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Abstract. Missing values issue in databases is an important problem
because missing values bias the information provided by the usual data
mining methods. In this paper, we are searching for mining patterns sat-
isfying correct properties in presence of missing values (it means that
these patterns must satisfy the properties in the corresponding complete
database). We focus on k-free patterns. Thanks to a new definition of this
property suitable for incomplete data and compatible with the usual one,
we certify that the extracted k-free patterns in an incomplete database
also satisfy this property in the corresponding complete database. More-
over, this approach enables to provide an anti-monotone criterion with
respect to the pattern inclusion and thus design an efficient level-wise
algorithm which extracts correct k-free patterns in presence of missing
values.

1 Introduction

Missing values in databases is a problem as old as the origin of these storage
structures. It is an important issue because information extracted by usual data
mining or statistics methods in incomplete data are biased and do not reflect
the sound knowledge on the domain. We show in Section 3.1 the damages due
to missing values in the pattern mining area. The popular uses of (frequent)
patterns (e.g., rules, classification, clustering) are no longer reliable. The basic
idea of elementary techniques to cope with missing values is to guess them (e.g.,
use of the mean, the most common value, default value) and complete them.
Unfortunately, these techniques are not satisfactory because they exaggerate
correlations [1] and missing values completion remains a hard track.

On the contrary, in this paper, we are searching for mining patterns satisfying
properties in presence of missing values which are also satisfied in the corre-
sponding complete database. Our key idea is to highlight properties from an
incomplete database, these properties must be consistent in the real database
without missing values. We say that these properties are correct. This can be
achieved because some characteristics are not removed by missing values. For
instance, if a pattern is frequent in a database with missing values, it must be
frequent in the corresponding complete database. In Section 4.1, we propose
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an operator to define the relation between an incomplete database and every
possible completion.

In this paper, we focus on the property of k-freeness [2]. This property is at the
core of frequent pattern mining, association rules building, and more generally
condensed representations of frequent patterns [3] which enable multiple uses
of frequent patterns. Our main contribution is to propose a new definition of
the k-freeness property in incomplete data which is fully compatible with the
usual one in a database without missing values. This new definition certifies that
the extracted patterns satisfying this definition in an incomplete database are
k-free in the corresponding complete database and, in fact, in every completion
of the incomplete database. Moreover, this approach leads to an anti-monotone
criterion with respect to the pattern inclusion and thus allows to design an
efficient level-wise algorithm which extracts k-free patterns in presence of missing
values. This work is a first step towards classification in incomplete databases
with generalized associations and its application to missing values imputation.

The presentation is organized as follows: Section 2 gives the background about
the k-freeness of patterns and the generalized association rules. Section 3 briefly
shows the damages caused by the missing values and presents our position state-
ment. We define in Section 4 the computation of k-free patterns in presence of
missing values and demonstrate that these patterns are correct in the correspond-
ing complete database. Experiments on benchmark data confirm the effectiveness
of our method (Section 5).

2 k-Free Patterns and Generalized Association Rules

In this section, we introduce the k-free patterns and the generalized association
rules which stem from these patterns.

2.1 Preliminaries

Let us consider a database which gathers objects depicted by quantitative or
qualitative attributes in an attribute/values format (see Table 1). Eight objects
are described by three attributes X1, X2 and X3. In the field of boolean pattern
mining, qualitative attributes need to be discretized in order to get boolean
contexts (this article does not discuss this stage).

Let r be a database and (A, O, R) a boolean context where O is the set of
objects, A is the set of attributes and R is a binary relation. An object is a
subset of A (for example, o1 = {a1, a3, a5}) and it will be denoted as a string
(i.e., a1a3a5). |r| is the number of objects in r, i.e. |r| = |O|. Table 2 indicates
the boolean context where X3 is coded by the attributes a5 to a7.

A pattern X is a subset of A, its support is the set of objects containing X (we
denote supp(X) = rX = {o ∈ O | X ⊆ o}) and its frequency F(X) = |supp(X)|
is the number of objects in the support. A classical association rule [4] is an
expression X → Y , where X and Y are two patterns. It is quantified by its
frequency (i.e., F(X ∪Y )) and its confidence: conf(X → Y ) = F(X ∪Y )/F(X).
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Table 1. Attribute/value format database

attributes
objects X1 X2 X3

o1 + → 0.2
o2 − → 0
o3 + → 0.1
o4 + ← 0.4
o5 − → 0.6
o6 − → 0.5
o7 + ← 1
o8 − ← 0.8

Table 2. Boolean context r

attributes
objects a1 a2 a3 a4 a5 a6 a7

o1 × × ×
o2 × × ×
o3 × × ×
o4 × × ×
o5 × × ×
o6 × × ×
o7 × × ×
o8 × × ×

2.2 Generalized Association Rules and k-Freeness

We start by recalling generalized patterns [2] because they are at the core of the
generalized association rules. A generalized pattern is made of boolean attributes
and negations of boolean attributes. For example, the generalized pattern Z =
a1a2a3 can be written as the union of a positive part X = a1a3 and a negative
one Y where Y = a2. An object o supports Z = X ∪ Y if X ⊆ o and Y ∩ o = ∅.
To alleviate the notations, we omit the union sign in the following and write
XY instead of X ∪ Y . F(XY ) is central: if it is null, one element of Y is always
present with X and ensures a generalized association between X et Y . These
associations lead to the generalized association rules introduced in [2] which are
a generalized form of association rules. The originality of these rules (also called
disjunctive rules) is to conclude on a disjunction of attributes as indicated by
Definition 1, which comes from [2].

Definition 1. A generalized association rule based on Z = X ∪ Y is an expres-
sion X→ ∨Y where X and Y are two classical patterns. It is exact in a database
r if every object of r containing the premise X also contains one attribute of the
conclusion Y . We denote |=r X→ ∨Y ⇐⇒ F(XY , r) = 0.

We define the frequency of a generalized association rule as follows (this defini-
tion diverges from that of the classical association rules).

Definition 2. The frequency F(X→ ∨Y ) of X→ ∨Y is the number of objects
containing X and at least one attribute of Y . We get F(X→ ∨Y ) = F(X) −
F(XY ).

Let us move now to k-free patterns. They have been proposed1 by Calders and
Goethals [2], and they are very useful to compute the generalized association
rules. A k-free pattern expresses the absence of correlation between its attributes:

Definition 3 (k-free pattern). A pattern Z is k-free in a complete database
r (without missing values) and we denote kFree(Z, r) if it does not exist any
1 With k = 2, these patterns have been introduced by [5] with the term of disjunction-

free sets.
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generalized association rules based on Z in r, or: ∀X ∪ Y = Z, |Y | ≤ k ⇒
F(XY ) 
= 0.

The k-free patterns have excellent properties to sum up the collections of fre-
quent patterns. For example, in the mushroom dataset [6], there are 2.7 · 109

present patterns, but 426, 134 1-free and 224, 154 2-free patterns. With k higher
than 5, the number of k-free patterns keeps under 214, 530, and they are mined
in two minutes. Until now, k-free patterns have mostly been employed to com-
pute condensed representations of frequent patterns [3] but they get meaningful
properties to produce rules. In particular, 1-free patterns are used to compute
the non redundant classical association rules [7,8]. The premise of such a rule is
a 1-free X and its conclusion is the Galois closure h(X).

2.3 Generalized Association Rules Mining

The exhibition of non redundant generalized association rules is more complex.
We indicate two techniques. The first one mines the 1-free patterns and then
computes their generalized closure [9]. It gathers all minimal patterns Y sharing
one attribute with every object containing X , it is obtained by computing the
minimal transversals [10] of these objects [9]. The second technique takes ben-
efit from the anti-monotonicity of the k-freeness and the border theory of this
property [11]. The rules are built from the minimal non k-free patterns, which
constitute the negative border of the k-free patterns. Generalized association rules
stem from non k-free patterns (such a rule X→ ∨Z\X is built from a non k-free
pattern Z where X is the smallest subset of Z such that F(XZ\X) = 0).

Generalized association rules convey correlations with a richer formalism than
the classical ones. They enable new uses such as supervised classification [12]
based on positive and negative rules [13] (i.e., rules concluding on an attribute
or its negation). For example, the rule a1 → a4 ∨ a5 is exact in the Table 2 data
and leads to the positive rule a1a4 → a5 and the negative one a4a5 → a1.

From the computation point of view, k-freeness is an anti-monotone prop-
erty and these patterns can be efficiently mined thanks to the level-wise frame-
work [11]. In order to check if a candidate pattern is k-free during the scan stage,
the frequency of XY is computed with the inclusion-exclusion principle [14], by
using the frequencies of the subsets of XY : F(XY ) =

∑
∅⊆J⊆Y (−1)|J|F(XJ).

As we have seen that in practice k remains low, the difficulty of computing the
supports with the inclusion-exclusion principle is bearable.

3 Missing Values

We show here the damages due to the missing values and we give our position
statement to solve this pattern mining problem.

3.1 Damages of Missing Values on k-Free Patterns

Assuming that some attributes of the dataset given in Table 1 are unknown, then
missing values appear. We use the character ’?’ to denote that a value is neither
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Table 3. Incomplete DB r′

attributes
objects a1 a2 a3 a4 a5 a6 a7

o1 × × ×
o2 × × ×
o3 × × ? ? ?
o4 × × ×
o5 × × ×
o6 ? ? × ×
o7 × × ×
o8 × ? ? ×

Table 4. 1-free 2-frequent patterns and their
closures

Complete DB r Incomplete DB r′

X h(X) X h(X) X h(X) X h(X)
a1 a1a3 a5 a1 a1a3

a2 a1a4 a2 a1a5

a3 a1a5 a3 a3 a2a3

a4 a2a3 a4 a1 a2a5 a3

a5 a3 a2a6 a3 a5 a3 a2a6 a3

a6 a3a6 a2 a6 a3a6

a7 a4 a7 a4a7

present nor absent for every boolean attribute coming from the corresponding
attribute in the original database. We have introduced three missing values in our
running example and the database r′ resulting from this operation is indicated
in Table 3.

The usual support computation for a pattern X in an incomplete database is
realized as follows: an object belongs to the support of X if all of its attributes
are present in X . If one of its attributes is missing or absent, the object does not
belong to the support. How to compute the supports for generalized patterns
in presence of missing values? Definition 3 does not plan this situation and the
problem is particularly accurate for computing the frequency of XY . Without
any recommendation, computations are performed by ignoring the missing values
(i.e, they are not taken into account).

Table 4 depicts this problem. This table gives the 1-free patterns with a min-
imum support of two objects. The left part relates the results in the complete
database, the right part in the incomplete one. For each pattern, the closure is
indicated. The right part lists the 1-free patterns of r′: a1a4 is 1-free in r and
no longer in r′. Furthermore, the right part includes patterns, such as a2a5 and
a4a7, which are not in r: we qualify them as incorrect.

Missing values lead to damages both on free patterns and their closures. As-
suming that an attribute a belongs to X ’s closure in the complete database: it
means that a is always present with X . If missing values appear on a, this asso-
ciation may break broken for some objects: a goes out from the closure (damage
on the closure) and Xa can become free (damage on the free pattern). In our
example, a4 is in a7’s closure in r, while it goes out from this closure in r′ because
of the missing value in the object o8. Thus, a4a7 is incorrectly declared 1-free.

Experiments on benchmarks from the UCI [6] emphasize these damages as
well. Starting from a complete database, we artificially introduce missing val-
ues according to a uniform probability. Then we mine the 3-free patterns and
measure the number of incorrect patterns relatively to the number of correct
patterns in the original context (cf. Figure 1). The number of incorrect patterns
differs according to the databases. It is less than 10% for the datasets pima,
wine, liver-disorders, servo and tic-tac-toe (the corresponding chart is
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not reported). For the datasets given on the left part of the figure, the number
of incorrect patterns is between 10 and 90% of the number of exact patterns.
In the right part, this quantity rises 300%, which means that for four computed
patterns, three are incorrect.

In real conditions where the complete database is not known, it is impossible to
differentiate good and bad patterns, and to foresee if a small or a big proportion
of incorrect patterns will appear. Our work aims at avoiding the damages by
correctly computing the k-free patterns in incomplete contexts.
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Fig. 1. Incorrect 3-free patterns in UCI datasets

3.2 Position of Our Work

There are several works which address the missing values issue in databases [15,16]
but contributions in the field of data mining are few. Arnaud Ragel [17] studied
association rules mining in presence of missing values by redefining the support
and the confidence, these rules may be used to a completion (or imputation) goal.
We will clearly state the differences with our work in Section 4.3). More recently,
[18] gives a basic completion method, founded on the probability of the different
attributes. The support of a pattern for an object is no longer boolean but prob-
abilistic. [19] computes prediction rules in the complete part of a database. These
rules provide intervals for continuous attributes.

Our work stems from the following principles:

– we do not want to impute the missing values before the knowledge discovery
stage, because it is a difficult operation without any specific knowledge.

– we wish to mine the whole incomplete database without reducing it to its
complete part. It means that we do not want to remove objects or attributes.

We do not assume any statistical hypothesis about the probability model of
the missing values. In order to deal with missing values, the next section defines
a modeling operator mv(). We will see that this formalization is useful because
it allows to define an incomplete database as the result of an operation removing
some values from the complete database. Then computations performed in an
incomplete database can characterize properties which are common to every
corresponding complete database.
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The following shows that it is possible to discover valid knowledge for the com-
plete database under these hypothesizes. As stated in introduction, this principle
is not surprising: if we consider that missing values hide the true values of the
data, the frequencies of some patterns will only decrease (we do not know for
some objects if they are present). A frequent pattern in an incomplete database
only can be a fortiori frequent in the complete dataset. We will use the same
principle to compute correct k-free patterns in presence of missing values.

4 Mining k-Free Patterns in Incomplete Databases

We propose here a definition of the k-freeness property in an incomplete database.
We show that it enables to compute patterns ensuring the property of freeness in
every completion.

4.1 Missing Values Modeling Operator

As previously explained, our position for the missing value problem requires a
modeling operator. It defines the relation between an incomplete database and
every possible completion.

Definition 4 (Missing values modeling operator). Let r = (A, O, R) be a
boolean context. An operator mv() is named a missing values modeling operator
if it transforms a complete database r in mv(r) = (A, O, mv(R)). The new
binary relation mv(R) takes its values in {present, absent, missing} and satisfies
the following properties, for every attribute a in A, every object o in O, and
value ∈ {present, absent}:

1. mv(R)(a, o) = value ⇒ R(a, o) = value ;
2. R(a, o) = value ⇒ mv(R)(a, o) ∈ {value, absent} ;

Section 3.1 showed that computing the k-free patterns without precaution leads
to incorrect patterns. In our work, we correctly define the computation of the
k-freeness property:

Definition 5 (k-correct pattern). Let r′ be an incomplete database and mv()
a modeling operator for the missing values. A pattern Z is k-correct in r′ if for
every complete database r, (mv(r) = r′) ⇒ kFree(Z, r).

4.2 Temporarily Deactivating Objects

We introduce here the deactivation of objects in an incomplete database. It
differentiates on the one hand the objects which support or not a given pattern,
and on the other hand the incomplete objects where the decision of support can
not be taken. The deactivation enables to quantify the frequency gap between
the complete and the incomplete database. In presence of missing values, the
frequencies can indeed only decrease. In our example (Table 2), F(a3a5, r) = 3
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but F(a3a5, mv(r)) = 2 (Table 3 with r′ = mv(r)). In order to correctly compute
the frequency of a pattern X in mv(r), it is necessary to differentiate the objects
of mv(r) having a missing value among the attributes of X . These objects will
be temporarily deactivated in order to compute an estimation of supp(X, r) with
the help of supp(X, mv(r)), because it is impossible to decide if they do contain
X or not.

Definition 6 (Deactivated object). For a classical pattern X ⊆ A, an object
o∈O is deactivated if ∀a∈X, mv(R)(a, o) 
=absent and ∃a ∈ X s.t. mv(R)(a, o) =
missing. We denote DES(X, mv(r)) for the objects of mv(r) deactivated for X.

Figure 2 exemplifies the notion of deactivation, by simultaneously presenting the
complete database r (on the left) and the incomplete one mv(r) (on the right).
We suppose that each object of the top part contains X and this part is named
rX . The down part is named rX .

Fig. 2. Database mv(r) and deactivated objects for X

On the right, the hatched zone shows the objects of mv(r) which contain
missing values. It is composed of six sets of objects, which are described below
(their composition is indicated for our example of Table 3, with X = a2a3):

Region A: (o2, o5) the objects without missing value, containing X ;
Region B: (no object in our example) the objects initially containing X , whose

missing values do not obscure the presence of X . These objects belong to
mv(r)X ;

Region C: (o6) the objects initially containing X , whose missing values hide
the presence of X and constitute DES(X, mv(rX));

Region D: (o8) the objects not containing X in the complete database, but
which could contain it with a suitable imputation of the missing values. The
object o8 does not contain the pattern a2a3 in the complete database of our
example, and it is preventively deactivated;
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Region E: (o3) the incomplete objects not containing X in the original dataset
nor after any imputation of the missing values;

Region F: (o1, o4, o7) the complete objects which do not contain X .

In the incomplete database mv(r), each object is assigned in three different
groups for deciding the support of X :

Regions A and B: mv(r)X the objects supporting X , in spite of the missing
values of B;

Regions C and D: DES(X, mv(r)) the objects where the support of X is un-
decidable;

Regions E and F : the objects not supporting X .

The deactivation allows to precisely characterize the support difference be-
tween the incomplete database and the complete one:

Proposition 1. Let X be a classical pattern, r a database and mv a modeling
operator. DES(X, mv(rX)) = rX \ mv(r)X and |DES(X, mv(rX))| = F(X, r)−
F(X, mv(r)).

Let us detail this principle for our example and the pattern a2a3: ra2a3 =
{o2, o5, o6} and its frequency is 3. In the incomplete database, its frequency is 2
and DES(a2a3, mv(ra2a3)) = {o6}: we have the equality of Proposition 1. If the
complete dataset r is not known, rX is neither known, nor |DES(X, mv(rX))|.
But the support can be bounded with considering the deactivated objects in
mv(r) instead of mv(rX), because this database contains more objects than
mv(rX). In our example DES(a2a3, mv(r)) = {o6, o8} because of the confusion
induced in o8 by the missing value on a3 and a4. F(a2a3, r) is then between
F(a2a3, mv(r)) and F(a2a3, mv(r)) + |DES(a2a3, mv(r))|, i.e. between 2 and 4.

In the following, it is necessary to define the deactivation for the generalized
patterns. For that purpose, we use the inclusion-exclusion principle:

Definition 7 (Generalized deactivation)
des(XY , mv(rXY )) =

∑
∅⊆J⊆Y (−1)|J||DES(XJ, mv(rXJ ))|.

The set DES(XY , mv(rXY )) is not defined, so we denote the generalized deac-
tivation with lower cases: des(XY , mv(rXY )). It allows nevertheless to quantify
the frequency difference between the complete and the incomplete database.

Proposition 2. des(XY , mv(rXY )) = F(XY , r) − F(XY , mv(r)).

This frequency gap can be negative. When the association between X and Y
exists in the complete database (F(XY , r) = 0), one missing value can delete
it in the incomplete one (F(XY , mv(r)) > 0). In this case, the difference is
negative. In our example, des(a7a4) = 0 − 1 = −1.

For the deactivated objects regarding an association X→ ∨Y , we define
|DES(X→ ∨Y , mv(rX→∨Y ))| = |DES(X, mv(rX))| − des(XY , mv(rXY )). We
then have a similar behavior as emphasized in Propositions 1 and 2:
|DES(X→ ∨Y , mv(rX→∨Y ))| = F(X→ ∨Y , r) − F(X→ ∨Y , mv(r)).
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Moreover, an object is deactivated for an associationX→ ∨Y if it is deactivated
for X , or if it contains X but every attribute of Y is missing. Denoting DES(∧Y,
mv(rX→∨Y )X) for these objects, we have |DES(X→ ∨Y , mv(rX→∨Y )) =
|DES(X, mv(rX→∨Y ))| + |DES(∧Y, mv(rX→∨Y )X)|.

4.3 Differences with Ragel’s Approach

In this section, we set our deactivation principle with respect to A. Ragel’s
work [17,20]. To compute F(X, mv(r)), A. Ragel deactivates all objects con-
taining a missing value in X without regarding whether an object may support
X . In our example, o6 would be deactivated for a2a4 because a2 is missing. Nev-
ertheless, o6 cannot support a2a4 because o6 does not contain a4. It means that
there is no complete database where o6 can support a2a4. This observation led
M. Kryszkiewicz to propose a new definition [21]. In our paper, we use this
definition (cf. Definition 6).

4.4 k-Freeness Definition and Correction in Incomplete Databases

With the help of the deactivation of the incomplete objects, the frequency of
XY in r can be bounded by two quantities which are computed in mv(r) :

Property 1. F(XY , mv(r)) − |DES(∧Y, (mv(r))X)| ≤ F(XY , r) ≤ F(XY ,
mv(r)) + |DES(X, mv(r))|.

Proof. Proposition 2 says that F(XY , r) = F(XY , mv(r)) + des(XY , mv(rXY )).
The deactivation of an association allows to write des(XY , mv(rXY )) =
|DES(X, mv(rX))| − |DES(X→ ∨Y , mv(rX→∨Y ))|. On one hand, we have
the upper bound des(XY , mv(rXY )) ≤ |DES(X, mv(rX))|, and when avoid-
ing the restriction on the deactivation database, des(XY , mv(rXY )) ≤
|DES(X, mv(r))|. On the other hand, we break up des(XY , mv(rXY )) =
|DES(X, mv(rX))| − (|DES(X, mv(rX→∨Y ))| + |DES(∧Y, mv(rX→∨Y )X)|) =
(|DES(X, mv(rX))| − |DES(X, mv(rX→∨Y ))|) − |DES(∧Y, mv(rX→∨Y )X)|. The
difference |DES(X, mv(rX))|− |DES(X, mv(rX→∨Y ))| is positive so we have the lower
bound des(XY , mv(rXY )) ≥ |DES(∧Y, mv(rX→∨Y )X)|. Without the restriction on
the deactivation database, des(XY , mv(rXY )) ≥ |DES(∧Y, mv(r)X)|.

The k-freeness property can be defined in incomplete databases with the bounds
for the frequency of XY .

Definition 8 (k-freeness in incomplete databases)

– A pattern Z is k-free in mv(r) and we denote kFree(Z, mv(r)) if and only
if ∀XY = Z, |Y | ≤ k, F(XY , mv(r)) − |DES(∧Y, (mv(r))X)| > 0.

– A pattern Z is k-dependent in mv(r) and we denote kDepdt(Z, r) if and only
if ∃XY = Z, |Y | ≤ k, F(XY , mv(r)) + |DES(X, mv(r))| = 0.

k-freeness and k-dependence are independently introduced. Section 4.5 will jus-
tify this distinction because these definitions are not reverse, due to the missing
values.
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Let us first note that, in a complete database, our definition of the k-freeness
is compatible with the classical Definition 3. In this case, the set of deactivated
objects is empty when there is no missing values. It is an important point in
order to design algorithms which work indifferently on complete or incomplete
contexts.

The k-freeness in an incomplete database is linked to this in a complete
database with the important following theorem:

Theorem 1 (k-freeness correction). Let r′ be an incomplete database and
mv() a missing values modeling operator. For every complete database r such
that mv(r) = r′ and every pattern Z,
- kFree(Z, r′) =⇒ kFree(Z, r);
- kDepdt(Z, r′) =⇒ ¬kFree(Z, r).
The k-free patterns of r′ are k-correct.

Proof. Property 1 shows that F(XY , r) is bounded by F(XY , r′)−|DES(∧Y, r′X)|
and F(XY , r′) + |DES(X, r′)|. If the lower bound is strictly positive, F(XY , r)
is also strictly positive then non null and the pattern is k-free in r. If the upper
bound is null, F(XY , r) is null and the pattern is not k-free in r.

Computed with Definition 8, the k-free patterns are then k-correct, i.e. they
are k-free in every database completion. In [22,23], this correction is shown for
the particular case when k = 1. These definitions of the k-freeness and the k-
dependence allow to compute properties which are true in every completion: our
definitions are correct. They are also complete because they characterize all
k-free patterns in every completion:

Theorem 2 (k-freeness completeness). Let r′ be an incomplete database.
If Z is k-free in every complete database r such that there exists a modeling
operator mv() with mv(r) = r′, then Z is k-free in r′: the k-correct patterns of
r′ are k-free in r′.

Proof. Suppose the converse, i.e. let Z be k-free in every database r such that
mv(r) = r′ but non k-free in r′. ∃XY = Z | F(XY , r′) − DES(∧Y, r′X) ≤ 0.
Let r0 be the database stemming from r′ with replacing each missing value by
an absent value, then mv(r0) = r′. In r0, the deactivation is null because r0 is
complete, and the computation of F(XY , r0) gives the same result as in r′ where
it is done with the frequencies of the present attributes. F(XY , r0) is then null
and Z is not k-free is r0 : contradiction.

In an incomplete database, every computed k-free pattern is k-correct and every
pattern which is k-free in every completion of the database is covered by this
definition.

4.5 Properties of the k-Freeness in Incomplete Databases

The k-freeness and the k-dependency are not complementary: some patterns will
be neither k-free nor k-dependent because it is sometimes impossible to decide
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if they are present or not in an object. The table below details the computation
of 1-freeness for the pattern a4a7:

X Y F(XY , mv(r)) |DES(∧Y, mv(r)X)| |DES(X, mv(r))| 1-free? 1-dependent?
a4 a7 1 1 1 1 − 1 ≯ 0 : no 1 + 1 �= 0 : no
a7 a4 1 1 1 1 − 1 ≯ 0 : no 1 + 1 �= 0 : no

We now give a vital property for designing k-free patterns mining algorithms.
It refers to the (anti)-monotonicity of the k-freeness or dependency. The k-
freeness does not satisfy a property of (anti-)monotonicity, but Theorem 3 indi-
cates that the k-dependency is monotone.

Theorem 3 (Monotonicity of the k-dependency property). The
k-dependency property is monotone, i.e. for all patterns Z and every database
r′, Z ⊆ Z ′ ⇒ (kDepdt(Z, r′)
⇒ kDepdt(Z ′, r′)).

Proof. Let Z be a k-dependent pattern. ∃XY = Z, F(XY , mv(r)) +
|DES(X, mv(r))| = 0 or F(XY , mv(r)) = 0 and |DES(X, mv(r))| = 0.
F(XY , mv(r)) = 0 means that for all object o ∈ O, X ⊆ o ⇒ Y ∩ o 
= ∅.
A fortiori, X ⊆ o ⇒ aY ∩ o 
= ∅ for all a ∈ A, then F(XaY , mv(r)) = 0. By
induction on all attributes of Z ′\Z, one deduces that Z ′ is also k-dependent.

With this result, the framework of the level-wise algorithms can be used with the
negation of the k-dependency constraint, and we have written the MV-k-miner
prototype.

4.6 Prototype MV-k-miner

We have designed the MV-k-miner prototype which returns the correct and com-
plete collection of k-free patterns. It is based on the mining of k-dependent pat-
terns. It runs on a two-step process: a classical level-wise scan of the search space
(Algorithm 1) and the candidate process phase (Algorithm 2).

MV-k-miner stores DES(X, mv(r)) and DES(∧Y, mv(rX)) for each pattern.
This allows to compute two couples of bounds for F(X, mv(r)) during the
generation: the first couple is based on DES(X, mv(r)) and stands for the k-
dependency. The corresponding pruning criterion is only used during the gen-
eration phase, so these bounds are not stored. The second couple is related to
DES(∧Y, mv(rX)) and stands for the k-freeness. It is used both during the gen-
eration phase and the scan phase, so these bounds are stored. The memory cost
is finally higher than for a classical algorithm in complete databases, but the
execution time is comparable. Our implementation should take benefit of recent
development in k-free pattern mining [24].

5 Experiments on UCI Benchmarks

We show here the relevance of our missing values treatment by reproducing
the experiments described in Section 3.1. We measure the number of 3-free
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Data : an incomplete database mv(r), a frequency minimum threshold γ, and
k > 0 a rule depth

Result : the set S of the patterns satisfying kFree

Dl is the set of patterns of length l, k-dependent or non frequent ;
l = 1; initialize Cand1 with the singletons ;
repeat

/*compute the disqualifiers */
Dl = {X ∈ Candl s.t. kDepdt(X, mv(r)) ∨ ¬frequent(X, mv(r))} ;
/*discard disqualiers */
Sl = {X ∈ Candl\Dl | kFree(X,mv(r))} ;
generate the candidates in Candl+1 (cf. algorithm 2);
l = l + 1 ;

until Candl = ∅;
return S =

⋃
l Sl ;

Algorithm 1. MV-k-miner: k-free patterns miner in incomplete databases

Data : a set Sl of k-free patterns with length l

Result : the set Candl+1 of the pattern candidate to kDepdt

for every candidate Z, generated by two patterns in Sl sharing the same
l − 1-prefix do

begin
verify that all the Z′ � Z of length |Z| − 1 are k-free ;
/*compute the frequency bounds */
build the tree of the patterns X and their frequencies such that |Z\X| ≤ k ;
for every X in the tree, compute the alternated sum of the frequency of its
subsets, that constitutes a preliminary version of
σ(X, Y ) =

∑
∅⊆J�Y (−1)|J|F(XJ) for bounding F(Z) ;

compute σ(X,Y ) − |DES(∧Y, mv(rX))| and σ(X,Y ) + |DES(X, mv(r))| ;
store the bound σ(X,Y ) + |DES(X, mv(r))| pour F(Z) ;
if the bounds are equal, decline the candidate ;

end
end

Algorithm 2. l + 1-candidate generation

patterns computed with MV-k-miner in mv(r), compared to r. The results for
solar-flare and zoo are reported in Figure 3. In the other datasets, the same
trends appear. For each dataset, the running time of the whole experience is
about 10 seconds.

As expected, the number of patterns recovered by our method decreases ac-
cording to the number of missing values. Indeed, each pattern is k-correct or
k-free in every complete dataset, whose number is exponential in the number of
missing values. But MV-k-miner computes only k-correct patterns. While data
mining is known to produce a huge number of patterns, their correctness is es-
sential. Missing values damages are then avoided and this result opens the way
for the uses of k-free patterns mentioned in Section 2.3. In particular, the fu-
ture of this work has to address the interestingness of the correct k-free patterns
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Fig. 3. Proportion of 3-free patterns in mv(r) (r gives 100 %)

during a supervised classification process, according to the approach based on
minimal k-free patterns, as outlined in Section 2.3.

6 Conclusion

Without any suitable treatment, missing values in incomplete databases lead the
k-free pattern mining algorithms to produce incorrect patterns. With the help of
a modeling operator, we have introduced the notion of k-correct patterns in an
incomplete database. These patterns are k-free in every corresponding complete
database. We have then proposed a new definition for the k-free property in an in-
completedatabase.Thanks to this newdefinition, theminedpatterns arek-correct,
and all k-correct patterns are mined: this avoids damages due to missing values.

Our perspectives address now the classification with generalized associations
and its application to missing values imputation. The first step of this project con-
sists in studying how to compute generalized closures in incomplete databases.
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