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Abstract. In the area of Description Logic (DL) based knowledge rep-
resentation, hybrid terminologies have been proposed as a means to make
non-standard inference services available to knowledge bases that con-
tain general concept inclusion (GCI) axioms. Building on existing work
on subsumption in hybrid terminologies, the present paper provides the
first in-depth investigation of the non-standard inferences least-common
subsumer, and matching in hybrid EL-TBoxes; providing sound and com-
plete algorithms for both inference services.

1 Motivation

In Description Logic (DL) based knowledge representation (KR), intensional
knowledge of a given domain is represented by a terminology (TBox) that defines
properties of concepts relevant to the domain [1]. A TBox usually comprises
definitions of the form A ≡ C by which a concept name A is assigned to a concept
description C. Concept descriptions are terms built from atomic concepts by
means of a set of constructors provided by the DL under consideration. TBoxes
are interpreted with a model-theoretic semantics which allows to reason over
the terminology in a formally well-defined way. Our DL of interest is EL which
provides top concept (�), conjunction (�), and existential restriction (∃r.C).

General TBoxes additionally allow for general concept inclusion (GCI) axioms
of the form C � D, where both C and D may be complex concept descriptions.
GCIs define implications (“D holds whenever C holds”) relevant to the termi-
nology as a whole. The utility of GCIs for practical KR applications has been
examined in depth; see, e.g., [2,3,4]. In addition to constraining (admissible mod-
els of) terminologies further without explicitly changing all its definitions, using
GCIs can lead to smaller, more readable TBoxes, and can facilitate the re-use
of data in applications of different levels of detail. Consequently, GCIs are sup-
ported by most modern DL reasoners such as FaCT [5], Racer [6], Pellet [7],
and Cel [8].

One of the most important reasoning services provided by such DL systems
is classification, i.e., computing the subsumption hierarchy. Before DL systems
can be deployed for reasoning over terminologies in an application area, however,
the relevant TBoxes must be built-up and maintained. In order to support these
knowledge engineering tasks, additional so-called ‘non-standard’ inference ser-
vices have been proposed, most notably least-common subsumer (lcs) [9,10,11,12]
and matching [13,14,15]. As discussed in [16], the lcs facilitates the build-up of
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DL knowledge bases in a ‘bottom-up’ fashion suitable for domain experts with
limited KR background. Among other applications, matching can be used as
a means of querying TBoxes for concepts of a certain structure [17]. This can
be utilized to construct new concepts by retrieving and modifying structurally
similar ones in the TBox.

Unfortunately, non-standard inferences are not straightforwardly available for
general TBoxes: it has been shown in [18] that lcs need not always exist, even for
cyclic EL-TBoxes interpreted with descriptive semantics, the standard semantics
for DL systems. This result carries over to general EL-TBoxes and any extension
of EL. The same holds for matching which relies on the lcs.

In order to provide non-standard inferences in the presence of GCIs, so-called
hybrid TBoxes have been proposed [19]. A hybrid EL-TBox is a pair (F , T ) of
a general TBox F (‘foundation’) and a possibly cyclic TBox T (‘terminology’)
defined over the same set of atomic concepts and roles. F serves as a foundation
of T in that the GCIs in F define relationships between concepts used as atomic
concept names in the definitions in T . Hence, F lays a foundation of general
implications constraining T . The semantics of hybrid TBoxes is different from the
usual descriptive semantics: while the foundation of a hybrid TBox is interpreted
with descriptive semantics, the terminology is interpreted with so-called greatest-
fixpoint (gfp) semantics to be introduced in detail in Section 2.

With respect to non-standard inferences for hybrid EL-TBoxes, our point of
departure is as follows: it has been sketched in [19] how an equivalence-preserving
reduction from hybrid to cyclic EL-TBoxes with gfp-semantics can be exploited
to utilize the lcs defined for cyclic EL-TBoxes with gfp-semantics in [18]. The
lcs algorithm thus obtainable for hybrid EL-TBoxes has not yet been studied,
though. In case of matching, the above mentioned reduction appears useful as
well, only that no matching algorithm for cyclic EL-TBoxes with descriptive
semantics exists as yet. The present paper closes both gaps before turning to
matching in hybrid TBoxes: after introducing matching in cyclic EL-TBoxes with
gfp-semantics in Section 3 and the least-common subsumer for hybrid TBoxes
in Section 4.1, our matching algorithm for hybrid TBoxes is presented in Sec-
tion 4.2. It should be noted that matching problems have not yet been defined
for cyclic or hybrid EL TBoxes. Hence, Sections 3 and 4 start by introducing
the relevant notions for the cyclic and hybrid case, respectively. Given that hy-
brid TBoxes may be viewed as a rather exotic KR formalism, we conclude by
discussing the utility of our results for common general EL-TBoxes.

All details and complete proofs can be found in our technical report [20].

2 Formal Preliminaries

Concept descriptions are inductively defined with the help of a set of concept
constructors, starting with arbitrary but fixed disjoint sets Nprim�Ndef =: Ncon of
primitive concept names (Nprim) and defined concept names (Ndef), respectively,
and a set Nrole of role names. The DL EL provides the concept constructors
top-concept (�), conjunction (�), and existential restrictions (∃r.C). Concept
descriptions using only these constructors are called EL-concept descriptions.
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As usual, the semantics of concept descriptions is defined in terms of an in-
terpretation I = (ΔI , ·I). The domain ΔI of I is a non-empty set and the
interpretation function ·I maps each concept name P ∈ Nprim ∪Ndef to a subset
P I ⊆ ΔI and each role name r ∈ Nrole to a binary relation rI ⊆ ΔI ×ΔI .
The extension of ·I to arbitrary EL-concept descriptions is defined inductively
as follows: �I := ΔI , (C � D)I := CI ∩ DI , and

(∃r.C)I := {x ∈ ΔI | ∃y : (x, y) ∈ rI ∧ y ∈ CI}.

The main purpose of DLs is to be used as underlying representation language
for knowledge bases. Two common kinds of DL knowledge bases, TBoxes and
general TBoxes, are defined as follows.

For every A ∈ Ndef and every EL-concept description C over Ncon and Nrole,
A ≡ C is a definition of A. Every finite set of definitions is an EL-terminology
(EL-TBox) over Ndef , Nprim, and Nrole iff it contains at most one definition of
A for every A ∈ Ndef . An EL-TBox T is acyclic iff T is of the form {Ai ≡
Ci | 1 ≤ i ≤ n} such that for every i ∈ {1, . . . , n}, only defined names from
{A1, . . . , Ai−1} occur in Ci. For concept descriptions C, D over Ncon and Nrole,
C � D is a general concept inclusion (GCI) axiom. Every finite set of GCIs is a
general EL-TBox. For every EL-TBox T , denote by NT

con (NT
def , NT

prim) and NT
role

the sets of all (defined, primitive) concept names and role names, respectively,
occurring in T . For general EL-TBoxes, only NT

con and NT
role apply. For the sake

of brevity, we may write TBox instead of EL-TBox.

Descriptive semantics: an interpretation I is a model of a general TBox T
(I |= T ) iff CI ⊆ DI for every GCI C � D ∈ T . Every (non-general) TBox
can be viewed as a general TBox since every definition A ≡ C is equivalent to
the pair of GCIs A � C, C � A. This semantics is usually called descriptive
semantics [22].

One of the most basic inference services provided by DL systems is computing
the subsumption hierarchy. For concept descriptions C, D defined in a TBox T ,
C is subsumed by D w.r.t. T (C �T D) iff CI ⊆ DI for every model of T . C is
equivalent to D w.r.t. T (C ≡T D) iff C �T D and D �T C. Explicit reference
to the empty TBox may be omitted: if T = ∅, write C � D instead of C �T D,
and analogously for equivalence.

Greatest-fixpoint semantics: for (non-general) TBoxes, we additionally in-
troduce greatest-fixpoint semantics. We begin by interpreting only primitive con-
cepts and roles occurring: for every TBox T , a primitive interpretation (ΔJ , ·J )
of T interprets all primitive concepts P ∈ Nprim by subsets of ΔJ and all roles
r ∈ Nrole by binary relations on ΔJ . An Interpretation I := (ΔI , ·I) is based
on J iff ΔJ = ΔI and ·J and ·I coincide on Nrole and Nprim. The set of all
interpretations based on J is denoted by Int(J ). On Int(J ), a binary relation
�J is defined for all I1, I2 ∈ Int(J ) by I1 �J I2 iff AI1 ⊆ AI2 for all A ∈ NT

def .
The pair (Int(J ),�J ) is a complete lattice, so that every subset of Int(J ) has

a least upper bound (lub) and a greatest lower bound (glb) w.r.t. �J . Hence, by
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Tarski’s fixpoint theorem [23], every monotonic function on Int(J ) has a fixpoint.
In particular, this applies to the function OT ,J defined by OT ,J : Int(J ) →
Int(J ) with I1 �→ I2 iff AI2 = CI1 for all A ≡ C ∈ T .

As shown in [21], OT ,J is in fact a fixpoint operator on Int(J ). Moreover, it
holds that I is a fixpoint of OT ,J iff I is a model of T . As a consequence, an
interpretation I is called a gfp-model of T iff there is a primitive interpretation
J such that I ∈ Int(J ) is the greatest fixpoint of OT ,J .

As (Int(J ),�J ) is a complete lattice, the gfp-model is uniquely determined
for a given TBox T and a primitive interpretation J . We may thus refer to the
gfp-model gfp(T ,J ) for any given T and J . With this preparation, we define
gfp-subsumption by: for concept names A, B defined in T , A is subsumed by B
w.r.t. gfp-semantics (A �gfp,T B) iff AI ⊆ BI for all gfp-models I of T .

Note that descriptive semantics considers a superset of the set of gfp-models,
implying that descriptive subsumption entails gfp-subsumption. Hence, all sub-
sumption relations w.r.t. �T also hold w.r.t. �gfp,T . Moreover, both semantics
coincide on acyclic TBoxes. For EL, our DL of interest, least-fixpoint semantics
is inappropriate w.r.t. cyclic TBoxes [21] and hence is not considered.

See [20] for details of how gfp-models can actually be computed.

Deciding subsumption w.r.t. cyclic EL-TBoxes with gfp-semantics: a
decision procedure for the subsumption problem w.r.t. cyclic EL-TBoxes with
descriptive semantics has been presented in [21]. We repeat the notions central
to this procedure in so far as they are required for our matching algorithms w.r.t.
cyclic and hybrid EL-TBoxes.

An EL-TBox T is normalized iff A ≡ D ∈ T implies that D is of the form
P1 � · · · � Pm � ∃r1.B1 � . . . ∃r�.B�, where for m, � ≥ 0, P1, . . . , Pm ∈ Nprim

and B1, . . . , B� ∈ Ndef . If m = � = 0 then D = �. The subsumption algorithm
in [21] represents normalized EL-TBoxes by means of description graphs. Given
a normalized EL TBox T , the EL-description graph GT = (NT

def , ET , LT ) of T is
defined as follows:

– the nodes of GT are the defined concepts of T ;
– if A is defined in T and A ≡ P1 � · · · � Pm � ∃r1.B1 � · · · � ∃r�.B� is its

definition then LT (A) := {P1, . . . , Pm}, and A is the source of the edges
(A, r1, B1), . . . , (A, r�, B�) ∈ ET .

Any primitive interpretation J = (ΔJ , ·J ) can be represented by an EL-
description graph as well, see [20] for details.

In preparation for the characterization of subsumption we need to introduce
simulation relations on description graphs. Given two EL-description graphs Gi =
(Vi, Ei, Li), i = 1, 2, the binary relation Z ⊆ V1 × V2 is a simulation relation
from G1 to G2 (Z : G1 ⇀∼ G2) iff (S1) (v1, v2) ∈ Z implies L1(v1) ⊆ L2(v2); and
(S2) if (v1, v2) ∈ Z and (v1, r, v

′
1) ∈ E1 then there exists a node v′2 ∈ V2 such

that (v′1, v
′
2) ∈ Z and (v2, r, v

′
2) ∈ E2.

It has been shown in [21] that simulation relations are closed under con-
catenation. Moreover, one of the main results in [21] is a characterization of
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gfp-subsumption w.r.t. cyclic EL-TBoxes by simulation relations over descrip-
tion graphs. The following results provide the relevant characterizations.

Theorem 1. Let T be an EL-TBox and A, B be defined concepts in T . Then
A �gfp,T B iff there is a simulation relation Z : GT ⇀∼ GT such that (B, A) ∈ Z.

Since the description graph of a TBox is of polynomial size in the size of the
TBox and since the existence of simulation relations with the required properties
can be tested in polynomial time, subsumption w.r.t. cyclic EL-TBoxes with gfp-
semantics is decidable in polynomial time. [21].

The least-common subsumer w.r.t. cyclic EL-TBoxes: a main prepara-
tory step towards matching w.r.t. cyclic EL-TBoxes is to introduce the lcs for
cyclic EL-TBoxes. The relevant definitions are due to [18].

Let T1 be a cyclic EL-TBox and let A, B ∈ NT1
def . Let T2 be a conservative

extension of T1 with E ∈ NT2
def \ NT1

def . Then E is the least common subsumer of
A and B in T1 w.r.t. gfp-semantics (gfp-lcs) iff the following conditions hold:

1. A �gfp,T2 E and B �gfp,T2 E;
2. if T3 is a conservative extension of T2 and F a defined concept in T3 such

that A �gfp,T3 F and B �gfp,T3 F then E �gfp,T3 F .

In order to be able to actually compute the lcs, we need to compute the
product of description graphs. Let Gi := (Vi, Ei, Li), i = 1, 2 be two description
graphs. Their product is the description graph G1 × G2 := (V, E, L) with V :=
V1×V2; E := {((v1, v2), r, (v′1, v

′
2)) | ∀i ∈ {1, 2} : (vi, r, v

′
i) ∈ Ei}; and L(v1, v2) :=

L1(v1)∩L2(v2). For a description graph G = (V, E, L), the n-ary graph product
is inductively defined in the obvious way, i.e., G1 := G and Gn+1 := Gn × G.

In order to transform product graphs back to TBoxes, we define TBoxes in-
duced by description graphs. Let G := (V, E, L) be a description graph. Then
the TBox of G is defined by

tbox(G) := {A ≡ �
P∈L(A)

P � �
(A,r,B)∈E

∃r.B | A ∈ V }.

Two of the main results from [18] prove that the gfp-lcs w.r.t. cyclic EL-TBoxes
always exists and can in fact be computed by means of the graph product: for
concept names A, B defined in T , the concept (A, B) defined in T ∪ tbox(GT ×
GT ) is the gfp-lcs of A and B w.r.t. T . Hence, the gfp-lcs can be computed in
polynomial time in the binary case can and in exponential time in the general
case. We are now prepared to introduce hybrid TBox, our main TBox formalism
of interest.

2.1 Hybrid TBoxes

Definition 1. (Hybrid TBox) For every general EL-TBox F over Nprim and
Nrole, and every EL-TBox T over Ndef, Nprim, and Nrole, the pair (F , T ) is
called a hybrid EL-TBox.
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In order to simplify the presentation of our subsumption algorithm, we introduce
a normal form for hybrid EL-TBoxes. Analogous to the case of cyclic TBoxes,
we normalize hybrid TBoxes in order to simplify the presentation of our proofs.
See [20] for an example of what an actual hybrid EL-TBox looks like and for
details about normalization. The semantics of hybrid TBoxes can now be defined
as follows.

Let (F , T ) be a hybrid TBox over Nprim, Nrole, and Ndef . A primitive inter-
pretation J is a model of F (J |= F) iff CJ ⊆ DJ for all GCIs C � D in F . A
model I ∈ Int(J ) is a gfp-model of (F , T ) iff J |= F and I is a gfp-model of T .

Note that F (“foundation”) is interpreted with descriptive semantics while
T (“terminology”) is interpreted with gfp-semantics. Note also that every gfp-
model of (F , T ) can be expressed as the greatest fixpoint gfp(T ,J ) for some
primitive interpretation J with J |= F .

In order to complete the semantics of hybrid TBoxes, we still have to introduce
an appropriate notion of subsumption: Let A, B be defined concepts in T . Then
A is subsumed by B w.r.t. (F , T ) (A �gfp,F ,T B) iff AI ⊆ BI for all gfp-models
I of (F , T ).

Hybrid TBoxes generalize cyclic TBoxes with gfp-semantics in the sense that
every cyclic EL-TBox T can be viewed as a hybrid TBox with an empty foun-
dation. Thus, gfp-subsumption w.r.t. T coincides with subsumption w.r.t. the
hybrid TBox (∅, T ). Also note that every general TBox T ′ can be seen as a
hybrid TBox (T ′, ∅). In this case, a descriptive subsumption P �T ′ Q holds iff
AP is subsumed by AQ w.r.t. the normalized instance of (T ′, ∅).

Deciding subsumption w.r.t. hybrid EL-TBoxes: in order to decide sub-
sumption of concepts defined in a EL-hybrid TBox, an equivalence preserving
reduction from hybrid to cyclic EL-TBoxes with gfp-semantics has been pro-
posed in [19]. After the reduction, subsumption can be decided as described
above.

The idea underlying the reduction is to use the descriptive subsumption re-
lations induced by the GCIs in F to extend the definitions in T accordingly. To
this end, we view the union of F and T as a general TBox and ask for all de-
scriptive implications in T directly involving names from F . These implications
are then added to the definitions in T . This notion is formalized as follows: for
a given normalized hybrid EL-TBox (F , T ), the F-completion f(T ) extends the
definitions in T to f(T ) := {A ≡ C � f(A) | A ≡ C ∈ T }, where for every
A ∈ NT

def , the concept description f(A) is defined as follows.

f(A) := �
P∈{P ′∈NF

prim|A�F∪T P ′}
P � �

r∈NT
role

�
Q∈{Q′∈NF

prim|A�F∪T ∃r.Q′}
∃r.AQ .

Note that f(T ) is still a normalized EL-TBox. To preserve normalization,
f(A) adds ∃r.AQ instead of ∃r.Q whenever A implies ∃r.Q. It has been shown
in [19] that the above reduction yields a cyclic TBox equivalent to the original
hybrid one in the following sense.

Theorem 2. Let (F , T ) be a normalized hybrid EL-TBox and A, B ∈ NT
def.

Then, A �gfp,F ,T B iff A �gfp,f(T ) B.
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It has been shown in [19] that subsumption w.r.t. hybrid EL-TBoxes can be
decided in polynomial time in the size of the hybrid TBox.

In the following sections, we introduce matching problems w.r.t. cyclic and
hybrid TBoxes and present appropriate matching algorithms for both cases.

3 Matching w.r.t. Cyclic EL-TBoxes

Our first step towards defining matching w.r.t. cyclic TBoxes is to extend concept
descriptions to concept patterns by admitting concept variables.

Denote by Nvar a finite set of variables pairwise disjoint to Ncon and Nrole.
The set of concept patterns over Ncon, Nrole, and Nvar is inductively defined as
follows: every EL-concept description over Ncon and Nrole is a concept pattern;
every variable X ∈ Nvar is a concept pattern; and if r ∈ Nrole and D1, D2 are
concept patterns then so are D1 � D2 and ∃r.D1.

Trivially, every concept description is a concept pattern. The following defini-
tion similarly extends cyclic TBoxes to pattern TBoxes in which the right-hand
side of a definition may be a concept pattern.

Definition 2. (Pattern TBox) An EL-pattern TBox T is a finite set of defini-
tions of the form A ≡ C, where A ∈ Ndef and C is a concept pattern over Nprim,
Ndef, Nrole, and Nvar. A is called defined in T and may occur on the left-hand
side of no other definition in T . Denote by NT

var the set of all variables occurring
in T .

Note that variables do not occur on left-hand sides of definitions. Denote by
NT

var(A) the set of variables in T ‘reachable’ from A. Matching problems over
cyclic TBoxes can now be defined as follows.

Definition 3. (Matching problem) Let T be an EL-pattern TBox with A, B ∈
NT

def. Moreover, let NT
var(A) = ∅. Then A ≡?

gfp,T B is an EL-matching problem
modulo equivalence w.r.t. T with gfp-semantics.

Throughout this section, we shall refer to ‘EL-matching problem modulo equiva-
lence with gfp-semantics’ by ‘EL-matching problem’. In order to define solutions
to matching problems appropriately, some preparation is necessary. The follow-
ing definition introduces conservative extensions for pattern TBoxes.

Definition 4. (Conservative extension) Let T1 be an EL-pattern TBox over
Nprim, Ndef, Nrole, and Nvar. Then an EL-pattern TBox T2 is a conservative
extension of T1 iff NT2

prim = NT1
prim, NT2

role = NT1
role, NT1

var ⊇ NT2
var, and T1 ⊆ T2.

The above definition coincides on ordinary TBoxes with the definition of con-
servative extensions from [18]. Moreover, since T2 is a pattern TBox, NT1

def and
N

T2\T1
def are disjoint. In contrast to concept matching (as, e.g., in [24]), we do

not use substitutions to instantiate variables. Instead, we simply extend pattern
TBoxes by appropriate definitions for the occurring variables. This leads to the
notion of instantiation.
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Definition 5. (Instantiation) Let T1 be an EL-pattern TBox over Nprim, Ndef,
Nrole, and Nvar. Let T2 be a conservative extension of T1. For every X ∈ NT1

var, let
DX be a concept pattern over Nprim, Ndef, Nrole, and NT1

var. Then T3 := T2∪{X ≡
DX | X ∈ NT1

var} is an instantiation of T1.

Intuitively, an instantiation turns variables into defined concepts, and thus turns
a pattern TBox into an ordinary TBox. Using these notions, it is particularly
simple to define solutions to matching problems.

Definition 6. (Matcher) Let A ≡?
gfp,T B be an EL-matching problem and let T ′

be an instantiation of T . Then T ′ is a matcher of A ≡?
gfp,T B iff A ≡gfp,T ′ B.

Hence, a matcher to A ≡?
gfp,T B extends the pattern TBox T by definitions for

all variables reachable from B such that A and B become equivalent. Clearly,
we may restrict ourselves to matching problems over names because it holds
for every concept description C and every concept pattern D defined over a
pattern TBox T that the matching problem C ≡?

gfp,T D can be simulated by
A ≡?

gfp,T ∪{A≡C,B≡D} B with A, B fresh defined names.
We are now ready to show how to solve matching problems w.r.t. cyclic EL-

TBoxes as defined above.

3.1 Solving Matching Problems w.r.t. Cyclic EL-TBoxes

By treating variables as primitive concepts, pattern TBoxes can, syntactically, be
regarded as ordinary TBoxes. This allows us to define normalized pattern TBoxes
analogously to normalized cyclic TBoxes, and to transform pattern TBoxes into
description graphs and vice versa. Similarly, we adopt the notion of a product
TBox. For an EL-pattern TBox and n ∈ N, let T n := tbox(Gn

T ). In order to
extend the notion of simulation relations to graphs of pattern TBoxes, variables
are simply ignored. We can now define our matching algorithm w.r.t. cyclic EL-
TBoxes as follows.

Definition 7. (match) Let T be a normalized EL-pattern TBox and let A ≡?
gfp,T

B be an EL-matching problem. For every simulation relation Z : GT ⇀∼ GT and
for every X ∈ NT

var, define

Z(X) := {A′ ∈ Ndef | ∃B′ ∈ Ndef : (B′, A′) ∈ Z ∧ X ∈ LT (B′)}.

Then, match(A ≡?
gfp,T B) is defined as shown in Figure 1.

Upon input A ≡?
gfp,T B, our matching algorithm match returns all instantiations

TZ for which, firstly, Z is a simulation relation on GT with (B, A) ∈ Z; and
secondly, A subsumes B w.r.t. TZ interpreted with gfp-semantics.

For a given Z, TZ is defined as an instantiation of a conservative extension of
T . We discuss the conservative extension first and the additional definitions for
variables afterwards. For every variable X ∈ NT

var, T is extended by the |Z(X)|-
ary graph product of T . For every X , the set Z(X) contains all ‘destination’
vertices onto which vertices in GT labeled by X are mapped. Hence, whenever
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Input: matching problem P := A ≡?
gfp,T B with normalized EL-pattern TBox T

Output: set of matchers of P

Return {TZ | Z : GT ⇀∼ GT ∧ (B, A) ∈ Z ∧ A �gfp,TZ B},
where, for every Z : GT ⇀∼ GT , TZ is defined by:

TZ := T ∪
⋃

i∈{|Z(X)||X∈NT
var(B)}\{1}

(T [X/� | X ∈ NT
var])

i

∪ {X ≡ (A1, . . . , An) | X ∈ NT
var(B)

∧ Z(X) = {A1, . . . , An} ∧ |Z(X)| = n}
∪ {X ≡ � | X 	∈ NT

var(B)}.

Fig. 1. The algorithm match for cyclic EL-TBoxes

Z maps vertices labeled by X onto n different vertices then T is extended by
the n-ary graph product of T . More precisely, the graph product is computed
after removing variables from T . Note that this removal is only done for conve-
nience to simplify the notation in our proofs and not necessary for correctness
or completeness of the algorithm.

As a result, the relevant conservative extension of T for every X contains a
definition of the lcs over all destination vertices of vertices labeled by X : if Z(X)
contains n pairwise distinct destination vertices {A1, . . . , An} then the relevant
lcs is the vertex (A1, . . . , An) in the n-ary product of T .

As the second line of the definition of TZ shows, X is finally assigned the lcs
over all destinations of X : X ≡ (A1, . . . , An). Note that the condition |Z(X)| =
n only ensures pairwise distinctness of the vertices A1, . . . , An. Without this
condition, X might be assigned to vertices not existing in the relevant extension.
Note also that variables unreachable from B are assigned �.

In order to get an impression how the above matching algorithm works, see
our example in [20].

We can show that the above algorithm is sound and complete and that the
set of all matchers of a given matching problem can be computed in exponential
time, see [20] for details. More precisely, we show that our matching algorithm
is s-complete. Intuitively, this means that the set of matchers computed by the
algorithm contains all ‘interesting’ solutions which contain as much information
about the input matching problem as possible; see [20] for details.

In addition to that, we obtain that our matching algorithm for cyclic EL-
TBoxes with greatest-fixpoint semantics generalizes the EL-matching algorithm
w.r.t. the empty TBox presented in [24]. This immediately implies several com-
plexity lower bounds: Firstly, deciding the solvability of matching problems
modulo equivalence w.r.t. cyclic EL-TBoxes is NP-hard. Secondly, the minimal
matchers to matching problems w.r.t. cyclic EL-TBoxes can be of exponential
size in the input TBox. Moreover, the number of minimal matchers can also
be exponential in the input TBox. Any algorithm solving matching problems
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w.r.t. cyclic EL-TBoxes is therefore necessarily worst-case exponential. In this
sense, our algorithm is worst-case optimal. It is open whether deciding the solv-
ability of matching problems modulo equivalence w.r.t. cyclic EL-TBoxes with
gfp-semantics is in NP.

4 Matching w.r.t. Hybrid TBoxes

The main ingredient of the matching algorithm presented in the previous section
has been the gfp-lcs w.r.t. cyclic EL-TBoxes with gfp-semantics from [18]. Our
aim now is to extend the algorithm from cyclic to hybrid TBoxes. We begin by
extending the notion of a pattern TBox from Definition 2 to hybrid TBoxes.

Definition 8. (Hybrid pattern TBox) A hybrid EL-pattern TBox T is a pair
(F , T ) of a general EL-TBox F defined over Nprim and Nrole, and an EL-pattern
TBox defined over Ndef, Nprim, and Nrole.

Hence, hybrid pattern TBoxes extend ordinary pattern TBoxes by adding a
‘foundation’ general TBox. Conservative extensions and instantiations of hybrid
pattern TBoxes are defined analogous to their counterpart cyclic TBoxes, i.e.,
they affect only T and leave F unchanged. We can now immediately extend the
notion of matching problems to hybrid pattern TBoxes.

Definition 9. (Matching problem) Let (F , T ) be a hybrid EL-pattern TBox with
A, B ∈ NT

def . Moreover, let NT
var(A) = ∅. Then A ≡?

gfp,F ,T B is a hybrid EL-
matching problem modulo equivalence w.r.t. (F , T ).

Note that, despite the restriction of A to defined concept names from T , concept
patterns can also be matched against concept names defined in F . For instance,
in order to match a concept pattern B defined in T against some P ∈ NT

con from
F , it suffices to extend T by a definition of the form AP ≡ P , with AP a fresh
concept name, and solve the matching problem AP ≡?

gfp,F ,T B. Clearly, one can
also define concept patterns using only names from F .

Solutions to hybrid EL-matching problems can now be defined analogous to
matchers for matching problems w.r.t. cyclic TBoxes.

Definition 10. (Matcher) Let A ≡?
gfp,F ,T B be a hybrid EL-matching problem

and let (F , T ′) be an instantiation of (F , T ). Then (F , T ′) is a matcher of
A ≡?

gfp,F ,T B iff A ≡gfp,F ,T ′ B.

In preparation to solving matching problems w.r.t. hybrid TBoxes, we extend
the lcs algorithm to hybrid TBoxes in the following section. In Section 4.2, the
actual matching algorithm for hybrid TBoxes is presented.

4.1 The Least-Common Subsumer w.r.t. Hybrid EL-TBoxes

Our aim is to extend the lcs w.r.t. cyclic EL-TBoxes to hybrid EL-TBoxes. To this
end, we begin by extending the notion of conservative extensions of EL-TBoxes
from cyclic to hybrid TBoxes. A hybrid TBox (F , T2) is a conservative extension
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of (F , T1) iff T2 is a conservative extension of T1 in the sense of Definition 4.
Hence, a conservative extension of (F , T ) is obtained by fixing F and extending
T in the usual way. We can now define the lcs w.r.t. hybrid TBoxes analogously
to the case of cyclic ones.

Definition 11. (Hybrid lcs) Let (F , T1) be a hybrid TBox and A, B ∈ NT1
def. Let

(F , T2) be a conservative extension of (F , T1) with C ∈ NT2
def. Then, C in (F , T2)

is the hybrid least-common subsumer (lcs) of A, B in (F , T1) iff the following
conditions hold.

1. A �gfp,F ,T2 C and B �gfp,F ,T2 C; and
2. If (F , T3) is a conservative extension of (F , T2) and D ∈ NT3

def such that
A �gfp,F ,T3 D and B �gfp,F ,T3 D then C �gfp,F ,T3 D.

In order to compute the lcs w.r.t. hybrid EL-TBoxes, we again utilize the
reduction from hybrid to cyclic TBoxes from [19] and the usual gfp-lcs algorithm
for cyclic EL-TBoxes from [18]. We show in [20] that the hybrid lcs algorithm
thus obtained in fact yields the correct results: (A, B) in (F , f(T ) ∪ f(T )2) is
the hybrid lcs of any concepts A, B defined in a given hybrid TBox (F , T ).

As the lcs of arbitrary arity can be reduced to the binary lcs, the above results
immediately carry over to the n-ary lcs. As the reduction from hybrid to cyclic
EL-TBoxes can be computed in polynomial time and as the lcs algorithm for
cyclic EL-TBoxes with gfp-semantics has already been studied [18], we find that
the lcs of concepts defined in a hybrid TBox (F , T ) always exists and (in the
binary case) can be computed in polynomial time in the size of (F , T ). Moreover,
the lcs of arbitrary arity w.r.t. hybrid EL-TBoxes can be computed in exponential
time in the size of the input and is of exponential size in the size of the input in
the worst-case. In particular, our lcs algorithm is worst-case optimal.

4.2 Solving Matching Problems w.r.t. Hybrid EL-TBoxes

We are now prepared to introduce our matching algorithm for hybrid TBoxes.

Definition 12. (matchhy) Let (F , T ) be a normalized hybrid EL-TBox and let
A ≡?

gfp,F ,T B be a hybrid EL-matching problem. Then define

matchhy(A ≡gfp,F ,T B) := {(F , (T ′ \ f(T )) ∪ T ) | T ′ ∈ match(A ≡gfp,f(T ) B)}.

In the above definition, f(T ) denotes the F -completion of T from Section 2.1 and
match the matching algorithm for cyclic EL-TBoxes from Definition 7. Hence, the
algorithm matchhy proceeds in three main steps. Firstly, the input hybrid pattern
TBox (F , T ) is translated into an equivalent1 cyclic pattern TBox f(T ). Sec-
ondly, for the translated matching problem A ≡gfp,f(T ) B, the algorithm match
computes all minimal solutions and returns them in the form of instantiations
T ′ of f(T ). Thirdly, the solution is returned as a set of instantiations of hybrid
pattern TBoxes. How exactly these hybrid instantiations are defined deserves a
closer look.
1 Treating variables as atomic concepts.
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As every instantiation T ′ returned by the algorithm match is a conservative
extension of f(T ) and not T , T ′ already completely specifies a solution to the
initial hybrid matching problem. Or, in other words, F becomes redundant. As
we are interested in hybrid instantiations of (F , T ), and not of (F , f(T )), we
modify every T ′ by removing f(T ) and replacing it by the original TBox T , i.e.,
compute (T ′ \ f(T )) ∪ T . This modification preserves equivalence as a direct
consequence of the correctness of the F -completion shown in [19]. Together with
the correctness of our hybrid lcs algorithm, we immediately obtain soundness
and completeness of the hybrid matching algorithm.

Corollary 1. Let (F , T ) be a normalized hybrid EL-TBox and let A ≡gfp,F ,T B
be an EL-matching problem w.r.t. (F , T ). Then, matchhy(A ≡gfp,F ,T B) com-
putes an s-complete set of matchers to A ≡gfp,F ,T B.

The complexity results obtained in the previous section together with the fact
that f(T ) can be computed in polynomial time in the size of (F , T ) [19] imply the
following complexity results: Deciding the solvability of matching problems mod-
ulo subsumption w.r.t. hybrid EL-TBoxes is tractable. Deciding the solvability
of matching problems modulo equivalence w.r.t. hybrid EL-TBoxes is NP-hard.
The solutions to a matching problem w.r.t. hybrid EL-TBoxes can be exponen-
tial in number and of exponential size in the input matching problem. They can
be computed by a deterministic exponential-time algorithm. The computation
algorithm is worst-case optimal. See [20] for details.

It is open whether deciding the solvability of matching problems modulo
equivalence w.r.t. hybrid EL-TBoxes is in NP. Note that that additional rewriting
might be desirable in order to present the solutions of matchhy more succinctly:
T ′ can contain the n-ary product of f(T ) which might contain information al-
ready implied by F .

5 Conclusion and Outlook

In the present paper, we have proposed the notion of matching problems in
cyclic EL-TBoxes with gfp-semantics and have devised a sound and s-complete
exponential time algorithm for that case. Using an existing reduction from hybrid
EL-TBoxes to cyclic ones, we have shown that the lcs w.r.t. hybrid EL-TBoxes
always exists and have devised a sound and complete exponential time algorithm
to compute it. Utilizing both the reduction and the result on the hybrid lcs, we
could devise a sound and complete exponential time matching algorithm for
matching problems w.r.t. hybrid TBoxes. All computation algorithms are worst-
case optimal. Optimality of the relevant algorithms for the decision problem,
i.e., existence of a matcher, remains an open problem.

Apart from the fact that reasoning over EL-TBoxes has an attractive compu-
tational complexity, ontologies based on EL-TBoxes are of some significance to
the life sciences. For instance, the widely used medical terminology Snomed [27]
corresponds to an EL-Tbox [28]. Similarly, the Gene Ontology [29] can be rep-
resented by an EL-TBox with one transitive role, and large parts of the medical



178 S. Brandt

knowledge base Galen [30] can be expressed by a general EL-TBox with tran-
sitive roles. Similarly, the widely used International Classification for Nursing
Practice (ICNP) [31] corresponds to a general EL-TBox.

Matching in general EL-TBoxes: the apparent popularity of ‘common’ gen-
eral EL-TBoxes motivates the question to which extent the above results have
any potential to be used for that KR formalism.

It has been shown in [18] that the least-common subsumer w.r.t. cyclic EL-
TBoxes with descriptive semantics need not exist2, a result that carries over
to general EL-TBoxes. Moreover, as every lcs can be expressed as a minimal
solution to some matching problem, minimal matchers need not always exist
likewise.

On the other hand, we have pointed out in Section 2.1 that every general
EL-TBox T can be viewed as a hybrid TBox (T , ∅) with empty terminology.
Hence, we can define matching problems in general TBoxes (with descriptive
semantics) and use our hybrid matching algorithm to compute a set of solutions
S with gfp-semantics. As descriptive subsumption entails gfp-subsumption, every
‘descriptive’ solution to the matching problem is obtained by a gfp-matching
algorithm. All matchers w.r.t. descriptive semantics can thus be computed by
first computing S with our hybrid matching algorithm and then removing every
matcher from S that is not valid w.r.t. descriptive semantics.

The pure decision problem for general TBoxes might be even more interest-
ing for our hybrid matching algorithm. As pointed out in [17], matching can
be utilized as a retrieval mechanism over TBoxes in a straightforward way.
The user specifies a concept pattern with the syntactic structure he has in
mind. The matching algorithm is then used to retrieve all concepts in the
TBox for which a matcher exists. The fact that variables in concept patterns
are named, in contrast to, e.g., wildcards (‘∗’) known from standard database
queries, allows us to search the TBox for concepts with very specific structural
properties.

In the application scenario sketched above, two ways of dealing with ‘descrip-
tive’ results suggest themselves. The first option is to solve the full computation
problem in the background and return only those concepts for which the matcher
is also valid with descriptive semantics. Queries of the above kind, however, are
motivated by structural properties of concepts defined in the TBox. Therefore,
a viable second option might be to just present all solutions retrieved with gfp-
semantics.

In order to substantiate the claim that the above query mechanism driven
by our hybrid matching algorithm is useful for the task of knowledge engineer-
ing, we plan to implement our matching algorithm as a plugin to the widely
used ontology editor Protégé [32]. One way to achieve this might be to in-
tegrate the query functionality into the system Sonic [33], a plug-in specif-
ically designed for the purpose to bring non-standard inferences to users of
Protégé.

2 Nevertheless, the existence of the lcs under these circumstances is decidable, see [26].
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12. Baader, F., Küsters, R.: Computing the least common subsumer and the most
specific concept in the presence of cyclic ALN -concept descriptions. In: Herzog,
O. (ed.) KI 1998. LNCS (LNAI), vol. 1504, pp. 129–140. Springer, Heidelberg
(1998)

13. McGuinness, D.: Explaining Reasoning in Description Logics. Ph.D. dissertation,
Department of Computer Science, Rutgers University, USA (1996)

14. Borgida, A., McGuinness, D.L.: Asking queries about frames. In: Proc. of KR 1996,
pp. 340–349. Morgan-Kaufmann Publishers, San Francisco (1996)
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