
Operational and Epistemic Approaches to

Protocol Analysis: Bridging the Gap

Francien Dechesne1, MohammadReza Mousavi1,2, and Simona Orzan1

1 Department of Computer Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600MB, Eindhoven, The Netherlands
2 Department of Computer Science, Reykjav́ık University,

Kringlan 1, IS-103, Reykjav́ık, Iceland

Abstract. Operational models of protocols, on one hand, are readable
and conveniently match their implementation, at a certain abstraction
level. Epistemic models, on the other hand, are appropriate for specifying
knowledge-related properties such as anonymity. These two approaches
to specification and analysis have so far developed in parallel and one
has either to define ad hoc correctness criteria for the operational model
or use complicated epistemic models to specify the operational behavior.
We work towards bridging this gap by proposing a combined framework
which allows modeling the behavior of a protocol in a process language
with an operational semantics and supports reasoning about properties
expressed in a rich logic with temporal and epistemic operators.

1 Introduction

Knowledge-related aspects are currently being recognized as very relevant when
expressing and analyzing correctness requirements of complex distributed algo-
rithms and communication protocols, from the fundamental ones like consensus
in a network, to applications like information flow control and security protocols
(secrecy, anonymity, fair exchange). Many approaches based on epistemic logics
have been developed for the analysis of such protocols: BAN logic [8], the theory
of function views [20], interpreted systems [14,16,25] etc.

They allow for natural and effective representations of subtle effects of com-
munication acts such as classified information leaking to attackers or participants
gaining the common knowledge that the protocol they were running meets its
goal. But on the other hand, modeling protocols using epistemic-logic-based ap-
proaches requires a high degree of expertise and verification of functional prop-
erties is often very complex. The information updates generating the transitions
between epistemic states are especially tedious to specify, because logics are
geared to expressing properties rather than operational steps of a protocol.

The operational behavior of protocols is, however, easily and conveniently
specified in languages such as process algebras [7,22,2] and message sequence
charts [9]. Functional requirements such as liveness and safety are then easily
verified by model checking applied on the underlying transition systems. Unfor-
tunately, these standard and successful verification schemes use temporal logics

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 226–241, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Operational and Epistemic Approaches to Protocol Analysis 227

that are not well-suited for expressing knowledge-related properties, therefore
complex specialized solutions need to be sought in order to make process algebras
suitable for the analysis of epistemic-flavored properties like anonymity [26,11].
See [20,13] for a more detailed comparison of epistemic-based vs. process-based
protocol verification.

In this paper, we propose a framework that allows one to benefit the best
of the two worlds, i.e., one can specify the behavior of a protocol in a process
language and verify properties expressed in a logic with both temporal and epis-
temic operators. To achieve this, the key idea is to introduce explicit identities in
our process language PAi and allow every action to be annotated with a visibility
range — i.e., a set of identities that may observe it and a “public appearance” —
i.e., an alternative action that is observed by the identities outside the visibility
range. We give an operational semantics for PAi in terms of annotated labeled
transition systems (ALTSs), which are LTSs with, for every identity, an extra
indistinguishability relation on states. These relations model the uncertainties of
the identities (typically principals in a protocol) about the current state, similar
to the way uncertainties are represented in standard possible-world semantics
for epistemic logics [14]. Thanks to the combination of transitions and indis-
tinguishability relations, ALTSs naturally support verification of logic formulae
containing both temporal and epistemic operators. We introduce a rich logic,
Eμ (epistemic μ-calculus with past) and give it an interpretation on ALTSs.

Due to the explicit use of identities, PAi allows a precise specification of the
information hiding behavior within protocols, and it is therefore more expressive
and flexible than traditional process algebras. It is also more intuitive and more
formal than epistemic logics, when it comes to behavior modeling. Also Eμ
is more expressive than the usual temporal logics used in traditional protocol
verification. The resulting model checking framework PAi+Eμ soundly extends
the traditional process-based and epistemic model checking settings.

Related Work. The fact that the two verification approaches, process alge-
braic and epistemic, are complementary and that they should ideally be com-
bined has already been recognized in [20], where the aim is, just as here, to
provide a framework in which both protocol specification and correctness crite-
ria can be specified succinctly and intuitively (and the authors indeed put the
two approaches in sharp contrast). They introduce the notion of function view
to represent partial information and uses it to precisely formalize several subtle
information hiding properties. Since the focus of that theory is proper formal-
ization of requirements, we believe that it is complementary to ours and that it
could possibly be used in our PAi models, for defining suitable visibility ranges.

BAN-logic [8], designed for the analysis of authentication in security proto-
cols, is very popular, but it is a known problem that a clear semantics, linking
the high-level BAN-specification to runs of the protocol, is still missing. Also
in other interesting recent work concerning Dynamic Epistemic Logic [15,3,19]
with an operational flavor, just as in tool-supported temporal epistemic ap-
proaches [25,18], where existing temporal specification languages are used, but
the embedding of the epistemic aspects remains (for a large part) informal. We

228 F. Dechesne, M.R. Mousavi, and S. Orzan

start from the other side - a process specification language with a formal seman-
tics, and work towards properly integrating epistemic aspects.

Interpreted Systems [14,25,16] are close to the operational semantics of our
process language. In fact, it is possible to translate ALTSs to ISs. Our key
improvement is the introduction of a process specification language with a formal
semantics, which enables the modeling of systems at a reasonable abstraction
level. In [16], interpreted systems are used to model different complex notions of
(probabilistic) anonymity, using also an epistemic logic. Our approach is related
to and complements that one, by providing a way of verifying, on process-based
specifications, anonymity notions as defined by [16].

The concept of indistinguishability used here bears resemblances to the data
independence technique in [6]. We consider runs of a protocol indistinguishable
if they appear equal to a principal (as defined by the visibility range of actions).
It is worthwhile to extend our framework along the lines of [6], by allowing the
visibility range of actions to be dynamically updated.

Concurrently with our work, a rich language C3 [5] and a powerful logic
CPL [21] have been developed for analyzing cryptographic protocols. The aim
there is integrating a wide range of features, from deontic and spatial operators
to probabilities, in one unified setting. C3+CPL is therefore very expressive, but
complex and seems difficult to implement, while our basic language with an easy
to grasp operational semantics can immediately lead to a practical verification
toolset. In fact, a prototype implementation already exists [1]. Furthermore,
there is a fundamental difference between our underlying logics: that of [21] is a
state-based logic (à la LTL) and ours is action-based (à la modal μ-calculus).

Overview. Section 2 introduces our generic process language for specifying
protocols and a transition-system semantics for it. Section 3 defines our tempo-
ral epistemic logic Eμ and the interpretation of Eμ formulas on the transition
systems. Then we show that this construction does indeed bridge the gap be-
tween process-based and epistemic-logic-based approaches to protocol analysis,
by proving that its projections on the two worlds are consistent with established
definitions in the two worlds separately (Section 4). Section 5 shows an example
and Section 6 concludes the paper and presents directions for future research.

2 PAi : Syntax and Operational Semantics

In this section, we present the syntax and the operational semantics of a simple
modeling language which we call process algebra with identities (PAi). PAi
has generic features, that can be adapted to match constructs of any classical
operational modeling language (such as CCS [22], CSP [7] or Spi-Calculus [2]).
It mostly resembles Milner’s CCS, but we deviate from CCS in a few ways.
Apart from adding identities, we use sequential composition instead of action
prefixing (and thus, we also introduce a termination predicate), since this is
very handy in writing protocol specifications. Also, we do not hide the result of
a communication automatically and leave this, if at all desired, to the renaming

Operational and Epistemic Approaches to Protocol Analysis 229

function since the communicated message can be of relevance in the correctness
specification of the protocol.

PAi : Syntax. Let Act be a finite set of action names which will be ranged
over by a, b, a0, ?a, !a, . . ., and let Id be a finite set of identities typically denoted
by by i, j, . . . i1, i2, We designate an action τ ∈ Act to denote the internal
(silent) action; in addition to its common process-algebraic meaning, an internal
action here represents a message that offers no new information to the observer
principal. Question mark and exclamation mark (preceding actions) represent
the receiving and the sending parts of a communication, respectively, and an
action without such marks is the outcome of the communication.

Proc ::= 0 | D | Proc; Proc | Proc + Proc | Proc||Proc
D ::= (J)α

0 denotes inaction (the process that has terminated). d = (J)α ∈ D denotes a
decorated action and has the following intuitive meaning: action α ∈ Act is taken
and is visible to principals i ∈ J ⊆ Id, while principals j /∈ J observe ρ(α) being
taken, where ρ : Act → Act is a global renaming function, which assigns to every
action its “public appearance”. The renaming function ρ should be defined by the
specifier of a protocol but we assume that ρ(τ) is always defined to be τ . For any
other action a, if ρ(a) = τ , then (J)a becomes unobservable to the principals
not in J. The combination of identity annotations on actions and the action
renaming provides different views on the behavior of the system, according to
different principals. Modeling passive observation of a system by hiding parts of
it to specific principals is already done in the literature [26], but we will generate
the views for all principals simultaneously. This enables talking about properties
such as “i knows that j knows that k has communicated message a”. Proc;Proc
denotes sequential composition, Proc + Proc denotes nondeterministic choice,
and Proc ||Proc denotes parallel composition.

Example 1. Take P = (1)a ; (1, 2)d + (1)b + (1)c, with the renaming function
ρ(a) = ρ(b) = ρ(c) = dum where dum is a dummy basic action and over the
identity set Id = {1, 2}. P denotes the process that executes one of the actions
a,b,c, but only principal 1 is aware of the exact action taking place. 1 is the
principal making a choice between actions a, b and c, and 2 is an observer who
only notices that a choice has been made, but not what the outcome was. This is
a process-style formalization of the private communication from epistemic mod-
eling, where a party learns something while other parties are watching and learn
that the party learned something, but not precisely what. After the first step,
the process terminates or, if the first step was a, continues with the execution of
d. Since principal 2 is allowed to observe the execution of d, she may now con-
clude that the first step must have been a, although 2 was not actually allowed
to observe the a. This is exactly the type of information leaks that we aim at
capturing with our verification framework.

PAi : Operational Semantics. We introduce the notion of Annotated La-
beled Transition Systems (ALTS) as labeled transition systems extended with

230 F. Dechesne, M.R. Mousavi, and S. Orzan

(0)
(0, π)� (a)

(d, π)
d⇒ (0, π � d)

(s0)
(x0, π)

d⇒ (y0, π
′)

(x0; x1, π)
d⇒ (y0; x1, π

′)

(s1)
(x0, π)� (x1, π)

d⇒ (y1, π
′)

(x0; x1, π)
d⇒ (y1, π

′)
(s2)

(x0, π)� (x1, π
′)�

(x0; x1, π
′′)�

(n0)
(x0, π)

d⇒ (y0, π
′)

(x0 + x1, π)
d⇒ (y0, π

′)
(n2)

(x0, π)�
(x0 + x1, π

′)� (p0)
(x0, π)

d⇒ (y0, π
′)

(x0 || x1, π)
d⇒ (y0 || x1, π

′)

(p2)
(x0, π)� (x1, π

′)�
(x0 ||x1, π

′′)� (p3)
(x0, π)

(J)?a⇒ (y0, π
′) (x1, π)

(J′)!a⇒ (y1, π
′′)

(x0 ||x1, π)
(J∪J′)a⇒ (y0 || y1, π � (J ∪ J′)a)

(= refl)

π
i
= π

(= ρ0)
π

i
= π′ a = b i ∈ J ∩ J′

π � (J)a
i
= π′ � (J′)b

(= ρ1)
π

i
= π′ ρ(a) = ρ(b) i /∈ J′ ∪ J

π � (J)a
i
= π′ � (J′)b

(= ρ2)
π

i
= π′ a = ρ(b) i ∈ J \ J′
π � (J)a

i
= π′ � (J′)b

(= τ0)
π

i
= π′ i /∈ J ρ(a) = τ

π � (J)a
i
= π′ (= τ2)

π
i
= π′

π � (J)τ
i
= π′

(strip)
(x, π)

(J)a⇒ (y, π′)
(x, π)

a→ (y, π′)
(I)

π0
i
= π1

(x0, π0)
i· · · (x1, π1)

Fig. 1. SOS of PAi

annotations that denote when two states are deemed indistinguishable from the
viewpoint of a principal, based on the actions taken so far. This is determined
by the information that a principal receives in the course of protocol execution,
which in turn is determined by the visibility annotations.

Definition 1 (ALTS). An ALTS is a 5-tuple 〈St, → ,�, I, s0〉, where St is the
set of operational states, → ⊆ St×Act× St is the transition relation, � ⊆ St
is the termination predicate, I ⊆ St×Id×St is the indistinguishability relation
and s0 is the initial state.

For readability, we denote statements (s, l, s′) ∈ → , s ∈ � and (s, i, s′) ∈ I by

s
l→ s′, s� and s

i· · · s′, respectively, for each s, s′ ∈ St, l ∈ Act and i ∈ Id.
The transition relation → has exactly the same role and meaning as in the
standard notion of LTS. Formula s� means that in state s it is possible to
terminate. Expression s0

i· · · s1 denotes that the principal with identity i cannot
distinguish s0 from s1 since both s0 and s1 are reachable through paths that
look identical as far as as principal i can observe and distinguish. It is desirable
for

i· · · to be an equivalence relation for each i ∈ Id since this leads to a natural
representation of knowledge (i.e., S5 Kripke models in modal logic, see [14]).

Operational and Epistemic Approaches to Protocol Analysis 231

In Figure 1, we associate ALTS’s to PAi processes by means of a semantics in
the SOS style of [24]. The operational state of PAi is a pair (p, π) where p ∈ Proc
is a PAi process and π is a finite sequence of decorated actions recording the
perception of the process gathered so far. First we define auxiliary relations
d⇒ ⊆ St × St and i=⊆ D∗ × D∗ for each decorated action d and identity i.
Transition relation d⇒ defines transitions among operational states labeled with
decorated action d and i= defines when two traces are deemed indistinguishable
by principal i. Note that each process p in the state (p, π) has one past trace
π and possibly many futures. That is why, for example, in the deduction (p3)
both parallel arguments x0 and x1 are assumed to start from the same history
π, which is the common history of x0 ||x1. In the deduction rule (strip), we
strip off the extra information on the labels (concerning the visibility range) and
apply encapsulation (leaving out individual send and receive actions) and obtain
the transition relation → . (We could have used an explicit restriction operator
but decided not to do so to keep the presentation simple.) Deduction rule (I)
lifts the concept of indistinguishability from traces to operational states. We
omitted symmetric rules (n1), (n3), (p1), (p4), (= ρ3), (= τ1), and (= τ3).
Termination of a process is orthogonal to its past history, so we use different
meta-variables for the traces in the premises and the conclusion of rules (s2),
(n2), and (p2). The transition relation ⇒ and indistinguishability relation · · ·
are the sets of all closed statements provable using the deduction rules (plus their
symmetric versions) from Figure 1. The semantics of a process p is defined by the
ALTS with pairs of processes and decorated traces as states, → as transition
relation, � as termination relation, · · · as indistinguishability relation, and (p, [])
as the initial state, where [] denotes the empty sequence of decorated actions.

The following lemma states that
i· · · is an equivalence relation.We intentionally

did not add deduction rules to enforce symmetry and transitivity of i= explicitly
in order to preserve the inductive structure of our SOS specification.

Lemma 1. Relation
i· · · is an equivalence relation.

3 An Epistemic Mu-Calculus

We introduce an epistemic mu-calculus with past (Eμ) which combines temporal,
epistemic, and fixed point constructs. We give our logic an interpretation on the
operational model introduced in Section 2.

Syntax. The syntax of Eμ is given by the following grammar:

φ ::= � | X | φ ∧ φ | ¬φ | 〈a〉φ | 〈a〉φ | Kiφ | νX.φ(X)

(if X occurs only positively in φ),

where a ranges over the set of actions (a ∈ Act). Then 〈a〉φ stands for “after
some execution of a, φ holds”; 〈a〉φ has the same intuition as 〈a〉φ, except that
it refers to the past, i.e., there is a state in which φ holds and from which it is
possible to take an a-step to the current state. Kiφ should be read as “principal

232 F. Dechesne, M.R. Mousavi, and S. Orzan

i knows that φ holds”. The greatest fixed point operator νX.φ(X) is used to
define recursive concepts. It intuitively means that the current state is in the
largest set X of states that satisfy φ(X). (Here X is a variable ranging over
propositional formulas, which can be identified by the sets of states in which
such a formula is true. This is made formal by introducing valuations, but we
leave this correspondence informal here.) For convenience, we define and use the
following abbreviations for commonly used logical formulae:

[a]φ i.e., ¬〈a〉¬φ and intuitively means that after all a-transitions, φ holds.
μX.φ(X) (with X occurring positively in φ) is the least fixed point operator,

which is defined by ¬νX.¬φ(¬X) (X also occurs positively in ¬φ). The
current state is in the smallest set of states satisfying φ(X).

〈�〉φ (similarly, 〈�〉φ) stands for
∨

a∈Act〈a〉φ (
∨

a∈Act 〈a〉φ), which is by itself
an abbreviation for a finite number of disjunctions. Intuitively, it means
that after (before) some transition φ holds.

�a (similarly, a�) is an abbreviation for μX.〈a〉� ∨ 〈x〉.X (or μX.〈a〉� ∨
〈x〉.X). So, it is possible to reach a state in the future where an a-
transition is possible (or go back to a state in the past that results
from an a-transition).

[�∗]φ (similarly, [�∗]φ) is an abbreviation for μX.φ∨ [�]X (or μX.φ∨ [�]φ). The
intuition behind this abbreviation is that all future paths will (paths in
the past) lead to a state, in which there is a state satisfying φ. (〈�∗〉φ
and 〈�∗〉φ are defined accordingly.)

CJφ stands for νX.(
∧

i∈J Ki(X∧φ)) [14], meaning: “it is common knowledge
among the principals in the set J that φ holds”.

Common knowledge is a very powerful construction, expressing that agents in
J not only know that φ holds, but also that all agents in J know that φ holds,
and that all agents in J know that all agents in J know that φ holds, and so on.
This property has so far not been amenable to specification and verification with
standard operational techniques, while it is in fact very interesting, particularly
for protocols where trust is an issue. Common knowledge can express, for in-
stance, that participants in a multiparty fair exchange protocol trust each other
and the protocol they are running. Let Eμ-forms denote the set of Eμ formulas.

Interpreting Eµ Formulas on ALTSs. We now define what it means for a
formula φ ∈ Eμ-forms to be satisfied in the ALTS A.

Definition 2 (satisfaction). Let A = 〈S, → ,�, I, s0〉 be an ALTS. The satis-
faction relation |= for formulas φ ∈ Eμ-forms is defined inductively as follows:

A, s |= � iff true
A, s |= φ1 ∧ φ2 iff A, s |= φ1 and A, s |= φ2

A, s |= ¬φ iff A, s |= φ is not true

A, s |= 〈a〉φ iff there is an s′ ∈ S s.t. s
a→ s′ and A, s′ |= φ

A, s |= 〈a〉φ iff there is an s′ ∈ S s.t. s′ a→ s and A, s′ |= φ

A, s |= Kiφ iff for all reachable s′ ∈ S s.t. s
i· · · s′ : A, s′ |= φ

A, s |= νX.φ(X) iff s ∈ ⋃{S′ ⊆ S|∀s′ ∈ S′.A, s′ |= φ(X := S′)}

A satisfies a formula φ, denoted A |= φ, if s0 |= φ.

Operational and Epistemic Approaches to Protocol Analysis 233

The most noticeable of the rules above is the one for Kiφ. It expresses the
fact that i knows φ if φ holds in all states considered possible by i when residing
in s, that is in all states belonging to the

i· · · equivalence class of s. The semantic
rules in the previous section constructed this relation based on what i was al-
lowed to observe from the run of the protocol. The intention behind the formula
Kiφ is not to check what i learned in terms of explicit information the principal
received (e.g., as contents of some message), but what i learned through obser-
vation. Observation (partial observation) of what actually happens, can reduce
a principal’s uncertainties and thereby ‘leak’ information. Particularly, if princi-
ples are familiar with the protocol, they may derive from certain actions taking
place, that the previous action must have been a particular one, even if they did
not know it before. This is the case in the example depicted in Figure 2, where
principal 2 learns from observation of action d, that the choice made before must
have been a. More exactly, sequences of actions which are not properly protected
by the visibility restrictions ρ may lead to a refinement of the

i· · · class which is
sufficient for i to distinguish between a state where agent’s j secret key is 100
and a state where agent j’s secret key is 200, even if i never participated in a
direct communication over j’s key. This process of learning by the refinement of
the indistinguishability relations along the traces is captured in the definition of
A, s |= Kiφ. Our logic satisfies the standard axioms for a logic of knowledge:

Theorem 1. The so-called S5 axioms (cf. [14, p.59]) hold in Eμ:

K : Kiφ ∧Ki(φ→ ψ) → Kiψ 4 : Kiφ→ KiKiφ (positive introspection)
T : Kiφ→ φ (reflexivity) 5 : ¬Kiφ→ Ki¬Kiφ (negative introspection)

The definition of satisfaction provides a model checking algorithm, that will be
decidable on the finite trees generated by the semantics of our PAi . Since the
Eμ satisfaction relation on ALTSs rests on classically accepted definitions for
similar but less expressive models, we expect that it should be possible to reuse
and extend existing efficient model checking tools.

An interesting and non-trivial question is to find a behavioral equivalence that
is characterized by Eμ. We expect the answer to be some notion of bisimilarity
that considers both a→ and

i· · · as transition relations. Due to the presence of
past temporal operators, we may have to resort to some notion of bisimilarity
that takes backward steps also into account (a notion of forward-backward or
history-preserving bisimilarity).

4 Bridging the Gap: Relation to Existing Theories

In this section we show that the framework introduced in this paper is a conser-
vative extension of the traditional process theoretic modeling on the one hand,
and epistemic modeling on the other hand. To this end, we prove that the satis-
faction relation defined in Section 3 preserves the standard satisfaction relations
of μ (μ-calculus with past) formulae on labeled transition systems and of E

234 F. Dechesne, M.R. Mousavi, and S. Orzan

1, 2

1, 2 1, 2

1, 2

1, 2

22

2

a

b

c

d

1, 2

1, 2 1, 2

1, 2

1, 2

22

2

a

b

c

d

PAi

EµALTS

PA

LTS µ

|=

|=µKS E|=E

Fig. 2. Left picture: An ALTS A (rightmost), together with its projections: ’the
temporal part’ lts(A) (leftmost) and ’the epistemic part’ em(A) (center). In lts(A),
the points are states, the arrows are transitions. In em(A), points are possible worlds
and lines are indistinguishability relations labeled with identities of agents. In (A),
the points are states and possible worlds simultaneously. Both temporal and epistemic
relations are present. The epistemic valuation in a state is given by the actions executed
from the initial state to that state. In the initial state, combined temporal epistemic
formulae hold like 〈a〉(K1a

� ∧¬K2a
�) — expressing that after an a-action, it is known

to principal 1 that action a has been executed, but 2 doesn’t know that. However, 2
knows that one of the actions a,b,c has been executed (〈a〉(K2(a

� ∨ b� ∨ c�))). More
interestingly, after step d is executed, 2 has learned that a must have been the first
step: 〈a〉〈d〉K2a

�. Modeling this phenomenon of agents learning facts that were never
explicitly told to them is exactly the power of epistemic logic approaches, that we took
over in the combined framework. Right picture: Projecting into process-theoretic
domain and epistemic domain. A dashed arrow x ��� y means that x is an extension of
y. The arrow x → y means y is the semantic model of x. The links between ALTS, LTS,
KS, Eμ, μ, E are discussed in this paper. The connection with the process languages
PAi and PA (a pure process theoretic formalism) is explained in [12].

(epistemic logic) formulae on Kripke structures. In Figure 2, the left picture il-
lustrates the three semantic models discussed in this section: the existing LTS
and KS, and the newly introduced ALTS. The right picture gives an overview
of the connections between the various notions.

Projecting into the Process-Theoretic Domain. A Labeled Transition
System (LTS) is a standard semantic domain for process-theoretic formalisms.
Formally, an LTS over a set of labels L is a tuple 〈St, → ,�, s0〉, where St is the
set of operational states, → ⊆ St× L× St is the transition relation, � ⊆ St is
the termination predicate and s0 is the initial state. It typically represents the
behavior of a reactive system in terms of states and transitions. Then require-
ments formulated in a temporal logic are matched against this behavior in the
process of model checking.

A very general logical language to reason about processes is the μ-calculus
with past (μ) [23], which is obtained by leaving out the knowledge construct
Kiφ from the syntax of our logic presented in Section 3. That a state s in the
LTS T = 〈S, → ,�, s0〉 satisfies a μ formula φ (denoted T, s |=μ φ) is defined
inductively as follows:

Operational and Epistemic Approaches to Protocol Analysis 235

T, s |=µ � iff true
T, s |=µ ¬φ iff T, s �|=µ φ
T, s |=µ φ1 ∧ φ2 iff T, s |=µ φ1 and s |=µ φ2

T, s |=µ 〈a〉φ iff exists s′ ∈ S, s.t. s
a→ s′ and T, s′ |=µ φ

T, s |=µ 〈a〉φ iff exists s′ ∈ S, s.t. s′ a→ s and T, s′ |=µ φ
T, s |=µ νX.φ(X) iff s ∈ ⋃{S′ ⊆ S|∀s′ ∈ S′.T, s′ |=µ φ(X := S′)}

We prove that the ALTS + Eμ model checking framework properly extends the
LTS + μ model checking framework, in the sense that whatever was possible
in the latter, is still possible and has the same meaning in the former. This is
witnessed by the fact that LTS + μ can be immediately obtained by simply
stripping the ALTS from the I relations and the Eμ logic from the epistemic
operator Ki. The following theorem formalizes this.

Theorem 2. Consider a PAi process p and the ALTS A = 〈St, → ,�, I, s0〉
obtained as semantics of (p, []) by following the SOS rules in Figure 1. Let (q, π)
be a state in A, reachable from (p, []) (i.e. in the transitive closure of → from
s0 = (p, [])). Let us define lts(A) = (St, → ,�, s0). Then, for each μ formula φ,
A, (q, π) |= φ iff lts(A), q |=μ φ.

This means that for purely temporal aspects of correctness, one can safely ignore
the epistemic aspects of our semantics and our logic.

Projecting into the Epistemic Domain. Epistemic logics are mainly con-
cerned with expressing subtle properties of communication acts, related to the
knowledge, beliefs and intentions of communicating parties. In standard epis-
temic logic (following [17]), epistemic properties are validated in static rich
snapshots of communications (epistemic models), that don’t express the tem-
poral evolution of the system. The language of epistemic logic with common
knowledge defined by:

φ ::= p | ¬φ | φ1 ∧ φ2 | Kiφ | CJφ

Here the p comes from a given set of propositional variables Prop. These propo-
sitions represent the atomic facts the agents may know about. The subscript i
ranges over a given set of agents I, and J over subsets of I. The standard read-
ing of the epistemic modalities Ki and CJ is the same as ours in the previous
section: “i knows that. . . ” and “it is common knowledge among the agents in J
that. . . ”, respectively.

An epistemic (S5-)model is a Kripke structure 〈W, {Ri|i ∈ I}, V 〉, where W
is a nonempty set of possible worlds, Ri is an equivalence relation on W for
each i ∈ I, and V : Prop → P(W) is a valuation function assigning to each
propositional variable the set of worlds in which it holds. Given an epistemic
model M and world s ∈W , satisfaction (|=E) is defined recursively as follows:

M, s |=E p iff s ∈ V (p)
M, s |=E ¬φ iff it is not true that M, s |=E φ
M, s |=E φ1 ∧ φ2 iff M, s |=E φ1 and M, s |=E φ2

M, s |=E Kiφ iff for all M, s′ ∈ W, if sRis
′ then M, s′ |=E φ

M, s |=E CJφ iff for all M, s′ ∈ W, if s(∪i∈JRi)
∗s′ then M, s′ |=E φ

236 F. Dechesne, M.R. Mousavi, and S. Orzan

To isolate ‘the epistemic part’ of our framework, we make suitable choices for
the set of propositions, and the set of agents. In the context of our PAi -processes
we associate with every action a ∈ Act a proposition a (which can be read as “a
has been executed sometime before”), and we let Prop := {a|a ∈ Act} ∪ {
}.
Furthermore, we let I be our set of identities Id. We call the resulting logic E.

We can then say that our modeling and verification framework is also con-
servative when it comes to purely epistemic aspects. Namely, if we restrict the
ALTS associated with a PAi process to the I relations, we obtain an epistemic
model where purely epistemic formulas hold exactly when they hold in the origi-
nal ALTS, according to the Eμ satisfaction relation. Let us define an embedding
E : E-forms → Eμ-forms of formulas into Eμ formulas, by taking E(a) = a� and
extending from there:

E(�) = � E(φ1 ∧ φ2) = E(φ1) ∧ E(φ2)
E(a) = a� E(Kiφ) = KiE(φ)
E(¬φ) = ¬E(φ) E(CJφ) = νX.(

∧
i∈J Ki(X ∧ φ)).

The following theorem formally expresses the conservativeness of Eμ w.r.t. E.

Theorem 3. Consider a PAi process p over the set of actions Act. Let A =
〈St, → ,�, I, s0〉 be the ALTS obtained as semantics of (p, []) by following the
SOS rules in Figure 1. Let us define its associated epistemic model as em(A) =

〈St, { i· · · |i ∈ Id}, V 〉, with propositions from Prop, V (a) = {s ∈ St|A, s |= E(a)}
and V (
) = St. Then for any E formula φ and any possible world s ∈ St,
A, s |= E(φ) iff em(A), s |=E φ.

5 An Example Protocol: Dining Cryptographers

In order to illustrate the relative advantages of the combined framework com-
pared to using exclusively the operational approach or the epistemic one, we
discuss the Dining Cryptographers protocol [10], which has already been inde-
pendently and extensively analyzed using both operational [26,4] and epistemic
approaches [20,16,25]. The story, a metaphor for anonymous broadcast, is about
three cryptographers having dinner together. The bill is paid anonymously by
one of them, or by the National Security Agency (NSA). They respect each
other’s right to anonymity, but they wish to find out whether the payer was
NSA or not. To this end, they come up with the following protocol: each neigh-
boring pair of cryptographers generates a shared bit, by flipping a coin; then
each cryptographer computes the exclusive or (XOR) of the two bits she sees,
then announces the result — or the flipped result, if she was herself the payer.
The XOR of the three publicly announced results indicates whether the payer
was an insider or NSA.

Model. A model of this protocol in our process language is shown in Fig-
ure 3. Inspired by the input construction in the algebraic specification language
μCRL, we use

∑
x:{x1...xn} P (x) as an abbreviation for P (x1) + . . . + P (xn),

where {x1 . . . xn} is a finite set and P (xi) denotes the process expression P (x)
in which xi has been substituted for x.

Operational and Epistemic Approaches to Protocol Analysis 237

Crypt(i) =
∑

b:Bool ((i)?pay(i, b);CryptF lip(i, b))
CryptF lip(i, b) =

∑
c:Bool ((i)flip(i, c); CryptShare(i, b, c))

CryptShare(i, b, c) =
∑

d:Bool (((i)!share(i mod 3 + 1, c) || (i)?share(i, d)) ;
CryptBcast(i, b, c, d))

CryptBcast(i, b, c, d) = ((i)!bcast(i, b ⊕ c ⊕ d) ; (i)!bcast(i, b ⊕ c ⊕ d))
||∑x,y:Bool(((i)?bcast(i + 1 mod 3 + 1, x)

|| (i)?bcast(i mod 3 + 1, y)) ;
nsa(i,¬(b ⊕ c ⊕ d ⊕ x ⊕ y)))

Master = (M)!pay(1,�); (M)!pay(2,⊥); (M)!pay(3,⊥)
+ (M)!pay(1,⊥); (M)!pay(2,�); (M)!pay(3,⊥)
+ (M)!pay(1,⊥); (M)!pay(2,⊥); (M)!pay(3,�)
+ (M)!pay(1,⊥); (M)!pay(2,⊥); (M)!pay(3,⊥)

Fig. 3. A PAi model of The Dining Cryptographers protocol. ⊕ denotes exclusive or.

The model is rather close to the CSP description presented in [26], the only sig-
nificant difference being that the actions are annotated with identities from the
set Id = {1, 2, 3,M}. Note that the parameters used in the basic actions and pro-
cess definitions are just generic names for the concrete instances resulting from
instantiating them. For example, ?pay(i, b) is not defined in our process language
but rather it stands for a number of instances such as ?pay(1,
), ?pay(i,⊥) each
of which are basic actions (obtained by globally replacing i and b with a mem-
ber of Id and {⊥,
} in the process definition each time). The behavior of the
ith cryptographer is specified by the process Crypt(i) and the behavior of the
whole DC system as a parallel composition of Crypt(i)’s and the Master pro-
cess, DC3 = Crypt(1) ||Crypt(2) ||Crypt(3) ||Master. A cryptographer process
executes a series of actions corresponding to the three big steps of the protocol:
decide whether to pay or not, flip the coins together with the neighbors, and
announce the result of XOR-ing the two coins and her own paying bit. The first
step is modeled as a statement pay(i, b), which is in fact a communication step
with the Master. The second step is modeled by the processes CryptF lip(i) and
CryptShare(i). In other existing models [26,4], the shared coins are represented
by separate processes, but in order to keep the specification simple, we merge
the behavior of the ith coin with the behavior of the ith cryptographer. There-
fore, process Crypt(i) will execute a flip action and then share the result with
the right-hand neighbor, by executing an action !share which will synchronize
with the ?share from the next cryptographer in the ring. CryptBcast models
the last phase, announcing the result of one’s computation (!bcast), receiving
the results from all the others (?bcast) and concluding for itself that NSA paid
or not (nsa(i,
), nsa(i,⊥)).

The renaming function ρ specifies how much of a cryptographers’ actions
is visible for observing parties. For any i ∈ {1, 2, 3} and b ∈ {
,⊥}, we de-
fine ρ(pay(i, b)) = pay(i), ρ(bcast(i, b)) = bcast(i, b), ρ(share(i, c)) = share(i),
ρ(flip(i, b)) = flip(i) and ρ(nsa(i, b)) = nsa(i, b), where pay(1), bcast(1,
), . . .
are basic actions.

238 F. Dechesne, M.R. Mousavi, and S. Orzan

pay(1,
) pay(1,⊥)

pay(3,
)

pay(2,
) pay(2,⊥)

pay(3,⊥)

pay(2,
) pay(2,⊥)

pay(3,
)pay(3,
)pay(3,
)

pay(3,⊥)pay(3,⊥)pay(3,⊥)

2,3

2,3

2,3

1,31,3 3

1,2
1,2 1,2 1,2

1,3 1,3

1,31,3 3

3

2,3

2,3

2,3

Fig. 4. A small fragment from the ALTS generated for the DC specification. For read-

ability, we omitted some
i· · · relations generated by reflexivity and transitivity.

Analysis. Figure 4 shows the top part of the ALTS generated by the rules in
Figure 1 from the process specification in Figure 3. We check relevant functional
and epistemic properties of this protocol by matching Eμ formulas against this
ALTS, as dictated by the satisfaction relation |= (Definition 2).

First of all, we can check functional correctness, by asking for instance that
in all executions where one of the cryptographers paid, the action nsa(1,
)
is eventually observable, meaning that the first cryptographer draws the right
conclusion that the payer was an insider. This requirement is a purely temporal
formula, for each i ∈ {1, 2, 3}: [pay(i,
)]

∧
j∈{1,2,3}[�∗]nsa(j,⊥).

Better yet, we can also check the powerful epistemic statement that “every-
body knows that the payer is an insider” eventually becomes common knowledge
among the three cryptographers. This is expressed as: for every i ∈ {1, 2, 3}, it
holds that [pay(i,
)][�∗]C{1,2,3}(

∧
j∈{1,2,3} nsa(j,⊥)�).

Anonymity, the main goal of the protocol, is not expressible as a purely tempo-
ral property, but it is conveniently expressible as a temporal epistemic property.
The anonymity of cryptographer i (holding in the initial state of our model) is
expressed by the formula [pay(i,
)]

∧
j∈{1,2,3}\{i} ¬〈�∗〉Kj(pay(i,
)�). All these

properties are satisfied by our PAi model, according to the satisfaction relation
|= defined in Section 3.

Comparison to Other DC Models. PAi allows a simple and operational
modeling, just as intuitive as any other process language, see also for instance
a CSP model [26] and a pi-calculus model [4] of the Dining Cryptographers. All
these models are definitely closer to the protocol description than logic mod-
els [18,25] and moreover, they are supported by a semantics which formally links
the description of a protocol to its actual behavior model.

On the other hand, epistemic logic models allow expressing and checking
anonymity as epistemic formulae, which is much more natural than the equiv-
alence checking method employed in the process theoretic approach. More pre-
cisely, operational approach to verification of anonymity requires writing down

Operational and Epistemic Approaches to Protocol Analysis 239

new descriptions for each anonymity property that has to be checked, because
these properties are dependent on the point of view of the observer. In the ALTS
that our specification generates, all points of view are simultaneously present,
thus a direct and natural (epistemic) verification is possible.

6 Conclusion

Motivated by protocols and properties where much importance is given to the
participating entities and not only to the actual evolution of the system — like
certain security protocols, information flow — we presented a simple process
language where the concept of identity is explicitly present. We gave it an oper-
ational semantics in terms of an extended form of labeled transition systems and
defined a satisfaction relation for properties expressed in a rich logic combining
temporal and epistemic operators. The result is a specification and verification
framework that combines the best parts of two complementary approaches to
protocol analysis: process algebras and epistemic logics.

Our framework is particularly suitable for modeling and verification of pro-
tocols on top of authenticated secret channels, ensured for instance by a Public
Key Infrastructure. In these protocols, the security threats typically do not come
from an external intruder controlling the communication channels, but from the
participants themselves. Examples are protocols for fair exchange, voting, auc-
tions, anonymity. In security protocols with cryptography or active attackers,
some behavioral choices are determined by the current knowledge of the princi-
pals. In particular, a principal can distinguish more traces by gaining access to
keys. To properly accommodate this, our framework should be extended, possi-
bly by allowing dynamic update of indistinguishability relation in the course of
protocol execution. Note however that the current framework is just as powerful
in modeling cryptography aspects as any other (traditional) process algebra. So,
for these cases, more research is needed in order to find the best way of integrat-
ing the elegance of representing knowledge by indistinguishability relations with
the ease of specifying the protocol operationally.

Future Work. First of all, we will build tool support for model checking Eμ
properties on ALTSs. Ideally, this can be achieved by embedding the new frame-
work in an existing verification tool-set. The starting point will be our already
existing Maude prototype [1]. Then we wish to experiment with applying this
technique to protocols from the categories mentioned above. On a more theoret-
ical direction, a question is whether it is possible to extend the sequent-based
compositional proof system developed for the SOS + Hennessy-Milner Logic [27]
in order to cope with Eμ formulas, as well. Finally, this framework can support
a direct comparison of the operational and epistemic definitions of various prop-
erties. For instance, anonymity is defined operationally as (trace) equivalence
between certain processes, while epistemically it is simply a negative knowledge
formula. The issue of which of these definitions is stronger, if any, is not clear
yet and deserves further investigation.

240 F. Dechesne, M.R. Mousavi, and S. Orzan

Acknowledgments. We are grateful to Luca Aceto, Dave Clarke, Jan van
Eijck, Michael Huth and Michel Reniers for comments on earlier versions of this
work.

References

1. A Maude implementation of PAi. http://www.win.tue.nl/∼mousavi/pai.htm
2. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.

Information and Computation 148(1), 1–70 (1999)
3. Baltag, A.: Logics for insecure communication. In: Proc. TARK 2001, pp. 111–121

(2001)
4. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Abadi, M., de Al-

faro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer, Heidelberg
(2005)

5. Borgström, J., Kramer, S., Nestmann, U.: Calculus of cryptographic communica-
tion. In: Proc. FCS-ARSPA 2006 (2006)

6. Broadfoot, P.J.: Data Independence in the Model Checking of Security Protocols.
PhD thesis, Oxford University (2001)

7. Brookes, D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. Journal of the ACM 31(3), 560–599 (1984)

8. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. In: Practical
Cryptography for Data Internetworks, IEEE Computer Society Press, Los Alamitos
(1996)

9. Caleiroa, C., Viganò, L., Basin, D.: On the semantics of Alice & Bob specifications
of security protocols. TCS 367(1-2), 88–122 (2006)

10. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. Journal of Cryptology 1, 65–75 (1988)

11. Chothia, T., Orzan, S.M., Pang, J., Dashti, M.T.: A framework for automatically
checking anonymity with mCRL. In: Proc. TGC 2006, LNCS (2007)

12. Dechesne, F., Mousavi, M., Orzan, S.M.: Operational and epistemic approaches to
protocol analysis: Bridging the gap. Tech. Rep. CS 07-15, TU Eindhoven (2007)

13. van Eijck, J., Orzan, S.M.: Epistemic verification of anonymity. In: Proc. VODCA
2006. ENTCS, vol. 168 (2006)

14. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

15. Gerbrandy, J., Groeneveld, W.: Reasoning about information change. Journal of
Logic Language and Information 6, 147–169 (1997)

16. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent
systems. Journal of Computer Security, 483–514 (2005)

17. Hintikka, J.: Knowledge and Belief. Cornell University Press (1962)
18. van der Hoek, W., Wooldridge, M.: Model checking knowledge and time. In:

Bošnački, D., Leue, S. (eds.) Model Checking Software. LNCS, vol. 2318, pp. 95–
111. Springer, Heidelberg (2002)

19. Hommersom, A., Meyer, J.-J., de Vink, E.P.: Update semantics of security proto-
cols. Synthese 142, 229–267 (2004)

20. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: A modular
approach. Journal of Computer Security 12(1), 3–36 (2004)

21. Kramer, S.: Logical concepts in cryptography. Cryptology ePrint Archive, Report
2006/262 (2006), http://eprint.iacr.org/2006/262

http://www.win.tue.nl/~mousavi/pai.htm
http://eprint.iacr.org/2006/262

Operational and Epistemic Approaches to Protocol Analysis 241

22. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

23. Nielsen, M.: Reasoning about the past. In: Brim, L., Gruska, J., Zlatuška, J. (eds.)
MFCS 1998. LNCS, vol. 1450, pp. 117–128. Springer, Heidelberg (1998)

24. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60, 17–139 (2004)

25. Raimondi, F., Lomuscio, A.: Automatic verification of deontic interpreted systems
by model checking via OBDD’s. Journal of Applied Logic (in Press, 2006)

26. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Martella, G., Kurth, H.,
Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218.
Springer, Heidelberg (1996)

27. Simpson, A.K.: Sequent calculi for process verification: Hennessy-Milner logic for
an arbitrary GSOS. Journal of Logic and Algebraic Programming, 60–61, 287–322

	Operational and Epistemic Approaches to Protocol Analysis: Bridging the Gap
	Introduction
	 PAi: Syntax and Operational Semantics
	An Epistemic Mu-Calculus
	Bridging the Gap: Relation to Existing Theories
	An Example Protocol: Dining Cryptographers
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

