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Preface 

Understanding the mechanisms involved in vision and intelligent behavior of the 
brain, both from a natural and artificial point of view, demands more and more mul-
tidisciplinary and integrated approaches of different disciplines: biophysics and neu-
robiology, visual and cognitive sciences and theoretical neuroscience being only a 
small sample.  

The Brain, Vision and Artificial Intelligence Symposium 2007 (BVAI 2007, 
Naples, Italy, October 10-12, 2007) was the second edition of a multidisciplinary 
symposium that aims at gathering scientists involved in the study of basic brain, natu-
ral vision, artificial vision, and artificial intelligence to promote discussion, exchange 
of ideas, and integration. 

BVAI 2007 was organized by researchers of the Institute of Cybernetics “E. 
Caianiello” of the Italian National Research Council, Pozzuoli, Italy (ICIB-CNR), 
with the support of the Italian Institute for Philosophical Studies (IISF). It was spon-
sored by EBSA (European Biophysics Societies Association), GIRPR (Italian Group 
of Researchers in Pattern Recognition), MARS (Microgravity Advanced Research 
Support) Center, NEATEK SpA, PAN (Palazzo delle Arti Napoli), SINS (Italian 
Society for Neurosciences), and Regione Campania. Travel grants were provided for 
deserving young participants by EBSA, SINS and GIRPR. The symposium was held 
under the auspices of the AI*IA (Italian Association of Artificial Intelligence), 
Comune di Napoli - Assessorato alla Cultura and SIBPA (Italian Society of Pure and 
Applied Biophysics), and with the help of the MQC2 (Macroscopic Quantum Coher-
ence and Computing) Association. 

The scientific program included the participation of eight invited speakers, selected 
among international leading scientists in the above-mentioned fields: Michael Arbib, 
University of Southern California (USA), Matteo Carandini, The Smith-Kettlewell 
Eye Research Institute (USA), Karl Gegenfurtner, Justus-Liebig University (Ger-
many), Petr Lansky, Academy of Sciences (Czech Republic), José del R. Millán, 
IDIAP Research Institute (Switzerland), Oliviero Stock, IRST and Fondazione Bruno 
Kessler (Italy), Massimo Tistarelli, University of Sassari (Italy), John K. Tsotsos, 
York University (Canada). Furthermore, the program included 50 contributions from 
worldwide participants, presented in plenary oral and poster sessions. The peer-
reviewing process for the papers was performed by the Scientific Committee, includ-
ing distinguished members of the scientific community, together with a number of 
additional reviewers, appointed by the Scientific Commitee members. The accepted 
contributions were selected among about 80 papers submitted to BVAI 2007. 

In this volume, all contributions to the symposium have been gathered according to 
an increasing degree of abstraction, going from the most elemental aspects of the 
visual processes to the most complex cognitive ones. The material has been structured 
into the following parts: Basic Models in Visual Sciences, Cortical Mechanism of 
Vision, Color Processing in Natural Vision, Action-Oriented Vision, Visual Recogni-
tion and Attentive Modulation, Biometric Recognition, Image Segmentation and Rec-
ognition, Disparity Calculation and Noise Analysis, Signal Identification in Neural 
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Models, Natural and Artificial Representation Issues in Artificial Intelligence, Mean-
ing-Interaction-Emotion, Robot Navigation and Control. In our opinion, these topics 
can be considered the flagstones paving the road to the ongoing  integration among 
research in brain, vision and intelligence. We hope that this volume provides new 
insights and is the basis of constructive discussions. 

We would like to thank the invited speakers and all the contributors, the members 
of the Scientific Committees, including the additional reviewers and all the partici-
pants. Acknowledgements are due to all our sponsors (ICIB-CNR, IISF, EBSA, 
GIRPR, MARS Center, NEATEK SpA, PAN, SINS, Regione Campania) for their 
financial contribution. We would like to acknowledge the Steering Committee mem-
bers for their advice and support. A special thanks goes to the Local Committee and 
Secretariat members, who provided us with helpful assistance. 
 
July 2007                                                         Francesco Mele 

                                                                                                            Giuliana Raella 
                                                                                                              Silvia Santillo 
                                                                                                   Francesco Ventriglia 
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Juan B. Gómez, Jorge E. Hernández, Flavio Prieto, and
Tanneguy Redarce

Image Segmentation and Recognition

A Variational Bayes Approach to Image Segmentation . . . . . . . . . . . . . . . . 234
Giuseppe Boccignone, Mario Ferraro, and Paolo Napoletano

Watershed Segmentation Via Case-Based Reasoning . . . . . . . . . . . . . . . . . . 244
Maria Frucci, Petra Perner, and Gabriella Sanniti di Baja

Digital Removal of Blotches with Variable Semi-transparency Using
Visibility Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Vittoria Bruni, Andrew Crawford, Anil Kokaram, and
Domenico Vitulano

Classification with Positive and Negative Equivalence Constraints:
Theory, Computation and Human Experiments . . . . . . . . . . . . . . . . . . . . . . 264

Rubi Hammer, Tomer Hertz, Shaul Hochstein, and
Daphna Weinshall

A Graph-Based Clustering Method and Its Applications . . . . . . . . . . . . . . 277
Pasquale Foggia, Gennaro Percannella, Carlo Sansone, and
Mario Vento

Neural Object Recognition by Hierarchical Learning and Extraction of
Essential Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Daniel Oberhoff and Marina Kolesnik

Disparity Calculation and Noise Analysis

Increasing Efficiency in Disparity Calculation . . . . . . . . . . . . . . . . . . . . . . . . 298
Jarno Ralli, Francisco Pelayo, and Javier Diaz

Patterns of Binocular Disparity for a Fixating Observer . . . . . . . . . . . . . . . 308
Miles Hansard and Radu Horaud

3D Reconstruction and Mapping from Stereo Pairs with Geometrical
Rectification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Antonio Javier Gallego, Rafael Molina, Patricia Compañ, and
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Physiology of Simple Photoreceptors in the Abdominal 
Ganglion of Onchidium  

Takako Nishi 1, Kyoko Shimotsu2, and Tsukasa Gotow2 

1 Laboratory of Physiology, Institute of Natural Sciences, 
Senshu University, 2-1-1 Higashimita Kawasaki 214-8580, Japan 

nishi@isc.senshu-u.ac.jp  
2 Laboratory for Neuroanatomy, Department of Neurology, Kagoshima University Graduate 
School of Medical and Dental Sciences, 8-35-1 Sakuragaoka Kagoshima 890-8520, Japan 

tsukasa@m.kufm.kagoshima-u.ac.jp 

Abstract. Simple photoreceptors without microvilli or cilia, the photorescponsive 
neurons, designated as A-P-1, Es-1, Ip-2, and Ip-1, exist in the abdominal ganglion 
of sea slug Onchidium. Of these, A-P-1 and Es-1 respond to light with a 
depolarizing receptor potential, caused by the closing of light-dependent, cGMP-
gated K+ channels, whereas Ip-2 and Ip-1 are hyperpolarized by light, owing to the 
opening of the same K+ channels. Studies show the first demonstration of a new type 
of cGMP cascade, in which Ip-2 and Ip-1 cells are hyperpolarized when light 
activates GC through a Go-type G-protein. This new cascade thus contrasts with the 
well-known phototransduction cGMP cascade mediated by a Gt-type G-protein, 
seen in rods and cones as well as A-P-1 and Es-1 cells. Studies also suggest that the 
Onchidium simple photoreceptors and vertebrate simple photoreceptors, called 
ipRGCs, might be different from the conventional eye photoreceptors, which 
function as the pattern vision system and that they may be involved in a new sensory 
modality, the non-visual photoreceptive system, which functions as encoding of 
ambient light intensities, instead of spatial and temporal resolution. Finally, it is 
suggested that the Onchidium simple photoreceptors operate in the general 
regulation by light and dark of synaptic transmission of sensory inputs and 
subsequent behavioral responses.  

Keywords: Molluscan photoresponsive neurons; Non-specialized photoreceptors; 
Non-visual photoreceptive modality; Non-visual function, facilitation/depression. 

1   Introduction 

There are intrinsically photoresponsive neurons in the abdominal ganglion of marine 
mollusk, Onchidium verruculatum [7], [16]. We refer to these neurons as ‘simple’ 
photoreceptors, due to their lack of any specialized structures, such as the microvilli 
or cilia characteristic of eye photoreceptors. Recently, similar simple photoreceptors, 
the intrinsically photosensitive retinal ganglion cells (ipRGCs), were discovered in rat 
and mouse retinas [3], [15]. 

The simple photoreceptors examined in this work, designated as A-P-1, Es-1, Ip-2, 
and Ip-1, are located on the abdominal ganglion of the Onchidium (Fig. 1A). We have 
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previously shown that the depolarizing photoreceptor potential of the A-P-1 and Es-1 
cells results from the closing of a light-dependent, cGMP-gated K+ channel [8], [10], 
[11], (Fig. 1B). We also found that the hyperpolarizing of the other simple photo- 
receptors, Ip-2 and Ip-1 cells is produced by the opening of the same type of light-
dependent, cGMP-gated K+ channel that becomes closed in A-P-1 or Es-1 cells [11] , 
(Fig. 1C). On the other hand, it has been shown that these simple photoreceptors are 
not only first-order photosensory cells, but are also second-order interneurons, 
relaying several kinds of sensory input [6], [12], [13], similar to those of the above 
ipRGCs (for review, see [4]). A considerable amount of information has been 
obtained about the intracellular mechanisms of photoresponse of these simple photo- 
receptors (e.g., [8], [9], [11], [14], [20], [22]). However, almost nothing has yet been 
established about how these act as the interneurons in vivo. 

The present study examines their light-sensing and physiological role (the non-
visual function) as an interneuron of the simple photoreceptors, which differs from the 
pattern vision function of conventional (specialized) eye photoreceptors. This result 
also is of general interest in the field of ipRGCs.  

2   Material and Methods 

Experimental animals, the opisthobranch (or pulmonate) mollusc Onchidium 
verruculatum weighting 10-15 g, were collected from the intertidal zone of Sakura- 
jima, Kagoshima, Japan. The circumesophageal ganglia were isolated by dissecting 
through the mid-dorsal surface of the animal and were isolated after overlying 
connective tissue had been removed. The procedure for preparing and conditioning of 
the photoresponsive neurons in the abdominal ganglion of this animal were similar to 
that described previously [13]. In some experiments, a whole animal, the semi-intact 
preparation was used to examine the possible electrophysiological correlates of the 
behavioral phenomena observed.  

The normal solution, artificial seawater (ASW) used for continuous perfusion of 
each preparation, had the following composition (mM): NaCl, 450; KCl, 10; CaCl2, 
10; MgCl2 50; Tris buffer, 10. The pH was 7.8.  

For electrophysiology, an individual, identified neuron was inserted with up to four 
microelectrodes for the recording of membrane potential or current, passing current 
under visual control. The general techniques of voltage-, current-, and patch-clamp 
recordings have been fully described in detail elsewhere [8], [10], [11], [14], [21]. For 
stimulation from nerves, small glass tubes were used for suction electrodes. For 
intracellular staining, 100 mM NiCl2 was injected into neurons through microelectro- 
des by means of microinjector manually.  

3    Results and Discussion 

3.1   Characterization of the Phototransduction of the Simple Photoreceptors A-
P-1, Es-1, Ip-2, and Ip-1 in the Onchidium Ganglion    

As shown in the Introduction and Fig. 1, A-P-1 or Es-1 cells respond to light by 
becoming depolarized, following the closing of a particular type of light-dependent, 
cGMP-gated K+ channel, whereas Ip-2 or Ip-1 cells become hyperpolarized by light, 
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owing to the opening of the same type of channel. The present study suggested a new 
type of cGMP cascade, in which Ip-2 and Ip-1 cells (Ip-2/Ip-1) are hyperpolarized 
when light activates guanylate cyclase (GC) through a Go-type G-protein, leading to 
an increase in the level of second messenger cGMP, thereby leading to the opening of 
the light-dependent, cGMP-gated K+ channels [11], [14], [22]. We have also shown 
that A-P-1 and Es-1 cells (A-P-1/Es-1) are depolarized when light activates  
phosphodiesterase (PDE) through a Gt-type G-protein, leading to a decrease in the 
level of the same cGMP, thereby leading to the closing of the same K+ channels, [8], 
[10], [11], [21], as in the phototransduction of eye photoreceptors, rods or cones (for 
review, see [27]). A mechanism similar to that of the above new phototransduction in 
Ip-2 and Ip-1 cells, in which a G-protein is involved in the activation of GC to 
increase internal cGMP levels, has been already shown in the scallop ciliary 
hyperpolarizing eye photoreceptors [5]. However, they have provided no evidence 
that identifies whether the G-protein involved in the mechanism is Gi or Go. 
Unfortunately, a light-absorbing photopigment, such as a melanopsin ([25], see also 
Table1), has not yet been found in the Onchidium simple photoreceptors.  

Table 1. Comparison of simple photoreceptors and eye photoreceptors 

Morphology Function

Simple photoreceptors
     Onchidium

      A-P-1/ Es-1 This  Depolarization Non-specialized, Slow kinetics
     Onchidium text Rhodopsin-like?  simple structures  (Several tens

       Ip-2 / Ip-1   Hyperpolarization of second) 

Berson et al.
 Mammals (2002) Second-order neurons

        ipRGCs Hatter et al. (In addition to first-order Little adaptation
(2002) photosensory cells)

Qiu et al.
(2005)

Eye photoreceptors
      Pecten
          Proximal cells McReynolds  Depolarization Specialized-

& Gorman microvilli
(1970)

        Distal cells Kojima et al   Hyperpolarization Specialized-
(1997)  cilia

      Vertebrates
        Rod/Cone Berson   Hyperpolarization Rhodopsin Specialized- Adaptation

(2003)  cilia

Characteristics of
photoresponse

Refs.
Phoresponse

(Receptor potential)
Visual pigments

Melanopsin Depolarization

Fast kinetics
(A few ms)Rhodopsin

Pattern vision
system

Non-visual
photoreceptive

modality

and

and

and

. 

On the other hand, a remarkable characteristic of these photoresponses of simple 
A-P-1/Es-1 and Ip-2/Ip-1 is their slow kinetics, as seen in Fig. 1 (B, C). These 
photoreceptors reach their peak responses 20 to 30 s after the stimulus onset, 
contrasting with the fast and adaptive response of a few milliseconds in well-known 
eye photoreceptors (e.g., Pecten proximal and distal cells; [19]). Furthermore, as 
described in the Introduction, these simple photoreceptors are not only first-order 
photosensory cells, but are also second-order interneurons. Similar characteristics are 
also shown by a comparison with vertebrate eye photoreceptors, rods and cones. Such 
a comparison of the simple photoreceptors and specialized eye photoreceptors is 
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Fig. 1. Non-specialized simple photoreceptors, photoresponsive neurons and their macroscopic 
and microscopic photoresponses in Onchidium ganglia. A: A diagram of the dorsal aspect of 
central ganglia, showing the approximate positions of the somata of Ip-2 and Ip-1 neurons 
(filled circles), and A-P-1 and Es-1 neurons (open circles) neurons, which are located on the 
abdominal ganglion (abd. g.). lt. c. g. and rt. c. g. are the left and right cerebral ganglia, 
respectively, and lt. pl-pr. g. and rt. pl-pr. g. are the left and right pleuro-parietal ganglia, 
respectively. B, C: Macroscopic (a, b) and microscopic (c) photoresponses of depolarizing A-P-
1 (B) and hyperpolarizing Ip-2 (C) cells. Horizontal short bars above each trace in a and b, and 
upward step marks above each trace in c show the timings of identical white light. B-a; a 
depolarizing receptor potential at -50 mV. The top parts of spikes superimposed on the receptor 
(generator) potential are cut. C-a; a hyperpolarizing receptor potential at -40 mV. B-b, C-b; 
depolarizing inward K+ photocurrent responses and hyperpolarizing outward when both cell 
types are voltage-clamped at -40 mV. B-c; a light-dependent K+ single-channel current 
recording from a cell-attached patch of A-P-1. The inward channel current trace at the point 
mark is shown on the expanded time scale. C-c; the same K+ single-channel current recording 
of Ip-2 (modified from ref. 14). 

 
summarized in Table 1. From this Table, it is suggested that the Onchidium simple 
photoreceptors and ipRGCs may be different from the conventional eye photore- 
ceptors, which function as the image-forming visual system (or the pattern vision 
system), and that they may be involved in a new sensory modality, the non-visual 
photoreceptive system, which functions as encoding of ambient light intensity levels. 
In addition, this table also suggests that the ipRGCs may be homologous to (evolved 
from) the Onchidium simple photoreceptors. 

3.2   Output Organization of A-P-1, Es-1, Ip-2, and Ip-1 

As shown in Fig. 2A, the cell bodies and axonal branches (running of axons) of A-P-1 
and Es-1 were simultaneously stained and visualized by the intracellular injection of 
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Fig. 2. A: sketch of the dorsal surface of central ganglia showing A-P-1 and Es-1 stained sim-
ultaneously with Lucifer Yellow and their nervous (axonal) innervation sending toward the 
animal body. B: sketch showing Ip-2 and Ip-1 stained simultaneously with Ni2+-rubeanic acid 
complex and their axonal innervation. 

Lucifer Yellow [21]. The initial segment of axon of Es-1 typically branches into three 
main axons: An axon branch running toward the left side further branches and enters 
three left pleuro-parietal nerves leaving the left pleuro-parietal ganglion; The second  
justify at the right side of the line; The rest sent out one branch as the abdominal 
nerve 1 (abd. n. 1). These axonal branchings were electrophysiologically confirmed 
by the simultaneous recording of the evoked somatic spike and the subsequent axonal 
spike in the concerned nerves (data not shown). Further, an anatomical analysis 
showed that the left and right three pleuro-parietal nerves and the abdominal nerve 
terminate the whole area of mantle and foot, respectively. Fig. 2B shows the cell 
bodies and axonal branches of Ip-2 and Ip-1 which were simultaneously stained and 
visualized by the intracellular injection of Ni2+ - rubeanic acid complex. The Ip-2 and 
Ip-1 cells each send their axonal branches into the abd. n. 1 and abd. n. 2, in the same 
way. These two axonal branches arising from the cell bodies of Ip-2 and Ip-1 were 
confirmed by simultaneous recordings of the orthodromic conduction of spike on their 
branches and its triggered somatic spike (data not shown). The abd. n. 1 and abd. n. 2 
sending out their axonal branches were anatomically suggested to terminate around 
pulmonary sac, connected to pneumostome, and partly to terminate on the visceral 
organs containing pericardium. 

3.3   The Role of Depolarizing Es-1 or A-P-1 Cells 

Onchidium is an intertidal and amphibian mollusk. Thus, the animals which submerge 
at high tide, use gill-trees, but at low tide they interchange with lung (pulmonary sac) 
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for respiration and crawl over the rocks in the exposed seashore, to obtain food or 
reproduce. Occasionally, mollusk Onchidium slip and turn over, while rock-crawling. 
Then, these animals pick themselves up through a chain of behavioral responses, such 
as the mantle-levating reflex. This mantle-levating reflex is also released by tactile 
stimulation of the mantle (Fig. 3A-I). We have previously shown that first-order Es-1 
(or A-P-1) cells are not only second-order interneurons relaying tactile sensory input 
from the mantle (Fig. 3B), but also one of motoneurons innervating mantle and foot, 
thereby leading to the mantle-levating reflex [6], [21]. We also investigated effects of 
light on the synaptic transmission of the tactile sensory inputs. As shown in Fig. 3C, 
D, E, if subthreshold electrical stimuli were applied to right and left pleuro-parietal 
nerves, instead of the tactile stimulation, all or nothing spikes riding on the synaptic 
potentials were generated in Es-1 under the condition of subthreshold light stimulus, 
but not under the dark condition. This suggested that the depolarizing photoresponse 
of Es-1 or A-P-1 cells plays a role in facilitating the tactile synaptic transmission and 
the subsequent mantle-levating reflex. 

3.4   The Role of Hyperpolarizing Ip-2 and Ip-1 Cells in an Aerial Respiration, 
the Pulmo-Breathing Behavior  

At low tide, amphibian mollusks Onchidium open a pneumostome, the orifice of 
pulmonary sac, to begin an aerial respiration, although they close the pneumostome at 
high tide. This breathing behavior is also constantly observed at an experimental 
seawater-aquarium in the room. The present study has suggested that the above 
opening and closing of pneumostome for respiration depend on at least two kinds of 
nervous network of the right and left pleuro-parietal nerves relaying sensory inputs of 
water pressure from the surface of mantle, and the hyperpolarizing Ip-2 and Ip-1 cells 
sending out motor outputs toward the pneumostome (Fig. 2B). We have already 
shown that Ip-2 and Ip-1 are connected by low-pass filtering electrical synapses, 
thereby enabling their cells to establish either synchronous beating or bursting firing 
[13]. We further investigated the input and output organization of Ip-2 and Ip-1 cells 
electrophysiologically, with the aid of a recording technique of neural activity from 
the semi-intact animal preparation [23]. For example, a train of electrical stimuli to 
abd. n. 1 and/or abd. n. 2 sending out the axonal branches from Ip-2 and Ip-1 cells 
produced a contraction (the opening) of pneumostome (data not shown). 
Simultaneous intracellular recordings of membrane potentials from Ip-2 and Ip-1 cells 
showed that synchronous bursting discharges are depressed by the presynaptic nerve- 
and/or light-stimulation (Fig. 4). Taken together, these results suggested that the 
hyperpolarizing photoresponse of simple photoreceptors Ip-2 and Ip-1 plays a role in 
depressing the synaptic transmission and the subsequent breathing behavior.    

3.5   Concluding Remarks and Non-visual Function of Simple Photoreceptors 

Simple photoreceptors similar to those of Onchidium have long been known in the 
central ganglion of crayfish [17], [24] and Aplysia [1], [2]. However, details of their 
phototransduction mechanism and function remain unclear. The present study 
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Fig. 3. A-I: the mantle-levating reflex of Onchidium. A-II: a semi-intact animal preparation for 
Es-1. B: firing of spike riding on synaptic potentials induced by tactile stimuli to animal. C: 
sketch showing the experimental condition in the isolated preparation. D: facilitation of 
electrical nerve stimulation by light. E: the expanded trace in dark (1) and light (2). 
             
suggested that the Onchidium simple photoreceptors as well as ipRGCs function as a 
new sensory modality, the non-visual system, which is different from the pattern  
vision system of well-known eye photoreceptors, encoding spatial and temporal 
resolution. As the non-visual function of ipRGCs, it is known that they contribute to 
pupillar light reflex and circadian clocks. However, nothing is known about their 
function as interneurons (Fig. 5).  

The present study showed that Onchidium simple photoreceptors may modulate the 
general synaptic transmission and behavioral responses, such as the mantle-levating 
reflex and aerial respiration. Fig. 5 shows a scheme to explain such a non-visual 
function of the interneurons. The depolarizing (excitatory) responses of simple 
photoreceptors may facilitate the timing and frequency of spike generation. 
Conversely, the hyperpolarizing (inhibitory) photoresponses may depress those same 
timing and frequency. On the other hand, another respiratory behavior of the pond 
snail Lymnaea is well-known [26]. However, there is no participation of 
photoreceptive neurons in its respiration. 
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Fig. 4. Simultaneous recordings of intracellular membrane potentials of Ip-1 and Ip-2.  They 
are interconnected by an electrical synapse, so that Ip-1 and Ip-2 burst or beat spontaneously 
and synchronously. A: experimental condition in the isolated preparation. Note that 
synchronous bursting or beating discharge (D) is depressed by simultaneous nerve (B) and light 
(C) stimulation. 

＋
Depolarizing photoresponse

Facilitation

Depression

Spontaneous firing rate

Sensory inputs

Synaptic
transmission

Outputs

Modulation (Facilitation / Depression) of synaptic transmission and outputs (behaviours)

Hyperpolarizing photoresponse

Simple photoreceptor : Photosensory cell + Interneuron

 

Fig. 5. Non - image - forming visual (Non-visual) function of Onchidium simple photoreceptors 
 

Finally, the present results might be useful in understanding the phototransduction 
mechanism and function as interneurons of ipRGCs. 
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Abstract. The processing of the information coming from the external 
environment, including the interactions between molecular and cellular key-
players involved in, is perhaps the “hard problem” in the cybernetic approach to 
the nervous system. As a whole, this information shapes the behavioral activity 
of an organism. The problem is faced considering the information processing 
flow in action from the lower organisms’ nervous elements to the higher 
cognitive levels of man. The cnidarian Hydra is the first organism of the 
zoological scale in which a nervous system is encountered. It is composed by 
isolated nerve cells scattered throughout the animal body constituting a diffuse 
nerve net for the input-output activity. In this paper is reported, for the first time 
in Hydra nerve net, the histochemical indication of a NADPH-diaphorase 
(NADPH-d) activity as putative marker of nitric oxide synthase (NOS) activity. 
The identification and the tentative localization of nitric oxide (NO) in Hydra is 
discussed in the light of the emerging role that such a signaling molecule exerts 
in sensory (visual particularly) and motor neural systems. 

1   Introduction 

Comparative Neurobiology’s main goal regards the solving of cutting-edge queries on 
the evolution of the nervous system. In particular, how does a simple nervous system, 
without centralization and with a rough isotropic distribution of its elements, generate 
and modulate a periodic behavior according to the environmental issues and 
demands? Also, are the key-elements of neurotransmission and signaling pathways 
already expressed and localized, at different cellular levels, in so-called simple animal 
model and hence phylogenetically conserved in higher organisms? 

Local circuits, or networks, in the central nervous system are responsible for 
considerable information processing and integration in which sensory information is 
transformed into appropriate motor outputs. The output of a network depends not only 
on its inputs, but also on various modulatory mechanisms that modify the neural 
signal at any level within the network [1]. 

The neural net of the diploblastic fresh-water coelenterate Hydra (Cnidaria, 
Hydrozoa), with a great economy of specialized structures, enables Hydra to produce 
its periodic shortening-elongation behavior, which has a high biological significance 
for its survival, being linked to osmoregulation and locomotion related to feeding. 
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Hydra is the first known metazoan among animal phyla having a nervous system; 
it belongs to Cnidaria, an early-diverging metazoan phylum [2]. Since a couple of 
century Hydra has been a suitable model for experimental studies on the evolution of 
developmental mechanisms [3]. 

Cnidaria (and Hydra among them) nerve nets share with the nervous systems of 
organisms at higher levels in the zoological phylogenetic scale many basic synaptic 
features, including transmission and conduction mechanisms, and neurotransmitter 
types [4]. A major difference with bilaterian nervous systems is that Hydra nerve net 
seems to be strongly peptidergic [5]. In fact cnidarians produce large amount of 
neuropeptides that may function as neurotransmitters, neuromodulators and also as 
neurohormones in the control of developmental processes. Although Hydra nervous 
system is primitive, many neurons co-express more than one neuropeptide for 
signaling like in higher animals [6]. Nevertheless, data collected by multidisciplinary 
approaches indicate that several neurotransmitters like glycine, endocannabinoids, 
and glutamate (AMPA and NMDA receptors) have early evolved in Hydra as part of 
phylogenetically old behavioral control systems [7]. 

On the contrary, a minor body of evidence is available about the existence and the 
role of nitric oxide (NO) in cnidarian nervous systems. The free radical nitric oxide 
(NO), although it is not reported as classical neurotransmitter, is an important 
intracellular and intercellular signaling molecule involved in various physiological 
processes in vertebrates and invertebrates [8-9]. In particular it is involved as neural 
messenger modulating the processing of sensory signals [10]. Several studies have 
provided strong indications that NO signaling pathway is widespread throughout the 
phylogenetic scale from invertebrates, including few species of cnidarian (see section 
3), to higher vertebrates and mammals. NO appears to modulate the response to 
“olfactory” stimuli in Hydra [11], but initial studies on different cnidarians, including 
Hydra itself [12-13], have failed to confirm the presence of nitric oxide synthase 
(NOS, the enzyme responsible for synthesising NO) in any of their neurons. Evidence 
for the nNOS expression in cnidarians is an essential element to prove NO as an 
ancestral neurotransmitter. 

Here, we apply, for the first time to the Hydra nerve net, the NADPH-diaphorase 
(NADPH-d) staining method to verify the presence and the distribution of putative 
nitric oxide synthase (NOS) assessing the location of nitric oxide (NO) activity. 

2   Hydra’s Nerve Net and Neurobehavioral Issues 

Hydra is a sessile diblastic organism with radial symmetry. It has a coelenteron and, 
at the distal end, a mouth (hypostome) surrounded by tentacles. It is characterized by 
a simple neural net (46), by limited types of sensory input channels and output 
effectors and by a behavior showing periodically repetitive phases of body 
shortenings and elongations. Two cell-layers (ectoderm and endoderm) constitute the 
animal. They are separated by an acellular supporting mesoglea, and are composed by 
epitheliomuscular cells, i.e. epithelial cells containing myofibrils on the face near the 
mesoglea [2]. Due to the myofibril arrangement, the ectoderm and the endoderm act 
like an agonist/antagonist system, running respectively the animal shortening and 
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elongation. The ectoderm plays also an ionic active transport in order to balance the 
ion loss while the endoderm has also the digestive function. 

The Hydra nerve net triggers, maintains and modulates the animal's behavior, in 
particular its periodicity [14]. At first glance, the nervous system has the 
configuration of a simple bidimensional isotropic network, which lies between the 
ectoderm and the endoderm [15], and does not have a concentration of neuron bodies 
in ganglia, nor arrangement of neuronal processes in specific pathways (Fig. 1i). 

(ii)(i) (ii)(i)

 

Fig. 1. Location and distribution sketches of nerve cells in Hydra. (i) Longitudinal section sho-
wing the ectodermal and the endodermal layers, and the arrangement of the nerve net (modified 
from ref. 20). (ii) Topography of ectodermal nerve cells: A - Ganglion cells, B - Nerve ring and 
distinctive neurons, C – Sensory cells (modified from ref. 19). 

The nervous elements are made of ganglion and sensory neurons with different 
distribution and concentration (70% of the net neurons lie at the ectodermal side of 
the mesoglea) [16-17]. Several distinct neuronal subtypes, with different functional 
properties and with constant and specific location in the animal, can be recognized 
morphologically and immunochemically [18-19]. A thin nerve ring (consisting of four 
different subsets of neurons) connected to the nervous net has been observed between 
the hypostome and the tentacle zone [19]. In the ectoderm the sensory neurons are 
found in the tentacles and around the mouth, while in the endoderm they are along the 
body column; they have a putative receptive function [19-20] (Fig. 1ii). Ganglion 
cells have a more regular distribution pattern spread over the whole animal and are 
converted to sensory cells when the neurons move from the body column to the 
hypostome. However, both the ganglion and the sensory neurons may be 
multifunctional neurons, having from one to four distinct features of a sensory-inter-
moto-neurosecretory neuron [19]. 

The periodic (shortening/elongation) behavior of Hydra is exhibited even under 
absolutely constant environmental conditions and it involves two neuromuscular 
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pacemaker groups that are in a mutual inhibitory interaction [21]. The behavior is 
completely absent in nerve-free preparations where neurons are experimentally lost. 

Hydra responds to light by body contractions and tactic movements [22], showing 
extraocular photoreception [23-24] since it does not have conventional visual 
structures; single or clustered photosensitive cells have not yet been identified as well 
[25]. Our previous studies proved a photo-modulation of the bioelectric correlates of 
the animal’s behavior [25-26]. Hydra’s behavioral action spectrum has been 
elucidated, indicating red blindness [22, 25] and two opposite peaks of two opposite 
responses around 450 nm and 550 nm (corresponding to the max and min duration of 
the behavioral sequence in undisturbed conditions) [25]. By polyclonal antibodies 
against squid rhodopsin, we identified an opsin-like protein likely localized in 
epidermal sensory nerve cells [27], though a possible location in ecto/endodermal 
epithelial cells or ectodermal ganglion cells cannot be excluded. Molecular insights 
into Hydra opsin(s) and their possible light-inducible and clock-controlled 
expressions are ongoing [28]. 

3   Nitric Oxide: A Ubiquitous Ancient Signaling Molecule 

NO is a short-lived molecule with a high diffusion coefficient that crosses cell 
membranes readily, thus spreading quickly around its site of generation [29]. It is 
generated by the enzyme NO synthase (NOS). Two major forms of NOS are known: 
the constitutive (cNOS) and the inducible ones (iNOS). cNOS accounts for the 
isoforms found in neuronal and endothelial cells (nNOS and eNOS) while iNOS has 
its localization in macrophages (mNOS). All isoforms of NOS use arginine as 
substrate, form citrulline and NO and require nicotinamide adenine dinucleotide 
phosphate (NADPH) as electron donor. The primary structure of brain NOS [30] 
reveled binding consensus sequences for calmodulin (CaM), FMN, FAD and NADPH 
displaying a close homology only with cytochrome P-450 reductase (CPR). NOS and 
CPR are unique in possessing all these binding sites in the same polypeptide to 
constitute an electron transport chain. The activity of cNOS is regulated by Ca2+/CaM 
signal. The CaM-complex bent to the enzyme aligns the domini allowing the electrons 
flux from the reductase domain to the oxygenase one. The iNOS is always active due 
to its permanent link to the Ca2+/CaM complex, having for it a high affinity. Inside its 
target cells, NO can activate soluble guanylate cyclase (sGC) and thereby increase the 
level of the second messenger guanosine 3’,5’-cyclic monophosphate (cGMP) [30]. 

Due to the low homology between known invertebrate and mammalian NOS 
isoforms, the use of mammalian anti-NOS antisera in invertebrate preparations can 
provide contradictory results [31]. On the contrary, NADPH-d activity has been 
widely used as a marker for nNOS activity in vertebrate and invertebrate preparations: 
this technique remains one of the most suitable procedures to screen for NOS-
containing cells. The use of NADPH-d histochemical technique (that catalyzes the 
NADPH-dependent conversion of a soluble salt in an insoluble visible one) as a 
marker for nNOS in paraformaldehyde fixed tissues is definitely accepted [32] and is 
producing a large data collection indicating various signaling function for NO in 
central nervous and peripheral tissues of the major bilaterian invertebrate groups [33]. 
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Nitric oxide (NO) is thought to play essential roles in signaling from the early 
stages of the evolution of life [33]. It has been largely identified in mammals in which 
it supports important functions as neurotransmitter and neuromodulator [34], as well 
as in major invertebrate phyla such as mollusks, annelids, arthropods and cnidarians 
[7, 12, 33], and in basal eukaryotes such as fungi and plants [35]. 

Various functions for NO-cGMP pathway have been proved in learning and 
memory [36], feeding [11, 37], olfaction [38], and regulation of smooth muscle tone 
[39]. Unexpectedly, NO supplies both sensory and motor modalities for the same 
behavior but exerted with different strategies. In gastropod feeding, NADPH-d 
labeling was reported in peripheral putative sensory cells in the herbivorous Aplysia 
and in central motoneurons in the predatory Pleurobranchaea californica [40]. 

Among sensory systems [10], NO plays a crucial control at every level of vision 
processing [41]. In the vertebrate retina NO/cGMP signaling modulates ion channel 
functions of photoreceptors [42]. In lower vertebrates NO provides signals in the 
earliest stages of retinal development [43]. In invertebrates, NADPH staining of the 
visual structures of insects indicates that NO is generally implicated in visual 
development and processing [10, 44] while it is a necessary key-player in visual 
learning tasks in Octopus [36]. Recently, it was reported that the NOS/cGMP pathway 
mediates the entrainment of light responses of the circadian clock in mammals [45]. 

4   Materials and Methods  

About fifty specimens of Hydra vulgaris were used for all experiments. Stock cultures 
were maintained in a medium containing CaCl2 1 x 10-3 M and EDTA 1.25 x 10-5 M 
at constant 17±1 °C under a 600 lx 12:12 h light/dark cycle. Animals were fed twice a 
week with Artemia salina nauplii and washed 4 h after the meal. Experimental 
animals were starved three weeks before the fixative procedure. To move the 
specimens during each step, before of xylene, a plastic cell strainer was used (BD 
Falcon). Whole animals were relaxed in a medium solution of 2% ethyluretane (Carlo 
Erba Reagents) for two minutes and fixed in 4% paraformaldehyde in 0.1 M 
phosphate buffer (Sigma), pH 7.4 for two hours at 4°C. After, were rinsed thoroughly 
in phosphate buffer at pH 7.4 (PB) for one hour at room temperature and the last five 
min. in 0.3% Triton-X 100 in PB. Subsequently, were incubated at 37°C for one hour 
in the dark in a solution of 1 mg/ml ß-NADPH (Sigma), 0.4 mg/ml (2-2'-
benzothiazolyl)-5-styryl-3-(4'-phthalhydrazidyl)-tetrazolium chloride (BSPT) (Sigma) 
as substrate in 200 μl of N,N-dimethylformamide (ICN Biomedicals), 0.3% Triton-
X100 in PB. After incubation, the (whole) animals were rinsed consecutively in PB, 
in H2O, each for half hour at room temperature, dehydrated in ascending alcohol and 
finally transferred in xilene for half hour and collected on a coverglass. When the 
excess of xylene was evaporated the specimens were covered with dense DPX 
(Aldrich). For the observation at the microscope, the specimens protruding the 
coverglass were inserted in the hole (ø 12 mm) of a plastic slide, in order to protect 
them by damage and to leave the free surface of the coverglass to the observation. 
The slides were observed with a Zeiss Axioskop 2 brightfield microscope and the 
images were photographed by using a digital camera (Leica DFC 320). Contrast and 
brightness were adjusted using Adobe PhotoShop 7.0 software (Adobe System). 
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Fig. 2. Nerve net of Hydra visualized by NADPH-d labeling in three different whole-mounts 
preparations. (a, b) General views. BC, body column; F, foot; H, head; T, tentacles. Note the 
NADPH-d reactivity distribution (dark staining) with a network-like arrangement. Arrows point 
to NADPH-d reactivity near the base of tentacles. (c) High magnification of the body column 
region. Note the marked labelling of nerve fibres. Bars, a) 100 μm, b) 50 μm, c) 20 μm. 
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5   Results and Discussion 

As stated before, the enzyme NOS can be localized by NADPH-d histochemistry. 
Here we have applied this technique to whole-mount preparations of Hydra and 
revealed a possible NO distribution within the nerve net. The salt substrate BSPT 
employed in this study enabled to reveal a more precise localization of the diaphorase 
reaction, because yields a formazan precipitate with osmiophilic and solvent resistant 
properties which are different from the classic nitroblue tetrazolium salt (NBT) [46]. 
This substrate is frequently used in the histological procedures for ultrastructural 
studies of the nervous system [47]. We used hydra whole-mounts because histological 
sections were less suitable for our purpose due to the thin animal’s thickness.  

Widespread distribution of NADPH-d is associated with diffuse nerve fibers but 
not with identified cell body groups (Fig. 2). Consistent staining patterns are regularly 
diffused along the body column (Fig 2c) while no marked zones are showed in the 
tentacles with few exceptions represented at the base of tentacles closer to the head 
(Fig 2a, b). Similarly, no remarkable labeling was observed in the head (nerve ring 
neurons included) and foot (peduncle and pedal disk included) regions. 

In a first instance, the identification of a sharp cellular localization to NADPH-d 
labeling becomes hazy. This kind of uncertainty is already known for whole-mount 
preparations of Hydra. In fact, Arg-vasopressin-like immunoreactive peptides have 
been identified in nerve cell subsets throughout the Hydra body but with no clear 
identification of the cell and tissue layer types [48]. 

Therefore, the attribution of the reactivity pattern to the ectoderm or the endoderm 
is rather difficult. Our results could fit the distribution pattern and the fiber 
arrangement of the ectodermal ganglion cells showed in Fig 1ii, although in our 
experiments no striking labeling is present along the tentacles. According to the latter, 
it is difficult to report a localization of ectodermal sensory cells for NOS activity 
because that type of nerve cells is mostly present in tentacles. On the contrary, due to 
the higher percentage of sensory cells in the endoderm of the body column, the 
localization of NO activity in such cells cannot be excluded at all. Notably, the 
distribution pattern found by us has some similarities with the spatial pattern of the 
CC04+ neurons reported as ectoderm ganglion cells in H. viridissima [49]. 

Nevertheless, our data prove that the distribution of NADPH-d activity in Hydra, 
being restricted to the nerve net only, is certainly indicative of the NO presence at 
neural level. 

Accordingly, the identification of NO-sensitive neural elements is needed to 
delineate the function of NO in Hydra nerve net and its possible involvement in signal 
processing of motor and/or sensory information. So far, in Cnidaria NO has the 
following multifunctional roles in effector systems [7]: 1) control of the tentacles’ 
movements in the GSH feeding response of Hydra [11]; 2) activation of the slow 
swimming in Aglantha [50]; 3) modulation of the peristaltic muscle contractions in 
Renilla [51]; and 4) triggering of the nematocyst discharge in Aiptasia [13]. Only 
items 2 and 3 reported histochemical evidence for NO. 

A role of NO in sensory signals should be deepened also in Hydra. The already 
proposed olfactive task [11] would need further evidences and, presently, cannot be 
entirely confirmed by our data as tentacles are barely stained. Moreover, an 
involvement in photosensitive issues seems fascinating. We noted that the distribution 
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of NADPH-d showed here resembles to some extent the fluorescence pattern of the 
opsin-like protein identified by us [27]. As part of our research on Hydra 
phototransductive processes, searching for putative second messengers of the signal 
cascade we have obtained by immunohistochemistry early results on the presence of 
cGMP (unpublished data). By comparison with data showed here, it could be 
interesting verify if putative photosensitive cells, being likely multifunctional, use 
cGMP as effector belonging - or not - to the cGMP/NO signal transduction pathway.  

A role of NO in the developmental dynamics of neurons and in the mechanisms 
controlling nerve net formation could be hypothesized too. As known in Hydra, 
neurons are continuously renewed and differentiated from interstitial undifferentiated 
cells [19]. As a result of a steady state of production/loss, neurons are continuously 
displaced changing their location (with the exception of nerve ring neurons) [20]. The 
displacement provides metastable cell phenotypes as many neurons switch their 
typology, undergoing morphological and immunochemical transformations [19-20]. 
So NO as small highly flowing molecule could intervene to modulate the complex 
signaling belonging to those dynamics. This role occurs in lower vertebrates where 
nNOS expression is indicative of neuroprotective potential effects after neuronal 
damage [52] and during development of the nervous system [53]. 

Finally, our data set in a primitive nervous system (likely the oldest one) the 
histochemical presence of NO acting as ancestral neural messenger with yet unknown 
physiological tasks. Next investigations and experimental approaches will be 
hopefully addressed to reveal and clarify the role of that intriguing signaling system. 
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Abstract. We investigate the geometric properties of the global image
that forms on the hemispheric back of the eye.
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1 Introduction

Historically, the study of visual perception has overemphasized planar analysis.
Art and then Science and Technology have embraced the standpoint of repre-
senting visual world on a plane. Paraxial image theory has been considered the
golden standard to which optics have to conform. An ideal optical system must
track paraxial performance, and the measure of aberration is ”the amount by
which rays miss the paraxial image point ” [1]. Explicit in this round of ideas
is the continuous reference to a similitude between the eye and a camera. We
question these beliefs and provide evidence of smooth but substantial depart
from paraxial behavior.

The back of human eye has the approximate form of an hemisphere which is
completely covered by an ”aerial image ” (humoral is more exact, but there is
no harm in using a more euphonic name). Instead of concentrating attention on
foveal image (and ignoring the curvature of the back), our purpose is to move
toward the study of the geometry of the whole image, thus including peripheral
vision. Here, for brevity, we deal with the single eye, whereas the additional
functionality of stereoscopic vision, in terms of spherical geometry, will be the
subject of a subsequent study.

In so doing we should be careful in specifying the scheme of the interconnected
blocks system that realizes human vision (which has even feedback links). We
must disaggregate precisely, individuating each block and its input and output.
So we distinguish the optical system, whose output is the aerial image, from the
downstream sensor system whose input is such an image. Our effort is to obtain
insight on the geometric features of the map defined by the optical system, and
then to argue on how the downstream blocks will follow through. In this way we
clarify the ensuing framework and we give an orientation for further research,
which will necessarily involve nonlinear differential equations.

Given that the back is spherical what is the appropriate representation of the
external world? It seems most logical to partition it in hemispheres centered on
the eye, instead of insisting on planes. It is not only a common sense idea, there
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is also a no way around mathematical barrier that make it unavoidable. In fact
it is impossible to specify an isometry (i.e., preserve distances) mapping a plane
to a sphere. This fact (actually much more than that) was discovered rigorously
by Gauss in 1827 (an excellent account is e.g. in [3]). Gauss was so enthusiast of
his discovery, that called it Egregium Theorem (meaning outstanding in Latin
and not ”totally awesome” as said in [3]).

There is a huge literature on the image quality of the human eye, which not
only deals with foveal image but also leans toward medical issues. An account
goes beyond our purpose and space. We just give a taste with a couple of exam-
ples [10], [7]. Medical issues also fall outside our scope and competence.

The optical system of the eye is one of extreme sophistication (the crystalline
is altogether an aspherical, variable geometry and GRIN lens) and of peculiar
structure. It is even believed that it uses ”pixel shifting technology ”, by means of
saccades, to increase resolution. Nevertheless, our starting point is again paraxial
analysis,.not finalized, this time, to determine an ideal performance to which
the system must abide, but rather, to start gathering clues of how external
hemispheres are mapped on the internal hemispherical back.

In what follows reference to Nature has no other meaning than a way to
streamline exposition.

2 The Second Nodal Point

Paraxial optics is a classical topic, covered e.g. in [2].The method amounts to
linear functions (obtained linearizing Snell’s law) on R2, that is, matrices. The
vectors represents distance from center and angles. It is natural to adopt once
and for all the lexicographic convention of having the rays traveling left to right,
and hence also defining transformation of vectors in the same orientation (right
vector as a function of left one).

Now, what should we look for in paraxial optics? In our work (implemented
in MatLab) we do calculate the right focus point, but just for validation and
debugging purposes. It is instead much more interesting for us to look at nodal
points.

Because eye’s back is hemispherical, we can use as coordinates two angles:
latitude (actually colatitude - north pole, along the optical axis, at zero latitude,
but we stick with the term latitude for simplicity) and longitude. ¿From these
coordinates there are well-known formulas to compute the metric i.e., given any
two points, their distance along a great circle (which is a geodesic).

Back to the optical mapping, the external longitude is mapped isometrically,
given the rotational symmetry (downstream the sensors’ layout is almost rota-
tionally symmetric as well) . Thus we focus on the other angle, i.e. latitude.

There are only two special positions for the second nodal point, that realize
the first a proportionality by a factor 1/2 and the second an identity, of latitude
φ on visual field as a function of latitude x on eye’s back. These positions are the
intersection with the sphere (the approximate ball shape of the eye - near the
cornea) and the center of the sphere. One might hope that computation produce
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one of this two favorable cases. If that were so, of course the question would be:
which one? If instead it were not so, how about the other positions?

A priori both these two vantage position realize a substantial isometry, but
they are far from indifferent. We explain this in detail below and examine as
well what happens in all other positions.

1 - If Nature had chosen the first position, it would have got a low latitude ex-
ternal angles amplification that accompanies the superior foveal sensor system
resolution. But at the same time Nature would have to alter substantially, in
peripheral areas, the optical map to accommodate, by means of lower amplifica-
tion, external angles that reach largely 90 degrees, passing the 45 degree limit of
this paraxial functionality, and to accommodate the need of maintaining normal
incidence of rays on sensors. In foveal vision a linear transformation on angles
(internal as a function of external) given by a diagonal 2×2 matrix with a 1 and
a 2 on diagonal would hold. It is still reconducible to an isometry on our angular
coordinates, but we are at the same time we are certain that such transformation
cannot hold over the whole field. However, the ensuing degrading amplification
for large external angles can still be expected to yield an invertible function,
so that we may presume that brain’s downstream image processing system can
invert such function and obtain an isometry for latitude angles as well. On the
other hand, we can claim that brain has certainly this sort of capacity because
the radial density of the sensors ’ pattern is not uniform and the brain must
compensate for such disuniformity. We may as well expect that the brain is able
to calculate geodesic distance on eye’s back.

2 - If Nature had chosen the second position, it would have got an identity
transformation of internal angular coordinates as a function of external ones.
Mathematically it would be paradise, and the brain would only have the burden
of compensating for sensor densities. The 90 degrees angle is accommodated
automatically, and an ideal vision based on a geodesics would result (more on
this later).

3 - If Nature had chosen neither of the above, the latitude on the eye’s back
would be non-linearly mapped as explained below

We stress that condition 1 implies that non-paraxial optics is substantially
different from peripheral optics and that it will be much as if the second nodal
point should travel from the first to the second position as latitude increases and,
hence, its distance from center of the eye would be a decreasing function of
latitude..

To make explicit the above arguments let c is the distance from the center
of the nodal point (normalized to radius). Then the expression of φ (exterior
latitude) as a function of x (latitude on eye’s back) is readily seen to be

φ(c, x) = tan−1(
sinx

c + cosx
)

If c = 1, a trigonometry exercise shows that φ = x/2, and, of course, if c = 0
then φ = x. These are the two vantage points. For other values the law retain its
complexity. There is a very important observation in this respect though. Let’s
look at the partial derivatives.. A little computation shows that
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∂φ

∂c
= − sinx

1 + c2 + 2 × c × cosx

∂φ

∂x
=

1 + c × cosx

1 + c2 + 2 × c × cosx

Thus we have a continuous smooth function which is monotone increasing with
respect to decreasing c and increasing with respect to x. If, as we must presume
(sticking to the nodal point concept), c were a decreasing function of x then φ
would become an increasing function of x. Thus this function can be inverted.
For example let c(x) = 1 − sinx. Then we obtain φ(0) = 0, φ(π/2) = π/2 and

dφ

dx
=

1 + cox

[1 − sinx + cosx]2 + sin2x

so that φ(x)is monotone increasing. Thus invertible.
In the next Section we will show that case 1 holds. In view of the above dis-

cussion, we may reasonably argue that, although traces of these disuniformities
might be present in the brain image, the brain is capable of reconstructing, from
eye’s back image and the consequent sensors’ output, the aerial image defined by
case 2.

3 Paraxial Computations

We need a dozen parameters to carry out this exercise. We noticed that no two
authors agree on averages, and reported values have an extended range. We have
experimented just a little, using the focus point as validation check.

At each optical surface and each translation it corresponds a transformation.
Overall we have 7 transformations. More precisely:

First Transition: Air to Cornea Surface (Tac)
Second Transition: Translation inside cornea (T tc)
Third Transition: Cornea to Humor Surface (Tch)
Fourth Transition: Translation in Humor (T th)
Fifth Transition: Humor to lens Surface (Thl)
Sixth Transition: Translation in lens (T tl)
Seventh transition: Lens to vitreous Humor Surface (T lv)
At each surface the transition is given by (quantities with index 1 on the left,

index 2 on the right).
(

y2
α2

)
=

(
1 0

n2−n1
n2R

n1
n2

)(
y1
α1

)

where it is an all positive except that R is negative when the ray meets a concave
surface and positive if it meets a convex surface. Translation by a distance D
correspond instead to the matrix (

1 D
0 1

)
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Therefore the matrix of the whole optical system is given by

T = T lv ∗ T tl ∗ Thl ∗ T th ∗ Tch ∗ T tc ∗ Tac

Once the 2 × 2 matrix of the optical system T = [tij ] has been computed we
place a translation D1 on the left and a translation D2 on the right. Multiplying
the three matrices it is obtained the transformation S that depends on the
parameters D1 and D2

S(D1, D2) =
(

t11 + D2t21 D1t11 + t12 + D2(D1t21 + t22)
t21 D1t21 + t22

)

(
y2
α2

)
= S(D1, D2)

(
y1
α1

)

We may look for special solutions that provide constraints on D1 and D2. As-
suming invariance of the second coordinate subspace

(
0
α2

)
= S(D1, D2)

(
0
α1

)

will impose s(1, 2) = 0. If we ask also proportionality α2 = γ.α1, and set, for
example, γ = 1, then we have the other constraint

D1t21 + t22 = 1

D1 =
1 − t22

t21

which yields the first nodal point. Substituting in S, the identity D1t21+t22 = 1:

S =
(

t11 + D2t21 D1t11 + t12 + D2
t21 1

)

and hence imposing s(1, 2) = 0

D2 = −(D1t11 + t12)

which yields the second nodal point. We do not repeat the exercise for right
focus point fp, because can be found in textbooks and it turns out that

fp = −t(1, 1)/t(2, 1)

Our MatLab code gave the following answers.Distance from cornea of focus point
is 16, 6 mm, an acceptable validation. Distance of second nodal point from cornea
is 0, 71789mm (inside lens). Thus Nature very nearly chose the first vantage
points, bearing in mind that the cornea protrudes a little from the spherical
shape.. So this is what happens in reality and here computations hold good,
there is nothing conjectural. Similarly, the compression of latitude moving toward
peripheral vision is now an assessed fact, and so is a radical depart from paraxial
behavior.
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4 The Approximate Pinhole Abstraction

Our arguments motivate a closer look to case 2 of Sec.2, which is equivalent to
pinhole camera with an hemispherical instead of planar back and the hole in
the center on the limiting plane of the hemisphere. It projects isometrically on
eye’s back each external hemisphere centered on our eye. Therefore this image
functionality provides an exact measure of angles (latitude and longitude and by
symmetries of the sphere, any other angle with vertex on the pinhole as well).

This means that at a given distance from the eye, thus on a hemisphere in
front of it, objects have an apparent size proportional to their angular dimension
and given the size of an object its apparent size is inversely proportional to the
distance from the eye over the whole visual field, approximately 90 degrees in
each direction. Gauss theorem prevents this to be true for any device that collect
the image on a plane.

A geodesic of a sphere is a great circle. Geodesics are the equivalent of straight
lines in Euclidean world. A geodesic segment joining two points is the shortest
path between the two points. However, there is no more the familiar Euclidean
parallelism concept. To visualize this fact think of meridians, and notice that
their distance varies and that, eventually, they intersect.

Not only geodesic segments of hemispheres in front of the eye, but also straight
segments are transformed into segments of geodesic in the aerial image. The proof
is obvious. It suffices to say that in our pinhole model the three points given by
the extreme of a segment and the pinhole itself define a plane that intersect
the spherical back in a geodesic line. This is true for any segment, there are
no constraints for its endpoints (unless, of course, the segment lies on a ray
emanating from the pinhole).

So can we distinguish a external segment from a geodesic with the same
extremes? Ideally not, but in practice it suffices a minimal additional landmark.
Suppose now we graduate both the geodesic and the segment in equal parts.
Then because angles are measured exactly, and because the function arcsin is
not linear we will see the two graduations differ from each other. This can give
us cues of what is straight and what is not.

But this is by no means the only cue. Just to give an example let’s add some
illumination by direct light with parallel rays (e.g. sunlight) . It goes alone that
the intensity of reflected light is uniform in the case of a linear stick but not
in the case of a curved one. And we can also judge about orientation in the
space looking at the way the two objects reflect the light. Actually, when the
endpoint of a segment are not on the same hemisphere, length depends both on
angular coordinates and distance of endpoints, and hence it is more difficult for
the brain.to estimate it.

To illustrate another significant property of our spherical vision, suppose we
look at a building in front of us, at certain distance with a regular rectangular
face. Because each of the sides defines an external segment, it follows that in
the aerial image we obtain a geodesic trapezoid. Incidentally, this shows that
perspective, of which artists, architects and photographers are so fond of, is to a
large extent an esthetic abstraction, without a rigorous foundation.
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5 Sensors’ Pattern

It is all well-known that there is an approximate rotational symmetry in the
layout of the sensors ([9], [8]), with density degrading with latitude (almost
independently from longitude, but not exactly so) and there are cones at the
fovea, cones and roads outside. Also Nature has adopted essentially an hexagonal
tessellation to position the sensors. All this is very much in contrast with current
digital technology.

In this respect two observations are natural. The first regards density of pack-
ing of the sensor. This relates to the issue of kissing spheres in geometry. The
tip of the cones in two dimension is roughly circular. From the point of view of
efficient packing on a plane Gauss proved that the density of the hexagonal lay-
out is π/

√
12 which corresponds to 90,6899682% whereas the Cartesian packing

has density π/4 which corresponds to 78,539163%. In 1940 László Fejes Tóth
proved that this pattern achieves the maximum of possible densities. So Nature
maximized sensor’s density.

Certainly this 12% plus was appealing, but is it the only explanation and and
is it possible to realize the hexagonal packing on a spherical surface? A simple
computation shows that hexagonal kissing spheres pattern is disrupted on the
surface of a sphere: one of the six spheres has to pop out. This suggests the form
of a cone to make the pattern consistent with the spherical layout constraint. In
the image of [8] the cones are so tightly packed that the contours adapt to each
other and actually resemble a hexagonal tiling.

Next, if look at directions of maximal resolution, we see that we have a direc-
tion of maximum resolution each 60 degrees in the hexagonal layout. By contrast
we have a direction of maximal resolution each 90 degrees in the square layout.
There are no other regular tessellations available and a different choice would
have inflicted a serious damage to the species. Again Nature optimized and gave
us the maximum number of directions for best recognizing details. This is an-
other fundamental explanation of the hexagonal tessellation.

Outside the fovea the cones are more distantiated and the gap is filled with
rods. That pattern is more disordered but still legible in terms of hexagons
with the contours of the rods even more deformed to adapt to the pattern. The
different form and structure (rods vs cones) is known to be connected to the
different physiology of the two sensors in terms wavelength and sensitivity.

6 Concluding Remarks

First we try to summarize some crucial points.
There is no way to circumvent Gauss Egregium Theorem. Nature abided to

it and banned planes.
Nature chose a variable metric on latitude (along with variable sensor density),

but still leaving plenty of room for the brain to derive an isometry of external
hemispheres to the internal hemispherical back. Incidentally, this means that
we are able instantly to guess how far is an already known object over the
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whole visual field without the need of turning the eyes or the head. This is very
favorable capability for our species.

We hope that our discussion shows that the time is ripe to start thinking
to spheres instead of planes when we deal with visual world. There is indeed
sure evidence that bars any possibility of reasoning in terms of planes and of
Euclidean geometry.

Regarding technology we have first to ask ourselves if the idea of spherical
vision have already occurred and in what sense. Here we have to cite [5], who
has developed and implemented full surround display technology. Although this
line of research is highly appreciated it does not match what we proposed here.

To avoid that Gauss Egregium Theorem undermine a simulation of a spher-
ical visual world with a consequent impression of unrealism by our brain, it
is necessary comply to the isometry of Sec.4, in each and every block of the
implementation, from the taking picture phase all the way to the display phase.

The digital revolution may help in this respect. A curved sensor device, almost
unthinkable with film, might be a conceivable design goal in digital technology.
Similarly, the development of curved digital displays is needed. We believe that
it not as crucial to surround the viewer with a display (as in [5]), but rather, to
give to our visual system an image true to actual spherical external world. From
this standpoint ,we think of a common shape for the sensor and the display given
by a spherical rectangle, (intersection of orthogonal lunes - of course radiuses are
different, but angular dimensions are the same in sensors and displays). This kind
of display device requires a certain more restricted optimal viewing distance,
because the viewer must be approximately at the center of curvature of the
device. However, and even better, we may also conceive the display as a projector
which transduces the image from a panel (or three in colors separation) of the
above spherical form to a screen of the same form. This may give more freedom
on the size of the screen yielding more near-optimal viewing positions. As to the
taking and projecting lenses, they must be designed to have the matching focus
field curvature imposed by the adopted spherical rectangle. What is today an
optical aberration, will become a design goal of tomorrow technology!

As two the layout of sensor, it is obvious that the optimum way to go is
to adopt the hexagonal pattern (again both in taking picture devices and in
screens). It looks like that this too has never been considered so far by technology
(most sensor have a rectangular layout with an exception of the strange octagonal
layout of a certain well-known brand).

We cannot conclude without a brief mention of Cinerama. Its inventor Fred
Waller was convinced that we have in some sense a spherical vision and, conse-
quently, of the importance of peripheral vision. He developed a three cameras
movie picture system (three taking cameras and three projectors with accompa-
nying five channels audio). Thus the surface was made up by three angled plane
rectangles so that the horizontal covering angle was 146 degrees. This surface is
isomorphic to the plane. The same is true even for a portion of cylinder. Thus
neither of this solutions goes in the direction indicated here. They do not pass
the barrier of Gauss Egregium Theorem.
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And yet the visual experience was pleasant because it gratified peripheral
vision at an approximately constant distance from the viewer. Marketing al-
most immediately killed Cinerama substituting it with the dreadful anamorphic
technology, arguing that the public would not have noticed the difference. Per-
sonally I noticed and I was very disappointed (I was a child at the time of these
events). Incidentally, Waller also invented other devices like the Vitarama gun-
nery trainer that used eleven 16mm cameras and projected on the surface of a
quarter of sphere (half dome).

A final comment on oil painting, that, albeit actuated by an human hand, is
actually a sort of technology. Up to the nineteenth century artists refined the
study of image and visual perception, and in that century they paid a more
careful attention to peripheral vision, widening angles of view. An example is
Jaques Tissot who was a master in illuding the spectator to be part of the
scene. Also it might be little known that the idea of multiple directions of view
was pioneered by a forgotten impressionist Gustave Caillebotte. It has been
established (see [6]) that he used to combine multiple directions of view, in
today’s terms, multiple cameras in panoramic vision. About a century before
Waller, but, unfortunately, still on a planar canvas.
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Abstract. The primary visual cortex (area V1) encodes visual attributes such as 
direction of motion, orientation, and position through the activity of populations 
of neurons. We asked how this activity is affected by different combinations of 
these attributes. We measured population responses by imaging voltage-
sensitive dye fluorescence in area V1 of anesthetized cats with dye RH-1692 in 
response to stimuli that are both oriented and localized in space. We tested 
whether the resulting activation could be explained by a simple rule of 
combination that assumes the activation is a point-by-point multiplication of the 
map of orientation preference with a blurred prediction of the stimulus’ 
footprint in cortex derived from a map of retinotopy. This simple rule of 
combination provided good fits of the responses and implies that the effects of 
stimulus orientation and position on population responses are independent. 

Keywords: Visual Cortex, Retinotopy, Orientation. 

1   Introduction 

The visual cortex represents stimuli through the activity of neuronal populations, and 
is organized according to maps of selectivity. These maps of selectivity concern 
stimulus attributes such as position, orientation, and direction. It is of interest to know 
how these maps combine to determine the overall population response. 

This question has been recently investigated for the maps of orientation preference 
and direction preference. Basole et al. [1] showed that the population response to a 
moving, oriented stimulus can not be simply predicted based on selectivity for stimulus 
orientation and stimulus direction measured independently. Specifically, they showed 
that the population response to a set of drifting oriented bars was not simply the product 
of a map of orientation preference and a map of direction preference. 

This result could be explained, by a simple energy model of neuronal responses 
[2]. According to this model, neurons in visual cortex derive their selectivity from a 
receptive field that operates in space and time. The responses of such a receptive field 
depend jointly on stimulus orientation, direction, and speed, and thus the population 
response to stimuli that simultaneously vary in these stimulus properties will be a 
conflation of these joint dependencies.   

The energy model, however, makes a different prediction for the effects of 
changing stimulus position; in this case the energy model predicts that the population 
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response can be determined from independent combinations of a map of retinotopy 
and a map of orientation preference. Neurons in the primary visual cortex have 
relatively small receptive fields, so they perform computations over a finite, localized 
region.  Thus the model would predict that the response at a single location in the 
cortex to a localized, oriented stimulus should be predictable from independent 
measures of the retinotopic preference and orientation selectivity of that location. 
Specifically, it predicts that the response is the product of a function of orientation 
(determined by the map of orientation preference) and a function of position 
(determined by the map of retinotopy). We sought to evaluate this prediction of the 
model by measuring the population response of primary visual cortex to stimuli that 
are both oriented and localized in space. 

We imaged population responses in area V1 by staining the cortex with a voltage-
sensitive dye (VSD). VSD imaging delivers parallel recording from tens of square 
millimeters [3] with a resolution of ~100 μm in space (limited by light scatter in 
tissue) and few ms in time (limited by photon noise). This method targets the 
superficial layers , which provide the main output to the rest of the cortex [4]. The dye 
fluoresces in proportion to membrane potential and thus provides a measure of neural 
activity elicited by the stimulus in a population of cortical neurons. 

Stimuli that are both oriented and localized in space, such as oriented bars or 
gratings windowed by elongated apertures, will activate regions of cortex that are 
both broad and patchy [5]. The center of the activity will depend upon the retinotopic 
position of the stimulus and the patchiness of the activity will depend upon the 
stimulus orientation.  The width of the activated region, in turn, will depend upon the 
point spread function of the cortex.  That is, the width of the activated region depends 
on what the cortical representation of a single retinotopic location is.  Microelectrode 
studies suggest that the point spread function of cat primary visual cortex is 
approximately 2.6 mm [6].   

We consider whether it is possible to describe the broad but patchy activation of 
the cortex with a simple rule that combination.  The rule posits that, for any point on 
the cortex, the activation resulting from a localized, oriented stimulus should be 
simply predictable from maps of retinotopic and orientation preference, taking into 
account the point spread function of the cortex. 

2   Methods 

2.1   Physiology 

The methods described here are similar to those described in Benucci et al. . Young 
adult cats (2-4 Kg) were anesthetized first with Ketamine (22 mg/kg i/m) and Xylazine 
(1.1 mg/kg i/m) and then with Sodium Penthotal (0.5-2 mg/kg/hr i/v) and Fentanyl 
(typically 10 μg/kg/hr i/v), supplemented with inhalation of N2O (typically 70:30 with 
O2). A 1 cm craniotomy was performed over area V1 (usually area 18, occasionally 
area 17), centered on the midline. The eyes were treated with topical atropine and 
phenylephrine, and protected with contact lenses. A neuromuscular blocker was given 
to prevent eye movements (pancuronium bromide, 0.15 mg/kg/hr, i.v.). The animal was 
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artificially respirated, and received periodic doses of an antibiotic (Cephazolin, 20 
mg/kg IM, twice daily), of an anti-edematic steroid (Dexamethasone, 0.4 mg/kg daily), 
and of an anticholinergic agent (atropine sulfate, 0.05 mg/kg, i/m, daily). Fluid balance 
was maintained by intravenous infusion. The level of anesthesia was monitored through 
the EEG. Additional physiological parameters that were monitored include temperature, 
heart rate, end-tidal CO2, and lung pressure. Experiments typically lasted 48-72 hours. 
Procedures were approved by the Institutional Animal Care and Use Committee. 

2.2   Stimuli 

Stimuli were square gratings, presented monocularly on a CRT monitor (Sony Trinitron 
500PS, refresh rate 125 Hz, mean luminance 32 cd/m2), modulating sinusoidally in 
contrast. The dominant spatial frequency was 0.2-0.4 cpd, depending on the area 
imaged, and contrast was 50%. The windows were square (40x40 deg) for orientation 
experiments, and rectangular (typically 6X40 deg) for retinotopy experiments. Stimuli 
were preceded by ~2 s of uniform gray, typically lasted 1-2 s, and were presented in 
random order in blocks that were typically presented 10-20 times. 

To examine the effects of context on the response to localized stimuli we also 
presented small patches (2 degree square) of square wave grating whose contrast was 
reversed according to a binary m-sequence.  In one condition only a single patch was 
presented.  In a second condition the same patch (modulating with the same temporal 
sequence) was surrounded by other patches whose contrast reversed in a temporally 
uncorrelated fashion (specifically by using a time shifted version of the same m-
sequence [7]).  The response of the cortex was defined as the average VSD response 
following a contrast reversal in the center patch (regardless of whether it was 
presented alone or in the context of other patches). 

2.3   Imaging Method 

Methods for VSD imaging were described by Grinvald and collaborators [3, 8, 9]. We 
stained the cortex with the VSD RH-1692 and imaged its fluorescence in 15-30 mm2 of 
V1. The dye was circulated in a chamber over the cortex for 3 hours, and washed out 
with saline. We acquired images with a CMOS digital camera (1M60 Dalsa, Waterloo, 
Ontario), as part of the Imager 3001 setup (Optical Imaging Inc, Rehovot, Israel). 
Images were acquired at a frame rate of 110 Hz, with spatial resolution of 28 μm per 
pixel. Additional spatial filtering was performed offline (bandpass, 0.2-2.2 cycles/mm). 
Frame acquisition was synchronized with the respirator. Illumination from a 100 W 
halogen light was delivered through two optic fibers. The excitation filter was bandpass 
at 630 ± 10 nm, and the emission filter was highpass, with cutoff at 665 nm. 

2.4   Fourier Analysis 

The amplitude spectrum of each pixel was computed from their temporal traces. To 
compute a single Fourier component (for the current study the 2nd harmonic of the 
stimulating frequency) we usually multiplied the traces by the appropriate complex 



 Independent Encoding of Position and Orientation by Population Responses 33 

exponential. Maps of the amplitude of the complex response, as a function of stimulus and 
position and orientation, were used to evaluate the performance the model of retinotopy. 

2.5   Predictive Model 

The four parameters of the mapping function, and the one parameter of the point 
spread function (the standard deviation σ), were found by carrying out a forward 
prediction of the data and minimizing the deviation between prediction and 
measurement. 

The predictive model of responses was defined as follows. Consider a localized, 
oriented stimulus (Fig. 2A).  Let θ be the stimulus orientation, and let the position and 
shape of the stimulus be defined by the distribution of contrast C(w), which is 1 inside 
the rectangle and 0 outside. Step 1 is to compute the cortical representation of the 
stimulus locations (Fig. 2B,D): r1(z) = C(f-1(z)), where f is the retinotopy mapping.  
The result of the computation (Fig. 2E) is the “footprint” of the stimulus on cortex, 
assuming a point-to-point mapping between the stimulus and the cortical 
representation.  Step 2 is to blur by convolving with the point spread function  
(Fig. 2F), r2(z) = [r1*Gσ](z), with Gσ a Gaussian with standard deviation σ. The result 
of this computation (Fig. 2G) is a blurred “footprint” that takes into account that a 
single point on the stimulus is processed by a population of neurons.  Step 3 is to 
multiply pointwise the result by the map of orientation preference (Fig. 2H) r3(z) = 
r2(z)rθ(z), where rθ(z) is the response of pixel z to a full-field stimulus with orient-
ation θ. The result of this computation (Fig. 2I) is the model’s prediction of the 
cortical response to the stimulus. 

3   Results 

We have shown previously that VSD imaging in area V1 reflects the responses of 
complex cells, as opposed to simple cells, and that high-resolution functional maps 
can be obtained with stimuli that reverse in contrast sinusoidally . Complex cells 
respond to such a stimulus with an oscillation at twice the frequency of the reversal. 
These 2nd harmonic responses stand clear of the noise, and result in functional maps 
with high signal/noise ratios. Based upon these findings we used contrast reversing 
gratings, modulating sinusoidally at 5 Hz (and thus giving strong stimulus responses 
at 10 Hz), to obtain functional maps of orientation preference and retinotopy.  

To measure maps of orientation preference, we imaged the 2nd harmonic responses 
to large, oriented square-wave gratings (Fig. 1A-D, inset). Stimuli of different 
orientations elicited the profiles of activity typical of cat V1 , with orthogonal 
orientations yielding complementary maps (Fig. 1A-D). These profiles of activity 
could be combined to produce a map of orientation preference (Fig. 1E).  

To measure maps of retinotopy, we imaged the 2nd harmonic responses to square-
wave gratings windowed in narrow rectangular apertures, whose orientation was 
parallel to the orientation of the aperture (Fig. 1F-I, inset).  Changing the stimulus 
elevation from high to low caused the resulting activity to move from posterior to 
anterior (Fig. 1F-I). These profiles of activity could be combined (in conjunction with 
those obtained using stimuli at various horizontal positions, not shown) to produce a 
map of retinotopic preference (Fig. 1J). 
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Fig. 1. Maps of orientation and position preference obtained from 2nd harmonic responses (A-
D) Amplitude of the 2nd harmonic responses to standing gratings with different orientations, 
whose contrast reversed at 5 Hz. For graphical purposes, these maps were corrected by 
subtracting the average response to 8 orientations (“cocktail correction”), and ignoring negative 
responses. Experiment 50-2-3. (E) Map of orientation selectivity obtained from these responses 
(plus other 4 that are not shown).  Each line is an iso-orientation contour. (F-I)  For stimulus 
position, stimuli were gratings windowed in narrow rectangles. Cortical responses to stimuli of 
different position are shown.  As the stimulus moves downward on the CRT monitor the 
cortical response moves more anterior.  (J) Map of retinotopic preference.  Each solid line 
shows an iso-elevation contour and each dotted line shows an iso-azimuth contour.  
Experiments 67-2-1 and 67-2-2. 

The function underlying our maps of retinotopy is very simple. This mapping 
function relates a point in visual space to a point in cortex. It is linear and is specified 
by only 4 parameters: the two Cartesian coordinates of the area centralis in cortex, the 
angle of rotation, and the magnification factor. The function can be described most 
succinctly in the complex domain. It maps a point w = u+iv in the visual field to a 
point z = x+iy in cortex. This point is given by  

z = f(w) = exp(i ) w + z0,  (1) 

where ρ is the magnification factor (in mm/deg), φ in the rotation angle (in radians), 
and z0 = x0+iy0 are the cortical coordinates of the area centralis (the point w = 0).  

This simple mapping function has a number of limitations, but it suffices for the 
job at hand. The first limitation is that, because the mapping function is one-to-one, it 
is only appropriate when our window on the cortex views a single visual area (i.e., 
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area 17 or area 18, but not a region that spans the two).  This limitation is of minor 
concern, because our images mostly centered on one area. A second limitation of our 
mapping function is that it is linear, which is only appropriate for local regions of 
cortex over the full extent of V1 the magnification factor shows great variation  
[10, 11]. A more realistic logarithmic mapping function , however, was not found to 
improve our fits despite the additional parameters.  

We can use the model described above to test the prediction that the population 
response to a localized, oriented stimulus is determinable from independent measures 
(maps) of orientation and retinotopic preference.  If the population response is a 
conflation of stimulus orientation and position (i.e., the response depends on the 
specific combination of position and orientation), then the model will be a poor 
characterization of the population responses. This is because the model assumes that 
the population response can be determined from independent measures of position 
and orientation preference. 

A key factor influencing the response of the cortex to a focal stimulus is the point 
spread function of the cortex. This function describes the extent of cortex that is 
activated by a pointwise visual stimulus, and can be calculated from arguments based 
on the cortical magnification factor and receptive field size [12].  In cat V1, the width 
of the point spread function averages 2.6 mm, regardless of eccentricity [6].  

The structure of orientation preference maps is finer than the scale of the point 
spread function and thus a small oriented stimulus activates a region of cortex that is 
extended (because of the point spread function), but not uniform (because of the map 
of orientation preference, [5].  

Therefore the pattern of activity elicited by a localized, oriented stimulus must 
depend on the interplay of at least three factors, (1) the map of retinotopy; (2) the 
point spread function; and (3) the map of orientation preference. We investigated the 
rules of combination for these three factors.  Because our stimuli are both localized in 
space (they are framed by narrow windows) and oriented (the gratings are parallel to 
the window) they are well suited for addressing this interplay. We found that these 
stimuli activate regions that are patchy (Fig. 1C,D). The patchiness results from the 
functional organization of orientation preference. When the combined responses to 
horizontal bars are subtracted from the combined responses to vertical bars, the result 
is a clear map of (horizontal vs. vertical) orientation preference (Fig. 2H).  

We tested a simple rule of combination.  First, we predicted the representation of 
the envelope of our stimulus in cortex based on the map of retinotopy (Fig. 1J). The 
result is a tight region of activation with sharp borders (Fig. 2E). Second, we blurred 
this region of activation by convolving it with the point spread function that was 
modeled as a 2-dimensional Gaussian profile (Fig. 2F). The result is a broad region of 
activation with blurred borders (Fig. 2G). Finally, we multiplied this region of 
activation point by point with the map of preferred orientation, i.e. with the profile of 
activation expected for a large oriented stimulus (Fig. 2H). The final result is a broad 
but patchy activation (Fig. 2I). 

This rule of combination provided good fits of the responses. The maps of 
activation predicted by the model (Fig. 3C) resemble the actual responses (Fig. 3B). 
The model explained 78 % of the variance for the data in our example experiment, 
and 74 ± 8 % of the variance on average (s.d., n = 7). From the model fit we can 
estimate the point spread function of area V1.  The standard deviation of the  
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Fig. 2. Model of retinotopy (A) The gray square depicts the CRT monitor on which is presented 
a grating stimulus viewed through an elongated aperture. (B) The black region represents the 
projection of the imaged region of cortex on the CRT monitor. (C) A picture of the region of 
cortex being imaged using the voltage sensitive dye method. (D) The solid lines overlaid on the 
picture of imaged cortex correspond to iso-elevation contours and dotted lines correspond to 
iso-asimuth contours.  The white dot represents the Area Centralis. (E) The white region is the 
point-to-point mapping (or “footprint”) of the stimulus on the CRT monitor to the 
corresponding part of cortex. (F) the point spread function of the cortex (the region of cortex 
activated by a pointwise stimulus) is modeled as a two dimensional Gaussian.  (G) The result of 
convolving the point-spread function with the “footprint” of the stimulus shown in Figure 1E.  
(H) A map of the difference between the responses to vertical stimuli and horizontal stimuli 
(vertical preferring regions shown in white, horizontal preferring regions shown in black). (I) 
The prediction of the response to an oriented, localized stimulus is given by multiplying, point-
by-point, the map shown in G with the map of activation to a horizontal stimulus. 

2-dimensional Gaussian was 0.7 mm for the example experiment, and 1.1 ± 0.4 mm 
across experiments (s.d., n = 7). The overall width of the estimated point spread 
function (~2.2 mm at two standard deviations) is consistent with the value of ~2.6 mm 
estimated with electrodes [6]. 

We further validated the model, by testing its performance on a new data set.  This 
data set was not used to obtain the model’s parameters, but also consists of localized, 
oriented stimuli. We first obtained the model parameters from an experiment like the 
one described above (Fig. 1).  We then fixed the parameters at those values and asked 
whether the model could predict responses to a second experiment.  In this second 
experiment, we measured cortical responses to flashed elongated grating patches of 
various orientations and positions (Fig. 4A,D).  Responses to the new stimulus were 
patchy and extended (measured at the peak of the associated response), similar to 
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Fig. 3. (A) Stimuli are the same as Fig. 1, varying in vertical and horizontal position. (B) 
Amplitude of 2nd harmonic responses (similar to the data shown in Fig. 1F-I). Experiments 67-
2-1 and 67-2-2. (C) Predictions of the model for the amplitude of 2nd harmonic responses. Gray 
scale as in B . 

those observed in Figure 3 (Fig. 4B,C)  This experiment included gratings presented 
not only in horizontal and vertical windows (Fig. 4A), but also in diagonal windows 
(Fig. 4B). Reassuringly, the predictions of the model resembled the actual data in all 
stimulus conditions (Figure 4c,f), including diagonal stimulus conditions that were 
not used to determine the parameters of model that describe the mapping function. 

4   Discussion 

It has long been clear that the profile of activation elicited in V1 by a stimulus that is 
localized and oriented depends on the map of retinotopy, on the point spread function, 
and on the map of orientation preference [6, 12]. It was not known, however, how 
these factors interact to yield the response to a given visual stimulus. 

We described a simple rule of interaction that we found to be highly effective  
(Fig. 2). This rule involves three steps, each of which can be interpreted in terms of 
anatomical connections and physiological mechanisms. We can think of the map of 
retinotopy as a map of projections from the visual field (through the lateral geniculate 
nucleus) to the cortex. The projection, however, is not from one point to another 
point, but rather from one point to a whole cloud of points: the center of the cloud is 
specified by the mapping function (step 1, Fig. 2D), and the width of the cloud is 
specified by the point spread function (step 2, Fig. 2F). A stimulus of a given 
orientation, in turn, will not excite all points in cortex, but only those whose preferred 
orientation matches the stimulus (step 3, Fig. 2H). This could be because the cloud of 
connections is patchy [13], or because V1 neurons do not integrate inputs from 
regions of the visual field that are inconsistent with their orientation selectivity [14].  
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Fig. 4. Application of the retinotopy model to a novel stimulus. (A) Horizontal and vertical 
gratings were flashed on the CRT monitor (B).  The responses to the flashed grating (measured 
at the peak of the flash response).  (C) The prediction of the model, whose parameters were 
determined from a separate experiment like the one shown in Fig. 1. (D) Oblique gratings were 
also flashed on the CRT monitor. (E) The responses to the oblique gratings (also measured at 
the peak of the flash response). (F)  The prediction of the model to the oblique stimuli.  Note 
that oblique stimuli are novel for the model. Experiment 70-3-8. 

The success of pointwise multiplication indicates that, for each pixel, the 
selectivity for stimulus position was independent of stimulus orientation and the 
selectivity for stimulus orientation was independent of stimulus position.  

This independence in the effects of two stimulus attributes may seem to contradict 
the conflation of maps that has been recently reported [1]. The two results, however, 
are complementary, and both follow from the widely accepted model of V1 selectivity 
based on local spatiotemporal receptive fields. Basole et al. [1] imaged the responses 
to an oriented stimulus that was also moving, and found that they could not simply 
predict those responses by multiplying the relevant maps: the one of orientation 
preference and the one of direction selectivity. This is precisely the result that would 
be expected if the selectivity of V1 neurons were due to a local spatiotemporal 
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receptive field, as in such a mechanism the effects of orientation and direction are not 
independent [2]. We, in turn, imaged responses to an oriented stimulus that was also 
localized in space, and found that we could indeed predict those responses by 
multiplying the relevant maps: the one of orientation preference and the one of 
retinotopy. Again, this is the result that might arguably be expected if selectivity of 
V1 neurons were due to a local spatiotemporal receptive field: changing stimulus 
position would scale the responses of the receptive field with little effect on its 
selectivity for orientation.  

One open question concerns the degree to which the maps of orientation preference 
and retinotopy might influence or distort the other, perhaps in the interest of coverage 
[12, 15, 16]. An early study reported a strong dependence between the two maps [17], 
but later studies argued otherwise [5, 18], and recent anatomical results suggest that 
the map of retinotopy is in fact remarkably free from local distortions [19, 20]. Our 
methods lack the spatial resolution to address this question; we hope it will be put to 
rest through two-photon microscopy . 

4.1   Limitations of the Model 

We have demonstrated that a simple model that assumes that the orientation and 
retinotopic preferences of a single location on the cortex are independent does a good 
job of describing the VSD response of the cortex to a localized, oriented stimulus.  
The model has limitations in its current form.  The model assumes a linear 
transformation from degrees of visual angle to millimeters of cortex.  As we have 
noted above, such a transformation is inconsistent with the wealth of anatomical and 
physiological data that shows that the transformation is nonlinear.  A more realistic 
model would take into account this approximately logarithmic transformation.  Under 
the conditions of the current study, however, the logarithmic version of the model did 
not notably improve the quality of the fits despite having an extra parameter.  
Presumably if our window on the cortex were larger, the logarithmic version of the 
model would outperform the linear version. 

In this experiment we did not systematically vary the contrast of the stimulus.  
Varying the contrast of the stimulus changes the magnitude of the VSD responses, but 
it might also change the extent of cortex that is activated. Examination of single units 
has provided evidence that higher contrast stimuli result in smaller receptive field 
sizes ([21]).  Consequently, we might expect that higher contrast stimuli might 
activate smaller regions of the cortex or, in the terms of our model, reduce the point 
spread function.  Alternatively, higher contrast stimuli might make the apparent 
region of activated cortex larger, as a larger portion of the cortex is activated above 
some baseline noise threshold.  Further investigation will be necessary to determine 
the effect of stimulus contrast on these measurements. 

Finally, we note that our localized, oriented stimuli are extremely simplified, and 
the model should be tested with more complex spatial configurations.  There is a great 
deal of physiological evidence to suggest that spatial context can impact the cortical 
response to an oriented stimulus [for a review see 22].  In fact, we have observed this 
impact using a white noise stimulus.  In Fig. 5A we show a focal patch of squarewave 
grating whose contrast polarity is reversed according to a pseudorandom sequence. 
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Fig. 5. The effect of spatial context on responses to a localized stimulus (A) The gray rectangle 
depicts the CRT monitor.  The stimulus is 2 deg square patch of oriented square wave grating 
whose contrast reverses in time according to an m-sequence.  The white dot represents the 
location of the Area Centralis. (B) The response of the cortex 100 ms after a contrast reversal of 
the patch.  Scale bar is 1 mm  (C) As in A except that the patch is surrounded by other contrast 
reversing patches whose locations are given by the grid of dotted lines. (D) The response of the 
cortex 100 ms after a contrast reversal of the center patch. (E) The time course of the response 
following a contrast reversal.  Thesolid line is the response (in the neighborhood of the pixel 
shown in B with the white dot) to the patch presented in isolation.  The dotted line is the 
response to the same patch presented in the context of additional patches. 

We measured the 1st order response of the cortex to that patch using standard event 
related methods.  The response 100 ms after a contrast reversal is shown in Fig. 5B.  
If we now present exactly the same patch, but while it is surrounded by 
spatiotemporally uncorrelated contrast modulating patches (Fig. 5C), we note that the 
response 100 ms after a contrast reversal (of the center patch) is greatly reduced (Fig. 
5D).  The time course of the 1st order response (following a contrast reversal) is 
shown in Fig. 5E; the solid curve shows the response when the patch is presented in 
isolation and the dotted curve shows the response when the patch is presented in the 
context of the surrounding patches. 

This suppression of the response we observe when the patch is presented in context 
may be related to the suppression observed with single unit methods [e.g, 22, 23].  In 
any case, the simple local model we have presented would fail to account for it.  
Additional studies that examine the effect of spatial configuration on the responses to 
localized, oriented stimuli may be able to address how and whether the principles of 
combining orientation and retinotopic preference depend on the spatial context in 
which stimuli are shown. 
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Abstract. Neurophysiological investigations showed that attention influences 
neural responses in the visual cortex by modulating the amount of contextual 
interactions between cells. Attention acts as a gate that protects cells from 
lateral excitatory and inhibitory influences. A recurrent neural network based on 
dendritic inhibition is proposed to account for these findings. In the model, two 
types of inhibition are distinguished: dendritic and lateral inhibition. Dendritic 
inhibition regulates the amount of impact that surrounding cells may exert on a 
target cell via dendrites of excitatory neurons and dendrites of subpopulation of 
inhibitory neurons mediating lateral inhibition. Attention increases the amount 
of dendritic inhibition and prevents contextual interactions, while it has no 
effect on the target cell when there is no contextual input. Computer simulations 
showed that the proposed model reproduces the results of several studies about 
interaction between attention and horizontal connections in the visual cortex.   

Keywords: Attention; Contrast; Contour Integration; Visual Cortex; Dendritic 
Inhibition. 

1   Introduction 

Directing attention to an object in a receptive field of a cell in a visual cortex 
significantly alters its response. Earlier studies showed that cells in V4 and IT reduce 
firing rate if attention is shifted away from the preferred stimulus despite the fact that 
it is still present in a receptive field (reviewed in [13, 17]). The primary visual cortex 
can also be influenced by attention. Ito et al. [6,7] investigated how attention 
modulates excitatory contextual interactions in V1. They showed that attention 
operates as a gate that prevents excitatory influence from surrounding cells with 
collinear receptive fields. The cell’s activity reduces to the level where there are no 
contextual stimuli present in the visual field. Furthermore, perceptual learning has 
similar effect on firing rates as attention. That is, prolonged exposure to the same 
stimuli reduces the impact of collinear stimuli.   

Similar results have been obtained with inhibitory interactions in a V2 and V4. 
Reynolds et al. [14] measured and compared neural activity of the target cell in a case 
when there are no competing stimuli present in the visual field and when they are 
present. Activity is measured in two conditions: when attention is directed toward the 
target stimulus and when the attention is diverted away from the target stimulus. 



A Neural Model for Attentional Modulation of Lateral Interactions in the Visual Cortex 43 

When attention is diverted away from the preferred object of the target cell, its 
activity is reduced if competing stimulus is present. This effect is attributed to the 
inhibitory interactions between cells responsive to different stimuli. When attention is 
focused on a preferred object of the target cell, its activity increases to the level as if 
the preferred object is presented alone in the visual field. Therefore, attention isolates 
cells from surrounding inhibition [14].    

How attention interacts with horizontal (or lateral) connections in a visual cortex 
has been explicated in several neural models [4,9]. Grossberg and Raizada [4] 
proposed that attention influences the feedforward visual processing via top-down on-
centre off-surround pathway which enables enhancement of attended stimulus and 
suppression of unattended stimuli. Attention enters the processing stream at the stage 
before excitatory horizontal interactions take place and can not directly influence 
contour integration. Grossberg and Raizada [4] demonstrated that their model 
correctly simulates data of Reynolds et. al. [14]. Modulation is achieved by the 
attentional off-surround signals which reduce the feedforward inhibitory influences 
from the surrounding cells. However, their model is not able to simulate data of Ito, et 
al. [6,7] because the size of the attentional influence is restricted to the size of a 
receptive field. Therefore, attention could not reach contextual input that is outside of 
the receptive field and could not reduce its impact on the target cell. In a model of 
contour integration proposed by Li [9] excitatory and inhibitory pathways are 
combined in the same network. She suggested that attention could directly influence 
the stage at which lateral interactions occur, either through pyramidal cells or 
inhibitory interneurons. However, if attention directly influences the excitatory cells 
then its effects should be observed even in the case when there are no surrounding 
stimuli present in the stimuli. On the other hand, empirical data shows that attentional 
influence on the single stimulus presented alone is negligible [6,7]. If attention 
influences inhibitory cells, the amount of influence should be precisely balanced with 
lateral excitation in order to achieve proper reduction in contour integration. 

The aim of the present paper is to show how dendritic inhibition might contribute 
to the contour integration and how attentional signals delivered by dendritic inhibition 
prevent excitatory contextual interactions. The model also needs to be consistent with 
biased competition account of the role of attention in modulating the inhibitory 
contextual interactions in the striate and the extrastriate visual cortex.   

2   Model Description 

In order to provide a unified account of attentional modulations in excitatory and 
inhibitory interactions, we consider a simple recurrent network of linear-threshold 
neurons with dendrites as special computational units. In the model, two types of 
inhibitory interneurons are distinguished (Fig 1). One type receives excitation from 
non-collinear neighbouring pyramidal cells and delivers lateral inhibition to the target 
pyramidal cell. This is equivalent to the classical lateral inhibition used in other 
models of cortical computation [4,9]. The second type of inhibitory interneuron 
mediates dendritic inhibition from the target cell to its dendrites. In this way dendritic 
inhibition controls the amount of excitation which the target cell receives from the 
neighbouring cells with collinear receptive fields (Fig 1a). Such control allows 



44 M. Šetić and D. Domijan 

excitatory cells to mutually reinforce each other but prevents unbounded growth of 
their activity. The same interneuron also delivers inhibition to inhibitory pathway 
from non-collinear pyramidal cells to lateral inhibitory interneuron (Fig 1b). We 
assume that attention or top-down signals exert their influence on recurrent activity by 
contacting the inhibitory interneuron that mediates dendritic inhibition. Therefore, the 
attentional signal directly enters into recurrent communication between cortical cells. 
This is in contrast with Reynolds’ and Desimone’s [14] implementation of the biased 
competition model where attention influences feedforward signals from the previous 
network layer. Also, the present approach differs from Spratling’s and Johnson’s [16] 
feedback model of attention based on dendritic computation. Here, attention excites a 
specific subset of inhibitory interneurons which controls the amount of recurrent 
communication between cells. Spratling and Johnson [16] do not distinguish between 
these inhibitory subpopulations which prevents their model to simulate attentional 
influence on contour integration. 

 

 
Fig. 1. A model of a cortical circuit for attentional modulations of the excitatory and the inhibitory 
contextual interactions. Open circles are the excitatory cells and filled circles are the inhibitory. 
Lines with T endings are dendrites which independently integrate input signals. A) Excitatory 
components of the model. B) Inhibitory components of the model. 

The basic architecture of the network is depicted in Figure 1. Formally, the model 
is described with a set of nonlinear differential equations. The activity level of the 
excitatory target cell, xiq, at spatial position i; with preferred orientation θ; and its 
corresponding inhibitory interneuron, yiq, is given by  
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The terms –Axiq and –Ayiq denote passive activity decay which forces cell’s activity 
to a resting state if there is no external input. It is assumed that the resting potential is 
zero. Eqn (3) describes rectification, which is necessary in a biologically plausible 
model, because it prevents excitatory connection from becoming inhibitory and the 
vice versa. Iiq, is an input which represents a classical receptive field of the cell with 
preferred orientation, q. It influences the target cell separately from recurrent signals 
as in the model of Spratling and Johnson [16]. In order to simplify the model, the 
inhibitory interneuron that mediates lateral inhibition is not explicitly represented by a 
separate differential equation; rather, it is included in the inhibitory term of eqn (1). 
We did not model a detailed structure of contextual connections between cells in the 
primary visual cortex [4,9]. We simplify the model by assuming that the neighbouring 
cells with similar orientation selectivity will excite each other. On the other hand, the 
neighbouring cells responsive to perpendicular line orientation, q’, will inhibit each 
other. Only the nearest neighbours are used, so j=i+1 or j=i-1 for excitatory and 
inhibitory interactions. Function f() represent the output signal from the target cell to 
the inhibitory interneuron, and the recurrent excitatory and the inhibitory output from 
neighbouring cells, respectively. Function f() is assumed to be linear above the 
threshold. The inhibitory interneuron, yiq, receives input from the corresponding 
excitatory cell, xiq, and projects axons to the dendrites of the excitatory cells and 
dendrites of the inhibitory interneurons which mediates lateral inhibition. It also 
receives an excitatory projection from higher visual centres which serves as a source 
of attentional signals, TDiq. Term, zi, describes the strength of synaptic contact 
between the excitatory cell and the inhibitory cell mediating dendritic inhibition. 
Synaptic weights for connections between excitatory cells, wjiq, and synaptic weights 
for lateral inhibition, wkiq, are assumed to be of unit strength. However, this 
simplification does not reduce the generality of the model because parametric 
simulations reveal that the model behaviour is not altered by changes in the strength 
of excitatory connections.  The same is also true for inhibitory weights.  

3   Computer Simulations 

Model behaviour is assessed through numerical integration of differential equations 
using the Runge-Kutta method. Model parameters were set to: A=1, zi=.5, and Iiq=1 if 
stimulus is present in the cell’s receptive field or Iiq=0 if stimulus is absent. First, we 
showed that attention prevents collinear contextual facilitation. Therefore, we set 
wjiq=1 and wkiq=0 in order to focus on excitatory lateral connections and ignore the 
lateral inibition. Figure 2 shows how excitatory horizontal connections enhance the 
activity of the target cell in the absence of the top-down attentional signal. Adding the 
collinear line segment induces mutual excitation among cortical cells tuned to 
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appropriate line orientation. Without dendritic inhibition recurrent excitation will 
drive the cells to saturation. Dendritic inhibition allows excitatory cells to remain 
sensitive to the amplitude of the input or to achieve analogue sensitivity. Therefore, 
dendritic inhibition has a functional role in controlling the recurrent excitation and it 
was not introduced in the model just to simulate attentional influences per se. 

 

 

Fig. 2. Modelling the influence of attention on the recurrent excitatory interactions. 1 - attention 
is directed away from the target cell. 2 – attention is directed on the target cell. Black bars – 
target stimulus is presented alone. White bars – collinear contour segment is present. Adding 
collinear contextual input increases the target cell’s response but only if the attention is 
distributed or diverted away from the location of the target cell. When attention is directed to 
the location of the target cell, collinear stimuli are not able to influence its activity. 

 
Here, it is assumed that the distributed attention can be represented by very weak 

signals that are equally distributed to all cells in a network. Therefore, they do not 
contribute much to the operation of the model and these signals were ignored (i.e., 
TDiq=0). When attention is distributed or when attention is directed away from collinear 
contour segments, contour integration occurs (Fig 2, left white bar). When attention is 
focused on a target cell, the top-down signal is delivered to its inhibitory interneuron, 
TDiq=2. Top-down or attentional signal distributes inhibition to all dendrites to which 
the inhibitory interneuron is connected. In this way, the top-down signal closes the gates 
between the target cell and its collinear neighbours (Fig 2, right white bar). Effectively, 
the target cell is isolated from lateral influences and only the feedforward signal can 
reach it because the inhibitory interneuron does not have connection with the input 
pathway. Therefore, the cell’s activity will converge to the activity value as is the case 
when the contour segment is presented alone (Fig 2, black bars). 

The model is also tested with inhibitory interactions (Fig 3). In this case, model 
parameters were set as follows: A=1, zi=1, wjiq=0 and wkiq=1. When the target 
stimulus is placed near non-collinear stimulus, mutual inhibition results in reduction 
of activity for the corresponding cells if attention is directed elsewhere (TDiq=0). But 
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when attention is focused on the target stimulus (TDiq=.3), dendritic inhibition 
prevents lateral inhibition from neighbouring cells and the target cells’ activity is 
restored to the value where there is no contextual input present. The model is also 
consistent with psychophysical study of the role of attention with regard to contrast 
detection when inhibitory surrounding stimuli are present. Zenger et al. [18] showed 
that attention exerts its influence only when the target stimulus has a lower contrast 
compared to the surrounding stimuli. In that case, the detection threshold is 
significantly reduced. When the target stimulus has a higher contrast compared to the 
surrounding, attention has no influence on the threshold for target detection. In the 
model this is the consequence of the protective role of dendritic inhibition. If target 
stimulus has a higher contrast than surrounding stimuli, the corresponding cell will 
protect itself from the surrounding inhibition even if attention is not directed to it. It 
will simply override recurrent inhibition arriving from the surrounding. When target 
stimulus has a low contrast, attention will help in reducing the inhibitory impact from 
the surrounding. Here, we simply assumed that the threshold for target detection is 
inversely proportional to the strength of the neural activity. Therefore, the cell with 
stronger activity level will be easier to detect. 

 

 

Fig. 3. Modelling the influence of attention on the recurrent inhibitory interactions. 1- attention 
is directed away from the target cell. 2 – attention is directed on the target cell. Black bars – 
target stimulus is presented alone. White bars – competing surround stimulus is present. 
Surround stimulus may exert its inhibitory influence only if attention is directed away from the 
target stimulus. 

 
Furthermore, we checked how attention changes the contrast sensitivity function 

(CSF) of the simulated cells (Fig 4). In the empirical studies two types of attentional 
influences were observed. In the study of McAdams and Maunsell [12], attention 
multiplicatively increases the cell’s response by a constant gain factor. Therefore, the 
cell’s saturation point is effectively increased. On the other hand, in the studies of 
Reynolds et al. [15] it was shown that attention shifts the contrast response function 
leftward. This means that attention increases the stimulus’ effective contrast. Attention 
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exerts the strongest effect on the mid-level contrast. On the other hand, when low and 
high, the contrast effect of attention is minimal. This is indicated by the fact that the 
cell’s saturation point remains on the same level with or without attention [17].  

 

 
 

Fig. 4. Modelling the influence of attention on the contrast sensitivity function. Graphs show 
activity of the target cell when attention is directed away (TDiq=0, solid line) and when 
attention is directed to the target cell (TDiq=.3, dashed line). Surround stimulus had fixed 
intensity at: A) I=.6, B) I=.8, C) I=1, D) I=1 with zi=.5. In A, B and C the model behaves 
according to the contrast gain model. In D we simulated the response gain as a mechanism for 
attentional influence on CSF. 

 
We simulated the contrast response function by the systematic variation in input 

amplitude from 0 to 1 in steps of .1. In order to approximate the contrast response of 
real neurons better, we applied the sigmoid function of the form c(I) = In / (.01+In) 
where n=4. Sigmoid nonlinearity is applied to the input signal prior to reaching the 
target excitatory cell. In this way we simulate nonlinearity present in the visual 
system. The input amplitude of the surround cell was kept constant at I= .6 or I=.8 or 
I=1 during systematic changes of the input amplitude for the target cell. As can be 
seen from the Fig 4, both type of attentional influence can be observed in the 
proposed model with a small change in a single network parameter. When, zi=.5 
model behaves consistently with the observation of McAdams and Maunsell [12]  
(Fig 4d). On the other hand, when zi=1 the model behaves according to the contrast 
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gain response (Fig 4abc). Reynolds et al. [15] argued that discrepant results between 
these studies may be the consequence of the difference in methodology because 
McAdams and Maunsell [12] may have not utilised the full range of stimulus contrast. 
Our results show that the same network may exhibit the response gain or the contrast 
gain depending on the strength of synaptic connection between the excitatory cell and 
its corresponding inhibitory interneuron which mediates dendritic inhibition. 
Therefore, it may not be justified to make such a strong distinction between the 
response gain and the contrast gain when discussing potential mechanisms for 
attentional modulation [17].       

4   Discussion 

Empirical studies using single-unit recordings from the primate visual cortex provide 
a rich set of data for modelling attentional influences on neural activity [13,17]. An 
important observation was that attention does not influence the cell’s activity directly 
because there is small or even non existent change in the neural activity when the 
cell’s preferred stimulus is the only object in the visual field. Stronger attentional 
modulation is observed when there are more competing stimuli present in the input 
pattern. The introduction of a new pattern in the surround space reduces the cell’s 
response to its preferred stimulus. Reduction is possibly due to the lateral inhibition 
from the neighbouring cells. However, directing the attention to the cell’s preferred 
stimulus increases its response close to the value as when the preferred stimulus is 
presented alone. Therefore, focused attention has a protective effect for the cell which 
is responsive to the attended object. Attention simply prevents inhibitory influences 
from the surrounding patterns.  

Similar results were obtained with excitatory interactions [6,7]. It is known that in 
the primary visual cortex cells are particularly sensitive to the oriented edge or line 
elements. When several such segments are aligned to form an extended contour, the 
cells with preferred orientation show a strong increase in activity [3,8,9]. Therefore, 
placing a collinear contour segment in a cell’s surrounding, facilitates the cell’s 
response. Facilitation occurs despite the fact that surrounding segment can not 
activate that cell in isolation because the surrounding segment is outside of the cell’s 
classical receptive field. The collinear contour segment also decreases the threshold 
for detecting the target stimulus in psychophysical investigation. These effects are 
assumed to occur due to the long-range horizontal excitatory connections [6-9]. When 
attention is drawn to one oriented segment, the influence of surrounding segments is 
almost completely abolished. Later studies confirmed that such effect could not be 
attributed to the feedback from higher visual centres but it is a consequence of the 
modulation of horizontal excitatory connections. 

The common pattern emerging from these studies is that attention acts on horizontal 
(or recurrent) connections between the cells tuned to different stimuli and modulates the 
amount of interaction between them. Several models explain how attention modulates 
inhibitory interactions [1,14,16] but it is not clear how they can be generalized to 
modulation of the excitatory connections as observed in the studies of Ito et al. [6,7]. 
Grossberg and Raizada [4] were the first to provide a comprehensive account of 
interaction between attention and spatial integration. However, their model is not able to 
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accommodate the important result of Ito et al. [6,7], which shows that attention prevents 
collinear contour integration in a similar manner as it biases competitive interactions. The 
reason for this failure is the fact that attention in its model acts on a different network 
layer and it has no direct access to the stage where collinear contour integration occurs. 
Indirect modulation is also difficult to achieve because it would require complete 
removal of the collinear stimulus. We suggest that attention exerts its influence by 
contacting a special group of inhibitory interneurons which make contacts with dendrites 
of the excitatory and the inhibitory cells.  

An important feature of the new model is the hypothesis that dendrites are 
independent, active elements of cortical information processing [5,11]. Dendrites are 
incorporated in the model as a set of independent linear threshold units whose output is 
integrated by a target cell. Recently, several empirical studies demonstrated an active role 
of dendrites in the signal transmission between the cortical cells [5,11]. For instance, Liu 
[10] showed that inhibitory synapse has an effect on the excitatory synaptic input only if 
it is localised on the same dendritic branch as the excitatory synapse and if they are 
activated simultaneously. Dendritic inhibition was previously used in a feedback model 
of attention proposed by Spratling and Johnson [16]. Their model was able to simulate a 
wide variety of attentional influences on competitive neural activity. However, it could 
not be extended to the modelling of contour integration because the same problem 
emerges as in the model of Grossberg and Raizada [4]. That is, attention does not 
influence the excitatory cells responsible for contour integration directly and the only 
way to reduce the impact of collinear contextual input is to completely remove it from 
the neural representation. In conclusion, dendritic inhibition is a plausible 
neurophysiological mechanism that may subserve attentional modulation of contextual 
interactions in the visual cortex. We showed that a model based on dendritic computation 
provides a unified account of how attention may influence excitatory and inhibitory 
horizontal connections in the visual cortex. However, it should be mentioned that a recent 
single-unit study suggests that attention might influence the oscillatory neural activity by 
increasing or decreasing the amount of synchronization or desynchronization among cells 
[2]. It is not clear whether the synchronization of neural activity is a cause of firing rate 
modulations described in previous studies or is it a consequence of some other 
mechanism. Further investigations are needed to clarify this issue. Nevertheless, 
synchronization of neural activity is also governed by recurrent connections and it is 
possible that dendritic inhibition might modulate it depending on the attentional signals.   
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Abstract. The aim of this study was to determine the extent to which
the neural representation of faces in the visual cortex is viewpoint in-
variant. MEG was used to measure evoked responses to faces during an
adaptation paradigm. Using familiar and unfamiliar faces, we compared
the amplitude of the M170 response to repeated images of the same face
compared to images of different faces. We found a reduction in the M170
amplitude to repeated presentations of the same face image compared
to images of different faces when shown from the same viewpoint. To
establish if this adaptation to the identity of a face was invariant to
changes in viewpoint, we varied the viewing angle of the face within a
block. In order to exert strict control over the viewpoint from which the
face was viewed, we used 3D models recovered from single images using
shape-from-shading. This makes the study unique in its use of techniques
from machine vision in order to test human visual processes. We found
a reduction in response was no longer evident when images of the same
face were shown from different viewpoints. These results imply that the
face-selective M170 response either reflects an early stage of face process-
ing or that the computations underlying face recognition depend on a
viewpoint-dependent neuronal representation.

1 Introduction

Recognising faces in a visual scene is a simple, effortless process for most human
observers. However, the face of any individual can generate countless different
retinal images depending on the viewing conditions. The visual system must
take into account sources of variation caused by changes in viewpoint, but at the
same time be able to detect differences between faces. Models of face processing
propose that the earliest level of processing involves computing a view-dependent
representation. Information from this early stage of processing is compared to
view-invariant representations of familiar faces for recognition [1].

Functional imaging studies have also revealed a network of face-selective regions
in the occipital and temporal lobe that are thought to underlie our ability to per-
ceive and recognise faces [2]. Processing of facial identity is associated with inferior
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temporal lobe regions, such as the fusiform face area (FFA) [3]. These inferior tem-
poral lobe structures project to anterior temporal regions that contain semantic in-
formation associated with a particular facial identity [4]. A region posterior to this,
known as the inferior occipital cortex, or occipital face area (OFA) [5] is thought to
be implicated in an earlier structural encoding stage of face processing [6].

Event related potential (ERP) and Magnetoencephalography (MEG) studies
have also shown that faces and other objects can be distinguished by the pattern
of electrical activity across the occipitotemporal lobe [7]. For example, ERP
studies have shown a face-selective potential occurring between 140 and 200ms
after stimulus onset which appears twice as large for face stimuli compared to
a variety of other stimuli [8]. MEG studies have also revealed an early face-
selective potential, known as the M170, which has been shown to correlate with
the successful recognition of a face [8].

The aim of this study is to use the technique of adaptation to ask whether
the M170 potential reflects an underlying representation of facial identity, and
whether this representation is invariant to changeable aspects of faces. The prin-
ciple underlying adaptation is that repetitive presentation of a stimulus results in
a decrease in the response of a neuronal population that is selective for that stim-
ulus [9]. The nature of the neural representation can be determined by varying
the stimulus. If the underlying neural representation is insensitive to a change
then the neural response will remain the same. Alternatively, if the neurons
are sensitive to this manipulation, the response will return to the initial level.
Although little is know about the effect of stimulus repetition on the M170 re-
sponse, a recent study has shown a reduction in the amplitude of the M170
following repetition of different face images when using rapid presentation rates
[10]. Recently, we reported that adaptation of the N170 potential to facial iden-
tity was sensitive to changes in the viewpoint of the image [11]. However, the
changes in viewpoint used in these studies were quite large (variations in subject
pose were of the order of 45) and only unfamiliar faces were used. It is possi-
ble, therefore, that viewpoint-invariant responses may be found when presenting
smaller changes in viewing angle (for example, variations of ¡10), or when show-
ing faces that are familiar to the observer. Our hypothesis is that, if the neural
representation underlying the M170 response is selective for the identity of a
face, we would predict a reduced response to repeated images of the same face.
We would also predict that this adaptation should be invariant to changes in the
viewpoint of the face and that this invariance should be found over a greater de-
gree of viewpoint change for familiar compared to unfamiliar faces. In contrast,
any recovery from adaptation when images of the same face are presented over
different viewpoints would suggest that the M170 reflects a viewpoint-specific
stage in face processing.

2 Methods

Eighteen subjects (9 females; mean age 23) participated in the study. All ob-
servers had normal or corrected-to-normal visual acuity. Fifteen subjects were
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right-handed. Written consent was obtained from all subjects. All imaging took
place at the York Neuroimaging Centre (YNiC).

2.1 Localiser Scan

In order to identify sensors that responded preferentially to images of faces,
subjects viewed greyscale images from different object categories: (1) unfamil-
iar faces; (2) familiar faces; (3) inanimate objects; (4) places (buildings, indoor
and natural landscapes) and (5) textures. Photographs of unfamiliar faces were
taken from a database of the Psychological Image Collection at Stirling (PICS:
http://pics.psych.stir.ac.uk), images of familiar faces were taken from the World
Wide Web. Images of inanimate objects, places and textures were obtained from
various sources including commercial clip-art collections (CorelDraw, Microsoft).
All images were projected onto a screen at a viewing distance of approximately
80cm and subtended a viewing angle of 9◦ × 9◦. Images were presented in a
series of stimulus blocks, with each block containing 25 images. Each image was
presented for a period of 400ms, and was followed by a blank screen containing
a fixation cross for 1100ms. In each stimulus block, five images from each object
category were randomly interleaved. A total of eight stimulus blocks were pre-
sented. Subjects were required to perform a target detection task, by pressing
a response button when they saw an image containing a small red dot. Target
trials were removed from the subsequent analysis. A resting period was inserted
in between each block, during which an equiluminant grey screen was presented
for 8 seconds.

2.2 Adaptation Scans

There were two adaptation scans, one consisting of unfamiliar faces (Fig. 1) and
another containing familiar faces (Fig. 2). The experimental procedure was iden-
tical for both scans. In each scan, stimulus blocks contained either 12 images of
the same face (same-identity) or 12 images of different faces (different-identity).
Stimulus blocks also varied in the degree of viewpoint change about the vertical
axis between images. Four different viewpoint change conditions were used: (1)
0◦ same viewpoint; (2) 2◦ change; (3) 4◦ change; (4) 8◦ change. Thus, there were
8 different stimulus conditions in each scan. Images in the same viewpoint condi-
tion were shown from a frontal viewpoint throughout the block. In the viewpoint
change conditions, the first face image in each block was always a frontal view;
this was followed by subsequent images rotation to the left or right of the pre-
ceding image (see Figs 1 and 2). Faces were rotated 3 increments to the left and
the right. For example, in the 2◦ change condition faces were shown over a range
of 12◦ (0◦, 2◦, 4◦, 6◦, 4◦, 2◦, 0◦, −2◦, −4◦, −6◦, −4◦, −2◦).

2.3 Synthesising Stimulus Images

Acquiring images of faces under strict variations in viewpoint is very difficult
to achieve with accuracy and repeatability. In the case of famous subjects, it
is infeasible. Hence, to generate the images of unfamiliar and familiar faces at
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(a) (b)

(c) (d)

Fig. 1. Examples of unfamiliar face images

(a) (b)

(c) (d)

Fig. 2. Examples of familiar face images

different viewpoints, we instead turn to a technique developed within the ma-
chine vision community and recover a 3-dimensional model of each face from a
single, frontal view using shape-from-shading. This technique exploits a statis-
tical model of facial shape to render the shape-from-shading problem tractable
[12]. By restricting the algorithm to a certain class of objects (namely faces), the
model provides a sufficiently powerful constraint to allow accurate reconstruc-
tions from a single image. The estimated 3-dimensional models can be rotated
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to yield realistic images of each face from different viewpoints (see Figs 1 and 2).
This makes our study particularly unique in its use of techniques from machine
vision to test human visual processes.

Each image was presented for 400ms followed by a 1100ms blank screen con-
taining a fixation cross. Each condition was repeated four times in a counterbal-
anced block-design, making a total of 32 stimulus blocks. Subjects were required
to perform a target detection task in which they were required to respond when
they saw an image containing a red dot. Target trials were removed from the sub-
sequent analysis. At the end of the experiment subjects were asked to name the
familiar faces that had been shown in the experimental scan. Stimulus blocks
were separated by periods of fixation when an equiluminant grey screen was
presented for 8 seconds.

2.4 MEG Analysis

MEG recordings were made using a 248-channel whole head system with su-
perconducting quantum interference device (SQUID) based first-order magne-
tometer sensors (Magnes 3600WH 4D-Neuroimaging MEG system at the YNiC,
University of York, UK). Magnetic brain activity was digitized continuously at
a sampling rate of 1017.25 Hz and was filtered with a 1-Hz high pass and 200-Hz
low pass cut-off. Average waveforms for each subject were computed using a 1
second epoch (200 ms before and 800 ms after stimulus onset). The average wave-
forms were further processed off-line using a 200ms pre-stimulus baseline cor-
rection and were high-pass filtered between 3- and 30-Hz. Artifact rejection was
performed to remove epochs that exceeded a predetermined amplitude threshold
(alpha = 0.05).

In the localiser scan, a contour plot was then used to locate the 10 largest
contiguous face-selective sensors. the peak amplitudes and peak latencies were
calculated for each condition in each hemisphere for each subject. Analysis of the
MEG amplitude in the viewpoint scans was then restricted to these face-selective
sensors of interest (SOIs). A multi-factorial ANOVA was used to determine the
main effects of identity (same, different) hemisphere (left, right), viewpoint (0,
2, 4, 8) and fame (familiar, unfamiliar). To assess whether the reduction in the
M170 amplitude was statistically significant in different conditions, we performed
a two-sample t-test on the peak amplitudes across subjects. Finally, we calculated
an adaptation index (AI) to quantify the reduction in the M170 amplitude during
the same image blocks compared to different image blocks: Response[same] -
Response[different].

3 Results - Localiser Scan

First, we determined which sensors showed selective responses to images of faces
compared to other categories of stimuli (Fig. 4). We located SOIs in occipitotem-
poral regions that had a significantly higher response to images of unfamiliar and
familiar faces than to non-face stimuli in each subject.
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(a) (b)

Fig. 3. (a) Average MEG waveform recorded for each category of object in the localiser
scan. Waveforms are shown in face-selective sensors in right hemisphere averaged across
all subjects. (b) Bar graph representing amplitude of the average peak M170 response
to each category across subjects. Error bars represent ±1 standard error.

Fig. 4. MEG shaded contour map of
one representative subject, showing
distribution of response to images of
unfamiliar faces, approximately 163
msecs after stimulus onset. Anterior
regions are to the top of the image.

18 subjects showed face-selective M170 re-
sponses in right hemisphere sensors, with 12
showing an additional left-hemisphere face-
selective M170. We then measured the peak
amplitude of the M170 in response to each
of the five categories shown in the localiser
scan (Figs 3(a) and 3(b)). A 2 way ANOVA
(Hemisphere × Category) revealed a highly
significant effect of category (F (4, 48) =
51.63, P < 10−17), no effect of hemisphere
(F (1, 12) = 1.65, P = 0.22), and no in-
teraction between hemisphere and category
(F (4, 48) = 0.73, P = 0.57). The mean am-
plitude response to unfamiliar faces in both
the right and left hemisphere was signifi-
cantly greater than objects RH: (t(17) = 8.79, P < 10−8); LH: (t(12) = 6.29, P <
0.0001); places RH: (t(17) = 10.44, P < 10−9); LH: (t(12)11.82, P < 10−7), and
textures RH: (t(17) = 7.68, P < 10−7); LH: (t(12) = 7.73, P < 0.0001). There
was no significant difference between the response to unfamiliar faces and fa-
miliar faces in either the right (t(17) = 0.25, P = 0.80), or left hemisphere
(t(12) = −0.06, P = 0.95). The mean amplitude to familiar faces in both hemi-
spheres was also significantly larger than objects RH: (t(17) = 9.30, P < 10−8);
LH: (t(12) = 11.29, P = 10−7), places RH: (t(17) = 11.58, P < 10−9); LH:
(t(12) = 7.99, P < 10−6), and textures RH: (t(17) = 8.72, P < 10−7); LH:
(t(12) = 5.53, P < 0.0001). The mean latency of the face-selective M170 was
155.6 ms in right hemisphere and 166.7 ms in left hemisphere. A 2 way ANOVA
of latency (Hemisphere × Category) revealed a significant effect of hemisphere
(F (4, 48) = 27.0, P > 0.001) with all categories showing a significantly earlier
potential in right hemisphere sensors than left hemisphere sensors. Response
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(a) (b)

(c) (d)

Fig. 5. Data points represent adaptation-index of M170 response (Same Identity -
Different Identity) averaged across all subjects in right hemisphere sensors of interest
for (a) unfamiliar faces and (c) familiar faces. Error bars represent ±1 standard error.
MEG waveforms of one representative subject showing responses to the same and
different identity images in the 0◦ (same viewpoint) condition for (b) unfamiliar and
(d) familiar faces.

data indicated no difference in the response times across different categories in
the target detection task (F (4, 68) = 0.65, P = 0.84).

4 Results - Adaptation Scans

A 4 way ANOVA 2×2×2×4 (Identity, Hemisphere, Familiarity, Viewpoint) found
no effect of identity, fame, hemisphere or viewpoint. However, there was a signif-
icant interaction between Hemisphere × Identity × View (F (3, 36) = 4.04, P <
0.05). Fig. 5 shows the response of the M170 in the right hemisphere to thedif-
ferent face conditions. A 3 way ANOVA (2 × 2 × 4) (Identity, Fame, Viewpoint)
revealed a significant effect of viewpoint (F (3, 51) = 4.33, P < 0.01), and a sig-
nificant interaction between viewpoint and identity (F (3, 51) = 4.00, P < 0.05),
in the right hemisphere. In the 0◦ (same viewpoint) condition, we found that
the peak M170 response to images of the same face was significantly lower
than the response to different faces in face-selective sensors for both unfamiliar
(t(17) = 3.57, P < 0.01) and familiar (t(17) = 2.25, P < 0.05) faces (see Fig. 5).
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(a) (b)

Fig. 6. Bar graphs representing the average peak M170 amplitude in the right hemi-
sphere across all subjects to (a) unfamiliar and (b) familiar faces with the same or
different identity. Error bars represent ±1 standard error.

We then measured the M170 response to the same and different unfamiliar faces
during the 2◦, 4◦ and 8◦ angle change conditions. The results showed no dif-
ference in the M170 response to images of the same face compared to differ-
ent faces at a rotation of 2◦ (unfamiliar, t(17) = −0.60, P = 0.53; familiar,
t(17) = −0.40, P = 0.69), 4◦ (unfamiliar, t(17) = −0.22, P = 0.82; familiar,
t(17) = −0.25, P = 0.80) or 8◦ (unfamiliar, t(17) = 0.35, P = 0.72; familiar,
t(17) = 0.62, P = 0.54) for either the unfamiliar or familiar conditions (Fig.
fig:fig5). We found no difference in the latencies of the target response across
the same and different conditions. No significant effects were found in the left
hemisphere.

5 Conclusions

The aim of this experiment was to determine the role of the M170 response
in face recognition. Specifically, we asked whether the M170 response: (1) is
involved in representing facial identity; (2) reflects a viewpoint-dependent or
a viewpoint-invariant representation of faces and (3) differs in its response to
familiar and unfamiliar faces. Using an adaptation paradigm, we found that
the M170 amplitude in the right hemisphere is significantly reduced during the
presentation of identical face images shown at the same viewpoint compared to
different face images shown at the same viewpoint. To determine whether the
neural representation underlying the M170 response was invariant to changes
in the face image, we varied the viewpoint of the images. We found that there
was no difference in the magnitude of the M170 response between the same or
different conditions when the viewpoint was varied. Furthermore, we found no
significant difference in the M170 response to familiar and unfamiliar faces.

These results are consistent with a recent ERP study, in which we showed
that a similar N170 response was elicited to the same and different faces when
they varied in viewing angle [11]. The present study goes beyond this by showing
that this viewpoint-dependent response is still evident for quite small changes
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in viewing angle. Clearly, this provides strong evidence for a view-dependent
representation. Although adaptation to the identity of a face shown in this study
is consistent with other ERP studies [13], the result contrasts with other reports
that have failed to find adaptation to faces [14]. One possible reason for this
discrepancy is likely to be related to the number of intervening stimuli between
repeated images and the time interval between prime and target. For example,
[15] only found effects of repeating the same view of an object when there were
no intervening stimuli. Our results using a continuous adaptation procedure in
which images are repeated in a block suggests that the number of repetitions may
also be important factor. This would fit with a previous fMRI study that reported
adaptation to objects and faces in the human ventral stream was dependent on
the number of repetitions of a stimulus [16].

We found no significant effect of familiarity in the M170 response to faces. This
is consistent with fMRI studies that have shown familiarity has little effect on
the response of face-selective regions [17]. However, these neuroimaging results
contrast with the fact that human subjects are very good at identifying familiar
faces (even from very low quality images), whereas performance in recognition
or matching of unfamiliar faces is poor [18].

A central question in the visual recognition of objects is whether this process
depends on a viewpoint-dependent or viewpoint-invariant neuronal representa-
tion. Models of face processing suggest that the initial stage of processing is based
on a view dependent structural representation and that further recognition of
facial identity is based on matching to a viewpoint invariant representation [1]. It
would appear, therefore, that the view-dependent nature of the M170 response
for familiar and unfamiliar faces could be taken as an indication of an early
stage in face processing. On the other hand, a number of behavioural studies
provide evidence that faces and other objects could be represented by a view-
dependent neural representation. In a previous fMRI study, we found that face-
selective regions within the inferior temporal lobe showed a reduced response
to repeated face images and that this adaptation was invariant to changes in
the size of the face, but was sensitive to changes in expression and viewpoint
[19]. These findings provide some support for the idea that faces may be rep-
resented in a view-dependent representation [20]. However, it remains to be es-
tablished if a view-invariant representation exists for familiar faces. The results
from this study suggest that this type of process must happen at a later stage of
processing.

In conclusion, we found that the M170 potential adapts to faces with the
same identity if they are shown from an identical viewpoint. However, there
was a recovery from adaptation when the viewpoint of the images was varied.
The view-dependent nature of the M170 response did not differ according to the
familiarity of a face. These results do not rule out the possibility that a view-
invariant neural representation may exist within the visual system analogous to
face recognition units [1].
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Abstract. Image understanding and image semantics processing have recently 
become an issue of critical importance in computer vision R&D. Biological 
vision has always considered them as an enigmatic mixture of perceptual and 
cognitive processing faculties. In its impetuous and rash development, computer 
vision without any hesitations has adopted this stance. I will argue that such a 
segregation of image processing faculties is wrong, both for the biological and 
the computer vision. My conjecture is that images contain only one sort of 
information – the perceptual (physical) information, which can be discovered in 
an image and elicited for further processing. Cognitive (semantic) information 
is not a part of image-conveyed information. It belongs to a human observer 
that acquires and interprets the image. Relying on a new definition of 
“information”, which can be derived from Kolmogorov’s complexity theory 
and Chaitin’s notion of algorithmic information, I propose a unifying 
framework for visual information processing, which explicitly accounts for 
perceptual and cognitive image processing peculiarities. I believe, it would 
provide better scaffolding for modeling visual information processing in human 
brain.  

1   Introduction 

This paper is a continuation of a discussion that I tried to initiate at the first BVAI 
2005 Symposium [1]. 

The explosive growth of visual information in our surroundings has raised an 
urgent demand for effective means for organizing and handling these immense 
volumes of information. Because humans are known to be very efficient in such tasks, 
it is not surprising that computer vision designers are trying again and again to get 
answers for their worrying problems among the solutions that Human Visual System 
has developed in course of millions of years of natural evolution. Near a half of our 
cerebral cortex is busy with processing visual information [2], but how it is actually 
done remains a puzzle and an enigma for many generations of thinkers, philosophers, 
and contemporary scientific researchers. 

Nevertheless, a working theory of human visual information processing has been 
established about twenty five years ago by the seminal works of David Marr [3], 
Anne Treisman [4], Irving Biederman [5], and a large group of their associates and 
followers. Since then it has become a classical theory, which dominates today in all 
farther developments in the field. The theory considers human visual information 
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processing as an interplay of two inversely directed processing streams. One is an 
unsupervised, bottom-up directed process of initial image information pieces 
discovery and localization.  The other is a supervised, top-down directed process, 
which conveys the rules and the knowledge that guide the linking and binding of 
these disjoint information pieces into perceptually meaningful image objects. 

In modern biological vision research this duality is referred to as perceptual and 
cognitive faculties of vision. In computer vision terminology, these are the low-level 
and high-level paths of visual information processing. Although Treisman’s theory [4] 
definitely positions itself as “A Feature-Integration Theory”, the difficulties in 
defining proper rules for this feature integration have impelled a growing divergence 
between perceptive and cognitive fields of image processing [6]. Obviously, that was 
a wrong and a counter-productive development, and human vision researchers were 
always aware of its harmful consequence [7]. For this reason, the so-called “binding 
problem” has been announced as a critical exploration goal, and massive research 
efforts have been directed to its resolution, [8]. Unfortunately, without any 
discernable success. 

In computer vision, the situation is even more bizarre. In fact, computer vision 
community is so busy with its everyday problems that there is no time to raise basic 
research ventures. Principal ideas (and their possible solutions) are usually borrowed 
from biological vision research. Therefore, following the trends in biological vision, 
the computer vision R&D for decades has been deeply involved in bottom-up pixel-
oriented image processing. Low-level image computations have become its prime and 
persistent goal, while the complicated issues of high-level processing were just 
neglected and disregarded. 

However, it is impossible to ignore them completely. It is generally acknowledged 
that any kind of image processing is unfeasible without incorporation into it the high-
level knowledge ingredients. For this reason, the whole history of computer-based 
image processing is an endless saga on attempts to seize the needed knowledge in any 
possible way. The oldest and the most common ploy is to capitalize on the expert 
domain knowledge and adapt it to each and every application case. It is not surprising, 
therefore, that the whole realm of image processing has been (and continues to be) 
fragmented (segmented) according to high-level knowledge competence of the 
experts in the corresponding domains. That is why we have today: medical imaging, 
aerospace imaging, infrared, biologic, underwater, geophysics, remote sensing, 
microscopy, radar, biomedical, X-ray, and so on “imagings”. 

The advent of the Internet, with huge volumes of visual information scattered over 
the web, has demolished the long-lasting custom of capitalizing on the expert 
knowledge. Image information content on the Web is unpredictable and diversified. It 
is useless to apply specific expert knowledge to a random set of distant images. To 
meet the challenge, the computer vision community has undertaken an enterprise to 
develop appropriate (so-called) Content-Based Image Retrieval (CBIR) technologies, 
[9], [10]. However, deprived of any reasonable sources of the desired high-level 
information, computer vision designers were forced to proceed in only one possible 
direction of trying to derive the high-level knowledge from the available low-level 
information pieces, [11], [12]. 

In doing so, computer vision designers have once again demonstrated their reliance 
on biological vision trends and fashions. In biological vision, a rank of theoretical and 
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experimental work has been done in order to support and to justify this above- 
mentioned tendency. Two ways of thinking could be distinguished in this regard: 
chaotic attractors modeling [13], [14], and saliency attention map modeling [15], [16]. 
We will not review these approaches in details. We will only note that both of them 
presume low-level bottom-up processing as the most proper way for high-level 
information recovery. Both are computationally expensive. Both definitely violate the 
basic assumption about the leading role of high-level knowledge in the low-level 
information processing. 

It will be a mistake to say that computer vision people are not aware of these 
discrepancies. On the contrary, they are well informed about what is going on in the 
field. However, they are trying to justify their attempts by promoting a concept of a 
“semantic gap”, an imaginary gap between low- and high-level image features.  They 
sincerely believe that they would be able to bridge it again some day, [17].    

It is worth to mention that all these developments (feature binding in biological 
vision and semantic gap bridging in computer vision) are evolving in atmosphere of 
total indifference to prior claims about high-level information superiority in the 
general course of visual information processing. Such indifference seems to stem 
from a very loose understanding about what is the concept of “information”, what is 
the right way to use it properly, and what information treatment options could arise 
from this understanding.  

2   Re-examining the Basic Assumptions  

Everyone, who is not deaf, knows that we live today in the Information Age, where 
information is an indispensable ingredient of our life. We consume it, create it, seek 
for it, transfer, exchange, hide, reveal, accumulate, and disseminate it – in one word: 
information is a remarkably important component of our life. But can someone 
explain me what we have in mind when the word “information” is uttered? My 
attempts (undertaken several years ago) to get my own answer for this question were 
so desperate that I was almost ready to accept the stance that information is an 
indefinable entity (like “space” and “time” in classical physics, e.g.). Fortunately, at 
the end, I have hit on an information definition fitting my visual information handling 
aims. It turns out that this definition can be derived from Solomonoff’s theory of 
Inference [18], Chaitin’s Algorithmic Information theory [19], and Kolmogorov’s 
Complexity theory [20]. Recently, I have learned that Kolmogorov’s Complexity and 
Chaitin’s Algorithmic Information theory are referred as respected items of a list of 
seven possible contestants suitable to define what actually information is [21]. In this 
regard, I was very proud of myself that I was lucky to avoid the traps of Shannon’s 
Information Theory, which is known to be useful in communication applications, but 
it is absolutely inappropriate for visual information explorations that I am trying to 
conduct. The reason for this is that Shannon’s information properly describes the 
integrated properties of an information message, while Kolmogorov’s definition is 
suitable for evaluation of information content of separate isolated subparts of a 
message (separate message objects). This is, indeed, much closer to the way in which 
humans perceive and grasp their visual information. 
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The results of my investigation have been already published on several occasions, 
[1], [22], [23], [24], and interested readers can easily get them from a number of 
freely accessible repositories (e.g., arXiv, CiteSeer (the former Research Index), 
Eprintweb, etc.). Therefore, I will only repeat here some important points of these 
early publications, which properly reflect my current understanding of the matters.  

The main point is that information is a description, a certain alphabet-based or 
language-based description, which Kolmogorov’s theory regards as a program that 
(when executed) trustworthy reproduces the original object [25]. In an image, such 
objects are visible data structures from which an image consists of. So, a set of 
reproducible descriptions of image data structures is the information contained in an 
image. 

The Kolmogorov’s theory prescribes the way in which such descriptions must be 
created: at first, the most simplified and generalized structure must be described. 
Then, as the level of generalization is gradually decreased, more and more fine-
grained image details (structures) are become revealed and depicted. This is the 
second important point, which follows from the theory’s pure mathematical 
considerations: image information is a hierarchy of recursive decreasing level 
descriptions of information details, which unfolds in a coarse-to-fine top-down 
manner. (Attention, please: any bottom-up processing is not mentioned here. There is 
no low-level feature gathering and no feature binding. The only proper way for image 
information elicitation is a top-down coarse-to-fine way of image processing.) 

The third prominent point, which immediately pops-up from the two just 
mentioned above, is that the top-down manner of image information elicitation does 
not require incorporation of any high-level knowledge for its successful 
accomplishment. It is totally free from any high-level guiding rules and inspirations. 
What immediately follows from this, is that high-level image semantics is not an 
integrated part of image information content (as it is traditionally assumed). It can not 
be seen more as a natural property of an image. Image semantics must be seen as a 
property of a human observer that watches and scrutinizes an image. That is why we 
can say now: semantics is assigned to an image by a human observer. That is 
strongly at variance with the contemporary views on the concept of semantic 
information. Following the new information elicitation rules, it is impossible to 
continue to pretend that semantics can be extracted from an image, (as in [26]), or 
should be derived from low-level information features via the semantic gap 
bridging, (as in [27], [28], and many others). That simply does not hold any more.  

3   Computer Vision Implications 

This new definition of information has forced us to reconsider our former approach to 
image information processing. The validity of our new assumptions and the inevitable 
changes in design philosophy that acceptance of these assumptions imply, have 
motivated us to test the issues in a framework of a visual robot design enterprise. The 
enterprise is aimed to creating an artificial vision system with some human-like 
cognitive capabilities. It is generally agreed that the first stage of such a system has to 
be an image segmentation stage at which the whole bulk of image pixels (image raw 
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data) has to be decomposed into a finite set of image patches. The latter are submitted 
afterwards to a process of image content analysis and interpretation. 

A practical algorithm based on the announced above principles has been developed 
and subjected to some systematic evaluations. The results were published, and can be 
found in [1], [23], [24]. There is no need to repeat again and again that excellent, 
previously unattainable segmentation results have been attained in these tests, 
undoubtedly corroborating the new information processing principles. Not only an 
unsupervised segmentation of image content has been achieved, (in a top-down 
coarse-to-fine processing manner, without any involvement of high-level knowledge). 
A hierarchy of descriptions for each and every segmented lot (segmented object) has 
been achieved as well. It contains the center of mass coordinates, the direction of 
object’s main axeses, object’s contour and shape depiction rules (in a system of these 
axeses), and other object related parameters (object related information), which 
enable subsequent object reconstruction. That is exactly what we have previously 
defined as information.  That is the reason why we specify this information as 
“physical information”, because that is the only information present in an image, and 
therefore the only information that can be extracted from an image. For that 
reason it must be dissociated from the semantic information, which (as we understand 
now) is a property of an external observer. Therefore it must be treated (or modeled) 
in accordance with specific his/her cognitive information processing rules. 

What are these rules? A consensus view on this topic does not exist as yet in the 
biological vision theories and in the computer vision practice. So, we have to blaze 
our own trails. We decided, thus, to meet this challenge by suggesting a new approach 
based on our previously declared information elicitation principles. The preliminary 
results of our first attempt were published recently in [29]. As in the case of physical 
information, we will not repeat here all the details of this publication. We will 
proceed with only a brief reproduction of some critical points needed to follow up our 
discussion. 

Human’s cognitive abilities (including the aptness for image interpretation and the 
capacity to assign semantics to an image) are empowered by the existence of a huge 
knowledge base about the things in the surrounding world kept in human brain/head. 
This knowledge base is permanently upgraded and updated during the human’s life 
span. So, if we intend to endow our visual robot with some cognitive capabilities we 
have to provide it with something equivalent to this (human) knowledge base. 

It goes without saying that this knowledge base will never be as large and 
developed as its human prototype. But we are not sure that the requirement to be large 
and huge is valid in our case. After all, humans are also not equal in their cognitive 
capacity, and the magnitude, the content of their knowledge bases is very diversified 
too. (The knowledge base of aerial photographs interpreter is certainly different from 
the knowledge base of roentgen images interpreter, or IVUS images, or PET images). 
The knowledge base of our visual robot has to be small enough to be effective and 
manageable, but sufficiently ample to ensure robot’s acceptable performance. 
Certainly, for our feasibility study we can be satisfied even with a relatively small, 
specific-task-oriented knowledge base.  

The next crucial point is the knowledge (base) representation issue. To deal with it, 
we first of all must arrive at a common agreement about what is the meaning of the 
term “knowledge”. (A question that usually has not a commonly accepted answer.) 
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We state that in our case a suitable and a sufficient definition of it would be: 
“Knowledge is a memorized information”. Consequently, we can say that knowledge 
(like information) must be a hierarchy of descriptive items, with the grade of 
description details growing in a top-down manner at the descending levels of the 
hierarchy. 

What else must be mentioned here, is that these descriptions have to be 
implemented in some alphabet (as it is in the case of physical information) or in a 
description language (which better fits the semantic information case). Any farther 
argument being put aside, we will declare that the most suitable language in our case 
is a natural human language. After all, the real knowledge bases that we are familiar 
with are implemented on a natural human language basis. 

The next step, then, is predetermined: if natural language is a suitable description 
implement, the suitable form of this implementation is a narrative, a story tale [30]. If 
the description hierarchy can be seen as an inverted tree, then the branches of this tree 
are the stories that encapsulate human’s experience with the surrounding world. And 
the leaves of these branches are single words from which the stories are composed of. 
In computer vision terminology these single words are defined as nodes. 

The descent into description details, however, does not stop here, and each single 
word can be farther decomposed into its attributes and rules that describe the relations 
between the attributes. At this stage the notion of physical information comes back to 
the game. Because the words are usually associated with physical objects in the real 
world, words’ attributes must be seen as memorized physical information 
descriptions.  Once derived (by a visual system) from the observable world and 
learned to be associated with a particular word, these physical information 
descriptions are soldered in into the knowledge base. Object recognition, thus, turns 
out to be a comparison and similarity test between currently acquired physical 
information and the one already retained in the memory. If the similarity test is 
successful, starting from this point in the hierarchy and climbing back on the 
knowledge base ladder we will obtain: first, the linguistic label for a recognized 
object, and second, the position of this label (word) in the context of the whole story. 
In this way, object’s meaningful categorization can be acquired, a first stage of image 
annotation can be successfully accomplished, paving the way for farther meaningful 
(semantic) image interpretation. 

One question has remained untouched in our discourse: How this artificial 
knowledge base has to be initially created and brought into the robot’s disposal? The 
vigilant reader certainly remembers the fierce debates about learning capabilities of 
neural networks and other machine learning technologies. We are aware of these 
debates. But in our case they are irrelevant for a simple reason: the top-down fashion 
of the knowledge base development pre-determines that all responsibilities for 
knowledge base creation have to be placed on the shoulders of the robot designer. 

Such an unexpected twist in design philosophy will be less surprising if we recall 
that human cognitive memory is also often defined as a “declarative memory”.  And 
the prime mode of human learning is the declarative learning mode, when the new 
knowledge is explicitly transferred to a developing human from his external 
surrounding: From a father to a child, from a teacher to a student, from an instructor 
to a trainee. There is evidence that this is not an especially human prerogative. Even 
ants are transferring knowledge in a similar way, [31]. So, our proposal that robot’s 



68 E. Diamant 

knowledge base has to be designed and created by the robot supervisor is sufficiently 
correct and is fitting our general concept of information use and management. 

4   Brain Vision Implications 

The main idea of my BVAI 2005 paper [1] was the following: Despite the striking 
differences between biological and computer vision philosophy, there must be a more 
general and comprehensive basis that underpins and reconciles these usually detached 
and divergent fields of vision. It is not clear how successful were my efforts. However, 
the challenge is tempting, and paving the way for better computer vision understanding it 
is always right to see how biological vision research can benefit from the proposed new 
ideas, which are really general enough to reconcile the current divergence. 

While the mainstream of biological vision research continues to approach visual 
information processing in a bottom-up fashion [32], it turns out that the idea of 
primary top-down processing was never extraneous to biological vision. The first 
publications addressing this issue are dated by the early eighties of the last century, 
(David Navon at 1977 [33], and Lin Chen at 1982 [34]). The prominent authors were 
persistent in their views, and farther research reports were published regularly until 
the recent time, [35], [36]. However, it looks like they have been overlooked, both in 
biological and in computer vision as well. Only in the last years, a tide of new 
evidence has become visible and is pervasively discussed now. Although the spirit of 
these discussions is still different from ours, the trend is certainly in favor of the 
foremost top-down visual information processing [37], [38]. 

The field of cognitive vision is not ready yet to leave the traditional information 
processing dogmas. However, supporting evidence for a “declarative” interpretation 
of physical information can be already found in [39], where it is convincingly shown 
how a color is “assigned” to a given object. Evidence for knowledge transfer from the 
outside we have already mentioned earlier (the case of ants that are learning in 
tandem [31]). The so-called Horizontal Gene Transfer phenomenon responsible for 
antibiotic resistance development of bacteria [40] can also be seen as a supporting 
evidence for this hypothesis. 

However, the most surprising insights are still awaiting their farther clarification and 
confirmation. If our definition of information as a description is correct, then the current 
belief that a spiking neuron burst is a valid form of information exchange and 
representation [41] does not hold any more. The variance in spikes’ heights or duty times 
is an inadequate alphabet to implement information descriptions of a desired complexity. 
We can boldly speculate that a biomolecular alphabet would be a much better and 
appropriate solution in such a case. Support for this kind of speculations can be definitely 
derived from the recent advances in molecular biology research [42], [43], and the spikes 
that we observe and investigate today could be seen as a reflection of charges that are 
carried by ionized parts of the molecular information messages. 

This molecular description hypothesis also fits very well our new brain memory 
organization theory, which pretty well resembles the paradigm of computer memory 
organization. Dendrite spines can be seen as a proper accommodation for the 
molecular descriptions, and hypotheses about “object files” [44] and “event files” [45] 
are repeatedly emerging in biological vision literature during the last decades. It 
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would be interesting to notice that event file concept fits very well also the narrative 
knowledge transfer and representation hypothesis proposed earlier in Section 3. 
Recall that our memories first of all evolve as stories and almost never as single static 
objects or scenes. 

Farther support for the idea that a complex information description can be stored in 
a single memory cell can be seen in [46]. In this case as well, reactivation and 
retrieval of a memorized description fits very well the paradigm of a computer 
memory store/fetch access, a single_write/multiple_read memory handling mode.  

I am definitely excited by the options that brain vision research can gain from such 
a back projection of a computer vision theory (about the essence of information) on 
the issues of modeling visual information processing in human brain. 

5   Some Concluding Remarks 

In this paper, we propose a new definition of information suitable for our computer 
vision peculiarities studies.  We afford an exploration of benefits that a skilled use of 
this definition can provide both in computer and biological vision research. We hope 
that this would pave a way for an anticipated machine-based image understanding. 

The present proposal is incomplete and tentative since this is just a first step, and 
further research remains to be done. We are aware that our approach is very different 
from those that are extensively explored and developed in frame of other research 
programs [47]. However, the enterprise that we are aimed at, is not a task for a single 
person or a small group of developers. It requires consolidated efforts of many 
interesting parties. We hope that the time for this is not far away.      
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Abstract. Recent physiological evidence has shown that neurons at the
early visual stages are selective for a combination of color, luminance and
orientation. Neurons with a linear response tuning, resulting in broad
tuning curves, are found at all stages, but the proportion of nonlinear
neurons, narrowly tuned for color, increases along the visual pathway.
We ran psychophysical experiments to characterize the number and tun-
ing widths of the mechanisms underlying image segmentation. We used a
noise masking paradigm with different types of noise to disentangle mech-
anisms with narrow and broad tuning characteristics. The data were best
described by a chromatic detection model with multiple, broadly tuned
mechanisms, where narrow tuning curves emerge due to off-axis looking.
We then analyzed a set of calibrated natural images and determined the
joint statistics of color and luminance edges. The majority of edges in
natural scenes was characterized by a contrast in both color and lumi-
nance, while some prominent object boundaries were signalled only in
the chromatic plane. Based on the converging evidence from different
disciplines we conclude that multiple linear, broadly tuned mechanisms
which are selective for a combination of chromatic contrast, luminance
contrasts and orientations play a central role for contour extraction and
robust image segmentation.

1 Introduction

Color vision starts with the transduction of electromagnetic radiation by three
types of photoreceptors in the retina. Based on their peak sensitivities at short,
medium and long wavelength the photoreceptors are commonly denoted S, M,
and L. Already at the level of retinal ganglion cells the signals of these three types
of photoreceptors are combined to form three color-opponent channels: an achro-
matic channel from pooled L and M cone input (L+M), and two chromatic chan-
nels, one channel that signals differences of L and M cone responses (L−M), and
another channel that signals differences between S cone responses and summed
L+M cone responses (S−(L+M)). The properties of these early stages have been
studied in great detail and are well understood [1,2,3]. However, the properties
of subsequent “higher order” stages of cortical processing are less clear and a
subject of intense research.

F. Mele et al. (Eds.): BVAI 2007, LNCS 4729, pp. 72–83, 2007.
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Here we present recent findings from different disciplines addressing the prop-
erties of these higher order stages. Overall, a coherent picture emerges, where
multiple linear, broadly tuned mechanisms which are selective for a combination
of chromatic contrast, luminance contrasts and orientations play a central role
for contour extraction and robust image segmentation. The article is organized
as follows: First we summarize findings from neurophysiology. Second, we present
results from a psychophysical experiment where we have studied the number and
tuning width of higher order mechanisms. Third, we present findings from scene
statistics of natural images.

2 Neurophysiological Findings

At the very first stage of color processing, electromagnetic radiation between
400–700 nm is absorbed by three different types of cone photoreceptors with peak
sensitivities at short (S, 430 nm), medium (M, 530 nm) and long (L, 560 nm)
wavelengths [4]. The S cone photoreceptor absorbs light from 400-600 nm, while
the L and M cones have even broader absorption spectrum, that cover almost
the entire visible spectrum (Fig. 1, a). At the second stage retinal ganglion cells
combine the cone signals into three cone-opponent channels, one achromatic
channel (L+M) and two chromatic channels, L−M and S−(L+M). The DKL
color space [5,6] is a spherical color space spanned by these three cone-opponent
axes, which are often termed “cardinal” directions (Fig. 1, b). Note that the cone-
opponent channels are different from the color-opponent axis black-white, red-
green, and blue-yellow: Colors along the L−M channel vary between a pinkish-
red and a bluish-green, and color along the S−(L+M) channel vary between a
yellowish green and purple. The unique hues red, green, blue and yellow are
clearly different form the colors at the cardinal directions (Fig. 1, c).

Chromatic mechanisms are typically characterized by their number, tuning
peak direction, and tuning width. Subcortical neurons in the retina and the
LGN have peak sensitivities that cluster along the cardinal directions (Fig. 2, a).
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Fig. 1. (a) Cone absorption spectra. (b) DKL color space with the isoluminant plane
shown in gray. (c) The isoluminant plane of the DKL color space. The unique hues do
not coincide with the cardinal axes of the DKL color space.
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a linear neuron is found in the LGN and in all cortical regions. (b) Narrow tuning of
a neuron in V2. The data points are measured responses of a neuron, the curve is the
best fit of (a) a linear model (b) a nonlinear model.

Tuning curves of the neurons in the retina and the LGN are broad (Fig. 3, a).
A broad tuning characterized by a half-width at half height (HWHH) of about
60 deg is consistent with a linear transformation of cone inputs.

How do these properties of neurons change during the further processing?
First peak sensitivities of cortical neurons do not cluster, but have a continuous
distribution (Fig. 2, b).Second, neurons with narrow tuning curves are found
(Fig. 3, b). Broad tuning curves still occur at all level of the further processing,
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Fig. 4. Segregation and integration in V2. The graph shows the proportions of cells
selective for color and orientation in different compartments of area V2 (thick stripes,
thin stripes and interstripes). The data are from six studies. The heavy black lines
represent the means across all six studies. The proportion varies in the different com-
partments, but not clear segregation is evident.

but the proportion of neurons with a narrow tuning width increases as the
processing proceeds along the hierarchy of visual areas [7]. For example, in V1
of macaque monkey, tuning widths with HWHHs ranging from 10 deg to 90 deg
have been found [8]. Narrow tuning widths below 60 deg indicate a nonlinear
transformation of cone inputs. One of the most fundamental questions of corti-
cal processing is whether visual attributes such as form, color and luminance are
processing in segregated streams or together. Early hypothesis have favored the
idea of a neatly segregated processing. In the domain of color and form, the col-
oring book theory is an example of such a segregated processing [9]. It assumes
that first a sketch of achromatic edges of the scene is extracted, which is subse-
quently colored by chromatic surface information. Recent physiological findings
consistently has drawn a different picture. A meta analysis of six studies inves-
tigating color and luminance preference in different compartments of macaque
monkey V2 reveals that no clear segregation exists (Fig. 4). Further it has been
shown that many neurons in the primary visual cortex cells respond best to
oriented chromatic contrast [10], and that the vast majority of color-selective
neurons in V1 and V2 are also selective for orientation [11]. Recent physiological
findings consistently show that in the early cortical processing color, luminance
and orientation are processed together by the same neurons.

3 Psychophysical Findings from a Masking Experiment

In the psychophysical experiments we investigated the properties of post-recep-
toral chromatic mechanisms for image segmentation, in particular their num-
ber and tuning characteristics [12]. We used a noise masking paradigm where
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Fig. 5. Two-side noise and sample stimulus. The signal was varied along a single direc-
tion in color space, and the noise was varied along two directions symmetrically spaced
around the signal direction (two-sided noise). For one-sided noise the noise was varied
only a long a single direction.

.

observers had to report the orientation of a signal pattern embedded in a noisy
background texture (Fig. 5). The signal consisted of dynamic squares whose
colors were drawn from a uniform distribution along a single direction in color
space. Colors of the noise pattern were uniformly distributed either along a sin-
gle direction in color space (“one-sided noise”) or along two directions equally
spaced around the direction of the signal color (“two-sided noise”). The chro-
matic directions of the signal and the noise were independently varied, and the
signal contrast was measured at which the observer could reliably indicate the
orientation of the signal.

We found that masking was generally highest when signal and noise were
modulated along the same direction, and minimal for orthogonal noise. No dif-
ferences were found for signals modulated along cardinal directions or intermedi-
ate direction. However, measured tuning widths critically depend on the type of
noise: one-sided noise resulted in narrow tuning, while two-sided noise resulted
in broad tuning. We developed a chromatic detection model and tested various
combinations of tuning widths k and number of mechanisms N . We found that
a chromatic detection model with multiple broadly tuned mechanisms (N = 16,
k = 1) successfully accounts for the experimental findings. With this single pa-
rameter setting both narrow and broad tuning curves emerged, depending on
the type of noise used. Other tested models failed to reproduce the data, in
particular Models with four broadly tuned cardinal mechanisms (N = 4, k = 1)
or multiple narrowly tuned mechanisms (N = 16, k = 10). Our results suggest
that multiple chromatic mechanisms play a central role in image segmentation.
In the following we will present the chromatic detection model in more detail.

3.1 Chromatic Detection Model

We developed a chromatic detection model for a better understanding of the data
obtained in the psychophysical experiment. In particular, we want to investigate
whether the different tuning curves measured for the two types of noise could be
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Fig. 6. (a) Sensitivity profiles of the chromatic mechanisms for different values of the
exponential k. The sensitivity functions are normalized such that they integrate to
unity. (b) Partitioning of a sample input stimulus into background B and two putative
signal regions Ah and Av. In this example, the ΔR value for Ah would be much larger
than the value for Av, and the model would correctly detect the horizontal signal.

accounted for by a single underlying circuit and, if so, to determine the number
and tuning widths of the underlying detection mechanisms.

The chromatic line-element model comprises two main processing stages. At
the first stage, color signals are processed by multiple channels each tuned to a
particular direction in color space. The number of channels N and their tuning
width k are the basic model parameters. The N mechanisms are defined in a
single plane of the cone-opponent DKL color space. Each mechanism has the
same raised cosine shaped tuning profile but different chromatic preferences or
peak sensitivities μ. Formally, the sensitivity of the ith of N mechanisms to
different chromatic directions θ is given by the sensitivity profile Si(θ)

Si(θ) = [cosk(θ − μ)]+ μ = 360 deg
i

N
+ η, i = 1, . . . , N .

The operator [ · ]+ denotes half-wave rectification. The parameter k determines
the tuning width of the sensitivity profile [13]. A value of k = 1 results in
the standard cosine profile, consistent with a linear combination of the color
opponent signal. Increasing k sharpens the profile. A value of k = 10 results
in narrowly tuned sensitivity functions of the same width as observed in the
psychophysical experiments with one-sided noise (Fig. 6, a).

The parameter μ determines the peak sensitivity of the N chromatic channels,
which are equally spaced in the chromatic plane. For example, N = 4 mecha-
nisms would result in a spacing of 360 deg/4 = 90 deg. sensitivities are allowed
to vary at each stimulus position by a normally distributed noise process η with
a standard deviation of 10 deg, to model the variability of the preferred hue in
individual LGN neurons as observed experimentally [5].
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At the second stage, the difference in channel responses to the background
and a signal region of either horizontal or vertical orientation is determined. The
larger difference determines the model estimate of the signal orientation. Given
an input stimulus, the model thus responds with the estimated orientation of
the signal. To determine the detection threshold of the model, model responses
for signals of varying contrasts were determined, and a psychometric function
was fitted to the model responses [14].

The input stimuli to the model were confined to a particular plane of the DKL
space such as the isoluminant plane. In the isoluminant plane, the chromaticity
of each stimulus patch is given in polar coordinates by a two-dimensional vector
of hue or color azimuth θ(x, y) and amplitude r(x, y):

(
θ(x, y)
r(x, y)

)
.

Each channel i integrates color signals within a particular region A of the
stimulus, resulting in an average response RA,i of ith channel to all patches in
the stimulus within region A:

RA,i =
1

‖A‖
∑

(x,y)∈A

r(x, y)Si(θ(x, y)) ,

where r is the chromatic contrast and θ is the chromatic direction of the square
at the particular position (x, y), and ‖A‖ denotes the magnitude of the set A,
i.e., the number of elements in A. The overall difference ΔRA between a signal
region A and the background region B is computed by taking the norm of the
contrast between signal and background responses for each channel:

ΔRA =

∣∣∣∣∣∣∣∣∣

c(RA,1, RB,1)
c(RA,2, RB,2)

...
c(RA,N , RB,N )

∣∣∣∣∣∣∣∣∣
.

We use the Michelson contrast to compute the contrast function c, which is
defined as c(x, y) = (x − y)/(x + y). For the norm we use the standard vector
norm (L2 norm, Euclidean distance), which approximates probability summation
across channels [15]. Two values ΔR are computed for two putative signal regions
Ah and Av to test for either horizontal or vertical signal orientation (Fig. 6, b).
The larger of the two values then determines the orientation as estimated by the
model.

3.2 Simulation Results

First we verified that the model faithfully replicates the basic properties of noise
masking. In particular, we verified that the model shows a linear increase in
threshold with noise contrast when the noise is modulated along the same direc-
tion, as well as virtually no increase in threshold when the noise is modulated
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Fig. 7. Experimental results (solid) and model simulations (dashed) for a model with
multiple, broadly-tuned mechanisms (N = 16, k = 1). The model accounts both for
narrow tuning curves measured for one-sided noise (top row) and for broad tuning
curves measured for two-sided noise (bottom row). The columns, from left to right,
show the tuning curves for a signal modulated along a cardinal direction (0 deg), along
an intermediate direction (45 deg), and the mean tuning curve averaged across four
signal directions.

along directions orthogonal to the signal. We then investigated the model re-
sponses when probed with the masking stimuli used in our experiments, having
either one-sided or two-sided noise.

As stated above, the number of the detection mechanisms N and their tuning
width k are basic model parameters. Three different regimes are of particular
interest: a basic quasi-linear model with four broadly tuned mechanisms at the
cardinal directions (N = 4, k = 1); a model with multiple narrowly tuned mecha-
nisms with a tuning width similar to the experimentally observed tuning for one-
sided noise (N = 16, k = 10); and a model with multiple, broadly tuned mech-
anisms (N = 16, k = 1). Simulation results for a model with multiple, broadly-
tuned mechanisms (N = 16, k = 1) are shown in Fig. 7. The simulations show
that a model with multiple, broadly tuned mechanisms (N = 16, k = 1) can ac-
count for the experimentally observed tuning curves, both for one-sided and two-
sided noise. In particular, a model with a single parameter set can result in dif-
ferent tuning widths, depending on the type of noise. Other model variants, such
as a quasi-linear model (N = 4, k = 1), or a model with multiple narrowly tuned
channels (N = 16, k = 10) failed to reproduce the empirical findings. A quasi-
linear model with four linear mechanisms showed a large variability in tuning
curves depending on the chromatic direction of the signal, contrary to the empir-
ical data. A model with multiple narrowly tuned mechanisms (N = 16, k = 10)
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completely failed to account for the data, resulting in tuning curves that were
always narrower than found experimentally.

Overall we have shown that a basic minimal model with just two funda-
mental parameters (N and k) can describe the data. We determined a single
parameter set describing a model with multiple, broadly tuned mechanisms
(N = 16 and k = 1) that results in either narrow or broad tuning curves in
accordance with the psychophysical observations.

4 Natural Scene Statistics of Color and Luminance Edges

Here we present further evidence for the joint processing of luminance and color
from the statistical analysis of the distribution of chromatic and luminance edges
in natural scenes.

The detection of edges is often one of the first processing steps both in artificial
and natural systems. Traditionally, this process is conceptualized in neurophysi-
ological theories and computationally realized in image processing systems as an
achromatic process. However, important information about object boundaries is
sometimes represented only in chromatic channels. Consider the image of a red
fruit on green foliage (Fig. 8): In the luminance image, the edges of the fruit
are hardly detectable, because the luminance of the fruit is almost the same as
the luminance of the background foliage. Any image processing system which
tries to detect objects based on luminance information alone would probably
miss the fruit. Adding chromatic information changes the situation completely.
In the L−M channel, which represents reddish-greenish signal variations, the ob-
ject boundaries of the fruit is almost perfectly represented. An image processing
system which can use this chromatic information will probably detect the fruit.

Here we analyzed the co-occurrence of achromatic and color edges in natural
scenes to assess the possible contributions of chromatic information to visual

input image L−M edges luminance edges

Fig. 8. Image of a fruit and the edges detected in the luminance plane and the L−M
plane which signals reddish-greenish variations. While the object contour is faintly if
at all represented by the luminance edges, a strong response occurs in the L−M plane
which almost perfectly delineates the object. Chromatic information helps to separate
objects from their background.
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Fig. 9. McGill data base of color calibrated images. Each row shows sample images
from the nine categories of the image data base (animals, flowers, foliage, fruits, land
and water, man-made, shadows, snow, and textures).

form and edge detection. The analysis is based on 764 images from a publically
available data base of calibrated color images [16]. The images are grouped into
nine categories (Fig. 9). to analyze the co-occurrence of chromatic and lumi-
nance edges, the calibrated images are first transformed into LMS cone space,
modeling responses of the L, M and S cones of a human observer. Next, LMS
responses are transformed into a cone-opponent space spanned by three cardinal
axes, one achromatic axis (L+M), and two chromatic axes, L−M and S−(L+M).
These axes resemble the chromatic preferences of retinal ganglion cells and LGN
cells (Sec. 2). Edges are detected in these three color-opponent planes and the
joint histogram of edge strengths is computed (Fig. 10). The joint histogram of
luminance and L−M edges has a high excursion along the luminance axis and
also strong isoluminant L−M edges (Fig. 10, a). The large majority of edges do
not fall on either axes, and is defined by a combination of both luminance and
chromatic contrast. The joint histogram is not symmetric but slightly skewed
and compressed along the main diagonal, indicating that bright green/dark red
edges are of on average of higher contrast than bright red/dark green edges.
For the co-occurrence of luminance edges and S−(L+M) edges a similar joint
histogram occurs (Fig. 10, b).

Inspection of edge maps in individual images reveals that some prominent
object boundaries that are weak or missing in the luminance edge map are
clearly delineated in the L−M plane (e.g., Fig. 8). For example, red fruits or
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Fig. 10. Joint edge histograms for luminance edges and (a) L−M edges or (b)
S−(L+M) edges. The gray levels in the contour plot code the frequency of occurrences.
Edges are rare events, so most of the pixels have a contrast close to zero (black). Strong
edges of high contrast (white) are less frequent.—Co-occurrence maps of luminance and
chromatic edges do not peak at the cardinal axes, showing that the vast majority of
edges combine luminance and chromatic information.

flowers against green foliage, that are hardly visible in the luminance plane, give
rise to strong object boundaries in the L−M plane.

Object boundaries are not always characterized by pure luminance variations.
Instead, most edges are characterized by a co-occurrence of chromatic and lumi-
nance contrast. Further, some prominent object boundaries are signalled robustly
only in the chromatic L−M plane. Chromatic edges are also robust against lumi-
nance variations cause by, e.g., cast shadows. Overall, this suggests an important
role for color in the detection of object boundaries. The neural networks in early
visual areas seems to be perfectly adapted to the joint occurrence of luminance
and chromatic edges in natural scenes.

In computer vision, edge detection algorithms were mostly designed for the
processing of achromatic images. However, despite tremendous effort, the multi-
purpose edge detector which faithfully detects the relevant edges in an image
has not been found yet. This failure may point to the importance of other visual
modalities apart from luminance that play an important role in edge detection.
Our results suggest that color is one modality which makes edge detection more
robust.
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Abstract. Color is not a physical quantity which can be measured. Yet
we attach it to the objects around us. Colors appear to be approximately
constant to a human observer. They are an important cue in everyday
life. Today, it is known that the corpus callosum plays an important role
in color perception. Area V4 contains cells which seem to respond to
the reflectance of an object irrespective of the wavelength composition
of the light reflected by the object. What is not known is how the brain
arrives at a color constant or approximately color constant descriptor. A
number of theories about color perception have been put forward. Most
theories are phenomenological descriptions of color vision. However, what
is needed in order to understand how the visual system works is a com-
putational theory. With this contribution we describe a computational
theory for color perception which is much simpler in comparison to pre-
viously published theories yet effective at computing a color constant
descriptor.

1 Motivation

The measured color varies with the type of illuminant used. The energy Q mea-
sured by a sensor is proportional to the reflectance R at the corresponding object
point and is also proportional to the irradiance E at the corresponding object
point, i.e. we have

Q(λ) ∝ R(λ)E(λ)

for wavelength λ. The fact that the measured color varies with the type of illu-
minant is observed by many amateur photographers all around the world. One
simply has to compare a photograph of the same scene once using incandes-
cent light and once using sunlight. Professional photographers are well aware of
this and can use filters to change the color balance [1,2]. Digital cameras apply
post-processing algorithms which can change the color balance such that the
resulting photograph looks more natural. In contrast, the color observed by a
human observer stays remarkably constant [3]. This phenomenon has been in-
vestigated in detail by Land [4,5]. Obviously, it is of great interest to learn what
algorithm is actually used by the human visual system in order to arrive at
a color constant descriptor which remains constant (or at least approximately
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constant) irrespective of the illuminant used. Several psychophysical models of
color perception have been put forward. However, such models do not explain
how or why the color perceived by an observer could depend on either average
apparent reflectance or the average luminance. Such models are phenomenolog-
ical descriptions of color vision. What is needed is a computational theory of
color vision [6].

Quite a large number of color constancy algorithms have been developed,
from Land and McCann’s Retinex theory [7] and its many variants [8,9,10,11,12],
Buchsbaum’s gray world hypothesis [13], gamut constraint methods [14,15,16],
color cluster rotation [17] to comprehensive normalization [18] and computation
of intrinsic images [18]. Most color constancy algorithms assume that the illu-
minant is constant within the image. A notable exception is Land and McCanns
Retinex algorithm together with the variants of Horn [8], Blake [11] and Rahman
et al. [12].

2 Iterative Computation of Local Space Average Color

Land’s alternative formulation of the Retinex algorithm [9] as well as the algo-
rithm of Rahman et al. [12] require that some form of averaging of image pixel be
carried out. Land [9] assumes that input from several receptors is averaged. The
algorithm of Rahman et al. [12] computes the blurred image using a convolution.
Local space average color may also be computed iteratively as Ebner has shown
[19,20,21].

The algorithm of Ebner assumes that a grid of processing elements exists with
one processing element per image pixel. Each processing element is connected
only to its nearest neighbors. Let N(x, y) be the neighboring processing elements
of the element located at position (x, y) of the image, i.e.

N(x, y) = {(x′, y′)|(x′, y′) is neighbor of element (x, y)}.

Each processing element computes local space average color a(x, y)

a(x, y) = [ar(x, y), ag(x, y), ab(x, y)].

Let us assume that we already have some average stored at each processing
element. The following update equations are then iterated

a′(x, y) =
1

|N(x, y)|
∑

(x′,y′)∈N(x,y)

a(x′, y′)

a(x, y) = c(x, y) · p + a′(x, y) · (1 − p)

where p is a small percentage. The first operation simply takes the local space
average color which is available from neighboring elements and averages this
data. In other words, we get a new average based on the data stored at neigh-
boring elements. The color which is available at the current element is then
slowly faded into the average using the second operation. If these two operations
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are iterated indefinitely, the data simply diffuses between neighboring elements.
This process converges to local space average color irrespective of the data stored
initially inside the processing elements.

The extent over which local space average color is computed, is determined
by the parameter p. For a small value of p, local space average color is computed
over an extensive area whereas for a large value of p, local space average color
is computed over a small area. The iterative computation of local space average
color is very similar though not identical to the convolution of the input image
with an exponential kernel.

a(x, y) =
∫ ∫

c(x′, y′)e−
|x−x′|+|y−y′ |

σ dx′dy′

The correspondence between the parameter σ and the parameter p is given by

σ =
√

1 − p

4p
.

Instead of using a grid of processing elements in order to compute local space
average color, a resistive grid may also be used. With a resistive grid, adjacent
points are simply connected through a resistor.

3 The Gray World Assumption

Local space average color may then be used to compute a color constant descrip-
tor using the gray world assumption. The gray world assumption was originally
proposed by Buchsbaum [13]. It is based on the assumption that on average,
the world is gray. Buchsbaum assumed overlapping response characteristics of
the sensors. We will derive the gray world assumption using non-overlapping
response characteristics. Let ci(x, y) be the measured intensity of color channel
i at position (x, y) of the image. The measured intensity is proportional to the
reflectance and the irradiance.

ci(x, y) = Ri(x, y)Li(x, y).

Buchsbaum assumed that the illuminant is constant over the entire image, i.e.
we have Li(x, y) = Li. This gives us

ci(x, y) = Ri(x, y)Li.

Thus, the illuminant scales the reflectances. A color constant descriptor can be
computed once an estimate of the illuminant is available.

Let us now compute space average color over all image pixels. Space average
color a = [ar(x, y), ag(x, y), ab(x, y)] of an image with n pixels is given by

ai =
1
n

∑
x,y

ci(x, y) =
1
n

∑
x,y

Ri(x, y)Li = Li
1
n

∑
x,y

Ri(x, y).
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We now assume that several differently colored objects are located inside the
image. Since we don’t know anything about the colors of the objects we simply
assume that all colors are equally likely, i.e. we assume that the reflectances are
uniformly distributed over the range [0, 1]. If we have a sufficiently large number
of different colors inside the image, then we obtain for the expected value of the
sum

1
n

∑
x,y

Ri(x, y) =
1
2
.

We now see that the color of the illuminant can be estimated by computing
global space average color.

Li ≈ 2ai

We use the gray world assumption locally in order to estimate the color of the
illuminant at each image pixel (x, y)

Li(x, y) ≈ 2ai(x, y)

where local space average color a is computed iteratively as described above.
Note that because the illuminant is estimated for each image pixel, the algorithm
also works for a spatially varying illuminant, i.e. multiple light sources, provided
that the environment is sufficiently diverse.

We then compute a color constant descriptor oi by dividing each image pixel
by twice local space average color.

oi(x, y) =
ci(x, y)
2ai(x, y)

≈ ci(x, y)
Li(x, y)

≈ Ri(x, y)Li(x, y)
Li(x, y)

= Ri(x, y)

Figure 1 shows the results of this algorithm for a sample image. The image was
taken with a Canon 10D. The white balance was set to 6500K and a yellowish
illuminant was used. The image shown on the left is the input image and the
image on the right is the output image. The color cast is removed nicely as can
be seen in the output image.

Fig. 1. The input image is shown on the left. Local space average color is computed
using an exponential kernel. The output image is shown on the right.
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4 Usage of Color Shifts

Experiments done by Helson [22] indicate that human subjects appear to use
color shifts in order to estimate the color of achromatic samples illuminated by
colored light. The perceived color of the sample depends on the color of the
illuminant as well as on the color of the background. He found that a bright
patch located on a gray background will have the color of the illuminant. A dark
patch will have the complementary color of the illuminant. Patches which have
an intermediate reflectance will appear achromatic. The algorithms of Land [9],
Horn [8,23], Moore et al. [24] and Rahman et al. [12] do not reproduce this
behavior. This is because the ratio between the color of the pixel and local space
average color is computed. If one computes this ratio, the color of the illuminant
falls out of the equation. The stimuli will always appear to be achromatic for all
settings that Helson investigated. A more extensive discussion is given in [25].

Ebner [19] has developed a computational algorithm for color constancy based
on the use of color shifts. As we have seen above, we need to divide each im-
age pixel by twice the space average color in order to obtain a color constant
descriptor. However, we may also obtain a color constant descriptor if we shift
local space average color onto the gray vector. The gray vector runs through
the color space from black through gray and onto white. According to the gray
world hypothesis, the average color of image pixels should be located on the
gray vector. If the average color is not located on the gray vector it has to be
corrected such that the gray world assumption is fulfilled. Let w = 1√

3
[1, 1, 1]T

be the normalized gray vector and let c = [cr, cg, cb]T be the color of the current
pixel. Let a = [ar, ag, ab]T be local space average color computed for the same
pixel. We first compute the component a⊥ of local space average color which is
perpendicular to the gray vector. The vector a is projected onto the white vector
w and the projection is then subtracted from a. This gives us a⊥.

a⊥ = a − (a · w)w

This vector points from the gray vector to the local space average color. We then
subtract this vector from the color of the current pixel, i.e. we compute

o = c − a⊥.

Figure 2 illustrates how the shift is applied for two vectors c and a. If we look
at the individual components, i.e. color channels, we obtain

oi = ci − ai +
1
3
(ar + ag + ab).

Let ā = 1
3 (ar + ag + ab), then we have

oi = ci − ai + ā.

The result of this operation is that the local space average color is shifted onto the
gray vector and a color cast is removed. Since the shift is performed perpendicular
to the gray axis the average intensity of the image pixels is not changed. This
algorithm shows the same behavior as described by Helson.
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Fig. 2. The component a⊥ of local space average color a which is perpendicular to the
gray vector w is subtracted from c. The result is a color corrected image.

5 A Computational Theory of Color Perception

Theoretical models for color perception have been developed by Judd [26] and
by Richards and Parks [27] among others. These are psychophysical models of
color perception. They do not explain how or why the color could depend on
either average apparent reflectance or the average luminance. They are phenom-
enological descriptions of color vision. What is needed is a computational theory
of color vision [6]. The algorithms which would lend themselves to a biological
realization are the parallel algorithms of Land and McCann [7], Land [9], Horn
[8], Blake [11] and Ebner [19,20,21].

Of course, as of today, it is not yet known how the human visual system actu-
ally computes color constant descriptors. We do know that color constant cells
have been found inside visual area V4 [3,28]. Area V4 may be subdivided into
two subareas V4 and V4α [29]. V4 has a retinotopic organization whereas area
V4α does not have a retinotopic organization. Cells found inside visual area V4
have very large receptive fields. These may be the cells which respond to either
local or global space average color. They respond to the color of objects irrespec-
tive of the wavelength composition of the light reflected by the object. Area V4
also has callosal connections. The corpus callosum connects both hemispheres of
the brain. Land et al. [30] have shown that an intact corpus callosum is required
for accurate color perception.

Currently, we do not know how the processing of color information is actually
done in V4. The computation of local space average color could either be done in
space or in time [10]. Algorithms which perform an integration over time include
the algorithms of Horn [8], Blake [11] and Ebner [19,20,21]. If the human visual
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system uses integration over time, then recurrent neurons are required which
only have to be connected to their nearest neighbors. Instead of computing local
space average color iteratively, local space average color could also be computed
by consecutively applying a Gaussian blur. In this case, the neurons would have
to form a hierarchy consisting of neurons with receptive fields of increasing sizes.
The first neuron of the hierarchy would have a very small receptive field. The
second neuron would have a sightly larger receptive field and so on. The neuron
located at the top of the hierarchy would receive a completely blurred image as
input, in other words, global space average color. This method would resemble
the algorithm of Rahman et al. [12].

Hurlbert [10] suggested that it is also possible that the rods in the periphery
of the retina are used to compute a spatial average over the image boundary.
D’Zmura and Lennie [31] suggested that color constancy might be due to an
adaptation mechanism. The retina is exposed to different parts of the scene as
the eye, head and body moves. Space average color could be computed in the
course of time, i.e. as the retina is exposed to different parts of the scene, by
averaging the data per receptor and the adapted state at any point of the retina
would be a function of this space average color. However, the experiments of
Land and McCann [7] who have also experimented using short exposure times
suggest that color constancy is an ability which exists even if the image is only
perceived for a fraction of a second. The ability to perceive colors as constant is
not dependent on long exposure times.

The first visual area where color constant cells have been found is V4. Assum-
ing only local connections, i.e. that a highly parallel algorithm is employed, either
the algorithm of Land [9], Horn [8] or Ebner [19,20] could be used by the visual
system. A hierarchy of neurons, which is just used to compute a blurred image,
would require an unnecessarily large neural architecture. Why should evolution
favor this type of architecture if the same can be achieved using much simpler
means? If the algorithm of Horn [8] is realized by the visual system, we would
first need to construct a Laplacian operator. Local differencing could be used to
implement a Laplacian operator. The output of the Laplacian operator would
already be a color constant descriptor because the response of the photoreceptors
is logarithmic (or nearly logarithmic) [32]. In order to implement the algorithm
of Horn, we would now need a thresholding operation and an integration step.
The integration would most likely be done in V4. Livingstone and Hubel [33]
assume that such an algorithm is used by the visual system. Instead of operating
on the cone channels red, green, and blue the Retinex algorithm is assumed to
operate either in a longitude-latitude spherical polar coordinate system or inside
a rotated coordinate system. In the spherical coordinate system of Livingstone
and Hubel, radius denotes the dark-light scale, longitude the red-green axis and
latitude the blue-yellow axis. That the Retinex algorithm can also be applied
inside a rotated coordinate system was also noted by Land [9].

It may also be that the actual color signals inside the rotated coordinate
system are averaged instead of averaging the thresholded output of the Lapla-
cian. This would be essentially be the algorithm described by Ebner [19,20].
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Fig. 3. Proposal of how the human visual system may arrive at a color constant de-
scriptor

The advantage of this algorithm is that no threshold has to be set. In practice it
is usually very difficult to properly choose a threshold. For this algorithm, local
space average color would be subtracted from the color of the given pixel. Figure
3 shows the resulting architecture.

Livingstone and Hubel suggest that cells found inside the blobs of V1 act as
building blocks which contribute to long-range interactions occurring in V4. It
should be noted that in both models, the model of Horn [8] and the model of
Ebner [19,20] no long range interactions are necessary. Only local connections
between cells are required. The reason why distant areas may influence the color
of a given point is most likely due to iterative propagation of data from one cell
to the next.

We now dicuss our model in full. First, the cones of the retina measure the
incident light for the three different color bands red, green, and blue. There is
some dispute about whether the relationship between lightness and reflectance
is logarithmic or follows a cube root or square root relationship. A logarithmic
relationship was proposed by Faugeras [34]. See Hunt [35] for a discussion on why
the relationship may either be a cube root or square root relationship. The reader
should take note of the fact that the perceptually uniform CIE L∗a∗b∗color space
(see [36,37]) also uses a cube root transformation. With a suitable scaling factor
and offset, all three functions are a possible approximation. Let us assume for
simplicity that the first step is the application of a logarithmic or other closely
related function. Then a coordinate transform follows. This coordinate transform
is most likely carried out by the color opponent cells. The color space is now
described by the three axes red-green, blue-yellow and black-white. Local space
average color is then computed using interconnected neurons. We only require
that the neurons be connected to their nearest neighbors. The smoothing step
could be carried out through resistive coupling of neurons. It is known that gap
junctions behave mainly as pure resistors [32]. Such gap junctions could be used
to diffuse color information to adjacent neurons. Once local space average color
has been computed, it is subtracted from the color of the current pixel. The
result is a color constant descriptor.
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6 Conclusions

Most theories of color vision are phenomenological descriptions, i.e. they try
to explain why we perceive colors the way we do. However, what is needed
is a computational theory of color perception that can be mapped to what is
known about the visual system. The computational theory presented above is
very simple yet effective at computing color constant descriptors. It estimates
the illuminant locally for each point of the scene and hence also handles scenes
with multiple illuminant. The theory explains that only locally interconnected
neurons are required in order to compute local space average color and thereby
a color constant descriptor. Local space average color can be computed by a
set of interconnected neurons each receiving input from a particular point of
the retina. Only resistive coupling between such neurons is required. According
to this theory, the long range connections through the corpus callosum simply
connect adjacent neurons of the left and right hemispheres of the brain. Due to
the logarithmic response of the receptors one needs to subtract the computed
local space average color from the input signal, i.e. a negative coupling between
the output from local space average color and the input signal is all that is
required. The result is a color constant descriptor.
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Abstract. Bacteriorhodopsin is the light-sensitive protein found in the
archaean Halobacterium salinarum. Because of its versatile properties
and possibilities to modify its characteristics, it has been proposed for a
wide range of technical applications including the artificial retina. Here,
a simulation model and tool for studying the characteristics of artifical
retina based on biomolecules is introduced. Three types of bacteriorhod-
opsin with different light absorption and relaxation characteristics are
used in a case study. The results show that the simulator is a versatile
tool to study the temporal characteristics of bacteriorhodopsin variants
and to support the design of artificial sensors.

1 Introduction

Microelectronics still dominates the design and construction of artificial vision
systems. In contrast, nature has evolved highly different architectures for process-
ing visual information. Consequently, there is an abundance of proposals where
motivation and ideas are transferred from biology and physiology to artificial
and technical systems. In molecular computing, for example, silicon circuits can
be replaced by functional biomolecules such as bacteriorhodopsin.

Bacteriorhodopsin (BR) is a light-sensitive protein found in the purple mem-
brane of the archaean Halobacterium salinarum [21]. BR resembles vertebrate
and invertebrate photoreceptor rhodopsins both structurally and functionally.
As with all rhodopsins, BR consists of seven transmembrane alpha-helices of
aminoacids, and a functional retinal chromophore, a derivative of vitamin A.
The purpose of BR is to take part in the energy balancing mechanism of the
archaean. Under anaerobic conditions, BR produces a proton gradient across
the cell membrane by the light-induced photocycle [4], which together with an
electric potential difference between the cytoplasm and the outside enables the
ATPases in the cell to convert ADP to ATP [1].

BR retains the photocycle even when isolated from the purple membrane and
incorporated into an artificial membrane [22], or a thin polymer-based film [5].
Such films react to light with differential reponsivity common in motion detec-
tion, and when spatially arranged following the receptive field structure in the
vertebrate eye, they can perform edge enhancement [6]. BR has properties that
make it well suited for optical and photoelectric applications. Films produced
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by immobilizing wild-type BR in gelatin or polyvinylalcohol (PVA) are highly
stable. A film of BR molecules produces a photoelectric response (PER) when
illuminated, caused by the translocation of protons in the film. The most studied
application area of BR is the optical memory, but it can be used to implement
photodetectors [18], and suggestions to use BR films for real-time pattern recog-
nition and colour-sensitive artificial retina have been made [10,17].

In natural vision, only a subset of rhodopsin’s functionality can be explained
based on characteristics related to perception of static stimuli. This is because in
most cases, the vision system operates on continuous visual stimulus dependent
on time. The same applies to artificial vision systems when they are designed for
a similar purpose: their temporal characteristics are significant for the function-
ality. BR has a light-induced reversible photocycle consisting of several interme-
diates with different relaxation times. These intermediates and their relaxation
times cause a significant impact to the temporal characteristics of artificial retina
based on BR.

In our earlier studies [16,9], we have been able to determine the wavelength
dependencies of BR films with different absorption properties, their PERs, and to
compare the modeled PERs with the measurements for the elements containing
wild-type BR and its two retinal analogs. We have also initially studied the
temporal characteristics of BR [19], but the results were inconclusive because of
improper interfacing to the electronics and response registration device. Here,
we introduce a simulation model and tool for studying the characteristics of
artifical retina based on biomolecules. Three types of bacteriorhodopsin and
their temporal characteristics in continuous operation are used as examples.

2 Bacteriorhodopsin Sensors and Their Simulation

2.1 Bacteriorhodopsin Sensors

From the BR photocycle shown in Fig. 1, it can be seen that the relaxation times
support the idea of real-time operation in an imaging application with continuous
visual input. To study the photoelectric properties of BR, we have prepared dry
BR thick films by using PVA as the matrix. The purple membrane patches of BR
were isolated from Halobacterium salinarum wild type (S9). Two variants of the
wild type BR were prepared by reconstituting bleached BR with synthetic 3,4-
didehydro and 4-keto retinal analogues.The BR-PVAelements together with their
photoelectric and optical properties are described in detail in [16].

The three types of BR have dissimilar relaxation times of the photocycle inter-
mediates. The times depend on the chemical environment of the BR molecules. In
aqueous solution, there are more than one M intermediates in the photocycles of
all of the before-mentioned types [8]. Therefore, multiple populations having dif-
ferent relaxation time to the ground state coexist in the solution. In the aqueous
solution, the ratios of the M-state relaxation times of the two analogs relative to
the wild type are 25:1 and 60 000:1, whereas a polymer matrix changes the ratios
to 2.5:1 and 155:1 [2]). The large difference in the relaxation times significantly af-
fects the design and characteristics of an application making use of all three types.
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Fig. 1. (a) Wild-type bacteriorhodopsin photocycle consisting of the ground state B
and other intermediate states. Thin arrows denote thermal transitions, whereas thick
arrows denote light-induced photochemical transitions. The numbers represent wave-
lengths of absorption maxima, approximate transition times in neutral aqueous solu-
tion at ambient temperature, and quantum efficiencies Φ for known transitions (data
from [3,7,11,12]). (b) Generic and simplified photocycle where τ represents the thermal
transition time.

2.2 Sensor Simulation

To simulate the temporal characteristics of the BR sensors or any light-induced
biomolecule, a model was developed for the photocycle. The initial model con-
sists only of two states, but this can be justified with the fact that most of
the photoelectric response amplitude within the time window of real-time vi-
sual input arises from the B-to-M transition. Matlab with Simulink was chosen
for the actual implementation because this combination enables interactive ex-
perimentation with and demonstration of the model. Simulink is an ideal tool
for simulating time-varying systems, such as photocycles, which interface with
electronics.

The simulation model for the BR sensors has two blocks: one for the light
source and another for the BR sensor. The light source used in the earlier physical
measurements was a pulsed xenon flashlamp, Oriel series Q with the bulb 6426.
The light source has a configurable discharge energy and pulsing frequency. For
the Simulink model, the controls for the discharge energy and pulsing frequency
were implemented. The time dependence and spectral content of the light output
was modelled based on the manufacturer data shown in Fig. 2. The light source
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block includes also models for 16 narrow band Oriel interference filters, each
having 20 nm window within the visible range of the electromagnetic spectrum.
The filters are used to control the spectral content of light in accordance with
the physical measurements.
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Fig. 2. (a) Spectral energy distribution, and (b) time-dependence of the light source
based on manufacturer data

The initial BR sensor model consists of two intermediate states. Its purpose
is to simulate the BR molecule photocycles between the states B and M. The
model takes into account the total number of molecules in the sensor to enable
future comparison of the results with the physical measurements. As the base for
building the two-state model representing the BR states during the photocycle,
the following rate-equation was used [13]:

∂B(t)
∂t

= −(F (t)sBB(t) − F (t)sMM(t)) +
1
τ

M(t) (1)

where B(t) and M(t) are the number of molecules in the particular states at
time t, F (t) is the photon flux, and sB and sM are the interaction cross sections
of molecules, where sB = σMΦB. τ defines the thermal transition time for the
relaxation from the M to B state. The interaction cross section defines a set of
molecules which transit from the B state to the M state, σ is the absorption
cross section and Φ is the quantum efficiency for a particular transition. The
data in the form of molar absorption coeffient ε [Mol−1cm−1] can be converted
to the absorption cross-section as follows:

σB =
ε

NA
0.1ln10 (2)

where NA is the Avogadro constant. With discrete time used in Simulink models,
the number of molecules in M and B states at time t can be derived based on
Eq. 1 as follows:

Mt = N0 − Bt (3)

Bt = Bt−1 − Bt−1sBFt−1 + Mt−1sMFt−1 + Mt−1
T

τ
(4)
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where N0 is the total number of molecules in the sensor, and T is the fixed
time step. When the sensor is illuminated by the photon flux F , the number of
molecules moving from the B state to M state is defined by Bt−1sBFt−1 in the
Eq. 4. If there is no light, the molecules return back to the B state by thermal
relaxation, according to Mt−1

T
τ in the Eq. 4. In the case where there is light,

some of the molecules return to the B state according to Mt−1sMFt−1.
Because the light source model represents the output as a discrete energy

spectrum changing with time, the energy must be converted to the photon flux.
This conversion is done by solving the number of photons from

N(λ, t) =
λE(λ)

hc
, (5)

where E(λ) is the spectral energy distribution, h is the Planck constant and c is
the speed of light.

The Simulink model is shown in Fig. 3. The absorption cross-section and quan-
tum efficiency for each state are considered as constants. Therefore, the discrete
photon flux is multiplied by the specific interaction cross-section and separated
using the demux-block for the next stage. Since FB(t) · sB and FM (t) · sM is al-
ready available, it is only necessary to multiply these samples with the B(t) and
M(t), which is done in Simulink simply by using the product-of-elements block.

From the amount of active molecules in the sensor, the number of molecules
in the M state is subtracted, and the number of molecules returning from the M
state is added. Now, the number of molecules in the B state is known, which is
multiplied by the FB(t)sB producing the number of molecules excited from the B
state to the M state at time t. The number of molecules excited to the M state is
added to the number of molecules already in that state. From the previous sum,
the number of molecules which is returned to the B state by thermal relaxation
and the number of molecules returned to the B state by the photon absorption
are subtracted. Thermal relaxation is simulated in Matlab so that the number
of molecules in the M state is multiplied with the 1

τ T , where T is the simulation
timestep and τ the thermal relaxation time.

3 Experiments and Results

3.1 Simulation

The temporal characteristics of the three types of BR sensors were simulated.
The parameters for the experiment were derived from the proposed microscale
imaging device consisting of 1 µm2 elements of the three BR types [15]. The pa-
rameters for the light source model were 160 mJ (discharge energy) and 100 Hz
(pulsing frequency). The discharge energy was not varied in these simulations be-
cause, within a reasonable intensity range, the photoelectric response amplitude
of BR has been shown to be linearly dependent on the light intensity [18].

For the BR sensors, most of the parameters were selected based on literature:
the quantum efficiencies used were ΦB = 0.64 [23], the relaxation times of the M
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Fig. 3. Implementation of the two-state model with the Simulink

state were 10 ms, 250 ms, and 620 s for the wild-type, 3,4-didehydro, and 4-keto
BR respectively [2], and the molar absorption coefficients were according to [11].
The initial value for the quantum efficiency of the M state was ΦM = 0.64. The
fixed time step for the simulations was 77.6699 ns which was more than accurate
for the two-state model with the used parameters.
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Fig. 4. Simulated populations of the B (left) and M (right) states of the wild-type
bacteriorhodopsin sensor element. The triangles denote the times of the light pulses.
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Fig. 5. Simulated populations of the B (left) and M (right) states of the 3,4-didehydro
bacteriorhodopsin sensor element. The triangles denote the times of the light pulses.
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Fig. 6. Simulated populations of the B (left) and M (right) states of the 4-keto bacte-
riorhodopsin sensor element. The triangles denote the times of the light pulses.

The simulation results shown in Figures 4-6 show the differences between the
three types of BR. The relaxation times cause different population trends for the
three cases, but none of them fully saturate to the M state. This is because the
return to the ground state B occurs due to thermal relaxation and also because
of photostimulation [20]. The effect of relaxation time differences can be clearly
seen when comparing the simulations: the short relaxation time of the wild-type
BR causes the M state population to decay considerably before the arrival of
the next light pulse. On the other hand, the 4-keto BR does not saturate fully
to the M state only because of photostimulation.

4 Discussion and Future Work

Based on the simulation results, it is clear that the model is suitable for experi-
mental design of artificial retina based on a biomolecule. The model can be used
to study and demonstrate the effect of changes in the sensor, and in the light
excitation used. The simulation model can also be used to study interfacing to
the electronics. Currently, the adjustable parameters include BR concentration,
sensor size, relaxation times of the photocycle intermediates, light source dis-
charge energy, pulsing frequency, output time-dependent spectrum, and spectral
filtering.
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As the future work, the model will be improved by including the state-of-
the-art photocycles for the three BR types, an orientation coefficient for the
BR molecules within the sensor, and a separate model to convert the molecule
populations into electric signals [14]. The model will be validated by comparing
the simulation results to physical measurement data with rebuilt electronics to
register the photoelectric responses. A streamlined version of the model will
be also developed to enable real-time demonstration of the functionality, and
additional Simulink blocks will be developed for other measurement devices when
needed.
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Abstract. The general setting for our work is to locate language perception and 
production within the broader context of brain mechanisms for action and  
perception in general, modeling brain function in terms of the competition and 
cooperation of schemas. Particular emphasis is placed on mirror neurons – neu-
rons active both for execution of a certain class of actions and for recognition of 
a (possibly broader) class of similar actions. We build on the early VISIONS 
model of schema-based computer analysis of static scenes to present SemRep, a 
graphical representation of dynamic visual scenes designed to support the  
generation of varied descriptions of episodes. Mechanisms for parsing and pro-
duction of sentences are currently being implemented within Template Con-
struction Grammar (TCG), a new form of construction grammar distinguished 
by its use of SemRep to express semantics. 

Keywords: action, action recognition, brain mechanisms, competition and coop-
eration, construction grammar, dynamic visual scenes, language perception, lan-
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1   Introduction 

The present section provides the background for the novel material of this paper: 
Section 2, which presents SemRep, a graphical representation of dynamic visual 
scenes designed to support the generation of varied descriptions of episodes; and 
Section 3, which presents Template Construction Grammar (TCG), the version of 
construction grammar in which we locate our current efforts to implement mecha-
nisms for the parsing and production of sentences. We also summarize the Mirror 
System Hypothesis, an evolutionary framework for analyzing brain mechanisms of 
language perception and production which places particular emphasis on the role of 
mirror neurons. We briefly note that the brain may be modeled in terms of the compe-
tition and cooperation of schemas. Finally, we recall key features of the early 
VISIONS model of schema-based computer analysis of static scenes to provide back-
ground for the design of SemRep. 
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1.1   Schemas Which Compete and Cooperate 

Vision is often seen as a process that classifies visual input, e.g., recognizing faces 
from photographs, or segmenting a scene and labeling the regions, or detecting char-
acteristic patterns of motion in a videoclip. However, our approach to vision is con-
cerned with its relevance to the ongoing behavior of an embodied agent be it frog, rat, 
monkey, human or robot [1, 2] – we view vision under the general rubric of action-
oriented perception, as the “active organism” seeks from the world the information it 
needs to pursue its chosen course of action. A perceptual schema not only determines 
whether a given "domain of interaction" (an action-oriented generalization of the 
notion of object) is present in the environment but can also provide parameters con-
cerning the current relationship of the organism with that domain. Motor schemas 
provide the control systems which can be coordinated to effect the wide variety of 
movement. 

A coordinated control program is a schema assemblage which processes input via 
perceptual schemas and delivers its output via motor schemas, interweaving the acti-
vations of these schemas in accordance with the current task and sensory environment 
to mediate more complex behaviors [3]. A given action may be invoked in a wide 
variety of circumstances; a given perception may precede many courses of action. 
There is no one grand "apple schema" which links all "apple perception strategies" to 
"every action that involves an apple". Moreover, in the schema-theoretic approach, 
"apple perception" is not mere categorization − "this is an apple" − but may provide 
access to a range of parameters relevant to interaction with the apple at hand. 

1.2   The VISIONS System 

An early example of schema-based interpretation for visual scene analysis in the 
VISIONS system [4]. However, it is not an action-oriented system, but rather deploys 
a set of perceptual schemas to label objects in a static visual scene. In VISIONS, there 
is no extraction of gist – rather, the gist is prespecified so that only those schemas are 
deployed relevant to recognizing a certain kind of scene (e.g., an outdoor scene with 
houses, trees, lawn, etc.). Low-level processes take an image of such an outdoor vis-
ual scene and extract and builds a representation in the intermediate database − in-
cluding contours and surfaces tagged with features such as color, texture, shape, size 
and location. An important point is that the segmentation of the scene in the interme-
diate database is based not only on bottom-up input (data-driven) but also on top-
down hypotheses (e.g., that a large region may correspond to two objects, and thus 
should be resegmented). 

VISIONS applies perceptual schemas across the whole intermediate representation 
to form confidence values for the presence of objects like houses, walls and trees. The 
schemas are stored in LTM (long-term memory), while the state of interpretation of 
the particular scene unfolds in STM (short-term or working memory) as a network of 
schema instances which link parameterized copies of schemas to specific portions of 
the image to represent aspects of the scene of continuing relevance. 

Interpretation of a novel scene starts with the data-driven instantiation of several 
schemas (e.g., a certain range of color and texture might cue an instance of the foliage 
schema for a certain region of the image). When a schema instance is activated, it is 
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linked with an associated area of the image and an associated set of local variables. 
Each schema instance in STM has an associated confidence level which changes on 
the basis of interactions with other units in STM. The STM network makes context 
explicit: each object represents a context for further processing. Thus, once several 
schema instances are active, they may instantiate others in a “hypothesis-driven” way 
(e.g., recognizing what appears to be a roof will activate an instance of the house 
schema to seek confirming evidence in the region below that of the putative roof). 
Ensuing computation is based on the competition and cooperation of concurrently 
active schema instances. Once a number of schema instances have been activated, the 
schema network is invoked to formulate hypotheses, set goals, and then iterate the 
process of adjusting the activity level of schemas linked to the image until a coherent 
interpretation of (part of) the scene is obtained. VISIONS uses activation values so 
that schema instances may compete and cooperate to determine which ones enter into 
the equilibrium schema analysis of a visual scene. (The HEARSAY speech under-
standing system [5] extends this into the time domain. In HEARSAY, entities at dif-
ferent levels – phonemes, words, phrases and sentences compete and cooperate to 
cover certain time periods of the auditory input in a consistent fashion. But in the end, 
what emerges is that single coherent symbolic representation.) Cooperation yields a 
pattern of "strengthened alliances" between mutually consistent schema instances that 
allows them to achieve high activity levels to constitute the overall solution of a prob-
lem. As a result of competition, instances which do not meet the evolving consensus 
lose activity, and thus are not part of this solution (though their continuing subthresh-
old activity may well affect later behavior). Successful instances of perceptual sche-
mas become part of the current short-term model of the environment. 

The classic VISIONS system had only a small number of schemas at its disposal, 
and so could afford to be lax about scheduling their application. However, for visual 
systems operating in a complex world, many schemas are potentially applicable, and 
many features of the environment are interpretable. In this case, “attention” – the 
scheduling of resources to process specific parts of the image in particular ways – 
becomes crucial. How this may be accomplished is described elsewhere [6], as is the 
way in which VISIONS may be extended to mediate action-oriented perception by an 
agent in continuous interaction with its environment [2]. 

1.3   From Visual Control of Grasping to Mirror Neurons 

The minimal neuroanatomy of the brain of the macaque monkey and the human (or of 
mammals generally) that we need here is that the cerebral cortex can be divided into 
four lobes: the occipital lobe at the back (which includes primary visual cortex); the 
parietal lobe (moving up and forward from the occipital lobe); the frontal lobe and 
then moving back beneath frontal and parietal cortex, the temporal lobe. Prefrontal 
cortex is at the front of the frontal lobe, not in front of the frontal lobe. For the mo-
ment, we are particularly interested in three areas: 

• Parietal area AIP, which is the anterior region within a fold of parietal cor-
tex called the intra-parietal sulcus, 

• A ventral region of premotor area called F5, and 
• Inferotemporal cortex (IT), a region of the temporal lobe particularly asso-

ciated with object recognition. 
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AIP and F5 anchor the cortical circuit in macaque which transforms visual infor-
mation on intrinsic properties of an object into hand movements for grasping it. Dis-
charge in most grasp-related F5 neurons correlates with an action rather than with the 
individual movements that form it so that one may relate F5 neurons to various motor 
schemas corresponding to the action associated with their discharge: 

The FARS (Fagg-Arbib-Rizzolatti-Sakata) model [7] addresses key data on F5 and 
AIP from the labs of Giacomo Rizzolatti in Parma and Hideo Sakata in Tokyo, re-
spectively. In the FARS model, area cIPS (another parietal area – the details do not 
matter for this exposition) provides visual input to parietal area AIP concerning the 
position and orientation of the object's surfaces. AIP then extracts the affordances the 
object offers for grasping (i.e., the visually grounded encoding of “motor opportuni-
ties” for grasping the object, rather than its classification [8]). The basic pathway AIP 
→ F5 → F1 (primary motor cortex) of the FARS model then transforms the (neural 
code for) the affordance into the coding for the appropriate motor schema in F5 and 
thence to the appropriate detailed descending motor control signals (F1). 

Going beyond the empirical data then available, FARS [7] stressed that there may 
be several ways to grasp an object and thus hypothesized (a) that object recognition 
(mediated by IT) can affect the computation of working memory, task constraints and 
instruction stimuli in various parts of prefrontal cortex (PFC), and (b) that strong 
connections from PFC can bias the selection in the AIP → F5 pathway of which grasp 
to execute. The two major paths from visual cortex via parietal cortex (e.g., AIP) and 
inferotemporal cortex (e.g., IT) are labeled as the dorsal and ventral paths, respec-
tively. The dorsal path is concerned with the “how” or parameterization of action, 
while the ventral path encodes the “what” or knowledge of action, appropriate to 
planning a course of action rather than the fine details of its execution. 

To proceed, we must note the discovery of a very significant subset of the F5 neu-
rons related to grasping – the mirror neurons. These neurons are active not only when 
the monkey executes a specific hand action but also when it observes a human or 
other monkey carrying out a similar action. These neurons constitute the "mirror sys-
tem for grasping” in the monkey and we say that these neurons provide the neural 
code for matching execution and observation of hand movements. (By contrast, the 
canonical neurons – which are the F5 neurons that actually get modeled in FARS – 
are active for execution but not for observation.) A mirror system for a class X of 
actions is a region of the brain that, compared with other situations, becomes more 
active both when actions from class X are observed and when actions from class X 
are executed. Mirror neurons exist for a range of actions in the macaque monkey, and 
brain imaging experiments have demonstrated a mirror system for grasping in the 
human, but we have no single neuron studies proving the reasonable hypothesis that 
the human mirror system for grasping contains mirror neurons for specific grasps. In 
work not reported here, we are extending our models of the mirror system [9, 10] 
from hand movements to action recognition more generally. Our prior models are 
based on neural networks for recognition of trajectory of the hand relative to an ob-
ject. They use an object-centered coordinate system to recognize whether the hand is 
on track to perform a particular action upon the object, which may explain data in 
[11]. 
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1.4   From Mirror Neurons to the Mirror System Hypothesis 

Area F5 in the macaque is homologous to area 44 in the human, part of Broca’s area, 
an area notmally associated with speech production. Yet this area in humans contains 
a mirror system to grasping. Tese data led Arbib & Rizzolatti [12] to develop the 
Mirror-System Hypothesis – Language evolved from a basic mechanism not origi-
nally related to communication: the mirror system for grasping with its capacity to 
generate and recognize a set of actions. More specifically, human Broca’s area con-
tains a mirror system for grasping which is homologous to the F5 mirror system of 
macaque, and this provides the evolutionary basis for language parity – namely  that 
an utterance means roughly the same for both speaker and hearer. 

This provides a neurobiological “missing link” for the hypothesis that communi- 
cation based on manual gesture preceded speech in language evolution. 

Arbib [13] has amplified the original account of Rizzolatti and Arbib to hypothe-
size seven stages in the evolution of language. Rather than offer details here,  we 
simply note the synthesis of ideas on the dorsal and ventral pathways with the concept 
of mirror neurons and schema assemblages provided by [14]. 

DORSAL

Mirror for Words
LTM

WMHear/
See

LTM 

Schema network
WM

Perceptuo-motor
Schema assemblagePerceive

CONSTRUCTIONS

Mirror
for ActionsRecognize Act

VENTRAL+PFC
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Evolution:
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Communication (a)
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Fig. 1. Words link to schemas, not directly to the dorsal path for actions (from [14]) 

Saussure [15] distinguishes the Signifier from the Signified (or words from con-
cepts), but then highlights the “Sign” as combining these with the linkage between 
them. Our action-oriented view is that the basic concepts are realized as the percep-
tual and motor schemas of an organism acting in its world, and that that there is no 
direct labeling of one word for one concept. Rather, the linkage is many-to-one, com-
petitive and contextual, so that appropriate words to express a schema may vary from 
occasion to occasion, both because of the assemblage in which the schema instance is 
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currently embedded, and because of the state of the current discourse. Let us diagram 
this in a way which makes contact with all that has gone before. The lower 2 boxes of 
Figure 1 correspond to words and concepts, but we now make explicit, following the 
Mirror System Hypothesis, that we postulate that a mirror system for phonological 
expression (“words”) evolved atop the mirror system for grasping to serve communi-
cation integrating hand, face and voice. We also postulate that the concepts – for 
diverse actions, objects, attributes and abstractions – are represented by a network of 
concepts stored in LTM, with our current “conceptual content” formed as an assem-
blage of schema instances in Working Memory (WM – compare the STM of 
VISIONS). Analogously, the Mirror for Words contains a network of word forms in 
LTM and keeps track of the current utterance in its own working memory. 

The perhaps surprising aspect of the conceptual model shown here is that the arrow 
linking the “Mirror for Actions” to the “Mirror for Words” expresses an evolutionary 
relationship, not a flow of data. Rather than directly linking the dorsal action repre-
sentation to the dorsal representation of phonological form, we have two relationships 
between the dorsal pathway for the Mirror for Actions and the schema networks and 
assemblages of the ventral pathway and prefrontal cortex (PFC). The rightmost path 
in Figure 1 corresponds to the paths in FARS whereby IT and PFC can affect the 
pattern of dorsal control of action. The path just to the left of this shows that the dor-
sal representation of actions can only be linked to verbs via schemas. 

Rather than pursuing the study of brain mechanisms further, we work within the 
framework provided by [6] to ask the following: “If we extend our interest in vision 
from the recognition of the disposition of objects in static scenes to the relations be-
tween agents, objects and actions dynamic visual scenes, what sort of representations 
are appropriate to interface the visual and language systems?” 

2   SemRep: A Semantic Representation for Dynamic Visual Scenes 

SemRep is a hierarchical graph-like representation of a visual scene, whether static or 
dynamically extended over time (an episode). A SemRep graph structure represents 
the semantics of some of the cognitively salient elements of the scene. We see Sem-
Rep as an extension of the schema assemblages generated by the VISIONS system, 
but with the crucial addition of actions and of extension in time. Only cognitively 
important events are encoded into SemRep while others are simply discarded or ab-
sorbed into other entities. The same scene can have many different SemReps, depend-
ing on the current task and on the history of attention. A prime motivation is to ensure 
that this representation be usable to produce sentences that describe the scene, allow-
ing SemRep to bridge between vision and language. 

The structure of SemRep does not have to follow the actual changes of an event of 
interest, but may focus on “conceptually significant changes” – a crucial difference 
from a sensorimotor representation, where motor control requires continual tracking 
of task-related parameters. For example, an event describable by the sentence “Jack 
kicks a ball into the net” actually covers several time periods: [Jack’s foot swings]  
[Jack’s foot hits a ball]  [the ball flies]  [the ball gets into the net]. Note that 



110 M.A. Arbib and J. Lee 

[Jack’s foot swings] and [Jack’s foot hits a ball] are combined into [Jack kicks a ball], 
and [the ball flies] is omitted. This taps into a schema network, which can use stored 
knowledge to “unpack” items of SemRep when necessary. On the other hand, a 
Gricean convention makes it unlikely that SemRep will include details that can be 
retrieved in this way, or details that are already known to speaker and hearer. 

The same principle is applied to the topology of SemRep entities. The arrangement 
of conceptual entities and their connections might or might not follow that of the 
actual images and objects. A description “a man without an arm”, for example, does 
not exactly match an actual object setting since it encodes the conceptual entity of an 
arm which is missing in the actual image. This relates to the previous point: one may 
need to include what is not in the image to block standard inferences in cases where 
they are inappropriate. This is akin the notion of inheritance in semantic networks. 

Similarly, an event or entity with higher cognitive importance – or “discourse im-
portance”, what the speaker wishes to emphasize for the hearer – will be assigned to a 
higher level in the hierarchy independently of the methodology by which the entity is 
specified. For instance, even if the vision system had specified MAN first and this led 
to the zooming in on the face, FACE might be ranked higher in SemRep than MAN if 
the former is currently of greater interest. 

 

  
 

 

Fig. 2. Top: A picture of a woman hitting a man (original image from “Invisible Man Jangsu 
Choi”, Korean Broadcasting System). Bottom: A SemRep graph that could be generated for the 
picture. This might yiels the sentence “A pretty woman in blue hits a man.” 
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In order to encode the various conceptual entities and their relationships, SemRep 
structure takes the form of a graph structure. The two major elements of a SemRep 
graph are ‘node’ and ‘relation (directed edge)’. Agents and various types of objects 
are usually represented as nodes, but we also use nodes to represent attributes. Rela-
tionships between nodes include actions linking agent and patient, spatial configura-
tion, possessive relationship, movement direction or pointer which indicates the se-
mantically identical node are represented as relations, as well as the relation between 
a node and its attributes. As mentioned above, a vision system can be one of the sys-
tems that create SemRep structure by imposing nodes and relations upon a visual 
image (or “videoclip”). An area interesting enough to capture attention is linked to a 
node (or a relation if an action is happening in that area) and then relations are speci-
fied among the found nodes, presumably by shifting attention. While most types of 
node and some types of relation – such as spatial, possessive, attributive relations – 
are established by static (spatial) analysis, action relations require dynamic (spatio-
temporal) analysis. 

Both nodes and relations may be attached to more detailed semantic descriptions 
defined as “conceptual structures”. The properties of a recognized object are attached 
to a node for the object, and the semantics of an action are attached to an action rela-
tion. The attached concepts will later be translated into words by the language system. 
A relation includes the sets it relates and so a verb is not just a label for an action but 
incorporates restrictions on its slot fillers. However, the SemRep graph is not labeled 
with words but with more abstract descriptors, allowing the same graph to be ex-
pressed in multiple ways within a given language. Thus the concept YOUNG 
FEMALE could be translated into ‘girl’, ‘woman’ or even ‘kid’ and the action con-
cept HITTING WITH HAND could be translated into ‘hit’, ‘punch’ or ‘slap’. Again, 
the configuration where object A is placed vertically higher than B can be expressed 
as “A is above B”, “B is below A”, “A is on B”, etc. 

The action concept HIT may involve properties such as VIOLENT MOTION, 
BODY CONTACT, and CAUSING PAIN, and these properties implicitly show that 
the encoded concept describes an action. However, some of these processes may be 
directly perceptual (i.e., generated directly by the visual system) while others may be 
more inferential. It might be claimed [16] that mirror neurons will link action recogni-
tion to our own experience, so CAUSING PAIN might be perceived “directly”, while 
the woman’s ANGER might either be perceived directly or be more inferential. 

Thus we view SemRep as providing a graphical structure which encompasses one 
analysis which captures a subset of the agents, objects, actions and relationships that 
may be present in a given (temporally extended) visual scene. Nodes in SemRep may 
also be given a significance value which expresses the importance of a particular 
aspect of the scene. Thus the same scene may be described by “John loves Mary” or 
“Mary is loved by John” depending on whether the focus (higher significance value) 
is given to John or Mary, respectively. 

3   Template Construction Grammar (TCG) 

Where many linguists operate within the framework of generative grammar  
(e.g., [17]), we work within the framework of construction grammar (e.g., [18, 19]). 
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Constructions are form-meaning pairings which serve as basic building blocks for 
grammatical structure – each provides a detailed account of the pairing of a particular 
syntactic pattern with a particular semantic pattern, including phrase structures, idi-
oms, words and even morphemes. By contrast, in generative grammar, meaning is 
claimed to be derived from the systematic combination of lexical items and the func-
tional differences between the patterns that constructions capture are largely ignored. 

Generative grammar distinguishes the lexicon from the grammar, which is seen as 
having three separate components – phonological, syntactic and semantic – with link-
ing rules to map information from one component onto another. The rules of grammar 
are said to operate autonomously within each component, and any “rule breaking” 
within a particular language is restricted to idiosyncrasies captured within the lexicon. 
But what of idiomatic expressions like kick the bucket, shoot the breeze, take the bull 
by the horns or climb the wall? Should we consider their meanings as a supplement to 
the general rules of the syntactic and semantic components and their linking rules? 
Instead of this, Fillmore, Kay & O’Connor [20] suggested that the tools they used in 
analyzing idioms could form the basis for construction grammar as a new model of 
grammatical organization, with constructions ranging from lexical items to idioms to 
rules of quite general applicability [18]. Many linguists have teased out the rule-
governed and productive linguistic behaviors specific to each family of constructions. 
Constructions, like items in the lexicon, cut across the separate components of genera-
tive grammar to combine syntactic, semantic and even in some cases phonological 
information. The idea of construction grammar is thus to abandon the search for sepa-
rate rule systems within syntactic, semantic and phonological components and instead 
base the whole of grammar on the “cross-cutting” properties of constructions. 

Going beyond this “intra-linguistic” analysis, we suggest that “vision construc-
tions” may synergize with “grammar constructions” in structuring the analysis of a 
scene in relation to the demands of scene description [6] in a way which ties naturally 
to our discussion of VISIONS. We argue that the approach to language via a large but 
finite inventory of constructions coheres well with the notion of a large but finite 
inventory of “scene schemas” for visual analysis. Each constituent which expands a 
“slot” within a scene schema or verbal construction may be seen as a hierarchical 
structure in which extended attention to a given component of the scene extends the 
complexity of the constituents in the corresponding part of parse tree of a sentence. 
This enforces the view that visual scene analysis must encompass a wide variety of 
basic “schema networks” – more or less abstract SemReps in the conceptualization of 
the previous sentence – in the system of high-level vision, akin to those relating sky 
and roof, or roof, house and wall in the VISIONS system. Of course, we do not claim 
that all sentences are limited to descriptions of, or questions about, visual scenes, but 
we do suggest that understanding such descriptions and questions can ground an un-
derstanding of a wide range of language phenomena.  

We are currently implementing parsing and production systems for our own ver-
sion of construction grammar, Template Construction Grammar (TCG). TCG adopts 
two major policies of conventional construction grammar (CG): each construction 
specifies the mapping between form and meaning, and the systematic combination of 
constructions yields the whole grammatical structure. However, in TCG, the meaning 
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of an utterance is given as a SemRep graph (with suitable extensions to be provided in 
further work). A SemRep may correspond to one or more sentences, basically by 
covering the relevant portion of the given SemRep with a set of “small” subgraphs, 
where each is chosen such that a construction is available which expresses that sub-
graph in the given language. Figure 3 shows a construction defined in TCG, exempli-
fying the links that indicate which part of a “SemRep template” connect to which slot 
in a text form. Each construction encodes the specification of what can be mapped to 
which text/slot, and the mapping is assumed to be bidirectional – it can be used in 
production of a sentence as well as for comprehension. Most other computational 
approaches to CG, such as Fluid Construction Grammar (FCG) [21], are based on the 
use of predicate logic rather than graphs as the basis for constructions. 

 

Fig. 3. An example ‘[subject] [verb] [object]’ construction (a very general construction) in 
TCG. The template is an “abstract” SemRep, i.e., a graph like a SemRep but with either generic 
or (not in this case) specific labels on the edges and nodes, with each linked to a text or an 
empty slot for which there may be restrictions as to what can serve as slot fillers. 

In production mode, the template acts to match constraints for selecting proper 
constructions by being superimposed on the SemRep graph that is going to be ex-
pressed in words. The semantic constraint of each construction is considered to be 
encoded in the template since the template also contains concepts as well as the to-
pology of a SemRep graph. In comprehension mode, the template provides a frame 
where the interpreted meaning builds up as parsing progresses. The details of the 
interpreted SemRep graph are filled with the meaning of the constructions found by 
matching with the currently processed text (or word) one by one. Originally, form of 
each construction has to be a series of phonemes that would be combined into words, 
but it is assumed that these phonemes are already properly perceived and processed, 
and the correct words are given in a text form. 

As mentioned above, the template is an (abstract) SemRep graph. The matching 
process in production mode is done by comparing the template of a construction to 
the given SemRep graph. The contents (given as the attached concepts) of nodes and 
relations and the connective structure of nodes and relations is considered in the proc-
ess. The construction with the most ‘similar’ template will be chosen over other  
constructions, though provision must be made for backtracking. Note, too, that the 
similarity might be to a subgraph bottom up or a set of high-level nodes top-down – 
choices compete and cooperate till a spanning structure is formed. “Similarity” for the 
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attached concepts is decided, for example, by how many common attributes they 
share – SemRep includes (though we have omitted the details from this paper) the 
ability to capture concepts by the superimposed distributed representation of attrib-
utes. Again, similarity for the structure of the template is decided by how close the 
topology of the template is to the given SemRep graph – the number of nodes and 
relations has to be matched as well as the connections between them.  

 

Fig. 4. SemRep graph A represents a ‘black armchair’. Graphs B and C are “similar” to graph 
A but D and E are not. 

Embedded structure is another topological feature to  be considered. Matching re-
quires that the template of a construction is a “subset” of the given SemRep graph. In 
other words, the template should not be more specific than the graph being compared. 
This rule applies to both concepts and topology. For example, in Figure 4 graph C is 
an appropriate match to graph A since ARMCHAIR is a kind of CHAIR and BLACK 
is a kind of COLOR and the topology is the same as that of graph A. Graph B is also 
appropriate because the topology is less specific. Graph D is inappropriate since the 
relations (ATTRIBUTE and POSSESSION) do not match each other; and Graph E is 
inappropriate since SOFA is a more detailed concept than ARMCHAIR. Among the 
appropriate graphs B and C, graph C will win over the competition because it is more 
similar to graph A than is B. If there were a graph identical to graph C except that it 
had BLACK node instead of COLOR, then this graph would have been the winner.  

In the current version of TCG, the input text is assumed to be preprocessed and 
segmented into morphemes at a level that corresponds to the construction repertoire. 
Matching text can be somewhat simpler than matching templates since in matching 
text there is no need to perform complex comparison of graph structures. This is not 
to minimize the various obstacles to comprehending a sentence offered by anaphor, 
ellipsis, and ambiguity in interpretation, etc. And consider idiomatic expressions. For 
example, the idiom “a piece of cake” might be processed with a single construction 
which has the whole text in its form and the semantic meaning of “being easy”. But it 
also can be processed with one or more general constructions. Allowing constructions 
with more specific information to be selected provides one possible default (in this 
case, idiomatic constructions would win over general constructions) but the eventual 
system must provide mechanisms for broader context to settle the issue: in parsing 
“Would you like a piece of cake?”, the idiomatic construction is inappropriate. 

In order to apply constructions hierarchically, each construction is assigned a type 
which specifies a sort of grammatical category for the construction, but such a type is 
not the highly abstract syntactic category of generative grammar, but is more like an 
emergent categorization rule generated by the relationship between constructions in 
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the repertoire. Each empty slot in the form of a construction indicates the type of the 
construction that should fill the slot. 

When translating the given SemRep graph into a sentence, the graph would acti-
vate a number of constructions with matching templates. In TCG, the construction 
with the best-matching template will be selected and its form will be output as the 
translated text, but if the form has any empty slot, it should be filled first. An empty 
slot specifies not only the type of construction that is expected, but also indicates the 
area of SemRep that is going to be considered for comparison; each slot is linked to a 
pre-specified area in the template, and only an area of SemRep corresponding to that 
area is considered for finding matching constructions for the slot. The link between 
the template and form provides the form-meaning pairing of a construction in TCG. 

Since constructions are bidirectional, the same set of constructions used in produc-
tion of sentence are also used in comprehension. All of the matching (or activated) 
constructions are eligible for translation until further processing reveals ineligibility. 
As input text is read, it is compared to the forms of activated constructions and the 
constructions with unmatched forms are ruled out. Ambiguity may also be resolved 
based on contextual information, which is in this case is the translated SemRep graph. 
However, top-down influences in sentence comprehension are beyond the scope of 
the current version of TCG. 

The type of the activated construction is also treated as input to the system and the 
matching mechanism is very similar to that for the text case, except that it is matched 
with the slot in the form rather than the text. For example, if an input sentence is given 
as “A big dog barks” then the first word “a” would activate at least two constructions, “a 
[adjective] [noun]” and “a [noun]” (or “[determinant] [adjective] [noun]” and “[deter-
minant] [noun]” with “a” activating a construction of type [determinant]). Other con-
figurations are possible, depending on the construction repertoire.  

 

Fig. 5. The sentence “A pretty woman in blue hits a man” and the corresponding construction 
architecture. The language system would translate the SemRep graph in Figure 2 into the above 
sentence. During the process, constructions will be built into the hierarchical structure shown in 
the figure. 
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Given the activated constructions “a [adjective] [noun]” and “a [noun]”, the next 
word “big” would activate a construction whose type is [adjective], ruling out the 
second construction due to mismatch of the construction type required in the slot. 

Figure 5 shows one of the sentences that can be generated from the SemRep graph 
shown in Figure 2 and the resulted hierarchical build-up of constructions. Note that 
because of the multiple embedded structures in the WOMAN node, constructions for 
both “pretty woman” and “woman in blue” are present at the lowest level. These 
constructions are then combined into one expression “pretty woman in blue”. The set 
of constructions might differ from those of other speakers to some extent. In that case, 
the constructions could be organized in a different structure and the hierarchy among 
constructions might change.  

 

 

Fig. 6. Abstract constructions used for translation. These constructions are assumed to encode 
grammatical information.  

Figure 6 and Figure 7 provide detailed description for all the constructions used in 
this example. Some auxiliary information such as activation values, the tense or num-
ber is not shown but is assumed to be encoded in the templates (more precisely in the 
concept attached to the corresponding node or relation) of the constructions. Although 
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activation value is not considered here, it is – as we noted earlier –  important in de-
termining the sentence structure – whether it is active or passive. For some construc-
tions, such as SVO or REL_SVO, it is assumed that the activation value for the node 
corresponding to the agent of an action is higher than that of the patient node and this 
would lead to produce an active voice. Furthermore, construction VERB_3 is an ex-
ample of the negation of attributes. Only a single third object is eligible for the conju-
gation specified in the construction and this grammatical constraint is set by adding 
negation attributes. Relatively abstract constructions with complex templates and slots 
in the form are shown in Figure 6 and constructions corresponding to single words are 
shown in Figure 7. We leave it to the reader to “simulate” the processes of pars-
ing/comprehension and production whereby TCG finds the constructions which con-
vert the SemRep of Figure 2 into the sentence considered here, and vice versa. 

 

Fig. 7. This figure illustrates the sort of simple construction that corresponds to an element in 
the lexicon. These constructions are assumed to encode semantic information and can be di-
rectly translated into words. 

4   Conclusions 

4.1   How SemRep Reshapes Construction Grammar 

Template Construction Grammar (TCG) shares basic principles with other construc-
tion grammar approaches but is explcitly designed to link the semantics of sentences 
to the representation of visual scenes. However, the use SemRep involves a suffi-
ciently general graphical structure that we are confident of its extensibility to ther 
meanings. SemRep simplifies production and comprehension. Since the task seman-
tics are given as SemRep graphs, the sentence production process is reduced to a 
general task of matching graphs and the interpreted meaning of a sentence can be 
directly built by the combination of templates of the activated constructions in the 
comprehension process. 
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In addition to template and form pairings, constructions in TCG also encode auxil-
iary information such as type which specifies the grammatical role that the construc-
tion plays. With this information at hand, the language system can build and parse 
various kinds of grammatical structures appropriate to the task. In any case, the de-
tailed resulting structure is largely dependent on the construction repertoire of the 
system. The repertoire is maintained in a very dynamic and flexible way, well repre-
senting the grammatical constitution and usage pattern that language shows. 

Moreover, the concept attached to a node and relation in SemRep graph in TCG 
formalism exploits the combination of attributes or properties, providing a key com-
parison mechanism among conceptual entities. During production of sentences, a 
given graph activates a number of constructions and is compared with a number of 
constructions for similarity. Only the winner is to be chosen to produce sentences. 

On the other hand, in comprehension mode, a textual form is basically what acti-
vates constructions by an inverse matching mechanism. In this case, the form, not the 
template, is what is being compared against the input. When proper constructions are 
chosen, a new SemRep graph would be built from the templates of the constructions. 
When multiple constructions are to be combined into a single node or relation, the 
attributes of the concept of that entity will be added up, getting more specific. In this 
way, the transformation between different kind of hierarchical structures (back and 
forth between SemRep and sentence structure) can be executed. 

4.2   Another Perspective 

The literature on brain mechanisms of vision, and on forms of representation of visual 
information is, of course vast, and beyond the scope of this article. A subfield of great 
relevance here is that of vision in embodied agents, with an interest in linking explicit 
computational analysis of vision in robots to studies of the role of vision in animal 
and human behavior. Clearly, this field includes our interest in computational models 
of the control of action and of mirror systems which are involved in both the self’s 
control of action and its vision-based recognition of actions conducted by others. In 
particular, then, we need to situate our work within the set of studies which unite the 
study of vision in embodied agents with studies of communication (especially using 
language) between such agents concerning their visual perceptions (e.g., [22-24]. 
Another area of concern is discussion of the extent to which construction grammar 
can be linked to implementations based on neural networks or brain mechanisms (e.g., 
[25, 26]). However, in this paper, we restrict our discussion to one paper, [27], from 
the group of Luc Steels, a group which has not only been a leader in linking the study 
of vision in embodied agents with studies of communication, but has done so within 
the framework of simulated evolution (though not linked to neurobiology), and has 
developed its own version of construction grammar, Fluid Construction Grammar 
(FCG).  

Steels and Loetzsch [27] use interactions between robots to study the effect of per-
spective alignment on the emergence of spatial language. Although the authors state 
that their “experiments rest on the Fluid Construction Grammar framework [21], 
which is highly complex software for language processing”, there is no syntax in the 
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language studied in their paper – rather, visual scenes are described simply by a list of 
words which are associated with one or more categories applicable to the observed 
scene. We postpone a comparison (and, perhaps integration) of TCG and FCG for 
another occasion, and instead focus on scene representation in [27] and then compare 
it with SemRep to help clarify directions for future work.  

[27] employs an actual vision system to generate scene descriptions from visual 
input provided by cameras mounted on 2 or more AIBO robots. In a typical episode, 
two robots are placed in a cluttered room and move about till each has both the other 
robot and a ball in their visual field; they then stay still while a human uses a stick to 
move the ball from one position to the other. Each robot generates a description of the 
ball’s trajectory using Cartesian coordinates for the ground plane, with the robot at the 
origin and its direction of gaze determining the vertical axis. The descriptors given are  

(1) x of start point, distance to start point, x of end point, y of end point,  
distance to end point, angle to end point, angle of movement, length of  
trajectory, change in x, change in y, change in angle, and change in distance. 

The key property of language addressed in [27] is that of perspective alignment – 
different observers may describe the same scene in deifferent terms – does “on the 
left”, for example, mean “on the speaker’s left” or “on the hearer’s left”? To address 
this challenge, each robot is programmed to use its vision to judge the position and 
orientation of the other robot and then estimate the above coordinates (1) as seen from 
the other robot’s viewpoint. This perspective transformation is a simple translation 
and rotation in Euclidean space, but the result is an estimate because the robot’s as-
sessment of the relevant coordinates may contain errors and these are unlikely to 
correlate with errors of the other robot. 

Neither words nor categories for describing the scene are provided in advance. 
Rather, simple discriminant trees are used to create categories: every feature in (1) has 
a discrimination tree which divides the range of possible values into equally sized 
regions, and every region carves out a single category. Letter strings can be randomly 
generated to provide “words”, and weighted, many-to-many links between words and 
categories can be stored in a bidirectional associative memory [28]. However, from 
this random initial state, interactions between 2 or more robots allow them to end up 
with a set of categories, and a set of words associated with those categories, that allow 
any 2 robots to communicate effectively about a scene, adopting either their own 
perspective or that of the other robot. As noted, each “utterance” consists of a small 
set of words; these activate certain categories. A robot will strengthen its current 
“knowledge” if it can match the word string it “hears” to the scene it “sees” or to its 
estimated perspective for the other. If neither match is possible, it will change its 
categories and/or vocabulary and/or bidirectional association between words and 
concepts to better match one perspective with the utterance. 

More specifically, learning extends over thousands of episodes. After a successful 
exchange, the score of the lexical entries that were used for production or parsing is 
increased by 0.05. At the same time, the scores of competing lexical entries with the 
same form but different meanings are decreased by 0.05 (lateral inhibition). In case of 
a failure, the score of the involved items is decreased by 0.05. This adjustment acts as 
a reinforcement learning mechanism and also as priming mechanism so that agents 
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gradually align their lexicons in consecutive games. Similar mechanisms apply to the 
updating – and eventual alignment – of categories in each robot on the basis of suc-
cess or failure in each exchange. 

With this, we use our understanding of [27] to sharpen our understanding of Sem-
Rep and to pose challenges for future research:  

Rather than use a very limited type of description  –how the same object, the ball, 
moves in each episode – we are concerned with a flexible description of an episode, 
or small number of contiguous episodes, that labels the visual field with concepts 
related to agents, objects and actions and their attributes, and links them in hierarchi-
cal ways. In other words, where [27] focuses on a single intransitive movement (the 
ball rolls), we have a special concern with transitive actions, based on evaluating the 
movement of an agent with respect to an object or other agent. 

We have not implemented a vision front-end, but note that in fact the language-
related work in [27] does not make essential use of the vision front-end, since the 
“real processing” starts with the Cartesian coordinates provided in (1) both from the 
robot’s own perspective and as estimated for the other robot’s perspective. In terms of 
the VISIONS system [4], this would correspond to the converged state of the inter-
mediate database, but rather than giving coordinates of a single trajectory in the 
ground plane, an extension of VISIONS would label shapes and edges and their rela-
tive position and motion in the three-dimensional visual field of the observer. Just as 
[27] uses this description as the basis for extracting a small set of categories, so we 
would use the intermediate database as the basis for constructing a SemRep, while 
noting that the choice of SemRep may depend on attentional factors and task rele-
vance [6, 29], including the state of discourse. 

Concepts and words are emergent in [27] through attempts to share descriptions of 
observed scenes. SemRep uses hand-crafted concepts, words and constructions. 

Perspective-taking is almost obligatory in [27] – in all but one experiment (see be-
low) each robot must compute the description (1) as seen by the other robot. In Sem-
Rep, we do not use any such global transformations, but rather rely on a set of appro-
priate “subscene schemas”, so that a portion of the same SemRep could be described 
by “the man to the left of the woman” or, if we take into account the orientation of the 
woman’s body, “the man in front of the woman.” We note the further challenge of 
deciding when two SemReps could apply to the same scene as viewed from different 
perspectives (perhaps with different foci of attention) or, more subtly, could describe 
two different time slices” of a spatially extended scene. 

“Cognitive effort” is defined in [27] as the average number of perspective trans-
formations that the hearer has to perform. Their Figure 12 reports an experiment 
which shows (perhaps unsurprisingly) a marked reduction in cognitive effort when 
perspective is marked, i.e., when one of the categories that must be expressed is 
whether the trajectory descriptors in (1) are based on the perspective of the “speaker” 
or the “hearer”. In this experiment, separate words emerged for perspective in addi-
tion to words where perspective is part of the lexicalization of the predicate. Steels 
and Loetzsch [27] comment that “This is similar to natural language where in the ball 
to my left, my is a general indicator of perspective, whereas in […] come and go, per-
spective is integrated in the individual word” and assert that “this experiment explains 
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why perspective marking occurs in human languages and why sometimes we find 
specific words for it.” However, the experiment does not explain this directly, since 
the choice of perspective is added by the authors as an explicit category – thus making 
it likely that words will emerge to express or incorporate this category. However, an 
important evolutionary point is made: if the perspective category or word is available 
(whether through biological or cultural evolution) then processing is more efficient, 
thus giving creatures with access to such items a selective advantage. When we turn 
from robot routines to human development, the question is how the child comes to 
recognize its similarity and difference from others so that terms like “my left hand” 
versus “your left hand” become understood, and then how such spatial terms extend 
from the body to peripersonal space and then to space generally. It is not surprising 
that – just as in the language games described here – different languages will describe 
this extension in different ways.  

We close by a (perhaps surprising) link from the present discussion back to our 
earlier concern with models of the mirror system. Figure 10 of [27] summarizes an 
experiment in which the agents perceive the scene through their own camera but they 
“do not take perspective into account.” In this case, the agents do not manage to agree 
on a shared set of spatial terms. Steels and Loetzsch concludes that this proves that 
“grounded spatial language without perspective does not lead to the bootstrapping of 
a successful communication system.” However, this does not take account of the 
extent to which the results depend on what is built into the system. Other approaches 
are possible. Suppose the room had several distinctive landmarks. Then instead of 
locating the ball in one of the two prespecified Cartesian coordinate systems, one 
could locate the ball in terms of descriptions like “It started close to landmark-3 and 
moved halfway to landmark-7.” (In neural terms, such a description might build on 
the activity of place cells in the hippocampus [30].) Here no perspective transforma-
tion is involved. The latter approach is more like that taken in the MNS models  
[9,10]. Instead of describing the movement of the hand in, e.g., retinal coordinates, we 
there described it in object-centered coordinates, thus eliminating the issue of per-
spective-taking. Of course, this does not guarantee that our assumption is justified. 
However, one argument in favor of (but not proving) the assumption is that the need 
for visual feedback for dexterity would provide selection pressure for a system that 
could translate retinal input into such an object-centered (or affordance-based) view 
of the hand. 
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Abstract. The aim of this paper is to introduce a novel, biologically inspired ap-
proach to extract visual features relevant for controlling and understanding reach-
to-grasp actions. One of the most relevant of such features has been found to be
the grip-size defined as the index finger-tip - thumb-tip distance. For this reason,
in this paper we focus on this feature. The human visual system is naturally able to
recognize many hand configurations – e.g. gestures or different types of grasps –
without being affected substantially by the (observer) viewpoint. The proposed
computational model preserves this nice ability.

It is very likely that this ability may play a crucial role in action understanding
within primates (and thus human beings). More specifically, a family of neurons
in macaque’s ventral premotor area F5 have been discovered which are highly ac-
tive in correlation with a series of grasp–like movements. This findings triggered
a fierce debate about imitation and learning, and inspired several computational
models among which the most detailed is due to Oztop and Arbib (MNS model).
As a variant of the MNS model, in a previous paper, we proposed the MEP model
which relies on an expected perception mechanism. However, both models as-
sume the existence of a mechanism to extract visual features in a viewpoint inde-
pendent way but neither of them faces the problem of how this mechanism can
be achieved in a biologically plausible way. In this paper we propose a neural
network model for the extraction of visual features in a viewpoint independent
manner, which is based on the work by Poggio and Riesenhuber.

1 Introduction

Over the last few years researchers have been taking a keen interest in developing
computational models for action recognition. From a pragmatic point of view, action
recognition can be considered a (very interesting) sub-topic of pattern recognition and
computer vision. Indeed, to recognize correctly actions is a challenging task because it
requires to detect and recognize not only static/dynamic objects and (parts of) human
beings present in the scene, but also the interaction among them.

One can easily distinguish between two main impulses of the research work un-
dertaken in this area. The first one comes mainly from basic and applied reseach in
computer science, where efficient algorithms for action recognition are developed to be
used for applications in many technological contexts such as, e.g., robotics or intelligent
surveillance systems. It is worth pointing out that, due to the great variability of input
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patterns, prospective algorithmics for such systems must show a large invariance under
changes in image acquisition conditions, such as the viewpoint.

On the opposite side, a second impulse comes from computational neuroscience.
Our everyday experience shows that our brain is terrifically good at understanding other
people’s actions (and intentions). In order to study these high level brain functions one
needs to develop a suitable model of action recognition. Possible neural candidates re-
sponsible for such key ability have been discovered in the ventral premotor area F5
in macaques. The activity of this specific population of neurons seems correlated with
grasp–like actions. A subpopulation of these neurons are called mirror neurons (MNs)
because they exhibit multi–modal properties by responding congruently to the observa-
tion of different types of grasps performed either by another monkey or by the observer
himself – that is to say that mirror neurons are involved in both sensor and motor ac-
tivity. Many functional interpetrations speculate about high level functions of mirror
neurons, such as action understanding, imitation, and language but relatively few com-
putational models of mirror neuron behaviour have been proposed. As it will be clear
after Section 1.1, some of them definitely need a system for extracting visual features
invariant (to some extent) to changes of the viewpoint.

The rest of the paper is organized as follows. SubSection 1.1 briefly summarises
the current scientific/experimental knowledge about the mirror system. In Section 1.2
the basics of the proposed approach are presented, while all the details are described
in Sections 2 and 3. The effectiveness of the method and the invariance properties are
tested and evaluated experimentally in Section 4. Finally, in Section 5 we summarize
the results obtained and discuss possible future directions of this work.

1.1 Background

In this Section we recall the basic findings about mirror neurons, and refer to two com-
putational models proposed over the last few years in order to make it clear why they
would considerably benefit from the results described in this paper.

Some of the macaque’s cortical circuits (e.g., PF, AIP–F5 circuit) have been found
to be strongly involved in a series of prehension movements that relate body parts (ef-
fectors like hand or mouth) of the subject to a three-dimensional target-object (e.g.,
to grasp a food piece by a precision grip). More specifically, these findings have been
found in relation to actions which require arm and hand movements in order to reach
and manipulate target-objects [1]. Moreover, these findings assume a special impor-
tance because their functional interpretations have been related to such concepts as
action understanding and representation [2], language evolution [3], and evolution of
mind-reading abilities [4]. On the basis of the above mentioned findings several com-
putational models for controlling and understanding reach-to-grasp actions have been
proposed [5,6]. One of the more interesting and detailed models to date is the Oztop
and Arbib model (MNS model)[5]. As a variant of the MNS model, in a previous paper
[7] we proposed a model (MEP) based on an expected perception mechanism.

Both the above mentioned models rely on viewpoint independent measures of high-
level visual features such as, for example, index finger-tip and thumb-tip distance, the
angle between the target-object axis and the (index finger-tip thumb-tip) vector, the
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distance to target and so on. However, neither of them faces the problem of how these
features can be computed in a biologically plausible way.

This problem is tackled in this paper, where we propose a biologically inspired neural
network architecture for the extraction of visual features in a viewpoint independent
manner, based on the recognition system described in [8], which is a model of the
visual stream from area V1, V2, V4 to area IT .

Before going further, it is important to define more clearly the range of actions on
which we focused, and correspondingly the range of input images from which we are
going to extract the features.

Throughout this paper, we refer to the specific class of actions known as reach-to-
grasp actions, where the expression reach-to-grasp actions denotes a series of agent’s
hand/arm movements which are executed in order to grasp 3D objects of various shapes
and dimensions. Figure 1 represents a prototypical reach-to-grasp action and provide an
example of the kind of the input images we used.

Fig. 1. An example of reach-to-grasp action used in this paper

1.2 The Approach

Our goal is to define a viewpoint independent measure of high-level visual features
relevant for recognizing reach-to-grasp actions. Such high-level features can be related
to the hand of the agent performing the reach-to-grasp action, to the target-object and/or
to the hand-target association [5,9]. In this paper we focus on just one high-level feature.
This feature is the grip-size, defined as the index finger-tip thumb-tip distance [10]. The
use of only the grip-size in order to recognize a reach-to-grasp action could not be a
strong limitation because very few features are sufficient for determining the hand shape
[11] and, according to Jeannerod [10], the grip-size is the most informative feature for
assessing the progression of a reach-to-grasp action.

These considerations led us to focus on just one high-level visual feature which rep-
resents a measure of the grip-size of the hand present in the image. In our approach, we
assume that for a given observer (viewpoint) the grip-size can be measured as the su-
perposition of three basic hand shapes corresponding to three predefined grip-size,i.e.,
fully opened grip-size (BS1), middle grip-size (BS2) and fully closed grip-size (BS3)
(Fig. 2). Note that BS1, BS2 and BS3 are fixed values of the grip-size which are not
dependent of the specific action.

Therefore, it is possible to restate our goal in terms of computing a measure of the
grip-size by a viewpoint idependent similarity measure between the current shape and
the three basic ones described above.

In order to achieve this task we propose a feedforward neural network logically com-
prising two layers of computation. In the first layer the similarity of the image to the
three basic hand shapes is computed, in a viewpoint independent way, on the basis of
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Fig. 2. Basic hand shapes for a given viewpoint: From left to right fully opened grip–size, middle
grip–size and fully closed grip–size

a large set of low-level features extracted from the image. In the second layer, the grip
size measure is obtained as the superposition of the previously computed values. In the
next two Sections we provide the details of the NEural network architecture for comput-
ing a Grip-size measure which is Observer Independent. We called this computational
model NeGOI.

2 The First Step: Low–Level, Viewpoint–Based Features

Poggio and colleagues [8] proposed a quantitative theory of the feed-forward compu-
tation in the ventral stream of the visual cortex. The theory is based on a set of visual
features which exhibit a fairly good trade-off between invariance and selectivity, and are
also “consistent” with several properties of neurons in the cortical areas V 1, V 2, V 4,
and IT . From a computational point of view, such features are obtained by combining
the response of local edge–detectors, which are slightly position– and scale–tolerant,
over neighboring positions and multiple orientations1. The resulting feature represen-
tation is dense and redundant, and one can try to use it to discriminate between simi-
lar images by exploiting somehow such information overload. It has been shown [12]
that such a system exhibits excellent recognition performance, and outperforms several
state–of–the–art systems on a variety of image datasets including many different object
categories. Moreover, the system is able to learn from very few examples even in the
case of cluttered scenes.

In short, the computation is sequentially performed through a two layer (S1 and
C1, respectively) architecture. The former (the simple cells S1) are selectively tuned to
different preferred stimuli2, and weight locally the information contained in the neigh-
borhood of each pixel of the input image. The latter (the complex cells C1) pool the
information of different S1 layers with the same orientation but different position and
scale.

The role of visual experience in the perception of the world is accounted for by a
further layer called S2, whose units are exposed to a large amount of different natural
images (e.g. car, faces, landscapes, hand gestures, etc.) becoming tuned to a specific
pattern of activity. This sort of imprinting process makes each group of S2 cells specif-
ically sensitive (or tuned) to a particular input stimulus. Hence, when the input matches
exactly the learned patterns, the S2 unit gives the maximum response. A final layer, C2,

1 The approach closely mimics the behavior of simple and complex cells in primary visual cortex
2 S1 layers are implemented as a battery of Gabor filters over the input image.
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computes the max over all positions and scales for each S2 map. It is easy to see that
the resulting feature vector is position– and scale–invariant.

In this model the classical task of object recognition in a 3D rotation independent
way (which is what we refer as independence from the viewpoint or, in an equivalent
way, viewpoint independence) takes place in the object-tuned stage of the recognition
process, but the problem of how to compute a measure of specific features, such as
hand grip-size or hand-target distance, in a viewpoint independent way is not explicitly
tackled.

In the present work, we have implemented a version of such system where the scale
and position independent features as computed by C2 layer appear in the form of a
visual feature vector which we call F .

3 Towards the Independence from the Viewpoint: NeGOI
Architecure

NeGOI architecture is made up of three layers (Figure 3). The first layer is composed of
three ordered groups of units receiving as input the scale and position independent vec-
tor F . Each group is composed of N ordered units. Let GVij be the j-th unit belonging
to i-th group, with i = 1, 2, 3 and j = 1, 2, ...N . Each GVij unit is therefore scale and
position independent but is selective to both the basic hand shape BSi and the viewpoint
j. The second layer is composed of three viewpoint independent units selective to the
three basic hand shapes. Let GSi be the i-th unit of the second layer, with i = 1, 2, 3.
The unit GSi receives only connections from units belonging to i-th group of the first
layer. Each unit GSi is selective to the basic hand shape BSi but is viewpoint indepen-
dent. The third layer is composed of just one unit. Let us call it GS. GS unit receives
connections from all GSi. The output of GS is a scale, position and viewpoint indepen-
dent value belonging to the interval [0, 1]. In the pratical implementation, the units of the
first layer are the output neurons of a Radial Basis Function neural network (RBF)[13]
receiving the F vector as input. We have only nine output neuron, i.e., three neu-
rons for each selected basic hand shape: GV1j selective to both fully opened grip-size
and viewpoint viewj , GV2j selective to both middle grip-size and viewpoint viewj ,
GV3j selective to both fully closed grip size and viewpoint viewj , with j = 1, 2, 3.
The viewpoints view1, view2 and view3 are selected viewpoint separated by about 22
degree between each other (Figure 4), i.e., correspond to rotations of a camera around
an axis Z (perpendicular to the surface of a table and centered on the target object) of
about 22 degree.

In the second layer the GSi neurons (i = 1, 2, 3) compute the linear combination of
the outputs of GVij , with j = 1, 2, 3. Therefore, the GS1,GS2 and GS3 neurons, once
trained, are selective to fully opened, middle and fully closed grip-size, respectively
(Figure 3-b). In the last layer, the unit GS is obtained as output node of an another RBF
network.

We have trained both GVij and GSi neurons using three different training sets. Each
set, composed of 450 frames of hand shapes recorded from the viewpoint viewj , com-
prises 150 frames representing fully opened grip-size, 150 frames representing middle
grip-size and 150 frames representing fully closed grip-size.
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(a) (b)

Fig. 3. (a) NeGOI architecture. (b) Basic grip-size.

The GS neuron has been trained under the hypothesis that the output of the GS1,
GS2 and GS3 neurons are Gaussians centered on fully opened grip-size, middle grip-
size and fully closed grip-size, respectively.

4 Experimental Results

A subject was asked to perform a number of reach-to-grasp actions. The actions were
executed with the subject seated at a table with two marks (m1 and m2) at a distance
of roughly 40cm from each other: each reach-to-grasp action starts at m1 and ends at
m2 (Figure 4). For each target-object, the subject was asked to position the hand on
starting position m1 and to reach and grasp the target object located on mark m2. Each
action was recorded using a camera placed at a fixed distance from the target (roughly
70 cm) and at a fixed height from the surface of the table (roughly 50 cm). As above
said, it is possible to rotate the camera around the axis Z perpendicular to the surface
of the table and centered on the target object. Each action is therefore represented as
a sequence of frames (160×160 pixels). A skin model is computed from an histogram
color model in RGB color space. A simple non-parametric model is therefore used
to transform each frame into gray-level image where each pixel value represents the
probability of that pixel to be skin. The image thus obtained is further post-processed by
morphological filtering to eliminate the effect of image noise on the segmented image.
The final result is a gray-level image in which the hand is shown as a gray region on a
black background (Figure 3). From this gray-level image the vector F is extracted and
given as input to the NeGOI system described previously for the subsequent feature
extraction step. The process of feature extraction is performed for all recorded reach-
to-grasp actions.
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Fig. 4. Experimental set-up

4.1 Grip Size Measure

In order to test the capability of NeGOI to measure the grip-size we recorded, from the
same viewpoint, 8 grasp actions using 8 targets (cubes) of different sizes (cm 2,3, ...,9).
It is known [10] that during a grasp action the hand grip-size temporal profile has a
standard form (Figure 5(a)). A good evidence for the soundess of NeGOI approach is to
compare the grip-size measure (computed as output by our system) with the expected
profile of Figure 5(a), albeit this can not be used as a quantitative evaluation criterion.
Moreover, the value of the maximum grip size occurs at roughly 70−80% of the action
duration and it has a linear relation with the dimension of the target. It follows that the
correctness of NeGOI approach to measure grip-size can be proved if the values thus
obtained exhibit the above mentioned properties.

Results. For all grasp actions the temporal profile of grip-size (Figure 5(b)) as mea-
sured by NeGOI has similar shape as the one measured by Jeannerod . The maximum
grip size value shows a clear linear relation with the dimension of the target (Figure 6).
In fact, by performing a linear regression between the maximum grip size values and
the target dimensions, we obtain an average determination index r2 � 0.90. The val-
ues of the maximum grip size occur, on the average, at roughly 80% of the action
duration.

4.2 Viewpoint Independence

In order to test the viewpoint independence capibility of the NeGOI architecture, we
asked the subject to assume specifc hand configurations corresponding to grip-size val-
ues equal to roughly 2,4,6,8 cm. For each hand configuration we recorded the hand
while rotating the camera from the viewpoint view1 to the viewpoint view3 and vicev-
ersa. Therefore, for each hand configuration we obtained a sequence of about 120 im-
ages (as an example see Figure 7). Each image was processed by NeGOI, so obtaining
for each hand configuration a sequence of about 120 grip-size values. The capability of
NeGOI to obtain a viewpoint independent measure can be proved if each sequence of
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(a) Standard grip–size profile (b) Grip–size profiles measured by
NeGOI

Fig. 5.

Fig. 6. Linear relation between maximum grip-size and dimension of the target-object

(a) view1 (d)
view3

(g)
view1

Fig. 7. An example of a sequence of images from view1 to view3 and viceversa.

grip-size values is "almost stable". This stability can be measured verifying if the dif-
ference between the means of two consecutive sequences of grip-size values is greater
than the sum of the corresponding standard deviations.

Results. We obtained the sequences of grip-size values showed in Figure 8(a). In
Figure 8(b) are shown mean and standard deviation for each sequence. It can be seen
that for each hand configuration the grip size measures assume a value independent of
the corresponding viewpoint in the range view1-view3. In fact, the difference between
the means of two consecutive sequences of grip-size values is greater than the sum of
the corresponding standard deviations.
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Fig. 8. Viewpoint Independence:(a)Grip-size values as measured by NeGoI for four different ac-
tual grip sizes versus different viewpoints.(b) Mean and Standar Deviation for each sequence.

5 Conclusions and Discussions

In this paper, we coped with the problem of how to obtain, in a biologically plausible
way, a viewpoint independent measure of distinguished visual features of reach-to-grasp
actions. To this purpose, we identified a critical visual feature of such actions, the grip-
size, and we proposed a biologically inspired neural network architecture for a view-
point indepepenent measure of it, based on a recognition system which is a model of
the visual stream from area V1, V2, V4 to area IT. We have verified the validity of
the proposed architecture in a limited subset of grasp actions. Preliminary results are
encouraging. We believe that this approach can be augmented to include further distin-
guished visual features of reach-to-grasp actions.

At the moment of writing we are performing experiments without the skin detection,
as we believe that the system is robust enough to do well without this preprocessing
step.

Even though modeling in computational neuroscience has been the main motiva-
tion of our work, we think the proposed approach can be useful in itself as a non-trivial



A Neural Network Model 133

pattern recognition system. Indeed, starting from the classification of specific hand con-
figurations taken under different viewpoints, it allows the measure of high-level visual
features such as grip-size in a view independent way.
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castellanos@cinvestav.mx

Abstract. This paper presents three neuromimetic indicators for the
visual perception of motion. They estimate the motion, the speed and
the direction. All of them emerge from the first two stages in the Castel-
lanos model [1], where a causal spatio-temporal filtering of Gabor-like
type captures the oriented contrast and an antagonist inhibition mech-
anism estimates the motion. These neuromimetic indicators have been
evaluated on sequences of natural and synthetic images.

1 Introduction

The visual system of human being has been getting optimised since millions of
years by natural selection and this visual perception of motion helps us to detect
the pattern of 3D moving objects, its depth, speed and direction estimation, etc.

The research in connectionism is inspired by complexity of neural interactions
and their organisation in the brain that can help us to propose a feasible neu-
romimetic model. Visual perception of motion has been an active research field
for the scientific community since motion is of fundamental relevance for most
machine perception tasks [2].

Recent research on computational neuroscience has provided an improved
understanding of human brain functionality and bio-inspired models have been
proposed to mimic the computational abilities of the brain for motion perception
and understanding [1].

Several bio-inspired models exist for visual perception of motion some of
them are inspired from the primary visual cortex (V1) with a strong neural
cooperative-competitive interactions that converge to a local, distributed and
oriented auto-organisation [3,4,5]. The others are inspired by the middle tem-
poral area (MT) with the cooperative-competitive interactions between V1 and
MT and an influence range [6,7]. And some others are inspired by the middle
superior area (MST) for the coherent motion and ego-motion [8,9]. For more
details see [1].

All these works are specialised in each cortical area. In this paper I present
three neuromimetic indicators for visual perception of motion that emerged
from [1,10] to identify : null motion, motion, ego-motion, and their speed and di-
rection. To the begin with, I show the main characteristics of the first two stages
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of Castellanos model [1,10]. Next, I continue with the manipulation of the sev-
eral parameters issued by the antagonist inhibition mechanism and I show three
neuromimetic indicators for motion estimation. I carried out some experiments
on real images and end with propositions for future work.

2 Neuromimetic Connectionist Architecture

This section broadly describes the mathematical and biological foundations of
the proposed bio-inspired model for visual perception of motion based on the
neuromimetic connectionist model reported in [1,10].

The first stage of this neuromimetic model is mainly based on the causal spa-
tiotemporal Gabor-like filtering and the second stage is a local and massively
distributed processing defined in [10], where they have proposed a retinotopi-
cally organised model of the following perception principle : local motion infor-
mation of a retinal image is extracted by neurons in the primary visual cortex,
V1, with local receptive fields restricted to small areas of spatial interactions
(first stage : causal spatio-temporal filtering, CSTF); these neurons are densely
interconnected for excitatory-inhibitory interactions (second stage : antagonist
inhibition mechanism, AIM).

Fig. 1. Architecture of neuromimetic connectionist model adapted of [10]

I will describe in this section these stages : the spatial processing for modelling
orientation selective neurons of V1, temporal processing for modelling the speed
selectiveness of neurons in the medium temporal area, MT, and connectionist
processing to mimic the excitatory-inhibitory local interactions in the cerebral
cortex of human beings and self-organising mechanisms for coherent motion es-
timation. The biological foundations and the mathematical details will not be
discussed in this paper (for reference see [10]). The neuromimetic indicators will
be presented in section 3.
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2.1 Causal Spatio-Temporal Filtering (CSTF)

The first stage of the model depicted in the first three parts of figure 1 (con-
volution kernels, spatial filtering and temporal processing) performs a causal
spatio-temporal filtering. It models the magnocellular cells seen as motion sen-
sors that depend on the gradient of image intensity and on its temporal deriva-
tives [11,12,13]. This filtering is performed in two steps : a spatial filtering and
a causal temporal processing [10,14].

The equation 1 show this filtering.

Ht,θi,v(x, y) =
∫

Sθi(x − v̂1, y − v̂2)dt (1)

v̂1 =
t̂

τ − 1
v1cosθi, v̂2 =

t̂

τ − 1
v2sinθi (2)

where Sθi(·, ·) is the spatial Gabor-like filtering, v = (v1, v2) the speed vector, τ
the number of subsequence images, and 0 ≤ t̂, t < τ .

For the spatial filtering, Gabor-like filters are implemented as image convolu-
tion kernels in Θ different directions. I usually work with Θ = 8, then 0 ≤ i < Θ
and θi = 2πi

Θ .
On the other hand, the causal temporal processing involves the computation of

a temporal average of Gabor-like filters for each direction and for a set of search
places that correspond to V assumed different speeds of each pixel (positives and
negatives). In other words, for each given assumed direction and speed, these
Gabor-like filters reinforce the local motion with the average of the Gabor filters
applied to past images on the assumed anterior places. This principle is valid
under the strong hypothesis of a very high sampling frequency to ensure a local
motion detection and an immediate constant local speed. For more details on
this filtering see [10].

The computations described in this subsection have been parallelised and
implemented on FPGA circuits for real-time embedded motion perception [14].

2.2 Antagonist Inhibitions Mechanism (AIM)

The second stage of model describe in [10] (depticted in the centre of figure 1)
emulates an antagonist inhibition mechanism by means of excitatory-inhibitory
local interactions in the different oriented cortical columns of V1.

In this mechanism each neuron receives both excitation and inhibition signals
from neurons in a neighbourhood or influence range to regulate its activity. The
figure 1 shows the excitatory and inhibitory local interactions where neurons
interact with their close neighbours in this mechanism that change the inter-
nal state of neurons and, consequently, their influence range, which generate a
dynamic adaptive process.

Usually in excitatory-inhibitory neural models, the weighted connections to
and from neurons have modulated strength according to the distance from one
another. Nevertheless, I call it an antagonist inhibition mechanism because
the inhibitory connections among neurons regulate downwards the activity of
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opposing or antagonist neurons, i.e. neurons that do not share a common or sim-
ilar orientation and speed. On the other hand, excitatory connections increase
the neuron activity towards the emergence of coherent responses, i.e. group-
ing neuron responses to similar orientations and speeds through an interactive
process.

Then the updating of the internal state of a neuron is

η ∂H(x,y,T )
∂T = −A · H(x, y, T )

+(B − H(x, y, T )) · Exc(x, y, T )
−(C + H(x, y, T )) · Inh(x, y, T )

(3)

where −A ·H(·) is the passive decay, (B −H(·)) ·Exc(·) the feedback excitation
and, (C + H(·)) · Inh(·) the feedback inhibition. Each feedback term includes
a state-dependent nonlinear signal (Exc(x, y, T ) and Inh(x, y, T )) and an au-
tomatic gain control term (B − H(·) and C + H(·), respectively). H(x, y, T )
is the internal state of the neuron localised in (x, y) at time T , Exc(x, y, T ) is
the activity due to the contribution of excitatory interactions in the neighbour-
hood ΩΩE

(x,y) and Inh(x, y, T ) is the activity due to the contribution of inhibitory

interactions in the neighbourhood ΩΩI

(x,y). Both neighbourhoods depend on the
activity level of the chosen neuron in each direction. A, B and C are the real
constant values and η is the learning rate. For more details on the excitation
and inhibition areas see [1,10].

Let ρ be the influence range of neuron (x, y) in this stage. This neuron receives
at most ρ2 excitatory connections from neurons with the same direction and
speed and at most (V ·Θ−1)·ρ2 inhibitory connections from other close neurons.

At this level, each pixel correspond to Θ · V different neurons that encode
informations of directions and speeds.

The computations described in this subsection analysing its neural and synap-
tic parallelism have been implemented on FPGA circuits [15].

3 Neuromimetic Indicators

The visual perception of motion is not totally determined in the local responses
of the V1 neurons. They are processed to obtain the speed after being collected
and combined from V1 and being integrated in MT. It is this combination of
signals that resolve the local ambiguity of responses of neurons in V1 [1]. This
activity is the inspiration of the last part of figure 1 (directions and speeds
combination and integration).

3.1 Controlled Generation of Sequences of Real Images

The model described here has several parameters to be fixed. The results shown
are the product of several experiments. To begin with, I analysed the active
neurons in each direction and speed, the frequencies of active neurons after
updating (ANaU) and the negative updating increase (NUI) through m different
sequences of real images about 384 × 288 pixels per image.
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Next, to analyse egomotion, I selected n images of each sequence of real images
and for each selected image I generated Θ × V controlled subsequences (Θ=
different directions and V = different speeds) indicated in the figure 2.

Fig. 2. Different directions of controlled subsequences of real images generated for each
supposed speed

Finally for motion classification, I took a subsequence of each sequence of real
images too where : a) the motion does not exist, b) one object moves, c) two or
more objects move simultaneously.

The interpretation of the different obtained values are shown in the next
subsections.

3.2 Motion Type

The equation 3 shows the actualisation rule in the AIM for the active neurons.
Let S be a real image sequence and let R ⊂ S be a subsequence with Card(R)= τ
the subsequence size and let p be the percentage of the neurons to update.

The AIM mechamism updates p% of active neurons and I obtain in it two
frequency percentages : the active neurons after updating (ANaU) and negative
updating increase (NUI, see the right side in the equation 3).

The frequencies of the products between ANaU and NUI indicators in all the
different controlled subsequences (see section 3.1) inspire us to propose our first
neuromimetic indicator : neuromimetic motion indicator, NMI = ANaU ∗NUI.
The experimented ranges of NMI obtained are shown in table 1.

3.3 Speed and Direction

MT neurons sum the responses of V1 neurons with receptive field positions
inside a local spatial neighbourhood that is defined through time and generates
a response according to the speed of the visual stimulus [1]. This locality of the
AIM mechanism on all the several considered motion directions in V1 bring an
emerging answer corresponding to the global direction [1,10].

On the other hand, neuro physiological studies roughly indicate that neurons
in MT of the visual cortex of primate brains are selective to speed of visual
stimuli; which implies that neurons respond strongly in a preferred direction
and with a preferred speed [6].
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Table 1. Experimental ranges for neuromimetic motion indicator (NMI)

Condition Description

NMI < 0.10 Null motion
NMI < 1.00 Small moving objects or bruit
NMI < 5.00 One or two moving objetcs
NMI < 10.00 Three to five moving objects
NMI < 40.00 Six or more moving objects, or ego-motion
NMI < 250.00 Ego-motion or big moving objects
NMI < 400.00 Ego-motion
NMI ≥ 400.00 No processed

For each real subsequence R and for the filtering images generated in the
equation 1 I define

sat+ = maxt,θ,v(Ht,θ,v(x, y)), sat− = mint,θ,v(Ht,θ,v(x, y)) (4)

where sat+ and sat− are the positive and negative saturation, respectively.
For each direction and speed of each neuron, I count the neurons with a

response greater than at. This parameter is the average of positive and negative
saturations. The equation 6 shows its behaviour and the equation 5 computes
this frequency in direction θ with speed v.

C(θ, v) =
∑
(x,y)

D(at, Ht,θ,v(x, y))) (5)

with

D(at, Ht,θ,v(x, y)) =
{

1 if Ht,θ,v(x, y) > at
0 otherwise

(6)

where D(·, ·) is the threshold of the CSTF filtering.
The collection and combination in MT for direction estimation is computed

by :

E(θ, v) = 3·C(θ, v)+2·(C(θ−φ, v)+C(θ+φ, v))+C(θ−2φ, v)+C(θ+2φ, v) (7)

where φ = 2π
Θ is the separation in degrees between each oriented column and

E(·, ·) is the sum of several oriented responses of V1 that activate a neuron
in MT. Finally, I computed the frequencies for negative and positive supposed
speeds by the equations :

G+ =
∑

v>0,θ

C(θ, v), G− =
∑

v<0,θ

C(θ, v) (8)

Then I arranged E(θ, v) in a direction according to each speed and arranged G+

and G− too for processing them to obtain speed and direction indicators. These
indicators will be describe in the next two paragraphs.
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Table 2. Experimental ranges for neuromimetic speed indicator (NSI)

Type Condition Relative speed Prototype speed

NSI > 70.0 rs = (100.0 − NSI)/29.0 0
Weak if v1 > v2 NSI > 12.0 rs = (71 − NSI)/59 + 1 1

otherwise rs = (12 − NSI) ∗ 0.3529/12 + 2 2

NSI > 22.0 rs = (NSI ∗ 0.6470)/22 + 2.3530 3
Strong if v1 < v2 NSI > 39.0 rs = (NSI − 22)/10 + 3 4

otherwise Speed not processed ≥ 5

Speed. To obtain the winner speed, I propose the neuromimetic speed indicator
(NSI) defined by equation 9 :

NSI =
100 · min(G+, G−)

max(G+, G−)
(9)

With this indicator I compute the relative speed (rs) that compares the differ-
ent speed frequencies and their proportion. The table 2 shows my experimental
values for V = 5. Then vi = {−2, −1, 0, 1, 2}, with v1 is the frequency of |vi| = 1
and v2 is the frequency of |vi| = 2.

Direction. Finally, for an interpretation of integration of directions for each
neuron in MT, I compute E(θ, v) of the equation 7 for each direction and speed.

Next, I arrange their values from major to minor and I take the first three.
If these candidates are contiguous in direction, the winner will be at the centre
of the three candidates’ directions. This is my neuromimetic direction indicator
NDI.

Finally, if the maximum of the two computed speeds in the equation 8 is the
negative one, the winner direction will be its antagonist, ei, θ = θ − 180˚.

4 Experimental Results

The free parameters of my model were set according to the suggestions in [1].
I chose only three sequences of images among m = 50 analysed sequences : the
Yosemite Fly-Through (sequence of synthetic images), the Hamburg Taxi and
the BrowseB issue of video surveillance. They include various numbers of RGB
images (15, 42 and 875 images, respectively) and of sizes of : 316 × 252, 256 ×
191, 384 × 288, respectively, and they are first gray-scaled.

The figure 3 shows four images of these sequences and their graph of the
proposed neuromimetic indicators. The values of NMI are between 0 (null
motion) and 1000 (ego-motion), of NSI between 0 and 6, and NDI is in
{1, 2, 3, 4, 5, 6, 7, 8} (0˚,45˚,...,315˚).

The synthetic Yosemite Fly-Through sequence shows an aeroplane flying on
the mountains. This sequence presents an ego-motion with a speed of five pixels
(down image) that diverge and two pixels for the moving clouds to the right
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Fig. 3. Sequences of real and synthetic images used in this work: Yosemite, Taxi and
BrowseB, in each two columns respectively and from top-left to down-left in clockwise
direction, four images of each sequence and their neuromimetic indicators are shown
below

(top image). The NMI is between 300 and 450, then according to the table 1 it
proposes an ego-motion with 2 pixels per image moving at around 45˚.

In the figure 4, I show the average of direction and speed of optical real flow
of Yosemite sequence and the experimental results obtained by my model. My
model presents a conceptual error of around 22.5˚, despite which it is sufficient
to describe the real movement towards the North-East. Finally, the speed is not
numerically exact, but its behavior is very similar to the real one. Then, the
global motion obtained here is very similar to the Yosemite Fly-Through data.

The real Hamburg Taxi sequence shows three moving cars and a pedestrian.
The NMI is between 6 and 18, then according to the table 1 there are about
three moving objects and the global speed is 2 pixels per image moving at ap-
proximatly 180˚ and end at around 135˚.

Finally, the BrowseB sequence issue of video surveillance in the hall of INRIA
laboratory, Grenoble, France, may be split into three parts : (1) a person walks
to the centre, stops and returns; (2) there is no motion; (3) another person walks
in, stops and goes farther.

The last two columns of the figure 3 show the BrowseB sequence. The first
part (images 0 to 220) may be split into three parts according to NMI : two
parts with motion and the other part with null motion that correspond to the
first person walking between 90˚ and 135˚ and with a speed of 4 to 2 pixels
per image, stops and returns between 270˚ and 315˚ and with a speed of 2 to
4 pixels per image.

For the second part (images 221 to 325) there is null motion. The last part
may be split too into three parts according to NMI : (1) motion, (2) generally
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Fig. 4. Comparison between the optical real flow of Yosemite sequence and the exper-
imental results obtained by my model

null motion and (3) motion, respectively to describe this part of the BrowseB
sequence. The person walks approximatly at 0˚ with a speed of 1-2 pixels per
image. Next, a period of null motion with very weak motions (see pics in the
graph between image 550 and 750). Finally, the person moves to about 90˚ with
a speed of about 2 pixels per image.

5 Conclusions

This work is based on the Castellanos model [10] : a neuromimetic connectionist
model for visual perception of motion. A model fully inspired by the visual cortex
system, the superior areas and their relations.

In this paper I took advantage of the low-level analysis to detect local mo-
tions to obtain the global speed and direction. They are determined by the
neuromimetic motion indicator issued by AIM mechanism.

Our first experiments show that this model is capable of estimating the null
motion, simple motion and ego-motion with an estimation of global speed and
direction in an environment where other persons or objects move. The estimation
of motion is robust in quite complex scenes without any predefined information.
Nevertheless, the estimation of NMI is fastidious. The experimental values are
correct for the sequence of real images of ±33% the size of 384 × 288.

My current work includes experimenting on the other sizes the images for the
generalisation of the NMI and studying the same neuromimetic indicators for
the moving fields only.
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Reversal of “Cubic” and “Cylindric” Figures 
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Abstract. Spontaneous figure reversal of ambiguous patterns was analyzed in 
humans by presenting “Necker-cube”-like, or “drum”-like figures having square 
or round shaped “front” and “rear” surfaces, and either large or small “depth”. 
The figures were perceived alternately according to one or the other of two 
possible mental orientation-interpretations. The subjects signalled the instant of 
subjective pattern-reversals. Results: perceptual intervals corresponding to both 
interpretations of “drum” were longer than those of “cube”; the perceived 
“depth” of the figures was less relevant for reversal timing (“deeper” figures 
reversed only slightly more slowly and the corresponding intervals were 
somewhat longer). Although the shape of “front” and “rear” surfaces was not a 
crucial geometrical feature for representing the three-dimensional nature of the 
patterns on the two-dimensional stimulus plane, it markedly influenced the 
timing of figure reversals. More, or longer information processing steps should 
needed for perceptual-cognitive representations of curvilinear patterns in 
comparison with rectangular ones. 

Keywords: Ambiguous pattern reversal, Necker cube, Information processing 
steps, Object recognition, Mental interpretation. 

1   Introduction 

It is known, and accepted, that there is an automatic tendency toward spontaneous 
subjective alternation of possible perceptual-cognitive interpretations, when 
ambiguous figures are being presented to human subjects [9], [10]. This fact is 
probably due to the incomplete geometrical representation of the real three-
dimensional objects in question in the two-dimensional stimulus plane, usually. 
Speaking in general terms, the lack of information concerning the patterns seems to 
be compensated by alternation of the possible cognitive interpretations concerning 
their geometry [17]. 

Thus the assumption was natural, that the amount of information concerning 
essential geometrical features, related to dimensionality of the real objects represented 
on the two dimensional plane, could be an important factor determining the rate of 
figure reversal. On the basis of this reasoning we incresed in previous experiments the 
amount of information contained in a “double reversible figure” (capable of reversing 
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either in two-, or in three-dimensional mental space, depending on the cognitive 
instruction given to the subjects) by drawing further graphical details concerning the 
three-dimensional interpretation of the figure [11], [13], [14], [16]. We have found, 
that this caused a proportional decrease of the figure reversal rate both in two-, and 
three-dimensional mental space. A possible explanation was, that more information 
contained in the pattern reqired more sequential data processing steps in any 
interpretation interval, and therefore also more time. 

It was, however, demonstrated in further experiments, that, in contrary, reduction 
of the information content in the stimulus pattern, by drawing it in an incomplete way, 
was also combined with a proportional decrease of the reversal rate [12]. Higher 
requirements for processing time could have been caused by the need for some sort of 
“mental reconstruction” of the patterns by means of the perceptual cognitive 
mechanisms involved. 

On the basis of the above experiments the conclusion, that information content 
was in general terms a relevant factor in timing of figure reversal, seemed to be 
plausible. However, it had to be also assumed, that the above factor did not act in a 
single, and simply monotonous way (as it followed from the similar effect of both an 
increase, and a decrease of information content). Moreover, in the experiments 
mentioned, manipulation with the amount of information in the patterns was 
combined with parallel changes in the graphical representation of the patterns, and in 
some cases also in the amount of semantic information involved. 

Therefore the next question to be analyzed was, whether additional factors, not 
related in a direct way to the geometrical features crucial for figure reversal, might 
also influence spontaneous reversal rate. 

We intended therefore to perform experiments with reversible patterns in which 
their principal geometrical features, and the specific information (or the lack of it) on 
which figure reversal was being based upon, remained equal, but the geometry of 
their graphical representation was different. The question was whether the latter factor 
would influence the speed of figure reversal too. 

2   Methods and Procedures 

Two types of reversible figures were designed, and generated by means of a computer 
for the above purpose: rectangular Necker “cubes” (C) patterns, and “drum”-like (D) 
cylindric patterns differing from the former ones only in the shape of the “front”, and 
“rear” side of the structure, which ware round instead of square. The area of the 
squares, and circles representing the sides of both structures, was equal. Two variants 
of both patterns were used, differing in subjective “depth”, depending on the length of 
the four oblique straight lines connecting the “front”, and “rear” surfaces of the 
structures, and oriented under the angle of 45 degrees with respect to the vertical. The 
length of those oblique lines corresponded to 71% of the the sides of the squares for 
“small depth” (S), and to 47% for “large depth” (L). They were equal for the 
“squares” and the corresponding “drums” (Fig.1). 

The subjects were ten healthy volonteers, 5 males, and 5 females, with normal 
visus. They were naïve as to the essence, and purpose of the experiments. However, 
they were pretrained to understand the principle of figure reversal, and to signal it in a 



146 J. Radilova  et al. 

skillful way. The patterns were generated on the display of a computer, and their size 
was 8 cm. The subjects sat on a comfortable chair, and viewed the dispay under day 
light condition from the dictance of about 80 cm. They were instructed to watch the 
center of the pattern on the display during each experiment. A computer mouse, on 
which the subjects had to tap synchronously with subjective reversals of the pattern, 
was used as imput for measuring the inter-reversal intervals. 

 CL  DL   CS  DS 
 

Fig. 1. Schematic representation of the stimulus patterns generated by means of a computer: 
cube-like (C), and drum-like (D) patterns, with large (L), or small (S) perceived “depth”. 

Each experiment with a subject consisted of different experimental sessions. In 
each session, two of the four patterns were presented, each one for 2 minutes. The 
possible pairs of two different patterns were six, and thus the total duration of the 
whole of the six possible sessions was 24 minutes. During the whole of the six 
sessions, each of the four patterns resulted to be presented three times, and thus the 
total presentation time for each pattern was 6 minutes. The sequence of pattern 
presentation was random. As we have found, that the values of average inter-reversal 
intervals were similar for each single pattern in different sessions, such values could 
be combined. The statistical evaluation was performed. 

3   Results 

After preliminary results [15], [23], present experimental results (Fig. 2) indicate, that 
perceptual intervals corresponding to both (“small depth”, and “large depth”) 
interpretations of the “drum” were longer than those for the “cube” (1-way ANOVA: 
F = 7.14, p = 0.0086). The perceived “depth” of the figures (subjective size of the 
patterns, corresponding to the subjective distance of “front” and “rear” surfaces, for 
“small depth” and “large depth” patterns) was less relevant for reversal timing than 
the shape difference of “front” and “rear” surfaces; however, the intervals 
corresponding to “deeper” figures tended to be slightly longer (2-way ANOVA: F = 
4.31, p = 0.0402). 

It followed, that, although the shape of the “front” and “rear” surface of the 
patterns was not a crucial geometrical feature for representing (in an ambiguous way) 
the three-dimensional nature of the patterns on the two-dimensional stimulus plane, it 
did markedly influence the timing of figure reversals. 
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Fig. 2. Average inter-reversal intervals given in seconds for “cube”-like (C), and “drum”-like 
(D) shape patterns, as well es for small (S), and large (L) perceived “depth” of the patterns 
(respectively pattern 1, 2, 3, and 4). 

4   Discussion 

Longer inter-reversal intervals could be interpreted in the sense, that more, or longer 
information processing steps in the brain were probably needed for the perceptual-
cognitive representation of the patterns curvilinear along the stimulus plane in 
comparison with the rectangular ones. 

It is probable, that the underlying neural mechanisms are located at a relatively 
peripheral level in the visual system. The efficiency of the analysis required for edge 
detection during early visual processing depends also on edge structure (sharp or 
smooth) [27]. During late visual processing, a representation related to fine metric 
specifications such as segment length or curvature degree should be performed too 
slowly for object recognition, while the recognition of simple primitive volumes 
requires “only” categorical activation of edge characteristics [2]. Considering the 
geometrical features involved, the Necker “cube” patterns have 6 external “arrow” 
and 2 internal “Y”-shaped vertices, all relevant for edge identification; whereas the 
“drum”-like patterns are characterized by only 4 external “tangent Y”-like vertices, 
relevant for edge identification, as well as by 2 external “w”, and 2 internal “curved 
Y”-like unimportant vertices (definitions from [1], modified). However, the approach 
adopted in the present experiments did not allow to judge on the essence of the neural 
algorithms for the processing of the described geometrical information by the brain. 

Two aspects seemed to be relevant in this connection. The first one was, that 
“curvilinearity” concerned only the two-dimensional “front” and “rear” surfaces of 
the three-dimensional “real object” represented by the stimulation patterns. Those 
“front” and “rear” surfaces did not seem a priori to play a crucial role in the figure 
reversal taking place in three-dimensional mental space. Nevertheless, their 
curvilinear shape did markedly increase inter-reversal intervals. The second aspect 
was, that we did not witness any clear tendency toward shortening of inter-reversal 
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intervals during the experimenal session (although we did not perform formal 
measurements of this parameter). 

The latter circumstance pointed to two assumptions: (a) the whole “brain 
geometry” of detecting the shape of the pattern, including its aspects which were not 
essential for three-dimensional figure reversal (like the rectangular, or curvilinear 
nature of its “front”, and “rear” surfaces), was being repeated in each one of the 
subsequent inter-reversal intervals, probably; this means, that the results of the 
undelying neural computation were not being stored in some sort of memory buffer in 
order to be used repetitively; and (b) this could have been caused by the circumstance, 
that the figure reversal related to figure ambiguity took always place after the process 
of geometrical-feature detection was terminated. 

It has been pointed out, that the mechanisms underlying both multistable 
perception of ambiguous patterns and binocular rivalry seem to be similar [5]. 
Accordingly, the above reversal of rectangular- and curvilinear-pattern perception 
may be considered also in comparison with binocular rivalry, which is due to several 
mechanisms active at different levels within the visual system [6]. In addition, while 
the information on the above curvilinear and rectangular petterns may be processed at 
relatively early levels of the visual system, the voluntary control of perception 
reversal, which has been ascertained with the same rectangular pattern (Necker cube) 
[18], [19], [20], [21], [22], as well as other results obtained with different 
experimental settings [3], [4], [7], [8], [24], [25], [26], point towards an intentional 
high-level top-down processing intervening toghether with an automatic low-level 
bottom-up processing. 
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Abstract. Many think attention needs an executive to allocate resources. 
Although the cortex exhibits substantial plasticity, dynamic allocation of 
neurons seems outside its capability. Suppose instead that the processing 
structure is fixed, but can be ‘tuned’ to task needs. The only resource that can 
be allocated is time. How can this fixed structure be used over periods of time 
longer than one feed-forward pass? Can the Selective Tuning model provide the 
answer? This short paper has one goal, that of explaining a single figure (Fig.1), 
that puts forward the proposal that by using multiple passes of the visual 
processing hierarchy, both bottom-up and top-down, and using task information 
to tune the processing prior to each pass, we can explain the different 
recognition behaviors that human vision exhibits. To accomplish this, four 
different kinds of binding processes are introduced and are tied directly to 
specific recognition tasks and their time course. 

1   Introduction 

Topics like visual attention, recognition, or binding command a large, conflicting 
literature. For example, the nature of the attentional influence has been debated for a 
long time. Among the more interesting observations are those of James (1980) 
“everyone knows what attention is...” juxtaposed with that of Pillsbury (1908) 
“attention is in disarray” and Sutherland’s (1998) “after many thousands of 
experiments, we know only marginally more about attention than about the interior of 
a black hole”.  Even Marr, basically discounted the importance of attention by not 
considering the time intervals of perception where attentive effects appear. When 
describing grouping processes and the full primal sketch, he says, ”our approach 
requires that the discrimination be made quickly - to be safe, in less than 160ms - and 
that a clear psychophysical boundary be present” (Marr 1982, p.96). Not only is the 
number of experimental investigations enormous, but also the number of different 
models, theories and perspectives is large. Attention has been viewed as early 
selection (Broadbent 1958), using attenuator theory (Treisman 1964), as a late 
selection process (Norman 1968, Deutsch & Deutsch 1963), as a result of neural 
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synchrony (Milner 1974), using the metaphor of a spotlight (Shulman et al. 1979), 
within the feature integration theory (Treisman & Gelade, 1980), as an object-based 
phenomenon (Duncan 1984), using the zoom lens metaphor (Eriksen & St. James 
1986), as a pre-motor theory subserving eye movements (Rizzollati et al. 1987), as 
biased competition (Duncan & Desimone 1995), as feature similarity gain (Treue & 
Martinez-Trujillo 1999), and more. 

Within all of these different viewpoints, the only real constant seems to be that 
attentional phenomena seem to be due to inherent limits in processing capacity in the 
brain (Tsotsos 1990). But even this does not constrain a solution. Even if we all agree 
that there is a processing limit, what is its nature? How does it lead to the mechanisms 
in the brain that produce the phenomena observed experimentally? 

We suggest that the terms attention, recognition and binding have become so 
loaded that they mask the true problems; each may be decomposed into smaller, 
easier problems. For example, consider the observations that different recognition 
tasks require different processing times. Detection and categorization seem to take 
about 150ms, identification takes about 65ms longer, localization of a stimulus so that 
detection can be expressed through a saccade or pointing action takes 200ms or more, 
and harder tasks such as detection in clutter, transparent motion or difficult 
conjunctions take even longer.  

We propose that the process of binding visual features to objects in each of these 
tasks differs and that different sorts of binding actions take different amounts of 
processing time. Some require attention, others do not. We introduce a novel set of 
four binding processes: convergence, partial and full recurrence, and iterative binding. 
These are tied to different recognition tasks: detection or categorization, 
identification, localization and hard detection. The Selective Tuning model (Tsotsos 
1990; Tsotsos et al. 1995), through its execution time course and due to its inherent 
tuning functionality, provides much of the computational substrate for these types of 
binding, recognition and attentive modulation.  

2   The Stages of Recognition 

Which knife can one use to carve ‘recognition’ into manageable slices? There are 
many possibilities. Should those slices be different brain areas, each responsible for 
different sub-tasks? Should those slices be different tasks? What about varying 
feature, object or scene complexity? The argument made by this paper is that the same 
neural machinery of the visual cortex is used for any of these dimensions (admittedly, 
some areas perhaps more involved than others) and that the most effective way of 
carving up the problem is to cut along the dimension of time. That is, different tasks 
are known to take different amounts of processing time even though they require the 
same neural machinery for that processing. 

Much past experimental research has already provided what is needed. Consider 
the time course of events during a typical visual search experiment. An abstraction of 
this appears in the next paragraph. For each step, it is the same pair of eyes, the same 
retinal cells, the same, LGN, V1, V2 and so forth, that process the incoming stimuli. 
Each step in the processing pathway requires processing time; no step is instantaneous 
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or can be assumed so. In such experiments, the timings for each of the input arrays is 
manipulated presumably in order to investigate different phenomena.  

Consider the following characterization of the typical course of activities for an 
experiment investigating attention or recognition behavior: 

 
1. provide the subject with task information, including 
 - what are the cues if any 
 - what is the task and what criteria are used to judge a successful trial 
 - what sequence of events will the subject see 
2. attend fixation stimulus 
3. onset of stimulus array 
4. process stimulus array, perhaps including   
 - detect items in array 
 - attend to one or more items, re-applying  or modifying task guidance 

   in order to solve the task 
 - interpret item’s characteristics as required for the task 
5. respond to stimulus array using one of the following  
 - key press while continuing to fixate 
 - saccade to perceived location 
6. subject feedback on response 
7. onset of next stimulus array, using one or more of  
 - mask 
 - blank 
 - new stimuli to relate to previous 
 
There are many, many variations on this basic theme and this is where the 

ingenuity of the best experimentalists can shine. However, for those wishing to 
explain the experimental observations the sequence of actual events plays a more 
important role than has been acknowledged. A modeler cannot simply take the 
conclusion of the experiment as the basis of a model without also including the spatial 
and temporal environment of the experiment into account. This would only lead to 
models that do not reflect the reality of the experiment or do not generalize and thus 
produce useful predictions. 

3   Different Stages of Recognition 

If models are to be sensibly compared to results from human experimentation, the 
models must consider the same sequence of events as in the experiment and examples 
of such a sequence appeared in the previous section. 

Most models assume that a hierarchical sequence of computations defines the 
selectivity of a neuron. A feed-forward pass through the hierarchy would yield the 
strongest responding neurons if stimuli match existing neurons, or the strongest 
responding component neurons if stimuli are novel.  

But, the first set of computations to be performed, following the sequence 
presented in the previous section, is related to priming of the hierarchy of processing  
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areas. Task knowledge, such as fixation point, target/cue location, task success 
criteria, is applied to ‘tune’ the hierarchy (Posner et al. 1978). In experiments, it has 
been shown that such task guidance must be applied 300 to 100ms before stimulus 
onset to be effective (Müller & Rabbitt 1989). This informs us that significant 
processing time is required for this step alone. It is a sufficient amount of time to 
complete a top-down traversal of the full processing hierarchy. Figure 1 shows a 
proposed sequence of processing stages in visual recognition tasks. The first stage, the 
leftmost element of the figure, shows the priming stage. Once complete, the stimulus 
can be presented (the second element of the figure from the left). 

The third element of Fig. 1 represents the Detection/Categorization Task. 
Detecting whether or not a particular object is present in an image seems to take about 
150ms (Thorpe et al. 1996). This kind of ‘yes-no’ response can be called ‘pop-out’ in 
visual search with the added condition that the speed of response is the same 
regardless of number of distractors (Treisman & Gelade 1980). To name the object, or 
to categorize, also seems to take the same amount of time (Grill-Spector & Kanwisher 
2005; Evans & Treisman 2005). Interestingly, the median time required for a single 
feed-forward pass through the visual system is about 150ms (Bullier 2001). Thus, 
many conclude that a single feed-forward pass suffices for this visual task.  This first 
feed-forward pass is shown in the figure emphasizing the feed-forward divergence of 
neural connections and thus stimulus elements are ‘blurred’ progressively more in 
higher areas of the hierarchy. This task does not include location or location 
judgments, the need to manipulate, point, or other motor commands specific to the 
object and usually, all objects can be easily segmented. These are the kinds of stimuli 
Marr had in mind for his work as mentioned previously. 

To provide details about an object, such as identity (within-category identification) 
or type, requires additional processing time, 65ms or so (Grill-Spector & Kanwisher 
2005; Evans & Treisman 2005); this is the Identification Task and is represented by 
the fourth from the left element of Figure 1.  If the highest levels of the hierarchy can 
provide the basic category of the stimulus, such as ‘bird’, where are the details that 
allow one to determine the type of bird?  The sort of detail required would be size, 
color, shape, and so forth. These are clearly lower level visual features and thus they 
can only be found in earlier levels of the visual hierarchy. They can be accessed by 
looking at which feature neurons feed into those neurons that provided the category 
information. One way to achieve this is to traverse the hierarchy downwards, 
beginning with the category neuron and moving downwards through the needed 
feature maps. This downwards traversal is what requires the additional time observed. 
The extent of downward traversal is determined by the task, that is, the aspects of 
identification that are required. It is interesting to consider an additional impact of a 
partial downwards traversal. This traversal may be partial not only because of the task 
definition but also because the full traversal is interrupted and not allowed to 
complete either because new stimuli enter the system before there is enough time for 
completion or because not enough time is permitted due to other tasks. The result is 
that there is the potential for errors in localization and these may lead to the well-
known illusory conjunction phenomenon (Treisman & Schmidt 1982).  

If additional localization is required for description or a motor task, (pointing, 
saccade, etc..), then the top-down traversal process must be allowed to complete and 
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Fig. 1. The time course of visual recognition stages with types of visual binding required for 
each 

thus additional time is required. This is called the Localization Task. How much time? 
A single saccade seems to require 200ms (with a range of 100-300ms) of processing 
time (Becker 1991). A lever press response seems to need 250-450ms in monkey 
(Mehta et al. 2000). During this task, the temporal pattern of attentional modulation 
shows a distinct top-down pattern over a period of 35 - 350ms post-stimulus. The 
‘attentional dwell time’ needed for relevant objects to become available to influence 
behavior seems to be about 250ms (Duncan et al. 1994). Pointing to a target in 



 Different Binding Strategies for the Different Stages of Visual Recognition 155 

humans seems to need anywhere from 230 to 360ms (Gueye et al. 2002; Lünenburger 
& Hoffman 2003). Still, none of these experiments cleanly separate visual processing 
time from motor processing time; as a result, these results can only provide an 
encouraging guide for the basic claim of our model and further experimental work is 
needed. 

Behavior, i.e., an action relevant to the stimulus, requires localization. The location 
details are available only in the earliest layers of the visual processing hierarchy 
because that is where the finest spatial resolution of neural representation can be 
found. As a result, the top-down traversal initiated for the Identification Task must 
complete so that is reaches these earliest layers as shown in the figural element 
second from the right in Fig. 1. 

All of the above tasks as described can be characterized by stimuli that are well 
separated, can be easily segregated from the background, and are in an important 
sense, simple. In most real world scenes and many more complex experimental 
displays, even more time is needed. The Hard Recognition Task includes difficult 
conjunction searches, resolving illusory conjunctions, determining transparency, 
recognizing objects in cluttered scenes, and more (Treisman & Gelade 1980; 
Treisman & Schmidt 1982; Wolfe 1998; Schoenfeld et al. 2003). The final element of 
the figure, the rightmost element, depicts the start of a second feed-forward pass to 
illustrate this. The idea is that it is likely that several iterations of the entire process, 
feed-forward and feedback, may be required to solve difficult tasks. 

4   The Visual Feature Binding Problem 

Following Roskies (1999), the canonical example of binding is the one suggested by 
Rosenblatt in which one sort of visual feature, such as an object’s shape, must be 
correctly associated with another feature, such as its location, to provide a unified 
representation of that object. Such explicit association (“binding”) is particularly 
important when more than one visual object is present, in order to avoid incorrect 
combinations of features belonging to different objects, otherwise known as “illusory 
conjunctions” (Treisman & Schmidt 1982). Binding is a broad problem: visual 
binding, auditory binding, binding across time, cross-modal binding, cognitive 
binding of a percept to a concept, cross-modal identification and memory 
reconstruction. 

Classical demonstrations of binding seem to rely on two things: the existence of 
representations in the brain that have no location information, and, representations of 
pure location for all stimuli. However, there is no evidence for a representation of 
location independent of any other information. Similarly, there is no evidence for a 
representation of feature without a receptive field. Nevertheless, location is partially 
abstracted away within a hierarchical representation as part of the solution to 
complexity (Tsotsos 1990). A single neuron receives converging inputs from many 
receptors and each receptor provides input for many neurons. Precise location is lost 
in such a network of diverging feed-forward paths yet increasingly larger convergence 
onto single neurons. How can location be recovered and connected to the right 
features and objects as binding seems to require? 
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We might begin by developing requirements for the solution of the binding 
problem. Define the binding task as requiring the solution of three sub-problems: 
Detection (is a given object/event present in the display?), Localization (location and 
spatial extent of detected object/event) and Attachment (explicit object/event links to 
its constituent components). We will be able to recognize a solution when an 
algorithm can correctly provide correct answers to the above, and this occurs in 
images that: a) contain more than one copy of a given feature each at different 
locations; b) contain more than one object/event each at different locations; and, c) 
contain objects/events that are composed of multiple features and share at least one 
feature type.  These constraints provide us with a way of designing solutions and 
testing them with well-defined success criteria. They also provide constraints on what 
kinds of stimuli and tasks actually require binding in the first place. They will be used 
in the next section to suggest solutions to the kinds of binding that the different stages 
of recognition require. Previous proposals for the binding problem (see Roskies 1999) 
have not dealt with such constraints on the definition of the problem and this points to 
the uniqueness of the present proposal. 

5   The Kinds of Binding Needed for the Stages of Recognition  

A novel set of four different binding processes are introduced that are claimed to 
suffice for solving the recognition tasks described above.  

Convergence Binding achieves the Detection/Categorization Task via hierarchical 
neural convergence, layer by layer, in order to determine the strongest responding 
neural representations at the highest layers of the processing hierarchy. This feed-
forward traversal follows the task-modulated neural pathways through the ‘tuned’ 
visual processing hierarchy. This is consistent with previous views on this problem 
(Treisman 1999; Reynolds & Desimone 1999).  This type of binding will suffice only 
when the abstraction achieved as a result of neural convergence does not obscure 
location or feature information that may be needed, and if stimulus elements do not 
lead to ambiguity at the higher levels due to the large receptive fields. That is, 
stimulus elements that fall within the larger receptive fields must not be too similar or 
otherwise interfere with the response of the neuron to its ideal tuning properties. Such 
interference may be thought of as ‘noise’ with the target stimulus being ‘signal’. 
Convergence binding provides neither method for reducing this noise nor a method 
for recovering precise location. According to the requirements for a binding solution, 
this is not strictly an example of binding; it is named so here for continuity with past 
literature. 

Full Recurrence Binding achieves the Localization Task.  If Convergence Binding 
is followed by a complete top-down traversal, attended stimuli in each feature map of 
the hierarchical representation can be localized. Recurrent (or feedback) traversals 
through the visual processing hierarchy ‘trace’ the pathways of neural activity that 
lead to the strongest responding neurons at the top of the hierarchy resulting from the 
feed-forward traversal. Even for the strongest responding neurons with very large 
receptive fields where a number of stimulus elements fall within that receptive field, 
the reason why that response is strong lies within that receptive field and can be 
found. 
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There is one more critical component of the top-down traversal, appearing on the 
figures as gray regions indicating areas of neural suppression or inhibition in the area 
surrounding the attended stimulus. This area is defined by the projection of the 
receptive field of the neuron that best describes the stimulus through the processing 
hierarchy. That is, it is the set of neural pathways that feed that neuron. The reason for 
this particular definition stems from the previous discussion on signal versus noise in 
the input scene.  Inputs corresponding to the stimulus most closely matching the 
tuning characteristics of the neuron form the signal while the remainder of the inputs 
is the noise. Any lateral connections are also considered as noise for this purpose. 
Thus, if it can be determined what those signal elements are, the remainder of the 
receptive field is suppressed, enhancing the overall signal-to-noise ratio of processing 
for that neuron. The method for achieving this was first described in (Tsotsos 1993) 
and fully detailed together with proofs of convergence and other properties in 
(Tsotsos et al. 1995). It is based on the assumption that the signal is defined by the 
strongest responses in each layer and within the receptive field of the neuron or 
neurons selected at the top of the hierarchy (again by strongest response).  

However, the top-down process is complicated by the fact that each neuron within 
any layer may receive input from more than one feature representation. How do the 
different representations contribute to the selection? Different features may have 
different roles. For example, there are differing representations for many different 
values of object velocity however an object can only exhibit one velocity. These 
different representations can be considered as mutually exclusive, so the top-down 
search process must select one, the strongest. On the other hand, there are features 
that cooperate, such as the features that make up a face (nose, eyes, etc.). These 
contribute to the neuron in a weighted sum manner and the top-down search process 
much select appropriate elements from each. There may be other roles as well. The 
key here is that each neuron may have a complex set of inputs, specific to its tuning 
properties, and the top-down traversal must be specific to each. This is accomplished 
by allowing the choices to be made locally, at each level, as if there were a localized 
saliency representation for each neuron (Tsotsos et al. 2005). There is no global 
representation of saliency in this model. 

If the full recurrence binding process does not complete for any reason, this is 
called Partial Recurrence Binding. Partial recurrence binding can find the additional 
information needed to solve the Identification Task if it is represented in intermediate 
layers of the processing hierarchy. If this is not deployed directly due to task needs 
but is due to interruption, then this results in illusory conjunctions. A variety of 
different effects may be observed depending on when during the top-down traversal 
the process is interrupted.  

Iterative Binding is needed for the Hard Detection Task, i.e., discrimination, 
description, search, etc. Iterative Binding is defined as one of more Convergence 
Binding-Full Recurrence Binding cycles. The processing hierarchy may be tuned for 
the task before each traversal as appropriate. The iteration terminates when the task is 
satisfied.  This iterative feed-forward-feedback cycle was first described in Tsotsos 
1990. 

Simulations of this strategy show strong agreement with a variety of 
psychophysical and neurophysiologic experiments such as static visual searches of 
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varying difficulties, segregation of transparent dot pattern motions, surround 
inhibition, and more (Rothenstein & Tsotsos 2006; Rodriguez-Sanchez et al. 2006; 
Tsotsos et al. 2005; Tsotsos et al. 1995). In particular the surround inhibition 
prediction seems well supported by a variety of experimental studies (Cutzu & 
Tsotsos 2003: Hopf et al. 2005: Tombu & Tsotsos 2007). The top-down attentional 
modulation hypothesis also proposed by Selective Tuning has strong support (Mehta 
et al. 2000; O’Connor et al. 2002). 

6   Conclusion 

A novel view of how attention, visual feature binding, and recognition are inter-
related has been presented. It differs from any of those presented previously (Roskies 
1999). The greatest point of departure is that it provides a way to integrate binding by 
convergence with binding depending on attention. The visual binding problem is 
decomposed into four kinds of processes each being tied to one of the classes of 
recognition behaviors that have been investigated experimentally over the past 
decades that are defined by task and time course. This view differs from conventional 
wisdom that considers both binding and recognition as monolithic tasks. The 
decomposition has the promise of dividing and conquering these problems, and the 
Selective Tuning strategy previously presented is proposed as the computational 
substrate for their solution. There are three basic ideas behind this solution: 

   • top-down task directed priming before processing;  
   • feed-forward traversal through the ‘tuned’ visual processing hierarchy 

 following the task-modulated neural pathways; 
   • recurrent (or feedback) traversals through the visual processing hierarchy that 

 ‘trace’ the pathways of neural activity that lead to the strongest responding 
 neurons at the top of the hierarchy that result form the feed-forward traversal. 

These three basic steps are used in combination, and repeated, as needed to solve 
the given visual task. The details of how exactly these processes may be 
accomplished are detailed elsewhere (Tsotsos 1990; Tsotsos et al. 1995; Tsotsos et al. 
2005). In simulation with artificial as well as real images as input, the model exhibits  
good agreement with a wide variety of experimental observations.  

The model has a number of important characteristics: a particular time course of 
events during the recognition process covering the simplest to complex stimuli that 
can be directly compared with experimental time courses; an iterative use of the same 
visual processing hierarchy in order to deal with the most complex stimuli; iterative 
tuning of the same visual processing hierarchy specific to task requirements; 
suppressive surrounds due to attention that assist with difficult segmentations; a 
particular time course of events for recognition ranging from simple to complex 
recognition tasks; a top-down localization process for attended stimuli based on 
tracing feed-forward activations guided by localized saliency computations. Each of 
these may be considered a prediction for human or non-human primate vision. It 
would be very interesting to explore each. 
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Abstract. In this article we present a model of realistic drawing ac-
counting for visuomotor coordination, namely the strategies adopted to
coordinate the processes of eye and hand movement generation, during
the drawing task. Starting from some background assumptions suggested
by eye-tracking human subjects, we formulate a Bayesian model of draw-
ing activity. The resulting graphical model is shaped in the form of a
Dynamic Bayesian Network that combines features of both the Input–
Output Hidden Markov Model and the Coupled Hidden Markov Model,
and provides an interesting insight on mechanisms for dynamic integra-
tion of visual and proprioceptive information.

1 Introduction

It has been argued that the function of art and the function of the visual brain
are one and the same, and that the aims of art constitute an extension of the
functions of the brain [1]. In this article we address a broader picture: that of
art making as an extension of visuomotor coordination.

We consider realistic drawing, that is the activity of representing an original
scene by means of visible traces on a surface (the canvas), trying to render the
contours defining objects/regions within the scene as faithfully as possible on
the canvas. Subjects involved with this task clearly adopt a visuomotor strat-
egy; further, even though strategies can vary significantly among individuals,
interesting regularities can be observed.

In a more general view, the issue we address here is at the crossing edge of
most current research in neuroscience, Active Vision, and Artificial Intelligence:
the understanding and the modeling of strategies adopted by any agent situated
in the world to coordinate vision and action in order to succeed in a performing
a given task.

Sensorimotor coordination has been treated in the framework of either motor
control (with or without feedback) or active perception. Sensorimotor models
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usually reflect the functional architecture of the primate cortico-cerebellar sys-
tem [4]. Most successful ones cast the issue of movement planning and execution
as an optimization problem [5]. In such framework the sensory apparatus is
always considered as passive.

On the other hand, in the case of active vision, the object of study is the
overt attentional process, namely how sensory resources are allocated, e.g. via
eye movements (saccades). Models have been proposed that reflect the functional
organization of the primate visual system, and generate saccades on the basis of
image properties alone [7] or combined with top–down cognitive influences [8].

As opposed to motor control research, eye tracking research [9,10] has shown
that most fixations are targeted to extract information that is relevant to the
motor execution of the task. Further, most recent results suggest that spatial
attention is the consequence of motor preparation (premotor theory of attention
[12] ). Yet, we lack a well defined framework for integrating active vision models
with feedback motor control strategies.

In this article we present a computational model of realistic drawing account-
ing for visuomotor coordination, namely strategies adopted to coordinate the
processes of eye and hand movement generation, during the drawing task. The
model extends a previous one [3], whose aim was to simulate the scanpath of the
draughtsman, and is formulated in terms of a Bayesian generative model and
its corresponding graphical model, a novel kind of Dynamic Bayesian Network
(DBN).

The rationale behind the adoption of a probabilistic framework grounds in
the fact that signals in sensory and motor systems are corrupted by variability
and noise, and the nervous system needs to estimate these states [6].

Background assumptions of the model rely upon eye-tracking experiments
with human subjects, some of which are presented in the following Section.

2 Basic Assumptions and Behavioral Analysis

Eye tracking experiments on draughtsmen at work [2] provide evidence of two
nested execution cycles: the longer, external cycle is an oscillation between peri-
ods when the hand is not drawing and globally distributed eye movements can
be observed, and periods when the hand is tracing; within the tracing period a
shorter nested cycle can be noticed, with eye movements localized alternately in
small parts of the scene and the canvas.

Further analysis [3] indicates that four main subtasks should be distinguished:
1) Segmentation of the original scene; 2) Evaluation of the emerging result; 3)
Feature extraction for motion planning; 4) Visual feedback for motion control.

The oscillation between local and global scanpaths may be understood by
recalling that gaze–shifts can be considered as the motor realization of overt
shifts of attention. Visual attention arises from the activation of those same cir-
cuits that process sensory and motor data [12]. In particular, selective attention
for spatial locations is related to the dorsal visual stream that has been named
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action pathway after Goodale and Humprey [11], and is mainly devoted to trig-
ger prompt actions in response to environmental varying conditions (Vision for
Action). On the contrary, selective attention for objects derives from activation
of ventral cortical areas involved in the perception pathway, responsible for object
recognition, with tight integration to high–level, cognitive tasks of frontal areas
(Vision for Perception,[11]). Clearly, the two pathways are not segregated but
cooperate/compete to provide a coherent picture of the world and gaze control
is the ultimate product of such integration.

In this framework behaviors 1 and 2, that require globally distributed eye
movements, could be associated to the Vision for Perception stream, while 3
and 4 produce localized eye movements related to the Vision for Action stream.
Thus, the oscillation can be seen as a part of a high level strategy, which takes
advantage of the functional architecture of the human visual system to keep
separate two classes of visual behaviors, the first of which is global in nature
and perceptual in purpose, while the second is local and pragmatic, sub-serving
a precise hand movement.

In this article we will focus exclusively on subtasks 3 and 4, since tightly cou-
pling vision (eye movements) and action (hand drawing). Thus, in the following
we take for granted that the viewed scene has been already segmented in a finite
set of objects (cf. [3])

Three assumptions can be introduced to capture the essential features that
distinguish drawing from other tasks [3].

1. All fixations on an object are executed within a time interval in which no
fixations occur on other objects.

2. Fixations are distributed among the original objects according to the num-
ber of salient points on each object, and on each single object following the
distribution of most salient points.

3. The sequence of fixations on the original scene is constrained to maximize
continuity of tracing hand movements.

The first assumption states that a peculiar feature of the drawing behavior is
that the gaze does not move back and forth among different objects, but proceeds
sequentially. Gaze is directed to an object only when it becomes relevant to the
task, i.e. during the time that it is being copied.

Salient points can be defined as those with local orientation contrast [7] above
a given threshold and the second assumption requires the draughtsman to move
the gaze towards all salient points. This implies a segmentation which is finer
than the initial object-based segmentation and is directly related to pragmatic
sensorimotor control.

Third assumption implies that feedback information on hand motion plays an
important role in determining the actual scanpath. One possible implication is
that the scanpath on the original scene should resemble a coarse–grained edge
following along the contours of the objects, which has never been observed in
the eye–tracking literature up to the best of our knowledge.
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2.1 Experiments with Eye-Tracked Subjects

We performed eye tracking experiments on three subjects who were given the
instruction to make realistic drawings of simple bidimensional shapes. Fig. 1
illustrates the experimental set-up (cf., Appendix A, for details).

Fig. 1. Experimental setup for eye tracking recordings during the drawing task. The
Subject sits in front of a vertical Tablet. In the left half of the Tablet hand–drawn
images are displayed, while the Subject is instructed to copy the images the right half.
The eye tracker integrates data from the Eye Camera and the Magnetic Sensor and
Transmitter; eye position is then superimposed on the Scene Camera video stream,
which takes the approximate subjective point of view.

Due to space constraints, here we do not present the complete data analysis,
but focus on those aspects directly related to the hypotheses.

In one of the trials the image displayed was composed by two closed contours
that are spatially separated (Fig. 2(a)). From qualitative analysis it resulted
that all the subjects started drawing the second object only after completion of
the first one. Thus we defined, for each subject, two time intervals, T1 and T2,
corresponding to the two drawing phases, and two Regions Of Interest (ROI),
R1 and R2, each one containing one object. Fig. 3 shows, for each subject, the
distribution of the number of fixations on the original image (F ), over the three
regions OFF , R1, R2. In accordance with assumption 1, the maximum of the
distribution is always in the region corresponding to the time interval considered,
and the percentage of F in the wrong region is always below 13%.

Analysis of the same trial shows also agreement with hypothesis 2, as appears
from the comparison, for each subject, of the saliency map (Fig. 2(e)) of the
original image with the x–y plot (Fig. 2(b), 2(c), 2(d)) of the fixations for the
complete trial, and the fixation map (Fig. 2(f), 2(g), 2(h)).

Finally, the temporal sequence of fixations is addressed in Fig. 4. It shows
for each subject, the cumulative x–y plot of fixations at increasing times after
the beginning of a trial with curve shape, which provides evidence that the
scanpath on the original image can be well described as a coarse grained edge
following.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Figures 2(a) and 2(e) show respectively the Regions Of Interest and the saliency
map in the two–objects trial. For each subject (columns 2–4) we show the x–y plot
(2(b), 2(c), 2(d)) of the fixations (circles) and the fixation map (2(f), 2(g), 2(h)).
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Fig. 3. Distribution of the number of fixations over three regions (outside, R1 or R2).
Each couple of plots refer to time intervals T1 and T2 for one subject.

3 The Model

The model accounts for the sensorimotor coupling between the Vision for Ac-
tion stream and the motor system and is based on four core modules and their
interactions.

Top-down FOA scheduling produces appropriate plans for generating gaze-
shifts, while Motor Planning drives hand movement planning. The Action and
Motor State modules play the role of generating suitable sensory inputs to the
planning modules, respectively providing information extracted from the visual
input along the visual dorsal stream, and information about the state of the
hand on the basis of proprioception. Here we are not concerned with how such
inputs are generated, but only with how they contribute to the joint planning
of eye and hand movements.

The tight interplay between saccades and hand movements is provided by the
following cross-connections: a) Action → FOA Scheduling; b) Action → Motor



166 R. Coen Cagli et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4. Cumulative x–y plot of fixations (circles) at increasing times (left to right).
Each rowshows the results for one subject.

Planning; c) Motor State → Motor Planning; d) Motor State → FOA Scheduling;
e) Motor Planning ↔ FOA Scheduling.

Here a) to d) are input connections: in particular b) and d) provide an indirect
coupling between the visual and motor systems, since they express respectively
the influence of visual information on the generation of hand movements (Vision
For Action), and the influence of proprioceptive information on the state of the
hand in generating a saccade (Proprioceptive Feedback).

The bidirectional connection e) represents the direct reciprocal influence of
eye and hand motor plans, which must unfold in time appropriately to preserve
a task–specific causal relation between eye and hand movements. We call the two
directions of such connection Eye To Hand (E2H) – i.e. the process of generating
a saccade on the basis of the previous hand plan –, and Hand To Eye (H2E) –
the generation of a hand movement on the basis of previous saccades.

Figure 5 outlines the functional model at a glance. In the same figure, the
information flow between modules is represented via dotted lines. Inputs and
outputs are formally identified in terms of the following variables:

– u: the input for eye and hand movement planning processes; it concerns
information regarding the perceived current position of the hand (fusing
visual and proprioceptive data) and features extracted from the portion of
the original image corresponding to the previous fixation;

– xe: the state of the eye movement process, encoding the planned eye move-
ment as a displacement vector relative to the current fixation point;

– ye: the eye–movement output, encoding the performed displacement;
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Fig. 5. The functional architecture: each module (box) can be seen as an implemen-
tation of a specific process. Overlaid (dotted lines), the underlying graphical model,
which will be explicitly represented in Fig. 6.

– xh,yh; the state and output of the hand–movement process, analogous to
eye state and output variables;

Indeed, the computational problem we want to solve is the joint evaluation of
eye and hand movement state at a given time.

To this end, we resort to a probabilistic Bayesian framework and consider the
values of such variables as realizations of corresponding random variables. This
way we can map the functional model outlined in Fig. 5 into the graphical model
shown in Fig.6, where nodes denote the random variables, and arrows, condi-
tional dependencies. Note that, since we are dealing with a process unfolding in
time, the network is in the form of a Dynamical Bayesian Network (DBN [13])
and the graph depicted in Fig 6 pictures two temporal slices.

Notice that, within each time slice, we assume a causal relation (directed edge)
from eye movement to hand movement; this reflects the behavior we observed in
the experiments on the drawing task, where most fixations could be classified as
look–ahead [9], i.e. with the gaze moving to a location where the hand will move
shortly after.

In such framework, the input streams a) to d) can be treated as conditioning
both planning processes by a single variable (the arrows out of the upper circle
in figure 6).

This way, the H2E process, which accounts for the probability of the current
fixation conditional on previous fixation and hand movement, can be formally
modeled as the probability distribution p(xe

t+1|ut+1, x
e
t , x

h
t ). Similarly, we can

write E2H, which considers the probability of the current hand movement given
the current fixation and the previous hand movement, as p(xh

t+1|ut+1, x
e
t+1, x

h
t ).

Both terms denote state–transition probabilities, and represent the core mod-
ules H2E and E2H respectively, enriched with the input.
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Fig. 6. The IOCHMM’s for combined eye and hand movements. The gray circles denote
the input (u) and output (y) variables. Dotted connections in the hidden layer highlight
the subgraph that represent the E2H core module, while continuous connections denote
H2E.

By considering again the dependencies in the graphical model, we can write
the statistical dependence of the eye output signal on the corresponding state
variable as the distribution p(ye

t+1|xe
t+1); similarly for the output hand move-

ment, we can write the density p(yh
t+1| ut+1, x

h
t+1) which also depends on the

input value. Both represent the emission probability distributions.
Eventually, by generalizing the time slice snapshot of Fig. to a time inter-

val [1, T ] we can write the joint distribution of the state and output variables,
conditioned on the input variables as:

p(x̄1:T , ȳ1:T | ū1:T ) = p(xe
1| u1)p(ye

1| xe
1)p(xh

1 | u1, x
e
1)p(yh

1 | u1, x
h
1 )

·
T−1∏
t=1

[
p(xe

t+1| ut+1, x
e
t , x

h
t )p(ye

t+1| xe
t+1)

·p(xh
t+1| ut+1, x

e
t+1, x

h
t )p(yh

t+1| ut+1, x
h
t+1)

]
, (1)

where ū1:T denotes the input sequence from t = 1 to T , x̄1:T denotes the pair of
state sequences (xe

1:T , xh
1:T ), and similarly for ȳ1:T .

4 Discussion and Final Remarks

The formalization provided in the previous Section, seems to suggest that vi-
suomotor coordination requires a regular switching in time between the two
modalities E2H and H2E, which depends on input and outputs; this results in a
DBN graphical model that unifies two kinds of DBNs known in the literature, the
Input–Output Hidden Markov Model and the Coupled Hidden Markov Model
[13]. We call the DBN represented in Fig. 6) an Input–Output Coupled Hidden
Markov Model (IOCHMM).

It is worth noting, though beyond the scope of this article, that the joint
probability distribution in Eq. (1) can be further simplified in terms of mean field
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approximation [13]) by defining suitable potential functions, that express local
dependencies among the hidden and input variables; then, standard algorithms
for network learning and inference can be easily exploited [13].

Here, due to space limitation, we prefer focusing on the modeling part of our
current research work, and the main result is that a Bayesian approach can be
suitably adopted for sensorimotor integration in the drawing task. To the best
of our knowledge this is the first attempt in this direction.

On the one hand the adoption of a Bayesian framework, allows to formalize
a computational model in a principled way, by incorporating constraints and
prior knowledge as derived by experimental observations of human subjects and
theoretical findings in the current literature of visual spatial attention and sen-
sorimotor coordination.

On the other hand, the model reconciles the active vision and the feedback
motor control approaches and we believe that understanding how such formal
model may be linked to the underlying activity in the visual and motor areas of
the human brain could shed new light on the problem of visuomotor coordination
in general.

Interestingly enough, the anatomical correlates for the input stream that
we related to Vision For Action is the existence of several frontoparietal cir-
cuits, by means of which the outputs of the visual dorsal stream are projected
from IP to oculomotor and premotor areas [12]. Conversely, we suggest that
the pathway related to Proprioceptive Feedback could correspond to the por-
tion of the cortico–cerebellar loop in which the cerebellum returns projections
to cortical areas of the frontal lobe via the thalamus [4]. Further, the core
connections we called E2H and H2E could find a biological justification in
the existence of cortico–cortical connections among premotor and oculomotor
areas.

Eventually, current research work concentrates on performing more exper-
iments with human drawers in order to compare with preliminary results of
simulations obtained via the IOCHMM prototype and its integration with the
segmentation module developed in previous work.
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A Experimental Settings

Eye scan records were obtained from three right–handed individuals, one female
ages 27-33. All had normal or corrected-to-normal vision.

The experimental setup is shown in figure 1. Subjects were presented with a
horizontal tablet 40 cm × 30 cm, viewed binocularly from such a distance that
they could comfortably draw. Slight head movements were allowed. In the left
half of the tablet hand–drawn images were displayed, while a white sheet was on
the right half. The original images represented simple contours drawn by hand
with a black pencil on white paper. One image per trial was shown, and the
subjects were instructed to copy its contours faithfully on the right hand. These
instructions did not make specific mention of eye movements and did not give
constraints on the execution time.

The subject’s left eye movements were recorded with a remote eye tracker
(ASL Model 504) with the aid of a magnetic head tracker, with the eye position
sampled at the rate of 60 Hz. The instrument can integrate eye and head data
in real time and can deliver a record with an accuracy of less than 1 deg.
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Abstract. In this paper, we present an algorithm for detecting obstacles
using independent components of optical flow fields for visual navigation
of a mobile robot. For the computation of optical flow, the pyramid trans-
form of an image sequence is used for the analysis of global motion and
local motion. We detect obstacles from optical flow fields at each layer in
the pyramid. Therefore, our algorithm allows us to achieve both global
perception and local perception for the robot vision. We show experi-
mental results for both test image sequences and real image sequences
captured by a mobile robot.

1 Introduction

In this paper, for the concurrent detection of local and global motion, we use
independent components of optical flow fields on pyramidal layers. It is known
that animals, insects, and human beings use the independent component of op-
tical flow fields for visual behavior [10,17,19]. In human object recognition, the
hierarchical model is proposed [3]. Furthermore, for the computation of opti-
cal flow, the pyramid transform of an image sequence is used for the analy-
sis of global motion and local motion [2,12]. The pyramid transform generates
multiple-resolution images as layered images. These layered images are used for
computation of optical flow in its original images from the image in the lowest
layer. This idea based on the assertion that global motion is described as the
collection of local motion. We introduce the application of hierarchical image ex-
pression for motion analysis. That is, we develop an algorithm for the detection
layered optical flows from a multi resolution image sequence.

The optical flow [1,6,11] is the apparent motion of successive images and is
independent of the features in images, unlike edges or corner points in images.
Furthermore, optical flow is considered to be fundamental information for nav-
igation and obstacle avoidance in the context of biological data processing [19].
Therefore, the use of optical flow is valid for ground-plane detection by a mo-
bile robot in an environment. In autonomous robot navigation and autonomous
car navigation in the unrestricted outdoor environments, the detection of global

F. Mele et al. (Eds.): BVAI 2007, LNCS 4729, pp. 171–180, 2007.
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configuration is required for global navigation. We apply obstacle detection by
optical flow to layered images derived by the pyramid transform. Therefore, we
can detect obstacles as layered information. Then, our method allows the hier-
archical detection of obstacles in navigation. We detect obstacles from optical
flow fields at each layer in the pyramid. Therefore, our algorithm allows us to
achieve global perception and local perception for the robot vision.

Independent component analysis(ICA) [8] extracts statistically independent
features from signals and steel images. The optical flow field observed by a
moving vision can be assumed to be a mixture of patterns in an environment
[16]. In neuroscience, it is known that the medial superior temporal (MST) area
performs visual motion processing. For motion cognition at the MST area in the
field 7a of the brain [17,20], it is shown that independent components of optical
flow are used. Therefore, ICA allows us to separate the blind source signals of
optical flow into independent components. Furthermore, since the optical flow
field on an image can be represented as a linear combination of independent
components of optical flow[17], we can use ICA for detecting a ground plane by
separating obstacles and a dominant part in an image.

The dominant planar part in an image is called the dominant plane [15]. The
dominant plane corresponds to the largest planar region in an image. Using the
dominant plane, the robot selects a possible region for the corridor path in a
robot work space. In this paper, we assume the following constrains for robot
navigation.

1. The ground plane, on which the robot moves, is the planar area.
2. The camera mounted on a mobile robot is downward-looking.
3. The robot observes the world using the camera mounted on itself for navi-

gation.
4. The camera on the robot captures a sequence of images since the robot is

moving.

These assumptions are illustrated in Fig. 1. The robot does not touch to the
obstacles. Therefore, if there are no obstacles around the robot, the ground plane
corresponds to the dominant plane in the image observed through the camera
mounted on the mobile robot.

Statistical approaches to the optical-flow analysis have also been examined
[4,18]. Fermüller et al. analyzed noise parameters of optical flow using the maxi-
mum likelihood [4]. Roth and Black developed a method for learning the spatial
statistics of optical flow fields using a Markov random field model [18]. There-
fore, it is appropriate to use the statistical properties of optical flow for mobile
robot navigation in a real environment.

2 Optical-Flow Computation with Pyramid Transform

Setting I(x, y, t) and (ẋ, ẏ)� to be the time-varying gray-scale-valued image at
time t and optical flow, respectively, optical flow (ẋ, ẏ)� at each point (x, y)�

satisfies

Ixẋ + Iy ẏ + It = 0. (1)
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Dominant plane

Obstacle

Mobile robot

Eyes: Camera

Perception: Optical flow Cognition: Separation by ICA

Fig. 1. Perception and cognition of motion and obstacles in the workspace by an au-
tonomous mobile robot. The mobile robot has a camera, which corresponds to eyes.
The robot perceives an optical flow field from ego-motion. By ICA, the optical flow
field can be separated into the dominant plane and obstacles.

The computation of (ẋ, ẏ)� from I(x, y, t) is an ill-posed problem. Therefore,
additional constraints are required to compute (ẋ, ẏ)�. The most commonly used
constraints are those indicated by Horn and Schunck [6], Lucas and Kanade [11],
and Nagel and Enkelmann [13].

Setting I0(x, y, t) = I(x, y, t) as the original image and I l(x, y, t) as the pyra-
mid transformation of image I(x, y, t) at the layer l, the pyramid representation
is expressed as

I l+1(x, y, t) =
∑

α,β∈Nl

aαβI l(2x − α, 2y − β, t), (2)

where Nl is the neighborhood of point (x, y)� at the layer l and aαβ is the weight
parameter of the neighborhood pixel. We set Nl as a 3 × 3 neighborhood and

aαβ =

⎧⎨
⎩

1
4 , (α = 0, β = 0)
1
8 , (α = ±1, β = 0), (α = 0, β = ±1)
1
16 , (α = ±1, β = ±1)

. (3)

We use the Lucas-Kanade method with pyramids [2]. Therefore, Eq. (1) can
be solved by assuming that the optical flow vectors of pixels are constant in the
neighborhood of each pixel. We set the window size to be 5 × 5. Equation (1) is
expressed as a system of linear equations,

Iαxẋ + Iβy ẏ + It = 0, |α| ≤ 2, |β| ≤ 2 (4)
Iαβ(x, y, t) = I(x + α, y + β, t + 1), (5)

where Iαβ(x, y) is the spatial neighborhood of a pixel. Optical flow (ẋ, ẏ)� is
solved by the Lucas-Kanade method [11]. Setting this phase as the estimation
of optical flow at the layer 0 of the pyramid representation of the image, we
estimate optical flow at layers from 0 to L.

The optical flow is obtained by warping the optical flows of each layer of the
pyramid representation. The procedure is illustrated in Fig. 2, which is taken
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Fig. 2. Procedure for computing optical flow in L-K method with pyramids. Optical
flow is obtained by integration of optical flows of each layers of pyramid representation

from to Bouguet [2]. We call u(x, y, t), which is a set of optical flow (ẋ, ẏ) com-
puted for all pixels in an image, the optical flow field at time t. Furthermore,
we set ul(x, y, t) to be the optical flow field at the l-th layer in the pyramid
transform, where u0(x, y, t) = u(x, y, t). The traditional optical flow analysis
computes u0(x, y, t). We, however in this paper, use optical flow vectors in all
layers in multi-resolution images. This method allow us to extract hierarchical
information from optical flows.

3 Obstacle Detection Using ICA on Pyramid Layers

Our algorithm is processed at layers l = 0, · · · , L in the pyramid transform.
Using the optical flow field ul(x, y, t) at the layer l, we detect obstacles in a
image sequence. In this section, for the simplification, u means the optical flow
field ul(x, y, t) at the layer l.

ICA is a statistical technique for separating linear combined signals into the
original signals [8]. For a set of independent measures {xi}n

i=1, if {xi}n
i=1 is

a linear combination of independent components {si}n
i=1, we have the linear

relation

X = AS, where X = [x1 x2 · · ·xn], S = [s1 s2 · · · sn]. (6)

A is a matrix of the mixture coefficient. In ICA, setting W to be the inverse of
A, W is estimated from {xi}n

i=1 and independent components {si}n
i=1 are output.

S = WX (7)

As previously introduced [17,20], we accept the assumption that optical flow
fields observed by the moving camera are linear combinations of optical flow fields
of the dominant plane and the obstacles. That is, setting udominant and uobstacle to
be optical flow fields of the dominant plane and the obstacles, respectively, the
observed optical flow field u is approximately expressed by a linear combination
of udominant and uobstacle as

u = a1udominant + a2uobstacle, (8)
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Camera motion

dominant plane obstacles

= +a1 a2

Fig. 3. Linear combination of optical flow field in the scene. The optical flow field
(bottom right) is expressed as a linear combination of those shown at the bottom
middle and the bottom right. a1 and a2 are mixture coefficients.

where a1 and a2 are the mixture coefficients, as shown in Fig. 3. This assump-
tion is numerically and geometrically acceptable if motion displacement is small
compared with the size of obstacles, as shown in the numerical experiment.
Therefore, ICA is suitable for the separation of optical flow into the indepen-
dent flow components. For each image in a sequence, we consider that optical
flow vectors in the dominant plane correspond to independent components.

ICA requires at least two input signals for separation into two independent
components. Then, we use optical flow field u = {(u̇, v̇)�ij}

h,w
i=1,j=1 and planar flow

field û = {(û, v̂)�ij}
h,w
i=1,j=1 as the input vectors of ICA for the detection of the

dominant plane, where w and h are the width and the height of an image. The
algorithm for estimating the planar flow field is described in [15]. Since planar
flow is the motion of the dominant plane relative to the robot motion, the use
of planar flow is suitable for separation into the dominant plane and obstacles.

Setting vα and vβ to be the output optical flow fields of ICA, Eq. (6) corre-
sponds to {

u = a11vα + a12vβ

û = a21vα + a22vβ
, (9)

where aij is the mixture coefficient. ICA estimates independent optical flow fields
vα and vβ from optical flow fields u and planar flow fields û.

The outputs vα and vβ have ambiguity in the order of each component, since
ICA has ambiguity in the order of the independent components [8]. We are
required to determine whether components have optical flow of the dominant
plane or of obstacle areas. We solve this problem using the difference between
the variances of the norms of vα and vβ .

Setting lα,β = {lij}h,w
i=1,j=1 to be the norm of vα,β = {(u̇, v̇)ij}h,w

i=1,j=1, as

lij = |(u̇, v̇)ij |, (10)

and the variance σ2 is computed as

σ2 =
1

hw

h,w∑
i=1,j=1

(lij − l̄)2, where l̄ =
1

hw

h,w∑
i=1,j=1

lij . (11)
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Fig. 4. Left: Difference in the motions of the dominant plane and obstacles. The domi-
nant plane motion is smooth on the images compared with obstacle motion. Therefore,
the order of the components can be determined by using variances σ2

α and σ2
β . Right:

Sorting using the norm l for determination of output order. ll
ij means the norm l at

l-th layer. The area which has the median value of the component is detected as the
dominant plane, since the dominant plane occupies the largest domain in the image.

(a) I3 (b) I2 (c) I1 (d) image I

Fig. 5. Pyramidal representation of the Marbled-Block images in a simulated environ-
ment

(a) u3 (b) u2 (c) u1 (d) u0

Fig. 6. The layer optical flow fields. ui is the optical flow field from Ii in Fig. 5.

The motions of the dominant plane and obstacles in the images are different,
and the dominant-plane motion is smooth on the images compared with obstacle
motion, as shown in Fig. 4(Left). Consequently, the output signal of obstacle
motion has larger variance than the output signal of dominant-plane motion.
Therefore, if σ1

α > σ2
β , we use the norm lα of output flow field vα for dominant-

plane detection; else we use the norm lβ of output flow field vβ .
Since the planar flow field is subtracted from the optical flow field including

obstacle motion, l is constant on the dominant plane. However, the length of l
is ambiguous, because of the form of Eq. (9). Then, we use the median value



Independent Component Analysis of Layer Optical Flow and Its Application 177

(a) D3 (b) D2 (c) D1 (d) D0

Fig. 7. Detected obstacle at each layer

(a) I3 (b) I2 (c) I1 (d) Image I

Fig. 8. Pyramidal representation of captured images in a real environment

(a) u3 (b) u2 (c) u1 (d) u0

Fig. 9. The layer optical flow fields. ui is the optical flow field from Ii in Fig. 8.

of l for the detection of the dominant plane. Since the dominant plane occupies
the largest domain in the image, we compute the distance between l and the
median of l, as shown in Fig. 4(Right). The area which has the median value of
the component is detected as the dominant plane. Setting m to be the median
value of the elements in l, the distance d = {dij}h,w

i=1,j=1 is

dij = |lij − m|. (12)

We detect the area in which dij ≈ 0 as the dominant plane.

4 Experimental Results

We show experimental results on the detection of obstacles in an image sequence
at each layer. For the computation of optical flow, we use the Lucas-Kanade
method with pyramids [2]. We set the maximum layer L = 3. For the visual
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(a) D3 (b) D2 (c) D1 (d) D0

Fig. 10. Detected obstacle at each layer

(a) I (b) D3 (c) D2 (d) D1 (e) D0

Fig. 11. Experimental results. (a) Original image. (b) (c) (d) and (e) are detected
obstacles at the layers 3, 2, 1, and 0, respectively.

representation of the results of obstacle detection, the value of dij in Eq. (12)
is normalized in the range from 0 to 255. The image of the detected obstacle
Dl(u, v) at the l-th layer is defined as

Dl(i, j) =
dij × 255
max(dl

ij)
, (13)

where dl
ij is dij at the l-th layer.

The Marbled-Block image sequence and captured images in a real environment
are used for the experiment. Fig. 5 shows the Marbled-Block images at each
layer. The computed optical flow fields at each layer from each image are Fig. 6,
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respectively. Fig. 7 shows the detected obstacle at each layer. In this figure, the
black and white region indicate the obstacle and dominant plane, respectively.

Fig. 8 shows the captured images in a real environment using a mobile robot.
The mobile robot moved toward the obstacle in front of the robot. Figs. 9 and 10
are computed optical flow fields and detected obstacles at each layer, respectively.
Another experimental results are shown in Fig. 11.

These examples show that in each layer the obstacle-regions are detected.
Therefore, the algorithm detects the global configuration of obstacles from higher
layer images, though the lower layer images allows us to detect the detailed
configuration of obstacles. The hierarchical description of the layered obstacle-
region [14] and the extraction of the navigation-direction from this hierarchical
expression are future problems.

5 Conclusions

We developed an algorithm for detecting obstacles in an image sequence using in-
dependent components of optical flow fields. The optical flow fields are observed
through a moving camera. The use of the ICA for the optical flow enables the
robot to detect a feasible region in which robot can move without any preknowl-
edge. The presented experimental results support the application of our method
to the navigation and path planning of a mobile robot with a vision system.
We processed the obstacle detection at each layer in pyramid transform. We
conclude that the process emulates biological perception for visual behavior.
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Abstract. Detection of moving objects in video streams is the first rel-
evant step of information extraction in many computer vision applica-
tions. Aside from the intrinsic usefulness of being able to segment video
streams into moving and background components, detecting moving ob-
jects provides a focus of attention for recognition, classification, and ac-
tivity analysis, making these later steps more efficient. We propose an
approach based on self organization through artificial neural networks,
widely applied in human image processing systems and more generally
in cognitive science. The proposed model allows to capture structural
background variation due to periodic-like motion over a long period of
time under limited memory. Our method can handle scenes containing
moving backgrounds or illumination variations, and it achieves robust
detection for different types of videos taken with stationary cameras. We
compared our method with other modeling techniques. Experimental re-
sults, both in terms of detection accuracy and in terms of processing
speed, are presented for color video sequences which represent typical
situations critical for video surveillance systems.

Keywords: visual surveillance, motion detection, self organization, neu-
ral network.

1 Introduction

Visual surveillance has attracted much attention in the computer vision com-
munity due to its potential applications. The main problem in visual surveil-
lance systems include motion detection, object classification, tracking, activity
understanding, and semantic description. Motion segmentation, moving object
classification, and tracking have been widely studied for many years [8,14]. Aside
from the intrinsic usefulness of being able to segment video streams into moving
and background components, detecting moving objects provides a focus of atten-
tion for recognition, classification, and activity analysis, making these later steps
more efficient, since only moving pixels need be considered [5]. The problem is
known to be significant and difficult [18]. Conventional approaches to moving
object detection include temporal differencing [15], background subtraction [18],
and optical flow [2].
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Temporal differencing takes into account differences in consecutive sequence
frames, which allow to discern static objects (having null differences) from mov-
ing objects (having non-null differences). This approach is very adaptive to dy-
namic environments, but it is strictly dependent on the velocity of moving objects
in the scene and it is subject to the foreground aperture problem.

In contrast, optical flow techniques aim at computing an approximation to the
2D motion field (projection of the 3D velocities of surface points onto the imaging
surface) from spatio-temporal patterns of image intensity [2]. They can be used to
detect independently moving objects in the presence of camera motion, but most
optical flow computation methods are computationally complex, and cannot be
applied to full-frame video streams in real-time without specialized hardware.

Surely background subtraction is the most common and efficient method to
tackle the problem for scenes from stationary cameras (e.g. [13]). It is based
on the comparison of the current sequence frame with a reference background,
including information on the scene without moving objects. It is independent on
the velocity of moving objects and it is not subject to the foreground aperture
problem, but it is extremely sensitive to dynamic scene changes due to lighting
and extraneous events. Although these are usually detected, they leave behind
holes where the newly exposed background imagery differs from the known back-
ground model (ghosts). While the background model eventually adapts to these
holes, they generate false alarms for a short period of time.

Therefore, it is highly desirable to construct a general approach for motion
detection based on the background model automatically generated by a self-
organizing method without prior knowledge of the pattern classes. A possible
approach consists in using biologically inspired problem-solving methods to solve
motion detection tasks, typically based on visual attention mechanisms. The aim
is to obtain the objects that keep the users attention in accordance with a set
of predefined features, including gray level, motion and shape features. Some
referenced selective attention models are reported in [1,3,9]. Following the con-
jecture of Backer et al. [1], our approach defines a method for the generation of
an active attention focus on a dynamic scene to monitor a scene for surveillance
purposes. We propose to adopt a self-organizing method for learning motion pat-
terns represented by trajectories in the HSV space. By learning the trajectories
and features of moving objects, the background model is built up. Based on the
learned background model through a map of motion and stationary patterns,
our algorithm can detect motion and update, when necessary, the background
model. Specifically a novel neural network mapping method is proposed to use
a whole trajectory incrementally fed as an input to the network. This makes the
network structure much simpler and the learning process much more efficient.
A similar model was reported in [10], where vector quantization is used to in-
crementally construct a codebook in order to generate a background/foreground
model. Anyway, vector quantization does not take the neighborhood into con-
sideration: when a neuron c best matches the input vector, only neuron c is
excited, and all others are inhibited. According to the model reported here, the
weight sensitivity is used to ensure that each neuron can be excited at some stage.
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Indeed, when vector quantization is used to learn moving patterns, most neurons
are not excited at the early stage of training and shift toward the center of sam-
ples just according to the weight sensitivity determined in the learning process.
This slows down the speed of the network convergence and greatly affects the
learning accuracy.

The paper is organizedas follows. In Section 2 we describe the approachadopted
for moving object detection. In Section 3 we present results obtained with the im-
plementation of the proposed approach in terms of execution times and attained
accuracy, while Section 4 includes conclusions and further research directions.

2 Modeling the Background by Self-organization

In the proposed approach the background model is based on a HSV represen-
tation of the images and a self organizing neural network, inspired by Kohonen
[11]. The Kohonen self-organizing feature map usually consists of a 2-D flat grid
of simple nodes. Each node j (called an output neuron) has a weight vector Wj

where the i-th component of Wj is represented with Wi,j which is the weight
between the i-th component of the input vector and the j-th output neuron.
The input feature vectors are presented sequentially to all of the neurons. For
each input vector X , the best matching neuron c, compared with other neurons,
holds the minimal Euclidean distance to X . The neighborhood is used to reflect
the short range and side-feedback actions between neurons in the grid. The neu-
rons in neighborhood NEc of the best matching neuron c are all excited, while
neurons outside neighborhood NEc are inhibited.

In our approach, the background is encoded on a pixel-by-pixel basis. For
each pixel, it builds a neuronal map consisting of nine weight vectors. Samples
at each pixel are clustered into the set of weight vectors based on a HSV distance
measure. Moving object detection involves testing the difference of the current
image from the background model with respect to the adopted measure. If an
incoming pixel is similar to the background according to such measure, it is
classified as background; otherwise, it is classified as foreground. In order to
allow for adaptivity of the background model and detection, the background
model is updated according to running average with selectivity.

2.1 Initial Background Model

The initial background model is set to the first sequence frame; that is, each of
the nine weight vectors corresponding to a pixel is initialized to the corresponding
pixel of the first sequence frame.

In order to represent each weight vector, we choose the HSV colour space,
which allows to specify colours in a way that is close to human experience of
colours, relying on the hue, saturation and value properties of each colour. Let
(r, g, b) be the RGB components (in [0, 1]) of the generic pixel (x, y) of the first
sequence frame I0, and let C = (c1, c2, . . . , c9) be the codebook for pixel (x, y).
Each weight vector ci, i = 1, . . . , 9, is a 3D vector initialized as ci = (h, s, v), i.e.
the HSV components of pixel (x, y).
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The complete set of weight vectors for all pixels of an image I with N rows and
M columns is represented as a neuronal map A with 3N rows and 3M columns,
where the weight vectors for the generic pixel (x, y) of I are at neuronal map
positions (i, j), i = 3x, . . . , 3x + 2 and j = 3y, . . . , 3y + 2. An example of such
neuronal map structure for a simple image I with N = 2 rows and M = 2
columns is given in Fig. 1. The upper left pixel a of I in Fig. 1-(a) has weight
vectors (a1, . . . , a9) stored into the 3 × 3 elements of the upper left part of
neuronal map A in Fig. 1-(b). Analogously, the lower right pixel f of I in Fig.
1-(a) has weight vectors (f1, . . . , f9) stored into the 3 × 3 elements of the lower
right part of neuronal map A in Fig. 1-(b). This configuration allows to easily

(a) (b)

Fig. 1. A simple image (a) and the neuronal map structure (b)

take into account spatial relationship among pixels and corresponding weight
vectors, and to adopt the neuronal map A as an enlarged background model for
image I, as we shall see in the following subsection.

2.2 Subtraction and Update of the Background Model

By subtracting the current image from the background model, each pixel pt of
the t-th sequence frame It is compared to the current pixel weight vectors to
determine if there exists a weight vector that best matches it. The best matching
weight vector is used as the pixel’s encoding approximation, and therefore pt is
detected as foreground if no acceptable matching weight vector exists; otherwise
it is classified as background.

To determine which weight vector gives the best match, several metrics for
detecting changes in color imagery, such as those reported in [7,16,17] and in ref-
erences therein, could be adopted. Experiments drove us to employ the Euclidean
distance of vectors in the HSV color hexcone adopted in [7], which gives the dis-
tance between two pixels pi = (hi, si, vi) and pj = (hj , sj , vj) as:

d(pi, pj) = ‖(visi cos(hi), visi sin(hi), vi) − (vjsj cos(hj), vjsj sin(hj), vj)‖2.

Indeed, the representation of HSV values as vectors in the HSV color hexcone
used in the distance measure allows to avoid problems with the periodicity of
hue h and with the instability of h for small values of saturation s [7].
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Weight vector cm, for some m, gives the best match for the incoming pixel pt

if its distance from pt is minimum in the neighborhood C of pt and is no greater
than a fixed threshold:

d(cm, pt) min
i=1,...,9

d(ci, pt) ≤ ε. (1)

The threshold ε allows to distinguish between foreground and background pixels,
and suitable values range in [0.005, 0.02].

In order to allow for adaptivity of the background model and detection, we
update the best matching weight vector cm ∈ C, together with all other weight
vectors in a 3 × 3 neighborhood of the background model A, using running
average with selectivity, weighted by a Gaussian filter. The updating eventually
involves also weight vectors belonging to the 3×3 neighborhood of pixels adjacent
to pt, on the basis of the hypothesis that adjacent pixels move accordingly.

In details, given the incoming pixel pt(x, y) at spatial position (x, y) and time
t, if there exist a best match cm in its neighborhood C, and cm is present in the
background model as A(x, y), then weight vectors in the 3 × 3 neighborhood of
pixel (x, y) of A are updated according to

At+1(i, j) = (1 − αi,j)At(i, j) + αi,jpt(x, y),
i = x − 1, . . . , x + 1,
j = y − 1, . . . , y + 1,

(2)

where αi,j = αwi,j . α represents the learning rate, whose typical value is 0.05,
while wi,j is the Gaussian weight in the 3 × 3 neighborhood, that well corre-
sponds to the lateral inhibition activity of neurons. If the best match cm is not
found, the background model A remains unchanged.

Selectivity allows to adapt the background model to scene modifications with-
out introducing the contribution of pixels not belonging to the background scene.
Moreover, weighting of neighborhood weight vectors allows to take into account
spatial relationships among incoming pixel with its surrounding.

The background subtraction and update for an incoming pixel value pt in
sequence frame It allows to obtain the binary mask B(x) defined as in the fol-
lowing algorithm:

HSV-SO background subtraction and update algorithm

Initialize codebook C for pixel p0 and store it into A
for t=1, LastFrame

Find best match cm in C to current sample pt as in eqn. (1)
if (no match found) then
B(pt) = foreground

else
B(pt) = background
update A in the neighborhood of cm = A(x, y) as in eqn. (2)

Filtering techniques (such as morphological operations) could still be needed
in order to eliminate spurious pixels in the binary mask and enhance the suc-
cessive phases of the video surveillance process. Moreover, shadow suppression



186 L. Maddalena and A. Petrosino

algorithms, such as the one described in [6], can be readily inserted into HSV-SO
background subtraction and update algorithm, having care of not updating the
neuronal map for background pixels detected as shadows [12].

3 Experimental Results

Experimental results for moving object detection using the proposed approach
have been produced for several image sequences. Here we report results obtained
for two different sequences, which represent typical situations critical for video
surveillance systems. Further results can be found in [12].

3.1 Data and Detection Results

The sequences adopted are named Msa and Walk1. The Msa sequence is an
indoor sequence manually labeled, consisting of 555 frames of 320 × 240 spatial
resolution, acquired at a frequency of 30 frames/sec. One representative frame
together with obtained results is reported in Fig. 2. Here we report one of the
sequence frames (Fig. 2-(a)) and the original frame with corresponding moving
object detection mask computed by the HSV-SO algorithm (Fig. 2-(b)). The
detection mask shows that the walking man is perfectly detected. Moreover the
bag, which has been left by the man in previous frames, is still detected as an
object extraneous to the background. A layering approach (not yet introduced
in our system) could help the algorithm to signal the bag as a stopped object.

In Fig. 2 we also show the background model A computed by the HSV-SO
algorithm (Fig. 2-(c)) and its change mask from previous frame (2-(d)). We
would remark that the background model A is represented by a neuronal map
whose size is 9 times greater than that of the original image I. In the reported
figures they appear to have the same size only for space constraints and for an
easier comparison. We can observe that the background model is a quite accurate
(enlarged) representation of the real background. Small differences with the real
background can be noticed only in few pixels near the column; these are due to
a previous passage of the man in front of the column and the consequent only
partial update of the corresponding background pixels.

The Walk1 sequence of the CAVIAR Project [4] is labeled and comprise 611
frames of 384 × 288 spatial resolution, captured at a frequency of 25 frames/sec.
The sequence presents some critical factors, such as light change and mimetics.
One representative frame is reported in Fig. 3-(a), while the frame with superim-
posed the corresponding moving object detection mask computed by the HSV-SO
algorithm is reported in Fig. 3-(b). By looking at the detection mask we can ob-
serve that the man in the center of the room is perfectly detected, even though
some parts of the man (such as the arm) tend to camouflage with the pavement
and could have led to a partial detection. The group of persons lying close to the
lower left side of the image (in the reflection on the pavement of the light coming
through the windows) is partially detected. This is reasonable since such persons
are barely distinguishable also for the human eye. Same observations hold for the
person lying close to the plant in lower center side of the image.
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(a) (b)

(c) (d)

Fig. 2. Results of HSV-SO algorithm on Msa sequence: (a) original frame; (b) original
frame with moving object detection mask; (c) background model; (d) background model
change mask from previous frame

In Fig. 3 we also show the background model A computed by the HSV-SO
algorithm (Fig. 3-(c)) and its change mask from previous frame (3-(d)). We can
observe that the background model is a quite accurate (enlarged) representation
of the real background. The change mask of the background model shows clearly
that wide areas of constant intense white (in the reflection on the pavement of
the light coming through the windows) are not updated from previous frame.

3.2 Accuracy and Performance Results

In order to assess accuracy of the proposed approach and to compare it with
other approaches, we adopted Recall and Precision functions computed over tp
(true positives), fn (false negatives) and fp (false positives):

Recall =
∑

tp∑
tp +

∑
fn

; Precision =
∑

tp∑
tp +

∑
fp

,

where (
∑

tp +
∑

fn) is the total number of objects in the ground truth, and
(
∑

tp +
∑

fp) is the total number of detected objects.
Results obtained with the proposed HSV-SO algorithm have been compared

with those obtained with three other algorithms: Pfinder, VSAM, and CB. In
the Pfinder algorithm the background model assumes that the intensity values
of a pixel can be modeled by a Gaussian distribution N(μ, σ2) [19]. The VSAM
algorithm implements the approach proposed in [5], based on the integration of
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(a) (b)

(c) (d)

Fig. 3. Results of HSV-SO algorithm on Walk1 sequence: (a) original frame; (b) orig-
inal frame with moving object detection mask; (c) background model; (d) background
model change mask from previous frame

pixel analysis and region analysis modules to extract motion by a finite state
machine; it is able to recognize when moving objects have stopped and to dis-
ambiguate overlapping objects. The CB algorithm reported in [10] has already
been briefly sketched in §1. For all the considered algorithms we experimented
with different settings of adjustable parameters until the results seemed optimal
over the entire sequence.

From results reported in Table 1 we can observe that most of the considered
algorithms perform quite well on the MSA sequence; only the Pfinder algorithm
has low Recall, due to the fact that it readily incorporates into background
moving objects that have stopped (the bag). From results obtained for the more
challenging Walk1 sequence we can notice that HSV-SO performs much better
than the Pfinder method, and slightly better than CB and VSAM methods.

To complete our analysis, in Table 2 we report mean execution times, in terms
of msecs/frame, of the three considered algorithms on the video sequences Msa
and Walk1 on a Pentium 4 with 2.40 GHz and 512 MB RAM, running Windows

Table 1. Precision and Recall for sequences Msa and Walk1

Precision (Msa) Recall (Msa) Precision (Walk1) Recall (Walk1)

HSV-SO 0.99 0.99 0.69 0.85
Pfinder 0.97 0.45 0.57 0.60
VSAM 0.98 0.99 0.82 0.68
CB 0.99 0.98 0.60 0.88



A Self-organizing Approach to Detection of Moving Patterns 189

Table 2. Mean execution times (in msecs/frame) for sequences Msa and Walk1

Mean execution times (Msa) Mean execution times (Walk1)

HSV-SO 32.08 44.88
Pfinder 17.72 28.10
VSAM 20.47 32.42
CB 38.71 56.86

XP operating system. Execution times do not include I/O. The table shows that
HSV-SO improves performance speed of CB, but is always slower than Pfinder
and VSAM. Some optimization of HSV-SO could be, for instance, in terms of
pruning of the not winning weight vectors, although experimental results in this
direction have not yet reported appreciable improvements.

4 Conclusions and Ongoing Work

We have presented a new self-organizing method for modeling background by
learning motion patterns and so allowing foreground/background separation for
scenes from stationary cameras, strongly required in video surveillance systems.
Unlike existing methods that use individual flow vectors as inputs, our method
learns in a self organizing manner motion trajectories. This makes the neural
network structure much simpler. Experimental results using two different sets
of data and two different methods have demonstrated the effectiveness of the
proposed algorithms.

In order to make our technique more practically useful in a visual surveil-
lance system, we plan to improve the method by layered modeling/detection.
The motivation of layered modeling and detection is to still be able to detect
foreground objects against new backgrounds which were obtained during the de-
tection phase. If we do not have those background layers, interesting foreground
objects (e.g., people) will be detected mixed with other stationary object s (e.g.,
car). The scene can change after initial training, for example, by parked cars,
displaced books, etc. These changes should be used to update the background
model.
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Abstract. Face recognition is among the most challenging techniques
for personal identity verification. Even though it is so natural for humans,
there are still many hidden mechanisms which are still to be discovered.
According to the most recent neurophysiological studies, the use of dy-
namic information is extremely important for humans in visual percep-
tion of biological forms and motion. Moreover, motion processing is also
involved in the selection of the most informative areas of the face and
consequently directing the attention. This paper provides an overview
and some new insights on the use of dynamic visual information for face
recognition, both for exploiting the temporal information and to define
the most relevant areas to be analyzed on the face. In this context, both
physical and behavioral features emerge in the face representation.

1 Introduction

Biometric recognition has attracted the attention of scientists, investors, govern-
ment agencies as well as the media for the great potential in many application
domains. It turns out that there are still a number of intrinsic drawbacks in
all biometric techniques. In this talk we postulate the need for a proper data
representation which may simplify and augment the discrimination among dif-
ferent instances or biometric samples of different subjects. In fact, considering
the design of many natural systems, it turns out that spiral (circular) topologies
are the best suited to economically store and process data. Among the many de-
veloped techniques for biometric recognition, face analysis seems to be the most
promising and interesting modality. The ability of the human visual system of
analyzing unknown faces, is an example of the amount of information which can
be extracted from face images. This is not limited to the space or spectral do-
main, but heavily involves the time evolution of the visual signal. Nonetheless,
there are still many open problems which need to be faced as well. This not only
requires to devise new algorithms but to determine the real potential and lim-
itations of existing techniques, also exploiting the time dimensionality to boost
recognition performances.

F. Mele et al. (Eds.): BVAI 2007, LNCS 4729, pp. 191–213, 2007.
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This paper highlights some basic principles underlying the perceptual mecha-
nisms of living systems, specially related to dynamic information processing, to
gather insights on sensory data acquisition and processing for recognition [1].

Recently, the analysis of video streams of face images has received an in-
creasing attention in biometric recognition [2,3,4,5,6,7,8,9]. Not surprisingly, the
human visual system also implements a very sophisticated neural architecture
to detect and process visual motion [10].

A first advantage in using dynamic video information is the possibility of
employing redundancy present in the video sequence to improve still images
recognition systems. One example is the use of voting schemes to combine results
obtained for all the faces in the video, or the choice of the faces best suited for
the recognition process. Another advantage is the possibility is to use the frames
in a video sequence to build a 3D representation or super-resolution images.

Besides these motivations, recent psychophysical and neural studies [1,11]
have shown that dynamic information is very crucial in the human face recog-
nition process. These findings inspired the development of true spatio-temporal
video-based face recognition systems [2,3,4,5,6,7,8,9]. Last, but not least, the
recognition of faces in the human visual system also involves attention mecha-
nisms to detect and analyze the “most salient” features in the face. How these
features are defined and detected is still not completely understood. Nonetheless,
very distinctive information are used to characterize human faces. A computer
implementation is introduced where salient regions are defined by analyzing sev-
eral individuals. A set of multi-scale patches are extracted from each face image
before projecting them into a common feature space. The degree of “distinc-
tiveness” of any patch depends on its distance in feature space from patches
mapped from other individuals. Both a perceptual experiment, involving 45 ob-
servers and a technological experiment were performed and compared. A further
comparative analysis showed that the performance of the n-ary approach is as
good as several contemporary unary, or binary, methods - whilst tapping a com-
plementary source of information.

2 Human Vision and Information Processing

Neural systems that mediate face recognition appear to exist very early in life.
In normal infancy, the face holds particular significance and provides nonverbal
information important for communication and survival [12].

The ability to recognize human faces is present during the first 6 months
of life, while a visual preference for faces and the capacity for very rapid face
recognition are present at birth [13,14]. By 4 months, infants recognize upright
faces better than upside down faces, and at 6 months, infants show differential
event-related brain potentials to familiar versus unfamiliar faces [15,16]. Apart
from speech, face analysis is certainly the first and major biometric cue used by
humans and therefore very important to be accurately studied.

Early studies on face recognition in primates revealed a consistent neural ac-
tivity in well identified areas of the brain, mainly involving the temporal sensory
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Face perception 

Fig. 1. Picture of the human brain as seen from below. The highlighted areas are those
initially devoted to the perception of faces and object’s form.

area. More recent research revealed that this is not the case, but many different
brain areas are taken into play at different stages of face analysis and recogni-
tion. This also recalls the need for a very complex representation including both
photometric and dynamic information on the facial characteristics.

2.1 Space-Variant Image Representations

To achieve any visual task, including face recognition, humans are able to purpo-
sively control the flow of input data limiting the amount of information gathered
from the sensory system [17,18,19]. This is needed to reduce the space and com-
putation time required to process the incoming information. The anatomy of the
early stages of the human visual system is a clear example: despite the formi-
dable acuity in the fovea centralis (1 minute of arc) and the wide field of view
(about 140x200 degrees of solid angle), the optic nerve is composed of only 106

nerve fibres. The space-variant distribution of the ganglion cells in the retina al-
lows a formidable data flow reduction. In fact, the same resolution would result
in a space-invariant sensor of about 6x108 pixels, thus resulting in a compres-
sion ratio of 1:600 [20]. The probability density of the spatial distribution of the
ganglion cells, which convey the signal from the retinal layers to the optic nerve
and is responsible for the data compression, follows a logarithmic-polar law. The
number of cells decreases from the center of the retina toward the periphery,
with the maximal resolution in the fovea [21]. The same data compression can
be obtained on electronic images, either by using a specially designed space-
variant sensor [22], or re-sampling a standard image according to the log-polar
transform [19,20]. The analytical formulation of the log-polar mapping describes
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(a)

(b)

Fig. 2. (a) Log-polar sampling for Cartesian image remapping and (b) discrete log-
polar model

the mapping that occurs between the retina (retinal plane (ρ, θ)) and the visual
cortex (log-polar or cortical plane (ξ, η)). The derived logarithmic-polar law,
taking into account the linear increment in size of the receptive fields, from the
central region (fovea) towards the periphery, is given by:

{
x = ρ cos θ
y = ρ sin θ

{
η = q θ
ξ = lna

ρ
ρ0

(1)

where a defines the amount of overlap among neighboring receptive fields, ρ0 is
the radius of the innermost circle, 1

q is the minimum angular resolution of the
log-polar layout, and (ρ, θ) are the polar coordinates of an image point.

Other models for space-variant image geometries have been proposed, like
the truncated pyramid [23], the reciprocal wedge transform (RWT) [24] and the
complex logarithmic mapping (CLM) [25]. Several implementations of space-
variant imaging have been developed: space-variant sensors [22], custom designed
image re-sampling hardware [26], and special software routines [19,27]. Given the
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high processing power of current computing hardware, image re-mapping can be
performed at frame rate without the need of special computing hardware, and
also allows the use of conventional, low cost, cameras.

3 Visual Attention and Selective Processing

A very general and yet very important perceptual mechanism in humans is visual
attention [28]. This mechanism is exploited by the human perceptual system
to parse the input signal in various dimensions: ”signal space” (low or high
frequency data), depth (image areas corresponding to objects close or far from
the observer), motion (static or moving objects) etc. The selection is controlled
through ad-hoc band-limiting or focusing processes, which determine the areas
of interest in the scene to which direct the gaze [29].

Fig. 3. Schema of the saccades performed by the human visual system analyzing an
unfamiliar face (reprinted from [28])

In the case of face perception, both space-variant image re-sampling and the
adoption of a selective attention mechanism can greatly improve the performance
of any recognition/authentication algorithm. While the log-polar mapping allows
to adaptively reduce the frequency content of the input signal, more sophisti-
cated processes are needed to discard low information areas in the image. Visual
attention in humans is also devoted to detect the most informative areas in the
face to produce a compact representation for higher level cognitive processes.

Behavioral studies suggest that, in general, the most salient parts for face
recognition are, in order of importance, eyes, mouth, and nose [30]. Eye-scanning
studies in humans and monkeys show that eyes and hair/forehead are scanned
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more frequently than the nose [28,31], while human infants focus on the eyes
rather than the mouth [32]. Using eye-tracking technology to measure visual
fixations, Klin [33] recently reported that adults with autism show abnormal
patterns of attention when viewing naturalistic social scenes. These patterns
include reduced attention to the eyes and increased attention to mouths, bodies,
and objects. The high specialization of specific brain areas for face analysis and
recognition motivates the relevance of faces for social relations. On the other
hand, this further demonstrates that face understanding is not a low level process
but involves higher level functional areas in the brain.

Even though visual attention is generally focused on almost fixed facial land-
marks, this does not imply that these are the only areas processed for face
perception. Facial features are not simply distinctive points on the segmented
face, but rather a collection of image features representing specific (and anatom-
ically stable) areas of the face such as the eyes, eyebrows, ears, mouth, nostrils
etc. Two different kind of landmarks can be defined:

– face-invariant landmarks, such as the eyes, the nose, the mouth, the ears and
all other elements which are typical of every face;

– face-variant landmarks, which are distinctive elements for a given subject’s
face [34,35].

The face-invariant landmarks are important to distinguish faces from non-faces,
and constitute the basic elements to describe both familiar and unfamiliar faces.
All face-variant landmarks constitute the added information, which is learned by
the human visual system, to uniquely characterize a subject’s face. As a conse-
quence, attention is selectively driven to different areas of the face corresponding
to the subject’s specific landmarks. This hypothesis is grounded, not only on con-
siderations related to the required information processing, but also on several
observations of the eye movements while processing human faces [13,28,31,32,33].
In all reported tests, the gaze scanpaths were different according to the iden-
tity of the presented face. As a consequence, the classification of subjects based
on the face appearance, must be tuned to extract and process the most salient
features of the face itself.

3.1 A Computational Model for Selective Face Processing

In order to define distinctive or salient areas of an individual’s face a comparative
analysis is made. All the areas of an individual’s face, that appear distinct when
compared to other faces from the population, are selected.

Because the appearance of different subjects is compared, this approach is
conceptually different from most of the existing feature extraction methods that
rely on the detection and analysis of specific face areas for authentication or
recognition purposes—e.g. the Elastic Bunch Graph Matching technique [36]. It
differs also from more elaborate techniques that identify the most “salient” parts
within the face according to a pre-specified criterion. Among these [37,38,39,40],
the system described by [41] that detects “key points” from a set of lines ex-
tracted from the face image and that in [42] which selects “characteristic points”
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Fig. 4. Schema describing the pair-wise differences algorithm. The x and y axes repre-
sent two hypothetical coordinates in the feature space.

in a generic image by means of a local optimization process applied to the dif-
ference of Gaussians image, filtered at different scales and orientations. Though
they all vary in implementation, robustness, computational requirements and
accuracy, each of the above approaches is essentially a unary technique: salient
regions are defined by analyzing only one instance of the face class, namely only
images of the same individual. On the contrary, we identify local patches within
an individual’s face that are different from other individuals by performing a
pair-wise, or binary, analysis. This avoids issues that may arise when invoking
a single average face, or canonical model, against which each face would then
be distinguished. In particular, differences between faces are determined by di-
rectly extracting from one individual’s face image the most distinguishing or
dissimilar patches with respect to another’s. Image patches from the same in-
dividual tend to cluster together when projected in a multi-dimensional space
and the distance, in that space, of that patch from clusters formed by other
faces can be used as a measure of “distinctiveness”—as sketched, in just 2-D, in
Fig. 8.

It is worth noting that the concept of comparative face analysis is also inherent
in the work by Penev and Atik [43] (Local Feature Analysis), as well as by Li et
al. [44] (Local Nonnegative Matrix Factorization), and by Kim et al. [45] (Locally
Salient Independent Component Analysis). These are locally salient versions of
dimensionality reduction techniques, applied to a database of images so to obtain
a local representation (as a set of basis) of the training set. Even if not explicitly
developed to extract salient parts of a face, all these techniques find utility in
characterizing a face by performing a comparative local analysis.



198 M. Tistarelli et al.

(a) (b) (c)

Fig. 5. Log polar sampling: (a) original image (b) all fixations (c) some reconstructed
log-polar patches

An interesting approach more related to this work extracts most salient patches
(there denoted fragments) of a set of images [46]. There a sufficient coverage of
patches are extracted from a set of “client” images, before each patch is weighted
in terms of its mutual information with respect to a selected set of classes. How-
ever, the optimality criterion there used to select the most relevant patches differs
from ours. We use a deterministic criterion computing the distance from the “im-
postor” set, while they adopt a probabilistic criterion based on empirical estima-
tion of probability function. In order to obtain a reliable estimate, their approach
thus requires a considerably large training set.

Multi-scale patches extraction. From each face-image, candidate patches
are extracted. These patches must be spatially distributed in a way to cover
most of the face area. This methodology is similar to the one adopted in patch-
based image classification [47,48,49,50] and image characterization [51]. Since
face recognition requires to process information at different spatial resolutions,
there may be an advantage in extracting candidate patches at multiple scales.
In agreement with the analysis presented in a previous section, a space-variant,
multi-scale image sampling is adopted. This allows to avoid two notable pitfalls:
(a) blind analysis - whereby information revealed at one scale is not usefully
available at other scales, and (b) repeated image processing - which would add
to the overall computational expense. Each face-image is sampled using patches
derived from a log-polar mapping [27], considering the resulting sampled vectors
as our features.

As an example, Figure 5(b) shows the sampling points (corresponding to fovea
fixations) of one face.

In particular, the face-image is re-sampled at each point following a log-polar
scheme so that the resulting set of patches represents a local space-variant remap-
ping of the original image, centered at that point.

Finding differences between face-pairs. Without loss of generality, we start
by considering the two-face case, i.e. when client set and impostor set contain
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face A face B face C face D
Fixations

A vs. B B vs. A C vs. D D vs. C
25 most weighted patches

A vs. B B vs. A C vs. D D vs. C
100 most weighted patches

Fig. 6. Two examples of differences extracted from pairs of images of different persons:
(A,B) and (C,D)

only one face each. Later we examine how this process can be expanded to the
multi-face case.

The main idea is that the patches from one face-image will tend to form their
own cluster in the feature space, while those of the other face-image ought to
form a different cluster—e.g. see Fig. 8. The “distinctiveness” of each patch can
be related to its locus in feature space with respect to other faces. Any patches
of the first face, found near loci of a second face can be considered less distinctive
since they may easily be confused with the patches of that second face, and thus
may lead to algorithmic misclassification. Conversely, a patch lying on the limb
of its own cluster, that is most distant from any other cluster, should turn out to
be usefully representative, and may thus be profitably employed by a classifier.

We formalize the degree of distinctiveness of each face patch by weighting it
according to its distance from the projection of the other data-cluster. Patches
with the highest weights are then interpreted as encoding the most important
differences between the two face-images.
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Qualitative examples. All images used in the experiments were gray-level,
with resolution 320 × 200 pixels, and cropped in order to reduce the influence
of the background. Fixations, or centers of the patch sampling process (edge-
points), were computed using zero-crossings of a LoG filter. After a preliminary
evaluation, log-polar patch resolution was set to 15 eccentricity steps (Nr), at
each of which there were 35 receptive fields (Na), with a 70% overlap along the
two directions (Or and Oa). This represents a reasonable compromise between
fovea resolution and peripheral context. Some examples of log-polar patches,
rebuilt from the log-polar representations, are shown on Fig. 5(c).

Fig. 6 represents the comparison between different individuals.
The first two columns (subjects A and B) reveal that the main differences are

in the ears and in the eyebrows: this is clearly evidenced in row 3 that shows
that the first 25 patches are located on the ear in the right part of the face and
on the eyebrows. This result is re-enforced when adding patches (last row): note
how the left ear is now highlighted.

4 Video-Based Face Image Analysis

Conversely to previous hypotheses of human neural activity, face perception
rarely involve a single, well defined area of the brain. It seems that the traditional
“face area” is responsible for the general shape analysis but it is not sufficient
for recognition. In the same way, face recognition by computers can not be seen
as a single, monolithic process, but several representations must be devised into
a multi-layered architecture.

An interesting approach to multi-layer face processing has been proposed by
Haxby [52]. The proposed architecture (sketched in figure 7) divides the face
perception process into two main layers: the former devoted to the extraction
of basic facial features and the latter processing more changeable facial features
such as lip movements and expressions. It is worth noting that the encoding
of changeable features of the face also captures some behavioral features of the
subject, i.e. how the facial traits are changed according to a specific task or
emotion.

4.1 Relevance of the Time Dimension

As shown by Vaina et al. [10], the visual task strongly influences the areas
activated during visual processing. This is specially true for face perception,
where not only face-specific areas are involved, but a consistent neural activity
is registered in brain areas devoted to motion perception and gaze control.

The time dimension is involved also when unexpected stimuli are presented
[1,11]. Humans can easily recognize faces which are rotated and distorted up to
a limited extent. The increase in time reported for recognition of rotated and
distorted faces implies: the expectation on the geometric arrangement of facial
features, and a specific process to organize the features (analogous to image
registration and warping) before the actual recognition process can take place.



Recognition of Human Faces: From Biological to Artificial Vision 201

Inferior occipital gyri
Eary perception of
facial features

Superior temporal sulcus
Changeable aspects of faces –
perception of eye gaze, expression
and lip movement

Lateral fusiform gyrus
Invariant aspects of faces –
perception of unique identity

Core system: visual analysis

Intraparietal sulcus
Spatially directed attention

Auditory cortex
Prelexical speech perception

Amygdala, insula, limbic system
Emotion

Anterior temporal
Personal identity, name and
biographical information

Extended system:
further processing in concert
with other neural systems

Fig. 7. A model of the distributed neural system for face perception (reproduced from
[52])

On the other hand, it has been shown that the recognition error for an upside-
down face decreases when the face is shown in motion [1].

From the basic element related to the face shape and color, subduing a multi-
area neural activity, cognitive processes are started not only to determine the
subject’s identity, but also to understand more abstract elements (even uncor-
related to the subject’s identity) which characterize the observed person (age,
race, gender, emotion etc.) [10,53,54,55,56,57,58]. As a consequence, non-rigid
and idiosyncratic facial motions constitute a very powerful “dynamic template”
which augments the information stored for familiar faces and may also improve
the memory recall of structured information for identity determination [11].

4.2 A Computational Model for Computing Face Shape and Motion

The double layered architecture proposed by Haxby [52] can be represented
by two distinct but similar processing units devoted to two distinct tasks. The
system proposed in the remainder of the paper proposes the use of the Hid-
den Markov Models as elementary units to build a double layer architecture to
extract shape and motion information from face sequences. The architecture is
based on a multi-dimensional HMM which is capable of both capturing the shape
information and the change in appearance of the face. This multi-layer archi-
tecture was termed Pseudo Hierarchical Hidden Markov Model to emphasize the
hierarchical nature of the process involved [59].

A discrete-time Hidden Markov Model λ can be viewed as a Markov model
whose states cannot be explicitly observed: a probability distribution function
is associated to each state, modelling the probability of emitting symbols from
that state [60].
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Given a set of sequences {Sk}, the training of the model is usually performed
using the standard Baum-Welch re-estimation. During the training phase, the
parameters (A,B, π) that maximize the probability P ({Sk}|λ) are computed.
The evaluation step (i.e. the computation of the probability P (S|λ), given a
model λ and a sequence S to be evaluated) is performed using the forward-
backward procedure.

Pseudo Hierarchical-HMM. The emission probability of a standard HMM
is typically modeled using simple probability distributions, like Gaussians or
Mixture of Gaussians. Nevertheless, in the case of sequences of face images, each
symbol of the sequence is a face image, and a simple Gaussian may not be
sufficiently accurate to properly model the probability of emission. Conversely,
for the PH-HMM model, the emission probability is represented by another
HMM, which has been proven to be very accurate to represent variations in the
face appearance [61,62,63,64].

The PH-HMM can be useful when the data have a double sequential profile.
This is when the data is composed of a set of sequences of symbols {Sk}, Sk =
sk
1 , sk

2 , · · · , sk
T , where each symbol sk

i is a sequence itself: sk
i = ok

i1, o
k
i2, · · · , ok

iTi
.

Let us call Sk the first-level sequences, whereas sk
i denotes second-level

sequences.
Fixed the number of states K of the PH-HMM, for each class C the training

is performed in two sequential steps:

1. Training of emission. The first level sequence Sk = sk
1 , sk

2 , · · · , sk
T is “un-

rolled”, i.e. the {sk
i } are considered to form an unordered set U (no matter

the order in which they appear in the first level sequence). This set is subse-
quently split in K clusters, grouping together similar {sk

i }. For each cluster
j, a standard HMM λj is trained, using the second-level sequences contained
in that cluster. These HMMs λj represents the emission HMMs.

This process is similar to the standard Gaussian HMM initialization
procedure, where the sequence is unrolled and a Mixture of K Gaussians is
fitted to the unordered set. The Gaussians of the mixture are then used to
roughly estimate the emission probability of each state (with a one to one
correspondence with the states).

2. Training of transition and initial states matrices. Considering that the
emission probability functions are determined by the emission HMMs, the
transition and the initial states probability matrices of the PH-HMM are
estimated using the first level sequences. In other words, the standard Baum
Welch procedure is used, recalling that

b(o|Hj) = λj (2)

The number of clusters determines the number of the PH-HMM states. This
value could be fixed a priori or could be directly determined from the data
(using for example the Bayesian Inference Criterion [66]). In this phase, only
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the transition matrix and the initial state probability are estimated, since
the emission has been already determined in the previous step.

Because of the sequential estimation of the PH-HMM components (firstly
emission and then transition and initial state probabilities), the resulting HMM
is a “pseudo” hierarchical HMM. In a truly hierarchical model, the parameters
A, π and B should be jointly estimated, because they could influence each other
(see for example [67]).

Verification of face sequences. Given few video sequences captured from the
subject’s face, the enrollment or modelling phase aims at determining the best
PH-HMM modeling the subject’s face appearance. This model encompasses both
the invariant aspects of the face and its changeable features. Identity verification
is performed by projecting a captured face video sequence on the PH-HMM
model belonging to the claimed identity.

The enrollment process consists on a series of sequential steps (for simplicity
we assume only one video sequence S = s1, s2, · · · , sT , but the generalization to
more than one sequence is straightforward):

1. The video sequence S is analyzed to detect all faces sharing similar expres-
sion, i.e. to find clusters of expressions. Firstly, each face image si of the
video sequence is reduced to a raster scan sequence of pixels, used to train a
standard spatial HMM [61,64]. The resulting face HMM models are clustered
in different groups based on their similarities [68,69]. Faces in the sequence
with similar expression are grouped together, independently from their ap-
pearance in time. The number of different expressions are automatically
determined from the data using the Bayesian Inference Criterion [66].

2. For each expression cluster, a spatial face HMM is trained. In this phase
all the sequences of the cluster are used to train the HMM. At the end of
the process, K HMMs are trained. Each spatial HMM models a particular
expression of the face in the video sequence. These models represents the
emission probabilities functions of the PH-HMM.

3. The transition matrix and the initial state probability of the PH-HMM
are estimated from the sequence S = s1, s2, · · · , sT , using the Baum-
Welch procedure and the emission probabilities found in the previous step
(see Sect. 4.2). This process aims at determining the temporal evolution
of facial expressions over time. The number of states is fixed to the num-
ber of discovered clusters, this representing a sort of model selection
criterion.

In summary, the main objective of the PH-HMM representation scheme is to
determine the facial expressions in the video sequence, modelling each of them
with a spatial HMM. The expressions change during time is then modelled by
the transition matrix of the PH-HMM, which constitutes the “temporal” model
(as sketched in Fig. 8).
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Fig. 8. Sketch of the enrollment phase of the proposed approach

4.3 Clustering Facial Expressions

The goal of this step is to group together all face images in the video sequence
with the same appearance, namely the same facial expression. It is worth noting
that this process does not imply a segmentation of the sequence into homo-
geneous, contiguous fragments. The result is rather to label each face of the
sequence corresponding to its facial expression, independently from their po-
sition in the sequence. Since each face is described with an HMM sequence,
the expression clustering process is casted into the problem of clustering se-
quences represented by HMMs [68,69,70,71]. Considering the unrolled set of faces
s1, s2, · · · , sT , where each face si is a sequence si = oi1, oi2, · · · , oiTi , the cluster-
ing algorithm is based on the following steps:

1. Train one standard HMM λi for each sequence si.
2. Compute the distance matrix D = {D(si, sj)}, where D(si, sj) is defined as:

D(si, sj) =
P (sj |λi) + P (si|λj)

2
(3)
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Fig. 9. Sampling scheme applied to generate the sequence of sub-images and the HMM
model of the sampled sequence, representing a single face image

This is a natural way for devising a measure of similarity between stochastic
sequences. Since λi is trained using the sequence si, the closer is sj to si, the
higher is the probability P (sj |λi). Please note that this is not a quantitative
but rather a qualitative measure of similarity [68,69].

3. Given the similarity matrix D, a pairwise distance-matrix-based method
(e.g. an agglomerative method) is applied to perform the clustering. In par-
ticular, the agglomerative complete link approach [72] has been used.

In typical clustering applications the number of clusters is defined a priori. In
this application, it is practically impossible (or not viable in many real cases)
to arbitrarily establish the number of facial expressions which may appear in a
sequence of facial images. Therefore, the number of clusters has been estimated
from the data, using the standard Bayesian Inference Criterion (BIC) [66]. This
is a penalized likelihood criterion which is able to find the best number of clusters
as the compromise between the model fitting (HMM likelihood) and the model
complexity (number of parameters). It is defined as:

BIC(Mk) = log P (X |M̂k) − 1
2
|M̂k| log(N) (4)

where X is the data set (of cardinality N) to be modeled, {Mk} (kmin ≤ k ≤
kmax) are the candidate models, M̂k is the Maximum Likelihood estimate of the
model Mk, and |M̂k| is the number of free parameters of the model Mk.

4.4 PH-HMM Modeling: Analysis of Temporal Evolution

From the extracted set of facial expressions, the PH-HMM is trained. The differ-
ent PH-HMM emission probability functions (spatial HMMs) model the facial
expressions, while the temporal evolution of the facial expressions in the video
sequence is modelled by the PH-HMM transition matrix. In particular, for each
facial expression cluster, one spatial HMM is trained, using all faces belonging
to the cluster. The transition and the initial state matrices are estimated using
the procedure described in section 4.2.
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One of the most important issues when training a HMM is the model selection,
or the estimation of the best number of states. In fact, this operation can prevent
overtraining and undertraining which may lead to an incorrect model representa-
tion. In the presented approach, The number of states of the PH-HMM directly
derives from the previous stage (number of clusters), representing a direct smart
approach to the model selection issue.

4.5 Face Verification

The verification of a subject’s identity is straightforward. Captured a sequence of
face images from an unknown subject, and a claimed identity, the sequence is fed
to the corresponding PH-HMM, which returns a probability value. The claimed
identity is verified if the computed probability value is over a predetermined
threshold. This comparison corresponds to verifying if the captured face sequence
is well modeled by the given PH-HMM.

The system has been tested using a database composed of 21 subjects. During
the video acquisition, each subject was requested to vocalize ten digits, from one
to ten. A minimum of five sequences for each subject have been acquired, in two
different sessions. Each sampled video is composed of 95 to 195 color images,
with several changes in facial expression and scale (see fig. 10). The images have
a resolution of 640x480 pixels. For the face classification experiments the images
have been reduced to gray level with 8 bits per pixel. It is worth noting that
there is no need for an explicit normalization for the different length of the
sequences. The normalization in the time domain is obtained by self transitions
of temporal HMM’s states. In other words, if the subject takes 10 frames to
change expression, it is likely that the system remains in the same expression
state for 10 iterations before moving to the next state (self transitions).

The proposed approach has been tested against three other HMM-based
methods, which do not fully exploit the spatio-temporal information. The first
method, called “1 HMM for all”, applies one spatial HMM to model all images
in the video sequence. In the authentication phase, given an unknown video se-
quence, all the composing images are fed into the HMM, and the sum of their
likelihoods represents the matching score. In the second method, called “1 HMM
for cluster”, one spatial HMM is trained for each expression cluster, using all the
sequences belonging to that cluster. Given an unknown video, all images are fed
into the different HMMs (and summed as before): the final matching score is the
maximum among the different HMMs’ scores. The last method, called “1 HMM
for image”, is based on training one HMM for each image in the video sequence.
As in the “1 HMM for cluster” method, the matching score is computed as the
maximum between the different HMMs’ scores.

In all experiments only one video sequence for each subject has been used for
the enrollment phase. Full client and impostor tests have been performed com-
puting a ROC (Receiving Operating Characteristic) curve. Testing and training
sets were always disjoint, allowing a more reliable estimation of the error rate.
In table 1 the Equal Error Rates (error when false positive and false negatives
are equal) for the four methods are reported.
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Fig. 10. (Top) Example frames of one subject extracted from the collected video data-
base. (Bottom) One sample frame of five subjects, extracted from the first acquisition
session.
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Fig. 11. The computed ROC curve for the verification experiment from video sequences
of faces for the 4 methods reported

The analysis of the video sequences with the hierarchical, spatio-temporal
HMM model produced a variable number of clusters, varying from 2 to 10,
depending on the coding produced by the spatial HMMs. To choose the HMM
that best fits the data, the Bayesian Inference Criterion (BIC) [66].

It is worth noting that when incorporating temporal information into the
analysis a remarkable advantage is obtained, thus confirming the importance of
explicitly modeling the face motion for identification and authentication.

The adopted test database is very limited and clearly too small to give a sta-
tistically reliable estimate of the performances of the method. Nonetheless, the
results obtained on this limited data set already show the applicability and the
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Table 1. Verification results for the reported HMM-based, face modeling methods

Method EER

Still Image: 1 HMM for all 20.24%
Still Image: 1 HMM for cluster 10.60%
Still Image: 1 HMM for image 13.81%
Video: PH-HMM 6.07%

potential of the method in a real application scenario. On the other hand, the
tests performed on this limited dataset allowed to compare different modeling
schemes where the face dynamics was loosely integrated into the computational
model. The proposed PH-HMM model outperforms all other modeling schemes
based on the HMMs, at the same time it represents a very interesting computa-
tional implementation of the human model of face recognition, as proposed by
Haxby in [52] and described in section 4. It is important to stress that, far from
being the best computational solution for face recognition of faces from video,
the proposed scheme closely resembles the computational processes underlying
the recognition of faces in the human visual system.

In order to further investigate the real potential of the proposed modeling
scheme, the results obtained will be further verified performing a more extensive
test on a database including at least 50 subjects and 10 image sequences for each
subject.

5 Conclusions

The human visual system encompasses several complex mechanisms for parsing
and analyzing the visual signal in space, time and frequency. These mechanisms,
which include scale-space analysis and selective attention, allow the perception
and recognition of complex and deformable objects, such as human faces. There
is much to learn from the neural architecture of face perception and on the
processes involved. Another important issue, which is rather difficult to address,
is how human faces are “coded” in the brain. It seems that a complex mecha-
nism exists which is adaptive to the nature of the perceived faces, i.e. if they are
familiar or unfamiliar. Within this context, a crucial role is plaid by the concept
of “model face”, which is the reference for face detection and recognition. While
a standard face model is required for distinguishing faces from non-faces, a per-
sonalized, user-dependent model is required for recognition. This concept can be
stretched up to the definition of a subject-dependent face model, which is linked
not only on the identification of standard facial landmarks, such as the eyes and
the mouth (which indeed are demonstrated to be actively scanned by the gaze
during face fixations) but rather on distinguishing face landmarks. These must
correspond to very distinctive patterns on the face.

In this paper, a method to automatically extract the most distinguishing pat-
terns in the subject’s face has been proposed. The system, which has been tested
on a standard face database, demonstrated to be able to select the face areas
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which are the most distinguishing for a given subject. The algorithm is based on
the analysis of a number of randomly sampled matches on the face image. The
results obtained show a remarkable similarity with the most prominent facial
features perceived by human subjects. This method will be very important to
devise facial templates which are not related to a general face model nor to a
general template model, but rather the resulting template is fully adaptable to
the subject’s appearance.

Despite of the simple neural architectures for face perception hypothesized in
early neurological studies, the perception of human faces is a very complex task
which involves several areas of the brain. The neural activation pattern depends
on the specific task required rather than on the nature of the stimulus. This
task-driven model may be represented by a dual layer architecture where static
and dynamic features are analyzed separately to devise a unique face model.
The dual nature of the neural architecture, subduing face perception, allows to
capture both static and dynamic data. As a consequence, not only physiolog-
ical features are processed, but also behavioral features, which are related to
the way the face traits are changing over time. This last property is character-
istic of each individual and implicitly represents the changeable features of the
face.

A statistical model of the face appearance, which reflects the described dual-
layered neural architecture, has been presented. In order to capture both static
and dynamic features, the model is based on the analysis of face video sequences
using a multi-dimensional extension of Hidden Markov Models, called Pseudo
Hierarchical HMM. In the PH-HMM model, the emission probability of each
state is represented by another HMM, while the number of states is determined
from the data by unsupervised clustering of facial expressions in the video. The
resulting architecture is then capable of modeling both physiological and behav-
ioral features, represented in the face image sequence and well represents the
dual neural architecture described by Haxby in [52]. It is worth noting that the
proposed approach far from being the best performing computational solution
for face recognition from video, has been explicitly devised to copy the neural
processes subduing face recognition in the human visual system.

Even though the experiments performed are very preliminary, already demon-
strate the potential of the algorithm in coupling photometric appearance of the
face and the temporal evolution of facial expressions. The proposed approach
can be very effective in face identification or verification to exploit the subject’s
cooperation in order to enforce the required behavioral features and strengthen
the discrimination power of a biometric system.
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Abstract. In real life, visual learning is supposed to be a continuous
process. Humans have an innate facility to recognize objects even under
less-than-ideal conditions and to build robust representations of them.
These representations can be altered with the arrival of new information
and thus the model of the world is continuously updated. Inspired by the
biological paradigm, we propose in this paper an incremental subspace
representation for cognitive vision processes. The proposed approach has
been applied to the problem of face recognition. The experiments per-
formed on a custom database show that at the end of incremental learn-
ing process the recognition performance achieved converges towards the
result obtained using an off-line learning strategy.

1 Introduction

The human visual cognitive system is very robust among a large range of varia-
tions in environmental conditions. Opposite to this, a similar robustness of visual
cognition is still far to be achieved with artificial systems. Despite of the pro-
gresses reported in areas like vision sensors, statistical pattern recognition and
machine learning, what for humans represents a natural process, for machines
is still a far-fetched dream. One of the factors that limit these performances
is the learning strategy that has been used. Most of the nowadays approaches,
require the intervention of the human operator to collect, store and segment
hand-picked images and train pattern classifiers with them.1. It is unlikely that
such a manual operation could meet the demands of many challenging cognition
tasks that are critical for generating intelligent behavior, such as object recogni-
tion, in general, and face recognition, in particular. The desired goal is to enable
machines to learn directly from sensory input streams while interacting with
the environment, including humans. During the interaction, the human is not
allowed to interfere in the internal state of the system [2].

The cognitive approach in generating intelligent behavior consists of an inte-
grated, recursive process that aims at building a model of the ’world’ and a con-
tinuous adaptation of this model [8]. In consequence, it is the system itself which
1 In real world scenarios, it is unlikely to know beforehand the number of total classes

or the exact number of instances per class.
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Fig. 1. The structure of cognitive processes

is responsible of how to analyze, interpret and represent the information. The sys-
tem will learn new concepts (develop new competencies) based on previous data
and the experience acquired over time. When a new piece of information becomes
available, it is responsible to analyze it and in case it is relevant, should be added
to the existing representation (at times, might be necessary a change of represen-
tation structure). This way, the system could present two classes of behaviors: one
class, consisting of specifically learned behaviors and another one, corresponding
to emergent behaviors. This cognitive strategy is depicted in figure 1.

A very important characteristic of cognitive processes is represented by infor-
mation management. We have to distinguish between two types of memory: a
short-term and a long-term memory. The short-term memory is responsible for
maintaining the information for a very brief period of time (acting like a buffer),
after which it is discarded. On the other hand, the long-term memory represents
the knowledge database built over time. If the information passed from short-
term memory is relevant, than the knowledge content of long-term memory is
updated. The long-term memory is responsible for guaranteeing the system via-
bility over large period of times (weeks, maybe months or years). A phenomenon
that can affect the long-term memory is the ’forgetting’ or ’degradation’ (partial
or total loss of some data). Sometimes, this process can be irreversible. These
are also characteristics of human mind.

In the current paper we will focus on the long-term memory, i.e. how the
knowledge database can be built incrementally. We introduce an online version
of the non-parametric discriminant analysis (NDA)[6]. The proposed solution is
applied to the problem of face recognition and is presented as an application for
social robotics. The paper is structured as follows: in the next section, we will
present a comparative between incremental learning in biological and artificial
systems. Section 3 is dedicated to the introduction of the novel incremental non-
parametric discriminant analysis (from now on referred as IncNDA). In section 4
we discuss the application of our approach to the problem of face recognition.
We will show that at the end of the learning process, the recognition perfor-
mance achieved converges towards the result obtained using an off-line version
of the NDA (from now on referred as BatchNDA). Finally, section 5 contains
our conclusions and the guidelines for future work.
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2 Incremental Learning in Biological and Artificial
Systems

Incremental learning is associated with evolutive processes where a standard
learning mechanism is combined with or is influenced by stepwise adjustments
during the learning process. These adjustments can be changes in the structure
or parameters of the learning system or changes in the presentation or consti-
tution of the input signals. For biological systems, the ’incremental learning’ is
codified in the genetical material. It starts to run at the time of conception of
each entity. This ’program’ is responsible for whatever can happen through the
entire life span of that individual. Let’s take as an example the development
of human visual learning system. In [5], the authors claim that the newborn
babies arrive to this world pre-wired with the ability to recognize face-like pat-
terns. It looks like that they are attracted by moving stimuli which resemble
human faces. Later on, and according with the evolution of our cognitive abili-
ties, we learn to distinguish different subclasses within face class: males/females,
young/mature/old, familiar/unfamiliar, etc. [7].

In its most general sense (by analogy with their biological counterpart), the
’incremental learning’ for an artificial system should start to manifest at its
’birth’. This process enables the machine to develop skills through direct inter-
actions with its environment through its perceptual mechanisms. For machines
to truly understand the world, the environment must be the physical world, in-
cluding humans and the machine itself. It must enable the machine with ability
to learn new tasks that a human creator cannot foresee in the design phase.
This implies that the representation of any task that the machine learns must
be generated by the machine itself.

In the context of the current paper, we will refer to ’incremental learning’
with the acceptance of ’online pattern training’. In this case, the initial repre-
sentation of the knowledge is continuously updated, as new patterns become
available. Visual learning in the case of artificial systems is often approached by
the appearance based modelling of objects. Object modelling is often followed
by a feature selection and extraction step. The outcome of this process consists
of obtaining either an efficient data representation (through dimensionality re-
duction, when class labels are ignored) or an effective data discrimination (when
besides the dimensionality reduction, we are focused also on class labels) [10].
For the latter, parametric and non-parametric forms have been proposed [4].

So far, several online knowledge representations have been proposed. In [3,9,1]
the Incremental Principal Component Analysis (IPCA) is presented. The update
of the covariance matrix is achieved through a residual procedure. They keep
only the learned coefficients of the eigenspace representation and discard the
original data. In the same context of IPCA, in [15] it is demonstrated that is
possible to build incrementally an eigenspace representation without the need
to compute the covariance matrix at all. On the other hand, some incremental
versions of Linear Discriminant Analysis (ILDA) are proposed in [13] and [12].
In the next section we present a brief review of the classical NDA and introduce
its online version. Our choice for NDA is motivated by the fact that being a
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non-parametric method, its application is not limited to gaussian distributions
of data. Another advantage provided by this method is that it extracts those
features which work well with the nearest-neighbor classifier [11].

3 Non-parametric Discriminant Analysis

As introduced in [6], the within-class scatter matrix Sw and between-class scatter
matrix Sb are used as a measure of inter-class separability. One of the most used
criteria is the one that maximize the following expression:

ζ = tr(SbSw) (1)

It has been shown that the M × D linear transform that satisfies the equation
2 optimizes also the separability measure ζ:

Ŵ = arg max
W T SwW=I

tr(WT SbW ) (2)

This problem has an analytical solution and is mathematically equivalent to the
eigenvectors of the matrix S−1

w Sb.

3.1 BatchNDA

Let’s assume that the data samples we have belong to N classes Ci, i = 1, 2, ..., N .
Each class Ci is formed by ni samples Ci = {xi

1, x
i
2, ..., x

i
nCi

}. By x̄Ci we will
refer to the mean vector of class Ci. According to [6], the Sw and Sb scatter
matrices are defined as follows:

Sw =
CN∑
i=1

∑
j∈Ci

(xj − x̄Ci)(xj − x̄Ci)T (3)

Sb =
CN∑
i=1

CN∑
j=1,j �=i

nCi∑
t=1

W (Ci, Cj , t)(xi
t − μCj (x

i
t))(x

i
t − μCj (x

i
t))

T (4)

where μCj (xi
t) is the local K−NN mean, defined by:

μCj (x
i
t) =

1
k

k∑
p=1

NNp(xi
t, Cj) (5)

where NNp(xi
t, Cj) is the p−th nearest neighbor from vector (xi

t) to the class
Cj . The term W (Ci, Cj , t) which appears in equation 4 is a weighting function
whose role is to emphasize the boundary class information. It is defined by the
following relation:

W (Ci, Cj , t) =
min{dα(xi

t, NNk(xi
t, Ci)), (x

i
t, NNk(xi

t, Cj))}
dα(xi

t, NNk(xi
t, Ci)) + dα(xi

t, NNk(xi
t, Cj))

(6)

Here α is a control parameter that can be selected between zero and infinity.
The sample weights take values close to 0.5 on class boundaries and drop to zero
as we move away. The parameter α adjusts how fast this happens.
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3.2 IncNDA

The shortcoming of the BatchNDA described in the previous section, is that
assumes that all the data are available at the classification. This is not the case
for real applications, when the data is coming over time, at random time inter-
vals, and the representation of the data must be updated. Computing from the
beginning the scatter matrices, each time a new sample arrives, is not compu-
tationally feasible, especially when the number of classes is very high and the
number of samples per class increases significantly. For this reason, we propose
the IncNDA technique, that can process sequentially later-on added samples,
without the need for recalculating entirely the scatter matrices. In order to de-
scribe the proposed algorithm, we assume that we have computed the Sw and
Sb scatter matrix from at least 2 classes. Let’s now consider that a new training
pattern y is presented to the algorithm. We distinguish between two situations.

The new training pattern belongs to an existing class. Let’s assume,
for instance, that y belongs to one of the existing classes CL (i.e. yCL , where
1 < L < N). In this case, the equation that updates Sb is given by:

S′
b = Sb − Sin

b (CL) + Sin
b (CL′) + Sout

b (yCL) (7)

where CL′ = CL

⋃
{yCL}, Sin

b (CL) represents the covariance matrix between the
existing classes and the class that is about to be changed, Sin

b (CL′) represents
the covariance matrix between existing classes and the updated class CL′ and
by Sout

b (yCL) we denote the covariance matrix between the vector yCL and the
other classes:

Sin
b (CL) =

CN�

j=1,j �=L

nCj�

i=1

W (Cj , CL, i)(xj
i − μCL(xj

i ))(x
j
i − μCL(xj

i ))
T (8)

Sout
b (yCL) =

CN�

j=1,j �=L

(yCL − μCj (yCL))(yCL − μCj (y
CL))T (9)

In the case of S′
w the update equation is the following:

S′
w =

CN∑
j=1,j �=L

Sw(Cj) + Sw(CL′) (10)

where

Sw(CL′) = Sw(CL) +
nCL

nCL + 1
(y − x̄CL)(y − x̄CL)T (11)

The new training pattern belongs to a new class. Let’s assume that y
belongs to a new class CN+1 (i.e. yCN+1).
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For this case, the updated equations for the scatter matrices are given by:

S′
b = Sb + Sout

b (CN+1) + Sin
b (CN+1) (12)

where Sout
b (CN+1) and Sin

b (CN+1) are defined as follows:

Sout
b (CN+1) =

CN�

j=1

(yCN+1 − μCj (y
CN+1))(yCN+1 − μCj (y

CN+1))T (13)

Sin
b (CN+1) =

CN�

j=1

nCj�

i=1

W (Cj , CN+1, i)(x
j
i − μCN+1(x

j
i ))(x

j
i − μCN+1(x

j
i ))

T (14)

Regarding, the new S′
w matrix, this one remains unchanged, i.e:

S′
w = Sw (15)

4 Face Recognition: A Case Study

The incremental learning approach introduced in the previous section has been
tested on a face recognition problem using a custom face database. The image
acquisition phase was extended over several weeks and was performed in an
automatic manner. For this purpose, we put the camera in an open space and
snapshots were taken each time a person was passing in front of it. The face was
automatically extracted from the image using the face detector based on [14].
We didn’t impose any restrictions regarding ambient conditions.

Overall, our database consists of 6882 images of 51 people (both male and
female)2. Since no arrangements were previously made, some classes contain only
a handful of images (as much as 20), meanwhile, the largest of them contains over
400. Segmented faces were normalized at a standard size of 48x48 pixels. Because
of the particularity of the acquisition process, face images reflect the changes in
appearance suffered by subjects over time. Furthermore, since our application
was thought to run in real-time (and to give it a more ad-hoc impression), we
didn’t perform any pre-processing step to face images before passing them to
the classifier. That’s why the faces used in the experiment show a certain degree
of variation in pose and size and are not constrained to be exactly frontal. For
the same reason, face images used to be a little wider than the face region itself.
Some samples of these face images are presented in figure 2.

To test the IncNDA technique, we used 90% of the images (i.e. about 6000) as
training set and the remaining ones as test set. ¿From the training set, we used
15% of the images (belonging to 5 classes and representing 900 samples) to build

2 In the current study we put the accent in having a reasonable number of classes
with a lot of instances rather having an excessive number of classes with very few
instances
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Fig. 2. Samples of face images from CVC custom database showing a certain degree
of variation in illumination, pose and size

the initial IncNDA eigenspace. In order to overcome the singularity problem,
a PCA step was performed beforehand3. This way, data dimensionality was
downsized from 2304 to 60. The remaining samples (5100) from the training set
were added later on in a sequential manner (the samples were drawn randomly)
and this way the NDA-eigenspace was updated.

In figure 3 (left) we depicted the evolution of the learning process after each
update (a new sample added) of the initial IncNDA eigenspace. In the early
stages, there are a lot of new classes presented at very short intervals. It can be
appreciated that, with almost 50% of the remaining training samples introduced,
all classes have been represented. In figure 3 (right), we depicted the percentage
of incremental training samples introduced so far (the stars represent the moment
when a new class has been added). This graphic should be read in concordance
with the above one.

As a final proof of accuracy, we compared IncNDA with the BatchNDA. In
figure 4, we show that indeed the IncNDA is converging (at the end of the
learning process) towards BatchNDA. The common recognition rate achieved
is around 95%, which in our opinion is a very good result, taking into account
the difficulty of the database. Both graphics were plotted after averaging the
results obtained from a ten-fold cross-validation procedure (the training samples

3 Because the dimensionality of a typical image (i.e. the number of pixels in it) is
usually much larger than the number of available samples, the scatter matrices might
be singular. In order to avoid this phenomenon, a dimension reduction procedure
(PCA) is applied previously.
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Fig. 3. Learning process: evolution of the number of classes function of learning stages
(left) and the percentage of the training data function of learning stages (right)
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Fig. 4. IncNDA vs. BatchNDA curves. IncNDA converges towards BatchNDA at the
end of the learning process

were chosen in a random manner in each run). We repeated the experiments
considering different number of neighbors (1, 3, 5, 7) in computing the equation
4, but the best results obtained correspond to a number of neighbors equal to 3.
The figure 4 corresponds to this case. The oscillation of the IncNDA in its early
stages corresponds to the situation when a significant number of new classes
have been added at very short intervals and only a very few samples of those
classes were available. After some learning stages, when enough samples for each
class became available, we can appreciate that the evolution curve regulates its
tendency and becomes constantly ascending.
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5 Conclusions and Future Work

In the current paper we presented some aspects regarding the cognitive devel-
opment in biological and artificial systems. By using an incremental learning
strategy, we showed how a knowledge representation can be continuously up-
dated, with the arrival of new information. For this purpose, we introduced a
novel approach represented by the online non-parametric discriminant analysis.
This learning strategy has been tested on a face recognition problem. In the
future, we will study the possibility to replace the sequential way of updating
the knowledge representation by a parallel one, in which we present data chunks
of variable size. Another research direction is represented by the analysis of
decremental learning, which emulates the ’forgetting’ process in humans: those
patterns which became irrelevant are removed from the knowledge representation
after a certain period of time.
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Abstract. In this paper a novel method for the automatic command of
three degrees of freedom of a robot using mouth gestures is presented.
The method uses a set of different pixel–based segmentation algorithms
and morphological restrictions in order to extract the mouth area from
the frames. A fuzzy inference system is then used in order to produce a
small subset of discriminante features for gesture classification. A state
machine was designed in order to stabilize the robot command task by
using a temporal sliding mean on the detected gestures. Experimental re-
sults show that the method is both robust and reliable when operated by
different people, and fast enough to keep the detection’s rate in real–time.

Keywords: Human-machine interface, gesture-driven systems, lip seg-
mentation.

1 Introduction

Traditional surgery in laparoscopy requires the aid of a person to manipulate
the endoscope according to the instructions of the surgeon. This technique of
operation is not optimal because the laparoscope moves constantly, due to the
tremors of the hand of the operator. The orders of the surgeon can be interpreted
badly by the operator and, therefore, badly executed. This problem can be solved
by developing a Laparoscopy Positioning System for a Robot Arm (LPSRA).
That is a robot arm controlled directly by the surgeon who manipulates the
laparoscope [1].

The LPSRA that use an interface based on joystick or pedal, require using
the hand or the foot of the surgeon. These types of interface are not of easy use,
because the surgeon has already occupied his hands and feet. Some works tried
to use the voice to develop a LPSRA [2], these systems have as disadvantage
the background noise, which can be interpreted by the robot like orders. There-
fore, it seems that the best way to control a LPSRA is by using face gestures.
Face gestures have also been used in virtual character animation and control,
automatic speech recognition from video [3] and subject recognition [4].

F. Mele et al. (Eds.): BVAI 2007, LNCS 4729, pp. 224–233, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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One of the newest and more precise assisted surgery systems, the DaVinciTM,
has enough medical instuments to keep the legs and the arms bussy during its
command. The operation console of the Surgical System DaVinci (see [5]) is
usually located to 3 meters far from the patient. In this console the surgeon
does not require mouth covers and therefore he can use his lips to control the
laparoscope camera. This control is made by a camera that follows the movement
of the surgeon lips. So, the laparoscope movement could be modeled by a state
machine, whose inputs are defined by the lips position.

We propose in this paper a system able to manipulate, in real time, a robot
by making an analysis of lips video images. After lips movement segmentation
and features extraction, a state machine is activated and controlled by the face
gestures, the output of the state machine allows the control of three degrees of
freedom that command a robot.

The paper is organized as follows. Section 2 gives a brief introduction in
lip segmentation and feature extraction from facial video sequences. Section 3
describes our method for segmentation, feature extraction and the proposed state
machine. Section 4 shows the results of the operation of the whole system when
connected to an industrial robot. Conclusions are presented in Section 5.

2 Related Work

The FAce MOUSe system [6], is an interface based on the movements of the face,
in which a normal camera observes the head of the surgeon, who controls the
laparoscope position and direction with intentional head movements. This way,
the surgeon can control a LPSRA by head movements, without a special device.
Nevertheless, it seems to be more natural to control the laparoscope with mouth
gestures rather than voice commands and/or head movements.

One major issue in mouth gesture identification lies in the mouth segmentation
process. For real–time lip segmentation several pixel–based techniques have been
used. In [7] it is presented a new set of complex non-linear transformations in
the YCbCr color space. They show that the non-linear transformation is able
to improve significantly the contrast between the mouth area and the rest of
the face. In [8] the authors define a new transformation based on RGB color
space, that transformation enhances the difference between lips and skin, and
allows robust lip detection under non uniform lighting conditions. In [9] a system
for segment the lips area in video sequence is present, they use an logarithmic
HSV color space transformation and a spatiotemporal neighborhood analysis.
For accurate lip detection, some region–based techniques have been developed.
In [10], the authors proposed a new method of fuzzy lip segmentation based in
a multi-background and one object scheme. In [4] a FCM segmentator based in
a representation in CIELAB and CIELUV color spaces is used. In [11] a new
region-based lip contour extraction algorithm that combines the merits of the
point-based model and the parametric model is presented.

In the Human-Robot Interface, Hasanuzzaman et al. [12] presented a vision-
based face and gesture recognition system. They used the face and hands
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information (finger movements) as inputs in a decision rule. The skin segmen-
tation was made using YIQ color representation. These gesture commands were
sent to robot through TCP/IP network for human-robot interaction. Zelinsky
[13] and Heinzmann [14] proposed a robotic system that is safely able work with
a human operator. The human-robot interface is vision-based to achieve a nat-
ural interaction between the operator and the robot. The vision system is able to
find and track the operators face, to recognize facial gestures and to determine
the users gaze point. In both works, the real time is not really important.

3 Gesture Classification in Video Sequences

In order to obtain an appropriate real–time gesture detection and classification,
a set of different steps must be carefully chosen and/or designed. That set is
composed by a lip and mouth segmentation stage, a feature extraction stage
and a classification and robot command stage. In this section each stage in the
process is explained.

3.1 Mouth Segmentation

Video segmentation can be done in a spatial–based scheme (over each frame),
a temporal–based scheme, or a mixture of them. In this work we use a spatial–
based scheme, aimed to produce a fast and accurate result. Since fast segmenta-
tion methods rejects the use of elaborated techniques, such as fuzzy
connectiveness, we used a pixel–based approach in which several color space
transformations are involved. Each color component presents specific advantages
in lips segmentation, and therefore complements the others.

Most of the relevant information in lip detection lies in the green and blue color
distribution [15]. In fact, green and blue based color transforms are commonly used
in facial recognition and segmentation [15,7]. In this approach we propose the use

(a) Green component behavior (b) Hue component behavior

(c) Mouth map behavior

Fig. 1. Behavior of the three components used in the proposed algorithm
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Fig. 2. Mouth Segmentation Process

of the green component of the RGB color space, the hue component of the hue–
saturation based transforms, and the mouth map color space (based in the YCbCr
color transformation) presented in [7]. The figure 1 shows the behavior of these
three components in facial images. The green component is quite discriminant by
itself when the image is almost shadow–free. Otherwise it is very permisive, mak-
ing it hard to determine whether the region belongs to mouth areas or to dark
areas (like the nostrils). The Hue component enhances the difference between the
lips area and the rest of the face, but is very sensitive to noise and to the dark
areas in the image. The mouth map is a complex non–linear transformation, in
which the mouth tends to be well delimited, but not in all cases. We use this three
sources of information in three different thresholding processes.

The figure 2 shows the workflow of the algorithm. First of all we perform
the necesary color transformations in order to obtain the green information,
the Hue and the mouth map. The green channel thresholding is intended to be
dynamic, in order to compensate illumination changes [16]. The values of the
mouth map transformation and those of the Hue component are thresholded
using the ones given by [7] and [17], respectively. The three binary images are
then blended using the conjunction operator AND. In that way, only those pixels
that are white in the three binary images remain white in the output image. An
elliptical clipping of the Region Of Interest (ROI) is performed, assuming that
the whole mouth area will be contained in the next frame of the sequence using
the same ellipse. The elliptical clipping has been used in similar applications like
[10], helping to avoid the inclussion of the nostrils and other small regions in
the resulting binary segmentation. The ellipse parameters are updated using the
features found on each video frame.

3.2 Feature Extraction and Initial Classification

Once the mouth area has been segmented, the next step is to extract some
discriminant features that help in the later gesture classification. One possible
set o features are the rotation angle of the mouth (θ) and the two main axis
of the mouth (d1 and d2), as shown in figure 3. This features are computed by
using four landmarks that are searched in each frame. The landmarks are the
horizontal and vertical corners of the mouth (p1, p2, p3 and p4), as shown in
figure 3(a). The landmarks are searched by performing horizontal and vertical
accumulations of white pixels inside the ROI–clipped segmented image. Since the



228 J.B. Gómez et al.

(a) Corners of the
Mouth (Landmarks)

(b) Features used in the
classification process

Fig. 3. Mouth landmarks and selected features

first image does not have an initial ellipse, the first four landmarks are searched
in the whole image.

An important measure is the opening degree of the mouth (called γ), which
can be expressed by the relation γ = d2/(d1 +d2). The value of γ remains in the
range [0, 0.7]. Experimental results shows that in most of cases, for values that
are smaller than 0.2, the face shows a thin mouth gesture, while when the value
is greater than 0.4, the face shows an open mouth. However, optimal boundaries
are subject of analysis, and are particular for each person.

In order to increase the robustness and confidence of the gesture detection,
a Takagi-Sugeno-Kang Fuzzy Inference System (TSK FIS) is used. The input
variable of the FIS is the opening degree of the mouth (γ), and the outputs are
the inferred degrees of opening and thiness (iop and ith, respectively). The input
variable has two associated fuzzy sets, called “open” (μop) and “thin” (μth);
both of them are biquadratic–sigmoidal shaped, as shown in figure 4.

In both membership functions, the values of a and b determines the falling
or rising interval of the function; Γth and Γop are the inflection points of μth(γ)
and μop(γ), respectively. The FIS behavior can be described solely in terms of
the computed values of μth(γ) and μop(γ), as shown in the following expression:

Fuzzy Inference Rules
if γ is μop then iop = 1 and ith = 0
if γ is μth then iop = 0 and ith = 1

Resulting Expressions for ith and iop

ith(γ) =
μth(γ)

μth(γ) + μop(γ)

iop(γ) =
μop(γ)

μth(γ) + μop(γ)
(1)

Since all the terms in the equation are known for each frame, the FIS can be
solved just by evaluating the expression. The membership functions of the input
variable γ can be adjusted in an adaptive way using several different techniques,
providing a powerful tool in algorithm set-up and tuning. If properly tuned,
the FIS produces ith = 0 and iop = 1 if the mouth is wide open, and ith = 1
and iop = 0 if the mouth is performing a thin gesture. The tuning process can
be done by performing a statistical analysis over a set of measures taken from
different frames of thin mouths and open mouths. That measures serve to adjust
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Fig. 4. Fuzzy sets of the input variable of the FIS

Fig. 5. State machine flow chart

the values of the biquadratic–sigmoidal function’s parameters of the membership
functions μth(γ) and μop(γ).

3.3 Gesture Stabilization and Robot Command

In order to control the robot movements we designed a state machine, in which
the inputs are the inferred opening and “thinness” fuzzy indexes, and the rota-
tion of the mouth. Those inputs are stabilized using the detected value during
an eight video frames interval. The information of the eight frames is taken into
account to conform an inertial factor that doesn’t let the system change quickly
from one detected gesture to another. However, this inertial factor introduces a
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Fig. 6. Mouth gesture detection

delay in the system’s response, which remains around 330 miliseconds for PAL
systems.

With the decision being stabilized, a state machine was constructed to control
the robot’s movement. The state machine (shown in figure 5) is divided in two
main parts: inactive (D) and active (Pa1, Pa2, Pa3, A).

With the aim of increasing the system reliability, it must be ensured that there
will not be any involuntary movement of the mouth which can cause a movement
of the robot. For that reason, we chose to have different sequences of movements
which indicate the state changes between the inactive state and the active states.
In addition, there is a time limit of 10 seconds on each transition. If the transition
reaches the time limit (named T in the diagram), it will automatically send the
system back into the inactive state. Once the system reaches the “A” state, the
user is able to command six different types of movements to the robot. Two
movements involve the rotation of the mouth. The other four depend on the
location of the center of mass related to the center of the image when the mouth
is detected to be open. The figure 6 shows the six different gestures taken into
account in the “A” state. Those gestures determine which degree of freedom has
to be moved. The different degrees of freedom, denoted by DF1, DF2 and DF3,
can be moved by positive or negative changes in the parameter, as shown in
figure 6.

4 Tests and Results

The system was conformed by a PC with a 3.2 GHz Intel Pentium IV processor
with 1 GB of RAM memory, a SONY teleconference video camera with automatic
brightness compensation, and a Staübli RX90 robot with its command console.
Two 20 W hallogen spotlights were also used in order to minimize the efect of
the shadows in the face under different ambient illumination conditions. A NI
IMAQ 1411 card was attached for video acquisition; the video system setup is
PAL compliant, with a maximum resolution of 640x480 pixels at 25 fps. The
algorithms were implemented in C++. A subset of the NI IMAQ Vision library
were also used to link the video acquisition and visualization into the C++
code.
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Fig. 7. Sample sequence of the rotation command

Table 1. Detection performance in the initial classification process

(a) Gesture detection rates (b) Rotation detection rates

Prior to the segmentation stage, four third–order low–pass filters were applied
in each frame in order to reduce the effects of noise. The ROI is initialized to
cover the whole 300x300 pixels acquisition frame. After the first detection the
landmarks are used to compute the elliptical ROI. The hue thresholds were taken
from [17].

By performing a statistical analysis the parameters of the FIS membership
functions were set up. The inflection point of μth(γ) (named Γth, see figure 4) was
set in 0.1, and its falling limits (a and b) were set in 0.09 and 0.11, respectively.
Also, the inflection point of μop(γ) (named Γop) was set in 0.38, and the curve’s
rising limits (a and b) were set in 0.37 and 0.39, respectively. In order to measure
the FIS performance in gesture detection we tested five video sequences (with
more than 5000 frames in total), with four different subjects. The subjects were
instructed to perform different sequences in front of the camera, but they were
not able to see the current state nor the robot’s movement. The results of the
detection process are shown in table 1.

In both tables, the values in the diagonal (bold numbers) are the correct
detection rate for each gesture. Notice that the correct detection rate for the
thin mouth gesture is quite low (below 50%); however, the temporal stabiliza-
tion raised the detection rate for the “thin” mouth up to 70%, and generated
an overall detection improvement in the other gestures. The figure 7 shows an
example of the robot command. In this case, the detected rotation of the mouth
causes a rotation in the robot’s tool. The system operated at the same frame rate
of the PAL acquisition standard in both segmentation and initial classification.
For pre–recorded sequences the system kept its performance between 32 and 60
frames per second.
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5 Conclusions

We designed a method which is able to detect properly the mouth in video se-
quences for different individuals. The set of algorithms have a good performance
compared with most of algorithms presented in the literature. The system is
capable to segment the mouth area under variable lighting conditions. This can
be stated due to the fact that, even when we used two focal lights to compen-
sate the shadows in the face, the ambient light was different among the acquired
video sequences. The elliptical clipping helps in the ROI selection and the nos-
trils’s discarding. However, it can be unstable when the mouth becomes very
thin compared to the normal mouth state.

We propose the use of the on–line estimation of the membership function
parameters in the input variable, using the values presented in this paper as a
starting point. An incremental calculation of the detected thin and open mouth
in the running video sequence can adapt the system to improve its performance
for each different user.
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Abstract. In this note we will discuss how image segmentation can be
handled by using Bayesian learning and inference. In particular varia-
tional techniques relying on free energy minimization will be introduced.
It will be shown how to embed a spatial diffusion process on segmenta-
tion labels within the Variational Bayes learning procedure so to enforce
spatial constraints among labels.

1 Introduction

Survival of organisms depends critically on their ability to represent and estimate
the most likely state of the world; however representations must be constructed
through sensory information, and hence the problem organism’s brain has to
contend with is to find a function of the sensed input, the data Y , allowing to
actively recover the hidden states, say X , of external resources and hazards.

In vision, world’s hidden state X can be for instance the partitioning of the
meaningful parts/objects within the scene (segmentation), or a function indicat-
ing if a prey or a predator is present (detection and recognition). Assume that
an image or a set of images Y is generated by a mapping X

TΘ−−→ Y where Θ
are the parameters of the mapping TΘ. Such mapping represents a generative
or forward model. The key point here is that such model TΘ may not be easily

invertible and that the estimation of world states from input, X
T−1

Θ←−− Y may
be fundamentally ill posed and there exists an infinite number of state config-
urations generating image Y . Actually, the forward mapping involves a loss of
information, and the task of recovering X from Y by the visual system has been
decribed as a process of unconscious inference [1], which means ascertaining the
probability of each potential cause given an observation.

The recourse to probability is not an expedient or a matter of subjective
choice, but stems from the fact that signals in sensory and motor systems are
corrupted by variability and plagued noise, and the nervous system needs to es-
timate these states [2]. This overall uncertainty places the problem of estimating
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the state of the world and the control of the motor system within a statistical
framework, in which he Bayesian approach has gained wide popularity in most
recent research (see [3], [4] for an overview). The adoption of Bayesian methods
is further motivated by the need of learning the parameters Θ of the generative
model TΘ; indeed, the goal of learning is more generally to acquire a recognition
model for inference that is effectively the inverse of a generative model [5].

In this paper we will discuss how the problem of perceptual Bayesian learning
and inference can be suitably managed by using variational techniques relying
on free energy minimization [5], [6], and to this purpose we will address segmen-
tation, a difficult problem for which a reasonable solution is crucial for many
vision tasks [7]. The use of Variational Bayes (VB) techniques is fairly recent
in computer vision (see Frey [4] for an in-depth discussion), and to the best of
our knowledge there is only one attempt to exploit it for segmentation [8], but
with some important limitations (loss of spatial constraints). Here we will show
how such limitation can be overcome by embedding a spatial diffusion process
on segmentation labels within the VB learning procedure.

2 Bayesian Learning and Inference for Segmentation

Segmentation, in a probabilistic view, can rather naturally be considered as a
missing data problem requiring both learning and inference [9]. The complete
data space is represented by a pair of random fields: Y = {yn}N

n=1 is the observed
random field whose configuration (image) consists of the measurements at each
random variable yn (pixel), which may be either a scalar or D dimensional
vector-valued; X = {xn}N

n=1 represents a configuration of unobservable, hidden
variables, where the value (label) of each random variable xn indicates to which
region or object k ∈ K each pixel belongs. Here n indexes the set of sites S =
{1, 2, · · · , N}, the square lattice domain of the image.

A segmentation process, starting from the observed data Y, uses the inverse
mapping T−1

Θ : Y → X to estimate for each pixel the object/class it belongs
to. This implies learning the model, using the model to infer the partitioning
probability and deciding the most reliable partitioning.

In a Bayesian setting, the generative model TΘ indexed by m ∈ M within
the set of models M is specified in terms of both a prior distribution over the
causes (X, Θ), namely P (X, Θ|m), and the likelihood function P (Y|X, Θ, m):
P (Y, X, Θ, m) = P (Y|X, Θ, m)P (X, Θ|m). Thus, hidden and observable data
are coupled by the generative model specified through the joint probability dis-
tribution P (Y, X, Θ|m).

Learning a generative model corresponds to making the probabilistic distri-
bution of input data, implied by a generative model of parameters Θ, as close
as possible to those actually observed. To this end, it is possible to derive the
marginal distribution of the data generated under the model m (evidence) that
has to be matched to the input distribution P (Y)

P (Y|m) =
∫
X,Θ

P (Y|X, Θ, m)P (X, Θ|m)dXdΘ, (1)
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Once the parameters of the generative model have been learned, the recogni-
tion model is defined in terms of inverse probability [5], and inference of hidden
variables X defining the partitioning of the image, is performed via Bayes’ rule:

P (X|Y, Θ, m) =
P (Y|X, Θ, m)P (X, Θ|m)

P (Y|m)
(2)

Finally for a given pixel configuration Y, the best segmentation estimate X̂
can be recovered under some suitable extremum principle (e,g., minimum mean
squared error, MMSE or maximum a posteriori, MAP) related to the posterior
probability P (X|Y, Θ, m). However, marginalization in Eq. 1 is often difficult
because, in principle, all parameters of the model can be coupled; furthermore,
the estimate X̂ can be difficult to compute without approximations. Thus, in
general, the generative model can not be easily inverted and it may not be
possible to parameterise the posterior distribution.

A variational solution is to posit a simpler approximate distribution Q(X, Θ)
that is consistent (same support) with the generative model P (X, Θ, Y) (in the
following we drop model index m for notational simplicity). Any such distribu-
tion can be used to provide a lower bound to the evidence P (Y), or equivalently
to the log-likelihood L(Y) = log P (Y), which can be rewritten as:

L(Y)=

F(Q)︷ ︸︸ ︷∫
X,Θ

Q(X, Θ) log
P (X, Θ, Y)
Q(X, Θ)

dXdΘ +

KL(Q||P )︷ ︸︸ ︷∫
X,Θ

Q(X, Θ) log
Q(X, Θ)

P (X, Θ|Y)
dXdΘ,

(3)

where KL(Q||P) is the Kullback-Leibler divergence between the approximating
distribution and the true posterior distribution. By definition KL(Q||P) ≥ 0,
being equal to 0 when Q(X, Θ) = P (X, Θ|Y). This implies that L(Y) ≥ F(Q).

The “best” approximating distribution Q(X, Θ) is then the one that max-
imixes F, or equivalently minimizes the Kullback-Leibler divergence between Q
and the joint posterior over hidden states and parameters; when KL = 0 then
L(Y) = F.

It is a common practice to restrict the family of Q so that they comprise only
tractable distributions, and consider a factorization of the variational distribu-
tion between the hidden variables and the parameters, Q(X, Θ) = Q(X)Q(Θ).

These can be further factorized in terms of mean field approximation [5],
Q(Θ) =

∏Np

i=1 Q(Θi) and Q(X) =
∏N

n=1 Q(xn), with Np being the number of
parameters. For notational simplicity, define the latent variables Z = {X, Θ} so
that Q(Z) =

∏M
i=1 Qi(Zi) with M = Np + N .

It has been shown that the free-form variational optimization of F(Q) with
respect to the distributions Qi provides the optimal solution [6]:

Q∗
j (Zj) =

exp [I(Zj)]∫
exp [I(Zi)] dZi

(4)
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with I(Zj) =
∫

log P (Z, Y)
∏

i�=j Qi(Zi)dZi The variational approximation thus
maximises F(Q) as a functional of the distribution Q(X, Θ), by iteratively max-
imizing F, with respect to each Qj ,

∂F (Q)
∂Qj

= 0, j = 1 · · ·M .
Note that the set of equations used to recover Q∗

j (Zj) is a set of coupled
fixed point equations (Q∗

j (Zj) is computed in terms of Qi(Zi)dZi), that require
an iterative solution. Along iterations, the step performing the computation of
hidden variables distribution Q(X) by consideringr fixed Q(Θ), is defined the
Variational Bayes E step (VBE), while the computation of Q(Θ) for given Q(X)
performs a Variational Bayes M step (VBM). These steps represent a Bayesian
generalizazion of the E and M steps of the classic Expectation-Maximization
(EM) algorithm [5] and in the following this method will be called the VBEM
algorithm.

3 Learning an Image Model with Spatial Constraints

Clearly the core of the VB procedures is the generative model P (Z, Y) that
must be learned; in probabilistic image segmentation Finite Gaussian Mixtures
(FGM, see Appendix 6 for a formal description) are widely used [9], [10], [8] .
Unfortunately, the FGM model relies upon the assumption of independence of
pixel data and class labels , which is inadequate for images where some form of
spatial constraints should be introduced.

Spatial constrains can be introduced explicitly but this makes usually very
complex the underlying graphical model and the learning/inference procedures
[10], [11]. Here, to keep the model structure simple we introduce spatial con-
straints while performing the VB learning algorithm.

It is convenient to define the following quantities in analogy with statistical
physics, that allow a deeper insight of the physical meaning of the
bounding functional F : the Helmholtz free energy FH = −L(Y); the Gibbs’
variational free energy FG = −F; the average energy (internal energy) U(Q) =
−

∫
Q(X, Θ|Y) log P (X, Y, Θ|m)dXdΘ; the entropy

S((Q(X, Θ)) = −
∫

X,Θ

Q(X, Θ|Y) log Q(X, Θ|Y)dXdΘ. (5)

By taking into account Eq. 3, then FG = FH + KL(Q||P ) = U(Q) − S(Q),
which shows that the Kullback-Leibler distance will be zero, when the variational
Gibbs free energy FG achieves the Helmholtz free energy FH . From this point of
view, the problem of learning is the problem of minimizing the Gibbs free energy
with respect to the distribution Q(X, Θ), which is exactly what is obtained by
VBE and VBM steps.

Assume that after a VBE step the new distribution Q(X) has been obtained.
Then, before minimizing Gibbs free energy FG with respect Q(Θ) (the VBM
step), spatial constraints can be enforced by suitably modifying the distribution
of segmentation labels Q(X). Suitably means that we apply any trasformation
G(Q) → Q̃ provided that the negative free energy increases or the Gibbs free
energy FG increases.
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For instance, since FG = U(Q) − S(Q), one can choose a mapping G(Q) such
that the entropy S(Q) (Eq. 5) increases.

By using latent variable factorization Q(X, Θ) = Q(X)Q(Θ), the normaliza-
tion constraints

∫
Q(X)dX = 1 and

∫
Q(Θ)dΘ = 1, and assuming Θ fixed, Eq.

5 can be rewritten as:

S(Q(X, Θ)) = −
∫

X
Q(X) log Q(X)dX−

∫
Θ

Q(Θ) log Q(Θ)dΘ = S(Q(X))+const

(6)
At this point we need to specify a transformation G(·) that increases the

entropy of the hidden variables, namely S(Q(X)) = −
∫

Q(X) log Q(X)dX, while
taking into account the spatial correlations among labels.

Distribution Q(X) on segmentation labels can be represented through a
multinomial distribution Q(X) =

∏N
n=1

∏K
k=1 qnk

xnk (see Eq. 17, Appendix 6),
where qnk � P (k|yn, μk, Λ−1

k ), i.e. are labels that represent an approximation to
the posterior probability of classifying pixel yn in the k-th class. The set {qnk}N

n=1
is a spatial layer representing label assignments of the image to class k.

Then, S(Q(X))=−
∑K

k=1
∑N

n=1 qnk log qnk =
∑K

k=1Sk(Q(X)) where Sk(Q(X))
=

∑N
n=1 qnk log qnk is a spatial entropy on label probabilities.

Define a scale-space transformation qnk → Gt(qnk), t ≥ 0. It is well known that
trasformations from fine to rough scales of resolution increase spatial entropy,
and the simplest, and more widely used, one is the linear isotropic transforma-
tion generated via the diffusion equation ∂qnk

∂t = g∇2qnk, where g is a constant.
Isotropic, linear diffusion leads to a maximum spatial entropy, since the asymp-
totic q∗nk are uniform distribution on the random field lattice S, however this very
fact makes it impossible to select select an optimal label, in that all probability
assignements are equal.

Note that, instead, neighboring pixels should have the same probability to
be assigned a given label k and labels at boundaries between regions should be
characterized by an abrupt change of probability values. Thus, at each qnk the
field should be a piecewise constant function across the image and this result
can be achieved [12] by a system of k anisotropic diffusion equations

∂qnk(t)
∂t

= ∇ · (g(‖∇qnk‖)∇qnk(t)) (7)

one for each label probability plane; g(·) is a suitable conductance function,
monotonically decreasing. Hence small differences of qnk among pixels close to
each other are smoothed out, since diffusion is allowed, whereas large variations
are preserved.

Second, it has been shown that [12] for either isotropic or anisotropic Gt, the
functional −Sk =

∑N
n=1 qnk log qnk is a Lyapunov functional, decreasing under

the transformation for t → ∞. Equivalently, Sk(Gt(Q(X))) increases for t → ∞.
For each component k, Eq. 7maximizes the k-th entropy Sk(Q(X)), thus increasing
the total entropy

∑K
k=1 Sk(Q(X)) and consequently the total entropy in Eq. 6.
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Once Q(X) has been modified to account for spatial constraints through a
diffusion step (VBD step), it can be used in the VBM step to maximize free
energy with respect to the parameters.

We name this procedure the Variational Bayes Diffused EM (VBDEM). A
graphical interpretation of the method is reported in Fig. 1.

Fig. 1. The VBDEM algorithm. In the VBE step the variational posterior Q(X) is set.
In the VBD step diffusion is performed obtaining the diffused posterior Q̃(X). In the
VBM Q̃(Θ) is obtained. Each step is guaranteed to increase or leave unchanged the
lower bound F on the fixed marginal likelihood.

4 Segmentation Via Spatially Constrained FGM Image
Model

The FGM model is adopted (Appendix 6) where each pixel yn is generated
by one among K Gaussian distributions N(yn; μk, Λ−1

k), with μk, Λk the means
and the precision matrix (inverse covariance) of the k-th Gaussian and likelihood

P (yn|Θ) =
K∑

k=1

πkN(yn; μk, Λ−1
k) (8)

Here {πk}K
k=1 are the mixing coefficients, with

∑K
k=1 πk = 1 and πk ≥ 0 for all k.

Standard VB learning of the FGM model [6], [13] amounts to an iterative
update of hidden variables and parameters distributions (Eqs. 17, 18, 19, Ap-
pendix 6). This entails an iterative solution in which the computation of the
approximating posteriors qnk (VBE step)

qnk = e(−
D
2 log 2π)π̃kΛ̃

1/2
k e(−

1
2 νk(yn−mk)T Wk(yn−mk))e

�
− D

2βk

�
(9)

and of hyperparameters (VBM step)

αk = α0 + Nk, βk = β0 + Nk, mk =
β0m0 + Nkμk

βk
,

W−1
k = NkΣk +

Nkβ0

βk
(μk − m0)(μk − m0)T + W−1

0 , νk = ν0 + Nk, (10)

is repeated until convergence [6], [13].
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(a) (b) (c) (d)

Fig. 2. Segmentation results. (a) original image; (b) EM; (c) VBEM; (d)VBDEM.

(a) (b) (c) (d)

Fig. 3. Segmentation results. (a) original image; (b) EM; (c) VBEM; (d)VBDEM.

To compute the hyperparameters update the following statistics of the
observed data with respect to the qnk need to be calculated [6], [13]: πk =
1
N

∑N
n=1 qnk, Nk = Nπk, μk = 1

Nk

∑N
n=1 qnkyn, Σk = 1

Nk

∑N
n=1 qnk(yn − μk)

(yn − μk)T

Spatial constraints on the segmentation label distribution Q(X) are applied
through the discretized version of diffusion equation 7:

qnk(τ + 1) = qnk(τ) + λ(∇ · (g(∇qnk)∇qnk(τ))) (11)

Summing up, the VBDEM segmentation algorithm consists in the following
steps: 1) Model learning by iteratively computing posteriors qnk(t) via Eq. 9,
diffusing to impose spatial constraints (Eq. 11) and computing hyperparameters
(Eqs. 10); 2) Inference by setting P (k|yn, μk, Λ−1

k ) � qnk; 3) Classification by
setting yn = μk∗ where k∗ = arg maxk P (k|yn, μk, Λ−1

k ).

5 Simulation

We have experimented the method on different kinds of natural and sports im-
ages. Here we present two examples, obtained using the lighthouse and the play-
ers images, and shown in Figs.2(a) and 3(a), respectively.

For all the experiments, the input is an RGB image
[
yR, yG, yB

]
which is

converted to
[
yY , yCr, yCb

]
in the YCrCb color space. For the proposed method

and the VBEM one, hyperparameters α0, W0, ν0, β0, m0, are initialized as in
[13]; approximate posteriors qnk are initialized by using few iterations (5) of the
’k-means’ algorithm [5]. On this basis we can initialize sufficient statistics Nk,
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Σk, μk and πk and then hyperparameters αk, Wk, νk, βk, mk as in Eqs. 10. At
this point we iterate the VBE (Eq. 9), VBD (Eq: 7), and VBM (Eqs. 10) steps
until convergence, |F (p+1) − F (p)| < ε, where p indexes the iteration steps and
ε = 10−4.

For what concerns the VBD step, the conductance function g can have a quite
general form, but must be such that label boundaries are preserved, numerical
stability guaranteed. In our experiments we set g(∇qnk) = |∇qnk|−9/5, λ =
0.01 and a number of τ = 10 iterations was used. The functions qnk(τ) are
renormalized so that their sum is one after each iteration.

We have used the same initialization for VBEM and VBDEM, and few iter-
ations of the k-means algorithm for the EM initialization. Otherwise, different
number of classes are used for each image, specifically, a number K = 10 was
used for the lighthouse and K = 6 for the players image. For all the methods,
the same convergence criterion was used.

Most important, it can be noted that, by using the mean vector μk as the
color to represent the region of class k, the segmented result is chromatically
coherent with the original image, as shown by comparing the results obtained
by standard EM (Fig. 2(b), 3(b)), VBEM method (Fig. 2(c), 3(c)), and VBDEM
method (Fig. 2(d), 3(d)) with the original image (Fig. 2(a), 3(a)). In fact, it is
apparent the higher perceptual significance and the reliability of the VBDEM
results, (Fig. 2(d), 3(d), as regards region classification for both the images.

6 Concluding Remarks

This paper contributes a novel approach to image segmentation where a VB
technique is spatially constrained in order to overcome drawbacks due to inde-
pendent pixel labelling [8]. The VB algorithm proposed is somehow related to
attempts performed in the classic Maximum Likelihood (ML) setting, that have
tried to incorporate within the EM algorithm a prior term in order to maximize
a log posterior probability instead of log-likelihood e.g., [11], [10]. However here,
different from ML, we are working in a full Bayesian framework where para-
meters are treated as random variables and a distribution is derived for each
of them, with the advantages of avoiding the overfitting problem and achieving
regularized solution.

Interestingly enough in [8] the unconstrained VBEM algorithm can be con-
sidered a learning procedure for a Gaussian neural network. From this point of
view it can be seen, at each pixel, as a competitive process among the k differ-
ent labels. In the algorithm we propose here, competition is integrated with a
cooperation in terms of a diffusion step within sites on the same labelling plane.

Eventually, the problem of model selection (in the FGM, the number K of
Gaussians) has not been discussed here, due to space limitations . However
it should be noted that model selection is naturally handled in the Bayesian
framework [5], [6], and is matter of ongoing research.
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Appendix: Unconstrained Finite Gaussian Mixture Model

Denote Θ = {π, μ, Λ} the vector of parameters (random variables), with π =
{πk}K

k=1, μ = {μk}K
k=1, Λ = {Λk}K

k=1. The set of hidden variables is X =
{xn}N

n=1 where each hidden variable xn related to observation yn, is a 1-of-K
binary vector of components {xnk}K

k=1, in which a particular element xnk is equal
to 1 and all other elements are equal to 0, that is xnkε{0, 1} and

∑
k xnk = 1. In

other terms, xn indicates which Gaussian component is responsible for generating
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pixel yn, P (yn|xnk = 1, Θ) = N(yn; μk, Σk). The FGM generative model (joint
probability P (Y, X, Θ)) is defined as follows:

P (Y, X, π, μ, Λ) = P (Y|X, μ, Λ)P (X|π)P (π)P (μ, Λ). (12)

where:

P (Y|X, μ, Λ) =
N∏

n=1

P (yn|xn, μ, Λ) =
N∏

n=1

K∏
k=1

N(yn, μk, Λ−1
k )

xnk
, (13)

P (X|π) =
N∏

n=1

P (xn|π) =
N∏

n=1

K∏
k=1

πk
xnk , (14)

P (π) = Dir(π|α) =
Γ (

∑K
k=1 αk)∏K

k=1 Γ (αk)

K∏
k=1

παk−1
k = C(α)

K∏
k=1

πα0−1
k , (15)

P (μ, Λ) =
K∏

k=1

N(μk; m0, (β0Λk)−1)W(Λk; W0, ν0). (16)

N(μk; m0, (β0Λk)−1) and W(Λk; W0, ν0) are the Gaussian and Wishart distrib-
utions respectively.

In a Bayesian setting, parameters are treated as random variables governed by
conjugate prior distributions P (π),P (μ, Λ) shaped as Dirichlet and Gaussian-
Wishart distributions, respectively. Here, α0, W0, ν0, β0, m0 are the hyperparame-
ters of the model. The approximating distribution Q(X, π, μ, Λ) is factorized as
Q(X)Q(π, μ, Λ) = Q(X)Q(π)Q(μ, Λ), and the lower bound F(Q),is maximized
by applying Eq. 4. The factors of the variational posterior can be calculated as
[6], [13]:

Q(X) =
N∏

n=1

K∏
k=1

qnk
xnk (17)

Q(π) = C(α)
K∏

k=1

π
(Nk+α0−1)
k , (18)

Q(μ, Λ) =
K∏

k=1

N(μk; mk, (βkΛk)−1)W(Λk; Wk, νk). (19)

where qnk � P (k|yn, μk, Λ−1
k ), represent an approximation to the posterior prob-

ability of labelling pixel yn as belonging to the k-th class.
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Abstract. This paper proposes a novel grey-level image segmentation scheme 
employing case-based reasoning. Segmentation is accomplished by using the 
watershed transformation, which provides a partition of the image into regions 
whose contours closely fit those perceived by human users. Case-based reason-
ing is used to select the segmentation parameters involved in the segmentation 
algorithm by taking into account the features characterizing the current image. 
Preliminarily, a number of images are analyzed and the parameters producing 
the best segmentation for each image, found empirically, are recorded. These 
images are grouped to form relevant cases, where each case includes all images 
having similar image features, under the assumption that the same segmentation 
parameters will produce similarly good segmentation results for all images in 
the case.  

1   Introduction 

Image segmentation is a necessary preliminary step for any image analysis task. This 
process partitions an image into a number of constituting regions. Each partition re-
gion is homogeneous with respect to a given property, while the set including any two 
adjacent regions is not homogeneous. Segmentation has been widely studied, as it is 
witnessed by the large relative literature (see, e.g., [1-5]). Different homogeneity cri-
teria can be used, e.g., based on grey-level distribution, texture, color, and so on. In 
this paper we will consider grey-level distribution. 

Watershed transformation (WT) is a basic tool for image segmentation exploiting 
both region-based and edge-detection-based methodologies (see, e.g., [6,7]). The ba-
sic idea of this segmentation scheme is to identify in the gradient image of a grey-
level image a suitable set of seeds from which to perform a growing process. The 
growing process determines the region associated to each seed, by gathering into the 
region all pixels that are closer to the corresponding seed more than to any other seed, 
provided that a certain homogeneity in grey-level is satisfied.  

Watershed segmentation is not severely affected by the drawbacks characterizing 
region-based and edge-detection-based segmentation methods. In fact, the seeds from 
which region growing is performed are detected in the gradient image of the input 
grey-level image as the sets of pixels with locally minimal grey-level (called regional 
minima). In turn, the problem of identifying closed edges surrounding the regions of 
interest is solved, since the regions (and, hence, their boundaries) are determined by 
the growing process.  
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Watershed segmentation has been used in different image domains, generally pro-
ducing satisfactory results, since the obtained image partition is into regions whose 
boundaries closely fit those perceived by human users.  

One of the main problems in using the WT is the excessive fragmentation of the 
image into a large number of partition regions, not all perceptually meaningful. Thus, 
watershed segmentation generally includes a merging phase aimed at suitably reduc-
ing the number of partition regions. To this purpose, a number of measures of proper-
ties of the partition regions have to be taken into account to distinguish meaningful 
and non-meaningful regions, and suitable thresholds on the values of these measures 
have to be set. The same region properties can be adequate in different image do-
mains, but they do not always equally contribute to obtain the best segmentation re-
sults. In some cases, the computed measures of certain properties should be weighted 
more than the remaining measures. To automatically identify the proper weights for 
the measures, it can be useful to resort to case-based reasoning (CBR).  

The use of CBR for image segmentation has been already attempted successfully in 
the past for segmentation methods different from those based on the use of the WT. In 
[8], CBR has been introduced in the framework of histogram-based segmentation. In 
[9], CBR has been used to optimize image segmentation at the low-level stage of the 
process, i.e., by taking into account image acquisition conditions and image quality. 
In [10], CBR and dissimilarity classification methods have been considered and in 
[11], improving system performance by controlling the image similarity measure has 
been described.  

This work proposes a novel image watershed segmentation scheme employing 
case-based reasoning. In our approach, CBR is used to select the proper weights to be 
assigned to the measures of the region properties according to the current image char-
acteristics. We assume that for images with similar image characteristics, similarly 
good segmentation results will be obtained by using the same weights.  

This paper is organized as follows. In Section 2, we briefly discuss the general 
case-based approach to image segmentation. In Section 3, the watershed segmentation 
method proposed in [12] is sketched. In Section 4, we show how to improve the seg-
mentation results of the algorithm [12] by using CBR. Some discussions and conclu-
sions are given in Section 5.  

2   The Case-Based Image Segmentation Approach 

The segmentation problem can be seen as a classification problem, where the image at 
hand is compared to the images in a data-base to identify the best matching and, 
hence, select the segmentation criteria for the image at hand. The classifier needs a 
learning phase. In particular, the classifier needs to learn the mapping function be-
tween the image features and the segmentation parameters involved in the selected al-
gorithm. Our basic idea is that there is a strong correlation between the features of an 
image and the obtained segmentation results. Using the same segmentation parame-
ters for images with similar features should produce similarly good results. 

The learning of the classifier should be accomplished on a large set of data, in or-
der to build a general model for the segmentation problem. This is generally not the 
case, and the segmentation model should be adjusted to fit new data by means of a 
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suitable case-base maintenance process. Though, case-base maintenance is an impor-
tant topic, we will not discuss it in this communication. We remark that a general 
model does not always guarantee the best segmentation for each image. It guarantees 
an average best fit over the data-base.  

Case-based reasoning can be used as basic methodology for image segmentation. 
The relative CBR process is shown in Fig.1.  

The characteristics of an image can be, for example, some statistical features ex-
tracted from the grey-level image (mean, variance, skewness, kurtosis, variation coef-
ficients, energy, entropy, centroid). These features are used for indexing the case-base 
and for retrieval of a set of cases that include images close to the current image, based 
on a proper image similarity measure. A case consists of the statistical features as well 
as the values assigned to the segmentation parameters. Among the close cases, the one 
maximizing image similarity with the current image is selected and the segmentation 
parameters adopted for this case are given to the image segmentation unit to process 
the current image. The output is the segmented image. 

The result of the segmentation process is evaluated by the user. If the user consid-
ers the obtained result as non correct, the current image has to be added to the case-
base as a new case. This means that the correct segmentation parameters have to be 
empirically identified.  

Image 
Features

Case 
Selection

Image
Segmentation

Evaluation of
Segmentation

Result

Case Base 
Management

Image

Case Base

Case EvaluationIndexing

Case Retrieval

Segmented Image

 

Fig. 1. Scheme of the CBR process 

3   The Watershed Segmentation 

The segmentation method we use in this work is based on the watershed transforma-
tion, [6]. This technique exploits both the region-based approach and edge detection. 
The seeds from which to perform region growing are detected as the regional minima 
in the gradient image of the input grey-level image. The partition regions are deter-
mined by the growing process. This is based on the distance of any pixel from the 
seeds, as well as on the grey-level so generating a partition of the image into regions 
characterized by homogeneity in grey-level.  
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The mechanism according to which the watershed partition is obtained can be  
understood by referring to the landscape paradigm. The gradient image can be inter-
preted as a 3D landscape, where the grey-level of a pixel in position (x,y) is  
interpreted as its height. Thus, high grey-levels are mapped into mountains and low 
grey-levels into valleys. Pixels with locally higher grey-level identify peaks, and pix-
els with locally lower grey-level correspond to pits in the landscape. If the pits are 
pierced and the landscape is immersed in water, the landscape will start to be flooded 
as soon as the water level will reach the pits. The valleys that will be flooded first are 
those whose pits are the lowest ones, since they are reached first by the increasing 
level of the water. A dam is built to prevent water to spread from a catchment’s basin 
into the close ones, wherever waters from different basins are going to meet. When 
the whole landscape has been covered by water, the top lines of the dams constitute 
the watershed lines, i.e., the boundaries of the partition regions of the input grey-level 
image. 

Watershed segmentation can be used for a wide repertory of images and the water-
shed lines generally border in a satisfactory way the regions into which the image is 
partitioned. However, if all the regional minima detected in the gradient image are 
used as seeds for the growing process, the image is fragmented into a too large num-
ber of homogeneous regions, not all perceptually significant. This problem, known as 
over-segmentation, can be solved by selecting only a reduced, significant, set of re-
gional minima, or by merging the obtained partition regions. In general, both seed  
selection and region merging are taken into account. Once the final partition is avail-
able, its regions have to be classified as belonging to either the foreground or the 
background [13]. This task depends on problem domain. 

3.1   Seed Selection Based on Region Significance 

To reduce over-segmentation, only seeds corresponding to significant regions should 
be detected and used during the growing process. Seed reduction can be achieved by 
using a filter to remove irrelevant minima, but a priori knowledge on the class of im-
ages would be necessary to design the proper filter. We use a fully automatic way to 
reduce the number of seeds performing well on different image domains. The method 
is based on the notion of significance of the regions of the watershed partition and is 
accomplished by means of techniques that, by using the landscape paradigm, can be 
called flooding and digging.  

The general scheme is the following. The notion of significance is used to dis-
criminate the significant and the non-significant regions in the initial watershed  
partition of the grey-level image. Flooding and digging are then used to cause disap-
pearance of the regional minima corresponding to the non-significant regions. The 
watershed transform is computed again, starting from the seeds surviving flooding 
and digging, so that a less fragmented partition of the image is obtained. The process 
is iterated until no seed can be removed by flooding and digging, meaning that all sur-
viving seeds are relevant. 

The definition of significant region is crucial to obtain a meaningful partition. In 
[12], a new criterion was introduced to evaluate region significance in watershed  
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partitioned images and to filter out the irrelevant seeds by flooding and digging. In 
particular, flooding and digging reduce the seeds in such a way to cause merging of 
non-significant regions during the region growing process only with selected adjacent 
regions. 

The significance of a catchment basin was defined by taking into account the por-
tion of the landscape where the basin is placed, i.e., was evaluated with respect to the 
adjacent basins. Let us consider the basin X and let Y be one of the basins adjacent to 
X. The pixel p at the minimal height along the ridge separating X from Y is called the 
relative local overflow of X with respect to Y and its grey-level is denoted by LOXY. 
The local overflow pixel is the one where the dam separating X from Y should start to 
be built to prevent overflow from X to Y. See Fig.2. 

 

Fig. 2. Local overflow pixel for the basin X with respect to the basin Y 

For a basin X, the set of pixels of X having grey-levels less than the relative local 
overflow LOXY was considered. This set of pixels is the lake formed when the water 
reaches the relative local overflow pixel and is denoted by LXY. Let us denote by RX 
the grey-level of the pit of the basin X. With reference to Fig. 2 we can define the 
depth DXY of X with respect to Y as follows: 

{ } XXYXY
Lp

XY RLOpLOD
XY

--max ==
 

A relative region similarity measure SMXY was also introduced, as the absolute 
value of the difference in altitude between the pits of X and the adjacent basin Y:  

YXXY RRSM −=   

The relative depth DXY and the region similarity measure SMXY were, then, used to 
evaluate the relative significance of X with respect to Y. Precisely, a basin X was 
termed significant with respect to Y if the following holds: 

DtDStSM XYXY >>    OR    (1) 

where St and Dt are threshold values, computed automatically by using statistics on 
the initial watershed partition of the grey-level image.  

In Fig. 3, the watershed partition of an image is shown as an example of the per-
formance of flooding and digging to reduce over-segmentation, With respect to the 
initially detected 1213 basins, only 79 basins are found in the final image. 

Y X 
W 

LOXY 
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Fig. 3. Input image, left, partition of the image obtained by WT in 1213 regions, middle, seg-
mentation by the algorithm [12] in 79 regions, right 

4   Improving Watershed Segmentation by CBR 

To improve the performance of the segmentation algorithm [12], we should not use a 
crisp test to decide about merging. In fact, according to rule (1) it is enough that one of 
the two measures overcomes the relative threshold, in order a region be classified as 
significant with respect to an adjacent region. We think that better results could be 
achieved if we require that both measures SMXY and DXY are taken into account, possibly 
giving different weights to their contributions. We also think that the weights should be 
determined by analyzing the image characteristics. Thus, we here use image characteris-
tics and CBR to weight the influence of the two measures SMXY and DXY. Depending on 
image characteristics, we weight the influence of region similarity and of depth by 
means of two weights a and b, and introduce a threshold T as in the following: 

T
Dt

D
b

St

SM
a XYXY >⋅+⋅ )(

2

1
 (2) 

If at least one of the values SMXY/St and DXY/Dt is larger than 1, then rule (1) would 
classify the region X as significant with respect to the adjacent region Y. If a=b=1 and 
the threshold T is set to 0.5, rule (2) would also classify X as significant with respect 
 

Table 1. Possible combinations of the values a, b and T 

a b T Interpretation 
1.5 0,5 1 Region similarity is weighted more than depth. 

 
1 1 0,5  Region similarity and depth are equally weighted. 

 
0,75 1,25 0,7  Depth is weighted more than region similarity. 

 
0,75 1,25 1,35 Region similarity is weighted less than depth, and SMXY and 

DXY are quite larger than the relative thresholds St and Dt. 
1 1 0,95 Region similarity and depth are equally weighted, and SMXY 

and DXY can be smaller than the relative thresholds St and Dt. 
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to Y. If both SMXY/St and DXY/Dt have value larger than 1, then the threshold T in rule 
(2) can be set to 1 to classify X as by rule (1). 

Table 1 shows possible combinations of values for a, b and T and the relative in-
terpretations. 

To use CBR we need to build our case-base. As said in Section 2, a case consists of 
a suitable description of an image, coupled with the best solution to its segmentation, 
found empirically. The description of the image can be given in different ways. A 
possibility could be to directly store the image and compare the current image to the 
images stored in the cases, pixel to pixel. Some work has been done in this direction, 
e.g., in [14,15]. However, memory occupation and computational cost are quite large. 
We prefer to describe the images in terms of statistical features. These features are 
statistical measures of the grey levels, like mean, variance, skewness, kurtosis, varia-
tion coefficient, energy, entropy, and centroid, as suggested in [16]. These features are 
shown in Table 2, where the first order histogram H(g) is equal to N(g)/S, being g the 
grey-level, N(g) the number of pixels with grey-level g and S the total number of pix-
els. The image similarity is calculated on the basis of these features. 

Table 2. Image Features 
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We compute the image similarity SIM between two images A and B in the data-
base of images as the complement to 1 of the distance between A and B. The distance 

between A and B is computed as follows:  
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where iAC  and iBC  are the values of the i-th feature of A and B, respectively, 

miniC and maxiC are the minimum and maximum value respectively of the i-th feature 

of all images in the data-base, and iw is the weight for the i-th feature 
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5   Discussion and Conclusion 

Our case-base includes images mainly of biological nature, like different kinds of 
cells. The results we have achieved are generally satisfactory. The evaluation of the 
results has been done by comparing the segmentation obtained by our method with 
the segmentation manually performed by an expert. With respect to the algorithm 
[12], the new method based on CBR generally performs better. The two algorithms 
perform mostly the same, when the case retrieved from the case-base for the image at 
hand suggests that the best solution is for a=1, b=1 and T=0,5, i.e., when region simi-
larity and depth have the same influence and at least one out of SMXY/St and DXY/Dt is 
larger than 1. This occurs for the input image shown in the example of Fig.3. The two 
segmentations obtained for this image by the algorithm [12] and the new algorithm 
are shown in Fig. 4. In turn, the new method performs significantly better whenever 
image similarity suggests that the best solution for the current image is obtained with 
a different choice for a, b and T. See for example the images shown in Fig. 5. In Fig.5 
top, the image is segmented into 286 regions by the algorithm [12], while a signifi-
cantly less over-segmented partition in 54 regions is obtained by using the solution 
a=1.5, b=0.5 and T=1 as suggested by taking into account the image similarity be-
tween the current image and those stored in the case-base. Analogously, for the image 
in Fig.5 bottom, a segmentation in 126 regions is obtained by using the solution with 
a=1, b=1 and T=0.95, while 200 regions were obtained by the algorithm [12].  

We have tried to use our method for a general image domain, including for exam-
ple faces, animals and natural scenes. Some of these images, though appearing to the 
user as clearly different from the biological images in the case-base, where character-
ized by similar statistical features. Thus, these images would be expected to be well 
segmented by using the same values for a, b and T adopted for the correspondingly 
similar biological images. Unfortunately, the values empirically found as those pro-
ducing the best segmentation results for the non biological images did not coincide 
with those found via CBR. This means that to extend the validity of our method to a 
general image domain, further work related to image description is necessary. The al-
ternatives we are currently considering are the use of other statistical features, or a 
combination of statistical features with an image description directly based on the im-
ages, or by considering also non-image information (such as the position of the cam-
era, the relative movement of the camera, and the object category). 

 

  

Fig. 4. Two very similar results, obtained by using the algorithm in [12], left, and the new 
method, right 
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Fig. 5. Input image, left, segmentation with the algorithm [12], middle, and segmentation with 
the new method, right. In both top and bottom examples, a better segmentation is obtained by 
the new method. 
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Abstract. This paper presents an automatic technique that removes
blotches from archived photographs. In particular, we focus on blotches
caused by water and dirt that cause a variable semi-transparency in the
degraded region. The proposed digital removal consists of an automatic
shrinking of the blotch that preserves the original image details. This
operation is based on visibility laws in the wavelet domain. Preliminary
experimental results show that the proposed model is also effective on
critical blotches produced by dust and dirt.

Keywords: Wavelettransform,visibility laws,Bayesminimization,blotch
removal.

1 Introduction

The huge amount of ancient documents and photos held in archives represents a
great treasure from a cultural heritage point of view. However, they are subjected
to various kinds of degradation [1] among which the most frequent is probably
the semitransparent blotch [2,3]. It is caused by a water drop falling on the
document support — usually paper. The spreading and the penetration of the
water causes a darker region on the document with variable shape, color and
intensity. The artifact becomes also more complicated if dirt and dust are present.
Despite an immediate detection by most human observers, both digital detection
and restoration are very difficult. Detection is difficult as the semi-transparency
nature of the blotch leaves almost all high frequency information unchanged —
see for instance [2,4]. Restoration is not trivial. In fact, the objective is to recover
the document information as much as possible and then methods that synthesize
information as in [5,6] can not be applied. An automatic model for the detection
of blotches in the HSV color space [7] has been proposed in [8]. It defines a new
visibility based distortion measure (alternative to [9,10,11,12]), whose behaviour

F. Mele et al. (Eds.): BVAI 2007, LNCS 4729, pp. 254–263, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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is similar to a rate distortion curve [13]. This approach provides a quite accurate
mask of the blotches on the document under study.

In this paper we propose a restoration approach based on visibility, that
works on both classical (only water) and dirt-affected blotches. It firstly per-
forms the detection for each blotch and then refines the results to the correct
boundary. Hence, a different strategy is applied on the three color channels
since the analysed images are sepia. As regards the luminance component, a
suitable shrinking of the degraded region using a spline interpolated surface is
performed. This phase is required for reshaping the blotch as a classical one —
i.e. without dust and dirt. In practice, in this phase the darker region around
boundary is reduced. The shrinking effect also reduces the contrast between the
blotch and the surrounding information according to the Weber’s law. But, a
uniform shrinking for the whole blotch could create annoying artifacts because
of the complicated structure of both the original (clean) information and the
blotch. Hence, a Bayesian refinement oriented to give a local smooth shrinking
is required. As regards the two chroma components, just the bayesian shrink-
age is usually enough for giving a satisfactory result. Experimental results show

Fig. 1. (Left): Blotch on a paper. It does not contain a darker border. (Right) Blotch
on photographs: it has a darker boundary due to the presence of dust and dirt.

the satisfactory performances in terms of subjective quality of the proposed
approach on some selected images, where moisture causes a strongly variable
semi-transparency of the defect.

The outline of the paper is the following. Section II shows some simple con-
cepts about the physical formation of the considered type of blotch. A short
review of the detection approach in [8] and a possible refinement of its results
are then contained in Section III. Section IV presents the proposed restoration
phase while some experimental results and conclusions are offered in Section V.

2 Physical Formation of a Water Blotch

From a physical point of view, the formation of a blotch on a paper such as
photos, books, etc. can be described by the water spreading and the penetration
into a porous medium [14,15]. In particular, when a drop of water falls on a paper,
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the wetting front advances till an equilibrium state is reached. The duration of
contact between the pores and the water regulates the absorption. The central
region of the blotch absorbs more than the external one [14], as shown in Fig. 1
(middle). The physical behavior is difficult to describe since it depends on casual
external agents that can influence the absorption process as well as the topology
of both the drop and the paper, etc.. A simplification is then required. The
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Fig. 2. (Left) Simplified behaviour of a water drop on a porous medium. (Middle)
Section of an image containing a blotch and (Right) its zoom. The straight line in-
dicates the threshold value using the clipping operator and the distortion measure D
on saturation component of the whole image. The dotted line indicates the threshold
value achieved by performing the detection algorithm, restricted to the locality of the
blotch. Arrows indicate the correct blotch boundary.

water drop is assumed to be a semi sphere or a part of a sphere (see Fig. 2.Left).
The (contact) angle Θ between the paper plane and the surface of the drop in
correspondence to its boundary is then ≤ π

2 . This angle is expected to be small
if the absorption is regular and greater in case of external agents disturbing it.
In general, a blotch is dark in its central part and as lighter as one approaches
the boundary. Nonetheless, this is not the case when dirt and dust (or paper
irregularity) are present before the water damage. In this case the blotch appears
darker at its edge too — see Fig. 1 (right). It is therefore evident that the contact
angle provides important information about the absorption process. It can be
estimated exploiting the radius and the height (in intensity) of the blotch.

3 A Short Review About the Detection Phase

In this section we give a short review of the visibility based detection phase in
[8], as it is useful to understand the rest of the paper.

Even though water blotches contain most of the original information (due to
their semi-transparency), they are usually visible at first glance. The detection
phase exploits this feature via a visibility based model. Once digitized, archive
photographs appear as sepia images and the blotches are colored (reddish or
yellowish) regions. The HSV color space (Hue, Saturation, Value) is used for two
reasons: i) it correlates well with the HVS (Human Visual System) behaviour
[7]; ii) blotches are visible as bright areas in the saturation component.
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The first step of the detection phase consists of achieving an automatic
trade-off between blotch regularization and loss of redundant information —
from a visibility point of view. This step consists of iteratively convolving the
scaling function φj (of a wavelet basis) with the saturation component at various
resolutions j. The best level of resolution J is the one measuring the minimum
perceivable contrast between two successive blurred images as in [16], i.e.

J = argminj∈N {C(j) ≤ 0.02} , (1)

where

C(j) =
1

|Ω|
∑

(x,y)∈Ω

|(S ∗ φj)(x, y) − (S ∗ φj−1)(x, y)|
(S ∗ φj)(x, y)

, (2)

S is the saturation component, j is the scale level, Ω is the image domain and
|Ω| is its size. The optimal point coincides with the maximum inflection of the
contrast curve, providing the blurred saturation version SJ .

The second step consists of eliminating spurious bright regions in SJ . They
coincide with black or white objects in the luminance component. We can build
an adaptive non linear filter whose aim is to shrink saturation values SJ(x, y)
with respect to the corresponding ones in the luminance V J(x, y). The filter is

w(x, y) =
(

1 − |V J(x, y) − MED|
maxx,y|V J (x, y) − MED|

)
, (x, y) ∈ Ω

where Ω is the image domain and MED is the median value of V J . Hence, the
new shrinked saturation is then

Ssh(x, y) = w(x, y)SJ (x, y). (3)

Pixels whose luminance value is far from the median value are shrinked toward
zero, while values approaching the median are left almost unchanged.

The third step aims to determine a threshold that splits Ssh into degrada-
tion and clean information. It is achieved by successive thresholding and a new
distortion metric D — for alternative approaches see for instance [9,10,11,12,17].
D measures the change of perception of the thresholded Ssh and is defined as
follows:

D(ΩT (t)) =
1

|ΩT (t)|
∑

(x,y)∈ΩT(t)

D1(x, y)D2(x, y). (4)

D1(x, y) is: D1(x, y) = I(x,y)−IT(t)(x,y)
M , ∀ (x, y) ∈ Ω, and it measures the

change of perception of two different images I and IT (t) on a fixed background
of intensity M . I is the original image while IT (t) is I clipped by the threshold
value T (t). The second distortion D2 describes the contrast of the same object
I over different backgrounds (MT (t) and M):

D2(x, y) =
I(x, y)(MT (t) − M)

MT (t)M
, ∀ (x, y) ∈ Ω, (5)
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and it can be seen as the product of two different components: I
MT (t)

and
(MT (t)−M)

M . When D is calculated on Ssh using different thresholds T (t), the
corresponding curve (|ΩT (t)|, D(ΩT (t))) can be seen as a rate distortion curve
and gives the optimal point of separation between the foreground and the back-
ground. Its maximum value corresponds to the maximum contrast that is able
to separate different objects of the image without introducing artifacts [8].

3.1 A Proposal for Refining the Detection

Even if automatic, the detection model above gives a threshold value able to
discriminate all blotches inside a scene. We then expect that this value will not
be precise for a given blotch, especially in case of blotches caused by water and
dirt — the topic of this paper. In this case the limit angle is high, providing a
high gradient in correspondence of the blotch boundary ∂Ω. The situation does
not improve if we perform the detection in a smaller region containing the blotch.
This is due to the high variability of the image (see Fig. 2) and the fact that the
distortion D is a global measure. It is obvious that a wrong result in detection
leads to an incorrect restoration that leaves a portion (around the boundary) of
the damaged region. This is further emphasized by the fact that any restoration
strategy would introduce a visible edge in correspondence to the boundary ∂Ω.
A refinement is then necessary for each blotch — both dirt and clean.

The aim of this operation is to give a new region Ω̃ that exactly matches
the degraded region and whose size will be greater than |Ω|. The strategy then
consists of looking for a new boundary ∂Ω̃ circumscribing ∂Ω such that

∂Ω̃ = {x ∈ Ω̃ : |∇Ssh(x)| ≤ tan(θ) ∧ d(x, ∂Ω) is minimum} (6)

where d(.) is the euclidean distance. In other words, the new boundary includes
all points whose gradient falls within the range [0, θ] of admissible contact angle
for a water blotch on a paper [14], i.e. θ = 60◦. Even though more sophisticated
techniques can be employed, Ω̃(x, y) can be simply calculated by computing the
horizontal and vertical discrete differences and then selecting those points that
satisfy (6) and that are closest to Ω(x, y).

4 The Proposed Restoration

The choice of the wavelet basis is fundamental for the restoration phase. In
fact, the contact angle for classical blotches regulates the choice of the vanishing
moments of wavelet basis to use. The most suitable bases are those which are
less sensitive to both the curvature variation in correspondence to the boundary
and to the inner part of a classical blotch, giving small wavelet coefficients. It
has been empirically found that Daubechies wavelet [18] having four vanishing
moments is suitable for most of the classical blotches.
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4.1 Restoration of the Approximation Band

The first step consists of decomposing both the saturation component S and
the luminance one V in a wavelet basis till the scale level J [18]. While the
luminance decomposition is required for restoration, the saturation component
Ssh is still useful in the restoration as follows. We can interpolate the blotch
region in the approximation band of the saturation component at scale level J ,
by just considering the information outside Ω. The saturation component is the
most suitable: it contains little image information because of its sepia nature
but any blotch appears bright in it. A 2D spline interpolation is then performed
achieving a new approximation band of the saturation component SJ

i . This will
correspond to SJ outside Ω̃ and to a smoothly interpolated surface inside. This
new shape looks like a classical blotch — without any boundary. We then have
to reshape the approximation band of the luminance component exploiting the
new shape above. It can be achieved using the following attenuation:

V J
a =

V J + γV J
i

1 + γ
(7)

where V J is the original approximation band of V , V J
a its attenuated version

and V J
i the interpolated approximation band of V . The shrinking parameter γ

accounts for the different variance inside and outside the region Ω̃. It is estimated
on SJ

i and then used in (7) for V component. γ implicitly contains the Weber
law, since just the (estimated) blotch shape is attenuated to reduce the contrast.
However, this shrinking operation still gives a slightly visible region. The reason
stems from the fact that a rigid shrinking is not suitable for complicated shape
like that of blotches. Hence, the following bayesian refinement is applied. In
agreement with the aforementioned semi-transparency hypothesis, V J

a can be
modeled as a multi-layer image similar to [19], where it can be seen as a mixture
between the clean image layer and the blotch layer [20]. Our blotch can then be
written as:

V J
a (x) = α(x)V J

r (x) + ε(x) (8)

where V J
a is the observed luminance approximation band at point x, α(x) the

distortion layer and V J
r (x) the clean luminance approximation band. Noise is

represented by ε(x) ∼ N(0, σ2
ε ).

We look for values of V J
r and α that maximise

p(V J
r , α|V J

a , σ2
ε ) ∝ p(V J

a |V J
r , α, σ2

ε )p(α|α)p(V J
r |V J

r ) (9)

where α and V J
r are α and V in the neighbourhood of x respectively.

The three terms composing the rightmost member require smoothness of both
α and V J

r (x) and their mixing. Rewriting these terms as follows:

p(V J
a |V J

r , α, σ2
ε ) ∝ exp(

−(V J
a (x) − α(x)V J

r (x))2

2σ2
ε

)

p(α|α) ∝ exp(−
n∑

k=0

λk(α(x) − α(x + qk))2)
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p(V J
r |V J

r ) ∝ exp(−
n∑

k=0

λk(V J
r (x) − V J

r (x + qk))2)

where x+qk is a neigbouring sample and λk is a weight depending on the distance
to this sample. But to maximize p(V J

r , α|V J
a , σ2

ε ) is equivalent to minimising the
following energy:

E = W1
(V J

a (x) − α(x)V J
r (x))2

2σ2
ε

+ W2

n∑
k=0

λk(α(x) − α(x + qk))2 +

+W3

n∑
k=0

λk(V J
r (x) − V J

r (x + qk))2. (10)

Weights W1,W2 and W3 regulate the emphasis on the different constraints mod-
eled by the 3 terms of (10).

The energy (10) can be minimized in two steps. The first one provides a “first
guess” to each pixel belonging to the blotch region. In other words, the pixel value
is taken from clean pixels out of the blotch region, as in [20]. They lie on a circle,
centered on the current pixel, whose radius is defined as: log(d(x) + 1) + SψJ ,
where d(x) is the distance to the edge and SψJ is the wavelet support at the con-
sidered scale level J . The second step of minimization uses ICM (Iterative Con-
ditional Mode) algorithm [21] for minimizing (10) and the first guess in the first
step as initial condition. Minimization consists of recursively and alternatively
improving estimates for V J

r and α. The blotch is processed from the outside-in
on the premise that values drawn from closer neighbourhoods are more likely to
be accurate. The blotch is divided into Onion-like orbital rings calculated using
morphological operators.Minimization is performed on individual rings, firstly
from the outside-in then inside-out, accounting for the update.

4.2 Blotch Removal from the Luminance Wavelet Details

We have seen that the Daubechies wavelet basis with 4 vanishing moments is
the best empirical choice for regular blotches. This basis provides the minimum
measured contact angle θmin yielding a visible boundary. If n is the number of
vanishing moments of the adopted wavelet, θmin is simply tied to the minimum
of the error of the (n − 1)th Taylor expansion around the point x = R of the
function y(x) =

√
R2 − x2, |x| ≤ R, with R = Rsin(2θ). y(x) is the arc that

models of the blotch shape — i.e. its luminance intensity. With our basis, n = 4
and then

θmin =
1
2

arcsin(
1√
6
). (11)

The contrast for making the blotch invisible is then the difference between the
ideal contact angle θmin and the measured angle θ = arctg

(
h
R

)
, where h and

R respectively are the height and half of the width of the analyzed blotch. It is
obvious that h and R can only describe the luminance of the measured blotch
but not the real blotch that depends on various unknown physical parameters.



Digital Removal of Blotches with Variable Semi-transparency 261

The strategy is very simple. If θmin < θ, then the blotch is smooth enough
and therefore invisible. No action is required.

Otherwise, for each row (column) of the considered detail band Dj, we can
apply the following attenuation: D̃j(x) = min(1, wj(x)) Dj(x), ∀ (x) ∈ Ωj ,
with wj(x) = 1

|Dj(x)|
c1σext

|Dj(x)|
c2Hloc

|Dj(x)|
|Dj(x)−Dj (N(x))|

, where Ωj is the region of the blotch

boundary at scale level j (|Ωj | = Sψj ), σext is the standard deviation of the
external part of the blotch; Hloc = R tg(θmin) is the minimum height measured
by the adopted wavelet; c1 = 1.02 and c2 = 0.98 are the Weber coefficients;

|Dj(x)|
|Dj(x)−Dj(N(x))| is the local contrast computed using the Weber’s law — N(x)
indicates the local neighborhood of the analysed pixel.

It is easy to see that the three contrasts in the aforementioned shrin-
king are the well known contrast masking, contrast sensitivity and the local
contrast [22].

Fig. 3. Left) Image containing a blotch without darker border. Right) Restored image
using the proposed algorithm.

Fig. 4. Left) Image containing two blotches having darker borders. Right) Restored
image using the proposed algorithm.
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4.3 Restoration of Chroma Components

The considered digitized images are ancient photos and then they should be in
gray levels. Nonetheless, as already outlined, they are sepia due to their age.
Even if this color does not influence the scene description, it is important from
an historical point of view and then chroma components have to be restored
too. Anyway, since they are almost constant in color, the bayesian minimization
described above can be directly applied on their original copy — without any
wavelet decomposition.

5 Some Experimental Results and Conclusions

We have performed the proposed approach on various images from different
historical archives. It is worth outlining that water blotches present very different
behaviors and then it is difficult to select the most representative cases. However,
we show two possible examples in Figs. 3 and 4. In the first case, the blotch is
dark but it does not presents a darker border, as happens for the two blotches
in the second image. It can be seen that in the restored images blotches are
quite invisible while the underlying original information is preserved. Apart from
the distortion measures introduced above, both considered blotches appeared
invisible by ten viewers looking at images on a 15.4” computer screen at distances
from 15 to 30 cm. Future research is oriented to generalize the proposed model
to cases where blotch assumes a critical placement in the scene. For instance,
when blotch boundary coincides with a boundary of the scene, some parts of
the proposed model (like first guess in the bayesian refinement) become not
automatic and require additional information (i.e. in which region of the scene
to take information). A part of the future work will also be devoted to decrease
the computational effort of some steps of the algorithm, like the determination
of the first guess and the ICM algorithm.
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Abstract. We tested the efficiency of category learning when participants are 
provided only with pairs of objects, known to belong either to the same class 
(Positive Equivalence Constraints or PECs) or to different classes (Negative 
Equivalence Constraints or NECs). Our results in a series of cognitive 
experiments show dramatic differences in the usability of these two information 
building blocks, even when they are chosen to contain the same amount of 
information. Specifically, PECs seem to be used intuitively and quite 
efficiently, while people are rarely able to gain much information from NECs 
(unless they are specifically directed for the best way of using them). Tests with 
a constrained EM clustering algorithm under similar conditions also show 
superior performance with PECs. We conclude with a theoretical analysis, 
showing (by analogy to graph cut problems) that the satisfaction of NECs is 
computationally intractable, whereas the satisfaction of PECs is 
straightforward. Furthermore, we show that PECs convey more information 
than NECs by relating their information content to the number of different 
graph colorings.  These inherent differences between PECs and NECs may 
explain why people readily use PECs, while many of them need specific 
directions to be able to use NECs effectively. 

Keywords: Categorization; Similarity; Rule learning; Expectation Maximization. 

1   Introduction 

In many supervised-learning scenarios, whether human or machine, a classifier is 
trained using a subset of labeled elements from a set of target categories (e.g. being 
presented with pictures of animals with their categorical identity such as "dogs" or 
"cats"). This training set can be used to learn a classification principle that can be 
generalized with regard to novel instances which were not encountered during the 
training stage. This problem has been studied extensively in the fields of machine  
[4, 6] and human [7, 5, 1] learning. We note that generally, labels indicate the relation 
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between the training instances, telling the classifier whether different instances are 
from the same or different categories: Elements with the same label provide Positive 
Equivalence Constraints (PECs), and elements with different labels provide Negative 
Equivalence Constraints (NECs). Nevertheless, equivalence constraints can be 
provided without the use of labels [9, 14]. In fact, it is not hard to think of many 
indirect contextual clues that may indicate the categorical relation between two or 
more exemplars. For example, seeing two animals playing together, one may assume 
that they are from the same species, while seeing one animal chasing another may 
indicate that the two are not the same. Examples of equivalence constraints, in the 
absence of labels, are shown in Figure 1. 

There has been little effort to date to separate between the contributions of these 
two types of constraints. One way of separating them involves informing the classifier 
that pairs of elements belong to the same class (or to different classes), without 
providing class labels. In this paper, we study the separate contributions of PECs and 
NECs in the context of human behavior (Section 2) and machine learning (Section 3). 
We then provide a theoretical basis and explanatory description of the classification 
limitations when using PECs vs. NECs (Section 4). 

 
Fig. 1. Examples of Positive equivalence constraints (PECs – creatures paired by light-gray frames) 
and Negative equivalence constraints (NECs – creatures paired by dark-gray frames) using ”alien 
creatures” created for the cognitive experiments. Note that no labels were used for specifying the 
categorical relations between creatures. In the current example, the pre-selected task-relevant 
dimensions are skin color and ear shape: (a) Two pairs showing one randomly selected PEC (left - 
the two creatures are from the same category despite differences in eye color and nose shape, since 
they share similar properties in the relevant dimensions) and one NEC (right, the two creatures 
differ in skin color, but also in some non relevant dimensions such as eye color and nose/chin 
shape). (b) Two pairs of highly informative constraints in which each pair differs in only one 
dimension, which is irrelevant in the case of PECs (left, eye color) and relevant in the case of NECs 
(right, face color).  

The importance of investigating the separate contributions of PECs and NECs lies 
in the different ways that they are used and in their different basic properties. Though 
it would seem that the two types are equally important for category learning, actually 
they have very different characteristics, deriving both from how prevalent and how 
informative they are. The most obvious and intuitive underlying difference is that 
PECs may be compactly represented and efficiently satisfied, while simultaneous 
satisfaction of NECs is computationally difficult, usually requiring application of an 
approximation scheme. 

In Section 2 we measure the differential use of PECs and NECs by humans. Our 
results suggest that people use PECs quite intuitively, but demonstrate a common 
difficulty in using the naturally less informative NECs. Even when we set up an 
experiment whereby NECs and PECs provide the same amount of information, many 
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participants fail to use NECs efficiently. On the other hand, providing them with 
directions for the use of NECs dramatically improves performance, whereas the 
efficacy of using PECs is unchanged by the provision of similar directions. For 
further details concerning the experimental design and human findings reviewed here, 
see [9].  

To gain further insight into the separate use of PECs and NECs, in Section 3 we 
analyze their separate contributions when incorporated into a clustering algorithm, 
using the constrained-EM algorithm suggested by Shental et al. [14]. The latter is an 
extension of the Expectation Maximization (EM) algorithm for estimating a Gaussian 
Mixture Model (GMM), which can make use of equivalence constraints of either 
type. While the constrained EM algorithm has been applied previously to several real-
world datasets and shown to significantly enhance performance compared to its 
unconstrained counterpart [14], here we test this algorithm in a scenario which 
simulates the human experiments described above. 

We stress that the computer experiments should not be considered as direct 
simulations of the cerebral events underlying the behavioral results. However, as 
shown below, comparison of the two results leads to interesting observations 
regarding the possible use of PECs and NECs. Specifically, the results of the 
computer experiments may have similar properties to human performance – stemming 
from the fact that they both perform classifications in the same context, using similar 
information. These shared properties may be understood more easily from the 
computer experiments, and hopefully can be used to improve our understanding of 
human performance characteristics. 

In Section 4 we provide a formal basis for the computational difference between 
the use of PECs and NECs. Our analysis involves two distinct and complementary 
arguments: First of all, in Section 4.1 we use the language of complexity theory to 
argue that satisfying positive constraints can be done efficiently, while satisfying 
negative constraints is essentially intractable. Secondly, in Section 4.2 we define a 
measure of information for both types of constraints, and show that PEC information 
content is typically much larger than that of NECs. 

2   Experiments and Results in Human Category Learning 

In order to investigate how people use PECs and NECs, we conducted three category-
learning experiments in which the two types of constraints were presented separately. 
In each experiment, participants performed a simple rule-based categorization of 
novel stimuli ("alien creatures faces'') in which the relevant or irrelevant dimensions 
had to be identified by either the PECs or NECs provided. In each trial, participants 
reviewed three constrained object pairs and were then asked to identify which objects 
belong to the same category as a given standard. Thus, participants needed to learn 
from the constraints which dimensions are relevant for the current trial, and to 
compare the trial standard with the other objects solely on the basis of these 
dimensions. Note that in many trials the constrained objects belonged to different 
categories than that of the standard provided. In each experimental condition, 
participants performed 10 trials. Performance level is presented using the non-
parametric sensitivity measure A' defined as 
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where H represents the normalized Hits and F represents the normalized False-
Alarms. Score of 0.5 represents poor performance and score of 1 represents perfect 
performance. For further information concerning non-parametric signal analysis 
measures, see [8, 15]. 

2.1   Experiment 1: Randomly Selected Constraints 

In order to evaluate the expected contribution of the two types of constraints in 
natural scenarios, when there is no deliberate selection of constraints to maximize the 
information provided to the classifier, in the first experiment we compared 
performance when using randomly selected PECs or NECs (see example in Fig. 1a) 
with a control condition where no equivalence constraints are provided (the "noEC" 
condition). The random constraints were preselected at the design stage (all 
participants were faced with the same constraints). Paired sample t-tests (see also 
Figure 2 left) showed that participants’ performance with a random set of three PECs 
was better than with either three random NECs, t(11) = 4.81, p < 0.001, d = 2.90, or 
with no constraints at all, t(11) = 4.33, p < 0.005, d = 2.61. There was no significant 
difference between performance in the random NEC and noEC conditions t(11) = 
1.02, p = 0.33. 

 

Fig. 2. Mean A′ scores with standard errors in all conditions. Exp 1: 12 participants, within-subject 
design: random PECs (0.83 ± 0.02), random NECs (0.75 ± 0.02), and no constraints (0.73 ± 0.01). 
Exp 2: 80 participants, between-subject design: highly informative highPECs (0.85±0.07) and 
highNECs (0.83 ± 0.13). Exp 3: 12 participants, within subject design: directed PECs (0.88 ± 0.07) 
and NECs (0.95 ± 0.04). 

2.2   Experiment 2: Highly Informative Sets of Constraints 

The results of Experiment 1 can simply derive from the fact that a small random set of 
PECs provide more information than a small random set of NECs, and not necessarily 
from the fact that classifying with NECs is more complex than with PECs (as will be 
shown in section 4).  Thus, this result probably reflects inherent properties of the 
constraints and not participant proficiency in their use.  Experiment 2 therefore tested 
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the use of PECs and NECs when these were specifically chosen to provide all the 
information needed for perfect performance. Figure 1.b presents an example of such 
highly informative PECs and NECs. 

Importantly, we found a difference here, too, in performance with PECs vs. NECs. 
Although independent sample t-test showed that the mean level of performance with 
highPECs was not different from that with highNECs, t(78) = 0.85 (see Fig. 2 
middle), the Leven test for homogeneity of variances showed that the standard-
deviation in the highPEC condition was significantly smaller than in the highNEC 
condition, F(78) = 13.94, p < 0.001. The Shapiro-Wilk test of normality further 
showed that although in the highPEC condition, sensitivity was normally distributed, 
W(40) = 0.95, p = 0.11, the sensitivity distribution in the highNEC condition differed 
significantly from normal, W(40) = 0.89, p < 0.001. Interestingly, we found that 
participants may be divided into two groups: those who are able to use informative 
NECs quite well (with above-median Hit and below-median FA rates in Fig. 3, right 
inset), and those who are unable to do so (with below-median Hit and above-median 
FA rates). This raises the possibility that using NECs is not only computationally 
difficult, but that it may be non-intuitive for some participants to derive the proper 
strategy for their use, perhaps due to their inexperience with informative NECs in 
most natural settings. 

 

Fig. 3. Histograms of sensitivity showing its distribution across participants with highPECs (left) 
and highNECs (right). Dashed curves represent the expected normal distribution given the observed 
mean and standard deviation. Boxes represent the corresponding ROC (Receiver Operating 
Characteristic) diagrams, where dashed lines represent each group median FA (Vertical) and 
median Hit (horizontal). 

2.3   Experiment 3: Highly Informative Constraints with Directions 

Having found in Experiment 2 that some participants have difficulty using even 
informative NECs, we provided all participants in Experiment 3 with directions for 
the use of either highPECs or highNECs (identical to the constraints used in Exp. 2). 
We found that when provided with these directions all participants succeeded in using 
either type of constraint. Moreover, the bimodal pattern of performance with 
highNECs observed in Experiment 2 was replaced by a uniformly high success rate, 
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and performance was higher than in the directed-highPEC condition, t(11) = 3.29, p < 
0.01, d = 1.98; see Fig. 2 right. These findings further support the interpretation that it 
is the difference between PECs and NECs in natural circumstances that leads to the 
different proficiencies in their use. 

2.4   Summary and Discussion 

Evaluating baseline performance with randomly selected constraints in Experiment 1, 
we found a clear advantage for category learning from PECs compared to NECs. 
Moreover, random NECs were poorly informative, leading to categorization 
performance similar to that observed when participants merely performed associative 
categorization (in the control condition without constraints). Experiment 2 
demonstrated that deliberately selected PECs, containing all the information needed 
for perfect performance, are in fact not more informative than randomly selected 
PECs. In contrast, informative NECs enabled much better performance than randomly 
selected NECs at least for some participants. 

Taken as a group, participants in the highPEC and highNEC conditions had similar 
performance. However, further analysis revealed that in the highNEC condition, the 
performance distribution was bimodal with a relatively large standard-deviation. This 
highNEC condition bimodality was also apparent in the Hit and False-Alarm 
distributions, with about half of the participants in the highNEC condition performing 
almost perfectly and the other half performing very poorly, as though they had not 
received any informative constraints at all. In contrast, in the highPEC condition, 
performance was quite good for all participants, reaching only rarely the extremes of 
nearly-perfect or very poor performance. 

 

Fig. 4. Schematic summary of performance in the three experiments described above – with 
randomly chosen constraints (I) or highly informative constraints, without (II) or with (III) 
directions for their use 

Providing directions for the use of the constraints in Experiment 3 revealed a 
number of surprising results. First of all, we found that the strategy for using 
highNECs could be readily learned via simple instructions, leading participants to 
nearly perfect performance. This result suggests that the failure of the poor 
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performance subgroup in using highNECs was due to their inability to find the correct 
strategy, and not an inability to adopt new strategies. Still, it is surprising that a 
strategy for using highNECs was easily learned when instructions were provided, but 
many people (university students!) failed in intuitively implementing this strategy 
when performing the task without instruction. Secondly, we found that giving similar 
instructions for the best strategy for using PECs did not improve performance and 
participants remained at quite good, but not perfect performance levels. These 
differences between the benefit of instructions for using PECs and NECs were rather 
unexpected, and support our main claim that people use PECs, but not NECs, 
intuitively. Figure 4 summarizes participant performance in the three experiments. 

3   Experiments Using the Constrained-EM Algorithm 

In this section we analyze the contribution of PECs and NECs when separately 
incorporated into the constrained-EM clustering algorithm [14]. Recently, 
equivalence constraints have been used for learning distance functions and for 
clustering [2, 3, 10, 17]. A number of clustering algorithms have been adapted to 
incorporate equivalence constraints, including K-means [16], complete-linkage [12] 
and an EM of a Gaussian Mixture Model (GMM) [14].  While most of these 
algorithms can easily incorporate positive constraints, incorporating negative 
constraints into these algorithms is usually much harder computationally and requires 
the application of various heuristics, or approximations. 

3.1   Experimental Setup 

Our experiments were designed to replicate the experimental setup described above: 
Each of the 32 different alien faces was represented by a binary 5-dimensional vector. 
The constraint information provided to the algorithm was identical to that presented to 
human participants. As in the cognitive experiments, we ran the constrained EM 
algorithm in the randEC and highEC conditions, comparing each to the baseline noEC 
condition. Also, the test stage consisted of evaluating the quality of the cluster 
associated with the given standard, which was selected at random.  Performance was 
measured using the A' score, defined above. Each “subject” was simulated using 5 
different realizations of PECs and NECs, for which we averaged the A' scores, as 
done in our cognitive experiments. 

The EM algorithm is a gradient-based method which converges to a local 
maximum of the data likelihood. The algorithm is therefore very sensitive to its initial 
conditions, which implicitly determine the local maximum to which the algorithm 
will converge. Our results were therefore averaged over 200 different “subjects”, each 
performed five different categorization tasks.  

3.2   Experimental Results 

Figure 5 displays performance (A') histograms for the constrained EM algorithm when 
trained using NECs and PECs, respectively. Results for the 2 conditions (averages 
and standard deviations) are also summarized in Table 1. 
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Based on the results reported in Shental et al. [14], in which the constrained EM 
algorithm was tested on real world datasets, it came as no surprise to see that (on 
average) the constrained EM which used PECs achieved better A' scores than the 
same algorithm using only NECs. This is the case with both the random and the 
informative sets of constraints. There is no significant difference between 
performance using PECs in the two conditions, and no significant difference between 
average performance without constraints (noECs) compared to using NECs. This is in 
agreement with the human psychophysical findings above. When highNECs are 
provided, average performance is significantly higher than in the noEC condition, but 
still significantly lower than with highPECs. Unlike the results with human 
participants, the distribution of the highNEC scores is unimodal. This may suggest 
that the constrained-EM does not make optimal use of highNECs, similar to the 
"poorly-performing" human participants. 

 

Fig. 5. Histograms of A′ scores of the GMM simulations using the constrained EM algorithm. Left: 
Results of the random equivalence constraints (randEC) condition. Right: Results of the highly 
informative constraints (highEC) condition. 

Performance in the unsupervised noEC condition is above chance similar to our 
findings in the cognitive experiments. This is due to use of proximity relations which 
rule out many impossible groupings. As in our cognitive experiments, performance in 
the randNEC condition is not significantly better than in the noEC condition, since 
these constraints are usually non-informative.  However, when informative constraints 
are provided, the algorithm seeks a solution which also complies with the constraints, 
and this additional information can, in many cases, direct the algorithm towards better 
solutions both in terms of refining the cluster centers (easily done with PECs) and the 
deviation from the cluster centers (NECs and PECs). 

Table 1. Average sensitivity scores of the constrained EM algorithm for the noEC, randEC and 
highEC conditions 

Condition: noEC NECs PECs 
randEC 0.77 ± 0.04 0.78 ± 0.04 0.97 ± 0.02 
highEC 0.77 ± 0.04 0.85 ± 0.04 0.99 ± 0.01  
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4   The Underlying Difference Between PECs and NECs 

In order to provide a formal basis for the computational difference between negative 
and positive constraints, we analyze the problem in two ways. First, in Section 4.1 we 
show that clustering with NECs is related to the problem of finding the maximal cut 
in a graph, which is known to be very hard (NP-complete). In contrast, clustering with 
PECs is related to the analogous problem of finding the minimal cut in a graph, for 
which efficient polynomial algorithms are known.  

Secondly, in Section 4.2 we define the notion of information for both types of 
constraints, and obtain a lower bound on the difference in information content between 
positive and negative constraints. Specifically, the information content of NECs is 
inversely related to the number of different graph colorings for the graph defined by the 
negative constraints.  Computing this number is very hard (again, an NP-hard problem), 
with no known approximations [11]. More importantly, for random graphs it is known 
that the number of solutions tends to be very large whenever there is a solution to the 
coloring problem. In contrast, the number of colorings for a graph defined by positive 
constraints is rather small due to transitivity. Thus, the difference in information content 
between PECs and NECs is typically very large. 

Notation 
We represent the data as a graph G = {V,E}, where the set of nodes V of size N 
corresponds to the datapoints, and the set of edges E of size M corresponds to the 
given constraints, either positive or negative (but not both). The task is to divide the 
data-points into K classes. 

4.1   The Complexity of Satisfying Positive or Negative Constraints 

Assume K = 2, and the task is therefore to partition the data into two clusters. Each 
partition is represented by C – the set of all edges from E which connect nodes 
assigned to different clusters; the set C is called the cut of graph G. Each cut is 
assigned a cost – the number of edges in C. 

Enforcing positive constraints is manageable  
Given positive constraints, we seek a partition in which as few positive constraints as 
possible are violated. Finding this partition is equivalent to finding the minimal cut in 
the above graph. There are known efficient algorithms to solve this problem. Thus, in 
the complexity hierarchy of computer science, this problem is considered tractable.  

Enforcing negative constraints is hard  
Given negative constraints, we seek a partition in which as few negative constraints as 
possible are violated. Finding this partition is equivalent to finding the maximal cut in 
the graph defined above. There are no known efficient algorithms to solve this 
problem. Therefore, in the complexity hierarchy of computer science, this problem is 
almost certainly intractable.  
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4.2   The Information Content of Positive or Negative Constraints 

We define the information of a set of constraints E to be the difference between the 
entropy H of all the partitions of the set of nodes V to K clusters,1 and the entropy HG 
of all such partitions consistent with E. Assuming that each allowed partition is 
assigned equal probability, the entropy HG is equal to the log of the number of 
allowed partitions. We are interested in the difference between the information of 
positive and negative constraints, namely in 
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where the entropy superscript + or – denotes respectively whether the set of 

constraints is positive or negative, −
G#  denotes the number of partitions consistent 

with E if the constraints are negative, and +
G#  is similarly defined if the constraints 

are positive. 

To compute +
G#  we note that all the nodes in every connected component of the 

graph G should be assigned to the same cluster in each allowed partition2. We can 
therefore treat every connected component as a single meta-node, and the number of 
different partitions is 

where NC denotes the number of connected components of G. In particular, if the 
graph G has no loops,  
NC = N – M and therefore 

MN
G K −+ =#    (3) 

where M is the number of edges in E.  

It is quite hard to compute −
G#  in the general case: it represents the different 

number of colorings of graph G, a number whose computation is known to be NP-
hard. We start with the simple case where graph G has no loops, for which we can 
show that 

This result can be readily proven by induction on the number of constraints M. 
We can now state the first result of this section: 

Result 4.1 
When the graph of constraints has no loops, as in the experiments described above, 
the information gain of positive over negative constraints is 

                                                           
1 We allow partitions that assign no node to one or more clusters. However, it can be readily 

shown that the number of such partitions is negligible when N >> K. 
2 A connected component is a subset of nodes that are connected to each other by edges from E. 
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The result follows from substituting (3) and (4) into (1).  
For a general graph with NC connected components, we note that each connected 

component in G has at least one legal coloring (by assumption). We immediately get 
the following bound 
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where qi denotes the number of nodes in the i-th connected component (if smaller 

than  K, or K otherwise), and l
CN denotes the number of connected component with l 

or more elements K
CCCC NNNN ≥≥≥= ...21 . Substituting (5) and (2) into (1) we 

get the second result: 

Result 4.2 
The information gain of positive over negative constraints satisfies 
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This bound is rather loose, as it is derived by assuming that each connected 
component has only one coloring solution. Typically, however, the situation is quite 
different: if a graph has any solution at all, it would typically (for random graphs) 
have an exponential number of solutions (Krivelevich, 2002). We can therefore state 
that, 

 If N >> NC, the information content of positive constraints is exponentially larger 
than negative constraints.  

5   Discussion  

We investigated properties of PECs and NECs and their effects on performance in a 
classification task – in the context of human cognition and machine learning. Parallel 
theoretical analyses demonstrated that the use of NECs is computationally much more 
difficult than use of PECs, and that NECs convey less information than do PECs. In 
accordance with this theoretical result, our cognitive experiments found that humans 
can easily make use of randomly-chosen PECs, but random NECs do not provide any 
gain in performance compared to the no-constraints baseline condition. Computer 
experiments similarly found improved performance only with random PECs. While 
the EM algorithm does not necessarily simulate human categorization strategies, it 
does demonstrate that the difficulties in using NECs are inherent. The theoretical 
analysis implies that our results are general and not limited to the rule-based 
classification task (that assumes an object space whose dimensionality may be 

)1log( −= KMI  
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reduced in a consistent manner) or the EM algorithm (that assumes a Euclidean object 
space with proximity representing similarity). 

If the limitation in using NECs derives from their properties when chosen at 
random, informative NECs should allow good performance. Surprisingly, we 
discovered that only about half of the participants succeeded in properly using highly 
informative NECs, selected to pinpoint a single relevant dimension. Our computer 
experiments found an improvement with highNECs, but not to the level achieved by 
highPECs. These results may derive from the good performing participants shifting 
their classification strategy, while the poor performers were unable to do so. The 
computer algorithm, also unable to change its strategy, similarly obtained only 
moderate improvement. The poor performance by many human participants is 
consistent with the hypothesis that since NECs are generally less informative than 
PECs, people lack experience in their use and many fail to use them even when they 
are informative. This hypothesis is supported by the finding that the provision of 
directions allowed all participants to achieve very good performance with highPECs. 

If people are generally not experienced in the use of NECs for general 
classification scenarios, are NECs useful at all? One possibility is that NECs are 
important for the difficult task of identifying fine, yet important differences between 
highly similar categories – as in subordinate-level categories or perceptual learning 
requiring identification of subtle differences between stimuli. In these cases, 
informative NECs may increase the perceived dissimilarities [7] leading to refinement 
of the classifier conceptual knowledge. 
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Abstract. In this paper we present a graph-based clustering method particularly 
suited for dealing with data that do not come from a Gaussian or a spherical 
distribution. It can be used for detecting clusters of any size and shape, without 
the need of specifying neither the actual number of clusters nor other 
parameters. 

The method has been tested on data coming from two different computer 
vision applications. A comparison with other three state-of-the-art algorithms 
was also provided, demonstrating the effectiveness of the proposed approach. 

1   Introduction 

In Pattern Recognition and Computer Vision there is a significant number of 
applications that use clustering algorithms [1]. The main drawback of most clustering 
algorithms is that their performance can be affected by the shape and the size of the 
clusters to be detected [2]. Some well-known clustering algorithms (e.g. k-means [2] 
or self-organizing maps [3]), for example, fail if data are distributed in the feature 
space along a non-smooth manifold [4]. Such algorithms, in fact, are based on the 
assumption that the data comes from a Gaussian or a spherical distribution. Moreover, 
in order to obtain an adequate clustering result, these algorithms sometimes require 
some a priori knowledge about the actual number of clusters, and/or require the 
setting of a threshold or a parameter, sometimes without a clear physical meaning. 

On the other hand, in some applications there is the need of grouping, in one or 
more clusters, only a part of the whole dataset. This happens when samples of interest 
for the application at hand are present together with several noisy samples. We can 
refer to this case as to a cluster detection problem. It occurs, for example, when we 
want to find, in a mammografic image, one or more clusters of microcalcifications 
starting from the output of a microcalcification detection algorithm [5]. Such kind of 
algorithms typically yields some false detections (false positives) together with the 
true microcalcifications (true positives). The aim is then to cluster only true 
microcalcifications, discarding all the false positives that can be regarded, to some 
extent, as noise. Another case arises in the context of image segmentation, as 
described in [6]. Here, among all the edges coming from an edge detection algorithm, 
only the interesting ones have to be grouped together by a cluster detector, in order to 
use them for achieving a good segmentation result. 
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In the above cited situations most clustering algorithms yield a not so useful result, 
as in any case they try to attribute each sample to a cluster. So, noisy samples, that are 
typically not similar to each other, are grouped together with true positives. Even if it 
would be theoretically possible to group together in some clusters only noisy samples, 
it is practically difficult because the number of clusters should be provided in 
advance. This cannot be effectively done, since the actual distribution of noisy 
samples cannot be easily modeled. 

A particular family of clustering algorithms that can cope with these problems is 
the one based on graph theory. The algorithms of this family represent the problem 
data through an undirected graph. Each node is associated to a sample in the feature 
space, while to each edge is associated the distance between nodes connected under a 
suitably defined neighborhood relationship. A cluster is thus defined to be a 
connected sub-graph, obtained according to criteria peculiar of each specific 
algorithm. Algorithms based on this definition are capable of detecting clusters of 
various shapes and sizes, at least for the case in which they are well separated [4]. 
Moreover, isolated samples should form singleton clusters and then can be easily 
discarded as noise in case of cluster detection problems. 

Usually graph-based clustering algorithms do not require the setting of the number 
of clusters, but need however some parameters to be provided by the user. 

The algorithm proposed in this paper overcomes this limitation, proving to be an 
effective solution in some real applications where a completely unsupervised method 
is desirable. Our proposal is based on the algorithm described by Zahn in [7]. The 
original algorithm constructs the Minimum Spanning Tree (MST) of the graph 
representing the samples. After that, it identifies inconsistent edges and removes them 
from the MST. The remained connected components are then the clusters provided by 
the algorithm. An edge is inconsistent if the distance associated to it is greater than a 
predefined threshold. The Zahn algorithm does not suggest a criterion for deriving 
this threshold, leaving it as a manually provided parameter. In order to determine 
automatically the optimal value of this threshold, in this paper we propose a novel 
method based on the use of the Fuzzy C-Means algorithm [8]. 

The proposed algorithm has been compared with other three graph-based clustering 
algorithms, namely the Markov Clustering proposed by van Dongen [9], the Iterative 
Conductance Cutting proposed by Kannan et al. [10] and the Geometric MST 
Clustering introduced by Gaertler in [11]. The comparison has been made with 
reference to a cluster detection problem in two different applicative domains. In 
particular, the problems of detecting clusters of anchor shots in news videos [12] and 
of microcalcifications in mammographic images [5] have been considered. In both 
cases, the results obtained by all the algorithms have been reported and compared by 
using a suitably modified definition of the recall and precision figures, that are 
typically used for evaluating solutions of a detection problem. 

The organization of the paper is as follows: in Section 2, the proposed clustering 
method is presented, while the other three graph-based clustering algorithms are 
presented in Section 3. In Section 4, the two considered Computer Vision applications 
are illustrated, together with the datasets used for comparing the chosen algorithms. 
Tests carried out in order to assess the performance of the proposed method are 
reported in Section 5, and, finally, some conclusions are drawn in Section 6. 
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2   The Proposed Graph-Based Clustering Method 

The proposed clustering method (Fuzzy c-means MST Clustering algorithm - FMC) is 
based on graph theoretical cluster analysis. As stated in the introduction, this family 
of clustering algorithms is capable of detecting clusters of various shapes, at least for 
the case in which they are well separated. 

The method starts by constructing the complete graph where each node is 
associated to a sample to be clustered. The weight of each edge accounts for the 
distance between the connected nodes. Then, the Minimum Spanning Tree (MST) is 
computed on the graph. By removing all the edges with weights greater than a 
threshold λ, we arrive at a forest containing a certain number of subtrees (clusters). In 
this way, the method automatically groups nodes into clusters. As demonstrated in 
[11], the clustering induced by the subtrees is independent of the particular MST. So 
the clustering results do not depend on the algorithm chosen for deriving the MST: in 
this paper, we used the Prim’s algorithm [13]. 

It is worth noting that the optimal value of λ typically depends on the specific 
clustering problem. As a consequence, it is not possible to use a fixed value of λ for 
every case. Our proposal is then to determine the optimal value of λ by reformulating 
the problem as the one of partitioning the whole set of edges into two clusters, 
according to their weights. The cluster of the edges of the MST with small weights 
will contain edges to be preserved, while the edges belonging to the other cluster will 
be removed from the MST. In order to solve this problem we employ the Fuzzy C-
Means (FCM) clustering algorithm [8]. 

FCM is a clustering technique based on the minimization of the following 
objective function: 
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where m is any real number greater than 1, xi is the i-th measured data (in our case the 
weight of the i-th edge of the MST), cj is the center of the cluster, uij is the degree of 
membership of xi to the cluster j, C is the number of clusters (in our case C = 2) and N 
is the number of objects to be clustered. Fuzzy partitioning is carried out through an 
iterative optimization of the objective function shown above, with the update of 
membership uij and the cluster centers cj by: 
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where ε is a termination criterion between 0 and 1, whereas k are the iteration steps. 
This procedure converges to a local minimum or a saddle point of Jm. At the end of 
the procedure, each edge xi has been assigned to the cluster r such that: 

ij
j

ur maxarg=
 

At this point, all the edges of the MST are separated into two clusters. Then, we 
remove from the MST all the edges belonging to the cluster s whose center exhibits 
the largest value, i.e.: 

j
j

cs maxarg=  

In conclusion, the proposed clustering method can be summarized as follows: 

1) construct a complete graph G such that: 
a) its nodes xi correspond to the input samples; 
b) each of its edges e = (xi , xj) is characterized by the weight w(e) = d(xi , xj) 

that is the distance between the two nodes xi and xj in the feature space, 
according to a suitably chosen metric; 

2) determine the MST of G; 
3) remove from the MST the edges with large weights individuated by using the 

FCM algorithm. 

The detected clusters are then the remaining subtrees of the MST. 
Indeed, the FCM algorithm requires the termination criterion ε to be fixed. 

However, we have verified that good values for this parameter are substantially 
independent of the considered application. In this sense, the algorithm can be seen as 
completely unsupervised. In particular, the value of ε was fixed to 0.5 in all the tests 
reported in the paper. 

3   Algorithms Selected for the Comparison 

In this section we will provide a brief description of the three algorithms that will be 
used for our experimental comparison, together with the settings used for employing 
them in the two considered applications. 

3.1   The Markov Clustering Algorithm 

The Markov Clustering algorithm (MCL) was proposed by van Dongen in his PhD 
thesis [9] in 2000. The rationale of the method is based on the observation that if a 
group of nodes is strongly connected inside and has few connections to the outside 
(which is the property defining a cluster), a random walk starting from one of the 
nodes in the group is more likely to remain in the group after a few steps than to go 
outside. Conceptually, it is possible to define a clustering procedure as follows: each 
edge is assigned a probability, derived by the edge attribute. Then, a large number of 
random walks is simulated starting from each node i of the graph and measuring the 
frequency of the walk arriving at each node j after k steps. Finally, two nodes i, j are 
considered to be in the same cluster if the probability of the arrival at j starting from i 
is above a threshold; the transitive closure of this relation determines a partition of the 
whole graph into clusters. 
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While this Monte-Carlo approach is conceptually sound, it is unacceptably 
expensive from the computational point of view. So the MCL algorithm proposes a 
faster procedure to compute the probabilities of arrival. The algorithm has two 
parameters: an expansion exponent k (a natural number greater than 1) and an 
inflation exponent r (a positive real number, greater than 1). The algorithm alternates 
between two phases, expansion and inflation, until a fixed point is reached. In the 
expansion phase, the probability of the random walk is computed by raising the 
matrix of the edge probabilities to the k-th power. In the inflation phase, the matrix is 
renormalized after raising each element to r; the resulting matrix is used as input for 
the subsequent expansion. The goal of the inflation phase is to reduce towards 0 the 
smaller probabilities and to enhance towards 1 the larger ones. At the end, the 
clustering is determined by the resulting probabilities which are sensibly different 
from 0. 

Notice that there is no formal proof of convergence of the algorithm, although in 
practice it has never occurred a case in which a fixed point was not achieved after a 
few tens of iterations. 

3.2   The Iterative Conductance Cutting Algorithm 

The Iterative Conductance Cutting algorithm (ICC) was proposed by Kannan et al. in 
2000 [10]. This algorithm works in a hierarchical way: it starts with a single cluster 
comprising the whole graph and at each step it tries to split a cluster into two, as long 
as a performance measure computed on the two resulting parts is below a threshold α. 
The iteration stops when there are no more clusters that can be split remaining within 
the threshold. 

The measure used to evaluate the opportunity of the split is cluster conductance, 
defined in the same paper. Basically, this measure compares the sum of the inter-
cluster edges with the sum of all the edges incident to the nodes of the clusters. The 
lower the conductance, the better is the clustering; the maximum value of 1 is attained 
for degenerate cases such as one-node clusters or whole-graph clusters.  

An interesting aspect of this algorithm is the determination of the split to perform 
among all the possible splits of a given cluster. An exhaustive search of the split 
minimizing the conductance would require an exponential time complexity with 
respect to the size of the cluster. The authors propose instead a polynomial 
approximation based on a spectral technique. In particular, the nodes of the cluster are 
sorted according to the corresponding component of the second largest eigenvector of 
the normalized adjacency matrix (whose values are a similarity measure between 
adjacent nodes). Only the cuts consistent with this ordering (i.e. in which all the nodes 
of a part are greater than all the nodes in the other) are considered, thus avoiding a 
combinatorial explosion. The claim of the authors is that this strategy usually gives a 
good approximation of the optimal split. 

3.3   The Geometric MST Clustering Algorithm 

The Geometric MST Clustering (GMC) algorithm is an extension of the Minimum 
Spanning Tree clustering algorithm by Zahn [7]. This method, introduced by Gaertler 
in his master thesis [11] and in the paper by Brandes et al. [14], solves the problem of 
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finding a suitable threshold for cutting the edges of the minimum spanning tree by 
computing for each possible threshold a performance measure and choosing the 
optimal one (note that there are at most n – 1 distinct thresholds to be considered, 
where n is the number of nodes in the graph). For non-attributed graphs, the author 
propose the use of a geometric graph embedding to define a distance between nodes 
(hence the name of the algorithm); we have not used this part of the method since the 
edges of our graphs are already attributed with the distance. In the paper by Brandes 
et al. [14] several performance measures have been used in an experimental 
comparison.  

3.4   Settings Used for the Algorithms 

The MCL algorithm requires a transition probability matrix together with the two 
parameters k and r. We have derived the transition probabilities from the distances by 
assuming an exponential distribution. We have chosen k = 3 and r = 2 after some 
experiments on artificially generated clustering problems. 

The ICC algorithm requires a similarity matrix, that we have defined by taking the 
inverse of the distance. Also, we have used the value 0.45 for the threshold α 
following the set-up presented in [14]. 

The GMC requires the choice of a performance measure; we have used 
conductance for this purpose. Since the computation of conductance requires a 
similarity matrix, we have defined one using the same technique adopted for ICC. 

4   Computer Vision Applications 

In order to assess the performance obtainable by the proposed method for cluster 
detection in real applications, two different applicative domains have been 
considered. In particular, the problems of detecting clusters of anchor shots in news 
videos [12] and of microcalcifications in mammographic images [5] have been 
considered. In the following we will illustrate how graph-based technique can be 
profitably used for cluster detection in such domains, as well as the datasets used for 
the tests. 

4.1   Detecting Anchor Shot Clusters in News Videos 

Segmenting news videos into stories is among the key issues for achieving efficient 
treatment of news-based digital libraries. The segmentation of a news video implies, at 
a first stage, the partition of the video into sequences of frames, called shots, obtained 
by detecting transitions that are typically associated to camera changes. Once the 
shots have been individuated by means of a shot change detection algorithm, they can 
be classified as anchor shot or news-report shot on the basis of their content. 
Successively, the entire news video can be divided into stories, by grouping each 
anchor shot with all the successive news-report shots, until another anchor shot will 
occur. Anchor shot detection is then a basic step for performing news video 
segmentation. 

It is worth noting that anchor shots are typically characterized by similar visual 
contents, while this property should not hold for news-report shots [12]. So, it makes 
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sense to try to group anchor shots in clusters, or, in other words, to detect anchor shot 
clusters among all the shots composing a news video. This approach also allows us to 
perform detection in an unsupervised way. 

In order to obtain a graph-based representation of all the news video shots, a 
distinctive frame, called key-frame, is extracted from each shot. These key-frames can 
be seen as nodes of a graph in a suitable feature space. To do that, a distance between 
key-frames, based on the colour histograms, has to be defined. Such a distance is the 
weight associated to the edge that connects the two nodes representing the key-frames 
in the feature space. In particular, as proposed in [12], each key-frame has been 
divided into 16 regions of the same size; the histograms of corresponding regions in 
the two key-frames have been compared and the eight regions with the largest 
histogram differences have been discarded to reduce the effects of object motion and 
noise. The distance between these two key-frames is then defined as the sum of the 
histogram differences of the remaining regions. 

By using this representation, shots are first assigned to candidate clusters by the 
considered graph-based clustering algorithm; then, clusters composed by less than 
two shots are eliminated, since they do not fit the hypothesis that anchor shots 
repeatedly occur during the whole news video [12]. 

As regard the dataset, we chose to make tests on news videos captured from a 
single broadcaster. A typical broadcaster, in fact, is interested in employing such a 
system to analyze all the editions of its news videos rather than the videos produced 
by other broadcasters. Furthermore, let us consider that, although some broadcasters 
nowadays already have the edit list for their own news videos, this is unlikely for the 
old materials. These ones still need to be segmented into news-stories for an effective 
indexing. Starting from these considerations, the database used in this paper is 
composed by 17 news videos extracted from the main Italian public TV-network, 
namely, RAI 1 (see Tab. 1). Special care has been taken to include in the database 
different editions of news videos from this TV-network. 

4.2   Detecting Microcalcification Clusters in Mammografic Images 

Microcalcifications are small accumulation of calcium in the breast tissue that appear 
as bright spots in a mammogram. Cluster of microcalcifications are used as diagnostic 
evidence for breast cancer. >From a clinical point of view, a microcalcification cluster 
is a group of at least three microcalcifications in a limited area (usually 1 cm2) of the 
mammogram. From this definition, it derives that the Euclidean distance in the 
mammografic image is the most important feature for clustering microcalcifications. 
The microcalcifications are associated to the nodes of a completely connected graph, 
whose edges weights are the Euclidean distances between them. Nodes are first 
assigned to candidate clusters by the chosen algorithm; then, clusters composed by 
less than three microcalcifications are eliminated. It is clear that the detection of the 
candidate clusters constitutes the most critical phase of the whole process, especially 
in presence of falsely detected microcalcifications (false positives). In this application, 
in fact, the aim is to cluster only true microcalcifications, discarding all the false 
positives that can be regarded as noise. 

In order to evaluate the performance of graph-based cluster detection methods in a 
real environment (i.e., when falsely detected microcalcifications occur), we chose and 
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implemented the microcalcification detection algorithm proposed in [15]. Note that 
this method simply determines if a pixel of the image is likely to belong to a 
microcalcification, but does not reconstruct the whole microcalcification. So, we 
aggregate adjacent points by using a connected component algorithm to obtain the 
microcalcifications. Finally, each microcalcification is represented by means of its 
center of mass. 

Tests on cluster detection were performed by using a standard database publicly 
available. It is made of 33 mammographic images, containing in the whole 77 clusters 
(see Tab. 1). Images were provided by courtesy of the National Expert and Training 
Centre for Breast Cancer Screening and the Department of Radiology at the 
University of Nijmegen, the Netherlands. 

Table 1. Characteristics of the two considered Computer Vision applications 

Application # of 
samples

min # 
of graph 

nodes

max # 
of graph 

nodes

avg # 
of graph 

nodes

min # 
of true 
clusters

max # 
of true 
clusters

avg # 
of true 
clusters

-calcification
Cluster Detection 

33
images 12 283 65.8 1 14 2.33 

News-Videos
Segmentation

17
videos 46 263 92.5 1 2 1.71 

 

5   Experimental Results 

It is customary, in detection applications, to measure the effectiveness of detection 
using the figures of precision and recall, which are defined as follows: 

 

where TP is the number of true positives, that is objects correctly detected by the 
system; FP is the number of false positives, that is false objects detected by the 
system but not actually present; FN is the number of false negatives, that is actual 
objects that are not detected by the system. Sometimes it is preferable to have one 
single index for measuring the performance (e.g. for performance tuning of a 
parametric system); in this case some authors propose the f-index, defined as the 
harmonic mean of precision and recall: 

recallprecision

recallprecision
indexf

+
⋅⋅= 2

-  

Harmonic mean is used instead of arithmetic mean because the former gives a 
small result even if only one of precision or recall has a small value. 

The usual definition of precision and recall makes sense for applications in which 
detection is a crisp decision, that is, an object is either completely detected or 
completely missed. In our case, since we deal with clusters that are not atomic 
entities, intermediate situations may occur and must be considered when defining the 
performance indices. To this aim, we have extended the definition of TP, FP and FN 
to have a more “fuzzy” behaviour in our case. More formally, if we have a set D of 
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detected clusters (where each cluster is in turn a set of nodes) and a set G of ground-
truth clusters, we define: 
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where | . | denotes the cardinality of a set. 
As it can be easily shown, these definitions reduce to the usual counts of true 

positives, false positives and false negatives when the detection provide an “all-or-
nothing” result, but behave more smoothly in case of partial detections. Given the 
above defined values of TP, FP and FN, we have computed precision, recall and the 
f-index for the results of the four algorithms on the two datasets. 

5.1   Results on News Videos and Mammographic Images 

Table 2 summarizes the results on the first application, the detection of anchor shots in 
news videos. From the table, it can be seen that our method clearly outperforms ICC 
and MCL and has a slightly larger value than GMC with respect to precision and f-
index, while GMC has a slightly larger recall. It can be noted that even the absolute 
precision of the best algorithms is not very high on this application; however, with the 
addition of application-specific heuristics (such as those proposed in [12]) that are out of 
the scope of this paper, we have been able to obtain a good anchor shot detection 
performance. 

Table 2. Performance on news videos. Best results are reported in bold. 

 ICC MCL GMC FMC 
precision 0.211 0.201 0.380 0.418 
recall 0.812 0.857 0.985 0.946 
f-index 0.303 0.313 0.508 0.556 

 
An analysis of the statistical significance of the results presented in Table 2 has 

shown that the comparison of FMC with ICC and MCL is significant (using the 
Friedman test, the probability p that the difference is not significant is less than 0.1%), 
while the differences between GMC and FMC are too small to be considered 
significant given the small size of this data set (17 videos). 

Table 3 presents the results on the detection of clusters of microcalcifications in 
mammographic images. FMC outperforms all the other algorithms with respect to 
both precision and recall (and consequently, with respect to the f-index). In particular, 
 

Table 3. Performance on mammographic images. Best results are reported in bold. 

 ICC MCL GMC FMC 
precision 0.465 0.592 0.561 0.634 
recall 0.653 0.895 0.935 0.997 
f-index 0.518 0.692 0.653 0.744 
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it has an extremely good recall, which is very important for diagnostic purposes, and 
at the same time a good precision (with respect to the other methods). It can be also 
noted that while the GMC method, like FMC, is based on a Minimum Spanning Tree 
approach, on this application it is surpassed by MCL with respect to precision and 
f-index.  

Also for these data we have conducted a statistical significance analysis with the 
Friedman test. Within a significance threshold of 5%, all the differences presented in 
Table 3 are significant. 

6   Conclusions 

In this paper we presented a graph-based clustering algorithm (FMC) and its 
application to a cluster detection problem in two pattern recognition applications: 
anchor shot detection in news video and microcalcifications cluster detection in 
mammographic images. The proposed algorithm is different from other graph-based 
clustering algorithms in that it does not require the user to set any parameter or 
threshold. 

A comparison with other three graph-based clustering algorithms (namely, ICC, 
MCL and GMC) has been also carried out on the considered applications, by using an 
extended definition of the traditional precision and recall measures, that takes into 
account the possibility of partially detected clusters. 

While we can reasonably conclude that the ICC algorithm has proven to be 
inadequate for this kind of problem, both MCL and GMC have shown a good 
performance in at least a subset of the tests. Globally, however, our algorithm has 
demonstrated to be consistently better than the other two, except for a few cases in 
which its performance was however close to the one scoring the best result. 

As a future work, we are going to extend the experimental comparison including 
both more data (especially for the news video application, where the statistical 
significance needs to be improved) and other graph-based algorithms.  
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Abstract. We present a hierarchical system for object recognition that
models neural mechanisms of visual processing identified in the mam-
malian ventral stream. The system is composed of neural units organized
in a hierarchy of layers with increasing complexity. A key feature of the
system is that the neural units learn their preferred patterns from visual
input alone. Through this “soft wiring” of neural units the system be-
comes tuned for target object classes through pure visual experience and
with no prior labeling. Object labels are only introduced to train a clas-
sifier on the system’s output. The system’s tuning takes place in a feed-
forward path. We also present a neural mechanism for back projection of
the learned image patterns down the hierarchical layers. This feedback
mechanism could serve as a starting point for integration of what- and
where-information processed by the ventral and dorsal stream. We test
the neural system with natural images from publicly available datasets
of natural scenes and handwritten digits.

1 Introduction

Even after many years of active research in computer vision, approaches to object
recognition only seldomly yield the desired performance. This is despite the ease
with which humans and many animals perform these tasks. In the hope to reach
at least part of this performance, more attention is being paid to algorithms
that, in more or less detail, model visual cortical organization as identified in
humans and other mammals by means of psychophysics and neurophysiology.

There, several processing streams have been identified, of which ventral and
dorsal are the most pronounced ones [1]. Each stream has a hierarchical multi-
layer structure in which the complexity of the neuron’s selectivity increases grad-
ually from bottom to top layers. The ventral stream mainly performs recognition
and classification tasks [2] while the dorsal stream is specialized for the process-
ing of motion and place as well as depth. The ventral stream on the other hand
is largely ignorant to motion and place information as well as the exact arrange-
ment of object features. The mechanism for this has been clearly identified in
area V1 by Hubel and Wiesel [3] who found separate populations of simple and
complex cells: Simple were found to act as detectors of oriented intensity varia-
tions with high specificity to the position, orientation, and phase of these stim-
uli, while complex cells exhibit the same selectivity but are tolerant to a limited
amount of shift of these stimuli. Hubel and Wiesel were also the first to identify
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c© Springer-Verlag Berlin Heidelberg 2007



Neural Object Recognition by Hierarchical Learning and Extraction 289

columnar organization of the visual cortex: Columns are assemblies of (simple
and complex) cells that have receptive fields in mostly the same retinotopic area
and cover the whole spectrum of different features.

This neural structure has been reflected in several schemes for learning and
recognition of image patterns. Probably the first such network, called “Neocogni-
tron”, was suggested by Kunihiko Fukushima in 1980 [4]. Neocognitron consists
of a series of S- and C-layers (mimicking simple and complex cell types, respec-
tively) with shared weights for a set of local receptive fields and inhibitory and
excitatory sub-populations of units with interactions resembling neural mech-
anisms. Neocognitron learns through a combination of winner-take-all and re-
inforcement learning, autonomously forms classes for presented characters, and
correctly classifies some slightly distorted and noisy versions of these characters.
In 1989 Yan LeCun et al. [5], introduced a similar but much more powerful
successor to this network that generated local feature descriptors through back-
propagation. A later version of this network, called “LeNet”, has been shown to
act as an efficient framework for nonlinear-dimensionality reduction of image-
sets [6]. “LeNet” is similar in architecture to Neocognitron, but does not learn
autonomously and requires labels to initiate the back-propagation. The latter is
not biologically justified.

In 2003 Riesenhuber and Poggio [7] suggested a computational model for
object recognition in the visual cortex with a similar layout called “hmax”,
initially focusing on the correspondence between model components and cortical
areas. “hmax” employs Gaussian radial basis functions to model the selectivity of
simple cells, and a nonlinear max-function, pooling input from a local population
of simple cells, to model functionality of complex cells. Learning in hmax is
constrained to the tuning of simple cells to random snapshots of local input
activity while presenting objects of interest. It was, however, successfully applied
to the modeling of V4 and IT neuron responses and also as an input stage to a
classifier for object and face recognition yielding very good performance.

Another approach that focuses very much on the neural details of neural
adaptation and learning and does not use weight sharing is found in “VisNet”,
presented by Deco and Rolls in 2002 [9]. The most interesting ingredient to their
model is the fact that it can learn the shift invariance of the feature detectors
autonomously through a temporal learning rule called the trace rule.

The system we present here, while structurally similar to hmax, incorporates
an unsupervised learning strategy and feedback projections.

2 The Object Recognition System

The architecture of the system comprises a hierarchy of several processing layers
representing the visual areas in the ventral stream (see Fig. 1). Each layer,
analogously to most cortical visual areas, has a columnar organization, such
that for every spatial location there are several units with distinct receptivity.
The output of such a layer is arranged along 3 dimensions: horizontal/vertical
displacement and feature index. The layers are arranged in pairs called (following
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established notation) S- and C- layers. The S-layers perform feature detection
on their input while the C-layers reduce the resolution of the S-layer output by
pooling over local spatial regions using a max-nonlinearity [7] while keeping the
same columnar arrangement. This processing step performed by the C-layers
makes their response position invariant to a limited degree. The area over which
C-layer units pool is chosen to match the receptive field size of the preceding S-
layer. The receptive fields of the S-layers only encompass a few spatial locations
of their input (S1:5x5, S2-S3:3x3), but due to the hierarchical arrangement, the
receptive fields of units in higher layers of the hierarchy (if projected all the way
back to the first layer) become very large. This accounts for one of the important
properties in the ventral stream: growing receptive field sizes and reduction of
the information about the spatial origin of visual percepts.

S/C 1

S/C 2

S/C 3

Si Ci

Fig. 1. Architecture of the shape extraction hierarchy. It is exemplarily shown how
information reaches a single S3-unit, and how the large effective receptive field of this
unit is constructed hierarchically.

The described hierarchy performs recognition of shapes in a multi-scale fash-
ion: units on lower layers of the hierarchy are receptive for local shape features
such as lines, curves, branches or corners, while units on higher levels are re-
ceptive to complex combinations of such low-level features. The first feature
extracting layer, S0, employs a V1 simple cell model, based on Gabor filters and
surround suppression, followed by a maximum pooling layer, C0, corresponding
to the complex cells in V1. 8 sets of Gabor pairs were used, with spatial periods
of 4 and 8 pixels and at 4 orientations. The following S-layers (S1-S3) perform
autonomous learning as described in the next section.

2.1 Self-tuning Feature Extraction Layers

Layers S1-S3 of the system “tune themselves” to shape features elicited by visual
input. Through an iterative learning process (Fig. 2) one column of selective units
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is generated and replicated across the whole spatial domain of the perceived
image. The selectivity of the units in the column is modeled using Gaussian
radial basis functions operating on the input within unit’s receptive field:

ai(x, y) = |Ir(x, y)| × e
(Îr(x,y)−pi)2

2σi (1)

Here i is the index of the unit in the column, (x, y) is the retinotopic position of
the column, pi is the unit’s preferred pattern, and Ir(x, y) is the input within a
radius r around (x, y). The tuning width, σi, defines the sharpness of the unit’s
selectivity. Î denotes Euclidean normalization.

determine
winning

unit

update
winning unit's 

error create a new 
unit tuned to 

the input

adapt the 
winning unit 
to the input

update dynamic 
thresholds and 

eliminate inactive 
units

threshold
exceeded?

yes

no

Fig. 2. Overview of one iteration of the learning process. These steps are performed
for each input position for each presented image and for each layer.

To generate a representative set of unit’s for each S-layer, images are presented
to the system and the best responding unit is selected in the neighborhood
Br(x, y) around each input location (x, y):

i′(x, y) = argmax
i

(
max

(x′,y′)∈Br(x,y)
ai(x′, y′)

)
. (2)

The effect of this selection is that the receptive fields of selected units do not
overlap. To initialize the system an arbitrary position with strong activity is
selected in the input and a unit is generated that prefers exactly this pattern.
The receptive field size r is kept constant for each layer.

Since only a single column is trained, all the image positions have to be visited
in series, so, to avoid bias of any one region, the visiting order is randomized.
Before the actual update is performed the difference of the experienced input
and the winning unit’s preferred pattern is measured and used to update an
error variable for the unit:

ei ← e−1/τ
(
ei + δii′ |Ir(x, y)| · |Îr(x, y) − pi|

)
(3)

where τ is a time constant determining the layer’s speed of adaptation and δii′

is Kronecker’s Delta. Using this update rule has the effect that ei will take on
high values when the unit wins repeatedly while experiencing input that is very
different from its preferred pattern.
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If the error exceeds a threshold emax a new unit is generated, the error is
distributed equally to the winning, and the new unit and both their tuning
widths (σ) set to halve the winning unit’s tuning width. Only when the error
did not exceed emax, the winning unit is updated according to:

pi′ ← pi′ + α|Ir(x, y)| (Ir(x, y) − pi′) (4)
σi′ ← σi′ + α|Ir(x, y)| (|Ir(x, y) − pi| − σi′ ) (5)

were α is a constant learning rate. Note that the updates in (3-5) are weighed by
the actual amount of input, |Ir(x, y)|, in the range of the unit’s receptive field.
Thus, only regions containing information will actually have an impact on the
system’s tuning. Because it is hard to estimate an effective bound on the desired
error, emax is updated based on the current size of the network n:

emax ← emax

(
1 +

n + n+ − N0

N0

)
(6)

where N0 is the desired number of units, and n+ is an exponentially weighed mov-
ing average of the growth rate. Additionally to the tuning and growing process,
units are removed from the system if they win the competition too infrequently.
The threshold for removal is updated similarly to the one for growing:

f0 ← f0

(
1 − n + n+ − N0

N0

)
(7)

The above steps have the effect that within a few time constants the column
will reach the desired size and be appropriately tuned to the input patterns
encountered during that time. Thus τ should be set a few times smaller than
the training set size.

2.2 Feedback Projections

Anatomical studies have shown that virtually all connections between succes-
sive pairs of visual areas in the ventral stream are reciprocal[10]. The feedback
projections are thought to serve top-down processing for object association and
visual attention.

Our approach to feedback projections is based on the Selective Tuning model
by John K. Tsotsos et. al. [11], but with a less strict selection scheme, and some
adaptation to suit our architecture:

– Activation from the output of the S-layers and the perceptron is “cleaned
up” in that (at every retinotopic position) only the unit with the maximum
response projects back. The back-projection through the perceptron is fur-
thermore rectified since negative activation is undesirable.

– Only the afferent that contributed to the output of the C-layers is propagated
back. This introduces the spatial competition emphasized in [11].
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Fig. 3. Feedback begins at a selected output unit feeding back among it’s afferents to
that unit which yielded the strongest input in the forward sweep. The images show
the output from a perceptron trained to recognize cars from C3-output (left), and the
feedback result to the lowest layer, S0(right).

– The actual selection is performed by multiplying the back-propagating signal
with the forward traveling signal before each max-pooling layer.

Through these mechanisms we can recover the low level input responsible for a
certain classification event (Fig. 3) .

3 Applications

The learning system has been applied to various datasets ranging from natural
sceneries to images of handwritten digits. In all trials three pairs of S- and
C-layers for learning and maximum pooling, respectively, were used. Learning
layers were trained sequentially from bottom to top. For the learning of each
layer the training set was presented twice: once to establish a codebook and
another time to refine it.

3.1 Natural Images

Natural images of street scenes were selected from a publicly available database1

together with image annotations. The annotations were refined to make sure all
instances of pedestrians and cars were labeled. 600 crops were extracted with
10 pixels padding on each side. 200 crops per class featuring cars, pedestrians,
and other randomly selected objects were split by half for the training and
test set (Fig. 4,left). A linear classifier was employed for object classification.
This classifier extracted the mean and covariance of the data for each class, and
assigned unseen data to the class for which the corresponding normal distribution
1 See http://labelme.csai.mit.edu/
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Table 1. Best recognition rates at each layer of the hierarchy

layer C0 C1 C2 C3

cars 63.3 % 68.7 % 74.7 % 90.3 %
people 46.4 % 57.6 % 76.5 % 84.7 %
other 48.9 % 50.4 % 61.3 % 72.2 %
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Fig. 4. Left: examples of crops obtained from the LabelMe database. Right: dependence
of the total recognition error on N0 (top axis, dashed line) and training set size (bottom
axis, solid line).

yielded the highest posterior probability. Since the output of the last learning
layer, C3, usually contained more than one spatial location (i.e. > 1x1 pixels),
the location with maximum sum of activities over a column has been selected as
input to the classifier. The adaptation time constant, τ , was fixed to 100.

To measure the increase in shape information as it travels up the hierarchy, we
also trained and tested classifiers with the outputs from the lower C-layers, while
adjusting the pooling in these layers to make the output resolution equal to that
of C3. Table 1 lists the obtained recognition rates showing that the performance
increases with each layer. A jump in performance occurs between layers C1 and
C2 for pedestrians and between C2 and C3 for cars. This jump can be assigned to
the fact, that the effective receptive field size is large enough to cover the whole
instances of the respective class at their typical size. Best performances are 90%
for the car class and 84% for the pedestrian class. Clearly, pedestrians are harder
to classify because of their variable shapes. The obtained rates seem competitive
for this kind of task, though we have not tried any established algorithms for
comparison, but are planning to do so in the near future.

To test the influence of the layer capcity N0 on the overall recognition perfor-
mance, three different capacities of 7, 15, and 30 for the lowest layer were tried.
The capacities were doubled for each higher layer (e.g. S1:30, S2:60, S3:120). For
the largest capacity the size of the training set was varied between 10 and 300 (the
whole set) while adjusting the number of presentations of the set to keep the to-
tal number of presented images constant. The whole training set was used for the
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Fig. 5. Handwritten digits from the MNIST dataset

training of the classifier. The results (Fig 4, right) show that the system can gener-
alize sufficiently well and shows no degradation in performance even for a training
set of only 33 images per class. Reducing the N0 causes strong degradation in per-
formance, indicating a minimal capacity required for the task. Yet additional tests
have shown that a further increase in N0 tends to decrease performance. It thus
remains to find a way for automatic tuning of the system’s capacity.

3.2 Handwritten Digits

A sample of handwritten digits from the MNIST dataset2 is shown in Fig.5. The
dataset contains 60.000 training and 10.000 test examples, binarized, centered,
and scaled to a common size. The speed of adaptation, τ , was set to 5000, and the
capacities of the learning layers were (from lowest to highest in the hierarchy) 40,
80 and 160, respectively. No Gabor filtering stage was used in this trial because
the images had low spatial resolution. Also, due to their near binary nature,
these images could be directly processed by layer S1. The increasing complexity
of the learned features is shown in Fig. 6. A two layer perceptron with 100 hidden
units was employed for classification because the linear classifier failed to produce
reasonable results (we also tried Support Vector Machines with Gaussian kernels
and Gentle AdaBoost both yielding similar results). The necessity of a non-linear
classifier indicates that the C3-layer outputs do not form single clusters for each
of the ten digits. This is not so surprising since the digits appear in many and
sometimes subtle variations.

Running our system on this dataset yields a recognition rate of 94.2% on the
test set with the perceptron. This is comparable with the results exhibited by
state-of-the-art algorithms2. The system also exhibits some tolerance to rotation
and scale changes(Fig. 7), even though only undistorted images were used for
training. This tolerance is partly introduced by the C-layers discarding some
information about the exact spatial origin of each feature. Rotation tolerance
is also due to the facts that only a small number of units were part of the S1-
column, so that a small rotation of the feature does not change the winning
unit, and that some rotation variance was already present in the training set.
The tolerance does not, however, hold for much larger rotations, which would
have to be explicitly learned (see also [8]).
2 See http://yann.lecun.com/exdb/mnist/
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S1

S2

S3

Fig. 6. Examples of receptive fields learned by units in (S1)-(S3) as back-projected
to the retinal level. The projection is only approximate due to the position discarding
nature of the C-layers. Nevertheless one can nicely observe how the complexity increases
up to full digits.

Fig. 7. Recognition rate as a function of change in size (left:) and rotation (right)

4 Conclusion

We have described the hierarchical learning system for shape based object recog-
nition inspired by neurophysiological evidence on ventral stream processing in
the mammalian brain. The system exhibits a robust capability to develop selec-
tivity to frequently occurring input patterns with the only constraining parame-
ters being it’s capacity and the time constant of the adaptation. Especially no
class information is required in the learning stage, in contrast to most current
approaches to feature learning.

This learned selectivity to characteristic image patterns generates a unique
set of features at the highest layer of the hierarchy. When these are passed to a
final classifier, a respectable recognition performance, comparable to the state-
of-the-art algorithms, is achieved for very different images ranging from natural
scenes to artificial objects. This capability to adapt and perform consistently
comes almost for free through natural tuning and with little change of a few
parameters. We only know of one similar system that combines this kind of ar-
chitecture with an unsupervised learning rule for object recognition [12]. There
an energy minimization scheme has been used to generate a set of preferred pat-
terns based on the reconstruction error and an additional term enforcing sparsity
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of the response of the feature selective layers, while we used a more biological
competitive Hebbian learning rule. All other system either do not incorporate
any unsupervised learning aside from random picking of input data as codebook
entries or require a much more powerful classifier to perform similarly or both;
or use supervised learning for the whole system [4,5,7,8,13].

We have also presented how the attention model of J. K. Tsotsos et al. [11]
can be adapted to our system to recover the exact location of responsible stimuli
for a recognition event in large scenes. Future work will investigate how these
responsible stimuli could facilitate the learning and, ultimately, recognition.
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Abstract. In this paper a trade-off between the computation effort and the 
accuracy of the resulting disparity map, obtained using interpolation over 
spatial domain, is presented. The accuracy of the obtained disparity map is 
presented as the mean squared error calculated over the known disparity ground 
truth of test images, while efficiency increase is presented in terms of algorithm 
run-times. Even when reducing the search space for correspondences using 
epipolar geometry, disparity calculation methods are considered computat- 
ionally more expensive than interpolation. We show that substantial efficiency 
increase can be gained using interpolation, in comparison to calculating the 
dense disparity map directly. As will be shown interpolation also permits us to 
approximate a disparity value for the occluded pixels. The main contribution of 
our work is the disparity calculation efficiency increase using interpolation, that 
fits the sparse disparity map as a 2D surface. 

Keywords: Dense disparity map, interpolation, visual completion, computation 
efficiency. 

1   Introduction 

Binocular vision for depth information retrieval can be considered as a special case of 
motion parallax. Due to motion parallax the observed objects apparently shift as the 
observing position changes [1]. The apparent shift of the object depends on the 
distance between the object and the observer and the size of the motion parallax 
(distance between the observing points). Thus if the size of the motion parallax is 
known, the distance from the observer to the object can be deduced [1],[2],[3]. In the 
binocular vision case the observer position distance (the distance between the left and 
right eyes or cameras) is either fixed or known. While motion parallax refers to the 
position change of the observer, disparity is the equivalent term in the image planes 
[1],[2],[3]. One of the problems caused by motion parallax that biological binocular 
vision systems have to deal with is that some parts of the image are not present in the 
other image. This is known as occlusion. The problem is overcome in biological 
visual systems by a process known as visual completion or interpolation [4],[5]. The 
visual completion process results in an impression of a surface or contour in locations 
where such information is not available in the image [4]. 
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In machine vision the disparity is calculated by discovering the corresponding 
points or features in the left and right images which describe the same real-world 
object point [1],[2],[3]. One of the problems, as was mentioned earlier, is that for the 
occluded points the disparity cannot be calculated directly [2]. Even if interpolation is 
a widely used post-processing technique (for example improving the density and 
visual quality of image features such as stereo or motion) only a few studies exist 
indicating how to increase efficiency or accuracy (see [10]) via interpolation. 

In this paper we present the results of using the interpolation property of  biological 
binocular vision systems not only to approximate the disparity at the occluded points 
but also as a way of improving the disparity computation. In this sense the 
interpolation process can be seen as a tradeoff between the resulting disparity map 
accuracy and computation efficiency. Due to the fact that real world objects present in 
the images normally have continuous and smooth surfaces, except at the object edges, 
in geometrical sense it is justified to approximate these surfaces using interpolation. 
The interpolation methods that we have used to reconstruct the dense disparity map 
treat the sparse disparity map as a 2D surface. 

2   System Overview 

The system consists of two different parts: camera parameter calculation and the 
consecutive stages of disparity calculation. This is schematically shown in Fig. 1.. 

 

Fig. 1. System description. The consecutive stages take as input a pair of stereo images with the 
corresponding camera parameters and return a disparity map. 

The image processing stages of the system are the following: 

• Camera parameters and lens distortion. This stage consists of approx- 
imating the internal, external and camera-lens distortion parameters. Output 
from the distortion model stage is a pair of images without lens distortions. 
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• 3D-reconstruction. In this stage the corresponding left and right image 
points are searched for using either dynamic programming (feature based) or 
correlation (area based) methods, after which triangulation is used for 3D-
reconstruction. More detailed description can be found in [11]. 

o Correlation based method compares image patches in order to 
calculate where the intensity values are similar [2]. The similarity 
metrics used is normalized cross-correlation (NCC) [11].  An 
evenly spaced grid, called the search grid, for defining the points 
used for calculating the disparity is first defined. A point validation 
is used to discard possible false correspondences: first a 

corresponding point for the left point Lp  is searched for in the right 

image, which shall be called CRp . Then for the point CRp  the 

maximally correlating point in the left image is searched for, which 

shall be called CLp  . If Lp  and CLp  describe the same point, then 

the point pair ( )CRL pp ,  is accepted [2].  

o Dynamic programming addresses the problem of finding 
corresponding points by converting it into an optimization problem 
and thus tries to find a more global solution [6],[11]. For the 
dynamic programming only intra scan-line search is employed, 
using two different kinds of metrics for optimization: edge 
delimited line [6],[11] and correlation based.  

• Filtering. Erroneous reconstructed points are removed before interpolation. 
The filtering methods are:  

o Statistical. Two different statistical approaches are used:  
 Mean distance. Mean distance and standard deviation of 

the distance (along Z-axis) of the reconstructed points is 
calculated. All the points that are further away than the 
mean distance plus two times the standard deviation are 
considered erroneous are will be removed.  

 Histogram. A 100-bin histogram of the reconstructed 
point distances (along Z-axis) is generated. If any pin 
consists of less than three points, those points are 
considered erroneous and will be removed.  

o Median 3D. The errors caused by the false matches in the 3D-
reconstruction phase can be considered as noise and as such can be 
attenuated using filtering [3]. Median filters preserve discontinuities 
better than averaging filters [3] and thus suits better for filtering 
disparity values, where the disparity on the object edges is 
discontinuous. The nearest points to a particular point of interest are 
deduced using Euclidean distance.  

• Interpolation. Before interpolation sparse disparity map is constructed from 
the original image point position coordinates used for triangulation and the 
3D-reconstucted Z-axis coordinate, which is inversely proportionate to 
disparity. The tested interpolation methods are:  
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o Nearest Neighbor (NN).  
o Linear. 
o Cubic. 

3   Experiments and Results 

Several tests were conducted with real and synthetic images in order to evaluate the 
effects of interpolation on the resulting dense disparity map accuracy and the 
corresponding increase in computation efficiency. The accuracy is calculated as a 
mean squared error (MSE) between the ground truth and the resulting disparity map. 
The programming and testing was done using Matlab running on a PC with Intel Core 
2 Duo processor running at 2.4GHz and with 1 GB of RAM.   

 

 

Fig. 2. Test images from left to right: Tsukuba (real) and Venus (synthetic). On the top row 
left-right stereo images are displayed. On the bottom row the ground truth disparity 
corresponding to each of the left-stereo-images is shown. The test images are available at 
Middlebury College, Stereo Vision Research Page [7]. 

3.1   Qualitative Analysis 

In this experiment the disparity was calculated directly for all the image elements 
using both the correlation and dynamic programming methods (Fig. 3 and 4). The 
disparity values shown are in fact back-projected values from 3D-reconstructed points 
(Fig. 1) and thus due to inaccuracies in the back-projection the MSE is high. More 
important than the absolute value of MSE is the relative change of MSE between 
interpolated and non-interpolated case.  

First the calculated disparity map, without interpolation, is displayed on the left. 
Then the same calculated disparity map is used as a basis for linear interpolation and 
the resulting disparity map is displayed on the right. The MSE is calculated using the 
pixels for which the disparity has been calculated (detected false matches are 
ignored). In the disparity-difference images a bright intensity denotes a big error 
between the ground truth and the obtained disparity. 
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Fig. 3. Correlation method. The experiment on the left side shows the resulting disparity map 
calculated directly for all the pixels, while the experiment on the right side demonstrates the 
resulting dense disparity map using linear interpolation. The images are from the experiments 
11 and 12 in the table 1. 

Fig. 3 demonstrates the effects of the interpolation on the resulting disparity map 
obtained using correlation. The MSE of the initial sparse disparity map (left) is 
relatively high which is due false positives that have not been filtered out. The MSE 
of the interpolated disparity map increases due to the spreading effect of the 
interpolation and thus the erroneous zones are spread, increasing the overall error. As 
can be observed from the other results in table 1, using a considerably sparser initial 
disparity map for interpolation can result in a more accurate disparity map. This 
means that the correctness of the initial disparity map greatly affects accuracy. Thus 
either a method producing less false-positive matches should be employed or more 
effective filtering should be applied prior to interpolation.  

Fig. 4 demonstrates the effects of interpolating the disparity map from the results 
obtained using dynamic programming with correlation. Since dynamic programming 
is based on feature matching, features being edges in this case, disparity values can 
only be calculated for pixels where a feature is present. Disparity estimations for the 
edges can be observed in Fig. 4, top row left image. The MSE of the interpolated 
disparity map is only slightly higher than that of the directly calculated. Even if the 
amount of pixels for which the disparity is known, is considerably lower in the 
dynamic programming than in the intensity correlation case (see Fig. 3 and 4), the 
resulting final disparity map is however notably better. 
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Fig. 4. Dynamic programming using correlation. The experiment on the left side shows the 
results of calculating the disparity for all the lines, while the experiment on the right side 
demonstrates the resulting dense disparity map using linear interpolation. The images are from 
experiments 13 and 14 in table 2. 

3.2   Quantitative Analysis 

Effects of the parameters on the resulting disparity map accuracy and algorithm run-
times are similar for both of the test images and thus only results for the Tsukuba 
images are displayed in tables 1 and 2. Also the results using dynamic programming 
with correlation were always better than those of edge delimited line metrics, thus the 
results for the latter will not be presented. Because the interpolation times were 
negligible in comparison with the time taken for calculating the sparse disparity map, 
the computational complexity estimation is based on the time taken to calculate the 
initial dense disparity map in each case. In tables 1 and 2 the tests with best efficiency 
increase and lowest MSE have been highlighted. 

Information related to the tables: 

• Filter: Statistical, Median or S+M (statistical and then median). 
• Median nn size: Neighborhood size for the median filter. 
• Grid search length: The distance in pixels that each point in the search 

grid can be moved. Search points are moved, within search length limits, 
over pixels where an edge or change is present. 

• Correlation window size: Size in pixels of the correlation window. 
• N, P: correlation window size: PN ×  (table 2). 
• Grid size: Size of the search grid (table 1). 
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• Efficiency increase: Efficiency increase based on time, calculated as 
n

m

t

t
 

where mt  and nt  refer to the time used for calculating the disparity map in 

the m:th and the n:th test. 

Table 1. Results of intensity based correlation for the Tsukuba images 
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1 None 5  linear 5 5 41  1271/1600 75,0 3540,7
2 Statistical 5  linear 5 5 41  1255/1600 76,1 1088,4
3 Median 5  linear 5 5 41  1271/1600 76,1 1755,3
4 S+M 5  linear 2 5 41  1261/1600 76,3 870,8
5 S+M 5  linear 0 5 41  1239/1600 76,2 820,2
6 S+M 5  linear 5 3 41  1080/1600 80,7 1171,5
7 S+M 5  linear 5 9 41  1290/1600 62,0 1054,8
8 S+M 5  linear 5 5 11  79/100 1213,4 925,4
9 S+M 5  linear 2 5 81  4901/6400 19,0 911,5

10 S+M 5  cubic 5 5 41  1255/1600 76,0 904,4
11 Statistical 5  none 2 5 0  85391/110592 1,0 1090,0
12 Statistical 5  linear 2 5 0 85391/110592 1,0 1670,7

Method: Intensity correlation. Image: Tsukuba

 

Table 2. Results of dynamic programming with correlation, for the Tsukuba images 
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1 5 5 41 0,1 S+M 5  linear  1826/2750 7,6 1060,0
2 5 5 41 0,3 S+M 5  linear  2126/2750 7,7 1018,3
3 5 5 41 0,5 S+M 5  linear  2182/2750 7,7 992,6
4 5 5 41 0,3 None 5  linear  2154/2750 7,7 8138,7
5 5 5 41 0,3 Statistical 5  linear  2126/2750 7,7 975,8
6 5 5 41 0,3 Median 5  linear  2154/2750 7,7 1005,3
7 5 5 11 0,3 S+M 5  linear  492/648 34,4 1130,6
8 5 5 81 0,3 S+M 5  linear  4430/5702 3,6 858,6
9 7 3 41 0,3 S+M 5  linear  2127/2750 7,7 1044,3

10 5 5 41 0,3 S+M 7  linear  2126/2750 7,7 1049,7
11 5 5 41 0,7 S+M 5  linear  2241/2750 7,7 1169,8
12 5 5 41 0,3 S+M 5  cubic  2126/2750 7,7 1084,4
13 5 5 0 0,3 Statistical 5  none  15606/19815 1,0 991,5
14 5 5 0 0,3 Statistical 5 linear 15606/19815 1,0 998,1

Method:DP intensity correlation. Image: Tsukuba
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The Fig. 5 and 6 demonstrate the effects of using different amounts of points for 
disparity calculation on the efficiency and error between the resulting map and the 
ground truth. The fitted trend-lines are a second order polynomial and a “power” 

function of the form bcxy = . 

Tsukuba correlation: efficiency vs. MSE
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Fig. 5. Tsukuba images; efficiency vs. MSE using intensity correlation 

Tsukuba DP correlation: efficiency vs. MSE
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Fig. 6. Tsukuba images; efficiency vs. MSE using DP correlation 

As can be seen from the Fig. 5 and 6, first the MSE decreases as more initial points 
are used for interpolation. However as the number of initial points is increased the 
MSE starts to rise. This is due to the inefficient filtering of false positives. As the 
number of initial points increases, the efficiency decreases rapidly. 
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4   Discussions 

In this paper we have shown that interpolation can be employed for increasing the 
disparity map computation efficiency and for deducing a disparity value where not 
present. As can be seen from Fig. 4 (upper left image) a feature based method 
matching edges cannot produce a dense disparity map by itself. However the sparse 
disparity map provided by the dynamic programming can be interpolated, resulting in 
a dense disparity map. The efficiency increment is considerable with a relatively 
small decrement in resulting disparity map accuracy. In many real-time applications 
an approximation of the true disparity map is accurate enough and such systems can 
benefit considerably from the computation efficiency increment. 

When using a very small amount of initial points for interpolation the correlation 
based method gives better results MSE wise than the dynamic programming. This is 
due to the fact that in the correlation method the points for which the disparity is 
known (sparse disparity) are more evenly spread than in the dynamic programming 
case. However when the amount of initial points is increased, the dynamic 
programming method yields better results both MSE and efficiency wise. 

Due to the motion parallax in stereo images, the disparity cannot be calculated 
directly for the occluded points. Using interpolation a value for the disparity can be 
approximated, however this results in blurred edges of objects. One method that could 
yield better results, would be to assume that the occluded points should have similar 
disparity value that the nearest background points. Thus before the interpolation phase 
the occluded points would be assigned a most probably disparity value that matches 
with the background [8]. Generally the results obtained using either linear or cubic 
interpolation methods are quite similar. However cubic interpolation permits more 
steep changes and if disparity information is available at object edges, cubic 
interpolation will yield better results. 

Future work will address the application of the method presented in this paper to 
sparse robust stereo maps to increase the density and accuracy [9].  
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Abstract. Binocular information about the structure of a scene is con-
tained in the relative positions of corresponding points in the two views.
If the eyes rotate, in order to fixate a different target, then the disparity
at a given image location is likely to change. Quite different dispari-
ties can be produced at the same location, as the eyes move from one
fixation-point to the next. The pointwise variability of the disparity map
is problematic for biological visual systems, in which stereopsis is based
on simple, short-range mechanisms. It is argued here that the problem
can be addressed in two ways; firstly by an appropriate representation
of disparity, and secondly by learning the typical pattern of image corre-
spondences. It is shown that the average spatial structure of the disparity
field can be estimated, by integrating over a series of binocular fixations.
An algorithm based on this idea is tested on natural images. Finally, it
is shown how the average pattern of disparities could help to put the
images into binocular correspondence.

1 Introduction

Binocular disparity is the difference in position of a matched point, as it appears
in the left and right images. This difference can be divided into two components;
one that is due to the structure of the scene, and one that is imposed by cameras
themselves. In particular, the pattern of binocular disparity is sensitive to the
relative orientation of the sensors. This is important for active vision systems, in
which binocular fixation is achieved by rotating the cameras, such that the left
and right images are centred on the point of interest. It follows that the pattern
of disparity will be different for each fixation, even in a static scene.

The effect of relative orientation on disparity is problematic for biological
visual systems, in which stereopsis is based on the output of local filter-like
mechanisms [7]. For example, binocular cells in primate V1 have relatively small
receptive fields, and may be tuned to a single direction of disparity on the retina.
Hence it would be desirable for the visual system to arrange these mechanisms
according to the patterns of disparity that occur most often. This would have
two clear advantages. Firstly, depth-sensitivity could be improved, by placing
additional mechanisms in regions of highly variable disparity. Secondly, when
the image data are ambiguous, it would be useful to have an implicit model
of the most likely disparity at each point on the retina. There is experimental

F. Mele et al. (Eds.): BVAI 2007, LNCS 4729, pp. 308–317, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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evidence to suggest that such an organization of disparity sensitivity exists in
the primate visual cortex [1].

In section 2 it will be argued that the displacement of image-features between
the left and right views is best represented with respect to the underlying epipolar
geometry. However, as will be explained, the epipolar geometry depends on the
relative orientation of the eyes. The question of whether the visual system uses
this geometric information at the disparity-processing stage remains open. For
this reason, we will consider both epipolar and non-epipolar representations in
the present work.

If the visual system does estimate the epipolar geometry, then the pattern
of disparities is largely determined by each fixation point; what remains to be
estimated is the magnitude of each disparity. However, it is no less important
to consider the average pattern of disparities in this case. The reason is simply
that the same local mechanisms must be used during each fixation. Hence some
arrangements of these mechanisms will be better than others, depending on
which epipolar geometries are more likely to occur, as different points are fixated.
This should make it clear that, although we use ideas from computer vision, the
problems addressed here arise from biological constraints on visual processing.
It should be emphasized that we are not directly investigating the distribution
of scene depths [4] in this work. Rather, we are investigating the distribution of
disparity fields, which is determined by the combination of eye-movements and
scene structure.

Sections 2 and 3 describe the geometric and image-processing background
that is subsequently required. Our main idea is presented in section 4, in which
we show how a collection of disparity maps can be combined. This procedure
is tested in section 5. A stereo image-pair is warped into a number of ‘fixating’
views, and the disparity field is recorded in each case. These maps are combined,
to produce an average disparity map, with respect to the different fixation-points.
We discuss, in section 6, how such a representation could be used by the visual
system.

2 Disparity Models

The left and right eyes are modelled here by pinhole cameras, with centres of
projection c� and cr, respectively. It is convenient to represent image-points
by their homogeneous coordinates q� = (x�, y�, 1)�, and similarly for qr. Sup-
pose, without loss of generality, that the axes of the scene coordinate-system are
aligned with the left eye. Then the image-points are related to the scene-point
q̄ = (x, y, z)� by the projections

z�q� = q̄ and zrqr = R(q̄ − cr), (1)

where R is the 3 × 3 rotation matrix that determines the relative orientation
of the eyes. One possible representation of binocular disparity is simply the
difference between q� and qr. This is, in general, a vector with non-zero horizontal
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Fig. 1. A stereo image-pair that has been warped to simulate the fixation of a particular
scene-point. The raw disparities of the matched points are indicated by the black
vectors. The sharp-end of each vector marks the image feature; the blunt end marks
the location of the same feature in the other view. No epipolar geometry has been
imposed, and so the vectors do not follow a simple pattern. Images courtesy of the
University of Tsukuba.

and vertical components [6]; we will call these the raw disparities. An example
of a raw disparity field is shown in figure 1.

An alternative representation of disparity can be derived from the fact that the
scene point q̄ in equation (1) is equal to the back-projected image-point z�q�.
It follows that the left and right image-points are related by the well-known
equation

qr ∼ Rq� + (1/z�)er, where er = −Rcr, (2)

and ‘∼’ denotes equality up to a scalar multiple. The importance of this model
is that if R is known, as well as q� and qr, then only one degree of freedom, z�,
remains for the unknown scene-point. The point er is the epipole, being the image
of the left optical centre. Note that er varies with the relative orientation of the
eyes, but not with the choice of scene-point q̄ . Another way to understand this
is that the position of each point qr is measured with respect to a corresponding
reference-point Rq� in the same image. These reference points lie on the plane at
infinity; however it can be shown that the same principles apply if the reference-
points lie on any plane (not passing through either optical centre). This leads to
the more general decomposition [2,8];

qr ∼ Hq� + δer, (3)

in which H is a homography containing R and the parameters of the plane, while
δ is proportional to the scalar depth of q̄ with respect to the plane. The vector
δer will be called the epipolar disparity, including equation (2) as a special case.
We emphasize that the epipolar disparity has one degree of freedom δ, whereas
the raw disparity has two; dx and dy. The epipolar disparity has several other
advantages; for example, the reference plane can be chosen in order to reduce
the size of the disparities. In our experiments, we use a fronto-parallel plane
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Fig. 2. The fixating stereo pair from figure 1 is shown again.The feature-correspondence
is also identical, however, the epipolar geometry has been imposed. The blunt ends of
the vectors now represent reference-positions on a virtual plane through the fixation-
point. The disparities are organized along epipolar lines, and tend to be smaller than
those in figure 1.

(with respect to the head), positioned at the fixation distance. An example of
the resulting epipolar disparity field is shown in figure 2.

In order to recover the metric structure of the scene, it is necessary to know
the relative orientation of the cameras, and to account for any geometric distor-
tion imposed by the sensors. If these calibration parameters are unknown, then
equation (3) can nonetheless be used to estimate non-metric properties of the
scene. For example, it can be established whether a given scene-point is in front
of or behind the reference plane encoded by H . The effect of the fixation plane
can be seen in figure 2. The plane is at a depth between that of the face (in the
lower-left quadrant) and the far wall. The disparities associated with these two
parts of the scene are in opposite directions. It has been argued elsewhere that a
qualitative representation of this kind could explain several aspects of biological
stereopsis [9].

3 Image Matching

In order to generate disparity-fields, we must have a stereo image pair with
corresponding points identified. We use a simple feature-matching process, as
follows. First we apply a Gaussian filter G, of width λ, to smooth each image
I. We then construct an outer-product matrix from the luminance-gradient at
each point. These matrices are themselves smoothed at scale μ, and the response
Q(x, y) is computed;

Q(x, y) =
det

(
Gμ � S

)
tr

(
Gμ � S

) , where S(x, y) =
(
∇Gλ � I

) (
∇Gλ � I

)�
,

and ‘�’ denotes 2-d convolution. This commonly-used operator produces maxima
in Q(x, y) at ‘interest points’ q�i and qrj in the left and right images [3].
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In order to match corresponding feature-points in the left and right views, we
compare the colour of I� around q�i, to the colour of Ir around qrj. The ‘cost’
of matching these features is defined as the sum of squared colour-differences
between the two image-patches I�(q�i) and Ir(qrj);

F (q�, qr) =
1
φ2

∣∣I�(q�) − Ir(qr)
∣∣2
I , (4)

where | · |2I averages the pointwise squared-differences over the patches, and φ
is a parameter relating to the expected photometric variation at corresponding
points. The matching-costs are put into a table, Fij , and the minima in each
row i, and column j are computed:

m�i = argmin
j

Fij , and mrj = argmin
i

Fij .

We then enforce ‘uniqueness’ and ‘compatibility’ constraints on the matches,
meaning that point q�i matches qrj if

i = mrj, j = m�i, and Fij < Tφ2,

where Tφ2 is a threshold defining the maximum photometric incompatibility
between matched points. The procedure described above produces very sparse,
but relatively reliable matches. Note that the matching cost in equation (4) does
not penalize implausibly large disparities. The average pointwise magnitude of
the disparity field is investigated below, and in section 6 it is shown how the
resulting probabilistic model could be incorporated into the matching algorithm.

Our experimental data was constructed by applying appropriate homogra-
phies to an original stereo image pair, in order to simulate fixating pairs of
views. In principle, we could apply the matching process to each pair of warped
images. In practice, we compute the correspondence only once, using the original
images. The homographies are then used to map the coordinates of the matched
points into the fixating images. This is done in order to avoid irrelevant effects of
the warping on the correspondence process; for example, pixel-resampling may
reduce the number of points that are matched in more strongly warped images.
We also enforce the epipolar constraint on the matched points, by considering
only horizontal displacements in the rectified images.

4 Disparity Processing

In this section we describe our model of the disparity data. We have measured,
in each image, the disparity of k = 1 · · ·M points, over v = 1 · · ·N fixations.
Hence we have image positions qkv and their associated (raw or epipolar) dis-
parity vectors dkv. The procedures in this section apply to the left and right
views independently, and so we suppress the �, r indices, in order to simplify the
notation.

We consider the data {qkv, dkv} as a single vector field, and ask what struc-
ture, if any, it contains. Note that the points qkv are not evenly distributed in
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the images, and that neighbouring points may be associated with quite different
disparities. Hence we effectively wish to smooth and interpolate the observed
vector-field. We are particularly interested in the local-orientation of the field,
and so the smoothing-process must treat vectors that differ in orientation by
180◦ as being ‘similar’. This can be achieved by representing the disparities as
outer-products

Dkv = dkvd�
kv , (5)

each of which is a 2 × 2 matrix of rank-one [5]. As described above, we would
like to have a representation of the average disparity at an arbitrary location
q , based on samples from points qkv. We use a simple kernel-like estimator to
obtain

D(q) ∝
M∑
k

N∑
v

W (qkv , q)Dkv. (6)

This gives the disparity-matrix D at position q as a weighted average over all
of the data. The average is subsequently normalized by the sum of the weights.
The kernel could be any decreasing function of the separation between qkv and
q . We use an isotropic Gaussian, with width parameter w;

W (p , q) = exp
(

−|p − q |2
2w2

)
. (7)

In general, the average matrices D(q) will have rank-two. The local orienta-
tion and variability of the disparity-field at location q is obtained by eigen-
decomposition of the corresponding matrix. The eigenvector associated with the
larger eigenvalue, σ2

1 , is oriented along the characteristic direction of disparity.
The smaller eigenvalue, σ2

2 , indicates the variability of the disparity around the
characteristic direction.

5 Simulation Results

In this section we investigate the distribution of raw and epipolar disparity fields
by a simulation, based on real images. We believe that this approach is worth-
while, because it incorporates a number of effects that would be difficult to
specify in a purely geometric simulation. For example, the joint distribution of
feature-locations and scene-depths is naturally determined by the images them-
selves. Furthermore, it is possible to demonstrate the robustness of the smoothing
process to the false matches contained in the disparity field. Data was generated
by synthetically fixating each scene-point that had been matched in the images,
and recording the resulting disparity field. As described in section 3, there was
a single underlying set of correspondences; only the relative orientation of the
two views was varied.

The procedure is complicated by the fact that the warped images are incom-
plete with respect to the original field of view (c.f. the edges of the images in
figures 1 & 2). The results would be biased if this effect were ignored, because
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it is the same structure (the upper and lower epipolar lines on the side of the
epipole) which is lost in each case. We avoid this artifact by analyzing only the
central 25% of the original field of view, defined by the inner rectangle in fig-
ures 1 & 2. We reject any fixation that would leave this region incomplete. The
drawback of the approach is that the more variable disparities tend to lie in the
periphery, and so our results are conservative.

The procedure described in section 3 returned 404 interest-points in the left
image, and 398 in the right. Of these features, M = 207 were matched between
the left and right images. There were 25 scene-points that could be fixated such
that the resulting disparity-maps were complete over the central 25% of both
images, for the reason described above. A further nine fixations were valid for
the left image only, and a further one fixation for the right image only. All data
was used in the analysis, meaning that several thousand disparities (M × N ,
M = 207; N = 26, 34) contributed to each of the average disparity maps.

The distributions of disparity magnitude and orientation are shown in figures
3 and 4. As expected, the epipolar disparities are on average shorter than the
original vectors; the means are 0.104 and 0.065, respectively. This difference
is attributable to the use of a appropriate reference plane, as described in the
introduction. It was also found that the epipolar lines were much less variable
in orientation than the original disparity vectors; the standard deviations of the
angular data are 0.448 and 0.168, respectively.
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Fig. 3. Histograms of disparity magnitude for the raw (left) and epipolar (right) rep-
resentations. The epipolar disparities are smaller, owing to the use of an appropriate
reference plane.

Finally, we consider the spatial structure of the combined disparity maps.
The estimator described in section 4 was used to resample the central region of
the disparity maps on a regular grid, as shown in figure 5. The spatial width
parameter w in equation (7) was set to one half of the grid spacing. It can be seen
that raw disparity field is less regular than the epipolar field, as expected. The
average vertical disparity increases with distance from the horizontal meridian,
causing the local structure to become more variable.
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Fig. 4. Histograms of disparity orientation for the raw (left) and epipolar (right) repre-
sentations. Angles are measured with respect to the horizontal axis of the image. Note
that the local epipolar directions are much less variable than the raw disparities.

In contrast, the epipolar disparities are quite stable. The smoothing process
recovers a structure that resembles a single, average epipolar geometry. In this
simulation, the average epipolar lines are parallel, though this is not necessarily
always the case. For example, a spatially concentrated distribution of fixation
points could produce an asymmetric average map.

It is perhaps surprising that the raw and epipolar disparity maps appear quite
similar in figure 5. This can be explained as follows. The difference between
the raw and epipolar representations depends largely on the homography that
expresses the relative orientation of the eyes. In the present simulation, this
homography is not far from the identity, for two reasons. Firstly, we have applied
a fixation constraint, which tends to limit the difference in orientation between
the views, especially when the scene is relatively distant. Secondly, the field of
view over which the homography applies is quite small in this simulation, as
described above.

6 Discussion

We have reviewed the measurement of binocular disparity, and shown how it
can be represented in relation to the underlying epipolar geometry. The novel
contribution of this work is our analysis of the average disparity field, for a
fixating observer. We have shown that this contains useful geometric structure,
and that this can be extracted by a simple smoothing process.

The most interesting use of the average disparity field is as a prior model of
the binocular correspondence field. It is straightforward to go from the scatter-
matrices D(q) defined in section 4 to a probabilistic model of the local disparity
vector. This is done via the Mahalanobis distance, which we write as a cost
function

E
(
q0, q

)
=

(
q − q0

)�
D(q0)−1(q − q0

)
, (8)
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Fig. 5. Structure of the raw (top left & right) and epipolar (bottom left & right) dispar-
ity maps, combined over a series of fixations. The maps have been resampled, using the
estimator in equation (6), over a region corresponding to the central rectangle that ap-
pears in figures 1 & 2. The axes of each ellipse, obtained from the eigen-decomposition
of D(q), represent the local variability of the disparity field.

where q is the measured feature position, and q0 is the reference point, trans-
ferred from the other image, as described in section 1. Hence the candidate
disparity is q − q0, with length δ. Recall from section 4 that σ2

1 and σ2
2 are the

eigenvalues of D . It follows that if the disparity is in the characteristic direction,
then the cost will be δ/σ2

1 , whereas if it is in the perpendicular direction, the
cost will be δ/σ2

2 . The cost is lower in the preferred direction, because σ2
1 > σ2

2 ,
assuming that the average disparity has a definite orientation at q0.

These considerations lead directly to a Gaussian model for the prior proba-
bility of the match between q� and qr;

pr
(
q�, qr

)
∝ exp

(
− 1

2E�

(
H−1qr, q�

)
− 1

2Er

(
Hq�, qr

))
.

The matrix H is the homography that includes the relative orientation of the
cameras, as in equation (3). We use both the right-to left and left-to right costs,
because the distance defined in equation (8) depends on the average dispar-
ity field, and the left and right versions may not be mutually consistent. Here
we have constructed a geometric prior, which depends on the variable orien-
tation of the eyes. This could be readily combined with the photometric prior
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exp
(
− 1

2F (q�, qr)
)
, which is obtained from the matching-cost F , as defined in

equation (4).
In our future work, we plan to incorporate the geometric prior into the image-

matching process, as outlined above. We believe that this would improve the
estimated binocular correspondences, especially in a biological model based on
short-range disparity mechanisms, as described in the introduction. We also plan
to evaluate our disparity-smoothing procedure across a wider range of images
and fixation points. This will allow us to compare our average correspondence
maps to the distribution of disparity-tuned cells in area V1 [1].
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Abstract. In this paper a new method for reconstructing 3D scenes
from stereo images is presented, as well as an algorithm for environment
mapping, as an application of the previous method. In the reconstruction
process a geometrical rectification filter is used to remove the conical
perspective of the images. It is essential to recover the geometry of the
scene (with real data of depth and volume) and to achieve a realistic
appearance in 3D reconstructions. It also uses sub-pixel precision to solve
the lack of information for distant objects. Finally, the method is applied
to a mapping algorithm in order to show its usefulness.

1 Introduction

Unknown environments reconstruction is a fundamental requirement in several
fields of research. Stereoscopic vision opens new paths that in the future will
allow to capture the three-dimensional structure of the environment, and take
advantage of this to calculate the geometry, volume and depth of the objects
in the scene. Range sensors can also acquire very detailed models [1], but these
types of sensors are more expensive and they cannot provide information of both
range and appearance, which is useful for reconstruction and texture mapping.
For these reasons we will focus on stereo vision.

Several authors use stereo vision and disparity images to solve the 3D recon-
struction or mapping problems. For instance, a first solution to three-dimensional
reconstruction with stereo technology explores the possibility of composing sev-
eral 3D views from the camera transforms [2]. There are other approaches which
infer 3D grids from stereo vision, due to the fact that appearance information
is not provided by range finders. Hence, they add an additional camera to their
mobile robots [3,4]. Moreover, a module of 3D recognition could be added to
identify some objects. This technique is not exclusive of robotics, but it could
be used in other applications such as automatic machine guidance or also for
detection and estimation of vehicle movement [5].

Stereo vision can improve the perception of scenes and world modelling, so
there are some methods which work with disparity images due to their advan-
tages. The problem is that these algorithms cannot be applied in a widespread
manner with all types of structures; because the images (or the objects) ob-
tained from a camera have no real size, since they are deformed by the conical
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perspective effect. In general, any image taken by a camera is deformed by this
effect, so direct reconstruction generates scenes with unreal aspect. There are
very few works which focus on creating a good reconstruction and on obtaining
a real appearance of the scene. However, some interesting works can be found
[6,7,8], but none of them makes any type of geometrical rectification. Specific
objects are reconstructed instead of the whole scene, so the real structure of the
environment is not recovered. Some näıve rectifications have already been used
in other fields, to rectify roads and to obtain their real appearance [9].

This work is centred in the reconstruction of the structure of the scene showing
its real aspect, using the information provided by the stereo images and the
disparity maps (in fact depth maps, their duals, are used). Our proposal does
not make assumptions about the scene nor the object structure, it does not
segment objects trying to identify known shapes, only a stereo pair is needed and
it is not correspondence dependent. Perspective rectification allows the method
to eliminate the conical perspective of the scene and to remove the camera
orientation. This way the algorithm recovers the structure of the scene and some
crucial information such us object geometry, volume and depth. Moreover, the
reconstruction method is also extended to manage a sequence of stereo images
to map a whole environment.

2 Geometrical Rectification: Recovery of the Real
Perspective

Perspective effect arises from the common appearance of the real world which
surrounds us. This effect deforms the size and geometry of the space and the
objects contained in it in order to create the depth effect. Figure 1(b) shows
how the conical perspective effect changes the size with which the objects are
represented according to their distance from the view point. Rectification is used
for correcting this effect and recovering the real scene geometry. As an example,
figure 1(a) shows an image of a corridor, in which, a pixel in the lower part of the
image represents a small volume of the scene (it represents a part of the scene
in the foreground); while a pixel in the centre of the same image represents a
larger volume (because the part of the scene represented by the pixel is in the
background). If the scene is directly reconstructed, the perspective is preserved.
So, to correctly perform the 3D reconstruction the perspective must be rectified
making a correction to the pixel’s coordinates. This way the obtained result will
show the same aspect as the real scene.

Rectification is performed on values of a depth map D calculated from a pair
of stereo images. In principle the depth map can be obtained by any method,
but in this approach the depth image is computed using multi-resolution and
energy function [10]. Each value D(x, y) of the depth map contains the depth
associated to the pixel (x, y) of the reference image (left image) [11,12].

Figure 1(c) shows the scheme of the process. On the left hand side it illustrates
the desired result of the left wall rectification, which is rotated αo to recover
its real inclination. And on the right hand side, it shows the point Q (current
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(a) (b) (c)

Fig. 1. (a) shows the effect of the conical perspective. (b) shows how the object size
decreases as the depth is increased, due to the perspective’s effect. (c) shows the rec-
tification scheme on a non-rectified scene seen from above (x-z plane).

pixel being processed obtained from the input depth map) with coordinates
(x, y, D(x, y)), which is rectified to obtain Q′. This pixel is a part of an object
which is rectified to recover its real size. The first step to rectify Q is to obtain
the line L, which links the points V P and Q. Next, the intersection of the line
L with the x-y plane is calculated, obtaining in this way the point P . Starting
from P , the line L is rotated to be perpendicular to the x-y plane. This way the
coordinates (x, y) of Q′ can be obtained. The calculation of the coordinate zQ′

is shown in the section 2.1. In short, the equation 1 shows the calculation of the
new rectified point Q′ = (x′, y′, z′). Rectification is referred as π, where the new
coordinates of Q are obtained as Q′ = π(Q).

π(Q) =

⎧⎪⎨
⎪⎩

xQ′ = xV P + zV P
xV P −xQ

zQ−zV P

yQ′ = yV P + zV P
yV P−yQ

zQ−zV P

zQ′ = f T
dλρ

(1)

As can be seen in the equation 1, the vanishing point position has to be
obtained. In general, the central point can be used as the vanishing point of
the scene, obtaining a reconstruction that maintains the original angle of the
camera. If the camera view is oblique, the real position of the vanishing point can
be calculated. This way, the camera orientation is corrected and a frontal view
is obtained after the reconstruction. When the perspective cannot be calculated
(in non Manhattan Worlds), the central point is taken by defect.

For the depth of the real vanishing point V P the maximum depth value
(Dmax) of the whole depth map is used. The coordinates x and y of V P are
calculated using the method proposed in [13]. It uses a Bayesian model which
combines knowledge of the 3D geometry of world with statistical knowledge
of edges in images. The method returns an angle (called as Ψ) which defines
de orientation of the camera in direction cosΨ i − sinΨ j. Cartesian coordinates
(x, y, z) of V P can be obtained from the following camera coordinates u = (u, v):

u =
f · (−xV P sinΨ − yV P cosΨ)

xV P cosΨ − yV P sin Ψ
, v =

f · zV P

xV P cosΨ − yV P sin Ψ
(2)
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2.1 Calculating the Error in the Rectification

Coordinate zQ′ is obtained using a modified version of the equation z = f T
d [14].

Where d is the disparity (D(x, y)) for this pixel, T is the length of the base line, f
is the focal distance. The main problem is that disparity d is expressed in pixels,
while the other parameters are expressed in metres. So, a conversion factor is used
λ = CCD width in meters / Image width in pixels to convert pixels into metres.
To calculate the CCD width, its dimensions (1/3”) and its proportions (x

y = 4
3 )

are needed (figure 2 (a)). Therefore, the value of x (total width in metres) can
be isolated from the equation x2 + y2 = (1

3”)2. There is also an error that
appears when the obtained distance is compared with the real one (figure 2(b)).
This error is a small linear deviation due to the lens concavity and it is corrected
adding a correction factor ρ to the equation (obtained empirically).

(a)

(b)

Fig. 2. (a) Camera lens proportions. (b) Comparison of the error made in the equations
for the depth calculation.

Figure 3(b) shows the error in the objects size made when they are represented
after de geometrical rectification. To obtain the error, a sequence of images of
the same object (the sign in image 3(a)) were taken at different distances. A
comparison between the representation size and the real size were done. The
representation size can be easily calculated due to the fact that the coordinates
of each point are known. In figure 3(b) the error made by the previous approach
to the geometrical rectification is also shown [15].

3 Applications of the Geometrical Rectification

The proposed method can be useful in a wide range of applications, because
some crucial information from the scene is retrieved, such as object geometry,
volume and depth. For example, it could be applied in Augmented Reality (AR)
systems to solve some problems related to this discipline, as well as to set out
new applications and improvements.

Next, two possible applications are presented. The first one is the 3D recon-
struction of scenes using sub-pixel precision and stereo images. The second one
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(a)

(b)

Fig. 3. (a) Sequence of images taken to calculate the error in the representation size.
(b) Comparison of the error made in the representation as the depth increases.

is the map building from a sequence of stereo images. They both demonstrate
the utility of the geometrical rectification and the advantages of its applica-
tion to this kind of problems. For this reason simple methods are used. In the
conclusions section more applications of these methods will be proposed.

4 Reconstruction Using Sub-pixel Precision

In the first step to do the 3D reconstruction of a scene, the depth map D is cal-
culated from a pair of stereo images (LI and RI). The depth map D is obtained
using the methods proposed in [10]. Based on D, the geometrical rectification
process is applied in order to remove the effect of the conical perspective and
recover the real structure of the scene (section 2). The result of this stage is
a rectified matrix of voxels R, which is used in the reconstruction to repre-
sent the space occupation. R is initialized to zero and, then, it is filled as fol-
lows: R(x′, y′, D(x, y)) = 1 where (x′, y′) are the rectified coordinates of (x, y),
∀x, y ∈ R/{0 ≤ x ≤ m − 1, 0 ≤ y ≤ n − 1}. The final step is obtaining the real
units. Equation 1 shows how to obtain the equivalence in metres from a disparity
value and the rectified coordinates.

The most important drawback is the fact that when the geometrical rec-
tification corrects the pixels’ coordinates, the voxels are separated in the 3D
representation (see figure 4). This is due to the discreteness of depth maps. In
fact, pixels corresponding to a distant object are split, leaving a hole whose
dimensions increase as the distance to the object increases. To minimize these
problems a sub-pixel precision technique is proposed to calculate the position
of n fictitious pixels between two consecutive pixels. The precision used for the
reconstruction is calculated using the equation 1 − (z/Dmax), which returns the
minimum value when the pixel is in the foreground and the maximum one when
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it is in the background. All the steps of the sub-pixel reconstruction method can
be summarized as follows:

1. D := CalculateDepthMap(LI,RI)
2. while ( x ≤ m − 1 )

(a) while ( y ≤ n − 1 )
i. (x′, y′) := π(x, y)
ii. R(x′, y′, D(�x�, �y�)) = 1
iii. y = y + 1 − (D(�x�, �y�)/Dmax)

(b) x = x + 1 − (D(�x�, �y�)/Dmax)
3. Display(R)

4.1 Reconstruction Experimentation

In figure 4 two examples of reconstruction using sub-pixel precision are shown.
The images on the left show the mesh used during the reconstruction, these
images are obtained without and with sub-pixel precision respectively. On the
right side, there is another example of reconstruction using voxels. The first
image shows the reconstruction without using sub-pixel precision, in which the
voxels are separated due to the geometrical rectification. In the second image

Fig. 4. Examples of reconstruction using sub-pixel precision

(a)

(c)

(b)

(d) (e)

Fig. 5. Geometrical rectification comparison using a corridor depth map
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the sub-pixel precision has been used. The result has a more realistic appearance
because holes have been filled.

Figure 5 shows a 3D reconstruction comparison using a synthetic depth map
(a) which simulates a corridor. This example clearly shows the effect of the
geometrical rectification. Figure (b) shows the segmentation used to calculate the
vanishing point, which is estimated to be -4o. The camera deviation is very small
as it can be observed, so the real orientation could have been used avoiding so
the V P calculation. In figures (c), (d) and (e) the rectification effect is compared:
(c) shows a non-rectified reconstruction (seen from above), and (d) and (e) show
a top and an oblique view of the correct result after the rectification. As it can
be seen, the walls are perfectly rectified, becoming parallel as expected.

5 Mapping Algorithm

In order to do the 3D mapping of the scene, N stereo pairs (LI0, RI0), (LI1, RI1),
..., (LIN−1, RIN−1) of the environment are taken. Each of these images is cap-
tured at a fixed distance. Once a stereo pair (LIk, RIk) is obtained, its corre-
sponding depth map Dk is calculated and added to the Σ list which stores all
the depth maps. Next, the algorithm of geometrical rectification is used in order
to compute the rectified matrix Rk of each depth map. For each matrix Rk its
intersection with the previous matrix is calculated (Rk−1 ∩Rk), and its result is
added to the main matrix Mmap which represents the mapping of the scene. In
this approach the position of the frames is obtained from robot odometry. The
system only needs the relative position of the next frame to do the reconstruction
from the sequence of images. In order to reduce the effect of possible odometry
errors the algorithm uses a cubic filter. This filter F (explained below) is ap-
plied to the whole matrix Mmap, which discretizes the three-dimensional matrix
and transforms it into a grid of rectangular cubes. Lastly, the result (Mmap) is
represented according to the space occupation of this matrix and calculating its
equivalence in real units (metres).

1. for each Dk ∈ Σ do
(a) Dk := CalculateDepthMap(LIk, RIk)
(b) Rk := ApplyRectification(Dk)
(c) Mmap := Mmap ∩ Rk

2. Mmap := ApplyCubicF ilter(Mmap)
3. Display(Mmap)

Cubic filter F applies the equation g(x, y, z) := Σ(i,j,k)∈Sf(i, j, k) to each cube
of the matrix, where S represents the set of point coordinates which are located
in the neighbourhood of g(x, y, z), including the point in question. In this way
the space occupation of each cube is in the centre, and each cell contains the
set of readings of that portion of the space. The use of these cells instead of a
unique sample let the system reduce the effect of possible odometry errors. The
number of readings is referred to as “votes”, and represents the probability of
space occupation.



3D Reconstruction and Mapping from Stereo Pairs 325

5.1 Mapping Experimentation

To do the mapping experimentation two sequences of 30 images obtained from
two different corridors have been used (Figures 6 and 7). Figures 6(a) and 7(a)
show the first three images of both sequences as well as their depth maps. The
main objective is that the walls, floor and roof appear without slope in the recon-
struction, and that there should not be any obstacle (noise) in the corridor. It is
also important that the columns (represented by circles in the plan (Fig. 6(b)))
and the coffee machine (represented by a rectangle in the plan (Fig. 7(b))) are
detected correctly. In figures 6(c, d) and 7(c, d) the results are shown. In 6(c) and
7(c) there is no perspective rectification, consequently a wrong result is obtained:
the in-between space of the corridors is not clear. In 6(d) and 7(d) the rectifi-
cation has been applied. These results show a good definition of the corridors
because the walls are limited and the in-between area can be seen. Moreover,
the columns and the coffee machine can be distinguished on the right hand side
of each one of the results. For these examples a cubic filter size of 3 × 3 × 3 and
a number of votes of 5 have been used.

(a)

(b) (c) (d)

Fig. 6. (a) Sequence of images for the mapping. (b) Corridor sketch. (c, d) Mapping
results of the corridor.

6 Performance Results

To conduct the experiments, a Pentium IV 3,20GHz with 2GB of RAM and
a 512MB graphic card have been used. The reconstruction of the maps have
been made using a 320× 240 × 256 voxels matrix and depth maps with a size of
320×240 pixels. Moreover, it is important to note that only non-null pixels (finite
depth) in the depth map are processed. The computational cost linearly depends
on the size of the input images and on the precision of the reconstruction. So
the algorithm obtains a good performance: To process just one sequence of 30
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(a)

(b) (c) (d)

Fig. 7. (a) Sequence of images for the mapping. (b) Corridor sketch. (c, d) Mapping
results of the corridor.

images (each image has a level of 70% of processed data) the algorithm takes
approximately 9 seconds. The process time of an individual reconstruction is less
than 0.3 seconds.

7 Conclusions

A new method to reconstruct 3D scenes from stereo images has been presented,
as well as an algorithm for environment mapping. This is an improvement of a
previous reconstruction method for which a new perspective rectification method,
and news algorithms for reconstruction and mapping with sub-pixel precision have
been incorporated. These methods use the geometrical rectification to eliminate
the effect of conical perspective, with the intention of getting a real aspect in the
final result. It also allows the retrieval of some crucial information from the scene,
such as object geometry, volume and depth. Nevertheless, the final quality of the
reconstructed image depends on the quality of the disparity map. In future exper-
iments, better disparity images will improve the final result.

The results show how this process corrects the perspective effect and how it
helps to improve the matching in the mapping algorithm. An advantage of this
method is that it is not correspondence dependent. In addition, it could probably
be used for real-time applications due to the low computational burden and to
the good performance.

Current work is focused on applying the obtained results to an Augmented
Reality system. So that it can take advantage from the geometry information in
order to develop new applications (as new interfaces or games) and solve prob-
lems related to this discipline (visual tracking, hidden objects and alignment).
This work will also be related with an autonomous robot system which uses the
environment information to be able to identify specifical areas.
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Abstract. Depth estimation is an important parameter for three-dimensional 
shape recovery. There are many factors affecting the depth estimation including 
luminance, texture reflectance, noise etc. In this paper, we limit our discussion 
to noise. We present noise analysis by first pre-filtering the noisy images using 
well known Wiener filter and then using a robust focus measure for depth esti-
mation. That depth map can further be used in techniques and algorithms lead-
ing to recovery of three dimensional structure of the object. The focus measure 
is based on an optical transfer function implemented in the Fourier domain and 
its results are compared with the earlier focus measures and presented in this 
paper. The additive Gaussian noise is considered for noise analysis. 

Keywords: Noise, Pre-Filtering, Depth Map. 

1   Introduction 

There are many methods for the calculation of depth leading to 3D shape recovery. In 
this paper, we limit our discussion to one of such methods, i.e., Shape From Focus 
(SFF). The objective of shape from focus is to find out the depth of every point of the 
object from the camera lens. Hence, finally we get a depth map which contains the 
depth of all points of the object from the camera lens where they are best focused or 
in other words, where they show maximum sharpness. 

The basic problem of imaging systems, such as the eye or a video-camera, is that 
depth information is lost while projecting a 3D scene onto 2D image plane. Therefore, 
one fundamental problem in computer vision is the reconstruction of a geometric 
object from one or several observations. Shape information that is obtained from the 
reconstruction of a geometric object is of critical importance in many higher level 
vision applications like mobile robot systems. For example, an unmanned spacecraft, 
in order to land safely on lunar surface, needs to estimate depth details of the terrain. 
Various image processing techniques retrieve the lost cue and shape information from 
the pictorial information. Shape from focus (SFF) is one of such image processing 
techniques that are used to recover such information. 

Various techniques and algorithms have been proposed in the literature for the im-
plementation of SFF. They include methods using focus image surface, Lagrange 
polynomial, neural networks, dynamic programming etc. But almost all the tech-
niques start with the estimation of the depth map. Hence, the techniques for the esti-
mation of this initial depth map become quite significant. 
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Generally SFF scheme relies on a Focus Measure operator and an approximation 
technique. Focus Measure operator plays a very important role for three dimensional 
shape recovery because it is the first step in calculation of the depth map. So a focus 
measure operator needs to show robustness even in the presence of noise. Hence it 
should provide a very good estimate of the depth map. 

2   Related Work 

2.1   Focus Measure Methods 

A Focus Measure operator is one that calculates the best focused point in the image. 
And focus measure is defined as a quantity to evaluate the sharpness of a pixel lo-
cally. Franz Stephan Helmli and Stefan Scherer [1] summarized the traditional focus 
measures while introducing three new focus measure operators. 

Laplacian, the most commonly used operator, is suitable for accurate shape recov-
ery because of being a point and symmetric operator, and is obtained by adding sec-
ond derivatives in the x and y directions. Modified Laplacian (ML) [2,3] is computed 
by adding squared 2nd derivates. In order to handle possible variations, Shree K. 
Nayar and Yasuo Nakagawa suggested a variable spacing (step) between the pixels 
used to compute derivatives. In order to improve robustness for weak-texture images, 
Shree K. Nayar and Yasuo Nakagawa [2,3] presented focus measure at (x,y) as sum 
of ML values in a local window (about 5x5). 

Tenenbaum Focus Measure is gradient magnitude maximization method that meas-
ures the sum of squared responses of horizontal and vertical Sobel masks. Variance 
Focus Measure is based on the variance of gray-level which is higher than that in a 
blur image. Mean Method Focus Measure [1] depends on the ratio of mean grey value 
to the center grey value in the neighborhood. The ratio of one shows a constant grey-
level or absence of texture. Curvature Focus Measure [1] exploits that the curvature in 
a sharp image is expected to be higher than that in a blur image. Point Focus Measure 
[1] is approximated by a polynomial of degree four. 

2.2   Approximation Methods 

A more accurate depth range image can be obtained by using some optimization and 
approximation method. The results of the focus measures, defined in section 2.1, are 
refined using such a reconstruction scheme. First we discuss the traditional SFF 
method. In Traditional (TR) SFF, for each image in the sequence, focus measure at 
each pixel is computed by Sum Modified Laplacian in a 2D neighborhood around the 
pixel. The results of TR SFF are improved by Subbarao and Choi [4] who proposed a 
new concept termed Focused Image Surface (FIS) based on planar surface approxima-
tions. The FIS of an object is defined as the surface formed by the set of points at 
which the object points are focused by a camera lens. Joungil Yun and Tae-Sun Choi 
[5] summarized various approximation techniques. 

FIS can be improved by a piecewise curved surface rather than piecewise planar 
approximation. This was proposed by Choi and J. Yun [6]. They estimated the piece-
wise curved surface by interpolation using second order Lagrange polynomial. Asif 
and Choi [7] used Neural Networks to learn shape of FIS by optimizing the focus 
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measure over small 3-D windows. Bilal and Choi [8] proposed the use of Dynamic 
Programming (DP) to handle the complexity of FIS. DP is motivated by the Bell-
man’s principal of optimality. A direct application of DP on a 3D data is impractical 
due computational complexity. Therefore, a heuristic model based on DP was pro-
posed by Bilal and Choi. 

3   Method 

In this paper, we perform noise analysis using additive Gaussian noise. Only we con-
sider focus measures for the depth estimation. Various focus measures are mentioned 
in section 2.1. Approximation techniques are out of the scope of this paper which are 
briefly discussed in section 2.2. 

Since the focus measure calculates the sharpest pixels in the image hence their suc-
cess depends on their ability to calculate the sharpness value of each pixel. In this 
noise analysis, we consider the Optical Focus Measure [9] that has been described to 
show robustness in the presence of noise. A depth map is made using this focus meas-
ure and its results are compared with the traditional focus measures. Further, all the 
processing has been done using optimum window size as described by [10]. 

The Optical Focus Measure is denoted as FMO. It is based on bipolar incoherent 
image processing. Ting-Chung Poon and Partha P. Banerjee [11] has discussed bipo-
lar incoherent image processing in detail. The sharpness of pixel values in the image 
is found by convolving the spectrum of the intensity image with the optical transfer 
function (OTF). The computed image [ic (x, y)] is given as: 

ic (x, y) = Re [|Ґ0(x, y)|2 * hΏ(x, y)}] (1) 

where ‘*’ indicates convolution and: 
|Ґ0(x, y)|2 = Spectrum of the Intensity Image 

                               hΏ(x, y) = Transfer Function 
Transfer function is basically the OTF which is calculated in frequency domain us-

ing either Discrete Fourier Transform or Discrete Cosine Transform. For DFT, the 
transfer function hΏ(x, y) is given as: 

hΏ(x, y) = F-1 {OTFΏ(kx, ky)} (2) 

where: 
OTFΏ(kx, ky) = Optical Transfer Function 

kx, ky = Spatial frequencies 
So finally we can write the computed image as: 

ic (x, y) = Re [F-1 {F {|Ґ0(x, y)|2} OTFΏ(kx, ky)}] (3) 

where F is for Fourier Transform and F-1 is for Inverse Fourier Transform. The OTF 
itself is calculated as: 

OTFΏ (kx, ky) = ∫∫p1(x’, y’) p2(x’ + f kx/k0, y’ + f ky/k0) dx ’dy’ (4) 

where f is the focal length of the lenses and k0 is the wave number of light. The OTF 
is the cross correlation of the two pupils (p1 and p2) in the incoherent optical system 
[11]. Hence, the point spread function becomes bipolar. 
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In equation (4) above, p1 is a difference of Gaussian aperture function and p2 is a 
small pin hole aperture. p1 is given as [11]: 

p1 = exp[-a1(x
2 + y2)]-exp[-a2(x

2 + y2)] (5) 

where a1 and a2 are constants. p2 is given as [11]: 

p2 = δ(x,y) (6) 

For implementation purposes, equation (4) can be rewritten as [11]: 

OTFΏ (kx, ky) = exp[-σ1(kx
2 +ky

2)]-exp[-σ2(kx
2 +ky

2)] (7) 

where: 
σ1 = a1 (f/ k0)

2 
σ2 = a2 (f/ k0)

2 

Equation 7 shows that OTF has two parameters as described above. These two pa-
rameters make OTF a band pass filter with gradual cut off frequency. The filtering 
operation depends upon σ1 and σ2. Sharp focus measure is obtained by adjusting these 
two parameters. The operator responds to the high frequency variations in the image 
intensity. The high frequency component of an image area is determined by process-
ing in the Fourier domain and analyzing the frequency distribution. Fourier transform 
used to be computationally expensive but with high speed personal computers avail-
able today, this computational complexity has decreased exponentially and it is not a 
matter of concern anymore. The processing in the frequency domain is particularly 
useful for noise reduction as the noise frequencies are easily filtered out. Fig 1 shows 
the filter with σ1= 0.01 and σ2= 0.1. Fig 2 shows the Fourier spectrum of the “TEST” 
image which itself is shown in Fig 3. 

 

    Fig. 1. Filter with σ1= 0.01 and σ2= 0.1                        Fig. 2. Fourier Spectrum 

The next step is to find the best focused pixel in the sequence of images. Equation 
3 is used to find the focus measure at a point (i,j) in a small window around (i,j) and 
the value at (i,j) is replaced by the sum of computed values (by equation 3 & 7 above) 
of all pixels in that window. This operation is similar to that used for Sum of Modi-
fied Laplacian [2,3]. We have used optimum window size for our experiments be-
cause larger window size results in smoothing of the image and hence losing the ac-
tual sharp focused point [10]. Therefore, FMO is calculated as: 
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This focus measure is based on the conventional Difference of Gaussian Operator. 
A further improvement can be made by considering biologically motivated processing 
step, called surround suppression, which has been shown to provide better contour 
detection ability [12]. 

Most of the focus measures, discussed in section 2.1, are sensitive to noise. This 
has been discussed in detail by [9] for various types of noise. However, they did not 
perform any noise pre-filtering while performing experiments. In this paper, we per-
form the experiments by employing Wiener filter before the application of focus 
measure. We consider only additive Gaussian noise. We use Wiener filter because it 
filters an intensity image that has been degraded by constant power additive noise. 
Since we already know that this additive noise is Gaussian noise, therefore, we use 
this information for implementing this filter. 

4   Results and Discussion 

The comparison is made using various types of images including a “TEST” image, a 
sequence of 97 simulated cone images and a sequence of 97 real cone images. The 
size of the images is 360x360 pixels. The real cone is taken from the CCD camera 
system. The real cone object was made of hardboard with black and white stripes 
drawn on the surface so that a dense texture of ring patterns is viewed in the images. 
The comparison is made for three focus measure operators, namely, Sum of Modified 
Laplacian (SML), Tenenbaum (TEN) and Optical Focus Measure (FM0). 

Fig 3(a) shows the test image with uniform background of white color and “TEST” 
written in black over it. Fig 3(b) shows the same image with the Gaussian noise with 
zero mean and variance value of 0.5. In fig 4, the result for SML has deteriorated 
while that for Tenenbaum is still recognizable. However, the optical focus measure 
(FMO) shows very good results. 

Fig 5 shows the image with real cone, noise addition to the image with variance 
value equal to 0.01 and the corresponding processed images with Tenenbaum, SML 
and the FMO. Hence, as clear from the figures, the performance of Tenenbaum and 
SML degrades when noise is added to the images. However, FMO performs satisfacto-
rily well. In real time applications, various type of noise like Rayleigh, exponential, 
uniform, shot, speckle, Gaussian etc may occur. Therefore, a robust focus measure is 
required to deal with noisy situations. 

    (a) Original   (b) Gaussian noise added 
 

Fig. 3. Original Test Image & One with Gaussian Noise 
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   (a) Tenenbaum      (b) SML     (c) FMO
 

Fig. 4. Results with Gaussian noise addition 

      (a) Original real cone      (b) Noise added 

(c) Tenenbaum      (d) SML            (e) FMO
 

Fig. 5. Results for real cone image 

(a) Frame 50   (b) Frame 90 

(c) SML    (d) FMO
 

Fig. 6. Depth maps for the simulated cone object 
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(a) SML  (b) FMO  

Fig. 7. Depth maps for the simulated cone object when Gaussian noise is added 

(a) SML          (b) FMO
 

Fig. 8. Depth maps for the real cone object 

(a) SML  (b) FMO  

Fig. 9. Depth maps for the real cone object when Gaussian noise is added 

As for depth map calculation, consider sequence of 97 simulated cone images.  
Fig 6(a) and 6(b) show two of the frames for the simulated cone. Fig 6(c) shows the 
depth map calculated using SML while no noise is added to the images. Fig 6(d) 
shows the same result for FMO. As can be seen from the figures, the 3D depth map 
obtained using FMO is much smoother as compared to that of SML. The spikes seen 
in fig 6(c) are due to processing of boundary conditions. 

Now consider Fig 7. Noise is now added to the sequence of the images of simu-
lated cone. Noise added is Gaussian with zero mean and variance equal to 0.005.  
Fig 7(a) shows the depth map calculated using SML while Fig 7(b) shows the same 
result for FMO. As can be seen from the figures, the 3D depth map obtained using 
FMO is recognizable but that of SML has degraded significantly. Infact, the noise 
added to the pixel values is enhanced in the depth map for SML and hence the result 
is spikes originating from pixels all over the image. On the other hand, the result for 
FMO has also degraded but that degradation is very minor. 

Fig 8 shows the result for real cone without noise and Fig 9 shows the results with 
Gaussian noise added. As can be seen from the figures, the depth map without noise is 
almost similar. But when noise is added, SML results deteriorate significantly. Also, 
FMO result is degraded but still recognizable. 
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(b) Pre-filtering using Wiener filter 

Fig. 10. Comparison of Focus Measures (Gaussian Noise) 

Till now, no noise pre-filtering is done and the results are similar to those pre-
sented earlier [9]. However, generally some type of pre-filtering is performed for 
noisy images. Hence, we used Wiener filter since we already know that the noise type 
is additive Gaussian noise and Wiener filter performs well for this type of noise. We 
consider various noise levels for this experiment. We take five different noise levels 
with Gaussian noise of zero mean and variance of 0.5, 0.05, 0.005, 0.0005 and 
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0.00005. Hence, we perform experiments for low noise level, medium noise level and 
high noise level. 

We found that there is little improvement in the results of focus measures after 
the usage of Wiener filter. This little improvement is at the medium and low noise 
levels. However, there is no improvement at high noise level. At high noise level, 
performance of all focus measures is affected in the presence of noise. At medium 
noise level, Gaussian noise affects the performance of SML but rests of the focus 
measures are not influenced. At low noise level, Performance of FMO and 
Tenenbaum is comparable followed by SML. This result is clearly depicted for the 
simulated cone in Fig 10. 

Fig 10(a) shows the result without performing any noise pre-filtering. Root Mean 
Square Error (RMSE) is used as a metric measure for comparison of the results. It can 
be seen that FMO has the lowest RMSE followed by Tenenbaum and then SML at all 
the noise levels. Tenenbaum performs better than SML at high noise levels. However, 
both SML and Tenenbaum show comparable performance at medium and low noise 
levels. 

Fig 10(b) shows the result when the images are pre-filtered using Wiener filter. It 
can be seen that the performance of FMO is best because it has the lowest RMSE 
followed by Tenenbaum and then SML at all the noise levels. At high noise level, 
FMO outperforms the other focus measures. At medium and low noise levels, the 
performance of Tenenabum and SML is improved and it is comparable to FMO. How-
ever, still RMSE is lowest for FMO even at medium and low noise levels. 

Comparing Fig 10(a) and Fig 10(b), it can be concluded that the performance of all 
focus measures improve by using Wiener filter for noise pre-filtering. However, the 
order of performance remain same and best performance is still shown by FMO fol-
lowed by Tenenbaum and then SML. Almost the same performance was observed for 
other types of noise, i.e., shot and speckle noise. 

5 Conclusions 

In this paper, we perform noise analysis for additive Gaussian noise for depth estima-
tion. Performance of three different focus measures is compared for their sensitivity to 
this type of noise using shape from focus algorithm. Analysis is performed both when 
no pre-filtering is done and when the pre-filtering is done. Noise pre-filtering is per-
formed by Wiener filter. We tested and compared the focus measures using simulated 
cone images and real cone images. The detailed description of these image sequences 
can be found in [4] since we used the same images described there. The results show 
that optical focus measure tends to perform better followed by Tenenbaum and then 
Sum of Modified Laplacian focus measures.  
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Abstract. To study sensory neurons, the neuron response is plotted
versus stimulus level. The aim of the present contribution is to deter-
mine how well two different levels of the incoming stimulation can be
distinguished on the basis of their evoked responses. Two generic models
of response function are presented and studied under the influence of
noise. We show in these noisy cases that the most suitable signal, from
the point of view of its identification, is not unique. To obtain the best
identification we propose to use measures based on Fisher information.
For these measures, we show that the most identifiable signal may differ
from that derived when the noise is neglected.

1 Introduction

Characterization of the input-output properties of sensory neurons and their
models is commonly done by using the so called frequency (input-output) re-
sponse functions, R(s), in which the output is plotted against the strength of
the signal, s. The output is usually the spiking frequency, or rate of firing, but it
can be also the activity or level of any intermediate variable in the transduction
cascade, e.g., effector enzyme concentration, ionic channel activity or receptor
potential. The response curves are usually monotonously increasing functions
(most often of sigmoid shape) assigning a unique response to an input signal
(see Fig. 1 for illustration). In these curves, there are two special points – the
threshold below which the neuron does not respond or only a spontaneous ac-
tivity, rmin, is detected and the first level of the signal at which the response,
rmax, is saturated. The range of signals between threshold and saturation is
called dynamic range D (for detailed discussion and references see [25]). For for-
mal treatment it is convenient to scale the range of responses, [rmin, rmax], into
interval [0, 1].

The intuitive concept of “just noticeable difference” has been deeply studied
in psychophysics ([9]). This concept is also implicitly involved in understanding
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s

R(s)

D

rmax

rmin

ε

ε

Δs Δs

Fig. 1. A schematic example of transfer function. The dynamic range D, threshold
response rmin and maximal discharge rmax are given. The concept of “just noticeable
difference” ε is illustrated. The size of the corresponding “just noticeable difference” in
the signal, Δs, depends on the slope of the transfer function and is smallest where the
slope is highest.

of signal optimality in neurons. Having the transfer function R(s) and minimum
detectable increment ε of the response, we can calculate Δs which is the just no-
ticeable difference in the signal. Following from the model given by the response
curve, Δs depends on the slope of the response curve (Fig. 1). In the case of an
abstract linear response curve (R(s) = s/D) we have, Δs = Dε. If the response
curve is nonlinear (for example sigmoidal as in Fig. 1) we can see that Δs varies
along D and the smallest values of the just noticeable difference in the signal
are achieved where the response curve is steepest (see Fig. 1). Therefore the
stimulus intensity for which the signal is optimal, that is the best detectable, is
where the slope of the transfer function is highest.

This measure of signal optimality is based on deterministic transformation
of the signal into a response. In other words it applies to situations in which
to each signal s corresponds a deterministically unique response R(s). However,
in practice, an identical signal does not always yield the same response. The
variability can be intrinsic (on the way from signal to response) or extrinsic
(in the stimulus or when reading the response). These two kinds of variability
are not distinguished here and are collectively considered as noise acting upon
the signal-to-response transfer. The presence of noise complicates the concept
of signal optimality based on the “just noticeable difference”. Not only a fixed
response (e.g., firing rate) is assigned to every level of the stimulus (as in the
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classical frequency coding schema), but also a probability distribution of the
responses. The noise causes two situations which should be avoided: (a) difference
in the responses is due to the noise and not to the signal-false alarm, (b) the
signals are different but the difference is not noticed in the response-missed
signal. To quantify these effects a new measure for signal optimality is required.

The main aim of this paper is to propose and investigate alternative measures
of signal optimality, that can be applied to noisy transfer in sensory neurons. It
means, the measures have to take into account both factors – the slope of the
transfer function and the amplitude of the noise. As a general measure of signal
optimality in this case, we propose Fisher information, which has become a com-
mon tool in computational neuroscience ([1,2,3,6,10,11,12,13,15,16,19,20,23,
29,31,32,33]).

2 Model of Response Functions

For illustrating the proposed measures of signal optimality we study a descrip-
tive statistical model. A generic transfer function is selected to which a suitable
noise is added. Consider for example an olfactory receptor neuron, located in
the nasal olfactory epithelium. When stimulated during, say, one second, odor-
ant molecules interact with receptor proteins embedded at the membrane surface
of receptor neurons. Binding of odorants to receptors triggers biochemical events
that result in the opening of ionic channels, the generation of a locally spreading
receptor potential, which in turn initiates a spike train. The relations between
the concentration s of odorant molecules and the density of activated recep-
tors, or the neuron depolarization, or its firing rates, are examples of transfer
functions. We investigated several models of this system ([14,18,26,27,28]) and
a generic stochastic variant is considered below. The most frequently studied
neuron response is the firing rate, R(s), as a function of stimulus intensity s,
under the assumption of rate coding. The shape of R(s) is usually sigmoidal, as
shown in different sensory systems by [24,25,28] and others.

A typical sigmoid transfer function to which experimental data are fitted is
the logistic function,

R(s) =
rmax

1 + exp (−b(s − s1))
, (1)

where the parameter rmax > 0 gives the saturation firing rate, s1 determines
the location along the s axis, and b > 0 controls the steepness of the curve, or
the width of the interval of predominant increase ([25]). Thus, the parameters
b and s1 determine the stimulus intensity at threshold and at saturation. The
firing frequency is measured for different levels of s and parameters rmax, b and
s1 are estimated. For convenience of comparison with other measures, we set
rmax = b = 1 in (1), and we locate the inflection point, s1, at zero, so that
R(0) = R′(0) = 1/2,

R(s) =
1

1 + exp(−s)
. (2)
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Thus, the frequency saturates at level one and the slope of the transfer function
at zero is fixed to one half.

The transfer function defined by (2) does not take into account random factors
influencing the generation of a spike train. In order to obtain a more precise
picture of reality, one would like to have a stochastic version of the model. Then,
besides the mean firing rate, as it appears in (2), the distribution functions of the
frequency as a function of the signal intensity would be required. For example,
the random frequency in response to signal intensity, s, is of the form

R(s) =
1

1 + exp(−s)
+ ξs , (3)

where ξs is the random component of the firing frequency, assuming that E(ξs) =
0. The simplest example which can be proposed is to assume that the noise has
Gaussian distribution, thus

R(s) ∼ N
(

1
1 + exp(−s)

, Var(R(s))
)

, (4)

with mean E(R(s)) given by (2) and variance Var(R(s)) = Var(ξs) also de-
pending on s. How the variance depends on s influences significantly the signal
identification. For this reason we consider two different examples.

In the first example we assume

Var(R(s)) = σ2 exp(−cs2) , (5)

where c ≥ 0. For s → ±∞, Var(R(s)) → 0, and for s = 0, Var(R(s)) = σ2. If
c > 0, the variance tends to zero at the endpoints of the dynamic range and
parameter c controls how fast the variance tends to zero for extremal values of
s. If c = 0, the variance is a constant independent of signal intensity s.

In the second example we consider that the variance of the response function
depends on s in the following way

Var(R(s)) = 4σ2 exp(−s)
(1 + exp(−s))2

. (6)

Again, for s → ±∞, Var(R(s)) → 0, and for s = 0, Var(R(s)) = σ2. The
difference with respect to (5) is that the variance given by (6) decreases more
slowly with s. For example, with c = 1, the ratio Var(R(1))/Var(R(0)) is 0.368
for (5) and 0.786 for (6).

Models (5) and (6) still permit observations outside the range of responses
[0, 1] and thus their modification may appear as useful, see Fig. 2. For example,
one may require that the noise effect becomes asymmetric close to the endpoints
of the dynamic range. It means that if |s| is large, the distribution of the response
is not symmetric around E(R(s)), but skewed away from the boundaries, i.e.,
from zero, resp., one. Such an example could be constructed by considering the
Beta distribution for the response function, R(s), with parameters depending on
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Fig. 2. Examples of transfer functions and their variability. Mean transfer function is
plotted and variability is depicted by vertical bars giving standard deviations corre-
sponding to the signal. Model is given by equations (4) and (5) for σ2 = 0.1, c = 1
(solid bars and circles), and σ2 = 0.1, c = 0.25 (dashed bars and squares). In the case
c = 0 (not shown) the vertical bars are equal (with length 2σ = 0.632) whatever s.

the signal. An advantage of the Beta distribution is that it completely prevents
the response function to take values outside interval [0, 1].

3 Optimality Criteria

Now, we introduce three criteria for optimum signal determination, J , J1 and
J2, as follows.

Criterion J1

Under the deterministic scenario there is a one-to-one correspondence between
signal and response. In this case, as already mentioned, the region around the
inflection point, where the function R(s) is steepest and nearly linear, is the
region of highest sensitivity to an increment of stimulation. In other words, the
best identification of the signal is in the region where a small change in s implies
a large change of the response R(s). Therefore we are interested in the value
of s for which the derivative, J1, of the transfer function is maximal and we
denote this value as s1. This criterion can be extended to the stochastic models
by maximizing the derivative of the mean of the transfer function, E(R(s)).
Formally, we look for maxima of J1,

J1 =
∂E(R(s))

∂s
. (7)
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J1 is the slope of the transfer function at stimulus intensity s. In the example of
the spike frequency coding of olfactory receptor neuron this is the ratio of a firing
rate (s−1) to a concentration (molarity M), so J1 is expressed in s−1M−1.

Criterion J

Under the stochastic scenario, for a signal s there is a family of responses, each
of them appearing with predefined probability. The noise can be so large in the
region of steep mean transfer function that signals outside this region can be
identified with greater precision. We propose that Fisher information is used
as a measure of how well a signal, s, can be estimated from the transfer func-
tion. Suppose that the random variable R(s) has probability density function
belonging to a parametric family g(x; s). The Fisher information with respect to
parameter s is

I =
∫ ∞

−∞

1
g

(
∂g

∂s

)2

dx . (8)

The use of Fisher information as a tool to locate the optimal signal for in-
formation transfer is theoretically motivated by Cramer-Rao inequality. It says
that the variance of an unbiased estimate of the signal cannot be smaller than
the inverse of the Fisher information, see [4],

Var(ŝ) ≥ 1
I

. (9)

Formula (9) suggests that the larger the Fisher information, the better the es-
timate of s that can be achieved. This conclusion is very important from the
point of view of how well one can hope to identify the signal. However, the best
result will be obtained only if equality can be achieved in (9), I = 1/Var(ŝ). In
the example of the olfactory receptor neuron, Var(ŝ) is expressed in M2, so I is
expressed in M−2. For a better comparison with measure (8) we introduce the
quantity J =

√
I, so for the best estimator holds

J =
1√

Var(ŝ)
, (10)

which is expressed in M−1. We denote the value of parameter s for which I (the
Fisher information) and J reach their (common) maximum by s0.

Criterion J2

Criterion (8) requires a complete knowledge of the distribution g(x; s), but an
approximation of the Fisher information can also be used. It is a lower bound of
J based on the first two moments of the random variable R(s),

I2 =
1

Var(R(s))

(
∂E(R(s))

∂s

)2

, (11)
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which can be obtained from the Cauchy-Schwarz inequality, see [4]. In fact for
a large class of distributions, I2 = I (see [20]), and obviously I2 is computa-
tionally much simpler as it requires only the first two moments but not the
distribution of probability. We denote by s2 the value of intensity s at which
(11) reaches its maximum. Defining J2 =

√
I2 we note that

J2 =
J1√

Var(R(s))
(12)

and therefore, J2 is also expressed in M−1. Equation (12) shows that the effect
of slope J1 is modulated by the standard deviation of R(s). If the standard
deviation is large, J2 will be small even if the slope is steep.

4 Results

For the simplest (J1) of the three criteria defined above only the mean response
function is needed. On the other hand, for the criterion based on the Fisher
information (J) the distribution of responses is required. The criterion J2 based
on (12), which uses the first two moments of the response function, is a compro-
mise. In the following we compare the criteria for the logistic model introduced
above. The mean responses and their standard deviations for two models are
plotted in Fig. 3.
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Fig. 3. (a) Mean response E(R(s)) (solid line) and standard deviation of R(s) for model
given by (4) and (5) with σ = 0.6, c = 0.1 (dashed), σ = 0.6, c = 0.2 (dotted) and
σ = 0.6, c = 0.5 (dot-and-dashed). In the case c = 0 (not shown) the standard deviation
is a straight horizontal line at level 0.6. (b) Mean response E(R(s)) (solid line) and
standard deviation of R(s) for model given by (4) and (6) with σ = 0.6 (dashed) and
σ = 0.3 (dotted).
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First Example

For the first model with variance (5), the optimality criterion J(s) was evaluated
numerically. The criteria J1 and J2 were calculated directly from (4) and (5),

J1(s) =
exp(−s)

(1 + exp(−s))2
, (13)

J2(s) =
exp(cs2/2 − s)

σ (1 + exp(−s))2
. (14)

It can be shown that J1 is unimodal and that its maximum is always located
at s1 = 0. Moreover, the two conditions, J(0) = J2(0) = σ−1/4 and J(±∞) =
J2(±∞) = ∞, hold. The behavior of J and J2(s) strongly depends on the para-
meter c.

Fig. 4a shows how the optimality criteria J1 and J2 depend on s. For c ≥ 0.5,
J2 has only a local minimum in the center of the transfer function. The shape of
J2(s) is mirror-like to the shape of J1(s). For these large values of c, the standard
deviation is very low outside the central part of the transfer function and the
optimum signal appears to be for the extreme values of the signal. If c is small
(c < 0.5), the optimality curve J2(s) behaves identically for extremal values of s,
but in addition, it has a local maximum at zero. Two other local minima appear
approximately at ±1/c. Fig. 4b shows how the optimality criterion J depends
on s. The shape of curve J is similar to the shape of criterion J2. However, the
value of the parameter c which evokes the change of shape of the curve J is not
generally equal to 0.5 (as for J2) and depends on σ.

Second Example

For the second model, with variance given by equation (6), the criterion J1 is
the same as in the previous case, see (13). Further, we can directly derive

J2(s) =
exp(−s/2)

2σ (1 + exp(−s))
=

√
J1(s)
2σ

(15)

and the Fisher information

I(s) = J2(s) =
cosh(s) − 1 + σ−2/4

2 (cosh(s) + 1)
. (16)

Both criteria J1 and J2 reach their local maxima at s1 = s2 = 0, J1(0) = 1/4,
J2(0) = σ−1/4 and J1(±∞) = J2(±∞) = 0. For the criterion J , J(0) = σ−1/4
and J(±∞) =

√
2/2 hold.

Figs. 5a and 5b show how the criteria depends on the signal, s. The shape of
the optimality curve J strongly changes in dependence on the parameter σ, while
shapes of the curves J1 and J2 do not. The criterion function J is a constant
J(s) ≡

√
2/2 if σ =

√
2/4, it is unimodal with maximum at s0 = 0 for σ <

√
2/4,

and unimodal with minimum at zero for σ >
√

2/4. In case of optimality criterion
J with σ >

√
2/4 the optimum signal appears to be for the extreme values.
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Fig. 4. Optimality criteria for the logistic model with a Gaussian distribution of noise
given by (4) and (5). (a) Optimality criteria J1(s) (solid line) and J2(s) for σ = 0.6,
c = 0.5 (dot-and-dashed) and for σ = 0.6, c = 0.1 (dashed). (b) Optimality criteria
J1(s) (solid line) and J(s) for σ = 0.6, c = 0.2 (dotted) and for σ = 0.6, c = 0.1
(dashed). In the case c ≈ 0 (not shown), J(s) is similar to the dashed curve, with same
maximum at s = 0, with wings falling quickly to zero on both sides, and climbing to
infinity outside the range of s values shown.

�6 �4 �2 0 2 4 6
s

0

0.2

0.4

0.6

0.8

J
1
�
s
�
,
J
2
�
s
�

a

�6 �4 �2 0 2 4 6
s

0

0.2

0.4

0.6

0.8

J
1
�
s
�
,
J
�
s
�

b

Fig. 5. Optimality criteria for logistic model with a Gaussian distribution of noise given
by (4) and (6). (a) Optimality criteria J1(s) (solid line) and J2(s) for σ = 0.6 (dashed)
and σ = 0.3 (dotted). (b) Optimality criteria J1(s) (solid line) and J(s) for σ = 0.6
(dashed) and σ = 0.3 (dotted).

5 Conclusions

Response of many modalities in sensory neurons, especially spiking rate, are
associated with sigmoid frequency transfer functions. Under the deterministic
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scenario, the optimum signal is defined as that one which induces the highest
change in response for the smallest change in the input signal. Therefore, with
a logistic response curve, the just noticeable difference in response corresponds
to the smallest difference in stimulus at the inflection point, where the slope
of the response curve is the steepest. This is not necessarily the case when the
stochastic nature of the response is taken into account.

We investigated criteria to find an optimum signal which takes the stochastic
fluctuation into account. The methods are based on Fisher information, which
is the inverse of the minimum variance of an unbiased estimator. The level of
Fisher information determines the quality of the signal identification – highest
the Fisher information, the best the signal can be estimated.

Adding noise to the transfer function has significant consequences. In the two
logistic models studied (Figs. 3a and 3b), the variances are similar, except that
it decreases to zero faster in the former than in the latter case. However the
optimal values of s are different. The shapes of the measures of identifiability in
dependency on the signal are not only different, but also the values are reached
with different speeds. This fact is important for identifying the dynamical range.
If it is defined, for example, as the range of signals s greater than 10% and smaller
than 90% of the maximum value, then each measure implies different dynamical
range.

The identifiability of the signal is no longer proportional to the slope of the
transfer function as in the deterministic case. The most unexpected results are
obtained in the example where the variance, although not constant, does not
vary much in the range of values of the stimulus intensity s corresponding to
the dynamic range of the response studied. In this case the optimality criterion
(which is best when it is large) has a wave shape (see Figs. 4a and 4b) with
maxima for s at the middle and at the endpoints of the dynamic range.

It should be noted that the information value of the signal is not considered
here. The mutual (Shannon) information between the stimulus and the response
is not evaluated and thus the optimal signal may be useful from the point of view
of its identifiability but not from the point of view of the transferred information.
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Abstract. We present a computational model describing glutamate-
stimulated glucose uptake and use into astrocytes. It consists of a set
of ordinary differential equations, that specify the time-behavior of the
main molecular species involved in the astrocytic glucose use (i. e. gluta-
mate, glucose, Na+, β-threohydroxyaspartate) and the dynamical rates
of glutamate, glucose and Na+ uptake. The kinetic rate constants of the
model have been identified on a set of dynamic PET images. The rele-
vance of such a model to the PET functional brain imaging consists in
providing an in silico framework, in which to experiment the dynamics
of glucose metabolism and its spatial mapping to elucidate their still
elusive aspects.

1 Introduction

Positron Emission Tomography, also called PET imaging or PET scan is both
a medical and research tool used to detect blood flow, oxygen consumption and
energy metabolism. It consists in the acquisition of physiologic images based on
the detection of radiation from the emission of positrons. To conduct the scan,
a short-lived radioactive tracer isotope, that decays by emitting positrons, is
chemically incorporated into a metabolically active molecule. Most commonly,
this molecule is the fluorodeoxyglucose (FDG). Then the radioactive tracer at-
tached to the metabolic molecule is injected into the blood circulation of the
patient. After a waiting period time that the active metabolite needs to concen-
trate in the tissues, the patient is placed in the imaging scanner. The changing of
regional blood flow in various anatomic structures as a measure of the injected
positron emitter can been visualized and quantified with a PET scan. FDG-PET
is widely used in clinical oncology, but is also an important research tool to map
brain functions, since it is capable of detecting areas of molecular biology detail
even prior to anatomic change. The kinetics of the FDG tracers are similar to the
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glucose ones. It passes through the brain-blood barrier and is phosphorylated
intracellularly in a process analogous to the glucose. The phosphorylized FDG
compound does not enter in the Krebs cycle, thence it is effectively trapped.

Despite the striking advances in PET functional brain imaging [5,10], the
molecular mechanisms that underlie the signals detected by this technique are
still largely unknown. The basic physiological principle is represented by the
tight coupling between neuronal activity and the associated increase in both
blood flow and glucose metabolism. The development of the autoradiographic
2-deoxyglucose method by Sokoloff about 30 years ago, proved the coupling be-
tween synaptic activity and glucose use, the so-called neurometabolic coupling
[11,12]. Wet experimental analyses in vitro have been carried out to investigate
the neurotransmitter-regulated metabolic fluxes and to determine the cellular
localization of enzymes and transporters involved in the glucose metabolism.
At the same time in vivo approaches, as microdialysis and magnetic resonance
approaches have recognized in the neurotransmitter glutamate and astrocytes, a
specific type of glial cells, the key elements in the coupling between the synaptic
activity and the glucose metabolism (for a detailed review about recent and less
recent studies see [6]). Nevertheless, many aspects of the molecular interactions
driving the glucose uptake and consumption are still elusive. In this article we
present a mathematical model of the glutamate-triggered glucose uptake and
metabolism by focusing on the emerging central role of the reaction occurring
within astrocyrtes. At the best of our knowledge, this work is the first to pro-
vide a computational model related to the molecular basis of the use of the
glucose in astrocytes. Our model consists of a set of seven differential equations,
describing the time behavior of the glutamate and glucose use into the astro-
cyte. The synaptically released glutamate triggers glucose flux in astrocytes. The
time course model of the glucose concentration inside that glial cell is related
to the concurrency of the inhibitory action of the β-threohydroxyaspartate on
the glutamate-stimulated glucose use and the activity of the Na+/K+-ATPase.
The latter stimulates glucose uptake and glycolysis. The simulation parameters
of the model, as the initial concentration of the reactants molecules and the
kinetic rate constants, have been estimated by a slice-by-slice fit of the data
of 31 PET-scans, each of which consisting of 15 horizontal slices, of a brain of
a normal subject. The shapes of the brain activity curves, obtained by solving
the equations, show a behavioral agreement with the typical measured blood
activity curves of normal subjects [13]. Moreover, the results of our model sim-
ulations are in agreement with the simulations of the Sokoloff’s model describ-
ing the kinetics of the compound FDG. This last fact, in particular, validates
our model further on, since it is an additional confirmation that the model in-
cludes the most salient features of the molecular machinery of the astrocytic
glucose metabolism. Finally, with respect to the model presented in this paper,
the Sokoloff’s model can be considered as a black box approach to the glucose
metabolism kinetics, that Sokoloff indirectly obtained from the kinetics of the
FDG tracer.
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2 Glucose Use in Astrocytes

Astrocytes are sub-type of the glial cells in the brain. Following a group of recent
studies, researchers have found an increasing amount of evidence that suggests
that the astrocytes play a central role in brain function by affecting the activity
of neurons, by taking an active part in the distribution of energy substrates
from the circulation to neurons [14,15]. The ratio between neuronal and non-
neuronal cells depends on species, brain areas or developmental ages. It is a
well-established fact that neurons contribute at most 50% of cerebral cortical
volume [2] and that the astrocytes outnumber the neurons ten to one.

Astrocytes are stellate cells (hence their name) with multiple fine processes,
some of which are in close apposition to capillary walls. The entire surface of
intraparenchymal capillaries is covered by these specialized processes, called as-
trocytic end-feet. This cytoarchitectural arrangement implies that astrocytes
form the first cellular barrier encountered by the glucose entering the brain
parenchyma. Therefore astrocytes are a likely site of prevalent glucose uptake.
The uptake of glucose in astrocyte is triggered by glutamate. The glutamate
is the main excitatory neurotransmitter of the cerebral cortex. Activation of
afferent pathways by specific modalities (e. g. visual, auditory, somatosensory)
results in a spatially and temporally defined local release of glutamate from the
activated specific synapses. The action of glutamate on postsynaptic neurons ter-
minates with the reuptake of glutamate in astrocytes [1,3,4]. Glutamate uptake
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Fig. 1. A cartoon of the reactions governing the astrocytic glycolysis

into astrocytes is driven by the electro-chemical gradient of Na+; it is an Na+-
dependent mechanism with a stoichiometry of three Na+ ions cotransported with
one glutamate molecule. A consequence of the glutamate uptake into astrocytes
is the stimulation of glucose uptake and aerobic glycolysis in these cells, i. e. of
glucose use [8]. Glutamate-stimulated increase in glucose uptake into astrocytes
is abolished in the absence of Na+ in the extracellular medium, consistently
with the necessity for an electro-chemical gradient for the ion to drive glutamate
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uptake. A central role in the coupling between glutamate transporter activity
and glucose uptake into the astrocytes is the activation of the Na+/K+-ATPase.
The astrocytic Na+/K+-ATPase responds to increases in intracellular Na+ con-
centration. Well established experimental observations [9] show that glutamate
activates Na+/K+-ATPase. There is also an ample evidence from studies in a
variety of cellular systems including brain, kidney, vascular smooth muscle and
erythrocytes, that increases in the activity of the Na+/K+-ATPase stimulates
glucose uptake and glycolysis [8]. Finally, the specific glutamate transporter
inhibitor β-threohydroxyaspartate inhibits the glutamate-stimulate glucose use
[6,8]. Figure 1 depicts the mechanism of glucose absorption and use inside the
astrocyte.

3 The Kinetic Model

The rate equation of the concentration of glucose in the astrocyte (GLUCOSEIN )
is composed by three terms (Eq. (1)). The first term models the glutamate-
stimulated glucose increase as a direct proportionality between the time deriv-
ative of glucose astrocytic concentration and the glutamate astrocytic concen-
tration (GLUTAM). The second term is the product of the rate of glucose
uptake and its astrocytic concentration. This term expresses the proportional-
ity between the time change of astrocytic glucose and both the flux of incoming
glucose (GLIN ) and the glucose astrocytic concentration. Finally, the third term
in Eq. (1) represents the decrease of glucose in astrocyte due to the Na+/K+-
ATPase - stimulated glycolysis. Since the astrocytic Na+/K+-ATPase is acti-
vated by glutamate in response to increases in intracellular Na+ concentration,
the rate equation for Na+/K+-ATPase (Eq. (3)) is given by a term proportional
to the concentration of Na+ in the astrocyte and by a negative term propor-
tional to the amounts of β-threohydroxyaspartate and Na+/K+-ATPase. This
term models the inhibition of glutamate-stimulated glucose use performed by
β-threohydroxyaspartate. In Eq. (3) the inhibition of glycolysis is modeled by a
decrement term in the rate equation of Na+/K+-ATPase. In fact a decrement
of the amount of this enzyme causes a decrement of the glycolytic events.

The rate equation for the astrocytic glutamate concentration (Eq. (2)) is the
product of the glutamate amount in the cell and the flux of incoming glutamate
(GTIN ). The fluxes of glutamate and glucose entering the astrocyte (GLIN and
GTIN , respectively) have been modeled as functions of time. Experimentally the
rate at which glucose is transported into the cell is determined by the rate at
which the concentration of glucose accumulates inside the cell in the absence of
metabolism [7]. Thence, the temporal derivatives of the glucose and glutamate
fluxes are given by Eq. (5) and Eq. (6) respectively. Eq. (5) contains a term ac-
counting for the number of GLUT transporter in an open state (GLUTOPEN),
i. e. transporters that are facing the exterior of the cell and ready to receive
a glucose molecule. Similarly, Eq. (6) contains a term proportional to the frac-
tion of two types of glutamate transporters GLT 1 and GLAST and a term
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proportional to the difference between the internal and external concentration
of Na+ (NAIN and NAOUT , respectively).

Glucose entering into the astrocyte (1)
dGLUCOSEIN

dt =k1 GLUTAM+k2 GLIN ·GLUCOSEIN−k3 NA K ATPase·GLUCOSEIN

Glutamate entering into the astrocyte (2)
dGLUTAM

dt =k4 GTIN ·GLUTAM

Na+ K+ ATPase (3)
dNA K AT P ase

dt =k5 NAIN−k6 GT INHIBIT ·NA K ATPase

β threohydroxyaspartate (4)
dGT INHIBIT

dt =−k7 NAIN ·GT INHIBIT

Rate of glucose uptake into the astrocyte (5)
dGLIN

dt =k8GLUTOP EN ·GLIN

Rate of glutamate uptake into astrocyte (6)
dGTIN

dt =(k9 GLT 1+k10 GLAST )GT IN+k11 (NAIN−NAOUT )

Na+ uptake into astrocyte (7)
dNA IN

dt =k12 GLUTAM

Eq. (4) is the rate equation for the β-threohydroxyaspartate (GT INHIBIT ).
The time derivative of this inhibitor is given by the product of its concen-
tration and the concentration of Na+. Namely, the inhibitory activity of the
β-threohydroxyaspartate is consequent to the increase of the concentration of
Na+, that in turn is also responsible for the activation of the glycolytic activity
of Na+/K+-ATPase. Finally, Eq. (7) describes the time behavior of the astro-
cytic concentration of Na+. Its time derivative is proportional to the astrocytic
concentration of glutamate. This equation expresses the direct relationship be-
tween glutamate and the co-transported Na+. The coupling between synaptic
glutamate release and its re-uptake into astrocyte is so tight that the determina-
tion of the Na+ current generated in astrocytes by the co-transport of glutamate
and Na+ through the glutamate transporters provides an accurate estimate of
glutamate release from the synapses [1].

3.1 PET Image Processing and Parameters Derivation

The dynamic FDG PET data used in this work have been provided by the
Neurobiology Research Group, Righospitalet of Copenhagen. These data consist
of 31 three-dimensional grey level images of the brain of a normal subject. The
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a. b.

Fig. 2. a. A view of a set of brain slices. b. The red boundary encloses the regions Rk
j

for j = 1, . . . 31 and k = 7. The values on the grey level scale are measured in Bq/cc.

scans have been taken with a Scanditronix 4096 scanner on a time range of 3429
seconds. Figure 2(a) shows a set of brain slices of the database used in this work.

To identify the kinetic rates k−s of the model we used a standard fit proce-
dure of the time-dependency of glucose concentration obtained from the PET
images. For the fit we used a simple least squares cost function. Before obtain-
ing the measured time-dependence of glucose concentration, the images have
been processed in order to eliminate noise and border effects and identify ex-
clusively the region corresponding to the brain. The identification of the brain
region and the elimination of the noisy parts on the borders of the skull have
been performed with the following procedure. Let Ij denote the 3D-scan taken
at time tj and {I1

j , . . . , I15
j } with j = 1, . . . , 31, the set of 15 slices of the j-th

scan. For each scan Ij and for each slice Ik
j (k = 1, . . . , 15), we calculated

the smallest polygon P k
j , enclosing the pixels, whose grey-level is greater than

zero (i. e. the pixels which do not belong to the background). The boundary
of this polygon has been smoothed by a simple procedure of elimination of its
parts having thickness larger than one pixel. Hence, for each slice Ik

j , the region
Rk

j , we estimated as region effectively corresponding to the brain, is given by
the topological internal part of P k

j and the P k
j boundary itself (see Figure 2(b)).

Moreover, we defined Rk ≡ ∪31
h=1R

k
h, k = 1, . . . , 15, and we calculated the glucose

concentration variation slice by slice using the following formula

dGk

dt
(ti) =

1
Area(Rk)

∑
p∈Rk

|σp(ti) − σp(ti+1)|
ti+1 − ti

(8)

where σp(ti) is the intensity of the pixel p ∈ Rk at time ti (i = 1, . . . , 31).
Two kinds of analysis has been carried out pixel by pixel to reveal a possible

partitioning of the brain slice in activation areas.

1. For each slice Ik
j of an image Ij we defined a frequency map M : Rk −→ N

of pixel activation in the following way: M [p] = 0 if p /∈ Rk, and M [p] = m
otherwise, where m is the number of intensity’s changes occurred in pixel p.
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This analysis showed that almost all the pixels exhibit the same frequency
of intensity’s change.

2. We also computed pixel by pixel for each slice of each scan the average glu-
cose variation to detect possible clusters of pixels characterized by different
levels of changes in glucose concentration variation. Also this kind of analysis
showed that the time changes in glucose concentration are homogeneously
distributed.

The only spatial partitioning detectable in our data set consists in two set
of images: set 1 consisting of the 31 scans of the brain slice 1 and 2, and set 2
containing the 31 scans of the remaining 14 slices (from 3 to 15). The numeration
of the slices refers to the one given in Figure 2a. This partitioning is pointed out
by the different rates, with which the glucose concentration changes over time.
Figures 3 a and b show the time behavior of glucose concentration for the slices
of set 1 and set 2, respectively. In Table 1 the values of the initial concentrations
of the reactants and the kinetic rates constants are shown. Figure 4a shows the
model simulation of time-dependent glucose concentration for the slices of set 1.
The set of equations of the model shows that the time behavior of the glucose
concentration is mainly affected by the change of the values of k1, k2, k3, k6, and
k7. Increasing k1 and k2 (as well as increasing simultaneously k6 and k7 or k7
only) means to decrease the speed of glucose metabolism (Figure 4b-c), whereas
increasing k3 speeds up the glucose use (Figure 4b).

Table 1. Parameter space of the model

Species Initial concentration
(× 0.0379016 Bq/cc)

GLUCOSEIN 12.00

GLUTAMATEIN 11.00

NA K ATPase 2.0

GT INHIBIT 0.01

GLIN 0.10

GTIN 0.10

NAIN 0.70

Constants Values

NAOUT 0.1

GLUTOP EN 0.1

GLT 1 0.1

GLAST 0.1

Rate Value (sec−1) Value (sec−1)
Set 1 Set 2

k1 0.00003 0.00001

k2 0.00003 0.00005

k3 0.02000 0.04000

k4 0.00100 0.00030

k5 0.00100 0.00020

k6 0.00800 0.00080

k7 0.00100 0.00003

k8 0.00100 0.00050

k9 0.01000 0.01000

k10 0.01000 0.02000

k11 0.01000 1.00000

k12 0.10000 0.00100

In our study, the exploration of the 12-dimensional parameter space of the
model is exclusively driven by the experimental data of the dynamic PET scans.
Curves of the time-glucose variation that are fitted by the equations of the model
with different sets of rate coefficients may reveal different specific speeds of the
metabolic kinetics in different brain regions. Since the simulations of the model
are in agreement with the solutions of the set of ordinary differential equations
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Fig. 4. a. Numerical solution of the model for the kinetic parameters of set 1 as show
in Table 1. b. Two simulations with different values of k2 (0.2 and 2 sec−1). The other
parameters maintain the values shown in Table 1. c. Simulations with k1 = 0.001 sec−1

(the other parameters are fixed as in Table 1). d. Two simulations with increased values
of k6 and k7 (0.08 and 0.01 sec−1). (see in the text for more details).

of the Sokoloff’s model and they also reproduce the typical behavior of the tracer
density in arterial blood as in [13], the model can be used as a computational tool
to estimate the astrocytic glucose metabolism by direct fitting to the measured
data the rate constants. The curve of 18-FDG tracer differs from on subject to
another in the value and the time of the maximum because of different blood
circulation, presence of metabolic or neurological disorders, and variations in
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the way doses of the tracer are injected. Different tracer density curves can
also be detected in the same subject, in this case the fitting of the model is
able to provide a brain map of the glucose utilisation. The application of the
model on healthy and ill subjects and, most importantly, on subjects employed
in specific activities (visual, auditory, etc) will be able to reconstruct a kinetic
rates distribution that decomposes the parameter space also into qualitatively
different brain regions.

4 Conclusions and Future Directions

Functional neuroimaging techniques such as PET have provided valuable insights
into the working brain. However, fundamental questions related to the cellular
and molecular aspects of neurometabolic coupling are unresolved. Moreover,
different PET studies provide discordant results about glycolytic metabolism,
that in general are related to methodological issues and different simulation
protocols. Our computational model describes the molecular origin of the neu-
rometabolic coupling and provides also a theoretical framework to understand
and experiment the glucose metabolism by tuning the initial conditions and
rate parameters. The model simulations, performed with the kinetic parameters
derived from the PET images, are consistent with the blood activity curves ob-
served in the PET studies on normal subjects [13]. The data used in this work
to derive the kinetic rate constants do not reveal an evident spatial partition-
ing of the brain slice in specific activation areas, as in the studies in [13]. The
difference, we detected, between the values of the kinetic rates of the two sets
of slices may suggest different explanatory hypotheses, such as differences in as-
trocytic spatial distribution and metabolism in different slices in the brain of
the subject considered in this studies. Moreover the study will be extended to
a data set of subjects engaged in specific activities. In this case, by fitting our
molecular model to these kind of data it may be possible to individuate regional
sets of kinetic rates accurately corresponding to brain activation areas. Finally,
the benefit of building a stochastic model of the glucose use has to be evaluated.
Deterministic models should be replaced by stochastic kinetic models to describe
noise effects due to internal concentration fluctuations. However the ability of a
stochastic simulation to discriminate and study the effects of the internal noise
on the glucose variation time curve depends on the ratio between the levels of
intrinsic and external noise of the measured radioactivity concentration. In fact,
if the level of noise is too high it could mask the small stochastic fluctuations
and therefore the information that we can extract from them. Such a situation
recommends, as a future direction of work, the construction of a noise model
and its validation on a sufficiently large database of PET scans before a plausi-
ble application and a correct interpretation of a stochastic approach. First such
noise model, currently under development, will allow to obtain less noisy blood
activity curves and consequently more accurate estimates of the rate parameters.
Then it will allow to correctly interpret the outcomes of a sensitivity analysis of
the kinetic model.
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Abstract. Several models for coding of odor intensity in olfactory sen-
sory neurons are investigated. Behavior of the systems is described by
stochastic processes of binding (and activation). Characteristics how well
the odorant concentration can be estimated from the knowledge of re-
sponse, the concentration of bounded (activated) neuron receptors, are
studied. This approach is based on the Fisher information and analogous
measures. These measures are computed and applied to locate the cod-
ing range, levels of the odorant concentration which are most suitable for
estimation. Results are compared with the classical (deterministic) ap-
proach to determine the coding range via steepness of the input-output
transfer function.

1 Introduction and Methods

Models of coding of odor intensity in olfactory sensory neurons are studied. The
response, concentration of bound (activated) receptors, depends on input signal,
concentration of odorant in perireceptor space. The dependency of response on
signal is realized through the input-output transfer function, f(s). To obtain
statistical characteristics of the models we use their discrete stochastic versions.
We focus on the steady-state solutions and their properties.

How well the constant signal, s, which is assumed to be log-concentration
of the odorant, can be determined from a knowledge of the response, RA(s),
concentration of bound (or activated, R∗

A(s)) receptors and which signal levels
are optimal, that means can be well determined from the knowledge of random
sample of RA(s), is investigated. RA(s) is assumed to be a random variable
with some (continuous) distribution dependent on scalar parameter s. In other
words, we consider an experiment in which a fixed odorant concentration is
applied k-times and steady-state responses of the system are observed. These
are independent (it is random sample) realizations of random variable RA(s)
from which we wish to determine s.

Note there are two properties limiting the optimal signal determination. First,
the minimal resolution ability. The system cannot distinguish two response val-
ues that are near one another and the corresponding signal values are declared
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as equal. Moreover, there are two bounds of the response, the threshold and
saturation, between them the neuron can reliably code the information. Cor-
responding range of signals (or its part) is called dynamic (coding) range (for
details see [5]). Second, the fluctuation of realizations of the response. On the
same signal level, observed responses are not equal.

In models we explore, the deterministic input-output transfer function, f(s),
is assumed to be equal to mean value, E (RA(s)), of random variable describing
the binding process stochastically. The classical, deterministic, approach to de-
termine the optimal signal is based on the first derivative of the input-output
transfer function, f(s), with respect to s. As an optimality measure the quantity

J1(s) =
∂ E (RA(s))

∂s
(1)

is used. Higher the value of J1(s) the better determination of the odorant con-
centration, s, can be achieved.

An alternative approach, we use here, is based on statistical properties of the
response. This method was used by [3] in analysis of statistical properties of
generated interspike intervals. Let us suppose that the observed concentration
of bound (activated) receptors in steady-state, RA(s) (R∗

A(s)), is a continuous
random variable with a distribution belonging to the regular parametric family
of probability density functions, g(x; s), with the odorant log-concentration, s,
as a parameter.

Determination of the signal, s, from known response, RA(s), corresponds to
its estimation, ŝ, in chosen family of probability density functions. As a measure
of signal optimality is used the Fisher information (see [4])

J(s) =
∫

1
g(x; s)

(
∂g(x; s)

∂s

)2

dx (2)

with respect to signal, s. The Fisher information, J(s), is the inverse asymptotic
variance of the best unbiased estimator, ŝ, of s, Var(s) ≥ J(ŝ)−1. Hence, higher
the Fisher information J(s) the better estimation of s can be achieved. In some
cases the analytical expression of the Fisher information may be difficult. Then
we can use the lower bound, J2(s) ≤ J(s), of the Fisher information, (see [3])

J2(s) =
1

Var (RA(s))

(
∂ E (RA(s))

∂s

)2

=
J1(s)2

Var (RA(s))
, (3)

which only requires the knowledge of first two moments of the distribution g.

2 Models

We describe three models for odorant binding and receptor activation and cor-
responding steady-state moments. Let A, R, RA and R∗

A denote the odorant,
unbound (free), bound (occupied) and activated receptor, respectively. Let us
suppose that the count (concentration), n, of receptor sites and the concentra-
tion, [A] = exp(s), of odorant A is constant during the binding (activation)
process.
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2.1 Basic Interaction

Unbound (free) receptors, R, compete for odorant molecules, A, through the
interaction

A + R
k1
−→←−
k−1

RA , (4)

where k1 and k−1 are the association and dissociation rates. Every receptor
can be either free or occupied. The model can be described as birth and death
process with states {0, 1, . . . , n}, initial probabilities (1, 0, . . . , 0), birth rates λi =
k1(n − i) exp(s) and death rates μi = k−1i, i = 0, 1, . . . , n (see [1,2] for details).

According to the probability distribution of stationary state of the process,
the mean and variance in steady-state can be computed. Due to the fact, that
values RA(s) are rather high, replacing a discrete variable by its continuous
variant – by concentration – is justified. Then, if the maximal concentration of
bound receptors is scaled to one (n = 1), the mean and variance are

E (RA(s)) =
1

1 + K1 exp(−s)
, (5)

Var (RA(s)) =
K1 exp(−s)

n (1 + K1 exp(−s))2
, (6)

where K1 = k−1/k1 is the dissociation constant. The variance has its maximum
located at s = log K1 and is symmetric around this point. Moreover, the vari-
ance tends to zero for extremal values of odorant concentration. The mean and
standard deviation of RA are plotted in Fig. 1a.

2.2 Basic Interaction with Simple Activation

In this more complex model it is assumed that binding of the odorant molecule
is not sufficient to trigger the response, the bound receptor must be activated.
Model described by [2] supposes that each occupied receptor can either become
activated, R∗

A, with probability p ∈ (0; 1), or stay inactive, RA, with probability
1 − p, independently of its past behavior and of the behavior of other receptors.
Such an interaction corresponds to the following transition diagram,

�
���

��
�

���
��

�	

A + R

RA R∗
A

k1ak1n k−1 k−1
ka

kd (7)

where k1a = pk1 and k1n = (1 − p)k1 are association rates for the activated and
inactivated state, ka = pc and kd = (1 − p)c are rates of activation and deac-
tivation and c > 0 is a constant controlling the rate of activation-deactivation
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Fig. 1. Model of basic interaction (4) with moments (5), (6) and parameters K1 = 2,
n = 10. (a) Mean E(RA(s)) (solid line) and standard deviation of RA(s) (dashed). The
standard deviation of RA tends to zero for extremal odorant concentrations. (b) Op-
timality criteria J1(s) (solid line), J2(s) (dashed) and J(s) (dotted). All their maxima
are located at s1 = 0.693.

process. We are interested in the concentration of activated receptors, R∗
A. Its

steady-state moments are (see [2])

E (R∗
A(s)) =

p

1 + K1 exp(−s)
, (8)

Var (R∗
A(s)) =

p(1 − p)
n(1 + K1 exp(−s))

+
p2K1 exp(−s)

n (1 + K1 exp(−s))2
. (9)

Limit moments are E (R∗
A(∞)) = p and Var (R∗

A(∞)) = p(1 − p)/n. The
variance is purely ascending from zero to p(1 − p)/n for p ∈ (0, 0.5]. For p ∈
(0.5, 1], it increases from zero to maximal value n−1/4 achieved at s = log K1 −
log(2p − 1) and then decreases to p(1 − p)/n. Both the mean and standard
deviation of R∗

A are depicted in Figs. 2a and 3a.

2.3 Double Step Interaction

In the double-step interaction, which is an extension of model (7), the interac-
tion between free, R, bound, RA, and activated receptors, R∗

A, is formed by the
transitions via schema

L + R
k1
−→←−
k−1

RA

k2
−→←−
k−2

R∗
A , (10)

where two further parameters, rate constants k2 and k−2, characterise the acti-
vation (deactivation) process (see [6] for details). In contrast with the model (7),
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Fig. 2. Model of interaction with simple activation (7) with moments (8), (9) and para-
meters K1 = 2, n = 10, p = 0.2. (a) Mean E(R∗

A(s)) (solid line) and standard deviation
of R∗

A(s) (dashed). The variability of R∗
A remains positive for high odorant concentra-

tions. (b) Optimality criteria J1(s) (solid line), J2(s) (dashed) and J(s) (dotted). J1

achieves its maximum at s1 = 0.693, J2 at s2 = 0.072 and J at s0 = −0.931.
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Fig. 3. Model of interaction with simple activation (7) with moments (8), (9) and
parameters K1 = 2, n = 10, p = 0.9. (a) Mean E(R∗

A(s)) (solid line) and standard
deviation of R∗

A(s) (dashed). The standard deviation has a maximum located at s =
0.916 and remains positive for high odorant concentrations. (b) Optimality criteria
J1(s) (solid line), J2(s) (dashed) and J(s) (dotted). J1 achieves its maximum at s1 =
0.693, J2 at s2 = 0.535 and J at s0 = 0.467.

in this model it is unable to pass between the unbound and activated state
without crossing the bound inactivated state. Discrete version of the model
(with n receptors) can be represented as an Markovian process with states
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{(i, j); 0 ≤ i + j ≤ n} and its moments can be computed using stationary prob-
ability distribution. Scaling the maximal concentration to one, the steady-state
mean value of the concentration of activated receptors, R∗

A, is

E (R∗
A(s)) =

1
1 + K2 (1 + K1 exp(−s))

, (11)

where K2 = k−2/k2 is the dissociation constant of the activation-deactivation
process. It is difficult to express the variance analytically, nevertheless it can be
computed numerically and fitted by a smooth function. A function of the form

a + b exp(−s)
1 + c exp(−s) + d exp(−2s)

(12)

with estimated parameters a > 0, b, c, d seems to be a good approximation of the
variance Var(R∗

A(s)). Then, the relations Var(R∗
A(−∞)) = 0 and Var(R∗

A(∞)) =
a hold. The mean and standard deviation of R∗

A are depicted in Fig. 4a.
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Fig. 4. Model of the double-step interaction (10) with mean (11) and dissocia-
tion constants K1 = 2, K2 = 5. The variance is approximated by fitted function
Var(R∗

A(s)) = (0.00278 + 0.00084 exp(−s)) / (1 + 1.628 exp(−s) + 0.483 exp(−2s)) .
(a) Mean E(R∗

A(s)) (solid line) and standard deviation of R∗
A(s) (dashed). The vari-

ability of R∗
A remains positive for high odorant concentrations. (b) Optimality criteria

10J1(s) (solid line), J2(s) (dashed) and J(s) (dotted). J1 achieves its maximum at
s1 = 0.511, J2 at s2 = −0.158 and J at s0 = −0.379.

3 Results

We assume that RA and R∗
A have Gaussian distribution,

R
(∗)
A (s) ∼ N

(
E(R(∗)

A (s)), Var(R(∗)
A (s))

)
, (13)

with the mean and variance in accordance with the specific binding model.



366 O. Pokora and P. Lansky

3.1 Basic Interaction

In the first model, where RA(s) follows (13) with moments (5) and (6), all the
optimality criteria are directly derived,

J1(s) =
K1 exp(−s)

(1 + K1 exp(−s))2
, (14)

J2(s) =
nK1 exp(−s)

(1 + K1 exp(−s))2
= nJ1(s) , (15)

J(s) =
1
2

+
(n − 2)K1 exp(−s)

(1 + K1 exp(−s))2
. (16)

All the criteria are unimodal and always achieve their maxima for s1 = log K1,
J1(s1) = 1/4, J2(s1) = J(s1) = n/4 (J holds this for n > 2 only). Moreover, they
are symmetric around the point s1 and the conditions J1(±∞) = J2(±∞) = 0
and J(±∞) = 1/2 hold. As depicted in Fig. 1b, all the criteria give the same
optimum signal. The Fisher information is constant J(s) ≡ 1/2 for n = 2 and it
is unimodal with minimum at s1 for n = 1.

3.2 Basic Interaction with Simple Activation

In the second model, where R∗
A(s) follows (13) with moments (8) and (9), the

criteria J1 and J2 are directly derived,

J1(s) =
pK1 exp(−s)

(1 + K1 exp(s))2
, (17)

J2(s) =
npK2

1 exp(−s)
(1 + K1 exp(−s))2 (K1 + (1 − p) exp(s))

. (18)

The Fisher information J is evaluated numerically.
Maximum value of the criterion J1 is located at s1 = log K1 (independently

on p), J1(s1) = p/4. The criterion J2 achieves its maximum for

s2 = log K1 − log
4(1 − p)√
9 − 8p − 1

. (19)

For p ∈ (0, 1), the relation s1 − log 2 < s2 < s1 holds. For lower probabilities p
the location of maximum of J2 is shifted to lower levels of the signal. As plotted
in Figs. 2b and 3b, the criterion J holds this feature, too. Limit values of the
criteria are J1(±∞) = J2(±∞) = J(∞) = 0, J(−∞) = 1/2.

3.3 Double Step Interaction

Considering the model (10), where R∗
A(s) follows (13) with mean (11), the cri-

terion J1 is equal to

J1(s) =
K1K2 exp(−s)(

1 + K2 (1 + K1 exp(−s))
)2 (20)
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and its maximum J1(s1) = (1 + K2)−1/4 is located at s1 = log K1 + log K2 −
log(1 + K2). Comparing this point of maxima with the model of basic interac-
tion with the same dissociation constant K1, where s1 = log K1 holds, point of
maximum in the double-step interaction is shifted to lower levels of the signal.

Conditions J1(±∞) = J2(±∞) = J(∞) = 0 and J(−∞) = 1/2 hold. Fitted
variance Var(R∗

A) and the criteria J2 and J are computed numerically. All the
optimum criteria are plotted in Fig. 4b. Maximum values of J2 and J appear to
be shifted to the lower levels of signal than s1.

4 Conclusions

In the model of basic interaction all three criteria give the same result. In two
other models the measures based on Fisher information and its lower bound are
more sensitive to lower concentrations. The variance of concentration of activated
receptors remains positive for high odorant concentrations, that means the re-
ceptors oscillate between activated and inactivated state. It should be noted,
that using other then Gaussian probability distribution, the results obtained
using the Fisher information may differ.
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Abstract. The Ornstein-Uhlenbeck neuronal model is investigated un-
der the assumption that the amplitude of the noise depends function-
ally on the signal. This assumption is deduced from the procedure in
which the model is built and it corresponds to commonly accepted un-
derstanding that with increasing magnitude of a measured quantity, the
measurement errors (noise) are also increasing. This approach based on
the signal dependent noise permits a new view on searching an optimum
signal with respect to its possible identification. Two measures are em-
ployed for this purpose. The first one is the traditional one and is based
exclusively on the firing rate. This criterion gives as an optimum sig-
nal any sufficiently strong signal. The second measure, which takes into
the account not only the firing rate but also its variability and which
is based on Fisher information determines uniquely the optimum signal
in the considered model. This is in contrast to the Ornstein-Uhlenbeck
model with constant amplitude of the noise.

1 Introduction

Noise is unavoidable in any living system and the experimental results, supported
by theoretical investigations, show the prominent role of noise in the transfer of
information in neural systems (Cecchi et al. 2000; and others). In most of the
studies aimed on effects of noise in neural models, it has been assumed that the
amplitude of the noise is independent of the incoming signal. This follows from
the fact that the models were originally deterministic and simply modified by
adding some type of noise. To overcome this lack of realism we investigated one
of the most common neuronal models under the condition that the amplitude
of the noise depends on the signal (Lánský and Sacerdote 2001; Sacerdote and
Lánský 2002). There we do not employed artificial relationship between signal
and noise, but we established it by pointing to an analogous version of the model
with discrete state-space.

The so called frequency (input-output) transfer functions, in which the fre-
quency of firing is plotted against the strength of the input signal, is commonly
used to characterize the input-output properties of neurons and neuronal models,
for a constant signal or under stedy state conditions.

F. Mele et al. (Eds.): BVAI 2007, LNCS 4729, pp. 368–377, 2007.
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By constructing the transfer functions, it is implicitly presumed, that the in-
formation in the investigated neuron is coded by the frequency of the action
potentials (Adrian 1928). From this point of view, the steep part of the trans-
fer function represents the optimum signal because a small change in the signal
implies the largest change in the response. An alternative criterium to the op-
timum signal determination is based on the application of Fisher information
measure. In this approach, the signal plays the role of an unknown parameter
which should be estimated from observation of a random variable, in our case
the interspike interval. The Fisher information in evaluating neural models has
become a common tool recently (e.g., Stemmler 1996; Greenwood et al. 1999,
2000; Johnson and Ray 2004; Amari and Nakahara 2005 and many others).

In this paper we compare results based on these two measures applied on
the stochastic leaky integrate-and-fire (LIF) model under the condition that the
amplitude of noise is signal dependent. We show that the introduced dependency
of noise magnitude from the signal is substantial for searching an optimum signal
in the neuronal models. Indeed when the noise is independent of the signal there
is no globally a unique level of optimal signal and finally the investigations end
up with a search for an optimum noise under certain intensity of the signal. On
the contrary here we obtain, under the knowledge of the properties of the model,
a unique optimum signal.

2 The Model and Its Properties

The LIF model is common concept in computational neuroscience and the num-
ber of direct and indirect references to it would be very large (Tuckwell 1988;
Gerstner and Kistler 2002; Burkitt 2006 and others). Here we consider the
Stein model (1965), where the membrane depolarization is described as a one-
dimensional stochastic process, X = {X(t), t ≥ 0}, for which holds

dX(t) = −X(t)
τ

+ adP+(t) + idP−(t) ; X(0) = 0. (1)

Here τ = RC > 0 is the membrane time constant (τ = RC, where R is the mem-
brane resistance and C is its capacitance); time zero is the moment of the last
generated action potential; i < 0 < a are constants; P+(t), P−(t) are two inde-
pendent homogeneous Poisson processes with intensities λ and ω, respectively,
reflecting the time dynamics of all excitatory and inhibitory inputs acting upon
the neuron. The values a and i represent the mean amplitudes of excitatory and
inhibitory postsynaptic potentials. The initial depolarization is assumed to be
equal to the equilibrium level shifted to zero. The first and second infinitesimal
moments of X defined by (1) are

M1(x) = lim
Δ→0

E
[
ΔX(t)| X(t) = x

]
Δ

= −x

τ
+ λa + ωi, (2)

M2(x) = lim
Δ→0

E
[
(ΔX(t))2 | X(t) = x

]
Δ

= λa2 + ωi2, (3)

where ΔX(t) = X(t + Δ) − X(t).
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In diffusion neuronal models, the membrane depolarization is described by
a scalar diffusion process X given by the Itô-type stochastic differential equa-
tion specified by two real-valued functions (called a drift and an infinitesimal
variance)(e.g. Tuckwell 1988). The drift coefficient reflects the local average rate
of displacement and local variability is represented by the infinitesimal vari-
ance. These two coefficients coincide with the infinitesimal moments. Therefore,
identifying infinitesimal moments (2) and (3) of model (1) with the infinitesimal
moments of the diffusion model, a suitable diffusion approximation of the Stein’s
model is the O-U process

dX(t) =
(

−X(t)
τ

+ μ

)
dt + σdW (t) ; X(0) = 0, (4)

where μ, σ > 0 and τ > 0 are constants; τ plays the same role as in equation
(1) and W is the standard Wiener process. The parameters μ and σ2 in (4)
reflect the input signal and its variability resulting from the stochastic dendritic
currents generated by action of other neurons (or by external stimulation in
sensory neurons). As seen from (2) and (3), the parameter μ is a linear function
of the rates λ and ω of the incoming excitatory and inhibitory postsynaptic
potentials and σ depends on these intensities in a square root manner.

In models (1) and (4), the interspike intervals are identified with the first-
passage time, Tμ, of the stochastic process X across a constant threshold, S,

Tμ = inf{t ≥ 0, X(t) > S | X(0) = 0 < S}, (5)

where index μ is used to stress that we investigated the FPT in dependency
on the input μ. The time origin is the moment of the last firing. At these mo-
ments, the membrane potential is repeatedly reset to its initial value and the
ISIs form a renewal process. The means of X given by (1) and (4) coincide,
E(X(t)) = μτ

(
1 − exp

(
−t/τ

))
. If E(X(∞)) = μτ ≤ S, then the regimen is

called subthreshold and in absence of noise the neuron never fires. When μτ > S,
the stimulation is called suprathreshold and the neuron fires even in absence of
the noise.

For suprathreshold stimulation in model (4) and for σ → 0, the transfer
function is

f(μ) =

{(
τ ln

(
μτ

μτ−S

))−1
μτ > S

0 μτ ≤ S
. (6)

The asymptote of function (6) is

fa(μ) = (2τμ − S)/2τS. (7)

A complete solution of the first-passage-time problem in model (4) is not a
simple task and therefore numerical (Ricciardi and Sato 1990) and simulation
(Giraudo and Sacerdote 1999; Giraudo et al. 2001) techniques were proposed. In
order to compute the mean E(Tμ) we directly applied so called Siegert formula

E(Tμ) =
√

πτ

σ2

∫ S−μτ

−μτ

(
1 + Erf

( z2

σ2τ

))
exp

( z2

σ2τ

)
dz (8)



Input Identification in the Ornstein-Uhlenbeck Neuronal Model 371

where Erf(.) is the error function. For large μ we used the approximation

E(Tμ) ≈ τ ln
(

μ

μ − S

)
− τσ2

4

(
1

(μ − S)2
− 1

μ2

)
(9)

and

V ar(Tμ) ≈ τ2σ2

2

(
1

(μ − S)2
− 1

μ2

)
, (10)

found in Ditlevsen and Lánský (2005).

3 The Method

The spiking of a neuron from which the signal should be deduced is considered as
a renewal process. Then the interspike intervals which lengths depend on signal
μ, are independent realization of a random variable, Tμ. The transfer function
is usually expressed as

f(μ) =
1

E(Tμ)
, (11)

In this way the highest precision in determining the signal corresponds to the
highest derivative of function (11). Hence we define a function

I(1)
μ =

∂

∂μ

( 1
E(Tμ)

)
(12)

and our criterion recognizes, as signal detected with the highest precision, the
maximum of this function.

In order to measure information about μ in a more complete way than by
(12), one has to consider the entire probability distribution, and not only the
mean, E(Tμ), as a function of the signal. For this purpose we employ Fisher
information. Under the condition that the random variable Tμ has probability
density function belonging to a parametric family g(t; μ), the Fisher information
with respect to the parameter μ is defined by

Jμ =
∫ ∞

0

1
g

( ∂g

∂μ

)2
dt. (13)

The Fisher information is the inverse of the asymptotic variance of the normal-
ized error from an asymptotically efficient estimator (Rao 2002). Thus, higher
the Fisher information - more accurate estimate of μ can be achieved.

The Fisher information is used here under the renewal process assumption. In
this case the Fisher information in n observations is just n-times the information
per single observation, given by equation (13). For this reason it is clear that
the information about μ is proportional to the number of spikes. The mean time
required to obtain n measurements is nE(Tμ). Thus a measure of information per
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time unit is obtained by dividing Jμ by E(Tμ) (Lánský and Greenwood 2005).
The normalized Fisher information with respect to the parameter μ is defined as

Iμ = Jμ/E(Tμ). (14)

To simplify the calculation a lower bound for the Fisher information can be
introduced,

J (2)
μ =

1
V ar(Tμ)

(∂E(Tμ)
∂μ

)2
, (15)

where V ar(Tμ) is the variance of the random variable Tμ. Analogously to the
function given by equation (15), we define

I(2)
μ = J (2)

μ /E(Tμ) (16)

and search for its maximum to find an optimum signal. In general, three measures
I
(1)
μ , I

(2)
μ and Iμ differ by the order of moments required for their evaluation.

4 Results and Discussion

Before any attempt to determine the signal, intrinsic parameters of model (4),
which do not depend on the input, should be specified. In accordance with
generally accepted ranges, we fixed the firing threshold S = 10 mV and the
value of the time constant we set τ = 10 ms. With this choice μ < 1 represents
a subthreshold signal and in the opposite case the signal is suprathreshold.

The procedure of diffusion approximation leading from equation (1) to (4)
requires that the rates λ and ω are large and parameters a and i are small.
Assuming the same relative effect of excitatory and inhibitory postsynaptic po-
tentials, a = −i, from equations (2) and (3) we obtain

μ = a(λ − ω) (17)

and
σ2 = a2(λ + ω). (18)

These formulas permit us to reinterpret the results obtained for the O-U model
in terms of excitation and inhibition (λ and ω are the excitatory and inhibitory
input rates).

In Lánský and Sacerdote (2001) we presented some hints about the values of
the input parameters μ and σ, μ = 0.5mV/msec, σ ∼= 0.4mVmsec−1/2. Another
source of information about the input parameters in the O-U model should come
immediately from the experimental data, but these estimates are quite rare. In
Inoue et al. (1995) the estimated values of the parameter μ ranges from −6.77
to 3mV/msec and σ goes from values close to zero up to 15mVmsec−

1
2 . In other

paper oriented on investigation of the parameters in the O-U model (Lánský et
al. 2006), we concluded that parameter μ varies around 0.3 mV/msec. In that
paper the estimation of σ was highly influenced by the fact that the data were
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filtered before the estimation. For a general discussion about the parameters of
model (1) see Tuckwell and Richter (1978).

In general, changing (increasing) the net input μ can be achieved in two basic
ways in model (4). Either the increase of excitation and inhibition is proportional
or it is not. The proportional increase leads to a linear relationship between μ
and σ2. We use in this study

σ2(μ) = kμ + σ2
0 , (19)

where k > 0 is a constant of proportionality and σ2
0 is the minimum level of noise.

With this functional connection between signal and noise, we investigate the de-
coding ability of the neuron, i.e. identification of the signal, in any range, be it
sub or suprathreshold. In nonproportional change we can observe a paradoxical
result in which an increase of the net input μ decreases the firing frequency
(Lánský and Sacerdote 2001). To achieve it, the increase of μ has to be accom-
panied by appropriate decrease of σ. This situation seems to be unprobable and
is not investigated here.

Simple dependency (19) reminds Weber’s law, often applied in psychophysics
(Laming 1973). It implies, in particular, that when there is practically no signal
there is no noise. So the model investigated here is

dX(t) =
(

−X(t)
τ

+ μ

)
dt +

(
kμ + σ2

0
)
dW (t), (20)

and the question is how well μ can be deduced from the realization of the FPT.
The approximations for the mean and the variance of Tμ can be obtained

simply substituting (19) in (9) and (10), while to obtain ∂E(Tμ)/∂μ, required for
the Fisher information evaluation (see below), the Siegert formula was applied,
which gives

∂E(Tμ)
∂μ

=
√

πτ

{(√
τξ − μk

√
τξ3

2

) (
1 − Erf

(
μ
√

τξ
))

exp
(
μ2τξ2) (21)

−
(√

τξ +
(S − μτ)kξ3

2
√

τ

) (
1 + Erf

(
(S − μτ)ξ√

τ

))
exp

(
(S − μτ)2ξ2

τ

)}
,

where ξ = 1/
√

kμ + σ0.
We aim to find how well the signal, which is directly μ in equation (20) can be

determined on the basis of observation of random variable Tμ defined by (5). For
this purpose we investigate measures, I(1)and I(2), which were introduced above.
As mentioned, despite we were not able to prove it analytically, all the numerical
calculations suggested that J

(2)
μ = Jμ for the first-passage-time distribution of

the O-U process. Therefore, we restrict ourselves on calculation of the lower
bound J

(2)
μ because it is numerically less demanding than calculation of the

Fisher information.
In the inlet of Fig. 1 are presented the frequency transfer functions for our

model in which the amplitude of noise increases with the signal in accordance
with equation (19). We fixed the parameter k in such a way, that at μ = −4, the
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Fig. 1. Dependency of I
(1)
μ on the signal μ for the model with the noise amplitude

changing with the signal. In the inlet the corresponding frequency transfer functions are
given. Full line: σ2 = 5μ+21, dashed line: σ2 = 10μ+41, dash-dot line: σ2 = 17.32μ+70.

noise amplitude is equal to one. We can see that the transfer functions are similar
to those obtained for LIF model with constant amplitude of noise (e.g. Lansky
et al. 2007, Fig. 2b). It can be shown by using formula (8) that with increasing
μ the transfer function becomes linear with asymptote given by equation (7).

Thus this measure reaches no unique optimum (see Fig. 1). With increasing
signal the measure achieves a constant value. Taking the derivative of the asymp-
tote with respect of μ, we obtain the asymptotic inverse value of I

(1)
μ . It means

that by using this criterion, there is no unique optimum level for the signal μ.
Even before crossing the threshold stimulation μ = 1 mV/msec, the transfer
function becomes almost linear. It means that any sufficiently strong signal can
be determined equally well if only the firing frequency is taken into account.

The evaluation of the lower bound of Fisher information J
(2)
μ and of its nor-

malized version I(2) is illustrated in Fig. 2 and 3. We can see in Fig. 2 that
the Fisher information steeply decreases with increasing μ. The decrease is even
faster than for the model with constant infinitesimal variance, as was shown in
Lánský et al. (2007, Fig. 1). There is no direct implication from this result, but
if we combine Fig. 1 and Fig. 2, we obtain Fisher information in natural time
(see Fig. 3) and we can see that the measure reaches its maximum. This is a
surprising result because as the firing frequencies were compared (Lánský and
Sacerdote 2001), signal-dependent noise did not bring too much change into the
behavior of the neuron. We can see in Fig. 3 several features:

1. There is always a unique maximum of this measure. Hence there exists an
optimal level of the signal and a range of signals, i.e. a coding range, around
this optimum can be determined similarly well.



Input Identification in the Ornstein-Uhlenbeck Neuronal Model 375

−4 −3 −2 −1 0 1 2 3
0

5

10

15

20

25

30

μ

J 2

σ2=25

Fig. 2. Dependency of the Fisher information on the signal μ for the model in which
the noise amplitude changes with the signal. Full line: σ2 = 5μ + 21, dashed line:
σ2 = 10μ+41, dash-dot line: σ2 = 17.32μ+70. Comparison with the Fisher information
where the noise amplitude is constant σ2 = 25.
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Fig. 3. Dependency of I
(2)
μ on the signal μ for the model in which the noise amplitude

changes with the signal. Full line: σ2 = 5μ + 21, dashed line: σ2 = 10μ + 41, dash-dot
line: σ2 = 17.32μ + 70.

2. Since the curves in Fig. 3 are asymmetrical the coding range is narrow in the
left part (low intensity) but quite broad on the right part (strong signal).
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3. The maxima of the curves depend on the relation between signal and noise.
If the noise is small in the central part (where there is a maximum of the
curve), the maximum is higher than in the cases in which the noise is large.

4. The maxima of the curves in Fig. 3 are located in subthreshold regimen. We
were neither able to find an example for which the optimum is above one
nor to prove that it holds generally.

5 Conclusions

Two different problems were enlighted in this paper making use of LIF models.
Firstly we showed that the transfer function is a poor measure when one wish
to detect an optimum signal with respect to its possible identification. On the
contrary the Fisher Information measure is a good measure to catch the signal
optimality. Second we focused the consequences of introducing in the models
signal dependent noise. Past results on O-U model seemed not to bring too much
change with respect to the constant noise case. Here we have the surprising result
that there exists always an optimal level of the signal and that there is a range
of signals around this optimum that can be determined similarly well. All our
results are refered to the O-U process because its simplicity but we expect similar
features also with more complex diffusion models.
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Grant (Information Society, 1ET400110401), by the Research project
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Abstract. One of various families of Neural Networks (NN) that have
been used in the study and development of the field of Artificial In-
telligence (AI) is the Hodgkin-Huxley (HH) Network. In addition to the
computational properties of the HH neuron, it also can be used to reason-
ably model biological phenomena, and in particular, in modeling neurons
which are “synchronized/desynchronized”. The HH Neuron is a nonlin-
ear system with two equilibrium states: A fixed point and a limit cycle.
Both of them co-exist and are stable. By using a perturbation method,
the behavior of this neuron can be switched between these two equilibria,
namely spiking and resting respectively. The process of changing from
spiking to resting is referred to as Spike Annihilation. In this paper, we1

numerically prove the existence of a brief excitation (input) which, when
delivered to the HH neuron during its repetitively firing state, annihilates
its spikes. We also derive the characteristics of this brief excitation.

1 Introduction

Hopfield and Grossberg suggested that the process of coding information using
neural networks (NN) can be developed around the regime involving fixed point
attractors. There are also alternative philosophies, motivated by clinical neurol-
ogists, that indicated that brain dynamics is characterized by cyclic and weakly
chaotic regimes. Some theories proposed in Artificial Intelligence (AI) have at-
tempted to exploit cyclic attractors for information encoding. One of these theo-
ries consists of indexing the “attractor information items” by means of external
stimuli rather than by using initial conditions as proposed by Hopfield. This
algorithm implies the existence of alternative responses to external stimuli and
a switching process from one of these potential attractors to another in response
1 The second author also holds an Adjunct Professorship with the Department of
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36, N-4876 Grimstad, Norway. The work of this author was partially supported by
the Natural Sciences and Engineering Research Council of Canada.
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to any input stimulus. The process of retrieving the information stored in the
cycles depends on the model chosen for the investigation: A more realistic model
for the neuron will have a richer range of non-linear behaviors (represented by
stable or unstable limit cycles). Our paper investigates the process of retrieving
the information stored in the cycles, namely that of controlling the neuron (to
be more specific, a Hodgkin-Huxley (HH) neuron).

We present now a few considerations about the dynamical properties of the
HH neuron. This neural model can be in one of two states: A resting state
(corresponding to a stable fixed point) and a state that fires in response to certain
forms of stimulation (corresponding to a stable limit cycle). One problem to be
considered here is the switching of the neuron from one equilibrium mode to the
other, which is a phenomenon which can occur without modifying the number
and the stability of the equilibria.

From a classical system theory point of view, the equilibrium point of a non-
linear dynamical system may disappear or may lose its stability if a control
parameter is changed, depending on the type of bifurcation displayed by the
system. In our research, the HH neuron is considered to be a dynamical nonlin-
ear system whose equilibrium states are not to be radically changed with regard
to its stability. We investigate the case when both equilibria, namely the fixed
point and the limit cycle, co-exist and remain stable. In this particular situation,
the system is bi-stable, and with a carefully chosen synaptic input, it is possible
to switch the behavior from being resting to one which demonstrates spiking, or
from being spiking to a resting (spike annihilation) mode.

This above stimulus, chosen to be a brief pulse of current, is not a control
parameter. Its behavior affects neither the existence of the equilibrium points,
nor their stability. The control parameter is the strength of the constantly applied
current and, during our investigation, it is set to be constant. We argue that
injecting a constant current into the axon is not equivalent to injecting a brief
pulse of current. In the former, the system can go through a bifurcation of
the equilibrium by changing the existence of the equilibria or by affecting their
stability. In the latter, however, the system can jump to an alternate location in
the state space, which is achieved by the system resetting the initial condition.
The neuron is driven to a state of “shock”, and consequently, the membrane
potential instantly switches to a new value. The fixed point, corresponding to
the resting state, co-exists with the limit cycle, which corresponds to the spiking
state, and the system continues to be bistable.

1.1 Contribution of the Paper

As we stated before, our paper investigates only one stage of the process of re-
trieving the information stored in the cycles, namely that of controlling the HH
neuron. In contrast to the previous pieces of work, which validated experimen-
tally or anticipated theoretically that annihilation is possible, we achieve the
followings: (i) We numerically prove that the problem of spike annihilation has a
well defined solution. (ii) We formally derive the characteristics of the proposed
solution.
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2 The Bistable HH Neuron

In this section we investigate the stability-related characteristics of the HH
neuron. In the previous section, we stated that the HH neuron can be per-
ceived as a dynamical nonlinear system with two stable equilibria. We intend
to explore, numerically, the system defined by Equations (1) and (2) proposed
by Rinzel and Wilson [2], which, indeed, approximate the Hodgkin-Huxley
neuron:

dV

dt
=

1
τ
[−(a1 + b1V + c1V

2)(V − d1) − e1R(V + f1) + +B + σ], (1)

dR

dt
=

1
τR

(−R + a2V + b2), (2)

where a1, a2, b1, b2, c1, d1, e1, f1,τ , and τR are constants2, B is the background
activity3, and σ is an excitation stimulus. Consequently, we propose to discover,
numerically, the number and the positions of the limit cycles. The numerical
approach to yield the number and the relative positions of the limit cycles of
the system described by Equations (1) and (2), is the only reasonable strategy
(instead of an analytical one) to tackle the problem.

To render our consideration meaningful, in the following, we shall derive:

1. The fixed points of the HH neuron by solving the system of equation de-
scribed by the isoclines,

2. The Jacobian corresponding to the system described by Equations (1) and
(2), at the fixed points,

3. The eigenvalues of the Jacobian, by solving the characteristic equation as-
sociated with the Jacobian, and

4. The requirements on the eigenvalues as specified by the Hopf Bifurcation
Theorem for identifying the limit cycle.

2.1 Computing the Equilibrium States

Consider a system described by Equations (1) and (2). We compute the the
equilibrium states by solving the system of equations described by their isoclines.
Using the settings of Rinzel and Wilson [2], assigned to mimic real-life brain
phenomena, Equations dV

dt and dR
dt become:

1
τ

[−(17.81 + 47.71V + 32.63V 2)(V − 0.55) − 26R(V + 0.92) + +B] = 0 (3)

2 In their experiments, Rinzel and Wilson [2] set the constants as: a1 = 17.81, b1 =
47.71, c1 = 32.63, d1 = 0.55, e1 = 0.55, f1 = 0.92, a2 = 1.35, b2 = 1.03, τ = 0.8 ms
and τR = 1.9 ms. The stimulus σ was expressed in μA/100, and V was measured in
deci-volts.

3 The background activity generates limit cycles in the system. Without this value,
the system will converge through the stable spiral point.
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and
1
τR

(−R + 1.35V + 1.03) = 0. (4)

The equilibrium states can thus be computed as solutions of Equations (3)
and (4) leading to the resulting cubic polynomial equation:

− 32.6304V 3 − 64.8632V 2 − 50.6416V + Bk − 14.8424 = 0. (5)

The roots of the Equation (5) can be computed for specific values of B.

2.2 Computing the Jacobian

Using the same settings of Rinzel and Wilson [2], the Jacobian matrix of the
“real-life” HH neural system becomes:

J(V, R) =

(
∂V (V,R)

∂V
∂V (V,R)

∂R
∂R(V,R)

∂V
∂R(V,R)

∂R

)
,

where ∂V (V,R)
∂V =−122.36V 2 − 74.40V + 10.55 − 32.5R; ∂V (V,R)

∂R =−32.5V − 29.9;
∂R(V,R)

∂V =0.71053 and ∂R(V,R)
∂R =−0.52632.

The Equation (4) can be used to eliminate R from the partial derivatives and
thus, the Jacobian becomes:

J(V ) =
(

−122.36V 2 − 118.28V − 22.937 −32.5V − 29.9
0.71053 −0.52632

)
.

2.3 Finding the Bifurcation Point

We shall now consider the problem of finding the neuron’s bifurcation point by
using the dynamical matrix of the system. This value of the bifurcation point is
used to “set” the neuron so as to render it to be bi-stable. As before, using the
same settings of Rinzel and Wilson [2], the condition to have imaginary roots
applied to the Jacobian, generates the equation: −122.36V 2−118.28V −22.937−
0.52632 = 0, whose roots are −0.6879 and −0.2788.

From Equation (5), we can compute the value of B that corresponds to the
root V = −0.6879. This value4, of B = 0.0777, generates a bifurcation in the
system. The second root, −0.2788, does not have any biological significance,
being distant from the resting potential of the neuron.

The values of the roots (and the corresponding stability consequences) are
tabulated in Table 1 as a function of b. Examining Table 1, we can conclude
(using the notation of the Hopf Bifurcation Theorem) that α = 0.0777. Thus, if
B < 0.0777 (namely, β < α) the system has an stable spiral point. If B > 0.0777,
the stable spiral point became unstable and the system has a stable limit cycle.
4 The more exact value is 0.07773267 and it is obtained for V=-0.687930 and

R=0.101295. The Largest Lyapunov exponent for this Hopf bifurcation is 1.000287e-
002.
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Table 1. Eigenvalues of the Jacobian computed from the real root of the equilibrium
equation obtained with particular values of the background stimulus B. Last column
describe the stability of the equilibrium, namely S (stable) and U (unstable).

B Vequilib λ1 λ2

0 -0.6979 -0.2565+2.2485i -0.2565-2.2485i S
0.025 -0.6947 -0.1731+2.2534i -0.1731-2.2534i S
0.05 -0.6915 -0.0909+2.2554i -0.0909-2.2554i S
0.06 -0.6902 -0.0579+2.2555i -0.0579-2.2555i S
0.065 -0.6896 -0.0909+2.2554i -0.0909-2.2554i S
0.07 -0.6889 -0.0909+2.2554i -0.0909-2.2554i S
0.075 -0.6883 -0.0100+2.2548i -0.0100-2.2548i S
0.08 -0.6876 +0.0075+2.2543i +0.0075-2.2543i U
0.085 -0.6870 0.0225+2.2537i 0.0225-2.2537i U
0.1 -0.6850 0.0721+2.2514i 0.0721-2.2514i U

0.125 -0.6818 0.1504+2.2456i 0.1504-2.2456i U
0.15 -0.6785 0.2299+2.2372i 0.2299-2.2372i U
0.2 -0.6720 0.3825+2.2138i 0.3825-2.2138i U
0.25 -0.6655 0.5300+2.1820i 0.5300-2.1820i U

The value B = 0.0777 is a subcritical or hard Hopf bifurcation point. The system
has an unstable limit cycle for B < 0.0777, and this is a point that is not
observable in the real world due to its instability. It is only possible to detect the
consequences of its presence.

2.4 The Stable and Unstable Limit Cycles

If we consider B to be a control parameter, we can analytically compute the
equilibrium point, which, for certain values of σ, leads to a spiral stable point,
and which, for other values of σ, leads to an unstable spiral point. The behavior
around a specific value, namely the change of the stability of the equilibrium
point, induces the concept of a subcritical (hard) Hopf bifurcation.

Let us focus on the issue of the limit cycles themselves. By plotting the evo-
lutions of the numerical solutions of the system (Equations (1) and (2)), we
discover that for the settings of Rinzel and Wilson [2], there is a stable limit cy-
cle to the right of the bifurcation point. To identify a hypothetical unstable limit
cycle, we can modify the system’s equations to make time run “backwards”. The
modification, which consists of rendering the sign of the two constants, τ and
τR, to be negative, changes the unstable limit cycle to become asymptotically
stable. In this way, by using a numerical method, we can identify the position
of a second limit cycle, which happens to be unstable. The stable spiral point
is surrounded by this unstable limit cycle which, in turn, acts as a separatrix
defining a basin of attraction for the stable point.

In Figure 1 we present the stable and unstable limit cycles, together with the
isoclines (dV

dt = 0 and dR
dt = 0). The trajectory starts at the point indicated

by ‘1’ and follows the arrowed curves. Observe that in the case of Figure 1
Left, the trajectory of the HH neuron trajectory follows the stable limit cycle,
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Fig. 1. Left: The phase space representing the stable limit cycle and the resulting
isoclines ( dV

dt
= 0 and dR

dt
= 0) obtained by using Rinzel and Wilson settings for the

HH neuron. The starting point, (represented with ‘1’) is V0 = −0.7, and R = 0.08.
In addition, B = 0.08. Right: The phase space representing the unstable limit cycle
and the isoclines for Rinzel and Wilson settings for the HH neuron. In this graph, the
starting point (represented with ‘1’) is V0 = −0.7, and R0 = 0.2 and must be outside
the zone called ZoneA, defined by the cycle. In addition, B = 0.08.

and in Figure 1 Right, the trajectory follows the unstable limit cycle. When
B is increased from the resting value, the steady state remains asymptotically
stable and the spikes are generated only after the bifurcation point is reached,
by increasing the value of B. In other words, the HH neuron indicates spiking
at B = 0.0777, and the spiking process continues for all values of B > 0.0777.

3 The Problem of Annihilation

The problem of the annihilation of spikes for the HH neuron involves moving
the state of the system, by using a pulse stimulus, from outside a particular
zone (denoted as ZoneA) to being inside ZoneA, where ZoneA is a basin of
attraction of the stable spiral point which is described by an unstable limit cycle.
For example, if the system is characterized by the settings specified by Rinzel
and Wilson [2], ZoneA is contained in the region given by V ∈ [−0.6, −0.8]
and R ∈ [0.1, 0.15], as depicted in Figure 1, Right. Figure 2 contains all the
steady states of the system, including the stable spiral point, and the stable and
unstable limit cycles.

The success of the annihilation process depends on four crucial issues: (i)
What should be the initial point (V, R) for the system to exhibit annihilation?
(ii) When should the pulse stimulus, σ, be applied to the system to annihilate
it? (iii) What should the amplitude of the pulse stimulus be for the annihilation
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x

x

x
23

1 x 21

Fig. 2. Left: The stable fixed point, the stable limit cycle, and the unstable limit cycle
(the separatrix given by the dashed line) are represented together. If the system starts
in State 1, it will move towards to the stable fixed point. If it starts in State 2 or State
3, it will converge to the stable limit cycle. Right: If the system starts in a carefully
chosen configuration at State 1 on the stable limit cycle, the system can be driven to
State 2 by applying a carefully chosen stimulus. From this state, it will then go to the
stable fixed point.

to be achieved? (iv) What should the duration of the pulse stimulus be for the
annihilation to be achieved5?

The solution of the annihilation problem consists of determining a stimulus
which adequately responds to all the above questions. In Figure 2 Left, we present
the annihilation process. If the system starts in a carefully chosen configuration
at State 1 on the stable limit cycle, the system can be driven to State 2 by
applying a carefully chosen stimulus. From this state, it will then go to the
stable fixed point.

We propose to solve the problem of annihilation using a numerically com-
putation of the characteristics of the stimuli that achieve annihilation, for the
settings of Rinzel and Wilson [2]. The strategy consists of proposing an algo-
rithm for computing the moment of insertion, the magnitude, and the duration
of the stimulus used to annihilate the system.

3.1 The HH Neuron Annihilation Theorem

Since we are interested in annihilating the spikes, we shall demonstrate that this
can be done by invoking a discretized time model. To achieve this, first of all,
we rewrite the dynamical system of equations for a bistable model of the HH
neuron in a discrete-time manner as:

V [n + 1] = V [n] + 1
τ [−(a1 + b1V [n] + c1V

2[n])(V [n] − d1)

− e1R[n](V [n] + f1) + Bk + σ], (6)

R[n + 1] = R[n] +
1
τR

(−R[n] + a2V [n] + b2). (7)

5 In this paper, we consider the duration of the stimulus to be equal to unity.
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The general Theorem of Annihilation is formally written below.

Theorem 2 (HH Neuron Annihilation)

Consider a system described by its discretized dynamical equations:(
V [n + 1]
R[n + 1]

)
=

(
V [n]
R[n]

)
+

(
f1(V [n], R[n])
f2(V [n], R[n])

)
+ S[n], with n = 0, 1, ..

(8)

where f1 and f2 specify the unexcited dynamics, and S[n] is the excitation
applied to the system.

If the system has a stable limit cycle, a stable spiral point and an unstable
limit cycle which separates the fixed point and the stable limit cycle, then,
there exists an excitation function S[n], which equals 0 everywhere except
at a specific point (V [0], R[0]) on the stable limit cycle, at which point
S[0] has the value [A, 0]T for a duration of one iteration, and which when
applied to the system, forces it from the stable limit cycle to the stable
spiral point.

The proof can be found in [1].
In order to discover the properties of the stimulus which achieves the spikes

annihilation, we have also opted to simulate this numerically. To do this, we
have to work towards controling the model, namely, to move the system to a
bi-stable state, in the neighborhood of the bifurcation point. All these steps will
be discussed in the next Section.

4 Experiments

In this Section, the results described in Section 3 are experimentally evaluated
to verify their validity, and to explore the state space characteristics for each
parameter of the annihilation stimulus. If a background stimulus B is applied to
create a train of spikes, we demonstrate that it is possible to annihilate the limit
cycle with an additional brief stimulus, and to move the system from a stable
limit circle to an unstable spiral point.

The solution to this problem has to respond to the following questions: (i)
What is the amplitude of the stimulus? (ii) What is the suitable phase when the
stimulus should be applied? (iii) How long should the stimulus be?

In order to analyze the effect of the stimulus, we have to choose initial values
for V and R. We have studied this for various numerical settings, but present
only one scenario here, in the interest of brevity. We consider an example of
train spikes that we propose to annihilate with a stimulus. This train of spikes
started from V = −0.7043 and R = 0, and was generated with B = 0.08.

For generating a spike train, we chose the background stimuli B to be between
0.68 and 0.7. We here chose V = −0.7043 and R = 0 as initial values for the
subsequent simulations.
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Table 2. The amplitude and the moment of insertion of the stimulus σ in order to
annihilate the spikes

B(0.68) B(0.69) B(0.7)
ms σmin σmax σmin σmax σmin σmax

3.0 0.4 1.54
3.1 0.14 1.57
3.2 0.06 1.47 0.47 1.15
3.3 0.028 1.34 0.19 1.23 0.50 0.97
3.4 0.014 1.21 0.09 1.17 0.21 1.08
3.5 0.008 1.09 0.05 1.06 0.11 1.02
3.6 0.005 0.97 0.03 0.95 0.062 0.93
3.7 0.003 0.85 0.018 0.84 0.03 0.83
3.8 0.002 0.74 0.016 0.73 0.027 0.72
3.9 0.002 0.63 0.01 0.63 0.02 0.62
4.0 0.002 0.53 0.008 0.53 0.016 0.52
4.1 0.002 0.45 0.007 0.44 0.015 0.43
4.2 0.002 0.35 0.007 0.34 0.015 0.33
4.3 0.002 0.25 0.008 0.25 0.017 0.25
4.4 0.002 0.16 0.011 0.15 0.024 0.14

Fig. 3. The three areas for the three different values for the background, B, namely
0.70 (Area 1 ), 0.69 (Area 2 ) and 0.68 (Area 3 )

For an additional stimulus σ, namely, a pulse of 0.1 ms duration, we identified
its position of insertion and its amplitude. In Table 2, we present the range of
values for σ (the minimum and the maximum values) for which we can annihilate
the spikes. Each range is computed for different times of insertion of the stimulus
(from 3.0 ms to 4.4 ms) and for different values of the quantity B. The neuron
exhibited spikes only for a range of B, which spanned values from 0.68 to 0.70
μA/100. The results from Table 2 are depicted in Figure 3.

From this simulation we can conclude that: (i) The neuron spikes only for a
specific range of values of B; (ii) If the neuron generates spikes, these can be
annihilated with particular stimuli found in the area plotted in Figure 3.

Consider now the problem of finding the vulnerable phase of the neuron. For
a value of σ = 0.7, we see from Figure 3 that the length of the vulnerable phase
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is between 3 ms to 4.4 ms, namely a width of 1.4 ms. Since the period is 6 ms,
the neuron has an interval of 23.33% of its period where one can insert a proper
stimulus to achieve this annihilation.

The reader can observe that for the experimental results reported, we con-
ducted experiments with three different background stimuli in order to to gen-
erate a bi-stable neuron, namely with B = 0.68, B = 0.69 and B = 0.70. For all
these values, we present in Figure 3 three areas, namely those depicted by Area
1, Area 2, and Area 3. Fortunately, there seems to be an inclusion relationship
between these three areas, namely Area 1 is included in Area 2 and Area 3.
Consider now the scenario when a population of neurons from the brain receives
a constant stimulus with the magnitude having a minimum value of 0.68 for an
interval of time. If the task is to annihilate this population, choosing a stimu-
lus with a magnitude corresponding to the minimum background is successful
because such a stimulus is common for all background stimuli greater than this
minimum one. For example, the area corresponding to a B = 1 includes the area
corresponding to the minimum B = 0.68 - simplifying the choice of the stimulus.

5 Conclusions

This paper briefly described the HH neuron and formally derived various prop-
erties of its stability. It also described numerically that the problem of spike
annihilation has a well defined solution, and presented an algorithm for comput-
ing the properties of the stimulus. We add that the method of perturbation with
brief stimuli differs from the classical approach of modifying the control para-
meter and changing the Jacobian of the system. In our approach, we keep the
system bi-stable all the time, and our task is to switch between these two states
without modifying their stability. To conclude, we analyzed the properties of
this pulse, namely, the range of time when it can be inserted and its magnitude.
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Abstract. A neuron in the Central Nervous System receives thousands
of synaptic inputs arriving both from close and long distance neurons.
Synaptic activity modulates the electrical potential of the neuronal mem-
brane producing an output which is regulated by a threshold mechanism.
The crossing of the threshold produces a sequence of spikes which, very
likely, is the neural representation of the stimulus. Dendrites usually re-
ceive the larger amount of synaptic inputs and their role in synaptic
integration and code formation in the single neuron cannot be neglected.
In the present paper, the mutual interaction of a couple of excitatory
synapses connected to the same, terminal, dendritic trunk will be an-
alyzed and some aspects of the computational ability of the “dendritic
machinery” will be discussed.

1 Introduction

The problem of how the brain processes and stores information is one of the most
important challenges of the modern neurobiology. The information processing
implies that the stimuli (physical or chemical) arriving to the brain are con-
verted (coded) in a language understandable to the neurons which are the build-
ing blocks of the brain. It is very likely that the code is embedded into the
sequence of spikes generated by a neuron when it receives information by means
of active synaptic contacts. How the code is embedded into the spikes sequence
is, however, still unclear. According to the “coincidence detector” theory, the
stimulus produces a coincidence of synaptic activation on the receiving neuron
which emits a precise sequence of spikes that is the neural representation of
the code [1,2, among others]. Some evidences seem to support this hypothesis.
For example, some neurons, located in the auditory system of birds, behave like
“coincidence detectors” because they fire a precise sequence of spikes only when
they receive the input from both ears with a delay of 10−100μs between the two
ears [3]. On the other side, the “rate code” hypothesis is based on the idea that
code is embedded in the spike frequency (φ) defined as the number of spikes (N)
emitted in the time unit (s) computed on an adequate time window (i.e., φ = N

s ).
This hypothesis is supported by several evidences demonstrating that the times
between the spikes in the sequence (Inter Spikes Intervals, ISIs) can be fitted by

F. Mele et al. (Eds.): BVAI 2007, LNCS 4729, pp. 388–397, 2007.
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a Poissonian distribution and, hence, it is not a precise time sequence but a ran-
dom sequence. The “rate code” hypothesis, then, assumes that not the precise
sequence but a frequency of spike is the neuronal representation of the stimulus.
Many models based on this idea have been proposed [7,12,14,27, among many
others]. More recently, however, the idea that several different coding systems,
ranging from the “coincidence detector” to the “rate code”, could be simultane-
ously active in the brain, is becoming very common among the neuroscientists.
What is the nature of the code and what are the relationships between the code
and the stimulus properties are interesting research topics for experimental and
theoretical investigators. In the theoretical field, computational experiments are
carried with different approaches and using different models, the simplest of
which is the so called Leaky Integrate-and-Fire (LIF) model. Usually, in this
model, synapses are simulated as periodic inputs (those located on the soma
or in its proximity) or a stochastic noise (dendritic synapses) and the neuron
is simply considered a linear integrator of these signals. The integration process
generates variations of the membrane potential which can reach a threshold level
producing a spike sequence [4,5,13,15,16]. Other models, with different degrees
of complication, are often used. For example, some very detailed models consider
a large number of variables as the geometry of the neuron, the precise synaptic
spatial distribution, the intrinsic synaptic variability, and many others [28].

Code generation and information processing implie a sort of computational
ability by the system. Starting from McCullogh and Pitts [19] the largest part
of computational ability is traditionally assigned to a network of neurons, con-
sidered as virtually able to perform any kind of computation, more than to the
single neuron to whom only a low computational ability is attributed. Neuron
has always been considered only as simple linear integrator with a threshold
mechanism necessary to have a point of non linearity to perform a minimal com-
putation [18,31]. A relevant observation in this contest is that, to perform a good
level of computation, a system needs essentially non linear mechanisms [31] and
the threshold system do not represent the unique non linear mechanism in the
dynamics of the neuron. For example, since the pioneering work of Rall [21,22],
it has been shown that synaptic inputs arriving to dendritic tree can sum non
linearly. The activity of any synapse, in fact, can influence the activity of the
others, located in the proximity, by changing the driving force which generate
the Post Synaptic Current (PSC). This force is the difference between the mem-
brane potential (Vm) and the equilibrium potential of ions (Eions) involved in
the PSC generation (see equation 3). Due to the high input impedance of the
membrane in small dendrites and spines (in the GΩ order [23,24,25,26]), the
PSC generated by the activation of a synapse produces a significant Post Synap-
tic Potential (PSP) and this variation of Vm modify the driving force for any
close synapse producing the non linear summation of the single PSPs. For two
(or more) excitatory synapses, located very close each other, this effect consist
in a reduction of the driving force and consequently a reduction of the efficacy
(amplitude) of the Excitatory Post Synaptic Potential (EPSP) of any other ac-
tive synapses. Synapses sum linearly only if they are located very far from each
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other because the PSP decreases with distance according to the cable equation
[23,24]. If we consider the activation of excitatory and inhibitory synapses in
an appropriate time window, then this mutual interaction become much more
evident. Inhibitory synapses, in fact, can have a shunting or also a “veto” effect
on excitatory synapses depending on their relative position and on the activa-
tion time. This effect is maximized when the inhibitory synapse is located on
the path of the current flow of the active excitatory synapses [17]. Other mech-
anisms able to modify the “normal” synaptic behavior in the dendritic tree can
be found in several different types of neurons. For example, backpropagation of
spikes from the axon to the soma and dendrites can, in some cases, produce
dramatic changes of membrane potential in the dendritic region because of the
activation of voltage dependent channels. The activation of these channels can
sustain for a longer time the membrane potential depolarization with a conse-
quent long lasting modification of the driving force for all the synapses in the
region. A similar effect is produced by Ca++ spikes which can be generated in
the dendrites of some neurons. This effect, when present, can produce variation
of membrane potential so strong to be able to trigger normal spikes at the hillock
(which is the region of the axon where usually spikes arises). These are only few
examples of possible sources of non linearity in dendritic tree of the neurons.
Both passive and active dendritic properties seem, then, to play a key role in
the computation ability of the single neuron [8,9,11,17,18,26].

In the present paper will be shown some regulatory effects that two active
excitatory synapses can have each other. Ideally, it will be shown that a den-
dritic branch can be considered as a special kind of “electrical synapse” which
can modulate the activity of another branch to whom it is grafted on. These
mechanisms, in a hierarchy of dendritic branches and synapses, can determine
the output behavior of the neuron.

2 Model

The simplest way to represente a dendritic branch is to consider it as a cylinder.
In Fig. 1 there is a schematic representation of a dendritic branch (B) with
diameter dB connected to a major branch (A) with diameter dA (i.e., dA >
dB). Although A and B can have both excitatory (connected mainly on the
spines) and inhibitory (10% of the total and connected mainly on the shaft
[20]) synapses, in the present paper only excitatory synapses are considered and
are labeled as SA and SB depending on the branch (A or B) to which they
are connected. The branch B of Fig. 1 can be considered as a special case of
“electrical synapse” of the branch A. In fact, although the current can flow in
both directions (B ⇒ A or A ⇒ B) and mainly depends on the difference of
potential between the two branches (VA − VB), there is a preferential flux of
current from B to A due to the minor axial resistance in A with respect to
B (the axial resistance is inversely proportional to the diameter). In order to
simplify, let us assume that at time t = 0 the two branches are isopotential
and that dV

dt = 0 (i.e., no current flows in any direction). Let us also assume
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Fig. 1. Schematic representation of a dendritic brach B grafted on a larger dendritic
branch A. Synapses are labeled according to the branch A or B (SA or SB) respec-
tively.

that at any time t > 0 one or more excitatory synapses on branch B become
active producing an Excitatory Post Synaptic Current (EPSC). Being the EPSC
a depolarizing current, the resulting EPSP will increase the membrane potential.
This transient variation of potential will produce a current flowing from B to A.
The total current generated on branch B with n synapses will be given by

IB(t) =
n∑

j=1

ISBj
(t) (1)

where ISBj
(t) is the current produced at time t by the jnd synapses on branch

B. Equation (1) assumes some simplifications which are: a) it consider B as
a terminal branch with no further ramification; b) it considers the length of
B negligible with respect to the space constant λ and c) it considers the active
synapses so closed each other that the effect of one synapse can be “experienced”
simultaneously by neighboring synapses without filtering of the signal.

For the branch A, which is not a terminal branch, and for a short segment
around the point where B is grafted on A, we can consider

IA(t) = IB(t) +
n∑

i=1

ISAi
(t) (2)

where ISAi
(t) is the current contribution given by ind synapse connected to

the branch A. In general, the activity produced by a branch is given by the
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integration of the synaptic activity and of the activity of all the branches grafted
on it. From this equation it is clear that the branch B behaves like an “electrical
synapse” with respect to the branch A. The current furnished by each synapse
IS(t) can be computed by the variation of conductance, g(t), produced by the
opening of postsynaptic receptors to the ionic current flow according to the
following equation

IS(t) =

{
ge(t)(Vm(t) − Ee) if synapse is ecitatory
gi(t)(Vm(t) − Ei) if synapse is inhibitory
0 if synapse is inactive

(3)

here ge(t) and gi(t) are respectively the excitatory and inhibitory synaptic con-
ductance, Vm(t) is the difference of potential across the membrane, and Ee and
Ei are the equilibrium potential for the excitatory and inhibitory synapses, re-
spectively. It follows that the difference Vm−Ee(or Ei) is the driving force which
moves ions through the receptors producing the PSC. Synaptic conductance g(t),
for each synapse, can be computed as the difference of two exponentials

g(t) = k
(
e
− t

τ2 − e
− t

τ1

)
(4)

where τ1 and τ2 are the rise and decay time constants respectively and k is a
constant related to the maximal value of the conductance (ḡ). Since the goal
of the present paper is to show the mutual interaction of excitatory synapses
placed on a small terminal branch, the activity of only two excitatory synapses,
positioned on the branch B of Fig. 1, has been simulated. The initial value of
the membrane potential was assumed equal to the resting potential (Vr) of the
neurons (∼ −70mV ) and then computation of V (t) was made by the Ohm’s law

V (t) = Vr + RinIB(t) (5)

where Rin is the input resistance of the dendritic branch and IB(t) is computed
according to equation (1). It has to be noted that this is an oversimplified sys-
tem. For long segments, for example, one has to consider the mutual distance
between synapses because the signal decays with distance as predicted by the
cable equation

λ2 ∂2V

∂X2 = V + τ
∂V

∂t
(6)

where X is the distance from the origin, λ =
√

Rm

Ri

d
4 is the space constant

depending on the membrane resistance (Rm), the axial resistance (Ri) and the
diameter (d) of the dendrite and τ = RmCm is the time constant, being Cm the
membrane capacitance expressed in Farad.

3 Simulation and Results

Simulations were carried by a C++ program under Linux. As a first approxi-
mation, the interaction of only two excitatory synapses, very close each other,



Excitatory Synaptic Interaction on the Dendritic Tree 393

0 1 2 3 4 5 6 7 8 9 10
ms

-70

-68

-66

-64

-62

-60

-58

-56

-54

-52

-50

-48

m
V

SB1+SB2

SB1

Fig. 2. cEPSP obtained by the simultaneous activation of two excitatory synapses on
branch B. The horizontal line indicates the peak value that should be reached if the
two synapses would sum linearly.

on a short dendritic branch (as for example SB1 and SB2 in Fig. 1) has been
considered. The input resistance Rin was kept constant at 5Gohm and the rest-
ing potential was Vr = −70mV . For the computation of g(t) of both synapses,
the same values of τ1 and τ2 have been used (0.2 and 2.0ms, respectively). The
equilibrium potential for excitatory synapses Ee was set to −10mV and k was
kept such to have I(t) with a peak amplitude and time course comparable with
electrophysiological evidences [6,10] and with the results of computational exper-
iments [29,30] on glutamatergic synapses. The total simulation time was 10ms
and the simulation time step (dt) was 0.001ms for all the experiments. In a first
set of computational experiments, two excitatory synapses (SB1 and SB2 of Fig.
1) were simultaneously activated. The results are shown in Fig. 2 where the hor-
izontal line indicates the level that the peak should reach if the two synapses
would be independent and linearly summing (i.e., if IB1(t) + IB2(t) � 2IB1(t)).
In a second set of experiments, one of the two synapses (SB1) has been activated
at time t1 = 0 while SB2 with a delay time t1 ≥ 0 (ΔT = t2 − t1). In Fig. 3 the
results of computational experiments with activation delay (ΔT ) ranging from
0 to 5ms are shown. For three values of ΔT (0, 1 and 5ms, respectively) the po-
tential has been labeled and plotted by dashed lines to show some important
differences in the produced outputs. An important value to consider in this case
is the time to peak (tp1) of the EPSP produced by SB1 . If we consider the time
interval Δ′T = tp1 − t1, it is evident that for ΔT < Δ′T , the effect of the two
synapses seems to be synergic although the composite peak decreases linearly
as a function ΔT . For ΔT > Δ′T the progressive separation of the two traces
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Fig. 3. Activation of SB1 and SB2 of Fig.1 with different delay time (ΔT )
of activation. Three major traces (dashed lines) are labeled corresponding to
ΔT = 0, 1 and 5ms. Non dashed lines correspond to intermediate values of ΔT
(0.1, 0.2, 0.3, 0.4, 0.5 and 2.0ms).

.

produces different patterns which seem more addressed to mantain an higher
level of potential in B than to give a “strong” electrical signal to A.

4 Discussion

The results presented here, although simulating only the most elementary con-
figuration possible for synaptic arrangements on a dendritic branch, give some
useful indications on the role that dendrites play in the fine regulation of the
activity of the neuron. Just considering two synapses for the short time of 10ms,
it is evident that a large range of possible signals can be generated and used
to control the activity not only of synapses co-localized on the same dendritic
shaft but also of those positioned on a different branch. Each active synapse can
influence the activity of the others by modulating the membrane potential and,
consequently, the driving force acting on the dynamics of all the active synapses.
The most evident effect of this is shown in Fig. 2 where the mutual effect of
two simultaneously activated synapses is shown. The results presented in Fig. 3
show that different kinds of output are produced depending on the delay times
of activation of the synapses (ΔT ). The non linear summation of the EPSPs
produces a composite EPSC (cEPSC) that for ΔT ≤ Δ′T is smaller than the
linear sum of two single EPSPs but able to produce a strong change of membrane
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potential with a flow of a transient current from the minor branch to the major
one (B ⇒ A, in our example). The amplitude of the cEPSP decreases by in-
creasing the activation delay time for ΔT ≤ Δ′T . For ΔT > Δ′T , the peaks of
the two EPSPs separate and the cEPSP shows patterns with different character-
istics. These are some possible configurations produced by the activation of two
excitatory synapses. The activation of many excitatory synapses on a dendritic
branch can produce a large variety of different patterns. If we consider also the
inhibitory synapses, then the number of different electrical patterns that can be
generated is very large. In fact, while on one side the Inhibitory Post Synaptic
Current (IPSC), being an iperpolarizing current, can reduce or abolish the EPSP
(which is produced by a depolarizing current), on the other side the iperpolar-
ization or ripolarization of the membrane potential increases the driving force
acting on the excitatory synapses. For the case of only excitatory synapses, it
has to be stressed that a paradoxical effect could be the inversion of their role.
In fact, if many excitatory synapses, close each other, become active in a short
time window (synchronization) the depolarization can drive the voltage (Vm) to
become greather then equilibrium potential (Ee) and this effect can invert the
direction of the EPSC ( see equation 3). Ee is then another threshold used by
the neuron to create a point of non linerarity which is an important factor for
neural computation. A strong synaptic activity on a branch can have an im-
portant effect on the branches closely related to it. These effects, added to the
large variability observed in synaptic quantal transmission and to the extremely
complex machinery of synaptic activation, neurotransmitter diffusion, re-uptake,
spillover, and presynaptic regulation of vesicle release [6,10,29,30], configure a
greatly complex system. Is it reasonable to assume that all these complex and
fine mechanisms of regulation of synaptic activity on dendrites produce only a
simple noise influencing the neuronal activity? Can the electrical patterns, gen-
erated by the different combinations of activation of excitatory and inhibitory
synapses on dendrites, be considered as a sort of language (code) by the means
of which synapses and dendritic branches comunicate each other to produce the
neuronal output? These questions should be considered in the formulation of
theories on neural code.

In summary, the precise timing of synaptic activation, the number and orga-
nization of dendritic branches, the relative synaptic positions, the mechanisms of
the quantal neurotransmitter release, the presence of voltage dependent channels,
etc., are important factors working in synergy to shape the signal arriving at the
hillock and to determine the spikes generation. The branches of the dendritic
tree, from the largest to the smallest, work in a sort of hierarchy of systems,
modulating each others. A consequence of this hierarchical system is that by
increasing the number and complexity of branches and the type of synapses con-
netcted to them, increases the complexity of the regulatory mechanism of the
neuronal output. If this is not a condition necessary to increase the computa-
tional ability of the neuron it seems likely that it is a mechanism able to increase
the precision of the neuronal computational and code generation.
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20. Meǵıas, M., Emri, Z.S., Freund, T.F., Gulyás, A.I.: Total number and distribu-
tion of inhibitory and excitatory synapses of hippocampal CA1 pyramidal cells.
Neurosc. 102, 527–540 (2001)

21. Rall, W.: Branching dendritic tree and motorneuron membrane resistivity. Exp.
Neurol. 1, 491–527 (1959)

22. Rall, W.: Theoretical significance of dendritic trees for neuronal input-output re-
lationship. In: Reis, R.F. (ed.) Neural theory and Modeling, Stanford University
Press, Palo Alto (1964)

23. Rall, W., Rinzel, J.: Branch input resistance and steady attenuation for input to
one branch of a dendritic neuron model. Biophys. J. 13, 648–688 (1973)

24. Rinzel, J., Rall, W.: Transient response in a dendritic neuron model for current
injected at one branch. Biophys. J. 14, 759–790 (1974)

25. Segev, I., London, M.: Untangling dendrites with quantitative models. Science 290,
744–750 (2000)

26. Segev, I., Rinzel, J., Shepherd, G.M.: The theoretical foundation of dendritic func-
tion. The MIT Press, Cambridge, London (1995)

27. Tuckwell, H.C.: Determination of the inter-spike times of neurons receiving ran-
domly arriving post synaptic potentials. Biol. Cybern. 18, 225–237 (1975)

28. Ventriglia, F., Di Maio, V.: Neural code and irregular spike trains. In: De Gregorio,
M., Di Maio, V., Frucci, M., Musio, C. (eds.) BVAI 2005. LNCS, vol. 3704, pp.
89–98. Springer, Heidelberg (2005)

29. Ventriglia, F., Di Maio, V.: Stochastic fluctuation of the synaptic function. Biosys-
tems 67, 287–294 (2002)

30. Ventriglia, F., Di Maio, V.: Stochastic fluctuation of the quantal EPSC amplitude
in computer simulated excitatory synapses of hippocampus. Biosys. 71, 195–204
(2003)

31. Zador, A.M.: The basic units of computation. Nat. Neurosci. 3, 1167 (2000)



Ghost Stochastic Resonance for a Neuron with a

Pair of Periodic Inputs

Maria Teresa Giraudo, Laura Sacerdote, and Alessandro Sicco

Dept. of Mathematics University of Torino,
Via C.Alberto 10, 10123 Torino, Italy

{mariateresa.giraudo,laura.sacerdote,alessandro.sicco}@unito.it

Abstract. A small network like that proposed in [8] and [9] is studied
when a pair of periodic signals are carried by the two different input
neurons to verify the arising of ghost stochastic resonance phenomena
in the third processing neuron. Suitable modifications of the stochastic
leaky integrate-and-fire model are employed to describe the membrane
potential of the input neurons while the processing neuron is modeled
by means of a jump-diffusion process. A stochastic resonance behavior is
detected for the processing neuron in correspondence with the ”ghost”
frequencies both in the harmonic and in the anharmonic case. The range
of parameter values under which this behavior occurs is specified and an
interpretation of the coincidence detection mechanism involved is pro-
vided.

Keywords: Leaky integrate-and-fire model, fundamental frequency,
jump-diffusion process, coincidence detection.

1 Introduction

The processing of multiple input signals by sensory neurons is an important
task accomplished by the nervous systems in the case for example of auditory
perception of complex sounds. On the other hand, two-frequency signals are
commonly employed for diagnostic purposes like the analysis of evoked potentials
in human visual cortex (cf. for example [2] and references quoted therein).

For this reason the response of a neuron to several sinusoidal inputs has been
considered in different settings by means of suitable models (cf. [3], [4], [2], [5]). In
all the models proposed the phenomenon of ”ghost” stochastic resonance arises.
Indeed an excitable neuron driven by (at least) two sinusoidal inputs, harmonic of
the same fundamental frequency, responds also to the missing fundamental one.
Moreover the response is optimized for a suitable amount of noise. If the signals
are rendered anharmonic by adding the same shift to all the input frequencies
the neuron responds with a shift in the missing frequency perceived.

The results in [3], [4] and [5] concern the response to multiple periodic in-
puts of single neuron models. In [2] a small network based on noisy Morris-Lecar
model neurons is proposed. In the harmonic case, two periodic inputs of frequen-
cies multiple of a fundamental one determine the spiking activity of two model

F. Mele et al. (Eds.): BVAI 2007, LNCS 4729, pp. 398–407, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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neurons that stimulate a third one. The resulting activity of this last processing
neuron exhibits a ghost stochastic resonance behavior.

Following the small neuron network model proposed in [8] and [9], we consider
in this work a model where a pair of periodic input signals is carried by two
different neurons acting on a third processing one. While the membrane potential
of the input neurons is described by means of a modification of the stochastic
leaky integrate-and-fire model (cf. [6]), the time course of the membrane potential
for the third receiving neuron follows a jump-diffusion process. The rationale to
study this further model is related to the advantages remarked in the use of these
stochastic processes to study the single neuron activity. Indeed they facilitate
the understanding of the leading features of spiking activity and the analysis of
underlying phenomena such as the coincidence detection of signals coming from
the input neurons.

A synthetic description of the model proposed and of the methods employed
is provided in Section 2. In Section 3 we illustrate by means of examples the
detection of the missing frequencies by the processing neuron and the arising of
ghost stochastic resonance phenomena in both the harmonic and the anharmonic
case. We conclude in Section 4 with a brief discussion of the results.

2 The Model

We use here the small network of three neurons arranged in two different layers
proposed in [8] and [9]. The first layer is composed of two input neurons, both
with an excitatory function, whose spiking behavior acts on a third processing
neuron on the second layer. The coupling between the two layers is unidirectional
from the input neurons to the processing one.

The evolutions of the membrane potential of the input neurons are described
by means of modifications of the Ornstein-Uhlenbeck diffusion process (cf. [6]). In
particular, periodic signals with frequencies respectively f (1) and f (2) are added
to the drift coefficients. In analogy with the leaky integrate-and-fire model (cf.
[6]) for each of the two resulting processes X

(i)
t , i = 1, 2, a spike is generated

at the times Λ
(i)
n , n = 1, 2, ... when the process X

(i)
t first reaches the given

constant threshold S > 0, the same for the two neurons. After each spike the
membrane potential is instantaneously reset to its resting value, set for simplicity
to X

(i)
0 = 0, i = 1, 2. The time course of the input modulations is not reset

after each spike. Hence the time intervals between successive spikes (interspike
intervals, ISIs)

{
Γ

(i)
1 , Γ

(i)
2 , ..., Γ

(i)
n , ...

}
, i = 1, 2, with Γ

(i)
1 ≡ Λ

(i)
1 and Γ

(i)
n =

Λ
(i)
n − Λ

(i)
n−1, n = 2, ..., give rise to time series.

The membrane potential of the two input neurons is then solution for t ∈[
0, Γ

(i)
j

]
, j = 1, 2, ..., i = 1, 2 to the following stochastic differential equations

(SDEs):

dX
(i)
t =

(
−1

θ
X

(i)
t + μ + A cos

(
2πf (i)

(
t + Λ

(i)
j−1

)))
dt+σdWt, X

(i)
0 =0; i=1, 2.

(1)
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Here μ and σ2 are constants representing respectively the net input and the
noise amplitude, θ is the membrane time constant, A is the modulation am-
plitude (the same constant for both neurons) and Wt is a standard Wiener
process.

We analyze the case where the input neurons are in the sub-threshold regime.
As can be shown by employing the methods in [1] this corresponds to fulfilling

in each interval
[
0, Γ

(i)
j

]
, j = 1, 2, ..., i = 1, 2, provided that 2πf (i) ≥

√
A2−μ2

θμ

and independently from the values assumed by Λ
(1)
j−1, the constraint

max
t∈

�
0,Γ

(i)
j

�{E(X(i)
t )} = θ

(
μ +

A√
1 + (2πf (i))2θ2

)
< S, i = 1, 2. (2)

In this instance the neurons do not fire in the absence of noise and for small
intensity of the noise the corresponding ISI distributions are much broader then
in the analoguous super-threshold regime. As an example, the plot of E(X(1)

t ) is
shown in Fig. 1 for the same parameter choice as in Case (a) of Section 3 below
and a value assumed by Λ

(1)
j−1 corresponding to 10 ms.

The normalized ISI count plots for model (1) show several peaks centered at
integer multiples of the periods corresponding to the driving frequencies f (i) (cf.
[10] and references quoted therein) with a dispersion related both to the noise
amplitude σ2 and to the modulation amplitude A.

To model the behavior of the processing neuron we assume that in the absence
of activity from both input neurons the membrane potential evolves according
to an Ornstein-Uhlenbeck process (cf. [6]) with parameters μOU , σ2

OU and θOU .
Whenever a spike is elicited by either of the input neurons the membrane po-
tential Yt of the processing neuron undergoes a jump increasing its value by a
constant amount H . Hence the model Yt reaches the threshold S either by pure
diffusion or by effect of an upward jump at time t̂ when Yt̂− ∈ [S − H, S).

The study is performed via computer simulation of the firing times both for
the input neurons and for the processing one.

For the spiking times of the input neurons we employ an algorithm similar to
the one described in [5].

To obtain the spiking times for the processing neuron we use a jump-adapted
simulation procedure analoguous to the one described in [8]. For every case
N = 50000 simulation runs for the processing neuron are executed and nor-
malized count plots of the simulated ISIs are drawn to represent the ISI
distribution.

To estimate the coherence of the output with the frequencies of interest we an-
alyze whether peaks arise at the corresponding periods in the normalized count
plots. Stochastic resonance is recognized by studying whether the ISI distribu-
tion heights at the period corresponding to the missing frequency go through
a maximum when the noise intensity σ2

OU is varied while keeping all the other
parameters of the model fixed.
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Fig. 1. Plot of E(X
(1)
t ) for μ = 0.6 mV ms−1, θ = 10 ms, S = 10 mV , σ2 =

0.6 mV 2ms−1, f (0) = 0.03125 ms−1, A = 1.5 mV ms−1 and Λ
(1)
j−1 assuming a value

of 10 ms.

3 Results

To understand the response of the model processing neuron to the double stim-
ulus in various conditions we distinguish among two different settings for the
periodic stimuli.

(a) Harmonic case: f (1) = 2f (0), f (2) = 3f (0) where f (0) denotes the fundamen-
tal frequency.

(b) Anharmonic case: f (1) = 2f (0) + δ, f (2) = 3f (0) + δ where f (0) is as above
and δ denotes the common shift in frequency.

To investigate on the ISI distribution for the processing model neuron we consider
here some examples in the two harmonic and anharmonic instances.

Wechoose theparameters for the inputneuronsand for theprocessingone so that
the mean firing frequencies, computed as the inverse of the mean ISIs, lie in most
instances between 5 and 30 spikes per second, which is generally accepted as
reasonable. In particular we select μ = μOU = 0.6 mV ms−1, θ = θOU = 10 ms,
S = 10 mV , σ2 = 0.6 mV 2ms−1 and f (0) = 0.03125ms−1 as in [5] and we vary the
values of A, H , δ and σ2

OU as required by the different criteria of analysis chosen.
Case (a). A preliminary analysis was performed to find the value of A that pro-
duces a good phase-locking of the spiking times with the modulation frequencies
for both input neurons. The optimal value results to be A = 1.5 mV ms−1.
Throughout this study the jump amplitude H ranges between 2.5 mV and
3.5 mV since for values lower then 2.5 mV the effects of jumps vanishes while
for H > 3.5 mV almost each upward excitatory jump causes the crossing of the
threshold.
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Fig. 2. Normalized count plots of the simulated ISIs in the harmonic case for μ =
μOU = 0.6 mV ms−1, θ = θOU = 10 ms, S = 10 mV , σ2 = 0.6 mV 2ms−1,
f (0) = 0.03125 ms−1, A = 1.5 mV ms−1, H = 2.5 mV and (panel a to d) σ2

OU =
0.1, 0.5, 1, 2 mV 2ms−1

In Fig. 2, panels a − d, we show the normalized count plots of the simulated
ISIs corresponding respectively to the different values of σ2

OU = 0.1, 0.5, 1 and
2 mV 2ms−1. Here the jump amplitude is set to H = 2.5 mV . The upper and
lower insets in panel a show the normalized count plots for the simulated ISIs of
the input neurons with frequencies respectively f (1) and f (2) that determine the
spiking activity of the processing neuron illustrated in the four panels of Fig. 2.
Note that the distributions in the inset panels show a dispersion with respect
to the peak values although the small dimension of the Figures gives the false
intuition of a sharp periodic behavior.

Here and in all the cases considered the ISI normalized count plots exhibit
peaks at integer multiples of the period T (0) = 1

f(0) corresponding to the funda-
mental frequency. Depending upon the value assumed by σ2

OU peaks may appear
also at multiples of the two harmonic frequencies f (1) and f (2).

In Fig. 3 the height of the peaks in the simulated ISI normalized count plots
at T (0) is represented as a function of the noise intensity σ2

OU for the three values
of H = 2.5, 3.0 and 3.5 mV .

A maximum in the peak height at T (0) as a function of σ2
OU appears for all the

values of H considered, revealing that a stochastic resonance phenomenon arises
in correspondence with the ”ghost” fundamental frequency which is missing in
the input. The level of noise that maximizes the processing neuron response to
the fundamental frequency f (0) decreases for increasing values of H = 2.5, 3.0
and 3.5 mV .

The analysis on the height of the peaks that arise in the ISI normalized count
plots shows a stochastic resonance-like behavior also in correspondence with the
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Fig. 3. Height of the peaks at T (0) = 1
f(0) in the simulated ISI normalized count plots

for the harmonic case as a function of σ2
OU for (bottom to top) H = 2.5, 3.0, 3.5 mV .

Other parameters as in Fig. 2.

frequency f(1)

3 . However in this case the peak heights at t = 3
f(1) are always much

lower than the peaks at T (0).
An analoguous study conducted in the super-threshold regime (data not

shown) evidentiates that for the same value of H the peak height at T (0) are
much higher than in the case considered here. Furthermore the ghost stochas-
tic resonance behavior arises only for smaller values of H with respect to the
sub-threshold regime when the input neurons are in the super-threshold regime.
Case (b). We study here the case where the two frequencies f (1) and f (2)

are shifted with respect to 2f (0) and 3f (0), respectively, by a common value δ.
Our aim is now to ascertain whether the processing neuron simply detects the
frequency difference f (1)−f (2) or whether the response depends on the frequency
shift δ. In analogy with Case (a) we choose a value of A = 1.5 mV ms−1 and we
vary the jump amplitude H in the range between 2.5 and 3.5 mV . We set the
shift value to δ ∼= 1

10f (0) ms−1. A motivation for this choice is presented in the
Appendix.

In Fig. 4, panels a − d, the normalized count plots of the simulated ISIs
corresponding respectively to σ2

OU = 0.1, 0.5, 1 and 2 mV 2ms−1 are represented
when H = 2.5 mV . As in Fig. 2, the upper and lower insets in the first panel
show the normalized count plots for the simulated ISIs of the input neurons with
frequencies f (1) = 2f (0) + δ (upper inset) and f (2) = 3f (0) + δ (lower inset).

The ISI normalized count plots exhibit peaks in correspondence to integer
multiples of a missing frequency f (r) �= f (0). An approximated value for f (r)

can be obtained by means of a theoretical analysis of the possible coincidence
detection of the spikes from the two input neurons by the processing one. A
sketch of the analysis is given in the Appendix. For intermediate values of the
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Fig. 4. Normalized count plots of the simulated ISIs in the anharmonic case. Same
parameters as in Fig. 2, δ = 1

10f (0) and (panel a to d) σ2
OU = 0.1, 0.5, 1, 2 mV 2ms−1.
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Fig. 5. Height of the peaks in the simulated ISI normalized count plots at T (r) = 1
f(r)

in the anharmonic case as a function of σ2
OU for (bottom to top) H = 2.5, 3.0, 3.5 mV .

Other parameters as in Fig. 4.

noise intensity σ2
OU for the processing neuron the peak heights at T (r) = 1

f(r)

are higher than the corresponding values at T (0) in the harmonic regime thus
hinting to a stronger effect of the input composition in this range.

In Fig. 5 we show the height of the peaks in the simulated ISI normalized
count plots at T (r) = 1

f(r) as a function of the noise intensity σ2
OU for the three

values of H = 2.5, 3.0 and 3.5 mV .
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A maximum appears for all the values of H considered, shifting towards lower
levels of the processing neuron noise intensity σ2

OU for the highest value of H .

4 Conclusions

We have investigated the response of a processing neuron whose membrane po-
tential is modeled by means of a jump-diffusion process where the jumps are de-
termined by the spiking activity of two model neurons subject to sub-threshold
periodic stimuli.

The processing neuron detects the missing fundamental frequency in the har-
monic case and a different missing frequency in the anharmonic setting. More-
over a ghost stochastic resonance behavior has been observed in both cases in
correspondence with such frequencies for a suitable range of noise levels and
jump amplitude values. The processing neuron seems thus able to detect the
coincident arrival of spikes from each input neuron. This coincidence produces
an effect which is analoguous to the composition of periodic inputs in a single
neuron model (cf. [5] and references therein).

The features illustrated by means of examples are common to more general
instances since they are maintained also in cases with different fundamental
frequencies f (0) or different noise intensities σ2 for the two input neurons as
well as when the input neurons are in the super-threshold regime. However in
this last instance a more straightforward interpretation of the resulting spiking
behavior can be provided.
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Appendix

Let us consider the processes X
(i)
t , i = 1, 2 solutions to the SDEs (1). Further-

more let us define T (i) = 1
f(i) , i = 1, 2 where the frequencies f (i) , i = 1, 2 are

defined as in Case (b) of Section 3.
By means of a suitable space transformation we can throw the problem of

determining the time at which X
(i)
t , i = 1, 2 first cross the constant threshold

S > 0 into the problem of finding the time at which the Ornstein-Uhlenbeck
process XOU

t first crosses suitable modulated boundaries S(i)(t) , i = 1, 2.
Indeed employing the method introduced in [7] one can look for space-time

transformations x(i),OU = ψ(x(i), t), tOU = φ(t) that map the processes X
(i)
t , i =

1, 2 with corresponding threshold S into Ornstein-Uhlenbeck processes with cor-
responding thresholds S(i)(t) , i = 1, 2. In this particular case it is easy to check
that the transformations do not affect the time variables while for the space
variables one gets

ψ(x(i), t) = x(i) + ν(i)(t), i = 1, 2 (3)

where ν(i)(t), i = 1, 2 are solutions to the following first order differential equa-
tions:

dν(1)(t)
dt

− 1
θ
ν(1)(t) + A cos

((
4πf (0) + δ

)
t
)

= 0; (4)

dν(2)(t)
dt

− 1
θ
ν(2)(t) + A cos

((
6πf (0) + δ

)
t
)

= 0. (5)

Denoting as α = 1
θ , the transformed thresholds are then obtained as:

S(1)(t) = S +
Aα cos

((
4πf (0) + δ

)
t
)

−
(
2Af (0) + Aδ

)
sin

((
4πf (0) + δ

)
t
)

α2 + 4(f (0))2 + 4f (0)δ
(6)

and

S(2)(t) = S +
Aα cos

((
6πf (0) + δ

)
t
)

−
(
3Af (0) + Aδ

)
sin

((
6πf (0) + δ

)
t
)

α2 + 9(f (0))2 + 6f (0)δ
. (7)

A coincidence in the times at which both processes X
(i)
t , i = 1, 2 reach the

threshold S will be more likely to occur if S(1)(t) and S(2)(t) are in phase. By
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inspection of the plots of (6) and (7) or by using numerical procedures one can
determine min

{
(h, k) , h = 1, 2, ...; k = 1, 2, ... :

∣∣hT (1) − kT (2)
∣∣ ≤ λ

}
for a suit-

able small value of λ. Note that λ must be much smaller then both T (1) and
T (2). Choosing in particular λ = T (1)

16 , under the condition δ ≤ 1
5f (0) one gets

(h, k) = (2, 3). The time at which the probability that both processes X
(1)
t and

X
(2)
t reach their thresholds is maximized can then be approximated as

T (r) ∼=
(
2T (1) + 3T (2)

)
2

. (8)

For a choice of the parameter values as in Section 3 one gets T (r) ∼= 30.7 ms
that coincides with the results obtained from the simulations.

In Fig. 6 the shapes of S(1)(t) and S(2)(t) corresponding to the examples in
Section 3 are shown together with the value of T (r).

0 10 20 30 40 50 60 70 80
6

7

8

9

10

11

12

13

14

15

t (ms)

S
1 (t

),
 S

2 (t
) 

(m
V

)

t=T
r
 

S1(t)
S2(t)

Fig. 6. Plots of S(1)(t) and S(2)(t) corresponding to the examples in Section 3.
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Abstract. We study the transmission of excitatory synaptic inputs by a
network of interneurons, coupled by electrical and inhibitory synapses, in
the cases in which the network consists of three and four coupled units.
It is shown that in both cases the network behaves as a coincidence
detector.

1 Introduction

The main task of inhibitory interneurons, innervating the somatic and periso-
matic region of pyramidal cells, is that of modulating the firing activities of these
neurons [1]. Paired recordings of fast spiking (FS) interneurons have shown that
they are interconnected with electrical and inhibitory synapses [2,3]. The rele-
vance of the electrical synapses for the generation of synchronous discharges was
shown experimentally: the impairing of the electrical synapses between corti-
cal interneurons disrupts synchronous oscillations in the gamma frequency band
that seem to be associated to cognitive functions [4].

The presence of electrical coupling in a pair of FS inhibitory interneurons
promotes synchronization at all spiking frequencies and this property is enhanced
when the strength of the electrical coupling increases [5]. Additional experiments
suggest that FS cells play a relevant role in the detection of synchronous activity
[6] and are involved in the feed-forward inhibition of pyramidal cells as a direct
consequence of their fast and reliable response to excitatory inputs [7].

Recently we have shown that a pair of FS cells, coupled by electrical and
inhibitory synapses, is capable to detect and transmit synchronous excitatory
inputs [9]; here we extend this study to the case of three or four coupled cells.
A motivation to study a small population of interneurons, coupled by electri-
cal coupling , comes from recent experimental findings [8,10,11,12]. In fact the
inhibitory interneurons of the thalamic reticular nucleus are interconnected by
electrical synapses and form clusters that are quite small compared with those in
the neocortex; moreover it was shown that the electrical coupling coordinates the
rhythmic activity of these neural netwoks [10]. An additional contribution to the
synchronization properties of thalamic reticular neurons probably comes from
the excitatory inputs that they receive from neocortex and thalamic relay nuclei

F. Mele et al. (Eds.): BVAI 2007, LNCS 4729, pp. 408–417, 2007.
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[10]. Another example is that of the Inferior Olive region: the corresponding ex-
perimental results indicate that the presence of gap junctions between neurons
plays a key role in promoting synchronization[11,12]. In this paper we study how
the output of a network of coupled cells is affected by the time delay between
its excitatory input pulses. In particular, by using a computational approach,
we investigate the capability of a network of three and four coupled interneu-
rons of transmitting their input signal mimicking an excitatory synaptic pulse.
Our choice of the size of the network is a compromise between computational
requirements and biological relevance. A simple neurobiological justification of
this choice comes from the experimental results reported in [10]: it was shown
that the soma size of the interneurons in the thalamic reticular nucleus ranged
from 141 to 503 μm2. From these data we estimate the average soma area as
SA = 141+503

2 μm2 = 322μm2. Moreover it was shown that the distance di,j be-
tween the soma of all electrical coupled cells of the thalamic reticular nucleus
satisfies di,j ≤ 2R = 40μm [10]. Thus, an estimation of the number of interneu-
rons contained within a circle of diameter 2R is given by nInt = πR2

SA

∼= 3.9.
This estimation of the size of the network of electrically coupled interneurons
in the thalamic reticular nucleus shows that our choice is compatible with the
biological data.

2 Methods

2.1 Model Description

To model an isolated FS cell receiving an excitatory synaptic pulse, we use the
following single compartment biophysical model studied in [9]:

C
dV

dt
= IE −gNam

3h(V −VNa)−gKn(V −VK)−gL(V −VL)+gExcP (t−t∗) (1)

dx

dt
=

x∞ − x

τx
, x∞ =

αx

αx + βx
, τx =

1
αx + βx

, (x = m, h, n) (2)

where C = 1 μF/cm2, IE is the external stimulation current. The maximal
specific conductances and the reversal potentials are respectively: gNa = 85
mS/cm2, gK = 60 mS/cm2, gL = 0.15 mS/cm2 and VNa = 65 mV , VK = -95
mV , VL = - 72 mV . The kinetic of the Na+ current is described by the following
activation and deactivation rate variables: αm(V ) = 3.exp[(V +25)/20], βm(V ) =
3.exp[−(V + 25)/27], αh(V ) = 0.026exp[−(V + 58)/15], βh(V ) = 0.026exp[(V +
58)/12]. The kinetics of the potassium current K+ is defined by: αn(V ) = [-
0.019(V -4.2)]/exp[-(V-4.2)/6.4]-1, βn(V ) = 0.016exp(-V /vAHP), where vAHP
= 13 mV . The term gExcP (t − t∗) represents the excitatory pulses starting at
time t∗ and it is defined by: gExcP (t − t∗) = gExcH(t − t∗){N [e−(t−t∗)/τD −
e−(t−t∗)/τR ]} where, H(∗) is the Heaviside function, N is a normalization con-
stant (| P |≤ 1), τD = 2ms and τR = 0.4ms are, respectively, realistic values
of the decay and rise time constants of the excitatory pulse and gExc is its
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amplitude. For a network of coupled cells, the j-th interneuron receives the ex-
citatory pulse at time tj with: tj ≤ tj+1. Moreover, the time delays between
two consecutive pulses will be adopted to be equal: i.e. tj+1 = tj + Δt. In
keeping with the experiments, the simulations are carried out to reproduce the
membrane potential fluctuations occurring in in vitro conditions [13]. Thus, the
j − th cell model is injected with a noisy current: σξj(t), ξj(t) being an un-
correlated Gaussian random variable of zero mean and unit standard deviation
(< ξi(t), ξj(t) >= δij , i �= j = 1, 2, 3). The values of the stimulation current
IE and of σ are chosen in such a way that no firing occurs in absence of the
excitatory pulse. We investigate the network of coupled interneurons in realistic
conditions: i.e. when, in the absence of coupling, the firing probability of each
cell receiving the excitatory pulse is lower than 1. With this in mind the para-
meters values IE , σ and gEXC are so chosen that the firing probability of each
cell is ∼= 0.75 (see [6]). Lastly, to get accurate firing statistics the stimulation
protocol is repeated (NTrials = 400) by using independent realizations of the
applied noisy current.

2.2 Synaptic Coupling

The electrical coupling between a pair of interneuron is modeled as follows:

IEl,1 = −gEl(V1 − V2), (3)

where gEl is the maximal conductance of the gap junction (in mS/cm2 unit). In
the case of a network of N coupled interneurons the electrical coupling current
of the i − th cell is defined as follows:

IEl,i = − 1
N − 1

∑
k

gEl(i, k)(Vi − Vk) (4)

where gIn(i, k) = gIn(k, i) is the electrical coupling conductance between in-
terneuron i and k.

The inhibitory postsynaptic current (IPSC) is given by:

IIn(t) = −gInsPre(t)(VPost(t) − VRev), (5)

where gIn is the specific maximal conductance of the inhibitory synapse (in
mS/cm2 unit), sPre(t) is determined by the equation ṡPre = α0T (VPre)(1 −
sPre) − τ−1

DecaysPre, VPre (VPost) is the membrane potential of the presynap-
tic (postsynaptic) neuron, τDecay is the decay time constants of the IPSC,
α0 = 6ms−1 and T (VPre) = (1 + e−VPre)−1. For FS interneurons the IPSC
is characterized by a reversal potential VRev= -80 mV and a mean decay time
constant τDecay = 2.6 ms [13]. For a network of N coupled cells the total in-
hibitory current of the i − th unit is defined as:

IIn,i(t) = − 1
N − 1

∑
k

gIn(i, k)sk(t)(Vi(t) − VRev) (6)
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where the first sum is over the N − 1 interneurons and gIn(i, k) = gIn(k, i) is
the inhibitory conductance value between cell i and k.

For all simulations the adopted value of the parameters gIn(i, k) and gEl(i, k)
were all within the physiological range [2,3,13]. Then, for the i − th cell model,
the total coupling current IEl,i + IIn,i was added to the right-hand side of
equation 1.

3 Results

3.1 Three Coupled Interneurons

Let us consider a set of three interneurons, coupled by electrical synapses alone.
We study how the excitatory synaptic pulses are transmitted by this network. To
get a more clear understanding, it is useful and meaningful from the neurobiolog-
ical point of view, to think these inputs to be the postsynaptic currents generated
by the presynaptic activities of excitatory neural networks. Thus, the input to
the network is the set of all excitatory pulses, while the output is represented
by the firing activity generated by this input. To characterize quantitatively the
information transmission property of each cell we proceed as follows.

Let pj = nj

NTrials
be the firing probability of the j − th cell receiving the exci-

tatory pulses, where nj represents the total number of spikes generated during
the NTrials trials. The quantity pj is used here as a measure of the information

transmission of the excitatory synaptic pulses. Then, the quantity pA =
�

j pj

N
represents the information transmission measure of a network of N coupled cells.
The results, in the case in which the electrical conductances among interneurons
are all equal, are reported in figure 1.

When the time delay between the pulses is Δt = 0.5ms, the spikes histograms
show that all cells respond to the excitatory pulses synchronously. Thus, in
this case the excitatory pulses are transmitted by the network of coupled cells
efficiently (pA

∼= 0.81): i.e. each interneuron fires with high probability and
this leads to a very powerful control of the timing of pyramidal cells arising
from the network output. When the time delay between the pulses increases to
Δt = 4ms there is a strong (slight) reduction of the firing activity of cell 1 (cell
2), while that of cell 3 increases slightly. Thus, for Δt = 4ms the information
transmission of the excitatory pulses is smaller (pA

∼= 0.57) of that occurring in
the case Δt = 0.5ms. The neurobiological meaning of this last result is that the
control of the firing activity of the excitatory cells, arising from the output of
the network of inhibitory interneurons, reduces. To get a better understanding
of the transmission properties of the network, in the left panel of figure 2 are
reported the firing probabilities of the three coupled interneurons against the
time delay between the excitatory pulses. The adopted values of the delay times
were: Δt = {0.5, 1, 2, 4, 8, 10, 12, 15, 18, 20, 25, 30}(ms).

Inspection of these data implies that the higher capability of transmission of the
excitatory inputs occurs when the time delay between them is in the range 0− 2ms:
i.e. the network behaves as a coincidence detector and, therefore the maximal
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Fig. 1. Signal transmission properties of a network of three coupled interneurons for
two values of the time delay between the excitatory pulses and in absence of inhibitory
coupling. Cell 1 receive the excitatory pulse at the time t1 = 200ms, cell 2 at t2 = t1+Δt
and cell 3 at t3 = t2 + Δt. For the left panel it is: pA

∼= 0.81, while for the right one it
is pA

∼= 0.57. For all panels the parameter values are: t1 = 200ms, gExc = 5.5μA/cm2,
σ = 0.3μA/cm2, IE = 0.5μA/cm2, NTrials = 400, gEl(1, 2) = gEl(1, 3) = gEl(2, 3) =
0.02mS/cm2; the bin size is 0.3ms.

Fig. 2. Firing probabilities of three coupled interneurons against the time delay be-
tween the excitatory pulses and in absence of inhibitory coupling. Left panel: gEl(1, 2) =
gEl(1, 3) = gEl(2, 3) = 0.02mS/cm2; right panel: gEl(1, 2) = gEl(1, 3) = gEl(2, 3) =
0.06mS/cm2. For all panels the parameter values are: t1 = 200ms, gExc = 5.5μA/cm2,
σ = 0.3μA/cm2, IE = 0.5μA/cm2, NTrials = 400. The gray line represents the average
firing probability of the network (pA).

network response (measured by the pA value) occurs when the excitatory inputs
are near synchronous. By increasing the electrical coupling conductance value
(see right panel of figure 2) promotes the information transmission for Δt values
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Fig. 3. Firing probabilities of three coupled interneurons against the time delay be-
tween the excitatory pulses. The parameter values are: t1 = 200ms, gExc = 5.5μA/cm2,
σ = 0.3μA/cm2, IE = 0.5μA/cm2, NTrials = 400. For the left panels it is
gEl(1, 2) = 0.02379mS/cm2 , gEl(1, 3) = 0.02047mS/cm2 , gEl(2, 3) = 0.01522mS/cm2

and gIn(1, 2) = gIn(1, 3) = gIn(2, 3) = 0mS/cm2, while for the right panel it is
gEl(1, 2) = gEl(1, 3) = gEl(2, 3) = 0.02mS/cm2 and gIn(1, 2) = gIn(1, 3) = gIn(2, 3) =
0.1mS/cm2. For both panels the gray line represents the average firing probability of
the network (pA).

Fig. 4. Firing probabilities of three coupled interneurons against the time delay be-
tween the excitatory pulses. The parameter values are: t1 = 200ms, gExc = 5.5μA/cm2,
σ = 0.3μA/cm2, IE = 0.5μA/cm2, NTrials = 400. For the left panels it is gEl(1, 2) =
gEl(1, 3) = gEl(2, 3) = 0.02mS/cm2, gIn(1, 2) = gIn(1, 3) = gIn(2, 3) = 0.1mS/cm2

and τ = 6ms, while for the right panel it is gEl(1, 2) = gEl(1, 3) = gEl(2, 3) =
0mS/cm2, gIn(1, 2) = gIn(1, 3) = gIn(2, 3) = 0.1mS/cm2 and and τ = 2.6ms. For
both panels the gray line represents the average firing probability of the network (pA).

in the range 0 − 3ms. For Δt > 3ms the information transmission for the case
gEl(i, j) = 0.02mS/cm2 is larger than that for gEl(i, j) = 0.06mS/cm2.

The present results are a generalization of that found in the case of two coupled
cells, experimentally [6] and theoretically [9]. Moreover the results obtained in
the case of two coupled cells can be used to explain why it is p1 < p2 < p3 for
Δt �= 0 (see figures 1 and 2).
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The data reported in figure 2 show that the firing activity of the network
stops when the time delay between the excitatory pulses gets a sufficiently high
value. This phenomenon was observed also in the case of two coupled cells [9].
In that paper it was shown both analytically and numerically that the input
resistance of each cell decreases when the time delay between the two excitatory
pulses is large. This explanation works also in the case of the three coupled cells.
A qualitative explanation is the following: let Ri and R̄i be the effective input
resistances of a cell of the network in the cases Δt � 0 and Δt � 1, respectively.
Moreover, let us assume that the dynamical regime of each cell is subthreshold.
When it is Δt � 0 the values of the differences Vi − Vj (i �= j) are smaller
than those computed for Δt � 1 (see [9]). Then, in the first case (Δt � 0)
the current fluxes evoked by the excitatory pulse are mediated (mainly) by the
capacitive and leakage conductances, while in the second case (Δt � 1) there
are additional current fluxes through the electrical synapses. Therefore, it follows
that it is Ri > R̄i. Thus, the amplitude of the depolarization evoked by the pulse
will be greater in the case Δt � 0 than for Δt � 1.

The results presented up to now were obtained in the case
gEl(1, 2) = gEl(1, 3) = gEl(2, 3) = 0.02mS/cm2,howchangetheywhentheelectrical
conductances values are not equal? The presence of heterogeneity in the electrical
coupling conductances is amore realistic representationof a real networkof coupled
interneurons; thus it is interesting to investigate how in this case the transfer of
informationoccurs.Tothisaimtheelectricalconductancesvaluesweregeneratedby
using a Gaussian distribution having mean value gEl(i, j) = 0.02mS/cm2 and
standarddeviationσgEl

= 0.003mS/cm2andthecorrespondingresultsarereported
in the left panel of figure 3.

Inspection of these data shows that, also in the presence of heterogeneties, the
network is capable of transmitting its inputs when they are near synchronous.
Thus the network behaves, also in this case, as a coincidence detector. The
robustness of this property leads us to predict its validity for networks of larger
size.

How change the previous results when the inhibitory coupling is present?
The results are shown in the right panel of figure 3 and show that the network
behaves as a coincidence detector also in this case. The results do not change
qualitatively when heterogeneity is introduced (data not shown).

Next we investigate how the results reported in the right panel of figure 3
change when the decay time constant of the inhibitory postsynaptic current in-
creases. The results, for the case τDecay = 6ms, are reported in the left panel
of figure 4 and show that are similar to those reported in the right panel of
figure 3. An interesting question is to see whether the coincidence detector prop-
erty of the network is preserved when the interneurons are coupled by inhibitory
synapses alone. The results are reported in right panel of figure 4 and show that
the signal transmission properties of the network (measured by the pA value) are
different from those obtained in the presence of electrical coupling. In particular,
these data show that, for small time delay values (Δt < 2ms), it is pA

∼= 0.63
while for figure 2 and 3 the corresponding pA values are greater than 0.63. For
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time delay values Δt >> 1 the pA value approaches, as expected, 0.75 that
was obtained in absence of coupling among the cells (see 2.1). In conclusion the
network does not behave as a typical coincidence detector in this case.

3.2 Four Coupled Interneurons

Let us now consider the case of a network of four inhibitory interneurons coupled
by electrical and inhibitory synapses. As in the previous section we investigate
the signal transmission properties of the network when each cell receives an
excitatory input pulse. The results for the case in which the cells are coupled by
electrical synapses alone are reported in the left panel of figure 5, while those
obtained in the presence of both types of coupling are in the right panel. These
data indicate, as the previous ones, that the network behaves as a coincidence
detector. The results do not change when heterogeneity is introduced in the
coupling (data not shown). Results similar to those reported in figures 3 and
4 were also obtained in the presence of inhibitory coupling (data not shown).
Therefore, the findings obtained for the networks of three and four coupled cells,
suggest that the presence of the electrical coupling confers to the network the
capability to detect synchronous inputs.

The experimental studies on coupled interneurons showed that the presence
of electrical synapses between the cells promotes their firing synchrony [2,3,5,6].
In particular it was shown that the presence of electrical coupling in a pair of
coupled interneurons confers to the network the capability to detect synchronous
inputs [6,8]. Our results agree with these experimental findings. For instance, the
All Amacrine cells in the mammalian retina are coupled by electrical synapses
and receive excitatory inputs from Rod Bipolar cells [8]. A recent experimental

Fig. 5. Firing probabilities of four coupled interneurons against the time delay between
the excitatory pulses. The parameter values are: t1 = 200ms, gExc = 5.5μA/cm2,
σ = 0.3μA/cm2, IE = 0.5μA/cm2, NTrials = 400. For the left panels it is gEl(i, j) =
0.02mS/cm2(i �= j = 1, 2, 3, 4) and gIn(i, j) = 0mS/cm2(i �= j = 1, 2, 3, 4), while
for the right panel it is gEl(i, j) = 0.02mS/cm2(i �= j = 1, 2, 3, 4) and gIn(i, j) =
0.1mS/cm2(i �= j = 1, 2, 3, 4). For both panels the gray line represents the average
firing probability of the network (pA).
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paper analysed the information transmission properties of a pair of coupled All
Amacrine cells: i.e. the firing probability of each cell when receiving excitatory
inputs [8]. It was found that when the two excitatory pulses were applied asyn-
chronously the firing probability of the cells was low, while it was significantly
higher when the two pulses were synchronous [8]. Thus, the results reported here
(see figures 2,3,4 and 5) agree qualitatively with those experimental findings.

4 Conclusions

The excitatory synaptic communication among neurons is the basis for the
transmission and coding of the sensory information [7]. This neural activity is
modulated by the discharge of inhibitory interneurons [1]. Moreover it is now
established that interneurons are coupled also by gap junctions and play a key
role for the processing of the neural information [2,3,14]. In this paper we consid-
ered networks of three or four interneurons coupled by electrical and inhibitory
synapses and we studied how excitatory synaptic inputs are transmitted by the
networks. It was found, both in the case of three and of four coupled cells, that
the network behaves as a coincidence detector when the electrical synapses are
set on: the transmission of the information is high when the excitatory pulses
are near synchronous, while it is low when the inputs are asynchronous. These
simulations results suggest that this property holds in general for networks of
larger size.
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Abstract. Neurophysiological investigations suggest that presynaptic ionotropic 
receptors are important mechanism for controlling synaptic transmission. In this 
paper, presynaptic kainate receptors are incorporated in a feedforward 
inhibitory neural network in order to investigate their role in the cortical 
information processing. Computer simulations showed that the proposed 
mechanism is able to compute the function maximum by disinhibiting the cell 
with the maximal amplitude.  The maximum is computed with high precision 
even in the case where inhibitory synaptic weights are weak and (or) 
asymmetric. Moreover, the network is able to track time-varying input and to 
select multiple winners. These capabilities do not depend on the dimensionality 
of the network. Also, the model is able to implement the winner-take-all 
behaviour. 

Keywords: glutamate receptors; winner-takes-all; maximum operator; synaptic 
modulation; presynaptic inhibition.  

1   Introduction 

The maximum (MAX) function returns the magnitude of the largest of its arguments. 
It is a basic non-linear operator from which more complex algorithms and models can 
be built [15]. Theoretical considerations about object recognition in the visual cortex 
suggest that computing the maximum can be an important step in achieving invariant 
neural responses with respect to variations in input [11]. Neurophysiological 
investigations showed that the cells in the inferotemporal cortex and V4 may indeed 
compute maximum of their inputs [5,12]. Yu et al. [15] analysed biophysical 
mechanisms which can support the maximum computation. They investigate various 
combinations of feedforward, feedback, subtractive, shunting, firing rate and spiking 
neural models. The general conclusion was that feedforward networks are not able to 
suppress the non-maximal input for a wide variety of inputs and parameter choices. 
On the other hand, the shunting feedback model is very robust with respect to 
parameter change. However, the feedback model has a drawback because it shows 
independence from initial conditions and it is consequently insensitive to the changes 
in the input after the convergence to the stable state.   

Networks for computing the maximum are closely related to more familiar winner-
take-all (WTA) networks [8,16]. WTA networks select the cell which receives the 
largest input without information about the magnitude of its activation. They are 
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important component of many neural models such as competitive learning algorithms, 
models of visual selective attention, perceptual processing and motor control 
[6,8,13,14]. Previous proposals for biologically realistic models of WTA behaviour 
relied on a feedback (or recurrent) lateral inhibition. Such models had limited success 
because they are dynamical systems which require symmetry and strong connection 
weights in order to remain stable and to select appropriate input [3,6]. If symmetry is 
violated, the dynamical instabilities may arise and the network may select the wrong 
input or it may not reach the equilibrium value at all [6,8]. Such difficulties clearly 
show that the feedback lateral inhibition is not sufficient to ensure robust MAX and 
WTA computation.  

The aim of the present paper is to provide a computational analysis of a new model 
for computing MAX and WTA based on presynaptic inhibition from excitatory 
neurotransmitter glutamate. Yuille and Grzywacz [16] introduce the feedback 
presynaptic inhibition where competition is achieved using axo-axonic synapses 
between the feedback inhibitory cells and excitatory axons from the input layer. Here, 
it is shown that the introduction of glutamate receptors on the axonal terminals of the 
feedforward inhibitory pathway allows computation of the maximum which is more 
robust compared to the model of Yuille and Grzywacz [16]. In particular, the 
proposed mechanism is able to select the largest input even if the network connections 
are weak and (or) asymmetric. Moreover, the network is able to track time-varying 
input without need to reset itself. Sensitivity to input fluctuations is an important 
property for real biological systems because they are immersed in dynamic 
environments [8].  

2   Methods 

We consider a neural network with shunting feedforward inhibition. The model is 
illustrated in Figure 1. Feedforward inhibitory axons from the input layer project to 
the excitatory cells in the output layer. Output from the excitatory cell forms an axo-
axonic synapses with axons of inhibitory cells (Fig 1a). We assume that inhibitory 
axon terminals are endowed with kainate receptors which are able to reduce inhibitory 
transmission from the axonal terminal when they are stimulated by glutamate [7]. 
Another possibility is that glutamate spill-over occurs at certain glutamergic synapses 
[2]. In that case, glutamate may freely diffuse into space around the cell and bind to 
the kainate receptors at axonal terminals of inhibitory interneurons (Fig 1b). 
Mathematically, the model is described as  

  [ ]∑ −−+−+−=
j

iijjjiiii
i

x TrxhzygfwxBIAx
dt

dx
)()()(τ          (1) 

and 

ii
i

y Iy
dt

dy +−=τ        (2) 

where xi is the firing rate of the excitatory (pyramidal) cell at the spatial position i 
which sends excitatory output to the inhibitory axons projecting from the cells in the 
input layer whose firing rate is denoted with yi.  
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Fig. 1. A model for computing the MAX function based on presynaptic inhibition of feed for- 
ward inhibitory pathways. Open circles are excitatory cells and filled circles are inhibitory 
cells. A) Implementation of the model using axo-axonal synapses from excitatory cells to 
inhibitory axons with presynaptic kainate receptors. B) Implementation of the model using 
glutamate spill-over which binds the presynaptic kainate receptors. The grey area indicates 
space where glutamate is spilled around the target cell. 

Time constants, tx, and, ty, control the speed of evolution of the activity of 
excitatory and inhibitory cells, respectively. Parameter, A, controls the speed of 
passive decay (-xi) for the excitatory cells which drives activity toward zero if there is 
no input; Ii is the input from the sensory receptors or earlier network layer; B defines 
the inhibitory saturation point, that is, the lower bound for activity level that could be 
obtained; wji is a synaptic weight of feedforward inhibitory connection from cell j in 
the input layer to cell i in the output layer; zij is a synaptic weight of presynaptic 
inhibition from the excitatory cell to inhibitory axons; the sum is taken from j=1,…, N 
where N is the dimension of the network; f(x), g(x) and h(x) are output functions 
given by·[x]=x if x>0 and ·[x]=0 if x ≤ 0 where stands for f, g, or h. Tr is a threshold 
for feedforward inhibitory transmission. Output functions describe simple 
rectification, which is necessary in a biologically plausible model, because they 
prevent excitatory connection from becoming inhibitory and vice versa.  

Term -h(xi) describes presynaptic inhibition by glutamate receptors. It acts on 
inhibitory signals from the input layer, yi, before they can perturb the target excitatory 
cell. Therefore, the feedforward inhibitory signal, yi, may trigger neurotransmitter 
release only if it is stronger than the retrograde signal from postsynaptic cell, xi. As a 
consequence, the excitatory cell with a certain activity level can inhibit all inhibitory 
signals form the cells with lower activity level, but it cannot inhibit signals from cells 
with stronger activity. The cell with the highest activity level does not receive any 
inhibition and therefore converges to the value proportional to the input strength. All 
other cells receive a certain amount of inhibition which gradually increases and drives 
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cell activity below the threshold. Presynaptic inhibition induces an ordering of 
activity values that corresponds to the magnitude of inputs. This allows the network to 
select the largest input even if the inhibitory connection strengths between cells are 
weak and (or) non-symmetric.  

The same mechanism can be applied for implementing WTA behavior when eqn 
(1) is replaced with  

( ) [ ]∑ −−+−−+−=
j

iijjjiiiii
i

x TrxhzygfwxBIxCAx
dt

dx
)()()(τ       (3) 

where all network parameters have the same meaning as for eqn (1) and constant C 
describes upper saturation point for xi. Therefore, xi is no longer proportional to the 
input magnitude but it will saturate to a value close to the C. Also, it is possible to 
replace feedforward inhibition with feedback inhibition when we change eqn (2) into   

ii
i

y xy
dt

dy +−=τ .       (4) 

In this case, inhibition will be even stronger compared to the feedforward case, but all 
desirable properties described here will be retained.  

3   Results 

Network equations (1) and (2) are numerically solved using the 4.5 Runge-Kutta 
method. Parameters were set to the following values: tx=1; ty=2; A=1; B=1; zij=1 for 
all i and j; Tr=0; N=30. With respect to the inhibitory synaptic weights, wji, we 
consider two cases: full connectivity with wji=.5 for all j and i, and nearest neighbour 
connectivity with wji=.5 for j = {i-1, i, i+1} and wji=0 for all other j. Fig 2 illustrates 
the model behaviour when tested on two different input patterns. Fig 2a shows the 
evolution of network responses when input has Gaussian distribution which is often 
the case in biological networks. Three objects centred at i = {8, 15, 22} were used 
with standard deviation, s = 2 and with different amplitudes. As can be seen, network 
with full connectivity finds the global maximum in the input. On the other hand, the 
network with the nearest neighbour connectivity computes the local maximum. It 
shows three distinct winners corresponding to the centres of the three objects. Despite 
the fact that amplitudes of the objects are widely different they are nevertheless 
represented separately indicating that the nearest neighbour connectivity is sufficient 
to obtain sharp contrast enhancement.  

Fig 2a shows another interesting point regarding the time needed to achieve 
convergence. In the model, the speed of selection is not dependent on the number of 
different elements in the input as it is in the case with WTA network based on 
oscillatory activity. However, reducing the distinctiveness (i.e., the difference 
between maximal and non-maximal input) of input elements increases the time 
necessary for convergence. In the network with full connectivity this is seen in 
response to the Gaussian input. The cells corresponding to the objects with smaller 
amplitudes are inhibited before the cells in the neighbourhood of the cell with the 
maximal input. In general, the speed of selection is very fast due to the fact that the 
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cell with the maximal input does not receive any inhibitory input. Therefore it 
exponentially converges to its equilibrium state without interference form the other 
cells.  

 

 

Fig. 2. Computer simulations illustrating the model behaviour on two different input patterns. 
A) Input with Gaussian shape tested on the network with full connectivity (middle row) and on 
the network with nearest neighbour connectivity (bottom row). B) Input with uniform random 
noise. Network is tested with Tr set to 0 (middle row) and with Tr set to .5 (bottom row). 

Fig 2b shows the network ability to handle noisy input and to select a group of 
locations with similar activity level. Here, the input is an intensity staircase with three 
distinct levels, Ii = {1, 2, 3} but it is obscured by the uniform noise in the range [-.25, 
.25]. Simulations in Fig 2b are performed using full connectivity but the value of the 
threshold for feedforward inhibition, Tr, is varied. In the Fig 2b, Tr=0, which forces 
the network to select one node with maximal activity. In this case, it is not justified to 
select a single location because noise prevents the network from detecting the full 
pattern (all locations with intensity value around Ii=3). When Tr is set to .5, all 
locations which receive input around Ii=3 will be selected. Similar arguments led to 
the construction of k-WTA networks which are able to select k winning cells [4]. 
However, in the k-WTA networks, the number of active cells is chosen in advance. 
Proposed network shows greater flexibility because the number of active cells will 
depend on the characteristics of the input and not on the network parameters. If there 
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are many cells with similar values they all will be selected together. If a single 
location with maximal input is distinctive it will be selected alone. 

 

 

Fig. 3. Computer simulation illustrating the model ability to track time-varying input. A) Cont- 
inuously changing input. B) Input with short delays between input presentations. Middle row 
shows output of the network with full connectivity. Bottom row shows output of the network 
with nearest neighbour connectivity.   

Fig 3 illustrates the network sensitivity to the alternations in the input pattern. 
Again, we consider separately the network with full connectivity (middle row) and the 
network with the nearest neighbour connectivity (bottom row). Input (top row) 
consists of a symmetric intensity staircase with value 1 at the position i=8. Intensity is 
reduced in constant steps of .1 to the left and to the right from the position i=8. At 
t=30 input shifts to the right for 8 locations. At t=60 it makes another shift to the right 
for another 8 locations. Parameter setting was the same as in previous simulations 
except for the time constant for excitatory cells which is set to tx=.1. When the input 
continuously changes (Fig 3a) the network with full connectivity is not able to track 
these changes. The reason is that the inhibitory cells are continuously active and they 
prevent new excitatory cells to become active and to build enough activity to use 
presynaptic inhibition. This does not happen to a network with the nearest neighbour 
connectivity provided that new input pattern is sufficiently different from the old 
pattern. In that case, previously active inhibitory cells will be further away from the 
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new maximal input and therefore they will not interfere with computing MAX at the 
new location. However, when there are delays between presentations of different 
input (Fig 3b) both types of networks are able to track the maximal input. When the 
input ceases for a short period of time, the network simply returns to the initial state 
and it is prepared to receive new input. 

An important test for the new model is the behaviour of the network under the 
changes of the strength of inhibitory synaptic weights (not shown). Previous models 
of MAX and WTA computation assumed very strong inhibition among cells 
[4,15,16]. We made parametric simulations with systematic variation of the wji from 
.1 to 1. The input pattern was Ii = 1 for i=1 and Ii=.999999 for all other spatial 
positions, i=2, …, N. With B =1, wji can be set as low as .2 to achieve MAX 
computation with high precision. If B=.5, wji, should be in the interval [.3, 1.] in order 
to compute MAX. Therefore there is a small trade-off between the lower saturation 
point, B, and the strength of synaptic weights necessary to achieve the precise MAX 
computation.  An interesting finding was that the inhibitory synaptic weights, wji, do 
not need to be symmetric. It is sufficient that, wji, is in the range specified above in 
order to achieve the desirable behaviour. A potential critique of these simulations is 
that, zij, synaptic weights for presynaptic inhibition are kept constant at the value of 1. 
This choice simply allows precise computation of the MAX operator. If we reduce, zij, 
excitatory cell with the maximal input it will no longer be able to protect itself from 
feedforward inhibition and its final state will be bellow maximum. However, lowering 
the strength of connections for presynaptic inhibition will not destabilise the network. 
These connections will have the effect similar to the effect of the threshold, Tr. In 
other words, they will reduce the precision of MAX computation but they will not 
abolish it completely.    

Computer simulations also verified several other features of the new model. For 
instance, the proposed mechanism is not dependent on the dimensionality of the 
network. We tested this property by systematically increasing the number of neurons 
from N=2 to N=30. The input was of the same pattern as in the previous simulation. The 
precision of the MAX computation remains constant across the change in the number of 
active cells. Fukai and Tanaka [4] suggest that competitive networks should be able to 
ignore the noise present at the start of the simulation. In other words, when initial values 
for the simulations are set to some small random values the network should nevertheless 
find the cell with the maximal input. The present model is consistent with this 
requirement providing further evidence for noise tolerance. It is interesting to note that 
the proposed model achieves the desired behaviour using the linear output function 
(above the threshold) and the same behaviour is obtained even if f() is slower-than-
linear. This is in contrast with many previous models which usually require faster-than-
linear output function in order to achieve MAX or WTA computation.     

4   Discussion 

Yuille and Grzywacz [16] proposed that a presynaptic inhibition of excitatory input 
pathways is a biophysical mechanism for MAX and WTA computation. However, 
their model has several deficiencies. Firstly, it depends on the parameter λ which 
controls the amount of competition. If λ is chosen small, model does not exhibit WTA 
behaviour. The best performance is achieved when λ is set to a biophysically 
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unrealistic value. Also the model uses a non-linear exponential output function.  
Secondly, the model depends on the dimensionality of the network. That is, 
performance of the model is degraded when more cells are introduced in the network. 
Thirdly, the network does not reset its activity when input is removed. This is 
undesirable because the network is not able to respond to the changes in the input 
pattern. It may be argued that such behaviour is useful when the winning node must 
be stored in short-term memory but it is problematic for modelling many other aspects 
of the cortical processing related to motion perception, and attention. We proposed a 
new model with presynaptic inhibition of feedforward inhibitory pathways. The new 
model addressed all issues which arise for Yuille and Grzywacz’s model as it is 
verified by computer simulations. Moreover, it is more robust with respect to the 
changes in parameter settings.  

Presynaptic inhibition of inhibitory pathways effectively computes the activity 
difference between the input to the target cell and the input from the rest of the 
network. In the context of modelling visual selective attention Tsotsos et al. [13] 
proposed a WTA mechanism based on computing activity difference between nodes. 
However, they do not specify neural mechanisms which are able to compute 
difference and they do not use real-time formalism. Therefore, their model did not 
deal with the issues of the connectivity, symmetry, and output functions. Modulation 
of inhibitory synaptic transmission by kainate receptors may be understood as a real-
time biophysically realistic extension of their proposal.  

Fukai and Tanaka [4] and Wang [14] argued that in many situations WTA 
behaviour is not sufficient and the output with multiple winners is more desirable. For 
instance, Wang [14] introduced a selection network based on relaxation oscillators 
which can select the representation of the whole object and not just a single point. The 
present approach is compatible with the requirements for multiple winners. When 
there are more inputs with the same maximal amplitude, all excitatory cells receiving 
such input will be selected due to the fact that their presynaptic inhibition will cancel 
all feedforward inhibition. Another possibility for insuring multiple winners in a noisy 
environment is to set the threshold for inhibitory transmission, Tr, to some small 
positive value. In the case, Tr > 0, all cells whose activity is in the interval between 
xmax and xmax - Tr, will be selected because they will not receive inhibition. In other 
words, all cells which are similar in magnitude to the winning cell will be selected. It 
is also possible that the threshold could be modulated in a task dependent manner or 
modulated depending on the statistics of the input. Such schemes will further increase 
the flexibility of the network. 

Presynaptic inhibition is sensitive on the time of arrival of excitatory and inhibitory 
signals. If excitatory signals arrive before inhibitory, depolarization will initiate 
presynaptic inhibition which will prevent the following feedforward inhibition. On the 
other hand, if feedforward inhibitory signals arrive before the excitatory ones, they 
may prevent the cell from depolarizing enough to reach the threshold and to initiate 
disinhibition by presynaptic inhibition on glutamate receptors. Therefore, the 
proposed mechanism can be used for computing WTA and MAX in a temporal 
domain. This is true under the assumption that input signals convey information about 
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the input magnitude by delays of initiation of single spikes across axon. In this coding 
scheme, the cell which receives the largest input will fire first; second largest cell will 
fire second and so on. When the first spike arrives at the corresponding target cell it 
depolarizes the cell and induces presynaptic inhibition on inhibitory axons projecting 
to it. Presynaptic inhibition will protect the cell from inhibitory spikes arriving latter. 
When the second spike arrives on the corresponding target cell it will not induce 
presynaptic inhibition on this cell because the cell is already inhibited from the 
previously activated cell. The same is true for all other spikes that will arrive later in 
time on all other cells. 

Disadvantage of the proposed mechanism is that it requires a large number of axo-
axonic connections between nodes in the output layer and feedforward inhibitory 
pathway. This type of connectivity is not supported by physiological data. We 
presented this version of the model in order to facilitate comparison with the model of 
Yuille and Grzywacz [16]. Biophysically plausible version of the model which does 
not require extensive connectivity uses glutamate spill-over instead (Fig 1b). Potential 
problem with glutamate spill-over is that a large amount of glutamate needs to be 
concentrated in the extra-cellular space which may have harmful effect on the neural 
tissue. Therefore, usefulness of the glutamate spill-over is restricted to small 
networks. However, there is possibility that other neurotransmitters such as GABA 
may use spill-over in order to influence inhibitory axonal terminals. Another 
possibility is that postsynaptic cell excretes neurotransmitter which binds to 
presynaptic receptor and reduces the amount of inhibition from presynaptic terminal 
[1,9]. This is known as depolarization-induced suppression of inhibition (DSI). It has 
been studied in the cerebellum and the hippocampus but it could be a general neural 
mechanism which allows the postsynaptic cell to control the amount of 
neurotransmitter release. Investigations showed that GABA and endocannabinoids are 
involved in this type of retrograde signalling [1,9]. Therefore, functional description 
of the mechanism presented here could have different biophysical realisations in real 
neural networks.      

In conclusion, computer simulations showed that presynaptic inhibition of 
feedforward inhibitory pathways allows the network to compute the MAX function 
with greater flexibility compared to the model where presynaptic inhibition is applied 
on excitatory pathways [16]. In particular, the new  model can achieve MAX 
computation even when the inhibitory snypatic weights are weak and (or) 
asymmetric. The model behaviour is not dependent on the dimensionality of the 
network and it can handle multiple winners, input noise and time-varying input. With 
slight modification, the model is able to show WTA behaviour. Therefore, 
presynaptic inhibition of inhibitory transmission may significantly increase the 
computational power and robustness of competitive network [10]. Biophysical 
implementation of the proposed model could involve kainate receptors located on 
axonal terminals of inhibitory cells [2,7]. These receptors are found to inhibit GABA 
release and effectively disinhibit the postsynaptic cell. Due to the fact that kainate 
receptors are ionotropic receptors, a time-scale of their activation is appropriate for 
fast sensory processing. 
 



 Computing the Maximum Using Presynaptic Inhibition 427 

Acknowledgments. This work is supported by the Bial Foundation research grant No. 
80/06. 

References 

1. Alger, B.E., Pitler, T.A.: Retrograde signaling at GABAA-receptor synapses in the 
mammalian CNS. Trends Neurosci. 18, 333–340 (1995) 

2. Binns, K.E., Turner, J.P., Salt, T.E.: Kainate receptor (GluR5)-mediated disinhibition of 
responses in rat ventrobasal thalamus allows a novel sensory processing mechanism. J. 
Physiol. 551, 525–537 (2003) 

3. Ermentrout, B.: Complex dynamics in winner-take-all neural nets with slow inhibition. 
Neural Netw. 5, 415–431 (1992) 

4. Fukai, T., Tanaka, S.: A simple neural network exhibiting selective activation of neuronal 
ensembles: from winner-take-all to winners-share-all. Neural Comput. 9, 77–97 (1997) 

5. Gawne, T.J., Martin, J.M.: Responses of primate visual cortical V4 neurons to 
simultaneously presented stimuli. J. Neurophysiol. 88, 1128–1135 (2002) 

6. Grossberg, S.: Nonlinear neural networks: Principles, mechanisms, and architectures. 
Neural Netw. 1, 17–61 (1988) 

7. Huettner, J.E.: Kainate receptors and synaptic transmission. Prog. Neurobiol. 70, 387–407 
(2001) 

8. Kaski, S., Kohonen, T.: Winner-take-all networks for physiological models of competitive 
learning. Neural Netw. 7, 973–984 (1994) 

9. Kreitzer, A.C., Regehr, W.G.: Retrograde signalling by endocannabinoids. Curr. Opin. 
Neurobiol. 12, 324–330 (2002) 

10. MacDermott, A.B., Role, L.W., Siegelbaum, S.A.: Presynaptic ionotropic receptors and 
the control of transmitter release. Annu. Rev. Neurosci. 22, 443–485 (1999) 

11. Riesenhuber, M., Poggio, T.A.: Hierarchical models of object recognition in cortex. Nat. 
Neurosci. 2, 1019–1025 (1999) 

12. Sato, T.: Interactions of visual stimuli in the receptive fields of inferior temporal neurons 
in awake macaques. Exp. Brain Res. 77, 23–30 (1989) 

13. Tsotsos, J., Culhane, S., Wai, W., Lai, Y., Davis, N., Nuflo, F.: Modeling visual attention 
via selective tuning. Artif. Intel. 78, 507–545 (1995) 

14. Wang, D.L.: Object selection based on oscillatory correlations. Neural Netw. 12, 579–592 
(1999) 

15. Yu, A.J., Giese, M.A., Poggio, T.A.: Biophysically plausible implementations of the maxi- 
mum operation. Neural Comput. 14, 2857–2881 (2002) 

16. Yuille, A.L., Grzywacz, N.M.: A winner-take-all mechanism based on presynaptic inhibit- 
tion feedback. Neural Comput. 1, 334–347 (1989) 



Bounds of the Ability to Destroy Precise

Coincidences by Spike Dithering

Antonio Pazienti1, Markus Diesmann1, and Sonja Grün1,2

1 Computational Neuroscience Group
RIKEN Brain Science Institute

Wako, Japan
2 Bernstein Center for Computational Neuroscience

Berlin, Germany
antonio.pazienti@neurobiologie.fu-berlin.de

Abstract. Correlation analysis of neuronal spiking activity relies on the
availability of distributions for assessing significance. At present, these
distributions can only be created by surrogate data. A widely used sur-
rogate, termed dithering, adds a small random offset to all spikes. Due
to the biological noise, simultaneous spike emission is registered within
a finite coincidence window. Established methods of counting are: (i)
partitioning the temporal axis into disjunct bins and (ii) integrating the
counts of precise coincidences over multiple relative temporal shifts of
the two spike trains. Here, we rigorously analyze for both methods the
effectiveness of dithering in destroying precise coincidences. Closed form
expressions and bounds are derived for the case where the dither range
equals the coincidence window. In this situation disjunct binning de-
tects half of the original coincidences, the multiple shift method recovers
three quarters. Thus, only a dither range much larger than the detection
window qualifies as a generator of suitable surrogates.

Keywords: multi-channel recording, spike train, Monte-Carlo, surrogate
data, correlation.

1 Introduction

The only way to identify information processing in biological neuronal networks
is to simultaneously record from many neurons at a time. Nowadays multi-
channel recordings are a standard technique in electrophysiological laboratories.
Correlation analysis of such data has demonstrated that neurons exhibit corre-
lated spiking activity on a fine temporal scale (ms precision) and in relation to
the experimental protocol [1,2]. This has been interpreted as indicative for an
involvement of correlated spiking activity in brain processing.

However, the presence of correlated spiking activity is not obvious from visual
inspection. At first sight, the data appear to originate from a stochastic process
with large variability in the number and the timing of spikes in responses to an
identical stimulus. Furthermore, the rate of spike emission typically exhibits a

F. Mele et al. (Eds.): BVAI 2007, LNCS 4729, pp. 428–437, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Bounds of the Ability to Destroy Precise Coincidences 429

original

surrogate

MS

DB

w

δ
2
1

2
1

2
1

+s−s+s−s

5δ 3δ

Fig. 1. Spike dithering and two methods of coincidence detection. Filled bins indicate
spike occurrence, the width of the bins indicates the time resolution δ (typically 1
ms). Top: Generation of surrogate data. Original simultaneous spike data (grey bins)
of neuron 1 and 2. Coincidences are assumed to be precise (within the same bin). In
surrogate spike trains (black bins) all original spikes are independently dithered with
uniform probability in the range ±s (in units of δ). Middle: In the disjunct binning
(DB) method coincidences are detected in exclusive windows of width w to allow a
temporal jitter of the spikes. Only spikes within the same window (between thick
vertical lines) are counted as a coincidence. Bottom: In the multiple shift (MS) method
spike coincidences are detected if the distance between spikes is smaller than or equal
to an a-priori parameter (see Sec. 3).

complex temporal profile. Clearly, spike coincidences with millisecond precision
can also occur as chance events. Thus, the empirical number of joint-spike events
needs to be compared to the distribution of coincidence counts resulting from
independent spike trains. This distribution can only be derived using strong
assumptions about the statistics of the spike trains [3] typically not fulfilled by
electrophysiological data. Therefore, Monte-Carlo methods are widely used to
construct the distribution of coincidence counts from surrogate data [4] that
maintain certain statistical properties of the original data but do not include
correlations [5].

Various methods are in use for the generation of surrogate data [6,4,7,8,9]. All
of them fulfill the condition to destroy the correlation, but also have the draw-
back to simultaneously destroy one or the other statistical feature of the data
[8,10], e.g. the Poissonian nature or the exact spike counts. Date and colleagues
proposed the method of spike dithering to generate surrogates which currently
best meets the criterion to destroy the correlation between spike trains and si-
multaneously to maintain as many statistical properties of the data as possible
[11]. The approach is to randomly re-place each spike within a small time window
around its original position, thereby almost perfectly preserving the other sta-
tistical features of the single neuron data. Meanwhile, the method is in routinely
use in the correlation analysis of neuronal spike trains [12,13]. Strategies have
been developed to reduce the perturbation of the inter-spike interval statistics
for moderate dithers [10,14].

However, it is not well understood how much dither is required to destroy the
spike correlation, in particular if joint-spike events are allowed to have a temporal
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jitter. Here we study the decay rate of the number of coincidences as a function of
the dither width and as a function of allowed temporal jitter of the coincidences.
In particular we answer the question to which degree coincidences are destroyed,
if the dither width corresponds to the allowed temporal jitter of the joint-spike
events. Intuition says that coincidences should then be reduced by 50%. This
needs to be analyzed in the context of the chosen method of coincidence detection
since it critically influences the result: we concentrate on the disjunct binning
method (DB) and the multiple shift method (MS) of coincidence detection [15]
(cf. Fig. 1 middle and bottom, respectively).

In the following we treat the two methods in two subsequent sections, in each
of which we briefly introduce the respective method, and derive analytically
the probability of detecting coincidences given originally precise coincidences as
a function of dither and of the allowed coincidence width. The results section
compares the two methods for the particular case of the applied dither being
equal to the allowed coincidence width. We show that the probability of detec-
tion decays with increasing dither, however much faster for DB as compared
to the MS method. We also compare to the case where only one spike train is
dithered.

2 Disjunct Binning

The original spike data are discretized into bins of width δ, such that the total
duration T of the recording is divided into N bins (T = δ · N). Each bin is
assumed to contain at most one spike. As a result the activity of each neuron is
represented by a binary sequence (Fig. 1) of zeros (no spikes) and ones (spikes).
We define coincident events (or simply coincidences) as the joint firing of the two
neurons within a coincidence window of w bins, thereby allowing coincidences
to have a certain temporal jitter. In order to detect the total number of coin-
cident events, the DB method sections T into disjunct, adjacent time segments
(coincidence windows) Wk, k = 1, ..., �N/w� each containing w bins of width δ.
With bins numbered from 1 to N , the first coincidence window W1 is composed
of bins {1, 2, ..., w}, the second W2 of {w + 1, w + 2, ..., 2w}, and so on.

We assume the original coincidences (i.e., before dithering) to be perfectly
synchronous joint-events, i.e., both neurons have a spike in the very same bin.
Due to an applied dither in the range of [−s, s] bins a spike may trespass the
border of a coincidence window and fall into another coincidence window. The
dither factor D = � s

w �, i.e., the next integer larger than (or equal to) s
w , defines

in how many coincidence windows the spike may fall and thus how many borders
it might cross.

Next we are interested in the probability to detect a coincidence after dither-
ing. The result depends on whether dithering is applied to both neurons (2-
neuron dithering) or only one neuron (1-neuron dithering). The approaches are
treated separately in the next two sections.
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2.1 2-Neuron Dithering

In 2-neuron dithering each spike of both spike trains is randomly displaced in
the range of [−s, s] bins with uniform probability.

In order to calculate the probability that a coincidence after dithering is still
detected as a coincidence, we need to consider all coincidence windows Wk into
which the dithered spikes may be scattered. The number of windows is given by
the dither factor D. If we assume the original coincidence to be in window W0,
spikes may be dithered into coincidence windows Wk with k = 0, ±1, ±2, ..., ±D.
Therefore, the probability is the sum of the probabilities that the spikes fall into
the same window Wk.

The probability to detect a coincidence within a particular coincidence win-
dow Wk depends on the number of bins that may be reached from the original
coincidence position given a particular dither s. The probability to fall in a single
bin δ within the dither interval [−s, +s] is 1/(2s + 1). Depending on the initial
position α = 1, 2, ..., w of a spike in the coincidence window, a different number
of bins is reachable in the surrounding coincidence windows. In the coincidence
windows where all w bins can be reached (k ∈ [−D + 2, . . . , D − 2]), the prob-
ability of a spike to fall into the window is Δwα

k · 1
2s+1 , with Δwα

k = w. In the
remote windows {W−D, W−D+1, WD−1, WD}, the probability corresponds to the
number of reachable bins, i.e., Δwα

k′ · 1
(2s+1) with k′ = −D, −D + 1, D − 1, D,

respectively.
Because the two coincident spikes are dithered independently, the joint prob-

ability of both spikes being in window Wk is the product of the probabilities
(Δwα

k · 1
2s+1 ) for the individual spikes. Then the total probability to detect the

coincidence after dithering is given by the sum of the joint probabilities across
all reachable coincidence windows:

P [2−n]
α (w, s) =

k=D∑
k=−D

(
Δwα

k

2s + 1

)2

. (1)

The closure relation is given by the condition that the total dither involves 2s+1
bins:

k=D∑
k=−D

Δwα
k = 2s + 1 ⇒

k=D∑
k=−D

Δwα
k

2s + 1
= 1 . (2)

Fig. 2A,B show the coincidence detection probability P
[2−n]
α (w, s) as a func-

tion of the initial position α of the spikes in the coincidence window, for differ-
ent values of the dither s. Surprisingly, the probability of detection P

[2−n]
α (w, s)

depends on the distance of the initial coincidence from the borders of the co-
incidence window. For s = w (Fig. 2A) the probability P

[2−n]
α (w, s) reaches its

minimum if the initial coincidence is in the center of the window, and is maximal
when the initial coincidence is just at the window border. This counterintuitive
result holds true for all values of w. However, it can be understood by considering
that if spikes were originally in the proximity of the border of the coincidence
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Fig. 2. Probability of detecting coincidences after dithering for DB as a function of
the position α of the original coincidences measured from the center of the coincidence
window W0. A,B: For 2-neuron dithering. C: For 1-neuron dithering. Black curves: case
w = s (enlarged ordinate in A), solid grey curves: w < s, dashed grey curves: w > s.
Parameter values: w = 10, s = 15 (solid, dark grey), s = 21 (solid, light grey), s = 7
(dashed, dark grey), and s = 4 (dashed, light grey).

window the number of destination windows is generally smaller than for origi-
nally centered spikes. As a consequence, spikes fall in larger stretches of successive
bins, and thus the probability for the fission of coincidences by the borders of
the coincidence windows is reduced. The total probability P

[2−n]
α (w, s), which is

constrained by Eq. 2, is maximized if few increments Δwα
k are large and is min-

imal if all increments have intermediate values. In other words, the number of
ways of arranging the two spikes in a destination window increases quadratically
with the number of involved bins (cf. Eq. 1), hence the α-dependance observed
in Fig. 2A.

As shown in Fig. 2B, the overall probability P
[2−n]
α (w, s) progressively in-

creases with decreasing s from s > w to s < w, shown here for a fixed w. For
decreasing s the spikes have a decreasing chance to trespass the window border
and to escape from their original window. In extreme, for s � w the spikes may
not reach any other windows and thus stay coincident. In contrast, for s > w the
coincidence has an increasing probability to be destroyed because of the large
number of potential destination windows. The probability P

[2−n]
α (w, s) shows

different shapes depending on the exact relationship between s and w.

2.2 1-Neuron Dithering

In case only the spikes of one spike train are dithered (e.g. only the spikes of
neuron 2, [6]) the probability of detecting the coincidences after dithering only
depends on the new positions of the spikes of train 2. This method leads to a
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total probability

P [1−n]
α (w, s) =

{
w/(2s + 1) if s ≥ w − 1
Δwα

k /(2s + 1) if s < w − 1 ,
(3)

where we assumed the initial coincidence window to be Wk and Δwα
k to be

the associated number of bins reachable by a spike from neuron 2. Again, this
number depends on the initial position α of the spike.

For s ≥ w − 1 both sides of the dither window [−s, s] are larger than the
coincident window Wk and thus the probability for the two original spikes to
stay coincident after dithering depends on the probability for the dithered spike
to stay in that window. Its probability is given by the number of bins in the
window w relative to the total number of possible bins, i.e., 2s + 1, the spike
may be dithered into (upper relation in Eq. 3). This obviously does not depend
on the initial position α of the coincidence.

If both sides of the dither window are smaller than the coincident window
(s < w − 1), only a fraction of the bins may receive a spike after dithering and
depends on the original position α of the spike (Fig. 2C). For s < w − 1 the
probability of detecting the coincidence after dithering increases progressively
as s decreases, with a maximum at the central bins of the window. The maximal
detection probability w/(2s + 1) is attained if the whole dither window [−s, s]
is included in the coincidence window Wk.

3 Multiple Shift

This method provides a different way of counting coincident spikes of two neu-
rons, avoiding the arbitrarily located “hard” borders. The multiple shift method
defines a maximum allowed shift b. Assuming again the spike trains to have reso-
lution δ, the procedure begins with counting all precise coincidences. Then spike
train 2 is shifted with respect to spike train 1 by δ and again all precise coin-
cidences are counted. The procedure continues for all positive shifts 2δ, 3δ, .., bδ
and for the negative shifts −δ, −2δ, ..., −bδ. Consequently, spikes with a distance
of up to ±b bins are counted as coincident. The parameter b is analogous to the
coincident width w, however with the substantial difference that there are no
fixed borders and the initial position of the coincidence α is meaningless.

Consider both spikes constituting a coincidence to be dithered in the range
±s and the origin of the temporal axis to be located at the position of the initial
coincidence. After dithering the probability to find spike 2 at distance k from
spike 1 is given by the probability to find 1 at i times the probability to find 2
at k + i summed over all possible positions i:

J(k, s) =
1

2s + 1

s∑
i=−s

p(k + i) . (4)

However, p(k+ i) is subject to further constraints. If e.g. spike 1 is at −s, spike 2
can only be coincident or to the right of spike 1, requiring p(k − s) to vanish for
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negative k. Therefore, the effective limits of the sum also depend on k, collapsing
Eq. 4 to

J(k, s) =

⎧⎨
⎩

1/(2s + 1) for k = 0
2s+1−|k|
(2s+1)2 for |k| ≤ 2s

0 for |k| > 2s .

(5)

The probability of dithering two initially coincident spikes to a distance |k|
reaches its maximum at zero offset and decreases linearly with |k| before it
drops to zero at ±2s.

In the MS method all spikes dithered up to a distance k = ±b are classified
as coincident. To obtain the probability to detect an initially coincident event
after dithering P [MS](b, s) we have to sum the probabilities J(k, s) of all possible
dithering results for k in the range −b, ..., b

P [MS](b, s) =

⎧⎨
⎩

1/(2s + 1) for b = 0
1

2s+1 +
∑b

k=−b
2s+1−|k|
(2s+1)2 for b ≤ 2s

1 for b > 2s

=

{
2b+1
2s+1 − b(b+1)

(2s+1)2 for b ≤ 2s

1 for b > 2s .

(6)

4 Results

In this section we will derive the expected probability of detecting a coincidence
after dithering given a large number of coincidences occurring in the spike trains
at random times.

In the disjunct binning framework the assumption of many coincidences oc-
curring at random times implies that the original coincident events will cover,
in expectation, all possible initial positions α ∈ [1, ..., w]. Therefore we have to
average the results of Secs. 2.1 and 2.2 (Eqs. 1, 3) over α. For 2-neuron dithering
this yields

〈P [2−n]
α (w, s)〉α =

1
w

w∑
α=1

k=D∑
k=−D

(
Δwα

k

2s + 1

)2

. (7)

Using similar arguments we derive the expected probability for the case of DB
after 1-neuron dithering utilizing Eq. 3:

〈P [1−n]
α (w, s)〉α =

{
w/(2s + 1) if s ≥ w − 1
Δwα

k /(2s + 1) if s < w − 1 ,
(8)

whereas in the case of the MS method there is no α-dependence of the probability.
For convenience however we also rewrite Eq. 6:

〈P [MS](b, s)〉 =

{
2b+1
2s+1 − b(b+1)

(2s+1)2 for b ≤ 2s

1 for b > 2s .
(9)
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Fig. 3. Expected probability of detecting coincidences with DB and MS as a function
of dither range. 〈P [MS](b, s)〉 (light grey), 〈P [1−n]

α (w, s)〉α (dark grey), 〈P [2−n]
α (w, s)〉α

(black). A: Three values of constant coincidence width. Thin curve: b = 0, w = 1
(MS and 1-/2-neuron, respectively), thick curves with knobs: w = b = 5, thick curves:
w = b = 10. B: Bounds for coincidence width corresponding to dither width, w = s
and b = s respectively.

Fig. 3A shows 〈P [2−n]
α (w, s)〉α, 〈P [1−n]

α (w, s)〉α and 〈P [MS](b, s)〉 as functions
of the dither s and for three different values of allowed coincidence width. The
expected probability declines with increasing dither in all cases. Detecting only
precise coincidences (w = 1 or b = 0, respectively) the dither has a strong effect
and destroys coincidences already at small values of s.

With increasing coincidence width the different cases deviate from each other,
the 2-neuron dithering being the more effective way of destroying coincidences.
For w = b = 10 the 2-neuron dithering destroys about 80% of the original
coincidences for dither values of about s = 20. In this situation, the 1-neuron
dithering leads to similar but slightly higher probabilities of detection, whereas
for a similar loss of detected coincidences with the MS method a dither of about
s = 50 is required.

Let us now investigate the special case in which the dither equals the coinci-
dence width, i.e., s = w, in order to obtain closed form expressions and limits.
For the 2-neuron dithering setting w = s and dither factor D = 1 reduces Eq. 7
to

〈P [2−n]
α (w = s)〉α =

1
w

w∑
α=1

k=1∑
k=−1

(
Δwα

k

2s + 1

)2

=
1
3

+
s(s − 1)

3(2s + 1)2
. (10)

For non-zero values of dithering Eq. 10 assumes values between 1/3 (for s, w = 1)
and 1

3 + 1
12 (for s, w � 1), that is 1

3 ≤ 〈P [2−n]
α (w = s)〉α < 0.416̄ = P

[2−n]
lim . There-

fore P
[2−n]
lim is the maximum probability of detecting a 2-neuron dithered coinci-
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dence with the disjunct binning method when the dither equals the coincidence
width.

For 1-neuron dithering Eq. 8 with w = s is just

〈P [1−n]
α (w = s)〉α =

s

2s + 1
, (11)

where the probability is larger than 1/3 (s, w = 1) and tends to P
[1−n]
lim = 0.5 for

s, w � 1.
Finally for the MS method replacing b = s in Eq. 9 yields

〈P [MS](b = s)〉 = 1 − s(s + 1)
(2s + 1)2

, (12)

bounded between 1 − 2/9 = 0.7̄ (b, w = 1) and P
[MS]
lim = 0.75 (for b, s � 1), the

difference being only about 4%. The above results are visualized in Fig. 3B.

5 Discussion

In this contribution we have rigorously analyzed the effectiveness of 2-neuron
dithering for the disjunct binning and the multiple shift detection methods and
for comparison also 1-neuron dithering for DB. The analysis is restricted to
precise coincidences. Further studies are required to investigate the biologically
more relevant case of jittered (i.e., imprecise) coincidences [15], the presence
of background activity, and processes with a biologically realistic inter-spike
interval statistics [10]. Nevertheless, the present study provides detailed new
insight in the dithering process. After uniform 2-neuron dithering of coincident
spikes, the distribution of spike distances |k| is not uniform, favoring the survival
of coincidences. Furthermore, in DB the probability of detection after dithering
depends on the initial location of the coincidence in a complex manner.

We provide analytic expressions for the expected probability of detection in
the different scenarios. In DB and MS the expressions reduce to simple closed
forms for w = s and b = s, respectively. Under these constraints we obtain in the
limit s → ∞ the bounds P

[2−n]
lim = 0.416̄, P

[1−n]
lim = 0.5, and P

[MS]
lim = 0.75. These

asymptotic values are monotonically approached. Thus, for 1-neuron dithering
analyzed by DB the intuition that a dither width equal to the coincidence window
destroys 50% of the coincidences is confirmed. For 2-neuron dithering the rate
of destruction is slightly larger. Counter to intuition, for MS the effect is much
less pronounced. At b = s still 3/4 of the coincidences survive. For example,
with b = 10 and s = 50 the probability of detection still is at P [MS](b, s) � 0.2.
Thus, for detection methods like MS which essentially evaluate the central peak
of the cross-correlation, a dither width much larger than the detection window
is required to destroy a relevant fraction of the coincidences.
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Abstract. The promise of Brain-Computer Interfaces (BCI) technology is to 
augment human capabilities by enabling interaction with computers through a 
conscious and spontaneous modulation of the brainwaves after a short training 
period. Indeed, by analyzing brain electrical activity online, several groups have 
designed brain-actuated devices that provide alternative channels for 
communication, entertainment and control. Thus, a person can write messages 
using a virtual keyboard on a computer screen and also browse the internet. 
Alternatively, subjects can operate simple computer games, or brain games, and 
interact with educational software. Work with humans has shown that it is 
possible for them to move a cursor and even to drive a wheelchair. This paper 
briefly reviews the field of BCI, with a focus on non-invasive systems based on 
electroencephalogram (EEG) signals. It also describes three brain-actuated 
devices we have developed: a virtual keyboard, a brain game, and a wheelchair. 
Finally, it shortly discusses current research directions we are pursuing in order 
to improve the performance and robustness of our BCI system, especially for 
real-time control of brain-actuated robots. 

Keywords: Brain-computer interfaces, electroencephalogram, asynchronous 
protocols, brain-actuated devices, statistical classifiers, feature selection. 

1   Introduction 

The idea of controlling machines not by manual operation, but by mere “thinking” 
(i.e., the brain activity of human subjects) has fascinated humankind since ever, and 
researchers working at the crossroads of computer science, neurosciences, and 
biomedical engineering have started to develop the first prototypes of brain-computer 
interfaces (BCI) over the last decade or so [1], [2], [3], [4], [5]. A BCI monitors the 
user’s brain activity and translates their intentions into actions—such as moving a 
wheelchair [6], [7] or selecting a letter from a virtual keyboard [8], [9]—without using 
activity of any muscle or peripheral nerve. The central tenet of a BCI is the capability 
to distinguish different patterns of brain activity, each being associated to a particular 
intention or mental task. 

Such a kind of BCI is a natural way to augment human capabilities by providing a 
new interaction link with the outside world and is particularly relevant as an aid for 
paralyzed humans, although it also opens up new possibilities in natural and direct 
interaction for able-bodied people. Figure 1 shows the general architecture of a BCI. 
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Fig. 1. General architecture of a brain-computer interface (BCI) for controlling devices such as 
a cursor, a robotic arm, or a motorized wheelchair. In this case the BCI measures 
electroencephalogram (EEG) signals recorded non-invasively from electrodes placed on the 
subject’s scalp. 

Brain electrical activity is recorded with a portable device. These raw signals are first 
processed and transformed in order to extract some relevant features that are then 
passed on to some mathematical models (e.g., statistical classifiers or neural 
networks). This model computes, after some training process, the appropriate mental 
commands to control the device. Finally, visual feedback, and maybe other kinds such 
as tactile stimulation, informs the subject about the performance of the brain-actuated 
device so that they can learn appropriate mental control strategies and make rapid 
changes to achieve the task. 

A BCI may monitor brain activity via a variety of methods, which can be coarsely 
classified as invasive and non-invasive. In invasive BCI systems the activity of single 
neurons (their spiking rate) is recorded from microelectrodes implanted in the brain. 
Less invasive approaches are based on the analysis of electrocorticogram (ECoG) 
signals from electrodes implanted under the skull. For humans, however, it is 
preferable to use non-invasive approaches to avoid the risks generated by permanent 
surgically implanted devices in the brain, and the associated ethical concerns. Most 
non-invasive BCI systems use electroencephalogram (EEG) signals; i.e., the electrical 
brain activity recorded from electrodes placed on the scalp. The main source of the 
EEG is the synchronous activity of thousands of cortical neurons. Measuring the EEG 
is a simple noninvasive way to monitor electrical brain activity, but it does not 
provide detailed information on the activity of single neurons (or small brain areas). 
Moreover, it is characterized by small signal amplitudes (a few μVolts) and noisy 
measurements (especially if recording outside shield rooms). 

Besides electrical activity, neural activity also produces other types of signals, such 
as magnetic and metabolic, that could be used in a BCI. Magnetic fields can be 
recorded with magnetoencephalography (MEG), while brain metabolic activity—
reflected in changes in blood flow—can be observed with positron emission 
tomography (PET), functional magnetic resonance imaging (fMRI), and optical 
imaging. Unfortunately, such alternative techniques require sophisticated devices that 
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can be operated only in special facilities. Moreover, techniques for measuring blood 
flow have long latencies and thus are less appropriate for interaction. 

From this short review it follows that, because of its low cost, portability and lack 
of risk, EEG is the ideal modality if we want to bring BCI technology to a large 
population. 

In the next sections we review the main components of our BCI system, which is 
based on the online analysis of spontaneous EEG signals and recognizes 3 mental 
tasks. Our approach relies on three principles. The first one is an asynchronous 
protocol where subjects decide voluntarily when to switch between mental tasks and 
perform those mental tasks at their own pace. The second principle is mutual learning, 
where the user and the BCI are coupled together and adapt to each other. In other 
words, we use machine learning approaches to discover the individual EEG patterns 
characterizing the mental tasks executed by the user while users learn to modulate 
their brainwaves so as to improve the recognition of the EEG patterns. Finally, the 
third principle is the combination of the user’s intelligence with the design of 
intelligent devices that facilitate interaction and reduce the user’s cognitive workload. 
This is particularly useful for mental control of robots. We also describe the three 
brain-actuated applications we have developed. Finally, we discuss current research 
directions we are pursuing in order to improve the performance and robustness of our 
BCI system, especially for real-time control of brain-actuated robots. 

2   Spontaneous EEG and Asynchronous Operation 

Non-invasive EEG-based BCIs can be classified as “evoked” or “spontaneous”. An 
evoked BCI exploits a strong characteristic of the EEG, the so-called evoked 
potential, which reflects the immediate automatic responses of the brain to some 
external stimuli. Evoked potentials are, in principle, easy to pick up with scalp 
electrodes. The necessity of external stimulation does, however, restrict the 
applicability of evoked potentials to a limited range of tasks. In our view, a more 
natural and suitable alternative for interaction is to analyze components associated 
with spontaneous “intentional” mental activity. This is particularly the case when 
controlling robotics devices. Spontaneous BCIs are based on the analysis of EEG 
phenomena associated with various aspects of brain function related to mental tasks 
carried out by the subject at his/her own will. Such a kind of BCI can exploit two 
kinds of spontaneous, or endogenous, brain signals, namely slow potential shifts [10] 
or variations of rhythmic activity [6], [8], [11], [12], [13], [14]. We will focus on the 
latter that are the most common. 

EEG-based BCIs are limited by a low channel capacity1. Most of the current 
systems have a channel capacity below 0.5 bits/s [3]. One of the main reasons for 
such a low bandwidth is that they are based on synchronous protocols where EEG is 
time-locked to externally paced cues repeated every 4-10 s and the response of the 
BCI is the overall decision over this period [10], [12], [13]. Such synchronous 
protocols facilitate EEG analysis since the starting time of mental states are precisely 

                                                           
1 Channel capacity is the maximum possible information transfer rate, or bit rate, through a 

channel. 
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known and differences with respect to background EEG activity can be amplified. 
Unfortunately, they are slow and BCI systems that use them normally recognize only 
2 mental states. 

On the contrary, we utilize more flexible asynchronous protocols where the subject 
makes self-paced decisions on when to stop doing a mental task and start immediately 
the next one [6], [8], [15]. In such asynchronous protocols the subject can voluntarily 
change the mental task being executed at any moment without waiting for external 
cues. The time of response of an asynchronous BCI can be below 1 second. For 
instance, in our approach the system responds every 1/2 second. The rapid responses 
of our asynchronous BCI, together with its performance (see Section 3), give a 
theoretical channel capacity between 1 and 1.5 bits/s. 

3   The Machine Learning Way to BCI 

A critical issue for the development of a BCI is training—i.e., how users learn  
to operate the BCI. Some groups have demonstrated that some subjects can learn to 
control their brain activity through appropriate, but lengthy, training in order to 
generate fixed EEG patterns that the BCI transforms into external actions [10], [13]. 
In this case the subject is trained over several months to modify the amplitude of their 
EEG signals. We follow a mutual learning process to facilitate and accelerate the 
user’s training period. Indeed, our approach allows subjects to achieve good 
performances in just a few hours of training in the presence of feedback [8]. 

Most BCI systems deal with the recognition of just 2 mental tasks [11], [12], [14], 
[15]. Our approach achieves error rates below 5% for 3 mental tasks, but correct 
recognition is 70%. In the remaining cases (around 20-25%), the classifier doesn’t 
respond, since it considers the EEG samples as uncertain. The incorporation of 
rejection criteria (see below) to avoid making risky decisions is an important concern 
in BCI. From a practical point of view, a low classification error is a critical 
performance criterion for a BCI; otherwise users can become frustrated and stop 
utilizing it. 

We use machine learning techniques at two levels, namely feature selection and 
training the classifier embedded into the BCI. The approach aims at discovering 
subject-specific spatio-frequency patterns embedded in the continuous EEG signal—
i.e., EEG rhythms over local cortical areas that differentiate the mental tasks. At the 
first level, we select those features that are more relevant for discriminating among 
the mental tasks. The selected features are those that satisfy two criteria: 
maximization of the separability of the mental tasks and stability over time. Indeed, 
EEG signals are non-stationary and, so, change over time. Feature selection is based 
on canonical variates analysis [16]. This procedure yields a sample, or input vector, x 
composed of the power of some frequency components from some electrodes. 

We use a statistical Gaussian classifier (see [6] for more details). The output of this 
statistical classifier is an estimation of the posterior class probability distribution for a 
sample; i.e., the probability that a given single trial belongs to each mental task (or 
class). Each class is represented by a number of Gaussian prototypes, typically less 
than four. That is, we assume that the class-conditional probability function of class 
Ck is a superposition of Nk Gaussian prototypes. We also assume that all classes have 
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equal prior probability. All classes have the same number of prototypes Np, and for 
each class each prototype has equal weight 1/Nk. Then, dropping constant terms, the 

activity i
ka  of the ith prototype of class Ck for a given sample x is the value of the 

Gaussian with centre i
kμ  and covariance matrix i

kΣ . From this we calculate the 

posterior probability yk of the class Ck. The posterior probability yk of the class Ck is 
now the sum of the activities of all the prototypes of class k divided by the sum of the 
activities of all the prototypes of all the classes. 

The classifier output for input vector x is now the class with the highest 
probability, provided that the probability is above a given threshold, otherwise the 
result is “unknown”. 

Usually each prototype of each class would have an individual covariance matrix 
i
kΣ , but to reduce the number of parameters the model has a single diagonal 

covariance matrix common to all the prototypes of the same class. During offline 
training of the classifier, the prototype centers are initialized by any clustering 
algorithm or generative approach. This initial estimate is then improved by stochastic 

gradient descent to minimize the mean square error 21 ( )2 k kk
E y t= −∑ , where t 

is the target vector in the form 1-of-C; that is, if the second of three classes was the 
desired output, the target vector is (0,1,0). The covariance matrices are computed 
individually and are then averaged over the prototypes of each class to give ∑k. 

4   Hardware and Signal Acquisition 

We acquire EEG potentials with a portable BioSemi system using a cap with either 32 
or 64 integrated electrodes arranged in the modified 10/20 International System. The 
EEG recordings are monopolar and taken at 512Hz. 

EEG signals are characterized by a poor signal-to-noise ratio and spatial resolution. 
Their quality is greatly improved by means of spatial filtering techniques. We use the 
common average reference (CAR) procedure, where at each time step the average 
potential over all the channels is subtracted from each channel. This re-referencing 
procedure removes the background activity, leaving activity from local sources 
beneath the electrodes. Alternatively, raw EEG potentials can be transformed by 
means of a Surface Laplacian (SL) derivation. The SL estimate yields new potentials 
that represent better the cortical activity originated in radial sources immediately 
below the electrodes. The superiority of SL- and/or CAR-transformed signals over 
raw potentials for the operation of a BCI has been demonstrated in different studies 
[11], [17]. 

5   Brain-Actuated Devices 

BCI systems are being used to operate a number of brain-actuated applications that 
augment people’s communication capabilities, provide new forms of entertainment, 
and also enable the operation of physical devices. In this section we briefly describe 
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some of the brain-actuated devices we have developed over the years. All these 
systems have been largely demonstrated publicly. 

Our asynchronous BCI can be used to select letters from a virtual keyboard on a 
computer screen and to write a message [8], [9]. Initially, the whole keyboard (26 
English letters plus the space to separate words, for a total of 27 symbols organized in 
a matrix of 3 rows by 9 columns) is divided in three blocks, each associated to one of 
the mental tasks. The association between blocks and mental tasks is indicated by the 
same colors as during the training phase. Each block contains an equal number of 
symbols, namely 9 at this first level (3 rows by 3 columns). Then, once the statistical 
classifier recognizes the block on which the subject is concentrating, this block is split 
in 3 smaller blocks, each having 3 symbols this time (1 row). As one of this second-
level blocks is selected, it is again split in 3 parts. At this third and final level, each 
block contains 1 single symbol. Finally, to select the desired symbol, the user 
concentrates in its associated mental task as indicated by the color of the symbol. This 
symbol goes to the message and the whole process starts over again. Thus, the process 
of writing a single letter requires three decision steps. 

The second brain-actuated device is a simple computer game [9], or “brain game”, 
but other educational software could have been selected instead. It is the classical 
Pacman. For the control of Pacman, two mental tasks are enough to make it turn left 
of right. Pacman changes direction of movement whenever one of the mental tasks is 
recognized twice in a row. In the absence of further mental commands, Pacman 
moves forward until it reaches a wall, where it stops and waits for instructions. 

Finally, it is also possible to control mentally robots and prosthesis. Until recently, 
EEG-based BCIs have been considered too slow for controlling rapid and complex 
sequences of movements. But we have shown for the first time [6], [8] that 
asynchronous analysis of EEG signals is sufficient for humans to continuously control 
a mobile robot—emulating a motorized wheelchair—along non-trivial trajectories 
requiring fast and frequent switches between mental tasks (see Fig. 2). Two human 
subjects learned to mentally drive the robot between rooms in a house-like 
environment visiting 3 or 4 rooms in the desired order. Furthermore, mental control 
was only marginally worse than manual control on the same task. A key element of 
this brain-actuated robot is shared control between two intelligent agents—the human 
user and the robot—so that the user only gives high-level mental commands that the 
robot performs autonomously. In particular, the user’s mental states are associated 
with high-level commands (e.g., “turn right at the next occasion”) and that the robot 
executes these commands autonomously using the readings of its on-board sensors. 
Another critical feature is that a subject can issue high-level commands at any 
moment. This is possible because the operation of the BCI is asynchronous and, 
unlike synchronous approaches, does not require waiting for external cues. The robot 
relies on a behaviour-based controller to implement the high-level commands to 
guarantee obstacle avoidance and smooth turns. In this kind of controller, on-board 
sensors are read constantly and determine the next action to take. 

More recently, we have extended this work to the mental control of both a 
simulated and a real wheelchair (see Fig. 3). This has been done in the framework of 
the European project MAIA (http://www.maia-project.org) and in cooperation with 
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Fig. 2. One of the users while driving mentally the robot through the different rooms of the 
environment, making it turn right, turn left, or move forward. The robot has 3 lights on top to 
provide feedback to the user and 8 infrared sensors around its diameter to detect obstacles. 

 

Fig. 3. Subject driving the wheelchair in a natural environment from non-invasive EEG. Note 
the laser scanner in front of the wheelchair, in between the subject’s legs. 

the KU Leuven. In this case, we have incorporated shared control principles into the 
BCI [18], [19]. In shared control, the intelligent controller relieves the human from 
low level tasks without sacrificing the cognitive superiority and adaptability of human 
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beings that are capable of acting in unforeseen situations. In other words, in shared 
control there are two intelligent agents—the human user and the robot—so that the 
user only conveys intents that the robot performs autonomously. Although our first 
brain-actuated robot had already some form of cooperative control, shared autonomy 
is a more principled and flexible framework. Shared autonomy is also an essential 
component of any high-performance brain-actuated space device of the future. 

6   Current Directions of Research 

For brain-actuated robots, contrarily to augmented communication through BCI, fast 
decision-making is critical. In this sense, real-time control of brain-actuated devices, 
especially robots and neuroprostheses, is the most challenging application for BCI. 
While brain-actuated robots have been demonstrated in the laboratory, this technology 
is not yet ready to be taken out and used in real-world situations. A critical issue is 
how to improve the robustness of BCIs with the goal of making it a more practical 
and reliable technology. A first avenue of research is online adaptation of the 
interface to the user to keep the BCI constantly tuned to its owner [20], [21]. The 
point here is that, as subjects gain experience, they develop new capabilities and 
change their brain activity patterns. In addition, brain signals change naturally over 
time. In particular, this is the case from a session (with which data the classifier is 
trained) to the next (where the classifier is applied). Thus, online learning can be used 
to adapt the classifier throughout its use and keep it tuned to drifts in the signals it is 
receiving in each session. Preliminary work shows the feasibility and benefits of this 
approach. 

The second line is the analysis of neural correlates of high-level cognitive and 
affective states such as errors, alarms, attention, frustration, confusion, etc. 
Information about these states is embedded in the EEG together with the mental 
commands intentionally generated by the user. The ability to detect and adapt to these 
states would enable the BCI to interact with the user in a much more meaningful way. 
One of these high-level states is the awareness of erroneous responses, whose neural 
correlate arises in the millisecond range. Thus, user’s commands are executed only if 
no error is detected in this short time. Recent results have shown satisfactory single-
trial recognition of errors that leads to significant improvement of the BCI 
performance [22], [23]. In addition, this new type of error potential—which is 
generated in response to errors made by the BCI rather than by the user—can provide 
with performance feedback that, in combination with online adaptation, allows 
improving the BCI while it is being used [24]. 
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Abstract. In this paper we solve the Dial-A-Ride Problem (DARP). The
mainobjectiveof theDARPis tominimizeoperationcosts for rentingpieces
of work from the transportation service providers. The resolution approach
considered in this work, starting from a network formulation of the DARP,
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1 Introduction

Transportation on demand problems is concerned with the transportation of
passengers or goods between specific origins and destinations at the request of
users. The research on Optimization has deserved an increasing interest in this
context, providing models and techniques to solve them. For example, many real
life problems can be formulated as Set Partitioning Problems (SPP). Although
the best known application of the SPP is Airline Crew Scheduling [2], several
other applications exist, including Vehicle Routing Problems (VRP) [20,3] and
Query Processing [18]. The main disadvantage of SPP-based models is the need
to explicitly generate a large set of possibilities to obtain good solutions. Addi-
tionally, in many cases a prohibitive time is needed to find the exact solution.
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In relation with VRP was proposed in 1964 [3] and recent contributions are in-
cluding the use of metaheuristic to solve it [9]. Furthermore, Set Partitioning
Problems occur as subproblems in various combinatorial optimization problems.
In Airline Scheduling, a subtask called Crew Scheduling, takes as input data a
set of crew pairings, where the selection of crew pairings which cause minimal
costs and ensure that each flight is covered exactly once, can be modelled as a
set partitioning problem [2]. In [6] solving a particular case of VRP, the Dial-a-
ride Problem (DARP), also uses a SPP decomposition approach. Because, the
SPP formulation have demonstrated to be useful modeling VRP problems (or
their phases), it is our interest to solve it with novel techniques, in [9] there is
a review of the scientific literature on the DARP. In this work, we solve some
test instances of SPP with Ant Colony Optimization (ACO) algorithms and
some hybridizations of ACO with Constraint Programming (CP) techniques. A
direct implementation of the basic ACO framework is unable of obtaining feasi-
ble solutions for many SPP standard tested instances [25]. The best performing
metaheuristic for SPP is a genetic algorithm due to Chu and Beasley [7]. There
already exists some first approaches applying ACO to Subset Problems (Set Par-
titionong, Set Covering and Set Packing) [22,19,17]. Taking into account these
results, it seems that the incomplete approach of Ant Computing could be con-
sidered as a good alternative to solve these problems when complete techniques
are not able to get the optimal solution in a reasonable time. Although the idea
of obtaining sinergy from hibridization of ACO with CP is not novel [27,16,26],
we are working in the addition of a Constraint Programming mechanism in the
construction phase of ACO thus only feasible partial solutions are generated. The
CP mechanism allows the incorporation of information about the instantiation
of variables after the current decision.

This paper is organised as follows: Section 2 is dedicated to the presenta-
tion of the problem and its mathematical model. The section 3 describes the
solution approach: SPP decomposition of DARP. In Section 4, we describe the
applicability of the ACO algorithms for solving SPP. In Section 5, we present
the basic concepts to adding Constraint Programming techniques to ACO algo-
rithms. In Section 6, we present our results solving benchmarks available in the
OR-Library of Beasley [4]. Finally, in Section 7 we conclude the paper and give
some perspectives for future research.

2 Problem Description

DARP belongs to a huge family of vehicle routing problems. In its canonical
form: VRP, requires the design of a set of minimum cost routes originating and
terminating at a central depot for a fleet of vehicles that has to service a set
of customers with known demands. Examples of VRP application domains are
the mail distribution, garbage collection and school bus problem among oth-
ers. Furthermore, the vehicle routing problem is a generalization of the travel-
ing salesman problem (TSP), the well-known combinatorial problem known to
be NP-hard. For instance, the single uncapacitated vehicle version of the VRP
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problem with the objective of minimizing total travel time reduces to a Traveling
Salesman Problem. The Pickup and Delivery Problem (PDP) arise when a ve-
hicle is required to pickup an entity (e.g. a passenger or a good) at one location
and then deliver it to another location. In this case, some pairing and precedence
constraints must be preserved. Precedence constraints deal with the restriction
that each pickup location has to be visited prior to visiting the corresponding
delivery location. Pairing constraints restrict the set of admissible routes such
that one vehicle has to do both the pickup and the delivery of the passengers
of one transportation request. PDP is sometimes called vehicle routing problem
with pickup and delivery (VRPPD), as it is a generalization of the vehicle rout-
ing problem. Practical problems that can be modeled as PDP are dial-a-ride
problems and courier company pickup and delivery problems (CCPDP). In this
sense, DARP can be seen as an application area of the pickup and delivery prob-
lem devoted to passengers. DARP distinguishes itself from the basic PDP by its
focus on controlling user inconvenience, in the form of constraints or objective
function terms (e.g. waiting time, ride time, desired departure/arrival time de-
viations). Most practical problems impose time restrictions related to when the
vehicle has to be at the pickup or delivery stop, these restrictions can be applied
to all of the above mentioned problems.

2.1 Mathematical Formulation

The early work on mathematical formulation of the problem was done in the
late 1970s, the formulation has since changed and improved [28,8,9].

Let n denote the number of users (or requests) to be served. The DARP may
be defined on a complete directed graph G = (N, A) where N = P ∪D ∪ {0, 2n+
1}, P = {1, ..., n} and D = {n+1, ..., 2n}. Subsets P and D contain pick-up and
drop-off nodes, respectively, while nodes 0 and 2n + 1 represent the origin and
destination depots. With each user i are thus associated an origin node i and
a destination node n + i. Let K be the set of vehicles and let m = |K|. Each
vehicle k ∈ K has a capacity Qk and the total duration of its route cannot
exceed Tk. With each node i ∈ N are associated a load qi and a non-negative
service duration di such that q0 = q2n+1 = 0, qi = −qn+i(i = 1, ..., n) and
d0 = d2n+1 = 0. A time window [ei, li] is also associated with node i ∈ N where
ei and li represent the earliest and latest time, respectively, at which service
may begin at node i. With each arc (i, j) ∈ A are associated a routing cost cij

and a travel time tij . Finally, denote by L the maximum ride time of a user. For
each arc (i, j) ∈ A and each vehicle k ∈ K, let xk

ij = 1 if vehicle k travels from
node i to node j. For each node i ∈ N and each vehicle k ∈ K, let Bk

i be the
time at which vehicle k begins service at node i, and Qk

i be the load of vehicle
k after visiting node i. Finally, for each user i, let Lk

i be the ride time of user i
on vehicle k. The formulation is as follows:

Minimise
∑
k∈K

∑
i∈N

∑
j∈N

Ck
ijX

k
ij (1)



Decomposition Approach to Solve Dial-a-Ride Problems 451

Subject to
∑
k∈K

∑
j∈N

Xk
ij = 1 ∀i ∈ P (2)

∑
j∈N

Xk
ij −

∑
j∈N

Xk
n+i,j = 0 ∀i ∈ P, k ∈ K (3)

∑
j∈N

Xk
0j = 1 ∀k ∈ K (4)

∑
j∈N

Xk
ji −

∑
j∈N

Xk
ij = 0 ∀i ∈ P ∪ D, k ∈ K (5)

∑
i∈N

Xk
i,2n+1 = 1 ∀k ∈ K (6)

Bk
j ≥ (Bk

i + di + tij)xk
ij ∀i ∈ N, j ∈ N, k ∈ K (7)

Qk
j ≥ (Qk

i + qj)xk
ij ∀i ∈ N, j ∈ N, k ∈ K (8)

Lk
i = Bk

n+i − (Bk
i + di) ∀i ∈ P, k ∈ K (9)

Bk
2n+1 − Bk

0 ≤ Tk ∀k ∈ K (10)

ei ≤ Bk
i ≤ li ∀i ∈ N, k ∈ K (11)

ti,n+i ≤ Lk
i ≤ L ∀i ∈ P, k ∈ K (12)

max{0, qi} ≤ Qk
i ≤ min{Qk, Qk + qi} ∀i ∈ N, k ∈ K (13)

Xk
ij ∈ {0, 1} ∀i ∈ N, j ∈ N, k ∈ K (14)

The objective function (1) minimizes the total routing cost. Constraints (2)
and (3) ensure that each request is served exactly once and that the origin and
destination nodes are visited by the same vehicle. Constraints (4)-(6) guaran-
tee that the route of each vehicle k starts at the origin depot and ends at the
destination depot. Consistence of the time and load variables is ensured by con-
straints (7) and (8). Equalities (9) define the ride time of each user which is
bounded by constraints (12). It is worth mentioning that the latter also act as
precedence constraints because the non-negativity of the Lk

i variables ensures
that node i will be visited before node n+ i for every user i. Finally, inequalities
(10) bound the duration of each route while (11) and (13) impose time windows
and capacity constraints, respectively. This formulation is non-linear because of
constraints (7) and (8).
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3 Solution Approach

The solution approach considered in this work can be categorized like a Decom-
position Strategy. Decomposition methods range from relatively simple cluster-
first, route-second idea known as the two phase method. Starting from a network
formulation of the DARP, a decomposition approach decomposes the problem
into a Clustering and a Chaining phase, solving both phases like SPP. In [6] it
is suggested the following two step decomposition approach to the DARP:

– Clustering Step: Construct a set of feasible clusters.
– Chaining Step: Chain clusters to a set of tours that constitute a feasible

schedule.

The decomposition is based on the concept of a cluster. A cluster is a segment
of a vehicle tour satisfying the local constraints: Pairing precedence, time win-
dows, no stop, and capacity. Clusters are useful for vehicle scheduling because
they can serve as the building blocks of vehicle tours. Then, we can chain clusters
to feasible tours just as we constructed clusters from the individual requests. As
the clusters already satisfy the local constraints, the chaining can concentrate on
the remaining global constraints. Clustering and Chaining SPP are of identical
structure. The objective of the clustering step is to construct a set of clusters
that can be chained to an optimal solution of the DARP. Then DARP results in
the following optimization problem over clusters: Given the customer requests,
find a set of clusters such that each request is contained in exactly one cluster
and the sum of the cluster objectives is minimal.

The formulation of the clustering step aims at inputs for the chaining phase
and can be formulated as a Set Partitioning Problem. SPP is the NP-complete
problem of partitioning a given set into mutually independent subsets while
minimizing a cost function defined as the sum of the costs associated to each of
the eligible subsets. In the SPP matrix formulation we are given a m×n matrix
A = (aij) in which all the matrix elements are either zero or one. Additionally,
each column is given a non-negative cost cj . We say that a column j can cover
a row i if aij = 1. Let J denotes the set of the columns and xj a binary variable
which is one if column j is chosen and zero otherwise. The SPP can be defined
formally as follows:

Minimize f(x) =
n∑

j=1

cj × xj (15)

Subject to

n∑
j=1

aij × xj = 1; ∀i = 1, . . . , m (16)

These constraints enforce that each row is covered by exactly one column. In
this formulation, each row represents a customer request that must be contained
in exactly one cluster. The columns represent clusters. cj is the vector of cluster
objectives. Having decided for a set of clusters we can treat the chaining step in
exactly the same way as we just did with the clustering step.
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Approximating the objective value of the DARP as a sum of objectives of
individual tours, the DARP for fixed clusters simplifies to the following opti-
mization problem over tours: Given a clustering, find a set of vehicle tours such
that each cluster is contained in exactly one tour and the sum of the tour objec-
tives is minimal. Natural objectives associated to tours are operation costs for
vehicles and/or customer satisfaction criteria like accumulated waiting time. It
can also be modelled as a set partitioning problem.

4 Solving Set Partitioning Problem with Ant Computing

ACO can be applied in a very straightforward way to SPP. The columns are
chosen as the solution components and have associated a cost and a pheromone
trail [14,13]. Each column can be visited by an ant only once and then a final
solution has to cover all rows. A walk of an ant over the graph representation
corresponds to the iterative addition of columns to the partial solution obtained
so far. Each ant starts with an empty solution and adds columns until a cover is
completed. A pheromone trail τj and a heuristic information ηj are associated to
each eligible column j. A column to be added is chosen with a probability that
depends of pheromone trail and the heuristic information. The most common
form of the ACO decision policy (Transition Rule Probability) when ants work
with components is:

pk
j (t) =

τj ∗ ηβ
j∑

l/∈Sk

τl[ηl]β
if j /∈ Sk (17)

where Sk is the partial solution of the ant k. The β parameter controls how
important is η in the probabilistic decision [14].

Pheromone trail τj. In this work the pheromone trail is put on the problems
component (each eligible column j) instead of the problems connections. And
setting a good pheromone quantity is not a trivial task either. The quantity of
pheromone trail laid on columns is based on the idea: the more pheromone trail
on a particular item, the more profitable that item is [22]. Then, the pheromone
deposited in each component will be in relation to its frequency in the ants
solutions. In this work we divided this frequency by the number of ants obtaining
better results.

Heuristic information ηj . In this paper we use a dynamic heuristic informa-
tion that depends on the partial solution of an ant. It can be defined as ηj = ej

cj
,

where ej is the so called cover value, that is, the number of additional rows
covered when adding column j to the current partial solution, and cj is the cost
of column j. In other words, the heuristic information measures the unit cost
of covering one additional row. An ant ends the solution construction when all
rows are covered.

In this work, we use two instances of ACO: Ant System (AS) and Ant Colony
System (ACS) algorithms, the original and the most famous algorithms in the
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ACO family [14]. ACS improves the search of AS using: a different transition
rule in the constructive phase, exploiting the heuristic information in a more rude
form, using a list of candidates to future labelling and using a different treatment
of pheromone. A direct implementation of the basic ACO framework is incapable
of obtaining feasible solution for many SPP instances [10]. Each ant starts with
an empty solution and adds columns until a cover is completed. But to determine
if a column actually belongs or not to the partial solution (j �∈ Sk) is not good
enough. The traditional ACO decision policy, Equation 17, does not work for
SPP because the ants, in this traditional selection process of the next columns,
ignore the information of the problem constraints when a variable is instantiated.
And in the worst case, in the iterative steps is possible to assign values to some
variable that will make impossible to obtain complete solutions. To improve
it, we use a procedure similar to the Constraint Propagation technique from
Constraint Programming [5,1].

1 Procedure ACO+CP_for_SPP
2 Begin
3 InitParameters();
4 While (remain iterations) do
5 For k := 1 to nants do
6 While (solution is not completed) and TabuList <> J do
7 Choose next Column j with Transition Rule Probability
8 For each Row i covered by j do /* constraints with j */
9 feasible(i):= Posting(j); /* Constraint Propagation */
10 EndFor
11 If feasible(i) for all i then AddColumnToSolution(j)
12 else Backtracking(j); /* set j uninstantiated */
13 AddColumnToTabuList(j);
14 EndWhile
15 EndFor
16 UpdateOptimum();
17 UpdatePheromone();
18 EndWhile
19 Return best_solution_founded
20 End.

Fig. 1. ACO+CP algorithm for SPP

5 Integrating Constraint Programming to Ants

Recently, some efforts have been done in order to integrate Constraint Program-
ming techniques to ACO algorithms [26,15]. An hybridization of ACO and CP
can be approached from two directions: we can either take ACO or CP as the
base algorithm and try to embed the respective other method into it. A form to
integrate CP into ACO is to let it reduce the possible candidates among the not
yet instantiated variables participating in the same constraints that the actual
variable. A different approach would be to embed ACO within CP. The point
at which ACO can interact with CP is during the labelling phase, using ACO
to learn a value ordering that is more likely to produce good solutions. In this
work, ACO use CP in the variable selection (when adding columns to partial
solution). The CP algorithm used in this paper is Forward Checking with Back-
tracking [11]. It performs Arc Consistency between pairs of a not yet instantiated
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variable and an instantiated variable, i.e., when a value is assigned to the cur-
rent variable, any value in the domain of a future variable which conflicts with
this assignment is removed from the domain. The Forward Checking procedure,
taking into account the constraints network topology (i.e. wich sets of variables
are linked by a constraint and wich are not), guarantees that at each step of the
search, all constraints between already assigned variables and not yet assigned
variables are arc consistent. Then, adding Forward Checking to ACO for SPP
means that columns are chosen if they do not produce any conflict with the next
column to be chose. Figure 1 describes the hybrid ACO+CP algorithm to solve
SPP [10].

6 Experiments and Results

The first five columns of Table 1 present the problem code (from Orlib [4]), the
number of rows (constraints), the number of columns (decision variables), the
best known cost value for each instance (IP optimal), and the density (percentage
of ones in the constraint matrix) respectively. The next three columns present the
results obtained by better performing metaheuristics with respect to SPP: Ge-
netic Algorithm of Chu and Beasley [7], Genetic Algorithm of Levine [24] and the
most recent algorithm by Kotecha et al. [21]. And the last four columns present
the cost obtained when applying Ant Algorithms, AS and ACS, and combining
them with Forward Checking. An entry of ”X” in the table means no feasible
solution was found. The algorithms have been run with the following parameters
settings: influence of pheromone (alpha)=1.0, influence of heuristic information
(beta)=0.5 and evaporation rate (rho)=0.4 as suggested in [22,23,14]. The num-
ber of ants has been set to 120 and the maximum number of iterations to 160, so
that the number of generated candidate solutions is limited to 19.200. For ACS
the list size was 500 and Qo=0.5. Algorithms were implemented using ANSI C,
GCC 3.3.6, under Microsoft Windows XP Professional version 2002.

The effectiveness of Constraint Programming is showed to solve SPP, because
the SPP is so strongly constrained the stochastic behaviour of ACO can be
improved with lookahead techniques in the construction phase, so that almost

Table 1. Results of SPP benchmarks

Problem Rows Columns Optimum Density Beasley Levine Kotecha AS ACS AS+FC ACS+FC
sppnw06 50 6774 7810 18.17 7810 - - 9200 9788 8160 8038
sppnw08 24 434 35894 22.39 35894 37078 36068 X X 35894 36682
sppnw09 40 3103 67760 16.20 67760 - - 70462 X 70222 69332
sppnw10 24 853 68271 21.18 68271 X 68271 X X X X
sppnw12 27 626 14118 20.00 14118 15110 14474 15406 16060 14466 14252
sppnw15 31 467 67743 19.55 67743 - - 67755 67746 67743 67743
sppnw19 40 2879 10898 21.88 10898 11060 11944 11678 12350 11060 11858
sppnw23 19 711 12534 24.80 12534 12534 12534 14304 14604 13932 12880
sppnw26 23 771 6796 23.77 6796 6796 6804 6976 6956 6880 6880
sppnw32 19 294 14877 24.29 14877 14877 14877 14877 14886 14877 14877
sppnw34 20 899 10488 28.06 10488 10488 10488 13341 11289 10713 10797
sppnw39 25 677 10080 26.55 10080 10080 10080 11670 10758 11322 10545
sppnw41 17 197 11307 22.10 11307 11307 11307 11307 11307 11307 11307
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only feasible partial solutions are induced. In the original ACO implementation
the SPP solving derives in a lot of unfeasible labelling of variables, and the ants
can not complete solutions.

7 Conclusions

In order to be able to solve any combinatorial optimization problem it seems that
a good idea is to use both incomplete and complete techniques together. When
problems are easy enough to allow searching for the optimal solution, complete
techniques can be used. When problems become harder, incomplete techniques
represent a good alternative in order to solve approximately the problem. Partic-
ularly, promising possibilities of combining ACO metaheuristic with Constraint
Programming were pointed out in this work. Indeed, a complete search can guide
a constructive metaheuristic: constraint propagation can be applied in order to
restrict the neighborhood or prune the search space. Complete techniques are
also used in order to explore the neighborhood of the current configuration help-
ing to select the next moves. Following these ideas, we solved some benchmarks
of SPP in the context of DARP decomposition. We are working in the develop-
ment of a computational application that can integrate the resolution for both
Clustering and Chaining in order to provide a whole solver for DARP.
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Abstract. This paper presents the implementation of ARQ-PROP II,
a limited-depth propositional reasoner, via the compilation of its speci-
fication into an exact formulation using the satyrus platform. satyrus’
compiler takes as input the definition of a problem as a set of pseudo-
Boolean constraints and produces, as output, the Energy function of a
higher-order artificial neural network. This way, satisfiability of a for-
mula can be associated to global optima. In the case of ARQ-PROP II,
global optima is associated to Resolution-based refutation, in such a way
that allows for simplified abduction and prediction to be unified with de-
duction. Besides experimental results on deduction with ARQ-PROP II,
this work also corrects the mapping of satisfiability into Energy minima
originally proposed by Gadi Pinkas.

Keywords: ARQ-PROP II, higher-order neural networks, propositional
reasoner, satisfiability, satyrus.

1 Introduction

Plenty of research has been carried out on how neural networks learn and create
implicit knowledge from perceptual experience. On a smaller scale, come the
efforts on rule extraction from such knowledge. In the next scale degree, fewer
works on how neural networks perform logical reasoning are noticed. However,
with very few exceptions [1], not much has been done towards integrating these
three approaches. This paper presents the implementation of ARQ-PROP II
[8], a neural-based propositional reasoner possessing a writable area so that
knowledge coming from outside, e.g., perceptual areas, could be integrated in
the reasoning process.

F. Mele et al. (Eds.): BVAI 2007, LNCS 4729, pp. 458–467, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.lam.ufrj.br/
http://upiia.uab.es/
http://www.cos.ufrj.br/~felipe


Logic as Energy: A SAT-Based Approach 459

In order to handle ARQ-PROP II’s complex architecture, its implementation
was realized through the use of the satyrus’ platform [11]. In previous works,
it was shown how optimization problems, such as TSP (Traveling Salesperson
Problem) and graph colouring, could be specified as sets of pseudo-Boolean
constraints and easily combined through the concatenation of their respective
specifications, plus the addition of other pseudo-Boolean constraints specifying
the combination’s intentionality [10]. ARQ-PROP II’s architecture, declared as
pseudo-Boolean constraints, is taken as input to the satyrus’ compiler which
produces, as output, an Energy function that can be directly mapped into a
higher-order artificial neural network.

satyrus’ compilation process, described in the next section, is based on the
mapping of satisfiability of a formula into global optima of an Energy function,
which was originally proposed by Gadi Pinkas [9]. However, such mapping was
proven to produce spurious global minima in more complex problems, such as in
the case of ARQ-PROP II, and this is corrected in Section 2.2. ARQ-PROP II,
presented in Section 3, works by associating global optima to Resolution-based
refutation, so that different logical reasoning styles such as abduction, deduction
and prediction can be performed in a uniform way. Experimental results from
ARQ-PROP II performing deduction are described and discussed in Section 4,
followed by our conclusions, presented in the last section.

2 Satyrus: A Satisfiability-Based Architecture for
Constraint Processing

satyrus platform is basically composed by two modules: a compiler and a solver
[10] [11]. A problem specification is fed to the compiler as a set of pseudo-Boolean
constraints, representing both the problem’s search space and the cost function,
and a penalty scale modulating the whole set of constraints. The object code
produced by the compiler consists of an Energy function, which can also be
seen as a single exact formulation to the problem in question. Global minima of
this Energy function, corresponding to the desired set of solutions, are obtained
through the use of a solver. The current satyrus’ solver is based on symmetric
higher-order neural networks.

2.1 satyrus’ Language and Compiler

Input to satyrus’ compiler consists of a problem specification written in the
satyrus’ declarative language. The general structure of a problem specification
is divided in four main parts: (i) neural structures, (ii) integrity constraints, (iii)
optimality constraints and (iv) a penalty scale associated to the different groups
of constraints defined within (ii) and (iii).

Constructs are provided to express the specification of different data struc-
tures of binary elements. These structures are, basically, multi-dimensional ar-
rays. The elements of these arrays play the role of propositional variables in
the constructs that specify constraints and will be identified as binary neurons
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in the neural solver. The replication of such constraints is facilitated by other
constructs. The objective function sentences are defined in a similar way and
may be read from a file. Also provided are constructs for the association of an
identifier to a group of both integrity and optimality constraints, in order to
enable the attribution of a same penalty level to them.

2.2 Energy Function Generation

The compiler translates the file containing the problem specification into an
intermediate representation composed by one header and a record for each term
of the Energy function. Each record has the following information: penalty level,
weight, connection arity and list of neighboring neurons. The header provides a
table with penalty identifiers and respective values. Only the penalty identifiers
and their levels are informed by the user, their values and neurons attributes
result from the compilation process.

The association of satisfiability (SAT) to global minima of a function re-
quires the consideration of the basic mapping of truth values of propositional
formulae to the domain {0, 1}:

H(true) = 1
H(false) = 0

H(¬p) = 1 − H(p)
H(p ∧ q) = H(p) × H(q)
H(p ∨ q) = H(p) + H(q) − H(p ∧ q)

If a logical formula is converted to an equivalent in Conjunctive Normal Form
(CNF), the result being a conjunction ϕ of disjunctions ϕi, it is possible to asso-
ciate energy to H(¬ϕ). Nevertheless, energy calculated in this way would only
have two possible values: one, meaning solution not found (if the network has not
reached global minimum), and zero when a model has been found. Intuitively,
it would be better to have more “clues”, or degrees of “non-satisfiabililty”, on
whether the network is close to a solution or not. This measure also prevents
the Energy equation from having an exponential number of terms which could
result from the conversion of the outermost disjunction in the negated formula.

Let ϕ = ∧iϕi where ϕi = ∨j lij , and lij is a literal (either pij or ¬pij).
Therefore ¬ϕ = ∨i¬ϕi where ¬ϕi = ∧j¬lij . Instead of making E = H(¬ϕ),
consider E = H∗(¬ϕ) =

∑
i H(¬ϕi). So, E =

∑
i H(∧j¬lij) =

∑
i

∏
j H(¬lij),

where H(p) will be referred to as p. Informally, E counts the number of clauses
that are not satisfied by the interpretation represented by the network’s state.

A simple example demonstrates how SAT can be mapped to EM. Let ϕ be
the formula, expressed as a conjunction of clauses:

ϕ = (p ∨ ¬q) ∧ (p ∨ ¬r) ∧ (r)
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SAT (ϕ) can be translated to the minimum of the following energy function:

E = H(¬(p ∨ ¬q)) + H(¬(p ∨ ¬r)) + H(¬r)
= H(¬p ∧ q) + H(¬p ∧ r) + H(¬r)
= (1 − p) ∗ q + (1 − p) ∗ r + (1 − r)
= q − pq − pr + 1

where H(p) = p.
Another source of potentially exponential space cost occurs when a clause ci

is required by the modeling to have a number of literals equal to the size n of the
problem. The simplification displayed by function H∗(¬ϕ) could not be applied
in this case. In some situations, however, only one of the disjuncts should be
allowed to be true at a time, constituting an exclusive-OR. The definition of a
set of so-called Winner-Takes-All (WTA) constraints helps to prevent violation
of the exclusiveness. This prevention can only be achieved by the attribution
to the WTA-constraints of a penalty level higher than ci. Penalty values should
be calculated in such a way that no violation of a constraint of level i could
be traded for the satisfaction of constraints of lower levels. This can be done
automatically, provided that the user informs an upper bound for the optimality
constraints, if there are any. It is also worth mentioning that Pinkas’ mapping
did not consider tackling optimization problems, only logical reasoning ones.

Up to this point, the mapping proposed by Gadi Pinkas has been described.
Nevertheless, an important mapping rule has been left unspecified by him, lead-
ing to potential spurious global minima. This work proposes the addition of a
rule that states that clause ci should be broken into n singleton clauses sij ,
1 ≤ j ≤ n. The set {sij} should be associated to a new penalty level, imme-
diately lower than that of the original ci, but still higher than the other lower
penalty levels.

2.3 Satyrus’ Neural Solver

Once the Energy function is defined, one could apply a number of different solvers
in order to find its global minima. In the present work, it is assumed a general-
ization of Hopfield neural networks [5], where a stochastic behaviour [6] is intro-
duced into its binary neurons, i.e., output ON = 1 or OFF = 0. It is worth notic-
ing that the symmetric neural network associated to the mapping introduced in
the previous subsection may have higher-order connections. This means that
the resulting Energy function may have terms with more than two propositional
variables, what would imply on having synaptic weights involving more than
two neurons each, e.g., neurons i, j and k such that wijk = wjik = wkij . This
does not constitute a hindrance as has been demonstrated that, with higher-
order connections, Boltzmann Machines still converge to energy minima [4].
Parallel and distributed simulation of networks [2] with higher-order connec-
tions can be done by substituting each higher-order connection by a completely-
connected subgraph. Alternatively, [9] converts the higher-order network to a
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binarily connected one that preserves the order of energy values of the different
network states.

3 ARQ-PROP II: A Goal-Driven Propositional Reasoner

It is possible to use the mechanism described in Section 2 to design a neural en-
gine that is capable of performing propositional Resolution-based reasoning with
both complete and incomplete knowledge. The modeling has to define the sets
of propositional variables to be associated to binary neurons and a set of con-
straints that provides the reasoner with the ability to perform sound Resolution
steps. Additionally, in order to reason with incomplete knowledge and to have
the flexibility that the knowledge base does not be pre-encoded as constraints,
the engine has to be able to create new sentences (clauses).

3.1 ARQ-PROP II Architecture

The data structures of ARQ-PROP II are displayed in Figure 1. The meaning
of the states of the elements of the ARQ-PROP II in Figure 1 will be explained
in Section 4. The interpretation of ARQ-PROP II structures is the following:

– IN (n × 1): indicates if the line is part of the selected proof or not; i = line
number in the proof area;

– PROOF (n × n × {+, −}): proof area; i = line number; j = nameprop; k =
literal sign;

– CB-RES-INV (n × 3): reason for belonging to the selected proof for a line in
the proof area; it can either be an instance of a clause of the Clause Base
(CB), the result of a resolution step (RES), or an invention in the case of
reasoning with incomplete knowledge (INV); i = line number; j = reason;

– EMPTY (n× 1): indicates whether the line is the empty clause or not; i = line
number;

– CBMAP (n×n): maps proof lines to the internal names of clauses of the Clause
Base that they derive from; i = line number; j = clause;

– PARENT (n × n × {1, 2}): indicates the parents (parent1 or parent2) of a line,
resulting from a resolution step, in the proof; i = parent line number; j =
line number; k = parent1 or parent2;

– CANCELED (n×n): indicates which proposition has been canceled in the proof
lines that result from resolution steps; i = line number; j = nameprop;

– CLCOMP (n×n×{+, −}): indicates clause composition for each clause (internal
name) of the selected Clause Base; i = clause number; j = nameprop, k =
literal sign;

– ORIG (n × 1): indicates that the clause belongs to the original knowledge
base; i = clause number.

It is worth pointing out that structures PROOF, CLCOMP and PARENT are tri-
dimensional with n×n×2 elements, each. In the first two structures, the third di-
mension indicates the sign of the propositional literal, while in structure PARENT,
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Fig. 1. General structures of ARQ-PROP II having a proof depth limit of 6. Final
states of neurons after deduction of � from {p ∨ ¬q, p ∨ ¬r, q} ∪ {¬p}. The IN-PROOF
lines compose a refutation for ¬p, thus proving p: line 1: � (empty clause), line 3: q,
line 4: ¬q, line 5: ¬q ∨ p, line 6: ¬p (query).

the third dimension is used to enforce the participation of two different clause
instances on a Resolution step. Clauses composition must be indicated explic-
itly by fixing the values of the nodes of structure CLCOMP. The structure INV is
used to indicate that a proof could be generated provided that sentence(s) were
incorporated to the knowledge base.

3.2 Set of Constraints of ARQ-PROP II

In general, the set of integrity and optimality constraints of ARQ-PROP II must
account for the specification of a Resolution step (Resolution step constraints,
Parent line constraints and Resolvent composition constraints) and specify the
conditions for a line in the PROOF area to actually belong to the result of the
computation (In-proof constraints). In order to accomplish that, it is necessary
to add constraints for the enforcement of clause syntax (Clause instance con-
straints, Clause syntax constraints, Empty clause constraints, Clause-invention
constraints). The whole set of constraints, the detailing of which has been revised
in [14], can be informally stated as:

1. Every line of PROOF resulting from an inference step, i.e., one that is not a
copy of a clause from CLCOMP, must have exactly two different parents, which
are also lines of PROOF;
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2. Every line that is a copy of a clause from the Clause Base, CLCOMP has no
parents;

3. Except from the empty clause, every line of the proof must be a parent of
exactly one line in the proof;

4. Every Resolution inference step must have one and only one pair of canceled
literals;

5. Apart from the canceled pair of literals, all and only literals of both parents
involved in an inference step must be copied to the resulting proof line;

6. Every line that belongs to a proof is either a copy of a clause from the Clause
Base or constitutes the result of a Resolution inference step;

Additionally, some WTA conditions have been used to justify the conversion
of disjunctions in the middle of constraints to a conjunction of the disjuncts, as
explained in Section 2.2, or as a necessary part of the specification of ARQ-PROP
II:

7. WTA-1-sign: only one occurrence of propositional symbol (i.e., of its internal
name) per line in the proof (applied to PROOF);

8. WTA-2-line: only one reason per proof line (applied to CB-RES-INV);
9. WTA-3-line: only one clause from the Clause Base (CLCOMP) copied per line

of PROOF area (applied to CBMAP);
10. WTA-4-(column, parent1/2): a line can have only one parent1 and only one

parent2 (applied to PARENT);
11. WTA-5-line: a line in the proof may take part in a resolution step (i.e., be

one of the parents of another line) only once (applied to PARENT);
12. WTA-6-parent1/2: two different proof lines must be involved in a resolution

step (applied to PARENT);
13. WTA-7-line: only one pair of literals (i.e., propositional symbol) canceled

per line number resulting from a resolution step (applied to CANCELED);
14. WTA-8-sign: only one occurrence of propositional symbol (i.e., of its internal

name) per clause (applied to CLCOMP).

The specification of a pure-deduction reasoner would be complete if con-
straints 1 to 14 were satisfied. For a simple version of reasoning with incomplete
knowledge to take place, the invention of a clause must be penalized, as it is
usually more desirable to have a complete deduction of the empty clause. The
penalty has to be such that energy of a sentence that belongs to a proof will be
smaller if it is possible to choose it from the knowledge base or to generate it
from a Resolution step. This is achieved by attributing the lowest penalty level
to these constraints, making them optimality constraints.

4 Compiling and Running ARQ-PROP II with Satyrus

This section presents two experiments exercising ARQ-PROP II on performing
deduction over two small clause bases, both having ¬p as query:
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Δ1 = {p ∨ ¬q, p ∨ ¬r, q}
Δ2 = {p ∨ ¬q ∨ ¬r, q, r}

As previously shown in Figure 1, the compilation of ARQ-PROP II, assuming
a depth limit of 6 in the proof area, resulted in a network having 318 neurons
(note that fields PROOF and CLCOMP have two layers – “+” and “−”, as well as field
PARENT – parent1 and parent2). The clause base Δ1 ∪ {¬p} was written in the
clause base (CLCOMP) area. The graphical conventions adopted for the neurons’
output are: black means the neuron is clamped ON; within lines having black
neurons, white nodes are clamped OFF; grey neurons are ON as a result; within
lines having grey neurons, white nodes are OFF as a result; positions having
no output doesn’t matter for the current result. Notice that, as illustrated in
Figure 1, there are ON neurons in the proof area (PROOF) representing no input
clauses. Such neurons, specially the ones in line 2, should not be considered
since their corresponding neurons in field IN were set to OFF. Those neurons
producing ON values do not have any influence on the final calculus of the Energy
function.

Both experiments were conducted using the same initial temperature Ti =
10000, final temperature Tf = 1, and a geometrical cooling factor of 0.99.
Figure 2 illustrates the behaviour of Energy function in the experiment with
ARQ-PROP II performing deduction of � from Δ1 ∪{¬p}. In the second exper-
iment, the compilation of ARQ-PROP II assumed a depth limit of 8 in the proof
area, resulting in a network having 552 neurons. The clause base Δ2 ∪{¬p} was
written in the clause base (CLCOMP) area and Figure 3 illustrates the behaviour
of Energy in this case.

Fig. 2. Trajectory of the Energy for deduction of � from Δ1 ∪ {¬p}; final Energy: 169
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Fig. 3. Trajectory of the Energy for deduction of � from Δ2 ∪ {¬p}; final Energy: 433

5 Conclusion

Apart from the recent resurgence of interest in satisfiability as a means of
overcoming the inherent difficulty of many NP-hard problems [3], interest on
Pinkas’ original mapping, such as in Markov Logic Networks (MLNs) [13], are
relatively recent. The main contribution of MLNs lies on the amalgamation of
learning by examples with inferencing. On the other hand, the conception of
ARQ-PROP II as a generic propositional reasoner is unique when compared to
any other purely connectionist approach, since there is no predefined knowledge
base involved. Moreover, ARQ-PROP II is able to reason with incomplete knowl-
edge and to create new clauses; both interesting features to be explored in the
design of intelligent machines. Besides abduction and prediction, other kinds of
reasoning styles, still in the propositional domain, such as planning, are among
the next experimentation steps of this research.

Another ongoing work is the full implementation of ARQ-FOL II [7], the First
Order Logic (FOL) generalization of ARQ-PROP II. As in ARQ-PROP II, the
ARQ-FOL II architecture allows one to set a predefined limit for the proof depth,
while working without a predefined knowledge base. Such would be the first
neural reasoner performing this logic level. It must be noticed that, although
the resulting complexity of both kind of neural architectures are polynomial,
time complexity remains exponential. This is reasonable since the reasoners in
question do not treat just Horn clauses.

The use of the strategy described in thiswork for the complete implementation of
ARQ-FOL II and other complex problems, such as the energy generation expansion
[15] and the molecular geometry reconstruction [12], can only be carried out via an
automated process. This is due to the number of terms of the Energy function
generatedby the satyrus compiler, aswouldbe the case of other logical/opmization
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methods. Adjustment of the search mechanisms of the satyrus neural solver and
exploration of other meta-heuristics constitute ongoing work as well.
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Abstract. In this paper we propose a formal approach to the generative design 
of artefacts. The founding idea, bridging the gap between the domain of 
architectural artefacts and the field of ontologies, is to represent the notion of 
species as it exists in the context of generative design by the concept of class 
existing in the field of formal ontologies. In this paper we propose an artefact 
design methodology and a system based on it that assists a designer in the 
building process of artefact 3D models. The implemented system is structured 
in three conceptual levels: the Design Strategy, the Computational Model, and 
the 3D graphical rendering system. The Computational model has been defined 
and developed using the Frame Logic formalism. The proposed methodology is 
independent of specific modelling environments. In this paper we also present 
methodological directions to couple artefact representations with 3D rendering 
systems. 

Keywords: Intelligent System, Human Computer Interaction, Generative Design. 

1   Introduction 

Generative design is an architectural design operating method. While this 
methodology covers a wide set of design strategies, in this paper we focus on artefacts 
design, specifically on the design of every-day use artefacts [1]. We do not consider 
technical artefacts even if we are aware that also in the design of the simplest artefact 
at least a small set of functionalities (technical qualities) has to be considered. 

Generative design is an approach to the architectural design that allows to control 
the generative process of the production of artefacts [2]. A key concept of generative 
design of artefacts is the notion of species. This notion has in this context a meaning 
similar to the biological one, where each animal species includes a high number of 
different creatures, all different but individually recognizable and identifiable. 

Through the notion of species, generative design can be seen as a generation 
procedure of shapes and relations producing objects (artefacts) all belonging to a 
single set of individuals (species) sharing the same object idea. 

Therefore, generative design is not the design of a single specific artefact but the 
design of a species of artefacts. In the creative generative process the conjectured 
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species is intensively tested by simulating the generation of a high number of 
individuals of the species. This population is used to modify the generative code of 
the process to obtain, finally, the code considered by the designer the most suitable to 
produce the compositive result identified as the recurring characteristics in each 
individual artefact. 

In this paper we try to make explicit and formal the generative design approach 
using a formal ontological representation [3]. The founding idea, bridging the gap 
between the domain of architectural artefact and the field of ontologies, is to represent 
the notion of species as it exists in the context of generative design by the concept of 
class existing in the field of formal ontologies. We formalized in Frame Logic [4] 
most of the generative approach concepts. This formalization has been critical to build 
a computational model defining the proposed generative design aid system. We 
present an artefact design methodology and a system based on it that assists a 
designer in the building process of artefact 3D models. In the definition and 
development of the implemented system, three conceptual levels have been 
considered (fig. 1): the Design Strategy, the Computational Model, and the 3D 
primitives used to render the artefact's model. 

 

Fig. 1. The system’s three levels 

The Design Strategy adopts a methodology belonging to the set of generative 
approaches to the creation of artefacts and allows to design the artefact through a set 
of qualitative and quantitative spatial relations among the component parts of the 
artefact [7]. The designer is aware of such a strategy and the implemented system 
provides an interface acting as a guide to define the design strategy. In our opinion, 
the explicit use of relations in the generation cycle increases competence in the 
generative process because structural and functional choices are directly connected to 
the theory used in the design process. The Computational Model is composed by an 
artefacts representation and a set of inferential services offered by the aid system. It is 
not critical for the designer to be aware of the representation. In our system we adopt 
a frame-based representation: for each artefact's species, defined by the designer in 
the design strategy, the system builds an ontological class. To represent the 
computational model we used the FLORA-2 language [5]. 
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The third level is composed by rendering primitives interpreted by Rendering 
System. These are basic functions provided by the modeling environment used to 
build and render artefact's 3D model. Such functions are activated following the 
Design Strategy ontological representation introduced in the Computational Model.  

Through the system interface the designer controls the models generation process 
by means of explicit definitions for species (artefact classes). Every species is 
represented as a whole composed by a set of parts and a set of relations among parts. 
These relations are mainly of spatial type, both qualitative and quantitative. 

Using ontological representations in the generative design of artefacts, the 
generation process is described by producing class instances. Each instance represents 
an artefact and artefacts belonging to the same species are represented as instances of 
the same class. So, species can be defined by varying the composing parts set and by 
modifying the relations among parts set. 

In the proposed architecture there are two translation modules (fig. 1). The first 
one, the Strategy-Computational_Model (S-CM) translation module, translates the 
designer's directives expressed via the interface to the computational model (S-CM 
module in the figure). The second one, the Computational_Model-Rendering_System 
(CM-RS) translation module, translates the Computational Model in a set of modeling 
primitives used by a Rendering System to create 3D models of artefacts. 

The S-CM module does not only act as a translator: it also chooses and implements 
specific representation models, according to design strategies defined by the designer. 
As an example, if, via the interface, the designer characterizes a species S with a part 
that is essential for it (see the rigid dependency concept in [6]) then the S-CM module 
will construct a class with a slot representing that part, which will be inherited by all 
subclasses of S. 

The Computational Model representation has been defined in such a way that the 
CM-RS module can generate every model following the designer's directives, which 
is subsequently translated to rendering system primitives. 

To test the implemented system, we used LightWave as 3D modeling and 
rendering environment but experimentations have also been carried out with different 
environments (Rhyno, Wmrl, X3D and Java 3D). 

2   Design Strategy 

The Design Strategy is expressed in the implemented system interface. Even if the 
proposed design strategy adopts a methodology belonging to the set of generative 
approaches to the creation of artefacts we introduced a specific characterization. The 
strategy cycle is expressed via the iterative cycle shown in figure 2 and is structured 
in various phases. 

In Phase A an artefact is defined through species definition (a class in the 
computational model) or as parts aggregation. By aggregation we mean a whole 
represented by a set of composing parts and relations among parts (wholes are 
explicitly expressed and each definition contains part names [7]). 

A specialization is obtained by introducing new whole descriptors or by adding new 
relations (constraints) among parts. A specializing process consists in a definitions chain  
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for species-subspecies couples in which essential parts are distinguished from non-
essential parts (each new species is defined only if at least one part or at least one 
relation/constraint is marked as essential). 

 

Fig. 2. Design Strategy Cycle 

In the proposed methodology an abstraction is the action of deleting a description 
(essential or not). In practice, an abstraction is a temporary reference to an existing 
species and, followed by a specialization, it defines a revision operation. 

In Phase B parts are defined as elementary artefacts or as aggregations. In Phase C 
parts and relations instantiations are performed. This way single artefacts or artefact 
families are obtained. In Phase D a consistency check for introduced instantiations 
relatively to owning classes is performed.  

Next, the generated artefact is rendered and the designer evaluates if the obtained 
geometry conforms to his intentions. If discrepancies or second thoughts occur, the 
designer will have to revise parts or relations definitions. We wish to highlight that, in 
the cycle, the S-CM translation module hides the Computational Model to the 
designer while the CM-RS module hides functions activations executed by the 
Rendering System and used to build models. 

In the following list we summarize all design project operations available in the 
proposed methodology. 

1. Species definition strategies 
1.1 Specialization strategy 

1.1.1 Specialization by adding descriptors 
1.1.2 Specialization by constraining descriptors 

1.1.2.1 Specialization by constraining parts dimensions 
(numeric constraints on lengths) 

1.1.2.2 Specialization by relating a whole's parts (parts relations 
or parts spatial constraints) 

1.2 Abstraction strategy 
1.2.1 Abstraction by deleting non-essential descriptors 
1.2.2 Abstraction by deleting non-essential constraints 

1.3  Existing species definition revising strategy 
1.3.1 An abstraction followed by a specialization 

2. Whole/Part definition strategies 
2.1 Parts aggregation strategy 
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2.2 New species definition strategy 
3. Parts aggregation 

3.1 Parts definition + Parts relations (constraints) 
4. Instantiation strategies 

4.1 Value/Object assignment to a species slot strategy 
4.1.1 Interactive assignment 
4.1.2 Automatic algorithm-driven assignment 

4.1.2.1 Algorithm 1 
4.1.2.2 Algorithm  

, . . . , 
5. Rendering strategies 

5.1 Models generation method interactive choice (revolve, loft etc) 
6. Relations among parts definition 

6.1 Qualitative spatial relations definitions 
6.2 Quantitative spatial relations definitions 
6.3 Frontiers definitions 

7. Constraints check 
7.1 Interactive checking 
7.2 Algorithm-driven checking 

(For interactive checking of constraints we mean operations similar to those of 
PAL plugin [8]). In the implemented design strategy management interface a subset 
of these project options has been made available. This interface, shown in section 6, 
provides a number of interactors to activate project functionalities. 

3   Computational Model 

In the Computational Model each artefact class is represented by means of an 
ontological class. Our computational model has two primary generation procedures 
for an artefact: 

1. Elementary objects generation 
2. Parts aggregation 

3.1   Representing Elementary Artefacts 

Elementary artefacts are represented as primitive shape classes (box, sphere, etc.) or 
as shape generating methods classes (revolve, loft, sweep, etc.). Generation methods 
available in the ontology are: revolve, sweep and loft. 

Revolve is a function used to describe shapes as spin solids given a profile curve 
and a spin axis. Sweep is an operation of profile curve extrusion guided by a second 
curve named rail. Sweep can be considered a revolve generalization if a circular rail is 
instantiated as extrusion guide. Loft is a function to generate a 3D model given a 
curves set and an order among them.  

In our system, we describe curves as result of points interpolation. It is critical to 
the loft function that input curves are described with the same number of points. The 
3D model is obtained by connecting control points of curves following the defined 
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order. Points connections are also performed following the order of the curves control 
points (the first point of the first curve is connected to the first point of the second 
curve, the second point of the first curve is connected with the second point of the 
second curve and so on). 

 

Fig. 3. Computational Model basic classes 

In our approach some basic classes exist to describe artefact models through 
generation methods (fig. 3). These classes are: elementary artefacts, methods, curves, 
points and axis. Each elementary artefact class is defined by a generation method and 
a set of other characteristics like colour, texture, etc. In figure the symbol "arrow" 
connecting the two oval forms, say c1 and c2, represents a taxonomic relation 
meaning "c1 is subclass of c2" (in the Frame Logic formalism represented as c1::c2), 
while the symbol "simple line" represents an association relation between two classes. 

Methods are defined as classes having specific method-depending arguments as 
slots. The revolve generation method, for example, has an axis and a curve spinning 
around that axis as properties (slots of a frame-based ontological class) while a loft 
generation method has a curves set and an order relations set as properties. 

loft::methods.   %loft method is a subclass of methods 
revolve::methods. %revolve method is a subclass methods 
%every method has a name of type string 
methods[name *=> string].  
%curve used by revolve belongs to the class curves 
%spin axis of the curve belongs to the class axisClass 
revolve[curve *=> curves,  
 axis *=> axisClass].  
loft[curveSet *=>> curves, relOrdCurve *=>> relOrd]. 
%artefactx is a subclass of elementaryArtefacts 
artefactx::elementaryArtefacts.  
freeForms::curves. %freeForms is a subclass of curves 
%verticalAxis is a subclass of axisClass 
verticalAxis::axisClass.   
artefactx[genByRevolve *=> revolve,                           
 otherC *=>> characteristics]. 
%artefactx’sinstances are generated by revolve 
a:artefactx[genByRevolve -> r1, otherC ->> {c1,c2,c3}]. 
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r1:revolve[curve -> abc, axis -> axis1]. 
%the curve is abc, axis is axis1 
abc:freeForms[points ->> {p1,p2,p3}]. 
p1:points[x -> 2, y -> 2, z -> 0]. 
p2:points[x -> 4, y -> 4, z -> 0]. 
p3:points[x -> 2, y -> 6, z -> 0]. 
axis1:verticalAxis[x -> 1]. 

An elementary artefact can be obtained with different generation methods. For 
example, the artefact in figure 4 can be generated by a revolve method or by a loft 
method using the three concentric circles delimiting the two cone logs. This 
coincidence highlights a peculiar feature of our method: ontological classes do not 
represent artefacts. They represent artefacts generation methods. 

 

Fig. 4. Revolve (or Loft) artefact generation 

3.2   A Whole as Parts Aggregation 

The methodology we are presenting in this paper provides generation of wholes by 
the composition of parts.  

 
Fig. 5. Representation of whole as parts aggregation 

In our computational model wholes are defined by a set of parts and a set of spatial 
relations among parts. In the following figure we show, as an example, a class Tx 
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composed by three parts: artefactx, part2, part3. artefactx is an elementary artefact 
while part2 and part3 can be the result of elementary artefacts aggregations or simply 
elementary artefacts. 

4   From Design Strategy to Computational Model 

The S-CM system module works as a filter and translator between Design Strategy 
and Computational Model. 

4.1   Parts and Wholes 

An S-CM module basic rule states that, given N parts describing a whole T through 
aggregation, a class T with N attributes representing parts is built in the Comput- 
ational Model. 

S-CM has some good constructing rules to follow for artefacts composed of parts. 
One of the main translation rules is stated as: if in the design management interface 
the designer marks one or more parts as essential (see [6] for artefact's essentiality),  
S-CM builds a concrete class with one or more non-inherited attributes. S-CM builds 
artefact's specializations (subclasses) following definitions of parts essentiality, 
introduced by the designer via the interface. 

S-CM, aided by some interface functions, rejects non-consistent design operations. 
For example, it is not allowed to specialize an artefact class A by creating a subclass 
if the designer did not define at least one new descriptor or at least one new relation 
among parts or at least one new constraint. 

4.2   Points into Spatial Regions as Constraints 

S-CM translates as constraints some of the specifics defined by the designer via the 
interface. For each spatial limitation for a point named Px (for example a point 
constrained to remain in a given region R) S-CM builds a class for Px by defining a 
constraint set on its coordinates. This way each instance in the Px class has its 
coordinates localized into the region. 

If the designer defines curve points spatially constrained and related among themselves 
(for example, a point constrained to have an Y-value lower than the Y-value of another 
point) S-CM builds two constraint sets: a region-type constraint group, as previously 
explained (by points constraining) and a constraint group on the curve's class. 

4.3   Frontiers as Parts Spatial Relations 

In our design approach special relations among parts named frontiers can be descry- 
bed. A frontier is a points sharing relation between two parts of a whole. 

We considered three frontier kinds: frontiers sharing a) points, b) curves and c) 
surfaces. Given a designer declaration of frontier relation, the S-CM module builds 
the appropriate representations in the computational model. In figure 6 a b-type 
frontier is shown. 

The Figure 7 shows as an example two parts sharing the same curveX curve class while 
a constraintX constraint is defined to force the two curves instances to be the same. 
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Fig. 6. B-type frontier between part1 and part2 

 

Fig. 7. B-type frontier representation 

5   From Computational Model to Rendering System 

The Computational Model is designed to provide an environment to represent 3D 
modeling common concepts. This representation has been studied to effectively represent 
design concepts so that it could transmit everything defined through the design interface to 
the chosen modeling environment to build and render defined artefact models. 

 

Fig. 8. Correspondences between Computational Model and modeling environment 

Generation methods represented into the computational model are in correspond- 
dence with the tools provided by modeling environment (fig. 8). The CM-RS system 
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module is responsible of data transferring from the Computational Model to the 
modeling environment. We have chosen LightWave Modeler [9] to implement the 
specific solution presented in this paper, however the computational model is 
completely independent of the associated modeling environment. 

6   Design Interface, Graphical Models and Artefact 
Representation 

Our system's interface is designed to explicitly show the generation cycle of an artefact. 
To perform a generation of artefacts belonging to a defined class, the designer goes 

through the Design phase to define species and subspecies using the design strategies 
we formalized, then, during the instantiation phase, constraints are used to generate a 
subset of instances of an artefact class and, finally, a connection with a modeling 
environment is established to model and render generated artefacts. In figure 9 a 
layout of design strategy interface is shown. In figure 10 three basic artefact shapes 
and their aggregation result obtained by coupling LiteWave Modeler with the 
Computational Model are shown. 

 

Fig. 9. A layout of design strategy interface 

 

Fig. 10. Parts (cup, base and stem) and whole models of a glass representation 
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The following FLORA-2 formalism is the correspondent glass representation 
stored in our system’s computational model. 

cylinderArtefacts::elementaryArtefacts. 
revolveArtefacts::elementaryArtefacts. 
loftArtefacts::elementaryArtefacts. 
cylinderArtefact[height *=> float, weight *=> float,  
      dept *=> dept]. 
revolveArtefact[genByRevolve *=> revolve]. 
loftArtefact[genByLoft *=> loft]. 
 

stemx:cylinderArtefact[height -> 2200,  
          weight -> 200, dept -> 200]. 
cupx:revolveArtefact[genByRevolve -> r1]. 
r1:revolve[curve -> c1, axis -> a1]. 
c1:freeForms[points ->> {c1p1, c1p2, c1p3, c1p4,  
   c1p5}]. 
c1p1:points[x -> 0, y -> 200, z -> 0]. 
c1p2:points[x -> 700, y -> 700, z -> 0]. 
c1p3:points[x -> 1000, y -> 2500, z -> 0]. 
c1p4:points[x -> 900, y -> 1300, z -> 0]. 
c1p5:points[x -> 0, y -> 400, z -> 0]. 
a1:verticalAxis[x -> 1]. 
basex:loftArtefact[genByLoft -> l1]. 
l1:loft[curveSet ->>{c2, c3, c4} ,  
 relOrdCurve ->> {r1, r2}]. 
r1:relOrd[curve1 -> c2, curve2 -> c3]. 
r2:relOrd[curve1 -> c3, curve2 -> c4]. 
c2:freeForms[points ->> {c2p1, c2p2, ..., c2p23}]. 
c2p1:points[x -> 0, y -> 0, z -> -100]. 
c2p2:points[x -> 25, y -> 0, z -> -95]. 
... 
... 
c2p23:points[x -> -26, y -> 0, z -> -96]. 
c3:freeForms[points ->> {c3p1, c3p2, ..., c3p23}]. 
c3p1:points[x -> 0, y -> -2100, z -> -480]. 
c3p2:points[x -> 120, y -> -2100, z -> -460]. 
... 
... 
c3p23:points[x -> -120, y -> -2100, z -> -460]. 
c4:freeForms[points ->> {c4p1, c4p2, ..., c4p23}]. 
c4p1:points[x -> 0, y -> -2200, z -> -980]. 
c4p2:points[x -> 250, y -> -2200, z -> -940]. 
... 
... 
c4p23:points[x -> -250, y -> -2200, z -> -940]. 

7   Remarks 

In this paper we have proposed a representation of the species concept existing in the 
generative design field using formal ontological classes and a new artefacts 
generation methodology directly connected to 3D models building. 
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About representation, an approach similar to the one we presented here has been 
described in [12], but in that work the design strategy problem is treated only as a 
parts aggregation process without considering the generation process of the artefact 
3D model. In other works theories based on artefact functionalities are proposed [10, 
11]. Functionalities have not been considered in this paper. However, we think the 
representation we proposed can be used by an abstract level theory concerning 
artefacts functional and behavioural properties, leaving to a low level theory, like 
ours, the artefacts 3D generation methods management. 
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Abstract. The management of computational resources is becoming a
crucial aspect in new generation distributed computing systems like the
Grid because of the decentralized, heterogeneous and autonomous na-
ture of these resources. As such they cannot be managed by adopting a
centralized approach, but more sophisticated computing methodologies
are necessary. In this paper we propose to use software agent negotiation
to select services necessary to compose Grid applications. In particular,
we propose an automated negotiation mechanism to select the service
providers that meet the requirements of service consumers on the pro-
vision of multiple interconnected services. The negotiation mechanism
allows for the evaluation of dependent issues that are negotiated upon
when multiple interconnected services are required, and it relies on an
iterative process so to improve the possibility of reaching an agreement
by letting both service consumers and providers to exchange more pro-
posals and counter–proposals in order to accommodate to the dynamic
and changing nature of Grid environments.

1 Introduction

Computational grids [1] represent the new research challenge in the field of dis-
tributed computing. They aim at providing a unified computational infrastruc-
ture composed of networked heterogeneous resources that provide dependable,
consistent, pervasive, and inexpensive access to high–end computational capa-
bilities in the same way as electric power grids provide power to devices in a
relatively efficient, low–cost, and reliable fashion. Resources use standard, open,
general–purpose protocols and interfaces (i.e. not application–specific), and more
importantly are not subject to centralized control, i.e. they exist within different
control domains and they do not rely on a central management system. Re-
sources need to be combined in order to deliver non–trivial services so that the
utility of the resulting system is significantly greater than the sum of its parts.
Users will be able to access and share these computing resources on demand
over the Internet, relying on an infrastructure that is expected to be resilient,
self managing and always available.

In order to make computational grids a viable approach, middleware mecha-
nisms are necessary to enable the sharing, selection, and aggregation of services
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distributed across different administrative domains, depending on their avail-
ability, capability, performance, cost and users’ quality–of–service requirements.

The focus of the present work is to provide a middleware mechanism to allow
for the selection of grid services, among the ones available, necessary for the ex-
ecution of complex distributed applications in terms of dependencies occurring
their components. In traditional computing systems the selection of resources
is guaranteed by resource management systems designed to operate under the
assumption that they have complete control of a resource and thus they imple-
ment mechanisms and policies necessary for the effective use of that resource in
isolation. In environments like the grid this assumption cannot be made. This
is why it is necessary to adopt more sophisticated computational methodologies
for managing services that are heterogeneous, located across separately adminis-
trated domains, and that inevitably adopt different policies for their use without
relying on a centralized control. Furthermore, once computational grids become
commercially available, it is likely that the provision of computational services
will be regulated by market–based mechanisms. This implies that it becomes
necessary to adopt methodologies that can take into account both users and
providers requirements when accessing resources and not only the optimization
of the resource usage [2,3]. We propose that the middleware mechanism to select
the services necessary for composing complex distributed applications is based
on software agent negotiation both to guarantee the autonomy of services, their
coordination, and the satisfaction of both users and providers requirements in
respectively requiring and providing them.

The paper is organised as follows. Section 2 motivates the use of software agent
methodologies to regulate grid service provision. Section 3 describes the prob-
lem addressed and the proposed solution. Section 4 describes some preliminary
results. Finally some conclusion and future work are reported.

2 Agent–Orientation for the Grid

In the present work any grid computational resource is considered a grid service
i.e. a computational capability defined through a set of well–defined interfaces,
and a set of standard protocols used to invoke them from those interfaces [4].
A service may be information or a virtual representation of some physical good
or processing capability, and it has to be identified, published, allocated, and
scheduled [5]. In this view, a service is provided by the body responsible for
offering it, that we refer to as service provider, for consumption by others that
we refer to as service consumers.

The strength of grid computing is the possibility of aggregating services pro-
vided by different service providers in order to build more complex applications
(workflows) that provide high–level functionality to end users and whose compo-
nents are not subject to a centralized control management system. This is why
the automated composition of loosely coupled grid services is emerging as a crit-
ical requirement for grid systems. The first step for the automated composition
of grid services is their selection since it is very likely that in grid–based systems
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there will be a large number of services that can provide the same functionality
but with variable availability, quality of service and cost.

In this work we represent a grid workflow as a Directed Acyclic Graph (DAG)
whose nodes are the required services, and arcs are dependencies among them.
An arc si �→ sj means that the service si should complete its execution before
service sj can start its execution. There are sequential and parallel worflows whose
components services can be executed respectively in sequential or parallel way.

In Figure 1 an example of sequential workflow is reported where for each
required service, i.e. a node of the graph, several services, reported in square
boxes, are potentially available.

S T 1

S T 2

S T 3

s3,1

s3,2

s3,3

s2,1

s2,2

s2,3

s2,4

s1,1

s1,2

Fig. 1. A sequential workflow

In order to allow for the automated selection of grid services they need to be
equipped with middleware technology able to represent providers and consumers
and to model their behaviour.

Software agents are a natural way to represent service providers and con-
sumers and their defining characteristics are essential to realize the full potential
of the grid [6]. Software agents are autonomous problem solving entities, situated
in an environment, able to reach their own objectives, and are equipped with
flexible decision making capabilities [7]. The above characteristics make software
agents a useful computational paradigm to model respectively providers that
offer services (which they have total control on) at given conditions, and con-
sumers that require services at other sometimes conflicting conditions. Providers
and consumers interoperate according to specified protocols and interfaces and
establish their own conditions to provide or consume services, and they can
adopt different decision making mechanisms to accommodate to the dynamic
and changing nature of the open environment in which they operate.

Furthermore software agents are able to cooperate by providing their capa-
bilities in an aggregated and coordinated manner so that more sophisticated
capabilities can be provided to service consumers when required. This aspect
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of agency maps the Virtual Organisation concept underlying the grid, i.e. the
possibility of sharing computers, software, data, and other resources according
to well established sharing rules [8]. So, aspects of agency become even more
useful when composition of services are required, i.e. when service consumers
cannot interact just with a single service provider for what they need. In fact, in
such a case service providers need to coordinate the provision of their services
and also to accommodate to the needs of consumers that refer to the provision
of the whole composition and not of the individual components.

Software agents allow us to represent:

– the distributed nature of the provided services through the location of service
provider agents in different control domains,

– the different behaviours service providers may have in providing their ser-
vices through the possibility of adopting different and autonomous decision
making mechanisms for the different service providers,

– the available services through agent capabilities, i.e. tasks that providers are
able to accomplish,

– the provision of services through agent actions,
– the request of services through agent interactions,
– the quality–of–services as agent preferences.

We refer to agents representing service providers as Service Agents (SAs), and
agents acting on behalf of service consumers as Service Market Agents (SMAs).
The agents are modelled as self–interested software agents since they are au-
tonomous and independent business entities that do not usually have common
objectives, but they are more likely to have conflicting interests. The Service
Market Agent can play the role of a Service Agent and viceversa.

A composition of services cs = {s1 �→ s2 �→ . . . �→ sn} is a workflow of n ser-
vices, each one provided by a service provider, so it corresponds to an aggregation
of Service Agents that provide the components of the composition of services ac-
cording to established conditions they agreed upon. This aggregation can be seen
as a Virtual Organisation formed to provide a single reference provider for the
entire composition.

3 Selecting Services Through Agent Negotiation

The scenario we refer to in our work consists of users requiring compositions
of services with the constraint that they have to be delivered within a certain
deadline specified as their preference:

UsReq = 〈Workflow, Deadline〉
When a composition of services is required, it is necessary to coordinate its
provision so that both dependencies among the service components, and the
required deadline can be successfully met.

In this scenario, the time at which services need to be provided should be
established and agreed upon before service execution because the unavailability
of one service at the right time results in the failure of the entire composition.
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This is why the possibility of establishing Service Level Agreements (SLAs) [9]
between service consumers and service providers is emerging as a key feature
in the provision of services. An SLA is a contract between a user and provider
stating the conditions under which the service is provided. These conditions have
to be negotiated upon between service consumers and service providers in order
to obtained a better exploitation of grid infrastructures [10,3]. The focus of the
present work is the negotiation process preceding the establishment of an SLA.

In order to deal with the dynamic and distributed nature of services and with
the possibility of establishing the conditions at which these services are provided
software agent negotiation is a quite mature technology to suggest solutions [11].

Nevertheless, most of the efforts in this area concentrate on negotiation be-
tween a service consumer and a service provider, i.e. on a form of bilateral nego-
tiation [12,13]. In our scenario settling the time for the provision of one service
cannot be done without considering settling the times for the provision of the
other services in the composition because of the dependencies that occur among
the required services. Only when all Service Agents agree on these issues, the
composition of services can be successfully delivered to the end user according
to its preferences.

For this reason we propose a negotiation protocol that allows for the con-
current evaluation of bids coming from the Service Agents, assuming that more
Service Agents are able to provide the same service required in the composition
but at different conditions. The outcome of the negotiation, if successful, is the
selection of the Service Agents, one for each service required in the composition,
able to provide services at time conditions that meet both the user requirements
and the dependencies specified in the composition.

In order to deal both with the dependencies that occur among the service
attributes that are negotiated upon (i.e. the time to deliver), and with the vary-
ing conditions under which the negotiation takes place, we propose a flexible
negotiation protocol that we call a Multi-Phase-Multi-Iteration Negotiation.

It consists of three phases:

1. Exploratory Phase, that allows the Service Market Agents to find out the
number of Service Agents available to enter negotiation, and their initial
preferences over the issues to be negotiated upon,

2. Intermediate Phase, that allows to iterate the process of alternating an-
nouncements and bids for a variable number of times, so to accommodate
time constraint requirements on negotiation duration,

3. Final Phase, that allows to end the negotiation either with a success leading
to a signed contractual agreement, or with a failure.

The Exploratory phase and each iteration of the Intermediate phase are based
on a variation of the Contract Net Protocol (CNP) [14]. The Service Market
Agent sends a set of n announcements A = {as1 , . . . , asn} to the Service Agents,
where n is the number of required services in the workflow.

The main difference between CNP and our proposed negotiation protocol is
that a contract is not awarded after the potential contractors send back their bids
to offer the service they are able to provide. The reason why we introduced this
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Prepare Call for Bids Send Call for Bids

Receive Bids
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Receive Reply

Prepare Reply
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time

Evaluate Partial

Contract Award

Rank Combinations

Fig. 2. The basic protocol

variation is due to the necessity of evaluating the combination of bids (because of
the dependencies that can occur among the service attributes that are negotiated
upon), and so each bid cannot be evaluated independently from the others.

The Service Market Agent initiates the negotiation as soon as it receives a
user’s request (Figure 2) by sending as many announcements asi as the number of
services in the composition, requiring the timestart and timeend for each of them.
The corresponding Service Agents that decide to take part in the negotiation
process (SA∗ in Figure 2) reply with bids to announcements specifying when
they can provide the service. So, an announcement is split in as many proposals
as the number of services required in the composition. The compositions of bids
form a feasible composition of services when both the required deadline and the
time constraints coming from the required execution order of its components are
met.

The flexibility of the protocol consists in varying the number of times the
exchange of announcements and bids can occur in the Intermediate Phase de-
pending on conditions that can be only determined at run–time, i.e. the number
of participants, their strategies, the time within which the negotiation should
end, and so on.

Furthermore, at each iteration it is possible for the Service Market Agent
to collect more information examining the proposals sent back by the Service
Agents, so that it can adjust its announcements trying to propose time intervals
that are more likely to be accepted by the Service Agents. In fact, the Service
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Market Agent does not have a complete knowledge of the time availability of
Service Agents because in environments like the grid this knowledge is very
dynamic and its sharing would be very costly in terms of agents interactions. At
the same time the Service Agents do not have a complete knowledge of the time
dependencies among the services required in the workflow because again in very
large workflows the amount of shared knowledge would be very costly in terms
of agent implementation.

The Final phase takes place to end the negotiation with the Service Market
Agent sending a message to all the Service Agents involved in the negotiation
either to award the ones that can provide services at the right time, or to declare
a failure if no services can be provided at the required conditions.

4 Preliminary Experiments

In order to carry out some preliminary experiments to assess the feasibility of
the proposed protocol, we assume that a sequential workflow of 3 services is
required with a given deadline for its delivery, where each service need to be
executed one after another:

UsReq = 〈Workflow, Deadline〉
and that for each service a set of Service Agents are available to provide it.
We considered sequential worflows since they are the ones that present more
dependencies coming from the sequential order of execution of its components
than the parallel ones. We varied the number of iterations from 0 to 2 in the
Intermediate Phase and the number of Service Agents available for each required
service from 2 to 10. That means that the number of possible combinations of
services provided by the available service providers varies accordingly from 8
to 1000.

We represent the workload of Service Agents as a random distribution of free
and busy time slots in the time interval [0, Deadline], where free time slots are
the ones which the Service Agent can provide the service within, and as such
they can be proposed in bids. The length of time slots varies for each required
service and represents the maximum expected execution time of each service.

Service Agents adopt a simple strategy when replying to an announcement by
proposing in a bid the free time slot closest in time to the time slot proposed by
the Service Market Agent in the announcement. Even though this represents a
strong requirement on the Service Agent behaviour, we believe that it is reason-
able to assume that Service Agents try to meet user requirements because all of
them have to come to an agreement with the Service Market Agent otherwise
no one will be able to provide their own services. In other words there is a form
of cooperation driven by a self–interested behaviour.

Also the Service Market Agent adopts a very simple decision making mecha-
nism in building announcements by trying to propose, at every iteration, time
slots for each service in the composition that are closer to the ones proposed in
the first received bids, but still compliant with the time constraints required by
the workflow and by the user preference.
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The simulation results in Figure 3 report on the Y–axis the percentage of fea-
sible combinations and on the X–axis the total number of possible combinations
coming from the available service providers for each service required in the com-
position. The results show that the number of feasible combinations increases
when more iterations of the protocol are allowed. This is an expected behaviour,
since with more iterations in the negotiation the possibility of obtaining feasible
combinations increases because Service Agents are allowed to propose different
time intervals that could meet the time constraints.

Fig. 3. Preliminary tests

We interpret the number of obtained feasible combinations as a percentage of
successful negotiations.

These preliminary results give an idea of the feasibility of the proposed proto-
col, even though we are aware that in order to be significant in terms of perfor-
mance decision making mechanisms have to be specified for the Service Market
Agent in determining at each iteration of the protocol which intervals to propose
next according to the time constraints on each service in the composition and
the received bids.

5 Conclusions

Agent negotiation is crucial when grid resources cannot be considered constantly
“ready to use”, as in the case of today research grid infrastructures. When these
infrastructures are commercially available, it will be necessary to provide sets of
services on demand in response to dynamic requirements and circumstances.
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In today computational grids enactment engines rely on simple scheduling
techniques that do not consider neither the cost nor the quality for providing
services since they are based on a First Come First Served (FCFS) policy. Only
recently, the possibility to include user preferences when managing grid resources
has been investigated including user preferences that concern the price and the
usage time of resources, as it is reported in several works in the area [15,16,3,17].
In fact, a First Come First Served approach in providing the single services is not
advisable because if a component service scheduled for the execution is not avail-
able when it is invoked, a user request cannot be fulfilled even though the other
services in the composition were successfully delivered. In grid experimental set-
tings the unavailability of a service at a given time does not have a dramatic
impact because it is always possible to re–execute the workflow at another time.
But in a commercial scenario services will be sold in order to be used (i.e. to be
executed) making their unavailability at execution time a crucial concern: a user
does not want to pay for something that he/she did not get, and, at the same
time, providers that successfully delivered their services cannot end up providing
something for free! This means that the current best–effort approach adopted
by grid infrastructures is not a viable approach in the long term since forms
of guarantee regarding delivered service qualities are necessary. Software agents
offer a good computational model to represent service providers and consumers
allowing on one hand to represent cooperation in providing worflows of services
that need to be delivered in a coordinated manner, and on the other hand to
represent interactions in establishing the conditions at which services should be
provided.

Negotiating the conditions on the provision of services represents an appealing
approach to select the services that are more likely to meet the time constraint
requirements coming from dependencies among service execution and user pref-
erences on the time to deliver.

The negotiation protocol proposed in this work allows for the management of
interdependent issues trying to disclose as little knowledge as possible, but still
allowing for different types of negotiation according to run–time decisions.

We plan to further investigate the performance of the protocol by assigning
utility functions to the Service Market Agent and more sophisticated strategies
to forming announcements based on constraint–based satisfaction techniques.
At the same time different distributions of the Service Agents workloads will be
adopted to simulate their different behaviours.

We aim at collecting results that can help in determining the parameters that
drive run–time decisions on the protocol to adopt.
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Abstract. The Quadratic Multiple Knapsack Problem (QMKP) is a generaliz- 
ation of the quadratic knapsack problem, which is one of the well-known 
combinatorial optimization problems, from a single knapsack to k knapsacks 
with (possibly) different capacities. The objective is to assign each item to at 
most one of the knapsacks such that none of the capacity constraints are 
violated and the total profit of the items put into the knapsacks is maximized. In 
this paper, a genetic algorithm is proposed to solve QMKP. Specialized 
crossover operator is developed to maintain the feasibility of the chromosomes 
and two distinct mutation operators with different improvement techniques 
from the non-evolutionary heuristic are presented. The performance of the 
developed GA is evaluated and the obtained results are compared to the 
previous study in the literature.  

Keywords: Quadratic Multiple Knapsack Problem, Genetic Algorithm, Com-
binatorial Optimization. 

1   Introduction 

The knapsack problem (KP) is a well-known combinatorial optimization problem. 
The classical KP seeks to select, from a finite set of items, the subset, which 
maximizes a linear function of the items chosen, subject to a single inequality 
constraint. In many real life applications it is important that the profit of a packing 
also should reflect how well the given items fit together. One formulation of such 
interdependence is the quadratic knapsack problem. The Quadratic Knapsack 
Problems (QKP) ask to maximize a quadratic objective function subject to a single 
capacity constraint. Some application areas of the QKP are; the determination of the 
optimal sites for communication satellite earth stations with a budget constraint, and 
similarly the determination of the location of railway stations and freight handling 
terminals and airports.  

QKP has been introduced and the first branch-and-bound algorithm using the 
bounds based on upper planes has been presented by Gallo, Hammer and Simeone 
[1]. In 1986, a branch and bound algorithm for QKP proposed, the computation of an 
upper bound was based on Lagrangean relaxation by Chaillou, Hansen and Mahieu 
[2]. Two upper bounds based on Lagrangean decomposition have been presented for 
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QKP by Michelon and Veuilleux [3]. In the same year, Billionnet and Calmels [4] 
presented a branch-and-cut approach for QKP. An exact algorithm for QKP has 
developed by Caprara, Pisinger and Toth [5]. In 2000, Helmberg, Rendl and 
Weismantel [6] proposed a number of upper bounds for QKP based on semi definite 
programming. In 2003, an exact method based on computation of an upper bound by 
Lagrangean decomposition has been presented by Billionnet and Soutif [7]. This 
method allows finding the optimum of instances with up to 150 variables whatever 
their densities are, and with up to 300 variables for medium and low densities. In 
2005, a greedy Genetic Algorithm (GA), applies operators that implement the 
strategies of the two QKP greedy heuristics proposed by Julstrom [8]. By using the 
greedy GA, near optimal solutions with very small error were obtained for the test 
instances with 100 and 200 variables in a reasonable short time.  

The quadratic multiple knapsack problem (QMKP) extends the QKP with k 
knapsack, each with its own capacity ck . The QMKP is defined as follows: 
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Where, n items to pack in k knapsacks of capacity ck. Each item j has a weight wj 

and profit pj which is the profit achieved if item j is selected for any knapsack. pij is 
the profit achieved if both items i and j are selected to a same knapsack and the 
objective is to assign each item to at most one of the knapsacks such that none of the 
capacity constraints are violated and the total profit of the items put into knapsacks is 
maximized. Because of this, the QMKP is harder than the other knapsack problems. 

Best of our knowledge, there is only one paper presented by Hiley and Julstrom [9] 
about QMKP in the literature. QMKP has been introduced and the first solution 
approaches have been produced by them. They developed three heuristic approaches; 
a greedy heuristic, a stochastic hill-climber and a Genetic Algorithm (GA). Greedy 
heuristic fills the knapsacks one at a time, always choosing the unassigned item with 
the highest ratio of values with other items to its own weight that fits in the knapsack. 
The hill-climber’s neighbor operator removes objects from each knapsack, and then 
refills the knapsack greedily as in the greedy heuristic. The hill-climber’s neighbor 
operator also serves as the GA’s mutation. By using these approaches, results were 
obtained for the test instances composed of two different densities (0.25, 0.75), two 
different numbers of items (100, 200) and three different numbers of knapsacks (3, 5, 
10). It is remarkable that the GA only outperforms the hill-climber on the smaller 
instances with density d=0.25, with n=100 items and k=3 or 5 knapsacks. 
Consequently, we aimed to develop a GA which is more successful on the larger 
instances.  

Many optimization problems are combinatorial in nature as QMKP and quite hard 
to solve by conventional optimization techniques. Recently, GAs have received 
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considerable attention regarding their potential as an optimization technique for 
combinatorial optimization problems. Consequently, many researchers [8-11] have 
described evolutionary algorithms for different types of knapsack problems. Kellerer, 
Pferschy, and Pisinger [12] have provided a thorough introduction to knapsack 
problems and their variants. 

In this paper, a genetic algorithm is proposed to solve QMKP. Specialized 
crossover operator is developed to maintain the feasibility of the chromosomes and 
two distinct mutation operators with different improvement techniques from the non-
evolutionary heuristic are presented. Unlike Hiley and Julstrom [9], we have no 
assumption that all the knapsack capacities are the same.  And it is demonstrated that 
obtained solutions are better than the solutions of Hiley and Julstrom [9]. Besides, 
success of the developed GA increases when the number of knapsacks increases. 

The organization of this paper is as follows. In section two, developed genetic 
algorithm is explained. Computational results are reported in section three and 
conclusions are offered in the fourth section. 

2   A New Genetic Algorithm for QMKP 

GAs are powerful and broadly applicable in stochastic search and optimization 
techniques based on principles from evolution theory [13]. GAs, which are different 
from normal optimization and search procedures: (a) Work with a coding of the 
parameter set, not the parameters themselves. (b) Search from population of points, 
not a single point. (c) Use payoff (objective function) information, not derivatives or 
other auxiliary knowledge. (d) Use probabilistic transition rules, not deterministic 
rules [14]. 

KPs that are combinatorial optimization problems belong to the NP-hard type 
problems [15]. QMKP is NP-hard by restriction to KP; set all the quadratic values pij 
to zero and the number of knapsack to one. An efficient search heuristic will be useful 
for tackling such a problem. For that reason, in this study, a GA is proposed to solve 
QMKP. The developed GA is discussed in detail below. 

2.1   Representation  

It is used an n bit integer string to represent of candidate solutions to the QMKP 
where the integer number {1,2,...,k} means the number of knapsack, inclusion of the 
item in, and zero the exclusion of one of the n items from all of the knapsacks. For 
example, a solution for the 7-item problem can be represented as the following bit 
string: [0201002]. It means that items 2 and 7 are selected to be filled in the knapsack 
two and item 4 is selected to be filled in the knapsack one. This representation may 
yield an infeasible solution. 

2.2   Handling Constraints 

The central question in applying genetic algorithms to the constrained optimization is 
how to handle constraints because the genetic operators used to manipulate the 
chromosomes often yields infeasible offspring. The existing techniques can be 
roughly classified as rejecting strategy, repairing strategy, modifying genetic 
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operators strategy and penalizing strategy. In this study a modified genetic operators 
strategy is chosen to generate feasible solutions.  

Initial population. Since without having feasible initial solutions using modified 
genetic operators would be useless, only strings whose selections of items have total 
weight no more than the knapsacks’ capacities are generated. To generate a 
chromosome, the knapsacks are ordered according to their capacities and starting 
from the knapsack with smallest capacity, each knapsack fills with randomly selected 
items which have smaller weight than the remaining knapsack capacity. 

2.3   Genetic Operators  

The feasibility of the chromosomes that are generated by the initialization procedure 
must be satisfied while they are being processed by the genetic operators. Genetic 
operators are introduced to prevent us from having this infeasibility as explained 
below. 

Reproduction. The reproduction operator allows individual strings to be copied for 
possible inclusion in the next generation. The chance that a string will be copied is 
based on the string's fitness value, calculated from a fitness function. 2-tournament 
selection method is used as reproduction operators.   

Crossover. Crossover enables the algorithm to extract the best genes from different 
individuals and recombine them into potentially superior children. A specialized 
uniform based crossover operator is developed to maintain the feasibility of 
chromosomes. Randomly selected two parents chromosomes are used to generate two 
offspring. Randomly selected gene of the first chromosome is interchanged to the 
corresponding gene that is placed in the same order of the second chromosome, if the 
capacities of the knapsacks are available for both of the chromosomes. If any capacity 
of knapsack exceed by adding a new gene, came from the other parent chromosome, 
the value of this gene change as zero. The capacity of the offspring is completed by 
considering the remaining items which is not included by any knapsack according to 
their profit which is provided by including in the offspring.  

Mutation. Reproduction and crossover alone can obviously generate a staggering 
amount of differing strings. However, depending on the initial population chosen, 
there may not be enough variety of strings to ensure the GA searches the entire 
problem space, or the GA may find itself converging on strings that are not quite 
close to the optimum it seeks due to a bad initial population. Some of these problems 
may be prevented by introducing a mutation operator into the GA. Developed GA 
contains two independent mutation operators each with its own mutation rate. 
Martello and Toth [16] proposed a polynomial time approximate algorithm for 
multiple knapsack problems with linear objective function. We modified the 
improvement techniques of this approximate algorithm for QMKP. Both of the 
mutation operators are used these techniques explained below. Mutation 1, improves 
on the solution though local exchanges. First, it considers all pairs of items assigned 
to different knapsacks and, if possible and if the total profit increases, interchanges 
them. The procedure of the mutation 1 is given below:  
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Mutation_1 Procedure. 
begin 
for i := 1 to ps do if m1 > random number from [0,1] 
then 
 begin 
 for j := 1 to ng do if geneij > 0 then 

for k := j + 1 to ng do if 0 < geneij ≠ geneik then 
begin 
h := arg max {wj, wk }; l := arg min {wj, wk };
d := wh –wk ;
if d ≤ rcapacityl and 

∑ ≠+∑ ≠∑ ≠ ≥+∑ ≠ rl lrpmh hmprh hrpml lmp
: m ∈ knapsack 

geneih , r ∈ knapsack geneil then 
begin 
g := geneil ; geneil := geneih ; geneih := g ;
rcapacityh := rcapacityh + d ;
rcapacityl := rcapacityl - d ;
end 

end;  
 end 
end. 
ps: population size, m1: mutation_1 rate, nk: number of 
knapsacks, capacityk: capacity of the knapsack k,
rcapacityik: remaining capacity of the knapsack k of
chromosome i, geneir: value of the gene r of chromosome i.  

Mutation 2, removes s included items randomly. s is the parameter of the mutation 
2. Then the capacity of the chromosome is completed as in crossover.  The procedure 
of the mutation 2 is given below:  

Mutation_2 Procedure. 
begin 
for i := 1 to ps do if m2 > random number from [0,1] 
then 

for t:= 1 to s do geneit := 0  (randomly selected 
t:geneit>0) 

  for k := 1 to nk do 
   begin 
   find r := arg min{ wj: genij = 0 }; 
   while wr  ≤ ( capacityk – twk ) do 
    begin 
    for j := 1 to ng do 
     begin 

find q := max { ∑
≠

+
jl

jlj pp  : geneij = geneil = k, 

twk + wj ≤ capacityk }; 



 A Genetic Algorithm for the Quadratic Multiple Knapsack Problem 495 

     geneiq := k ; twk := twk + wq ; 
     end 
    if r = q  then find r:= arg min{wj: geneij =0}; 
    end 
   end 
end. 

m1: mutation_1 rate, twk: total weight of the items of the 
knapsack k. 

When creating a new generation, there is always a risk of losing the most fit 
individuals. Using elitism, the most fit individuals are copied to the next generation. 
The other ones undergo the crossover and mutation. Since the elitism selection 
improves the efficiency of a GA considerably, as it prevents losing the best results, it 
is used in developed GA. 

We use two type termination conditions with together. One of them checks 
whether the algorithm has run a fixed number (nf) of generations. And the other one 
stops the algorithm if the solution is same during an identical number (ni) of 
generation even if ni is smaller then the nf.   

The test instance described in the next section, the GA’s population contained 30 
chromosomes. The probability that crossover generated offspring chromosomes was 
determined as 0.80, and mutation 1 and mutation 2 rates were chosen as 0.40 and 0.10 
respectively. Parameter of the mutation 2 was 4. Finally, the values of the termination 
parameters were ni=200 and nf=300. 

3   Computational Results 

In this section, it is reported the solution results obtained by using developed GA for 
forty two QMKP instances given in the literature. Additionally, the results are 
compared with the results of the GA presented by Hiley and Julstrom [9]. All 
computational experiments were conducted on HP6000 workstation with 
Excel/Visual Basic Application. 

An instance of the QMKP consists of its number n of available items and k 
knapsacks. A significant feature of a QMKP instance is the density of its linear values 
pi and quadratic values pij which are non-zero. We solved instances composed of two 
different densities (0.25, 0.75), two different numbers of items (100, 200) and three 
different numbers of knapsacks (3, 5, 10). All QKP instances are available on the web 
site1 and the number of knapsacks and the capacities of the knapsacks, which are 
exactly the same values with the values used by Hiley and Julstrom [9], used to 
modify these QKP instances to QMKP instances, are given in Table 1.  

Computational results for forty two QMKP instances are also illustrated in Table 1. 
The left part of the table summarizes the instances’ features. For each instance, the 
table lists its number of knapsacks (k), density (d), and number of items (n), instance 
number given in the web site (no) and capacities of the knapsacks (c). The second and 
third parts contain GAHJ results were given by Hilley and Julstrom (2006) and 
developed GASS results respectively. Mean values of the results of 5 trials and 
 
                                                           
1 http://cermsem.univ-paris1.fr/soutif/QKP/ 
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Table 1. Performance of the GASS on the forty two QMKP instance 

GAHJ GASS % 

K d n no cap. best values 
mean best values 

mean 

(GASS best - 
GAHJ best) / 
GAHJ best 

10 0.25 100 1 206 13521 12499 15778 15505,2 16,69% 
10 0.25 100 2 221 12859 12019 14835 14601,2 15,37% 
10 0.25 100 3 199 11790 11245 14348 14136,2 21,70% 
10 0.25 100 4 241 13316 12593 15495 15178,8 16,36% 
10 0.25 100 5 217 11909 11389 14770 11665,8 24,02% 
10 0.25 200 1 414 42016 39791 48119 47652,8 14,53% 
10 0.25 200 2 373 45483 42739 51666 50410,2 13,59% 
10 0.25 200 4 424 41623 39446 48792 47906,8 17,22% 
10 0.25 200 5 407 46811 42399 49504 48698 5,75% 
10 0.75 100 1 200 26603 25681 28767 27723,2 8,13% 
10 0.75 100 2 214 28663 27815 29824 29344,4 4,05% 
10 0.75 100 3 205 26176 25038 27960 27281,6 6,82% 
10 0.75 100 4 200 29701 28592 30712 29134,6 3,40% 
10 0.75 200 1 393 102002 98962 106008 100939,6 3,93% 
5 0.25 100 1 413 21914 21315 22039 21734,6 0,57% 
5 0.25 100 2 442 21216 20472 21249 20723,8 0,16% 
5 0.25 100 3 398 20243 19763 20862 20444,4 3,06% 
5 0.25 100 4 482 21698 20923 21601 21417 -0,45% 
5 0.25 100 5 434 20808 20248 20928 16779 0,58% 
5 0.25 200 1 828 70731 68705 73619 72600,2 4,08% 
5 0.25 200 2 747 76297 72924 74883 74403,2 -1,85% 
5 0.25 200 4 848 70264 67416 71936 71338,8 2,38% 
5 0.25 200 5 815 72745 69978 73825 72006 1,48% 
5 0.75 100 1 401 48663 47678 47449 45902 -2,49% 
5 0.75 100 2 428 48990 48175 47766 47031,8 -2,50% 
5 0.75 100 3 411 47512 46623 48008 46586,8 1,04% 
5 0.75 100 4 400 49845 49194 46921 46063 -5,87% 
5 0.75 200 1 786 179525 177438 173905 170447,2 -3,13% 
3 0.25 100 1 688 28665 27904 28807 28514,4 0,50% 
3 0.25 100 2 738 28059 27044 28456 28225,2 1,41% 
3 0.25 100 3 663 26780 25991 26754 26573,8 -0,10% 
3 0.25 100 4 804 28199 27265 28383 28035,4 0,65% 
3 0.25 100 5 723 27550 26683 27582 22043 0,12% 
3 0.25 200 1 1381 97469 95497 99853 99216 2,45% 
3 0.25 200 2 1246 106162 100521 104277 101179 -1,78% 
3 0.25 200 4 1413 95649 93968 97700 97525 2,14% 
3 0.25 200 5 1358 99458 96077 98326 97979,6 -1,14% 
3 0.75 100 1 669 69769 68941 64335 63757,2 -7,79% 
3 0.75 100 2 714 69146 68639 68164 66584,8 -1,42% 
3 0.75 100 3 686 68763 67557 67643 66257 -1,63% 
3 0.75 100 4 666 69907 69101 68626 65018,4 -1,83% 
3 0.75 200 1 1311 268919 265523 261106 254300,8 -2,91%  

obtained best solutions are reported. Better solutions of the algorithm’s best are 
signed as bold and underlined. Last column of the Table 1 shows that the performance 



 A Genetic Algorithm for the Quadratic Multiple Knapsack Problem 497 

of developed GA. The positive value means obtained best objective value by using 
the GASS much better than the GAHJ’s best value, in percent. 

As shown in Table 1, the GA presented in this study is more successful than the 
GA presented by Hiley and Julstrom [9] especially while the number of knapsack (k) 
increases. For example, the GASS results are totally superior for k=10 regardless 
number of items and densities of the instances. Furthermore, obtained best solution by 
using the GASS is better than the best of the GAHJ at least 3.4%, and at most 24.02%. 
These are good consequences. On the other hand, the GASS results superior only 8 of 
14 instances for k=5, and superior only 6 of 14 instances for k=3. Besides, the 
difference of the best solutions is not quite big. For example the range of best solution 
differences is 0.16%-5.87% for k=5 and 0.10%-7.79% for k=3. These comparisons 
show that the success of developed GA depends on the number of knapsack, strongly. 
Moreover, the density of matrix affects the success of developed GA. It is apparent 
that, the developed algorithm’s success increase when the density decrease for small 
number of knapsack such as 3 and 5. 

4   Conclusions 

In this study, a new genetic algorithm is presented to solve the QMKP. The 
contribution the new GA is proposing specialized crossover operator and two new 
distinct mutation operators. Proposed crossover operator maintains feasibility of 
chromosomes. Mutation operators use the improvement techniques from modified 
non-evolutionary heuristic which is proposed for multi knapsack problems with linear 
objective function.  

Unlike Hiley and Julstrom [9], there is no assumption that all the knapsack 
capacities are the same. And it is demonstrated that the GASS is more successful than 
the GAHJ on the instances with large number of knapsacks. Very successful results are 
obtained for number of knapsacks is equal to 10 regardless the numbers of items and 
densities. For example, the difference between the best solutions of the algorithms is 
bigger then 20% for some instances. Additionally, it is demonstrated that the 
developed GA is more successful with low densities for small number of knapsacks 
such as 3 and 5.  Since the efficiency of the GASS depends on its parameters, it is 
recommended that an analysis to decide on the best values of the parameters of GA 
may be made, which is one of the ideas for further research on this subject. 
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Abstract. Epilepsy is a disorder of cortical excitability and still an important 
medical problem. The correct diagnosis of a patient’s epilepsy syndrome 
clarifies the choice of drug treatment and also allows an accurate assessment of 
prognosis in many cases. The aim of this study is to evaluate epileptic patients 
and classify epilepsy groups by using Multi-Layer Perceptron Neural Networks 
(MLPNNs). 418 patients with epilepsy diagnoses according to International 
League against Epilepsy (ILAE, 1981) were included in this study. The correct 
classification of this data was performed by two expert neurologists before they 
were executed by MLPNNs. The MLPNNs were trained by the parameters 
obtained from the EEG signals and clinic properties of the patients. We 
classified the epilepsy into two groups such as partial and primary generalized 
epilepsy and we achieved an 89.2% correct prediction rate by using MLPNN 
model. The parameters of the loss of consciousness in the course of seizure, the 
duration and ritmicity of abnormal activities found in EEG constituted the most 
significant variables in the classification of epilepsy by using MLPNN. These 
results indicate that the classification performance of MLPNN model for 
epilepsy groups is satisfactory and we think that this model may be used in 
clinical studies as a decision support tool to confirm the classification of 
epilepsy groups after they are developed.  

Keywords: Epilepsy, EEG, Multilayer Perceptron Neural Network (MLPNN), 
Levenberg-Marquardt.  

1   Introduction 

Epilepsy is a disorder of cortical excitability and interictal electroencephalography 
(EEG) remains the most convenient and the least expensive way to demonstrate 
physiological manifestations of this disorder [1-3]. 

Epilepsy is classified as either generalized or partial with several subcategories in 
each class. In the management of patients with established epilepsy, the concept of 
epilepsy syndrome based on age at onset, seizure type or types, EEG findings and 
etiology has been an important advancement [4]. The correct diagnosis of a patient’s 
epilepsy syndrome clarifies the choice of drug treatment and also allows an accurate 
assessment of prognosis in many cases [3-5].  
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About 50 % of the patients with epilepsy show interictal epileptiform discharge on 
EEG. Epileptiform activity is specific, but not sensitive for diagnosis of epilepsy 
[1,3,6]. 

The trend is to develop new methods for computer assisted decision-making in 
medicine and to evaluate critically these methods in clinical practice. Artificial neural 
networks (ANNs) have been used extensively in many different problems in medicine 
[7-11]. ANNs have also been used for the detection of seizure activity [12-14]. The 
results of these studies on detection of seizure events in EEGs of epileptic patients 
showed that ANNs are capable of capturing qualitative information from an EEG with 
over 90% accuracy. In addition to these studies, Walczak and Nowack [15] were the 
first to use ANNs for the diagnosis of epilepsy. However, they did not obtain high 
categorization accuracy.  Some authors also applied neural network and statistical 
recognition methods to EEG analysis [16-18]. Their results confirmed that the 
proposed model has potential in classifying the EEG signals. 

Although ANNs have been used for the detection of seizure activity related to 
video EEGs analysis before, none of the previous works classify the epilepsy groups. 
In this study, we both categorized the EEG findings and combined the clinic 
properties of the patients along with these EEG findings. We have tested to what 
extent we could determine the epilepsy classification of the patients with the method 
of ANN. 

2   Material and Methods  

2.1   Collection and Processing of Data  

579 patients with epilepsy diagnoses according to International League against 
Epilepsy (ILAE, 1981) are included in this study. The patients at the clinic of epilepsy 
outpatients of Cukurova University Medical School, Neurology Department between 
the years of 2002-2005 were examined and included in the study. The epilepsy 
diagnosis was based on the medical history, clinical findings, electrophysiological 
reports, radiological and biochemical analysis. 

This study considers the categorization of sex, age of seizure onset groups, seizure 
types, the loss of consciousness in the course of seizure time and the properties of the 
first interictal EEG analysis of epileptic patients. In the classification belonging to age 
of seizure onset : the patients  between 0-20 year olds were classified as group 1, 
between 21-60 year olds were classified as group 2, and  61 and over year olds were 
classified as group 3. The EEG records were detected by 12 channel Nihon-Kohdem 
EEG machine. Each EEG record was done for 20 minutes, but the EEG of the 
activated sleep was recorded for 2 hours. The patients who had pseudo seizures and 
EEG from out of our electrophysiology laboratory were excluded from the study. 
Eventually, we reevaluated 418 patients with their first EEGs and clinical properties. 
All the EEGs examined in this study were recorded after postictal period of seizure. 
EEG signals contain a wide range of frequency components; this range is classified 
approximately in a number of frequency bands as follows: δ (0.5–4 Hz), θ (4–8 Hz), α 
(8–13 Hz), β (13–30 Hz).  The δ, θ waves were accepted as abnormal activities, 
whereas α, β waves were accepted as normal. On the other hand, sharp, sharp and 
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wave, spike, spike and wave activities were accepted as abnormal signals as well. 
While the frequency component of delta and theta activities as stated above is a 
limited application, the frequency of the other abnormal activities is not limited [19]. 
The activity properties of EEG findings were classified in the direction of group 1: 
sharp and/or spikes; group 2: delta and/or theta, group 3: normal. In the course of 
EEG, the physiological conditions of the patients were determined as either awake or 
sleep and the properties of ritmicity of the abnormal activities were categorized as yes 
or no. The localization of abnormal activities was categorized; either they are focal 
(frontal, temporal, parietal, occipital or in more fields than one) or generalized or 
normal.  On the other hand, abnormal activities were categorized from the point of 
hemispheric lateralization as right, left, diffuse and normal. We determined the 
frequency of abnormal waves (how many times a second these activities have been 
repeated), and duration of the abnormal signals (how long abnormal signals take 
during the EEG recording) on the EEG. On the other hand we checked the parameter 
of whether the loss of consciousness in the course of seizure time was being identified 
(yes/ no/ sometimes reported but not in all seizure). The data were evaluated with 
independent samples one-way analysis of variance using SPSS 10.0 statistical 
program, p value of less than 0.05 was considered statistically significant. 

2.2   Multilayer Perceptron Neural Networks (MLPNNs)  

The architecture of MLPNN may contain two or more layers. Each layer consists of 
units which receive their input from a layer directly below and send their output to 
units in a layer directly above the unit. The connections between the neurons are 
arranged by using a “learn” algorithm. There are many training algorithms used to 
train an MLPNN and a frequently used one is called backpropagation (BP) training 
algorithm [20]. Although the BP algorithm has been a significant milestone in neural 
network research area of interest, it has been known as an algorithm with a very poor 
convergence rate. Many attempts have been made to speed up the BP algorithm. A 
significant improvement on realization performance can be observed by using various 
second order approaches namely Newton’s method, conjugate gradient’s, or the 
Levenberg-Marquardt (LM) optimization technique [21-23]. LM can be thought of as 
a combination of the steepest descent and the Gauss-Newton method. In the last years, 
the LM method, directly taken from the Optimization field, has been increasing its 
popularity within the neural networks community. The difference between 
optimization and neural network applications of the method comes from the fact that 
in the latter there is usually a great deal of parameters to be estimated [24,25]. 

3   Results    

3.1   Statistical Analysis and Results  

418 patients who had been diagnosed with epilepsy were included in this study. The 
data set was summarized in Table 1. 
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Table 1. Demographic and Disease Properties of the Patients 

 Sex n % 
Female 229 54.8 
Male 189 45.2 
Total   418  

Age groups   
0-20 237 56.7 
21-60 141 33.7 
61- ↑ 40 9.6 

Epilepsy groups   
Partial epilepsy 339 81.9 
Primary generalized epilepsy 79 18.9 

Table 2. The Activity Properties of EEG Findings According to Epilepsy Groups 

                   Epilepsy groups     

EEG findings PE              %  PGE            % Total          % p 
Sharp and /or spike 121             35.7  43              54.4 164           39.2  
Delta and / or theta 128             40.7  24              30.4 162           38.8  
Normal  80               23.6  12              25.2 92             22  
Total  339             100   9               100 418           100 0.009 

   *PE: Partial epilepsy, PGE: Primary generalized epilepsy 
 

The analysis of the first interictal EEGs revealed sharp and/or spike activity in 164 
(39.2%), delta and/or theta activity in 162 (38.8%) of all patients. It was normal in 92 
(22%) of all patients. The EEG findings of the patients whose seizures were classified 
as a partial epilepsy revealed sharp and/or spike activity in 121 (35.7%) and delta 
and/or theta activity in 128 (40.7%) of the patients whereas the EEG findings of the 
patients who were diagnosed as primary generalized epilepsy revealed sharp and/or 
spike activity in 43 (54.4%) and delta and/or theta activity in 24 (30.4%) of the 
patients. The sharp and/or spike activity was seen more often in the primary 
generalized epilepsy, and the delta and/or theta activity was seen more often in the 
partial epilepsy (p value is 0.009, Table 2).  

Table 3. Major Localization of Activities According to Epilepsy Groups 

 Localization of abnormal activities  

Epilepsy 
Groups 

Generalized 
discharge 
n                   % 

Local 
discharge 
n             % 

    
Normal 
n         % 

 
Total 
  n 

 
p 

PE 61    17.9 198 58.5 80 23.6 339  
PGE 32 40.5 35 44.3 12 15.2 79  
Total  93 22.3 233 55.7 92 22 418 0.001 

  *PE: Partial epilepsy, PGE: Primary generalized epilepsy 
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The EEG findings belonging to the partial epilepsy group revealed localized 
discharge in 198 (58.5%) (frontal=27; temporal=81; parietal=5, occipital=11, more 
than one area: 74), normal in 80 (23.6%) and generalized discharge in 61 (17.9%) of 
the patients.  On the other hand, EEG findings of the patients whose seizures were 
classified as primary generalized epilepsy revealed generalized discharge in 32 
(40.5%), localized epileptic or slow activity in 35 (44.3%) (frontal=3; temporal=17; 
parietal=2, occipital=5, more than one area=8) and normal in 12 (15.2%) of the 
patients.  This result also showed that the localization of EEG activity is in correlation 
with epileptic groups (p value is 0.001, Table 3). 

According to the localization of abnormal activities, EEG findings of the patients 
whose EEGs showed generalized discharge (n=93) revealed sharp and/or spike in 59 
(63.4%), delta and/or theta activity in 34 (36.6%) of the patients. This result showed 
that most of generalized discharge was constituted mostly by sharp and/or spike 
activity, and local discharge was constituted mostly by delta and / or theta activity 
(p<0.000 ). 

3.2   Neural Networks Analysis and Results       

3.2.1   Training and Testing of MLPNNs for the Classification of Epilepsy 
Groups 

The learning of the network was executed by applying the input and output vectors. In 
this classification, the output of the network was the epilepsy groups (partial and 
primary generalized epilepsy which are coded as 0 and 1, respectively). In the present 
study, the activation functions in the hidden layer and the output layer were selected 
as sigmoid and softmax functions, respectively.  

In using the MLPNNs, The MLPNNs were trained with the training set, cross 
validated with the cross validation set and checked with the test set. The cross 
validating stopping rule was used for terminating training in this research. When the 
error in the cross validation increased, the training was stopped because the point of 
the best generalization was reached [18,26]. The MLPNN models for classifying 
epilepsy groups were developed using the 167 training examples, while the remaining 
251 examples were used for testing of the model. A practical way to find a point of 
better generalization is to use a small percentage (around %20) of the training set for 
the cross validation. For obtaining a better generalization 34, training examples were 
randomly selected to be used as a cross validation set. It is very important to 
determine the architecture of MLPNNs having the best generalization. Therefore, we 
have formed different MLPNNs composed of different number of nodes in the hidden 
layer in order to find optimal topologies of MLPNNs. The most popular approach to 
finding the optimal number of nodes in hidden layer is by trial and error. In the 
present study, each formed MLPNN having different number of node in the hidden 
layer from 1 to 100 was trained for classifying the epilepsy groups. In order to 
evaluate the performance of the neural networks, classifications were done by the 
expert neurologists and the classification results calculated at the output of neural 
network were compared. Classification success of the neural networks on unseen test 
data was shown in figure 1.  
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Fig. 1. Total Classification Accuracy of Tested MLPNNs 

According to these results, the MLPNN having 12 nodes in the hidden layer had 
the best total classification accuracy of 89.2%. The classification success of the best 
MLPNN was evaluated in detail by examining the table called the confusing matrix. 
The 2nd and 3rd columns of Table 4 represented confusing matrix. According to 
confusing matrix, 9 out of 47 primary generalized epilepsy samples were classified 
incorrectly by the MLPNN as partial epilepsy and 18 out of 204 partial epilepsy 
samples were classified as primary generalized epilepsy. The test performance of the 
MLPNN was determined by computation of the statistical parameters such as 
sensitivities of partial epilepsy and primary generalized epilepsy, and total 
classification accuracy. 

Table 4. Confusing Matrix and Statistical Parameters for Epilepsy Groups 

 Result 
(PE) 

Result  
(PGE) 

Sensitivity (%)  

Result (PE) 186 9 91.1 
Result (PGE) 18 38 80.8 

Total 204 47 89.2 

               *PE: Partial epilepsy, PGE: Primary generalized epilepsy 
 

The values of the statistical parameters were given in the 3rd column of Table 4. 
The MLPNN classified partial and primary generalized epilepsy with the accuracy of 
91.1% and 80.8%, respectively. In addition, it succeeded in classifying the epilepsy 
groups with the total classification accuracy of 89.2%. 

Additionally, ten new MLPNNs were constructed for determining significant 
variables. Significant variable will cause the classification accuracy of MLPNN to 
decrease when it is omitted from the input vector. As the results shown in Table 5, all 
variables were significant because the classification accuracy of MLPNN decreased 
when one of them was omitted from the input vector. Therefore, no variables were 
excluded. The loss of consciousness in the course of seizure time variable caused the 
largest decrease in the classification accuracy when it was left out. 
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Table 5. Ten Variables Classification Accuracy 

Missing Value Total Classification 
Accuracy 

The loss of consciousness in the course of seizure time 76,1 
Duration of the abnormal signals 79,3 
Ritmicity of the abnormal activities 80,9 
Localization 80,9 
The activity properties of EEG findings 82,5 
Frequency of abnormal waves 82,5 
Age of seizure onset groups 82,5 
Hemispheric lateralization 83,3 
Sex 83,3 
The physiological conditions of the patients in the course of EEG 84,9 

4   Discussion 

EEG findings enhance the multi-axial diagnosis of epilepsy in terms of whether the 
seizure disorder is partial or generalized. As other laboratory tests, it should be used 
in conjunction with clinical data.  However, partial and generalized seizure disorders 
show some overlap both clinical and EEG manifestation. The conceptual 
classification of seizures as partial or primary generalized epilepsy is important and 
clinically useful because the knowledge of an individual patient’s epilepsy group 
allows the assessment of prognosis and the choice of the most effective antiepileptic 
drug. On the other hand, EEG has relatively low sensitivity in epilepsy ranging from 
25% to 56%. Specificity is better, but it varies between 78-98% [3]. As most authors 
suggest, only interictal epileptiform discharge (IED) are associated with seizure 
disorder [3,5,6].   

The category of partial seizures was found as one of the most controversial aspects 
of the ILAE classification [5]. In this study, we found that seizures were classified as 
partial epilepsy in 339 (81.9%) of all patients whereas primary generalized epilepsy in 
79 (18.9%) of all patients. This distribution is not uniform as our epilepsy clinic treats 
mostly adult patients. 

The performed EEGs revealed sharp and/or spike activity in 164 (39.2%), delta 
and/or theta activity in 162 (38.8%) patients. It was normal in 92 (22%) of all 
patients. The timing of EEG recording is important because the EEG record within 24 
hours of seizure revealed interictal epileptiform discharge in 51% as compared to 
34% who had EEG later. Only 50% of patients with epilepsy show IED in the first 
EEG test [3]. These results showed that our finding was the same as the ratio which 
was recorded after 24 hours of seizures.  According to Pedley et al. [1], only IED and 
perhaps periodic lateralized epileptiform discharge (PLED) are associated with 
epilepsy at rates sufficiently high to be clinically useful. The percentage of normal 
EEG findings determined in our study is less than Hopkins et al. [27] and King et al. 
[4] studies. On the other hand, Walczak and Nowack [15] suggest that it is possible to 
achieve a classification accuracy of 62% and 68% with further refinement in epileptic 
seizures using lateralized burst of theta activity with an initial backpropagation ANN.   

Focal slow–wave activity and generalized slowing of background rhythms are 
common findings in patients with partial seizures and symptomatic epilepsy [1,28]. In 
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this study, the EEG findings of partial epilepsy group revealed normal in 80 (23.6%), 
sharp and/or spike activity in 121 (35.7%) and delta and/or theta activity in 128 
(40.7%) of the patients (Table 2). This result suggests that the slow activity should be 
a considerable finding in partial epilepsy. The EEG findings belonging to the partial 
epilepsy group revealed localized discharge in 198 (58.5%) (frontal=27; temporal=81; 
parietal=5, occipital=11, more than one area: 74), generalized discharge in 61 (17.9%) 
of the patients (Table 3). The bilateral generalized spike and wave discharge is not 
absolute diagnostic feature of primary subcortical epilepsy [6]. In our study, EEG 
finding of the partial epileptic patients showed especially localized discharge and 
sharp and/or spike activity as well. 

The IEDs in primary generalized epilepsy are always widespread, bilaterally 
synchronous and more or less symmetrical EEG finding can be recorded [6]. The 
sharp and/or spike activity was found more common in primary generalized epilepsy 
(54.4%) than partial epilepsy (35.7%)(Table 2). This result show that there is a 
statistically significant relation between the epileptic group and the abnormal EEG 
activities (p=0.009, Table 2). On the other hand, EEG findings of the patients whose 
seizures were classified as primary generalized epilepsy revealed generalized 
discharge in only 32 (40.5%) (p=0.001, Table 3). The interictal EEG is normal in 15-
40% of the cases with idiopathic generalized epilepsy. The interictal focal 
abnormalities are also described in up to 40-56% of these cases [3]. This result shows 
that our result is similar to other studies [3-5]. These findings are important for 
primary generalized epilepsy since insufficient history or EEG asymmetries including 
focal slowing, amplitude asymmetries or secondary bilateral synchrony are major risk 
factors for misdiagnosis or delay of diagnosis in this group [29,30]. That is why there 
should be a different methodology for finding accurate diagnosis in these patients.  

Most of the studies done earlier focused on the epileptic seizure detection and the 
classification of EEG signals through ANN using some of EEG properties. In this 
study, the neural network is trained by the parameters obtained from not only the EEG 
signals, but also the demographic properties of patients and the parameter of the loss 
of consciousness in the course of seizure. This is the first study to classify the 
epilepsy groups using the neural network according to these parameters. To achieve 
this aim, the demographic properties, the loss of consciousness in the course of 
seizure and the first EEGs of 418 patients were evaluated and applied to neural 
network as independent variables. Subsequently, the MLPNNs trained with 
Levenberg-Marquardt algorithm were used to classify epilepsy groups.  

The MLPNN having the best classification accuracy classified correctly 91.1% of 
patients having partial epilepsy, and also 80.8% of patients having primary 
generalized epilepsy. Overall, we had an 89.2% correct prediction rate for the 251 test 
data set. The classification performances of ten new MLPNNs were used to identify 
the significant variables for the classification of the epilepsy groups. Walczak and 
Nowack [15] investigated when two variables which were temporal lobe location and 
prevalence were excluded; the performance of neural network was improved. In our 
study, all variables we studied were significant and no variable was removed.  On the 
other hand, the parameters of the loss of consciousness in the course of seizure, the 
duration and ritmicity of abnormal activities found in EEG constituted the most 
significant variables in the classification of epilepsy groups by using MLPNN  
(Table 5). 
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When the confusion matrix and statistical table are examined, the MLPNNs have 
obtained acceptable classification success. The classification performance of MLPNN 
models for epilepsy groups have been found satisfactory and we think that this model 
can be used in clinical studies as a decision support tool to confirm the classification 
of epilepsy groups after they are developed.  
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Abstract. Among forms of creative language, verbal humor has received
some attention in the computational milieu. Some aspects of irony and
wordplay could be experimented in automated systems. For instance we
developed a system that makes fun of existing acronyms, based mainly
on lexical reasoning. The dimension of emotion in words is also starting
to be understood among computational linguists. The challenge of elec-
tronic advertisements offers in particular a great opportunity for getting
now deeper into creative language expression and emotion. An adver-
tising message induces in the recipient a positive or negative attitude
toward the object to advertise. A prototype we have developed for ad-
vertising professionals has two steps: (i) the creative variation of familiar
expressions, taking into account the affective content of the produced
text, (ii) the automatic animation (semantically consistent with the af-
fective text content) of the resulting expression, using kinetic typography
techniques. Validation prospects are also challenging and will be briefly
discussed.

1 Introduction

In recent times the landscape of natural language processing has been enriched
with elements of emotion-related processing. A text often reflects the opinions
and the affect of the writer, characters in a story may use specific lexical terms to
denote a certain emotional state, a dialogue is strongly affected by the evolution
of the affective states of the participants.

One puzzling topic at the border of affective communication is humor. Hu-
mor has been studied since ancient times and in the Twentieth Century various
theories have been proposed in fields such as philosophy, linguistics, and psy-
chology. Yet, a deep understanding of the mechanisms is beyond the state of the
art. We believe the computational approach can contribute something here, as
it has happened with other areas of artificial intelligence. We also believe that
verbal humor touches on aspects of aesthetics and also from that point of view
a realization of some of the linguistic creative processes may help us understand
communication in a broad sense.

If we look at things from a different, applied perspective we can well say
that humor is a need in our relation with our fellow humans. As computers will
be able to yield autonomous contributions to communication, they will not be
accepted as full partners without displaying some humor capabilities of their own.
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c© Springer-Verlag Berlin Heidelberg 2007



510 O. Stock, C. Strapparava, and A. Valitutti

In concrete terms computational humor has the potential to change computers
into extraordinarily creative and motivational tools.

Computer-human interaction needs to evolve beyond usability and productiv-
ity. There is a wide perception in the field that the future is in themes such as
entertainment, fun, emotions, aesthetic pleasure, motivation, attention, engage-
ment and so on. Humor is an essential element in communication: it is strictly
related to the themes mentioned above. While it is generally considered merely
a way to induce amusement, humor provides an important way to influence the
mental state of people to improve their activity. Even though humor is a very
complex capability to reproduce, it is realistic to model some types of humor
production and to aim at implementing this capability in computational sys-
tems. Let us now review a few elements that make humor so important from a
cognitive point of view.

Humor and emotions. Humor is a powerful generator of emotions. As such, it
has an impact on people’s psychological state, directs their attention [1], influ-
ences the processes of memorization [2] and of decision-making [3], and creates
desires. Actually, emotions are an extraordinary instrument for motivation and
persuasion because those who are capable of transmitting and evoking them have
the power to influence other people’s opinions and behaviour. Humor, therefore,
allows for conscious and constructive use of the affective states generated by it.
Affective induction through verbal language is particularly interesting; and hu-
mor is one of the most effective ways of achieving it. Purposeful use of humorous
techniques enables us to induce positive emotions and mood and to exploit their
cognitive and behavioural effects. For example, the persuasive effect of humor
and emotions is well known and widely employed in advertising. Advertisements
have to be both short and meaningful, to be able to convey information and
emotions at the same time.

Humor and beliefs. Humor acts not only upon emotions, but also on human
beliefs. A joke plays on the beliefs and expectations of the hearer. By infringing
on them, it causes surprise and then hilarity. Jesting with beliefs and opinions,
humor induces irony and accustoms people not to take themselves too seriously.
Sometimes simple wit can sweep away a negative outlook that places limits
on people desires and abilities. Wit can help people overcome self-concern and
pessimism that often prevents them from pursuing more ambitious goals and
objectives.

Humor and creativity. Humor encourages creativity as well. The change of per-
spective caused by humorous situations induces new ways of interpreting the
same event. By stripping away clichés and commonplaces, and stressing their
inconsistency, people become more open to new ideas and points of view. Cre-
ativity redraws the space of possibilities and delivers unexpected solutions to
problems. Actually, creative stimuli constitute one of the most effective impulses
for human activity. Machines equipped with humorous capabilities will be able
to play an active role in inducing users’ emotions and beliefs, and in providing
motivational support.
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2 Background

While humor is relatively well studied in scientific fields such as linguistics [4]
and psychology [5,6], to date there is only a limited number of research contri-
butions made toward the construction of computational humor prototypes. A
good review of the field can be found in [7]. Almost all the approaches try to
deal with incongruity theory at various levels of refinement [8,9,4]. Incongruity
theory focuses on the element of surprise. It states that humor is created out
of a conflict between what is expected and what actually occurs in the joke.
Underlying incongruity is one of the obvious features of a large part of humor
phenomena: ambiguity or double meaning.

One of the first attempts that deals with humor generation is the work de-
scribed in [10], where a formal model of semantic and syntactic regularities was
devised, underlying some types of puns (punning riddles). A punning riddle
is a question-answer riddle that uses phonological ambiguity. The three main
strategies used to create phonological ambiguity are syllable substitution, word
substitution and metathesis. Syllable substitution is the strategy to confuse a
syllable in a word with a similar or identical sounding word. An example of syl-
lable substitution is shown in the following joke: “What do shortsighted ghosts
wear? Spooktacles” [11]. Word substitution is the strategy to confuse an entire
word with another similar- or identical-sounding word. An example of a joke
with word substitution is : “How do you make gold soup? Put fourteen carrots
in it” [11]. Metathesis is a strategy very different to syllable or word substitution.
It uses reversal of sounds and words to suggest a similarity in meaning between
two semantically distinct phrases. An example is “What is the difference be-
tween a torn flag and a postage stamp? One’s a tattered banner and the other’s
a battered tanner.” [10].

Punning riddles based on these three strategies are all suitable for computer
generation. Ritchie and Binsted focussed on the word substitution based punning
riddles, as lists of homophones (i.e. phonetically identical words) are already
available.

The assumptions about the contents and the structure of the lexicon are as
follows. The lexicon consists of a finite set of lexemes and of lexical relations. A
lexeme is an abstract entity corresponding to the meaning of a word. If a word
has two meanings, it has two corresponding lexemes. Every lexeme has a set of
properties about the representation and the type of word. A lexical relation can
be an explicit relation between two lexemes, like synonym or homophone, or a
general inter-lexeme relation, applicable to more than one pair of lexemes.

In order to describe a punning riddle, two sorts of symbolic description have
to be used: schema and template. A schema stipulates a set of relations which
must hold between the lexemes used to build a joke. A template indicates the
information necessary to turn a schema and lexemes into a piece of text. It
contains fixed segments of text that are to be used and syntactic details of how
lexemes have to be expressed.

In [10], this model was then exploited to implement a system called JAPE,
able to automatically generate amusing puns.
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In a recent work [12] automatic production of a funny and appropriate punch-
line at the end of short jokes is proposed. The authors present a model that
describes the relationship between the connector (part of the set-up) and the
disjunctor (the punchline). In particular they have implemented this model in a
system which, given a joke set-up, can select the best disjunctor from a list of
alternatives.

Another humor-generation project was HAHAcronym [13], whose goal was to
develop a system able to automatically generate humorous versions of existing
acronyms, or to produce a new funny acronym constrained to be a valid vocab-
ulary word, starting with concepts provided by the user. The humorous effect
was achieved mainly on the basis of incongruity. We will provide examples of
output of this system in Section 3.

Humor recognition has received less attention. In [14] the application of text
categorization techniques to humor recognition has been investigated. In partic-
ular the authors show that classification techniques are a viable approach for
distinguishing between humorous and non-humorous text, through experiments
performed on very large data sets. They restrict their investigation to the type of
humor found in one-liners. A one-liner is a short sentence with comic effects and
a peculiar linguistic structure: simple syntax, deliberate use of rhetoric devices
(e.g. alliteration, rhyme), and frequent use of creative language constructions
meant to attract the readers’ attention. In fact, while longer jokes can have a
relatively complex narrative structure, a one-liner must produce the humorous
effect “in one shot”, with very few words.

The humor-recognition problem is formulated as a traditional classification
task, feeding positive (humorous) and negative (non humorous) examples to some
automatic classifiers. The humorous data set consisted of a corpus of 16,000 one-
liners collected from the Web using an automatic bootstrapping process. The
non-humorous data were selected such that it is structurally and stylistically
similar to the one-liners. In particular, four different corpora were selected, each
composed by 16,000 sentences: (1) Reuters news titles [15]; (2) proverbs; (3) sen-
tences picked from the British National Corpus (BNC)[16]; and (4) commonsense
statements from the Open Mind Common Sense (OMCS) corpus [17]. The fea-
tures taken into account were both content-based features, usually considered in
traditional text categorization tasks, and humor-specific stylistic features, such
as alliteration, presence of antonymy and adult slang. The classification results
were really encouraging. Regardless of the non-humorous data set playing the
role of negative examples, the performance of the automatically learned humor-
recognizer was always significantly better than apriori known baselines. Surpris-
ingly, comparative experimental results showed that in fact it is more difficult to
distinguish humor from regular text (e.g. BNC sentences) than from the other
data sets.

Another related work is the study reported in [18], focussing on a very re-
stricted type of wordplays, namely the “Knock-Knock” jokes. The goal of the
study was to evaluate to what extent wordplay can be automatically identi-
fied in “Knock-Knock” jokes, and if such jokes can be reliably identified from
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other non-humorous texts. The algorithm is based on automatically extracted
structural patterns and on heuristics heavily based on the peculiar structure of
this particular type of jokes. While the wordplay recognition gave satisfactory
results, the identification of jokes containing such wordplays turned out to be
significantly more difficult.

Worth mentioning is also a formalization, based on a cognitive approach
(the belief-desire-intention model), distinguishing between real and fictional
humor [19].

Finally [20] proposes a first attempt to recognize the humorous intent of short
dialogs. According to the authors, computational recognition of humorous intent
can be divided into two parts: recognition of a humorous text, and recognition of
the intent to be humorous. The approach is based on detecting ambiguity both
in the setup and in the punchline.

3 HAHAcronym

HAHAcronym was the first European project devoted to computational humor1.
The main goal of HAHAcronym was the realization of an acronym ironic re-
analyzer and generator as a proof of concept in a focalized but non restricted
context. In the first case the system makes fun of existing acronyms, in the second
case, starting from concepts provided by the user, it produces new acronyms,
constrained to be words of the given language. And, of course, they have to be
funny.

The realization of this system was proposed to the European Commission as
a project that we would be able to develop in a short period of time (less than a
year), that would be meaningful, well demonstrable, that could be evaluated along
some pre-decided criteria, and that was conducive to a subsequent development
in a direction of potential applicative interest. So for us it was essential that:

1. the work could have many components of a larger system, simplified for the
current setting;

2. we could reuse and adapt existing relevant linguistic resources (e.g. WordNet
Domains, assonance tools, parser, etc.);

3. some simple strategies for humor effects could be experimented.

One of the purposes of the project was to show that using “standard” resources
(with some extensions and modifications) and suitable linguistic theories of hu-
mor (i.e. developing specific algorithms that implement or elaborate theories),
it is possible to implement a working prototype.

3.1 Examples

Here below some examples of acronym re-analysis by HAHAcronym are reported.
As far as semantic field opposition is concerned we have slightly tuned the system
1 EU project IST-2000-30039 (partners: ITC-irst and University of Twente), part

of the Future Emerging Technologies section of the Fifth European Framework
Program.
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towards the domains Food, Religion and Sex. We report the original acronym,
the re-analysis and some comments about the strategies followed by the system.

ACM - Association for Computing Machinery
→ Association for Confusing Machinery
FBI - Federal Bureau of Investigation
→ Fantastic Bureau of Intimidation

The system keeps all the main heads and works on the adjectives and the PP
head, preserving the rhyme and/or using the a-semantic dictionary.

CRT - Cathodic Ray Tube
→ Catholic Ray Tube
ESA - European Space Agency
→ Epicurean Space Agency
PDA - Personal Digital Assistant
→ Penitential Demoniacal Assistant
→ Prenuptial Devotional Assistant
MIT - Massachusetts Institute of Technology
→ Mythical Institute of Theology

Some re-analyses are Religion oriented. Note the rhymes.
As far as generation from scratch is concerned, a main concept and some

attributes (in terms of Wordnet synsets) are given as input to the system. Here
below we report some examples of acronym generation.
Main concept: processor (in the sense of CPU);
Attribute: fast

OPEN - On-line Processor for Effervescent Net
PIQUE - Processor for Immobile Quick Uncertain Experimentation
TORPID - Traitorously Outstandingly Rusty Processor for Inadvertent Data

processing
UTMOST - Unsettled Transcendental Mainframe for Off-line Secured Tcp/ip

We note that the system tries to keep all the expansions of the acronym
coherent in the same semantic field of the main concept (Computer Science).
At the same time, whenever possible, it exploits incongruity in the lexical choices.

4 Creative Messages and Optimal Innovation

Variating familiar expressions (proverbs, movie titles, famous citations, etc.) in
an evocative way has been an effective technique in advertising for a long time
[21]. A lot of efforts by professionals in the field goes into producing ever novel
catchy expressions with some element of humor. Indeed it is common of “cre-
atives” to be recruited in pairs formed by a copywriter and an art director.
They work in a creative partnership to conceive, develop and produce effective
advertisement. While the copywriter is mostly responsible for the textual con-
tent of the creative product, the art director focalizes efforts on the graphical
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presentation of the message. Advertising messages tend to be quite short but,
at the same time, rich of emotional meaning and persuasive power.

We combined some computational functionalities for the semiautomatic pro-
duction of creative advertising messages. In particular, we implemented a strat-
egy for the creative variation of familiar expressions. This strategy is articulated
in two steps. The first consists of the selection and creative variation of familiar
or common sense expressions. The second step consists of the presentation of
the headline through automated text animation, and it is based on the use of
kinetic typography.

An advertising message induces in the recipient a positive (or negative) at-
titude toward the subject to advertise, for example through the evocation of a
appropriate emotion. Another mandatory characteristic of an advertisement is
its memorizability. These two aspects of an ads increase the probability to induce
some wanted behaviours, for example the purchase of some product, the choice
of a specific brand, or the click on some specific web link. In the last case, it
is crucial to make the recipient curious about the subject referred by the URL.
The best way to realize in an ads both attitude induction and memorizability is
the generation of surprise, generally based on creative constraints.

In order to develop a strategy for surprise induction,we considered an interesting
property of pleasurable creative communication that was named by Rachel Giora
as the optimal innovation hypothesis ([22]). According to this assumption, when
the novelty is in a complementary relation to salience (familiarity), it is “optimal”
in the sense that it has an aesthetics value and “induce the most pleasing effect”.

Therefore the simultaneous presence of novelty and familiarity makes the mes-
sage potentially surprising, because this combination allows the recipient’s mind
to oscillate between what is known and what is different from usual. For this rea-
sons, an advertising message must be original but, at the same time, connected
to what is familiar [21]. Familiarity causes expectations, while novelty violates
them, and finally surprise arises.

With “varied familiar expression” we indicate an expression (sentence or
phrase) that is obtained as a linguistic change (e.g. substitution of a word, mor-
phological or phonetic variation, etc.) of an expression recognized as familiar by
recipients (e.g. selected by some collection of proverbs, famous movie titles, etc.).
In this work we limited the variation to the word substitution.

Moreover, a successful message should have a semantic connection with some
concept of the target topic. At the same time, it has to be semantically related
with some emotion of a prefixed valence (e.g. positive emotion as joy or negative
emotion as fear) .

5 Resources

5.1 Affective Semantic Similarity

All words can potentially convey affective meaning. Each of them, even those
more apparently neutral, can evoke pleasant or painful experiences. While some
words have emotional meaning with respect to the individual story, for many
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others the affective power is part of the collective imagination (e.g. words “mum”,
“ghost”, “war” etc.).

We are interested in this second group, because their affective meaning is part
of common sense knowledge and can be detected in the linguistic usage. For this
reason, we studied the use of words in textual productions, and in particular
their co-occurrences with the words in which the affective meaning is explicit.
As claimed by Ortony et al. [23], we have to distinguish between words directly
referring to emotional states (e.g. “fear”, “cheerful”) and those having only an
indirect reference that depends on the context (e.g. words that indicate possible
emotional causes as “killer” or emotional responses as “cry”). We call the former
direct affective words and the latter indirect affective words [24].

In order to manage affective lexical meaning, we (i) organized the direct affec-
tive words and synsets inside WordNet-Affect, an affective lexical resource
based on an extension of WordNet, and (ii) implemented a selection function
(named affective weight) based on a semantic similarity mechanism automati-
cally acquired in an unsupervised way from a large corpus of texts (100 millions
of words), in order to individuate the indirect affective lexicon.

Applied to a concept (e.g. a WordNet synset) and an emotional category,
this function returns a value representing the semantic affinity with that emotion.
In this way it is possible to assign a value to the concept with respect to each
emotional category, and eventually select the emotion with the highest value.
Applied to a set of concepts that are semantically similar, this function selects
subsets characterized by some given affective constraints (e.g. referring to a
particular emotional category or valence).

As we will see, we are able to focus selectively on positive, negative, ambigu-
ous or neutral types of emotions. For example, given “difficulty” as input term,
the system suggests as related emotions: identification, negative-concern,
ambiguous-expectation, apathy. Moreover, given an input word (e.g. “uni-
versity”) and the indication of an emotional valence (e.g. positive), the system
suggests a set of related words through some positive emotional category (e.g.
“professor” “scholarship” “achievement”) found through the emotions enthu-

siasm, sympathy, devotion, encouragement.
This fine-grained affective lexicon selection can open up new possibilities in

many applications that exploit verbal communication of emotions. For example,
[25] exploited the semantic connection between a generic word and an emotion
for the generation of affective evaluative predicates and sentences.

5.2 Database of Familiar Expressions

The base for the strategy of “familiar expression variation” is the availability of
a set of expressions that are recognized as familiar by English speakers.

We considered three types of familiar expressions: proverbs, movie titles,
clichés. We collected 1836 familiar expressions from the Web, organized in three
types: common use proverbs (628), famous movie titles (290), and clichgés (918).
Proverbs were retrieved in some of many web sites in which they are
grouped (e.g. http://www.francesfarmersrevenge.com/stuff/proverbs.htm
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or www.manythings.org /proverbs). We considered only proverbs of common
use. In a similar way we collected clichés, that are sentences whose overuse
often makes them humorous (e.g. home sweet home, I am playing my own
game). Finally, movie titles were selected from the Internet Movie Database
(www.imdb.com). In particular, we considered the list of the best movies in allo
sorts of categories based on votes from users.

The list of familiar expressions is composed mostly of sentences (in particular,
proverbs and clichés), but part of them are phrases (in particular, movie title
list includes a significant number of noun phrases)

5.3 Assonance Tool

To cope with this aspect we got and reorganized the CMU pronouncing dictio-
nary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict) with a suitable indexing.
The CMU Pronouncing Dictionary is a machine-readable pronunciation dictio-
nary for North American English that contains over 125,000 words and their
transcriptions.

Its format is particularly useful for speech recognition and synthesis, as it
has mappings from words to their pronunciations in the given phoneme set. The
current phoneme set contains 39 phonemes; vowels may carry lexical stress.

5.4 Kinetic Typography Scripting Language

Kinetic typography is the technology of text animation, i.e. text that uses move-
ment or other changes over time. The advantage of kinetic typography consists
in a further communicative dimension, combining verbal and visual communi-
cation, and providing opportunities to enrich the expressiveness of static texts.
According to [26], kinetic typography can be used for three different communica-
tive goals: capturing and directing attention of recipients, creating characters,
and expressing emotions. A possible way of animating a text is mimicking the
typical movement of humans when they express the content of the text (e.g.
“Hi” with a jumping motion mimics exaggerated body motion of humans when
they are really glad).

We have realized a development environment for the creation and visualization
of text animations based on Kinetic Typography Engine (KTE), a Java package
developed at the Design School of Carnegie Mellon University [26].Our model for
the animation representation is a bit simpler than the KTE model. The central
assumption consists of the representation of the animation as a composition
of elementary animations (e.g. linear, sinusoidal or exponential variation). In
particular, we consider only one operator for the identification of elementary
animations (k-base) and three composition operators: kinetic addition (k-add),
kinetic concatenation (k-join), and kinetic loop (k-loop).

6 Algorithm

In this section, we describe the algorithm developed to perform the creative
variation of an existing familiar expression.
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1. Insertion of an input concept. The first step of the procedure consists of
the insertion of an input concept. This is represented by one or more words,
a set of synonyms, or a WordNet synset. In the latter case, it is individuated
through a word, the part of speech (noun, adjective, verb, or adverb), and the
sense number, and it corresponds to a set of synonyms. Using the pseudo-
document representation technique described above, the input concept is
represented as a vector in the LSA vectorial space. For example, say that
a cruise vacation agency seeks to produce a catchy message on the topics
“vacation” and “beach”.

2. Generation of the target-list. A list (named target-list) including terms
that are semantically connected (in the LSA space) with the input concept(s)
is generated. This target list represents a semantic domain that includes
the input concept(s).For example, given the vector representing “vacation”,
“beach”, the LSA returns a list “sea”, “hotel”, “bay”, “excursion”, etc.

3. Association of assonant words. For each word of the target-list one
or more possible assonant words are associated. Then a list of word pairs
(named variation-pairs) is created. The list of variation-pairs is filtered ac-
cording to some constraints. The first one is syntactic (elements of each pair
must have the same part of speech). The second one is semantic (i.e. the
second element of each pair must not be included in the target-list), and
its function is to realize a semantic opposition between the elements of a
variation pair. Finally, to each variation pair an emotion-label (representing
the emotional category most similar to the substituting word) is provided
with the corresponding affective weight. Some possible assonant pairs for the
example above are: (bay, day), (bay, hay), (hotel, farewell), etc.

4. Creative variation of familiar expressions. In this step, the algorithm
gets in input a set of familiar expressions (in particular, proverbs and movie
titles) and, for each of them, generates all possible variations. The list of
variated expressions is ordered according to the global affective weight.

Following the example, a resulting ad is Tomorrow is Another Bay as a varia-
tion of the familiar expression Tomorrow is Another Day. Note that for moment
the final choice among the best resulting expressions proposed by the system is
left to human selection.

At this point, the variated expression is animated with kinetic typography. In
particular, words are animated according to the underlying emotion to emphasize
the affective connotation.

7 Examples

In this section we show some examples of creative variations.
Starting from an input concept (e.g. disease) we can obtain, using the semantic

similarity, a list of related terms (Table 1).
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Table 1. Input word: “disease”

Name POS Similarity to the input

symptom noun 0.971
therapy noun 0.969
metabolism noun 0.933
analgesic noun 0.899
suture noun 0.851
thoracic adjective 0.782
extraction noun 0.623

Table 2. Affective weight

Name fear joy anger sadness

disease 0.357 0.201 0.135 0.679

symptom 0.423 0.293 0.164 0.685
therapy 0.374 0.315 0.170 0.691
metabolism 0.372 0.258 0.082 0.552
analgesic 0.280 0.241 0.173 0.526
suture 0.237 0.299 0.227 0.490
thoracic 0.157 0.135 0.134 0.448
extraction 0.126 0.245 0.177 0.366

Using the affective weight function, it is possible to check for their affective
characterization (in Table 2 only four emotions are displayed), selecting those
affectively coherent with the input term. Subsequently, the system searches for
assonant words (Table 3) and checks for affective opposition with the original
words (Table 4).

Table 3. Phonetic associations

Name Assonant Words

suture future
thoracic Jurassic
extraction abstraction, attraction, contraction, diffraction, distraction, inaction,

reaction, retraction, subtraction, transaction

At this point, the system retrieves familiar expressions that include the word
to be substituted.

Table 5 shows the final word substitution in several examples. The system
can then automatically animate the resulting expression emphasizing the novel
affective connotation through kynetic typography techniques as shown in [27].
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Table 4. Affective difference

Name fear joy anger sadness

suture 0.237 0.299 0.227 0.490
future 0.467 0.571 0.417 0.462

Table 5. More Examples

Input Words Varied Expression Word Substitution

vacation, beach Tomorrow is another bay day → bay

disease Back to the Suture future → suture
Thoracic Park jurassic → thoracic

Fatal Extraction attraction → extraction

crash Saturday Fright Fever night → fright

fashion Jurassic Dark park → dark

8 Humor and Neuroimaging

Deep evaluation of achieved results is not an easy task. Normally it is performed
with user’s direct feedback. Recent advances in cognitive neuroscience are worth
examining as a potential new approach. In particular, there are a number of ex-
periments of functional neuroimaging aimed at individuating neural correlates of
humour comprehension and appreciation. These results were compared to studies
on patients with brain lesions, leading in some cases to different outcomes, but
in general the cognitive model was validated (for a complete review, see [28],).
Generally the framework within which neuroimaging studies are interpreted is
the Incongruity-Resolution Theory of Humour [29]. It is based on a two-stage
model of humour comprehension. The first stage is the detection of an incon-
gruity in some joke or pun. Incongruity is perceived when some expectation is
disconfirmed and surprise arises. The second stage is the reinterpretation of the
situation expressed in the text in a way that is congruous and funny.

Illustrative of the neuroimaging approach to humour are experiments by
Mobbs et al. [30] and Bartolo et al. [31], based on event-related functional
MRI (efMRI) study of humour comprehension. Both studies aimed at measur-
ing hemodynamic increases in regions associated with cartoons considered to
be funny. The results are coherent with previous analog experiments, and allow
us to identity different clusters of brain areas with a significant BOLD signal,
corresponding to the cognitive-affective components of humour comprehension:
humour detection (including incongruity detection and incongruity resolution),
motor response and affective response.

The most important feature of humour appreciation is reward, the amusement
that follows the humorous stimulus. At the moment there are not results that con-
clusively demonstrate the subcortical correlates of reward, but there are a number
of fMRI studies on different rewarding tasks (for review, see Schultz [32]).
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Functional neuroimaging of humour appreciation could be useful for the eval-
uation of computational humour systems. The possibility of integrating infor-
mation coming from subjects reports and direct neural functional activity is
certainly appealing.

9 Conclusion

In this paper, we have presented some recent developments in automatic ver-
bal humor production. We have described a prototype that produces creative
variation of familiar expressions, exploiting state-of-the-art natural language
processing techniques, and animates them according to the affective content.
The creative textual variations rely on semantic and affective similarity, while
animation makes use of a kinetic typography dynamic scripting language. The
multimodal dynamic result is supposed to have a stronger effect. Evaluation
is still preliminary and it may be worth looking into novel methodologies for
appreciating the effects.
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Abstract. Knowledge representation is one of the first challenges AI commu-
nity was confronted with. To be applicable, knowledge representation tech-
niques must be able not only to represent the knowledge, but also to provide 
means to determine its meaning. The proposed knowledge representation tech-
niques solve the problem of meaning determination by naming, i.e. by describ-
ing the meaning of represented knowledge. These descriptions are provided by 
database, knowledge base, ontology designers, which give names to tables, 
fields, classes, properties, relationships, etc. An alternative approach to the 
problem of determining the meaning would be a neural network approach ap-
plied to knowledge representation in a natural language that does not use 
names, but semantic categories. In this paper we propose a Hierarchical Seman-
tic Form (HSF), a modification of localist approach of connectionist model, 
which, together with Space of Universal Links (SOUL) algorithm, is capable of 
representing knowledge in a natural language and interpreting its meaning by 
using the semantic categories. 

Keywords: Knowledge Representation, Natural Language, Neural Networks, 
Localist Approach. 

1   Introduction 

One of the main obstacles to further development of information sciences lies in the 
inability to automatically process and search a vast quantity of information available 
in a natural language on the Web and in various kinds of documents in digital form.  

Web community has recognized the importance of the problem and launched Se-
mantic Web [1] in an attempt to allow computer programs (esp. intelligent agents) to 
search the Web (using semantic categories instead of keywords) and find the needed 
information for a user. However, computers are not able to extract semantic catego-
ries from Web pages in their current form (HTML), hence new knowledge representa-
tion techniques have been proposed to represent the meaning of Web pages. 

Currently there are billions of Web pages and their manual annotation (translation) us-
ing any of the proposed Semantic Web formalism is not feasible. Some attempts to pro-
vide automatic annotations of Web pages have achieved success in limited domains, but 
the automatic annotation of domain unlimited contents has proved to be a very hard prob-
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lem. Furthermore, even if automatic annotation was provided, computers would still not 
be able to understand the meaning of the represented knowledge. 

If the automatic annotation is so hard, maybe the solution of this problem could be 
found elsewhere. Actually the problem of translation is generated by the application 
of knowledge representation techniques which use names to describe the meaning of 
represented knowledge. The problem would be solved if we could use a knowledge 
representation technique that would enable the structured representation in a natural 
language where all semantic relationships and concepts would be automatically iden-
tified and extracted from the plain text. The semantic relationships in plain text are 
implicit, while in the supposed knowledge representation they would be made ex-
plicit. The plain text form and the represented forms would be completely equivalent, 
except that the represented form would be structured with all semantic relationships 
extracted. The plain text could then be automatically converted to a structured form 
and vice versa with no loss of information. 

Basically there are two possible ways to determine the meaning of semantically re-
lated knowledge: declarative and procedural. Declarative techniques, representing the 
main stream, are successfully applied in many applications to represent semantically 
related knowledge and include a wide variety of classical (e.g. relational [2] and ob-
ject-oriented [3]) databases, AI techniques [4], [5] (e.g. logic formalism, semantic 
nets, conceptual dependencies, frames, scripts, rules, etc.), Semantic Web ontology 
and schema languages [6] (e.g. XOL [7], SHOE [8], OML [9], RDFS [10], 
DAML+OIL [11], OWL [12]) and distributed approach of the connectionist model. 
These techniques assume that the meaning of knowledge can be described independ-
ently and separately from the knowledge itself. They try to represent the meaning 
explicitly by naming or tagging the representational vehicles. In applications using 
declarative techniques, a database (knowledge base, ontology) designer provides the 
understanding of represented data, while a programmer, with the understanding of 
represented data and the understanding of user’s requests, enables a productive use of 
these data. 

On the other side are radical connectionists [13], which claim that a natural lan-
guage (naming) is not used as a representational, but rather as a communicational 
medium. In procedural techniques the meaning is determined by matching the parts of 
represented knowledge with semantic categories and complex patterns. The localist 
approach of connectionist model [14] could be used to implement the ideas of radical 
connectionism. In the applications based on procedural techniques, the understanding 
of represented data and user’s requests is not borrowed from database (knowledge 
base, ontology) designers and programmers, but represents an intrinsic capability of 
the application provided by the corresponding algorithm, which is used to interpret 
the meaning of represented knowledge. 

Hierarchical Semantic Form (HSF) represents a modification of localist approach, 
where each node uniquely describes the meaning depending on the context it appears 
in. HSF overcomes the limitation of localist approach expressed by the inability to 
represent the structure [15] and the context of the node. 

The Space Of Universal Links (SOUL) algorithm is used to create and maintain 
HSF, but also to interpret the meaning of the knowledge represented by HSF. The 
applicability of HSF with SOUL was tested on an example of Semantic Web service 
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prototype [16] that provides information about flights from flight timetables defined 
in a natural language within an ordinary HTML file using natural language queries.  

2   Knowledge Representation 

The basics of how Hierarchical Semantic Form (HSF) and Space Of Universal Links 
(SOUL) algorithm are used in knowledge representation are given in [17]. However, 
the approach represented in [17] was a hybrid solution, where connectionist approach 
was used for knowledge representation, while classicist approach was applied to de-
fine and name semantic categories. In this paper we will present the pure connection-
ist solution where semantic categories are not named.  

HSF is using two types of nodes, groups and links. Groups are used to uniquely 
represent letters, syllables, words, groups of words, sentences, etc., while links are 
used to represent groups in different contexts (e.g. the same word can appear in dif-
ferent contexts, and for each context one link representing that word is used). The 
SOUL algorithm is used to create and organize HSF. When a plain text is fed to it, 
SOUL automatically identifies repeated sequences (syllables, words, groups of words, 
etc.) and determines semantic structures and relationships between them. 

Formally, the knowledge in HSF can be represented by the space S defined by the 
triple of groups G, links L and sequences Q (composed of links from L): 

{ }QLGS ,,= , riGgi ,, 1=∈ , sjLl j ,, 1=∈ , tkQqk ,, 1=∈  (1) 

Initially G contains only groups corresponding to letters, L contains only links corre-
sponding to these atomic groups and Q is an empty set of sequences. 

HSF with SOUL follows the two basic principles in knowledge representation, the 
principle of locality and the principle of unique representation.  

Principle of locality defines the transition T from the link lt, which is the last link 
in the subsequence qi, to the link lu, when group gc belonging to the same hierarchical 
level appears at the end of subsequence qi: 

( )ctu glTl ,= , uip lqq = , cu gl → , Qqq pi ∈, , Ggc ∈ , Lll ut ∈,  (2) 

The link lu represents the group gc in the subsequence qp, which extends the subse-
quence qi. If gc is a new group, or link lu does not exist, then the new link lu must be 
created. The principle of locality enables learning of new sequences.  

This principle is related to the representation of sequences at different levels of hi-
erarchy (words, phrases, sentences, paragraphs, etc.). It basically says that paragraphs 
are composed of sentences and not of letters or words.  

Principle of unique representation states that each subsequence (qx) that repeats 
in two different sequences (contexts, qi, qj) must be uniquely represented by the corre-
sponding group (gu): 

bxaiis qqqqqg =→ , , Ggs ∈ , Qqqqqq xsiba ∈,,,,  

dxcjjt qqqqqg =→ , , Ggt ∈ , Qqqqqq xtjdc ∈,,,,  

xu qg → , uqp gll →, , Lll qp ∈, , Ggu ∈ , Qqx ∈  

(3) 
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bpaiis qlqqqg =→ ,  

dqcjjt qlqqqg =→ ,  

Hereby subsequences qa or qb, qc or qd may be empty, i.e. they may contain no 
links. When a subsequence qx repeats in two sequences (qi, qj), a new group gu will be 
created corresponding to this subsequence, as well as two new links (lp, lq) represent-
ing this subsequence in two different contexts (qi, qj). This is an example of selfor-
ganization of the space S, which allows an automatic identification of semantic con-
cepts, structures and relations. 

If we would like to apply HSF with SOUL to represent the following sentence: 

John is a boy. 
Mary is a girl. 
John loves Mary. 

we would have first to feed single words to SOUL: “John”, “Mary”, “is”, “boy”, 
“girl”, “loves” (Fig. 1). 

link

J o h n

group 

i s b o y 

M a r y

g i r l l o v e s  

Fig. 1. Representation of single words in HSF 

We can then feed the whole sentences to the SOUL algorithm and it will modify 
HSF correspondingly, identify and represent all semantic relationships between words 
(Fig. 2). It notices that the phrase “is a” occurring in the first statement is repeated in 
the second one, so it will create a new group representing this phrase. Each word and 
phrase “is a” is uniquely represented in HSF and for each statement they appear in, 
the corresponding link is created. 
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link

group 

“loves”

“John” “is a” “boy”

“Mary” “girl”
 

Fig. 2. Representation of statements in HSF 

The main difference between HSF and declarative techniques is that no names are 
used (groups in Fig. 2 are not named) and no designing is needed to get the represen-
tation in HSF. SOUL algorithm automatically creates the structure in HSF from plain 
text. However, a computer is still not able to understand the meaning of knowledge 
represented by HSF. 

3   Determining the Meaning 

To enable computers to understand the HSF representation, we will use semantic 
categories. To be able to represent semantic categories the space S must be accord-
ingly extended: 

{ }GQGLGGQLGS ,,,,,= , riGgi ,, 1=∈ , sjLl j ,, 1=∈ , tkQqk ,, 1=∈  

ulGGggl ,, 1=∈ , vmGLglm ,, 1=∈ , wnGQgqn ,, 1=∈  
(4) 

where GG represents a set of generic groups corresponding to semantic categories, 
GL a set of generic links representing generic groups in generic sequences belonging 
to the set GQ. 

SOUL is able to learn semantic categories from the context. Two types of learning 
by example are supported, learning by generalization and learning by specialization.  

Learning by generalization can be applied when different groups (ga, gb) repre-
sented by the corresponding links (li, lj) occur in the same context (qm, qn): 
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ai gl → , bj gl → , nimu qlqq = , njmv qlqq =  

jif llgg ,→  
(5) 

Generic group ggf is a semantic category representing the meaning of groups ga, gb 
in the context. Hereby subsequence qm or qn may be empty. 

Learning by specialization takes place when a group (gc) occurs in the same con-
text where a generic group (ggf) is defined: 

ai gl → , bj gl → , nimu qlqq = , njmv qlqq = , jif llgg ,→  

ck gl → , nkmw qlqq = , kjif lllgg ,,→  
(6) 

Group gc represents a new instance of the semantic category ggf in the context qm, 
qn, where subsequence qm or qn may be empty.  

Suppose that we fed two sentences to SOUL: 

John is a boy. 
Bill is a boy. 

SOUL will discover that two different groups representing words “John” and 
“Bill” appear at the same place in the same context, so it will generalize these two 
groups by creating a generic group representing a simple semantic category (Fig. 3).  

“John” “is a boy”

specific group 

generic group 

“Bill”

specific link

generic link

<boy> 

 

Fig. 3. Simple semantic category 

This generic group is not named, but for the sake of clarity we will denote it as 
<boy>. Each time the words “John” or “Bill” are matched, the <boy> semantic cate-
gory will also be matched, and this is how the meaning of these words will be inter-
preted. To each generic group correspond one or more generic links, which represent 
this generic group in complex semantic categories. On the other hand specific groups 
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and links are used to represent semantic structures and relationships found in natural 
language statements. 

To enable SOUL to understand a question: 

Who does John love? 

we would have to define the following semantic categories in a similar way as for the 
<boy> semantic category: <interrogative-pronoun> (“who”), <present-tense-do> 
(“does”), <emotional-relationship> (“love”). 

When we have defined these semantic categories, we can feed the question “Who 
does John love?” to SOUL and it will create the corresponding HSF representation 
(Fig. 4). 

specific link specific group 

generic group generic link 

“Who” “love”“does”

<interrogative-
  pronoun> 

<present- 
  tense-do> 

“John”

<boy> <emotional- 
  relationship> 

 

Fig. 4. Complex semantic category 
 
In the process of understanding HSF acts as a recurrent neural network. Although 

nodes and connections can be in more states, for the purpose of this example we will 
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assume that they can be only in one of the three states: active (1), semi-active (½) and 
inactive (0).  

After the word “Who” is matched and the signals are propagated through the HSF, 
nodes and connections will be in the state as represented in Fig. 5. The generic group 
representing the complex semantic category will be in the semi-active state indicating 
that this group may potentially become active if the expected input is fed to HSF. The 
same holds for the specific group that represents the whole question. 

specific link specific group 

generic group generic link 

“Who” “love”“does”

<interrogative-
  pronoun> 

<present- 
  tense-do> 

“John”

<boy> <emotional- 
  relationship> 

½

½

½ ½ ½

½½

½ ½

½ ½ ½ ½ ½

½½

½ ½

½

½

1 1

11

1

0

1 1 00 0 00 0 00 0

1
0 0

1
1

0 0 0 0 0 0

½ ½

½ ½

 

Fig. 5. State of HSF after partial matching 

After the whole question is fed, all nodes and connections of the HSF will become 
active. By matching all constituting semantic categories, the meaning of the complex 
semantic category representing the question is understood.  

The understanding of complex semantic categories is dependent only on the consti-
tuting semantic categories and not on their order. This provides a great flexibility of 
understanding, because not only syntactically correct inputs can be recognized, but 
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also the ones such as “John does love who?”. Moreover the queries containing some 
unknown words can also be recognized (e.g. “Could you please tell me who John 
does love?”. 

The understanding of questions can be used to find the corresponding answers by 
propagating the signals through the rest of HSF, but due to the limited space this will 
be described in greater details in some other paper. 

4   Conclusions 

According to the way they determine the meaning of the represented knowledge, 
knowledge representation techniques can be generally divided into declarative and 
procedural techniques. At present the declarative knowledge representation tech-
niques constitute the main stream. Relational and object-oriented databases, AI 
knowledge representation techniques (e.g. frames, O-A-V triplets, semantic nets), 
Semantic Web techniques (ontology and schema languages) are all representatives of 
declarative approach. The main characteristic of declarative techniques is that they 
use descriptions to determine the meaning of represented knowledge. These descrip-
tions are provided by giving names to tables, fields, classes, instances, properties, 
relations, etc.  

However these techniques are limited in three ways: 1) unlike human brain which 
has domain unlimited knowledge representation capabilities, the knowledge represen-
tation capabilities of these techniques are defined and limited by their design; 2) vast 
quantities of data represented in a natural language must be translated into one of 
these formalisms; 3) computers are able to read the knowledge represented by de-
clarative techniques, but are not able to understand it. As a consequence, highly spe-
cialized experts are required to describe the domain of description (database, knowl-
edge base, ontology designers) and to create the applications that will use the repre-
sented knowledge (programmers). 

An alternative approach to the problem of determining the meaning of represented 
knowledge is offered by procedural techniques. Procedural techniques do not describe 
the meaning of represented knowledge, but only provide means for the representation 
of its structure and semantic relations between them. The meaning of represented 
knowledge is determined through the process of matching semantic structures with 
simple and complex semantic categories.  

In this paper we have proposed a kind of recurrent neural network, a modification 
of localist approach to connectionist model, Hierarchic Semantic Form (HSF), which 
is a hierarchical, structured equivalent of plain text form, where all semantic struc-
tures and semantic relations are explicitly represented. HSF and SOUL (Space of 
Universal Links) algorithm can be used to automatically translate the knowledge 
represented in a natural language (plain text) into a structured form, whereby all se-
mantic structures and relations are automatically identified and represented. 

The meaning of knowledge is determined by matching the simple and complex 
semantic categories with semantic structures represented in HSF. The matching is 
performed by propagating the signals through HSF as plain text is fed to it. 
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We have used a very simple example to illustrate how declarative techniques are 
used to describe the meaning of the knowledge and how HSF and SOUL are used to 
represent the same knowledge and to determine its meaning. 
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Abstract. One of the primary aims in human-computer interaction research is 
to develop an ability to recognize affective state of the user. Such ability is 
indispensable to have a more human-like nature in human-computer interaction.  
However, the researches in this direction are not mature and intensive efforts 
have only been witnessed recently. This work envisages the possibility of 
enhancing feature selection phase of emotion detection task to obtain robust 
parameters which will be determined from verbal information to achieve an 
improved affective human-computer interaction. As highly informative feature 
selection is believed to be a more critical factor than classifier itself, recent 
studies have increasingly focussed on determining features that contribute more 
to the classification problem. Two new frameworks for multi-class emotion 
detection problem are proposed in this paper, so as to boost the feature selection 
algorithms in a way that the selected features will be more informative in terms 
of class-separability. Evaluation of the selected final features is accomplished 
by multi-class classifiers. Results show that the proposed frameworks are 
successful in terms of attaining lower average cross-validation error.  

Keywords: Human-Computer Interaction, Emotion Detection, Affective Com-
puting, Pattern Recognition. 

1   Introduction 

Human Computer Interaction is defined as “a discipline concerned with the design, 
evaluation and implementation of interactive computing systems for human use and 
with the study of major phenomena surrounding them” [1]. It is an interdisciplinary 
field which arose from the intertwined roots in computer science, software 
engineering, image processing, human factors, cognitive science, psychology etc [2]. 
One of the primary aims in human-computer interaction research is to develop an 
ability to recognize affective state of a user. The new generation computers will 
recognize the affective state of users, such as nervousness, fear, happiness, 
concentration, eager etc., using verbal and nonverbal information [3,4]. This ability is 
the first step to have a more humanlike interaction between the users and computers. 
Such ability is indispensable to have a more human-like nature in human-computer 
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interaction [5,6]. However, the researches in this direction are not mature and 
intensive efforts have only been witnessed recently. For human beings,  recognition of 
affective state of a person is a trivial task, which can be accomplished by computer 
through integration of methods from tremendously diverse research fields such as   
image processing, speech processing, artificial intelligence, cognitive science and 
psychology. 

As emotion recognition from speech signal can be considered as a pattern 
classification problem, an automatic emotion detection system might be composed of 
at least three main components: feature extraction, feature selection and classification. 
Although, a large amount of research has been conducted into feature selection to 
determine what aspects of the speech signal are more informative in emotion 
detection, it is still an open problem to identify reliable discriminating features for this 
task [7]. In this respect, feature selection in pattern recognition and classification 
becomes an important area of research as it is highly critical to select the best subset 
of high-dimensional data to reduce the classification error [8]. In many pattern 
recognition applications enormous amounts of multivariate data is currently available. 
However, classification algorithms are unable to attain high classification accuracy if 
there is a large number of weakly relevant and redundant features, which is attributed 
to  “the curse of dimensionality”. Many algorithms suffer from a computational load 
incurred by  the high dimensional data. On the other hand, once a good small set of 
features are obtained, even simple algorithms such as 1-kNN is able to attain high 
accuracy [9].  Thus,  feature selection is widely used  to reduce the number of features 
and to remove irrelevant and redundant data [10].  

The selection of a subset of features is based on an evaluation criterion and the 
quality of a feature subset is measured by this criterion. In this respect, feature 
selection algorithms broadly fall into three categories: the wrapper model, the filter 
model and the hybrid model. In the wrapper model, the performance of a specific 
algorithm is used to evaluate the subset of features. As the accuracy rate of the 
algorithm is determined for the selected subsets in each step, the wrapper model tends 
to be more computationally expensive.  In the filter model, the classification 
performance is indirectly estimated using intrinsic characteristics of data such as 
distance measures. Despite the intensified research on finding the best representative 
features that give a higher accuracy, the subset of the selected best features are 
completely dependent on the ability of the algorithms used to rank the features. So it 
is not surprising if one end up with a completely different set of features as the best 
subset when a different feature selection algorithm is used. Therefore, there is an 
obvious need to define a framework within which it is more likely to obtain a reliable 
subset of features. This paper proposes two frameworks within which determining a 
subset of features with high informative power in terms of class-separability is made 
possible. The underlying property of the frameworks is to decompose a multi-class 
classification problem into binary classification as either one-vs-rest or one-vs-one 
problem. Although some variable selection methods, such as Sequential Forward 
Selection (SFS) method, treat the multi-class case directly rather than decomposing it 
into several two-class problems, it will be shown that decomposing the problem into 
binary-classification and reconstruction of a final feature subset from a set of 
candidate feature subsets results in an improved performance in terms of classifier 
accuracy.  
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Feature selection algorithms to evaluate the proposed frameworks are chosen to be 
one wrapper type, one filter type and two recently proposed embedded feature 
selection algorithms. The SFS algorithm with Leave-One-Out Cross Validation 
(LOOCV) error of a k-Nearest Neigbour (kNN) classifier is chosen as a wrapper type 
feature selection algorithm. The embedded type algorithms are two state of the art 
feature selection algorithms based on an Support Vector Machine (SVM) classifier, 
namely the algorithm based on Least Squared SVM Bound (LSBOUND) [11] and on 
W2R2 concept [12]. Finally, a filter approach based on Mutual Information 
(MUTINF) is used [13].  

2   Emotion Detection Problem from Speech Signals 

Recognition of emotion in human speech is an active research area, which has 
attracted the interest of the research community [14-19]. Despite of large amount of 
research carried out in literature to determine what aspects of the speech signal are 
more informative in emotion detection, identifying reliable discriminating features for 
this task remains still an open problem [7]. Fernandez and Picard in [20] highlighted 
results from an extensive investigation developing new features, and comparing them 
with classical features using machine learning techniques to recognize 5 emotional 
states. Sequential Floating Forward Selection (SFFS) with the leave-one-out (LOO) 
generalization error of a K-nearest neighbor (kNN) classifier was used in the feature 
selection phase to rank 87 features. Feature selection for emotion detection in noisy 
speech has been discussed by Schuller et al in [21]. They employed Information Gain 
Ratio based feature selection to select the best features, out of a set of 4000.  

The feature set used in this study is extracted from the Berlin Emotional Speech 
Database-EmoDB [22]. 338 samples corresponding to four emotional classes have 
been used. Fifty-eight features have been extracted from the speech samples as 
explained in [23]. 17 of them are related to prosodic features based on statistical 
properties of the fundamental frequency F0. Five features are obtained from the sub-
band energies of the utterances, using 6th order elliptic filters with center frequencies 
of 400, 800, 1200, 1600 and 3200 Hz, respectively. 20 Mel-Frequency Cepstrum 
Coeffients (MFCC) and 16th order Linear Predictive Coding (LPC) parameters have 
been included into feature vectors.  

3   Proposed Frameworks for Feature Selection   

The underlying properties of the proposed frameworks are to decompose multi-class 
classification problem into binary classification problem and then perform feature 
selection for each sub-problem. Then two feature construction strategies;  namely 
intersection and unification, are defined to construct the final feature set. The 
proposed frameworks are depicted in Figure 1. In the first framework, labeled as 
FRM1, the multi-class emotion detection problem is cast into a “one-vs-rest” binary 
classification problem to discriminate one class of emotion from the rest. In this 
framework, class-specific features are expected to be selected by feature selection 
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algorithm. As there are M classes of emotional states, M subsets of features are 
selected by each of the feature selection algorithms. In the second framework, the 
classification problem is organized as a “one-vs-one” binary classification task and it 
is labeled as FRM2. In this approach the feature selection algorithms are expected to 
select highly class-specific features which are informative in discriminating one class 
of emotion form another class of emotion. The number of subsets produced in FRM2 
is M(M-1)/2 in this case.  

 

 

Fig. 1. Proposed framework for feature selection. Casting Problem refers to organising the emot- 
ion detection problem into  either “one-vs-rest”  or “one-vs-one”  binary classification scheme. 
Then a number of subsets of features are selected by the feature selection algorithms.  

Each feature selection algorithm will produce four subsets of features, Si , each 
corresponding to one of four decomposed binary classification problems in FRM1, or 
six subsets of features in FRM2. In the feature construction stage, these subsets, Si, 
are processed to finally obtain the “best feature subset”. In this stage, two strategies in 
construction of a final feature set have been employed. Firstly, the intersection 
operator given in (1) is performed on the subsets to form the "best final subset” from 
the features that occurs more than one in the subsets, Si. This final subset of features 
is labeled as SET1  
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where N=M  is equal to the total number of subsets, Si in FRM1. 
In the second strategy, the subsets of features, Si, are simply combined together. 

This task corresponds to performing a unification operation on the subsets Si  as  
given in (2)   
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where N=M equals the total number of subsets, Si in FRM1. 
In FRM2, as the emotion detection is organised as “one-vs-one” binary 

classification problem, there will be six binary classification problems. Each of the 
feature selection algorithms will then produce six subsets of features. Then the same 
steps are followed as in the construction of a final feature subset in FRM1: two final 
subsets are formed from the subsets of features, Si, by performing the intersection and  
union operation as given in (1) and (2) where N=M(M-1)/2. These final best feature 
 

 
MULTICLASS 
CLASSIFIERS 
 

FEATURE  
SELECTION: 
ALGORITHM 

 

FINAL  
FEATURE 
SUBSET 
CONSTRUCTION 

FEATURE  
SELECTION: 
CASTING 
PROBLEM 



 New Frameworks to Boost Feature Selection Algorithms in Emotion Detection 537 

subsets are labeled as SET1 and SET2, respectively, following the convention 
employed in the FRM1. For the two final subsets produced by a feature selection 
algorithm, two multi-class classifiers are employed in the frameworks. 16 final 
features subsets (8 SET1s and 8 SET2s) are employed to train the multi-class classi- 
fiers in each framework, resulting in 32 classifications to carry out a comprehensive 
comparison.  

Figure 2 shows the average percentage of features being selected from the feature 
groups by feature selection algorithms used in FRM1 and FRM2. Also the accuracy in 
terms of 5-fold Cross Validation (CV) error for multi-class classifiers are given in 
Table 1. In the table, average CV errors for each multi-classifier are shown in the first 
row using 58 features where no feature selection has been performed yet. Also the 
average CV error for multi-classifiers is given to indicate the performance of the SFS 
feature selection algorithm in the classical way.  From the features selected by SFS in 
classical way, classification is performed using the only first 6, 15, 18 and 28 features 
in the rank. The results show that the SFS algorithm does not perform well. In most of 
the cases, the accuracy of the classifiers is worse, producing higher CV error 
compared to the no-feature selection case.  On the other hand, when the features 
selected in the proposed frameworks are employed, the classifiers produces 
outperforming results, reducing CV error by 17.4% for the one-vs-one SVM, 
SVM(one-vs-one), classifier and 17.3% for the one-versus-rest SVM, SVM(one-vs-
rest),  classifier. The improvements indicate that SFS in the proposed framework 
selects more informative features.  
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Fig. 2. Normalized percentage of features selected from the feature groups by the feature selec-
tion algorithms 

As it is seen from Figure 2, SFS in the proposed framework is able to select more 
features from the prosodic and subband-energy related groups, while SFS in the 
classical way emphasis LPC parameters. This result is in line with the results reported 
in literature that prosodic and energy related features are more informative [8,24].  
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Table 1. Accuracy of SVM classifiers for SFS feature selection algorithm  with and without the 
proposed frameworks  

Accuracy of 
Classifier:  

SVM(one-vs-one) 

Accuracy of 
Classifier:  

SVM(one-vs-rest)FRAMEWORK 
Feature 

Selection 
Algorithm

# 
of

  
fe

at
ur

es
 

CV
Error

Std
Dev

CV
Error

Std
Dev

NOTAPPLIED 58 0,201 0,010 0,219 0,008
SFS(classic) 6 0,263 0,022 0,269 0,034
SFS(classic) 15 0,231 0,025 0,237 0,026
SFS(classic) 18 0,219 0,020 0,207 0,030

NO
FRAMEWORK 

SFS(classic) 28 0,190 0,029 0,196 0,031
FRM2 SFS(proposed) 6 0,281 0,031 0,311 0,025

SET1 FRM1 SFS(proposed) 15 0,172 0,026 0,181 0,018
FRM2 SFS(proposed) 18 0,186 0,017 0,201 0,023SET2 FRM1 SFS(proposed) 28 0,166 0,022 0,187 0,027  

The effectiveness of the proposed framework is illustrated in Table 2, Table 3 and 
Table 4 in terms of construction strategies, multi-class classifers and feature selection 
algorithms employed.  Table 2 is organised to emphasise the effect of the feature 
construction strategies, namely Unification and Intersection. It shows average CV 
error of the classifiers for the final feature sets labelled as SET1 which are produced 
by the intersection operator, and for SET2 features produced by the unification 
operator. As it is seen, the unification operator produces more informative final 
feature subsets. In all cases, CV errors are effectively reduced, compared to the CV 
errors achieved for SET1 feature sets which constructed by the intersection operator.  

Table 2. Performance of the frameworks in terms of feature construction strategies 

Accuracy of  
Classifier:  

SVM(one-vs-one) 

Accuracy of  
Classifier:  

SVM(one-vs-rest)Framework 
Feature 

Construction
Average
CV Error 

Std
Dev

Average
CV Error 

Std
Dev

SET1 (Intersection) 0,182 0,022 0,202 0,022FRM1 SET2 (Unification) 0,167 0,023 0,189 0,031
SET1 (Intersection) 0,199 0,024 0,222 0,028FRM2 SET2 (Unification) 0,174 0,023 0,192 0,026

 

A comparison between the multi-class classifiers is highlighted in Table 3. The 
results shows that irrespective of frameworks, the one-vs-one multi-class classifiers 
outperform the one-vs-rest classifier. It is seen that in the first framework, FRM1, all 
of the classifiers are more successful in terms of reducing average CV error. Among 
them SVM(one-vs-one) is able to produce an average CV error as low as  
0,1745±0,0224. The success of SVM(one-vs-one) is also apparent in the second 
framework producing an error level of  0,1866±0,0231.  



 New Frameworks to Boost Feature Selection Algorithms in Emotion Detection 539 

Table 3. Average accuracy of classifiers in the feature selection frameworks 

Framework Classifier 
Average 
CV Error 

Standard Deviation 
of CV Error 

SVM(one-vs-one) 0,1745 0,0224 
FRM1 

SVM(one-vs-rest) 0,1951 0,0264 
SVM(one-vs-one) 0,1866 0,0231 

FRM2 
SVM(one-vs-rest) 0,2071 0,0271 

 
The effectiveness of the proposed frameworks are also evaluated with a  

comparison between feature selection algorithms with respect to the two feature 
selection frameworks. In both cases, the newly proposed LSBOUND based feature 
selection algorithm clearly outperforms the rest of the algorithms generating 
significantly lower average CV errors.  The best accuracy, out of 32 experiments,  is 
obtained by  SVM(one-vs-one) with an CV error of  0.145±0.02, when the 
LSBOUND based feature selection algorithm is employed. 

Table 4. Average accuracy of all classifiers associated with particular feature selector in the 
feature selection frameworks 

Framework 
Feature 

Selection 
Average 
CV Error 

Standard 
Deviation 

of CV 

Average 
# of 

features 
LSBOUND 0,175 0,020 23 
MUTINF 0,215 0,029 20,5 FRM1 
R2W2 0,173 0,025 23,5 
LSBOUND 0,171 0,019 22 
MUTINF 0,183 0,033 23 FRM2 
R2W2 0,190 0,024 22,5 

4   Conclusion  

In this paper, evaluation of the proposed feature selection frameworks and the 
construction approaches are carried out using four feature selection algorithms and  
two multi-class classifiers to improve emotion detection for human-computer 
interaction. It is shown that the algorithms tend to select more informative features in 
the proposed frameworks, which gives higher accuracy rates for the classifiers. 
Results show that the first framework where more informative features have been 
selected in terms of distinguishing one emotional state from the rest is more suitable 
in achieving higher accuracy. It has also been shown that among all of the four 
different feature selection algorithms, the recently proposed LSBOUND based feature 
selection is superior in terms of reducing average CV error. The best accuracy among 
32 experiments is obtained by SVM(one-vs-one) with an CV error as low as 
0.145±0.02, when the LSBOUND feature selection algorithm is employed.  
Furthermore, the results have shown that SVM(one-vs-one) multi-classification 
scheme outperforms the other type of multi-task classifiers  investigated and  is 
consistently able to give  higher accuracy in emotion detection. The results obtained 
suggest that the proposed frameworks are very effective in the emotion classification 
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problem which is indispensable to achieve a more natural human-computer 
interaction. 
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Abstract. This study investigates pausing strategies, focusing attention on 
empty speech pauses. A cross-modal analysis (video and audio) of spontaneous 
narratives produced by male and female children (9 years old ± 3 months) and 
adults showed that a remarkable amount of empty speech pauses (91% in male 
and 84% in female children, and 95% in adults of both sexes) was related to the 
amount of added information conveyed in the speech flow. Both adults and 
children consistently exploited pausing strategies to signal discourse boundaries 
such as clauses (marked by empty speech pauses for 73% and 70% of cases in 
male and female children, respectively, and 56% in adults) and paragraphs 
(97% and 96% in male and female children, respectively, and 94% in adults). 
The high consistency, among subjects, in the distribution of speech pauses sug-
gests that, at least in the Italian context, the speaker in narration makes use of an 
intrinsic timing behavior, probably a general pattern of rules, to control speech 
flow for discourse organization. The implications of these findings for the de-
velopment of improved speech recognition and speech synthesis systems are 
discussed and procedures for the automatic detection of speech pauses are pro-
posed.  

1   Introduction 

A characteristic of spontaneous speech, as well as of other types of speech, is the 
presence of silent intervals (empty pauses) and vocalizations (filled pauses) that do 
not have a lexical meaning. Several studies have been conducted to investigate the 
system of rules that underlie the speaker’s pausing strategies and their psychological 
bases. Research in this field has shown that pauses may play several communicative 
functions, such as building up tension or raising expectations in the listener about the 
rest of the story, assisting the listener in her/his task of understanding the speaker, 
signalling anxiety, emphasis, syntactic complexity, degree of spontaneity, and gender, 
and transmitting educational and socio-economic information [1, 5, 12, 25, 26, 32].  

Studies on speech pause distribution in language production have produced evi-
dence of a relationship between pausing and discourse structure. Empty and filled 
pauses are more likely to coincide with boundaries, realized as a silent interval of 
varying length, at clause and paragraph level [6, 22, 27, 42]. This is particularly true 
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of narrative structures, where it has been shown that pausing marks the boundaries of 
narrative units [8-10, 15-17, 34-36, 42].  

Several cognitive psychologists have suggested that pausing strategies reflect the 
complexity of neural information processing. Pauses will surface in the speech flow as 
the end product of a “planning” process that cannot be carried out during speech articu-
lation, and the amount and length of pausing reflect the cognitive effort related to lexical 
choices and semantic difficulties in generating new information [7, 8, 15-17, 25].  

We can conclude from the above considerations that pauses in speech are typically 
a multi-determined phenomenon [3, 7, 20], attributable to physical, socio-psycholo- 
gical, communicative, linguistic and cognitive causes. Physical pauses are normally 
attributed to breathing or articulatory processes (i.e. pauses due to a momentary stop-
page of the breath stream caused by vocal-tract constrictions or the closure of the 
glottis). Socio-psychological pauses are caused by stress or anxiety [3]. Communica-
tive pauses are meant to permit the listener to comprehend the message or to interrupt 
and ask questions or make comments. Linguistic pauses are used as a means for dis-
course segmentation. Finally, cognitive pauses are related to mental processes con-
nected with the flow of speech, such as replacing the current mental structure with a 
new one in order to continue the production [8-10] or difficulties in conceptualization 
[25].  

An accurate detection of empty speech pauses appears to be crucial for most of to-
day’s speech processing methods. For example, in speech recognition, the correct 
detection of word, clause, and paragraph boundaries has a significant impact on the 
final recognizer efficiency [29] and we will see, from the data reported below, that a 
significant percentage of such linguistic structures is marked by empty speech pauses. 
Furthermore, the detection of non-speech regions is of utmost importance in speech 
enhancement [38], and in speech coding [24] applications since automatic procedures, 
especially those devised for the reduction of noise  and of the average bit rate by 
means of a variable transmission mode, exploit acoustic information extracted from 
silent intervals. A practical use of these features is reported in the definitions provided 
by the European Telecommunication Standards Institute (ETSI) and the International 
Telecommunication Union (ITU) standards [19, 30].  

The interest in developing improved methods for empty pause detection also arises 
from the need to develop better interactive dialog systems and intelligent avatars that 
are able to engage in a natural interaction with the user. In this context, as already 
said, speech pauses play several functions that guide the flow of the interaction.  Fur-
thermore, the frequency and the length of empty pauses provide useful biometrical 
information on the emotional state of the speaker, since it has been shown that in 
stressed situations (for example, when the speaker is telling a lie) the silent intervals 
in speech flow tend to be more numerous and relatively longer than in non-stressed 
situations [13]. In this respect, a machine communicator can exploit empty pause 
detection to detect the register the speaker is using or to produce more natural sound-
ing synthesized speech.  

The discrimination between speech and non-speech segments is not as trivial as it 
might appear at first sight: most of the detection algorithms fail due to the combina-
tion of background noise and speaker’s coarticulation effects. Former algorithms were 
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frequently based on energy thresholding [23], pitch detection [11], zero-crossing rate 
[30], periodicity measure [47], cepstral features [46], spectrum analysis [33], and 
Linear Prediction Coding (LPC) [39] or combinations of these parameters. The efforts 
to enhance detection performance have led to the implementation of statistical models 
with decision rules derived from the Likelihood Ratio Test (LRT) applied to a set of 
hypotheses [19]. Recently, the Gaussian statistical model improved with the incorpo-
ration of an effective hang-over scheme based on the Hidden Markov Model (HMM) 
was applied in order to achieve more reliable results [43-44]. A different approach 
exploits a set of fuzzy rules implemented into the detection algorithm [4]. It has also 
been shown that algorithm robustness can be improved by using the signal-to-noise 
ratio (SNR) parameter and long-term information about the speech/non-speech signal 
measured separately on each filtered spectral band to formulate the appropriate deci-
sion rule for the problem under examination [40]. 

Each of the above proposed solutions has proved to give a satisfactory performance 
when tested on standard databases, such as TIMIT [21], NTIMIT [31], or Aurora 
framework [28], where noise has constant attributes that do not change from one 
record to another or during recording. However, the performance of the above algo-
rithms decreases when environmental noise changes due to variations in the recording 
environment. The main problem for a correct empty pause detection is caused by 
local energy fluctuations, not only due to transient consonants but also to the presence 
of environmental noise. Fixed threshold methods are scarcely effective [23] because 
of high-level energy variations across the speech signal. 

To overcome this problem, we propose an adaptive energy thresholding algorithm, 
where empty pause detection takes the form of measuring, in time, variations in the 
speech signal energy in different frequency regions. The rationale is that high-energy 
regions can be assigned to speech segments, whereas low-energy regions can be at-
tributed to an empty pause. Threshold values are continuously adjusted on the basis of 
long-term speech and noise energy information as well as additional parameters that 
will be described below. 

2   Materials and Methods for the Psycholinguistic Analysis 

The video recordings on which our analysis is based are of narrations by 4 male and 4 
female children (9 years old ± 3 months) and 4 adults (2 males and two females, aver-
age age 28 years ± 3 years). The speakers told the story of a 7-minute animated colour 
cartoon they had just watched. The cartoon, centered on a cat and a bird, was familiar 
to Italians (adults and children). The listeners in the case of children were the teacher 
and the other children also participating in the experiment, whereas in the adults’ case 
the listener was the experimenter, who was also a close friend of their. Children’s 
recordings were made after the experimenter had spent two months with the children 
in order to become familiar with them and after several preparatory recordings had 
been made in various contexts for the children to get used to the camera. In the case 
of adults, the recordings were made by the experimenter, in a friendly environment  
(at the experimenter’s house after a relaxing dinner) and justifying the story-telling  
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elicitation as a memory-recall experiment. This kept out stranger-experimenter  
inhibitions from the elicitation setting; i.e., factors that could result in stress and anxi-
ety. Limiting these factors allowed us to rule out the socio-psychological type of 
pauses [3].  

The cartoon had an episodic structure, each episode characterized by a “cat that 
tries to catch a bird and is foiled” narrative arc. Because of the cartoon’s episodic 
structure, typically children and adults would forget entire episodes. In this case the 
experimenter was allowed to give suggestions in order to help them remember the 
story. However, given the length and the difficulty of the analytical procedure, in the 
present paper only two episodes were analyzed both for children and adults. The 
video was analyzed using commercial video analysis software (VirtualDub™ ) that 
allows viewing video-shots and forward/backward movements through the shots. The 
speech waves, extracted from the video, were sampled at 16 kHz and digitized at 16 
bits. The audio was analyzed using Speechstation2™   from Sensimetrics. For the audio 
measurements the waveform, energy, spectrogram, and spectrum were considered 
together, in order to identify the beginnings and endings of utterances, filled and 
empty speech pauses, and phoneme lengthening. The details of the criteria applied to 
identify the boundaries in the speech waveform are described in Esposito and Stevens 
[18]. In this study, empty pauses are simply defined as a silence (or verbal inactivity) 
in the flow of speech equal to or longer than 120 milliseconds, whereas filled pauses, 
phoneme lengthening, and interruption are considered disfluencies (see Esposito  
[15-17] for details).  

Both the video and audio data were analyzed perceptually, the former frame-by-
frame and the latter clause-by-clause, where a clause is assumed to be “a sequence of 
words grouped together on semantic or functional basis”, whereas a paragraph is 
considered “a sequence of several clauses connected together by the same subject or 
scene” [17]. Moreover, added information is considered “any verbal material that 
produces a modification in the listener’s conscious knowledge”, and therefore the 
given verbal material was intended not to produce such a modification [8]. 

3   Psycholinguistic Results  

Table 1 reports the occurrences of the two pausing means considered (empty speech 
pauses and disfluencies) and their percentage (in brackets) computed as the ratio of 
empty speech pauses and disfluencies, respectively, to their total number of occur-
rences. Table 1 also reports the empty pause rate computed as the ratio of the numbers 
of speech pauses to the length of the subject’s narrations measured in seconds. From 
Table 1 it can be observed that, overall, empty pauses are considerably frequent (43%, 
42%, in male and female children, respectively, and 44% in adults) accounting for 
approximately two quarters of the total. Moreover, the empty pause rate in the chil-
dren is higher in the females than in the males, the latter in turn being higher than in 
adults, suggesting that the three groups adopt different pausing strategies, depending 
on their language skills and their ability to structure the discourse. 
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Table 1. Occurrence of empty pauses, disfluencies, and empty pause rates in child and adult 
narratives. In brackets the percentage is reported as computed on the total number of empty 
pauses and disfluencies. 

Male Children Empty 
Pauses 

Disfluency Total 
 

Empty 
Pause rate 

S1 (77.94s) 28 (37) 47 (63)  75 36 
S2 (84.47s) 32 (44) 40 (56)  72 38 
S3 (114.5s) 39 (54) 33 (46)  72 34 
S4 (121.0s) 39 (38) 63 (62)  102 32 
Total (397.92s) 138 (43) 183 (57) 321 35 
Female Children       
S1 (124.43s) 45 (47) 60 (63)  95 36 
S2 (133.75s) 54 (46)   64 (54)  118 40 
S3 (95.70s) 29 (31) 64 (69)  93 30 
S4 (137.50s) 64 (42) 89 (58)  153 47 
Total (353.88s) 192 (42) 277 (60) 459 54 
Adults       
S1 (121.57s)  35 (51)  34 (49)  69 29 
S2 (174.44s)  43 (40)  64 (60)  107 25 
S3 (117.30s)  30 (46)  36 (55)  66 26 
S4 (121.56s)  33 (43)  43 (57)  76 27 
Total (543.87s)  141  (44)  177  (56)  318 26 

 
Table 2 gives the occurrences of clauses and paragraphs as well as the number of 

clauses and paragraphs marked by an empty pause in children and adults. In brackets 
is reported the percentage of clauses and paragraphs, respectively, marked by an 
empty pause and computed as the ratio of the number of clauses (or paragraphs) 
marked by an empty pause to the total number of clauses (or paragraphs). Note that 
empty pauses marking a clause boundary can also mark a paragraph boundary. The 
results in Table 2 show a more reliable pattern at clause and paragraph level where 
both male and female children mark with a pause more than 70% of clause and 96% 
of the paragraph boundaries, whereas adults mark with a pause 56% of clause and 
94% of paragraph boundaries. In contrast to the major difference between adults and 
children in the percentage of empty pauses marking clause boundaries, no difference 
was recorded between the two groups at the paragraph level. Both in adults’ and chil-
dren’s speech, empty pauses were used to identify changes in scene, time and event 
structures, with the functional role of delimitating paragraphs. The difference between 
adults and children at clause level may depend on the fact that adults, in planning 
their utterances, may use gesture pauses (see Esposito & Marinaro [14]) for punctuat-
ing the spoken discourse in the absence of empty speech pauses, whereas children, 
being less skilled in assembling bodily and verbal information, tend to exploit both 
synchronously. 

Table 3 reports the number of empty pauses that follow the given, and added 
speech material.  
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Table 2. Occurrences of empty pauses, disfluencies, and empty pause rates in child and adult 
narratives.  In brackets the percentage is reported as computed on the total number of empty 
pauses and disfluencies (#  =  quantity of). 

Male Children #Clauses # Clauses marked by
Empty Pauses

# Paragraphs # Paragraphs 
marked by 

Empty Pauses
S1   21  16 (76)  13        13 (100)
S2   21  19 (91)  11    11 (100)
S3   36  24 (68)  15     14   (93)
S4   38  26 (68) 16  15   (94) 
Total 116 85 (73) 55 53  (96) 
Female Children  
S1   42 29 (69) 17        16   (94)
S2 47  34 (72) 15    15 (100)
S3 34 20 (59) 14     13   (93)
S4 47   36 (77) 26 26 (100) 
Total 170 119 (70) 72 70  (97) 
Adults  
S1   58 28 (48) 17        16 (94)
S2 57 31 (54) 18 17 (94)
S3 42 26 (62) 17      16 (94)
S4 37  24 (65) 16   15 (94) 
Total 194 109  (56) 68 64 (94) 

Table 3. Absolute number of empty pauses associated with given and added information. The 
percentage (in brackets) is computed over the number of empty pauses for children and adults. 

Male Children Given Added 
S1    1 (4)   23 (82) 
S2   0 (0)      30 (94) 
S3     1 (3)       35 (90) 
S4  0 (0)      38 (97) 
Total 2 (1) 126 (91) 
Female Children   
S1       3 (6)        37 (82) 
S2  3 (5)     43 (80) 
S3     0 (0)      26 (90) 
S4    4 (6)     55 (86) 
Total 10(5) 161(84) 
Adults   
S1    2 (6)  33 (94) 
S2 1 (2)    40 (93) 
S3  0 (0)    30 (100) 
S4 0 (0)    31 (94) 
Total  3(2) 134(95) 
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Both children and adults pause to recover from memory the new information they 
wish to convey. Most of the empty pauses are made to convey added rather than given 
information. Most of the empty pauses made when no added or given information is 
produced, are a succession of filled and empty pauses signaling the enhanced cogni-
tive recovery effort. The relationship between these pauses and the cognitive effort is 
evident examining the amount of empty pauses associated with changes of scene, time 
and event structure (see Table 2). The above data suggest a predictive scheme for the 
alternating pattern of cognitive rhythm in the production of spontaneous narratives. In 
this alternating pattern, empty speech pauses account for the highest percentage of 
paragraphs, and clauses. This is generally true of all subjects, hence suggesting that 
children and adults use a similar pause strategy to highlight different discourse units. 

4   Adaptive Threshold Algorithm    

Given the psycholinguistic significance of empty speech pauses we proposed an algo-
rithm for their detection. To this aim the input speech signal was divided into frames 
using a 20 ms Hamming window with 10 ms overlap, and the sample log-energy 
values were computed for each window using the Fast Fourier Transform (FFT). 
Next, the computed spectrum was divided into four Mel Frequency Scale [37] sub-
bands to match the human psycho-acoustical ability to resolve sounds with respect to 
frequency. The signal parameters of interest were described in the [0-4 kHz] fre-
quency range containing an adequate amount of vocal activity, vocal tract articulatory 
features, and non-speech segment information (see details in [2- 45]). 

A decision on whether the processed frame is a speech or non-speech segment was 
made by applying to the output of each filter a thresholding algorithm based on the 
following principles:  

1) The thresholds, Ts and Tp, are computed, and if the energy value of the boundary 
regions exceeds the value Ts, a speech frame is detected; on the contrary, a non-
speech frame is detected when the energy value falls below the Tp, value. Ts and Tp are 
recomputed only when a non-speech frame is detected.  
2) The computation starts by computing the threshold T as a mean of all first-frame 
energy values in the first band and the first silent segment is detected when all the 
band energy features fall below T. Initially Ts is set equal to T. This initial set-up may 
result in a minor misclassification when the first detected silent frame shows a slight 
offset with respect to its manually detected position.  

Several algorithms for threshold calculation and adaptation were designed and  
experimentally tested due to the difficulty of identifying a procedure capable of pre-
venting threshold value fluctuations that might arise from either a random noise or 
long-term silent segments. Among them we devised the Min/Max and the Spectral 
Flatness methods that were able to adapt to signal fluctuations.  

Min/max method 
The min/max algorithm is based on the ratio of predicted minimal noise energy in a 
detected non-speech region to the maximal noise energy computed on recently de-
tected non-speech regions. Since the entire detection system runs in real-time, the 
processing of minimum noise value must be predicted on-line in concurrence with the 
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detection of silent pauses. The min/max ratio allows an adaptation of the generalized 
threshold level in response to changes in the noise level. The computation of the gen-
eralized threshold is described by Eq. (1): 
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where Tk is the threshold value computed for kth band and nth frame, N is the mean of 
the noise energy computed on recently detected pauses, Nmax and Np

min are, respec-
tively, the maximum noise energy value from recently detected pauses and the mini-
mum noise energy value in the current detected silent pause p. Ts and Tp are set to 
Tk(n)=Tks(n)=1.2·Tkp(n) and are protected against overflow and underflow through 
appropriate energy levels computed respectively on the previous 10s and 2s of input 
signal. 

Spectral Flatness Method 
This method introduces into the adaptive algorithm a correction factor described by 
Eq.(2):  
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where Fc is the threshold correction obtained from the spectral flatness function de-
scribed in Eq.(3): 

( ) ( )∫∫ −= fnfSfnfSnFc d),(logd),(log)(
 

(3) 

where λ  is the constant SNR correction estimated only once during the first detected 
non-speech segment. The SNR is computed as the ratio of the average speech energy 
to the noise energy in the first detected silent pause and reflects energy variations in 
the speaker’s voice and in the environment; f is a spectral log-energy; n is the time 
window; γ  is a constant taking on two different values, γ Ts  =1 when processing 
speech frames and γ Tp =1.6 otherwise. Fig. 1 illustrates how the silent pause detection 
algorithm exploits the spectral flatness information to compute the different thresh-
olds involved in the identification of speech and non-speech segments.  

 

 

Fig. 1. Spectral flatness thresholding 
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Post-processing 
The output of the detection algorithm is a vector of J=4 binary thresholded outputs that 
is then processed by a mapping algorithm indicating if the frame under examination is a 
speech or a silent segment. The mapping algorithm is exemplified in Figure 2. A frame 
is assumed to belong to a silent segment when almost all the components of the binary 
vector outputted by the filter bank will take a value of 1. Backward analysis is per-
formed after each new detected silent pause to avoid including in the energy and slope 
vector computation the acoustic features of speech segments (such as weak fricatives 
and/or reduced vowels) whose energy may fall below the threshold defined for silent 
intervals. 

 

Fig. 2. Mapping algorithm 

Comparative Tests 
The system efficiency was tested on the narration recordings of eleven Italian and 1 
American English female speakers (9 Italian males and 2 females). All the narrations 
referred to an episodic cartoon that the speakers had seen and were reporting to a 
friend (see section 3). For this purpose, speakers were videotaped at different envi-
ronmental noise levels with a digital video-camera, and the audio to test our proposed 
algorithms was extracted directly from the video. The average narration length was 5 
minutes ±  2.5  (standard deviation). The audio was sampled at 32 kHz and quantized 
at 16 bits. Noise sources included color noise, babble, echo and environmental noise. 
The minimum average SNR was 3dB. For reference, the signal was manually labeled 
for speech and silent pauses using Speechstation2™. A cleaned version of the audio 
was obtained using the Adobe Audition™  noise cancellation techniques and the pro-
posed algorithm was also tested on this cleaned version. Detection performance was 
assessed in terms of non-speech hit-rate (HR0) and speech hit-rate (HR1) defined in 
Eq. (4) as a fraction of all present non-speech or speech frames that were correctly 
detected as pause or speech frames.  

ref
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N0,0 and N1,1 refer to the number of correctly classified non-speech and speech frames, 
respectively, and N0

ref, N1
ref indicate the real number of non-speech and speech 

frames, respectively, coming out from the manual labeling. Results are summarized in 
Table 4, where the performance of the proposed algorithms on both noisy and cleaned 
speech is reported. The Likelihood Ratio Test (LRT) algorithm [43] (with first order 
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Hidden Markov Model hang-over) was tested for comparison, since it has been 
proved to outperform most of the well known proposed VAD detection algorithms 
(see [41, 44]). The average accuracy of speech pause detection with 100 ms tolerance 
for the spectral flatness algorithm was 55% and 57% for noisy and clean speech, re-
spectively, whereas for the min/max method it was 36% in noisy and 39% in clean 
speech. We can notice relatively high values of the non-speech frame hit-rate (HR0) 
for the spectral flatness algorithm, due to the fact that the SNR computation allows 
adapting the threshold to varying environmental and speaker characteristics, and 
therefore the pause boundaries are more appropriately detected, especially the pause 
onsets, which represent one of the main difficulties in accurate pause detection and 
significantly increase the HR0 value. Also, it should be noticed that both the proposed 
algorithms outperform LRT on male data (LRT’s performance on female data were 
not reported because of the huge amount of training data required for LRT’s statistics 
and the small number of records in our female database). It is worth noting that the 
pause detection performance does not vary significantly in noisy or clean conditions 
due to the difficulty of the task, and supports the robustness of our algorithms as re-
gards the presence of noise. 

Table 4. Average speech/non-speech hit-rates 

Min/max Spectral flatness LRT Input files Detectors 
Male Female Male Female Male 

HR1 (%) 95.95 96.59 98.91 98.34 73.38 Original 
noisy speech HR0 (%) 62.19 54.78 74.21 67.85 53.50 

HR1 (%) 96.60 96.42 97.91 98.47 87.72 Cleaned 
speech HR0 (%) 62.37 60.27 77.49 68.90 56.34 

5   Conclusions 

This study is devoted to the investigation of the system of rules that underlie child and 
adult pausing strategies and their psychological bases, and to the proposal of an auto-
matic algorithm for their detection The reported data show that empty pauses are 
largely used by the speaker to signal new information to the listeners’ conscious 
knowledge and only a few among them mark the given information. This suggests 
that children pause, like adults [25, 34-36, 42], to recover from their memory the new 
information they are trying to convey. Moreover, pauses are not only generated by 
psychological motivations but they are also used as a linguistic means for discourse 
segmentation. Pauses are used by children and adults to mark the clause and para-
graph boundaries. This result favors the hypothesis of a universal model for discourse 
structure otherwise we would expect children, being less skilled in the use of the lexi-
s, to make more pauses at word level than at clause and paragraph levels. This hy-
pothesis is further supported by previous data [15-17] showing that 56% of child 
pauses occur right after the first word in a clause, i.e. right after a filler conjunction 
that signals a major transition in the speech flow and serves to plan the message con-
tent for the continuation of the discourse. The consistency among the subjects in the 
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use of pausing means seems to suggest a very coarse and general timing model that 
speakers use to regulate speech flow and discourse organization. More data are 
needed to make sense on how this model works, to allow its mathematical formula-
tion for the implementation of more natural speech synthesis and interactive dialog 
systems, intelligent avatars. 

We are currently able to propose a software system for silent speech pause detec-
tion in noisy and cleaned conditions, which exploits two adaptive log-energy based 
thresholding methods. Both methods show similar performance and their efficacy is 
comparable with standard VADs [19, 30, 40-41, 44]. No significant performance 
differences are noticed in the cleaned and noisy speech conditions suggesting that the 
reliability of the proposed methods does not depend on the signal quality even though, 
according to the results obtained, silent pause detection remains a difficult task that 
should be further investigated. The advantage of the proposed methods is in their 
robustness as regards high-energy noise randomly localized in sub-bands and the low 
energy wideband noise, even though they cannot handle high-energy noise spread 
widely over the band. Furthermore, no a priori knowledge of SNR and threshold val-
ues is required. In our future works the methods will be embedded in a multimodal 
pause detection system using both speech and gestures to improve the naturalness of 
human-machine interaction. 
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Abstract. Verbal communication is the most efficient way to communi-
cate between humans, and yet it is not widely used in Human Computer
Interactions (HCI). In this work-in-progress paper, some aspects related
to the lack of success for speech-based HCI systems are firstly discussed
and then, two adaptive strategies, developed by the author and currently
under test, are introduced.

Keywords: Adaptive dialoge systems,HCI, robotics, Intelligent Systems.

1 Introduction

Currently human computer interactions (HCI) are mainly performed using key-
bord, mouse and screen. But this is not the most natural way humans interact
and therefore it is sometimes inefficace and frustrating. In theory, Natural Lan-
guage (NL) (sometime also referred as verbal communication or spontaneous
speech) could be very efficient as an interaction paradigm with machines. It
is the most spontaneous and efficient way humans communicate and there are
several reasons to use speech also in computer interactions. For example, in
mobile-related applications (such as driving or walking) or tedious application
(searching information) a verbal-based paradigm would be more efficient and
more spontaneous.

In general, NL-based communication is fast and therefore quite succesful in
handling errors and uncertainties, since interactions with the other interlocutor
are facilitated. Therefore, speech is quite efficient between humans since it allows
the use of different recovery strategies and, at the same time, it can handle some
degree of imprecision. However, these arguments can also be used to explain the
difficulties in implementing the same strategy for human-machine interactions.

Recently there has been a remarkable progress in speech-based human ma-
chine interactions. Yet, only few working systems have been released and they
have not outperformed standard interfaces. Therefore, they are considered less
intuitive and users tend to dislike them after the first attempt (see for example
the voice dialling option for mobile phones which is almost never used).
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Broadly speaking, a speech-based interface requires the following components:
an Automatic Speech Recogniser (ASR), a Dialogue Manager (DM), a Natural
Language Understanding (NLU) and a text to speech generator (TTS). Speech
based systems are error prone, but the management of error corrections, the lack
of suitable feedback and the lack of flexibility in artificial systems are probably
the causes of the initial frustration among the users. While each user has a
different way to interact, speech based interface offers little adaptability to the
user profile. For instance, most ASRs do not try to adapt to an individual user
during a dialogue session since it is very difficult to train ASRs on the fly.
Therefore, their performance can vary significantly for different users and even
for the same user across different dialogues. Managing the dialogue between
humans and machines is another area where lack of adaptivity is a contributing
factor of user frustration. The strategies are often very rigid and do not handle
problematic situations very well. They do not try to improve their performance
by dynamically adapting the system behaviour to the user profile during the
dialogue.

For these critical situations described above, no error free solutions have yet
been found. To tackle this lack of flexibility both at ASR and at DM level,
we present here a strategy based on some adaptive capabilities manifested by
the paradigm used. The strategy proposed here is based on repairs. That is,
unsolved situations occurring during the interaction, being solved through cyles
of clarifications. Then, using the perceptive abilities of the system, it will be
possible to adapt to the user behaviour during the interactions.

2 The Basic Architecture

In the remaining we will mainly focus on a domain consisting of users giving route
instructions to robots . [3,15,8,4,11] have developed systems able to translate
verbal user instructions (or utterances) into machine procedures. In [15,8] the
verbal interaction allows the robot both to update its current knowledge about
its position and to plan the shortest path for a location given by the user. In [4]
a display interface allows also graphical input/outputs, while in [11] the system
suffers from a lack of parsing and grounding.

The paradigm used in this paper is the Instruction Based Learning (IBL)
described in [3]. With the IBL project, a system has been developed to use
spontaneous speech to instruct a robot to learn new routes. The system is able
to build new sequences of actions (or procedures) starting from an initial set of
pre-defined basic primitives. As shown in figure 1, an IBL system requires the
following components: an Automatic Speech Recogniser (ASR) to convert speech
utterances into some semantic representation using a corpus based grammar, a
Dialogue Manager (DM) to produce an abstract discourse representation struc-
ture (DRS) of the dialogue between the user and the robot using the results
from the ASR, a Robot Manager (RM) to either map the DRS with an existing
procedure/primitive or to build a new procedure if the route is unknown and
finally a robot to verify and/or execute the primitive or procedure, and finally a
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Text To Speech generator (TTS) to communicate back to the user. A key point
for the successful translation (or grounding) of a user’s instruction into robot
actions is that the system should be able to produce appropriate feedback to
increase its level of perception.

User Utterance

S

�
ASR

assert(l(A, l(B, m
(udr([C, D]..)

�
DM

drs([a, b, c], [go(a),
left(b), ..])

��
RM

Select best proced. pi from
turn ⇒ go(a) · · · left(b)
...

...

turn ⇒ go(a) · · · right(b)

TTS

“How do I go There?”

�

Robot

P

�

�

Fig. 1. IBL Block Diagram

IBL feedback enables the system to deal with grounding of utterances through
a dialogue. The user is informed about the system’s evaluation of utterance un-
derstanding with feedback produced by the IBL components. Positive feedback
indicates a successful evaluation and therefore the ability to execute that in-
struction, whereas a negative feedback indicates a need for some clarification.

In the next section we will discuss the new adaptive strategies introduced
into the IBL architecture. The startegies introduced are based on the use of the
feedback produced by the system to change the state of the system.

3 Adaptive Speech Recognition

For human-robot communication to reach a satisfactory level of success rate, it
is necessary to possess some error correction capabilities . Feedback can increase
robustness and although it is already used during the grounding process (for
example, to evaluate whether a sequence of actions can be successfully executed),
it is possible to increase its influence further.

It has emerged that the rate of success in converting user instructions into
robot executable programs is dependent on the ASR accuracy . Hidden Markov
Models (HMMs) are currently used for ASRs. For example such models are im-
plemented in Nuance [9], which is used with IBL systems (version 8.0). In [3]
the advantages of using Nuance have been discussed. However, some problems
cannot be solved with the rule-based approach so far used for Nuance in IBL
systems. For instance while testing IBL systems, it has been noticed that the
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same command (i.e. the same sequence of words) can be repeated several times
by the same user, but due to changes in pitch or intensity of the voice, a different
interpretation could be produced every time and most of these interpretations
could be very implausible. The reason being that each intermediate state (i.e.
each component) of the grounding process could have produced competing par-
tial interpretations (or hypotheses). Uncertainty is expected to be reduced in the
final interpretation by selecting mutually supportive hypotheses that are consis-
tent with the acoustic data. If uncertainty is still unresolved (i.e. no grounding),
then clarifications with the user are needed. However, clarifications are making
the interaction between the user and the robot tedious if they occur too often.
To reduce the frequency of clarifications, the system should be able to use past
clarifications to cope with the occurring uncertainty. To reduce the frequency
of clarifications the ASR currently used in IBL systems can be integrated with
a novel robot-driven component. The novelty being in a new way to apply the
outcome of previous clarifications to an occurring uncertainty. In particular, to
correctly identify a queried utterance, the proposed new component (also called
TW component in this paper) employs a Time Warping (TW) algorithm to
match utterances exploiting a database of previously recognised utterances.

An example to illustrate how uncertainty is solved by using the proposed
hybrid approach is the following: if the standard HMM-based ASR produces
pass left pass the bridge as an interpretation for the utterance turn left after the
bridge, no mutually supportive hypothesis can be selected. Therefore, a negative
feedback is generated (for example, the Robot Manager (RM) component cannot
translate the command into a suitable robot procedure and therefore produces
some negative feedback). In this case, a clarification dialogue starts (for example,
the user will be requested to repeat the command again) and once the user
utterance is grounded (i.e. the repeated utterance can be translated into the
corresponding robot procedure), the system will produce positive feedback (for
example, the user is informed that the command has been understood). At this
point, if in a following session the user is going to repeat that command again, it
is possible that the same sequence of events (i.e. wrong interpretation, request to
repeat, etc) appears again. However, the system is not using the past events to
avoid it. That because the utterances produced during the clarification dialogue
cannot be used with standard ASR components to increase their accuracy.

However, the TW component is capable to re-use the past interactions to
avoid this repetition of similar sequence of events by indexing the processed
utterances based on the perceptive capabilities of the robot. In this way, if in
a following session the user is going to repeat that command again, then the
queried utterance can be successfully matched with a similar utterance already
indexed to avoid further clarifications. As a result, the hybrid approach proposed
(standard ASR and the TW-based component) unveils the ability to recover from
a wider range of audio signals improving the recognition robustness.

The TW component, discussed in more details in [2], processes the time do-
main waveform of the signal S of the user’s utterance U . By introducing the
TW component in the IBL architecture as shown in figure 2, it is possible to
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complement the standard ASR. That is, if the standard ASR component rejects
a new utterance U1 (i.e. a speech signal S1 containing the same sequence of in-
structions as U but with S1 �= S due, for example, to change in pitch), then the
TW-based component proposed here will associate the same grounding G as U
to U1 by successfully matching S1 with S.

Si

�
ASR

failure?
y

n

�

�

add Si

to stack
�

TW

failure?

n

y

�

�

add stack
to Database

DM

�

ask user

to repeat

Fig. 2. Hybrid ASR model

Time warping is a pattern matching method which measures similarities be-
tween speech input by computing the best matches with a pre-defined database
of speech data [12]. The recognition process consists of matching the incoming
speech with stored templates. The template with the lowest distance measure
from the input pattern is the recognised one. Rather than using a straightforward
technique of comparing the value of the input signal at time t to the template
signal at time t, an algorithm is used to search the space of mappings from the
time sequence of the input signal to that of the template signal, so that the total
distance is minimised. A side effect of this approach is that the algorithm can be
applied to time series of different length therefore, appropriate for spontaneous
speech domains where signals have different length.

Time warping algorithms have been used in the past for ASR until statistical-
based methods (i.e. HMMs) gradually have taken over, although very recently
there has been a growing interest back to time warping based methods. For ex-
ample, in [10] the advantages of a hybrid approach based on both time warping
and conventional statistical approaches have been demonstrated for a two stage
approach to classify an artificial set of data (instead of speech ones). Compu-
tational complexity is one problem associated with time warping approaches.
In [2] it has been proposed a strategy to reduce the computational complex-
ity by reducing the dimension of the signal and some initial tests have shown
that the hybrid approach proposed has been effective. In particular, preliminary
tests have demonstrated that the TW component can complement the standard
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speech recognition component, improving the overall performance of the system
(see [2] for further details).

4 The Adaptive Information State

The task of the Dialogue Manager in a Spoken Dialogue System (SDS) is to
control the flow of the dialogue between the user and the system. This requires
the ability to adopt a stategy (i.e. deciding what action to take) to reply to the
user input. The performance of a SDS is highly dependent on the quality of the
DM strategy used in selecting the most appropriate action. To be be successful,
the strategy adopted must play an active role in the interaction with the user.
For example, the strategy should decide on taking actions such as gather missing
information from the user, resolve ambiguities arising from speech recognition
errors or control the degree of initiative taken by the system. Dialogue manager
architectures can broadly be devided into four classes: Form filling, Finite-state
automata, Dialogue Grammars, Information State.

The first three are simple and easy to implement. They are well suited to
applications in which the interaction is well-defined and can be structured as
a sequential form-filling task preferably with yes/no or short answer questions.
Another advantage is that the design of such systems is relatively straightfor-
ward and intuitive and their behaviour is predictable. However, they can lead
to unnatural dialogue, where the information is elicited from user in the form of
a sequence of questions. The dialogue strategy is very inflexible: the user must
follow the structure of the dialogue and answer the system questions. Any ad-
ditional provided information is ignored by the system. Attempting to extend
the system to enable repair mechanisms (reaction to misunderstanding, clarifi-
cation, etc) could lead to combinatorial explosion of states and transitions. The
Information State (IS) approach is more versatile than the other three models
and attempt to overcome their limitations. These approaches are not mutually
exclusive and often they are used together. Since the architecture used in this
paper is based on the IS model, we will not describe in details the other three
models. The information state model describes dialogue as a coordinated effort
to maintain an agreed record of the state of the conversation. It is based on
the Information State Update (ISU) paradigm for dialogue managment [1]. The
dialogue’s information state represents the acquired information during previous
dialogue actions. In this way, it is possible to both differentiate between dialogue
states and prompt future actions [16].

The IS dialogue management used here is called DIPPER and it is available
at http://www.ltg.ed.ac.uk/dipper. DIPPER is not a dialogue system it-
self, but it supports building spoken dialogue systems, by offering interfaces to
speech recognisers, speech synthesisers, parsers and other kinds of agents. More
specifically, the IS approach provides a programming paradigm for dialogue
managers which centres around a well-structured information state model - a
model that works with classes of declarative rules which effect information state
transitions. The information state approach is characterised by the following
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components:a specification of the contents of the information state of the dia-
logue, the datatypes used to structure the information state, a set of update rules
covering the dynamic changes of the information state, a control strategy for in-
formation state updates. With the DIPPER’s record structure and datatypes, it
is possible to define information states. An information state is normally defined
as a recursive structure of the form Name:Type, where Name is an identifier, and
Type a datatype. Datatypes include records, stacks and queues. An example of
information state is in figure 3a. This example defines an information state as

is:record([history:queue(atomic),
robot:stack(message),
mode:stack(atomic),
grammar:atomic,
contact:atomic,
input:queue(move),
nxtmv:record([

utterance:queue(atomic),
act:queue(atomic)
]),

lastmoves:record([
string:stack(word),
act:stack(atomic),
udr:stack(udr),
conf:stack(atomic),
int:list(interpretation)
]),

drs:stack(drs),
temp:drs
])

urule(rejection,
[
val(is^contact,yes),
non_empty(is^nxtmv^utterance),
non_empty(is^nxtmv^act),
first(is^input,reject)
],
[
dequeue(is^nxtmv^utterance),
dequeue(is^nxtmv^act),
set(is^counter,0),
dequeue(is^input),
enqueue(is^history,user:’?’),
enqueue(is^nxtmv^act,req_repeat),
enqueue(is^nxtmv^utterance,’Repeat!’)
]).

a) Information State b) Update Rule

Fig. 3.

a record named is, consisting of the fields history, robot, mode, grammar,
..., udr, conf, int. For instance, the field utterance is defined as a queue
of atomic typed structures, and the field nxtmv is defined as a record containing
the fields utterance and act. The term a^b refers to the value of field b in
record a. For instance, the path is^history in the above example refers to a
queue of terms of type atomic. Note that paths can be arbitrarily long and may
be used in conjunction with functions defined in the update language.

With terms, it is possible to refer to a specific value within the information
state (for example, as explained below, either for testing a condition, or for
applying an effect). There are two kinds of terms: standard terms and anchored
terms. The standard terms define the data structures for the types (atomic types,
queue, stack, records, etc), whereas the anchored terms allow us to refer to sub-
structures of the information state (such as first and last to refer to the first
respectively last item of a queue).

Update rules (see the example in Figure 3b) specify in a declarative way
how information state changes. Hence, applying an update rule to an informa-
tion state results in a new state. An update rule is a triple <name, conditions,
effects>. The conditions and effects are defined by an update language, and both
are recursively defined over terms. conditions is a set of tests on the current in-
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formation state, while effects is an ordered set of operations on the information
state. name is a rule identifier.

Conditions do not change the content of the information state, and are only
used to inspect values in the record defining the information state (such as
checking whether a queue is empty). Effects, on the other hand are responsible
for changing the information state. There are two kinds of effects: operations
(defined over terms), and solvables. The former include assignments of values
to information state attributes and operations on datatypes such as stacks and
queues. The latter are a useful way of incorporating procedural attachment to
fulfil requests. The effects are ordered, because the information state is updated
after each single effect, and hence the order in which the effects are applied to the
information state matters. Conditions in update rules, however, are not ordered.
As a result, external actions are able to update the information state, giving the
properties of an asynchronous architecture while maintaining a central unit for
data processing. If the conditions of a given updaterule have been satisfied then
its effects are implemented.

For instance, the urule in figure 3b, rejection, deals with a situation where
a user utterance has not been rejected by the speech recognition component. So,
first step is to check the conditions. That means inspecting if: there is an ongoing
dialogue, a (rejected) utterance has been produced, the dialogue is in a given
state (non_empty(is^nxtmv^act)) and the response from the speech recogniser
has been negative (first(is^input,reject)). If these conditions are true, the
effects will then be implemented. With the update rule shown in figure ??, the
dialogue strategy chosen for a rejected utterance is to ask the user to repeat
the sentence. To achieve this, information concerning the last turn is removed
(through the effects produced by dequeue) while new elements are placed in the
queues with enqueue. As a consequence, the dialogue is now in a state where the
system is ready to inform the user that last utterance should be repeated. After
the user has been informed (through a speech synthesizer), a different update
rule will change the state of the dialogue so that, the system is then ready to
listen and try to recognize the new utterance (through the speech recogniser).

Different strategies can be used to decide which rule to select at a given point.
the following are some types of update stratgies: Take the first rule that applies,
apply each (applicable) rule in sequence, apply rules according to class, Select a
rule using probabilistic information, Let user decide.

[5,6,13,14,18] are examples of a growing interest on introducing learning for
dialogue managment strategies. These techniques model dialogue as a Markov
Decision Process assigning rewards to various dialogue states and then finding
the dialogue policy which leads to the maximum expected reward starting from
any dialogue state. [7] have investigated how users could control the adaption
of the system’s dialogue strategies. The focus is on optimizing performance dur-
ing a single dialogue. Unfortunately, a user-controlled adaptation system is not
ideal for many applications, as it requires an initial (although minimal) train-
ing session for users. However, probably due to their complexity, none of these
efforts has been integrated with a structured, formal account of the dynamics
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of dialogue context, such as that developed under IS-based models. [4] has in-
vestigated the use of reinforcment learning for IS models. They investigate two
different methods for predicting the next user action based on the history of
the information state. The system proposed requires some initial training and it
would not be able to change its rules while interacting with the user. Another
problem is the large size of the state space obtained.

In introducing adaptive policies able to adapt the dialogue managment behav-
iour while interacting with the user, we aim at tackling the problem of changing
the strategy on the fly. That is, at any given time, the dialogue manager being
able to change its strategy of what to say next based on past events. To imple-
ment this adaptive paradigm, we introduce a specific field in the information
state record to map a state S to a single number. The value v assigned to S in-
dicates the desirability of that state with v being modified by the effect’s section
of the update rules. As a consequence of the interactions, v can be modified by
the selected rule applied to the state. In other words, v could be used to evaluate
the desirability of the present state by the condition’s section of the rule.

urule(request_repeat,
[
first(is^nxtmv^act,request_repeat),
empty(is^input),
val(is^contact,yes)
],
[
solve(s2s(first(is^nxtmve^uttrn)),[rep(n)]),
prolog(rmXML(first(is^nxtmv^uttrn),Utt)),
enqueue(is^history,robot:Utt),
prolog(utterTime(Utt,N)),
solve(rec(val(is^grammar),T,[M|_]),[rep(y)]),
enqueue(is^input,M)
]).

urule(request_repeat,
[
first(is^nxtmv^act,request_repeat),
empty(is^input),
prolog(val(is^desirability) < THRESHOLD),
val(is^contact,yes)
],
[
solve(s2s(first(is^nxtmve^uttrn)),[rep(n)]),
prolog(rmXML(first(is^nxtmv^uttrn),Utt)),
enqueue(is^history,robot:Utt),
prolog(utterTime(Utt,N)),
increase(is^desirability),
solve(rec(val(is^grammar),T,[M|_]),[rep(y)]),
enqueue(is^input,M)
]).

a) Standard Rejection Rule b) Adaptive Rejection Rule

Fig. 4. Update rules triggering a request to repeat an utterance

The following example illustrate a possible case explaining the importance of
introducing this concept of desirability. When the speech recogniser keeps fail-
ing to recognise an utterance, the standard dialogue manager would react with
keeping asking the user to repeat the unrecognised utterance. This repetitive be-
haviour is caused by the fact that, the information state would return to the same
state since the same sequence of rules has been applied (that is, the rejection
and the request_repeat rules showed in figures 3b and 4a respectively). How-
ever, with the introduction of a desirability measure intoduced above, it is pos-
sible to break this loop whenever it is considered necessary. Indeed, as shown in
figure 4b, in the condition’s section of the new rule request_repeat_desir we
have added a condition on the desirability of the produced state. In the effect’s
section we are also controlling the desirability (in this example by incrementing
the value of is^desirability). In this way, it is possible to decide when to
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stop asking the user to repeat the sentence (by setting THRESHOLD to the desired
value). So when is^desirability ≥ THRESHOLD, then the rule in figure 4b is
not longer appplicable to the state Si and a new rule will be selected for Si.
In this way, a different strategy will be adopted for the next interactions with
the user. Since rules can trigger states where it is possible to change the infor-
mation state rules, the dialogue manager can dynamically control the setting
of the thresholds in any IS rule fields and therefore adapt its beavhiour while
the system is interacting with the user. At the moment, several tests are being
developed to define the best strategy to design the optimal dialogue manager. In
particular, a Wizard of Oz approach is currently being implemented to collect
human performance data. The general idea is that users communicate with a hu-
man wizard under the illusion that they are interacting with an artifact. The aim
is to investigate how humans use adaptive strategies during dialogue sessions.
The collected corpus is used to shape the design of the adaptive strategies. In-
formation state meta-rules are being defined to modify existing IS rules to adapt
the dialogue strategy in the way described above. Moreover, the possibility of
creating on real-time new rules (instead of modifying old ones) by the system
itself is currently under investigation. To evaluate the system the PARADISE
[17] approach will be adopted. With this method, it is possible to separates how
an agent uses dialogue strategies (e.g. confirm, summarise) from what an agent
achieves in terms of task requirements. Therefore, it is expected to obtain an
accurate evaluation of the dialogue management startegies implemented. At the
moment, corpora of data with users interacting with the system and with a
Wizard of Oz are being collected.

5 Conclusions

In this work-in-progress paper some aspects regarding the use of spontaneous
speech for human machine interactions have been discussed. In particular, at-
tention has focused on introducing an adaptive paradigm for a more robust
interaction between the user and the system. The paradigm proposed uses the
feedback produced by the system to both drive the recognition component and
to control the dialogue strategies of the system. Some initial results have been
discussed and current test briefly introduced.
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Abstract. Robot self localization is a crucial issue in autonomous
robotic research. In the last years, several approaches have been pro-
posed to solve this problem. In this paper, we describe a landmark based
neurosymbolic hybrid approach to tackle the global localization prob-
lem. We use the same approach to cope with the whole problem: from
landmark recognition to position estimation. The map given to the ro-
bot is interpreted by a neurosymbolic system (formed by a weightless
neural network and a BDI agent) for extracting landmark information.
A “virtual neural sensor” is used, during robot navigation, for detect-
ing the landmarks in the real environment. These information (map and
detected landmarks) are finally processed by a unified neurosymbolic
hybrid system (NSP) for determining the robot location on the given
map.

1 Introduction

The robot self localization problem is the ability, for a robot, to autonomously
localize itself in its environment. This problem can be, at a first glance, divided
in two main subproblems: the position tracking and the global positioning. The
first one deals with the odometric errors correction during the robot navigation,
while the latter is the skill, for the robot, to recognize its pose starting from an
unknown position on a given map [1]. The global position problem is considered
the most difficult: although it needs more computational power, it gives less
accurate results in terms of robot pose estimation [2].

During the last years several solutions have been proposed. The Markov Lo-
calization (ML) approach [3] uses a first order Markov Chain–based process to
carry out the robot pose estimation. Monte Carlo Localization (MCL)[4][5] can
be considered the “natural” development of ML. In this case the robot pose is
expressed in terms of a multimodal probability distribution so preserving more
than one plausible hypothesis on robot location.

Other approaches are based on the detection and recognition of particular
environmental features [6][7][8]. These so called landmark–based methods make
use of some (natural or artificial) a priori known characteristics of the environ-
ment. In a landmark based approach, the robot position is generally evaluated
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in four different steps. A sensor system acquires environmental data; an image
processing unit recognizes the landmarks; a procedure establishes the correspon-
dence between the detected landmarks and their location on a previously given
map; a routine computes the robot position and its error on the map.

In this paper an autonomous mobile robot global localization system is pre-
sented. The robot, equipped with a stylized map (see Section 3) navigates in an
office–like environment. The system is able to recognize the corners between walls
as distinctive landmarks. These landmarks are detected and, above all, classified
by a weightless neural network (WiSARD [9]). In order to improve the vision
system performances, the neural network does not processes the whole cam-
era frames but only the portions of the most promising image (see Section 4).
During its navigation, all the information gathered by the robot is processed
by a neurosymbolic–based control module that infers the robot locations (see
Section 5). It is worth noticing that all the steps accomplishing the robot self
localization are exploited by means of neurosymbolic hybrid systems. We thus
obtain a unified framework to tackle the robot global localization problem.

2 System Architecture

The robot acts in an office–like environment without steps or stairs. The pres-
ence of furniture with well defined shapes is allowed (e.g. wardrobes, cabinets,
etc). In this case, a 2D map representation is suitable and sufficient to represent
the environmental information the robot needs. Moreover it turns plausible to
use the corners formed by walls intersection as “natural” landmarks of the en-
vironment1. Once a metric map is provided to the system, it is processed by an
Agent WiSARD–like system [10] that extracts the main (from the localization
system point of view) information. Agent WiSARD is able to detect and classify
the corners on the given map and to build up a stylized map of the environment
(a closed polygonal composed by the detected corners).

The navigation strategy starts with the robot wandering the room looking
for the first corner to be detected. When the sonars reveal a wall (or what the
system can interpret as a wall), the robot begins a clockwise coastal navigation
trying to keep itself aligned with the wall.

The robot vision system has to detect the landmarks in the environment. To
this aim a “virtual neural sensor” (a WiSARD–like system) processes the frames
grabbed by the camera looking for corners.

When the virtual neural sensor detects a corner, it passes these information to
the NSP [11] control module that determines whether the robot can be localized
on the map. If these information are not sufficient to localize the robot on the
map (i.e. the end computation is not reached by the NSP), the robot keeps on
following the walls looking for other corners. As soon as the available information
are enough to determine the robot location, the robot motors stop and the final
1 For “natural” landmark we mean that an office “naturally” possesses these features

and, in order to localize the robot, we do not need to artificially introduce other
landmarks in the environment.
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location is outputted. It is worth noticing that, as described in 5.4, the output
can be formed by more than one location. In particular, in case of symmetric
maps it is not possible to establish the final location in a unique manner (for
instance, in Fig. 6 each corner has its symmetric correspondent).

The whole localization system (Fig. 1) can be divided in three main blocks: a
map input module; a virtual neural sensor (a WiSARD–like system) capable of
detecting the office landmarks; an NSP control module whose aim is to infer the
robot location and to decide whether the robot must continue its navigation.

Agent
WiSARD

Map
input

Map
representation

End
computation

NSP control module

Robot
location

Y N

Detected corner

Camera

Virtual
neural sensor

Fig. 1. Localization system architecture

3 The Agent WiSARD for Maps Interpretation

The robot is endowed with a metric map that has to be appropriately processed
in order to establish a suitable relationship between the real environment and the
map itself. We have adopted a modified version of the Agent WiSARD proposed
in [10], for extracting the information the robot need to localize itself.

The neural network of Agent WiSARD has been trained with different in-
stances of corners; its role is twofold: in one direction it is able to recognize the
corners on the map and, reversely, it is able to produce a pictorial representation
of what has been classified. In this way, the system is able to build up a stylized
map from the metric one given as input. We notice that the same stylized map
is used by the system to show the place where the robot localize itself.

Agent WiSARD labels all the corners that have been recognized and consid-
ered belonging to a plausible closed polygonal. We thus obtain a final system
that, processing the initial image (left side of Fig. 2), recognizes a closed polyg-
onal (right side of Fig. 2) and produces the following information:

– the list C = [c1, . . . , cl] of corners detected on the 2D map;
– the list CO = [c1, . . . , cm] of outward corners;
– the list CI = [c1, . . . , cn] of inward corners (l = m + n);
– the number H of possible ambiguities (H = 1 for non symmetric maps).

From these information, a devoted NSP is automatically generated and ready
to be used in the control module.
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Fig. 2. Agent WiSARD map reconstruction

4 The Virtual Neural Sensor

In most robotic application the vision system plays a fundamental role in sen-
sory data acquisition and usually it is the slowest and most computationally
heavy module of the whole system. It comes as a consequence that having a fast
processing vision system could be a crucial point for a generic robotic system.
In order to reduce the elaboration time, it is sometime convenient not to process
the whole image. In this case, the vision system is designed and implemented
taking into account the particular environment in which the robot acts and its
main goal (self localization).

The robot camera tilt inclination has been fixed to -15 degrees; this means
that the landmarks to be detected are going to be only in the lowest part of
the image (see Fig. 3). Moreover, the virtual neural sensor takes advantage of
a squared spot (a sort of “attention window”) that scans just that part of the
image trying to detect and classify the landmarks.

The squared spot content is processed by the virtual neural sensor only if it
contains a certain amount of black pixels. So doing, we obtain a vision system
capable of quickly detect the landmarks. More precisely, it is a modified version
of the one used in a previously designed hybrid neurosymbolic system [12].

Fig. 3. Landmarks detection

The adopted WiSARD processes black and white images so that a frame pre-
processing phase is necessary to first transform the RGB 24-bit image into a b/w
binary image. The spot actively looks for landmarks and each time the virtual
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sensor detects a corner, it classifies this feature by putting the corresponding
“mental” image [13] on the spot current position (see Fig. 3). In the meanwhile,
it communicates to the NSP control module the detected corner class.

This kind of virtual neural sensor can be readily put on hardware (i.e. on
RAMs) further improving the computational performances.

5 The Neural Control Module

In order to determine the robot position, we have implemented the self local-
ization strategy on an NSP by means of the language NSL [14]. This language
allows one to write logical programs [15] and to execute them in parallel on a
devoted hardware (i.e. FPGA [16]).

Each time the virtual sensor detects a landmark, the NSP runs in order to
determine, whether possible, the robot location on the map. In such a case, the
NSP communicates that the position has been determined. The whole process
stops and the system shows the robot position on the virtual map (in case of
symmetric map, it outputs all the plausible positions).

Before going into details of the NSP architecture, we would like to remind the
reader about some NSL definitions. As reported in [14], some operators have been
defined to automatically generate the logically equivalent NSP. In this paper, we
refer only to the following operators: IMPLY , ATLEAST and ATMOST .

Let P be a set of literals, statements as:2

– “q is true if P∧ is true”;
– “q is true if at least h literals belonging to P are true”;
– “q is true if at most h literals belonging to P are true”;

are denoted respectively by the following NSL operators:

– IMPLY (P∧, q)
– ATLEAST (P∧∨, h, q)
– ATMOST (P∧∨, h, q)

and by the following NSL statements:

– IMPLY(P[1..N], Q)
– ATLEAST(P[1..N], H, Q)
– ATMOST(P[1..N], H, Q)

where P[1..N] represents the conjunction of the n literals in P .
With these operators and taking advantages of other NSL constructs3, we can

automatically generate the logically equivalent neural networks. As reported in
Section 3, NSP receive C, CO, CI , H and l as input from Agent WiSARD.
From these information, the corresponding NSP is generated and made ready to
receive, step by step, the corners detected by the virtual neural sensor.
2 We denote the conjunction and the disjunction of P elements as P∧ and with P∨

respectively (P∧∨ will denote either P∧ or P∨).
3 Further NSL constructs are: FOR, IF THEN ELSE, WHILE DO and REPEAT UNTIL.
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5.1 The Input Layer

The input layer is formed by 2l neurons representing the possible inputs the
system can receive during robot navigation. Since the system cannot decide in
advance what kind of corner is going to be detected at step j, both corners (I, O)
are represented for each step (IN I

j , INO
j ). In order to trace the overall reasoning

carried out by the NSP, the input neurons fire on themselves an excitatory
impulse (see Fig. 4). The following code generates the network input layer:

FOR J=1 TO L
IMPLY(INOJ, INOJ)
IMPLY(INIJ, INIJ).

Other l layers have to be generated in order to deal with the corners detected
during the exploration. The layer 1 (Step 0) is generated by the following code:

FOR J=1 TO M IMPLY(INO1, CO[J]1)
FOR J=1 TO N IMPLY(INI1, CI[J]1)

and represents the set of all possible first detected corners; while, the other l − 1
layers are generated by:4

FOR K=2 TO L
FOR J=2 TO M IMPLY((INOK, PREV(CO[J])K-1), CO[J]K)
FOR J=2 TO N IMPLY((INOK, PREV(CI[J])K-1), CI[J]K).

4 PREV operator is defined as: PREV (ci) = ci−1 for i = 2 . . . l and PREV (c1) = cl.
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In the first layer, neurons cO
j,1 are active at Step 0 Time 2 only if INO

1 is active
at Step 0 Time 1 (that is, the system receives as first input an outward corner
(INO

1 )). In layer k, neurons cO
j,k are active if both INO

k and PREV (cO
j )k−1 are

active. This means the neurons threshold in the first layer is 1 − ε while for the
other layers is 2 − ε.

5.2 The End Computation Control Layer

The end computation control subnet is based on the following network property:
when the number of active neurons in a layer k is equal to the number of possible
ambiguities (H) the system can establish the corner (or the corners, in case of
symmetric maps) the robot is looking at with respect to the given map.

The control subnet is formed by as many neuron ENDj as the number of
layers present in the network (j = 1 . . . l) and by a single neuron END, which
is active when the computation ends (see fig. 4). The following statements are
used to generate the control subnet:

FOR K=1 to L
ATMOST(C[1..L]K, H, ENDK)

ATMOST(END1..K, 1, END)
IMPLY(END, END_COMP).

The neuron END is active when no more than 1 neuron ENDk is active,
while neuron ENDk is active when no more than H neurons of layer k are actives
(IMPLY(END, END COMP) sentence is just used to synchronize the outputs). Part
of the control subnet is sketched in fig. 4.

5.3 The Output Layer

In order to show the results of the network computation, an output subnet is
generated by the following code:

FOR K=1 TO L
FOR J=1 TO L IMPLY((ENDK,C[J]K), COUT[J]K)

FOR J=1 TO L ATLEAST(COUT[J]1..K, 1, COUT[J]).

The neuron coutj,k is active if the neurons ENDk (that is, the computation
is ended in layer k) and cj,k (that is, the neuron associated to corner label cj is
active in layer k) are both actives. Furthermore, the neuron coutj is active if at
least one of the corresponding coutj,k is active. To sum up, the output layer is
formed by the neuron END COMP and by the set of neurons cout1,...,l. Part
of the output subnet is reported in fig. 5; in particular, it is reported only the
part establishing whether the robot has stopped in front of corner c7.

5.4 On a Simmetric Map

Suppose robot R placed in an environment like the one represented in Fig. 6.
From its starting position, the robot begins to navigate in a wandering way (dash
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Fig. 5. c7 output subnet

dotted line) just looking for a wall (or furniture if any). When the sonars reveal
a wall, the robot turns on the right, gets aligned to the wall, and keeps following
the wall (dashed line). During its navigation, c1 is the first corner the virtual
neural sensor detects (Step 0). Since c1 is an outward corner, the virtual neural
sensor activates neuron INO

1 as first input for the NSP. (We remind the reader
that the virtual sensor classifies the corner the robot is looking at but cannot
establish its position.)

In table 1, the list of active neurons are reported with respect to the detected
corner (Step) and to the time of activation (Time). One can notice that in Step
0 at Time 3 a neuron End∗ is active (i.e. End∗1). This means that the system
cannot establish the robot position and the robot has to keep on navigating.

In Step 1 another outward corner is detected and neuron INO
2 is activated

(the neurons actives at Time 3 of Step 0 are still actives).
At Step 2 the robot reaches the corner c3, and at Time 3, for the first time,

a neuron ENDj (in particular, END3 and END7) is activated instead of an
END∗

j neuron. This means that in layer 3, the number of active neurons is equal
to H (H = 2 and the active neurons in layer 3 are c3,3 and c7,3).

Neuron END is activated at Time 4 while the network outputs (cout3 and
cout7) will be ready at Time 5. In order to have the neurons of the output layer
actives at the same time, the neuron END COMP has been added. In this way,
at Step 2 and Time 5 the network ends its computation and determines where
the robot is located (“cout3, cout7” stands for “the robot could be in c3 or c7”).

Due to the localist representation nature of this network, we can even trace
back all the corners the robot encountered during its navigation. In fact, one
can notice that the active neurons c3,3 and c7,3 belong to the “rows” of neurons



574 P. Coraggio and M. De Gregorio

c1

c2
c3

c4c5

c6
c7

c8

R

Fig. 6. Symmetric map

Table 1. Sequence of neuron activations

S T List of active neurons S T List of active neurons

0 1 INO
1 2 2 INI

3 , c3,3, c7,3

2 INO
1 , c1,1, c2,1, c4,1, c5,1, c8,1 3 INO

1 , c1,1, c2,1, c4,1, c5,1, c8,1, END∗
1

3 INO
1 , c1,1, c2,1, c4,1, c5,1, c8,1, END∗

1 INO
2 , c1,2, c2,2, c5,2, c6,2, END∗

2

1 1 INO
1 , c1,1, c2,1, c4,1, c5,1, c8,1, END∗

1 INI
3 , c3,3, c7,3, END3, END7

INO
2 4 INO

1 , c1,1, c2,1, c4,1, c5,1, c8,1, END∗
1

2 INO
1 , c1,1, c2,1, c4,1, c5,1, c8,1, END∗

1 INO
2 , c1,2, c2,2, c5,2, c6,2, END∗

2

INO
2 , c1,2, c2,2, c5,2, c6,2 INI

3 , c3,3, c7,3, END3, END7

3 INO
1 , c1,1, c2,1, c4,1, c5,1, c8,1, END∗

1 cout3,3, cout7,3, END
INO

2 , c1,2, c2,2, c5,2, c6,2, END∗
2 5 INO

1 , c1,1, c2,1, c4,1, c5,1, c8,1, END∗
1

2 1 INO
1 , c1,1, c2,1, c4,1, c5,1, c8,1, END∗

1 INO
2 , c1,2, c2,2, c5,2, c6,2, END∗

2

INO
2 , c1,2, c2,2, c5,2, c6,2, END∗

2 INI
3 , c3,3, c7,3, END3, END7

INI
3 cout3,3, cout7,3, END

2 INO
1 , c1,1, c2,1, c4,1, c5,1, c8,1, END∗

1 END COMP , cout3, cout7
INO

2 , c1,2, c2,2, c5,2, c6,2, END∗
2

formed respectively by (c1,1, c2,2, c3,3) and (c5,1, c6,2, c7,3). These “rows” repre-
sent the two possible paths followed by the robot during its navigation.

6 Conclusions

In this paper we have presented a neurosymbolic hybrid based approach for solv-
ing the robot global localization problem. With this approach we have reduced
the computational time both for the robot visual system and for robot deci-
sion system. The use of a virtual neural sensor for analyzing part of the input
image, gave the first contribution in speeding up the visual processes. Further-
more, the NSP module, devoted to the location estimation, has the advantage
of being a parallel processor of rule–based system. Eventually, these two mod-
ule can be both implemented on hardware. Thanks to the modularity of the
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neurosymbolic hybrid approach here proposed, we can easily modify the whole
system to improve its performances: the virtual neural sensor can be trained
with other features in order to detect more landmarks; while the NSP control
can be enriched with other rules to obtain a more flexible robot decision system.
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Abstract. In this paper we analyze the influence of the frequency of
sensor data readings on the behaviours of a Robotic System (RS). This
is done in the framework of behaviour based architectures drawing in-
spiration from biological and ethological evidences. In the first part of
this paper we recall some notions on biological clocks, showing how to
represent those clocks in terms of Schema Theory. Then, we propose an
architecture in which the frequency of access to the sensory system is
modified in accordance with environmental changes. We evaluate the re-
sults obtained in experiments with simple behaviour based systems in
unknown environments with obstacles. In the last part of the paper, we
briefly discuss the possibility of extending the proposed model to more
complex robotic systems and to teams of robots.

1 Introduction

The presence of oscillatory mechanisms in living organisms is well known since
the 18th century. In 1751, Carolus Linnaeus, Swedish botanist/naturalist, de-
signed a flower garden clock, a botanical clock, using certain diurnal species of
flowering plants. But it is only starting from the seminal work of Aschoff [1],
in the 1960s that biologists have identified a series of biological rhythms, con-
nected to each other, and triggered both by exogenous and endogenous factors.
Nowadays, biologists still try to understand the origin of such mechanisms [2]
and they have been turning their focus to genetic aspects [3].

The robotic community has always paid attention to living systems, as sources
of inspiration for the design of their artefacts. On the one hand, with reactive
architectures [4], and with behaviour based architectures in particular [5], roboti-
cists tried to remove the complex problem of symbolic knowledge representation,
which is computationally expensive, inspiring themselves directly to biological
systems. On the other hand, other representations of the perception-action cycle,
such as Schema Theory (ST) [6], tried to offer formal instruments for studying
behaviour based systems. The ST, in particular, introducing the schema concept,
already used in psychology [7], ethology, and early cognitive science [8], proposes
a model in which the perception and action aspects are separated, adding the
presence of a releaser, well known in the ethological studies [9], that controls
behaviour activations.

F. Mele et al. (Eds.): BVAI 2007, LNCS 4729, pp. 576–585, 2007.
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Referring to this model, we tried to connect the concept of releaser to the
concept of biological clocks with the aim of taking into account the variability of
the same behaviour according to the circumstances in which it is activated. For
instance, a behaviour controlling the activity of a pedestrian crossing a urban
street will regulate the access to the sensor data and consequently the speed
of movements as a function of the presence or absence of upcoming vehicles.
Moreover, in any robotic system there is the necessity of having a synchronization
process between the readings of sensor data and the actions produced by different
behaviours. Releasers, organized according to a common phase, enable one to
manage this synchronization. Finally, whenever there is a robot equipped with
complex sensors and behaviours, which requires many computational resources,
such resources must be managed in an efficient way.

2 Biological Clocks

Biological rhythms are cyclic patterns of physiological changes or changes in ac-
tivity in living organisms, most often synchronized with daily, monthly, or annual
cyclical changes in the environment [10]. Jürgen Aschoff [1] postulated an innate
biological trigger in living systems, and introduced the notion of ”Zeitgeber”
referring to any external cue that may entail the internal rhythm. His experi-
mental and theoretical work in the 1950s and 1960s laid the basis for viewing
circadian rhythms as the product of endogenous oscillators which derive their
functional significance from the maintenance of a constant phase relationship
with the light-dark cycle. Many biological rhythms are endogenous, e.g. core
body temperature, sleep-wake cycle, and locomotor activity patterns, and will
be maintained even when the environmental cues are removed. However, such
external cues serve to refine and adjust rhythms, which, in the absence of such
cues, will gradually drift out of phase with the environment. So, Biological Clocks
can be reset and adjusted backwards and forwards by what is called a Zeitgeber
- an environmental or other periodic influence. By entraining or being reset by a
Zeitgeber the clock ensures that the rhythms it generates are most suitable for
its surroundings.

The exact nature of the internal mechanism, or ”biological clock”, which con-
trols such rhythms is not clearly understood. Living alone the general questions
related to the identification of external cues, the origin of such internal rhythms,
and their interaction, we observe that many biological systems act upon the
stimulation provided by an internal clock whose period depends on some exter-
nal and internal variables. Moreover, such clocks take into account the passage
of time and consequently they act as an alarm by triggering some event to occur
[11]. For example, a clocks may periodically control the activity of an organism
to induce the feeding stimulus. In this way, the concept of biological clocks can
be interpreted as a control system - i.e., they behave activating or inhibiting be-
haviours (like for example feeding or sleeping) - and can be related to a process
of Innate Releasing Mechanisms in robotic architectures.
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Finally, we want to point out that there are some particular rhythms, for
example some electrical waves in the brain [12] or the rhythm controlling the
beating of the heart, whose activity may change, accordingly to some circum-
stances, not just with an adjustment of its phase, but also changing its period.
In the case of heartbeats, for example, we have that during physical activity
the period decreases (i.e., the frequency of beating increases). Changing the
period of the rhythms, which control the releasing activities of behaviours in
a robotic architecture, may have as results that, depending on circumstances,
the robot may show an adaptive emergent behaviour. The embedding of such
controlled rhythms within a Robotic System (RS) allows for the realization of
flexible behaviour which can realize timed activation of the behaviour itself. Fur-
thermore, it may modify its activity according to its internal state and sensorial
information.

3 Emergent Behaviour

Let us now turn to consider how some functional roles of biological clocks can be
fruitfully deployed in robotics. As reported by Benjamin, Lonsdale and Arbib [13]
the current behaviour-based robot generation is, generally, arranged in order to
pursue a prefixed goal. In such systems, poor cognitive assumptions about the
environment are made while the focus is just on sensory information, closely
following the subsumption architecture model [4], where reactive actions and
the absence of explicit models are fundamental. This is enough for modeling
simple behaviours also in unstructured environments. However, if it is necessary
to achieve more complex behaviours then, at every time instant, we need tools
to select the best action in order to pursue a fixed goal.

The behaviour of a mobile robot, when it operates in some environment, is
the result of three fundamental factors [14]:

1. The program that works on the robot in order to accomplish a given task;
2. The physical structure of the robot (sensors, motors, batteries, ...);
3. The environment in which it works (how much the objects are detectable,

what is the lay of the land, what is the dumping factor of the land,...).

In fact the behaviour may change if the hardware is modified, or is malfunction-
ing, or if the control program works badly or the task changes, or simply if there
are some changes in the environment.

Actually it is almost impossible to exactly forecast the behaviour of a robot
since there is no available model that takes into account all relevant variables
[14]. These difficulties are found even if we consider the biological world where it
is difficult to forecast the behaviour, for instance, of an animal to the sight of a
predator (e.g., in what direction it will escape, how quick, and so on). A fortiori
the evaluation of the behaviour is more difficult to perform than the forecasting
and analysis of the behaviour itself.

We assumed, in accordance with ADAPT [15], the hypotheses of a cognitive
architecture with a perception system depending on the environments in which



A Robotic Architecture with Innate Releasing Mechanism 579

the robot is immersed and on some releasing mechanisms of activation that, ac-
cording to the environment and to the goals, speeds up or slows down gradually
the reading frequency of the sensors. In other words, we want to consider another
element, already present in biological living systems: biological clocks. We sur-
mise, therefore, that the explicit introduction of a control system of this sort can
lead to adaptive performance of a RS. If the intelligence in robotic behaviour-
based architectures appears only in the interaction with the environment, what it
would seem to be of great importance is that the behaviours themselves, in some
way, have to be affected by such interactions. Other sub-symbolic approaches,
for instance neural nets [16,17], allow the data coming from the outside, once
converted in output signals, to become a feedback for the system itself. In our
model feedback is included in the fluctuation of the period of releaser activation,
according to the environment and to the behaviour of the robot itself.

Moreover, it is well-known that synchronization between sensors readings and
performed actions is fundamental for accomplishing a task. As an example, in
a hybrid system in which perceptual information can modify the planning of
actions, sensors readings must occur with a frequency that does not excessively
slow down the RS, since more readings one makes more accesses to the deliber-
ative system are performed. At the same time, however, one must keep in mind
that the RS takes risks if one allows sensor readings with long time intervals.
In fact, in between two consecutive sensors readings, the environment may have
changed and, therefore, the RS may no longer behave appropriately. We argue
that the period, between two consecutive readings of the values supplied by the
sensory system, can be modified according to the trend of the displayed values.
In particular, there is the need of managing the monitoring of the environment
by sensors, in such way that the answer of the robot could be related to the
rate of environmental changing. Finally, when a single robot is equipped with
complex behaviours and sensors requiring a lot of computational resources (for
instance a robot provided with a video-camera for image recognition processes)
there is the need of managing resources for sensing and processing behaviours
in an efficient way according to the circumstances.

Let us suppose that a RS, designed for navigation in open environments, works
in a flat environment with few obstacles. Then we may suppose that it is sufficient
to perform sensor readings separated by long intervals, since it is unlikely that
troublesome situations will arise along the path. However, if the environment is
not flat, or there are many obstacles, the time interval between two consecutive
readings may be shortened. A RS could be immersed in an environment in which
plains and hills, obstacles and empty spaces are alternated, and therefore it is
convenient to assume a different reading interval according to the circumstances.

Our working hypothesis is that the RS has a general clock with period (pb)
that operates with a baseline period playing as a benchmark for other clocks
whose period is a multiple or submultiple of the basic period. Such general clock
must not to be confused with the machine clock, whose period is supposed to be
constant and which fixes the time ascissa for the RS behaviour. We may think
that one of the releasers managing the various macro-behaviours is activated by
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an individual clock, according to the main Zeitgeber and to the sensors involved
in the behaviour. We suppose to have a simple RS wandering in an unknown
environment with obstacles. At the beginning, the robotic system evaluates the
range finder’s values which are available at every pb interval of time. Once it
finds an obstacle, the period of reading decreases, thus allowing one to apply the
strategies of avoidance on more frequently updated data. After moving around
the obstacle and in the absence of a new obstacle, the readings of the range finder
are less frequent and the process of wandering can be fully resumed. Therefore,
in an environment with many obstacles we will have a cautious wandering, since
we make many readings, while in the case of few obstacles, the wandering will
be faster. We will have similar patterns of behaviour if, instead of a wander, we
have a move to goal, or a follow wall, etc.

3.1 A Zeitgeber for Robotic Artefacts

In order to describe our attempt to introduce a Zeitgeber ZG in a robotic archi-
tecture we use a Schema Theory representation for the behaviours of the robot
[6]. There is a schema for each behaviour constituted by a coordinated control
program, in which there is a releasing function, a perceptual schema and a mo-
tor schema, obtained through the application of a transfer function on sensory
inputs and on a releasing state (see Fig. 1). More specifically, our releasing func-
tion takes in input sensor data and actuator commands (e.g. as feedback) and
returns a releasing state for the behaviour.

Fig. 1. Schemas for a Zeitgeber-Controlled Behaviour or π-Behaviour

Let us assume that:

– the RS has a baseline period (pb);
– σ(t) is a function that represents data coming from sensors at each time

interval pσ, which is set according to the machine clock;
– ρ(t) is a function that, with periodicity pβ , is equal to 1 (0 otherwise), and

notifies the robot when the perceptual schema has to process and send inputs
to the motor schema.

We will have that: pσ ≤ pβ(t) ≤ pb.
Suppose that a SR has a behaviour with a sensor input σ(t), a function ρ(t)

as releaser, and a function π(t) as motor percept. 1[x] is the Heaviside function
(it is equal to 1 for x > 0, 0 otherwise). The function ρ(t) is equal to: ρ(t) =
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1[cos(pβ ∗t)−ε] (for each arbitrarily small ε > 0), which implies that the releaser
is on (ρ(t) = 1) when the value of the periodic function cos(pβ ∗ t) is equal to
1. The function σ′(t) is equal to: σ′(t) = 1[σ(t) − γ] (γ = sensor’s error) which
implies that we have to analyze incoming sensor values only if they are greater
than the error threshold γ.

We define as motor percept the function:

π(t) = ϕ(σ(t) ∗ σ′(t) ∗ ρ(t) + (1 − ρ(t)) ∗ σ(t − 1) ∗ σ′(t − 1))

where the function π(t) represents the percept sent to the motors, and evaluated
using the function ϕ(t). Such function with a releaser ρ(t), takes the input signal,
evaluates the input using the function ϕ and then returns the output value,
keeping it constant until the next clock (see Fig. 1). σ(t) is a function that
depends upon the surrounding environment of the RS (see Fig. 2). In the case
of range finders, used as sensor inputs for the AVOID behaviour, if we have an
increasing function1, we have to reduce the period pβ(t) and we have to increase
it in case of decreasing signal. Accordingly, we assume that pβ(t) depends on
the output value of π(t) as follows. Let dp(t) = 1[π(t) − π(t − 1)] be a function
whose value is equal to 1 only if we have an increasing π(t), we have:

pβ(t)=

��
�

ρ(t) ∗ pβ(t− 1) ∗ (dp(t)/k+ (1− dp(t)) ∗ k′) + (1− ρ(t)) ∗ pβ(t − 1) if < pb

pσ if < pσ

pb otherwise

where k e k′ are two multiplication factors for the period pβ .

0 50 100 150 200 250 300 350 400 450
−1

0

1

2

3

σ (t)
π(t)
pβ(t)

Fig. 2. Example of a motor percept π(t) with an input signal σ(t) and a period pβ(t)

In Fig. 2 we show a plot of π(t). We observe that starting from a baseline
period pb, the period pβ(t), whenever the releasing system is active, decreases if
we have an increasing input σ(t). In this way we have more frequent readings
of sensor data, and therefore a more frequent modification of the motor percept
until the upper bound, set by the period pσ, is reached. As soon the input signal
decreases then the period slowly decreases to the baseline value pb.

1 In order to have a more intuitive representation of the input function in our system
the range finder data increases while approaching an obstacle.
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3.2 A Simple Case Study

Our long term goal is the evaluation of a robotic architecture that is based on the
concept of adaptive biological clocks. In particular we want to understand how
this kind of approach can be useful for robots within a dynamic environment.
What we attempt to do, as a main step toward our goal, is to evaluate how the
introduction of variable clocks, coded in our architecture as adaptive releasers,
can influence the behaviour of an individual robot that is equipped with sensors,
even when particular computational abilities are not required. A positive result,
albeit on a simple experiment, is a significant demonstration encouraging one to
pursue this approach on more complex systems. What we expect, as result of our
experiment, is that in simple environments the global behaviour of the robot,
equipped with adaptive releasers, is comparable with the global behaviour of a
robot without releasers showing better performances in terms of less elaboration
of sensor data.

In order to test our working hypotheses we simulated a PIONEER 3DX robot,
using Pyro [18], equipped with 8 sonars, whose task is the cross-walking of an
environment with obstacles. Fig. 3 shows our subsumption architecture of a
simple RS that has the task of traveling through an environment from a vertex
to the opposite one, while avoiding obstacles. The sensory system is made by
sonars, that provide the σ(t) percept. The output percept π(t) is obtained taking
into account a Zeitgeber ZAV(σ(t), pb), that is, a function of the sensory input.
The simulated environments have an attractor in the top–right angle, and the RS
has the task of reaching that position. In this case, the MOVE TO GOAL behaviour
does not have any releasing mechanism - i.e. it is not required to periodically
change the task. Obviously, this behaviour is subsumed by the AVOID behaviour.
We decided to use only the MOVE TO GOAL and AVOID behaviours without using
any WANDER behaviour in order to have an experimental setting that does not
involve random movements of the robot and to compare experimental results
round to round.

In order to make some evaluations of the performances of this RS with and
without Zeitgeber, we equipped the simulated robot also with an odometer to
compute the distance covered by the robot, expressed as unit of robotic move-
ments (UR), to go from left to right. Another interesting element to evaluate
the performances is the number of accesses to the sensors, and consequently the
number of percepts sent to the motors. It is obvious that the greater is the num-
ber of accesses to the sensors, the greater are the resources required by the robot
for computing the output, and the greater will be the number of commands sent
to the motors. Thus a longer time will be required to complete the task, while,
with a high probability, many sensory readings, which inherently suffer of er-
rors, may induce longer paths. We believe that it is interesting to report also the
number of activations of AVOID behaviour, because this is an indicator of how
the robot keeps close to the obstacles with the two methods.

In Tab. 1 the average values of 30 experiments on 3 different environments
are reported, comparing the results obtained with (pb = pσ = 1) and with two
general clocks having different values of pb (pb = 4 and pb = 8). First of all let
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MOVE_TO_GOAL

π−AVOID

MOTOR

σ(t)

ρ(t)

ZAv (ρ (t), p b)

π(t)

Fig. 3. A subsumption architecture for our experimentation

us highlight that in the case of pb = pσ �= 1 – i.e. the period of the releasing
function does not change and it is greater than the machine clock – we have that
the robot may get stuck due to oscillatory mechanisms (the AVOID behaviour
sets a direction, the next step the MOVE TO GOAL sets the opposite direction, and
so on). Second, while approaching an obstacle, the robot must give the control of
the global behaviour just to the AVOID behaviour, in order to safely move around
the obstacle and so it is not possible to have a fixed releasing period for such
single behaviour. In Table 1, for each of the three scenarios and for each of the
three settings, we reported the average value for the number of times the releaser
was activated (�ρavr), the average number of time steps (tavr), the time steps
required to complete the task without having any obstacles on the path (tmin),
the average value of the distance covered by the robot (davr), the minimum
distance from the starting point to the target without obstacles (dmin), and the
average number of times the AVOID behaviour was activated (�avoidavr).

As a result of our experimentation we notice that in presence of a Zeitgeber
the global performance improves, in the sense that even though distances covered
by the RS are comparable (we surmise that this happens because of the small
distances that divide starting and arrival points) the number of accesses to sensor
data, in general, is halved or it is reduced according to the selected pb. Moreover,
the results show that the introduction of an adaptive releasing system does not

Table 1. Results of the experiments

pb = 1 pb = 4 pb = 8 pb = 1 pb = 4 pb = 8 pb = 1 pb = 4 pb = 8

�ρavr 565,3 329,2 298,1 968,3 616,0 553,7 900,7 560,4 476,0
tavr 565,3 548,6 552,6 968,3 988,0 939,1 900,7 902,4 907,2
tmin 529 529 529 762 762 762 762 762 762
davr 140,52 136,34 137,34 240,88 245,80 233,58 224,02 224,45 225,65
dmin 131,45 131,45 131,45 189.34 189.34 189.34 189.34 189.34 189.34
�avoidavr 129,6 114,2 110,3 318,1 307,3 270,2 228,9 216,1 201,1
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substantially change the emergent behaviour of simple robots. In conclusion,
while we do not have a better performance in time or path it is important to
notice that the results we had in all the cases are comparable. The fundamental
point here is that, while we halved the elaboration of the sensor data (this can
be a bigger result when such elaboration involves a heavy computational load),
our system is able to show a behaviour that is comparable to a pure behaviour-
based subsumption architecture. So, from one hand we have two architectures
that show similar emergent behaviour, in terms of safety also, on the other hand
we are able to save computational resources. Finally, we expect that in the case
of a real prototype a small number of sensor readings will induce a smaller
overall error coming from the sensors and so a bigger improvement of the global
performances of the robot may be achieved.

4 Conclusions and Future Work

One of the main motivations for our research activity is, from the point of view
of the individual robot, to have the capability of adapting to the frequency
of change of a dynamic environment - e.g. to be able to change the velocity
of reaction to the external stimuli in a coherent way to the changes occurring
in the external environment. The search for an adaptive behaviour for a dy-
namic environment comes also from the necessity of having coordination and
synchronization processes between groups of robots. Moreover, even a simple
block environment becomes a dynamic one, when we are in the presence of other
robots. The achievement of adaptive processes for coordination and synchroniza-
tion between groups of robots is one of the main issues in multi-robot research.
Moreover, in this kind of approach one can deal with problems of synchronization
of behaviours in a natural way, and one can include the fundamental concept
of feedback within the robotic architecture. In conclusion, the use of a variable
Innate Releasing Mechanism (IRM) for the access to the sensor system gives rise
to better performances of the RS in terms of access to the sensor data. In the
robotic community there is a natural tradeoff between the sensor sampling rate
and the computational demand. A fast sampling rate give us the opportunity of
an accurate sensor information while it may lead to a computational overload.
Usually this tradeoff is managed as an off-line setting for the robot while, in this
paper, we presented an adaptive way to control the sensor sampling rate, taking
inspiration from the concept of biological clock.

The use of a Zeitgeber may also to be interpreted from a more cognitively
oriented point of view. In fact, the process of changing the frequency of sen-
sory readings is equivalent to an increase or decrease of attention towards a
particular aspect of the environment we are interacting with. We will extend
our robotic experiments and evaluations to more complex sensor systems, which
include, for example, sonar, laser, blob camera, for different and more complex
behaviours.
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Abstract. In this paper the early results on the possibility to use a video system 
for the robot’s trajectories planning is presented. By means of this application it 
is possible to plan the trajectories by a PC monitor, just clicking with the mouse 
on the monitor. In order to obtain a three dimensional vision a couple of 
cameras has been used. A software was developed that by means of each couple 
of frames make possible to select a desired point in the work space, obtaining 
three cartesian coordinates. These last are given to the control system and 
recorded by this last. Finally the control system will move the robot in a work 
cycle that is described by means of the points selected and recorded as 
described above. Tests have been carried on with a robot prototype that was 
designed and built at our Laboratory and showed a very good behaviour of the 
system. 

1   Introduction 

Industrial robots are a part of a production system and are used for a large number of 
application. Industrial application are referred to technological fields (assembly or 
dismounting, cut or stock removal; electrochemical processes; abrasive trials; cold or 
warm moulding; design with CAD techniques; metrology), or about several processes 
(control of the row material; workmanship of the component; assemblage; packing or 
storages; controls of quality; maintenance). 

The main advantages of this technique are: 

1) elimination of the human errors, particularly in the case of repetitive or mono- 
tonous operations; 

2) possibility to vary the production acting on the power of the automatic system 
(the automatic machines can operate to high rhythms day and night every day of 
the year); 

3) greater informative control through the acquisition of historical data; these data 
can be used for successive elaborations, for the analysis of the failures and to 
have statistics in real time;   

4) quality control founded on objective parameters in order to avoid dispute, and 
loss of image.   
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In any case a work cycle of a robot will be made by a number of points and sub-
trajectories that can be planned in several ways. 

The “Artificial Vision” permits industrial automation and system vision able to act 
in the production activities without humane presence and can be usefully connected 
with robotic systems; in fact the vision for a robot system can significantly increase 
the robot capability to interact with the environment and also can evaluate, analyze 
and manage the robot’s movements. 

In this paper the early results on the possibility to use a video system for the 
robot’s trajectories planning is presented. By means of this application it is possible to 
plan the trajectories by a PC monitor, just clicking with the mouse on the monitor. 

2   The Path Planning 

A path planning algorithm, using as inputs: path definition and constraints due to the 
path and due to the robot’s structure, will compute the trajectories in the joint space as 
arrays of positions and, also, velocities and accelerations of the joint themselves. 

At the Robot Mechanics Laboratory of the Department of Mechanical Engineering 
for Energetics, has been developed a complete procedure that permits to give to a 
robot arm all the parameters to describe an assigned path; this by means of a vision 
system. The procedure gives to the operator the possibility to fix start and end points 
of a working cycle, the intermediate points and the obstacles, by means of a couple of 
images on the monitor of a PC. 

This procedure starts from a software, developed at the same Laboratory, that 
permits to recognize a point of three dimensional work space, starting from its two 
dimensional frame (image plane). This needs, obviously, at least a couple of images, 
taken from two different points of view (stereoscopic vision). 

2.1   The Vision System 

A vision system essentially consists in a frame grabber, a (television) camera and an 
host computer. Each point of the observed scene has a corresponding point on the 
image; the linkage between the “scene points” and the “image points” is a merely 
geometric transform, as schematically shown in figure 1. 

 

Fig. 1. Geometric transform 
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A (tele)camera model is necessary; this means to find the geometrical relations that 
describe the transform mentioned above, tacking onto account all the involved 
parameters. These last are intrinsic parameters (optics and camera sensors) and 
extrinsic parameters that essentially depend on the position of the camera reference 
frame respect to an external frame. 

The simplest (tele)camera mathematical model is the pin-hole that is schematically 
reported in figure 2. 

 

Fig. 2. Pin hole model 

If the coordinates of a point P(X,Y,Z) in the scene and the focal length are known, 
it is possible to asses the coordinates of a point P’(u, v) that is the “image” of P on the 
image plane. Obviously the opposite is not possible: from a point on the image plane 
it isn’t possible to obtain its corresponding coordinates in the space. This last aspect 
becomes possible only if, at least, a couple of images of the same scene are available; 
in this case, in fact, it is possible to obtain a stereoscopic vision, that allows to 
reconstruct a three-dimensional object by a number n (n ≥2) of different images. In 
our case a couple of tele-cameras was used. 

2.2   The Camera Calibration 

Camera calibration in the context of three-dimensional machine vision is the process 
of determining the internal camera geometric and optical characteristics (intrinsic 
parameters) and/or the 3-D position and orientation of the camera frame relative to a 
certain world coordinate system (extrinsic parameters). In many cases, the overall 
performance of the machine vision system strongly depends on the accuracy of the 
camera calibration. 

In order to calibrate the tele-cameras a toolbox, developed by Christopher Mei, 
INRIA Sophia-Antipolis [8], was used. By means of this toolbox it is possible to find 
the intrinsic and extrinsic parameters of two cameras that are necessary to solve the 
stereoscopic problem. In order to carry out the calibration of a camera, it is necessary 
to acquire any number of images of observed space in which a checkerboard pattern is 
placed with different positions and orientations [9, 10]. 
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In each acquired image, after clicking on the four extreme corners of a check- 
erboard pattern rectangular area, a corner extraction engine includes an automatic 
mechanism for counting the number of squares in the grid.  These points are used like 
calibration points. The dimensions dX, dY of each of squares on the checker board 
are always kept to their original values in millimeters, and represent the parameters 
that put in relation the pixel dimensions with observed space dimensions (mm). 

After corner extraction, calibration is done in two steps: first initialization, and then 
nonlinear optimization. 

The initialization step computes a closed-form solution for the calibration 
parameters based not including any lens distortion. 

The non-linear optimization step minimizes the total reprojection error (in the least 
squares sense) over all the calibration parameters (9 DOF for intrinsic: focal (2), principal 
point (2), distortion coefficients (5), and 6*n DOF extrinsic, with n = images number ). 

The calibration procedure allows to find the 3-D position of the grids with respect 
to the camera, like shown in fig. 3. 

 

Fig. 3. Position of the grids for the calibration procedure 

With two camera calibration, it is possible to carry out a stereo optimization, by 
means of a toolbox option, that allows to do a stereo calibration for stereoscopic 
problem. 

The global stereo optimization is performed over a minimal set of unknown 
parameters, in particular, only one pose unknown (6 DOF) is considered for the location 
of the calibration grid for each stereo pair. This insures global rigidity of the structure 
going from left view to right view. In this way the uncertainties on the intrinsic 
parameters (especially that of the focal values) for both cameras it becomes smaller. 

After this operation, the spatial configuration of the two cameras and the 
calibration planes may be displayed in a form of a 3D plot, like shown in fig. 4. 

In figure 5 is reported the vision test rig: the two telecameras, the checkerboards 
and the robot. 
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Fig. 4. Calibration planes 

2.3   The Path Planning Software 

A software was developed that allows to choose the end-effector trajectory points. By 
means of this software, it is possible to select “objective” points, for which the robot 
must  journey, e “obstacle” points, that must be  avoided. 

The software recognizes the positions of such points in the work space, using a 
developed camera model [1,2,3]. 

The procedure starts from a couple of images (taken from two different cameras, 
fig. 5); the operator selects (with the cursor) a point on the first image of the couple 
and this will fix a point in a plane. Subsequently, on the second image appears a green 
line, that represents the straight line that links the focus of the first camera to that 
point. Now the operator can fix the real position (in the work space) of that point by 
clicking on this green line.  

 
Fig. 5. The stereoscopic vision system 
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In figure 6 the couple of images is reported; on the left is reported the first image 
and on the right the second one; on the second image is also reported a white solid 
thick line that is the line that links the focus of the first camera to the point selected on 
the image on the left. 

 

 

Fig. 6. Point assigning by the couple of images 

 

Fig. 7. Path assigning 

This procedure gives the coordinates of the selected point in the frame of the 
working space (world frame). Once a point has been assigned in the work space, by 
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 means of inverse kinematics it is possible to compute the joint coordinates of the 
robot when the robot’s end-effector is in that position. 

Finally the procedure permits to assign a point either as belonging to the path, or as 
representing an obstacle; in this last case, the path will be computed in order to avoid 
that point. 

In figure 7 the robot arm and the work space are shown; the numbers 1, 2 and 3 
represent three points of the path and the cardinals I and II represent two obstacles 
that are supposed to be spherical. 

It has to be pointed out that, as previously told, to fix a point a couple of images is 
needed; in figure 7, for the sake of simplicity, just two images are reposted: on the left 
is the first image of the couple used for the points, while on the right is reported the 
second image of the couple for the obstacles. 

The path is made up by straight segments that link the selected points (those 
belonging to the path). To each of the points that represents an obstacle, is associated 
the center of a sphere, the sphere radius depends  by obstacle dimensions and it is 
chosen when the procedure starts. 

 If one of straight segment intersects one of this sphere, the procedure records these 
intersections and joints each couple of them by means of an arc of a circle. So, the 
path will consist in a number of straight segments and arcs of circle. 

The operator has the possibility to choose the density of the segments and arcs 
intermediate points, the necessary time to the description of the trajectory, and  the 
obstacles dimensions. For every feature of analyzed trajectory, it is necessary to carry 
out cinematic inversion, by means of which it is possible to calculate the trajectory 
points coordinates in the joint space. The used robot is an revolute one with three 
rotational joints; the coordinates in the joint space are ϑ1, ϑ2, ϑ3, that represent the 

relative rotation between links. 
In figure 8 is reported an example of a part of a path in perspective represent-

tation. 

 

Fig. 8. Example of path in perspective wiew 
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In figure 9 the robot arm and an example of path are shown. In the same figure the 
points and the obstacles are, also, clearly visible. The points are marked with the same 
meanings used in the previous figure. 

 

 

Fig. 9. Example of path in the work space 

3   Conclusions 

A technique that uses a vision system in path planning, has been proposed and tested 
at the Laboratory of Robot Mechanics of the D.I.M.E. This technique permits to plan 
the robot end-effector path starting from two images of the work space, recorded with 
a vision system, that is previously calibrated. The customer must only choose, with 
the mouse on the monitor, the points that belong to the path or represent an obstacle; 
and the procedure computes the robot end-effector path. 

The procedure is divided in two steps: the first step supplies to find the cartesian  
coordinates of the points that belongs to geometric path and of those points that 
represent an obstacle; the second step carries out cinematic inversion to calculate the 
points coordinates in the joint space. Once time information are fixed, it will be also 
possible to calculate velocities and accelerations that each joint must have in order to 
describe the planned trajectory. 

Future developments of studied vision-planning system, are acknowledgment of 
the objects  in the work space, acknowledgment of surfaces and volumes, and its 
equations. This last aspect demands the contemporary use of more cameras, mainly  
in the cases of objects that have cavity. Ulterior developments will concur the 
improvement of obstacles acknowledgment modalities, and more “fluid” trajectory 
planning by means of a real-time control with vision system. 
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Tracking Trajectories with a Robotic Manipulator with 
Singularities 
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Abstract. This research presents a trajectory control for non-redundant serial-
link manipulators that is valid for trajectories with ordinary singularities of 
codimension one and non-ordinary singularities of any codimension. Firstly, it 
is presented a unified view of tracking algorithms for trajectories with ordinary 
singularities. Afterwards, several singularity classifications are indicated and il-
lustrated. Then, it is developed a procedure to solve the indeterminate motion of 
non-ordinary singularities, which is applied to several cases. Finally, the pro-
posed trajectory control is presented and simulated for the 2R manipulator case.    

Keywords: Singularity classification, adjoint Jacobian, trajectory control. 

1   Introduction 

Nowadays, robotic manipulators are widely used in many areas, such as manufacturing, 
surgery, research, etc. Their control involves the inverse kinematics problem, which 
may be singular for specific configurations, what causes unacceptably large joint veloci-
ties. Singularities often coincide with a workspace boundary but can occur inside the 
workspace limits. If singular configurations are simply avoided the manipulator’s work-
space is reduced, certain types of operations are impossible (e.g. full-arm extension us-
ing straight-line motion), and the motion-planning process is complicated. However, 
works on the singularity problem indicate that with proper time scaling [1] or path 
reparameterization [2]-[5] it is possible to follow any path near and at a singularity, 
without incurring large joint velocities. Therefore, the aim of this research is to provide 
a unified view of the singularity problem and to develop a trajectory control valid not 
only for ordinary singularities, but also for non-ordinary singularities. 

The paper is organized as follows. Section 2 presents the classical singularity char-
acterization for robotic manipulators and the assumptions that will be considered for 
the rest of the paper. Section 3 presents and discusses several techniques that have 
been developed for damping the joint velocities around and at singular configurations. 
Next, section 4 presents a unified view of recent singularity classifications and shows 
illustrative examples. Furthermore, section 5 develops a method to solve the inverse 
kinematics of non-ordinary singularities, which is illustrated with several cases. 
Meanwhile, section 6 presents the proposed trajectory control, which is validated in 
simulation for a trajectory with ordinary and non-ordinary singularities. Finally, sec-
tion 7 points out the more outstanding contributions of this research. 
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2   Classical Singularity Characterization for Robotic Manipulators 

For a non-redundant serial-link manipulator, the relation between configuration q and 
end-effector position and orientation p is highly nonlinear and expressed as: 

( )=p f q , (1) 

where f is called the kinematic function. The first order kinematics results: 

d ( )
 

d
= =

f q
p q J q

q
, (2) 

where J is called the Jacobian matrix or simply Jacobian. The inverse of the Jacobian 
is used to compute the joint velocities that produce the desired end-effector motion: 

1−=q J p . (3) 

Nevertheless, the joint velocities result infinite when the Jacobian is singular (i.e. 
|J|=0), what happens for the so called non-regular or singular configurations.  

Similarly, if it is considered a redundant serial-link manipulator the singularity, 
when computing the active joint velocities with the pseudo-inverse of the Jacobian, 
arises when the Jacobian loses its full rank. (A simple example of a redundant robot 
is a four-bar mechanism with four active planar revolute joints, i.e. a 4R manipulator, 
where the two linear and one angular positions of the end-effector are considered.) 

The wrist partitioning method separates the inverse kinematics problem of indus-
trial manipulators in two problems and singularities are separated into singularities in 
the motion of the wrist center and wrist singularities. In order to overcome wrist-
subassembly singularities, spherical wrists with redundant degrees of freedom have 
been developed. The redundant degrees of freedom can be determined with pseudo-
inverse [6] (i.e. minimum norm of the joint velocities), constraint functions [7], etc. 

On the other hand, there are relatively few papers [4] that analyze singularities of 
parallel-link manipulators, which are less popularized. Their kinematics is given by: 

plm plm
plm p q

d d
( , )     

d d
= → + = + =

f f
f p q 0 p q J p J q 0

p q
 (4) 

where not only the inverse (Jq) but also the forward (Jp) kinematics may be singular. 

2.1   Robotic Manipulator Assumptions for This Research 

For the rest of the work it is be assumed a non-redundant (square Jacobian) serial-link 
manipulator since they are more common in practice, although it would be possible to 
extend the subsequent developments to parallel-link manipulators like in [4].  

Moreover it will be considered codimension one singularities (i.e. J has a maxi-
mum rank deficiency of one), since singularities with a higher order codimension are 
not very common in practice. However with a recursive singular-value-decomposition 
(SVD) the codimension d problem is reduced to codimension one [5], although the 
computational time is increased. 
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3   Limiting the Joint Velocities Around and at Singularities  

3.1   Damped Least Square (DLS) Method 

One way to prevent large values of joint velocities around and at singular configura-
tions is to introduce a damping factor into the inverse calculation of J, at the expense 
of deviating from the desired path. It would also be possible to place bounds to joint 
accelerations, although it requires a proper trajectory planner [8] in order to avoid 
path deviations. The DLS method is relevant to damp joint velocities and minimizes:  

2 2|| ( ) || || ||I λ= − +p J q q q , (5) 

where index I is formulated similarly to an optimum control problem and λ is the 
damping factor to be determined. There are several problems associated with the DLS 
method. A constant λ would introduce an algorithmic error, also away form a singular 
point. This error is introduced in terms of both direction and magnitude. On the other 
hand, the value of λ is not straightforward, e.g. it can be determined as a function of 
the smallest singular value of J [9], although SVD has a high computational cost. 

3.2   Adjoint Jacobian Method 

Since it is not possible to invert J at a singularity, there are several Jacobian-based 
methods that use another form of J in its place. For example, [10] uses JT in place of 
J–1, while other approaches [11] use the adjoint Jacobian:  

adj( ) b= ⋅q J p , (6) 

where b is the motion parameter, which specifies the magnitude of the motion.  
Note that (6) decouples de direction and the magnitude of the motion. In particular, 

there is no trajectory error if b = | J | –1 (not possible at singularities), i.e. (6) is equiva-
lent to (3), otherwise there is only magnitude error (i.e. no path deviation).  
Moreover, it is possible to design the motion parameter in order to achieve a global 
time although around and at singularities the motion magnitude must be limited.  

3.3   The Null Space Approach 

From the previous subsection, it is apparent that with appropriate path timing exact 
path tracking is generally possible at singularities. If the path is parameterized by a 
scalar s, this entails making s  (and usually higher derivatives) zero at the singular 
point. The idea is equivalent to finding a reparameterization η = f (s) such that the 
path’s inverse kinematic solution q(s) is smooth with respect to η. This reparameteri-
zation always exists at singularities for non-redundant robots if J has a rank defi-
ciency of 1 and the path’s tangent has a component in the singular direction [12].  

If J is square and has a rank deficiency of 1, then the manipulator’s motion can be 
controlled within the (one-dimensional) null space of J [3]. The whole procedure is: 

adj( ) 
( )  ( )  (  )

| |
s s s

s s
η⎛ ⎞ ⎛ ⎞ ⎛ ⎞= → = → = → − = → =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
q q J S

p g p J q S J q J S 0
J

, (7) 

where the new parameter η is equivalent to b s⋅  in  (6). In fact, this approach is 
equivalent to the adjoint Jacobian method: the direction and magnitude of the motion 
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are decoupled; no direction error is introduced; a subsequent time analysis based on 
parameter η must be considered in order to achieve the desired global time. If the pa-
rameter η is constant and determined from the initial kinetic energy (i.e. with an initial 
nonzero differential motion) it is obtained a differential motion called natural [5]. 

4   Classifications of Singular Configurations 

The classical singularity characterization, presented in section 2, does not take into 
account the approaching/departure to/from the singular configuration. This is impor-
tant because, if the singular configuration is crossed in a certain direction, the so 
called non-degenerate direction, it is possible to apply the joint velocities that pro-
duce a desired end-effector motion. Meanwhile, for all the rest (degenerate) direc-
tions the end-effector velocity at the singular configuration must be null, i.e. 0s = .  

Next, we present several singularity classifications of based on this idea.  

4.1   Singularity Classification Based on the Null Space Approach  

According to (7), there are two types of singular configurations (|J|=0) depending if 
adj(J)·S  is the null vector.  

Type A (Sefl-motion) or Ordinary Singularity: The end-effector motion is in a de-
generate direction S since adj(J)·S  is not the null vector and it is obtained a so called 
self-motion, because there is no end-effector motion ( 0)s =  but the joint velocities are 
not zero ( ).≠q 0 The self-motion represents a differential motion and can be seen as a 
redundant manipulator. It is an instantaneously self-motion if the end-effector motion 
is zero only instantaneously or a continuously self-motion otherwise. Usually, the in-
stantaneously self-motion has several possible branches at the ordinary singularity. 

Type B or Non-ordinary Singularity: The end-effector motion is in the non-degenerate 
direction S since adj(J)·S  is the null vector and it is obtained an indeterminate motion 
(0/0) with (3) or immobility ( ,  0)s= =q 0  with (6) or (7). The non-ordinary singularity 
represents a non-differential motion and requires high order derivatives in order to solve 
the indeterminate motion. 

A similar classification to this one is presented in [4] for parallel-link manipulators.  

Characterization Based on Matrix Ranks: An alternative and simple method, that 
avoids the computation of the null space of (7), can be applied in order to characterize 
singularities: they are non-ordinary if rank(J)=rank([J  –S]) and ordinary otherwise.  

4.2   Singularity Classification by Kieffer 

Kieffer made in his research a singularity classification (e.g. see [12]) that is comple-
mentary to the previous one.  
Turning Point: It is an ordinary singularity of the instantaneously self-motion type 
( 0,  0)s s= ≠  and it often coincides with the workspace boundary.  

Osculation Point: It is a ordinary singularity of the continuously self-motion type 
( 0,  0)s s= =  that requires a pause (null acceleration) in the end-effector motion.  



 Tracking Trajectories with a Robotic Manipulator with Singularities 599 

Bifurcation Point: It is a non-ordinary singularity that complicates the mathematics 
by offering, through the use of higher order derivatives to solve the indeterminate mo-
tion, multiple solutions or branches. They do not require null end-effector motion.  
Isolated Point: It is a non-ordinary singularity that requires the same mathematics 
analysis of bifurcations but that has no real solution or branch.   

4.3   Escaping from Singularities 

Next we discuss the way of escaping from singularities. 
Instantaneously Self-motion or Turning Point: Using the adjoint Jacobian method 
(6) or the null space approach (7) the singularity is automatically escaped. The magni-
tude of b or η establishes the escaping velocity and its sign the escaping branch. 
Continuously Self-motion or Osculation Point: Using (6) or (7) the singularity can 
not be escaped until it is achieved, through the self-motion, the non-degenerated di-
rection (adj(J)·S=0) and the singularity changes to a non-ordinary singularity.   
Bifurcation Point: Once the indeterminate motion is solved, through the use of 
higher order derivatives, one branch must be selected and the singularity is escaped.   
Isolated Point: It is not possible to escape from the singularity.   

4.4   Singularity Examples with the Classical Two Bar Mechanism 

All the previous types of singularities are illustrated in Fig. 1 for the classical two bar 
mechanism with two planar revolute joints, i.e. a 2R manipulator, where the two lin-
ear positions of the end-effector are considered.  

1θ

2θ

 

α

    

β

      
 (a) 2R Manipulator (b) Turning point (α≠0) (c) Osculation point (β≠90º) 

            
(d) Bifurcation with 1 branch  (e) Bifurcation with 2 branches (f) Isolated point 

Fig. 1. Graphical examples of singularity for the 2R manipulator 

All the singularities of Fig. 1 will be mathematically justified. The kinematic func-
tion (1) and the first order kinematics (2) for this 2R manipulator (Fig. 1 (a)) are {(8), 
(9)}, meanwhile singularity occurs when both bars are parallel (10).  
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Next, it is indicated the trajectory parameterization and subsequent singularity 
characterization for each case of Fig. 1:  
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5   Resolution of the Non-ordinary Singularities  

In [5] it is presented a procedure in order to solve the indeterminate motion only in the 
vecinity of non-ordinary singularities based on SVD (high computational cost). 

The indeterminate form of (6) implies that the linear equations of the first order 
kinematics (2) are not independent, and hence there are infinite solutions. Neverthe-
less, not all those solutions are valid because, since the non-ordinary singularity 
represents a non-differential motion, the second order kinematics (i.e. the curvature of 
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the path) must be guaranteed. Next, it will be shown a procedure to solve the indeter-
minate motion that separates the differential part of the motion (i.e. the linear and in-
tegrable equations) from the non-differential part of the motion (i.e. the non-linear 
and non-integrable equations). The method is valid for non-ordinary singularities of 
any codimension. The differential part of the motion is given by the independent 
equations of (2). On the other hand, the time derivative of (2) is: 

d d d d
    

d d d d
s s s s

t t t t
+ = = + → = + − −J S S J

J q q p S J q S q . (15) 

Therefore, the second hand of (15) must lie in the column space of J, that is: 

d d
0

d d
s s

t t
⎛ ⎞= → = → + − − =⎜ ⎟
⎝ ⎠

T T T S J
h J 0 J h 0 h S q , (16) 

where h are the orthogonal vectors to J, which number is equal to the rank deficiency 
of J, that can be computed from the null space of JT. Then, the non-differential part of 
the motion is given by the non-linear scalar equations of (16), which may require nu-
merical computation, that can give none, one or multiple real solutions (branches). 

Note that (16) does not involve the unknown joint accelerations, instead it only in-
volves the unknown joint velocities like (2). As a practical application of the previous 
theory it will be solved the indeterminate motions of Fig. 1 (d), (e) and (f): 
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J h
 (19)

6   Trajectory Control  

The desired joint velocities will be given by the classical trajectory control, i.e. a de-
rivative feedforward plus a proportional feedback (given by the real joint positions):  

ref p real ref  ( ( ) ( ))   s s= + − → =J q S K g f q J q M  (20) 

ref p real refadj( )(  ( ( ) ( ))) / | |   / | |s s= + − → =q J S K g f q J q N J , (21) 

where the error of the end-effector position is corrected with gain matrix Kp. 
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In order to compute the desired joint velocities it is proposed the algorithm: 

1 refif  ( ε )  then    /> =J q N J  (22)

1 ref max 1 2

ref max

if  ( ε   and   ) or ( ε   and  ε )  
                     then    ( / ) sign( )

iq q
q

∞

∞

> ∃ > < >
=

J J N
q N N J

 (23)

1 2if ( ε   and  ε )   then        ,The indetermminate motion must be solved∞< <J N  (24)

where (22) is for regular configurations; (23) is a kind of saturation for high-gain 
regular configurations and ordinary singularities; and (24) is for non-ordinary singu-
larities. Note that ordinary and non-ordinary singularities are numerically character-
ized through ε1 and ε2, which values highly depend on the used numerical precision.  

In order to solve the indeterminate motion of (24), it is set to zero the maximal set 
of equations of (20)  that guarantee that the new expression of (20) has the same num-
ber of singular values of matrix [J –M] close to zero. The non-differential part of the 
motion is obtained from the differential part of motion similarly to (16): 

2
ref p real ref

d d
  (   )

d d
s s s

s t
= + + − −S J

J q S K S J q q  (25) 

2
p real ref

d d
 (   ) 0

d d
s s s

s t
⎛ ⎞= → = → + + − − =⎜ ⎟
⎝ ⎠

T T T S J
h J 0 J h 0 h S K S J q q , (26) 

where the desired joint velocities refq  are obtained (they may require numerical com-

putation) from the desired motion ( ,  ),s s  the current joint velocities realq , the current 

desired point on the path s and the current configuration realq . 

Another trajectory control can be used to correct the error of the joint positions and 
the resulting joint velocity vector would be used by the low-level dynamic control. 

Note that the proposed algorithm corrects the error of end-effector position not 
only in the path’s perpendicular directions, like [3], but also in the path’s tangent di-
rections. This is important because it allows to retrieve the target on the path when the 
joint velocities have been saturated, e.g. around and at an ordinary singularity.  

Moreover, the proposed algorithm is valid not only for ordinary singularities but 
also for non-ordinary singularities. For example, with the trajectory control of [3], 
based on the null space approach, it is not possible to cross a non-ordinary singularity, 
since the motion stops completely.  

Also note that, since it has been solved the indeterminate motion at non-ordinary 
singularities, it is not necessary to design complex control laws like [5], which is 
based on the second order kinematics of the null space approach (subsection 3.3).  

6.1   Application Example of the Trajectory Control  

To illustrate the applications of the proposed trajectory control it will be considered 
the 2R manipulator of Fig. 1 (a) again. The tracking trajectory will be the straight line 
from (xright, yright)=(2L, 0) to (xleft, yleft)=(–2L, 0) and vice versa, i.e. from θ1 = θ2 = 0 to 
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θ1 = θ2 = π and vice versa. Note that this trajectory has three singular points: two  
ordinary singularities (instantaneously self-motion or turning points) at the trajectory 
end-points; and another singularity at the center of the first revolute joint. This third 
singularity can be ordinary (continuously self-motion or osculation point, see Fig.1 
(c)) or non-ordinary (bifurcation with one branch, see Fig.1 (d)). Two initial configu-
rations are considered (see Fig. 2 (a) and (b), where the thick dashed line means the 
desired initial motion from the desired initial point on the trajectory). The values used 
in the simulation are {ε1 = 10-6, ε2 = 10-3, L = 1 m, 1max 2 max 1 rad/sθ θ= =  , 0.5 m/ss = ± , 

Kp=[2,0;0,2]} and the two bar dynamics has been neglected, i.e. real ref=q q .  
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It is shown in Fig. 2 (a) and (b) the real trajectory and the tracking errors for each 
initial configuration. In particular for the first case (starting not on the trajectory) it is 
obtained an asymptotical convergence to the trajectory, and small tracking errors are 
present at the ordinary singularities due to the joint velocities saturation. For the sec-
ond case (starting at an osculation point on the trajectory) the tracking error is linearly 
increased until the joint positions reach the non-degenerate direction, through maxi-
mal joint velocities, and then the tracking errors converge asymptotically to zero. 
There are small tracking errors at ordinary singularities again. 

7   Conclusions 

This research has several contributions. Firstly, it has been presented a unified view of 
several trajectory tracking algorithms that are valid for ordinary singularities. Equiva-
lence between the adjoint Jacobian method and the null space approach has been evi-
denced. It has been shown the equivalence between two singularity classifications, 
which have been illustrated (both graphically and numerically) with the 2R manipula-
tor. Alternatively to the singularity characterization with the null space approach, it 
has been shown a more simple method based on matrix ranks. 

It has been developed a method in order to solve the non-ordinary singularities 
that has the advantage of separating the linear integrable equations (differential 
motion) from the non-linear non-integrable equations (non-differential motion), 
which only involve the unknown joint velocities. The method was illustrated with 
three examples.  

It has been proposed a trajectory control that is valid for trajectories with not only 
ordinary singularities but also non-ordinary singularities. Moreover, the control cor-
rects the error of the end-effector position not only in the path’s perpendicular direc-
tions but also in the path’s tangent direction. This allows to retrieve the target on the 
path when the joint velocities have been saturated, e.g. see Fig. 2 (b). In contrast, with 
the trajectory control of [3], based on the null space approach, the target on the 
straight line of Fig. 2 would be loosed for ever when the ordinary singularities are 
crossed, meanwhile the non-ordinary singularity can not be crossed. The trajectory 
control has been successfully tested for a 2R manipulator in a simulated environment 
for a trajectory with ordinary and non-ordinary singularities, and the control results 
asymptotically stable, see Fig. 2 (a) and (b). 
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Abstract. This research presents a motion planning for wheeled mobile robots 
based on a cost index that assesses the nearness to singularity of forward and 
inverse kinematic models. The cost index can be used straightforward for many 
planning techniques (tree graphs, roadmaps, etc.) in order to choose one path 
among several possible collision-free paths. This path would avoid not only slip 
and impossible control actions but also high amplification of wheel velocities’ 
error and high values for wheel velocities. To illustrate the applications of the 
proposed approach it is considered an industrial forklift that is equivalent to the 
tricycle WMR and several results are shown in a simulated environment.   

Keywords: Kinematics singularity, forward and inverse kinematics, cost index. 

1   Introduction 

Wheeled Mobile Robots (WMR) have been widely studied in the past fifteen years. Due 
to kinematic constraints, WMR are not integrable (non-holonomic). Therefore, standard 
techniques developed for robot manipulators are not directly applicable. In particular, 
the motion planning of WMR is still a relevant issue. Examples of motion planning for 
WMR are available in the literature [1]-[4]. On the other hand, the singularity of WMR 
kinematics must be avoided since it implies slip or impossible control actions [5]. In the 
same way, in the vicinity of singularities there is high amplification of active joints’ er-
ror or high values for active joints. Therefore, the aim of the present research is to de-
velop a motion planning for WMR based on singularity criteria. 

The paper is organized as follows. Section 2 presents the kinematic modeling and 
singularity of WMR considering four types of wheels: fixed, centered orientable (here-
inafter orientable), castor and Swedish. Next, section 3 discusses the possibilities for 
motion planning and develops a cost index based on singularity criteria. To illustrate the 
applications of the proposed motion planning it is considered an industrial forklift 
(equivalent to the tricycle WMR) and several simulation results are shown. Finally, sec-
tion 4 points out the more outstanding contributions of this research. 

2   Kinematic Modeling and Singularity of Wheeled Mobile Robots  

Firstly it will be introduced some terminology. Assuming horizontal movement, the 
position of the WMR body is completely specified by 3 scalar variables (e.g. x, y, θ), 
referred to in [6] as WMR posture, p in vector form. Its first-order time derivative is 
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called WMR velocity vector p  and separately (vx, vy, ω) WMR velocities [7]. Simi-

larly, for each wheel, wheel velocity vector and wheel velocities are defined. 

2.1   Kinematic Models of the Four Common Types Wheels 

The kinematic modeling of a wheel is used as a previous stage for modeling the whole 
WMR [5]-[8]. Here, the four common wheels will be considered: fixed, orientable, 
castor and Swedish. As it is easy to obtain their equations using a vector approach, 
e.g. see [5] among many other possibilities, the detailed development will be omitted.  

The matrix equation of the off-centered orientable wheel or castor wheel is:  

( ) ( ) ( )
( ) ( ) ( )slip 

cos δ sin δ l sin δ α d cosδ d cosδ 0
,

sin δ cos δ l cos δ α d sinδ d sinδ r
i i i i i i i i i i i i

i i
i i i i i i i i i i i i i

i

β β β
β

β β β
ϕ

⎛ ⎞
+ + + − − −⎛ ⎞⎜ ⎟= ⎜ ⎟− + + + − + ⎜ ⎟⎝ ⎠

⎝ ⎠

p
v

&
&

&
 

(1) 

where it has been used the parameters of Fig. 1 (a) and the variables of Table 1. 

 

Fig. 1. Castor wheel parameters:     l , d , α , , δi i i i iβ       Swedish wheel parameters:    l , α , β , γi i i i  

Table 1. Frames, variables and constants 

Symbol Description 
R Frame attached to the robot body with the Z-axis perpendicular to the floor surface 

 R  Frame attached to the floor and instantaneously coincident with the robot frame R. 
This frame allows to avoid the dependency on a global stationary frame [7] 

 (Li, Ei) Frames attached to the wheel i and to the roller of the Swedish wheel i, with the X-
axes coincident with their rotation axle 

 p  WMR velocity vector in coordinate frame R , equivalent to  R R R T
R R R(   )x yv v ω  or 

T(   )x yv v ω  
 vslip i Sliding velocity vector of the wheel in coordinate frame Li (Ei for Swedish wheels) 

( , )i iβ ϕ  Angular velocity of the steering link and rotation velocity of the wheel in Lxi-axis 

riϕ  Rotation velocity of the rollers in Exi-axis (it is usually a free wheel velocity) 

r(r ,  r )i i  Wheel equivalent radius and roller radius  
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Fig. 2. Swedish wheel (also called Mecanum, Ilon or universal) with rollers at 45º 

The equation of the orientable wheel can be obtained from (1) with d δ 0i i= = : 

( )
( )slip 

cos sin l sin α 0
.

sin cos l cos α r
i i i i i

i
ii i i i i i

β β β
ϕβ β β

−⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟− − ⎝ ⎠⎝ ⎠
p

v  (2) 

The previous equation is also valid for fixed wheels, where the angle βi is constant. 

The matrix equation of the Swedish wheel (see Fig. 2) is (3) where it has been used 
the parameters of Fig. 1 (b) and the variables and constants of Table 1. 

( ) ( ) ( )
( ) ( ) ( )slip 

r
r

cos β γ sin β γ l sin β γ α r sin γ 0
sin β γ cos β γ l cos β γ α r cos γ r

i i i i i i i i i i
i i

i i i i i i i i i i i
i

ϕ
ϕ

⎛ ⎞+ + + −⎛ ⎞⎜ ⎟= ⎜ ⎟− + + + − ⎜ ⎟⎝ ⎠⎝ ⎠

p
v  (3) 

2.2   Composite Equation and Kinematic Models 

Once the type of WMR wheels and their equations are established, a compound ki-
nematic equation for the WMR may be defined. Using (1), (2), and (3) it results: 

( )
slip 1 p1 w1

w1
slip p w

w
slip N pN wN

wN

0

 ,

0

⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

⎝ ⎠

p
v A A

q p
v A A A q

q
v A A

q

 (4) 

where N is the no. of wheels; vslip is the composite sliding velocity vector; wiq  is a 

vector with all the wheel velocities of wheel i; wq is the composite vector of all the 

wheel velocities; q  is the vector of all the velocities; {Api, Awi} are the multiplying 

matrices obtained from (1), (2), and (3); {Api, Awi} are the composite multiplying ma-
trices; and A is the WMR kinematic matrix. 

Under the no-slip condition, the kinematic solution for velocity vector q  results: 

⋅ =A q 0  (5) 

∈q N (A) → = ⋅q B η , (6) 
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where matrix B forms a basis of N (A), η  is an m-dimensional vector  representing 

WMR mobility, and m is the WMR mobility degree given by the nullity of A: 

( )dimm = =η dim(N (A)) ( ) ( )dim rank k g= − = −q A . (7) 

In order to use variables with physical meaning, the mobility vector η  should be 

replaced with a set of freely assigned velocities. Depending on whether wheel veloci-
ties or WMR velocities are chosen, a forward or inverse kinematic model is obtained. 
If a mix of both types of velocities is chosen a mixed solution is achieved. 

In order to check if an m-set of velocities aq  can be assigned, it must be verified 

that the determinant of the submatrix they define in (5) is non zero, that is: 

nana

aa

⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

Bq η
Bq

 (8) 

1
a na na a aif  0   ,−≠ → = ⋅ ⋅B q B B q  (9) 

where naq  are the remaining non-assigned velocities of q . 

Alternatively to the previous procedure, based on the null space concept, it is pos-
sible to apply another method based on separating the m assigned velocities in (5): 

na na a a = −A q A q . (10) 

To check if an m-set of velocities could be assigned aq , it must be verified that 

matrix Ana is, in general, of full rank g: 

( ) ( )narank rank g= =A A . (11) 

Therefore, the singularity of a kinematic model is given by a 0=B in (9) or alter-

natively when matrix Ana in (10) loses its full rank g. In [5] it is characterized the sin-
gularity of WMR with a generic geometric approach. 

It is important to remark that, in order to obtain a correct singularity result with 

a 0=B in (9) all the elements of matrix B must be always definite (i.e. non infinite).  

Taken into account that the elements of matrix A are always definite, the previous 
is achieved using a free-division row reduction (Gauss-Jordan elimination) for com-
puting the null space of A. Using that approach, it is obtained for (5) an expression 
similar to the reduced row echelon form and (8) is particularized:  

 ( ) ( )
=2

1
1na na

a a
=1

=1

0 0

0 00 0
0 0    

0 00 0
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i
i

g

i
g i

g

i
i

a

a

aa

a

−
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⎜ ⎜ ⎟ ⎟
⎜ ⎜ ⎟ ⎟

⎛ ⎞ ⎜ ⎜ ⎟ ⎟
⎜ ⎟ = → = = =⎜ ⎜ ⎟ ⎟
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⎝ ⎝ ⎠ ⎠

∏

∏

∏

H
q q

H 0 q η B ηq q

Ι

, 
(12) 

where I is the identity matrix, the coefficients ai are always definite and must be non-
null, the elements of matrix H are always definite, and all the elements of B are al-
ways definite, as required. 
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On the other hand, in [9] it is considered a kinematic solution with redundant in-
formation (dim( aq )>m) applying weighted left pseudoinverse to (10): 

( )( ) ( )
1T TT T

na na na na na na na a a a    
−

= −q A μ μ A A μ μ A q . (13) 

where ( )na a,μ μ  are the pre-multiplying weight matrices in (10) and, again, singu-

larity arises when matrix Ana loses its full rank or equivalently when T
na na 0=A A . 

2.3   Practical Use of Kinematics Singularity 

When singularity arises for an m-set of assigned velocities there are two approaches: 

- Loss of degrees of mobility: in order to avoid incompatibility the assigned velocities 
are coordinated properly, what implies a loss of degrees of mobility.  
- Kinematics Incompatibility: no type of coordination for the assigned velocities is 
considered, so the kinematic incompatibility is not solved. If the assigned velocities 
are wheel velocities (forward kinematics), slip (due to the incompatibility, not be-
cause of accelerations) is inevitable. If they are WMR velocities (inverse kinematics), 
impossible (infinite) control action values are obtained. 

In the same way, the singularity of a redundant forward kinematics (13) would 
produce an infinite error in the estimation of the WMR velocity vector. 

Therefore, it is obtained the following criterion: singularity (i.e. mobility degree 
loss, slip, impossible control actions, or infinite error in the estimation) has to be 
avoided. Moreover, nearness to singularity is neither desirable since it implies: high 
amplification of wheel velocities’ error (redundant and non-redundant forward kine-
matics) or high values for wheel velocities (non-redundant inverse kinematics).  

If the singularity depends on the steering angles of orientable or castor wheels the 
previous criterion is a planning criterion, i.e. the upper level planner (path generator) 
has to develop paths not close to singularities, otherwise it becomes design criterion.  

3   Motion Planning for Wheeled Mobile Robots 

3.1   Introduction 

Given a starting and ending configuration of a given WMR, a motion planning prob-
lem consists of automatically computing a collision-free path. This gives rise to the 
famous piano mover problem, i.e. any solution appears as a path in the admissible (i.e. 
collision-free) configuration space. Many papers have proposed general, exact, ap-
proximate, efficient … methods in order to represent and explore this admissible con-
figuration space: e.g. cellular decomposition, polygon representation, etc. (see [1] for 
a synthesis of these approaches). One classical approach is based on tree graphs 
whose leafs are the WMR posture and whose branches are the paths from one posture 
to another. Then, the planner checks, during the construction of the tree graph, if the 
goal has been achieved. 

In order to avoid the high computational cost of the tree-graph method, it was de-
veloped the roadmap technique that builds a graph whose nodes are collision-free 
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configurations and whose edges denote the presence of collision-free paths between 
two configurations. The roadmaps tend to capture both the coverage and connectivity 
of the configuration space and replace the concept of deterministic completeness by 
the concept of probabilistic completeness. 

However, numerous classical methods work only when the WMR is holonomic 
and not when there is some non-holonomic constraint between its configuration pa-
rameters. In order to overcome this, in [2] it is developed a planner that firstly gener-
ates a collision-free path ignoring the non-holonomic constraints and afterwards the 
path is transformed into one that is feasible with respect to these constraints. 

On the other hand, other planners are specific for one task, e.g. in [3] it is presented 
a planner for parallel parking based on a geometric characterization for collision 
avoidance. Moreover, other types of approaches do not explicitly generate collision-
free paths; instead, they integrate the WMR motion planning with the WMR control 
using tools like fuzzy, neural networks, reactive architecture, etc. For example, in [4] 
it is used artificial potential fields: the WMR is attracted by the objective configura-
tion and repelled by the obstacles. 

Furthermore, if it is associated a time value to each point of the path it becomes a 
trajectory; otherwise, it is usually used a forward constant velocity across the path. 

3.2   Cost Index Based on Kinematics Singularity 

Here it is introduced a cost index based on kinematics singularity that is useful for 
many types of planners (based on tree graphs, roadmaps, etc.), since it allows to 
choose the path with minimum cost index among several possible collision-free paths. 

In the cost index it will be weighted the nearness to singularity of forward and in-
verse kinematics. This will allow avoiding singularity and nearness to singularity, i.e. 
high amplification of the WMR velocities’ error or high values for wheel velocities.  

Similarly to robotic manipulators, the singularity of inverse kinematic models can 
be deal with a null velocity on the path at the singularity point, which is equivalent to 
a loss of degrees of mobility. It implies to stop the WMR in order to reorientate it 
and/or its wheels, as it is pointed out in [10] for the five types of WMR classified ac-
cording to [6]. This may be appropriate when there is not much space available (e.g. 
for parking maneuvers) but not in a general case, since it involves an important waste 
of time. Therefore, this option will not be considered here. 

The nearness to singularity of forward kinematic models produces high amplifica-
tion of the WMR velocities’ error, what implies a tracking error if the assigned wheel 
velocities are actuated wheel velocities or an estimation error if they are sensed wheel 
velocities. Both types of forward models will be considered in the cost index. 

Therefore, it is proposed the following cost index: 

( ) ( ) ( ) ( )
N

2 4
6 o 7T

1 1 a 3 ainv fwd act 5 na na fwd sensed 

(N 1) (N 1)1
( )

 
i

i i i i

f i f i
J f f D

f f f=

⎛ ⎞− + − +
= + + + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ β

B B A A
, (14) 

where N is the number of branches/edges of the path in the tree-graph/roadmap; fi is a 
generic non-linear function; |Ba|inv i is the singularity of the inverse kinematic model; 
|Ba|fwd act i is de singularity of the forward models with actuated wheel velocities as as-
signed; T

na na fwd sensed 
 

i
A A  is de singularity of the forward model with redundant sensed 
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wheel velocities; o iβ  is the steering velocity vector of all the orientable wheels; and 

D is the length or distance of the collision-free path.   
Note that, the singularity of forward models has been multiplied by fj (N – i +1) 

since the tracking/estimation error of the initial branches/edges is more important be-
cause it is propagated across the whole path. However, in order to limit the uncer-
tainty of the estimation other global or local position sensors are required. 

Note also that, it has been introduced the steering velocities of the orientable 
wheels because they are not present in the velocity vector q , see (2). 

3.3   Motion Planning for an Industrial Forklift 

The cost index of the previous subsection will be particularized to the case of the in-
dustrial forklift of Fig. 3, which is equivalent to the tricycle WMR, where the origin 
of R (tracking point) has been located at the middle point of the fixed wheels. The 
traction of this industrial forklift is given by both fixed wheels, which are properly 
coordinated through a differential mechanism depending on the steering angle of the 
orientable wheel. Moreover, this WMR has three encoders measuring the rotation of 
both fixed wheels and the steering angle of the orientable wheel.  
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Fig. 3. Industrial forklift Nichiyu FBT15 series 65 and equivalent tricycle representation 

The composite equation (4) of this WMR results: 
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Under the no-slip condition, a kinematic solution (12) is: 

( )
( )

3 3

31

3 3 32

3 3 3 3

3

0
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Lsin l cos r
Lsin l cos r

l r

β
βϕ ηβ βϕ
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p

. (16) 

For the redundant forward kinematics, (10) is particularized to: 

12 1 1
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where it has been considered together the first and third equation of (15), and the last 
equation (used only to compute 3ϕ ) has been obviated. 

Therefore, the kinematics singularity is given by: 
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The cost index (14) will be particularized to: 
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where Kj is the weight of each term in the cost index and M is a kind of singularity 
saturation in order to not reduce in excess the WMR maneuverability .  

Note that the industrial forklift has one degree of mobility (m = 1), i.e. one instan-
taneous degree of freedom, that allows to specify a forward tracking velocity vy. It has 
another non-instantaneous degree of freedom through the angle β3 of the orientable 
wheel that allows turning. Therefore, this WMR can track 2-dimensional paths.   

In order to obtain simulation results, it will be considered the tree graph technique 
together with the previous cost index. It will be used a constant forward velocity on 
the path, e.g. vy = 1 m/s, and the following motion equations between leaves/samples: 

1

1 1

( / )(sin( T) sin )
( / )(cos( T) cos )           = + T,

k k y k k

k k y k k k k

x x v
y y v

ω θ ω θ
ω θ ω θ θ θ ω

+

+ +

= + + −
= − + −  (20) 

where T is the sample time, and it has been considered a constant forward motion vy 

and a constant turning motion ω between samples. 
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If the WMR angular velocity ω is null, it must be used the following equations: 

1 1 1Tcos       Tsin        = .k k y k k k y k k kx x v y y vθ θ θ θ+ + += + = +  (21) 

Note that the distance D of each collision-free path results  vy··T·N.  
For the construction of the tree graph it will be considered three possible steering 

velocities for the orientable wheel: 3 max 3 max, 0, }β β{− . During the construction of 

the tree graph it will be verified if the goal has been achieved within a tolerance. 
The parameters used for the simulations results of Fig. 4 are: vy = 1 m/s, T = 0.5 s, 

N = 22, 3 max 0.4 rad/s,β =  M = 0.01, K1 = K5 = 18, K2 = K3 = K4 = 3; and it has been 

considered two rectangular obstacles that represent two warehouse shelves. The goal 
WMR posture p in the first example of Fig. 4 is (5, 0, any): the continuous thick line 
is the path with minimum cost index; the dashed thick line is the path with minimum 
distance; the continuous thin lines are some (a sample) of the collision-free paths. 
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Fig. 4. Simulation examples for the industrial forklift in a warehouse environment 
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Meanwhile, the goal WMR posture p for the second and third example of Fig. 4 is 
(5.5, 0, 0) and (2, 0, π) respectively. Again, the continuous thick line is the path with 
minimum cost index and the continuous thin lines are some of the collision-free paths. 

4   Conclusions 

In a previous work [5] the authors had characterized the singularity of WMR kinemat-
ics. In this paper it has been shown how to use WMR singularity or nearness to WMR 
singularity for motion planning. In particular, it has been proposed a cost index that 
assesses the nearness to singularity of forward and inverse kinematic models.  

This cost index can be used straightforward for many planning techniques (tree 
graphs, roadmaps, etc.) in order to choose one path among several possible collision-
free paths. Therefore, the chosen path would avoid not only slip and impossible con-
trol actions (i.e. the singularity of forward and inverse kinematic models) but also 
high amplification of wheel velocities’ error and high values for wheel velocities (i.e. 
the nearness to the singularity of forward and inverse kinematic models). 

To illustrate the applications of the proposed approach it has been considered an 
industrial forklift that is equivalent to the tricycle WMR. Finally, several results have 
been shown for this WMR in a simulated environment. 

It is suggested as further work to integrate the presented motion planning with 
other classical techniques like artificial potential fields, fuzzy planners, etc.  
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Gómez, Juan B. 224
Gotow, Tsukasa 1
Gracia, Luis 595, 606
Grün, Sonja 428
Guglielmotti, Vittorio 11

Hammer, Rubi 264
Hancock, Edwin R. 52
Hansard, Miles 308
Hansen, Thorsten 72
Hernández, Jorge E. 224
Hertz, Tomer 264
Hochstein, Shaul 264
Horaud, Radu 308

Imiya, Atsushi 171

Kokaram, Anil 254
Kolesnik, Marina 288

Lagorio, Andrea 191
Lansky, Petr 338, 360, 368
Lauria, Stanislao 555
Lecca, Michela 350
Lecca, Paola 350
Lee, JinYong 104
Lensu, Lasse 94
Lew, Eileen 438
Lima, Priscila M.V. 458

Maddalena, Lucia 181
Malik, Aamir Saeed 328



618 Author Index

Masecchia, Salvatore 468
Mele, Francesco 468
Millán, José del R. 438
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Saraç, Tugba 490
Savino, Sergio 586
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Vraneš, Sanja 523

Weinshall, Daphna 264

Zucca, Cristina 368


	Title Page
	Preface
	Organization
	Table of Contents
	Physiology of Simple Photoreceptors in the Abdominal Ganglion of Onchidium
	Introduction
	Material and Methods
	Results and Discussion
	Characterization of the Phototransduction of the Simple Photoreceptors A-P-1, Es-1, Ip-2, and Ip-1 in the Onchidium Ganglion
	Output Organization of A-P-1, Es-1, Ip-2, and Ip-1
	The Role of Depolarizing Es-1 or A-P-1 Cells
	The Role of Hyperpolarizing Ip-2 and Ip-1 Cells in an Aerial Respiration, the Pulmo-Breathing Behavior
	Concluding Remarks and Non-visual Function of Simple Photoreceptors

	References

	Diffuse Nerve Net of Hydra Revealed by NADPH Diaphorase Histochemical Labeling
	Introduction
	$Hydra’s$ Nerve Net and Neurobehavioral Issues
	Nitric Oxide: A Ubiquitous Ancient Signaling Molecule
	Materials and Methods
	Results and Discussion
	References

	On Global Geometry of Image on Eye’s Back
	Introduction
	The Second Nodal Point
	Paraxial Computations
	The Approximate Pinhole Abstraction
	Sensors' Pattern
	Concluding Remarks

	Independent Encoding of Position and Orientation by Population Responses in Primary Visual Cortex
	Introduction
	Methods
	Physiology
	Stimuli
	Imaging Method
	Fourier Analysis
	Predictive Model

	Results
	Discussion
	Limitations of the Model

	References

	A Neural Model for Attentional Modulation of Lateral Interactions in the Visual Cortex
	Introduction
	Model Description
	Computer Simulations
	Discussion
	References

	Testing Viewpoint Invariance in the Neural Representation of Faces: An MEG Study
	Introduction
	Methods
	Localiser Scan
	Adaptation Scans
	Synthesising Stimulus Images
	MEG Analysis

	Results - Localiser Scan
	Results - Adaptation Scans
	Conclusions

	Modeling Visual Information Processing in Brain: A Computer Vision Point of View and Approach
	Introduction
	Re-examining the Basic Assumptions
	Computer Vision Implications
	Brain Vision Implications
	Some Concluding Remarks
	References

	Higher Order Color Mechanisms for Image Segmentation
	Introduction
	Neurophysiological Findings
	Psychophysical Findings from a Masking Experiment
	Chromatic Detection Model
	Simulation Results

	Natural Scene Statistics of Color and Luminance Edges

	How Does the Brain Arrive at a Color Constant Descriptor?
	Motivation
	Iterative Computation of Local Space Average Color
	The Gray World Assumption
	Usage of Color Shifts
	A Computational Theory of Color Perception
	Conclusions

	Temporal Characteristics of Artificial Retina Based on Bacteriorhodopsin and Its Variants
	Introduction
	Bacteriorhodopsin Sensors and Their Simulation
	Bacteriorhodopsin Sensors
	Sensor Simulation

	Experiments and Results
	Simulation

	Discussion and Future Work

	Vision and Action in the Language-Ready Brain: From Mirror Neurons to SemRep
	Introduction
	Schemas Which Compete and Cooperate
	The VISIONS System
	From Visual Control of Grasping to Mirror Neurons
	From Mirror Neurons to the Mirror System Hypothesis

	SemRep: A Semantic Representation for Dynamic Visual Scenes
	Template Construction Grammar (TCG)
	Conclusions
	How SemRep Reshapes Construction Grammar
	Another Perspective

	References

	A Neural Network Model for a View Independent Extraction of Reach-to-Grasp Action Features
	Introduction
	Background
	The Approach

	The First Step: Low--Level, Viewpoint--Based Features
	Towards the Independence from the Viewpoint: NeGOI Architecure
	Experimental Results
	Grip Size Measure
	Viewpoint Independence

	Conclusions and Discussions

	Neuromimetic Indicators for Visual Perception of Motion
	Introduction
	Neuromimetic Connectionist Architecture
	Causal Spatio-Temporal Filtering (CSTF)
	Antagonist Inhibitions Mechanism (AIM)

	Neuromimetic Indicators
	Controlled Generation of Sequences of Real Images
	Motion Type
	Speed and Direction

	Experimental Results
	Conclusions

	Reversal of “Cubic” and “Cylindric” Figures
	Introduction
	Methods and Procedures
	Results
	Discussion
	References

	Different Binding Strategies for the Different Stages of Visual Recognition
	Introduction
	The Stages of Recognition
	Different Stages of Recognition
	The Visual Feature Binding Problem
	The Kinds of Binding Needed for the Stages of Recognition
	Conclusion
	References

	The Bayesian Draughtsman: A Model for Visuomotor Coordination in Drawing
	Introduction
	Basic Assumptions and Behavioral Analysis
	Experiments with Eye-Tracked Subjects

	The Model
	Discussion and Final Remarks
	Experimental Settings

	Independent Component Analysis of Layer Optical Flow and Its Application
	Introduction
	Optical-Flow Computation with Pyramid Transform
	Obstacle Detection Using ICA on Pyramid Layers
	Experimental Results
	Conclusions

	A Self-organizing Approach to Detection of Moving Patterns for Real-Time Applications
	Introduction
	Modeling the Background by Self-organization
	Initial Background Model
	Subtraction and Update of the Background Model

	Experimental Results
	Data and Detection Results
	Accuracy and Performance Results

	Conclusions and Ongoing Work

	Recognition of Human Faces: From Biological to Artificial Vision
	Introduction
	Human Vision and Information Processing 
	Space-Variant Image Representations 

	Visual Attention and Selective Processing 
	A Computational Model for Selective Face Processing 

	Video-Based Face Image Analysis 
	Relevance of the Time Dimension 
	A Computational Model for Computing Face Shape and Motion
	Clustering Facial Expressions
	PH-HMM Modeling: Analysis of Temporal Evolution
	Face Verification

	Conclusions

	Incremental Subspace Learning for Cognitive Visual Processes
	Introduction
	Incremental Learning in Biological and Artificial Systems
	Non-parametric Discriminant Analysis
	BatchNDA
	IncNDA

	Face Recognition: A Case Study
	Conclusions and Future Work

	Real–Time Robot Manipulation Using Mouth Gestures in Facial Video Sequences
	Introduction
	Related Work
	Gesture Classification in Video Sequences
	Mouth Segmentation
	Feature Extraction and Initial Classification
	Gesture Stabilization and Robot Command

	Tests and Results
	Conclusions

	A Variational Bayes Approach to Image Segmentation
	Introduction
	Bayesian Learning and Inference for Segmentation
	Learning an Image Model with Spatial Constraints
	Segmentation Via Spatially Constrained FGM Image Model
	Simulation
	Concluding Remarks

	Watershed Segmentation Via Case-Based Reasoning
	Introduction
	The Case-Based Image Segmentation Approach
	The Watershed Segmentation
	Seed Selection Based on Region Significance

	Improving Watershed Segmentation by CBR
	Discussion and Conclusion
	References

	Digital Removal of Blotches with Variable Semi-transparency Using Visibility Laws
	Introduction
	Physical Formation of a Water Blotch
	A Short Review About the Detection Phase
	A Proposal for Refining the Detection

	The Proposed Restoration
	Restoration of the Approximation Band
	Blotch Removal from the Luminance Wavelet Details
	Restoration of Chroma Components

	Some Experimental Results and Conclusions

	Classification with Positive and Negative Equivalence Constraints: Theory, Computation and Human Experiments
	Introduction
	Experiments and Results in Human Category Learning
	Experiment 1: Randomly Selected Constraints
	Experiment 2: Highly Informative Sets of Constraints
	Experiment 3: Highly Informative Constraints with Directions
	Summary and Discussion

	Experiments Using the Constrained-EM Algorithm
	Experimental Setup
	Experimental Results

	The Underlying Difference Between PECs and NECs
	The Complexity of Satisfying Positive or Negative Constraints
	The Information Content of Positive or Negative Constraints

	Discussion
	References

	A Graph-Based Clustering Method and Its Applications
	Introduction
	The Proposed Graph-Based Clustering Method
	Algorithms Selected for the Comparison
	The Markov Clustering Algorithm
	The Iterative Conductance Cutting Algorithm
	The Geometric MST Clustering Algorithm
	Settings Used for the Algorithms

	Computer Vision Applications
	Detecting Anchor Shot Clusters in News Videos
	Detecting Microcalcification Clusters in Mammografic Images

	Experimental Results
	Results on News Videos and Mammographic Images

	Conclusions
	References

	Neural Object Recognition by Hierarchical Learning and Extraction of Essential Shapes
	Introduction
	The Object Recognition System
	Self-tuning Feature Extraction Layers
	Feedback Projections

	Applications
	Natural Images
	Handwritten Digits

	Conclusion

	Increasing Efficiency in Disparity Calculation
	Introduction
	System Overview
	Experiments and Results
	Qualitative Analysis
	Quantitative Analysis

	Discussions
	References

	Patterns of Binocular Disparity for a Fixating Observer
	Introduction
	Disparity Models
	Image Matching
	Disparity Processing
	Simulation Results
	Discussion

	3D Reconstruction and Mapping from Stereo Pairs with Geometrical Rectification
	Introduction 
	Geometrical Rectification: Recovery of the Real Perspective 
	Calculating the Error in the Rectification 

	Applications of the Geometrical Rectification 
	Reconstruction Using Sub-pixel Precision 
	Reconstruction Experimentation 

	Mapping Algorithm 
	Mapping Experimentation 

	Performance Results 
	Conclusions 

	Noise Analysis for Depth Estimation
	Introduction
	Related Work
	Focus Measure Methods
	Approximation Methods

	Method
	Results and Discussion
	Conclusions
	References

	Stimulus-Response Curves in Sensory Neurons: How to Find the Stimulus Measurable with the Highest Precision
	Introduction
	Model of Response Functions
	Optimality Criteria
	Results
	Conclusions

	Molecular Mechanism of Glutamate-Triggered Brain Glucose Metabolism: A Parametric Model from FDG PET-Scans
	Introduction
	Glucose Use in Astrocytes
	The Kinetic Model
	PET Image Processing and Parameters Derivation

	Conclusions and Future Directions

	Steady-State Properties of Coding of Odor Intensity in Olfactory Sensory Neurons
	Introduction and Methods
	Models
	Basic Interaction
	Basic Interaction with Simple Activation
	Double Step Interaction

	Results
	Basic Interaction
	Basic Interaction with Simple Activation
	Double Step Interaction

	Conclusions

	Input Identification in the Ornstein-Uhlenbeck Neuronal Model with Signal Dependent Noise
	Introduction
	The Model and Its Properties
	The Method
	Results and Discussion
	Conclusions

	Numerical Results on the Hodgkin-Huxley Neural Network: Spikes Annihilation
	Introduction
	Contribution of the Paper

	The Bistable HH Neuron
	Computing the Equilibrium States
	Computing the Jacobian
	Finding the Bifurcation Point
	The Stable and Unstable Limit Cycles

	The Problem of Annihilation
	The HH Neuron Annihilation Theorem

	Experiments
	Conclusions

	Excitatory Synaptic Interaction on the Dendritic Tree
	Introduction
	Model
	Simulation and Results
	Discussion

	Ghost Stochastic Resonance for a Neuron with a Pair of Periodic Inputs
	Introduction
	The Model
	Results
	Conclusions

	Coincidence Detector Properties of Small Networks of Interneurons
	Introduction
	Methods
	Model Description
	Synaptic Coupling

	Results
	Three Coupled Interneurons
	Four Coupled Interneurons

	Conclusions

	Computing the Maximum Using Presynaptic Inhibition with Glutamate Receptors
	Introduction
	Methods
	Results
	Discussion
	References

	Bounds of the Ability to Destroy Precise Coincidences by Spike Dithering
	Introduction
	Disjunct Binning
	2-Neuron Dithering
	1-Neuron Dithering

	Multiple Shift
	Results
	Discussion

	Non-invasive Brain-Actuated Interaction
	Introduction
	Spontaneous EEG and Asynchronous Operation
	The Machine Learning Way to BCI
	Hardware and Signal Acquisition
	Brain-Actuated Devices
	Current Directions of Research
	References

	Decomposition Approach to Solve Dial-a-Ride Problems Using Ant Computing and Constraint Programming
	Introduction
	Problem Description
	Mathematical Formulation

	Solution Approach
	Solving Set Partitioning Problem with Ant Computing
	Integrating Constraint Programming to Ants
	Experiments and Results
	Conclusions

	Logic as Energy: A SAT-Based Approach
	Introduction
	$Satyrus:$ A SATisfiability-Based Architecture for Constraint Processing
	$SAT$yrus' Language and Compiler
	Energy Function Generation
	$SAT$yrus' Neural Solver

	ARQ-PROP II: A Goal-Driven Propositional Reasoner
	ARQ-PROP II Architecture
	Set of Constraints of ARQ-PROP II

	Compiling and Running ARQ-PROP II with $SAT$yrus
	Conclusion

	Towards a Formal Approach to Generative Design: An Assistant System for the Creation of Artefact Models
	Introduction
	Design Strategy
	Computational Model
	Representing Elementary Artefacts
	A Whole as Parts Aggregation

	From Design Strategy to Computational Model
	Parts and Wholes
	Points into Spatial Regions as Constraints
	Frontiers as Parts Spatial Relations

	From Computational Model to Rendering System
	Design Interface, Graphical Models and Artefact Representation
	Remarks
	References

	Using Software Agent Negotiation for Service Selection
	Introduction
	Agent--Orientation for the Grid
	Selecting Services Through Agent Negotiation
	Preliminary Experiments
	Conclusions

	A Genetic Algorithm for the Quadratic Multiple Knapsack Problem
	Introduction
	A New Genetic Algorithm for QMKP
	Representation
	Handling Constraints
	Genetic Operators

	Computational Results
	Conclusions
	References

	The Application of Neural Networks in Classification of Epilepsy Using EEG Signals
	Introduction
	Material and Methods
	Collection and Processing of Data
	Multilayer Perceptron Neural Networks (MLPNNs)

	Results
	Statistical Analysis and Results
	Neural Networks Analysis and Results

	Discussion
	References

	Moving Creative Words
	Introduction
	Background
	HAHAcronym
	Examples

	Creative Messages and Optimal Innovation
	Resources
	Affective Semantic Similarity
	Database of Familiar Expressions
	Assonance Tool
	Kinetic Typography Scripting Language

	Algorithm
	Examples
	Humor and Neuroimaging
	Conclusion

	Applying Neural Networks to Knowledge Representation and Determination of Its Meaning
	Introduction
	Knowledge Representation
	Determining the Meaning
	Conclusions
	References

	New Frameworks to Boost Feature Selection Algorithms in Emotion Detection for Improved Human- Computer Interaction
	Introduction
	Emotion Detection Problem from Speech Signals
	Proposed Frameworks for Feature Selection
	Conclusion
	References

	The Significance of Empty Speech Pauses: Cognitive and Algorithmic Issues
	Introduction
	Materials and Methods for the Psycholinguistic Analysis
	Psycholinguistic Results
	Adaptive Threshold Algorithm
	Conclusions
	References

	Human Robot Interactions: Towards the Implementation of Adaptive Strategies for Robust Communication
	Introduction
	The Basic Architecture
	Adaptive Speech Recognition
	The Adaptive Information State
	Conclusions

	A Neurosymbolic Hybrid Approach for Landmark Recognition and Robot Localization
	Introduction
	System Architecture
	The Agent WiSARD for Maps Interpretation
	The Virtual Neural Sensor
	The Neural Control Module
	The Input Layer
	The End Computation Control Layer
	The Output Layer
	On a Simmetric Map

	Conclusions

	A Robotic Architecture with Innate Releasing Mechanism
	Introduction
	Biological Clocks
	Emergent Behaviour
	A Zeitgeber for Robotic Artefacts
	A Simple Case Study

	Conclusions and Future Work

	An Application of Vision Systems to the Path Planning of Industrial Robots
	Introduction
	The Path Planning
	The Vision System
	The Camera Calibration
	The Path Planning Software

	Conclusions
	References

	Tracking Trajectories with a Robotic Manipulator with Singularities
	Introduction
	Classical Singularity Characterization for Robotic Manipulators
	Robotic Manipulator Assumptions for This Research

	Limiting the Joint Velocities Around and at Singularities
	Damped Least Square (DLS) Method
	Adjoint Jacobian Method
	The Null Space Approach

	Classifications of Singular Configurations
	Singularity Classification Based on the Null Space Approach
	Singularity Classification by $Kieffer$
	Escaping from Singularities
	Singularity Examples with the Classical Two Bar Mechanism

	Resolution of the Non-ordinary Singularities
	Trajectory Control
	Application Example of the Trajectory Control

	Conclusions
	References

	Motion Planning for Wheeled Mobile Robots Based on Singularity Criteria
	Introduction
	Kinematic Modeling and Singularity of Wheeled Mobile Robots
	Kinematic Models of the Four Common Types Wheels
	Composite Equation and Kinematic Models
	Practical Use of Kinematics Singularity

	Motion Planning for Wheeled Mobile Robots
	Introduction
	Cost Index Based on Kinematics Singularity
	Motion Planning for an Industrial Forklift

	Conclusions
	References

	Author Index



