained from P1 ‖TC P2 by
defining the polarity function of the messages as follows:
Polarity(

[
P1 ‖TC P2

]
Pi

, m) = Polarity(Pi, m), ∀m ∈ M

Fine-Grained Compatibility and Replaceability Analysis 609

Fig. 3. Three timed protocols P1, P2 and P3 and some resulting protocols when using protocol
manipulation operators

Table 2. Characterization of the compatibility and replaceability classes

Class Characterization
Partial compatibility of P1 and P2 P1 ‖TC P2 is not empty
Full compatibility of P1 and P2

[
P1 ‖TC P2

]
P1

≡ P1

Replaceability of P1 by P2 P2 � P1

Equivalence of P1 and P2 w.r.t. replaceability P1 ≡ P2

Replaceability of P2 by P1 w.r.t. a client proto-
col PC

[
PC ‖TC P2

]
P2

� P1 or equivalently PC ‖TC

(P2 ‖TD P1) is empty
Replaceability of P2 by P1 w.r.t. a role PR (PR ‖TI P2) � P1

We define two comparison operators, namely subsumption and equivalence. They
enable to compare timed protocols w.r.t. their timed conversations. The subsumption,
noted �, assesses whether one protocol supports all of the timed conversations of an-
other protocol (i.e., P � P ′ iff Tr(P) ⊆ Tr(P ′)). The equivalence, noted ≡, checks
whether two protocols support exactly the same set of conversations (i.e., P ≡ P ′ iff
Tr(P) = Tr(P ′).

The characterization of the protocol compatibility and replaceability analysis classes
using the protocol manipulation and comparison operators is given in Table 2. The
introduction of time does not change the characterization that had been defined for
(untimed) business protocols in [4].

5 Protocol Operators Properties

This section investigates the decidability and complexity properties underlying our pro-
tocol operators. We show that there is a semantic-preserving mapping from protocols

610 J. Ponge et al.

into a new class of timed automata [7] with ε-transitions (i.e., ε-transitions). We illus-
trate such a mapping on an example and then we discuss how existing results in timed
automata theory can be reused/extended to deal with our specific problems. More tech-
nical details can be found in [8].

5.1 Mapping Protocols into Timed Automata

Briefly, a timed automaton [7] is a finite automaton augmented with a finite set of real-
valued clocks. Clock constraints can be associated with transitions and can also be
reset to zero simultaneously with any transition. Figure 4 shows a timed protocol and
its corresponding timed automaton. The obtained automaton uses two clock variables,
x1 and x2, to implement the timing constraints described in the corresponding timed
protocol. For example, the constraint C-Invoke(T1 < 5h) of transition T1 is captured
in the timed automaton by the constraint x1 < 5 associated with the arc b(+) between
states s1 and s2. Indeed, this constraint is defined over variable x1 which is reset to
zero when the automaton switches from state s0 to s1 on symbol a(−). Then, while
the automaton is at state s1, the value of variable x1 shows the time elapsed since the
occurrence of the last transition s0·a(−)·s1. The transition from state s1 to s2 on symbol
b(+) is enabled only if the value of variable x1 is less than 5. Thus, the timing constraint
expressed by this automaton is that the symbol b(+) must occur less than 5 units of
time after the occurrence of the symbol a(−) (and this is exactly what the constraint
C-Invoke(T1 < 5h) on transition T1 prescribes). Also, note that the implicit transition
T4 in the timed protocol is described using an ε-transition between states s2 and s4 in
the corresponding timed automaton. The associated M-Invoke(T2 = 10h) constraint is
modeled in the timed automaton using two clock constraints x = 10, associated with
the ε transition, and x < 10 associated with the remaining transition that is enabled
from state s2 on symbol c(+). In the remainder, we assume that timed protocols have
been normalized by making explicit all the temporal constraints as described above.

Timed automata are in general more expressive than timed protocols and hence not
any timed automaton can be mapped into a protocol. However, the restricted class of
timed automata that are obtained by a mapping from a timed protocol can be translated
back into timed protocols without loss of semantics. We call this class PTA for Proto-
col Timed Automata. The procedure that we propose translates a protocol into a timed
automaton, as briefly explained below. To do that, and to make sure that the mapping is
effectively bijective, we give three conditions that identify timed automata that can be
mapped back into timed protocols.

Let P = (S, s0, F , M, X , C, R) be a timed protocol. An associated timed automaton
AP = (L, L0, Lf , XP , E) over alphabet ΣP = M is built as follows: L = S, L0 =
{s0}, Lf = F , XP = X and ∀r = (s, s′, m, c) ∈ R, a new switch (s, a, ϕ, λ, s′) is
added to E such that: a = m, ϕ = α if c = C-Invoke(α) or c = M-Invoke(α), and
λ = {xr}. Figure 4 depicts a timed protocol and its associated timed automaton.

Let A = (L, L0, Lf , X, E) be a timed automaton verifying the following conditions:

(C1) ∀e = (l, a, ϕ, λ, l′) ∈ E, |λ| = 1 (i.e., exactly one clock is reset), and the
clock in λ is only reset on e: for every two distinct switches (l1, a1, ϕ1, λ1, l

′
1) and

(l2, a2, ϕ2, λ2, l
′
2) of E, we have λ1 ∩ λ2 = ∅ ,

Fine-Grained Compatibility and Replaceability Analysis 611

Fig. 4. A timed protocol and its associated timed automaton

(C2) A is deterministic, i.e., for every two switches (l, a, ϕ1, λ1, l
′
1) and

(l, a, ϕ2, λ2, l
′
2) from E recognizing the same event a from the same location l,

then ϕ1 ∧ ϕ2 ≡ false,
(C3) The allowed guards of the ε-transitions are conjunctions of atomic equality and

inequality constraints such that each guard has at least 1 equality constraint,
(C4) Given the set {(l, ε, ϕ1, λ1, l

′
1), · · · , (l, ε, ϕn, λ1, l

′
n)} of ε-transitions starting

from a location l, the guard ϕj of each switch (l, m, ϕj, λj , l
′
j) (with m ∈ Σ ∪{ε})

satisfies
∧

i�=j

(xi < ki) such that (xi = ki) appears in ϕk with k ∈ {1, · · · , n}.

Condition (C1) enforces that every switch resets only one clock. Indeed, a timed
automaton switch is allowed to reset an arbitrary number of clocks, while in the case of
the mappings of timed protocols we need to reset only one clock: the one that is asso-
ciated with the transition. This defines a bijection between the set of clocks and the set
of switches. Condition (C2) ensures determinism the guards of 2 switches that recog-
nize the same event from the same location must be disjoint. Condition (C3) enforces
the definition of guards on the ε-labeled switches. Finally, condition (C4) enforces the
semantics of the M-Invoke constraints (determinism and preemption).

Every timed automaton that verifies the conditions (C1), (C2), (C3) and (C4) above
can be mapped into a timed protocol, and hence is a timed protocol automaton. This
mapping can be performed by reversing the procedure described above. The following
theorem says that a timed protocol and its associated timed automaton are semantically
equivalent.

Theorem 1. Let P be a timed protocol and AP its associated protocol timed automata.
Then: Tr(P) = L(AP), where L(AP) denotes the timed language recognized by the
automaton AP .

The proof derives from the definition of both the PTA class and the mapping from
timed protocols to PTA.

5.2 Closure Property of Protocol Manipulation Operators

Through the aforementioned mapping, we derive results regarding intersection and
compatible composition operators. Indeed, it is well known that timed automata are

612 J. Ponge et al.

closed under intersection [6]. Such a property is established by extending the classical
automata product construction to timed automata. In [8] we extend the product con-
struction to show that the closure property also holds for the PTA class (e.g., intersec-
tion of two timed protocol automata is a timed protocol automaton). This leads to an
algorithm to compute timed intersection or composition of protocols.

The situation regarding the difference and subsumption operators is however more
complex. The main problem lies in the undecidability of the complementation in timed
automata with ε-transitions. Since the difference and the language inclusion problem (or
subsumption) depend on the complementation (e.g., A\B ≡ A � B and L(A) ⊆ L(B)
iff L(A)∩L(B) = ∅), the decidability of these operators requires a proper investigation
of the characteristics of protocol timed automata. The main difficulty lies in the presence
of the ε-transitions, which unlike in the case of classical (untimed) automata, strictly in-
crease the expressiveness level of timed automata. [9] investigates the expressive power
of ε-transitions and identifies cases where ε-transitions can be removed without a loss
of expressiveness (e.g., case of ε-transitions that do not reset clocks). Unfortunately,
this result is of no use in our case as the ε-transitions that we deal with do not belong
to the identified cases. Indeed, in the PTA class, ε-transitions strictly increase the ex-
pressiveness of protocol timed automata as they reset clocks, and hence they cannot be
removed [10]. However, we have shown that the class PTA is closed under complemen-
tation, which allows claiming that timed protocols are closed under difference. More-
over, since PTA are closed under intersection, and given that the emptiness checking
problem is decidable for timed automata [6], the protocol subsumption and equivalence
problems are decidable. The proof of closure under complementation is based on the
observation that although PTA automata contain ε-transitions with clocks resets, they
still exhibit a deterministic behavior which ensures that at each step of an execution, all
clock values are solely determined by the input word. Therefore, closure under comple-
mentation can be proved by extending the usual construction to PTA. The main result
of this section is given below.

Theorem 2. Timed protocols are closed under intersection, compatible composition
and difference.

Performing a subsumption or equivalence test between two protocols is thus decidable,
as described by the theorem hereafter. We also give a complexity result which is derived
from existing work on the timed language inclusion problem for timed automata [7].

Theorem 3. The subsumption and equivalence operators on timed protocols are de-
cidable, and their decision problems are PSPACE-COMPLETE.

With the two theorems above, we have proved that our full set of operators can be
implemented by reusing the already-known constructs on timed automata [7]. Those
results directly come from the novel class of timed automata that we have identified.
This makes it possible to conduct automated analysis for all of the compatibility and
replaceability classes on timed protocols.

Fine-Grained Compatibility and Replaceability Analysis 613

6 Implementation and Discussion

We have developed a prototype as part of the larger ServiceMosaic project [5]. Briefly,
ServiceMosaic (see http://servicemosaic.isima.fr/) is a CASE-toolset model-driven
prototype platform for modeling, analyzing, and managing web service models includ-
ing business protocols, orchestration, and adapters. The ServiceMosaic projects are
developed for the JavaTM platform version 5. We created libraries that provide the
functionalities of our contributions, then we integrate them into the Eclipse platform
as plug-ins. Regarding the work presented in this paper, we have designed a model for
timed protocols and implemented the operators (the subsumption and equivalence op-
erators rely on the UPPAAL model checker). We have also created a graphical editor
for protocols as well as component that can extract the protocols of the services that
are used in a BPEL orchestration. In our experimentations, we have also worked on
protocols (manually) extracted from RosettaNet PIPs.

The approach that we have described in this paper can be used in several practical
contexts. We briefly outline one of them where we have used our prototype to facilitate
service composition development [8]. Given a BPEL orchestration, we have used it
to check if the selected services where fully or partially compatible with the BPEL
process behavior. By identifying which conversations can or cannot be carried out, we
have been able to support the development of protocol adapters in a similar fashion as
in [11] which tackles adaptation in the case of untimed business protocols.

We now provide a brief outlook of related work. Several ongoing efforts in the
area of Web services recognize the importance of high level modeling and analysis
of services protocols (e.g., [4,12,3,13]). Similar approaches for protocols compatibility
and replaceability exist in the area of component-based systems [14, 15]. In terms of
protocol description, the existing models do not explicitly take timing constraints into
account. In terms of protocols analysis, mechanisms have been proposed to verify pro-
tocols compatibility and replaceability. However, the verifications are still “black or
white” whereas our approach targets a fine-grained analysis for the cases where par-
tial results are desirable. Standardization efforts recognize the need for supporting the
explicit description of web services functional and non-functional properties [16]. Of
most interest in the case of making explicit business protocols are the Business Pro-
cess Execution Language for Web Services (BPEL), the Web Services Conversation
Language (WSCL) and the Web Service Choreography Interface (WSCI). Documents
complying to those specifications can be derived from protocols and vice-versa as our
approach is complementary to them.

In our work, we used a states machine-based model for describing protocols. How-
ever, the formal foundations could have been also based on another model such as Petri
nets. In this case, the protocol operators would have to be ported to this formalism to be
able to perform compatibility and replaceability analysis. In fact, timed protocols can
be viewed as a syntactic variant of timed automata. In this paper we have also signifi-
cantly extended our initial work on service protocols [17] by proposing: (i) a model for
service business protocols that supports rich timing constraints, (ii) a set of fine-grained
protocol compatibility and replaceability classes, and (iii) a set of operators with formal
foundations that can be combined for performing those types of analysis. The results
we have achieved is a framework and a tool that can support development and binding

http://servicemosaic.isima.fr/

614 J. Ponge et al.

of services with timing properties. We believe that this is a significant contribution as
the number of available services increases and as the need of automated support for ser-
vice lifecycle management becomes a necessity. Interestingly, this work has also lead
to the discovery of an innovative class of timed automata. In future work, we aim at
extending the approach for analyzing web services compositions in presence of timing
abstractions.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures, and
Applications. Springer, Heidelberg (2004)

2. Benatallah, B., Casati, F., Toumani, F.: Web services conversation modeling: The Corner-
stone for E-Business Automation. IEEE Internet Computing 8(1) (January 2004)

3. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach to design and
analysis of e-service composition. In: WWW 2003, pp. 403–410. ACM Press, New York
(2003)

4. Toumani, F., Benatallah, B., Casati, F.: Analysis and Management of Web Services Protocols.
ER 2004 (2004)

5. Benatallah, B., Casati, F., Toumani, F., Ponge, J., Nezhad, H.R.M.: Service mosaic: A model-
driven framework for web services life-cycle management. IEEE Internet Computing 10(4),
55–63 (2006)

6. Alur, R., Madhusudan, P.: Decision problems for timed automata: A survey. In: 4th Intl.
School on Formal Methods for Computer, Communication, and Software Systems (2004)

7. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–
235 (1994)

8. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Fine-grained Compatibility and Replace-
ability Analysis of Timed Web Service Protocols (extended version) (2007), http://www.
isima.fr/∼ponge/publications/tr/er07-extended.pdf

9. Berard, B., Diekert, V., Gastin, P., Petit, A.: Characterization of the expressive power of silent
transitions in timed automata. Technical report, LIAFA Jussieu (1999)

10. Diekert, V., Gastin, P., Petit, A.: Removing ε-transitions in timed automata. In: Reischuk, R.,
Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, Springer, Heidelberg (1997)

11. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing Adapters
for Web Services Integration. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, Springer, Heidelberg (2005)

12. Bordeaux, L., Salaun, G., Berardi, D., Marcella, M.: When are two Web Services Compati-
ble? In: VLDB TES’04, Toronto, Canada (2004)

13. Beyer, D., Chakrabarti, A., Henzinger, T.A.: Web service interfaces. In: WWW 2005, pp.
148–159. ACM Press, New York (2005)

14. Yellin, D., Storm, R.: Protocol Specifications and Component Adaptors. ACM Trans. Pro-
gram. Lang. Syst. 19(2), 292–333 (1997)

15. Canal, C., Fuentes, L., Pimentel, E., Troya, J.M., Vallecillo, A.: Adding roles to corba objects.
IEEE Trans. Softw. Eng. 29(3), 242–260 (2003)

16. Nezhad, H.R.M., Benatallah, B., Casati, F., Toumani, F.: Web services interoperability spec-
ifications. Computer 39(5), 24–32 (2006)

17. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: Compatibility and replaceability analysis
for timed web service protocols. In: BDA (October 2005)

http://www.isima.fr/~ponge/publications/tr/er07-extended.pdf
http://www.isima.fr/~ponge/publications/tr/er07-extended.pdf

Author Index

Abdullah, Mohd Syazwan 438
Al-Kamha, Reema 518
Artale, A. 277

Benatallah, Boualem 599
Benest, Ian 438
Berman, Sonia 338
Bernstein, Philip A. 102
Bhiri, Sami 485
Biskup, Joachim 120
Bolchini, Cristiana 149
Börger, Egon 1

Cabot, Jordi 198
Cal̀ı, Andrea 245
Calvanese, D. 277
Casati, Fabio 599
Champin, Pierre-Antoine 502
Chbeir, Richard 582
Chen, Bo 534
Chueng, Arthur 391

Elahi, Golnaz 375
Embley, David W. 518, 566

Faulkner, Stéphane 454
Franconi, Enrico 22

Gaaloul, Walid 485
Gailly, Frederik 407
Ghose, Aditya 391

Haller, Armin 485
Hartmann, Sven 307
Houben, Geert-Jan 502
Hunter, Peter J. 21

Jarke, Matthias 132
Jarrar, Mustafa 181
Jureta, Ivan J. 454

Kensche, David 132
Kimble, Chris 438
Kirchberg, Markus 72
Koliadis, George 391
Kontchakov, R. 277

Li, Xueming 214
Li, Yong 132
Liddle, Stephen W. 518
Ling, Tok Wang 534
Link, Sebastian 307
Lo, Amy 87
Lu, An 39, 229
Lu, Ruopeng 165

Ma, Hui 72
Mansmann, Svetlana 23
Mazón, Jose-Norberto 56
Melnik, Sergey 102
Menzel, Ralf 120
Mork, Peter 102

Neumuth, Thomas 23
Ng, Wilfred 39, 229, 261
Norrie, Moira C. 359

Paige, Richard 438
Papotti, Paolo 323
Parsons, Jeffrey 214
Poels, Geert 407
Ponge, Julien 599
Purao, Sandeep 470

Quintarelli, Elisa 149
Quix, Christoph 132

Ravat, Franck 550
Rossato, Rosalba 149
Ryzhikov, V. 277

Sadiq, Shazia 165
Scholl, Marc H. 23
Semwayo, Thembinkosi Daniel 338
Signer, Beat 359
Sindre, Guttorm 423
St̊alhane, Tor 423

Tao, Cui 566
Tekli, Joe 582
Teste, Olivier 550
Thiran, Philippe 502

616 Author Index

Toman, David 293

Torlone, Riccardo 323

Toumani, Farouk 599

Tournier, Ronan 550

Trujillo, Juan 56

Umapathy, Karthikeyan 470

Weddell, Grant 293
Wu, Huayu 534

Yetongnon, Kokou 582
Yu, Eric 87, 375

Zakharyaschev, M. 277
Zurlfluh, Gilles 550

	Title Page
	Preface
	Organization
	Table of Contents
	Modeling Workflow Patterns from First Principles
	Introduction
	Parallel Control Flow Patterns
	Parallel Split Patterns
	Merge Patterns
	Interleaving Patterns
	Trigger Patterns

	Sequential Control Flow Patterns
	Sequence Patterns
	Iteration Patterns
	Begin/Termination Patterns
	Selection Patterns

	Conclusion and Outlook

	Heart Modeling, Computational Physiology and the IUPS Physiome Project
	Conceptual Schemas and Ontologies for Database Access: Myths and Challenges
	Multidimensional Data Modeling for Business Process Analysis
	Introduction
	Multidimensional Data Model
	Business Process Modeling and Workflow Management

	Related Work
	Case Study: Surgical Workflows
	From Process Flows to Data Cubes
	Handling Generic BPM Constructs

	Challenges of the Multidimensional Modeling
	Terminology
	Fact Constellation vs. Fact Hierarchy and Fact Generalization
	Modeling Dimension Hierarchies
	Runtime Measure Specification

	Results
	Conclusion

	Mining Hesitation Information by Vague Association Rules
	Introduction
	Preliminaries
	Vague Sets
	Median Memberships and Imprecision Memberships
	Association Rules

	Vague Association Rules
	Hesitation Information Modeling
	Vague Association Rules and Their Support and Confidence

	Mining Vague Association Rules
	Experiments
	Experiments on Real Datasets
	Experiments on Synthetic Datasets

	Related Work
	Conclusion

	A Model Driven Modernization Approach for Automatically Deriving Multidimensional Models in Data Warehouses
	Introduction
	Related Work
	A Modernization Approach for Data Warehouses
	Obtaining a PSM
	Obtaining a PIM

	Conclusions and Future Work

	Cost-Based Fragmentation for Distributed Complex Value Databases
	Introduction
	Complex Value Databases
	A Query Algebra and Heuristic Query Optimisation

	Schema Fragmentation
	Horizontal Fragmentation
	Vertical Fragmentation

	A Cost Model
	Size Estimation
	Query Processing Costs

	A Cost-Based Methodology for Fragmentation
	A Cost-Based Approach for Horizontal Fragmentation
	A Cost-Based Approach for Vertical Fragmentation
	Discussion

	Conclusion

	From Business Models to Service-Oriented Design: A Reference Catalog Approach
	Introduction
	Business Models and Business Modeling
	$i*$ for Business Modeling
	The Reference Catalog Approach
	Reference Business Models
	Reference Model Template
	Business Service Patterns

	Guided Design Via Reference Model
	Business Model Instantiation
	Service Identification and Design

	Conclusions and Future Work
	References

	Teaching a Schema Translator to Produce O/R Views
	Introduction
	Metamodel
	Transformations
	Defining a Transformation
	Convert Abstract to Structured Type
	Remove Structured Attribute
	Additional Transformations
	Composing Transformations

	Inheritance Mappings
	Incremental Updating
	Implementation
	Related Work
	Conclusion
	References

	Building a Tool for Cost-Based Design of Object-Oriented Database Schemas
	Introduction
	Architecture of CBOODT
	Abstract Database Machine, Cost Model, and Schema Transformations Revisited
	Adapting CBOODT to a Concrete DBMS
	An Administrator's Workflow
	Validation and Conclusions

	Generic Schema Mappings
	Introduction
	Background
	Mapping Representation
	The Generic Metamodel $GeRoMe$
	$GeRoMe$ Semantics: Instances of a $GeRoMe$ Model
	Formal Definition of GeRoMe Mappings

	Mapping Composition
	Mapping Execution
	Evaluation
	Conclusion

	Relational Data Tailoring Through View Composition
	Introduction
	Background, Motivations and Rationale
	Background
	Goal and Contributions
	Related Work

	View Definition
	Relevant Area Assignment
	Logical Operators for View Composition

	Closing Remarks and Future Work

	On the Discovery of Preferred Work Practice Through Business Process Variants
	Introduction
	Reference Architecture for Process Variant Repository
	Schema of Process Variants
	Query Formulation
	Similarity of Process Variants
	Overall Similarity
	Structural Similarity

	Process Variant Retrieval
	Process Variant Retrieval Based on Progressive-Refinement
	Example

	Related Work
	Conclusion and Future Work
	References

	Towards Automated Reasoning on ORM Schemes Mapping ORM into the DLR_idf Description Logic
	Motivation and Background
	The Formalization of ORM Using DLRifd
	Object-Types
	Roles and Relationships
	Mandatory Constraints
	Uniqueness Constraints
	Frequency Constraints
	Subtypes
	Value Constraints
	Subset Constraint
	Equality Constraint
	Exclusion Constraint
	Ring Constraint
	Objectified Relations

	Implementation and Related Work
	Related Work

	Conclusion and Future Work

	From Declarative to Imperative UML/OCL Operation Specifications
	Introduction
	Running Example
	Interpreting Declarative Specifications: A Heuristic Approach
	List of Heuristics
	Interpretation of $ReplanShipment$ Using Our Heuristics

	Patterns for a Declarative to Imperative Translation
	Structural Events in the UML
	List of Patterns
	Applying the Patterns

	Translating Inherently Ambiguous Postconditions
	Tool Implementation
	Related Work
	Methods to Interpret Declarative Specifications
	Methods for Code-Generation from Declarative Specifications

	Conclusion and Further Research
	References

	An Ontological Metamodel of Classifiers and Its Application to Conceptual Modelling and Database Design
	Introduction
	Roles
	What Is a Role?
	Three Different Ways of Representing Roles

	A Metamodel of Classifiers for Conceptual Modeling
	Implications for Conceptual Modeling
	Representing Intrinsic and Mutual Property in UML Diagrams
	Representing Natural, Phase, and Role Types in UML Class Diagrams
	Object Migration
	The Counting Problem
	A More Complicated Example
	Union Type (Category) vs. Role Type
	Integrity Constraints

	Conclusion
	References

	Handling Inconsistency of Vague Relations with Functional Dependencies
	Introduction
	Vague Sets and Mi Memberships
	Median Memberships, Imprecision Memberships and Mi-Pair Vague Sets
	Existence and Overlap of Vague Sets

	Merge Operation of Vague Relations
	Functional Dependencies and Vague Chase
	Functional Dependencies in Vague Relations
	Vague Chase

	The Most O-Precise Approximation of a Vague Relation
	Related Work
	Conclusion

	Querying Incomplete Data with Logic Programs: ER Strikes Back
	Introduction
	Preliminaries and Notation
	Data Model, Constraints and Queries
	The Conceptual Model

	Query Answering with the Chase
	Construction of the Chase
	Query Answering and the Chase

	Answering Queries by Rewriting
	Query Rewriting
	Elimination of Function Symbols
	(Brief) Considerations on Complexity
	Extensions of Results

	Discussion

	Prioritized Preferences and Choice Constraints
	Introduction
	Preliminaries
	Preferences and Choices
	Choice Constraints
	Interaction Rules
	Interactions Between FDs and PPs
	Interactions Between FDs and CCs

	Related Work
	Concluding Remarks

	Reasoning over Extended ER Models
	Introduction
	The $DL-Lite$ Languages
	The Conceptual Modelling Language
	Syntax
	Semantics
	Reasoning Problems

	Reasoning over ER_isaR Schemas
	Reasoning over ER_bool Schemas
	Reasoning over ER_ref Schemas
	Conclusion

	On Order Dependencies for the Semantic Web
	Introduction
	Related Work

	Definitions
	Reasoning in ${\cal DLFD}_{\textrm{\rm reg}}$
	Undecidability for General Order Dependencies
	Decidability for Guarded Order Dependencies

	Summary
	Remaining Issues and Open Problems

	Collection Type Constructors in Entity-Relationship Modeling
	Introduction
	Entity-Relationship Modeling
	Syntax, Semantics and Examples of Collection Types
	Transformation to the Relational Model
	Notions from the Relational Model of Data
	Transformation of Entity and Relationship Types
	Transformation of Cluster Types
	Transformation of Collection Types
	Object Types with Collection Type Components
	Another Example for Mapping Collection Types and Collections

	Properties of the Transformation
	Conclusion and Future Work

	Schema Exchange: A Template-Based Approach to Data and Metadata Translation
	Introduction
	Preliminaries
	Basics
	Data Exchange

	Schema Exchange Semantics
	Schema Templates
	Schema Exchange

	Decoding and Encoding of Relational Schemas
	Relational Decoding
	Relational Encoding

	From Schema to Data Exchange
	Metaroutes and Value Correspondences
	The \sf S-D Transformation Process

	Conclusion and Future Work

	A Conceptual Modeling Methodology Based on Niches and Granularity
	Introduction
	New Modeling Primitive and Associated Constructs
	Niches
	Granularity
	Reconciliation

	The Design Methodology
	A Systematic Approach to Conceptual Modeling
	Relationship Normalisation

	Experiments
	Initial Workshops
	Modeling Toolkit
	Case Studies

	Related Work
	Conclusion
	References

	As We May Link: A General Metamodel for Hypermedia Systems
	Introduction
	Background
	Link Metamodel
	User Model
	Layers
	Structural Links
	Implementation
	Conclusion

	A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs
	Introduction
	Conceptual Modeling Criteria for Security Trade-Offs Analysis
	Existing Approaches to Security Trade-Off Analysis
	ATAM
	SVDT/AORDD Approach
	Secure Tropos/i*
	Limitations of Existing Approaches

	The Security Trade-Offs Modeling Notation
	Malicious Actor, Goals and Tasks
	Assets, Services and Vulnerabilities Points
	Relation Between Attacks and Security Mechanisms
	Expressing Trade-Offs by the Proposed Conceptual Structure

	Trade-Off Analysis and Decision Making
	Case Studies
	Conclusion and Future Work
	References

	Rapid Business ProcessDiscovery (R-BPD)
	Introduction
	Text-to-Model Extraction
	Model-to-Model Extraction
	Model Identity and Cross-Validation
	Managing Traceability and Change During R-BPD
	Experimental Evaluation Using R-BPDTk
	Conclusion

	Ontology-Driven Business Modelling: Improving the Conceptual Representation of the REA Ontology
	Introduction
	REA as a Business Modelling Ontology
	Redesigning Business Domain Ontologies
	Ontology Modelling Using Conceptual Modelling Languages
	Ontology Restructuring Based on the DOGMA Double Articulation Principle

	Current Conceptualization of REA
	Reverse Engineering: Ontology Unification
	Business Modelling Example

	Improved Conceptual Representation of REA
	Restructuring Phase: Ontology Redesign
	Business Modelling Example Based on the Redesigned REA Conceptualization

	Conclusion: Contribution, Related Work and Future Research
	References

	A Comparison of Two Approaches to Safety Analysis Based on Use Cases
	Introduction
	Related Work
	The Techniques to be Compared
	Misuse Cases
	Failure Mode and Effect Analysis

	The Experiment
	Research Approach
	Experiment Design

	Experiment Results and Analysis
	Identified Failure Modes
	Learning and Using the Methods

	Threats to Validity
	Conclusion Validity
	Internal Validity
	Construct Validity
	External Validity
	Our Claims to Validity

	Conclusion and Future Work
	References

	Using Unified Modeling Language for Conceptual Modelling of Knowledge-Based Systems
	Introduction
	UML, Model Driven Architecture and UML Profile Mechanism
	UML Profile for Knowledge Modelling
	Case Study – The Clinical Practice Guidelines KBS
	Modelling and Development of Clinical Practice Guidelines KBS
	Possible Mapping of the Profile to Jess

	Discussions Related to OMG PPR Standardisation Work
	Conclusion and Future Work
	References

	Tracing the Rationale Behind UML Model Change Through Argumentation
	Introduction
	Background and Related Work
	Traceability Data Types
	Scope
	Degree of Automation
	Conceptual Foundations
	Framework Specificity

	Problem Outline and Contributions
	Case Study
	Traceability Through Argumentation in UML-TAM
	UML-TAM Design Rationale
	UML-TAM Argumentation Framework
	UML-TAM Connectors

	Applying UML-TAM
	Conclusion and Future Work

	Exploring Alternatives for Representing and Accessing Design Knowledge About Enterprise Integration
	Introduction
	Background
	Eliciting Enterprise Integration Requirements
	Design Knowledge for Enterprise Integration
	Problem: A Mismatch Between Control-Flow and Operational-Flow

	An Alternative Based on Language-Action Perspective
	Components Facilitating Mapping

	Application
	The Speedy Rentals Scenario from IBM

	Discussion
	References

	Mining and Re-engineering TransactionalWorkflows for Reliable Executions
	Introduction
	Workflow Event Log Analysis
	Workflow Event Logs Structure
	Logs Statistical Analysis

	Transactional Workflow Mining
	Mining Workflow Patterns
	Mining Activities Transactional Dependencies
	Mining Activities Transactional Properties

	Transactional Behavior Re-engineering
	Semantic Relations Within Recovery Mechanisms
	Delta Analysis
	Correcting and Improving the Transactional Behavior

	Discussion

	Cross: An OWL Wrapper for Reasoning on Relational Databases
	Introduction
	Running Example
	Structure of the Paper

	Motivations
	OWL Semantics and Inferences
	Formalizing the ODBC Model
	From the ODBC Model to OWL
	Cross: An Implementation
	Differences to the Theoretical Model
	Dealing with Semantic Values
	Use Cases

	Conclusion and Perspectives

	Augmenting Traditional Conceptual Models to Accommodate XML Structural Constructs
	Introduction
	XML Modeling Criteria
	Missing Modeling Constructs
	C-XML
	Augmenting ER and UML
	ER
	UML
	ER-XML, UML-XML, and C-XML

	Conclusion

	VERT: A Semantic Approach for Content Search and Content Extraction in XML Query Processing
	Introduction
	Related Work
	Background and Motivations
	Data Model and Twig Pattern
	Motivations

	VERT Algorithm
	XML Document Parsing in VERT
	Query Processing with $VERT$
	Analysis of VERT
	Optimizations for VERT

	Experiments
	Experimental Settings
	Experimental Results and Analysis

	Conclusion and Future Work

	A Conceptual Model for Multidimensional Analysis of Documents
	Introduction
	Context and Motivation
	Motivating Example
	Related Works
	Aims and Contributions

	Multidimensional Model
	Grouping Dimensions in “Galaxies”
	Dimension Concept
	Example

	Multidimensional Operations
	Focussing and Selection Operations
	Drilling Operations
	Analysis Reorganisation Operation
	The Use of Recursive Links

	Conclusion and Future Works
	References

	Automatic Hidden-Web Table Interpretation by Sibling Page Comparison
	Introduction
	Sibling Table Recognition
	Structure Patterns
	Pattern Templates
	Pattern Generation
	Pattern Usage
	Pattern Combinations
	Dynamic Pattern Adjustment

	Experimental Results
	Concluding Remarks

	A Fine-Grained XML Structural Comparison Approach
	Introduction
	Motivation
	Undetected Sub-tree Similarities
	The Special Case of Single Leaf Node Sub-trees

	Related Work and Background
	XML Data Model
	Sate of the Art

	Proposal
	Preliminary Definitions
	Commonality Between Sub-trees (CBS)
	Tree Edition Operations Costs (TOC)
	Efficiency w.r.t. Existing Approaches
	Complexity Analysis

	Experimental Evaluation
	Experimental Results
	Timing Results

	Conclusion
	References

	Fine-Grained Compatibility and Replaceability Analysis of TimedWeb Service Protocols
	Introduction
	Timed Protocol Modeling
	Extending Business Protocols with Temporal Abstractions
	Formalization

	Timed Protocol Analysis
	Compatibility Analysis
	Replaceability Analysis

	Protocol Operators
	Protocol Operators Properties
	Mapping Protocols into Timed Automata
	Closure Property of Protocol Manipulation Operators

	Implementation and Discussion

	Author Index

