
On the Notion of Vacuous Truth

Marko Samer1 and Helmut Veith2

1 Department of Computer Science
Durham University, UK

marko.samer@durham.ac.uk
2 Institut für Informatik (I-7)

Technische Universität München, Germany
veith@in.tum.de

Abstract. The model checking community has proposed numerous definitions
of vacuous satisfaction, i.e., formal criteria which tell whether a temporal logic
specification holds true on a system model for the intended reason. In this paper
we attempt to study the notion of vacuous satisfaction from first principles. We
show that despite the apparently vague formulation of the vacuity problem, most
proposed notions of vacuity for temporal logic can be cast into a uniform and
simple framework, and compare previous approaches to vacuity detection from
this unified point of view.

1 Introduction

193. What does this mean: the truth of a proposition is certain?
L. Wittgenstein, On Certainty [35]

Modern model checkers are equipped with capabilities which go well beyond deciding
the truth of a temporal specification ϕSpec on a system S. Most importantly, when a
model checker determines that the specification is violated, i.e., S �|= ϕSpec, it will out-
put a counterexample, for instance a program trace, which illustrates the failure of the
specification ϕSpec on S. This counterexample is a piece of evidence which the user can
analyze to understand and diagnose the problem. Since counterexamples should be per-
ceptually and mathematically simple, counterexample generation has both algorithmic
and psychological aspects [12,13,17].

In this paper, we are concerned with the dual situation when the model checker as-
serts S |= ϕSpec. Industrial practice shows that 20% of successful model checking
passes are vacuous, i.e., ϕSpec is satisfied for some trivial or unintended reason [4]. A
classical example of vacuity is antecedent failure, where the model checker correctly
asserts

S |= AG (trigger event⇒ ϕ),

but a closer inspection shows that in fact trigger event is always false, and thus the
implication becomes vacuously true. The total absence of trigger event may be an in-
dicator of erroneous system behavior, and should be reported to the user.

A model checker with automated vacuity detection thus has three kinds of outputs:

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 2–14, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Notion of Vacuous Truth 3

Model Theoretic Result Supporting Evidence

(i) S �|= ϕSpec Counterexample
(ii) S |= ϕSpec vacuously Explanation of Vacuity

(iii) S |= ϕSpec non-vacuously Witness of Non-Vacuity

The central question in the vacuity literature concerns the line which separates cases (ii)
and (iii). In other words: When is a specification vacuously satisfied? Similar as coun-
terexample generation, vacuity detection also relies on algorithmic and psychologi-
cal insights. A recent thread of papers [1,3,4,5,6,8,11,15,18,19,22,23,25,27,28,30,33]
have given different, sometimes competing, definitions, including one by the present
authors [28,30].

The controversial examples and discussions of vacuity in the literature have their
origin in a principal limitation of formal vacuity detection: Declaring ϕSpec to be vacu-
ous on S means that the specification ϕSpec is inadequate to capture the desired system
behavior. Adequacy of specifications however is a meta-logical property that cannot be
addressed inside the temporal logic, because we need domain knowledge to distinguish
adequate specifications from inadequate ones.

The current paper develops the line of thought started in [30] in that it focuses on the
notion of vacuity grounds as the main principle in vacuity detection. Vacuity grounds
are explanations of S |= ϕSpec, which entail the specification, but are perceptionally
simpler and logically stronger. Formally, a vacuity ground is a formula ϕFact such that

S |= ϕFact and ϕFact |= ϕSpec

where ϕFact is simpler than ϕSpec; criteria for simplicity will be discussed below. Thus,
vacuity grounds can be viewed as a form of interpolants between S and ϕSpec.

Employing vacuity grounds, it is easy to resolve conflicts between different notions
of vacuity: the same specification may be tagged as vacuous or non-vacuous, depending
on which vacuity grounds the verification engineer is willing to admit. In the antecedent
failure example mentioned above, the natural vacuity ground is AG¬trigger event.
Equipped with this feedback, the verification engineer can draw a well-informed con-
clusion about vacuous satisfaction. We thus arrive at a revised output scheme for model
checkers which support vacuity detection:

Model Theoretic Result Supporting Evidence

(i) S �|= ϕSpec Counterexample
(ii) S |= ϕSpec Vacuity grounds from which

the engineer decides on vacuity

We believe that our approach yields the first genuinely semantical definition of vacuity.
In the rest of the paper, we compare our notion of vacuity with existing definitions, and
show how our approach subsumes and uniformly explains a significant part of previous
work. Moreover, we show that our approach captures cases of vacuous satisfaction not
covered in the literature.

In Section 2, we review the capabilities and limitations of the prevailing definitions of
vacuity – which we call unicausal semantics – and argue that they have limited explana-
tory power. As they are intimately tied to the syntax of ϕSpec, two logically equivalent
specifications may become vacuous in one case and non-vacuous in the other.

4 M. Samer and H. Veith

Section 3 introduces our interpolation-based vacuity framework. We show that uni-
causal semantics yield a specific class of vacuity grounds related to uniform interpo-
lation, thus embedding unicausal semantics into our framework. We briefly review our
previously published vacuity methodology based on temporal logic query solving [30],
and derive basic complexity results for the general case presented here.

Technical Preliminaries. We assume the reader is familiar with the temporal logics
CTL and LTL, Kripke structures, and other standard notions. For Kripke structures S
and S′ we write S ∼=cnt S′ to denote that S and S′ are counting-bisimilar, and we
write S ∼= S′ to denote that S and S′ are bisimilar. We write ϕ(ψ) to denote that ψ
occurs once or several times as subformula in ϕ; we write ϕ(x) to denote the formula
ϕ[ψ ← x] obtained from ϕ by replacing all occurrences of ψ by x. The formula ϕ(x)
is called monotonic in x if α ⇒ β implies ϕ(α) ⇒ ϕ(β). It holds that ϕ is monotonic
in x if all occurrences of x are positive, and dually for anti-monotonicity. We say ϕ is
(semantically) unipolar in x if ϕ is either monotonic or anti-monotonic in x; otherwise,
we call ϕmultipolar. In the following, when we speak about unipolar formulas, we shall
without loss of generality assume monotonicity.

2 Unicausal Vacuity Semantics

199. The reason why the use of the expression “true or false” has something misleading
about it is that it is like saying “it tallies with the facts or it doesn’t”, and the very thing
that is in question is what “tallying” is here. [35]

The irrelevance of a subformula for the satisfaction of a temporal specification ϕSpec is
a natural indicator for vacuity: If on a model S, subformulaψ of ϕSpec can be arbitrarily
modified without affecting the truth of the specification,ϕSpec is declared vacuous. This
approach [4,5] has been the seminal paradigm for most of the research on vacuity. It has
the obvious advantage that the vacuity of the specification can be (syntactically) traced
back to a subformula, and that (non)-vacuity can be explained to the engineer on the
grounds of the temporal logic. Syntactic vacuity however is usually hard to evaluate and
not “robust” [1], i.e., dependent on the syntax of the specification and on changes in the
system which are not related to the specification. The quest for efficiency and robustness
has motivated new semantics for vacuity [1,8,18] which quantify over the allegedly
vacuous subformulas. We shall refer to these semantics as unicausal semantics, since
they all are attempts to obtain a (unique) formula ∀x.ϕ(x) – which we call a unicausal
vacuity ground – such that model checking S |= ∀x.ϕ(x) determines the vacuity of ϕ
on S with respect to subformula ψ. The different possibilities to define the universal
quantifier give rise to different unicausal semantics:

1. In the formula semantics, ∀x ranges over all truth functions for x over the lan-
guage L of S, i.e., ∀x.ϕ(x) amounts to a (possibly infinitary) big conjunction of
formulas

∧
θ∈L ϕ(θ).

For the following definitions, let � be a new atomic proposition which occurs neither
in S nor in ϕ. Given a structure S, a �-labeling � labels some states of S with �,
resulting in a structure �(S).

On the Notion of Vacuous Truth 5

Table 1. Evidence for non-vacuity of S |= ϕ(ψ) with respect to ψ

Formula Semantics [4,5]

A formula θ over the language of S such that S �|= ϕ(θ).

Structure Semantics [1]

A �-labeling � of S, such that �(S) �|= ϕ(�).

Tree Semantics [1]

A new structure S′ ∼=cnt S together with a �-labeling � of S′, such that �(S′) �|= ϕ(�).

Bisimulation Semantics [18]

A new structure S′ ∼= S together with a �-labeling � of S′, such that �(S′) �|= ϕ(�).

2. In the structure semantics, ∀x ranges over all labelings of S, i.e., S |= ∀x.ϕ(x)
iff for all �-labelings � it holds that �(S) |= ϕ(�).

3. In the tree semantics, ∀x ranges over all labelings of structures counting-bisimilar
to S, i.e., S |= ∀x.ϕ(x) iff for all S′ ∼=cnt S and �-labelings � of S′ it holds
that �(S′) |= ϕ(�).

4. In the bisimulation semantics, ∀x ranges over all labelings of structures bisimilar
to S, i.e., S |= ∀x.ϕ(x) iff for all S′ ∼= S and �-labelings � of S′ it holds
that �(S′) |= ϕ(�).

Importantly, all four unicausal semantics coincide when ϕ(x) is monotonic in x; in this
case, ∀x.ϕ(x) is equivalent to ϕ(false) which can be easily model checked [22,23].
Thus, the differences between the unicausal semantics appear only when ϕ(x) is multi-
polar with respect to x.

When comparing the different notions of unicausal vacuity, it is natural to consider
the evidence that the model checker can provide in case of non-vacuity, cf. item (iii)
in the first output scheme of Section 1. In the literature, this evidence was referred to
as interesting witness [5,22,23]. Table 1 summarizes the evidence we obtain for the
different unicausal semantics above.

Examples illustrating the differences between these semantics are shown in Table 2.
The specification there demonstrate that even on the small structures of Figure 1, the
unicausal semantics differ tremendously.

Remark 1. The structure quantifier guarantees ∀x.ϕ(x) |= ϕ(ψ) only when ψ is a state
formula. In case of LTL, this means that ψ is either a propositional subformula or the
whole specification.

Remark 2. The quantifiers used for unicausal vacuity detection have been studied inde-
pendently of vacuity. The extension of a modal logic by the formula quantifier remains
a modal logic, because an infinitary temporal formula cannot distinguish bisimilar mod-
els [2]. The structure quantifier can be used to distinguish bisimulation-equivalent
models, and thus, the resulting logic is not a modal logic. (For example, the formula
(∀x.x) ∨ (∀x.¬x) holds true only on a structure with a single state.) The computational

6 M. Samer and H. Veith

p

S2 S3

pp

S1

pq q

S4

Fig. 1. Examples of Kripke structures

Table 2. Vacuity of ϕ1 = A(pUAG(q → ¬p)),ϕ2 = AX p∨AX¬p,ϕ3 = AG p∨AG¬p,
and ϕ4 = AG(p→ AX¬p) with respect to p under different vacuity semantics. The structures
are given in Figure 1 and Figure 2. Note that the non-vacuity witness S4 for formula semantics
is the only witness taken from Figure 1.

Formula Structure Tree Bisimulation

S1 |= ϕ1(p) vacuous vacuous vacuous vacuous

S2 |= ϕ2(p) vacuous vacuous vacuous S′
0 �|= ϕ2(�)

S2 |= ϕ3(p) vacuous vacuous S′
3 �|= ϕ3(�) S′

3 �|= ϕ3(�)

S3 |= ϕ3(p) vacuous S′
3 �|= ϕ3(�) S′

3 �|= ϕ3(�) S′
3 �|= ϕ3(�)

S4 |= ϕ4(p) S4 �|= ϕ4(q) S′
4 �|= ϕ4(�) S′

4 �|= ϕ4(�) S′
4 �|= ϕ4(�)

price to pay for the loss of modality is the undecidability of the quantified logic [16]. In
combination with CTL, the tree quantifier is able to count the number of successors of a
state [16], and thus able to break bisimulation-equivalence. While not a modal logic, the
resulting logic is quite close to modal logic and retains decidability. The bisimulation
quantifier has been rediscovered in the literature many times, and in different contexts,
by the names of “bisimulation quantifier” [14], “Pitts quantifier” [34], “amorphous se-
mantics” [16,18], and others. It is the natural quantifier to be used in the context of
modal logic. Since it does not break bisimulation classes, it yields a conservative exten-
sion of a temporal logic. Uniform interpolation of the μ-calculus has been proved by
elimination of bisimulation quantifiers [14].

Remark 3. Recent research has also considered vacuity detection for extensions of LTL
by regular expressions [6,8]. This approach can also be viewed as an instance of uni-
causal semantics; for the sake of simplicity, however, we restrict the current paper to
temporal logics.

2.1 Ramifications of Unicausal Vacuity

In this section, we discuss several problems and anomalies which arise from unicausal
vacuity notions.

#1 Explanatory Power of Non-Vacuity Assertions
What confidence does the user gain in the model checking result when the model
checker asserts non-vacuity? Recall Table 1 for the different notions of vacuity
from this dual point of view:

On the Notion of Vacuous Truth 7

p, �

p

p

S′
0

S′
3

p, �p q, �

S′
4

Fig. 2. Non-vacuity witnesses

• In formula semantics, the user knows that changing the specification ϕ(ψ) into
ϕ(θ) affects the truth value of the specification. Indeed, this explains the rele-
vance of subformula ψ to the specification.
• In structure semantics, tree semantics, and bisimulation semantics, however,

the evidence for non-vacuity is extremely weak: We change the specifica-
tion ϕ(ψ) intoϕ(�), where � is a new propositional symbol. Then we argue that
the system S (or a bisimilar system S′) can be labeled with � in such a way
that ϕ(�) becomes false. (Thus, our non-vacuity argument is tantamount to for-
mula semantics on a modified system with a new “imaginary” variable �.) It is
not clear how the introduction of � – which does not carry a meaning in the sys-
tem S – can give information about the relevance of subformula ψ to the user.
Table 2 and its accompanying Figures 1 and 2 clearly indicate this problem.

We see only one sound interpretation of these semantics: Suppose we know
that our system S is a coarse abstraction of the real system, i.e., our model S
is hiding many variables. Then the non-vacuity assertion states that it is con-
sistent to assume the existence of a hidden variable � in the system which, if it
were revealed, would give proof of non-vacuity in terms of formula semantics.
The three semantics differ in the role of the imaginary variable �: In structure
semantics, variable � is uniquely defined on each state of the abstract system,
while in tree semantics and bisimulation semantics, variable � depends on the
execution history. A first exploration of the relationship between vacuity and
abstraction was started in [18].

We conclude that only formula semantics gives confidence in the non-vacuity as-
sertion. The other semantics provide tangible non-vacuity evidence only in very
specific circumstances.

#2 Explanatory Power of Vacuity Assertions
What conclusions can the user draw from an assertion of vacuity? As temporal
logic does not have quantifier elimination (cf. Section 3), it is in many cases impos-
sible to write the vacuity ground ∀x.ϕ(x) in plain temporal logic. The unicausal
semantics, however, have the useful feature that each assertion of vacuity actually
points out one or several subformulas which cause vacuous satisfaction. Comparing
the different unicausal semantics, we obtain the following picture:

• In formula semantics, the vacuity assertion is relatively easy to understand: it
says that no syntactic change in the subformulas of interest causes the specifi-
cation to fail.

8 M. Samer and H. Veith

• In the other semantics, we are facing a problem dual to #1: The vacuity as-
sertion expresses the fact that no hidden imaginary variable � can make ϕ(�)
false. This criterion is stronger than the intuitive notion of vacuity – i.e., it will
detect vacuity only in few cases.

We conclude that formula semantics again yields the most natural notion of uni-
causal vacuity, while the other three semantics report vacuity too rarely. This is
dual to our observation in #1 that the semantics give weak evidence of non-vacuity.

#3 Expressive Power of Subformula Quantification
Vacuity detection by quantification over subformula occurrences entails a number
of limitations discussed below.

#3.1 Pnueli’s Observation
Pnueli [26] pointed out that a satisfied specification AGAF p may be con-
sidered vacuous, when the model checker observes that the stronger formula
AG p is true on the system. None of the unicausal vacuity notions is able to
detect this notion of vacuity.

#3.2 Syntactically Unrelated Observations
Following Pnueli’s example, there are arguable cases of vacuity where no syn-
tactic relationship exists between the specification and the observation. For ex-
ample, for a specification EF p, the model checker may observe that in fact
AX p holds. It is clear that this form of vacuity cannot be detected by uni-
causal semantics.

#3.3 Specifications with Single Propositions
The issues raised in #3.1 and #3.2 share the syntactic property that they contain
a single occurrence of a propositional variable p. Consequently, the universal
quantifier eliminates the truth-functional dependence on the propositional vari-
able, and the quantified specification is either a tautology or a contradiction.
For example, in Pnueli’s example, quantification yields the formulas AG false
and AGAF false both of which are equivalent to false.1 This proves that the
observations (vacuity grounds) such as AG p from #3.1 and AX p from #3.2
are impossible in unicausal semantics.

#3.4 Vacuity by Disjunction
In the syntactic view of unicausal vacuity, certain specifications are always
vacuous. In particular, if a disjunctive specification ϕ∨ψ holds true in a struc-
ture, then either ϕ ∨ false or false ∨ ψ holds true, and thus, the specification is
inevitably vacuous.

#3.5 Stability Under Logical Equivalence
As explained in #3.4 above, ϕ ∨ ϕ is vacuous by construction, and thus, ev-
ery specification is equivalent to a vacuous specification. A more interesting
example is given by EF p which is equivalent to p ∨ EXEF p. In the second
formulation, the specification is always vacuous.

1 Recall that in the unipolar case, universal quantification over a variable x is tantamount to
setting it false.

On the Notion of Vacuous Truth 9

Getting back to Pnueli’s problem in #3.1, we even see that a reformulation
of the specification AGAF p into the equivalent specification AG(p∨AF p)
enables us to quantify out the subformulaAF p, yielding a formula ∀x.AG(p∨
x) which is equivalent to AG(p ∨ false), and thus to AG p. Similarly, the
problem raised in #3.3 can be solved using the specification (EF p) ∨ (AX p)
instead of the (logically equivalent) specification EF p.

#4 Causality
Our final concern (and indeed the original motivation for this research) is a fun-
damental issue raised by unicausal semantics. Given a specification ϕ(ψ) and oc-
currences of a subformula ψ, each unicausal semantics associates the vacuity of ϕ
with respect to ψ with a uniquely defined formula ∀x.ϕ(x). Not only does such
a construction revert the natural order between cause (S |= ∀x.ϕ(x)) and effect
(S |= ϕ(ψ)), it is also independent of the system S. Thus, unicausal semantics
represents a fairly simple instance of logical abduction.

3 Interpolation-Based Vacuity Detection

200. Really “The proposition is either true or false” only means that it must be pos-
sible to decide for or against it. But this does not say what the ground for such a
decision is like. [35]

Recall from Section 1 that we define a vacuity ground as a simple formula ϕFact such
that

S |= ϕFact and ϕFact |= ϕSpec. (1)

Vacuity grounds serve as feedback for the verification engineer which helps him/her
to decide whether the specification ϕSpec is vacuously satisfied. For example, in the
cases #3.1, #3.2, and #3.4 above, natural candidates for vacuity grounds are AG p,
AX p, and ϕ, respectively. In general, a model checker may output multiple vacuity
grounds for a single specification.

When the vacuity grounds are chosen among modal temporal formulas, definition (1)
is equivalent to

χS |= ϕFact and ϕFact |= ϕSpec. (2)

where χS is the temporal formula which characterizes S up to bisimulation equiva-
lence. Thus, the vacuity ground ϕFact is an interpolant between the system descrip-
tion χS and the specificationϕSpec. Consequently, vacuity analysis can be viewed as the
process of finding simple interpolants between the system and the specification. Note
that, technically, ϕSpec is usually itself a Craig interpolant, but not useful in vacuity
detection. Thus, we need different notions of simplicity than the restriction to common
variables.

3.1 Unicausal Vacuity Grounds and Interpolation

The unicausal vacuity grounds of Section 2 represent a specific construction principle
for vacuity grounds using universal quantification, i.e., we have

10 M. Samer and H. Veith

S |= ∀x.ϕ(x) and ∀x.ϕ(x) |= ϕ(ψ) (3)

with the special case

S |= ϕ(false) and ϕ(false) |= ϕ(ψ) (4)

when ϕ(ψ) is unipolar. Since the implication ∀x.ϕ(x) |= ϕ(ψ) is a consequence of
the construction, a model checking result S |= ∀x.ϕ(x) indeed says that ∀x.ϕ(x) is
one vacuity ground. Consequently, with the exception of the special case mentioned
in Remark 1, unicausal vacuity semantics indeed has a natural embedding into our
framework.

The construction principle for unicausal vacuity grounds is itself closely related to
interpolation. One of the main logical motivations for the introduction of propositional
temporal quantifiers are proofs of Craig interpolation. In particular, uniform Craig in-
terpolation of the μ-calculus was shown by quantifier elimination of bisimulation quan-
tifiers [14]: Given a formula α and β where α |= β, an interpolant is obtained by the
quantified formula ∀x.β, where x is the tuple of variables occurring only in β. By con-
struction, it holds that

α |= ∀x.β and ∀x.β |= β (5)

whence it is sufficient to show that ∀x.β is equivalent to a quantifier-free formula to
prove interpolation for the μ-calculus. Since this construction depends only on β and x,
∀x.β is called a post-interpolant or right interpolant. (Existential quantification of α
naturally yields pre-interpolants or left interpolants.)

CTL and LTL are well known not to have interpolation [24] because CTL and LTL
do not admit elimination of bisimulation quantifiers. The quantified extensions of CTL
and LTL, however, do have uniform interpolation, and the post-interpolants are nat-
urally obtained by universal quantification analogously to (5). Consequently, we con-
clude that unicausal vacuity grounds are generalizations of post-interpolants: they are
the weakest formulas which imply ϕSpec without mentioning certain variables or sub-
formulas that occur in ϕSpec.

Let us note that our adversarial discussion of unicausal semantics in Section 2 does
not inhibit the use of ∀x.ϕ(x) as vacuity ground in the sense described here. The dis-
cussion of Section 2 only shows that no unicausal semantics by itself can adequately
solve the problem of vacuity detection.

3.2 Computation of Vacuity Grounds

The discussion of Section 3.1 shows that the unicausal semantics yield a natural class of
vacuity grounds. In the important unipolar case (cf. condition (4)), the vacuity grounds
ϕ(false) satisfy all important criteria: they are simpler than the specification, they are
easy to model check, and they represent tangible feedback for the verification engineer.

When the quantifier in ∀x.ϕ(x) cannot be eliminated, the situation is more compli-
cated. As discussed in Section 2 (#2), the semantics of quantified temporal formulas has
only limited explanatory value concerning vacuity. Moreover, the examples in Table 2
demonstrate that the verification engineer may obtain different vacuity feedback from

On the Notion of Vacuous Truth 11

Unsatisfied Ground

Ground

true

false

S
ϕSpec

Fig. 3. In the lattice of temporal properties, system S partitions the properties into satisfied prop-
erties (shaded dark) and unsatisfied ones. Vacuity grounds are located lower in the lattice order
than the specification, but inside the shaded area of satisfied properties. The closer a vacuity
ground is to the white area, the stronger is the intuitive strength of the vacuity assertion. The
figure shows one satisfied vacuity ground and one unsatisfied ground.

different unicausal semantics, i.e., the vacuity ground for one semantics may hold true,
while it is false for the other semantics. To appreciate this situation, the engineer has to
understand the subtleties of the different semantics.

As argued in Section 2, it is important to obtain vacuity grounds different from the
unicausal grounds. The search space for these vacuity grounds is illustrated in Figure 3.
Not surprisingly, finding small vacuity grounds has the same complexity as the respec-
tive decision problem for validity: Let VAC-CTL be the decision problem if for a given
structure S, a CTL specificationϕSpec, and an integer k < |ϕSpec|, there exists a vacuity
ground ϕFact such that |ϕFact| ≤ k and ϕSpec �≡ ϕFact. VAC-LTL is defined analogously
for LTL. Then the following theorem is not hard to show:

Theorem 1. VAC-CTL is EXPTIME-complete and VAC-LTL is PSPACE-complete.

Thus, the complexity is not worse than checking ϕFact |= ϕSpec. Nevertheless, it is a
reasonable strategy to focus on methods which systematically enumerate perceptionally
simple candidates for vacuity grounds; these methods may be based both on heuristics
and formal considerations. As in the unicausal semantics, candidatesϕFact will typically
be chosen in such a way that ϕFact |= ϕSpec follows by construction, and S |= ϕFact is
determined by the model checker, cf. condition (1).

To obtain candidate formulas without expensive validity checks, one can systemat-
ically compute the closure of the specification under two syntactic operations, namely
by rewriting and strengthening:

(i) Replace subformulas of the specification by equivalent subformulas typically in-
volving disjunction, e.g., EF p by p ∨EXEF p, or AF p by p ∨AXAF p, etc.2

2 Recent work by the authors [28,29,31] has characterized the distributivity over conjunction
of temporal operators which yields also an analogous characterizations for disjunction. Such
characterizations can be used to support rewriting of specifications.

12 M. Samer and H. Veith

(ii) Replace subformulas by stronger non-equivalent subformulas, e.g., replace whole
subformulas by false as in unicausal semantics, AF p by p as in Pnueli’s example,
EF p by AX p, AX p ∨AX¬p by AG p, etc.

While this heuristic enumeration of antecedents naturally samples the space of possible
vacuity grounds for ϕSpec, each candidate has to be model checked separately, similar
as in unicausal semantics.

An alternative systematic approach for finding antecedents by strengthening subfor-
mulas in the unipolar case was presented in a predecessor paper [30] which introduced
parameterized vacuity, a new approach to vacuity using temporal logic query solving.
A temporal logic query solver [9] is a variant of a model checker which on input of
a formula ϕ(x) and a model S finds the strongest formulas ψ such that S |= ϕ(ψ).
Such a formula ψ is called a solution of ϕ(x) in S. To use temporal logic queries for
computing vacuity grounds, we are interested in solutions ψ such that ϕ(ψ) is a vacuity
ground. In this way we are able to reduce vacuity detection to temporal logic query
solving [30]. Our approach was motivated by the failure of unicausal semantics to han-
dle Pnueli’s problem. Recall that unicausal semantics cannot find vacuity ground AG p
for AFAG p, cf. Section 2 (#3.1). Instead of reducing ϕ(ψ) to a unicausal ground
ϕ(false), we use a temporal logic query solver to find a simple formula θ which im-
plies ψ. Then, by monotonicity, it follows that ϕ(θ) |= ϕ(ψ). Thus, we obtain a vacuity
ground ϕ(θ) which explains ϕ(ψ) and solves Pnueli’s problem. Several algorithms for
solving temporal logic queries have been proposed in the literature; in particular, sym-
bolic algorithms [9,28,32], automata-theoretic algorithms [7], and algorithms based on
multi-valued model checking [10,20,21].

4 Conclusion

We have argued that vacuity of temporal specifications cannot be adequately captured
by formal criteria. As vacuity expresses the inadequacy of a specification, it needs to
be addressed by the verification engineer. We have therefore proposed a new approach
to vacuity where the model checker itself does not decide on vacuity, but computes an
interpolant – called a vacuity ground – which expresses a simple reason that renders the
specification true. Candidate formulas for the interpolants can be obtained from existing
notions of unicausal vacuity, from heuristics, and from temporal logic query solving.
Equipped with the feedback vacuity grounds, the verification engineer can decide if the
specification is vacuously satisfied.

The current paper has focused on the logical nature of vacuous satisfaction rather
than on practical vacuity detection algorithms. We believe that future work should
address the systematic computation of vacuity grounds, because vacuity is in the eye
of the beholder.

Acknowledgments. The authors are grateful to Arie Gurfinkel, Kedar Namjoshi, and
Richard Zach for discussions on vacuity.

On the Notion of Vacuous Truth 13

References

1. Armoni, R., Fix, L., Flaisher, A., Grumberg, O., Piterman, N., Tiemeyer, A., Vardi, M.Y.:
Enhanced vacuity detection in linear temporal logic. In: Hunt Jr., W.A., Somenzi, F. (eds.)
CAV 2003. LNCS, vol. 2725, pp. 368–380. Springer, Heidelberg (2003)

2. Barwise, J., van Benthem, J.: Interpolation, preservation, and pebble games. Journal of Sym-
bolic Logic 64(2), 881–903 (1999)

3. Beatty, D.L., Bryant, R.E.: Formally verifying a microprocessor using a simulation method-
ology. In: DAC 1994. Proc. 31st Annual ACM IEEE Design Automation Conference, pp.
596–602. ACM Press, New York (1994)

4. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in ACTL formu-
las. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 279–290. Springer, Heidelberg
(1997)

5. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in temporal
model checking. Formal Methods in System Design (FMSD) 18(2), 141–163 (2001)

6. Ben-David, S., Fisman, D., Ruah, S.: Temporal antecedent failure: Refining vacuity. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 492–506.
Springer, Heidelberg (2007)

7. Bruns, G., Godefroid, P.: Temporal logic query checking. In: LICS 2001. Proc. 16th Annual
IEEE Symposium on Logic in Computer Science, pp. 409–417. IEEE Computer Society
Press, Los Alamitos (2001)

8. Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular vacuity. In:
Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 191–206. Springer,
Heidelberg (2005)

9. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 450–463. Springer, Heidelberg (2000)

10. Chechik, M., Gurfinkel, A.: TLQSolver: A temporal logic query checker. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 210–214. Springer, Heidelberg (2003)

11. Chockler, H., Strichman, O.: Easier and more informative vacuity checks. In: MEMOCODE
2007, pp. 189–198. IEEE Computer Society Press, Los Alamitos (2007)

12. Clarke, E.M., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model checking. In:
LICS 2002. Proc. 17th Annual IEEE Symposium on Logic in Computer Science, pp. 19–29.
IEEE Computer Society Press, Los Alamitos (2002)

13. Clarke, E.M., Veith, H.: Counterexamples revisited: Principles, algorithms, applications.
In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 208–224.
Springer, Heidelberg (2004)

14. D’Agostino, G., Hollenberg, M.: Logical questions concerning the μ-calculus: Interpolation,
Lyndon and Loś-Tarski. Journal of Symbolic Logic 65(1), 310–332 (2000)

15. Dong, Y., Sarna-Starosta, B., Ramakrishnan, C., Smolka, S.A.: Vacuity checking in the
modal mu-calculus. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422,
Springer, Heidelberg (2002)

16. French, T.: Decidability of quantified propositional branching time logics. In: Stumptner, M.,
Corbett, D.R., Brooks, M. (eds.) AI 2001: Advances in Artificial Intelligence. LNCS (LNAI),
vol. 2256, pp. 165–176. Springer, Heidelberg (2001)

17. Groce, A., Kroening, D.: Making the most of BMC counterexamples. Electronic Notes in
Theoretical Computer Science (ENTCS) 119(2), 67–81 (2005)

18. Gurfinkel, A., Chechik, M.: Extending extended vacuity. In: Hu, A.J., Martin, A.K. (eds.)
FMCAD 2004. LNCS, vol. 3312, pp. 306–321. Springer, Heidelberg (2004)

19. Gurfinkel, A., Chechik, M.: How vacuous is vacuous? In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 451–466. Springer, Heidelberg (2004)

14 M. Samer and H. Veith

20. Gurfinkel, A., Chechik, M., Devereux, B.: Temporal logic query checking: A tool for model
exploration. IEEE Transactions on Software Engineering (TSE) 29(10), 898–914 (2003)

21. Gurfinkel, A., Devereux, B., Chechik, M.: Model exploration with temporal logic query
checking. In: Proc. 10th International Symposium on the Foundations of Software Engi-
neering (FSE-10), pp. 139–148. ACM Press, New York (2002)

22. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. In: Pierre, L.,
Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 82–96. Springer, Heidelberg (1999)

23. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. International
Journal on Software Tools for Technology Transfer (STTT) 4(2), 224–233 (2003)

24. Maksimova, L.: Absence of interpolation and of Beth’s property in temporal logics with “the
next” operation. Siberian Mathematical Journal 32(6), 109–113 (1991)

25. Namjoshi, K.S.: An efficiently checkable, proof-based formulation of vacuity in model
checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 57–69. Springer,
Heidelberg (2004)

26. Pnueli, A.: 9th International Conference on Computer-Aided Verification. In: Grumberg, O.
(ed.) CAV 1997. LNCS, vol. 1254, Springer, Heidelberg (1997) (cited from [5])

27. Purandare, M., Somenzi, F.: Vacuum cleaning CTL formulae. In: Brinksma, E., Larsen, K.G.
(eds.) CAV 2002. LNCS, vol. 2404, pp. 485–499. Springer, Heidelberg (2002)

28. Samer, M.: Reasoning about Specifications in Model Checking. PhD thesis, Vienna Univer-
sity of Technology (2004)

29. Samer, M., Veith, H.: Validity of CTL queries revisited. In: Baaz, M., Makowsky, J.A. (eds.)
CSL 2003. LNCS, vol. 2803, pp. 470–483. Springer, Heidelberg (2003)

30. Samer, M., Veith, H.: Parameterized vacuity. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 322–336. Springer, Heidelberg (2004)

31. Samer, M., Veith, H.: A syntactic characterization of distributive LTL queries. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1099–
1110. Springer, Heidelberg (2004)

32. Samer, M., Veith, H.: Deterministic CTL query solving. In: TIME 2005, pp. 156–165. IEEE
Computer Society Press, Los Alamitos (2005)

33. Simmonds, J., Davies, J., Gurfinkel, A., Chechik, M.: Exploiting resolution proofs to speed
up LTL vacuity detection for BMC. In: FMCAD 2007. Proc. 7th International Conference on
Formal Methods in Computer-Aided Design, IEEE Computer Society Press, Los Alamitos
(to appear, 2007)

34. Visser, A.: Bisimulations, model descriptions and propositional quantifiers. Logic Group
Preprint Series, Nbr. 161, Dept. Philosophy, Utrecht University (1996)

35. Wittgenstein, L.: On Certainty. In: Anscombe, G.E.M., von Wright, G.H. (eds.) Harper and
Row (1968)

	On the Notion of Vacuous Truth
	Introduction
	Unicausal Vacuity Semantics
	Ramifications of Unicausal Vacuity

	Interpolation-Based Vacuity Detection
	Unicausal Vacuity Grounds and Interpolation
	Computation of Vacuity Grounds

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

