
On Interactive Pattern Mining
from Relational Databases

Francesco Bonchi1, Fosca Giannotti1, Claudio Lucchese2,3,
Salvatore Orlando2,3, Raffaele Perego3, and Roberto Trasarti1

1 Pisa KDD Laboratory, ISTI - CNR,
Area della Ricerca di Pisa, Via Giuseppe Moruzzi 1, Pisa, Italy

2 Computer Science Dep., University Ca’ Foscari
Via Torino 155, Venezia Mestre, Italy
3 Pisa HPC Laboratory, ISTI - CNR,

Area della Ricerca di Pisa, Via Giuseppe Moruzzi 1, Pisa, Italy

Abstract. In this paper we present ConQueSt, a constraint based
querying system devised with the aim of supporting the intrinsically
exploratory (i.e., human-guided, interactive, iterative) nature of pattern
discovery. Following the inductive database vision, our framework pro-
vides users with an expressive constraint based query language which
allows the discovery process to be effectively driven toward potentially
interesting patterns. Such constraints are also exploited to reduce the
cost of pattern mining computation. We implemented a comprehensive
mining system that can access real world relational databases from which
extract data. After a preprocessing step, mining queries are answered by
an efficient pattern mining engine which entails several data and search
space reduction techniques. Resulting patterns are then presented to the
user, and possibly stored in the database. New user-defined constraints
can be easily added to the system in order to target the particular ap-
plication considered.

1 Introduction

According to the inductive database vision [16], the task of extracting useful and
interesting knowledge from data is just an exploratory querying process, i.e.,
human-guided, iterative and interactive. The analyst, exploiting an expressive
query language, drives the discovery process through a sequence of complex min-
ing queries, extracts patterns satisfying some user-defined constraints, refines the
queries, materializes the extracted patterns as first-class citizens in the database,
combines the patterns to produce more complex knowledge, and cross-over the
data and the patterns. Therefore, an Inductive Database system should provide
the following features:

Coupling with a DBMS. The analyst must be able to retrieve the portion of
interesting data (for instance, by means of SQL queries). Moreover, extracted
patterns should also be stored in the DBMS in order to be further queried
or mined (closure principle).
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Expressiveness of the query language. The analyst must be able to inter-
act with the pattern discovery system by specify declaratively how the de-
sired patterns should look like and which conditions they should satisfy. The
analyst is supposed to have a high-level vision of the pattern discovery sys-
tem, without worrying about the details of the computational engine, in the
same way as a database user has not to worry about query optimization.
The task of composing all constraints and producing the most efficient min-
ing strategy (execution plan) for a given query should be thus completely
demanded to the underlying system.

Efficiency of the mining engine. Keeping query response time as small as
possible is, on the one hand necessary, since our goal is to give frequent
feedbacks to the user allowing realistic human-guided exploration. On the
other hand, it is a very challenging task, due to the exponential complexity
of pattern discovery computations. To this end, data and search space re-
duction properties of constraints should be effectively exploited by pushing
them within the mining algorithms. Pattern discovery is usually a highly
iterative task: a mining session is usually made up of a series of queries (ex-
ploration), where each new query adjusts, refines or combines the results of
some previous queries. It is important that the mining engine adopts tech-
niques for incremental mining; i.e. reusing results of previous queries, in order
to give a faster response to the last query presented to the system, instead
of performing again the mining from scratch.

Graphical user interface. The exploratory nature of pattern discovery im-
poses to the system not only to return frequent feedbacks to the user, but
also to provide pattern visualization and navigation tools. These tools should
help the user in visualizing the continuous feedbacks form the systems, al-
lowing an easier and human-based identification of the fragments of inter-
esting knowledge. Such tools should also play the role of graphical querying
interface: the action of browsing pattern visualization should be tightly inte-
grated (both by a conceptual and engineering point of view) with the action
of iteratively querying.

Starting from the above requirements we designed ConQueSt, an exploratory
pattern discovery system equipped with a simple, yet powerful, query language
(named spql for simple pattern query language) and a user friendly interface for
accessing the underlying DBMS. While designing ConQueSt query language,
architecture and user interface, we have kept in mind all the tasks involved
in the typical knowledge discovery process [11]: (i) source data selection, (ii)
data preparation and pre-processing, (iii) pattern discovery and model building.
The user supervises the whole process, not only defining the parameters of the
three tasks, but also evaluating the quality of the outcome of each step and
possibly re-tuning the parameters of any step. Moreover, the user is in charge
of interpreting and evaluating the extracted knowledge, even if the system must
provide adequate support for this task. As we will show in this paper, the three
main tasks of the knowledge discovery process are represented both in the query
language and in the architecture of the ConQueSt system.
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Fig. 1. ConQueSt knowledge discovery process

ConQueSt is the result of a joint work of the Pisa KDD (Knowledge Discov-
ery and Delivery) and HPC (High Performance Computing) Laboratories: it is
built around a scalable and high-performance constraint-based mining engine ex-
ploiting state-of-the-art constraint pushing techniques, as those ones developed
in the last three years by our two labs [24,6,5,7,8].

1.1 Constraint Based Pattern Mining

Devising fast and scalable algorithms, able to crunch huge amount of data, has
been so far one of the main goal of data mining research. Recently, researchers
realized that in many practical cases it does not matter how much efficiently
knowledge is extracted, since the volume of the results themselves is often embar-
rassing, and creates a second order mining problem for the human expert. This
situation is very common in the case of association rules and frequent pattern
mining [2], where the identification of the fragments of interesting knowledge,
blurred within a huge quantity of mostly useless patterns, is very difficult.

The constraint-based pattern mining paradigm has been recognized as one
of the fundamental techniques for inductive databases: user-defined constraints
drive the mining process towards potentially interesting patterns only. More-
over, they can be pushed deep inside the mining algorithm in order to deal
with the exponential search space curse, achieving better performance [28,23,15].
Constraint-based frequent pattern mining has been studied a lot as a query
optimization problem, i.e., developing efficient, sound and complete evaluation
strategies for constraint-based mining queries. To this aim, properties of con-
straints have been studied comprehensively, e.g., anti-monotonicity, succinct-
ness [23,19], monotonicity [18,9,5], convertibility [25], loose anti-monotonicity
[8], and on the basis of such properties efficient computational strategies have
been defined. The formal problem statement follows.
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Definition 1 (Constrained Frequent Itemset Mining). LetI ={x1, ..., xn}
be a set of distinct items, where an item is an object with some predefined attributes
(e.g., price, type, etc.). An itemset X is a non-empty subset of I. A transaction
database D is a bag of itemsets t ∈ 2I, usually called transactions. A constraint on
itemsets is a function C : 2I → {true, false}. We say that an itemset I satisfies
a constraint if and only if C(I) = true. We define the theory of a constraint as
the set of itemsets which satisfy the constraint: Th(C) = {X ∈ 2I | C(X)}. The
support of an itemset X in database D, denoted suppD(X), is the number of
transactions which are superset of X. Given a user-defined minimum support,
denoted σ, an itemset X is called frequent in D if suppD(X) ≥ σ. This defines
the minimum frequency constraint: Cfreq[D,σ](X) ⇔ suppD(X) ≥ σ. In general,
given a conjunction of constraints C the constrained frequent itemsets mining
problem requires to compute Th(Cfreq) ∩ Th(C).

While developing ConQueSt we have tried to reduce as much as possible
the gap existing between real-world data stored in relational DBMS, and the
constraint-based pattern discovery paradigm, as defined above. In fact, the data
is usually stored in relational databases, and thus in the form of relations and
not of transactions. In sections 2 and 3.2 we explain how transactions are defined
and constructed both at the query language and at the system level. Moreover,
the constraint-based mining paradigm assumes that the constraints are defined
on attributes of the items that are in functional dependency with the items. This
rarely the case in real-world data: just think about the price of one item in a
market over a period of one month. ConQueSt provides support to solve this
cases, allowing the user to reconstruct the ideal situation of functional depen-
dency, for instance, by choosing to take the average of prices of the item in the
period as price attribute.

In this paper we provide an overview of ConQueSt’s main design choices
and features. The paper is organized as follows. In Section 2 we provide a brief
overview of the spql language which is at the basis of our system. Then in Section
3 we provide an high level description of ConQueSt’s architecture, we then
describe the three main modules in the sections that follow. In particular, Section
3.1 describes the graphical user interface and how the interactions between the
user and the system actually happens; Section 3.2 describes the query interpreter
and pre-processor modules; Section 3.3 describes the mining engines and the
algorithmic choices underlying it. Finally in Section 4 we discuss other existing
mining systems and query languages, and in Section 5 we draw some conclusions.

2 A Simple Data Mining Query Language

According to the constraint-based mining paradigm, the data analyst must have
a high-level vision of the pattern discovery system, without worrying about the
details of the computational engine, in the very same way a database designer
has not to worry about query optimizations. The analyst must be provided with
a set of primitives to be used to communicate with the pattern discovery sys-
tem, using a query language. The analyst just needs to declaratively specify
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in the pattern discovery query how the desired patterns should look like and
which conditions they should obey (a set of constraints). Such rigorous interac-
tion between the analyst and the pattern discovery system, can be implemented
following [20], where Mannila introduces an elegant formalization for the notion
of interactive mining process: the term inductive database refers to a relational
database plus the set of all sentences from a specified class of sentences that are
true w.r.t. the data. In other words, the inductive database is a database frame-
work which integrates the raw data with the knowledge extracted from the data
and materialized in the form of patterns. In this way, the knowledge discovery
process consists essentially in an iterative querying process, enabled by a query
language that can deal either with raw data or patterns.

Definition 2. Given an instance r of a relation R, a class L of sentences (pat-
terns), and a selection predicate q, a pattern discovery task is to find a theory

T h(L, r, q) = {s ∈ L|q(r, s) is true}

The selection predicate q indicates whether a pattern s is considered interesting.
In the constraint-based paradigm, such selection predicate q is defined by a
conjunction of constraints. In this Section, going through a rigorous identification
of all its basic components, we provide a definition of constraint-based frequent
pattern mining query over a relational database DB [4].

The first needed component is the data source: which table must be mined
for frequent patterns, and which attributed do identify transactions and items.

Definition 3 (Data Source). Given a database DB any relational expression
V on preds(DB) can be selected as data source.

Definition 4 (Transaction id). Given a database DB and a relation V derived
from preds(DB). Let V with attributes sch(V) be our data source. Any subset
of attributes T ⊂ sch(V) can be selected as transaction identifier, and named
transaction id.

Definition 5 (Item attribute). Given a database DB and a relation V derived
from preds(DB). Let V with attributes sch(V) be our data source. Given a subset
of attributes T ⊂ sch(V) as transaction id, let Y = {y|y ∈ sch(V)\T ∧ T → y
does not hold}; we define an attribute I ∈ Y an item attribute provided the
functional dependency T I → Y \I holds in DB.

Proposition 1. Given a relational database DB, a triple 〈V , T , I〉 denoting the
data source V, the transaction id T , the item attribute I, uniquely identifies a
transactional database, as defined in Definition 1.

We next distinguish between attributes which describe items (descriptive at-
tributes), from attribute which describe transactions (circumstance attributes).

Definition 6 (Circumstance attribute). [12] Given a database DB and a
relation V derived from preds(DB). Let V with attributes sch(V) be our data
source. Given a subset of attributes T ⊂ sch(V) as transaction id, we define any
attribute A ∈ sch(R) where R is a relation in preds(DB) circumstance attribute
provided that A /∈ T and the functional dependency T → A holds in DB.
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Definition 7 (Descriptive attribute). Given a database DB and a relation
V derived from preds(DB). Let V with attributes sch(V) be our data source.
Given a subset of attributes T ⊂ sch(V) as transaction id, and given I as item
attribute; we define descriptive attribute any attribute A ∈ sch(R) where R is a
relation in preds(DB), provided the functional dependency I → A holds in DB.

Consider the mining view: sales(tID, locationID, time, product, price)
where each attribute has the intended semantics of its name and with tID acting
as the transaction id. Since the functional dependency {tID} → {locationID}
holds, locationID is a circumstance attribute. The same is true for time. We also
have {tID, product} → {price}, and {product} → {price}, thus product is
an item attribute, while price is a descriptive attribute.

Constraints, as introduced in the previous Section (see Definition 1), describes
properties of itemsets, i.e., a constraint C is a boolean function over the domain
of itemsets: C : 2I → {true, false}. According to this view, constraints are only
those ones defined on item attributes (Definition 5) or descriptive attributes
(Definition 7).

Constraints defined over the transaction id (Definition 4) or over circumstance
attributes (Definition 6) are not constraints in the strict sense. Indeed, they
can be seen as selection conditions on the transactions to be mined and thus
they can be satisfied in the definition of the mining view. Consider the relation:
sales(tID, locationID, time, product, price) where each attribute has
the intended semantics of its name and with tID acting as the transaction id.
Since the functional dependency {tID} → {locationID} holds, locationID is
a circumstance attribute. The constraints locationID ∈ {Florence, Milan,
Rome} is not a real constraint of the frequent pattern extraction, indeed it is
a condition in the mining view definition, i.e., it is satisfied by imposing such
condition in the relational expression defining the mining view (for a deeper
insight on circumstance attributes and constraints defined over them see [27,12]).

We have provided all the needed components for defining a constraint-based
frequent pattern query as follows.

Definition 8 (Constraint-based frequent pattern query). Givenadatabase
DB, let the quintuple 〈V , T , I, σ, C〉 denotes the mining view V, the transaction id
T , the item attribute I, the minimum support threshold σ, and a conjunction of
constraints on itemsets C.

The primitive for constraint-based itemset mining takes in input such quintu-
ple and returns a binary relation recording the set of itemsets which satisfy C and
are frequent (w.r.t. σ) in the transaction database 〈V , T , I〉, and their supports:

freq(V , T , I, σ, C) = {(I, S) | C(I) ∧ supp〈V,T ,I〉(I) = S ∧ S ≥ σ}

The spql query language that is at the basis of ConQueSt, is essentially syntac-
tic sugar, in SQL-like style, to express constraint-based frequent pattern queries
like freq(V , T , I, σ, C). It is a superset of SQL, in a double sense: first any spql

query contains a SQL query needed to define the data source; second, in Con-

QueSt we allow the user to define any SQL query, which could be useful, for
instance, to pre-process the data or post-process the extracted patterns.
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Table 1. An example spql mining query

1. MINE PATTERNS WITH SUPP>= 5 IN
2. SELECT product.product_name, product.gross_weight, sales_fact_1998.time_id,

sales_fact_1998.customer_id, sales_fact_1998.store_id
3. FROM [product], [sales_fact_1998]
4. WHERE sales_fact_1998.product_id=product.product_id
5. TRANSACTION sales_fact_1998.time_id, sales_fact_1998.customer_id,

sales_fact_1998.store_id
6. ITEM product.product_name
7. ATTRIBUTE product.gross_weight
8. CONSTRAINED BY Sum(product.gross_weight)<=30

In Table 1 we report a true spql mining query, defined within ConQueSt on
the famous foodmart2000 datamart. A simple spql query consists of four parts:

1. the user-defined minimum support threshold σ in line 1;
2. the SQL style SELECT statement to specify the data source V to be extracted

from the DB (lines 2–4);
3. the mining view definition by means of TRANSACTION (to identify T ), ITEM

(to identify I), and of ATTRIBUTE on which constraints are defined (lines
5–7);

4. the conjunction of constraints C that the extracted patterns must satisfy in
line 8.

Since the data source is in relational form, a pre-processing step is needed to
create a set of transactions, which are the input of any frequent pattern mining
system. Transaction are created by grouping ITEM by the attributes specified
in the TRANSACTION clause. For instance, in the query Table 1, transactions
are built groping sales by time id, customer id and store id: this means that
we consider a unique transaction when we got the same customer in the same
store at the same time. It is worth noting that with this simple mechanism of
defining transactions we can easily handle both the inter-attribute and the intra-
attribute pattern mining cases. We have chosen a well defined set of classes of
constraints. These constraints have been deeply studied and analyzed in the past
few years, in order to find nice properties that can be used at mining time to
reduce the computational cost. In particular the ConQueSt system is able to
deal with anti-monotone, succinct [23], monotone [5], convertible [26] and loose
anti-monotone [8] constraints. Such classes include all the constraints based on
the aggregates listed in Table 2.

It is worth noting how all steps of the knowledge discovery process, i.e., (i)
source data selection, (ii) data preparation and pre-processing and (iii) pattern
discovery, are expressed within the typical spql query. In particular, the source
data selection is expressed by means on the select statement, the preprocessing
is expressed by means of items and transactions identification, and the mining
is expressed by listing the desired constraints, including the frequency one.
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Table 2. The set of available constraints

subset subset supset superset
asubset attributes are subset len length
asupset attributes are superset acount attributes count
min minimum max maximum
range range sum sum
avg average var variance
std standard deviation spv sample variance
md mean deviation med median

This is a spql query in its basilar form. Different kinds of spql query exist,
since we have extended the language to accommodate the use of soft constraints
[3], and discretization tasks. In ConQueSt we have introduced the possibility
of defining queries according to the new paradigm of pattern discovery based on
soft constraints [3], i.e., where constraints are no longer rigid boolean functions.
This allows the user to describe what is the “shape” of the patterns of interest,
and receive back those patterns that “mostly” exhibits such shape. The patterns
are also sorted according to a measure of interestingness, i.e., how much a pattern
agrees with the given description. Having this order, allows also to define top-k
queries. In this paper we avoid entering in the details of these extensions. The
interested reader can find an example of spql query using soft constraints in
the paper [3] in this volume.

In Table 3 a portion of spql formal grammar definition is provided.

Table 3. A portion of spql formal grammar definition

<SpqlQuery> ::= (<SqlQuery>| <MineQuery> | <Discretize>)
<MineQuery> ::=<Header><br><SqlQuery><br><MiningDefinition><br><Constraints>
<Header> ::= MINE PATTERNS WITH SUPP >= <Number>
<MiningDefinition> ::= TRANSACTION <Transaction><br> ITEM
<Item><br>[ ATTRIBUTE <Attribute>]
<Transaction> ::= <Field>[<Separator><Transaction>]
<Item> ::= <Field>[<Separator><Item>]
<Attribute> ::= <Field>[<Separator><Attribute>]
<Field> ::= <String>.<String>
<Constraints> ::= CONSTRAINED BY <Function>
<Function> ::= (<FunctionM>(<Field>)<Op><Number> | <FunctionS>(<Field>)<Op><Set> |

<FunctionN>()<Op><Number> ) [<Separator>(Function)]
<FunctionM> ::= (Minimum | Maximum | Range | Variance | Std_Deviation | Median | Average | Sum)
<FunctionS>::= (Subset_of | Superset_of | Attribute_Subset_of | Attribute_Superset_of )
<FunctionN>::= Length
<Op> ::= (>|<|>=|<=)
<Separator> ::= ,
<br> ::= \n
<Set> ::= <String>[<Separator><Set>]
<Discretize>::= DISCRETIZE <Field> AS <Field> <br> FROM <String> <br> IN
(<Method>| <Intervals>) BINS <br> SMOOTINGH BY <Smethod>
<Method> ::= (EQUALWIDTH | EQUALDEPTH)
<Smethod> ::= (AVERAGE | COUNT | BIN BOUNDARIES)
<Intervals>::= (<Number> <Separator> <Number>)[<Separator> <Intervals>]
<Number> ::= (0-9) [<Number>]
<String> ::= (a-z|A-Z|0-9) [<String>]
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3 Architecture of the System

The ConQueSt architecture, as shown in Fig. 2, is composed of three main
modules:

– the Graphical User Interface (GUI);
– the Query Interpreter and and Pre-processor (QIP);
– the Mining Engine (ME).

For portability reasons, the GUI and the QIP have been implemented in Java,
while the ME was implemented in C++ in order to provide high performance
during the most expensive task.

Fig. 2. ConQueSt architecture

In our vision, a mining system has to be tightly coupled with DMBS softwares,
because databases are the place where data is. Our choice is to allow all the three
main components to access independently a database. In fact, the GUI must
show to the user the data present in the database, the QIP must retrieve the
data of interested and prepare them for the mining engine, which will eventually
store the discovered patterns in the database. To this end, the three components
stand on a JDBC [1] abstraction layer, in order to provide independency from
the particular database server software where data are stored. In fact, the JDBC
API provides connectivity to a wide range of SQL databases. ConQueSt for
instance, can retrieve data from PostgreSQL as well as from Microsoft Access
database servers, and additional compatibility can be provided just by adding
the JDBC plug-in provided by the database server software house.

The separation in these modules reflects the separation among different, well
defined and independent tasks. In fact, every module could be a single software
package running on a different machine. For instance, the GUI may run on the
user machine, while the QIP may be located in a different site where a fast
access to the database is provided, and finally the ME may be running on an
high performance cluster serving many users with many different tasks. Finally,
the JDBC layer allow us to ignore the physical location of the database server.

Actually, a communication protocol is established, flowing from the GUI,
through the QIP and ending at the mining engine. The GUI, interactively with
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the user, creates a spql query which is then sent to the query interpreter. The
latter preprocesses the data of interest and translates part of the spql query
in an list of constraints. These constraints, and a filesystem pointer to the pre-
processed data are finally sent to the ME which can now start the mining process.
As long as this simple protocol is fulfilled, every single component can increase
its features and improve its functionalities independently from the others.

3.1 Graphical User Interface

The user interface (see a screen-shot in Figure 3) is designed not only to stand
in between the user and the mining engine, but also to stand between the user
and the data. Data is assumed to be in the form of a relational database. As
soon as the user connects to the database, a set of information and statistics are
collected and presented in many ways. The idea is to provide a simple and high
level mean to the user to define the mining task. It is simple, since the user can
reach his goal just by using user friendly mouse-clicks. Moreover, many high level
information and statistics are provided. Finally, the GUI is complete, meaning
that any operation related to the definition of a mining query can be done just
by mouse-clicks without the need of editing an spql query by hand.However, in
the case an expert user prefers to write a query by hand, or simply to change
an existing one, ConQueSt’s inverse-parser takes care of updating the GUI’s
modules on-the-fly, in such a way that exists always a perfect correspondence

Fig. 3. ConQueSt graphical user interface
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(a) (b)

Fig. 4. ConQueSt The upper-right corner of the GUI, corresponding to the query in
Table 1 (a), and the lower-right corner with the description of the education attribute
of the customer table (b)

between the spql query textually reported in the bottom panel of the GUI, and
its definition contained in the central area and in the two upper-right corner
panels of the GUI. In Figure 4(a), we report the two upper-right corner panels
for the query in Table 1.

Navigating the Structure of the Database. Most of the GUI is dedicated
to the Desk Area. Here the tables present in the database are showed in a
shape of a graph structure. Each vertex of the graph represents a table, and
the user may choose to see or not to see all the fields of the table. Each
edge of the graph corresponds to a logical link between a foreign key and
a primary key. Finally, a Tables List helps the user to select, to hide or to
show any of the tables. This gives the user an high level view of the database,
allowing him grasp all the relations and connections at a glance, and to focus
on the portion of data of interest.

Table-Fields Information and Statistics. Every table maybe actually visu-
alized in the Table Visualization panel, but aggregated information are more
useful to the user. For this reason ConQueSt shows the data type of each
field, statistics of the selected field (e.g. average, minimum, maximum) and
a bar or pie chart of the distribution of the values of the selected field (see a
screenshot in Figure 4(b)). This information may help the user in deciding
the discretization parameters and the constraints thresholds.

Interactive SPQL query definition. The first part of the spql query con-
sists in the mining view definition, i.e. the set of fields defining transactions,
items and attributes. The user may set the mining view simply by right-
clicking directly on the Desk Area the table-fields of interest. Those fields will
be highlighted in the Desk Area and reported in the Mining View Definition
panel. Whenever a mining view definition implicitly require relational joins
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Fig. 5. The output of a mining query in the pattern browser

(e.g. transaction ids and item ids are in different table), they are automati-
cally inserted in the final spql query. Constraints and respective threshold
may also be set by right-clicking on the Desk Area or also using the constrains
panel (in Figure 4). These facilities allows the user the fully define the mining
task just by navigating the dataset graph and using mouse clicks.

Advanced SPQL query definition. At any moment, the user can edit by
hand the query in the spql query panel. Any modification of the query
will be reflected in the rest of the GUI, e.g. by updating the Mining View
Definition panel. The possibility to edit directly the query, rather than using
the GUI, does not provide any additional expressive power from a mining
point of view. Anyway, since part of the spql query is pure SQL, we can allow
the user to exploit complex SQL queries and additional constraints that are
not part of the mining task, but rather they are part of the data preparation
phase. Moreover, any SQL query can be submitted in place of an spql

query, providing additional control to the analyst. Finally, before executing
the mining task, a preview of the data in the transactional format, together
with its items and attributes, is provided in the Mining View panel. This is
helpful to check the output of the data preparation step before evaluating
the query (or in other terms, before starting the mining).

Pattern Browser. Result of mining queries are shown to the user in a special-
ized interface, named Pattern Browser (see Figure 5. The Pattern Browser
provides statistics on the query results, and various functionalities for in-
teractive navigation the set of patterns, such as various kinds of visualizing
the patterns, or sorting them. The pattern browser also shows the spql
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query that generated the patterns, and allows the user to tune the query
parameters according to his needs, for instance, strengthening or relaxing
some constraints on-the-fly. This allows the user to quickly make the query
converge towards the desired parameters, for instance, towards a reasonably
sized solution set. In the pattern browser the user can also invoke some post-
processing ore require to materialize the extracted patterns in the underlying
database. At the moment the unique kind of post-processing implemented is
the extraction of association rules from the patterns results set, but we plan
to introduce more complex post-processing which uses extracted patterns as
basic bricks to build global models as clustering or classifiers. Also the set
of extracted association rules can be materialized as relational tables in the
underlying database.

3.2 Query Interpreter and Pre-processor

The second module takes care of interpreting the spql query, retrieving from
the underlying DBMS the data source, and preparing it for the mining phase.

The preprocessor receives from the GUI a well-formed spql query, and it is in
charge to accomplish the data preparation step. In fact, the Mining Engine is not
able to deal with a relational dataset, it can only read data in a proper format.
This format is the one traditionally used in frequent itemsets mining contexts.
The input dataset is a collection of transactions, where each transaction is a set
of items. Each of these items is stored as an integer identifier. In the relational
dataset an item may be a string, or even a floating point value, but to feed the
mining engine these values have to be discretized or mapped.

Thus, the query interpreter, uses the mining view definition present in the
spql query to retrieve from the original dataset the data of interest. These data
are mapped and translated in a categorical format and finally stored on disk.
The rest of the query, i.e. frequency and other constraints, are forwarded to the
mining engine together with a pointer the the transactional dataset.

3.3 The Mining Engine

The last module constitutes the core of the system which mines the transactional
dataset and extract the patterns. The mining core guarantees the scalability and
performance of the system by exploiting efficient mining algorithms and data
reduction techniques coming from the constraint-based mining paradigm.

The ConQueSt mining engine is based on DCI [24], a high performance,
Apriori-like, frequent itemsets mining algorithm, with has the nice feature of
being resource and data aware. It is resource aware, because, unlike many other
algorithms, it performs the first iterations out-of-core, reducing the dataset and
rewriting it directly to the disk. When the dataset is small enough, it is converted
and stored as a vertical bitmap in main memory. It is data aware because its
behavior changes in presence of sparse or dense datasets. It uses a compact
representation in the case of sparse datasets, and detects highly correlated items
to save bitwise works in the case of dense datasets. ConQueSt by inheriting the
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same characteristics, is extremely robust and able to effectively mine different
kinds of datasets, regardless of their size.

Although the ConQueSt mining engine adopts a level-wise Apriori-like visit
of the lattice, thanks to its internal vertical bitwise representation of the dataset,
and associated counting strategy, it performs better than other state-of-the-art
algorithms that exploit a depth first visit. Moreover, as we have shown in our
previous works [5,8], adopting a level-wise strategy has the great advantage of
allowing the exploitation of different kinds of constraints all together by means
of data-reduction. At each iteration of the mining process, the dataset is pruned
by exploiting the independent data reductions properties of all user-specified
constraints. Our framework, exploits a real synergy of all constraints that the
user defines for the pattern extraction: each constraint does not only play its part
in reducing the data, but this reduction in turns strengthens the pruning power
of the other constraints. Moreover data-reduction induces a pruning of the search
space, which in turn strengthens future data reductions. The orthogonality of
the exploited constraint pushing techniques has a twofold benefit: first, all the
techniques can be amalgamated together achieving a very efficient computation.

Moreover, since we have precisely identified classes of constraints which share
nice properties, each class has been implemented as an independent module,
which plays its role in precise points of the computation. Each module is then
instantiated on the basis of the specific constraints supplied by the user. Con-

QueSt can be easily extended to cope with new user-defined constraints. In
fact, it is not the constraint itself that performs data and search space reduc-
tions directly, but it is instead the overall framework which exploits constraints
classes properties during the computation. Therefore, in order to define a novel
constraint, and embed it in the computational framework, it is sufficient to com-
municate to the system to which classes (possibly more than one) it belongs.

4 Other Mining Query Languages

In this section we discuss other approaches to the data mining query language
definition issue. For lack of space we focus only on the approaches most related to
the ConQueSt proposal. We are aware that this presentation does not exhaus-
tively cover the wide state-of-the-art of the research (and also the development)
on data mining systems and query languages.

The problem of providing an effective interface between data sources and
data mining tasks has been a primary concern in data mining. There are several
perspectives upon which this interface is desirable, the most important ones
being (i) to provide a standard formalization of the desired patterns and the
constraints they should obey to; and (ii) to achieve a tighter integration between
the data sources and the relational databases (which likely accommodate them).
The common ground of most of the approaches can be summarized as follows:

– create and manipulate data mining models through a SQL-based interface
(thus implementing a “command-driven” data mining metaphor);

– abstract away the algorithmic particulars;
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– allow for mining tasks to be performed on data in the database (thus avoiding
the need to export to a special-purpose environment).

Approaches differ on what kinds of models should be created (which patterns
are of interest), and what operations we should be able to perform (which con-
straints the patterns should satisfy). The query language proposed in [21,22]
extends SQL with the new operator MINE RULE, which allows the computa-
tion and coding of associations in a relational format. Let us consider the rela-
tion transaction(Date, CustID, Item, Value) that contains the transactions of
a sales representative. The following rule allows the extraction of the rules with
support 20% and confidence 50%:

MINE RULE Associations AS
SELECT DISTINCT 1..n Item AS BODY, 1..1 Item AS HEAD,

SUPPORT,CONFIDENCE
WHERE BODY.Value > 100 AND HEAD.Value > 100
FROM transaction
GROUP BY CustID

HAVING COUNT(Item) > 4
CLUSTER BY Date

HAVING BODY.Date < HEAD.Date
EXTRACTING RULES WITH SUPPORT: 0.2, CONFIDENCE: 0.5

The above expression specifies the mining of associations of purchased items
such that the right part of the rule (consisting of only 1 item) has been purchased
after the left part of the rule (that can consist of more than one item), and related
to those customers who bought more than 4 items. Moreover, we consider only
items with a value greater than 100.

The above approach reflects the following features:

– The source data is specified as a relational entity, and data preparation is
accomplished by means of the usual relational operators. For example, the
source table can be specified by means of usual join operations, selections
and projections.

– The extended query language allows mining of unidimensional association
rules. The GROUP BY keyword allows the specification of the transaction
identifier, while the item description is specified in the SELECT part of the
operator.

– Limited forms of background knowledge can be specified, by imposing some
conditions over the admitted values of BODY and HEAD, and by using mul-
tiple source tables. Notice, however, that relying directly on SQL does not
allow direct specification of more expressive constructs, such as, e.g., con-
cept hierarchies. A limited form of data reorganization is specified by the
CLUSTER keyword, that allows the specification of topology constraints (i.e.
membership constraints of the components of rules to clusters).

– Concerning interestingness measures, the above operator allows the specifi-
cation of the usual support and confidence constraints, and of further con-
straints over the contents of the rules (in particular, the SELECT keyword
allows the specification of cardinality constraints).
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– extracted knowledge is represented by means of relational tables, containing
the specification of four attributes: Body, head, Support, Confidence.

Similarly to MINE RULE, the DMQL language [13,14], is designed as an ex-
tension of SQL that allows to select the primary source knowledge in SQL-like
form. However, the emphasis here is on the kind of patterns to be extracted.
Indeed, DMQL supports several mining tasks involving rules: characteristic, dis-
criminant, classification and association rules. The following query:

use database university database find characteristic rules
related to gpa, birth place, address, count(*)%
from student where status = "graduate" and major = "cs"
and birth place = "Canada"
with noise threshold = 0.05

specifies that the database used to extract the rules is the university database
(use database university database), that the kind of rules you are interested
in are characteristic rules (find characteristic rules) w.r.t. the attributes
gpa, birth place, and address (related to ...). The query specifies also that
this rules are extracted on the students who are graduated in computer science,
and that are born in Canada. As for MINE RULE, the specification of primary
source knowledge is made explicit in the from and where clauses.

DMQL exploits follows a decoupled approach between specification and im-
plementation, since the extraction is accomplished by external algorithms, and
the specification of the query has the main objective of preparing the data and
encoding them in a format suitable for the algorithms. Interestingly, DMQL al-
lows the manipulation of a limited form of background knowledge, by allowing
the direct specification of concept hierarchies.

Unfortunately, neither MINE RULE nor DMQL provide operators to further
query the extracted patterns. The closure principle is marginally considered in
MINE RULE (the mining result is stored into a relational table and can be fur-
ther queried), but not considered at all within DMQL. By contrast, Imielinkski
and others [17] propose a data mining query language (MSQL) which seeks to
provide a language both to selectively generate patterns, and to separately query
them. MSQL allows the extraction of association rules only, and can be seen as
an extension of MINE RULE. The pattern language of MSQL is based on mul-
tidimensional propositional rules, which are specified by means of descriptors.
A descriptor is an expression of the form: (Ai = aij) where Ai is an attribute,
and aij is a either a value or a range of values in the domain of Ai. The rules
extracted from MSQL have hence the form Body ⇒ Consequent where Body is a
conjunctset (i.e. the conjunction of an arbitrary number of descriptors such that
each descriptor in the set refers to a different attribute) and Consequent is a
single descriptor. Rules are generated by means of a GetRules statement which,
apart from syntax issues, has similar features as MINE RULE and DMQL. In
addition, MSQL allows for nested queries, that is, queries containing subqueries.

The extracted rules are stored in a RuleBase and then they can be further
queried, by means of the SelectRules statement. It is possible to select a subset
of the generated rules that verify a certain condition
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SelectRules(R) where Body has { (Age=*), (Sex=*) } and Consequent
is { (Address=*) }

as well as to select the tuples of the input database that violate (satisfy) all (any
of) the extracted rules:

Select * from Actor where VIOLATES ALL(
GetRules(Actor)
where Body is { (Age = *) }
and Consequent is { (Sex = *) }
and confidence > 0.3

)

A novel and completely different perspective to inductive databases querying
has been devised in [10]. The basic intuition is that, if the pattern language L
were stored within relational tables, any constraint predicate Q could be specified
by means of a relational algebra expression, and the DBMS could take care of
implementing the best strategy for computing the solution space. Assume, for
example, that sequences are stored within a relational engine by means of the
following relations:

– Sequences(sid,item,pos), representing each sequence by means of a sequence
identifier, an item and its relative position within the sequence;

– Supports(sid,supp) which specifies, for each sequence, its frequency.

Then, the following SQL query asks for the sequences holding with frequency
greater than 60%, or such that item a occurs before item b within the transaction,
can be expressed as follows:

SELECT Supports.sid
FROM Sequences S1, Sequences S2, Supports
WHERE S1.sid = Supports.sid AND S2.sid = S1.sid

AND Supports.supp > 60
OR (S1.item = a AND S2.item = b AND S1.pos < S2.pos)

Clearly, the pattern language can be extremely huge, and hence it is quite un-
practical to effectively store it. Indeed, the pattern language is represented as
a virtual table, i.e., an empty table which has to be populated. In the above
example, although the Sequences and Supports tables are exploited within the
query, they are assumed to be virtual tables, i.e., no materialization actually
exists for them within the DBMS. The idea here is that, whenever the user
queries such pattern tables, an efficient data mining algorithm is triggered by
the DBMS, which materializes those tuples needed to answer the query. After-
wards, the query can be effectively executed. Thus, the core of the approach is
a constraint extraction procedure, which analyzes a given SQL query and iden-
tifies the relevant constraints. The procedure builds, for each SQL query, the
corresponding relational algebra tree. Since virtual tables appear in leaf nodes
of the tree, a bottom-up traversal of the tree allows the detection of the neces-
sary constraints. Finally, specific calls to a mining engine can be raised in order
to populate those nodes representing virtual tables.
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This approach has the merit of providing a real tight coupling between the
mining and the DBMS, or in other terms, between the mining queries and the
database queries. Indeed, this approach does not even require the definition of
a data mining query language, since it is SQL itself to play such role. However,
it is not clear how such approach could support a complex knowledge discovery
process. For instance, the pre-processing step is completely overlooked by this
approach: preparing the data for mining would require long and complex SQL
queries. Moreover, since we got no reference to the source data, it is not clear
how the mining view could be defined and/or changed within a mining session.
Consider again the Sequences and Supports relations in the example above, and
suppose that the support of sequences patterns are computed w.r.t. a database
of sequences of events with a weekly timescale: what if the analyst decides to
move to the daily timescale?

The problem of providing little support to the pre-processing and evaluation
phase of the knowledge discovery process, is common to all the query languages
discussed above. In ConQueSt, while we can take care of the pre-processing at
the language level (e.g., easy mining view definition, attributes discretization),
the evaluation phase is attacked merely at the system level by means of the
pattern browser capabilities, such as the on-the-fly constraints tuning. More so-
phisticated post-processing of the extracted patterns, and reasoning techniques,
should be studied and developed in our future work.

5 Conclusion

Many distinguishing features make ConQueSt a unique system:

Large variety of constraints handled - To the best of our knowledge, Con-

QueSt is the only system able to deal with so many different constraints all
together, and provide the opportunity of easily defining new ones. While some
prototypes for constraint-based pattern discovery exist, they are usually focused
on few kinds of constraints, and their algorithmic techniques can not be easily
extended to other constraints.

Usability - ConQueSt has been devised to fruitfully deal with real-world prob-
lems. The user friendly interface, the pre-processing capabilities and the simple
connectivity to relational DBMS, make it easy for the user to immediately start
to find nuggets of interesting knowledge in her/his data. Modularity and exten-
sibility make the system able to adapt to changing application needs. Efficiency,
robustness and scalability make possible to mine real-world huge datasets.

Robustness and resources awareness - One of the main drawbacks of the
state-of-the art software for pattern discovery, is that it usually fails to mine
large amounts of data due to memory lack. In this sense, ConQueStis robust,
since huge datasets are mined out-of-core until the data-reduction framework
reduces the dataset size enough to move it in-core.

Efficiency - ConQueSt is a high performance mining software. As an Example
consider Figure 6 where we compare execution times of ConQueSt against
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Fig. 6. Performance comparison

FICA and FICM [26], two depth first algorithms, ad-hoc devised to deal with
the avg constraint (the one used in the comparison).

Even tough ConQueSt is already fruitfully usable on real-world problems,
many direction must be explored in the next future: efficient incremental min-
ing, advanced visualization techniques, more complex post-processing, building
global models from the interesting patterns, mining patterns from complex data
such as sequences and graphs. We are continuously developing new functionali-
ties of ConQueSt.
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