Model Checking the First-Order Fragment of
Higher-Order Fixpoint Logic

Roland Axelsson! and Martin Lange?

! Institut fiir Informatik, Ludwig-Maximilians-Universitat Miinchen, Germany
2 Department of Computer Science, University of Aarhus, Denmark

Abstract. We present a model checking algorithm for HFL1, the first-
order fragment of Higher-Order Fixpoint Logic. This logic is capable of
expressing many interesting properties which are not regular and, hence,
not expressible in the modal p-calculus. The algorithm avoids best-case
exponential behaviour by localising the computation of functions and
can be implemented symbolically using BDDs.

We show how insight into the behaviour of this procedure, when run
on a fixed formula, can be used to obtain specialised algorithms for par-
ticular problems. This yields, for example, the competitive antichain
algorithm for NFA universality but also a new algorithm for a string
matching problem.

1 Introduction

Properties (of words or trees) that can be expressed in the modal p-calculus
are at most regular, i.e. they can also be defined by a finite automaton []. The
expressive power of temporal logics like LTL, CTL etc. is even strictly below that
of full w-regularity. Nevertheless, there are many natural examples of interesting
properties that are not regular in the language theoretic sense, for example:
detection of buffer underflows, unlimited counting, repetition of sequences of
actions, etc.

Non-regular properties have recently attracted more and more attention, and
the need for algorithmic handling of such properties is about to become ac-
cepted. This is for example manifested in CaRet, a specification formalism
for linear time properties [I]. It can express some, but not all context-free
languages.

Here we use the (branching temporal) fixpoint logic HFL1, the first-order
fragment of Higher-Order Fizpoint Logic (HFL) [9]. HFL achieves high expres-
sive power by combining the modal p-calculus with a simply typed A-calculus.
We show that the first-order fragment which is obtained by restricting the -
calculus part to first-order functions, is already capable of expressing interesting
program properties like the ones mentioned above. Moreover, it turns out that
many other problems — not necessarily from program verification only — can be
reduced to the model checking problem for HFL1, e.g. the universality problem
for non-deterministic finite automata (NFA-UNIV), the evaluation problem for
quantified Boolean formulas (QBF), the satisfiability problem for modal logic

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 62[76] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic 63

(K-SAT), etc. Commonly, these problems can be expressed in HFL1 in the sense
that there is a fized formula whose models are exactly the (encodings of) pos-
itive instances to such problems. Note that HFL1’s model checking problem
is EXPTIME-complete [2]. This comparably high computational complexity is
necessarily the price to pay for the increased expressive power.

It is straight-forward to extend a symbolic model checking algorithm for £
to HFL1 by doing fixpoint iterations in function space lattices. This, however,
yields a best-case running time that is exponential in the size of the underlying
model. Sect. B presents a model checking algorithm for HFL1 that localises
the computation of fixpoints in function spaces and, hence, shows exponential
behaviour in the worst case only.

Our algorithm exploits the fact that in order to model check an HFL1 prop-
erty, one usually does not need to know the value of a function on all elements
of its domain. Instead it computes these functions in a demand-driven fashion.
Due to fixpoint operators the value of a function may be defined recursively, i.e.
it may depend on the value of the same function on a different argument. By
incorporating into fixpoint iteration the collecting of such function arguments
we approximate the total functions in the HFL1 semantics by partial ones that
agree with them on those arguments that cause the demand.

In static program analysis this technique is known as neededness analysis ﬂEﬂ
It resembles local model checking — avoiding computations that are unnecessary
for the verification task. On the other hand, the algorithm is global in the sense
that it computes in one go all states of a transition system that satisfy the given
formula.

The algorithm works on sets of states using only standard operations. Thus,
it can be implemented fully symbolically, i.e. using BDDs to represent state sets
and transitions.

Below we first present HFL1 and give a few examples of expressible properties
that are of interest in program verification. This is followed by the model checking
algorithm and the proof of its soundness and completeness. The rest of the
paper focuses on the “model checking is more than program verification” aspect
mentioned above. We exemplarily pick out NFA-UNIV and show how it can be
expressed in HFL1. We then use the Tabakov/Vardi model of random NFAs
[8] to measure the gain of local fixpoint computations in comparison to the
naive extension of the modal p-calculus model checker which would do fixpoint
iterations in the function space lattice. We then show how to take advantage
of the fact that NFA-UNIV can be reduced to the model checking problem for
HFL1 on a fized formula. This induces a special instance of our model checking
algorithm which can be optimised w.r.t. that fixed formula. It turns out that this
instance coincides with the competitive algorithm for NFA-UNIV by Henzinger
et al., based on antichains [I0]. We conclude by discussing further extensions of
the model checking algorithm and further special instances for other problems
like the ones mentioned above.

! Note that this has nothing to do with lazy evaluation in functional programming,
let alone non-strict evaluation of higher-order functions!

64 R. Axelsson and M. Lange

2 The First-Order Fragment of HFL

Let X be a finite set of action names, P be an at most countably infinite set of
propositions and V a countably infinite set of variable names. Formulas of HFL1
in positive normal formf are given by the following grammar.

o = qlq| X [-X]eVelerp|{ae]|lap|pe| AX.p|pXT.0|vXT.0
T = Pr|Pr—r

where ¢ € X, ¢ € P, and X € V. We require each fixpoint variable X to only
occur positively in its binding formula 0 X.¢, for some o € {u, v}, and never to
be bound more than once. Hence, each variable comes with a unique fixpoint
type p or v.

The 7 are called HFL1-types. Note that each one is of the form 7, = Pr —

. — Pr — Pr with k£ function arrows in it. The type 7 is used to model
predicates, and 73, for k > 1 models k-ary predicate transformers. A predicate is
the same as a 0-ary predicate transformer.

Type annotations are used in order to avoid polymorphic effects. With these
annotations, each formula obtains a unique type. We assume formulas to be
well-typed using standard typing rules from the simply typed A-calculus. For
example, ¢, (a)y, p1V 2 all have type Pr. In ¢ v, formula ¢ must have type Pr,
and ¢ must have type 73 for some k > 1. The type of ¢ = AX.¢) can be inferred
assuming that X has type Pr: if ¢ has type 7 then ¢ has type 711, etc.

Let T = (S,{-% | a € X'}, L) be a transition system with state set S, binary
transition relations % for every a € X, and a labeling function L : P — 25
that assigns to every atomic proposition the set of states in which it is true.

We write D(S) for the domain of k-ary predicate transformers, k& > 0. For-
mally, D(S) is the least fixpoint of the domain equation X = 25 + (25 — X).
Note that D(S) ~ ey PF(S) where D*(S) = 25 — ... — 25 — 25 with k
arrows in it. Each D*(S) forms a complete lattice with pointwise inclusion or-
dering C and meets M and joins L. In the case of k = 0, these operations simply
boil down to C, N and U.

Let p : V — D(S) be an environment mapping variables to predicate trans-
formers. The semantics of HFL1 is explained as follows. Note that a subformula
of the form —X can only be of type Pr, and X must be A-bound in this case.

ld, = L(qg)

[-q], = S\L(q)

[X]) = p(X)
[-X]7 = S\p(X)
e vyl =[]l ulvll
e Av]l = [el? Nn[vl?

2 Positive normal form does not impede the expressive power but simplifies the pre-
sentation of the semantics.

Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic 65

[a)e)? = {s€S8|3telp]? st st}
[[[a]go]]g = {seS|VteS:s-"timpliest € [[90]]2—}
levl, = [¢l; ([]))
MXg]] = ATl x, gy for T € 2°
[ux™ely = [147 € D lelxp) C f}
[[VXTIC’SO]]Z = |_| {fe D" | fE [[@]]Z[XHJC]}

The modal p-calculus is easily seen to be a fragment of HFL1 and is in fact
obtained by disallowing A-abstraction and function application which implies
that all subformulas are predicates only. HFL1 also subsumes FLC [9] which is
basically obtained by restricting all types to 7y and 7 only.

Ezample 1. The following formula is true in a model iff it is bisimilar to a bal-
anced tree. Note that bisimulation-invariance is an inherent property of HFL1,
because it can be embedded into infinitary modal logic which in turn is incapable
of distinguishing bisimilar models. It is therefore not possible to state that the
model indeed is a balanced tree.

Orat = (VXTAZAY.(=ZV-Y) A (X (2)Z (<)) (=) [-]£

This is best understood by unfolding the fixpoint formula to an infinite conjunc-
tion. It then simply says: for all & € N it is not the case that both (—)**1tt and
(—=)*[~]£f hold, i.e. if there is a path of length at least k + 1 then there is no
maximal path of length & only.

This property can be used to show for example that all runs of a non-deterministic
program terminate after the same number of steps. It is also closely related to
Emerson’s uniform inevitability [3].

Example 2. HFL1 can easily express the absence of underflows in unbounded
buffers — due to unboundedness clearly not a regular property.

Opuf = pX.(AZ.(out)Z V (in)(X (X 2))) tt

This formula is best understood by comparing it to the CFG X — out | in X X.
It generates the language of all words w = wout s.t. |ulin = |u|owt and for all
prefixes v of w we have: |v|in > |v|out. These are exactly the prefixes of buffer

runs which are violating due to an underflow.

Of course, for buffers of fixed capacity n this property can easily be expressed
in the modal p-calculus. Being fixed is not only sufficient but also necessary
for definability in the p-calculus. Hence, there are two distinct advantages that
logics like HFL1 have over the p-calculus.

— HFLI1 enables black-box verification when the exact size of the underlying
finite model is unknown.

— Properties like the ones above can be formalised in HFL1 using a fized for-
mula, whereas expressing them in the p-calculus requires a family of formulas
that grow at least linearly in the size of the models.

66 R. Axelsson and M. Lange

3 Model Checking HFL1

A naive extension of the standard global model checker for the modal p-calculus
would represent the semantics of a subformula of type 7 as a table of the follow-
ing form. Let S = {s¢, $1,...,5,—1} be the finite state space of the underlying
transition system.

argy, 0 {so} {s1}... {s0,81}... S 0 {so}...
args, 0 0 0 ... 0 ... 0 {so}{so}-...
age 00 0 0 .. .0 0 D
value Ty Tv

It simply lists the value of that function for every possible argument from its fi-
nite domain. Note that this has uncurried the function silently. Fixpoint iteration
can be done on these objects in the same way. For a least fixpoint such a table is
initialised with T; = @ for all 7. Successive values of this function approximating
the least fixpoint can be found by iterating the corresponding functional on these
values and updating the table. Note that the width of the table is 2*™. Hence, a fix-
point iteration might take O(n - 2¥") many steps due to monotonicity. This leads,
for any ¢ € HFL1, to an exponential model checking algorithm for this fixed ¢.

However, this procedure can be localised. It is never necessary to know the
entire value of a function. Functions only occur as applicators, i.e. only their
value on certain arguments are needed for the model checking problem. Only in
the worst case and when embedded in a fixpoint iteration, the value of a function
on all possible arguments might be required. This leads to the following idea of
a localised model checker for HFL1, depicted in Fig. [l

Each variable X of type 73 in the input formula g is associated with a partial
function of type D*(S) — 2 represented for example by a table as shown above.
Since they are allowed to be partial, not necessarily all columns are present.
An argument to such a function is written as a list [T1,...,T}] € (25)F, or
abbreviated as T for instance. Note that the empty list [] for k& = 0 is possible.
We write Dom(f) for the set of arguments on which f is defined; f = ¢ if f
and g have the same domain and agree on that; f{T +— U} for the update of f
either overwriting a value or extending the domain; and {T" — U} for the partial
function that contains only this single binding.

Algorithm MC takes an HFL1 formula of type 74 and a list of length k of
subsets of the underlying state space S. It returns the semantics of ¢ applied to
these arguments w.r.t. an environment p that is given by the global variable env
which maps each HFL1-variable to a partial function. Note that the semantics
of HFL1 is defined using total functions though.

Algorithm MC simply computes the semantics of a formula recursively accord-
ing to the definition of HFL1. If the semantics of a fixpoint formula is needed —i.e.
the value of the corresponding function on a particular element of its domain — then
it performs a fixpoint iteration in the corresponding function space. However, it
only computes needed values, hence, localises this fixpoint iteration. It starts with

Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic 67

global env : V — D(S)

MC(QO, [Tl,...,Tk]) =
case p of ¢ : L(q)
-q : S\ L(q)
1V MO,) UMC (i, [)
2/11 /\2/12 : MC’(’L/H, H) N MC(wL H)
(a)p :{s€S|3te MC,]) st. st}
[a]y {seS|VteS s—t=te MCH,][)}
X : if env(X)([T1, ..., Tk]) = undef
then let T := if fp(X) = p then) else S
env(X) = env(X){[T1,...,Tx] — T}
return env(X)([11,...,Tk])
X8\ em(X)(])
AXp cenv(X) = {[] — T1}
return MC (¢, T2, ..., Tk])
12 MC(%» [MC(Wa H)?Tlv 7Tk])
Xy :ifo=pthenT:=(elseT:=8
env(X) :={[Th,...,TK] — T}
repeat
= env(X)
for all [TY,...,T}] € Dom(env(X))
env(X) = env(X){[T1, ..., T}) — MC(, [TY,....,Ty])}
until f = env(X)
return env(X)([11,...,Tk])

Fig. 1. A symbolic model checking algorithm for HFL1

the function that maps the given argument to the initial iteration value — () or S. If
a fixpoint variable is reached during this iteration then the value of the semantics
may be required on a different argument. In this case, the algorithm adds the new
argument to the domain of this function and includes this in further iterations.
This is why a global variable representing the environment is necessary.

We write MC (o, [Th, ..., Tk]) for the result of the call to MC with arguments
@ and [T1,...,T] when, at the beginning, the global variable env resembles the
environment p in the following way: for all X € V of type 7, and all T € (2°)*
we have

— if X is A-bound then env(X) = {[] — p(X)},
— if X is p-bound then p(X)(T') # 0 implies env(X)(T) = p(X)(T),
— if X is v-bound then p(X)(T') # S implies env(X)(T) = p(X)(T).

Ezample 3. To illustrate how the algorithm works, consider the formula
po = (WX"AZ.ZV \] X [aZ) ~q
acX

and the transition system shown on the right side in Fig.[2l Intuitively, ¢ asserts
that there is a sequence of actions s.t. all paths under that sequence lead to

68 R. Axelsson and M. Lange

{3 {23} {1,2,3}
0

{3} 0

3y {23} 0

{2,3} {2,3} {1,2,3}
{2,3} {1,2,3} {1,2,3}
{1,2,3} {1,2,3} {1,2,3}
{1,2,3} {1,2,3} {1,2,3}

I B U

Fig. 2. Algorithm MC running on a simple example

a state not satisfying ¢. States 1,2, 3 satisfy this property, state 0 does not.
However, the meaning of this formula is irrelevant for the understanding of how
it is evaluated by algorithm MC.

The table on the left of Fig. 2l shows the successive calculation of the seman-
tics of the fixpoint formula. Although only two rows need to be stored in each
iteration step — the current one and the last one for comparison — we depict all
stages in this example for the reader to be be able to follow this step-by-step.

At the beginning, the formula —¢ is evaluated to {3}. This forms the initial
argument in the table. It is to be read as follows: time proceeds line by line
from left to right. Each row below the arguments contains a snapshot of the
current state at the end of an iteration over the current domain. Note that in
general fixpoint approximants cannot easily be read off the table since different
columns may be at different stages of approximation. As computation proceeds,
arguments are added to the list.

Row 6 then represents a partial function that agrees with the total function
that is the semantics of the corresponding fixpoint formula. The return value is
the one in the first column — the value of the fixpoint function applied to the
original argument.

Theorem 1. For all transition systems T , all environments p and all ¢ € HFL1
of type Pr we have: MC ,(¢p,[]) = ﬂgo]]z.
Proof. By induction on the structure of the formula ¢. However, it should be
clear that the statement is too weak as an inductive invariant because of sub-
formulas of types other than Pr. Instead, we prove the stronger statement

VQO, Vpav[Tlu cee 7Tk} : MCP(@? [Tl? cee ka]) = [[QOHZ([TM cee 7Tk]) (1)

where ¢ is a (not necessarily closed) formula of type 7k, p is an environment
that maps any free variable in ¢ to a function which in turn is defined on all
arguments, and T; C S are subsets of states of the underlying transition system
7. We also identify elements of tyTpe To, i.e. such subsets, with functions from
the singleton domain. Writing [¢], ([]) rather than [[‘P]]Z simply spares us some
case distinctions in the notations.

Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic 69

The propositional and modal part. Claim () is immediately seen to be true for
the cases of ¢ = q or ¢ = —q for some ¢ € P. It also follows directly from the
hypothesis in the cases ¢ = 11 V a2, ¢ = 1 A2, ¢ = (a)1) and ¢ = [a]y). Note
that in all these cases, ¢ must have type 7y, and so have ¥, 11, 5. Hence, we
must have k = 0 and the argument list [T1, ..., T)] must in fact be empty.

The statement is also easily seen to be true for the cases of ¢ = X or p = = X.
Note that by assumption, the call of MC,(X,[T1,...,Tx]) returns p(X). Also
remember that negated variables must be A-bound and therefore of type 7.

The functional part. Now consider the case ¢ = AX.1). Note that ¢ cannot be of
type 7o, i.e. we have k > 1. Then MC (¢, [T, ..., Tk|) = MC (¢, [T, ..., Ti])
with p’ := p{X — T1}. By hypothesis, this is equal to [[MJ]]ZZ([TQ7 ..., Tx]) which,
by [-reduction, is also the same as [[AX.(/)]]Z([TM oo Tk)D-

The case of ¢ = 1)1 1o is proved analogously. Again, note that here 1o must
be of type 79.

The only cases posing some difficulties are those of p = o X.¢) for o € {u,v}.
Here it is helpful to prove soundness (direction “C” in (l)) and completeness
(direction “2”) separately. However, the soundness proof for the u-case is entirely
analogous to the completeness proof of the v-case and vice-versa. Thus, we only
present soundness and completeness of the u-case here.

Soundness of the p-part. Consider the call MC,(pX ., [Th,...,Tx]) and the
following statement.

VITY,.... T}] € Dom(env(X)) : env(X)([T}, ..., T}]) C [uX]” (IT},.... T}))
(2)
where env is assumed to resemble the environment p in the way described above.
This is in fact an invariant of the repeat-loop in Algorithm MC'. It trivially holds
before the loop because Dom(p(X)) = {[T1, ..., Tk]} only, and env(X) maps this
tuple to the empty set.
Furthermore, if statement (2)) holds at the beginning of one iteration of the
repeat-loop then it also holds after this iteration. This is simply a consequence of
monotonicity, the hypothesis, and the fact that [uX .w]]z is a fixpoint of ¢ w.r.t.

C: if we have env(X)([T],...,T}]) < [[uX.zp]]pT([Tl’, ..., T}]) for all such tuples
then, by monotonicity and the definition of the pointwise inclusion ordering,
we also have [W}]Z{XHEM(X)} C ﬂqﬁ]Z{XH[[MX.w]]:}. But the latter is equal to
[[,uX.v,/J]]Z7 and the former is, by hypothesis, the content of env(X) on all members
of Dom(env(X)) at the end of this repeat-loop iteration.

This implicitly shows that — on finite transition systems — the loop eventually
terminates. Since the domain of env(X) at most grows in each iteration, we have
[T4,...,Tx] € Dom(env(X)) at termination point, and the soundness part of ()

immediately follows from the fact that (2] holds at this point.

Completeness of the p-part. We will prove this part using fixpoint induction.
For any set D C (2%)* of k-tuples of subsets of the underlying state set S,

70 R. Axelsson and M. Lange

and two functions f,g € D*(S) we write f Cp g iff for all [T},...,T}] € D:
(T,) C oY, . TY).

Now consider again the call MC,(uX .4, [Th,...,Tx]). Let D := Dom(env(X))
upon termination of the repeat-loop. An immediate consequence of the induc-
tion hypothesis for v is the following:

[xpy Ep env(X) (3)

for any function f that agrees with env(X) on all arguments in D. This is
because the repeat-loop is iterated on the whole of D until stability is reached,
ie. until MC,(xseno(x)y (0, [T1, ..., T}]) = env(X)([T7,...,T}]) holds for all
[TY,...,T}] € D.

We now extend the function env(X) to a function env ' (X) in the following
way.

, oo fem(X)(TY,. . TY) [T, Tl €D
ean(X)([Tl,...7Tk]) = {S ! k ,o.w.1 k

Now note that we have

T
[[w]]p{Xr—»ean(X)} L ean(X)

i.e. the function on the right subsumes the one on the left on all arguments from
DF(S). For arguments in D this is stated in ([]) above. For all other arguments
this is trivially true by the construction of env ' (X). But then env ' (X) is a pre-
fixpoint of ¢ and, hence, we have ﬂﬂX.¢ﬂZ C env ' (X). In particular, inclusion
holds for all argument tuples in D. Since the domain of env(X) at most grows
in each iteration of the repeat-loop, we have [T1,...,Tx] € D and therefore
[[,uX.@ZJ]]Z([Tl, oo Tx]) € MC,(pX), [Ty, ..., T]) which finishes the proof. O

4 NFA-UNIV as a Model Checking Problem

As stated in the introduction, HFL1 is powerful enough to enable the encoding
of various interesting problems as model checking instances. We exemplarily
pick the universality problem for non-deterministic finite automata (NFA) to
demonstrate how encoding a problem as a model checking instance can lead to
an efficient solution.

In the following, an NFA is always of the form A = (Q, X, 0, qo, F'), where @
is the state set, X' the alphabet, ¢ the transition relation, ¢y the starting state
and F' the set of final states. Recall the model in Ex. [l If the proposition ¢ is
interpreted as a flag for being a final state then the whole model can easily be
viewed as an NFA. In this context the formula

po = (X" AZZV \] X [d)Z) ~q
acy

translates to “there is a word w, s.t. all states reachable under w are non-final”.
NFA-UNIV is solved by checking whether or not the starting state satisfies this
formula.

Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic 71

Avg. number of arguments

Transition density (r)

Fig. 3. Number of arguments in function table (n = 10)

4.1 Local Fixpoint Computation in Practice

We now give empirical evidence of the benefits of local fixpoint computations
and demonstrate that the necessity to compute larger fragments of the complete
domain rarely occurs. Algorithm MC' has been implemented as a prototype in
OCaml and run on the Tabakov/Vardi random model for NFAs in order to
guarantee a wide spectrum of test cases. Two parameters s and ¢ determine the
number of randomly chosen final states and transitions in an NFA for a given
number of states n. The ratios f := » and r := fl are called final state density
and transition density respectively. For further details see [§]. To perform the
universality tests, we fix n = 10 and generate 20 random NFAs for each of 250
pairs (r, f) with 0 <r <25and 0 < f < 1.

The average number of arguments needed in the fixpoint computation by
algorithm MC in dependence of (r, f) is depicted in Fig.[Bl Note that the number
of possible arguments |25 is 1024 in this case. Fig. Bl shows that in all cases the
algorithm is far away from exhaustive fixpoint calculation on the full argument
set 25. Even for the most difficult instances which in our tests are f = 0.1 and
r between 1.4 and 1.6, the number of needed arguments never gets anywhere
near that. The average number of arguments distributed over all 5000 tests is
just 13.2 and the highest number of arguments ever measured during the tests
is 109.

It is reasonable to assume that the approach of guiding the fixpoint itera-
tions locally through neededness analysis also proves to be successful in other
cases (on different formulas) unless the underlying models have been constructed
pathologically to enforce an exponential behaviour.

4.2 Optimising Algorithm MC w.r.t. a Fixed Formula

There are still several standard performance enhancements available, e.g. ac-
celeration of the fixpoint computation by exploiting monotonicity, in order to
optimise this algorithm.

However, we need to observe that algorithm MC will be used on fixed formulas
in most cases. In many verification tasks the property to be checked is fixed
while the models change. This holds especially for non-regular properties since
non-regularity often eliminates dependence on model sizes, etc. It is therefore

72 R. Axelsson and M. Lange

much more beneficial to regard MC' as a template for specialised cases rather
than a general algorithm for all kinds of verification purposes. Model checking a
fixed formula bears a higher potential for algorithm optimisations which possibly
cannot be achieved for varying formulas.

Consider the algorithm’s behaviour on the formula of Ex. Bl as depicted in
the table there. If we follow the succession of the fixpoint iteration closely, a
simple pattern can be observed: the iterated function A\Y.Y'V\/, .y, X [a]Y takes

an argument (initially the set [[ﬁq]]A) and returns its union with the set of its
recursive [a]-predecessors for all @ € X. But this set is exactly the union of
the elements of Dom(X), each of them the result of a single [a]Y computation
step. So the return value does not provide any additional information if the set
of needed arguments is known. Furthermore, since only a union operation is
performed, it suffices to keep track of C-maximal sets of arguments. This insight
immediately leads to an optimisation by discarding all redundant information. It
is obviously not necessary to protocol all these values in the fixpoint iterations —
when in the end all we want to know is whether or not the initial automaton state
is included in the union over all arguments. It suffices to iterate this schema until
no more arguments enter the table, and then to form their unions. This, however,
means that, by monotonicity of the [a]-operators, one can always discard the
larger of two arguments that are comparable w.r.t. C which leads to the idea of
storing Dom(X) as an antichain.

An antichain over an NFA A is a set C of pairwise incomparable (w.r.t. set
inclusion) sets of states of A. These antichains form a complete lattice when
equipped with the following order.

CCC iff vCecCcdC el st.CC

This naturally induces a notion of supremum C L C’ as the smallest antichain
(w.r.t. C) which contains both C and C’.

The basic principle of the optimization is to populate an antichain with sets
of states which uphold the possibility of generating a word that is not included
in the language of the automaton. This can be achieved by loosely speaking
applying the modal [a]-operator (for all a € X) to its elements and minimizing
the resulting set to an antichain. More formally, define the following monotone
operation on antichains:

CPre(C) = [{SCQ|ITeCIae st §=[aX]x p}]

where the [-] operator discards all sets which are subsumed by another set in
this set of sets — i.e. it makes an antichain of the expression on the right-hand
side.

Henzinger et al. show how to characterise NFA-UNIV using least fixpoints in
antichain lattices.

Proposition 1. [10, Thm. 2] Let A be an NFA over the alphabet X with state
set Q, initial state qo and final states F. Then L(A) # X* iff {{q}} T [{C |
CPre(C)U{Q\ F} C C}.

Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic 73

Of course, the least fixpoint can be computed by a straight-forward fixpoint
iteration: Define C° := {(} and C* := CPre(C*~')U{Q \ F'}. The following table
compares in parallel two runs of MC and the antichain method on Ex.

X {3} {2,3} {1,2,3}

0 0 Cco = {@}

Lo o Cl = CPre(C®) U{Q\ F} = {{3}}

S R C?i= CPre(Cl)U{Q\ F} = {{2,3}}

P A C? i= CPre(C?) L{Q\ F} = {{1,2,3}}
))<y)4 4. 3 —

e Cti= CPre(C) U{Q\ F} = {{1,2,3}]

6 {1,2,3} {1,2,3} {1,2,3}

The cost reduction of the antichain method is established by the fact that
it simply computes [Dom(X)], i.e. the antichain of the currently present argu-
ments. One can show that [Dom(X?%)] = C**!, where Dom(X?) is the currently
needed domain of the ith fixpoint approximation w.r.t. a given argument and a
partial evaluation according to MC'.

It turns out that the result of this optimisation is exactly the method devised
by Henzinger et al. in [I0]. Their tool shows a very good performance on the
universality test for NFAs and does apparently outperform the classical powerset
construction by several orders of magnitude.

5 Conclusion and Outlook

We have presented a model checking algorithm for HFL1. This extends the
scope of properties which can automatically be checked on finite state systems
way beyond that of regular ones whilst keeping the complexity at most singly
exponential in the size of the system. In order to avoid exponential best-case
behaviour we suggest to localise computations of fixpoints in function spaces.

This algorithm fully supports symbolic model checking using a BDD library.
A prototypical implementation has been created which shows the gain of lo-
cal fixpoint computations in this setting. This approach is most successful on
instances with fixed formulas. This allows to optimise algorithm MC' further
w.r.t. that particular formula as seen with the NFA-UNIV example where a rig-
orous optimisation of algorithm MC' yields the competitive antichain algorithm
of Henzinger et al.

5.1 Other Hard Decision Problems as Model Checking Instances

By not just restricting the term “model checking” to a method used in automatic
program verification but understanding it as a general logic problem we can
obtain BDD-based algorithms for various other problems as well. Note that NFA-
UNIV is PSPACE-complete, and it is therefore reasonable to try to encode the
standard PSPACE-complete problem QBF as an HFL1 model checking problem.

It is well-known that every quantified Boolean formula can be put into prenex
CNF normal form Qqz1....Qnan. \\; \/ji l; 5, with the Qi € {3,V}, and the [; ;,

74 R. Axelsson and M. Lange

) » Txo V xy”
"Ar Vo drs.Vay 2 4

v = v

’7.7}1 V X9 V _'.%‘3” ”331 V T3 V 1’4”

Fig. 4. A transition system representation of a QBF formula

literals over the variables 1, ..., z,. The problem QBF is to decide whether or
not such a formula evaluates to 1 under the usual interpretation of the Boolean
operators and the quantifiers over the domain {0, 1}.

With each QBF formula @ we associate a loop-free transition system 7g which
is exemplarily shown in Fig. @ for @ = Jx1 Voo . Jws V. (2 V —xg) A (21 V nx3 V
x4) N (—x1V-xe Vas). It uses atomic propositions 3, V to mark the type of quan-
tification over a variable, ¢ to indicate the branching into the different clauses,
and 1 to mark the value of a clause under an assignment valuation given by a
path through each clause’s component. Its actions are 0 and 1 for representing
variable values, and an anonymous one for branching into different clauses and
for separating the quantifiers in the prefix.

Evaluation to 1 of @ can now be expressed in HFL1 as follows.

wopr = (MXTl.AZ.(Cﬁ[—}z) AE = (SNX(0)2)V(=)(X (1)2)) A
(v = ()X (0)2) A ()X (1)2))) 1

Again, popr does not depend on the underlying QBF formula @. It is therefore
possible to obtain a (BDD-based — if desired) QBF solver by analysing the
behaviour of algorithm MC on ¢ opr and specialised transition systems 7. For
example, it is not hard to see that the fixpoint iteration always terminates after
a number of steps given by the length of the quantifier prefix. It can therefore be
made explicit through a for-loop. Furthermore, antichains can also be used to
replace the arguments of the function table. Preliminary results show that this
is far from yielding a competitive QBF solver. However, it may be interesting to
investigate combinations of this bottom-up approach with existing solvers that
mostly work top-down.

Algorithms for other problems can also be obtained by instantiating the tem-
plate MC with a particular formula: satisfiability of modal logic where it remains
to compare the result to the BDD-based algorithm by Pan et al. [7]; various

Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic 75

problems from automata-theory like emptiness of alternating finite automata;
etc. Due to space restrictions we will elaborate on details of those elsewhere.

5.2 Encoding Optimisation Problems

Some optimisation problems that require more than a yes/no answer can also
be dealt with using an extension of algorithm MC' that keeps track of parts
of the solution to be computed. We sketch a new algorithm for the Shortest
Common Supersequence problem (SCS): given a set {w1, ..., w,} of finite words
of some alphabet X, find a shortest v € X* that contains all w; as subwords. The
algorithm is obtained from the template MC' using an antichain optimisation as
in the case of NFA-UNIV.

The first step consists of building a transition system 7, here depicted for the
words {aaba, abab, aaa}.

Next, consider the HFL1 formula ¢gcg 1= (uX”.)\Z.[—]Z V Veen X (a)Z) q.
Each state in 7 satisfies ¢ gcog which only reflects the fact that for every finite
set of words there is a word containing all of them. However, suppose the argu-
ments in the table for the fixpoint iteration in this formula are annotated in the
following way: the initial argument receives the annotation €, and if an argument
Z with annotation w causes another argument to be created in the table through
the recursive call of X (a)Z then the new argument receives the annotation aw.

Now note the apparent similarity of this formula with the one from Ex.
expressing NFA-UNIV. In both cases the subformulas X ¢(Z) only occur under
a disjunction. Hence, the argument row of the function table can again be opti-
mised into an antichain, and the evaluation of the formula can be regarded as a
fixpoint iteration in an antichain lattice. It terminates when the topmost state of
T occurs in an element of the current antichain, and that element’s annotation
is the solution to the SCS problem.

The computation of the solution aaabab using annotated antichains is found
as follows. Let I := {40, 41,32}. For a set S we write S¥ to abbreviate (S'UI)%
where the superscript simply denotes the word annotation of this set.

Co = {Ie}

Ci = {{22,30}, {31}7}
CQ = {{22721730}?177 {22712730}?a7{31720}1}a}
Cs = {{22,21,30, 10}, {22, 12,092,301, {31, 11,20 }2""}

Cs = {{22,21,01,30, 10}7""", {22, 12,02, 30} 4%, {22, 12, 30, 00 } 1%,
{02,31, 2017, {31, 11, 20} 7"}

76

R. Axelsson and M. Lange

CE’) {{ . .}?baba’ {) .}?baaa’ {) .}?aaaa7 {22’ 1o, 017 307 00}?abab7
{...Yhaaba (Ybaaaa (Abababy

CG = { ey {227 12702, 00, 01}?aabab’ .. }

Finally, since a set containing {0g, 01,02} has been found, s is included in the
next iteration, and the solution is the annotation of this witnessing set.

We will compare this new algorithm for SCS to existing ones and investigate

its use in bio-informatics for example elsewhere.

References

10.

. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and

returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467-481. Springer, Heidelberg (2004)

. Axelsson, R., Lange, M., Somla, R.: The complexity of model checking higher-order

fixpoint logic. In: Logical Methods in Computer Science (accepted for publication,
2007)

. Emerson, E.A.: Uniform inevitability is tree automaton ineffable. Information Pro-

cessing Letters 24(2), 77-79 (1987)

. Emerson, E.A., Jutla, C.S.: Tree automata, p-calculus and determinacy. In: Proc.

32nd Symp. on Foundations of Computer Science, San Juan, Puerto Rico, pp.
368-377. IEEE Computer Society Press, Los Alamitos (1991)

. Jgrgensen, N.: Finding fixpoints in finite function spaces using neededness analysis

and chaotic iteration. In: LeCharlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 329—
345. Springer, Heidelberg (1994)

. Miller-Olm, M.: A modal fixpoint logic with chop. In: Meinel, C., Tison, S. (eds.)

STACS 99. LNCS, vol. 1563, pp. 510-520. Springer, Heidelberg (1999)

. Pan, G., Sattler, U., Vardi, M.Y.: BDD-based decision procedures for the modal

logic K. Journal of Applied Non-Classical Logics 16(1-2), 169-208 (2006)

. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-

tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 396-411. Springer, Heidelberg (2005)

. Viswanathan, M., Viswanathan, R.: A higher order modal fixed point logic. In:

Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 512-528.
Springer, Heidelberg (2004)

De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A new algo-
rithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 17-30. Springer, Heidelberg (2006)

	Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic
	Introduction
	The First-Order Fragment of HFL
	Model Checking HFL1
	NFA-UNIV as a Model Checking Problem
	Local Fixpoint Computation in Practice
	Optimising Algorithm MC w.r.t. a Fixed Formula

	Conclusion and Outlook
	Other Hard Decision Problems as Model Checking Instances
	Encoding Optimisation Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

