
B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 83–95, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Mastering Dual-Shore Development – The Tools and
Materials Approach Adapted to Agile Offshoring

Andreas Kornstädt and Joachim Sauer

Software Engineering Group, Department of Informatics, University of Hamburg
and C1 WPS GmbH, Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

{ak,js}@c1-wps.de

Abstract. Software development in offshoring settings with distributed teams
presents particular challenges for all participants. Process models that work well
for conventional projects may have to be adapted. In this paper we present case-
study-reinforced advice on how to extend the Tools & Materials approach –
a well established communication-centered agile design and development
approach – to the field of dual-shore development in offshoring projects. We
show how communication challenges can be tackled with common guiding and
design metaphors, architecture-centric development, task assignments with
component tasks and extensive quality assurance measures.

Keywords: Offshoring, Tools & Materials approach, dual-shore, architecture-
centric development, agile practices.

1 Motivation

Offshoring is a dominant trend in software development with annual growth rates of
about 33% in markets such as India [1]. It promises benefits in the areas of costs,
flexibility and concentration on core competencies. Empirical studies have shown,
however, that offshoring also entails a considerable number of challenges. Offshoring
projects are at the top of the complexity scale with diverse issues in areas of organiza-
tion, management, communication and teamwork. This is especially true for projects
that feature geographically separated onshore and offshore project teams [2]. When
over 5000 executives across North America and Europe were asked about the success
of their offshore strategy in 2004, 36% considered their offshore strategy failed
and over one in three had to move work back from their offshore to their onshore
team [3].

Given these figures, it is easy to see why looking at measures that help preventing
project failure is worth the effort. In this paper we show how process models can be
extended and adapted to the complex challenges of offshore projects. We have ex-
plored these issues based on the Tools & Materials approach (T&M) [4] which has
been used successfully in many single-site agile development projects. The extensions
have been validated in a first substantial case study with onshore and offshore teams.

After giving an overview of different offshoring approaches and limiting this pa-
per’s scope to the dual-shore approach we go on to demonstrate that communication
is a core challenge in offshoring projects. We then present the T&M approach and

84 A. Kornstädt and J. Sauer

show how it has helped us meeting communication challenges in single-site projects.
We describe how this approach has been adapted to dual-shore development by aug-
menting it by four new elements. Then we present findings from the case study. Fi-
nally, in the concluding section, we will sum up the essence of the extended approach
and give an outlook on future research.

2 Collaboration Models for Offshoring

Offshoring comes in many flavors, but not all of them are pertinent to solutions in the
area of software architecture. The only – although highly relevant – two complica-
tions that classic offshoring projects introduce are those of cultural differences and
split locations. While these problems are not to be underestimated, they can be seen as
just an exacerbation of the classic problems between the business-side and the engi-
neering-side of a “normal” single-site software project because the line between on-
site and offshore is identical with the line between specification and implementation.
These difficulties, however, aren’t new and have been thoroughly dealt with in soft-
ware engineering literature [4].

Experience reports have shown [5] that this classic offshoring setting works best
with stable specifications and a minimal need for communication during implementa-
tion. To put it in an oversimplified way: The specification is sent to the offshore
location and after a while the binaries are shipped back for testing. Many software de-
velopment projects are too complex to be dealt with in such a fashion. They require
frequent interaction between the business-side and the engineering-side due to com-
plex and rapidly changing requirements on the business-side. The dual-shore model
for offshoring caters to these needs: As trying to discuss these changes in requirement
over huge distances with people from different cultural backgrounds appears to be too
difficult, development is carried out on-site as well as offshore. The on-site team is
staffed with local developers who deal with the business-side. As both sides are from
the same cultural group and located at the same site, classic offshoring problems be-
tween business-side and engineering-side can be avoided completely. The divide be-
tween shores now runs right through the development team. But this location of the
rift is still advantageous to the classic setting because now communication partners on
both sides are engineers.

It is this dual-shore setting that we have in mind when dealing with offshoring in
this paper. Before describing the specifics of our dual-shore approach in section 5, we
will first establish the necessary basis by taking a closer look at the challenges that
these projects are faced with (section 3) and by introducing the T&M approach which
encompasses many helpful concepts in overcoming them (section 4).

3 Offshoring Benefits and Offshoring Challenges

Clearly, the dominant expectation of corporations that outsource (parts of) their IT is
cost saving [6]. While there are other factors such as increased flexibility, none of
these factors comes close to the 90% mark that is reached by cost benefits.

 Mastering Dual-Shore Development 85

While past studies used to focus on benefits, recent studies have also examined
challenges that offshoring entails. These include unexpectedly high costs for infra-
structure, communications, travel and cultural training; lower productivity due to high
staff turnover at the offshore site and low morale at the onshore site; management
problems due to cultural differences and a poor spread of information; problems when
communicating with customers; and technical mismatches of all sorts [2, 5, 7].

When faced with these problems in an unsorted and condensed form as above, they
appear to be very hard to tackle. It helps, however, to examine how these problems in-
terrelate. This leads to a distinction between problems on different levels where the
problems at the higher levels are direct consequences of problems at the lower levels.
We describe these levels here as introduced in [8].

Primary or root challenges stem directly from the decision to outsource to an off-
shore location:

− Morale at the onshore site is low.
− It is difficult to develop a team spirit that spans two sites. Sharing the goals of the

project, expectations, and domain-specific as well as technical knowledge is not
easy.

− Onshore and offshore staff comes from different cultural backgrounds. This entails
various kinds of misunderstandings. Different views about how to deal with the
role of authority make management an especially hard challenge. Direct communi-
cation between the customer and the offshore site can make these problems stand
out in a very pronounced way.

− Transferring data to and exchanging data with an offshore site usually reveals tech-
nical incompatibilities of some sort.

− Serving as an offshore development center for many different distant corporations,
there is often a high staff turnover at the offshore site which exacerbates all other
primary challenges above.

When the following measures are taken, they constitute secondary challenges in their
own right:

− travel to establish as much face-to-face contact as possible
− cultural training for onshore and offshore teams
− additional planning to accommodate the lack of direct communication
− technical harmonization

All of these measures eventually lead to tertiary challenges which directly affect bal-
ance sheets:

− unexpectedly high costs
− lower than expected productivity

With this distinction between primary, secondary and tertiary levels in place, it is ob-
vious that it is advantageous to start tackling the five challenges at the root level be-
fore proceeding to derived ones.

Software related technologies cannot do anything to ameliorate problems in the
area of morale and they cannot change inherent cultural characteristics. They can help
only indirectly in establishing a better understanding between people from different

86 A. Kornstädt and J. Sauer

cultural backgrounds. Of the remaining three challenges, technical incompatibilities
pertain to infrastructure software exclusively and not to the software under develop-
ment proper, so they are out of the scope of this paper. Both of the final two chal-
lenges (sharing knowledge of any kind, facilitating staff changes at the offshore site)
are about communication about the software under development – in the first case be-
tween onshore and offshore locations, in the second case between staff members at
the offshore site.

These challenges have to be dealt with in development processes. We chose the
T&M approach that already incorporates measures to improve communication in de-
velopment projects to give an example of how to evaluate and further enhance estab-
lished development processes for dual-shore development. We will present its
relevant basic concepts in the next section before we continue to describe necessary
enhancements in the following section.

4 The Tools and Materials Approach

The Tools & Materials approach (T&M) facilitates application software development
by providing guidance in matters of software architecture and the software develop-
ment process. It is based upon object-oriented design and development and an evolu-
tionary, agile proceeding.

4.1 Enhancing Communication

T&M focuses on two aspects of communication:

− precise communication between all stakeholders (customers-developers, develop-
ers-developers, customers-customers), and

− frequent communication between all stakeholders

Both aspects aim at reducing to a minimum the impact of unavoidable miscommuni-
cation – the core problem of software development in general and especially of off-
shore outsourcing.

Precise Communication
Based on the realization that communication works best on the basis of a common
frame of reference, T&M provides several means of providing this very frame. To do
this, it does not introduce new concepts, but recurs to culturally established concepts:
metaphors, leitmotifs, and patterns:

Metaphors are at the core of the approach. They provide a very high level of ab-
straction which is ideally suited for a field that is governed by a high degree of com-
plexity. Without reducing complexity to meaningless statements, metaphors are very
compact ways of throwing light on specific aspects of an issue. The main metaphors
of T&M are Tool, Material, Automaton, Container and Working Environment
(see Fig. 1). These metaphors have the benefit that they are so basic that every cus-
tomer and every developer has a precise of what a tool is like and – equally important
– what a tool is not. By recurring to these five metaphors, there is a level playing field
on which all stakeholders can move freely without one of them gaining the upper

 Mastering Dual-Shore Development 87

hand due to an advantage in communication. Developer organizations often uninten-
tionally tend to have these advantages over customers by using UML diagrams that
customers do not fully understand. While customers agree to what can be seen in the
diagram out of insecurity about its precise semantics, they later complain about the
software that has been developed based on this miscommunication.

Working Environment

Tool

Automaton

MaterialContainer

Fig. 1. Main Metaphors of the T&M approach and dependencies between them

As individual metaphors are not necessarily perfect fits, T&M makes use of guid-
ing metaphors which establish a common framework into which individual metaphors
fit. For generic office applications, the guiding metaphor “Expert Workplace” is a
good fit: It is easy to envision Tools, Materials, Automatons (such as a calculator),
Containers (such as folders) and a Working Environment (such as a desk with in and
out boxes) at an Expert Workplace. Depending on the project in question, the individ-
ual set of (guiding) metaphors has to be determined. In many cases, however, only a
few metaphors have to be exchanged.

Metaphors of any kind are great for communication between customers and devel-
opers (and customers and customers as well) but they are too imprecise when making
the transition to executable code [9]. T&M uses two kinds of patterns to smooth that
transition:

Conceptual patterns are based on one design metaphor and delineate what a soft-
ware artifact based on that metaphor behaves like and what it does not behave like.
For example, conceptual patterns for materials include “materials never change their
state except when handled by a tool or an automaton” and “materials do not hold dis-
play code – it is the sole responsibility of tools to display the materials they let the us-
ers work on”.

Design patterns describe the static and dynamic interaction of individual classes /
objects. While some conceptual patterns can be broken down to at least some of the
patterns introduced in [10] (Tools are Observers of Material), most T&M design pat-
terns, are custom patterns that stem directly from T&M.

(Guiding) Metaphors and conceptual as well as design patterns are excellent means
of establishing communications between all stakeholders and have been tested time
and again since the 1990’s in numerous projects of radically different application

88 A. Kornstädt and J. Sauer

domains such as insurances, public utilities, oncology, logistics and oncology. Never-
theless, these means can only provide the elements that are discussed during business
process analysis. As conventional UML diagrams have the inherent problems men-
tioned in the preceding paragraph on metaphors, T&M makes use of exemplary busi-
ness process modeling (EBPM [11]). In contrast to UML diagrams, EBPM diagrams
tell the story of a certain process in pictures complete with actors, materials, tools,
automatons and containers as well as a different kinds of communication and a ex-
plicit thread (indicated by ordinals) along which the story unfolds. See Fig. 2 for an
exemplary diagram.

Letter with Insurance
Application + X - Ray

Application
Scan

Field Manager Mail Room of
Administrative Center

Electronic Archive Process Support System

Application Processing

Insurance
ApplicationFile with

Application Scan

11

55

66

Insurance Application File
indicating: INCOMPLETE!

opens

77

Additional documents for
specific Application Number
needed!

88

X-Ray

99

by interoffice mailAttaches
Application Number

2 2

X - Ray

Insurance Application

scans
3 3

Application Scan

44

Annotation:
INCOMPLETE

Application

Scan

Electronic Insurance Application

Enters
Application Data

1010

INSURANCE APPLICATION WITH
NON - SCANNABLE ATTACHMENT:

A potential customer applies for a
capital life insurance. Because he
had an accident recently, he adds an
X-ray scan to his medical status
information.

Fig. 2. Example of an EBPM cooperation scenario in the insurance sector

Frequent Communication
As has been shown in the beginning, large communication gaps will eventually lead
to costly miscommunications. This is especially true in projects with complex appli-
cation domains and / or complex team structures. To avoid this source of miscommu-
nications, T&M employs an agile development process with numerous feedback loops
ranging from months to seconds in length. For a full list see [9]. Important loops
include:

Releases aim at developing new application functionality. The scope is negotiated
by customers and developers in planning games about every 6 weeks. This allows for
maximum flexibility and avoids the typical problems of formal “complete” specifica-
tions which are usually outdated the moment they have been completed (see [9] for
benefits of agile development).

Daily stand-up meetings during which developers tell each other what they did
since the last stand-up and what they intend to do until the next one. These meetings
help to evenly spread knowledge about what goes on in every corner of the project.

 Mastering Dual-Shore Development 89

Programming pair negotiations take place twice a day. By sharing a single com-
puter, developers derive a common understanding about almost every part of the
source code. During pair programming, developers are exposed to each others con-
structive criticism every second so that the software’s architecture is constantly a mat-
ter of discussion.

Developers can request the presence of an On-Demand-Customer any time in case
they have questions that cannot be answered by looking at the specification made dur-
ing the planning game. The customer is obliged to help them within one day. [12]

4.2 Architecture-Based Development

For the implementation part, T&M encourages architecture-based development. Ac-
cording to Bass and Kazman [13], architecture-based development “differs from tradi-
tional development in that it concentrates on driving design and maintenance from the
perspective of a software architecture. The motivation for this change of focus is that a
software architecture is the placeholder for system qualities such as performance,
modifiability, security, and reliability. The architecture not only allows designers to
maintain intellectual control over a large, complex system but also affects the devel-
opment process itself, suggesting (even dictating) the assignment of work to teams, in-
tegration plans, testing plans, configuration management, and documentation. In short,
the architecture is a blueprint for all activities in the software development life-cycle.”

Architecture-based development thus facilitates communication by improving
comprehension through one common object of work that all project participants use
and understand. The architecture description introduces terms and concepts that serve
as a common language for all stakeholders. Hence it enables precise discussions and
arrangements. It also constitutes the basis for verifiable architecture rules. Automatic
rule checking improves implementation consistency and reduces the number of errors.

4.3 Summary

Fig. 3 brings together the most pertinent features of the T&M approach:
(Guiding) Metaphors form the basis for communication between all stakeholders.

……

Customer on
Demand

Customer on
Demand

Planning GamePlanning Game

EBPMs

Metaphors

Guiding Metaphors

Architecture
Design Patterns

Conceptual Patterns

……

Pair
Programming

Pair
Programming

Stand Up MeetingStand Up Meeting

Customers Developers

……

Customer on
Demand

Customer on
Demand

Planning GamePlanning Game

EBPMs

Metaphors

Guiding Metaphors

Architecture
Design Patterns

Conceptual Patterns

……

Pair
Programming

Pair
Programming

Stand Up MeetingStand Up Meeting

Customers Developers

Fig. 3. Overview of the main features of the T&M approach

90 A. Kornstädt and J. Sauer

Customer-Customer and Customer-Developer communication also draws upon
EBPMs while Developer-Developer communication uses Conceptual Patterns, Design
Patterns and architecture on top of the Metaphors.

All stakeholders communicate on the basis of guiding metaphors and metaphors.
On top of that, EBPMs are used between customers and developers. Among develop-
ers, architecture descriptions as well as conceptual and design patterns are employed.

5 Extending T and M for Offshore Projects

In section 3 we have discussed the basic problems affecting offshoring projects, lead-
ing to the conclusion that communication is of paramount importance. In section 4,
we then continued to describe the (single-site) T&M approach which already puts a
strong emphasis on communication by introducing metaphors and assigning much
importance to architecture. In this section, we draw conclusions from our extensive
experience with the application of the T&M approach in single-site projects and chal-
lenges and solutions we found in case studies with offshoring projects.

We will first present how single-site T&M should be extended to a dual-shore
T&M which can facilitate dealing with offshore communication problems. After in-
troducing our dual-shore model, we will discuss the importance of having a strong fo-
cus on architecture and assigning offshore-development tasks component-wise before
validating our approach in section 6.

5.1 Dual-Shore Development with Adjusted Agile Practices

The geographical separation of teams in the dual-shore model prevents offshore de-
velopers from having an on-site customer at their disposal (Customer-On-Demand)
and from participating in iteration Planning Games. To accommodate for these
changed settings, roles are unequally distributed across the teams. The onshore team
is made up of software architects and developers. Software architects are responsible
for designing and maintaining the application’s architecture and carrying out quality
assurance. They also serve as business analysts that directly interact with the cus-
tomer, elucidate the requirements, plan iterations and releases and design the applica-
tion. The onshore developers train their offshore counterparts at the beginning of
projects, perform the main implementation work during the first iterations and tackle
difficult implementation work in later iterations. They may also directly interact with
the customer to resolve questions.

The offshore team consists entirely of developers. They receive work assignments
in the form of component tasks (see 5.3) which they implement in a largely independ-
ent fashion, possibly clarifying questions with onshore software architects or in ex-
ceptional circumstances with onshore developers.

If possible, the first iterations should be tackled in mixed teams so that the devel-
opers get to know each other and develop a common understanding of the domain and
the development process. This phase of common development establishes a sound
communication basis which can be drawn upon after the offshore team has moved to
its offshore location.

 Mastering Dual-Shore Development 91

5.2 Architecture-Centric Development in Offshoring Projects

While we use architecture-centric development in conventional projects following the
T&M approach, it becomes even more valuable in offshoring settings. Communica-
tion between the teams benefits greatly from a uniform language and a common tech-
nical basis [8].

Architecture also helps in assigning tasks that are decoupled from each other and
thus can be developed largely independent by teams at distant sites. So the organiza-
tion can be split along the product structure [14], reducing the need for inter-site co-
ordination. Additional communication can also be avoided when developers know
how they can introduce new features to an application without asking for permission
or detailed instructions, e.g. by providing hot spots for enhancements or an explicit
plugin-concept.

Architecture rules are defined and regularly checked with automated tools. On-
shore software architects design and maintain the application’s architecture. The
architecture description is regularly communicated to all developers. Changes to the
architecture by the developers have to be arranged with the software architects. This
way the architecture also evolves from the basis, not only top-down from a software
architect’s specification. It would be impractical if developers always had to consult a
software architect regarding these changes. They should on the other hand be guided
in their actions to ensure a reasonable evolution of the architecture.

In the extended T&M approach, the architecture is maintained by an onshore soft-
ware architect. He verifies that changes and enhancements by the developers are valid
and compliant with his architectural vision against the background of the overall ap-
plication architecture and planned future requirements. He also maintains a master de-
scription of the project-specific architecture that is made available to all developers,
e.g. through the common version control system. Controversial or comprehensive ar-
chitectural changes should be discussed with the development team to ensure a com-
mon understanding.

This division of labor guarantees that developers can work without bottlenecks and
that the evolution of the architecture is guided by an experienced architect. Our ex-
perience shows few cases where architectural changes by the developers had to be
corrected by the software architect. With the guidance of a common architecture, ex-
plicit metaphors and good examples in the existing implementation, developers have a
good basis for their design decisions.

With the importance of architecture validation and the complexity of today’s appli-
cations, a software architect has to rely on software tools for quality assurance. Their
help permits an automated comparison of the planned and the really implemented ar-
chitecture. They also provide metrics and queries for an in-depth review of the im-
plementation [15].

5.3 Component Tasks

The story cards of the widespread agile process model of Extreme Programming, that
are also used in most current projects based on the T&M approach, capture only the
essence of requirements in the form of informal stories. The details need to be dis-
cussed and clarified with the customer and the team. This is difficult in offshoring

92 A. Kornstädt and J. Sauer

settings and increases the demand for communication. Therefore, we use component
tasks in the adapted T&M approach.

The use of component-based development is well-suited for agile projects [16].
Components make it possible to divide along well-defined interfaces. The relationship
between components has to be explicitly defined by architecture rules so that they can
be developed and tested mutually independently to a large extent. The component de-
scriptions can serve as a basis for coordination and discussion between teams.

Components can have different sizes and can be ordered hierarchically. This en-
ables an incremental shift of more and more tasks from the onshore to the offshore
team. Small initial components give offshore developers a manageable task to start
with. They do not have to understand all of the domain and the business logic from
the beginning. These components are assembled into more complex components and
integrated into the application by an experienced onshore team. Over time, bigger and
bigger components can be constructed and integrated offshore, leading to overall cost
reduction.

Component tasks define not only components to be developed but also the required
context of the application domain to minimize callbacks, the hot spots or extension
points for this component and, if possible, tests that the component has to satisfy.
Fig. 4 shows the adapted T&M approach.

……

Customer on
Demand

Customer on
Demand

Planning GamePlanning Game

EBPMs

Metaphors

Guiding Metaphors

Architecture
Design Patterns

Conceptual Patterns

……

Component
Tasks

Component
Tasks

Stand Up CallsStand Up Calls

Customers On-Site
Developers

Off-Shore
Developers

……

Customer on
Demand

Customer on
Demand

Planning GamePlanning Game

EBPMs

Metaphors

Guiding Metaphors

Architecture
Design Patterns

Conceptual Patterns

……

Component
Tasks

Component
Tasks

Stand Up CallsStand Up Calls

Customers On-Site
Developers

Off-Shore
Developers

Fig. 4. The adapted T&M approach

As in the basic T&M approach, developers communicate on the basis of guiding
metaphors, metaphors, conceptual patterns, design patterns and architecture descrip-
tions. Single-site agile techniques which are incompatible with dual-shore develop-
ment are replaced with suitable alternatives. The communication between customers
and (on-site) developers remains unchanged.

6 Case Study

To validate the extensions for offshoring projects to the T&M approach, a case study
was conducted. During four months (March to June 2005) two teams developed a

 Mastering Dual-Shore Development 93

prototype for an order entry and customer information system. The teams consisted of
up to six onshore developers at Hamburg, Germany, and six offshore developers at
Pune, India.

6.1 Setting and Process

The development was carried out following the dual-shore offshoring model. The
elicitation of business requirements and the iteration planning was done by onshore
analysts with the customer. Onshore developers built a core system during the first it-
eration while instructing two offshore colleagues on site. These returned to India after
the first iteration and established a developer team there, consisting of about half a
dozen members. In the following iterations, offshore and onshore developers worked
in parallel, with the onshore developers concentrating on work that required customer
interaction, architectural know how such as integrating components that were built
offshore. These components were aligned with the application architecture. They
were specified in fair detail with the necessary domain knowledge. Unit tests were
developed together with the components. Quality assurance was carried out onshore
before integrating the components.

A software architect was responsible for the initial design of the architecture and
for quality assurance. Advancements of the architecture were done autonomously by
the developers and checked weekly by the architect who also maintained the central
architecture description. The architecture descriptions were shared with the offshore
team after updates.

6.2 Findings

The results from the case study show that the described extensions to the T&M ap-
proach work well in practice. The following issues are worth noting:

Dual-Shore Development
The separation of tasks between onshore and offshore-teams worked very well. There
was no need for direct communication between onshore and offshore developers. Co-
ordination occurred solely between the onshore and offshore project leads. The off-
shore team also did not communicate directly with the customer. Tasks that demanded
direct communication, e.g. set-up of the database connection, were handled onshore.

Architecture-Centric Development
Almost no architecture violations were committed by the onshore or offshore teams.
The few ones that occurred could be detected and resolved very fast. Extending the
architecture was solely the onshore teams’ tasks. The learning curve for the offshore
developers was quite steep. Comprehension could be significantly improved by pro-
viding good examples, e.g. similar components implemented by experienced onshore
developers. A longer prior training and pair programming with experienced develop-
ers at the start of the project could help.

Our experience also shows that architecture violations are much easier to correct
right after they are introduced rather than at later stages. This is especially true for cy-
clical dependencies. Small cycles are easy to comprehend and dissolve. As cycles

94 A. Kornstädt and J. Sauer

tend to grow rapidly, it usually does not take long before they embrace so many arti-
facts that it is not obvious where to cut them. The conclusion is to take architecture
validation seriously and to correct mistakes right away.

Component Tasks
We found that a stronger orientation on components can improve task sharing be-
tween onshore and offshore teams with a more strongly formalized approach on the
basis of a common architecture.

The concept of component tasks worked well. The structure of the task descrip-
tions was refined throughout the project. Most of the time the tasks were defined clear
enough and only minor misunderstandings occurred. At first, only small tasks were
handled offshore. In later iterations of the project, bigger tasks, e.g. larger compo-
nents, could be developed offshore. At the peak about a quarter of the overall work
was done offshore.

7 Conclusion – An Extended T and M Approach

In this paper we examined benefits and challenges of offshoring and described how
process models can be adapted to offshoring projects by the example of the Tools &
Material approach.

While the basic concepts, such as guiding and design metaphors, conceptual and
design patterns, architecture-centric development based on an explicit model architec-
ture and agile, iterative development remain unchanged, the process model was
adapted to incorporate onshore and offshore teams with fixed assignments and re-
sponsibilities. Architecture-centric development plays an even more important role in
the extended T&M approach and helps in assigning tasks to teams, directing and for-
malizing communication between them and thus reducing the need for direct commu-
nication. We also presented results from a case study that we conducted to evaluate
the adapted approach and where we could validate the extensions for offshoring. In
the future, we plan to evaluate the approach in other projects and advance it further.

We hope that our results on how a single-site approach can be extended to offshor-
ing settings will be transferable to other development approaches and that this helps to
decrease the rate of failed offshore projects in the medium term.

References

1. Ribeiro, J.: India’s offshore outsourcing revenue grew 33%, Computerworld, 06/06 (2006),
http://www.computerworld.com/action/artcle.do?command=printArticleBasic&articleId=
9000877

2. Kalakota, R., Robinson, M.: Dual-shore project management: Seven techniques for coor-
dinating onshore-offshore projects (2005),

 http://www.informit.com/articles/article.asp?p=409917
3. Hatch, P.J.: Offshore 2005 Research: Preliminary Findings and Conclusions, Vers.1.2.5

Ventoro (2005), http://www.ventoro.com/Offshore2005ResearchFindings.pdf

 Mastering Dual-Shore Development 95

4. Züllighoven, H.: Object-Oriented Construction Handbook: Developing Application-
Oriented Software with the Tools & Materials Approach, dpunkt.verlag. Co-publication
with Morgan-Kaufmann (2004)

5. Sauer, J.: Agile practices in offshore outsourcing – an analysis of published experiences.
In: Proceedings of the 29th Information Systems Research Seminar in Scandinavia, IRIS
29 - Paradigms, Politics, Paradoxes, August 12-15, pp. 12–15. Helsingoer, Denmark
(2006)

6. McCarthy, J.C.: Offshore Outsourcing: The Complete Guide. Forrester Research, Cam-
bridge, MA (2004)

7. Huntley, H.: Five Reasons Why Offshore Deals Fail, Gartner, Stamford, CT (2005)
8. Kornstädt, A., Sauer, J.: Tackling Offshore Communication Challenges with Agile Archi-

tecture-Centric Development. In: Proc. of the Sixth Working IEEE/IFIP Conference on
Software Architecture (WICSA 2007), Mumbai, India, January 6-9, pp. 6–9 (to appear,
2007)

9. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley Longman
Publishing Co., Inc, Boston, MA, USA (1999)

10. Gamma, E., et al.: Design-Patterns – Elements of Reusable Object-Oriented Software. Ad-
dison-Wesley, London, UK (1995)

11. Breitling, H., Kornstädt, A., Sauer, J.: Design Rationale in Exemplary Business Process
Modeling. In: Dutoit, A.H., McCall, R., Mistrik, I., Paech, B. (eds.) Rationale Manage-
ment in Software Engineering, pp. 191–208. Springer, Heidelberg (2006)

12. Lippert, M., Becker-Pechau, P., Breitling, H., Koch, J., Kornstädt, A., Roock, S., Schmo-
litzky, A., Wolf, H., Züllighoven, H.: Developing Complex Projects Using XP with Exten-
sions. IEEE Computer Magazine 36, 06/03 (2003)

13. Bass, L., Kazman, R.: Architecture-Based Development, Technical Report CMU/SEI-99-
TR-007, ESC-TR-99-007 (1999)

14. Grinter, R.E., Herbsleb, J.D., Perry, D.E.: The Geography of Coordination: Dealing with
Distance in R&D Work. In: Proceedings of the international ACM SIGGROUP Confer-
ence on Supporting Group Work, November 14-17. GROUP ’99, pp. 306–315. ACM
Press, New York (1999)

15. Bischofberger, W.R., Kühl, J., Löffler, S.: Sotograph – a pragmatic approach to source
code architecture conformance checking. In: Oquendo, F., Warboys, B.C., Morrison, R.
(eds.) EWSA 2004. LNCS, vol. 3047, pp. 1–9. Springer, Heidelberg (2004)

16. Stojanovic, Z., Dahanayake, A.N.W., Sol, H.G.: Component-oriented agile software de-
velopment. In: Marchesi, M., Succi, G. (eds.) XP 2003. LNCS, vol. 2675, pp. 315–318.
Springer, Heidelberg (2003)

	Mastering Dual-Shore Development – The Tools and Materials Approach Adapted to Agile Offshoring
	Motivation
	Collaboration Models for Offshoring
	Offshoring Benefits and Offshoring Challenges
	The Tools and Materials Approach
	Enhancing Communication
	Architecture-Based Development
	Summary

	Extending T and M for Offshore Projects
	Dual-Shore Development with Adjusted Agile Practices
	Architecture-Centric Development in Offshoring Projects
	Component Tasks

	Case Study
	Setting and Process
	Findings

	Conclusion – An Extended T and M Approach
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

