
Browser-Based Attacks on Tor

Timothy G. Abbott, Katherine J. Lai, Michael R. Lieberman, and Eric C. Price

{tabbott,k lai,mathmike,ecprice}@mit.edu

Abstract. This paper describes a new attack on the anonymity of web
browsing with Tor. The attack tricks a user’s web browser into sending a
distinctive signal over the Tor network that can be detected using traffic
analysis. It is delivered by a malicious exit node using a man-in-the-
middle attack on HTTP. Both the attack and the traffic analysis can be
performed by an adversary with limited resources. While the attack can
only succeed if the attacker controls one of the victim’s entry guards,
the method reduces the time required for a traffic analysis attack on Tor
from O(nk) to O(n + k), where n is the number of exit nodes and k is
the number of entry guards. This paper presents techniques that exploit
the Tor exit policy system to greatly simplify the traffic analysis. The
fundamental vulnerability exposed by this paper is not specific to Tor
but rather to the problem of anonymous web browsing itself. This paper
also describes a related attack on users who toggle the use of Tor with
the popular Firefox extension Torbutton.

1 Introduction

The Internet was not designed with anonymity in mind; in fact, one of the
original design goals was accountability [3]. Every packet sent by established
protocols identifies both parties. However, most users expect that their Internet
communications are and should remain anonymous. As was recently highlighted
by the uproar over AOL’s release of a large body of “anonymized” search query
data [10], this disparity violates the security principle that systems meet the secu-
rity expectations of their users. Some countries have taken a policy of arresting
people for expressing dissident opinions on the Internet. Anonymity prevents
these opinions from being traced back to their originators, increasing freedom of
speech.

For applications that can tolerate high latencies, such as electronic mail, there
are systems that achieve nearly perfect anonymity [1]. Such anonymity is difficult
to achieve with low latency systems such as web browsing, however, because of
the conflict between preventing traffic analysis on the flow of packets through
the network and delivering packets in an efficient and timely fashion.

Because of the obvious importance of the problem, there has been a great deal
of recent research on low-latency anonymity systems. Tor, the second-generation
onion router, is the largest anonymity network in existence today.

In this paper we describe a new scheme for executing a practical timing attack
on browsing the web anonymously with Tor. Using this attack, an adversary can

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 184–199, 2007.

Browser-Based Attacks on Tor 185

identify a fraction of the Tor users who use a malicious exit node and then leave
a browser window open for an hour. With current entry guard implementations,
the attack requires the adversary to control only a single Tor server in order
to identify as much as 0.4% of Tor users targeted by the malicious node (and
this probability can be increased roughly linearly by adding more machines).
The targeting can be done based on the potential victim’s HTTP traffic (so, for
example, one could eventually identify 0.4% of Tor users who read Slashdot).

2 How Tor Works

Tor [5] is an anonymizing protocol that uses onion routing to hide the source of
TCP traffic. Onion routing is a scheme based on layered encryption, which was
first developed for anonymizing electronic mail [1]. As of December 15, 2006, Tor
was used by approximately 200,000 users and contained about 750 nodes (also
sometimes referred to as “servers” or “routers”) [4].

Fig. 1. A Tor circuit. The client chooses an entry node, a middle node, and an exit
node, allowing the exit node to fetch content from a web server.

In Tor, a client routes his traffic through a chain of three nodes that he
selects from the Tor network, as shown in Figure 1. A client constructs this path
of nodes, or “circuit”, by performing Diffie-Hellman handshakes with each of
the nodes to exchange symmetric keys for encryption and decryption. These Tor
nodes are picked from a list of current servers that are published by a signed
directory service.1 To send TCP data through the circuit, the client starts by
breaking the stream into fixed sized cells that are successively encrypted with

1 While the directory service is signed, anyone can add an entry, and claim to have a
long uptime and high bandwidth. This makes getting users to use a malicious node
a little easier, because clients prefer to use servers with good statistics.

186 T.G. Abbott et al.

the keys that have been negotiated with each of the nodes in the path, starting
with the exit node’s key and ending with the entry node’s key. Fixed size cells
are important so that anyone reading the encrypted traffic cannot use cell size
to help identify a client [7][9].

Using this protocol, the entry node is the only node that is told the client’s
identity, the exit node is the only node that is told the destination’s identity and
the actual TCP data sent, and the middle node simply exchanges encrypted cells
between the entry node and the exit node along a particular circuit. The nodes
are selected approximately randomly using an algorithm dependent on various
Tor node statistics distributed by the directory server, some client history, and
client preferences.

3 Related Work

In May 2006, S. Murdoch and G. Danezis discussed how a website can include
“traffic analysis bugs”—invisible signal generators which are used to shape traffic
in the Tor network [11]. Our attack uses similar signal generators to attack a
Tor client. We rely on the ideas of the papers discussed in the next two sections
to deliver the attack and to identify the Tor client.

3.1 Browser Attacks

To browse the Internet anonymously using Tor, a user must use an HTTP proxy
such as Privoxy so that traffic will be diverted through Tor rather than sent
directly over the Internet. This is especially important because browsers will not
automatically send DNS queries through a SOCKS proxy. However, pieces of
software that plug into the browser, such as Flash, Java, and ActiveX Controls,
do not necessarily use the browser’s proxy for their network traffic. Thus, when
any of these programs are downloaded and subsequently executed by the web
browser, any Internet connections that the programs make will not go through
Tor first. Instead, they will establish direct TCP connections, compromising the
user’s anonymity, as shown in Figure 2. This attack allows a website to iden-
tify its visitors but does not allow a third party to identify Tor users visiting a
given website. These active content systems are well-known problems in anony-
mous web-browsing, and most anonymizing systems warn users to disable active
content systems in their browsers.

In October 2006, FortConsult Security [2] described how to extend this attack
so that parties could identify Tor users visiting a website they do not control. The
attacker uses a malicious exit node to modify HTTP traffic and thus conduct
a man-in-the-middle attack, as shown in Figure 3. In particular, it inserts an
invisible iframe with a reference to some malicious web server and a unique
cookie. In rendering the page, the web browser will make a request to the web
server and will retrieve a malicious Flash application. If Flash is enabled in
the browser, then the Flash movie is played invisibly. The Flash application
sends the cookie given to the user directly to the evil web server, circumventing

Browser-Based Attacks on Tor 187

Fig. 2. Prior work: a browser attack using Flash included in a website. The client’s web
browser executes a Flash program, which then opens a direct connection to a logger
machine, compromising the client’s anonymity.

Tor. The web server can then identify which webpages were sent to which users
by matching the cookies with the Flash connections. In other words, all Tor
users who use HTTP through that exit node while Flash is enabled will have
their HTTP traffic associated with their respective IP addresses. However, if we
assume that the number of malicious Tor servers is small compared to the total
number of Tor servers, a normal user will get a malicious exit node only once in a
while. As a result, this attack only works to associate traffic with the particular
user for the length of time that the user keeps the same Tor circuit, or at most
ten minutes by default.

3.2 Finding Hidden Servers

Along with hiding the locations of clients, Tor also supports location-hidden
servers, where the clients of a service (for example, visitors to a website) are not
able to identify the machine hosting the service. To connect to a hidden server,
a client sends a message through an introduction point that is advertised as
being associated with the hidden service by the Tor directory. A clever anony-
mous interaction results in the hidden client and hidden server both opening
Tor connections to a rendezvous point (chosen by the client). The rendezvous
point patches the connections together to form an anonymous channel between
the hidden client and hidden server.

In May 2006, L. Øverlier and P. Syverson [12] described an attack to locate
hidden servers in Tor. The attacker begins by inserting a malicious Tor node into
the Tor network and using a Tor client to repeatedly connect to the targeted
hidden server, sending a distinctive signal over each Tor connection. Since the

188 T.G. Abbott et al.

Fig. 3. Prior work: a browser attack executed by an exit node. The client’s web browser
executes a Flash program inserted into a webpage by the exit node, which opens a direct
connection to a logger machine.

hidden server cannot distinguish this from a wave of legitimate clients, each
connection forces the hidden server to construct a new Tor circuit. The attacker
can do traffic analysis to determine when his Tor node is in the hidden server’s
rendezvous circuit. He can then identify the hidden server by using a predecessor
attack [18].

The paper states that their attack should apply to other clients using an
anonymity network, but gives no details for how to do so. In particular, the attack
does not immediately apply to clients because they don’t make new circuits on
demand. The attack relied on requesting a large number of new connections with
a hidden server, which is not easy to do with a hidden client.

4 A Browser-Based Timing Attack

We describe a new attack that combines and builds upon the attacks discussed in
Section 3. The attack, shown in Figure 4, attempts to discover a Tor client without
using invasive plugins like Java or Flash but with JavaScript instead. JavaScript
alone is not powerful enough to discover the client’s IP address, but combined
with a timing attack similar to the one presented by Øverlier and Syverson [12], an
adversary has a non-trivial chance of discovering a client in a reasonable amount
of time. In Section 4.2 we discuss how to implement this attack using only the
HTML meta refresh tag, but the JavaScript version is simpler so we discuss it first.
This attack is partially mitigated by entry guards, which has become a standard
feature of Tor. For clarity, we will defer discussion of the role of entry guards until
Section 4.7, after we have explained the basic plan of attack.

Browser-Based Attacks on Tor 189

4.1 The Attack

Like the FortConsult Security attack [2], our attack uses a malicious Tor exit
node that modifies HTTP traffic passing through it, inserting an invisible iframe
containing JavaScript into requested webpages. The JavaScript repeatedly con-
tacts a malicious web server, posting a unique ID. This JavaScript continues to
run as long as the client leaves the “bugged” browser tab open. The complete
attack is as follows:

1. The attacker first sets up the necessary resources.
(a) The attacker inserts two malicious nodes into the Tor network: one to

act as an entry node, and the other to act as an exit node.
(b) The attacker sets up a web server that receives and logs JavaScript con-

nections.
2. The malicious exit node modifies all HTTP traffic destined for Tor clients

to include an invisible JavaScript signal generator that generates a unique
signal for each Tor client.

3. The Tor client’s web browser executes the JavaScript code, sending a dis-
tinctive signal to the web server. This traffic passes through the Tor circuit,
and the client is still anonymous.

4. Approximately every ten minutes, the Tor client chooses a new circuit. Even-
tually, an unlucky Tor client picks and uses the malicious entry node.

5. The attacker performs traffic analysis to compare the signals on each circuit
passing through his entry node with the various signals received by the web
server. A match reveals the Tor client’s identity and its corresponding traffic
history during the time it used the malicious exit node.

The entry node only needs to log the traffic pattern that passes through it
on each circuit, and the exit node only needs to perform the code injections in
the HTTP traffic. Although for clarity we described the attack with multiple
machines, the malicious Tor nodes and the web server can all be implemented
on the same machine. If the user is browsing the web while using the malicious
entry node, the traffic analysis can be difficult because the additional traffic
introduces “noise” to the signal. However, if the user stops browsing the web,
the channel contains little “noise” and the traffic analysis is easy. A method for
simplifying the timing attack even if the user does continue browsing the web is
discussed in Section 4.4.

For most traffic analysis attacks, the attacker must control both the exit node
and entry node at the same time. For our attack, if a client leaves a browser
window open running the JavaScript signal generator, and at any later point
chooses a malicious entry node, then the timing attack can reveal his identity.
Since this only requires the right choice of an entry node, the probability that the
client is compromised each time he chooses a new circuit is roughly 1

ne
, where ne

is the number of available entry nodes. If the attacker had to get control of both
the entry and exit nodes at the same time, the probability would then be 1

nenx
,

where nx is the number of available exit nodes. The signal generator allows us to
decouple the need to control an exit node and an entry node at the same time,

190 T.G. Abbott et al.

Fig. 4. Our new attack. A malicious exit node modifies webpages, inserting JavaScript
code that repeatedly connects to a logger server, sending a distinctive signal along the
link (top). If the client then uses a malicious entry node while that JavaScript is still
executing, the entry node can detect the signal, and the attacker can thus associate
the client with his communications (bottom).

decreasing the expected time to compromise the client. As with any such traffic
analysis attack, the adversary can further decrease the time the attack takes by
increasing the number of malicious Tor entry nodes [16].

4.2 A Browser-Based Timing Attack Using Only HTML

The attack we just described relies on the victim having JavaScript enabled. This
requirement is unnecessary. The same attack can be implemented by using the
HTML meta refresh tag. In this version of the attack, the webpage is modified

Browser-Based Attacks on Tor 191

such that it will automatically be refreshed by the web browser after a period
of time. The attacker generates the desired traffic signal by dynamically varying
the refresh delays or the page size each time the webpage is refreshed.

The HTML meta refresh version of the attack is more conspicuous than the
JavaScript version because browsers generally indicate when they are reloading
a webpage but not when executing JavaScript XMLHttpRequests. Thus, it is
easier for the user to observe the meta refresh version of the attack than the
JavaScript one. This could be mitigated by only performing this attack on sites
that already have a meta-refresh tag. Even on pages that would not normally
have the tag, the HTML meta refresh attack could be made less obvious if the
first refresh happens with a large delay, when the user is less likely to be still in
front of his computer. After an initial delay of a few hours, subsequent refreshes
could happen every few seconds to generate the signal for a timing attack.

4.3 Torbutton

Torbutton is a simple Firefox extension that allows a user to toggle whether
their web browser is using the Tor proxy with a single click. This convenient
interface makes it possible for users who are frustrated with Tor’s slow speed to
turn Tor off while browsing websites that they do not feel requires anonymity.
It is a popular extension, with more than 251,000 downloads as of February
22, 2007 [19]. Since this number only counts downloads of Torbutton from the
official website, it underestimates the number of Torbutton users.

As shown in Figure 5, if a user toggles the Tor proxy off using Torbutton but
leaves a tab open with one of our JavaScript signal generators, then he will be
discovered the next time the signal generator contacts the adversary’s server. In
practice, this relatively simple attack is effective at but limited to discovering Tor
clients who stop using the Tor proxy while the browser is still open. Torbutton
makes it easy for users to be careless in this way.

Torbutton could easily be modified such that when the user chooses to stop us-
ing Tor, all JavaScript and automatically reloading webpages are stopped before
changing the proxy settings. This may inconvenience the user if he is using sites
that heavily depend on JavaScript, but it will protect the user from discovery.
A Tor user who wants to browse the web both with and without Tor could also
choose to either completely close his browser between uses or use two completely
separate browsers for anonymous and nonanonymous communications.

4.4 Tor Exit Policies

Our attack works by adding traffic to a Tor circuit so that a Tor node can
identify whether it is, in fact, the entry node of the Tor circuit. If the Tor circuit
is carrying no other traffic, this detection is fairly easy—the entry node knows
exactly what traffic pattern to look for. On the other hand, a Tor circuit full of
unrelated traffic is hard to test for presence of a signal because the entry node
does not know what other traffic to expect. For this reason, it is easier to identify
a victim during a break than during active browsing. In this section we present

192 T.G. Abbott et al.

Fig. 5. Our Torbutton attack. A malicious exit node modifies webpages, inserting
JavaScript code that repeatedly connects to a logger server, sending an ID number
(seen above in dashed lines). If the client later configures their browser to stop using
Tor while that JavaScript is still executing, he will connect directly to the logger server.

a novel method of using exit policies to create a clean circuit dedicated to the
identifying signal.

A common concern among Tor server operators is the issue of abuse: Tor
can be used to anonymously send spam or viruses as well as to anonymously
browse the web. In order to make it more attractive to run a Tor server, Tor’s
protocol dictates that each server advertises an exit policy that specifies which
(IP address, port) pairs the server is willing to exit traffic to. Because few server
operators are willing to exit spam or viruses, there are certain ports that almost
every Tor server refuses to exit, as shown in Figure 6.

Port Number of Exit Nodes
22 211
53 216
80 226
110 210
143 208
443 238
5190 184
6667 172

Port Number of Exit Nodes
25 4
119 25
135–139 6
445 6
465 12
587 13
1214 7
4661–4666 5
6699 9

Fig. 6. Number of Tor servers exiting various ports as of December 15, 2006

Browser-Based Attacks on Tor 193

4.5 Using Tor Exit Policies to Simplify the Timing Attack

Suppose that the signal generator connects to a malicious server over an unpop-
ular port. Most web browsers will refuse to connect to some of the unpopular
ports. For example, Mozilla Firefox resists connecting to the SMTP port 25 but
not the filesharing ports 4661 through 4666. If the signal generator connects over
an unpopular port, the client’s existing circuits probably do not have an exit node
willing to serve the signal generator’s traffic. This likely forces the Tor client to
open a new circuit for the signal generator’s traffic. In fact, the Tor algorithm
for routing traffic over circuits prefers older circuits, so for several minutes, other
traffic may use a different circuit than the signal generator’s traffic, even if the
new exit node is willing to exit other traffic. An attacker can improve the odds
that the attack traffic will have a dedicated circuit by inserting exit nodes into
the network that will only exit unpopular ports. As we have remarked before,
having a dedicated circuit simplifies the traffic analysis substantially.

The Tor exit policy can also be used to decrease the time required for the
attack. Suppose that there were zero nodes willing to exit k different ports.
Then the attacker could insert k different servers into the Tor network, each of
which only exits on one of the k ports. A signal generator that tried to connect
on all k ports would force the Tor client to create k new circuits, each dedicated
to the signal generator’s traffic. Hence the client would have k different entry
nodes at a time, rather than only one. This would speed up the attack by a
factor of k.

In reality, there are no ports that have zero Tor nodes willing to exit on them,
so one would expect a smaller speed increase. Some ports do come close; only
five nodes offer ports 4661 through 4666, and at times only one or two of those
are operating. If an attacker performed a denial of service attack on these nodes,
he could create a situation where these ports do have zero Tor nodes willing to
exit on them, and obtain the full factor of six.

Experiments showed that Tor’s algorithm was slow to open a circuit to these
unpopular ports. It often took several minutes to make a circuit, which can
cause browser timeouts in connecting. While this wouldn’t be a problem with
the JavaScript version of the attack, this error would cause the HTML meta
refresh version to fail sometimes.

We believe that this is the first reported method for exploiting the Tor exit
policy system in an attack. A reasonable solution to this vulnerability would be
to have a client-side exit policy. A client would only send data into Tor destined
for selected ports—requests to send data on other ports would be refused. This
exit policy should default to only allowing the client to send data via Tor that
is destined for popular ports.

4.6 Using TCP Streams to Simplify the Timing Attack

Tor stops sending new connections through a circuit after the first 10 minutes
of using the circuit. However, it does not close a circuit until there are no longer
any open TCP sessions on the circuit. Thus, an attacker can hold a circuit open

194 T.G. Abbott et al.

for more than 10 minutes by maintaining an open TCP stream on the circuit.
After the first 10 minutes have passed, the attacker can start sending a unique
signal to the client using that TCP connection. Unless there are other lingering
TCP connections on the circuit, the attacker’s traffic will now be the only traffic
in that direction on the Tor circuit, allowing the attacker to detect the signal
using simple traffic analysis techniques.

A defense against this attack is to forcibly close all TCP connections on a
circuit after the 10 minutes are up. However, this is perhaps impractical for a
couple of reasons. First, if a client is trying to download something that will take
more than 10 minutes, the download will always fail. Second, various web appli-
cations utilize a perpetually open TCP connection in order to push changes to a
webpage (avoiding the delays associated with polling). Killing TCP connections
when the circuit becomes stale could prove annoying to users.

An attacker that intentionally keeps a TCP connection open for an extended
period of time is difficult to distinguish from the applications that are broken
by the defense we just described. We know of no effective way to defend against
this version of the attack without losing functionality.

4.7 Entry Guards

Our attack relies on the assumption that eventually, one of the malicious Tor
routers will act as the entry node for a client. Since many attacks rely on this
assumption, Wright et al. [17] and later Øverlier and Syverson [12] proposed
selecting the entry nodes from a small subset of Tor nodes called entry guards.
This feature is now standard in Tor [20]. By default, each Tor client chooses
3 random Tor nodes to be its entry guards. Thus if none of the entry guards
are malicious, the client will never have a malicious entry node. If one or more
of them is malicious, the client can be compromised much more quickly than
if this feature were not used. Without entry guards, however, our attack would
eventually expose all clients if there were even one malicious entry node in the
entire Tor network.

Rather than selecting random entry guards, the user can choose a specific set
of trusted nodes. This has benefits and drawbacks, which Øverlier and Syver-
son [12] discuss in detail. We suspect that most users will use the default random
choices, so we will assume that henceforth.

One interesting feature of using entry guards is that a timing attack that
would find the hidden client will instead find the entry guards. After the attacker
identifies the entry guards that a targeted victim is using, he can attempt to
execute a denial of service attack against those Tor servers in order to cause the
victim to fall back to different entry nodes that the attacker might control.

Entry guards change the probability distribution so that the probability that a
malicious server will ever be an entry node for a particular client is O(3

n), where
n is the number of possible entry nodes in the network. On the other hand,
those clients who are unlucky enough to select a malicious router as one of their
entry guards will more quickly be discovered. If, for example, the attack targets
the visitors of a particular website, the attack will affect up to an expected 3

n

Browser-Based Attacks on Tor 195

of the visitors. The use of entry guards then serves to speed up the attack on
that fraction of that population. If we take today’s numbers into account, n is
around 700, one Tor node will be an entry guard for around 0.4% of a targeted
population. Adding more malicious Tor nodes to the network is easy and would
increase that proportion roughly linearly.

5 Methods

We developed a prototype implementation of this attack, expanding on the tech-
niques discussed in the FortConsult Security paper [2]. FortConsult Security’s
attack used Linux’s iptables filtering to modify the payloads of TCP packets
at the exit node. This was a convenient mechanism because it did not require
modifications to the Tor source code itself. However, it resulted in a restriction
on their attack: they could not change the number of bytes in any TCP packet,
because TCP sequence numbers are a byte count. Thus their insertions into the
webpages also required overwriting some part of those webpages. We sidestepped
this issue by changing webpages at the HTTP level.

Our implementation also uses iptables, but only to redirect Tor’s outgoing
HTTP requests to a local port. Transproxy, a transparent proxy daemon, binds
to this port and adds the appropriate headers to the requests so that a regular
HTTP proxy works properly. The requests proceed through a proxy built on
the Twisted Python libraries that modify every webpage to insert an iframe.
This iframe downloads, from the adversary’s web server, a page that contains a
simple (25 line) JavaScript program that connects with this server. The size and
frequency of these connections can be dynamically modified by the adversary’s
server in order to produce a distinctive signal.

Because the connections are to aURLcontaining the unique identifier, the server
can ensure that each JavaScript instance sends a unique signal associated with its
identifier. This allows the entry node to identify the client that downloaded a spe-
cific webpage, rather than one of the clients that downloaded any of the webpages
with inserted signal generators. Not only can the attacker attribute the one web-
page to this client, but he also knows that client was responsible for all the other
traffic sent over its circuit ID at the time that it downloaded the bugged webpage.

When setting up a number of exit nodes to exit ports 4661-4666, we were
able to put them all on one machine simply by configuring each Tor instance to
use and advertise a different port and IP address. Upcoming Tor releases will
not use two routers from the same Class B subnet on a single path, as a weak
defense against the Sybil attack [6]. For our attack, the adversary can simply
run two computers on different Class B networks, one running a large number of
entry nodes, and the other running many exit nodes. Since Tor clients can choose
any pair of routers from different subnets, the changes of selecting both entry
node and exit node from the adversary’s set will still be quadratic in the number
of fake routers being used. Since colocation is easily available commercially, we
do not believe that this new feature will present an effective defense against a
determined attacker with limited resources.

196 T.G. Abbott et al.

Our experimental entry node required minor modifications of the Tor source
to increase logging, most of which were used in Øverlier and Syverson [12]. We
tried a Fourier transform to identify circuits with the signal, but could not find a
strong enough signal (past the noise of legitimate web traffic) to identify them if
they were browsing the web. We then implemented a much simpler recognition
system that could find users when their circuit was only carrying attack traffic.

6 Defenses Against Browser-Based Attacks

We have considered a few defenses against these browser-based attacks.

6.1 Disabling Active Content Systems

The most obvious defense against these browser-based attacks is to disable all
active content systems, such as Java, Flash, ActiveX Controls, and JavaScript
in the browser. The disadvantage of this defense, however, is that disabling the
active content systems would preclude the use of many popular web services in
the process. Our HTML-only attack using the meta refresh tag also shows that
this only exacerbates the problem since it can’t be turned off without significant
modification to a web browser.

6.2 HTTPS

Modifying a website at the exit node is a man-in-the-middle attack on HTTP.
Because HTTPS is secure against man-in-the-middle attacks (assuming that the
user has a chain of trust to the website), tunneling HTTP over SSL prevents a
malicious exit node from either reading or modifying the data it is transporting.

In practice, this defense is less effective than it might seem, because users
will often accept self-signed certificates as valid despite the browser warning. A
malicious exit node could thus trick careless users by replacing webpages with
malicious versions that are also signed, but with forged certificates.

Using HTTPS provides reasonable security against this attack so long as the
client can trust the servers serving the sites he visits and correctly verifies cer-
tificates. If the server is not trustworthy, it can include the malicious JavaScript
attack code in the website itself, and sign it with a valid SSL certificate. Using
the methods we have described, the server could then identify its visitors.

Unfortunately, this defense is not something a Tor client can implement uni-
laterally; every website that he visits must allow the client to do so. Many
sites do not allow a user to communicate with them in a secure fashion; for
example, https://www.google.com currently (May 2007) redirects to http://
www.google.com. Using SSL for all web traffic also has performance concerns,
which is perhaps the reason why many sites do not support it.

7 Analysis and Results

Let us estimate the probability that our attack will be successful. Suppose that
Tor uses k entry guards in a network of n nodes, m of which exit port 80. In our

Browser-Based Attacks on Tor 197

basic attack, the client uses one circuit at a time that changes every ten minutes.
Further suppose that the attacker inserts u evil nodes in the network, of which
v are exit nodes that modify HTTP traffic. The v exit nodes can be noticed by
Tor users, but the other u − v servers only log data, and give no indication of
malice. Assume that all Tor nodes are equal—an unrealistic assumption, since
some Tor nodes have much better bandwidth than others, but not that relevant
if the attacker has average bandwidth. At the moment, the Tor network has
k = 3, n = 700, m = 200. Setting up an attack with u = 1 and v = 1 is fairly
easy to accomplish, so we will use these values to approximate. We will also
assume n � k, u, v.

Then v
m ≈ 0.5% of all Tor circuits will insert signal generators into webpages,

and approximately ku
n ≈ 0.4% of all Tor clients will choose an evil server for an

entry guard. Any given bugged page will use one entry guard every ten minutes,
so for any Tor user that has an evil entry guard the chance of being discovered in
any ten-minute interval is 1

k ≈ 33%, and the probability of remaining anonymous

over time is approximately the exponential distribution P (t) ≈
(

k−1
k

)t/10 min ≈
0.66t/10 min.

This means that a Tor user has a 0.4% chance of ever being vulnerable to
the attack. Every 10-minute interval during which a vulnerable user leaves a
webpage open, he has a 0.5% chance of leaving a signal generator running. If he
leaves a bugged page open over an hour-long lunch break, he has a 92% chance
of having this signal generator go through an evil entry node. At this point, the
adversary can associate the user with all the browsing that he did the circuit
that he used to download the signal generator. If he leaves a bugged page open
for eight hours of sleep, there is a negligible chance he will not be identified.

The probabilities that users are vulnerable or that they will receive a signal
generator are low, but this is under the assumption that the attacker only con-
trols a single Tor node. These probabilities are roughly linear in the number
of Tor nodes the attacker runs, so he can amplify his probability of success by
running several Tor nodes.

The attacker can decide whether to insert a signal generator into websites
based on what other websites the potential victim has visited through the same
Tor circuit. This allows a malicious exit node to masquerade as an honest ma-
chine to most users, a measure which would help the adversary prevent his exit
node from becoming discovered as malicious.

8 Conclusion

Current web design presents fundamental problems for maintaining anonymity
while browsing the web. Low latency anonymizing systems cannot easily protect
their users from end-to-end traffic analysis. Our attack exploits the web browser
code execution environment to perform end-to-end traffic analysis attacks with-
out requiring the attacker to control either party to the target communication.

There are two security problems that our attack exploits: HTTP’s vulnerabil-
ity to man-in-the-middle attacks and web browsers’ code execution feature. Tor

198 T.G. Abbott et al.

places the exit node as a man-in-the-middle of clients’ communications. Thus,
using Tor may actually decrease the anonymity of users by making them vul-
nerable to man-in-the-middle attacks from adversaries that would otherwise be
unable to perform such attacks.

Also fundamental to our attack is the fact that web browsers execute (poten-
tially malicious) code within an imperfect sandbox. This code execution allows
for arbitrary communication back to the HTTP server. Such communication
can include sending network traffic in a pattern designed to be detected by an
external observer using traffic analysis. This danger is particularly important
when we consider that recent advances in the web are centered around the use
of complex programs executed by the web browser. Even if users are willing to
disable these technologies, we have shown that mere HTML (through its meta
refresh tag) is a powerful enough language to attack the anonymity of Tor users.

Given the current design of the web, neither of these problems can be readily
addressed without sacrificing substantial functionality.

Acknowledgements

We thank Lasse Øverlier for sharing his hidden servers timing attack code with
us. We also thank Roger Dingledine, Paul Syverson, Frans Kaashoek, and the
anonymous reviewers for their helpful suggestions.

References

1. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2) (February 1981)

2. Christensen, A., et al.: Practical Onion Hacking: Find the real address of Tor
clients. FortConsult (October 2006),
http://www.fortconsult.net/images/pdf/Practical Onion Hacking.pdf

3. Clark, D.: Design Philosophy of the DARPA Internet Protocols. In: Proceedings
of the ACM Special Interest Group on Data Communications, pp. 106–114. ACM
Press, New York (1988)

4. Dingledine, R.: Tor: anonymity (November 2006), http://tor.eff.org/
5. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion

Router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)
6. Douceur, J.: The Sybil Attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.

(eds.) IPTPS 2002. LNCS, vol. 2429, Springer, Heidelberg (2002)
7. Hintz, A.: Fingerprinting Websites Using Traffic Analysis. In: Dingledine, R., Syver-

son, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 229–233. Springer, Heidelberg
(2003)

8. Levine, B.N., Reiter, M., Wang, C., Wright, M.: Timing Attacks in Low-Latency
Mix Systems (extended abstract). In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110,
pp. 251–265. Springer, Heidelberg (2004)

9. Liberatore, M., Levine, B.N.: Inferring the source of encrypted HTTP connections.
In: Proceedings of the 13th ACM conference on Computer and communications
security, ACM Press, New York (2006)

http://www.fortconsult.net/images/pdf/Practical_Onion_Hacking.pdf
http://tor.eff.org/

Browser-Based Attacks on Tor 199

10. Martin, K.: AOL search data identified individuals. SecurityFocus (August 2006),
http://www.securityfocus.com/brief/277

11. Murdoch, S.J., Danezis, G.: Low-Cost Traffic Analysis of Tor. In: Proceedings of
the 2005 IEEE Symposium on Security and Privacy (May 2005)

12. Øverlier, L., Syverson, P.: Locating Hidden Servers. In: Proceedings of the 2006
IEEE Symposium on Security and Privacy (May 2006)

13. Raymond, J.: Traffic Analysis: Protocols, Attacks, Design Issues, and Open Prob-
lems. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS,
vol. 2009, pp. 10–29. Springer, Heidelberg (2001)

14. Serjantov, A., Sewell, P.: Passive Attack Analysis for Connection-Based Anonymity
Systems. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808,
pp. 116–131. Springer, Heidelberg (2003)

15. Syverson, P., Tsudik, G., Reed, M., Landwehr, C.: Towards an Analysis of Onion
Routing Security. In: Federrath, H. (ed.) Designing Privacy Enhancing Technolo-
gies. LNCS, vol. 2009, pp. 96–114. Springer, Heidelberg (2001)

16. Wright, M., Adler, M., Levine, B.N., Shields, C.: An Analysis of the Degradation
of Anonymous Protocols. In: Proceedings of the ISOC Network and Distributed
System Security Symposium (NDSS), pp. 38–50 (February 2002)

17. Wright, M., Adler, M., Levine, B.N., Shields, C.: Defending Anonymous Com-
munication Against Passive Logging Attacks. In: Proceedings of the 2003 IEEE
Symposium on Security and Privacy (May 2003)

18. Wright, M., Adler, M., Levine, B.N., Shields, C.: The predecessor attack: An anal-
ysis of a threat to anonymous communications systems. In: ACM Trans. Inf. Syst.
Secur., pp. 489–522 (2004)

19. Squires, S.: Firefox Add-ons: Torbutton (February 2007),
https://addons.mozilla.org/firefox/2275/

20. TheOnionRouter/TorFAQ (November 2006),
http://wiki.noreply.org/noreply/TheOnionRouter/TorFAQ

http://www.securityfocus.com/brief/277
https://addons.mozilla.org/firefox/2275/
http://wiki.noreply.org/noreply/TheOnionRouter/TorFAQ

	Browser-Based Attacks on Tor
	Introduction
	How Tor Works
	Related Work
	Browser Attacks
	Finding Hidden Servers

	A Browser-Based Timing Attack
	The Attack
	A Browser-Based Timing Attack Using Only HTML
	Torbutton
	Tor Exit Policies
	Using Tor Exit Policies to Simplify the Timing Attack
	Using TCP Streams to Simplify the Timing Attack
	Entry Guards

	Methods
	Defenses Against Browser-Based Attacks
	Disabling Active Content Systems
	HTTPS

	Analysis and Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

