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Abstract. Sequence logic is a parameterized logic where the formulas
are sequences of formulas of some arbitrary underlying logic. The se-
quence formulas are interpreted in certain linearly ordered sets of models
of the underlying logic. This interpretation induces an entailment relation
between sequence formulas which strongly depends on which orderings
one wishes to consider. Some important classes are: all linear orderings,
all dense linear orderings and all (or some specific) wellorderings.

For all these classes one can ask for a sound and complete proof sys-
tem for the entailment relation, as well as for its decidability. For the
class of dense linear orderings and all linear orderings we give sound and
complete proof systems which also yield decidability (assuming that the
underlying logic is sound, complete and decidable). We formulate some
open problems on the entailment relation in the case of wellorderings.

1 Introduction

Sequence logic is a parameterized logic where the formulas are sequences of
formulas of some underlying logic. It can be viewed as a subsystem of linear
temporal logic where the temporal aspects are completely separated from other
logical aspects. This separation makes it easy to change the underlying logic
without having to rethink the temporal aspects. Sequence logic has recently been
proposed in [11] and its virtues for modelling dynamically changing knowledge
are studied in [9].

Examples can be provided by systems of interacting agents, in which com-
munication involves state-changes, such as in protocols. A simple example is the
Muddy Children Puzzle in epistemic logic, see [5]. Here each child’s knowledge
is dynamically extended every round, a process which can be described by the
sequence formula a1; . . . ; an, where events causing changes are modelled exclu-
sively as changes in the states expressed by the successive formulas. The problem
is to prove that after m rounds, where m is the number of children, each child
knows whether it is muddy. In sequence logic this problem can be cast as the
entailment a1; . . . ; am |= �; b, where �; b expresses that eventually each child
knows whether it is muddy. The underlying logic will, most naturally, be some
epistemic logic. The example is simple in that the children’s knowledge increases
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monotonically. As a consequence, the example is valid with respect to any order-
ing. Other examples discriminate between various classes of orderings and will
be given at relevant places in the paper.

In this paper we give sound and complete proof systems for sequence logic
and draw some conclusions on decidability of entailment. We start by reviewing
some necessary preliminaries.

1.1 Orderings

An ordering (D, <) is an irreflexive and transitive relation < on a non-empty set
D. The non-strict variant (reflexive closure) of < is denoted by ≤. An ordering
is linear if, for any x, y ∈ D, either x < y or x = y or y < x. A least (greatest)
element is an x ∈ D such that x ≤ y (y ≤ x) for all y ∈ D. A linear ordering is
right-open if it has no greatest element. An ordering is dense if for any x, y ∈ D
with x < y, there exists a z ∈ D with x < z < y. A wellordering is a linear
ordering in which every non-empty subset has a least element. In a right-open
wellordering every element x ∈ D has a successor, that is, the least element
y ∈ D with x < y. Any element of a wellordering that is not the least element
of the ordering nor the successor of another element, is called a limit. Classes of
wellorderings modulo isomorphy are called ordinals. An important ordinal is ω,
the class of the natural numbers equipped with their natural ordering.

Unless explicitly stated otherwise, we assume all orderings to be linear, right-
open and to have a least element, and we will denote this class by LO. The
subclasses of dense orderings and of wellorderings are denoted by DLO and
WO, respectively. Note that right-openness excludes all successor ordinals and,
in particular, all finite orderings.

Given an ordering < and d < d′, we use the common notation [d, d′) to denote
the left-closed, right-open interval from d to d′, that is, the set {x ∈ D | d ≤ x <
d′}. We use [d,∞) to denote the set of elements that are greater than or equal
to d. For a function s : D→X we use s(I) to denote the s-image of interval I.

1.2 Sequence Logic

The formulas of sequence logic are non-empty finite sequences a1; . . . ; an where
each ai is a formula of some underlying logic, ul, which is a fixed parameter. We
define hd(a1; . . . ; an) = a1.

Notation and Terminology 1

1. The language of ul consists of a set of formulas which are denoted by the
initial lower case Latin letters, a, b, ... The formulas of sequence logic, se-
quence formulas, are denoted by the initial lower case Greek letters α, β, ...
We write α; β for the concatenation of sequence formulas α and β. Similarly
for α; a; β and α; a; b; β when a and b are ul formulas.

2. If A is a set of ul formulas, Al denotes the set of sequences of length l of
formulas from A. For any single formula a, al denotes the sequence of l
occurrences of a. For a formula b and sequence formula α = a1; . . . ; an we
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write b ◦ α for the sequence formula b ∧ a1; . . . ; b ∧ an formed by conjoining
b to each member of α (whenever ul contains conjunction ∧).

3. We use |= both for satisfaction and for entailment, both in sequence logic
and in ul. To disambiguate this overloading, the types of the lhs and the rhs
are crucial: s |= a denotes satisfaction of a in a ul structure s; s |= α denotes
satisfaction of α in a structure s in sequence logic. For a set of ul structures
S, S |= a means s |= a for all s ∈ S. We let a |= b express entailment in ul.
In sequence logic, entailment will depend on a class of orderings C and this
will be expressed by α |=C β.

A structure of sequence logic is a tuple S = (d0, D, <, s) where (D, <) is an
ordering, d0 its least element and s a mapping from D to models of the underlying
logic. We identify the structure S with the mapping s when the ordering is clear
from the context.

A structure S satisfies a sequence formula α = a1; . . . ; an if there exist
d1, . . . , dn−1 ∈ D, d0 < d1 < · · · < dn−1, such that for all 1 ≤ i < n we have
s([di−1, di)) |= ai and s([dn−1,∞)) |= an. Then [di−1, di) ([dn−1,∞)) is called
the interval of s satisfying ai (an), or, equivalently, the interval that s uses to
satisfy ai. Note that this terminology refers to a specific instance of S |= α and
that it is possible that the same S satisfies α using different intervals. Satisfac-
tion of α in S will also be denoted by s |= α when the structure S is clear from
the context.

The satisfaction relation defined in the previous paragraph gives rise to the
following entailment relation: Given a class C of orderings we define α |=C β
if for all structures S = (d0, D, <, s) with (D, <) ∈ C we have s |= β whenever
s |= α.

The operator ; corresponds to the chop operator, e.g., [7,6]. Sequence logic
can also be viewed as a fragment of linear-time temporal logic LTL. For exam-
ple, a1; ...; an can be expressed in LTL as a1U(a2U . . . (an−1U¬(�U¬an)) . . .).
Here U is an until-operator1 and � is always true. We are not aware of the
separate study of this fragment elsewhere. Complexity theoretic questions are
not considered in the present paper, but it would be interesting to investigate
whether the restricted expressivity of sequence logic results in lower complexity.
To give a concrete example of such a question: in [8] it is proved that satisfiabil-
ity of LTL based on ω is PSPACE-complete. This constitutes an upper bound
for the complexity of |=ω, with co-NP as an obvious lower bound, both with
classical propositional logic as ul. An open question is now: what is the exact
computational complexity of |=ω?

The main novelty and strength of sequence logic is its parameterization by
the underlying logic ul. The general assumption about the derivability relation

1 There exists a rich variety of temporal operators. For convenience we have used an
until-operator with semantics defined by i |= φUψ if ∃k > i (k |= ψ∧∀j (i ≤ j < k ⇒
j |= φ)). This until-operator is definable by φ ∧ (φU ′ψ) with U ′ the until-operator
from [1], and by φ∧X(φU ′′ψ) with U ′′ the until-operator and X the next-operator
from [8].
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	 of ul is that it satisfies the classical closure properties, [10,2], namely (X, Y
range over sets of formulas):

extension: X 	 a if a ∈ X
idempotence: X 	 a if {b | X 	 b} 	 a
monotonicity: Y 	 a if for some X ⊆ Y : X 	 a

Besides these three we assume that ul contains a formula ⊥ such that ⊥ 	 a for
all a. A formula a is called consistent if a �	 ⊥. Semantically we require that ⊥
is unsatisfiable.

We will use classical propositional logic as the main example of ul, but sound-
ness, completeness and decidability results below only use the fact that the un-
derlying logic is sound, complete (strongly, that is, Γ 	 a if Γ |= a) and decidable,
respectively. Combinations with other underlying logics can easily be conceived
and some examples can be found in [11,9]. In some cases, we assume that ul is
closed under propositional connectives with the usual semantics but even then
the results apply to an arbitrary logic extending the classical propositional one.

Recall that hd(α) denotes the first ul formula of α. Table 1 gives some rules of
inference for sequence logic based on a proof system 	 for the underlying logic.
This minimal proof system, denoted �min, will be augmented with distinct rules
depending on the class of orderings.

Table 1. Axioms and rules for �min

�

�

�

�

Ex Falso: a1; . . . ; an � β, if some ai 	 ⊥ (1 ≤ i ≤ n)

Lift: a � b1; ...; bn, if n ≥ 1 and a 	 bi for all bi (1 ≤ i ≤ n)

Double;-Intro:
α � β

a; α � b; β
, if a 	 b

Left;-Intro:
α � β

a; α � β
, if a 	 hd(β)

Theorem 2. The rules of �min are sound for |=LO, provided that 	 is sound for
|= in ul.

Proof. Soundness of Ex Falso and Lift is trivial.
For Double;-Intro, assume α |=LO β and a 	 b and let s |= a; α. Then the first
interval which is used by s to satisfy a can also be used to satisfy b, relying
on the soundness of the ul. We can restrict s to the ordering starting with the
second interval and get a model s′ |= α, so s′ |= β. It follows that s |= b; β, and
hence a; α |=LO b; β.

For Left;-Intro, assume α |=LO β and a 	 hd(β) and let s |= a; α. Then the
first interval which is used by s to satisfy a can also be used to satisfy hd(β),
relying on the soundness of the ul. We can restrict s to the ordering starting
with the second interval and get a model s′ |= α, so s′ |= β. It follows that s |= β
by joining the first two intervals.
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As a corollary to the proof, we have soundness of the proof system �min for any
subclass of LO.

2 Dense Linear Orderings

In this section we give a proof system extending �min which is sound and com-
plete for the class of dense linear orderings. Inspection of the proof rules imme-
diately gives the decidability of |=DLO.

Note that joining two intervals, as done in the proof of Theorem 2, is always
possible but the dual operation, splitting an interval in two, is not. For example,
we do not have a;¬a |=ω a; a;¬a since the first interval can have length one.
Consequently, the following rule Right;-Intro is not sound for all orderings, but
it is sound for the class of dense orderings.

�

�

�

	
Right;-Intro:

α � β

α � b; β
provided hd(α) 	 b

The system �DLO is obtained by adding the rule Right;-Intro to �min.

Theorem 3. The proof system �DLO is sound for |=DLO, i.e., if α �DLO β then
α |=DLO β.

Proof. In view of the proof of Theorem 2, which can be carried out with DLO
instead of LO, it suffices to show that the rule Right;-Intro is sound. Assume
α |=DLO β and hd(α) 	 b and let s |= α. Then by density the first interval which
is used by s to satisfy hd(α) can be split in two, say [d0, x) and [x, d1). We can
use [d0, x) to satisfy b, since hd(α) 	 b. We can use [x, d1) to satisfy hd(α), and
so s restricted to [x,∞) satisfies α and hence β. It follows that s |= b; β.

The following construction will play a central role in the proof of completeness.
Given two sequence formulas α, β, of respective lenghts n, m, the structures
of the underlying logic can be divided in at most 2n+m equivalence classes,
with two structures being in the same class iff they assign the same truth value
to all formulas in α and β. By S(α, β) we will denote some finite set of ul
structures containing a member of each equivalence class. For any formula c of
the underlying logic we let [[c]]S(α,β) = {S ∈ S(α, β) | S |= c}. For every pair of
ul formulas a, b from α and β, respectively, we then have:

a |= b ⇐⇒ [[a]]S(α,β) |= b. (1)

We use [[c]]S(α,β) to define special kinds of models of α:

Definition 1. Given a satisfiable α = a1; . . . ; an and β, a β-dense model of
α is a dense model s |= α such that, for every 1 ≤ i ≤ n, [[ai]]S(α,β) is densely
distributed on the interval I that s uses to satisfy ai. This means that for every
non-empty subinterval I ′ of I we have [[ai]]S(α,β) ⊆ s(I ′).
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The idea behind the notion of β-dense model s of α is that on every interval of
s satisfying ai we have all possible behaviours of ai models on every bj of β. It
can be proved that for all β-dense models s, s′ of α:

s |= β ⇐⇒ s′ |= β (2)

The existence of β-dense models of a satisfiable α follows, for instance, by
distributing for each 1 ≤ i ≤ n the models [[ai]]S(α,β) = {S0, . . . , Sk−1}, k > 1,
in the following standard way on the rational interval [i− 1, i). We describe the
construction only for i = 1, i.e., for [0, 1). Put s( j

k ) = Sj for all 0 ≤ j < k. Put
s( j

k + j′

k2 ) = S(j+j′)mod k for all 0 ≤ j, j′ < k. Continue in this way, in the nth
round all intervals of length k−n are divided in intervals of length k−n−1 and the
models are assigned in a cyclic way. If s(q′) has not been defined in the above
procedure then s(q′) can be chosen arbitrarily from [[ai]]S(α,β). Note that every
β-dense model of α is also a γ-dense model of α, for every subsequence γ of β,
assuming S(α, γ) ⊆ S(α, β). Of course, β-dense models of α are not unique, but
the arguments below only depend on (1) and (2).

Lemma 1. If ul is complete and s |= β for some β-dense model s of α, then
α �DLO β.

Proof. By induction on |α|+ |β|. Base case: Assume α = a, β = b and let s |= β
be a β-dense model of α. Then [[a]]S(a,b) |= b, which implies a |= b by (1) and
hence a 	 b by the completeness of ul. Hence a �DLO b by the Lift rule. For the
induction step, let |α| + |β| > 2 and assume the lemma has been proved for all
smaller cases. Let s |= β be a β-dense model of α. If |α| = 1, that is, α = a for
some ul formula a, then every bj in β is true in [[a]]S(α,β), and hence a |= bi, by
(1), and a 	 bi by completeness of ul. We then get a �DLO β by one application
of the rule Lift. The case in which |β| = 1 is proved analogously, with repeated
applications of the rule Left;-Intro instead of Lift. Now assume α = a1; . . . ; an

and β = b1; . . . ; bm with n, m > 1. In view of (2) we may assume without loss of
generality that s has domain [0, n) in the rationals, and uses [i − 1, i) to satisfy
ai. Let [0, q) be the interval s uses to satisfy b1. We distinguish the following
three cases.

q < 1 Then the first interval that s uses to satisfy a1 overlaps with the first and
the second interval that s uses to satisfy b1; b2. Hence we have a1 	 b1 and
a1 	 b2. Consequently, for the subsequence γ = b2; . . . ; bm of β, s is a γ-dense
model of α satisfying γ. By the induction hypothesis we get α �DLO γ and
by the rule Right;-Intro we get α �DLO β.

q = 1 Then a1 	 b1 and with γ as in the previous case, s restricted to [1, n)
is a γ-dense model of a2; . . . ; an satisfying γ. Now we get α �DLO β by the
induction hypothesis and an application of the rule Double;-Intro.

q > 1 Then a1 	 b1 and s restricted to [1, n) is a β-dense model of a2; . . . ; an

satisfying β. Now we get α �DLO β by the induction hypothesis and an
application of the rule Left;-Intro.

In all cases we have proved the conclusion of the lemma.

The completeness theorem follows directly from the above lemma.



Completeness and Decidability in Sequence Logic 129

Theorem 4. If α |=DLO β then α �DLO β.

Proof. Assume α |=DLO β. If α is not satisfiable, then α �DLO β by the Ex Falso
rule. Otherwise, let s be a β-dense model of α. Then s |= β since α |=DLO β, and
so α �DLO β by Lemma 1.

As an example, consider a; a∨ b; b �|=DLO a; b; a∨ b. Semantically we can see that
the entailment doesn’t hold by distributing models of a ∧ b and a ∧ ¬b in a
dense way on the second interval. Using the completeness theorem we get the
same result from the observation that a ∨ b proves neither a nor b, so that all
applications of the ;-introduction rules are blocked.

Since the base cases Ex Falso and Lift only use provability in the underly-
ing logic and the other rules decrease the length of the sequence when applied
bottom-up, we obtain the following corollary.

Corollary 1. If ul is decidable then so is |=DLO.

In particular, decidability of ul gives also decidability of �min.

3 All Linear Orderings

As an appetizer, showing that even with classical propositional logic as ul the
relation |=LO is far from trivial, consider the following entailment:

a; a ∧ b; c ∧ (a ∨ b); b; b ∧ c |=LO a; b; c; c; b (3)

Intuitively, two consecutive c’s needed to validate the conclusion can be found
either in the interval for c ∧ (a ∨ b), provided that it is not a single point, or for
b ∧ c. But it is far from obvious that every ordering satisfying the assumption
can be chopped into intervals satisfying the conclusion.

In this section we give a sound, complete and decidable system �LO for |=LO,
under the assumption that ul is closed under boolean operators. We start by
introducing a series of concepts and conventions which will be applied throughout
this section.

Notation and Terminology 5

1. A convex set A of natural numbers is such that i ∈ A whenever k ≤ i ≤ j
are natural numbers such that k, j ∈ A. Any finite, non-empty convex set of
natural numbers equals {k, . . . , k + j} for natural numbers k, j.

2. If R is a binary relation and A, B are sets, then we write R[A] for the set
{j | ∃i ∈ A iRj} and R−1[B] for the set {i | ∃j ∈ B iRj}.

3. An n, m-coupling is a relation C ⊆ {1, . . . , n} × {1, . . . , m} such that
– C[{1, ..., n}] = {1, ..., m} and C−1[{1, ..., m}] = {1, ..., n}, and
– i1Cj2 and i2Cj1 never both hold when i1 < i2 and j1 < j2.

An n, m-coupling C is said to be quasi-functional if it is functional on
{1, . . . , n − 1}, i.e., if C[{i}] is a singleton for every i ∈ {1, . . . , n − 1}.
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4. Let α = a1; . . . ; an and β = b1; . . . ; bm be sequence formulas and let R ⊆
{1, . . . , n} × {1, . . . , m} be a binary relation. We write α 	R β if ai 	 bj for
all i, j such that iRj.

An important consequence of the definition of coupling in point 3 is that for
any n, m and n, m-coupling C the images C[A] and C−1[B] are convex sets of
natural numbers whenever A and B are.

The characterisations below are proved by straightforward induction.

Lemma 2. Suppose all formulas of α are consistent. Then

(i) α �DLO β iff α 	C β for a |α|, |β|-coupling C.
(ii) α �min β iff α 	C β for a quasi-functional |α|, |β|-coupling C.

It can be seen that, with α and β as in (3), there exists a 5,5-coupling C such
that α 	C β, but not a quasi-functional one. Hence �min is not complete for
|=LO. It is, however, complete for pairs α, β in a certain normal form which we
now proceed to describe.

In the rest of this section we shall take particular interest in blocks of identical
formulas occurring consecutively in a sequence formula. For this purpose we de-
fine ≡α, for any sequence formula α = a1; . . . ; an, to be the smallest equivalence
relation on {1, . . . , n} such that i ≡α i + 1 whenever 1 ≤ i < n and ai = ai+1.
The equivalence class of i relative to ≡α is written [i]≡α , and is always a convex
set. We refer to the cardinality of [i]≡α as the padding of i. Hence the padding
of i is the size of the (maximal) block of consecutive, identical formulas in which
ai occurs:

Definition 2. The n, m-coupling C is said to be sparse if C[{i}] is a singleton
set for every i ∈ {1, . . . , n − 1} with padding less than m.

We can now state the following Redistribution Lemma which will lead to the
restricted completeness of �min.

Lemma 3 (Redistribution). If α 	C β for some sparse |α|, |β|-coupling C,
then also α 	C′ β for some quasi-functional |α|, |β|-coupling C′.

Proof. Suppose α 	C β for the sequence formulas α = a1; . . . ; an and β =
b1; . . . ; bm and the sparse n, m-coupling C. The first step is to define the (possibly
partial) function F on numbers i ∈ {1, . . . , n} by the following clauses.

– if i �= n and i has padding less than m, then F (i) is the unique member of
C[{i}].

– if i has padding at least m, then [i]≡α = {j, . . . , j + k} for some j ≤ i and
k ≥ (m − 1). Being the image of a convex set, C[[i]≡α ] is also convex and
hence equals {j′, . . . , j′ + k′} for some j′ and k′. As 1 ≤ j′ and j′ + k′ ≤ m,
it follows that k′ ≤ (m − 1) ≤ k. Now define

F (j + r) =
{

j′ + r for 0 ≤ r ≤ k′

j′ + k′ for k′ < r ≤ k
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If n itself has padding at least m, then F is total on {1, . . . , n}. Then let C′ be
F itself, considered as a binary relation, i.e., let C′ be the graph of F . If n has
padding less than m, then F is defined only on {1, . . . , n − 1}. In that case let
C′ be the union of F and {(n, j) | nCj}.

It is seen that C′[[i]≡α ] = C[[i]≡α ] for any i with padding at least m, and that
C′[{i}] and C[{i}] are the same singleton set for i < n with padding less than
m, and it follows that C′ is a quasi-functional coupling.

Since iC′j only if i′Cj for some i′ ∈ [i]≡α , the assumption α 	C β directly
implies α 	C′ β.

Definition 3. Let α = a1; . . . ; an and β = b1; . . . ; bm be sequence formulas. We
say that ai is β-definite if ai 	 bj or ai 	 ¬bj for every j ∈ {1, . . . , m}.

α is β-expanded if ai is β-definite for every i ∈ {1, . . . , n− 1} with padding
less than m.

Lemma 4. If ul is complete, α |=LO β and α is β-expanded, then α �min β.

Proof. By the Ex Falso rule, we may assume that each member of α is satisfiable.
Let D =

⋃i=n
i=1 Di, where each Di is

– {i − 1} if ai is β-definite and i �= n,
– the rationals in [i − 1, i) otherwise.

Now consider the structure S = (d0, D, <, s), where d0 = 0 and < is the standard
ordering and s is such that for each i ∈ {1, . . . , n},

– s(i) ∈ [[ai]]S(α,β) if ai is β-definite and i �= n,
– otherwise, s distributes the members of [[ai]]S(α,β) densely over Di (cf. the

construction following Definition 1).

Since S |= α so, by assumption, S |= β. Define C ⊆ {1, . . . , n} × {1, . . . , m}
to be such that iCj iff Di intersects with the interval for bj . C is clearly an
n, m-coupling, and the construction also guarantees that it is sparse: if i < n has
padding less than m, then by assumption ai is β-definite. Hence Di is a singleton
and can only intersect with the interval for one bj .

Finally α 	C β, i.e., iCj implies ai 	 bj. We argue for this in cases:

– If Di = {i− 1} then ai is β-definite. Then ai 	 bj follows from the fact that
the two have a common model.

– If Di = [i − 1, i), and this interval intersects with the interval for bj , then
bj is true in all members of [[ai]]S(α,β). Hence ai |= bj by (1) and ai 	 bj by
completeness of ul.

α �min β follows now by the Redistribution Lemma 3 and Lemma 2.

The above lemma is the restricted completeness referred to previously: when
α is β-expanded then the pair α, β is in a normal form for which |=LO and
�min coincide. To obtain a general procedure for proving (and, in fact, deciding)
whether α |=LO β holds, we show how to compute, given the pair (α, β) a finite set
{(ρ1, ρ

′
1), . . . , (ρk, ρ′k)} of pairs in normal form, such that α |=LO β iff ρi |=LO ρ′i,

and hence ρi �min ρ′i, for every i. For this purpose, we introduce the following
definition.



132 M. Bezem, T. Langholm, and M. Walicki

Definition 4. The proof system �LO is obtained by adding the following Cut
rule to �min:�

�

�

	
Cut

α1; a; a; α2 � β α1; a ∧ c; α2 � β α1; a ∧ ¬c; α2 � β

α1; a; α2 � β

In an application of the Cut rule, the formula occurrence displayed as a is referred
to as the expansion formula.

In view of Theorem 2, the following lemma is established by an easy verification
of soundness of the Cut rule.

Lemma 5. �LO is sound for |=LO.

With β = a; b; c; c; b, α1 = a; a ∧ b, α2 = b; b ∧ c, it can be seen that (3) follows
by Cut from α1; c∧ (a ∨ b); c∧ (a ∨ b); α2 � β and α1; c∧ (a∨ b)∧ a; α2 � β and
α1; c ∧ (a ∨ b) ∧ ¬a; α2 � β, which are all provable in �min.

To show completeness (and decidability) of �LO, we first consider the following
generalizations of Cut.

Definition 5. For any sequence formula δ = d1; . . . ; dl let vals(δ) be the set of
all conjunctions c1 ∧ . . . ∧ cl, where each cj is dj or ¬dj . Now let the i-, ii- and
iii-Cut rules be the following where l ≥ 1 (recall notational conventions al and
a ◦ ρ from Notation and Terminology 1):

i-Cut
α1; a; a; α2 � β α1; a ∧ ρ; α2 � β for all ρ ∈ vals(δ)

α1; a; α2 � β

ii-Cut
α1; al+1; α2 � β α1; a ◦ ρ; α2 � β for all ρ ∈ vals(δ)l

α1; al; α2 � β

iii-Cut
α1; al+1; α2 � β α1; a ◦ ρ; α2 � β for all ρ ∈ vals(δ)≤l

α1; a; α2 � β

The four cut rules are closely related. Cut is the special case of i-Cut correspond-
ing to δ being a single ul formula c, while i-Cut is the special case of ii-Cut, as
well as of iii-Cut, corresponding to l = 1. The following lemma is easy to verify
and is stated without a proof.

Lemma 6. All four cut rules are sound and invertible (i.e., sound when applied
bottom-up) for |=LO.

Corollary 2. If ul is decidable then so is |=LO.

Proof. For any candidate entailment a1; . . . ; an |=LO β apply iii-Cut bottom-up,
with the first ai which is not β-definite as expansion formula and with δ = β and
l = |β|, to obtain 1 + 2l + 22l + . . . + 2l2 < 2(l+1)2 new items, which by Lemma 6
are all valid iff the original item was valid. Then proceed, for each of the new
items, with a new bottom-up application of iii-Cut, this time using the next ai′

which is not β-definite as the expansion formula, etc., to obtain eventually less
than 2n(l+1)2 items in normal form which are all valid iff the original item was.
Validity of each of these items is decidable, provided that ul is, by Corollary 1.
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From this proof we see that the system obtained by adding iii-Cut to �min is
complete and decidable with respect to |=LO. However, already �LO, i.e., �min

extended with Cut, has these properties and the rest of this Section is devoted to
proving this fact by showing admissibility of iii-Cut in �LO. The proof proceeds
stepwise by showing first admissibility of i-Cut and then of ii-Cut. First, we need
the following auxiliary result.

Lemma 7. If c 	 a and α1; a; α2 �LO β, then α1; c; α2 �LO β.

Proof. Proceeding by induction on proofs, we skip the trivial cases of the rules
of �min and consider only the final step being an application of the Cut rule.
This gives three cases to consider, corresponding to whether the a mentioned
in the lemma is the expansion formula itself, or it occurs to its left or to its
right. In the two latter cases, the induction hypothesis is applied once to each
of the three premises, always strengthening a to c, while in the former case the
induction hypothesis is applied twice to the first premise, strengthening a to c,
and once to each of the other premises, strengthening a ∧ b and a ∧ ¬b to c ∧ b
and c ∧ ¬b respectively.

Lemma 8. i-Cut is admissible in �LO.

Proof. We prove this by induction on the length of δ, which is always positive.
The base case is just Cut itself; now suppose the result holds for δ, and that

(1) α1; a; a; α2 �LO β, and
(2) α1; a ∧ ρ; α2 �LO β for all ρ in vals(δ; b).

Now let κ be an arbitrary member of vals(δ), then from (1) we obtain α1; a ∧
κ; a∧κ; α2 �LO β by Lemma 7, and from (2) α1; a∧κ∧b; α2 �LO β and α1; a∧κ∧
¬b; α2 �LO β by definition. Hence by Cut we also obtain (3) α1; a∧ κ; α2 �LO β.
Since κ was arbitrary, we can now apply the induction hypothesis to (1) and (3),
to obtain α1; a; α2 �LO β.

Lemma 9. ii-Cut is admissible in �LO.

Proof. We prove this by induction on l. The base case, for l = 1, is just an
instance of i-Cut and was shown in the previous Lemma 8. Now suppose the
result holds for l ≥ 1, and that

(1) α1; al+2; α2 �LO β, and
(2) α1; a ◦ ρ; α2 �LO β for all ρ ∈ vals(δ)l+1.

For an arbitrary κ ∈ vals(δ)l we obtain from (1) α1; a; a; a ◦ κ; α2 �LO β by
Lemma 7, and from (2) α1; a∧ρ; a ◦κ; α2 �LO β for all ρ ∈ vals(δ) by definition.
Hence we also obtain (3) α1; a; a ◦ κ; α2 �LO β by i-Cut. Since κ was arbitrary,
we are now in a position to apply the induction hypothesis to (1) and (3),
treating the first occurrence of a in all the involved items as “passive”, to obtain
α1; al+1; α2 �LO β.

Lemma 10. iii-Cut is admissible in �LO.
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Proof. We prove this by induction on l. The base case (l = 1) is an instance of
i-Cut shown in Lemma 8. So suppose the result holds for l ≥ 1, and that

(1) α1; al+2; α2 �LO β, and
(2) α1; a ◦ ρ; α2 �LO β for all ρ in vals(τ)≤l+1.

In particular α1; a ◦ ρ; α2 �LO β then holds for all ρ in vals(τ)l+1, and hence
α1; al+1; α2 �LO β by ii-Cut. Combining this with “the rest of (2)” we then
obtain α1; a; α2 �LO β by the induction hypothesis.

Theorem 6. �LO is sound and complete for |=LO.

The proof is immediate from the previous results. From the proofs it can also
be seen that �LO remains complete when the use of Cut is restricted to cases in
which the cut formula is chosen from formulas occurring in β.

4 Wellorderings

Recall that α |=λ β denotes entailment with respect to structures (0, λ, <, s)
with < the ordering on a limit ordinal λ and s mapping ordinals < λ to ul struc-
tures. Using the standard translation of modal logic into first-order logic (see for
example [1]) one can express the entailment relation in the first-order theory of
the ordering. It is known that the first-order theory of every countable ordinal
is decidable, c.f. [3]. As a consequence, for every countable λ, the entailment
relation α |=λ β is decidable, provided that ul is decidable.

The decidability of α |=ω β also follows from the (much stronger) result from
[8] that ω-based linear-time temporal logic is PSPACE-complete. This complex-
ity theoretic result is extended to all countable ordinals in [4]. In the next section
we give a simple argument for decidability of |=ω based on a form of finite model
property, Lemma 11, which may be of independent interest. In the concluding
Section 4.2, we discuss some results concerning the entailment relation in the
case of wellorderings and list some open problems.

4.1 Decidability of |=ω

The first step in our decidability proof is a simplification of the definition of |=ω.
For this we use models s defined on finite initial segments of ω, the only place
in this paper where we use orderings with a greatest element.

Definition 6. For α = a1; . . . ; an and β = b1; . . . ; bm we define

k(α, β) =
{

m if an |= b1 ∧ · · · ∧ bm

m − j if an �|= bj and an |= bj+1 ∧ · · · ∧ bm

In words, the function k computes the maximal length of a suffix of β which is
entailed by the last formula of α.2

2 In this subsection, we use propositional conjunction, as in an |= b1 ∧ ... ∧ bm, only
as an abbreviation for an |= b1 and . . . and an |= bm. That is, ul need not contain
propositional logic.
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Lemma 11. Let α = a1; . . . ; an be satisfiable and let β = b1; . . . ; bm. Then we
have α |=ω β if and only if an |= bm and s |= β for every s defined on an initial
segment of ω and satisfying s |= α where the last interval (used to satisfy an) is
of length k(α, β).

Proof. Let α, β be as above. In the equivalence we have to prove, the implication
from right to left is the easiest. Assume the rhs and let s |= α with s defined on
ω. The last interval of s is infinite, let s− be s with the last interval cut down
to length k(α, β). Then s− satisfies the condition of the rhs and hence s− |= β.
By an |= bm it follows that s |= β.

For the converse, assume α |=ω β. Then in particular an |= bm. Let s |= α
be as assumed in the rhs, that is, defined on [0, . . . , i + k) ⊆ ω and with the
last interval [i, i + k) of length k = k(α, β). In proving s |= β we distinguish two
cases.

k = m Then an |= b1∧· · · ∧bm. Let s+ be s extended with ω (arbitrary) models
of an. Then s+ |= α, so by the lhs we get s+ |= β. Since an |= b1 ∧ · · · ∧ bm

we can shift intervals that (possibly) occur to the right of i to the left and
shorten them to length 1. In this way they all fit within the last interval of
s. It follows that s |= β.

k < m Then an �|= bj with j = m− k and an |= bj+1 ∧ · · · ∧ bm. In the argument
we will use a propositional model V satisfying an ∧ ¬bj . Let s′ be s with
the last interval replaced by ω copies of V . Then we still have s′ |= α, so by
the lhs we get s′ |= β. Since bj is false in V , the jth interval of s′ must be
to the left of i. Intervals used to satisfy the remaining formulas bj+1, . . . , bm

and (possibly) occurring to the right of i can be shortened and shifted to the
left as in the previous case. With this new interval structure we still have
s′ |=ω β. Restoring the last interval of s, that is, replacing the ω copies of V
by the models in the last interval of s, we get s |= β.

The last step in the last case relies on an |= bj+1 ∧ · · · ∧ bm.

Now that we have expressed |=ω in terms of finite sequences of models we use
the fact these can be viewed as words over an alphabet, where the symbols
are valuations. Model classes then become languages. Let α = a1; . . . ; an and
β = b1; . . . ; bm and k = k(α, β). Let V1, . . . , Vp be all possible valuations of
the atoms occurring in α, β. For any proposition a, define L(a) = {Vi | Vi |=
a}. Being a finite language consisting of one-letter words, L(a) is regular. The
finite models m |= α correspond one-to-one to words in the regular language
L(α) = L(a1)+ · · ·L(an)+, where juxtaposition stands for concatenation and
+ for one or more iterations (Kleene +). The finite models s |= α with last
interval of length k correspond one-to-one to words in the regular language
L(α, k) = L(a1)+ · · ·L(an−1)+L(an)k. In this way we can rephrase the rhs of
Lemma 11 as: an |= bm and L(α, k) ⊆ L(β). Since inclusion between regular
languages is decidable we get the following result.

Theorem 7. If ul is decidable then so is the entailment relation |=ω.
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Proof. We have α |=ω β if and only if either α is unsatisfiable, or k(α, β) > 0
and L(α, k(α, β)) ⊆ L(β). All ingredients of the rhs are computable/decidable.

As an example, consider a; a∨b; b |=ω a; b; a∨b. Semantically, given m |= a; a∨b; b
we can see this by looking at the second interval of m. If all models in this interval
satisfy a we are done. Otherwise, use the first model in the second interval that
satisfies b as second interval (of length 1) for a; b; a∨b. The more general method
would be to apply the above theorem. We can actually take two-bit sequences
as symbols representing valuations: 11 represents the valuation which makes
both a and b true, 10 makes only a true, 01 only b, and 00 neither a nor b.
Then L(a) is the regular language {10, 11}, L(b) is {01, 11} and L(a ∨ b) is
{01, 10, 11}. Obviously, k(a; a ∨ b; b , a; b; a ∨ b) = 2. So by Lemma 11 we have
a; a∨b; b |=ω a; b; a∨b if and only if L(a)+L(a∨b)+L(b)2 ⊆ L(a)+L(b)+L(a∨b)+.
The latter can be verified by a decision procedure for inclusion between regular
languages.

4.2 Wellorderings and Open Problems

The following lemma states that |=λ is weakly decreasing in λ.

Lemma 12. For limit ordinals λ < λ′ : if α |=λ′ β then α |=λ β.

Proof. Let α = a1; . . . ; an, β = b1; . . . ; bm and k = k(α, β). Let λ < λ′ be limit
ordinals and assume α |=λ′ β. Let s |= α for some λ model s. Let V be a model
of an that, in case k < m, also satisfies ¬bm−k. Let [o, λ) be the last interval
used by s to satisfy an. Define sV

o (o′) = s(o′) if o′ < o and sV
o (o′) = V for all

o ≤ o′ < λ′. In other words, sV
o is s with the last interval replaced by sufficiently

many copies of V in order to be a λ′ model of α. As a consequence, sV
o |= β.

By the particular choice of V we have V |= bm−k+1 ∧ · · · ∧ bm. Since λ > o is a
limit ordinal we have o + ω ≤ λ. Consequently, like in the proof of Lemma 11,
we can shorten and shift to the left , i.e., into the interval [o, λ), those of the last
k intervals that occur in sV

o to the right of o, obtaining a λ model which still
satisfies β. But since an |= bm−k+1 ∧ · · · ∧ bm, restoring now back the original
[o, λ) interval from s, we obtain that s |= β.

The implication cannot be reversed: we have a; a∧¬b; a; a∧ b |=ω a; a∧¬b; a∧ b
(look at the third interval satisfying a!), but not a; a ∧ ¬b; a; a ∧ b |=ω+ω a; a ∧
¬b; a∧b. A counterexample to the latter is (11 10)ω(11)ω, where we use the same
representation of valuations by two-bit sequences as in the previous section. A
trivial corollary of the previous theorem is: α |=ω β if and only if there exists a
limit ordinal λ such that α |=λ β.

Since the wellorderings form a class, and |=ω is a set, it can be expected that
|=λ in Lemma 12 stabilizes. This can be made precise by the following argument.
Assume by contradiction that for all λ there exists a λ′ > λ such that |=λ′ ⊂ |=λ.
Define a function f from ordinals to limit ordinals by f(0) = ω, f(o + 1) = the
smallest λ such that |=λ ⊂ |=f(o), and in the limit case f(λ) = the smallest λ′

such that |=λ′ ⊂ |=λ′′ , where λ′′ is the supremum of all f(o), o < λ. Then we
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have that o �→ |=f(o) is a strictly decreasing mapping from the class of ordinals
into the power set of |=ω, which is impossible. In fact, using results from [3],
it can be shown that |=λ stabilizes for some λ ≤ ωω and then, by Lemma 12,
coincides with |=WO. We finish by formulating some open problems.

Open Problem 8. For which λ < λ′ < ωω do |=λ and |=λ′ coincide? Even the
case λ = ω ∗ 2, λ′ = ω ∗ 3 is open.

Open Problem 9. Are there natural sound and complete proof systems for |=λ

with λ ≥ ω?

Acknowledgement. We are indebted to Stéphane Demri for pointing out the
relevance of [3] to us.
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time intervals. In: Alechina, N., Ågotnes, T. (eds.) Proceedings of the Workshop
on Logics for Resource-Bounded Agents, ESSLLI, Malaga, Spain (2006)


	Completeness and Decidability in Sequence Logic
	Introduction
	Orderings
	Sequence Logic

	Dense Linear Orderings
	All Linear Orderings
	Wellorderings
	Decidability of $\scriptstyle\omega$
	Wellorderings and Open Problems




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




