
One-Pass Tableaux for Computation Tree Logic

Pietro Abate1, Rajeev Goré1, and Florian Widmann1,2
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Abstract. We give the first single-pass (“on the fly”) tableau deci-
sion procedure for computational tree logic (CTL). Our method extends
Schwendimann’s single-pass decision procedure for propositional linear
temporal logic (PLTL) but the extension is non-trivial because of the
interactions between the branching inherent in CTL-models, which is
missing in PLTL-models, and the “or” branching inherent in tableau
search. Our method extends to many other fix-point logics like proposi-
tional dynamic logic (PDL) and the logic of common knowledge (LCK).

The decision problem for CTL is known to be EXPTIME-complete,
but our procedure requires 2EXPTIME in the worst case. A similar phe-
nomenon occurs in extremely efficient practical single-pass tableau algo-
rithms for very expressive description logics with EXPTIME-complete
decision problems because the 2EXPTIME worst-case behaviour rarely
arises. Our method is amenable to the numerous optimisation methods
invented for these description logics and has been implemented in the
Tableau Work Bench (twb.rsise.anu.edu.au) without these extensive
optimisations. Its one-pass nature also makes it amenable to parallel
proof-search on multiple processors.

1 Introduction and Motivation

Propositional fix-point logics like propositional linear temporal logic (PLTL),
computation tree logic (CTL) and full computation tree logic (CTL*) are use-
ful for digital circuit verification [10] and reasoning about programs [18]. The
usual route is to use model-checking to ensure that a given model satisfies cer-
tain desirable properties since this can be done in time linear in the size of
the model. Model-checking cannot answer the general question of whether ev-
ery model for a given set of formulae Γ satisfies a certain property ϕ: that is
model-checking cannot be used to perform automated deduction in the chosen
fix-point logic. The decision problems for fix-point logics are typically at least
PSPACE-complete (PLTL), and are often EXPTIME-complete (CTL) or even
2EXPTIME-complete (CTL*). These logics are all fragments of monadic sec-
ond order logic whose decision problem has non-elementary complexity when
restricted to (infinite) tree-models, meaning that its complexity is a tower of
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exponentials of a height determined by the size of the initial formula. Conse-
quently, automated theorem provers tailored for specific fix-point logics are of
importance in computer science.

The main methods for automating deduction in logics like PLTL and CTL
are optimal tableau-based methods [24,6], optimal automata-based methods [22]
and optimal resolution-based methods [7,4]. The inverse method has also been
applied to simpler modal logics like K [23], but it is possible to view this approach
as an automata-based method [2]. We are trying to obtain further details of a
new method for PLTL which appears to avoid an explicit loop-check [8].

Most existing automated theorem provers for the PSPACE-complete fix-point
logic PLTL are tableau-based [16,9,17,20], but resolution provers for PLTL have
also been developed recently [13]. It is easy to construct examples where the
(goal-directed) tableau-based provers out-perform the resolution provers, and
vice versa [13], so both methods remain of interest. Theorem provers based
on the always optimal automata-based methods which do not actually build
the required automata [21] are still in their infancy because good optimisation
techniques have not been developed to date.

For CTL, however, we know of no efficient implemented automated theorem
provers, even though tableau-based [6,19], resolution-based [4] and automata-
based [22] deduction methods for CTL are also known.

The simplest non-technical explanation is that proof-search in many modal
logics requires some form of “loop check” to guarantee termination, but fix-point
logics require a further test to distinguish a “good loop” that represents a path
in a model from a “bad loop” that represents an infinite branch with no hope of
ever giving a model. The harder the decision problem, the greater the difficulty
of separating good loops from bad loops.

Most tableau-based methods for fix-point logics solve this problem using a
two-pass procedure [24,5,6]. The first pass applies the tableau rules to construct
a finite rooted cyclic graph. The second pass prunes nodes that are unsatis-
fiable because they contain contradictions like {p,¬p}, and also remove nodes
which give rise to “bad loops”. The main practical disadvantage of such two-pass
methods is that the cyclic graph built in the first pass has a size which is always
exponential in the size of the initial formula. So the very act of building this
graph immediately causes EXPTIME behaviour even in the average case.

One-pass tableau methods avoid this bottle-neck by building a rooted cyclic
tree (where all cyclic edges loop back to ancestors) one branch at a time, using
backtracking. The experience from one-pass tableaux for very expressive descrip-
tion logics [12] of similar worst-case complexity shows that their average case
behaviour is often much better since the given formulae may not contain the full
complexity inherent in the decision problem, particularly if the formula arises
from real-world applications. Of course, there is no free lunch, since in the worst
case, these one-pass methods may have significantly worse behaviour than the
known optimal behaviour: 2EXPTIME than EXPTIME in the case of CTL for
example. Moreover, the method for separating “good loops” from “bad loops”
becomes significantly more complicated since it cannot utilise the global view
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offered by a graph built during a previous pass. Ideally, we want to evaluate
each branch on its own during construction, or during backtracking, using only
information which is “local” to this branch since this allows us to explore these
branches in parallel using multiple processors.

Implemented one-pass [17,20] and two-pass [16] tableau provers already exist
for PLTL. A comparison between them [13] shows that the median running time
for Janssen’s highly optimised two-pass prover for PLTL is greater than the
median running time for Schwendimann’s not-so-optimised one-pass prover for
PLTL [20] for problems which are deliberately constructed to be easy for tableau
provers, indicating that the two-pass prover spends most of its time in the first
pass building the cyclic graph. There is also a one-pass “tableau” method for
propositional dynamic logic (PDL) [3] which constructs a rooted cyclic tree and
uses a finite collection of automata, pre-computed from the initial formula, to
distinguish “good loops” from “bad loops”, but the expressive powers of PDL and
CTL are orthogonal: each can express properties which cannot be expressed in
the other. But we know of no one-pass tableau method for CTL or its extensions.

For many applications, the ability to exhibit a (counter) model for a formula
ϕ is just as important as the ability to decide whether ϕ is a theorem. In digital
circuit verification, for example, if the circuit does not obey a desired property
expressed by a formula ϕ, then it is vital to exhibit a (CTL) counter-model
which falsifies ϕ so that the circuit can be modified.

Finally, the current Gentzen-style proof-theory of fix-point logics [14,15] re-
quires either infinitary rules, or worst-case finitary branching rules, or “cyclic
proofs” with sequents built from formula occurrences or “focussed formulae”.

We present a one-pass tableau method for automating deduction in CTL
which has the following properties:

Ease of implementation: although our tableau rules are cumbersome to describe
and difficult to prove sound and complete, they are extremely easy to im-
plement since they build a rooted cyclic tree as usual, and the only new
operations they require are set intersection, set membership, and the oper-
ations of min/max on integers;

Ease of optimisation: our method can be optimised using techniques which have
proved successful for (one-pass) tableaux for description logics [11];

Ease of generating counter-models and proofs: the soundness proof of our sys-
tematic tableau procedure for testing CTL-satisfiability immediately gives
an effective procedure for turning an “open” tableau into a CTL-model;

Ease of generating proofs: our tableau calculus can be trivially turned into a
cut-free Gentzen-style calculus with “cyclic proofs” where sequents are built
from sets of formulae rather than multisets of formula occurrences or oc-
currences of “focused formulae”. Moreover, unlike existing cut-free Gentzen-
style calculi for fix-point logics [14,15] we can give an optimal, rather than
worst-case, bound for the finitary version of the omega rule for CTL;

Potential for parallelisation: our current rules build the branches independently,
but combine their results during backtracking, so it is possible to implement
our procedure on a bank of parallel processors.
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Working Prototype: we have implemented a (non-parallelised) prototype of our
basic tableaumethodusing theTableauWorkBench(twb.rsise.anu.edu.au)
which allows users to test arbitrary CTL formulae over the web.

Our work is one step toward the holy grail of an efficient tableau-based auto-
mated theorem prover for the full computational tree logic CTL* [19].

2 Syntax, Semantics and Hintikka Structures

Definition 1. Let AP denote the set {p0, p1, p2, . . . } of propositional variables.
The set Fml of all formulae of the logic CTL is inductively defined as follows:

1. AP ⊂ Fml;
2. if ϕ is in Fml, then so are ¬ϕ, EXϕ, and AXϕ;
3. if ϕ and ψ are in Fml, then so are ϕ ∧ ψ, ϕ ∨ ψ, E(ϕU ψ), A(ϕU ψ),

A(ϕB ψ), and E(ϕB ψ).

A formula of the form EXϕ, AXϕ, E(ϕU ψ), or A(ϕU ψ) is called an EX-,
AX-, EU -, or AU -formula, respectively. Let FmlEU and FmlAU denote the set
of all EU - and AU -formulae, respectively.

Implication, equivalence, and � are not part of the core language but can be
defined as ϕ→ ψ := ¬ϕ ∨ ψ, ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ), and � := p0 ∨ ¬p0.

Definition 2. A transition frame is a pair (W,R) where W is a non-empty set
of worlds and R is a total binary relation over W ( i.e. ∀w ∈ W. ∃v ∈W.wRv).

Definition 3. Let (W,R) be a transition frame. A transition sequence σ in
(W,R) is an infinite sequence σ0, σ1, σ2, . . . of worlds in W such that σiRσi+1

for all i ∈ IN. For w ∈ W , a w-sequence σ in (W,R) is a transition sequence
in (W,R) with σ0 = w. For w ∈ W , let B(w) be the set of all w-sequences
in (W,R) (we assume that (W,R) is clear from the context).

Definition 4. A model M = (W,R,L) is a transition frame (W,R) and a la-
belling function L : W → 2AP which associates with each world w ∈ W a
set L(w) of propositional variables true at world w.

Definition 5. Let M = (W,R,L) be a model. The satisfaction relation � is
defined inductively as follows:

M,w � p iff p ∈ L(w), for p ∈ AP
M,w � ¬ψ iff M,w � ψ
M,w � ϕ ∧ ψ iff M,w � ϕ & M,w � ψ
M,w � ϕ ∨ ψ iff M,w � ϕ or M,w � ψ
M,w � EXϕ iff ∃v ∈ W. wRv & M, v � ϕ
M,w � AXϕ iff ∀v ∈ W. wRv ⇒ M, v � ϕ
M,w � E(ϕU ψ) iff ∃σ ∈ B(w). ∃i ∈ IN. [M,σi � ψ & ∀j < i. M, σj � ϕ]
M,w � A(ϕU ψ) iff ∀σ ∈ B(w). ∃i ∈ IN. [M,σi � ψ & ∀j < i. M, σj � ϕ]
M,w � E(ϕB ψ) iff ∃σ ∈ B(w). ∀i ∈ IN. [M,σi � ψ ⇒ ∃j < i. M, σj � ϕ]
M,w � A(ϕB ψ) iff ∀σ ∈ B(w). ∀i ∈ IN. [M,σi � ψ ⇒ ∃j < i. M, σj � ϕ] .

twb.rsise.anu.edu.au
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Definition 6. A formula ϕ ∈ Fml is satisfiable iff there is a model M =
(W,R,L) and some w ∈ W such that M,w � ϕ. A formula ϕ ∈ Fml is valid
iff ¬ϕ is not satisfiable.

Definition 7. A formula ϕ ∈ Fml is in negation normal form if the sym-
bol ¬ appears only immediately before propositional variables. For every for-
mula ϕ ∈ Fml, we can obtain a formula nnf(ϕ) in negation normal form by
pushing negations inward as far as possible ( e.g. by using de Morgan’s laws)
such that ϕ↔ nnf(ϕ) is valid. We define ∼ϕ := nnf(¬ϕ).

Note that E(ϕB ψ) ↔ ¬A(¬ϕU ψ) and A(ϕB ψ) ↔ ¬E(¬ϕU ψ) are valid.

Table 1. Smullyan’s α− and β−notation to classify formulae

α α1 α2

ϕ ∧ ψ ϕ ψ

E(ϕB ψ) ∼ψ ϕ ∨EXE(ϕB ψ)

A(ϕB ψ) ∼ψ ϕ ∨AXA(ϕB ψ)

β β1 β2

ϕ ∨ ψ ϕ ψ

E(ϕU ψ) ψ ϕ ∧EXE(ϕU ψ)

A(ϕU ψ) ψ ϕ ∧AXA(ϕU ψ)

Proposition 8. In the notation of Table 1, the formulae of the form α↔ α1∧α2

and β ↔ β1 ∨ β2 are valid.

Note that some of these equivalences require the fact that the binary relation of
every model is total.

Definition 9. Let φ ∈ Fml be a formula in negation normal form. The clo-
sure cl(φ) of φ is the least set of formulae such that:

1. Each subformula of φ, including φ itself, is in cl(φ);
2. If E(ϕB ψ) is in cl(φ), then so are EXE(ϕB ψ) and ϕ ∨ EXE(ϕB ψ);
3. If A(ϕB ψ) is in cl(φ), then so are AXA(ϕB ψ) and ϕ ∨AXA(ϕB ψ);
4. If E(ϕU ψ) is in cl(φ), then so are EXE(ϕU ψ) and ϕ ∧EXE(ϕU ψ);
5. If A(ϕU ψ) is in cl(φ), then so are AXA(ϕU ψ) and ϕ ∧AXA(ϕU ψ).

The extended closure ecl(φ) of φ is defined as ecl(φ) := cl(φ)∪{∼ϕ : ϕ ∈ cl(φ)}.
Definition 10. A structure (W,R,L) [for ϕ ∈ Fml] is a transition frame (W,R)
and a labelling function L : W → 2Fml which associates with each world w ∈ W
a set L(w) of formulae [and has ϕ ∈ L(v) for some world v ∈W ].

Definition 11. A pre-Hintikka structure H = (W,R,L) [for ϕ ∈ Fml] is a
structure [for ϕ] that satisfies the following conditions for every w ∈W where α
and β are formulae as defined in Table 1:

H1 : ¬p ∈ L(w) (p ∈ AP) ⇒ p �∈ L(w);
H2 : α ∈ L(w) ⇒ α1 ∈ L(w) & α2 ∈ L(w);
H3 : β ∈ L(w) ⇒ β1 ∈ L(w) or β2 ∈ L(w);
H4 : EXϕ ∈ L(w) ⇒ ∃v ∈W. wR v & ϕ ∈ L(v);
H5 : AXϕ ∈ L(w) ⇒ ∀v ∈W. wR v ⇒ ϕ ∈ L(v).
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A Hintikka structure H = (W,R,L) [for ϕ ∈ Fml] is a pre-Hintikka structure
[for ϕ] that additionally satisfies the following conditions:

H6 : E(ϕU ψ) ∈ L(w) ⇒ ∃σ ∈ B(w). ∃i ∈ IN. [ψ ∈ L(σi) & ∀j < i. ϕ ∈ L(σj)];
H7 : A(ϕU ψ) ∈ L(w) ⇒ ∀σ ∈ B(w). ∃i ∈ IN. ψ ∈ L(σi).

Although H3 captures the fix-point semantics of E(ϕU ψ) and A(ϕU ψ) by
“locally unwinding” the fix-point, it does not guarantee a least fix-point which
requires that ψ has to be true eventually. We therefore additionally need H6
and H7 which act “globally”. Note that H2 is enough to capture the correct
behaviour of E(ϕB ψ) and A(ϕB ψ) as they have a greatest fix-point semantics.

Proposition 12. A formula ϕ ∈ Fml in negation normal form is satisfiable iff
there exists a Hintikka structure for ϕ.

3 A One-Pass Tableau Algorithm for CTL

A tableau algorithm is a systematic search for a model of a formulae φ. Its data
structures are (upside-down) single-rooted finite trees – called tableaux – where
each node is labelled with a set of formulae that is derived from the formula set
of its parent according to some given rules (unless it is the root, of course). The
algorithm starts with a single node that is labelled with the singleton set {φ}
and incrementally expands the tableau by applying the rules mentioned before
to its leaves. The result of the tableau algorithm is a tableau where no more
rules can be applied. Such tableaux are called expanded. On any branch of the
tableau, a node t is an ancestor of a node s iff t lies above s on the unique path
from the root down to s.

An expanded tableau can be associated with a pre-Hintikka structure H for φ,
and φ is satisfiable if and only if H is a Hintikka structure for φ. To be able to
determine whether H is a Hintikka structure, the algorithm stores additional
information with each node of the tableau using histories and variables [20].
A history is a mechanism for collecting extra information during proof search
and passing it from parents to children. A variable is a mechanism to propagate
information from children to parents.

In the following, we restrict ourselves to the tableau algorithm for CTL.

Definition 13. A tableau node x is of the form (Γ :: HCr :: mrk, uev) where:

Γ is a set of formulae;
HCr is a list of the formula sets of some designated ancestors of x;
mrk is a boolean valued variable indicating whether the node is marked; and
uev is a partial function from formulae to IN>0.

The list HCr is the only history since its value in a node is determined by the
parent node, whereas mrk and uev are variables since their values in a node are
determined by the children. In the following we call tableau nodes just nodes
when the meaning is clear.
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Informally, the value of mrk at node x is true if x is “closed”. Since repeated
nodes cause “cycles” or “loops”, a node that is not “closed” is not necessarily
“open” as in traditional tableaux. That is, although we have enough information
to detect that further expansion of the node will cause an infinite branch, we may
not yet have enough information to determine the status of the node. Informally,
if a node x lies on such a “loop” in the tableau, and an “eventuality” EU - or AU -
formula ϕ appears on this loop but remains unfulfilled, then uev of x is defined
for ϕ by setting uev(ϕ) = n, where n is the height of the highest ancestor of x
which is part of the loop.

We postpone the definition of a rule for a moment and proceed with the
definition of a tableau.

Definition 14. A tableau for a formula set Γ ⊆ Fml and a list of formula
sets HCr is a tree of tableau nodes with root (Γ :: HCr :: mrk, uev) where the
children of a node x are obtained by a single application of a rule to x ( i.e. only
one rule can be applied to a node). A tableau is expanded if no rules can be
applied to any of its leaves.

Note that mrk and uev in the definition are not given but are part of the result
as they are determined by the children of the root.

Definition 15. The partial function uev⊥ : Fml ⇀ IN>0 is the constant func-
tion that is undefined for all formulae ( i.e. uev⊥(ψ) = ⊥ for all ψ ∈ Fml).

Note 16. In the following, we use Λ to denote a set containing only propositional
variables or their negations (i.e. ϕ ∈ Λ ⇒ ∃p ∈ AP.ϕ = p or ϕ = ¬p). To focus
on the “important” parts of the rule, we use “· · · ” for the “unimportant” parts
which are passed from node to node unchanged (e.g. (Γ :: · · · :: · · · )).

3.1 The Rules

Terminal Rule.

(id)
(Γ :: · · · :: mrk, uev) {p,¬p} ⊆ Γ for some p ∈ AP

with mrk := true and uev := uev⊥. The intuition is that the node is “closed”
so we pass this information up to the parent by putting mrk to true, and
putting uev as undefined for all formulae.

Linear (α) Rules.

(∧)
(ϕ ∧ ψ ; Γ :: · · · :: · · · )
(ϕ ; ψ ; Γ :: · · · :: · · · ) (D)

(AXΔ ; Λ :: · · · :: · · · )
(EX(p0 ∨ ¬p0) ; AXΔ ; Λ :: · · · :: · · · )

(EB)
(E(ϕB ψ) ; Γ :: · · · :: · · · )

(∼ψ ; ϕ ∨EXE(ϕB ψ) ; Γ :: · · · :: · · · )

(AB)
(A(ϕB ψ) ; Γ :: · · · :: · · · )

(∼ψ ; ϕ ∨AXA(ϕB ψ) ; Γ :: · · · :: · · · )
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The ∧-rule is standard and the D-rule captures the fact that the binary relation
of a model is total by ensuring that every potential dead-end contains at least
one EX-formula. The EB- and AB-rules capture the fix-point nature of the
corresponding formulae according to Prop. 8. These rules do not modify the
histories or variables at all.

Universal Branching (β) Rules.

(∨)
(ϕ ∨ ψ ; Γ :: · · · :: mrk, uev)

(ϕ ; Γ :: · · · :: mrk1, uev1) | (ψ ; Γ :: · · · :: mrk2, uev2)

(EU)
(E(ϕU ψ) ; Γ :: · · · :: mrk, uev)

(ψ ; Γ :: · · · :: mrk1, uev1) | (ϕ ; EXE(ϕU ψ) ; Γ :: · · · :: mrk2, uev2)

(AU)
(A(ϕU ψ)) ; Γ :: · · · :: mrk, uev)

(ψ ; Γ :: · · · :: mrk1, uev1) | (ϕ ; AXA(ϕU ψ) ; Γ :: · · · :: mrk2, uev2)

with:

mrk := mrk1 & mrk2

exclφ(f)(χ) :=
{⊥ if χ = φ
f(χ) otherwise

uev′
1 :=

⎧⎨
⎩

uev1 for the ∨-rule
exclE(ϕU ψ)(uev1) for the EU -rule
exclA(ϕU ψ)(uev1) for the AU -rule

min⊥(f, g)(χ) :=
{⊥ if f(χ) = ⊥ or g(χ) = ⊥

min(f(χ), g(χ)) otherwise

uev :=

⎧⎪⎪⎨
⎪⎪⎩

uev⊥ if mrk1 & mrk2

uev′
1 if mrk2 & not mrk1

uev2 if mrk1 & not mrk2

min⊥(uev′
1, uev2) otherwise

The ∨-rule is standard except for the computation of uev. The EU - and AU -rules
capture the fix-point nature of the EU - and AU -formulae, respectively, according
to Prop. 8. The intuitions of the definitions of the histories and variables are:

mrk: the value of the variable mrk is true if the node is “closed”, so the definition
of mrk just captures the “universal” nature of these rules whereby the parent
node is closed if both children are closed.

excl: the definition of exclφ(f)(ψ) just ensures that exclφ(f)(φ) is undefined.
uev′

1: the definition of uev′
1 ensures that its value is undefined for the principal

formulae of the EU - and AU -rules.
min⊥: the definition of min⊥ ensures that we take the minimum of f(χ) and g(χ)

only when both functions are defined for χ.
uev: if both children are “closed” then the parent is also closed via mrk so we

ensure that uev is undefined in this case. If only the right child is closed,
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we take uev′
1, which is just uev1 modified to ensure that it is undefined for

the principal EU - or AU -formula. Similarly if only the left child is closed.
Finally, if both children are unmarked, we define uev for all formulae that
are defined in the uev of both children but map them to the minimum of
their values in the children, and undefine the value for the principal formula.

Existential Branching Rule.

(EX)

EXϕ1 ; . . . ;EXϕn ; EXϕn+1 ; . . . ;EXϕn+m ; AXΔ ; Λ
:: HCr :: mrk, uev

ϕ1 ; Δ
:: HCr1 :: mrk1, uev1

| · · · | ϕn ; Δ
:: HCrn :: mrkn, uevn

where:

(1) {p,¬p} �⊆ Λ
(2) n+m ≥ 1
(3) ∀i ∈ {1, . . . , n}. ∀j ∈ {1, . . . , len(HCr)}. {ϕi} ∪Δ �= HCr[j]
(4) ∀k ∈ {n+ 1, . . . , n+m}. ∃j ∈ {1, . . . , len(HCr)}. {ϕk} ∪Δ = HCr[j]

with:

HCri := HCr @ [{ϕi} ∪Δ] for i = 1, . . . , n

mrk :=
∨n
i=1 mrki or

∃i ∈ {1, . . . , n}. ∃ψ ∈ {ϕi} ∪Δ.⊥ �= uevi(ψ) > len(HCr)

uevk(·) := j ∈ {1, . . . , len(HCr)} such that {ϕk} ∪Δ = HCr[j]
for k = n+ 1, . . . , n+m

uev(ψ) :=

⎧⎪⎪⎨
⎪⎪⎩

uevj(ψ) if ψ ∈ FmlEU & ψ = ϕj (j ∈ {1, . . . , n+m})
l if ψ ∈ FmlAU ∩Δ &

l = max{uevj(ψ) �= ⊥ | j ∈ {1, . . . , n+m}}
⊥ otherwise

(where max(∅) := ⊥)

Some intuitions are in order:

(1) The EX-rule is applicable if the parent node contains no α- or β-formulae
and Λ, which contains propositional variables and their negations only, con-
tains no contradictions.

(2) Both n and m can be zero, but not together.
(3) If n > 0, then each EXϕi for 1 ≤ i ≤ n is not “blocked” by an ancestor, and

has a child containing ϕi;Δ, thereby generating the required EX-successor;
(4) If m > 0, then each EXϕk for n+1 ≤ k ≤ n+m is “blocked” from creating

its child ϕk;Δ because some ancestor does the job;
HCri: is just the HCr of the parent but with an extra entry to extend the

“history” of nodes on the path from the root down to the ith child.
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mrk: captures the “existential” nature of this rule whereby the parent is marked
if some child is closed or if some child contains a formula whose uev is defined
and “loops” lower than the parent. Moreover, if n is zero, then mrk is set
to false to indicate that this branch is not “closed”.

uevk: for n+ 1 ≤ k ≤ n+m the kth child is blocked by a proxy child higher in
the branch. For every such k we set uevk to be the constant function which
maps every formula to the level of this proxy child. Note that this is just a
temporary function used to define uev as explained next.

uev(ψ): for an EU -formula ψ = E(ψ1 U ψ2) such that there is a principal for-
mula EXϕi with ϕi = ψ, we take uev of ψ from the child if EXψ is “un-
blocked”, or set it to be the level of the proxy child higher in the branch if
it is “blocked”. For an AU -formula ψ = A(ψ1 U ψ2) ∈ Δ, we put uev to be
the maximum of the defined values from the real children and the levels of
the proxy children. For all other formulae, we put uev to be undefined. The
intuition is that a defined uev(ψ) tells us that there is a “loop” which starts
at the parent and eventually “loops” up to some blocking node higher up on
the current branch. The actual value of uev(ψ) tells us the level of the proxy
because we cannot distinguish whether this “loop” is “good” or “bad” until
we backtrack up to that level.

Note that the EX-rule and the id-rule are mutually exclusive since their side-
conditions cannot be simultaneously true.

3.2 Fullpaths, Virtual Successors and Termination of Proof Search

Definition 17. Let G = (W,R) be a directed graph ( e.g. a tableau where R is
just the child-of relation between nodes). A [full]path π in G is a finite [infinite]
sequence x0, x1, x2, . . . of nodes in W such that xiRxi+1 for all xi except the
last node if π is finite. For x ∈ W , an x-[full]path π in G is a [full ]path in G
that has x0 = x.

Definition 18. Let x = (Γ :: HCr :: mrk, uev) be a tableau node, ϕ a formula,
and Δ a set of formulae. We write ϕ ∈ x [Δ ⊆ x] to denote ϕ ∈ Γ [Δ ⊆ Γ ].
The elements HCr, mrk, and uev of x are denoted by HCrx, mrkx, and uevx,
respectively. The node x is marked iff mrkx is set to true.

Definition 19. Let x be an EX-node in a tableau T ( i.e. an EX-rule was
applied to x). Then x is also called a state and the children of x are called
pre-states. Using the notation of the EX-rule, an EX-formula EXϕi ∈ x is
blocked iff n+1 ≤ i ≤ n+m. For every blocked EXϕi ∈ x there exists a unique
pre-state y on the path from the root of T to x such that {ϕi} ∪ Δ equals the
set of formulae of y. We call y the virtual successor of EXϕi. For every not
blocked EXϕi of x, the successor of EXϕi is the ith child of the EX-rule.

Note that a state is just another term for an EX-node, whereas a pre-state can
be any type of node (it may even be a state).
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Proposition 20 (Termination). Let φ ∈ Fml be a formula in negation normal
form. Any tableau T for a node ({φ} :: · · · :: · · · ) is a finite tree, hence the
procedure that builds a tableau always terminates.

Proof. It is obvious that T is a tree. Although it is not as trivial as it might
seem to be at first sight, it is not too hard to show that every node in T can
contain only formulae of the extended closure ecl(φ∧EX(p0∨¬p0)). It is obvious
that ecl(φ ∧ EX(p0 ∨ ¬p0)) is finite. Hence, there are only a finite number of
different sets that can be assigned to the nodes, in particular the pre-states.
As the EX-rule guarantees that all pre-states on a path possess different sets of
formulae, there can only be a finite number of pre-states on a path. Furthermore,
from any pre-state, there are only a finite number of consecutive nodes on a path
until we reach a state. As every state in a path is followed by a pre-state and
there are only a finite number of pre-states, all paths in T must be finite. This,
the obvious fact that every node in T has finite degree, and König’s lemma
complete the proof. ��

3.3 Soundness and Completeness

Let φ ∈ Fml be a formula in negation normal form and T an expanded tableau
with root r = ({φ} :: [] :: mrk, uev): that is, the initial formula set is {φ} and
the initial HCr is the empty list.

Theorem 21. If r is not marked, then there exists a Hintikka structure for φ.

Theorem 22. For every marked node x = (Γ :: · · · :: · · · ) in T , the formula∧
ϕ∈Γ ϕ is not satisfiable. In particular, if r is marked, then φ is not satisfiable.

Detailed proofs can be found in the extended version of this paper
(users.rsise.anu.edu.au/∼florian).

3.4 A Fully Worked Example

As an example, consider the formula E(p1 U p2) ∧ ¬E(�U p2) which is obvi-
ously not satisfiable. Converting the formula into negation normal form gives
us E(p1 U p2)∧A(⊥B p2). Hence, any expanded tableau with root E(p1 U p2)∧
A(⊥B p2) should be marked.

Figure 1 and Fig. 2 show such a tableau where the root node is node (1)
in Fig. 1 and where Fig. 2 shows the sub-tableau rooted at node (5). Each
node is classified as a ρ-node if rule ρ is applied to that node in the tableau.
The unlabelled edges go from states to pre-states. Dotted frames indicate that
the sub-tableaux at these nodes are not shown because they are very simi-
lar to sub-tableaux of other nodes: that is node (6a) behaves the same way
as node (3a). Dots “· · · ” indicate that the corresponding values are not im-
portant because they are not needed to calculate the value of any other his-
tory or variable. The partial function UEV maps the formula E(p1 U p2) to 1
and is undefined otherwise as explained below. The history HCR is defined as
HCR := [{E(p1 U p2), A(⊥B p2)}].

users.rsise.anu.edu.au/~florian
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(1) ∧-node
E(p1U p2) ∧ A(⊥B p2)

[] :: true,uev⊥

α ��
(2) AB-node
E(p1 U p2) ; A(⊥B p2)

[] :: true,uev⊥

α

��
(3a) ∧-node
E(p1 U p2) ; ¬p2 ; ¬p0 ∧ p0

[] :: true,uev⊥

α

��

(3) ∨-node
E(p1U p2) ; ¬p2 ; ⊥ ∨AXA(⊥B p2)

[] :: true,uev⊥

β1��

β2

��
(3a’) id-node
E(p1 U p2) ; ¬p2 ; ¬p0 ; p0

[] :: true,uev⊥

(3b) EU -node
E(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

[] :: true,uev⊥

β1

�����������������
β2

��
(4a) id-node
p2 ; ¬p2 ; AXA(⊥B p2)

[] :: true,uev⊥

(4b) EX-node
p1 ; EXE(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

[] :: true, · · ·

��
(5) AB-node
E(p1 U p2) ; A(⊥B p2)
HCR :: false, UEV

Fig. 1. An example: a tableau for E(p1 U p2) ∧A(⊥B p2)

The marking of the nodes (1) to (4a) in Fig. 1 with true is straightfor-
ward. Note that ⊥ is just an abbreviation for ¬p0 ∧ p0 to save some space
and make things easier for the reader; the tableau procedure as described in
this paper does not know about the symbol ⊥. It is, however, not a problem to
adapt the rules so that the tableau procedure can handle � and ⊥ directly. For
node (5), our procedure constructs the tableau shown in Fig. 2. The leaf (7b)
is an EX-node, but it is “blocked” from creating the desired successor contain-
ing {E(p1U p2), A(⊥B p2)} because there is a j ∈ IN such that HCr7b[j] =
HCR[j] = {E(p1 U p2), A(⊥B p2)}: namely j = 1. Thus the EX-rule com-
putes UEV (E(p1 U p2)) = 1 as stated above and also puts mrk7b := false. As
the nodes (7a) and (6a) are marked, the function UEV is passed on to the
nodes (6b), (6), and (5) according to the corresponding β- and α-rules.

The crux of our procedure happens at node (4b) which is an EX-node with
HCr4b = [] and hence len(HCr4b) = 0. The EX-rule therefore finds a child
node (5) and a formula E(p1 U p2) in it such that 1 = UEV (E(p1 U p2)) =
uev5(E(p1 U p2)) > len(HCr4b) = 0. That is, node (4b) “sees” a child (5) that
“loops lower”, meaning that node (5) is the root of an “isolated” subtree which
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(5) AB-node
E(p1U p2) ; A(⊥B p2)
HCR :: false, UEV

α ��
(6) ∨-node
E(p1U p2) ; ¬p2 ; ⊥ ∨AXA(⊥B p2)

HCR :: false, UEV

β1

�����������������
β2

��
(6a) ∧-node
E(p1 U p2) ; ¬p2 ; ¬p0 ∧ p0

HCR :: true,uev⊥

(6b) EU -node
E(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

HCR :: false, UEV

β1

�����������������
β2

��
(7a) id-node
p2 ; ¬p2 ; AXA(⊥B p2)
HCR :: true,uev⊥

(7b) EX-node
p1 ; EXE(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

HCR :: false, UEV

��
blocked by node (5)

Fig. 2. An example: a tableau for E(p1 U p2) ∧ A(⊥B p2) (continued)

does not fulfil its eventuality E(p1 U p2). Thus the EX-rule sets mrk4b = true,
marking (4b) as “closed”. The propagation of true to the root is then just via
simple β- and α-rule applications.

3.5 The One-Pass Algorithm and Its Complexity

Most tableau-based algorithms apply the rules in a particular order: namely, ap-
ply all the α- and β-rules until none are applicable, and then apply the EX-rule
once. Of course, no more rules are applied if the id-rule is applicable to close
the branch. We have designed the rules so that they naturally capture this strat-
egy, thereby giving a non-deterministic algorithm for constructing/traversing the
tableau by just applying any one of the rules that are applicable. By fixing an
arbitrary rule order and an arbitrary formula order, we can safely determinise
this algorithm.

The use of histories and variables gives rise to an algorithm that constructs
and traverses a tableau (deterministically) at the same time. On its way down
the tableau, it constructs the set of formulae and the histories of a node by using
information from the parent node; and on its way up, it synthesises the variables
of a node according to the values of the variables of its children. Both steps are
described by the rule that is applied to the node.

As soon as the algorithm has left a node on its way up, there is no need to
keep the node in memory, it can safely be reclaimed as all important information
has been passed up by the variables. Hence, the algorithm requires just one pass.
Moreover, at any time, it only has to keep the current branch of the tableau in
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memory. The final result of the decision procedure can be obtained by looking
at the variable mrk of the root which is the last node that has its variables set.

Of course, it is not always necessary to build the entire tableau. If, for ex-
ample, the first child of an EX-rule is marked, the algorithm can mark the
parent without having to look at the other children. (It is easy to see that if
a node x is marked then the value of uevx is irrelevant and does not need to
be calculated.) Dually, if the left child of a β-node is unmarked and has uev⊥
then there is no need to explore the right child since we can safely say that the
parent is unmarked and has uev⊥. Other optimisations are possible and some
of them are incorporated in our implementation in the Tableau Work Bench
(twb.rsise.anu.edu.au/twbdemo), a generic tableau engine designed for rapid
prototyping of (propositional) tableau calculi [1]. The high-level code of the
prover for CTL is also visible there using the special input language designed
for the TWB.

Theorem 23. The tableau algorithm for CTL outlined in this paper runs in
double exponential deterministic time and needs exponential space.

A detailed proof can be found in the extended version of this paper
(users.rsise.anu.edu.au/∼florian).
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