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Abstract. The paradigm of pattern discovery based on constraints has
been recognized as a core technique in inductive querying: constraints
provide to the user a tool to drive the discovery process towards po-
tentially interesting patterns, with the positive side effect of achieving
a more efficient computation. So far the research on this paradigm has
mainly focussed on the latter aspect: the development of efficient algo-
rithms for the evaluation of constraint-based mining queries. Due to the
lack of research on methodological issues, the constraint-based pattern
mining framework still suffers from many problems which limit its prac-
tical relevance. In our previous work [5], we analyzed such limitations
and showed how they flow out from the same source: the fact that in the
classical constraint-based mining, a constraint is a rigid boolean func-
tion which returns either true or false. To overcome such limitations we
introduced the new paradigm of pattern discovery based on Soft Con-
straints, and instantiated our idea to the fuzzy soft constraints. In this
paper we extend the framework to deal with probabilistic and weighted
soft constraints: we provide theoretical basis and detailed experimental
analysis. We also discuss a straightforward solution to deal with top-k
queries. Finally we show how the ideas presented in this paper have been
implemented in a real Inductive Database system.

1 Introduction

The paradigm of pattern discovery based on constraints was introduced with
the aim of providing to the user a tool to drive the discovery process towards
potentially interesting patterns, with the positive side effect of achieving a more
efficient computation. So far the research on this paradigm has mainly focused
on the latter aspect: the study of constraint properties and, on the basis of
these properties, the development of efficient algorithms for the evaluation of
constraint-based mining queries. Despite such algorithmic research effort, and
regardless some successful applications, e.g., in medical domains [13,18], or in
biological domains [4], the constraint-based pattern mining framework still suf-
fers from many problems which limit its practical relevance. In our previous
work [5], we analyzed such limitations and showed how they flow out from the
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same source: the fact that in the classical constraint-based mining, a constraint
is a rigid boolean function which returns either true or false. Indeed, interesting-
ness is not a dichotomy. Following this consideration, we introduced in [5] the
new paradigm of pattern discovery based on Soft Constraints, where constraints
are no longer rigid boolean functions. In particular we adopted a definition of
soft constraints based on the mathematical concept of semiring. Albeit based
on a simple idea, our proposal has the merit of providing a rigorous theoretical
framework, which is very general (having the classical paradigm as a partic-
ular instance), and which overcomes all the major methodological drawbacks
of the classical constraint-based paradigm, representing a step further towards
practical pattern discovery.

While in our previous paper we instantiated the framework to the fuzzy semi-
ring, in this paper we extend the framework to deal with the probabilistic and the
weighted semirings: these different constraints instances can be used to model dif-
ferent situations, depending on the application at hand. We provide the formal
problemdefinition and the theoretical basis to develop concrete solvers for the min-
ing problems we defined. In particular, we will show how to build a concrete soft-
constraint basedpatterndiscovery system, bymeans of a set of appropriatewrappers
around a crisp constraint pattern mining system. The mining system for classical
constraint-based pattern discover that we adopted is ConQueSt, a system which
we have developed at Pisa KDD Laboratory [8]. Such a system is based on a mining
engine which is a general Apriori-like algorithm which, by means of data reduction
and search space pruning, is able to push a wide variety of constraints (practically
all possible kinds of constraintswhichhave been studied and characterized) into the
frequent itemsets computation. Finally, we discuss how to answer to top-k queries.

2 Soft Constraint Based Pattern Mining

Classical constraint (or crisp constraints) are used to discriminate admissible
and/or non-admissible values for a specific (set of ) variable. However, sometimes
this discrimination does not help to select a set of assignments for the variable
(consider for instance overconstrained problems, or not discriminating enough
constraints). In this case is preferable to use soft constraints where a specific
cost/preference is assigned to each variable assignments and the best solution is
selected by looking for the less expensive/more preferable complete assignment.

Several formalizations of the concept of soft constraints are currently available.
In the following, we refer to the formalization based on c-semirings [7]. Using
this framework, classical/crisp constraints are represented by using the boolean
true and false representing the admissible and/or non-admissible values; when
cost or preference are used, the values are instead instantiations over a partial
order set (for instance, the reals, or the interval [0,1]).

Moreover the formalism must provide suitable operations for combination (×)
of constraints satisfaction level, and comparison (+) of patterns under a combi-
nation of constraints. This is why this formalization is based on the mathematical
concept of semiring.
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Definition 1 (c-semirings [7]). A semiring is a tuple 〈A, +, ×,0,1〉 such that:
A is a set and 0,1 ∈ A; + is commutative, associative and 0 is its unit el-
ement; × is associative, distributes over +, 1 is its unit element and 0 is its
absorbing element. A c-semiring (“c” stands for “constraint-based”) is a semi-
ring 〈A, +, ×,0,1〉 such that + is idempotent with 1 as its absorbing element
and × is commutative.

Definition 2 (soft constraint on c-semiring [7]). Given a c-semiring S =
〈A, +, ×,0,1〉 and an ordered set of variables V over a finite domain D, a con-
straint is a function which, given an assignment η : V → D of the variables,
returns a value of the c-semiring. By using this notation we define C = η → A
as the set of all possible constraints that can be built starting from S, D and V .

In the following we will always use the word semiring as standing for c-semiring.

Example 1. The following example illustrates the definition of soft constraints
based on semiring, using the example mining query:

Q : suppD(X) ≥ 1500 ∧ avg(X.weight) ≤ 5 ∧ sum(X.price) ≥ 20

which requires to mine, from database D, all patterns which are frequent (have
a support at least 1500), have average weight at most 5 and a sum of prices
at least 20. In this context, we have that the ordered set of variables V is
〈suppD(X), avg(X.weight), sum(X.price)〉; the domain D is: D(suppD(X)) =
N, D(avg(X.weight)) = R

+, and D(sum(X.price)) = N. If we consider the
classical crisp framework (i.e., hard constraints) we are on the boolean semi-
ring: SBool = 〈{true, false}, ∨, ∧, false, true〉. A soft constraint C is a function
V → D → A; e.g., suppD(X) → 1700 → true.

The + operator is what we use to compare the level of constraints satisfac-
tion for various patterns. Let us consider the relation ≤S (where S stands for
the specified semiring) over A such that a ≤S b iff a + b = b. It is possible
to prove that: ≤S is a partial order; + and × are monotone on ≤S ; 0 is its
minimum and 1 its maximum, and 〈A, ≤S〉 is a complete lattice with least
upper bound operator +. In the context of pattern discovery a ≤S b means
that the pattern b is more interesting than a, where interestingness is defined
by a combination of soft constraints. When using (soft) constraints it is nec-
essary to specify, via suitable combination operators, how the level of inter-
est of a combination of constraints is obtained from the interest level of each
constraint. The combined weight (or interest) of a combination of constraints
is computed by using the operator ⊗ : C × C → C defined as (C1 ⊗ C2)η =
C1η ×S C2η.

Example 2. In this example, and in the rest of the paper, we use for the pat-
terns the notation p : 〈v1, v2, v3〉, where p is an itemset, and 〈v1, v2, v3〉 denote
the three values 〈suppD(p), avg(p.weight), sum(p.price)〉 corresponding to the
three constraints in the conjunction in the query Q of Example 1. Consider, for
instance, the following three patterns: p1 : 〈1700, 0.8, 19〉, p2 : 〈1550, 4.8, 54〉, p3 :
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〈1550, 2.2, 26〉. If we adopt the classical crisp framework, in the mining query Q
we have to combine the three constraints using the ∧ operator (which is the × in
the boolean semiring SBool). Consider for instance the pattern p1 : 〈1700, 0.8, 19〉
for the ordered set of variables V = 〈suppD(X), avg(X.weight), sum(X.price)〉.
The first and the second constraint are satisfied leading to the semiring level true,
while the third one is not satisfied and has associated level false. Combining the
three values with ∧ we obtain true ∧ true ∧ false = false and we can conclude
that the pattern 〈1700, 0.8, 19〉 is not interesting w.r.t. our purposes. Similarly,
we can instead compute level true for pattern p3 : 〈1550, 2.2, 26〉 corresponding
to an interest w.r.t. our goals.

However, dividing patterns in interesting and non-interesting is sometimes not
meaningful nor useful. Most of the times we want to say that each pattern is
interesting with a specific level of preference. This idea is at the basis of the soft
constraint based pattern mining paradigm [5].

Definition 3 (Soft Constraint Based Pattern Mining). Let P denote the
domain of possible patterns. A soft constraint on patterns is a function C : P → A
where A is the carrier set of a semiring S = 〈A, +, ×,0,1〉. Given a combination
of soft constraints ⊗C, i.e., a description of what is considered by the user an
interesting pattern, we define two different problems:

λ-interesting: given a minimum interest threshold λ ∈ A, it is required to mine
the set of all λ-interesting patterns, i.e., {p ∈ P| ⊗ C(p) ≥S λ}.

top-k: given a threshold k ∈ N, it is required to mine the top-k patterns p ∈ P
w.r.t. the order ≤S.

In the rest of the paper we adopt the notation intPS (λ) to denote the problem of
mining λ-interesting patterns (from pattern domain P) on the semiring S, and
similarly topPS (k), for the corresponding top-k mining problem. Note that the
Soft Constraint Based Pattern Mining paradigm just defined, has many degrees
of freedom. In particular, it can be instantiated:

1. on the domain of patterns P in analysis (e.g., itemsets, sequences, trees or
graphs),

2. on the semiring S = 〈A, +, ×,0,1〉 (e.g., boolean, fuzzy, weighted or proba-
bilistic), and

3. on one of the two possible mining problems, i.e., λ-interesting or top-k mining.

In other terms, by means of Definition 3, we have defined many different
mining problems: it is worth noting that the classical constraint based frequent
itemsets mining, is just a particular instance of our framework. In particular,
it corresponds to the mining of λ-interesting itemsets on the boolean semiring,
where λ = true, i.e., intIb (true). In our previous paper [5] we have shown how to
deal with the mining problem intIf (λ) (i.e., λ-interesting Itemsets on the Fuzzy
Semiring), in this paper we show how to extend our framework to deal with (i)
intIp (λ) (i.e., λ-interesting Itemsets on the Probabilistic Semiring), (ii) intIw(λ)
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(i.e., λ-interesting Itemsets on the Weighted Semiring), and (iii) mining top-k
itemsets on any semiring.

The methodology we adopt is based on the property that in a c-semiring
S = 〈A, +, ×,0,1〉 the ×-operator is extensive [7], i.e, a× b ≤S a for all a, b ∈ A.
Thanks to this property, we can easily prune away some patterns from the set
of possibly interesting ones. In particular this result directly applies when we
want to solve a λ-interesting problem. In fact for any semiring (fuzzy, weighted,
probabilistic) we have that [7]:

Proposition 1. Given a combination of soft constraints ⊗C = C1 ⊗ . . . ⊗ Cn

based on a semiring S, for any pattern p ∈ P:

⊗C(p) ≥S λ ⇒ ∀i ∈ {1, . . . , n} : Ci(p) ≥S λ.

Proof. Straightforward from the extensivity of ×.

Therefore, computing all the λ-interesting patterns can be done by solving a
crisp problem where all the constraint instances with semiring level lower than
λ have been assigned level false , and all the instances with semiring level greater
or equal to λ have been assigned level true. In fact, if a pattern does not satisfy
such conjunction of crisp constraints, it will not be neither interesting w.r.t. the
soft constraints. Using this theoretical result, and some simple arithmetic we can
transform each soft constraint in a corresponding crisp constraint, push the crisp
constraint in the mining computation to prune uninteresting patterns, and when
needed, post-process the solution of the crisp problem, to remove uninteresting
patterns from it.

3 Mining intI
p(λ) (λ-Interesting Itemsets on the

Probabilistic Semiring)

Probabilistic CSPs (Prob-CSPs) were introduced to model those situations where
each constraint c has a certain probability p(c), independent from the probability
of the other constraints, to be part of the given problem (actually, the probability
is not of the constraint, but of the situation which corresponds to the constraint:
saying that c has probability p means that the situation corresponding to c
has probability p of occurring in the real-life problem). Using the probabilistic
constraints framework [14] we suppose each constraint to have an independent
probability law, and combination is computed performing the product of the
semiring value of each constraint instantiations. As a result, the semiring corre-
sponding to the probabilistic framework is SP = 〈[0, 1], max,×, 0, 1〉.

Consider the constraints graphical representations in Figure 1, where the
semiring values between 0 and 1 are this time interpreted as probabilities. In
this situation for the pattern p1 = 〈1700, 0.8, 19〉 we obtain that: C1(p1) =
0.83, C2(p1) = 1 and C3(p1) = 0.45. Since in the probabilistic semiring the
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combination operator × is the arithmetic multiplication, we got that the interest
level of p1 is 0.37. Similarly for p2 and p3:

– p1 : C1 ⊗ C2 ⊗ C3(1700, 0.8, 19) = ×(0.83, 1, 0.45) = 0.37
– p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = ×(0.58, 0.6, 1) = 0.35
– p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = ×(0.58, 1, 0.8) = 0.46

Therefore, with this particular instance we got that p2 <SP p1 <SP p3, i.e., p3
is the most interesting pattern among the three. Dealing with the probabilistic
semiring, we can readapt most of the framework developed for the fuzzy semiring.
In fact the two semirings are based on the same set [0, 1] and on the same
+ operator which is max. The only distinguishing element is the × operator
which is min for the fuzzy semiring, while it is the arithmetic times for the
probabilistic semiring. This means that we can straightforwardly readapt the
problem definition, the way of defining the behaviour of soft constraints, and
the crisp translation.

Definition 4. Let I = {x1, ..., xn} be a set of items, where an item is an ob-
ject with some predefined attributes (e.g., price, type, etc.). A soft constraint on
itemsets, based on the probabilistic semiring, is a function C : 2I → [0, 1]. Given
a combination of such soft constraints ⊗C ≡ C1 ⊗ . . .⊗Cn, we define the interest
level of an itemset X ∈ 2I as ⊗C(X) = C1(X)× · · ·× Cn(X). Given a minimum
interest threshold λ ∈ ]0, 1], the λ-interesting itemsets mining problem, requires
to compute intIp (λ) = {X ∈ 2I | ⊗ C(X) ≥ λ}.

Definition 5. A soft constraint C on itemsets, based on the probabilistic semi-
ring, is defined by a quintuple 〈Agg, Att, θ, t, α〉, where:

– Agg ∈ {supp, min, max, count, sum, range, avg, var, median, std, md};
– Att is the name of the attribute on which the aggregate agg is computed (or

the transaction database, in the case of the frequency constraint);
– θ ∈ {≤, ≥};
– t ∈ R corresponds to the center of the interval and it is associated to the

semiring value 0.5;
– α ∈ R

+ is the softness parameter, which defines the inclination of the pref-
erence function (and thus the width of the interval).

suppD(X)
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Fig. 1. Graphical representation of possible probabilistic instance of the constraints in
the mining query Q in Example 1
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In particular, if θ = ≤ (as in Figure 1(C2)) then C(X) is 1 for X ≤ (t − αt), is
0 for X ≥ (t + αt), and is linearly decreasing from 1 to 0 within the interval
[t−αt, t+αt]. The other way around if θ = ≥ (as, for instance, in Figure 1(C3)).
Note that if the softness parameter α is 0, then we obtain the crisp (or hard)
version of the constraint.

Example 3. Consider again the query Q given in Example 1, and its probabilistic
instance graphically described by Figure 1. Such query can be expressed in our
constraint language as:

〈supp, D, ≥, 1500, 0.2〉, 〈avg, weight,≤, 5, 0.2〉, 〈sum, price,≥, 20, 0.5〉

Definition 6. Given a probabilistic soft constraint C ≡ 〈Agg, Att, θ, t, α〉, and a
minimum interest threshold λ, we define the crisp translation of C w.r.t. λ as:

Cλ
crisp ≡

{
Agg(Att) ≥ t − αt + 2λαt, if θ = ≥
Agg(Att) ≤ t + αt − 2λαt, if θ = ≤

In [5] we proved that, on the fuzzy semiring, given a combination of soft con-
straints ⊗C ≡ C1 ⊗ . . . ⊗ Cn, and a minimum interest threshold λ, if we consider
the conjunction of crisp constraints obtained by conjoining the crisp translation
of each constraint in ⊗C w.r.t. λ (i.e., C′ ≡ C1

λ
crisp ∧ . . . ∧ Cn

λ
crisp), it holds that

intIf (λ) = {X ∈ 2I | ⊗ C(X) ≥ λ} = Th(C′)

Similarly, the following property holds:

Proposition 2. Given the vocabulary of items I, a combination of soft con-
straints ⊗C ≡ C1 ⊗ . . . ⊗ Cn, and a minimum interest threshold λ. It holds that:

intIp (λ) ⊆ intIf (λ)

Proof. Consider two real numbers x1, x2 in the interval [0, 1]. It holds that x1 ×
x2 ≤ min(x1, x2). Therefore, for a given pattern i, if in the probabilistic semiring
⊗C(i) ≥p λ, then also in the fuzzy semiring ⊗C(i) ≥f λ.

〈supp, D, ≥, t, α〉 〈avg,weight,≤, t, α〉 〈sum, price, ≥, t, α〉
D t α t α t α

Q1 retail 20 0.8 10000 0.5 20000 0.5
Q2 retail 20 0.5 10000 0.5 20000 0.5
Q3 retail 20 0.2 10000 0.5 20000 0.5
Q4 retail 20 0.8 5000 0.2 20000 0.5
Q5 retail 20 0.8 5000 0.8 20000 0.5
Q6 T40I10D100K 800 0.75 15000 0.2 100000 0.5
Q7 T40I10D100K 800 0.75 15000 0.9 100000 0.5
Q8 T40I10D100K 800 0.25 15000 0.2 100000 0.2

Fig. 2. Description of queries experimented
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Fig. 3. Experimental results on the retail dataset with λ ranging in ]0, 1] in the
probabilistic semiring: number of solutions (a), and ratio with the number of solutions
in the fuzzy semiring (b)

When dealing with the probabilistic semiring, we translate the given query to
a crisp one. But afterwards, we need a post-processing step in which we select,
among the solutions to the crisp query, the λ-interesting patterns. It is natural
to ask ourselves how much selective is this post-processing. This could provide a
measure of the kind of improvement that one could get by studying and devel-
oping ad-hoc techniques, to push probabilistic soft constraints into the pattern
extraction computation.

In Figure 3, for the retail dataset and the queries of Figure 2, we report:
in (a), the number of λ-interesting patterns in the probabilistic semiring, while
in (b) the ratio of this number with the number of solutions in the fuzzy semi-
ring, i.e., |intIp (λ)| / |intIf (λ)|. The execution time of the post-processing is not
reported in the plots, because in all the experiments conducted, it was always in
the order of few milliseconds, thus negligible w.r.t. the mining time. Observing
the ratio we can note that it is always equals to 1 for λ = 0 and λ = 1. In
fact a pattern having at least a constraint for which it returns 0, will receive
a semiring value of 0 in both the fuzzy semiring (min combination operator),
and the probabilistic semiring (× combination operator). Similarly, for λ = 1,
to be a solution a pattern must return a value of 1 for all the constraints in the
combination, in both the semirings. Then we can observe that this ratio is quite
high, always larger than 0.7 in the retail dataset. This is no longer true for the
queries on the T40I10D100K dataset, reported in Figure 4 (a) and (b): the ratio
reach a minimum value of 0.244 for query Q7 when λ = 0.2.

What we can observe is that the ratio does not depend neither on the num-
ber of solutions nor on λ (apart the extreme cases 0 and 1). The ratio de-
pends on the softness of the query: the softer the query the lower the ratio, i.e.,
more patterns discarded by the post-processing. This can be observed in both
Figure 3(b) and 4(b): for instance, among the first three queries Q1 is softer
than Q2 which in turns is softer than Q3, and this is reflected in the ratio
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Fig. 4. Experimental results on the T40I10D100K dataset with λ ranging in ]0, 1] in the
probabilistic semiring: number of solutions (a), and ratio with the number of solutions
in the fuzzy semiring (b)

which is lower for Q1; similarly Q5 is softer than Q4 and its ratio is lower; in
4(b) Q8 is the least soft while Q7 is the most soft, and accordingly behaves the
ratio.

4 Mining intI
w(λ) (λ-Interesting Itemsets on the

Weighted Semiring)

While in the fuzzy semiring each pattern has an associated level of preference
(or interestingness) for each constraint, and in the probabilistic semiring a value
which represents a probability, in the weighted semiring they have an associated
cost. Therefore, in the weighted semiring the cost function is defined by summing
up the costs of all constraints. According to the informal description given above,
the weighted semiring is SW = 〈R+, min, sum, +∞, 0〉.

Example 4. Consider the following weighted instance for the constraints in the
query Q (graphically represented in Figure 5):

– C1(suppD(X)) =
{

1750 − suppD(X), if suppD(X) < 1750
0, otherwise.

– C2(avg(X.weight)) = 25 ∗ avg(X.weight)

– C3(sum(X.price)) =
{

5 ∗ (60 − sum(X.price)), if sum(X.price) < 60
0, otherwise.

Note how the soft version of the constraints are defined in the weighted frame-
work: C1 for instance, since bigger support is better, gives a cost of 0 when the
support is greater than 1750 and an increasing cost as the support decreases.
Similarly for constraint C3: we assign a cost 0 when the sum of prices is at least
60, while the cost increases linearly as the sum of prices shrinks. Constraint C2
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instead aims to have an average weight as lower as possible, and thus larger
average weight will produce larger (worse) cost. In this situation we got that:

– p1 : C1 ⊗ C2 ⊗ C3(1700, 0.8, 19) = sum(50, 20, 205) = 275
– p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = sum(200, 120, 30) = 350
– p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = sum(200, 55, 170) = 425

Therefore, with this particular instance we got that p3 <SW p2 <SW p1 (remem-
ber that the order ≤SW correspond to the ≥ on real numbers). In other terms,
p1 is the most interesting pattern w.r.t. this constraints instance.

Since in the weighted semiring, the values correspond to costs, instead of looking
for patterns with an interest level larger than λ, we seek for patterns with a cost
smaller than λ.

Definition 7. Let I = {x1, ..., xn} be a set of items, where an item is an ob-
ject with some predefined attributes (e.g., price, type, etc.). A soft constraint on
itemsets, based on the weighted semiring, is a function C : 2I → R

+. Given a
combination of such soft constraints ⊗C ≡ C1 ⊗ . . . ⊗ Cn, we define the interest
level of an itemset X ∈ 2I as ⊗C(X) =

∑
i=1,...,n Ci(X). Given a maximum

cost threshold λ ∈ R
+, the λ-interesting itemsets mining problem, requires to

compute intIw(λ) = {X ∈ 2I | ⊗ C(X) ≤ λ}.
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Fig. 5. Graphical representation of possible weighted instances of the constraints in in
the mining query Q in Example 1

For sake of simplicity, we restrict to weighted constraints with a linear behavior
as those ones described in Figure 5. To describe such simple behavior, we need
a new parameter β ∈ R

+ that represents the semiring value associated to the
t point (playing the role of the implicitly given 0.5 value for the fuzzy and
probabilistic semiring). In other words we provide two points to describe the
straight line passing through them: the point (t, β) and the point (t − αt, 0) for
θ =≤ or (t+αt, 0) for θ =≥. Note that α still plays the role of the softness knob.

Definition 8. A soft constraint C on itemsets, based on the weighted semiring,
is defined by a sextuple 〈Agg, Att, θ, t, β, α〉, where: Agg, Att, θ and α are defined
as for the fuzzy/probabilistic case (Definition 5), t is a point in the carrier set
of the weighted semiring, i.e., t ∈ R

+, and β represents the semiring value
associated to t.
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Example 5. Consider again the query Q given in Example 1, and its weighted
instance graphically described by Figure 5. Such query can be expressed in our
constraint language as:

〈supp, D, ≥, 1500, 250,
1
6
〉, 〈avg, weight,≤, 5, 125, 1〉, 〈sum, price, ≥, 20, 200, 1〉

For the weighted semiring we can still rely on Proposition 1, which states that a
pattern in order to be λ-interesting, must return a semiring value smaller than λ
(we are dealing this time with costs; i.e., ≥W is ≤) for each single constraint in the
query: this assures us that if a pattern does not satisfy the crisp translation of the
given query, it will not be λ-interesting neither in the weighted semiring. In other
words we can always use the same methodology described for the probabilistic
semiring: translate the query to a crisp one, evaluate it, post-process the result
to select the exact solution set.

Definition 9. Given a weighted soft constraint C ≡ 〈Agg, Att, θ, t, β, α〉, and a
maximum cost threshold λ, we define the crisp translation of C w.r.t. λ as:

Cλ
crisp ≡

{
Agg(Att) ≤ t − αt + 1

β λαt, if θ = ≤
Agg(Att) ≥ t + αt − 1

β λαt, if θ = ≥

Example 6. Given the weighted soft constraint 〈sum, price, ≥, 20, 200, 1〉, its
crisp translation is sum(X.price) ≥ 24 for λ = 180, it is sum(X.price) ≥ 10 for
λ = 250.

Proposition 3. Given the vocabulary of items I, a combination of weighted soft
constraints ⊗C ≡ C1 ⊗ . . . ⊗ Cn, and a maximum interest threshold λ. Let C′ be
the conjunction of crisp constraints obtained by conjoining the crisp translation
of each constraint in ⊗C w.r.t. λ: C′ ≡ C1

λ
crisp ∧ . . . ∧ Cn

λ
crisp. It holds that:

intIw(λ) ⊆ {X ∈ 2I | ⊗ C(X) ≤ λ} = Th(C′)

where Th(C′) is the solution set for the crisp problem, according to the notation
introduced in Definition 2.

In the following we report the results of some experiments that we have con-
ducted on the same datasets used before for the fuzzy and the probabilistic
semirings. We have compared 8 different instances (described in Figure 6) of the
query Q :

〈supp, D, ≥, t, β, α〉〈avg, weight,≤, t, β, α〉, 〈sum, price, ≥, t, β, α〉

The results of the experiments are reported in Figure 7 and Figure 8. A first
observation is that, on the contrary of what happening in the probabilistic and
fuzzy semiring, here the larger is λ the larger is the number of solutions. This is
trivially because the order of the weighted semiring says that smaller is better.
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〈supp, D, ≥, t, β, α〉 〈avg,weight,≤, t, β, α〉 〈sum, price, ≥, t, β, α〉
D t β α t β α t β α

Q9 retail 20 600 0.8 5000 100 0.2 20000 250 0.5
Q10 retail 20 600 0.2 5000 100 0.2 20000 250 0.5
Q11 retail 20 600 0.8 5000 100 0.8 20000 250 0.5
Q12 retail 20 600 0.8 5000 500 0.2 20000 250 0.5
Q13 retail 20 600 0.8 5000 1000 0.2 20000 500 0.5
Q14 T40I10D100K 800 500 0.8 5000 200 0.5 80000 400 0.8
Q15 T40I10D100K 600 600 0.8 15000 500 0.5 80000 400 0.8
Q16 T40I10D100K 1000 500 0.5 15000 500 0.5 100000 600 0.9

Fig. 6. Description of queries experimented
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Fig. 7. Experimental results on the retail dataset with λ ranging in [0, 1000] in the
weighted semiring: number of solutions (a), and ratio with the number of solutions of
the crisp translation (b)
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Fig. 8. Experimental results on the T40I10D100K dataset with λ ranging in [0, 1000]
in the weighted semiring: number of solutions (a), and ratio with the number of solu-
tions of the crisp translation (b)
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In Figure 7(a) we can observe that queries Q12 and Q13 always return a small
number of solutions: this is due to the high values of β in the constraints, which
means high costs, making difficult for patterns to produce a total cost smaller
than λ. In Figure 7(b) and Figure 8(b) we report the ratio of the number of
solution with the cardinality of the theory corresponding to the crisp translation
of the queries, i.e., |intIw(λ)| / |Th(C′)|. This gives a measure of how good is
the approximation of the crisp translation, or in other terms, the amount of
post-processing needed (which, however, has negligible computational cost). The
approximation we obtain using our crisp solver is still quite good but, as we
expected, not as good as in the probabilistic semiring. Also in this case, the
softer the query the lower the ratio, i.e., the crisp approximation is better for
harder constraints (closer to crisp). For instance in Figure 7(b) we can observe
that Q10, which is the query with smaller values for the softness parameter α,
always present a very high ratio.

5 Mining Top-k Itemsets

For sake of completeness, in this section we sketch a simple methodology to deal
with top-k queries, according to [6]. In the following we do not distinguish be-
tween the possible semiring instances, we just describe the general methodology.

The main difficult to solve top-k queries is that we can know the number of
solutions only after the evaluation of a query. Therefore, given k, the simple idea
is to repeatedly run λ-interesting queries with different λ thresholds: we start
from extremely selective λ (fast mining) decreasing in selectivity, until we do not
extract a solution set which is large enough (more than k).

Considering for instance the fuzzy semiring, where the best semiring value is
1: we could start by performing a 0.95-interesting query, and if the query results
in a solution set of cardinality larger than k, then we sort the solution according
to their semiring value and return the best k, otherwise we slowly decrease the
threshold, for instance λ = 0.9, and so on. Notice that is important to start from
a very high threshold in order to perform fast mining extractions with small
solution sets, and only if needed decrease the threshold to get more solutions at
the cost of longer computations.

6 Soft Constraints in ConQueSt

In this section we describe how the ideas presented in this paper have been
integrated within the ConQueSt inductive database system. ConQueSt is a
constraint-based querying system devised with the aim of supporting the intrin-
sically exploratory nature of pattern discovery. It provides users with an expres-
sive constraint-based query language (named SPQL) which allows the discovery
process to be effectively driven toward potentially interesting patterns. The sys-
tem is built around an efficient constraint-based mining engine which entails
several data and search space reduction techniques, and allows new user-defined
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constraints to be easily added (for deeper details on the ConQueSt system, see
also other paper in this volume [10]).

In order to integrate the soft constraint based pattern mining paradigm within
ConQueSt, we first extended the SPQL query language to allow definition of
soft constraints.

Example 7. In this example we show a complex SPQL query exploiting the soft
constraint paradigm. In particular it requires to mine, in the probabilistic semi-
ring, the top 5 patterns w.r.t. a given combination of 3 soft constraint: the
frequency constraint, support larger than 5 with 0.4 softness, plus two aggre-
gate soft constraints defined over the attributes product.gross weight and
product.units per case. This is a true mining query, defined within Con-

QueSt on the famous foodmart2000 datamart.

1. MINE TOP 5.0 PROBABILISTIC PATTERNS

2. WITH SUPP>= 5.0 SOFT 0.4 IN

3. SELECT product.product_name, product.gross_weight,

product.units_per_case, sales_fact_1998.time_id,

sales_fact_1998.customer_id, sales_fact_1998.store_id

4. FROM [product], [sales_fact_1998]

5. WHERE sales_fact_1998.product_id=product.product_id

6. TRANSACTION sales_fact_1998.time_id, sales_fact_1998.customer_id,

sales_fact_1998.store_id

7. ITEM product.product_name

8. ATTRIBUTE product.gross_weight, product.units_per_case

9. CONSTRAINED BY average(product.gross_weight)<=20 SOFT 0.8 AND

sum(product.units_per_case)>=50 SOFT 0.5

(a) (b)

Fig. 9. ConQueSt window for the definition of a soft constraint (a), and another
window with the graphical representation of the soft constraint defined (b)

In line 1. we got the soft constraint query type definition (i.e., if top-k or λ-
interesting with the appropriate threshold) and the semiring in which the query
must be evaluated. In line 2 a minimum frequency constraint is defined with
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threshold 5 and 0.4 softness level. From line 3 to 5 we got a typical SQL select-
from-where statement defining the data source for the query. Lines from 6 to 8
contains the mining view definition, or in other terms, how transactions must
be built from the source data (pre-processing). Line 9 contains the two other
constraints with their associated softness parameters.

Fig. 10. ConQueSt soft constraints query definition

This query seems quite complex to be written, but ConQueSt offers simple
mechanisms to facilitate the definition of a query. In figure 9 we show the win-
dow for the definition of a soft constraint, and the window with the graphical
representation of the soft constraint defined.

In Figure 10 we show ConQueSt’s constraint definition module, where all
the three constraints of the query in Example 7 are reported. Note the dropdown
menus to choose among top-k or λ-interesting, and to choose the semiring.

Finally, in Figure 11 we show ConQueSt global view with the query in Exam-
ple 7 ready to be run, then the resulting top 5 patterns with two different possible
views (that can be chosen from the menu): with the actual value of each pattern
for each aggregate in a constraint, or with the respective interestingness value.

7 Related Work

Since in this paper we extend a novel paradigm that we introduced last year,
there are not many related works in a strict sense. In a larger sense, all the work
done on interestingness of extracted patterns can be considered related. In [22]
all these works are divided in four classes: objective interestingness measures
[12,3,21,15], visualization-based approaches [17], subjective domain-dependent
measures of interest [20], and constraint-based approaches. Our proposal clearly
collocates within the last class. As already stated in the introduction, a lot
of work has been done on constraint-based pattern discovery, but almost all
has been done on the development of efficient constraint-pushing algorithms.
Entering in the details of these computational techniques, for which we have
provided references in the introduction, is beyond the scope of this paper. The
reader should refer to [11,9] for un updated state-of-the-art. What we can say
here is that most of these techniques have been adopted to build ConQueSt’s
mining engine [8].
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(a)

(b)

(c)

Fig. 11. ConQueSt global view with the query in Example 7 ready to be run(a); the
pattern browser showing top 5 patterns (b); the pattern browser where for each pattern
the interestingness level for each constraint is shown



40 S. Bistarelli and F. Bonchi

To the best of our knowledge only few works [16,2] have studied the constraint-
based paradigm by a methodological point of view, mainly criticizing some of its
weak points. To overcome these weak points in this paper we have introduced the
use of soft-constraints. A similar approach, based on relaxation of constraints,
has been adopted in [1] but for sequential patterns. In the context of sequential
patterns, constraints are usually defined by means of regular languages: a pattern
is a solution to the query only if it is frequent and it is accepted by the regular
language. In this case, constraint-based techniques adopt a deterministic finite
automaton to define the regular language.

The use of regular languages transforms the pattern mining process into the
verification of which of the sequences of the language are frequent, completely
blocking the discovery of novel patterns. In [1] the authors propose a new mining
methodology based on the use of constraint relaxations, which assumes that the
user is responsible for choosing the strength of the restriction used to constrain
the mining process. A hierarchy of constraint relaxations is developed.

Another recent work using softness in a inductive database context is [19].
In this paper the softness issue addressed, is mostly related to the frequency
constraint, i.e., avoiding the exact match between candidate patterns and data
instances. The work is developed for substring patterns.

Acknowledgments. The authors wish to thank Roberto Trasarti from Pisa
KDD Laboratory, for the excellent work done implementing our ideas within the
continuously growing ConQueSt system.
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