
Frequent Pattern Mining and Knowledge
Indexing Based on Zero-Suppressed BDDs

Shin-ichi Minato and Hiroki Arimura

Graduate School of Information Science and Technology,
Hokkaido University, Sapporo, 060-0814 Japan

Abstract. Frequent pattern mining is one of the fundamental tech-
niques for knowledge discovery and data mining. During the last decade,
several efficient algorithms for frequent pattern mining have been pre-
sented, but most algorithms have focused on enumerating the patterns
that satisfy the given conditions, considering the storage and indexing of
the pattern results for efficient inductive analysis to be a separate issue.
In this paper, we propose a fast algorithm for extracting all/maximal
frequent patterns from transaction databases and simultaneously index-
ing a huge number of patterns using Zero-suppressed Binary Decision
Diagrams (ZBDDs). Our method is comparably fast as existing state-of-
the-art algorithms and not only enumerates/lists the patterns but also
compactly indexes the output data in main memory. After mining, the
pattern results can be analyzed efficiently by using algebraic operations.
BDD-based data structures have previously been used successfully in
VLSI logic design, but our method is the first practical application of
BDD-based techniques in the data mining area.

1 Introduction

Frequent pattern mining is one of the fundamental techniques for knowledge
discovery and data mining. Since their introduction by Agrawal et al. [1], fre-
quent pattern mining and association rule analysis have received much attention
from researchers, and many papers have been published about new algorithms
and improvements for solving such mining problems [10,12,24]. However, most
of these pattern-mining algorithms have focused on enumerating or listing the
patterns that satisfy the given conditions, considering the storage and indexing
of the pattern results for efficient inductive analysis to be a separate issue.

In this paper, we propose a fast algorithm for extracting all/maximal frequent
patterns from transaction databases and simultaneously indexing a huge number
of result patterns in computer memory using Zero-suppressed Binary Decision
Diagrams (ZBDDs). Our method not only enumerates/lists the patterns but also
indexes the output data compactly in main memory. After mining, the pattern
results can be analyzed efficiently by using algebraic operations.

The key to our method is the use of data structures based on Binary Decision
Diagrams (BDDs) to represent sets of patterns. BDDs [5] are graph-based repre-
sentations of Boolean functions and are now widely used in the VLSI logic design
andverification area. For datamining applications, it is important to use theZBDD

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 152–169, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 153

[16], a special type of BDD, which is suited to handling large-scale sets of combina-
tions. Using ZBDDs, we can implicitly enumerate combinatorial itemset data and
efficiently compute set operations over the ZBDDs. The preliminary idea of using
ZBDDs was presented in our previous workshop paper [19]. In this paper, we pro-
pose a fast pattern mining algorithm based on this data structure. Our work is the
first practical application of the BDD-based technique to the data mining area.

In related work, the FP-tree [12] receives a great deal of attention because
it supports fast manipulation of large-scale itemset data using a compact tree
structure in main memory. Our method uses a similar approach to handling sets
of combinations in main memory but is more efficient in these respects:

– A ZBDD is a kind of Directed Acyclic Graph (DAG) for representing item-
sets, while the FP-tree is a tree representation. In general, DAGs can be
more compact than trees.

– Our method uses ZBDDs not only as the internal data structure but also
as the output data structure. This provides an efficient knowledge index for
subsequent inductive analysis.

Our mining algorithm is based on a recursive depth-first search of the database
represented by ZBDDs. We show two versions of the algorithm, generating all fre-
quent patterns and generating maximal frequent patterns. Experimental results
show that our method is comparably fast as existing state-of-the-art algorithms,
such as those based on FP-trees. Especially for cases where the ZBDD nodes are
well shared, exponential speed-up is observed compared with existing algorithms
based on explicit table/tree representations.

Recently, data mining methods have often been discussed in the context of In-
ductive Databases [3,14], the integrated processes of knowledge discovery. In this
paper,we also showa number of examples of postprocessing following frequent pat-
tern mining. We place the ZBDD-based method at the core of integrated discovery
processes that efficiently execute various operations to find interest patterns and
analyze the information included in large-scale combinatorial itemset databases.

2 BDDs and Zero-Suppressed BDDs

Here we briefly describe the basic techniques of BDDs and Zero-suppressed BDDs
for representing sets of combinations efficiently.

2.1 BDDs

A BDD is a directed graph representation of a Boolean function, as illustrated in
Fig. 1(a). It is derived by reducing a binary tree graph representing the recursive
Shannon’s expansion, shown in Fig. 1(b). The following reduction rules yield a
Reduced Ordered BDD (ROBDD), which can efficiently represent the Boolean
function (see [5] for details).

– Delete all redundant nodes whose two edges point to the same node. (Fig. 2(a))
– Share all equivalent subgraphs. (Fig. 2(b))

154 S. Minato and H. Arimura

0

c

b

a

c cc

b

1 001 1 1 1

10 0 0 0

0 0

0

1 1 1

1 1

1

F

c

b

a

0 1

0

0

0

1

1

1

F

(a) BDD. (b) Binary tree.

Fig. 1. BDD and binary tree: F = (a ∧ b) ∨ c

0
x

1

f

jump

f f1f0

xx
00 11

f1f0

x
0 1

share

(a) Node deletion. (b) Node sharing.

Fig. 2. Reduction rules of ordinary BDDs

b

a

0 1

00

0

11

1

b

aa
0 01

1

F1 F2 F3 F4

F1 = a ∧ b
F2 = a ⊕ b
F3 = b
F4 = a ∨ b

Fig. 3. Shared multiple BDDs

ROBDDs provide canonical forms for Boolean functions when the variable order
is fixed. Most research on BDDs is based on the reduction rules above. In the
following sections, ROBDDs will be referred to as BDDs (or ordinary BDDs) for
the sake of simplicity.

As shown in Fig. 3, a set of multiple BDDs can share their subgraphs with
each other under the same fixed variable ordering. In this way, we can handle a
number of Boolean functions simultaneously in a monolithic memory space.

Using BDDs, we can uniquely and compactly represent many practical Boolean
functions including AND, OR, parity, and arithmetic adder functions. Using
Bryant’s algorithm [5], we can efficiently construct a BDD for the result of a bi-
nary logic operation (e.g. AND, OR, XOR) on a given pair of operand BDDs. This

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 155

0

0

x
1

Jump

f f

Fig. 4. ZBDD reduction rule

algorithm is based on hash table techniques, and the computation time is almost
linearly related to the data size unless there is data overflow in main memory (see
[5] or [17] for details).

Based on these techniques, several BDD packages were developed in the 1990s
and are widely used for large-scale Boolean function manipulation, especially in
the VLSI CAD area.

2.2 Sets of Combinations and ZBDDs

BDDs were originally developed for handling Boolean function data. However,
they can also be used for the implicit representation of sets of combinations.
Here we use the term “sets of combinations” for a set of elements each of which
is a combination of n items. This data model often appears in real-life problems,
such as combinations of switching devices (ON/OFF), fault combinations, and
sets of paths in networks.

A combination of n items can be represented by an n-bit binary vector,
(x1x2 . . . xn), where each bit, xk ∈ {1, 0}, expresses whether the item is in-
cluded in the combination or not. A set of combinations can be represented by a
list of the combination vectors. In other words, a set of combinations is a subset
of the power set of n items.

A set of combinations can be mapped into Boolean space by using n-input
variables for each bit of the combination vector. If we choose any particular
combination vector, a Boolean function determines whether the combination is
included in the set of combinations. Such Boolean functions are called char-
acteristic functions. For example, the left side of Fig. 5 shows a truth table
representing a Boolean function (abc) ∨ (bc) but also represents a set of com-
binations {ab, ac, c}. Using BDDs for characteristic functions, we can implicitly
and compactly represent sets of combinations. The logic operations AND/OR for
Boolean functions correspond to the set operations intersection/union for sets
of combinations. By using BDDs for characteristic functions, we can manipulate
sets of combinations efficiently. They can be generated and manipulated within
a time roughly proportional to the BDD size. When we handle combinations
that include many similar patterns (subcombinations), the BDDs are greatly
reduced by the node-sharing effect, and sometimes an exponential reduction in
processing time and space can be obtained.

156 S. Minato and H. Arimura

Fig. 5. Effect of ZBDD reduction rule

The ZBDD [16,18] is a special type of BDD, used for the efficient manipula-
tion of sets of combinations. ZBDDs are based on the following special reduction
rules.

– Delete all nodes whose 1-edge directly points to the 0-terminal node, and
jump through to the 0-edge’s destination, as shown in Fig. 4.

– Share equivalent nodes, similarly to ordinary BDDs.

Note that we do not delete the nodes whose two edges point to the same node,
which would have been deleted by the original rule. The zero-suppressed deletion
rule is asymmetric for the two edges, as we do not delete the nodes whose 0-edge
points to a terminal node. It is proved that ZBDDs also give canonical forms as
do ordinary BDDs under a fixed variable ordering.

Here we summarize the features of ZBDDs:

– In ZBDDs, the nodes of irrelevant items (i.e. never chosen in any combi-
nation) are automatically deleted by the ZBDD reduction rule. In ordinary
BDDs, irrelevant nodes remain and may compromise the reduction available
by sharing nodes. An example is shown in Fig. 5. In this case, the item d is
irrelevant, but the ordinary BDDs for characteristic functions Fz(a, b, c) and
Fz(a, b, c, d) have different forms. On the other hand, ZBDDs for Fz(a, b, c)
and Fz(a, b, c, d) have identical forms and are therefore completely shared.

– Each path from the root node to the 1-terminal node corresponds to each
combination in the set. That is, the number of such paths in the ZBDD equals
the number of combinations in the set. In ordinary BDDs, this property does
not always hold.

– When no equivalent nodes exist in a ZBDD, i.e. the worst case, the ZBDD
structure explicitly stores all items in all combinations while also using an
explicit linear linked list data structure. That is, (the order of) the ZBDD size
never exceeds that of the explicit representation. If more nodes are shared,
the ZBDD is more compact than the linear list.

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 157

Table 1. Primitive ZBDD operations

“∅” Returns the empty set. (0-terminal node)
“1” Returns a null-combination. (1-terminal node)
P .top Returns the item-ID at the root node of P .
P .offset(v) Subset of combinations not including item v.
P .onset(v) Gets P − P .offset(v) and then deletes v from each combination.
P .change(v) Inverts existence of v (add / delete) on each combination.
P ∪ Q Returns union set.
P ∩ Q Returns intersection set.
P − Q Returns difference set. (in P but not in Q.)
P .count Counts number of combinations.

Table 1 shows most of the primitive operations for ZBDDs. In these opera-
tions, The execution time for ∅, 1, and P.top is a constant, and those for the
remainder are almost linearly to the size of the graph. We can describe a va-
riety of processing operations on sets of combinations by compositions of these
primitive operations.

2.3 ZBDD-Based Database Analysis

In this paper, we discuss a method for manipulating large-scale transaction
databases using ZBDDs. Here we consider binary transaction databases, each
record of which holds a combination of items chosen from a given item list. Such
a combination is called a itemset.

For analyzing these large-scale transaction databases, frequent pattern min-
ing [2] and maximum frequent pattern mining [6] are especially important and
have been discussed actively during the last decade. Since their introduction
by Agrawal et al. [1], many papers have been published about new algorithms
and improvements for solving such mining problems [10,12,24]. Recently, graph-
based methods, such as FP-growth [12], have received a great deal of attention,
because they can quickly manipulate large-scale itemset data by constructing
compact graph structures in main memory.

The ZBDD-based method is a similar approach to handling sets of combina-
tions in main memory but is more efficient because ZBDD is a kind of DAG for
representing itemsets, while FP-growth uses a tree representation for the same
objects. In general, DAGs can be more compact than trees.

Another important point is that ourmethoduses ZBDDsnot only as the internal
data structure but also as the output data structure. Most of the existing state-
of-the-art pattern mining algorithms focus on enumerating or listing the patterns
that satisfy the given conditions, and they consider the storage and indexing of
the pattern results for efficient data analysis to be a separate issue. In this paper,
we present a fast algorithm for pattern mining and simultaneously indexing a huge
number of patterns compactly inmainmemory for subsequent analysis.The results
can be analyzed flexibly by using algebraic operations implemented via ZBDDs.

In addition, we will now explain why we use ZBDDs instead of ordinary BDDs
for this application. Table 2 lists the basic statistics of a typical data mining

158 S. Minato and H. Arimura

Table 2. Statistics of typical benchmark data

Data name #I #T total|T |avg|T | avg|T |/#I
T10I4D100K 870 100,000 1,010,228 10.1 1.16%
mushroom 119 8,124 186,852 23.0 19.32%
pumsb 2,113 49,046 3,629,404 74.0 3.50%
BMS-WebView-1 497 59,602 149,639 2.5 0.51%
accidents 468 340,183 11,500,870 33.8 7.22%

Fig. 6. Example of itemset-histogram Fig. 7. ZBDD vector for itemset-histogram

benchmark data [10]. #I shows the number of items used in the data, #T is the
number of itemsets included in the data, avg|T | is the average number of items
per itemset, and avg|T |/#I is the average appearance ratio of each item. From
this table, we can observe that the item’s appearance ratio is very small in many
cases. This observation means that we often handle very sparse combinations
in many practical data mining/analysis problems, and in such cases, the ZBDD
reduction rule is extremely effective. If the average appearance ratio of each item
is 1%, ZBDDs are potentially more compact than ordinary BDDs by a factor of
up to 100. In the literature, there is an early report by Jiang et al. [13] applying
BDDs to data mining problems, but the results seem less than excellent because
of the overhead of using ordinary BDDs. Therefore, we should use ZBDDs instead
of ordinary BDDs for success in many practical data mining/analysis problems.

3 A ZBDD-Based Pattern-Mining Algorithm

In this section, we first introduce the data structure of the itemset-histogram
and ZBDD vectors [19], and then present our new algorithm, ZBDD-growth,
which extracts all frequent patterns from a given transaction database using a
ZBDD-based data structure.

3.1 Itemset-Histograms and ZBDD Vectors

An Itemset-histogram is a table that lists the number of appearances of each
itemset in the given database. An example of itemset-histogram is shown in

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 159

Fig. 6. This is essentially a compressed table for the database that combines the
itemsets appearing more than once into one line, together with the frequency of
occurrence.

Our pattern mining algorithm uses a ZBDD-based itemset-histogram repre-
sentation as the internal data structure, as presented in our previous paper [19].
Here we describe how to represent itemset-histograms using ZBDDs. Because
ZBDDs are representations of sets of combinations, a simple ZBDD distinguishes
only the existence of each itemset in the database. In order to represent the num-
ber of appearances of itemsets, we decompose the number into the m digits of a
ZBDD vector {F0, F1, . . . , Fm−1} to represent integers up to (2m − 1), as shown
in Fig. 7. That is, we encode the appearance numbers into binary digital code,
with F0 representing the itemsets appearing an odd number of times (LSB = 1),
F1 representing the itemsets whose appearance number’s second lowest bit is 1,
and similarly for each digit up to Fm−1.

In the example of Fig. 7, the frequencies of itemsets are decomposed as:
F0 = {abc, ab, c}, F1 = {ab, bc}, F2 = {abc}, following which each digit can
be represented by a simple ZBDD. The three ZBDDs share their subgraphs with
each other.

Now we explain the procedure for constructing a ZBDD-based itemset-
histogram from an original database. We read the itemset data one by one from
the database and accumulate the single itemset data into the histogram. More
precisely, we generate a ZBDD of T for a single itemset picked up from the
database and accumulate it into the ZBDD vector. The ZBDD of T can be
obtained by starting from “1” (a null combination), and applying “Change” op-
erations several times to join the items in the itemset. Next, we compare T and
F0, and if they have no common parts, we just add T to F0. If F0 already contains
T , we eliminate T from F0 and carry T up to F1. This ripple-carry procedure
continues until T and Fk have no common part. After finishing accumulations
for all data records, the itemset-histogram is complete.

Using the notation F .add(T) for the addition of an itemset T to the ZBDD
vector F , we can describe the procedure for generating the itemset-histogram H
for a given database D.

H = 0
forall T ∈ D do
H = H .add(T)
return H

When we construct a ZBDD vector for an itemset-histogram, the number of
ZBDD nodes in each digit is bounded by the total appearance of items in all
itemsets. If there are many partially similar itemsets in the database, the sub-
graphs of ZBDDs will be well shared, and a compact representation is obtained.
The bit-width of the ZBDD vector is bounded by log Smax, where Smax is the
appearance of the most frequent items.

160 S. Minato and H. Arimura

Fig. 8. Example of FP-tree

Once we have generated a ZBDD vector for the itemset-histogram, various
operations can be executed efficiently. These are instances of operations used in
our pattern mining algorithm:

– H .factor0(v): Extracts sub-histogram of itemsets without item v.
– H .factor1(v): Extracts sub-histogram of itemsets including item v and then

deletes v from the itemsets (also considered as the quotient of H/v).
– v · H : Attaches an item v to each itemset in the histogram F .
– H1+H2: Generates a new itemset-histogram with the sum of the frequencies

of corresponding itemsets.
– H .count: The number of itemsets appearing at least once.

These operations can be composed as a sequence of ZBDD operations. The result
is also compactly represented by a ZBDD vector. The computation time bound
is approximately linearly related to the total ZBDD size.

3.2 ZBDD Vectors and FP-Trees

FP-growth [12], one of the state-of-the-art algorithms, constructs an “FP-tree”
for a given transaction database and then searches frequent patterns using this
data structure. An example of an FP-tree is shown in Fig. 8. We can see that
the FP-tree is a trie [9] of itemsets with their frequencies. In other words, FP-
growth is based on the tree representation of itemset-histograms. That
is, ZBDD-growth is logically based on the same internal data structure as FP-
growth. This is the reason for calling this algorithm ZBDD-growth. However, the
ZBDD-based method will be more efficient because ZBDDs can share equivalent
subgraphs and the computation time is bounded by the ZBDD size. The benefit
of ZBDDs is especially noticeable when large numbers of patterns are produced.

3.3 A Frequent Pattern Mining Algorithm

Our new algorithm, ZBDD-growth, is based on a recursive depth-first search
over the ZBDD-based itemset-histogram representation. The basic algorithm is
shown in Fig. 9.

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 161

ZBDDgrowth(H,α)
{

if(H has only one item v)
if(v appears more than α)

return v ;
else return “0” ;

F ← Cache(H) ;
if(F exists) return F ;
v ← H.top ; /* Top item in H */
H1 ← H .factor1(v) ;
H0 ← H .factor0(v) ;
F1 ←ZBDDgrowth(H1, α) ;
F0 ←ZBDDgrowth(H0 + H1, α) ;
F ← (v · F1) ∪ F0 ;
Cache(H) ← F ;
return F ;

}

Fig. 9. ZBDD-growth algorithm

ZBDDgrowthMax(H,α)
{

if(H has only one item v)
if(v appears more than α)

return v ;
else return “0” ;

F ← Cache(H) ;
if(F exists) return F ;
v ← H.top ; /* Top item in H */
H1 ← H .factor1(v) ;
H0 ← H .factor0(v) ;
F1 ←ZBDDgrowthMax(H1, α) ;
F0 ←ZBDDgrowthMax(H0 + H1, α) ;
F ← (v · F1) ∪ (F0 − F0.permit(F1)) ;

Cache(H) ← F ;
return F ;

}

Fig. 10. ZBDD-growth-max algorithm

In this algorithm, we choose an item v used in the itemset-histogram H and
compute the two sub-histograms H1 and H0 (i.e. H = (v ·H1)∪H0). As v is the
top item in the ZBDD vector, H1 and H0 can be obtained simply by referring
to the 1-edge and 0-edge of the highest ZBDD-node, so the computation time is
constant for each digit of ZBDD.

The algorithm consists of the two recursive calls, one of which computes the
subset of patterns including v, while the other computes the patterns excluding
v. The two subsets of patterns can be obtained as a pair of pointers to ZBDDs,
and then the final ZBDD is computed. This procedure may theoretically require
an exponential number of recursive calls. However, we can prepare a hash-based
cache to store the result of each recursive call. Each entry in the cache is formed
as pair (H, F), where H is the pointer to the ZBDD vector for a given itemset-
histogram, and F is the pointer to the result of the ZBDD. On each recursive
call, we check the cache to see if the same histogram H has already appeared,
and if so, we can avoid duplicate processing and return the pointer to F directly.
By using this technique, the computation time becomes almost linearly related
to the total ZBDD size.

In our implementation, we include some simple techniques for pruning the
search space. For example, if H1 and H0 are equivalent, we may skip the com-
putation of F0. In other cases, we can halt the recursive calls when the total of
frequencies in H is no more than α. Other more elaborate pruning techniques
exist, but they need additional computation cost for checking conditions, so they
are sometimes but not always effective.

3.4 Extension for Maximal Pattern Mining

We can extend the ZBDD-growth algorithm to extract only the maximal frequent
patterns [6], each of which is not included in any other frequent patterns. The
algorithm is shown in Fig. 10.

162 S. Minato and H. Arimura

P .permit(Q)
{

if(P =“0” or Q =“0”) return “0” ;
if(P = Q) return F ;
if(P =“1”) return “1” ;
if(Q =“1”)

if(P include “1”) return “1” ;
else return “0” ;

R ← Cache(P, Q) ;
if(R exists) return R ;
v ←TopItem(P, Q) ; /* Top item in P, Q */
(P0, P1) ←factors of P by v ;
(Q0, Q1) ←factors of Q by v ;
R ← (v · P1.permit(Q1)) ∪ (P0.permit(Q0 ∪ Q1)) ;
Cache(P, Q) ← R ;
return R ;

}

Fig. 11. Permit operation

The difference from the original algorithm is in only one line, shown in the
frame box. Here, we check each pattern in F0 and delete it if the pattern is
included in one of the patterns of F1. In this way, we generate only maximal
frequent patterns. This is a similar approach to that used in MAFIA [6].

The process of deleting non-maximal patterns is a very time-consuming task.
However, we found that one ZBDD-based operation, called the permit operation
by Okuno et al. [21], can be used to solve this problem1. P .permit(Q) returns
a set of combinations in P each of which is a subset of some combination in
Q. For example, when P = {ab, abc, bcd} and Q = {abc, bc}, then P .permit(Q)
returns {ab, abc}. The permit operation is efficiently implemented as a recursive
procedure of ZBDD manipulation, as shown in Fig. 3.4. The computation time
of the permit operation is almost linearly related to the ZBDD size.

4 Experimental Results

Here we show the experimental results for evaluating our new method. We used
a Pentium-4 PC, 800MHz, 1.5GB of main memory, with SuSE Linux 9. We
can deal with up to 20,000,000 ZBDD nodes in this machine. In these experi-
ments, our implementation of the ZBDD-growth algorithm does not print out
the pattern list but constructs the ZBDD results in main memory and counts
the number of patterns included in the ZBDD. Counting patterns requires only a
time linearly related to the ZBDD size, even if an exponential number of patterns
are contained.

For comparison, we also executed the FP-growth algorithm [12], using an
implementation by Goethals [11]. This implementation also does not print out
the pattern list, only counts the number of patterns.

1 The Permit operation is similar to the SubSet operation of Coudert et al. [8], defined
for ordinary BDDs.

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 163

Table 3. “One-pair-missing”

a2b2a3b3· · ·an−1bn−1anbn

a1b1 a3b3· · ·an−1bn−1anbn

a1b1a2b2 · · ·an−1bn−1anbn

...
. . .

...
a1b1a2b2a3b3· · · anbn

a1b1a2b2a3b3· · ·an−1bn−1

Table 4. Results for “one-pair-missing”

n #Patterns (output) ZBDD-growth FP-growth [12]
|ZBDD| Time(sec) Time(sec)

8 58,974 35 0.01 0.11
10 989,526 45 0.01 1.93
12 16,245,774 55 0.01 32.20
14 263,652,486 65 0.02 518.90
15 1,059,392,916 70 0.02 1966.53
16 4,251,920,574 75 0.02 (timeout)

Table 5. Generation of itemset-histograms [19]

Data name #T total|T | |ZBDD Vector| Time(s)
T10I4D100K 100,000 1,010,228 552,429 43.2
mushroom 8,124 186,852 8,006 1.2
pumsb 49,046 3,629,404 1,750,883 188.5
BMS-WebView-1 59,602 149,639 46,148 18.3
accidents 340,183 11,500,870 3,877,333 107.0

4.1 Experiment with a Mathematical Example

First, we present an experiment for a set of artificial examples where ZBDD-
growth is extremely effective. The database, named “one-pair-missing,” has the
form shown in Table 3. That is, this database has n records, each of which
contains (n − 1) pairs of items with only one pair missing. It may produce an
exponentially increasing number of frequent patterns.

The experimental results with frequency threshold α = 1 are shown in Table 4.
We observe the exponential explosion of the number of patterns, compared with
the linearly increasing sizes of the ZBDDs needed to represent such a large
number of patterns. In such cases, ZBDD-growth runs extremely fast, while FP-
growth requires a time exponentially related to the output data size.

4.2 Experiments for Benchmark Examples

Next, we show the results for the benchmark examples [11]. Table 5 shows the
time and space required to generate ZBDD vectors of itemset-histograms [19] as
the preprocessing of the ZBDD-growth algorithm. In this table, #T shows the
number of itemsets, total|T | is the total of itemset sizes (total appearances of
items), and |ZBDD| is the number of ZBDD nodes for the itemset-histograms.
We see that itemset-histograms can be constructed for all cases within a feasible
time and space. The ZBDD sizes are similar to or less than total|T |.

After generating ZBDD vectors for the itemset-histograms, we applied the
ZBDD-growth algorithm to generate frequent patterns. Table 6 shows the re-
sults for the selected benchmark examples, “mushroom”, “T10I4D100K”, and
“BMS-WebView-1”. The execution time includes the time for generating the
initial ZBDD vectors for itemset-histograms. The results show that ZBDD-
growth is much faster than FP-growth for “mushroom” but is not as effective for
”T10I4D100K”. This is a reasonable result because ”T10I4D100K” is known to

164 S. Minato and H. Arimura

Table 6. Results for benchmark examples

Data name: #Frequent (output) ZBDD-growth FP-growth [11]
Min. freq. α patterns |ZBDD| Time(s) Time(s)

mushroom: 5,000 41 11 1.2 0.1
1,000 123,277 1,417 3.7 0.3

200 18,094,821 12,340 9.7 5.4
16 1,176,182,553 53,804 7.7 244.1
4 3,786,792,695 59,970 4.3 891.3
1 5,574,930,437 40,557 1.8 1,322.5

T10I4D100K: 5,000 10 10 81.3 0.7
1,000 385 382 135.5 3.1

200 13,255 4,288 279.4 4.5
16 175,915 89,423 543.3 13.7
4 3,159,067 1,108,723 646.0 38.8
1 2,217,324,767 (mem.out) − 317.1

BMS-WebView1: 1,000 31 31 27.8 0.2
200 372 309 31.3 0.4
50 8,191 3,753 49.0 0.8
34 4,849,465 64,601 120.8 8.3
32 1,531,980,297 97,692 133.7 345.3
31 8,796,564,756,112 117,101 138.1 (timeout)
30 35,349,566,550,691 152,431 143.9 (timeout)

be an artificial database comprising completely random combinations, so there
are very few relationships between the itemsets. In such cases, the compression
of ZBDDs is not effective, and only the overhead factor is revealed. For “BMS-
WebView-1”, ZBDD-growth is slower than FP-growth when the output size is
small. However, an exponential factor of reduction is observed in cases that
generate many patterns. Especially for α = 31 and 30, more than one trillion
patterns are generated and compactly stored in memory, which has not been
possible when using conventional data structures.

4.3 Maximal Frequent Pattern Mining

We also show the experimental results for maximal frequent pattern mining using
the ZBDD-growth-max algorithm. In Table 7, we show the results for the same ex-
amples used in the original ZBDD-growth experiment. The last column
T ime(max)/T ime(all) shows the ratio of computation time between ZBDD-
growth-max and the original ZBDD-growth algorithm. We observe that the com-
putation time is almost the same (within a factor of two) for the two algorithms. In
other words, the additional computation cost for ZBDD-growth-max is almost the
same order as the original algorithm. Our ZBDD-based ”permit” operation can
efficiently filter the maximal patterns within a time that depends on the ZBDD
size, which is almost the same cost as manipulating ZBDD vectors of itemset-
histograms.

In many conventional methods, maximal pattern mining is less time consum-
ing than generating all patterns because there are many fewer maximal patterns
than all patterns. However, the complexity of ZBDD-growth does not directly
depend on the number of patterns. We observe that ZBDD size is not signifi-
cantly different between the maximal and all-pattern cases, so the computation
time is also not significantly different.

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 165

Table 7. Results of maximal pattern mining

Data name: #Maximal (output) ZBDD-growth-max T ime(max)
Min. freq. α freq. patterns |ZBDD| Time(s) /T ime(all)

mushroom: 5,000 3 10 1.2 1.00
1,000 467 744 4.1 1.10

200 3,111 4,173 10.7 1.10
16 24,060 13,121 8.1 1.06
4 39,456 14,051 4.2 0.98
1 8,124 8,006 1.2 0.70

T10I4D100K: 5,000 10 10 107.1 1.32
1,000 370 376 203.1 1.50

200 1,938 2,609 462.8 1.66
16 68,096 66,274 922.4 1.70
4 400,730 372,993 1141.2 1.77
1 77,443 532,061 140.5 −

BMS-WebView1: 1,000 29 30 34.9 1.25
200 264 289 41.2 1.32
50 3,546 3,064 71.2 1.45
34 15,877 16,854 173.1 1.43
32 15,252 17,680 196.6 1.47
31 13,639 17,383 208.7 1.51
30 11,371 16,323 219.7 1.53

5 Postprocessing for Generated Frequent Patterns

Our ZBDD-based method features an algorithm that uses ZBDDs not only as the
internal data structure but also as the output data structure, indexing a large
number of patterns compactly in main memory. The results can be analyzed
flexibly, by using algebraic operations implemented in ZBDDs. Here we show
several examples of postprocessing operations on the output data.

(Subpattern matching for the frequent patterns): From the frequent-
pattern results F , we can efficiently filter a subset S, such that each pattern in
S contains a given sub-pattern P .

S = F
forall v ∈ P do:
S = S.onset(v).change(v)
return S

Conversely, we can extract a subset of patterns not satisfying the given condi-
tions. This is easily done by computing F − S. The computation time for the
sub-pattern matching is much smaller than the time for frequent pattern mining.

The above operations are sometimes called constraint pattern mining. In con-
ventional methods, it is too time consuming to generate all frequent patterns be-
fore filtering. Therefore, many researchers consider direct methods of constraint
pattern mining without generating all patterns. However, using the ZBDD-based
method, a large number of patterns can be stored and indexed compactly in main
memory. In many cases, therefore, it is possible to generate all frequent patterns
and then process them using algebraic ZBDD operations.

(Extracting Long/Short Patterns): Sometimes we are interested in the
long/short patterns, comprising a large/small number of items. Using ZBDDs,

166 S. Minato and H. Arimura

all combinations of less than k out of n items are efficiently represented in poly-
nomial size, bounded by O(k · n). This ZBDD represents a length constraint on
patterns. We then apply an intersection (or difference) operation to the frequent
patterns that meet the length constraint of the ZBDD. In this way, we can easily
extract a set of long/short frequent patterns.

(Comparison between Two Sets of Frequent Patterns): Our ZBDD
manipulation environment can efficiently store more than one set of results of
frequent pattern mining. Therefore, we can compare two sets of frequent pat-
terns generated under different conditions. For example, if a database gradually
changes over time, the itemset-histograms and frequent patterns do not stay the
same. Our ZBDD-based method can store and index a number of snapshots of
pattern sets and easily show the intersection, union, and difference between any
pair of snapshots. When many similar ZBDDs are generated, their ZBDD nodes
are effectively shared within a monolithic multi-rooted graph, requiring much
less memory than that required to store each ZBDD separately.

(Calculating Statistical Data): After generating a ZBDD for a set of pat-
terns, we can quickly count the number of patterns by using a primitive ZBDD
operation S.count. The computation time is linearly bounded by the ZBDD
size, not depending on the pattern count. We can also efficiently calculate other
statistical measures, such as Support and Confidence, which are often used in
probabilistic analysis and machine learning.

(Finding Disjoint Decompositions in Frequent Patterns): In a recent
paper [20], we presented an efficient ZBDD-based method for finding all possible
simple disjoint decompositions in a set of combinations. If a given set of patterns
f can be decomposed as f(X, Y) = g(h(X), Y), with X and Y having no common
items, then we call it a simple disjoint decomposition. The decomposition method
can be applied to the result of our ZBDD-growth algorithm, and we can extract
other aspects of hidden structures from the complex itemset data. This will be
a powerful tool for database analysis.

6 Related Works

A ZBDD can be regarded as a compressed representation of a trie [9] for a set of
patterns, by sharing subgraphs of the tree structure. From this viewpoint, it can
be compared with the existing state-of-the-art condensed representations, such
as closed sets [22], free sets [4], and non-derivable itemsets [7].

Recently, Mielikäinen et al. [15] reported a fast method of answering item-
set support query for frequent itemsets using a condensed representation. Their
data structure is based on a trie with a frequency number on each node. Us-
ing this data structure, they represent a histogram of the frequent patterns
occurring more than α times. In this way, counting the occurrence number for
a given pattern can extremely be accelerated. In addition, they also proposed
some techniques not to store all frequent patterns in the trie, by only storing a

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 167

Table 8. Comparison with a condensed representation [15]

Data name (min. freq.) #freq. condensed rep. [15] (in KB) ZBDD (in KB)
patterns all-freq-hist closed-freq-hist all-freq-set all-freq-hist

mushroom (α: 500) 1,442,503 56,348 420 160 1,513
pumsb (α: 35,000) 1,897,479 74,120 10,416 250 16,293
BMS-WebView-1 (α: 35) 1,177,607 46,000 3,308 1,898 10,014

part of patterns (e.g. closed patterns) to save the memory requirement without
information loss.

Here we show an experiment to compare our ZBDD-based method with
Mielikäinen’s results. In the Table 8, the first column shows the data name
with the minimum frequency α. The second column shows the total amount of
all frequent patterns for α. In the columns of condensed representations, “all-
freq-hist” shows the memory requirement in KByte to represent a histogram of
all frequent patterns in the trie, and “closed-freq-hist” shows the results only
storing closed patterns in the trie. In the columns of our ZBDD-based repre-
sentation, “all-freq-set” shows the ZBDD size in KByte to represent a set of all
frequent patterns (without counting frequency number for each patterns), and
“all-freq-hist” shows the size of a ZBDD vector to represent the histogram of
frequent patterns. Here we assume that one ZBDD node consumes 40 Byte in
average.

In general, ZBDD-based “all-freq-set” is much more compact than using a trie,
since the equivalent subgraphs are shared in a ZBDD. Notice that a simple ZBDD
represents just a set of frequent patterns, but not representing a histogram.To store
the occurrence numbers exactly, we have to use ZBDD vectors, shown as “all-freq-
hist” in the table. This is still more compact than trie-based “all-freq-hist”.

The condensed representation “closed-freq-hist” would be more powerful than
using ZBDDs in terms of memory reduction. They use a domain-specific property
of frequent itemsets, i.e. monotonous relation. However, if we consider more
various inductive queries after generating frequent patterns, it would not work
well because such a beautiful property of itemsets may be broken. ZBDDs can
be used more robustly as they are based on more general data compression
principles. The results may depend on what kind of operations are performed
after generating patterns. Analysis of those data efficiencies will be an interesting
future work.

7 Conclusion

In this paper, we have presented a new ZBDD-based frequent pattern-mining
algorithm. Our method generates a ZBDD for a set of frequent patterns from
the ZBDD vector for the itemset-histogram of a given transaction database. Our
experimental results show that our ZBDD-growth algorithm is comparably fast
as existing state-of-the-art algorithms such as FP-growth. Especially for the cases

168 S. Minato and H. Arimura

where the ZBDD nodes are well shared, an exponential speed-up is observed,
compared with existing algorithms based on explicit table/tree representation.

On the other hand, for the cases where ZBDD nodes are not well shared, or
the number of patterns is very small, the ZBDD-growth method is not effective
and the overhead factors dominate. However, we do not have to use the ZBDD-
growth algorithm in all cases. We may use existing methods for cases where they
are more effective than ZBDD-growth. In addition, we could develop a hybrid
program that uses an FP-tree or a simple array for the internal data structure
but with the output constructed as a ZBDD.

TheZBDD-basedmethodwill be useful as a fundamental technique for database
analysis and knowledge indexing, and will be utilized for various applications in
inductive data analysis.

Acknowledgments. This research was partially supported by Grant-in-Aid for
Specially Promoted Research on “Semi- Structured Data Mining,” 17002008,
Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining Association Rules between Sets
of Items in Large Databases. In: Buneman, P., Jajodia, S. (eds.) Proc. of the
1993 ACM SIGMOD International Conference on Management (Data of SIGMOD
Record), vol. 22(2), pp. 207–216. ACM Press, New York (1993)

2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast Discovery
of Association Rules. In: Advances in Knowledge Discovery and Data Mining, pp.
307–328. MIT Press, Cambridge (1996)

3. Boulicaut, J.-F.: Proc. 2nd International Workshop on Knowledge Discovery in
Inductive Databases (KDID’03), Cavtat-Dubrovnik (2003)

4. Boulicaut, J.-F., Bykowski, A., Rigotti, C.: Free-sets: A Condensed Representation
of Boolean Data for the Approximation of Frequency Queries. Journal of Data
Mining and Knowledge Discovery (DMKD) 7(1), 5–22 (2003)

5. Bryant, R.E.: Graph-based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

6. Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: A Maximal Frequent Itemset Al-
gorithm for Transactional Databases. In: Proc. ICDE 2001, pp. 443–452 (2001)

7. Calders, T., Goethals, B.: Mining All Non-derivable Frequent Itemsets. In: Elomaa,
T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp.
74–85. Springer, Heidelberg (2002)

8. Coudert, O., Madre, J.C., Fraisse, H.: A New Viewpoint on Two-level Logic Mini-
mization. In: Proc. of 30th ACM/IEEE Design Automation Conference, pp. 625–
630 (1993)

9. Fredkin, E.: Trie Memory. CACM 3(9), 490–499 (1960)
10. Goethals, B.: Survey on Frequent Pattern Mining, Manuscript (2003),

http://www.cs.helsinki.fi/u/goethals/publications/survey.ps
11. Goethals, B., Javeed Zaki, M. (eds.): Frequent Itemset Mining Dataset

Repository, Frequent Itemset Mining Implementations (FIMI’03) (2003),
http://fimi.cs.helsinki.fi/data/

http://www.cs.helsinki.fi/ u/goethals/publications/survey.ps
http://fimi.cs.helsinki.fi/data/

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 169

12. Han, J., Pei, J., Yin, Y., Mao, R.: Mining Frequent Patterns without Candidate
Generation: A Frequent-Pattern Tree Approach. Data Mining and Knowledge Dis-
covery 8(1), 53–87 (2004)

13. Jiang, L., Inaba, M., Imai, H.: A BDD-based Method for Mining Association Rules.
In: Proceedings of 55th National Convention of IPSJ, IPSJ, September 1997, vol. 3,
pp. 397–398 (1997)

14. Mannila, H., Toivonen, H.: Multiple Uses of Frequent Sets and Condensed Repre-
sentations. In: Proc. KDD, pp. 189–194 (1996)

15. Mielikäinen, T., Panov, P., Dzeroski, S.: Itemset Support Queries using Frequent
Itemsets and Their Condensed Representations. In: Todorovski, L., Lavrač, N.,
Jantke, K.P. (eds.) DS 2006. LNCS (LNAI), vol. 4265, pp. 161–172. Springer,
Heidelberg (2006)

16. Minato, S.: Zero-suppressed BDDs for Set Manipulation in Combinatorial Prob-
lems. In: Proc. 30th ACM/IEEE Design Automation Conf (DAC-93), pp. 272–277
(1993)

17. Minato, S.: Binary Decision Diagrams and Applications for VLSI CAD. Kluwer
Academic Publishers, Dordrecht (1996)

18. Minato, S.: Zero-suppressed BDDs and Their Applications. International Journal
on Software Tools for Technology Transfer (STTT) 3(2), 156–170 (2001)

19. Minato, S., Arimura, H.: Efficient Combinatorial Itemset Analysis Based on Zero-
Suppressed BDDs. In: Proc. of IEEE/IEICE/IPSJ International Workshop on
Challenges in Web Information Retrieval and Integration (WIRI-2005), pp. 3–10
(2005)

20. Minato, S.: Finding Simple Disjoint Decompositions in Frequent Itemset Data Us-
ing Zero-suppressed BDD. In: Proc. of IEEE ICDM 2005 workshop on Compu-
tational Intelligence in Data Mining, November 2005, pp. 3–11. IEEE Computer
Society Press, Los Alamitos (2005)

21. Okuno, H., Minato, S., Isozaki, H.: On the Properties of Combination Set Opera-
tions. Information Processing Letters 66, 195–199 (1998)

22. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of Association
Rules Using Closed Itemset Lattices. Journal of Information Systems 24(1), 25–46
(1999)

23. Baeza-Yates, R., Ribiero-Neto, B.: Modern Information Retrieval. Addison Wesley,
Reading (1999)

24. Zaki, M.J.: Scalable Algorithms for Association Mining. IEEE Trans. Knowl. Data
Eng. 12(2), 372–390 (2000)

	Frequent Pattern Mining and Knowledge Indexing Based on Zero-Suppressed BDDs
	Introduction
	BDDs and Zero-Suppressed BDDs
	BDDs
	Sets of Combinations and ZBDDs
	ZBDD-Based Database Analysis

	A ZBDD-Based Pattern-Mining Algorithm
	Itemset-Histograms and ZBDD Vectors
	ZBDD Vectors and FP-Trees
	A Frequent Pattern Mining Algorithm
	Extension for Maximal Pattern Mining

	Experimental Results
	Experiment with a Mathematical Example
	Experiments for Benchmark Examples
	Maximal Frequent Pattern Mining

	Postprocessing for Generated Frequent Patterns
	Related Works
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

