

Lecture Notes in Computer Science 4716

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

Bertrand Meyer Mathai Joseph (Eds.)

Software Engineering
Approaches for
Offshore and
Outsourced Development

First International Conference, SEAFOOD 2007
Zurich, Switzerland, February 5-6, 2007
Revised Papers

13

Volume Editors

Bertrand Meyer
ETH Zurich, Department of Computer Science
RZ Building, Clausiusstr. 59, 8092 Zurich, Switzerland
E-mail: bertrand.meyer@inf.ethz.ch

Mathai Joseph
Tata Consultancy Services
1 Mangaldas Road, Pune 411 001, India
E-mail: m.joseph@tcs.com

Library of Congress Control Number: 2007936130

CR Subject Classification (1998): D.2, K.6, K.4.2, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743

ISBN-10 3-540-75541-1 Springer Berlin Heidelberg New York

ISBN-13 978-3-540-75541-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12171392 06/3180 5 4 3 2 1 0

Preface

SEAFOOD for Thought

Headline-grabbing though it may be, the software industry’s large-scale alloca-
tion of work to developing countries has not so far generated much technical
analysis. Attention is usually limited to the possible political and economic con-
sequences, in particular the fears of loss of employment in the West. The aim of
the present volume is different. We recognize that offshore development is here
to stay, and not just a result of cost considerations. It is – more accurately – a
form of distributed development, relying on advances in communications to let
the software industry, in our globalized world, benefit from the wide distribution
of human talent. But it is also the source of a new set of challenges, to which
accepted software engineering principles and techniques have not completely
prepared us. Producing high-quality software on time and within budget is hard
enough when the QA team is across the aisle from the core developers, and the
customers across the street; what then when the bulk of the development team
is across an ocean or two?

The first SEAFOOD – Software Engineering Advances For Outsourced and
Offshore Development – conference (prompted by an earlier article1) was an at-
tempt not only to bring software engineering to outsourcing but also to bring
outsourcing into the collective consciousness of the software engineering com-
munity. This is beneficial to both sides: successful outsourcing requires strong
software engineering guidance, but research in the field must for its part account
for the new world of software development. Whatever direction outsourcing takes
in the coming years, we will never be just in one location any more.

SEAFOOD was held at ETH Zurich on 5–6 February 2007 and provided an
opportunity for participants from academia and industry to confront experiences,
ideas and proposals. The articles that follow are the result of this encounter. As
can be expected of the first conference in such a novel field, we are still in the
process of defining what constitutes a proper object of study on the topic; but
the contributions already show a number of promising developments, which we
are sure will be taken further in future conferences, starting from SEAFOOD
2008 to be held in the same venue in the first week of July 2008. The conference
site at http://seafood.ethz.ch includes information on this conference, as well as
past and future SEAFOOD events.

We hope that you will enjoy the results of SEAFOOD 2007 and that this vol-
ume will give you many useful ideas to understand and improve the engineering
of outsourced software.

1 Bertrand Meyer: Offshore Development: The Unspoken Revolution in Software En-
gineering, IEEE Computer, January 2006, pages 124, 122-123.

VI Preface

Many people contributed to making SEAFOOD 2007 a success. We are par-
ticularly grateful to the authors who submitted their work in a new and quickly
evolving area; to the Program Committee members who reviewed the papers in
time and through sometimes extensive discussions. (We extend our special wishes
to Gio Wiederhold, who suffered an accident while in Zurich.) The role of Andrei
Voronkov’s excellent EasyChair conference system is gratefully acknowledged.

The conference benefited from four outstanding keynote presentations by
Krishnamurti Ananthkrishnan, Chief Technology Officer of Tata Consultancy
Services, Stuart Feldman, Vice President for computer science of IBM, Watts
Humphrey from the Software Engineering Institute and Andrey Terekhov, from
the State University of Saint Petersburg.

Martin Nordio from ETH played a key role in organizing the conference
and helping prepare this volume; we are also grateful to Claudia Günthart for
outstanding organizational support and to Christian Hunziker from ELCA for
his work in publicizing the conference throughout Switzerland.

August 2008 Mathai Joseph
Bertrand Meyer

Organization

Program Co-chairs

Mathai Joseph, Tata Consultancy Services, India
Bertrand Meyer, ETH Zurich, Switzerland and Eiffel Software, California, USA

Program Committee

Manfred Broy, Technische Universität München, Germany
Kokichi Futatsugi, JAIST, Japan
Victor Gergel University of Nizhnyi-Novgorod, Russia
Koichi Kishida, SRA Key-Tech Lab, Japan
Qiaoyun Li, Motorola, USA
Mingshu Li, Chinese Academy of Sciences, China
Andrey Terekhov, State University of Saint Petersburg and TEPKOM, Russia
Gio Wiederhold, Stanford University, USA

Publicity Chair

Christian Hunziker, ELCA, Switzerland

Organizing Committee

Claudia Günthart, ETH Zurich, Switzerland
Martin Nordio, ETH Zurich, Switzerland

Table of Contents

Offshore Software Development: Transferring Research Findings into
the Classroom . 1

Kay Berkling, Michael Geisser, Tobias Hildenbrand, and
Franz Rothlauf

Meeting the Challenge of Communication in Offshore Software
Development . 19

Henrik Munkebo Christiansen

Testable Requirements for Offshore Outsourcing . 27
Jean-Pierre Corriveau

Introducing Global Supply Chains into Software Engineering
Education . 44

Olly Gotel, Vidya Kulkarni, Long Chrea Neak,
Christelle Scharff, and Sopheap Seng

Turn on Lean Governance... for Return on Outsourcing 59
Mohan Kancharla

Making IT Offshoring Work for the Japanese Industries 67
Sakura Kojima and Makoto Kojima

Mastering Dual-Shore Development – The Tools and Materials
Approach Adapted to Agile Offshoring . 83

Andreas Kornstädt and Joachim Sauer

Evaluating Collaboration Platforms for Offshore Software Development
Scenarios . 96

Felix Rodriguez, Michael Geisser, Kay Berkling, and
Tobias Hildenbrand

Outsourcing and Offshoring: The Consultancies’ Estimates 109
Christian Sommer and Georg Troxler

Questionnaire-Based Risk Assessment Scheme for Japanese Offshore
Software Outsourcing . 114

Hiroshi Tsuji, Akito Sakurai, Ken’ichi Yoshida, Amrit Tiwana, and
Ashley Bush

An Evaluation Method for Offshore Software Development by
Structural Equation Modeling . 128

Yoshihisa Wada, Daiki Nakahigashi, and Hiroshi Tsuji

X Table of Contents

The Value of Outsourced Software . 141
Gio Wiederhold, Amar Gupta, Rajat Mittal, and Erich Neuhold

Reducing the Cost of Communication and Coordination in Distributed
Software Development . 152

Yunwen Ye, Kumiyo Nakakoji, and Yasuhiro Yamamoto

Survey on Japan-Oriented Offshore Software Development in China 170
Lei Zhang, Meiping Chai, Xuan Zhang, Shigeru Miyake, and
Ryota Mibe

Toward Visualization and Analysis of Traceability Relationships in
Distributed and Offshore Software Development Projects 182

Cleidson R.B. de Souza, Tobias Hildenbrand, and David Redmiles

Author Index . 201

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 1–18, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Offshore Software Development:
Transferring Research Findings into the Classroom

Kay Berkling1, Michael Geisser2, Tobias Hildenbrand2, and Franz Rothlauf2

1 Caribbean Artificial Intelligence Group CAIG, Polytechnic University of Puerto Rico,
Electrical and Computer Engineering and Computer Science Department, 377 Ponce de Leon

Ave, Hato Rey, PR 00918, Puerto Rico
kay@berkling.com

2 Lehrstuhl für ABWL und Wirtschaftsinformatik, Universität Mannheim,
D-68131 Mannheim, Germany

{geisser,hildenbrand,rothlauf}@uni-mannheim.de

Abstract. Distributed software projects are becoming increasingly
commonplace in industry. Yet, software engineering education rarely graduates
students with the necessary skills and hands-on experience that are particular to
off-shore software development projects. Three key areas in successful off-
shore software development projects are well documented in the literature as
communication, knowledge management, as well as project and process
management. This paper maps tasks within each of these three areas to
functions that have to be provided by remote collaboration platforms and tools
that distributed projects rely on. A case-study of an off-shore requirements
engineering class experience between a Master course of Polytechnic
University of Puerto Rico and a customer in a Swiss financial institution shows
a correlation between areas of learning by the students and functionalities
covered with the tools used in the classroom. The paper identifies additional
tools, developed by the authors, which will provide additional functionalities in
the deficient areas to increase the learning and preparation of the students for
off-shore software development projects.

Keywords: Offshore Software Development, Distributed and Global Software
Development, Software Engineering Education, Development Tools,
Collaborative Software Development, Requirements Engineering, Traceability.

1 Introduction

1.1 The Fundamental Problem of Global and Offshore Software Development

Software development projects have never been easy to manage or predict in terms of
cost, quality, or time to delivery. While a variety of methodologies exist to estimate
cost and manage projects, still far more than half of all IT projects “fail” because of
budget overruns, high maintenance costs or mismatch between desired and delivered
functionality [31]. Such failures can in part be attributed to non-standard processes
but are often due to inadequate communication between the parties involved [17].

2 K. Berkling et al.

In the last five years there has been a major increase in efforts to outsource
software development to offshore locations such as India, China or Russia in order to
cut the development costs [24]. According to Gartner, worldwide spending on
offshore research and development will increase by a factor of 9 to ultimately $12
billion by 2010 and application development services will reach expenditures of $50
billion dollar [23]. On paper, the savings for projects that can be outsourced to
economically advantageous locations look fabulous. The reality, however, is much
less documented and shows that the challenges already faced by local projects are
even enhanced by distance. The lack of effective communication due to distance,
culture and language issues may well cause damage to projects that outweigh any
potential savings of off-shoring development.

Computer science graduates who enter this global work environment are generally
ill-prepared for these aspects of their future job. Few computer science curricula
contain components to train their students in offshore development practices and
related special considerations [10,27]. Yet, experience and skills in IT Management of
global software development projects are essential to the success of offshore projects.

1.2 Objective and Methodology

The overall objective of this paper is twofold: First, the teaching methods used for
offshore development education we present shall be replicable and reusable in various
international university contexts. Second, by using methods and tools satisfying
realistic offshore requirements, our basic approach will eventually be transferable and
applicable in industry. Therefore, our work aims at making both a short-term and a
long-term contribution to the improvement of offshore software development (OSD)
practices: Through better education as well as methodological and tool support.

Analyses of the state-of-the-art in OSD practices, especially concerning software
engineering (SE) methods and tools applied, yield three major categories of problems
that need to be addressed – also in the classroom: communication, knowledge
management, as well as project and process management [14]. The authors propose a
combination of commonly used commercial and open source tools to provide the
supporting functionality to improve performance of offshore projects in each of these
three areas. Tools are chosen to be deployed in the classroom and support distributed
educational software projects within semi-commercial settings, i.e. with a real
customer. The classroom experience is designed to provide feedback with respect to
accomplishing learning objectives and measuring the usefulness of the proposed
supporting functionalities within real OSD scenarios.

The rest of this paper is organized as follows: Section 2 discusses current issues in
OSD and presents major requirements for tools to support these scenarios. Section 3
describes the teaching environment for a SE course that is used as a baseline for this
paper and outlines the deficiencies in this learning environment. Section 4 forms the
theoretical component of this paper, where the necessary functionalities for effective
OSD projects are evaluated and areas to be strengthened with additional tools are
identified. In Section 5, the missing functionalities are mapped to new tools that are
reviewed and their deployment in the classroom described in Section 6. Finally, the
paper closes with a review and description of necessary future work to evaluate the
success of the deployments.

 Offshore Software Development: Transferring Research Findings into the Classroom 3

2 Offshore Software Development: Issues and Requirements

Within the field of SE, literature on OSD heavily relies on the findings within the
fields of distributed software development (DSD) and global software development
(GSD) respectively. Besides issues of physical distribution, OSD also takes people’s
different mindsets and cultures into account when analyzing methodology and
improvements in project management.

Herbsleb and Moitra [17] classify the problem classes most often encountered in
GSD and OSD projects as follows: (a) strategic issues, (b) cultural issues, (c)
inadequate communication, (d) knowledge management issues, (e) project and
process management issues, and (f) technical issues (for complementary analyses see
also [5, 15]).

Each one of these problem fields demands different approaches and tools. This
paper will not be primarily concerned with strategic and cultural issues due to the fact
that these problems may better be solved in business administration and social science
respectively. Problem classes (c) to (e) however require tool supported solutions and
are therefore our main focus – (f) in our opinion characterizes a cross-cutting concern
and is hence not analyzed separately. Each of the three areas described below overlap
somewhat. For example there is no project management without communication and
visualization of meta-data is important for all three categories. However, the
categories can be broadly separated as follows: Project and process management
issues correspond to coordination problems: e.g. synchronization and mutual
awareness in concurrent globally distributed processes [17]. Communication issues
pertain to a broader range of SE tasks, whereas knowledge management is the most
abstract problem class as regards the scope of activities affected.

2.1 Project and Process Management Issues

Process management is highly critical in distributed scenarios. Software process
coordination is mostly about the division of labor between distributed sites and
developers: Tasks can either be divided according to the code structure or different
development disciplines [29]. Either way, parallel concurrent processes have to be
managed carefully [17], while still guaranteeing process flexibility and integration of
different methods from the various sites [18].

As Requirements Engineering (RE) is the most critical phase in OSD [25], a
systematic proceeding will be needed to provide efficient client integration and
decision support for requirements selection even though physical meetings might not
always be possible [12].

Especially in OSD, roles are highly important to help the coordination of a large
number of developers [20]. A team member can take on one or more roles within a
single project and consequently can be a developer and later a tester, with duties
varying accordingly.

Empirical studies suggest that informal communication is a very important aspect
of coordinating teams in uncertain tasks such as software development [6, 20]. The
physical distance between sites makes it harder for distributed team members to

4 K. Berkling et al.

spontaneously and informally communicate with other team members in order to
coordinate their work [14]. This limitation within OSD implies fewer coordinating
interactions since developers find it more difficult to discern people’s current activity
and whether it is appropriate to interrupt them at a certain time [1]. It can also mean
that such developers encounter greater difficulties in coordinating OSD projects as a
result. Therefore, team awareness and process transparency are crucial for OSD.

Moreover, change management and impact analysis are particularly critical
coordination tasks in OSD. Distributed developers with different processes and tools
make it even more difficult to coordinate changes to the code base and prevent
conflicts [24]. Impact analysis, i.e. seeing the consequences of your changes in
advance, is also significantly harder in distributed settings such as OSD projects since
related artifacts are also most likely distributed over multiple sites [1].

Visualization and understanding of complex contexts, e.g. processes or artifact
dependencies, greatly support the project and process management by providing a
better view of the information.

2.2 Communication Issues

Software development is a very communication-intensive activity and issues raised of
an inadequate communication are even more complex in OSD [17]. As had been
mentioned before, distance introduces barriers to informal communication which
leads not only to coordination issues [5, 14]. It also makes it difficult to establish trust
and form relationships among distributed stakeholders [8].

Comparable to the problem of process integration, the integration of different
communication tools – synchronous and asynchronous – must also be seen as a major
issue in OSD. These tools need a well-defined interface because fuzzy interfaces will
mostly lead to inefficiencies and other technical problems [17].

Moreover, visualization and understanding of complex contexts, e.g. processes,
artifact dependencies, and social networks of developers, are often problematic as
well. However, these visualizations are critical to support formal, project-related
communication in order to make it more efficient. This issue is even more critical in
OSD arrangements since visualizations can help overcome language barriers [11].

2.3 Knowledge Management Issues

In addition to coordination and communication issues, general knowledge
management is vital to fully exploit the OSD potential [17]. In distributed projects,
the physical location of information artifacts such as source code, task descriptions, or
comments on changes, and the lack of “global knowledge” about their existence make
traceability and rationale management an especially hard task in OSD [7].

Moreover, poor knowledge management leads to many missed reuse opportunities
that otherwise would have potentially saved lots of time and money [17]. Global
knowledge management (through visualization) is also critical in order to determine
the overall status of the project at any given time, e.g. critical paths of activity flows
and buffers among subsequent tasks [17].

 Offshore Software Development: Transferring Research Findings into the Classroom 5

In GSD, in addition to documenting the various artifacts, updating and revising the
documentation is especially important since team-members are not all collocated. The
usage of visualization tools is only as useful as the information within the tools is
correctly updated. Automating such updates becomes particularly important. To
prevent assumptions and ambiguity and to support maintainability, documentation
must be current and reflect what various teams are using and working on [17].

3 Offshore Software Development in the Classroom

At Polytechnic University of Puerto Rico a recently established track in SE focuses on
student learning in OSD. The students participate in a series of related classes
including Software Engineering I (SE1: Foundations in Software Engineering
Management and Methodology), Software Engineering II (SE2: Requirements
Management with offshore component), and Software Engineering III (SE3: Offshore
Software Development). In all cases, the emphasis is placed both on the project
management and development process as well as the effective use of supportive
technology and less on the quantity of project that was completed. This section
describes the course setup followed by the learning objectives that are aligned with
the issues identified in Section 2.

3.1 Classroom Scenarios

For the purpose of defining three types of classroom OSD scenarios, the division of
labor splits according to SE workflows based on the Rational Unified Process (RUP)
[21] into three tiers: Client (Business Idea), Intermediary (Requirements
Specification, Analysis, Design, Implementation at the prototype level, Configuration
and Change Management, Project Management), and Supplier (Implementation,
Environment, Testing). Client, Intermediary and Supplier are each situated in a
different location and time zone. The Client, in our case, is a single person from
industry who has a project idea and has to agree with the final product. The
Intermediary forms a buffer between client and supplier. This buffer has the function
of alleviating the work load on the client side, dampen cultural differences and
provide quality insurance. For the purpose of the classroom, the Intermediary takes on
two functions in separate semesters.

In SE2, the class takes on the task of analyzing and specifying the requirements of
the client in detail and building a prototype. In the second semester, the Intermediary
is responsible for defining the technology, designing the software architecture, and
overseeing the supplier class in building the entire project according to specifications.
The Supplier provides the implementation according to specifications of the
Intermediary. As a result of these high-level roles, two relationships can be emulated
in the classroom: between Client and Intermediary, and between Intermediary and
Supplier according to Figure 1. The split according to SE disciplines is described as
follows for SE2 and SE3:

6 K. Berkling et al.

Fig. 1. Class roles include Client, Intermediary and Supplier. In SE1, these roles are collocated
within the same classroom to teach the fundamentals of SE projects. In SE2 (Offshore
Requirements Engineering) Client and Intermediary are located in different time zones. In SE3
(Offshore Implementation) Intermediary and Supplier are residing in different locations.

a) Requirements Engineering (between Client and Intermediary) in SE2
A client in a distant location poses the project idea in form of a short description of
one to two pages. Usually an official or unofficial industry partner plays the role of a
client. A typical profile of a client can be:
- Someone who does not have the resources to define and follow up on a project

but has a strong interest in seeing it developed further in order to have a detailed
specification and a prototype.

- A client who is training to become a manager for a global team and is supported
by the company in participating with the class as part of a training.
The class defines the project but additionally has to ensure that the client agrees
with the specifications.

b) Implementation (between Intermediary and Supplier) in SE3
The Intermediary and Supplier class pair takes on a project resulting from
collaboration between Client and Intermediary in order to specify the technology in
more detail. The Intermediary supervises the development in accordance with the
Client, where now all three (Client, Intermediary and Supplier) are situated in
different locations – but not all in different time zones. E.g. Puerto Rico and Chile are
in the same time and language zone which is exactly what makes this setup so
attractive. The supplier codes the project assignment according to the specification of
the intermediary and interacts with the intermediary only. A variation on this scenario
is a role reversal between the participating classes in order to emphasize
understanding of the entire process.

 Offshore Software Development: Transferring Research Findings into the Classroom 7

The course SE2 corresponds to scenario (a); it heavily emphasizes RE and is the
focus of our attention in this paper. Scenario (b) emphasizes Software Architecture,
Design and Implementation and is the subject of Software Engineering Special Topics
course following SE2. While the focus of this paper is on SE2, it is important to
ensure that the requirements for SE3 are met when choosing collaboration platforms.

3.2 The Collaborative Software Development Platform CodeBeamer

In the past, collaboration software has been in use for the SE2 class. Collaborative
software development platforms (CSDP) allow the creation of project workspaces and
can thus be used as central communication and coordination platforms. They
generally include access control mechanisms and some standard tools like document
management systems, different issue trackers, forums, and integration with different
revision control systems [28]. Moreover they usually offer integration with other
synchronous communication tools for audio- and videoconferences. CodeBeamer
from Intland Software1, VA Software and CollabNet2 are examples of such CSDP’s.
CodeBeamer was chosen for our work because it offers the most balanced and
integrated support in project management, requirements management and code
management [29]. CodBeamer additionally possesses a seamless integration of a wiki
system that allows linking asynchronous communication with artifacts. Wiki systems
are collaborative page-editing tools in which users may add or edit pages directly
through their web browser [28]. Relationships among pages and other resources are
particularly easy to establish by means of wiki links. Thus they cannot only be used
for knowledge management but also for requirements engineering purposes [12].
Flexible workflow and role configurations support customizing project management
methodologies (such as standardized or company internal methods), with support for
process management reporting.

CodeBeamer is complemented with the freely available tools Eclipse, Subversion,
and Skype. Interfaces to all of these tools are already integrated in CodeBeamer
CSDP, which will therefore serve as central point of integration. CodeBeamer has
been provided to us for academic usage.

3.3 Learning Objectives and Evaluation

In accordance with the areas identified in Section 2, the learning objectives in SE2 are
focused and evaluated with respect to project and process management,
communication and knowledge management. For each of the issues identified in
Section 2, the tools that are employed in the classroom can be evaluated with respect
to their effectiveness of capturing and engaging the students in mastering the learning
objectives as shown in Table 1.

Students who took part in the class of the case study have been evaluated through
questionnaires according to their roles in the project [3] on each of the three
categories (Project and Process Management, Communication and Knowledge
Management) using a subset of the Bloom [4] taxonomy for stages of learning:

1 http://www.intland.com/products/codebeamer.html (09/30/2006)
2 www.vasoftware.com, www.collab.net (09/30/2006)

8 K. Berkling et al.

Table 1. Learning Objectives

Project and process
management

Communication Knowledge Management

• Role assignment
• Process adaptation to

chosen methodology
• Efficient client

integration
• Decision support for

requirements selection
and prioritization

• Team awareness
• Change Management
• Impact Analysis

(consequences of
change)

• Integration of informal
networking into overall
communication
(socializing, trust)

• Integration of various
communication tools

• Visualization and
understanding of
complex context

• Traceability
• Understanding status

of project
• Updating of

documentation

Knowledge. Knowledge of specific facts, terminology, methods, memorized facts,
like what Function Points are.

Comprehension. Demonstrative understanding of facts and ideas by organizing
material, ideas, making choices, designing. Knowing why something is important. For
example Function Points – understanding their meaning by calculating them for actual
use cases.

Application. Using new knowledge. Solve problems to new situations by applying
acquired knowledge, facts, techniques and rules in a different way. For example,
applying Function Points for project estimation and realizing that they have some
limitations.

For each of the learning objectives in the three categories, students that passed SE2
were asked to rate their learning level from 0-3 (with 0: none, 1: basic 2:good and 3:
high at three different times), before taking SE1, after SE1 and after SE2. The average
result is shown below for six students and presents learning trends only, as the
number of data points here is of course very low. However, each of the students’
responses is similar to the average with exception to the Project Manger who is an
outlier and not included in the average. The Project Manager has a much higher
learning than the other students [3]. The result is depicted in Figure 2.

Figure 2 indicates that while students clearly feel that SE2 adds value beyond SE1,
the learning impact can be significantly improved. The graph also shows that the
highest perceived deficiency in learning is at the level of applying knowledge where
the area of process and project management is in need of the most substantial
improvement. These same findings hold for the Project Manager. The next sections of
this paper deal with understanding how additional tools may support the learning in
each of the deficient areas by analyzing the challenges for OSD projects in each of the
three areas.

 Offshore Software Development: Transferring Research Findings into the Classroom 9

Fig. 2. Self-evaluation of Learning-Achievements in terms of Blooms taxonomy and Herbslebs
identified key areas of project success

4 Functional Support for Problem Areas

This section presents the most essential functionalities to support OSD projects in
each of the areas identified in Section 2 in order to identify how the learning
deficiencies identified in Section 3 can be alleviated.

As for Project and Process Management issues, the OSD tools should support
both architecture-based and discipline-based division of labor (DoL). In addition,
asynchronous collaboration features are required to allow parallel and concurrent
work even across different time zones. In order to support different development
processes flexibly, methodological independence of the tools is important. Thus they
should allow for “agile collaboration”, i.e. flexibly supports different development
processes. As mentioned before, RE is particularly important in OSD. To facilitate
efficient client integration in the elicitation phase of RE, discussion forums are a
promising option [12]. In order to obtain decision support for requirements selection,
functionalities for both cost and value estimation of the requirements are needed.
Furthermore the OSD tools should have implemented a role concept, which allows
fine-grained rights and access management. As has been said, team awareness and
process transparency are highly critical to OSD success. Therefore, tools must support
both the visualization of team structures and processes as well as triggered
notifications. Distributed change management in OSD requires traceability [15]. This
in turn allows for better impact analyses, which is essential for coordinating changes
to related artifacts. Table 2 lists the required functionalities to support project and
process management.

10 K. Berkling et al.

Table 2. Tool Functionalities Required for Solving Project and process management Issues

Project and Process Management Issues Required Tool Features
Division of labor Support for both architecture-based DoL and

discipline-based DoL
Parallel and concurrent work Asynchronous collaboration (e.g. forums and

comments)
Process flexibility within projects Methodological independence, agility
Efficient client integration in RE Discussion forum, Wikis, or similar
Decision support for requirements selection Cost and value estimation for requirements
Role support Role concept, rights/access management
Team awareness & process transparency Visualizations and notifications
Change management & impact analysis Traceability of dependencies among artifacts,

process steps, and people

With regard to communication problems, OSD tools require features that allow

for informal and spontaneous communication. We will entitle this concept “virtual
water cooler”, denoting synchronous virtual brainstorming session and general
discussions spontaneously involving two or more people. In order to establish trust
and substitute the lack of physical interpersonal relationships, OSD tools should
include support for long-term virtual socializing, community building, and social
networking [18].

Furthermore well-defined interfaces and central integration architecture are
essential to seamlessly integrate those communication tools already in use in different
organizations. Finally, visualization capabilities, based on integrated information from
all distributed sites, are also needed in order to allow a visualization-supported
communication in general and thus enhance mutual understanding of complex
contexts. Table 3 lists the functionalities required for supporting communication.

Table 3. Tool Functionalities Required for Solving Communication Issues

Communication Issues Required Tool Features
Informal/spontaneous communication Synchronous virtual brainstorming and

discussion
Establishment of trust Virtual socializing, community building, and

social networking
Integration of communication tools Well-defined interfaces, central integration

architecture
Visualization and understanding of
complex contexts

Visualization capabilities, based on
integrated information from all sites

As concerns knowledge management in OSD projects, traceability and rationale

capturing must be covered for the whole SE process. For this reason, artifacts,
processes, and users need to be represented as entities. Establishing a global
traceability network including rationale information requires linking mechanisms,
such as typed associations. Indexing, advanced search mechanisms, and cross
references between projects foster reuse on a global scale. Process modeling and
status capturing allow for detailed project status reporting.

 Offshore Software Development: Transferring Research Findings into the Classroom 11

Altogether, the most important feature of OSD tools is information integration on a
global level which shall ensure an always up to date documentation of the overall
process. Table 4 lists the functionalities required for knowledge management.

Table 4. Tool Functionalities Required for Solving Knowledge Management Issues

Knowledge Management Issues Required Tool Features
Traceability and rationale management Artifact, process, and user representations,

linking mechanisms
Missed reuse opportunities Artifact indexing and retrieval, cross

references
Project status reporting Process modeling, status capturing
Documentation of overall process Information integration

5 Mapping Tools to Functionalities

Table 5 indicates how well the functionalities that were proposed in Section 2 are
covered by Codebeamer and which additional functionalities are still required to
improve the learning process in all areas. All areas are improved by adding additional
tools and functionalities. Interestingly, a large number of identified missing
functionalities fall into the area of project and process management, which correspond
to the most deficient areas of learning in SE2 class, as indicated by Figure 2. In order
to cover the missing functionalities listed in Table 5, this paper proposes two
additional tools that are to be integrated with CodeBeamer for use in OSD projects
and deployed in the classroom.

Table 5. Functional Analysis

Tool Project and Process Mgmt. Communication Knowledge Mgmt
CodeBeamer
(incl. Skype,
Eclipse, and
Subversion)

* Supports architecture-based
 and discipline-based DoL
* Asynchronous collaboration
* Methodological independence
* Discussion forum and Wiki for
 spontaneous, agile
 coordination

* Virtual water cooler
* Synchronous
 brainstorming
* Virtual socializing
* Central integration
 platform

* Project status
 reporting
* Missed reuse
 opportunities
* Documentation of
 overall process

Missing
Functionalities

* Cost and value estimation for
 requirements
* Traceability
* Awareness
* Support for change
 management and impact
 analysis

* Visualization
 capabilities

* Traceability and
 rationale capturing
* Documentation of
 overall process

5.1 The Ibere Tool for Supporting Requirements Selection in OSD Projects

In order to support the requirements selection process in OSD projects, Internet-
based cost and value estimation for requirements has to be conducted. For this
purpose, the Ibere (Internet-based empirical requirements evaluation) tool, which

12 K. Berkling et al.

guides distributed participants through the requirements estimation procedure, can be
used. Ibere is also able to visualize interdependent requirements as a result of the
requirements evaluation process in the form of a cost-value diagram (cp. Figure 3) by
utilizing the analytical hierarchy process as algorithm for calculating the utility value
for each requirement [12]. The units for utility and costs are given in percent, which
means that e.g. a value of 0,04 represents 4 percent of the total value. Due to its
import and export modules, a seamless integration to CodeBeamer is guaranteed: the
requirements, which have to be evaluated, can be imported from CodeBeamer’s Wiki
tool and the selected requirements can be exported to the requirements tracker in
CodeBeamer.

Based on this objectified foundation, it is possible to decide which requirements
will have to be implemented immediately, totally discarded, or preserved for
upcoming releases. In order to provide additional decision support, the diagram
contains two straight lines (cp. Figure 3): combinations of requirements with at least
two times more relative value than relative cost should be implemented in any case,
whereas those with twice the relative costs should not be considered for
implementation at all. These equations have been empirically tested and proven
suitable to distinguish preferable requirements with high value-cost ratios from those
with a low ratio [19].

Fig. 3. Requirements cost-value estimation with Ibere

5.2 Trace Visualization and Analysis with TraVis

CSDP comprise and unify not only source code management, but multiple software
development and knowledge management tools. These include build management
systems, issue trackers, wikis, and discussion forums – tools that often have been
successfully used in distributed open source software development projects and OSD
scenarios [28].

 Offshore Software Development: Transferring Research Findings into the Classroom 13

The TraVis (Trace Visualization) tool leverages the use of dependencies among
those different assets and their users by allowing the visualization and analysis of the
different dependencies among various artifacts within CSDP. The traceability and
rationale information from a CSDP is captured as distributed users develop and
document their processes in OSD projects. These artifacts are annotated and
connected with their respective descriptions, discussions (e.g. design-related ones),
and process steps are represented as issue tracker items. Thus they form a
heterogeneous network of information which can be extracted by TraVis. Managing
all this information on one single CSDP allows linking all the artifacts, activity
descriptions, and responsible users, consequently establishing the actual “traceability
network” [22]. A traceability network combines information about the different
software artifacts (requirements, architectural models, source code, test cases, etc.)
and the user involved. Topology and semantics of these networks are therefore
determined by the OSD projects’ structure represented in the CSDP. Figure 4 shows
an example of a traceability network with information on depending tasks and
requirements as well as platform users and related documents. The screenshot
displays TraVis’ value-based view, i.e. the artifacts node size is determined by their
importance based on the underlying evaluation of requirements conducted with Ibere
(see above). The figure also depicts the rationale information for task 1195, e.g.
comments made by users when committing changes.

Fig. 4. TraVis: Visualization of traceability information

Technologically, TraVis extracts traceability information from CSDP over their
remote API, e.g. via Web Services. The current prototype provides several filters for
displaying certain aspects of the traceability network, e.g. particular artifact types,
process categories, or user groups (Figure 2). Thus different role-based views, e.g. for
source code developers, designers, project managers, etc., can be defined. Moreover,
TraVis is able to display networks originating from particular artifacts, activities, and
users (see also Figure 4). This, for example, supports impact analysis in OSD settings.

14 K. Berkling et al.

Table 6. Functional overview of the tools

Tool Project and Process
Management

Communication Knowledge Mgmt

CodeBeamer
(incl. Skype,
Eclipse, and
Subversion)

* Supports architecture-based and
discipline-based DoL
* Asynchronous collaboration
* Methodological independence
* Discussion forum and Wiki for
spontaneous, agile coordination

* Virtual water cooler
* Synchronous
brainstorming
* Virtual socializing
* Central integration
platform

* Project status
reporting
* Missed reuse
opportunities
* Documentation of
overall process

Ibere * Cost and value estimation for
requirements
* Role concept

* Well-defined interfaces

TraVis * Traceability
* Awareness
* Support for change
management and impact analysis

* Visualization
capabilities

* Traceability and
rationale capturing
* Documentation of
overall process

Therefore, TraVis provides increased awareness within OSD projects based on a

broad range of information from CSDP. TraVis allows for graphical representations
and analyses at any time during a project through synchronization its data with the
CSDP. Thus, collaboration among developers as well as with other stakeholder can
improve, and the increased process transparency facilitates project management tasks
and knowledge management in general. In our concrete set of tools TraVis operates
on the data from the CodeBeamer CSDP described above. Table 6 summarizes the
functionalities that each of the tools to be used in the classroom provides in each of
the three areas of project and process management, communication and knowledge
management. It can be seen that the two additional proposed tools cover the identified
missing functionalities (see Table 5).

6 Utilization and Evaluation of Tools in Educational Projects

While CodeBeamer has been used for SE2 in the past, no special emphasis has been
placed on using the tool with respect to the identified problem areas. The additional
tools, Ibere and TraVis will be employed in the areas of project and process
management, communication and knowledge management in order to increase the
learning at the level where a student uses the new knowledge to solve problems in
new situations or in a different way. Therefore, CodeBeamer serves as a basic
platform providing most features that are required for OSD. The tools Ibere and
TraVis complement this central platform for specific tasks which are particularly
important in OSD: requirements engineering, visualization capabilities as well as
traceability and rationale management as shown in Figure 5.

While no particular development process is prescribed, some methodological
guidelines need to be followed when using these tools. The integrated Wiki system
will be used for gathering and discussing the requirements together with the customer.
Then the requirements are specified using use case templates in the requirements
tracker of CodeBeamer. In the next step the most important requirements will be
selected using Ibere. These requirements will then be prototypically implemented and

 Offshore Software Development: Transferring Research Findings into the Classroom 15

Fig. 5. Application of Tools to Improve Learning in Identified Problem Areas. (Functions are
ascribed to tools. CB (CodeBeamer), IB (Ibere), TR (TraVis) and SP (Skype).

subsequently reviewed by the client. Finally, the prototypes will be constructed with
regards to the comments of the client. Together they form the first version of the
desired software.

Traceability and rationale management is also based on CodeBeamer. The
association-mechanism as well as Wiki links are utilized in order to establish and
maintain relationships among artifacts and users. Wiki and SVN comments
reproduce rationale information, especially pertaining to changes and discussions
about artifacts. During the whole development lifecycle, TraVis provides the
visualization means in order to display this information in different contexts and
according to various role-based views. In OSD projects, the whole process of
capturing traceability and rationale information (Wiki-based traceability and
rationale management, Wiki-TRaM) is covered by our three tools: CodeBeamer,
Ibere, and TraVis. CodeBeamer stores the requirements evaluated by Ibere and their
interrelations. Moreover, users link subsequent artifacts to these requirements by
means of Wiki links and CodeBeamer’s association mechanism. This information
accounts for the topology and the semantics of the traceability network described in
section 5.2 (cp. Figure 4).

Based on our argumentation in Section 4 and Section 5, we expect to see
improvements in the self-evaluations of students showing a higher learning
achievement due to SE2, with an increased ability to apply what was learned because
of the off-shoring experience in combination with the proposed tools when compared
to students that have not used the full spectrum of tools.

16 K. Berkling et al.

7 Summarizing Discussion and Future Work

This paper addresses the transfer of knowledge from the research community to
education. Previous research has shown that certain skills are necessary for successful
OSD projects. However, these issues have not been particularly and fully addressed
by university curriculums so far. In this paper the authors have proposed a framework
for defining and evaluating learning objectives in OSD projects that relate to the three
most important identified problem areas of project and process management,
communication and knowledge management. Previous evaluations of the learning
environment in a SE course have indicated the need for improved learning in several
of the identified areas. Based on identified functionalities of supporting tools that
were not employed during this previous class, a set of innovative tools is proposed to
expand on CodeBeamer as a platform in order to support students further. Based on
the proposed combination of tools, all areas of learning in a SE or RE course are
covered. As a result, students will be able to evaluate their learning specifically with
respect to identified problem areas of OSD. Care has been taken to ensure that the
factors that help students learn how to deal with the three problem areas are function
specific to maintain generality before mapping these to specific tools. This way,
transferability of this study provides a framework to evaluate other tools with proper
coverage. The combination of real-world projects in the classroom (Section 3), with
emphasis on three identified off-shoring problem areas (Section 2) combined with the
usage of targeted supporting functionalities (Section 4,5) therefore supports the aim of
proposing both short-term and long-term improvements for OSD practices and
education.

In future work, the evaluation of students’ learning using the larger spectrum of
supporting tools will be used to track students’ learning in OSD-related classroom
projects along with the usefulness of the proposed set of tools to support this. As a result
of data collected from this study over time, specific functionalities in tools can be
measured for various stages within an OSD industry project. It is expected that the
knowledge gained from classroom experience will eventually be transferable to industry.

Acknowledgments. Parts of this work are a result of the project CollaBaWue
supported by the German state of Baden-Wuerttemberg and part of the research
association PRIMIUM. Thanks for the students in the Master of Computer Science
program at Polytechnic University of Puerto Rico and to Intland for providing the
academic setting with the usage and hosting of CodeBeamer projects.

References

1. Bendeck, F., Goldmann, S., Holz, H., Koetting, B.: Coordinating Management Activities
in Distributed Software Development Projects. In: Proceedings of the Seventh
International Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises, pp. 33–38. IEEE Computer Society Press, Los Alamitos (1998)

2. Bellotti, V., Bly, S.: Walking Away from the Desktop Computer: Distributed
Collaboration and Mobility in a Product Design Team. In: Proceedings of the 1996 ACM
Conference on Computer Supported Cooperative Work, pp. 209–218. ACM Press, New
York (1996)

 Offshore Software Development: Transferring Research Findings into the Classroom 17

3. Berkling, K., Zundel, A., Rodrigues, F., Rivera, E., Bentine, N.: Experience Report:
Offshore Software Development in the Classroom. Knowledge Sharing and Collaborative
Engineering. In: Proceedings of KSCE, Acta Press, Virgin Islands (2006)

4. Bloom, B.S.: Taxonomy of educational objectives. Published by Allyn and Bacon, Boston,
MA. Copyright (c) 1984 by Pearson Education

5. Carmel, E., Agarwal, R.: Tactical Approaches for Alleviating Distance in Global Software
Development. IEEE Software 18, 22–29 (2001)

6. Curtis, B., Krasner, H., Iscoe, N.: A Field Study of the Software Design Process for Large
Systems Communications of the ACM, vol. 31, pp. 1268–1287. ACM Press, New York,
USA (1988)

7. Damian, D., Chisan, J., Allen, P., Corrie, B.: Awareness Meets Requirements
Management: Awareness Needs in Global Software Development. In: Proceedings of the
International Workshop on Global Software Development (2003)

8. Damian, D., Zowghi, D.: Requirements Engineering challenges in multi-site software
development organizations. Requirements Engineering Journal 8, 149–160 (2003)

9. Dourish, P., Bellotti, V.: Awareness and Coordination in Shared Workspaces. In:
Proceedings of the 1992 ACM Conference on Computer-Supported Cooperative Work, pp.
107–114. ACM Press, New York (1992)

10. ETH: Chair of Software Engineering. Software engineering for outsourced and offshore
development (30.09.2006) URL: http://se.ethz.ch/teaching/ws2005/0273/index.html

11. Froehlich, J., Dourish, P.: Unifying Artifacts and Activities in a Visual Tool for
Distributed Software Development Teams. In: Proceedings of the 26th International
Conference on Software Engineering, pp. 387–396 (2004)

12. Geisser, M., Hildenbrand, T.: A Method for Collaborative Requirements Elicitation and
Decision-Supported Requirements Analysis. In: Ochoa, S.F., Roman, G.-C. (eds.)
International Federation for Information Processing. Advanced Software Engineering:
Expanding the Frontiers of Software Technology, vol. 219, pp. 108–122. Springer,
Heidelberg (2006)

13. Heeks, R., Krishna, S., Nicholson, B., Sahay, S.: Synching or Sinking: Global Software
Outsourcing Relationships. IEEE Software 18, 54–60 (2001)

14. Herbsleb, J.D., Grinter, R.E.: Architectures, Coordination, and Distance: Conway’s Law
and Beyond. IEEE Software 16, 63–70 (1999)

15. Herbsleb, J., Mockus, A.: An Empirical Study of Speed and Communication in Globally-
Distributed Software Development. IEEE Transactions on Software Engineering 29, 481–
494 (2003)

16. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.: Distance, dependencies, and
delay in a global collaboration. In: Proceedings of the 2000 ACM Conference on
Computer Supported Cooperative Work, pp. 319–328. ACM Press, New York (2000)

17. Herbsleb, J., Moitra, D.: Global Software Development. IEEE Software 18, 16–20 (2001)
18. Jarvenpaa, S.L., Leidner, D.E.: Communication and Trust in Global Virtual Teams.

Organization Science 10, 791–815 (1999)
19. Karlsson, J., Ryan, K.: A Cost-Value Approach for Prioritizing Requirements. IEEE

Software 14, 67–74 (1997)
20. Kraut, R., Streeter, L.: Coordination in Software Development. Communications of the

ACM 38, 69–81 (1995)
21. Kruchten, P.: The Rational Unified Process - An Introduction. Addison-Wesley, London,

UK (2003)

18 K. Berkling et al.

22. Lindvall, M., Sandahl, K.: Practical Implications of Traceability Software - Practice &
Expererience, vol. 26, pp. 1161–1180. John Wiley & Sons, Inc, West Sussex, England
(1996)

23. McDougall, P.: Gartner Predits Huge Increase in Offshore Outsourcing By,
Informationweek (March 2005), URL (30.09.2006) (2015),

 http://informationweek.com/story/showArticle.jhtml?articleID=160400498
24. Perry, D.E., Siy, H.P., Votta, L.G.: Parallel Changes in Large-Scale Software

Development: An Observational Case Study. In: Proceedings of the 20th International
Conference on Software Engineering (1998)

25. Prikladnicki, R., Audy, J.L.N., Evaristo, R.: Global Software Development in Practice
Lessons Learned. Software Process: Improvement and Practice 8, 267–281 (2003)

26. Polytechnical University of Puerto Rico (30.09.2006), (2006), URL
 http://www.pupr.edu/cs/cssite2.asp?id=171

27. PUPR: Caribbean Artificial Intelligence Group. Software Engineering - Part II. URL
(30.09, (2006), http://ai.pupr.net/classes/softwareengineering2.htm

28. Robbins, J.: Adopting Open Source Software Engineering (OSSE) Practices by Adopting
OSSE Tools. In: Feller, J., Fitzgerald, B., Hissam, S.A, Lakhani, K.R. (eds.) Free/Open
Source Processes and Tools, pp. 245–264. MIT Press, Redmond, Washington (2005)

29. Rodriguez, F., Geisser, M., Berkling, K., Hildenbrand, T.: Evaluating Collaboration
Platforms for Offshore Software Development Scenarios. In: Meyer, B., Joseph, M. (eds.)
SEAFOOD 2007. LNCS, vol. 4716. Springer, Heidelberg (2007)

30. de Souza, C.R.B., Redmiles, D., Cheng, L., Patterson, D.J.: Sometimes You Need to See
Through Walls - A Field Study of Application Programming Interfaces. In: Proceedings of
the ACM International Conference on Computer-Supported Collaborative Work, ACM
Press, New York (2004)

31. The Standish Group International: Extreme Chaos (2001)

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 19–26, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Meeting the Challenge of Communication in
Offshore Software Development

Henrik Munkebo Christiansen

NNIT A/S, Lottenborgvej 24, 2800 Lyngby, Denmark

Abstract. This paper will focus on what could be one of the biggest challenges
in offshore development, communication. Communication is of such
importance, that if it is not taken seriously in the offshore project, all the
advantages of offshore development, such as access to talent, greater flexibility
in access to resources and cheaper resources will be lost in the informational
overhead. The paper will argue that communication channels and infrastructure
are often not well established in offshore projects, which in worst cases results
in project failures. The paper will focus on factors which have an impact on
communication and on how to meet these challenges.

Keywords: Offshore software development, outsourcing, communication.

1 Introduction

When managers wish to integrate offshore development in their IT strategy, it is often
project managers and developers who have to face the challenges and complications
of integrating offshore development in their processes. Software development is
already a very complicated discipline [1], and going offshore adds new factors to
development, such as distance in culture, time and space. These factors will
complicate development further. Team members may not only be located in different
parts of the world, making different time zones a serious issue and face to face
communication impossible. They may also be from completely different cultures,
with different ways of expression and communication. As software development
relies heavily on quick information flows, this makes communication a huge
challenge in an offshore framework. Offshore software projects therefore become
much more difficult to manage than collocated projects [7] and often operate at a sub-
optimal performance level [8, 10].

This paper will focus on communication in offshore development and look at the
different factors that have an impact on communication. The paper will investigate
‘why’ communication is such a huge challenge in offshore development and ‘how’ to
meet these challenges. It condenses the lessons learned on communication from an
investigation [2] of more than 22 different offshore cases. The cases are built upon
interviews with managers and developers from China, India, the US, Russia and
Europe, all of whom work with offshore software development (see appendix for
research methodology).

20 H.M. Christiansen

2 Factors That Have an Impact on Communication

This section will present factors that can have an impact on communication. Many of
those factors are already present in traditional collocated forms of software
development. But they tend to be amplified when offshore development is integrated
in the IT strategy. To some offshore ‘bystanders’ [6] these factors can be a reason not
to engage in offshore development. Others face these challenges boldly in order to get
access to cheaper resources, talent and flexibility.

2.1 Different Time Zones

Different time zones place a burden on communicative relationships when the
difference is more than 4 or 5 hours. I have found that having less than 3-4 hours of
synchronous communication during a work day often makes communication hard and
unnatural. Others have found that even one hour of difference in time zones can be an
issue [13]. At all events, a significant difference in time zones means that
communication has to be carefully planned. The time zone difference often means
that the window for synchronous cooperation between onsite and offshore team
members is very short. This goes especially for overseas relations, such as
relationships between the US and India/China, where onsite team members in the US
have to work at odd hours if they want to communicate directly with team members
offshore – and vice versa. Direct communication becomes something that demands an
extra effort, something one has to do either very early in the morning or very late in
the evening. In consequence, direct communication is something one does only for
very important things. The rest of the information is communicated via e-mail or
other asynchronous communication tools. Nevertheless, the more asynchronously one
has to work, the smaller is the possibility for direct feedback. For any knowledge
intensive discipline, this poses a problem. Misunderstandings or questions which it
would take a few minutes to sort out via direct communication, can take days to sort
out via indirect communication. This means that time zones can delay the
communicative process and thereby the ability to make informed decisions. It has also
been suggested that difference in time zones increases coordination costs between
‘shores’ [11].

2.2 Different Cultures

Embracing offshore development in one’s IT strategy often implies that one has to
work with different cultures and organizations. Both can be very different from what
one is used to and may demand adjustments in work patterns for onshore team
members. Not only may the offshore organization have a different way to do things,
but due to the different cultural setup the way things are communicated may also be
very different. Getting used to these differences may take longer than one expects, not
only for onshore team members, but also for offshore team members. However,
offshore team members may be much more accustomed to work with different
cultures than their onshore peers. At all events, if differences are not discussed and
made clear to begin with this may cause problems later in the project.

 Meeting the Challenge of Communication in Offshore Software Development 21

2.3 Language

Heavy accents can be a burden for the communicative setup between onshore and
offshore team members. This problem may not be so explicit when the team is
together at kick-offs, etc. But on a noisy Indian telephone landline with delays and
echoes, trying to communicate project critical information to a person with a very
heavy accent may be a serious challenge, and one may very quickly rethink one’s
communicational strategy. This happened in most cases in the research material, no
matter whether project members were Russians, Chinese, or Indians. In this scenario
the only chance of proper communication will be simple communicational tools such
as chat and e-mail. These communicative forms are widely used as many offshore
developers’ written language skills often are much better than their spoken language
skills.

2.4 Thin Communication Channels

Heavy accents and time zones may force one to use electronic communication
channels. If synchronous communication is possible and one needs quick feedback,
one may prefer to use chat as the most important communicative tool. If synchronous
communication is difficult or impossible one may prefer to use e-mail. Nevertheless,
any step one takes from face to face communication will be a step down in
communicational richness [3]. With chat one gets instant feedback but looses some of
the richness of tonal expression one gets from a phone call. With e-mail one looses
the chance of instant feedback and feedback circles will slow down. Every time one
waits for feedback via e-mail, one delays the project and slows down the learning
process in the project. Fast feedback cycles are of pivot importance for the project
members’ ability to learn. Compare this to the difference between learning from a
teacher in a class room and learning from a teacher living 10 time zones away by e-
mail exchange.

2.5 Different Platforms

Using different platforms in the project, whether it is operation systems, e-mail
programs, developer tools or other important tools in the project, often leads to an
incompatibility, which causes problems that could easily have been avoided by
standardizing the IT infrastructure in the project. An unstandardized IT infrastructure
can lead to smaller problems such as e-mails shown in different ways on- and
offshore, or bigger problems such as programs that compile offshore, but do not
compile onshore. Unstandardized platforms can make it very hard and time
consuming to fix even smaller problems.

3 How to Meet the Challenges of Communication

This section describes how developers and managers in the research material
have tried to meet the challenges of communication. Many, new to offshore
development, have the naive belief that human interaction can be replaced by e-mail
exchange and other internet-based communication tools. Research [4, 9] shows that

22 H.M. Christiansen

these communication tools can be helpful, but that they cannot replace face to
face interaction The following contains the lessons learned on how to improve
communication in offshore projects.

3.1 Put Stress on Synchronous Communication

The faster the feedback cycles are in projects, the faster the project can learn and
advance. If project communication is based on exchange of e-mails between
dislocated team members, communication will suffer, misunderstandings will occur
and the project will slow down. Putting stress on synchronous communication will
mean much faster feedback cycles and much improved project understanding.
Synchronous communication can take many forms, but the most common are chat,
telephone and face to face communication. Most often, face to face communication is
impossible, due to the added distance. Traveling between ‘shores’ can be expensive
[10] and inconvenient for many [9]. However, in ‘nearshore’ projects where offshore
members are no more than 2 or 3 hours away by plane, face to face meetings is
an easier and important option to offshore development. Face to face communication
is an informational very rich form of communication. The transfer of information is
much higher than via other communicational means. If face to face communication
is not possible, the telephone is an underestimated tool counteracting slow
communication. Videoconferences are another option for synchronous
communication. However, many people are reluctant to use this tool as they feel
uncomfortable with it and prefer to use the phone or chat. Due to language problems
(heavy accents etc.) many people prefer chat to telephone although chat by many is
considered one of the least informative forms of synchronous communication [3].

Personal barriers such as shyness can also cause delays in the communication.
Instead of making a telephone call, team members who do not know their recipient
very well often feel more comfortable sending an e-mail. Such barriers are resolved
when personal relationships cross ‘shores’ are built. Information flows faster and
easier in a friendly atmosphere where one can talk informally. Therefore, bringing
people together for kick-offs or conferences is an important step in improving
communication between team members.

As we have learned from the previous section, synchronous communication is also
impeded by time zones. If rich communicative feedback cycles are important for
project success, then people have to change their work routines and work odd hours.
This goes for both on- and offshore team members. The alternative is to place one’s
offshore center in a nearby time zone. For US companies, this could be Mexico or the
Caribbean nations. For Europeans, it could be Russia or the Ukraine [12]. The
alternative to odd work hours or ‘near shore’ development centers, is transferring
knowledge via e-mail and documents. For knowledge intensive and complex projects
this form of asynchronous communication means a slowdown in project progress.

3.2 Adapt to and Understand Other Cultures

Communication is a very important part of any culture, whether organizational or
national. In large organizations with team members spread on different locations,
e-mail may already be the main communicative tool. In this kind of communicative

 Meeting the Challenge of Communication in Offshore Software Development 23

culture it may not be difficult to adapt to the traditional offshore scenario.
Communication is already slow and feedback circles delayed. However, when a well-
tuned organization with a high flow of information among collocated team members
engages in offshore development, it is important to make sure that offshore members
can absorb the same amount of information as onshore members can. Very often
this is not possible, not because of the offshore members, but because of the
communication channels used. If an onshore organization starts working with an
offshore organization with a different communicative emphasis, cooperation will be
made difficult. Therefore, it is very important in initial phases of cooperation to make
sure that both organizations implement the same communication strategies.

Great differences in national culture may either disperse or connect on- and
offshore members. Often, team members are enriched by working together and learn
from each other. But different ways of solving things or working may also come as a
bitter surprise. This can even be the case for cultures that are geographically close. If
these differences are not either embraced or aligned, they can end up becoming an
irritating and frustrating part of working in offshore projects, especially if the project
members have a heavy work burden.

A way to embrace cultural differences is to celebrate the diversity. One example is
developers in Russia having Swiss evenings where they made cheese fondues. Others
had maps or flags in their offices representing the country of their customer [2].
Creating an open mind towards the people one is working with is vital for a good
relationship between on- and offshore developers. If one can remove the idea of an
on- and offshore team and work as one global team, barriers are limited and
communication will certainly become easier.

Organizational differences may also turn out to impede offshore projects. Often
problems will arise in the beginning of the project, delaying the offshore project in the
long term. Some companies have taken the consequence of this and made their own
offshore development center. These companies had less problems communicating as
both their formal and informal communication channels were much more aligned,
compared to projects where different organizations worked together. Working in the
same organization, on- or offshore, gives one the same organizational pivot from
where communication can be accelerated. This has also been indicated by other
research [6].

3.3 Put Emphasis on Spoken Language Skills

The decision to bring a project offshore is often made from economical
considerations. Onshore management simply expects to save money on their projects.
However, the money saved on using developers offshore without proper language
skills is lost on the communicational overhead. If one wishes to succeed with this
strategy one has to make sure that the informational hubs in the project (often the
project manager or the lead developer) have very good spoken language skills. To
counteract this problem some companies offer English courses to team members
[2, 12].

24 H.M. Christiansen

3.4 Rotate People Between Shores

In a traditional onshore-offshore relationship, the customer is onshore and the
developers offshore. Often this setup is improved by bringing offshore members
onshore and onshore members offshore. These persons are called straddlers [4],
ambassadors [5], enablers [2] or cultural liaisons [12]. The research material show
that the onshore organization often did not provide sufficient resources onshore ready
to answer the questions of the offshore developers and help them move on. Most often
the onshore organizations were the bottleneck in the organizational setup. Therefore,
it helps the project having someone who can easily navigate in the onshore
organization, making sure that things are happening and that the right persons are
contacted. Team members traveling offshore with business knowledge can be a
tremendous help for offshore developers. They can simply boost and accelerate the
offshore developers’ ability to understand what the customer wants. It has been
indicated that for every 20 offshore team members, there should be one onshore
member offshore [10]. If this is not possible, having an offshore developer onshore
absorbing the business understanding and transferring it offshore is also helpful.
Generally, it is much easier for offshore developers to ask questions directly to one of
their own team members onshore. This person can then find the answers face to face
with the customer. Every time the onsite offshore developer solves a problem for the
offshore team, 2 or 4 hours are easily saved compared to when the offshore team has
to solve the problem by themselves.

3.5 Use Artefacts Properly

All projects have some artefacts around which the projects evolve, in plan-driven
projects it is often the requirement specification, in agile project it is often the code
base or the user stories. Whatever methodology one chooses for the projects, it is
important to continuously talk about the artefacts in the projects. These are the objects
around which the learning processes in the project evolve. Review documents,
prototypes, screen shots, test documents, whatever can help the project move forward
is positive. These artefacts serve as tools which give birth to understanding in the
project.

3.6 Aligning IT Infrastructure

Communication channels are often supported electronically. A lot of problems are
avoided if both teams, onshore as well as offshore, work on the same platforms. This
applies to all levels of communication, from operation system, e-mail program to
compiler. The more standardized the IT infrastructure is, the less is the hassle with
incompatibility and errors due to differences in IT infrastructure. This is often
discovered too late in the project. Once standardized, it is also important to make
sure that IT infrastructure works properly on both shores. If one chooses a strategy
relying on interaction via telephone, it is extremely important that one makes sure
that the phones really work. A lot of cases from the research material [2] report
non- or malfunctioning telephone lines. Some solved this by using their own
telecommunication infrastructure. Most used chat instead.

 Meeting the Challenge of Communication in Offshore Software Development 25

3.7 Use Requirement Specifications with Care

Very often it is believed that projects can be specified and then sent offshore. This is a
serious misunderstanding which can end up in delays and, in worst cases, project
failure. Requirement specifications contain a huge amount of implicit knowledge.
And it often takes time to make implicit knowledge explicit and to transfer it. One
onshore developer explained that specifying requirement to a level that was useable
for offshore developers, was so time consuming that he could develop the software
himself within the same timeframe [2]. This means that one should be ready to invest
time and money in transferring the implicit knowledge. Once this knowledge is
transferred requirement specifications will be easier to understand for offshore
developers. Even for small well-specified projects it can take more time to transfer
this knowledge than one expects. The transfer of implicit knowledge can be even
more difficult in projects with a high attrition rate. In such projects it can be very hard
to keep a critical mass.

4 Conclusion

When distance in time, space and culture is present between team members in
software development, communication starts to suffer tremendously. This paper has
presented factors which can have an impact on communication. Ways to meet these
factors and ways to improve the communication have been suggested. Awareness of
this challenge and how to meet it will help team members on both ‘shores’.

If communication channels are used wrongly project delays and, in worst cases,
failures will happen. It takes time to communicate the details and implicit
knowledge which is an integrated part of software development. As the relationship
between ‘shores’ develops and more project knowledge is sent offshore, more
complex projects can be carried out. For many organizations it has taken years to
build up knowledge and communicational forms in order to handle semi-complex
projects.

With team members dispersed, software development will meet more challenges
than with traditional collocated members. The research material show that companies
which emphasized communication in their software processes ran into fewer
problems, whether technical or organizational. Good communication in offshore
projects is not without a cost, however. Software teams may have to work at odd
hours. Team members may have to travel much more than they would in a traditional
software project. ‘Kick-offs’ gathering all project members from both shores can be
very expensive. Standardizing IT infrastructure is not free of cost either. All these
factors do cost, but they also lower the informational overhead normally found in
traditional offshore development. But offshore development is not a silver bullet.
Nevertheless, if one wishes to take advantage of offshoring in ones IT strategy, one
has to integrate good communication practices in the offshore projects and use them
with care and attention.

26 H.M. Christiansen

References

1. Brooks, F.P.: The mythical man-month: essays on software engineering. Addison-Wesley
Longman, anniversary edition (1995)

2. Christiansen, H.M.: An Empirical Study on the Challenges of Offshore Software
Development - their resolution and some agile suggestions. MSc Thesis, IT University of
Copenhagen (2005)

3. Cockburn, A.: Agile Software Development. Addison-Wesley, Boston (2002)
4. Heeks, R., Krishna, S., Nicholson, B., Sahay, S.: Synching or sinking: Trajectories and

strategies in global software outsourcing relationships. Working Paper Series, vol. 9 (July
2000)

5. Martin Fowler. Using an Agile Software Process with Offshore Development.
ThoughtWorks (accessed July 26, 2004) (2004),

 http://www.martinfowler.com/articles/agileOffshore.html
6. Carmel, E., Agarwal, R.: The Maturation of Offshore Sourcing of Technology Works,

MIS Quarterly Executive, vol. 1(2) (June 2002)
7. Carmel, E.: Global Software Teams: Collaborating Across Borders and Time Zones.

Prentice Hall PTR, Upper Saddle River, NJ (1999)
8. La Ferla, B.: Offshore Outsourcing: Out of Favour? IEEE Review (March 2004)
9. Kobitzsch, W., Rombach, D., Feldmann, R.L.: Outsourcing in India. IEEE Software

(March/April 2001)
10. Laplante, P.A., Costello, T., Singh, P., Bindiganavile, S., Landon, M.: The Who, What,

Why, Where, and When of Outsourcing, January | February 2004 IT Pro. IEEE Computer
Society Press, Los Alamitos

11. Espinosa, J.A., Carmel, E.: Modeling Coordination Costs Due to Time Separation in
Global Software Teams. In: International Workshop on Global Software Development,
part of the International Conference on Software Engineering Work in Portland, Oregon,
USA (May 2003)

12. Carmel, E., Agarwal, R.: Tactical Approaches for Alleviating Distance in Global Software
Development. IEEE Software (March/ April 2001)

13. Herbsleb, J.D., Grinter, R.E.: Splitting the Organization and Integrating the Code:
Conway’s Law Revisited. In: Proc. 21st Int’l Conf. Software Engineering (ICSE 1999),
pp. 85–95. ACM Press, New York (1999)

Appendix: Research Methodology

The approach for this research was primarily qualitative, as the project progressed
more and more cases were added to the research material. In the end of the project,
the number of cases added a quantitative aspect to the research methodology. The
interviews were recorded and written down and reviewed with participants in order to
avoid misunderstanding. The interviews were conducted iteratively. As the number of
interviews progressed new questions arose, which meant that managers and
developers were interviewed several times in order to clarify new angles on offshore
development. Most interviews were conducted face to face in Russia or Europe. If
face to face interviews were not possible they were conducted by phone. The cases
varied in size and form. Some projects were smaller 20,000 US$ projects, while other
were projects of 40 million US$.

Testable Requirements for Offshore Outsourcing

Jean-Pierre Corriveau

Carleton University, Canada
jeanpier@scs.carleton.ca

Abstract. Given that software offshore outsourcing is a business rela-
tionship, we assume that a contract is required in order to define what
services are requested from a contracted entity and how these services are
to be delivered to the satisfaction of the contractor. We first argue that,
at the heart of the quality assurance facets of such a contract, we must
find a single testable model of both the functional and non-functional
requirements of the system to be delivered. We present the key proper-
ties that such a model must exhibit: testability, executability, scenarios
as grammars of responsibilities, and support for abstraction. We then
observe that, typically, existing approaches to requirements engineering
do not offer such characteristics. We conclude by briefly discussing a pro-
totype conformance testing environment that supports these properties.

1 Introduction

In the context of software offshore outsourcing, Meyer [1] observes that “quality
is indeed the central issue”. It is commonly accepted in software engineering
that ‘quality’ “is the degree to which a system meets specified requirements” [2].
Furthermore, it is widely acknowledged that requirements of software systems
include both functional and non-functional aspects. Quality requires a compre-
hensive approach to validation and verification (hereafter V & V) (see [2]), that
is, one that addresses both functional and non-functional requirements. Investi-
gating such an approach to V & V in the context of software offshore outsourcing
constitutes the central theme of this paper. For software development, outsourc-
ing is a business relationship whereby one organization (hereafter the contractor)
contracts another (hereafter the contracted) for the realization of one or more
phases of the software development lifecycle. What exactly is outsourced can
vary considerably [3]: some contractors may delegate the complete development
effort, whereas others may hand over a more or less detailed design and request
its completion and implementation. Here, we are not concerned with process and
method but with the semantic vehicle used to capture quality and its V & V.
Given outsourcing is a business relationship, we assume a contract is required
in order to define a) what services are requested from the contracted entity and
b) how these services are to be delivered to the satisfaction of the contractor.
Because outsourcing is often motivated by cost reduction considerations, even-
tual legal battles are obviously to be avoided. This is particularly important in
the context of offshore outsourcing where internationalization can quickly and

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 27–43, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

28 J.-P. Corriveau

dramatically complicate such battles. Consequently, a software offshore outsourc-
ing contract will clearly gain in including, among its quality assurance facets,
the specification of a systematic approach to the objective V & V (and more
specifically to the conformance testing [2]) of the functional and non-functional
requirements of the system to be delivered (hereafter STBD). This approach
must rest, first and foremost, on the ability of the relevant parties to capture the
requirements of the STBD in a model that not only acts as a communication
vehicle between these parties, but also as a means to determine conformance of
an implementation to its requirements. The use of the singular when referring
to the desired model is important. In the context of software offshore outsourc-
ing, regardless of what models are used by the contracted company during the
development lifecycle, we believe it is essential that a single model be used for
capturing requirements. This belief proceeds from the fact that it is this model
that defines quality, as well as how to verify it. In our opinion, introducing a
multitude of models for the purpose of capturing requirements in fact is likely
to open a corresponding multitude of doors for misinterpretation. Let us briefly
elaborate. Before being tested for conformance, requirements must be agreed
upon, which entails the contractor and the contracted must use some commu-
nication vehicle to discuss and ultimately document the requirements that are
relevant to the verification of their common business contract. Minimally, what
is at issue is the conformance of an implementation submitted by the contracted
to the requirements etched in a contract. There are some disadvantages to using
several models for this task of conformance testing:

– With respect to communication: the more models, the more semantics and
consequently the likelier the occurrence of misinterpretations and misunder-
standings. Also, the more models, the more syntax and semantics to learn
(by both parties) and thus the higher the costs associated with learning
curves.

– With respect to conformance testing: the more models, the likelier the task
gets more complicated (as Binder [2] explains at length in his discussion of
the testability of UML models).

More specifically, the more models, the more complicated it is

1. to verify that these models are semantically consistent between themselves,
and

2. to semantically combine them to extract tests.

We believe advocating a single model for requirements capture and conformance
testing is desirable in the context of offshore outsourcing. We elaborate on this
standpoint throughout the next section in which we explore the key properties
we require of this model.

2 Properties for Conformance Testing

There exists a large body of work on requirements engineering (e.g., see [4]),
an activity that Meyer [1] sees as central to the success of software offshore

Testable Requirements for Offshore Outsourcing 29

outsourcing. Our goal in this section is to motivate the essential properties we
require of the semantic vehicle used to capture and test the requirements of the
STBD.

2.1 Strong Testability

Most importantly, we contend that requirements must be captured in what
Binder [2] calls a testable model, that is, a model from which tests (intuitively,
as queries on the structure and behavior of a system) can be extracted in a
systematic way. If this is not the case, then we necessarily suffer from the so-
called ‘correspondence problem’: we cannot rule out that a semantic gap (that
is a lack of traceability [2,5]) may exist between the specification of the require-
ments of the STBD and the actual tests used for the conformance testing. In
other words, if tests are not traceable back to requirements, then we cannot be
certain that these tests do address the requirements of the STBD. Conversely,
we want to adopt a strong interpretation of testability as the automated genera-
tion of tests from a model. ‘Weaker’ definitions do not demand this automation
of the production of tests. Our motivation is obvious: if the production of tests
is automated from a model of the requirements of the STBD, then such tests
are expected to systematically correspond to this model, which is part of the
legal document between the contractor and the contracted. Put another way,
automated generation of tests from model considerably reduces the risk of a lack
of correspondence between requirements and tests. Similarly, automatic genera-
tion of code from models, which lies at the heart of a model-driven approach [6]
to software development, reduces considerably the possibility of a lack of corre-
spondence between models and implementation. Please note however that the
correspondence problem never completely disappears unless the correctness of
this generation process can be demonstrated.

2.2 Executable Tests

Demanding that the production of tests from a requirements model be auto-
mated is not sufficient: If such generated tests are disconnected from an actual
implementation, then we still have a traceability problem. In other words, it is
still possible that the actual tests to be run against the implementation do not
correspond to the tests produced from the requirements model. Consequently, we
espouse an even stronger interpretation of testability, one that insists that tests
obtained from a requirements model be executable. This standpoint has two im-
portant repercussions: First, the automated generation of executable tests from
a single requirements model provides, in our opinion, a mechanism for the objec-
tive assessment of the conformance of an implementation against such require-
ments. Objectivity here stems directly from the ability to execute the generated
tests. In other words, success or failure of a test is not a rhetorical exercise
open to debate. Instead it consists in the outcome of the execution of a test
on the target implementation. From a legal viewpoint this is important: both
contractor and contracted will thus share a straightforward way of establishing

30 J.-P. Corriveau

conformance. Second, the previous point entails the existence of a conformance
testing environment (hereafter CTE) capable of inputting the tests generated
from a requirements model, executing them on the target implementation, and
reporting on their outcome. At this point in the paper, what matters is that the
contractor and the contracted must agree to both use such a CTE to capture
requirements and to carry out and report on conformance testing.

2.3 Responsibilities and Scenarios

We must now address a concrete difficulty with the notion of executable tests:
As previously mentioned, we are not committing to any particular process or
method. More specifically, we do not presuppose how much or how little the
contractor is involved in the development of the required implementation. Min-
imally, however, this contractor must approve the requirements captured in the
testable model of a contract and then eventually must scrutinize the evalua-
tion report produced by the CTE from the execution of tests obtained from
this model. A question emerges from such an approach: how can a requirements
model, which is to be specified completely independently of any implementation,
generate executable tests? We suggest that a solution lies in the separation of
the specification of tests from their context of use. Let us consider these two
notions. Tests are to be produced from a testable model and are indeed to be
independent of any implementation. They ought to be thought of as instruc-
tions for the CTE. Intuitively, as previously mentioned, tests can be thought
of as queries on the structure and on the behavior of an implementation. In
order to dissociate them from this implementation, tests, and their originating
testable model, are taken to refer to the responsibilities of an implementation.
Responsibilities act as placeholders for procedures of an actual implementation.
For example, a testable requirements model for a sequential container [7] may
refer to the responsibility insertFirst. A dynamic test [2], that is, a test on the
behavior of this responsibility could then define pre- and post-conditions [8,9] for
insertFirst (ensuring respectively that the container is not full before insertion,
and that, after insertion, the size has been increased by 1). The precondition,
for example, could be written as: !is-Full. The responsibilities insertFirst and
isFull being placeholders, they would need to be subsequently bound to actual
procedures of the implementation. The specifics of this binding task (e.g., bind-
ing to procedures with names different than those of the responsibilities) depend
on the specifics of the testable model and of the CTE. They are not relevant
here. At this point of our presentation, what matters is the idea of separating
responsibilities from actual procedures. The binding of a responsibility to an
actual procedure constitutes one aspect of a solution allowing tests to become
executable. We also require what we call a context of use for each test. Contin-
uing with our sequential container example, it is obvious that there is limited
gain in testing the procedure corresponding to insertFirst in isolation, that is,
in a minimal context of use. The conformance testing of the requirements of
a STBD against an implementation dictates that responsibilities be tested in
context, that is, as part of scenarios [10]. Indeed, scenarios are often taken as

Testable Requirements for Offshore Outsourcing 31

the semantic foundation for the modeling of the requirements of a system (e.g.,
[10,11]). Without committing to any particular formalism for the representation
and exact semantics of scenarios, we can still adopt the position that scenarios
are to be conceptualized as temporal flows of responsibilities [Ibid.]. Put another
way, scenarios aim at capturing paths of execution each scenario corresponding
to a multitude of paths of execution. And each such path constitutes one specific
context of execution. In our simple example, it is possible to describe the use of
a container via a scenario that captures the following flow of responsibilities:

1. the container is allocated and possibly initialized
2. an initial insertion occurs
3. a series of insertions, deletions and other operations (e.g., display) occur
4. the container is possibly deallocated.

A specific path through this scenario would explicit an exact sequence of respon-
sibilities, that is, an exact sequence of operations on a container. Tests (e.g., the
pre- and post-conditions mentioned earlier) would be associated with the re-
sponsibilities of a path. In order for such tests to be executable:

– Clearly, responsibilities would have to be eventually bound to actual pro-
cedures (as previously suggested) since procedures, not responsibilities, are
executable.

– A path generation and selection algorithm would be required to generate
(out of each originating scenario) a set of specific paths to use as contexts of
use, and then select which ones to run. This task involves selection because
it is not usually the case that we want to run all the possible paths out of a
scenario. In fact, typically, applying the technique of equivalence partitioning
[2], we will want to avoid selecting paths that, from a testing viewpoint, are
equivalent.

– After eventually binding responsibilities to actual procedures, a path will
consist of a specific sequence of actual procedures. In order for these pro-
cedures to be executable, each actual procedure of each path will need to
be supplied with the parameters it requires. In particular, each procedure
will need to obtain its receiver, that is, the instance on which it executes.
We refer to this task as path instantiation. (Typically, such a task is greatly
complicated by the fact that the receiver of each procedure may have to be
put in a specific state [2].)

For example, we can obtain the path {allocate, insertFirst, insertFirst, display,
insertLast, deleteFirst, deleteLast, deallocate} out of the previous scenario. Once
each of these responsibilities would have been bound to a corresponding actual
procedure (e.g., insertFirst could be bound to pushFront()), it would then be
necessary to associate to each such procedure the parameters it requires (a cum-
bersome task faced by any tester using scenarios). Then, and only then, would
the CTE be able to run the tests associated with the procedures of this path.
In our simplistic example, all actual procedures would be performed on a same
instance of a container. Thus, all the assertions associated with these procedures

32 J.-P. Corriveau

would pertain to the same instance. Generally, however, a path will involve pro-
cedures pertaining to several instances of different classes. Consequently, the
task of path instantiation (or equivalently path sensitization [2]) will be obvi-
ously more difficult than in the case of a single instance. For example, consider
customers waiting in distinct queues at a grocery store. Furthermore, assume
such queues are monitored by a manager who decides when to open or close
them. Here, there is a multitude of instances, some belonging to the same class
(e.g., customers, queues), some being singletons (e.g., the manager). As there
may be different types of queues (e.g., ‘express’ versus ‘normal’), it may also
be necessary to associate a number of items-to-purchase with each customer
(see below). Does the manager contain a set of queues or is it each queue that
has a pointer to this manager? Does each customer need to contain a reference
to the queue that contains it? The point to be grasped is that path instanti-
ation is intimately tied to an actual implementation and thus will very likely
be carried out by the contracted company. In the same vein, we remark that,
once responsibilities are bound to actual procedures, a path comes to consti-
tute in itself a dynamic test: it is an expected sequence of procedure calls to be
matched by actual behavior of the system. Consequently, a CTE must be able
to perform such matches. However, intuitively, the feasibility of such matches is
inversely proportional to the semantic richness of the formalism used to capture
scenarios. For example, the use of an abort in a use case map1, or of a core-
gion in a message sequence chart2 offers significant semantic advantages, but
also considerably complicates the task of matching the scenario in which such
operators appear to an actual sequence of procedure calls. Understanding how
complex path instantiation and path matching can be leads to a fundamental
issue on which the contractor and the contracted must agree, namely, how much
coverage [2] of the testable model is required. We now briefly elaborate on this
topic.

2.4 Coverage

In practice, it is commonly accepted that testing may be an endless task [2]. In
particular, a scenario-based approach to testing generally suffers from having a
path generation/selection algorithm that possibly generates an intractable num-
ber of paths. Also, both path instantiation and path matching may be extremely
difficult to achieve depending on the complexity of the semantics of the scenarios.
Consequently, it is unrealistic to demand that all possible paths from all scenar-
ios be selected, instantiated, tested and matched [2]. Instead, the contractor and
contracted must agree and document in the contract how much coverage will be
required. Let us elaborate. First, both parties must agree on a path generation
and selection algorithm. Given that each selected path will have to be instanti-
ated, matched and reported on (in particular, with respect to the tests associated

1 Use Case Maps,
http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/WebHom

2 Message Sequence Charts, www.sdl-forum.org/MSC/

Testable Requirements for Offshore Outsourcing 33

with the procedures of this path), this decision is crucial in defining how much
actual testing will need to be performed. The key observation is that paths are
generated from scenarios, and scenarios are in the testable model. Thus, cover-
age (as a set of selected paths) can be enshrined in the contract. Furthermore,
two alternatives exist for path selection. Option 1: both parties agree to restrict
testing to a specific set of scenarios and/or paths selected jointly according to a
common documented (albeit somewhat subjective) criterion. Or, option 2, both
parties instead adopt some commonly-accepted selection algorithm, in which
case the selected paths will be systematically derived from the testable model
(as opposed to being selected possibly subjectively by the two parties). Binder
[2] presents in detail a hierarchy of coverage strategies for state machines and
observes: the more coverage, clearly the more work required for path instantia-
tion. More importantly, we remark that an algorithmic approach to selection and
coverage (i.e., option 2) may be more objective than option 1 but it is knowledge-
free. In particular, such algorithms typically minimize equivalence partitioning
(which requires a deep understanding of the problem addressed by the STBD).
Consequently, despite a possible loss of objectivity and systematicity, it is likely
the contractor and the contracted will draw on their common understanding of
the requirements of the STBD (as documented in the testable model) to select
a set of paths to test (which also ends up in the contract). Second, because path
instantiation is intimately linked to an actual implementation, assessing how
much work is involved in the instantiation of a set of selected paths can likely
only be performed by the contracted once an implementation is available. There-
fore both parties must be ready to deal with the possibility that the contracted
reports to the contractor that the set of selected paths to test requires too much
effort in terms of path instantiation (with respect to a budget and/or timetable).
Third, noticing Binder’s insistence that a testable model be complete [2], that
is essentially, that it document the handling of both valid and invalid paths, we
stress that the complexity of path selection and of path instantiation indeed in-
creases (possibly dramatically) when one does not limit these tasks to only valid
paths. Ultimately, it is up to contractor and contracted to agree on how many
invalid paths must be tested. (It is possible however that the use of assertions
on scenarios may reduce the number of invalid paths to consider. This topic lies
beyond the scope of this paper.) Fourth, as is widely the case in the software
industry when developing large software systems (such as the millions of line of
code of a telephone switch), achieving 100% success for a very large number of
scenarios and tests is likely unrealistic. (Here ‘success’ consists in having actual
behavior match expected one, as well as having the assertions of the relevant
responsibilities of the selected paths be satisfied). Consequently, the parties may
agree that only a certain percentage of the tests have to succeed at the time of
‘official’ V & V. In such a situation, it becomes crucial for both parties to agree
on a) the prioritization (through subjective selection) of scenarios, b) the use of
a problem tracking system, and c) the legal ramifications of working with a sys-
tem that contains known errors and defects. Point a) emphasizes that ultimately
the concept of importance, central to Boehm’s [12] notion of convergence in

34 J.-P. Corriveau

incremental software development, directly pertains to V & V. In other words,
parties involved in conformance testing must acknowledge that deep understand-
ing of the ‘domain’ (or ‘problem space’) is required in order to carry out such pri-
oritization (which also likely draws on equivalence partitioning). Point c) stems
from point b): once parties accept that not all tests will be successful (or even
attempted) by the agreed date for the delivery of the STBD, then parties must
decide on the interpretation of this first V & V milestone. More precisely, the
question is two-fold: i) what will constitute satisfaction of the legal obligations
of the outsourcing contract and ii) will establishing contractual satisfaction be a
one-time or an on-going process. Clearly, the latter option complicates the legal
language to be used in the outsourcing contract. Finally, it must be emphasized
once more that despite the numerous challenges presented by path generation,
selection, instantiation and testing, the existence of a testable model ensures
that path generation/selection, which is based on the scenarios of this model,
need not wait for the implementation to become available in order to start.

2.5 Modeling a Continuum of Levels of Abstraction

Pinpointing how much coverage is to be achieved (at a particular point in time)
does not solely depend on path generation/selection/instantiation from scenar-
ios. In particular, how abstract a scenario is or is not will indirectly affect cov-
erage. To illustrate this, let us consider an elevator system (often studied as,
for example, in chapter 18 of Gomaa’s book [13]). Gomaa suggests two highly
abstract scenarios for this system (in the form of use cases [11]):

– user requests elevator
– user selects destination

If the elevator system is viewed as a black-box, then the paths obtainable from
each of these two scenarios number few and are extremely simple (because the
scenarios cannot refer to events internal to the system). Consequently, apparent
complete coverage can be envisioned. Even if the system is broken down in a few
objects, the possible paths for each scenario consist of a few messages (see figures
18.5 and 18.6 in [13]) and coverage remains unproblematic. However, as detailed
design unfolds, more objects and more interactions are introduced, leading to far
more complexity (see figures 18.34 and 18.35 in [13]!). In particular, the num-
ber of paths that can be generated from the scenarios increases dramatically
(especially in light of concurrency)! It follows that supplying binding and path
instantiation information becomes more work. Thus parties may likely agree to
decrease coverage. Clearly, as previously mentioned, as there are more possible
paths, there is less chance to achieve ‘close-to-complete’ coverage of this space of
paths. Intuitively, coverage appears to be inversely proportional to the number
of possible paths. The observation we want to emphasize is that the number
of paths possibly generated from the scenarios of a testable model is directly
correlated to the level of abstraction of this model. And because this level of ab-
straction typically evolves over time, it has repercussions on the verification of
quality in the context of an offshore outsourcing contract. Let us elaborate. First,

Testable Requirements for Offshore Outsourcing 35

we remark that both scenarios and responsibilities are typically subject to refine-
ments over the course of developing a software system [11,14]. More precisely, as
a system is decomposed into finer-grained responsibilities, these responsibilities
are associated to i) finer-grained scenarios (which capture more complex interac-
tions) and to ii) fine-grained components (where a component, or class, is viewed
first and foremost as a cluster of responsibilities [11]). The elevator case study of
Gomaa [13], for example, constitutes an excellent full-length (approximately 70
page) illustration of this process of refinement. Second, and most relevant to this
paper, the refinement of scenarios and responsibilities enables the refinement of
tests captured in a testable model. Consider, for example, Gomaa’s previously
mentioned ‘User requests elevator’ scenario. If the elevator system is viewed as a
black box, with only up/down ‘floor buttons’ (switched on or off) as its interface,
then dynamic tests will be mostly limited to checking whether such buttons are
correctly switched on or off at the correct time, and whether an elevator even-
tually services the requested floor. The point to be grasped is that such tests
will be quite ‘coarse-grained’. But as soon as the system is decomposed into the
four components suggested by Gomaa (namely a Manager, a Control, a Sched-
uler, and a Plan & Monitor object), new responsibilities will appear and require
testing. For example, in this scenario, the Scheduler is responsible for serializing
floor requests, choosing an elevator to service each floor request, informing this
elevator of this assignment, and obtaining a commitment from this chosen ele-
vator. As this scenario is instantiated into specific paths (e.g., passenger X on
floor 5 requests an elevator to go up), obviously the dynamic test corresponding
to this path will be more complex to match if it involves these four finer grained
components than if it only involves buttons and a single ElevatorSystem com-
ponent. Also, the previously mentioned coarse grained tests associated with a
single ElevatorSystem component will be replaced by a set of tests associated
with each of the four finer-grained components. For example, for the Scheduler,
a pre-condition to receiving a new floor request could test that the queue used to
serialize such asynchronous requests is not full. The point to be grasped is that,
as the conceptualization of a system is refined, so can its corresponding testable
model. And this is directly relevant to the objective verification of the quality
of an outsourced system. Parties must acknowledge that the higher the level of
abstraction in scenarios, the more difficult path generation/selection is (due to
the excessive abstraction of these paths).If, despite this observation, a contractor
chooses to finalize a contract based only on high-level scenarios, then the contrac-
tor should have the contract require that the detailed scenarios as well as the set
of actual paths selected by the contracted for testing be available for scrutinizing
by the contractor. In other words, the contractor should insist on traceability in-
formation that allows this contractor to observe how much the system has been
tested. (But this likely entails extra work for the contracted and may, in prac-
tice, not be that useful: despite traceability, the contractor may simply be over-
whelmed by design details and not be in a position to evaluate how much coverage
has in fact been done.) Otherwise, the contractor has to trust that the contracted
will sufficiently test the system. In our opinion, this does open the door to legal

36 J.-P. Corriveau

battles. Conversely, the contractor may insist on the availability of detailed under-
standable scenarios before formalizing path selection into a contract. This is also
problematic inasmuch as such an approach delays the finalization of a contract
until considerable effort has been invested by the contracted in refining the initial
requirements (and by the contractor in understanding these details). Ultimately,
the issue of abstraction epitomizes the legal difficulties in dealing with deliver-
ables whose verification (as well as themselves) evolves over time. It appears that
contractor and contracted are faced with a tradeoff: either the contractor has the
contract refer to a highly abstract testable model, in which case objective V & V
is hard to formally define, or the contracted must invest in refining requirements
without knowing how much testing will be requested. In our opinion, the solution
to this tradeoff lies in thinking of abstraction as a continuum. As in most legal mat-
ters, a workable solution does not lie at the extreme but more towards the middle.
In other words, the contractor and the contracted must reach a compromise as to
when it is opportune to ‘freeze’ a testable model into a contract. Two observations
help in deciding on the timeliness of this decision. First, Briand [14] observes that
in the case of assertions (e.g., pre- and post-conditions), there is indeed generally
a point after which the investment in refining such assertions becomes hard to jus-
tify. Second, we believe that observations like the one of Briand proceed from a
more fundamental reality that is often forgotten: a testable model should not be
conceived to test a specific system but rather a space of solutions. Adopting the
terminology of system family engineering [15], we want a testable model to define
a domain, that is, a set of requirements that will hold across a space of possible
solution systems. We must never illusion ourselves in thinking that, given a set of
requirements, only one correct and optimal system can be built. Consequently, it
is crucial that a testable model capture variability across a space of solutions. And
over-refinement eliminates variability. Thus, on the continuum of abstraction as-
sociated with the development of a software system, a testable model becomes too
refined to be included in an outsourcing contractwhen it fails to capture variability
across a space of solutions and instead becomes specific to a particular solution.

3 On Existing Modeling Approaches

We now briefly consider how some of the currently dominant approaches to
software development accommodate the issues raised in the previous section. To
do so, let us start by recapitulating these issues. We have argued for:

1. unified semantics for functional and non-functional requirements,
2. testability of a requirements model,
3. executability of tests,
4. semantics rooted in the notions of responsibilities and scenarios,
5. formalization of test coverage, and
6. abstraction of the testable model over a space of possible implementations.

It is important to understand that all of the previous discussion rests on the
assumption that the contactor and the contracted will agree to formalize the

Testable Requirements for Offshore Outsourcing 37

V & V of the quality of the STBD in a contract. In addressing current ap-
proaches to software development, we choose to first consider one that contests
the need for contracts altogether. Indeed, several so-called agile [16] methods
argue that contractual disputes may be avoided by placing much less emphasis
on contracts per se and instead promoting intensive interactions between cus-
tomer and supplier. Such a viewpoint is at the heart of the “Manifesto for Agile
Software Development”3 and its corresponding methods (e.g., [17]). Ultimately,
the business relationship can take the form of a risk-sharing endeavor, that is,
of some sort of commercial alliance. Regardless of the advantages and disadvan-
tages of such approaches, let us simply observe that they do not readily fit, in
our opinion, the context of offshore outsourcing. The reasons are quite obvious:

– Intensive intercontinental communications across different time zones may
entail logistical problems (and their associated costs), and potentially, by
sheer accumulation, communication costs.

– Human communication is inherently imprecise, if not ambiguous, and thus
subject to misinterpretation (as proved by the existence of lawyers and
judges). As Meyer [1] notices, this problem can be compounded by cultural
differences.

The point to be grasped is that offshore outsourcing and risk-sharing alliances
constitute, in our opinion, two fundamentally distinct types of business relation-
ship. As the word suggests, outsourcing is about off-loading work, not highly
interactive risk-sharing, quite on the contrary. Also, agile literature first and
foremost focuses on process and method, not on testability. Consequently, agile
development ultimately does not seem very relevant to a discussion of quality
assurance for offshore outsourcing. However it does lead us to consider code-
oriented methods, quite amenable to the agile philosophy of development, and
still frequently used in industry. Stating the obvious, code per se is not a model.
But, following the philosophy of test-driven development (TDD) [17], could we
not express requirements as test procedures whose body needs to be filled in
subsequently? The short answer is no. The reason is simple: reading carefully a
TDD example, one quickly realizes that there is no testable model in it. More
precisely, there is code to test code, nothing else; in particular, no abstraction,
no coverage, no testability (inasmuch as there is no systematic production of
tests from a model). In fact, there is an upfront commitment to avoiding models
[Ibid.] and instead relying on constant evolution of code (including of the test
procedures!). Put another way, the requirements are very indirectly (if at all)
captured in test procedures highly coupled to the code they purport to test, both
constantly changing. (This is particularly true for non-functional requirements:
they are typically ignored.) Also, contrary to approaches relying on refinement
of abstract models, in TDD there is no guarantee of incremental convergence [12]
for there is no explicit requirements capture. Consequently, such an approach ap-
pears to be completely inappropriate in the context of outsourcing: as Meyer [1]
observes, offshore outsourcing requires more engineering, not less. Code-oriented
3 Manifesto for Agile Software Development, www.agilemanifesto.org

38 J.-P. Corriveau

software development approaches do warn us against ‘diagrammatic over-design’
[16]: that is, that models can introduce notions quite distant from implementa-
tion, if at all realizable. We must keep this in mind as we now turn to requirement
modeling approaches relying on comprehensive notations such as UML 1.x [18]
and UML 2.0 [19]. Consider, for example, the specification for a software radio4

(which, in essence, has been outsourced to several competing companies). Be-
yond text, the bulk of this specification consists in package and class diagrams,
with some abstract descriptions of scenarios. Binder [2] explains at length why
UML models are not readily testable. Yet we feel it is useful to look at the actual
specification of a standard to summarize the type of information it contains:

– Package and class diagrams capture the structure of a system. Class diagrams
are the entry point for refining attributes and procedures of a class (adding,
for example, OCL [19] constraints as well as pre- and post-conditions [8,9],
all of which are typically not executable in existing CASE tools).

– A statechart is used to capture the behavior of a class. With little effort (in
making it a complete state machine [2]), it can be used as a testable model.
Indeed, there is a vast body of work on the generation of tests from state
machines (e.g., [2,10]).

– Scenario models such as use-cases, collaboration and sequence diagrams,
(but also, beyond UML, use case maps (UCMs) and message sequence charts
(MSCs)) capture flows of events at different levels of abstraction: from flows
of user-observable events in use cases, to flows of responsibilities in UCMs,
to flows of procedure calls in MSCs.

There are several points to be made here: First, the semantic richness of UML
eloquently demonstrates the futility of attempting to model a system from a
single viewpoint. For example, considering exclusively data flow diagrams or
state machines simply does not work in terms of addressing the requirements
of system. Indeed, both SCENT [10] and Binder’s approach to testing [2] com-
bine scenarios with state machines (the latter acting as the testable model).
UML can be seen as a scenario-driven approach but it never tackles directly
the testability of the models it advocates. For example, for scenario modeling,
variables necessary to enable path sensitization [2] are missing. UML also lacks
the temporal relationships proposed in SCENT [10] for inter-scenario relation-
ships. Second, the impressive semantic richness of a modeling language such as
UML may covertly introduce a semantic gap (that is, a lack of correspondence
or traceability) between some complex concepts and their corresponding (to-be-
generated) code. For example, in UML 2.0, the notions of ports and protocols
(let alone the notions of optional and replicated capsules found in ObjecTime5)
are semantically pivotal but difficult to tackle from a testability viewpoint. This
reinforces the previous observation that UML models are not readily testable.
In fact, work on the automated production of tests from UML model is in its
infancy [20]. In particular, we are still far from the automated production of

4 OMG Specification for PIM and PSM for SWRadio Components,
www.omg.org/docs/swradio/04-01-01.pdf

Testable Requirements for Offshore Outsourcing 39

executable tests. Furthermore, the existence of ATAM [21], GRL6 and similar
modeling methods for non-functional requirements emphasize the paucity of sup-
port offered in UML for modeling such requirements. In summary, the point to
be grasped is that, despite current practice for the specification of some stan-
dards, UML models are not meant to address requirements capture per se and
do not address testability.

4 A Prototype

In this paper, we have argued that offshore outsourcing requires that a testable
model at the heart of the quality assurance facets of a legal agreement between
the contractor and the contracted. We have emphasized that this model must
offer

1. unified semantics for functional and non-functional requirements,
2. testability of a requirements model,
3. executability of tests,
4. semantics rooted in the notions of responsibilities and scenarios,
5. formalization of test coverage, and
6. abstraction of the testable model over a space of possible implementations.

Current industrial approaches to requirements engineering typically do not offer
such characteristics. Consequently, we have built a prototype of a conformance
testing environment (CTE) that addresses these issues and supports a simple
form of static and dynamic tests [22].

At the heart of this environment is the ability of the test evaluation engine
(TEE) to evaluate static and dynamic tests generated from a testable model,
against a .NET managed executable. Such an executable allows the TEE to:

– reverse engineer the source code if it is not available,
– carry out static tests on the source code and
– instrument the dynamic tests of the testable model into the executable and

then run them and create an evaluation report.

Due to space limitations, we will discuss here only some of the key modeling
features of this prototype.

First, as suggested in Section 2, the pivotal semantic unit of the testable model
is the responsibility. Each responsibility has a set of bindings associated with it:
several components can share a same responsibility. Each binding is a pointer
to the source code of a procedure of the actual implementation. While we will
not discuss further the task of binding (whose technical issues lie out of the

5 ROSE RealTime Developer,
http://www-306.ibm.com/software/awdtools/developer/technical

6 Goal-Oriented Requirements Language, http://www.cs.toronto.edu/km/GRL

40 J.-P. Corriveau

scope of this paper), we will remark that such bindings allow the (static and/or
dynamic) tests associated with a responsibility to be instrumented in each of its
bindings. In essence, the tests specified in a responsibility (thus independently
of implementation) are adapted and integrated in the code associated (through
a binding) with this responsibility. This is how tests become executable.

Second, scenarios are implemented as regular expressions over substitutable
testable tokens (STTs). An STT can either be another scenario (thus allowing
for scenario refinement) or a responsibility. At the highest level of abstraction,
we find a ‘system grammar’, which consists of a (likely partial) grammar of
scenarios. This corresponds to the concept of ‘interaction overview diagrams’
in UML 2.0 [19], and high-level message sequence charts. In the grocery store
example introduced in 2.3, the top level grammar could be written as:

{OpenStore , (ProcessACustomer*||ManageQueues*), CloseStore }
Here we take the comma operator as indicating temporal ordering (viz., (a, b)
means a is followed in time by b), the * operator as indicating unknown multi-
ciplicity, and the || operator as denoting asynchronous concurrency. If, and only
if, an STT corresponds to a unique responsibility (to be bound to actual proce-
dure(s)), will this STT be of type RESPONSIBILITY. Otherwise the STT may
be of one of two other types: B-TOKEN (for a token that can be bound to a
scenario at path generation time) or D-TOKEN (for a token that is to be decom-
posed). In our example, OpenStore and CloseStore could possibly be modeled
as responsibilities. In this case the tests (e.g., assertions) associated with these
two responsibilities would have to ‘apply’ (that is, to be semantically relevant)
across all procedures to which these responsibilities are eventually bound. Con-
versely, ProcessACustomer and ManageQueues could be of type D-TOKEN if
they are taken to be decomposable. For example, ProcessACustomer could be
decomposed in the following regular expression:

{ CustomerEntersNShops, CustomerSelectsQueue, CustomerWaitsInQueue,
CustomerIsServed, CustomerLeavesStore }

Similarly, for ManageQueues: { (OpenQueue , CloseQueue)* }
to capture that it is the manager who opens and eventually closes queues, each
queue needing to be open before it can be closed. (Please note that the ‘correct-
ness’ of such modeling and its underlying assumptions and decisions is not the
issue here. In fact, we remark that the idea of the ‘correctness’ of a design is
quite problematic. In this paper, we are instead concerned with conformance.)
Now consider that a customer may use one of a multitude of different strategies
to select a queue (e.g., pick the queue with the fewest number of customers,
pick the queue with the fewest number of items across its waiting customers,
etc.). If one adopts this conceptualization, then CustomerSelectsQueue will be
of type B-TOKEN (which is semantically equivalent to the notion of a stub in
use-case maps (UCMs))). Similarly, OpenQueue and CloseQueue each may have
a multitude of strategies associated with them (e.g., based on the number of wait-
ing customers, or the idle time of the cashier, etc.). They would also be modeled
as B-TOKENs. B-TOKENs introduce variability in the grammar of scenarios

Testable Requirements for Offshore Outsourcing 41

(which, we insist, is to abstract over a space of possible STBDs). In order to
enable path generation and selection, clearly all B-TOKENS must eventually be
bound to specific scenarios. We allow a B-TOKEN to have either a static set of
variants (in the form of a fixed set of references to other scenarios) associated
with it, or to be bound to a specific scenario at the start of path generation.
(Similarly, UCM supports both static and dynamic stubs.) The details do not
import here. What matters is that the testable model allows variability, and that
this variability be resolved in order to proceed with path generation/selection.
The resolution of variability here follows the same conceptual approach as in
generative programming [15]: our grammar of scenarios must be configured (via
the binding of B-TOKENs) before paths can be generated and selected from it.
This configuration step is the bridge between the problem space and the solution
space [Ibid.]. Third, assuming that we have a grammar of scenarios in which all
B-TOKENs are bound, we can now hope to generate and select paths. Making
this task operational led to a key observation: the capabilities of the profiler of
the CTE restrict the semantics of the temporal operators that can be used in
the regular expressions capturing scenarios. Let us explain. Recall that SCENT
[10] advocates a grammar of scenarios that relies on a rich set of temporal
inter-scenario relationships. Also recall that a path constitutes in itself a dy-
namic test to be matched by some actual behavior of the STBD. In our current
prototype, the profiler is able to instantiate a path, run it and then see if the
actual sequence of procedure calls matches or not the corresponding regular ex-
pression. In other words, the profiler acts in this task as a parser able to recognize
paths at execution time. (How this parser is built from the paths is explained
elsewhere [22].) This is only possible if we restrict our regular expressions to use
operators that the profiler can handle. Returning to our example, at the top
level we introduce the , * and || operators. The comma operator is simple to
parse. The * operator, whether placed on a responsibility or a scenario is also
straightforward to parse. Conversely the || operator is hopeless to parse (see [20])
if concurrency is approached as corresponding to all possible permutations of its
operands. Instead, we handle the || operator as a ‘don’t care’ [2] temporal rela-
tionship. In our example, this means that we do not care about the ordering of
the many instances of ProcessACustomer and of ManageQueues. (Syntactically,
the () are essential in delimiting the scope of this don’t care during parsing.) At
this stage in the development of our prototype, we have been able to model our
grocery store without introducing more complex temporal operators than those
presented above. But it is certainly premature to claim this set of operators to be
sufficient. Having paths that can be matched to actual execution constitutes one
facet of dynamic testing. It presupposes the ability to generate paths (of proce-
dures) from scenarios. We observe that, with the current set of simple temporal
operators we use, the ‘flattening’ of a grammar of scenarios into a set of regular
expressions on responsibilities is possible once all B-TOKENs have been bound.
Then, once each responsibility has been bound to actual procedure(s), we can
obtain regular expressions in which the tokens are names of actual procedures.
Path generation then consists in producing a set of sequences of procedures to

42 J.-P. Corriveau

test out of these regular expressions. Given the semantic closeness of regular
expressions to state machines, this task reuses the extensive body of work on
generating paths from such state machines (see chapter 7 of [2]) Further details
with respect to path generation, selection and instantiation, as well as details
of static and dynamic tests on functional and non-functional requirements are
given elsewhere [22].

Acknowledgements

Support from the Natural Sciences and Engineering Research Council of Canada
(NSERC) is gratefully acknowledged.

References

1. Meyer, B.: The unspoken revolution in software engineering. IEEE Computer (Jan-
uary 2006)

2. Binder, R.: Testing, Object-Oriented Systems. Addison-Wesley, London, UK (2000)
3. Gold, T.: Outsourcing Development Offshore: Making it Work. Auerbach Publica-

tions (2004)
4. Kotonya, G., Sommerville, I.: Requirements Engineering. John Wiley & Sons, West

Sussex, England (1998)
5. Davies, A.: Software Requirements: Objects, Functions and States. Prentice-Hall,

Englewood Cliffs (1993)
6. Czarnecki, K., Stahl, T., Voelter, M.: Model-Driven Software Development: Tech-

nology, Engineering, Management. John Wiley & Sons, West Sussex, England
(2006)

7. Corriveau, J.P., Bashardoust-Tajali, S.: Generative hierarchical contracts for con-
formance testing of sequential containers. In: Proceedings of IASTED’s Conference
on Software Engineering (2007)

8. Meyer, B.: Reusable Software: The Base Object-Oriented Component Libraries.
Prentice-Hall, Englewood Cliffs (1994)

9. Meyer, B.: Object-Oriented Software Construction. Prentice-Hall, Englewood Cliffs
(1994)

10. Ryser, J., Glinz, M.: Using dependency charts to improve scenario-based testing
- management of inter-scenario relationships. In: Watanabe, O., Hagiya, M., Ito,
T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, Springer,
Heidelberg (2000)

11. Jacobson, I.: Object-Oriented Software Engineering. Addison-Wesley, London, UK
(1992)

12. Boehm, B.: A spiral model of software development and enhancement (1988)
13. Gomaa, H.: Designing Concurrent, Distributed and Real-Time Applications with

UML. In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, Springer,
Heidelberg (2000)

14. Briand, L., Labiche, Y., Sun, H.: Investigating the use of Analysis Contracts to
Improve the Testability of Object-Oriented Code, vol. 33(7), pp. 637–672. John
Wiley & Sons, Inc, West Sussex, England (2003)

15. Czarnecki, K., Eiseinecker, U.: Generative Programming: Methods, Tools and Ap-
plications. Addison-Wesley, London, UK (2000)

Testable Requirements for Offshore Outsourcing 43

16. Ambler, S.: Agile Modeling. John Wiley & Sons, West Sussex, England (2002)
17. Beck, K.: Test-Driven Development By Example. Addison-Wesley, London, UK

(2002)
18. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference

Manual. Addison-Wesley (1998)
19. Miles, R., Hamilton, K.: Learning UML 2.0. O’Reilly (2006)
20. Briand, L., Labiche, Y.: A uml-based approach to system testing. In: Gogolla,

M., Kobryn, C. (eds.) UML 2001 – The Unified Modeling Language. Modeling
Languages, Concepts, and Tools. LNCS, vol. 2185, Springer, Heidelberg (2001)

21. Kazman, R., Klein, M., Clements, P.: Atam: Method for architecture evaluating
the quality attributes of a software architecture. Technical Report CMU/SEI-200-
TR004, Software Engineering Institute, Carnegie Mellon University (2000)

22. Arnold, D.: Supporting Generative Contracts in.NET. PhD thesis (2007)

Introducing Global Supply Chains into Software

Engineering Education

Olly Gotel1, Vidya Kulkarni2, Long Chrea Neak3, Christelle Scharff1,
and Sopheap Seng3

1 Pace University, Seidenberg School of Computer Science and Information Systems,
Department of Computer Science, New York, NY, USA

{ogotel,cscharff}@pace.edu
2 University of Delhi, Computer Science Department, New Delhi, India

vkulkarni@cs.du.ac.in
3 Institute of Technology of Cambodia, Computer Science Department, Phnom Penh,

Cambodia
{longchrea.neak,sopheap.seng}@itc.edu.kh

Abstract. This paper describes lessons from running software deve-
lopment projects across three globally distributed educational institu-
tions. What was innovative about this study was that two of the
institutions were located in service providing countries, conventional on-
shore/offshore roles were reversed, and students were exposed to the
realities of global supply chain management. Three teams of US
students were tasked to develop three different software products for
Cambodian clients, while sub-contracting the database component to
third-party teams of Indian students. This paper details the role of the
three institutions, the prerequisites for planning and logistics for running
such educational projects, and summarises the findings, while drawing
broader parallels with the commercial world of offshore and outsourced
development. It ends with recommendations for software engineering ed-
ucation to better reflect the needs and skills demanded of right sourcing
in the global marketplace. These extend more generally to global software
engineering.

Keywords: Global Software Development, Software Engineering Edu-
cation, Supply Chain.

1 Introduction and Background

With the need to reduce development cost and improve quality, software prod-
ucts are increasingly developed via collaborations across people, organizations
and countries. The challenges facing such globally distributed software devel-
opment projects have been studied and reported in the literature, generally fo-
cusing on the economic, technical, organizational and cultural issues [4,15,16].
The September 2006 issue of IEEE Computer: Global Software Development:
How Far Have We Come? explicitly captures the state of the practice in global
software development.

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 44–58, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Introducing Global Supply Chains 45

A global provisioning model often implies the existence of a prime (or lead)
contractor and a chain of sub-contractors. Increasingly, it is likely that software
houses will outsource well-defined components of their contracts to smaller com-
panies, and even to cheaper service providing countries. The motivation is not
always about sourcing software development in the cheapest place, but about
sourcing it where there are the requisite skills and continuous coverage [19].

This model has an obvious implication for computer science and software en-
gineering education around the world [1,2,9,10,21,22]. In these disciplines, stu-
dents need to be exposed to the realities if they are to develop the differentiating
’softer’ skills they will need [14]. The supply chain model of software development
requires students to learn how to divide up a project into component parts for
different parties to work on, these parties possibly being distributed across time
zones and cultures. This obviously relies on a shared and systematic process. In
addition, it requires students to learn about scoping and delineating boundaries,
eliciting requirements from remote clients, communicating an understanding of
requirements back to clients and then on to third-parties (not the same skill
sets), and learning about the testing and integration needed to assemble a work-
ing whole product when the component aspects are not under their total control.
A number of courses are now beginning to reflect some of these realities, focusing
on requirements engineering [3,6], the development of software in a global con-
text [17,18] and the provision of global projects from within corporations [20].
However, few pioneering courses appear to involve service providing countries,
such as India and China and, to our knowledge, do not simulate supply chain
development.

Since 2005, the focus of the US and Cambodian partners’ undergraduate cap-
stone software engineering courses has been global software development [11]. In
2005, teams of Pace University and Institute of Technology of Cambodia (ITC)
students worked together to develop software products for the Cambodian mar-
ket. The student projects were organized so that: (a) the Cambodian students
acted as clients and end-users - they knew the problem the proposed system was
to tackle, the environment it was to operate in and had the authority to accept
the work of the providers (or not); and (b) the Pace University students acted
as providers - it was their responsibility to ’capture’ the requirements for the
system, propose design options, develop the selected design and test the even-
tual system, while also handling requirements changes. In 2006, this model1 was
extended to include students from the University of Delhi. These students had
expertise in database design, so the concept of a prime contractor and third-
party supplier (sub-contractor) was introduced to reflect these skills. While the
Cambodian students remained as clients, the provisioning of the solution was
changed. The Pace University students sub-contracted part of the system design
and development to the students from India, while also managing the end-to-
end contract. This paper describes our 2006 study which examined the following
questions:

1 The web page dedicated to this study can be found at
http://www.csis.pace.edu/∼scharff/cs3892006

46 O. Gotel et al.

a) What is required to set up and run a global distributed project of this chained
nature in an educational context?

b) How does the use of a supply chain impact the requirements engineering
process, notably the handling of change and the assumptions made by the
various parties?

c) What are the perceived communication and coordination issues along the
supply chain, and do they differ?

d) Is there the perception of a ’global’ team across a distributed supply chain
and, if so, what social activities can foster this unity?

e) What are the main differences in interaction between prime contractors and
sub-contractors and between prime contractors and clients?

f) How does the nature of this interaction impact project quality? ’Quality’
here refers to the conformance of the end product to the clients’ specified
and perceived requirements [5], ascertained by final acceptance or rejection.

The remainder of the paper is organized as follows. Section 2 establishes the
context of the study and Section 3 describes the preparation that is required
to set up multi-institution collaborations of this nature (addressing question
a above). The key findings from the study, with respect to questions b-f, are
summarized and discussed in Section 4. Section 5 provides conclusions and rec-
ommendations to assist other institutions in reflecting the realities of the global
marketplace in the curriculum.

2 Context

In this section, we describe the three institutions this study is based on, their
roles in the global supply chain, the courses targeted by the study, the software
that were developed, the composition of the global teams, and the process and
technology that was used to enable collaboration in this global setting.

2.1 The Institutions

The Institute of Technology of Cambodia (ITC) (http://www.itc.edu.kh)
is a leading semi-public higher education school in Phnom Penh accepting stu-
dents on a competitive exam. The educational system is organized by trimesters.
Cohorts of five-year engineering students go through the programs with about
thirty hours of core science classes a week during the first two years, then spe-
cialize and attend about thirty hours of classes a week in their speciality.

Pace University (http://www.pace.edu) is a private university strategically
located in New York offering programs at the undergraduate and graduate level.
The educational system is organized by two main semesters. Undergraduate
students go through the programs with a load of about nine to fifteen hours of
computer science and liberal arts classes a week. The concept of a yearly cohort
is less prevalent since students can take courses at their own pace, though most
complete within four years.

Introducing Global Supply Chains 47

The University of Delhi (http://www.du.ac.in/) is one of the prestigious
public institutions in India granting Bachelors, Masters and Ph.D. degrees. Ad-
mission to all programs is through entrance examination and limited to thirty
students in each program. Like the ITC system, students enrolled in these pro-
grams attend classes for about thirty hours a week and the educational system
is organized by trimesters.

2.2 Institutional Roles and Targeted Courses

The study described in this paper involved a capstone undergraduate ’Software
Engineering’ course taken by junior (third year) and senior (fourth year) Pace
University computer science students, a ’Software Engineering’ course for fourth
year ITC computer science undergraduate students and a ’Database System
Implementation’ course for first year M.Sc. in computer science students at the
University of Delhi. The intention behind this effort was to provide students
with a realistic co-production experience where software products have to be
engineered by global partners with disparate skills and expertise. Note that the
study ran from January through May 2006, so was aligned with the US spring
semester.

ITC Students are Clients, Testers and Translators. Their responsibilities
were to describe the software they wanted to be built and the context in which
it was to operate. They also had to review and give feedback on the require-
ments, design and testing documents, test the software and submit bug reports,
and ultimately deliver the software in French and Khmer for a Cambodian au-
dience2. Their responsibilities also included reporting on the problems arising
from working with the US students. At the end of the semester, the Cambodian
students had to assess the software developed by the US students (with Indian
sub-contracting) and to compare this with the software developed solely by the
Indian students (see Indian roles later in this section).

US Students are Developers and Lead Contactors. Their responsibili-
ties were to capture the requirements from the clients and produce an agreed
specification, propose design options that subcontract part of the system design
and development to Indian students, implement the software and test it, while
concurrently handling requirements changes, integrating feedback and manag-
ing the end-to-end contract. At the end of the semester, the US students had to
deliver the software to their clients. Additionally, the US students were required
to maintain a web page for the project, report on the problems arising when
working with the Cambodian and Indian students, answer a weekly question-
naire concerning communications and requirements changes, archive all emails
and chat sessions, and document their experience with the software engineering
process and communication protocols they followed.

2 Due to time constraints the software was only delivered in English.

48 O. Gotel et al.

Indian Students are Third-party Suppliers. Their responsibilities were to
provide the US students with a database design and the corresponding SQL code
to be integrated in the overall system design. Their responsibilities also included
reporting on the problems arising from working with the US students3.

Global Supply Chain Scenario. This study was set up such that there were
no contacts between India and Cambodia, as initially the Indian students were
intended to act as pure suppliers in the project and joined the project one month
after the Cambodian students. The Indian students had database expertise that
was lacking in some of the US students’ repertoire. The study was also explicitly
designed to promote a reversal of conventional onshore/offshore roles for a num-
ber of reasons. Firstly, to give the US students the opportunity to find out what
it would be like to be on the development side of the onshore/offshore scenario,
and because the US students do not always have enough programming opportu-
nities that demand version control and large scale integration. Secondly, to give
Cambodian students exposure to the empowering position of being a customer
and hopefully cultivating entrepreneurship. Lastly, to give Indian students a re-
alistic experience of working with pre-specified requirements and learning how
to work smoothly as part of a chain. All the students were to experience working
with others from a different culture.

2.3 Teams

In the spring of 2006, the class at Pace University comprised eleven students, the
class at ITC comprised sixteen students, and the class at the University of Delhi
comprised thirty students. Of the Indian students, only six were part of the study
- the six students who had obtained the highest score on the first midterm exam
of the class. The study thereby consisted of three global teams each composed
of ten to twelve students distributed amongst the three locations: three to four
students from the US acting as prime contractors; five to six Cambodian students
acting as clients; and two Indian students acting as sub-contractors. The term
local team was used to refer to co-located team members. The students were free
to choose their own local teams. The US and Indian students chose their global
team partners in Cambodia and the US respectively based on project preferences.
Students were assigned roles in the teams (e.g. team, communication and quality
assurance leaders).

2.4 Projects

Three Cambodia-specific projects were proposed:
3 Though the initial intent was for the Indian students to act as sub-contractors,

they wanted to gain further experience in web-based software development. They
consequently developed the whole software product in parallel with the software
that was developed by the US students. One of the reasons why they were eager
to do this was that they thought it would improve their resumes; reflecting their
seriousness, they asked for certificates to present to future employers.

Introducing Global Supply Chains 49

– ITC Library Management System. This project was to design and de-
velop a system to replace the mainly paper-based activities of the ITC Li-
brary. The system had to support administrators, librarians and patrons,
and provide the standard functionality of the existing system. An interest-
ing aspect was to be uncovering the unique policies of the Cambodian library
(i.e. the business logic). For example, there are no fees for the late return of
books, as an honour system (preventing graduation) is in place.

– Cambodian Crafts On-Line Store. This project was to design and de-
velop a system that would sell uniquely Cambodian crafts through the
Internet.

– Cambodian On-line Restaurant. This project was to design and de-
velop a virtual restaurant selling Cambodian dishes for home delivery via the
Internet.

These last two E-Commerce projects were to manage the registration of cus-
tomers, the placement of orders, and the fulfilment and control tasks of service
staff.

2.5 Process, Technology and Communication Tools

Since this was a first software engineering class for the US students, they were ex-
posed to a lightweight waterfall model with some iteration to help provide some
overall shape and context. The software products developed by the US students
were Java web-based applications (written using Servlets under Tomcat) with
a back-end database implemented in MySQL or Oracle. Requirements mostly
comprised textual documents and use cases, with some UML diagrams used for
design. The development was all carried out within the Eclipse development envi-
ronment. Students used the JUnit plug-in for unit testing and CVS for code shar-
ing, and change and version management. Trac (http://www.edgewall.com/trac)
open source wiki-based software was used for supply chain and project man-
agement. Clients used trac to report bugs, while developers used trac to fix
and manage bugs. The Indian students produced Entity Relationship Diagrams
for the database design; they did not use a particular tool. The Indian students
developed their full software using JSP under Tomcat and Oracle. Students com-
municated using Yahoo! Groups mailing lists for asynchronous emails and using
Yahoo! IM for synchronous chats. Local teams also communicated face-to-face.
No specialized collaborative technology was used for distributed communication.
Teams shared their work by posting document versions on their group websites.

3 Preparation

In this section, we describe the preparation that was necessary to set up a global
supply chain management experience for students in terms of the project plan-
ning, communication coordination, faculty roles and continuous data gathering.

50 O. Gotel et al.

3.1 Project Planning

Many discussions on the countries, cultures, institutions, educational systems,
academic calendars, students’ background and Internet access had to take place
to set up this project. Furthermore, the instructors had to design their syllabi
(with grading policies) in collaboration and decide on the use of communication
tools, CASE tools, and the software engineering process and communication pro-
tocols to be followed. Documents were exchanged between faculty and students,
including country fact sheets, pictures of all students and faculty, and syllabi
of individual courses. Instructors also needed to share all course materials (e.g.
lecture notes, software engineering templates), exams, grades, feedback on the
teams, video-taped presentations and software demonstrations for transparency.
The milestones, schedules and deadlines of the projects for the three locations
were designed in common and distributed as one document.

3.2 Communication and Coordination

The first important element that had to be taken into account in this study was
the twelve hours time difference between Cambodia and the US, and the ten
hours and thirty minutes time difference between India and the US. Another
important element was Internet access. Cambodian students only had day-time
access to the Internet from the ITC labs or from the widespread cyber-cafes
for $1 an hour (an expensive proposition for Cambodians when the monthly
average salary is around $60). Additionally, there were un-typically frequent
power outages to work around due to the closure of an electricity power station in
Phnom Penh. In one instance, this prevented the Cambodians from having access
to the Internet for three days. By contrast, while Internet connectivity and power
shortages were problematic at the university labs, most of the Indian students
had reliable broadband high-speed access to the Internet from their homes. These
factors meant that the US students and instructors had to coordinate and plan
for communication. It was easier to contact the Cambodian students late at night
and the Indian students early in the morning (US Eastern Standard Time).

3.3 Faculty and Their Roles

The faculty involved in this study have known each other for a long time. They
have travelled intensively in Asia and in the US, and have a good understanding
of US/India/Cambodia from a cultural, historical, educational, economical and
political perspective, which is an advantageous foundation. Good relations and
trust are crucial to the success of projects where there is a need for regular, open
and transparent communication to plan, report, synchronize and solve problems
in a timely manner. As part of the preparation, a site visit was made by one of
the US professors to Cambodia and India for assessment of the infrastructure,
coordination of the courses and syllabi, and to gauge the students’ willingness
and interest. The roles of the faculty had to be determined and agreed upon;
faculty at one location had to oversee the three locations and play the role

Introducing Global Supply Chains 51

of project manager [17]. The US faculty carried out this role and the other
faculty reported to the project manager. It was also deemed necessary that only
one professor handled these activities on a daily basis. Had there been more
than one ’manager’, there could have been problems of misunderstanding and
miscommunication.

3.4 Data Gathering

Blogs and surveys were used to monitor and control aspects of the project relat-
ing to cultural differences, time and space complications, project activities and
assessment of quality. The US students were active in using blogs to describe
their work; the Cambodian and Indian students did not make use of blogs – they
are not so widely used in their societies and the potential value is thus less clear.

– An entry survey was taken by all the students and the results shared to
permit students to understand each other’s background.

– The US teams answered a weekly questionnaire about their communications:
type (e.g. emails, chats), scope (e.g. local, global), main topic (e.g. planning,
feedback) and usefulness (e.g. high, medium, low). This questionnaire also
recorded the reasons for any requirements changes (e.g. ambiguity, inconsis-
tency, assumptions) and the instigating actors (i.e. Cambodia, India, US).

– A mid-semester survey was administered to all students to determine any
logistical problems and to inform the study. This was also conducted to see
how students perceived their team functioning (e.g. leadership effectiveness,
balance of workloads, alignment of motivation, local versus global team bi-
ases, etc.)

– Individually, all students submitted post project statements on the overall
experience and answered a post project survey that focused on what the
students learned from each other, the issues and problems encountered, and
the perceived effectiveness and usefulness of the experience.

4 Findings

Students were all positive with respect to their overall participation in this ex-
perience. In this section, we address the study questions we originally posed in
Section 1 and organize our findings on the requirements engineering process,
communication and coordination, social and cultural aspects, and interaction
and quality4.

4.1 Requirements Engineering

Requirements Engineering Process. The Cambodian and US students
learned important lessons about requirements engineering in this setting: the

4 The results in this section are derived from the post project surveys.

52 O. Gotel et al.

necessity of careful elicitation; the need for negotiation; why requirements de-
scriptions should be unambiguous and well written; and the role of requirements
validation to check understanding. Requirements were captured predominantly
using questionnaires and clarified using (large) chat discussions. Require-
ments validation was achieved through (small) chats in the first instance and
re-validated using checkbox documents where each requirement could be ac-
cepted, accepted with modification or rejected.

Requirements Changes. As clients, the Cambodian students recognized that
they changed their mind on requirements quite regularly (56% agreement). Not
surprisingly, the US developers perceived that the clients changed their minds
frequently on the requirements (64%). Students appreciate how important it is
to have a shared and aligned awareness on others’ actions and responsiveness to
avoid tensions, and they also see the realities of frequent requirements changes.

Requirements Assumptions. The projects demanded innovative and creative
thinking because many of the assumptions that the US students had about
what would constitute a feasible solution needed to be radically altered for the
Cambodian market. For instance, in a country where Internet connectivity is slow
and intermittent, students had to re-think the everyday model of E-Commerce
(e.g. the use of ubiquitous graphics). The virtual shopping carts that many
take for granted are unheard of in Cambodia and the metaphors do not always
transfer across cultures. This situation forced students to differentiate between
facts, constraints and assumptions, critical issues that often underpin many failed
software development projects [12]. The Indian students made more assumptions
about the Cambodian domain. This seems logical given the US students had
direct contact with the client and the Indian students only gained information
via the US intermediaries. However, the US students still made assumptions
concerning the need to enforce the policy rules of the ITC library, making their
system unusable in the client’s eyes. Interestingly, the Cambodian students did
not reject this unusable software and we suggest it is related to social bonding
(discussed in Section 4.3) [7,8,13]. In the Indian version of the software, they
added an additional late fee penalty. This addition was due to the lack of transfer
of supplementary domain knowledge from the US students; they didn’t consider
the need to document how the honour system worked in their requirements. Also,
the Indian students developed the craft store software such that it was restricted
to ordering products from addresses within the US; this was not stated in the
requirements document and suggests the kind of assumptions that can arise when
the needs are passed on through a proxy, in this case it reflected assumptions
about an American market more so than a Cambodian one.

4.2 Communication and Coordination

67% of the Indian students and 44% of the Cambodian students perceived coor-
dination as the largest problem they faced when working with the US students.
25% of the Cambodian students perceived communication (i.e. language barri-
ers) and the limited availability of the US developers as problematic. From the

Introducing Global Supply Chains 53

Indian and Cambodian perspective, the main issue here was aligning themselves
with the US students across time zones and busy schedules, especially since these
students had almost twice as many hours of classes than the US students. The
Cambodian students had a high class load, coupled with Internet access prob-
lems. The Indian students experienced similar issues, though actually cancelled
chat meetings in the belief that the requirements document was written well
enough for them to be able to develop the required software, preferring to write
emails if they needed any clarification.

From the US perspective, 45% of the students perceived communication as
the largest difficulty they encountered on the project. They would be offended
when questioned about whether they were on target for meeting the milestones
by the other students as they perceived this as questioning their ability to de-
liver. This could be attributed to cultural and/or language differences and might
have been interpreted differently in a face-to-face situation. The US students,
even though they had logistical difficulties in scheduling meetings, needed to
be reminded constantly by the professors to be proactive. There would then be
some frustration at the lengthy time the non-US students would take to respond.

The Cambodian students ranked good communications as a crucial factor for
the success of a global software development project (56%). The Indian students
ranked good communications and clear project plans as equally important (each
50%), reflecting their position as service providers who need to fit into a wider
context and process. The US students emphasized good communications more
than the others (76%), probably due to their direct experience of playing a
coordinating role. While collaborative tools were ranked third by US students,
they were not considered crucial by the Indian and Cambodian students. This
may be partially due to less prior exposure to such tools and the fact that the
US students were taking on the bridging role. Interestingly, both the Cambodian
and US students thought that ’softer’ skills were more important to the success
of a global project than technical skills; the Indian students were more divided
on this matter. Direct experience of the client/prime contractor relation likely
motivates this ’soft skill’ appreciation.

4.3 Social and Cultural Aspects

Relations. The interaction between the US and Indian students (as prime
contractor and sub-contractor) was remarkably different from the interaction
between the US and Cambodian students (as prime contractor and client). The
former was abrupt and impersonal, focusing mostly on project matters. The
latter was more polite and social (e.g. they all wanted to agree and seek under-
standing before moving on to the next topic). The topics discussed between the
Indian and US students mainly revolved around the educational systems, their
universities and home cities. Neither side felt they had expanded their knowl-
edge of the other culture. In contrast, the Cambodian and US students discussed
history, jobs and salaries, family structures and entertainment. They both felt
they had increased their knowledge of each other’s culture. These differences in
inter-personal relations may be explained by the fact that the Indian and US

54 O. Gotel et al.

students already assumed they knew much about each other, whereas Cambo-
dia is less well known. Also, the Indian students joined the project one month
after the beginning of the project, so were really considered the ’hired help’. By
contrast, the Cambodian students were the source of domain knowledge.

Learning from Each Other: US/India. The Indian students said they
learned that US students ”work according to the pre-specified plans and sched-
ule and try to stick to those schedules. We in India don’t go for the rigid plans.”
This seems in conflict with their reliance on good planning for successful projects,
mentioned earlier in Section 4.2. When asked what they perceived the US stu-
dents had learned about them, the Indian students said: ”I think that would be
determination and focus, which is a must for any successful professional.” This
emphasis on professionalism may be partially an explanation for expedience in
communications. Further exemplifying this was the fact that once the US stu-
dents had completed their final exams it was no longer possible to engage them
further in the project. Their Indian counterparts, even after the end of their
classes, still wanted to improve the software they had developed.

Learning from Each Other: Cambodia/US. The Cambodian students said
that they had learned that US students ”work until late at night”. The US stu-
dents said they learned that Cambodian students ”do not have computers at
home and go to school every day”, ”they are curious individuals who appreciate
new technologies and educations”, ”they have much more school time than we
do” and ”they had no experience with credit cards and amazon.com”. Credit
cards and amazon.com usage may seem an integral part of life to US students,
but they were not to the Cambodian students, and to some extent to the In-
dian students. The US students only discovered such realities during peripheral
discussions with the Cambodians, not through project-specific questioning, and
this was highly critical to the design of their E-Commerce systems. When asked
what they believed was the most interesting thing the Cambodian students had
learned from them, the US students said that they explained credit card usage
and E-Commerce web site logic. They also added: ”There seemed to be some
assumption that all Americans are wealthy and opulent. I hope that our group
served to dispel some of those myths.”

Team Unity and Cohesion. Institution-specific gifts were exchanged between
the US, Indian and Cambodian students at the beginning and end of the projects
to create a community environment. In the mid-semester survey we found that
the US students referred to the local team as ’the team’, while the Cambodian
and Indian students referred to the global team as ’the team’. When the Indian
students discovered their names did not appear on the global team web site
maintained by the US, this created some tension. Furthermore, the US students
often referred to the Indian students as ’he’, while five out of the six Indian stu-
dents were female. The matter of gender amongst the Indian students is worthy
of note and could be a possible reason for the nature of the terse communica-
tion outlined in Section 4.2. Indian girls may be more hesitant to instigate chat

Introducing Global Supply Chains 55

conversation beyond what is required to complete a project task with an all male
US team, asynchronous email being a more acceptable route.

4.4 Interaction and Quality

No statistical correlation was found between the quantity of interaction and the
quality of the final product. However, it appears that the project with the most
chats was ranked last by both the US and Cambodian faculty and rejected by
its clients, while the project with the most emails was ranked first by all parties.
Notably, the US software that was rejected by the client also used an early throw-
away prototyping model to understand the requirements and discuss GUI options
with the client. The project with the most explicit synchronous interaction with
the client about requirements seemed to have the most problems, which (on first
sight) conflicts with recognized best practice. The reality was that this local
US group did not function as a team. While some of the students worked on
a prototype with the clients, others in the team built a system to the original
requirements, not accounting for the requirements learning. When the clients
saw the product it not what was expected. They also ran into scheduling issues
since they were keen to exploit technologies and tools that they did not have
previous knowledge of. They became overwhelmed.

On the whole, the Cambodian students were more positive about the US soft-
ware (the software implemented by the US with the Indian database component)
than the purely Indian-built final software. Though technically limited in scope,
it was ranked higher because it met the needs of the clients and did not make as
many assumptions. However, the Indian software was actually more reliable in op-
eration, and more care had been taken in creating a professional-looking product.
One hypothesis could be that the friendly contacts between the US and Cambo-
dian students led to a better experience and hence perception of the end prod-
uct [7,8,13]. Another is the fact that the Indian students designed and built to
second-hand information, and had no opportunity to manage the end clients’ ex-
pectations throughout. Per the post project survey, the Indian students would have
liked contact with the Cambodian students (83% expressed desire) and 68% of the
Cambodian students concurred. Both parties believed this would have led to fewer
assumptions and better products on the Indian side. Projects such as this do serve
to convince students of the criticality of stakeholder contact and communications.

With respect to the sub-contracted work, the Indian students’ designs were all
very well done. However, assumptions were made with regard library late fees
as discussed in Section 4.1, an example of incorrect information being passed
down the supply chain. When the US team realized their error, they requested
a change. Since the Indian team did not respond promptly, the US team went
ahead and designed the database component themselves (still with some assump-
tions). This team included the most technically competent US students. It can
be difficult to teach such students to delegate part of their work as this requires
trust. Both the restaurant and craft store projects did use the Indian students’
work, which integrated quite seamlessly. This was perhaps more possible since
this technical knowledge was more lacking across these two US teams.

56 O. Gotel et al.

5 Conclusions and Recommendations

Software engineering education needs to reflect the realities of changing profes-
sional practice. Students should be prepared and flexible to adapt to whatever
role they find themselves in. It is intrinsically feasible and practical for students
to learn how to identify, build and integrate component parts of a software
project in a multi-cultural university setting, and educationally critical for them
to experience all sides. A global supply chain model provides a way for students
to learn about the long-term skills that will be needed to augment their tech-
nical skills. In this study, two of the three projects were able to leverage skills
in the global team that were lacking in the local team. However, care must be
taken not to alienate those students taking on a sub-contractor role. While the
relationship between the US/Cambodian students was carefully planned for by
the instructors, the US/Indian relationship was left more to the students. Con-
sequently, student photos were not distributed in a timely fashion and incorrect
first impressions were made. Social bonding, getting to know the team members
and their wider interests, lies at the heart of relationship management and has
repercussions for the health of a global supply chain. Instructors need to insti-
gate this process at the onset of the project and ensure mechanisms to facilitate
this are built in throughout.

Regular communications are essential to ensure momentum and to keep
projects on track. With supply chains, transparency is desirable all the way
through the chain when students are learning about subtle dependencies and
trust. Coupled with this is the important role of a shared process and an up-
to-date version controlled repository for information exchange. Attention needs
to be paid to explicitly designing a simple process and a straightforward com-
munication and change management strategy with the students, and to avoid
overwhelming them with the latest tools and technologies.

In a project of this nature, it is easy for course instructors to become project
managers. Such a situation can prevent students from experiencing milestone
setting, planning and coordination tasks. Projects need to be designed to off-
load more of this task on to the students so they understand its role in running
a successful project and buy into it. One suggestion is to involve business or
graduate software engineering students in this capacity. For a capstone course
in software engineering, there is already much to cover.

The perception amongst the US students in the study was that they were
doing the most work. An environment must be cultivated where the view is one
of a shared venture in which all parties are contributing equally, albeit in dif-
ferent and equally valuable ways to prevent resentment. Issues of perception,
along with trust, need as much attention as the technological and process skills
that the course is teaching. More needs to be studied about the balance of com-
petition and collaboration on global student projects of this kind. The Indian
students wanted to create their own software and desired technological perfec-
tion. Relations were a little smoother between those students with whom the US
students did not feel they were competing.

Introducing Global Supply Chains 57

While some global team working skills can be learned on the job, others may
need to be explicitly taught in the software engineering classroom. The global
teams that operated the most effectively were the ones where the local teams
(the ones playing the integrative role), functioned well internally and had the
process in place to broaden out.

Acknowledgments. This project was undertaken under the auspices of a Pace
University presidential grant. We would like to thank all the students who partic-
ipated. We are grateful to Professors Sok and Chanthearith who helped guide the
interactions between the Cambodian and US students. We thank Doug Tidwell,
IBM cyber-evangelist, for the Eclipse training he provided to the US students.
Finally, we thank Dean Susan Merritt for her support with this project.

References

1. Aspray, W., Mayadas, A.F., Vardi, M.Y: Educational Response to Offshore Out-
sourcing. In: Proceedings of the 37th SIGCSE Technical Symposium on Computer
Science Education (2006), March 3-5, pp. 330–331. Houston, Texa, USA (2006)

2. Aspray, W., Mayadas, F., Vardi, M.Y: Globalization and Offshoring of Software.
A Report of the ACM Job Migration Task Force (2006)

3. Audy, J., Evaristo, R., Watson-Manheim, M.B.: Distributed Analysis: The Last
Frontier? In: Proceedings of the 37th Hawaii International Conference on System
Sciences (HICSS’04), p. 10010. Big Island, Hawaii (2004)

4. Coar, K.: The Sun Never Sets on Distributed Development. ACM Queue 1(9),
32–39 (2004)

5. Crosby, P.B.: Quality Is Free: The Art of Making QualityvCertain. McGraw Hill,
New York (1979)

6. Damian, D., Hadwin, A., Al-Ani, B.: Instructional Design and Assessment Strate-
gies for Teaching Global Software Development: A Framework. In: Proceedings of
the 28th International Conference on Software Engineering (ICSE’06), May 20-28,
pp. 685–690. Shanghai, China (2006)

7. Damian, D., Zowghi, D.: Requirements Engineering Challenges in Multi-site Soft-
ware Development Organizations. Requirements Engineering Journal 8(1), 149–160
(2003)

8. Favela, J., Pe-Mora, F.: An Experience in Collaborative Software Engineering Ed-
ucation. IEEE Software 18(2), 47–53 (2001)

9. Ferguson, E., Henderson, P., Huen, W., Kussmaul, C.: IT Offshore Outsourcing:
Impact on CS/IS Curriculum. In: Proceedings of the 36th SIGCSE Technical Sym-
posium on Computer Science Education, February 23-27, pp. 258–259. St. Louis,
Missouri, USA (2005)

10. Ferguson, E., Kussmaul, C., McCracken, D., Robbert, M.A.: Offshore Outsourcing:
Current Conditions and Diagnosis. In: Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, March 3-7, pp. 330–331. Norfolk,
Virginia, USA (2004)

11. Gotel, O., Scharff, C., Seng, S.: Preparing Computer Science Students for Global
Software Development. In: Proceedings of the 36th ASEE/IEEE Frontiers in Edu-
cation Conference (FIE’06), San Diego, California (2006)

12. Jackson, M.: Software Requirements and Specifications. Addison-Wesley Profes-
sional (1995)

58 O. Gotel et al.

13. Kobylinski, R., Creighton, O., Dutoit, A., Bruegge, B.: Building Awareness in
Global Software Engineering: Using Issues as Context. In: Proceedings of the In-
ternational Workshop on Distributed Software Development (GSD’02), Orlando,
Florida, May 21 (2002)

14. McCracken, W.M.: Counter Point-SE Education: What Academia Can Do. IEEE
Software 14(6), 27–29 (1997)

15. Meyer, B.: The Unspoken Revolution in Software Engineering. IEEE Com-
puter 39(1), 121–123 (2006)

16. Olson, J.S., Olson, G.M.: Culture Surprises in Remote Software Development
Teams. ACM Queue 1(9), 52–59 (2004)

17. Petkovic, D., Thompson, G., Todtenhoefer, R.: Teaching Practical Software En-
gineering and Global Software Engineering: Evaluation and Comparison. In: Pro-
ceedings of the 11th Annual SIGCSE Conference on Innovation and Technology
in Computer Science Education (ITiCSE’06), June 26-28, pp. 294–298. Bologna,
Italy (2006)

18. Purvis, M., Purvis, M., Cranefield, S.: Educational Experiences from a Global
Software Engineering (GSE) Project. In: Proceedings of the 6th Conference on
Australasian Computing Education (ACE’04), pp. 269–275. Dunedin, New Zealand
(2004)

19. Ribeiro, J.: Indian Outsourcers Continue to Make Gains. Computerworld (August
14 2006)

20. Richardson, I., Milewski, A.E., Mullick, N., Keil, P.: Distributed Development: An
Education Perspective on the Global Studio Project. In: Proceedings of the 28th
International Conference on Software Engineering (ICSE’06), Shanghai, China,
May 20 - 28, pp. 679–684 (2006)

21. Tromby, M., Marcus, B.: Bridging the Chinese Skills Gap. Computerworld (June
6 2006)

22. Xiaoqing, L.: Collaborative Global Software Development and Education. In: Pro-
ceedings of the 29th International Computer Software and Applications Conference
(COMPSAC’05), p. 371. Edinburgh, Scotland (2005)

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 59–66, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Turn on Lean Governance …
for Return on Outsourcing

Mohan Kancharla

Tata Consultancy Services Ltd
mohan.kancharla@tcs.com

http://www.tcs.com

Abstract. This paper focuses on outsourcing IT and Business Processes, with
the added dimension of the provider of the service being ‘offshore’ or in a
different geography. Highlighting the unique characteristics of the Lean
Governance model, the paper stresses the importance of moving outsourcing
status from customer-vendor to being partners in attaining enterprise goals.
Explaining the concept through case studies, the author demonstrates the
importance of structures and processes, as organizations become more mature
in the outsourcing process and as business imperatives change. The Lean
Governance model encompasses these very elements, and is therefore a force
multiplier for achieving the outsourcing objectives of both business and IT
dimensions.

1 Outsourcing Definition

Outsourcing can be defined in simple terms to describe a situation where one
organization gives work to other firms, which can execute this work more efficiently,
usually for lower costs, and whose capabilities complement or supplement their own.

Outsourcing enables organizations to focus on their core business, and in addition,
it usually reduces costs, provides access to skilled resources, improves process quality
and takes advantage of difference in time zones. Organizations jumping on to the
outsourcing bandwagon should have a realistic understanding of these factors. They
need to objectively assess gains and risks associated with outsourcing decisions.
Above all, organizations should be willing to invest in time and talent for creating
long-term relationships.

Michael F. Corbett author of “The Outsourcing Revolution” (2004) says: “For
success in outsourcing, organizations need to take long-term value of offshore
outsourcing, building advantages that go beyond near-term cost-saving. Building
long-term relationships and leveraging the same becomes integral part of
organizations’ strategic and tactical fabric”.

The benefits can range from being strategic, operational or technological. The risks
involved also are varied. At a macro level, risks can be classified as political, legal,
regulatory and economic risks. At a micro level the risks can be further classified as
risks arising out of decision making flaws and implementation flaws.

Conventional wisdom indicates much of the outsourcing model or outsourcing best
practices are centered around cost arbitrage, supplier selection, risk diversification,

60 M. Kancharla

knowledge dissemination between client and supplier and micromanagement of
supplier by the client. But much less is addressed on the governance aspect of client-
supplier relationship that not only supports current needs (“to keep the lights on”), but
also addresses future business needs. Supplier’s relationship, transformation and
delivery capabilities are crucial for building a win-win customer-vendor relationship
in outsourcing initiatives.

2 Lean Governance Model [1]

IT departments within a business are traditionally segregated by application areas or
technology platforms each of which typically have a hierarchical structure for
implementation and control of processes.

Though various business functions1 are critical to the organization, changing
business imperatives are forcing IT departments to be more accountable. With the
increasing number of outsourcing initiatives2, IT is forced to stream-line and structure
its operations in order to create a “Governance” model that is “Lean” in nature.
Womark and Jones in their seminal book “Lean Thinking” proposed following core
concepts for defining “Lean” [2]:

• Specify value in the eyes of the customer
• Identify the value stream and eliminate waste
• Make value flow at the pull of the customer
• Involve and empower employees
• Continuously improve in the pursuit of perfection

“Lean” thinking in manufacturing, service or IT is based on simplicity and
achievability of goals. The above concepts boil down to four basic principles of “add
nothing but value, empower front line people, add value rapidly and eliminate
organisation barriers”.
We postulate that these principles are relevant for IT organizations in delivering
business value to the business client, in an outsourcing arrangement.

Lean Governance extends to demonstrate the following characteristics in building
cohesive customer-vendor relationship:

• Structure that supports the complete life cycle of enterprise’s IT operations
• Ownership and accountability of the IT vendor’s organization
• Incorporation of speedy roll-out of best practices
• Continuous value addition on an Incremental basis
• Flexibility in size of the IT organization.

Lean Governance is built on the Lifecycle Methodology that enables an
organisation to create a structure that supports the complete cycle of an enterprise’s IT
operations from customer needs to business requirements to IT project definition/
delivery to support and maintenance.

1 Include, Strategy & Planning, Demand Management, Resource Management, Change

Management etc.
2 Rottan et al. (2006) research indicate that the clients micromanage the offshore suppliers.

This practice can increase the cost and erode saving from outsourcing.

 Turn on Lean Governance … for Return on Outsourcing 61

Vendor Management

Resource
Utilization

Application
Development Competency

Building

Project
Management Regulatory

Compliance

Assurance
Service Threat

Management

Maintenance & Support

Business
Case

Analysis

IT Dimension

Metrics &
Measurement

Monitoring &
Reporting

Key Components of Software Development Life Cycle

Business Dimension

Business Relationship Management

Vendor Management

Risk
Management

Business Dimension

Business Relationship Management

Business
Needs &

Innovative
Ideas

Business
Requirement

Business
Need

Analysis

Business
Case

Analysis

Technology
Project

Planning
&

Prioritiza-
tion

Prioritized
Projects

Vendor Management

Resource
Utilization

Application
Development Competency

Building

Project
Management Regulatory

Compliance

Assurance
Service Threat

Management

Maintenance & Support

Business
Case

Analysis

IT Dimension

Metrics &
Measurement

Monitoring &
Reporting

Key Components of Software Development Life Cycle

Business Dimension

Business Relationship Management

Vendor Management

Risk
Management

Business Dimension

Business Relationship Management

Business
Needs &

Innovative
Ideas

Business
Requirement

Business
Need

Analysis

Business
Case

Analysis

Technology
Project

Planning
&

Prioritiza-
tion

Prioritized
Projects

Vendor Management

Resource
Utilization

Application
Development Competency

Building

Project
Management Regulatory

Compliance

Assurance
Service Threat

Management

Maintenance & Support

Business
Case

Analysis

IT Dimension

Metrics &
Measurement

Monitoring &
Reporting

Key Components of Software Development Life Cycle

Business Dimension

Business Relationship Management

Vendor Management

Risk
Management

Business Dimension

Business Relationship Management

Business
Needs &

Innovative
Ideas

Business
Requirement

Business
Need

Analysis

Business
Case

Analysis

Technology
Project

Planning
&

Prioritiza-
tion

Prioritized
Projects

Exhibit 1. Lean Governance framework for relationship management between Client and
Vendor

2.1 Application of Lean Governance

In conventional IT Organizations, the IT department is a combination of
representation from ‘in house’ teams and Vendors, where the accountability to
business lies with ‘in house’ IT managers. However, in Lean Governance these roles
drop one level, the ownership for IT operations move to the Vendor with
accountability to the residual ‘in-house’ Lean IT organization. In this process the two
areas which gain increased importance for in-house IT are Business Relationship
Management and Vendor Management.

The Business Dimension will comprise of series of Committees3 to facilitate the
functioning of the Business functions. The Committees mentioned are for guidance
only.

The IT Dimension through the Vendor Management layer will provide directions
on Application development, Architecture & Technology, Infrastructure, Support &
Maintenance, Metrics & Measurement, Change management and Project
Management Office (PMO) functions.

2.2 Results of Lean Governance

When applied to a real organizational scenario, lean governance will have various
committees with representation from both the in-house teams and vendor teams.
These committees are at multiple levels, namely strategic, tactical and operational
levels. The communication between the customer and vendor is streamlined to
address the business essential, progress, and relationship.

3 Executive, Planning, Steering, Strategy & Planning Group and Strategic Initiatives Group,

plus a Business Relationship Manager.

62 M. Kancharla

Vendor Management

Resource
Utilization

Application
Development Competency

Building

Project
Management Regulatory

Compliance

Assurance
Service Threat

Management

Maintenance & Support

Business
Case

Analysis

IT Dimension

Metrics &
Measurement

Monitoring &
Reporting

Key Components of Software Development Life Cycle

Business Dimension

Business Relationship Management

Vendor Management

Risk
Management

Business Dimension

Business Relationship Management

Business
Needs &

Innovative
Ideas

Business
Requirement

Business
Need

Analysis

Business
Case

Analysis

Technology
Project

Planning
&

Prioritiza-
tion

Prioritized
Projects

Business
Relationship

Manager

Executive
Committee

IT Planning
Committee

IT Steering
Committee

Strategy &
Planning

Strategic
Initiative

Architecture
&

Technology
Infrastructure

Risk, IS
Compliance

Technology
Committee

Change
Management
Committee

PMO VMO

Vendor Management

Resource
Utilization

Application
Development Competency

Building

Project
Management Regulatory

Compliance

Assurance
Service Threat

Management

Maintenance & Support

Business
Case

Analysis

IT Dimension

Metrics &
Measurement

Monitoring &
Reporting

Key Components of Software Development Life Cycle

Business Dimension

Business Relationship Management

Vendor Management

Risk
Management

Business Dimension

Business Relationship Management

Business
Needs &

Innovative
Ideas

Business
Requirement

Business
Need

Analysis

Business
Case

Analysis

Technology
Project

Planning
&

Prioritiza-
tion

Prioritized
Projects

Business
Relationship

Manager

Executive
Committee

IT Planning
Committee

IT Steering
Committee

Strategy &
Planning

Strategic
Initiative

Vendor Management

Resource
Utilization

Application
Development Competency

Building

Project
Management Regulatory

Compliance

Assurance
Service Threat

Management

Maintenance & Support

Business
Case

Analysis

IT Dimension

Metrics &
Measurement

Monitoring &
Reporting

Key Components of Software Development Life Cycle

Business Dimension

Business Relationship Management

Vendor Management

Risk
Management

Business Dimension

Business Relationship Management

Business
Needs &

Innovative
Ideas

Business
Requirement

Business
Need

Analysis

Business
Case

Analysis

Technology
Project

Planning
&

Prioritiza-
tion

Prioritized
Projects

Business
Relationship

Manager

Executive
Committee

IT Planning
Committee

IT Steering
Committee

Strategy &
Planning

Strategic
Initiative

Architecture
&

Technology
Infrastructure

Risk, IS
Compliance

Technology
Committee

Change
Management
Committee

PMO VMO

Exhibit 2. Demonstrates application of Lean Governance framework on Business and IT
dimensions

CIO

Quality
Processes

Risk, IS,
Compliance

Business
Relationship
Management

Architecture
and Technology

Strategy &
Planning

Finance

HR

Strategic
Initiatives

Technology
Committee

IT Planning
Committee

IT Steering
Committee

Executive
Committee

Change
Management
Committee

Operational
Control

PMO

Virtual Committees

Technology
Committee

Vendor Management

IT Planning
Committee

IT Steering
Committee

Executive
Committee

Change
Management
Committee

Virtual Committees

Vendor 1 Vendor 3 Vendor 4 Vendor nVendor2 Vendor n

CIO

Quality
Processes

Risk, IS,
Compliance

Business
Relationship
Management

Architecture
and Technology

Strategy &
Planning

Finance

HR

Strategic
Initiatives

Technology
Committee

IT Planning
Committee

IT Steering
Committee

Executive
Committee

Change
Management
Committee

Operational
Control

PMO

Virtual Committees

Technology
Committee

Vendor Management

IT Planning
Committee

IT Steering
Committee

Executive
Committee

Change
Management
Committee

Virtual Committees

Vendor 1 Vendor 3 Vendor 4 Vendor nVendor2 Vendor n

Exhibit 3. A typical Lean Governance structure. This structure is for guidance purpose only
and can be further stream-lined based on the size & scale of the organization making sure that
all the functions are assigned to a role.

Lean governance does not deal with only the governance structure. It also
incorporates the best practices required to ensure value addition on a continuous and
incremental basis for the client. The process improvements can vary from situation to
situation depending upon the client’s needs.

In general the following process elements have to be addressed for any outsourcing
initiative to be successful – Establishing a strategic partnership, Sustaining the
relationship, Delivering value and Enhancing the relationship into a partnership.

 Turn on Lean Governance … for Return on Outsourcing 63

The power of Lean Governance is that it encapsulates all the elements of the
enterprise lifecycle and is still flexible for right-sizing without compromising on any
role /responsibility.

The following two case studies demonstrate how Lean Governance was
implemented both at the structural level as well as process level to achieve the above
advantages. This has enabled the ‘customer’ organizations to gain value over and
above those derived from ‘vanilla’ outsourcing.

3 Case Studies on Lean Governance [1]

3.1 Case Study 1: Lean Governance for Value Enhancement in Outsourcing

3.1.1 Outsourcing Context
Often outsourcing contracts start as a one-off project and with time develop into a
well knit relationship which requires proper governance to ensure mutually beneficial
results to both the client and the Vendor. In a similar case an outsourcing relationship
started between XYZ Ltd. (henceforth called the Customer) and Vendor in a single
geography for a single project. With time the deal grew to be a multi-geography and
multi-project outsourcing contract.

3.1.2 Lean Governance: Structure Standpoint
As the contract grew in scope the channel of communication became hazy with
multiple sources of reporting and contact. This gave rise to a web structure of
communication with no clear lines of responsibility and accountability at most parts
and duplication of information reporting at other parts. A ‘lean’ governance structure,
therefore was an immediate necessity.

Applying the principles of Lean Governance the Vendor appointed a Global
Account Director (GAD) as a single point of contact between the Customer and the
Vendor. All delivery and relationship managers would report to the GAD directly,
thus removing multiple layers of reporting. Suitable relationship managers were
appointed at the critical geographies and extra relationship managers were placed in
geographies where it was felt there were greater opportunities.

A think-tank consisting of senior relationship managers was formed with the
mandate of meeting once every week to discuss all matters related to the account.
This resulted in proper collaboration with sharing and contribution at all levels. In
addition a global PMO was formed with PMO from every delivery location with the
responsibility of the governance of the global relationship.

All these Resulted in a streamlined communication channel on the vendor’s side
and a well defined set of contacts for the customer side.

3.1.3 Lean Governance: Process and Innovation Perspective
Application of Lean Governance is never complete by mere restructuring of work
process but involves actual process changes and improvements to aid the
restructuring. Thus the Vendor in this case to ensure proper implementation of Lean
Governance modified processes to aid the change in structure. A system was put in
place to document the benefits accrued by using the Vendor’s tools and products.

64 M. Kancharla

More autonomy was given to the group managers to source people from wherever
skills were available resulting in virtual groups. That is, the virtual group was
independent of the constituents’ geographical location. This resulted in a better
collaboration and competency matching to the tasks at hand.

A near shore center was set up and mode of operation was shifted from a single
center three shift delivery model to a two center two shift delivery model. This not
only provided the client with the required 24/7 service but also reduced the burden of
night shifts for the employees.

To keep improving the processes constantly, the innovation process was also
formalized. All ideas were logged into a register with a review committee giving a
go/no-go on the merit of the ideas. A selected idea was given incubation support and
the solution idea was given implementation support. To give incentive to the flow of
ideas the Customer at the end of the year gave awards to the top three ideas.

A three year strategy for the relationship with three horizon windows of twelve
months each was created after rigorous brainstorming sessions amongst the senior
managers of the relationship from the Vendor side. This was solicited by the
managers from the Customer side. This ensured a long term and fruitful relationship
between the Customer and the Vendor. Finally to ensure that overall strategy did not
loose its path Key Performance Indicators (KPIs) were identified and rigorously
tracked.

3.2 Case Study 2: Outsourcing Maturity Through Lean Governance

3.2.1 Outsourcing Context
Value delivery through innovation and improvement by the outsourcing vendor
becomes a critical driver from the long-term perspective of the customer-vendor
relationship. In a relationship between XYZ Ltd. (from now on referred as Customer)
and Vendor that is a few year old, the Vendor helps the Customer both with its IT
outsourcing as well as Business process outsourcing. For ensuring best results to the
Customer, the Vendor implements best practices for outsourcing from day one of the
relationship.

3.2.2 Lean Governance: Structure Standpoint
The Vendor finds that a well defined communication framework is essential a step
ahead in the customer-vendor relationship. The Vendor ensures that there is regular
interaction between the Customer and Vendor at multiple layers. For instance, the
Customer’s Strategic team and Vendor’s strategic team comprising of the Executive
Sponsors and Members of Advisory Committees need to open up direct channel of
communication. Similar practices adopted at tactical and operational levels.

The Vendor realizes that for any relationship to flourish from being a customer-
vendor status to being partners it is necessary to have a proper governance structure.
The governance structure should not only be able to support the present functioning
but also be flexible enough to take care of future demand. Keeping this in mind a
multi layer governance structure was constituted. Committees with representations
from Vendor and the Customer side were in place at various levels with distinct tasks
to perform. For instance the higher level executive from the Vendor and Customer
perform Governance Board review at a regular intervals. They involve in setting

 Turn on Lean Governance … for Return on Outsourcing 65

strategic directions, validate the business alignment, ensure corporate governance and
assess relationship health-check. A portal was set-up to ensure communication,
interaction and proper functioning of governance model on a real time basis.

3.2.3 Lean Governance: Process and Innovation Perspective
While structure and tools help to maintain steady relationship, the Vendor needs to be
a cut above in adding value to the client, in terms of process improvements and
innovations.

The Vendor institutionalized a Center of Excellence (CoE) for Testing. This was
different from other testing centers as it not only looked at doing the testing but also
at improving the process through automation thereby increasing the overall quality of
work. To ensure that the endeavor was a success various KPIs were identified and
tracked rigorously.

The Vendor also developed enhanced risk management tool called failure mode
effect analysis (FMEA) which was evaluated on the parameters of severity,
occurrence and detection score. This led to proper risk management enabling risk
identification preemption and mitigation. Thus, reduced cost for the Customer.

Process improvement along with a robust governance model together laid the basis
for Lean G3overnance. This led to a fruitful and rewarding continuing relationship for
both Vendor and XYZ Ltd. The benefits were tracked on a balanced score card
format.

Table 1. depects the XYZ relationship scorecard. The savings are purely due to process
improvements and value generation and do not reflect the gains for the customer due to vanilla
outsourcing.

Metrics Measure

Financial Perspective

Onsite/Offshore Ratio 30:70

No. of People on the relationship 637

*Savings due to Process Improvements and value generation only 1,340K GBP

Customer Perspective
Number of customer appreciations 130

Number of customer concerns 19

Transformational initiatives
[Factory Approach, Testing CoE, CMMi, HR Training, FMEA,
Dedicated Portal, Architecture CoE, OD]

9

Customer Satisfaction Index 86.7

4 Conclusion

In conclusion, Lean Governance is an excellent governance framework for both the
Outsourcer and the Outsourcee as their respective structures are aligned, with clearly
defined span of operations and accountability built-in. The Relationship goals roll-up

66 M. Kancharla

to the Business goals of the enterprise through measurable Key Performance
Indicators guaranteeing better Returns on Outsourcing through Lean Governance.

References

1. The concept of Lean Governance is built on the TCS Lifecycle Methodology and best
practices implementation. Case studies referred in this article are derived from the Tata
Consultancy Services (TCS) experiences and on going relationships with its customers. For
the purpose of confidentiality and the customer data security the names of the customers are
being omitted, in place the authors have used a fictitious name XYZ Ltd. Vendor cited in
the case studies refers to TCS

2. Womack, J.P., Jones, D.T.: Lean Thinking. Simon & Schuster, New York (1996)
3. WTO: Offshoring Service: Recent Development and Prospects - Exploring the Link

between Trade, Standards and the WTO. World Trade Report (2005)
4. Corbett, M.F.: The Outsourcing Revolution. Published by Deorborn Trade (2004)
5. Rottman, J.W., Lacity, M.C.: Proven Practices for Effective Offshoring IT Works. MIT

Sloan Management Review 47(3), 57–63 (2006)
6. Vertring, T., Rouse, T., Reinert, U.: Hedge your Offshoring Bets. MIT Sloan Management

Review 46(3), 27–29 (2005)
7. Feeny, D., Lacity, M., Willcocks, L.P.: Taking the Measure of Outsourcing Providers. MIT

Sloan Management Review 46(3), 41–48 (2005)

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 67–82, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Making IT Offshoring Work for the Japanese
Industries

Sakura Kojima and Makoto Kojima

Tsuda University, Tokyo, Japan
kojimasa@tsuda.ac.jp

Takushoku University, Tokyo, Japan
mkojima@ner.takushoku-u.ac.jp

Abstract. IT offshoring has now become imperative not only for the IT
industry but also for the manufacturing industry in Japan. The Japanese
hardware industry which has long been globally competitive now faces
unexpected challenges, i.e. swelling volumes of programs embedded in
electronic devices and systems. The impending serious shortages of IT
engineers will soon erode the competitiveness of the industry. Increased global
competition and serious manpower shortages are the major background for the
IT offshoring. Japanese offshoring is yet at an immature stage, turning mainly
to China due to cultural similarity, Japanese language proficiency, and
geographical proximity. Through analyzing both failed and successful projects,
the authors try to explore fundamental causes for the poor performance and
provisionally determine critical factors contributing to the successful
offshoring.

Keywords: IT Offshoring; Japanese Manufacturing; Embedded software;
Globalization; Global Competitiveness.

1 Introduction

Major Purposes:

Japanese hardware industries have faced unexpected challenges, i.e. swelling volumes
of program embedded in an electronics system. Rapid digitization and networking has
resulted in an increased importance of “software” in the hardware products. Serious
shortages of IT engineers, due to continuous lower-birth-rate, massive retirement of
baby-boomer employees, and unpopularity of software industry among younger
generation, have made IT offshoring imperative. Japanese IT offshoring is still at an
immature stage, lagging far behind the U.S. in its maturity and scale. While most U.S.
companies who are mature in IT offshoring are now benefiting from visible cost
savings it provides1, Japanese companies have not yet fully exploited its advantages.

1 According to Gartner, cost savings from offshoring in the U.S. are roughly estimated in the

range of 25-50% [5]. In Japanese offshoring, clients companies were reportedly struggling to
take even 10% off [6].

68 S. Kojima and M. Kojima

IT offshoring has proved to bring various visible benefits (savings in cost and
delivery time, and securing IT manpower, etc.) to the outsourcers, apart from risks
including security, privacy, and confidential information, but the authors also pay
attention to the invisible but innovative aspect it provides: renovation of corporate
culture and management to cope with globalization, and presupposes that IT
offshoring profoundly affects the Japanese corporate culture and the peoples’
mindsets. IT offshoring is far from a mere extension of domestic outsourcing.

The major purpose of this paper is to find out the critical factors for successful IT
offshoring, based on the case studies and company interviews. The authors conducted
company interviews in three countries: Japan; China; and India between 2004 and
2006 (see Appendix). Since the sample size (21 companies) 2 is too small to analyze
the results quantifiably, and the information is patchy and partly subjective,
methodology is qualitative (descriptive). The findings and conclusions are tentative.
The authors will conduct company interview more and determine critical factors
based on purposive sampling in the future. However, it may be meaningful to show
the overall picture of Japanese IT offshoring, focusing on embedded software, as a
starting point for further discussions.

2 Japanese IT Offshoring Trends

2.1 Size of the Japanese IT Offshoring

The global IT service (including BPO) market amounted to US$ 748 billion in 2003, of
which North America accounted for 51%, 30% for the EU and 15% for Asia-Pacific
region including Japan [1]. According to the Nasscom-Mckinsey Report, the extent of
the global IT offshoring market was estimated to around US$ 30 billion in 2005 [2]. The
figures for total Japanese IT offshoring value are not officially available. JISA (Japan
Information Technology Services Industry Association) releases the figures annually
based on a questionnaire sending to its 670 member companies3 [3]. However, the
figures (US$ 447 million in 2004) seem extremely undervalued and unreliable.
Measuring the extent of offshoring is a difficult task even for the U.S. According to the
ACM (Association for Computing Machinery), extent of the U.S. offshoring was
estimated to be in a range of US$ 10 to 20 billion [4]. According to Gartner Japan, the
total value of Japanese IT offshoring to China was estimated to be $750 million in 2004,
compared to $250 million of offshoring to India [7]. China and India were the largest
recipients of the Japanese offshoring. The authors also made its estimation mainly from
the statistics of CSIA (China Software Industry Association) and NASSCOM (National
Association of Software and Service Companies) of India. The Japanese offshoring to
China in 2004 was estimated to US$ 1.6 billion 4 [8] while offshoring to India was
almost US$ 500 million [9]. It seems, therefore, safe to say that the size of the Japanese
offshoring is in a range of US$ 1 to 2 billion.

2 The authors interviewed almost 10 Chinese IT vendors, five Japanese client companies, and

six Indian IT vendor companies.
3 Return rate was about only 30%. The number of member companies has increased to 736 in

2006.
4 Chinese software and IT service exports amounted to almost US$ 2.6 billion in 2004 of which

60% were destined to Japan.

 Making IT Offshoring Work for the Japanese Industries 69

Table1. Software Exports Destined to Japan from China and India (US$ million)

 2003-04 2004-05

 China 1,380 1,560

India 385 500

 (Source: CSIA [8] and NASSCOM [9])

Table2. Japan’s Share in Chinese and Indian IT Services Export

 2003-04 2004-05
China 69.0% 60.0%

India 3.0% 2.8%

 (Source: same as Table 1)

2.2 Main Features

To some degree, a global division of labor in offshoring partnership is beginning to
form: India serving the English-speaking world, former Eastern Europe and Russia
serving Western Europe, and China serving Japan. India exported almost 70% of
software products and services to the U.S, while China’s export share towards Japan
amounted to almost 60% in 2004 [9] [8].

A questionnaire done by JISA in 2003 clarified that only 18% of replied companies
(N=32) were actually executing IT offshoring, of which 88% companies utilized
China and 33% also utilized India [3]. China and India are the most popular offshore
locations (see Fig.1).

88%

33%

19%

8.30%

4.80%

0% 50% 100%

China

India

Korea

Vietnam

Phi l ippine

(Source: JISA [3])

Fig. 1. Top Five Offshore Locations

70 S. Kojima and M. Kojima

While the share of companies who were actually executing IT offshoring in 2000
was only 6 %, the share of the companies who have plan to start offshoring until 2006
was 49% [3]. This indicates Japanese IT offshoring will be greatly accelerating. The
survey also clarified that offshoring accounted for only 10% of total outsourcing costs
(as of 2003), reflecting Japan’s immaturity.

Most Japanese companies tend to prioritize language proficiency and cultural
similarity when they select an offshoring destination. There are significant numbers
of Chinese students studying in Japan (63,000 in 2005) who will be candidates for
high-level manpower bridging the gap between the two cultures. In this connection,
Indian students studying in Japan amounted to only 364. The manpower with
language proficiency plus multi-cultural comprehension, besides IT knowledge, is
being called “Bridge Software Engineers (Bridge SE).” Regarding availability of
Bridge SE, China is much more attractive for Japanese companies than is India.

The aims of IT offshoring to China are, first and foremost, cost reduction, followed
by securing a certain amount of IT engineers (especially of Java language and web
technology), reduction of development cycle time, and exploiting the Chinese
domestic market (localization of Japanese software products)[10]. Wage rate of IT
engineer in Shanghai (one of the most expensive areas), for example, was almost half
of the Japanese average rate [10].

2.3 Background of Japanese IT Offshoring

Japan is a late starter of offshoring business which has accelerated on a full-scale
since 2000, exclusively turning to China. Development of embedded software (like
car navigation and mobile phone, for example) rather than business application
software has constituted a major part of offhored products or services. In light of
Japan’s weak competitiveness in the field of business software products, especially
package software, OS, middleware and tools, majority of which are imported from the
U.S. [3], most promising sphere left for Japan must be in an embedded software.
Japan’s electronic industry has now confronted with mushrooming of the program
size. In the case of mobile phone, for example, the size of embedded software in
terms of LOC (line of code) has increased from 700k in 1996 to 2.2M in 2002, while
required development periods have shortened from one year in the early 90s to half a
year in 2002 [11].

In Japan, there are almost 380 thousands “embedded system engineers” in 2005, of
which 46% or 175 thousands are classified as “embedded software engineers” [12].
A shortage of embedded software engineers was estimated to be around 75,000 in
2004 [12]. Shortages of manpower will be accelerating due to the continuous lower-
birth-rate phenomenon, beginning of massive baby-boomer retirement from 2007, and
the increasing unpopularity of demanding IT industry among younger generation.

Global competitive pressures, in addition to the serious shortages of IT engineers,
have compelled Japanese companies to increasingly incline to IT offshoring since the
end of the 1990s. Offshoring to China theoretically makes Japanese client companies
save, on average, around 30 to 50% of development costs5 except initial costs, if the

5 Actually, though, cost saving ratio may be, on average, less than 10% at this point, according

to one estimate [6]. 20% in cost savings was considered thresholds for dividing “success” and
“failure.” [14].

 Making IT Offshoring Work for the Japanese Industries 71

processes are properly managed. If the quality is assured, offshoring will provide
them with merits in cost, securing skilled IT manpower, and precise delivery. IT
offshoring becomes an unavoidable option, especially in the sphere of embedded
software.

2.4 Immature Stage of IT Offshoring

According to the global experiences, probability of failure becomes higher for the
case of initial projects or immature stage of offshoring. In the U.S., for example,
most companies which become matured in offshoring have generally shifted their
perception from negative and skeptical attitude to an appreciation of the savings it can
provide for [5]. China was most popular destination due to the availability of a
significant number of IT engineers with good Japanese language proficiency. In spite
of the lower language barriers, not a few earlier projects in the 1990s were said to be
failed or unsatisfactory. This may be partly because of the lesser accumulated
experiences on both sides, and partly because “cost reduction” was top-prioritized
without knowing necessity of initial costs and difficulty in quality management.
Nowadays, achieving 70% of targeted quality and delivery for the case of the initial
offshoring are considered as satisfactory [10].

Recently, various useful knowledge of IT offshoring have been accumulated within
an individual company (especially larger-sized System Integrators) so that IT
offshoring performance among these companies has become much better than in the
past. However, this valuable knowledge are not commonly shared yet.

3 Problems of Japanese IT Offshoring

Not a few projects offshored to China have been unsatisfactory or even failed in spite
of lower language barriers. Japanese companies complained that quality was not
satisfactory, and the cost turned to be much more than they expected, and so forth [6].
Poor performance may be particularly observed at an earlier stage of offshoring
universally. Nowadays, some lessons drawn from the earlier failed projects are
available.

Major purpose in this section is to identify the root causes for poor performance
based on an analysis of a few failed projects. But before that, the authors clarify how
reasons for the failure were subjectively perceived by both parties, i.e. Japanese
companies and Chinese (and Indian) IT vendors.

3.1 Lessons from the Earlier Projects

It has passed almost a decade since the Japanese companies started their earliest
projects. Although very few cases6 were successful, many of the earlier projects were
reportedly failed. This was partly because the purpose of offshoring, at that time, was

6 The case of Neusoft seems exceptionally successful. This company, now ranked as the

second largest software vendor in China, used to be a very small venture when it had started
software business at the Northeastern Univ. and formed a joint venture in 1991 with the
Japanese car navigation maker, Alpine. Now the total employees were 6,000 in 2004.

72 S. Kojima and M. Kojima

exclusively “cost reduction” so that Chinese vendors were considered cheap
subcontractors, and outsourced only downstream (or lower-value-added) processes
like coding and testing without knowing the basic design and entire configuration.
Chinese software engineers are, on average, paid a third of Japanese engineers. Even
if the total cost when offshoring to China becomes half of Japanese domestic
outsourcing, at least 20% to 30% of initial cost may accrue [10]. “Cost imperative”
without fine-tuned communications and mutual understanding had resulted in an
unexpected increase of cost and poor quality.

Most companies now think much of quality as well as cost element. In order to
improve overall quality, they tend to ask Chinese engineers to participate in from the
upstream processes and a joint review [17]. Other valuable lessons are also drawn
from analyzing a few “successful projects” 7 offshored to China [17]:

First, enhancing language proficiency, mutual cultural understanding, fine-tuned
communication, and frequent meeting are significantly critical at an early stage of IT
offshoring. One successful company, for example, purposely tried to standardize
terminology or jargon for decreasing bugs from the beginning.

Second, investment in knowledge transfer education for IT engineers, especially at
an initial stage, must be critical.

Third, monitoring or joint reviews are to be executed regularly and as frequently as
possible.

Fourth, long-term contract based on partnership rather than subcontractors, which
may also improve motivations of Chinese vendors, is thought to be important [17].

Many Chinese IT vendors have established their subsidiary companies in Japan,
serving Japanese client companies. Today, this pattern is most common in which a
Japanese client company first contracts with a Japanese IT vendor who will in turn
contract with a Japanese subsidiary of Chinese vendor to do programming work in
China. Although this model is costly, it is said to enhance better and frequent
communications, and allows Chinese engineers to join in the upstream software
process.

3.2 Problems of IT Offshoring: Japanese Client Views

A questionnaire survey revealed the most serious problems recognized by Japanese
companies (as of 2003) were as follows [14]:

First, language barriers and time-consuming translation work;
Second, reluctance to cope with specification changes and lack of earnestness to

understand customers’ requirements;
Third, cost-push factors including frequent overseas travel expenses, translation

costs, and additional expenses for making documents;
Fourth, poor quality caused by low motivation and poorly managed quality control;

7 Although “success or failure” should be technically evaluated from to what extent the original

estimate in QCD is fulfilled, the author found that the definition of “successful project”
seemed very vague and subjective. Each company has its own goals and metrics to gauge the
performance, but principally they depended more on the subjective evaluation from longer
perspective.

 Making IT Offshoring Work for the Japanese Industries 73

Fifth, low levels of overall technology including lack of domain knowledge and
significant variance in skill-levels among team members.

Other problems were: reluctance for overtime work; high attrition rate; poor
development infrastructure; and security lapses and leak of confidential information.

3.3 Problems of IT Offshoring: Overseas Vendors Views

The most formidable problem that the Chinese (and Indian) IT vendors felt when
doing offshore business with Japanese customers was, first and foremost, the
“frequent changes of requirements and specifications” [18]. Software development
process commonly seen in Japan significantly differs from globally accepted norms.
They usually start software development without clearly defined requirements,
specifications and functions beforehand, and change specifications (and even
requirements) frequently to meet the targeted quality and configuration at a later
stage. This method presupposes frequent face-to-face communication and hard work
including overnight work, which can function in a domestic outsourcing environment,
but are quite hard for offshoring.

Second, “lack of mutual understanding (frequent occurrence of misunderstanding)”
and “not listening to what vendors say or suggest.” [18]

Third, ambiguous expressions in specifications, documents, and quality definitions
[18]. Overseas vendors consider that this is mainly because of lack of writing skills on
the side of Japanese engineers. This can be partly because of a homogeneous society,
in which Japanese are unconsciously accustomed to ambiguous expressions and
verbal communications based on a tacit understanding. “Visibility” or efforts to make
everybody understand has long been undervalued.

Fourth, treating overseas vendors as subcontractors, not as business partners
mainly from their cost saving purpose. Much of the offshored business is patchy,
lacking in continuity and low-value added. For example, an installation-only job for
ERP imported from the U.S. is the case [18].

The authors also interviewed with some Indian IT vendors 8 doing embedded
software business in Japan. According to them, in spite of the huge potential in
embedded software offshoring, Indian IT vendors face difficulty to get the jobs
because hardware and software are interlinked in an embedded system, and it is not
easy to separate software only for outsourcing [19]. This may be caused by the
unique Japanese development process, largely based on “integral architecture,” rather
than “modular architecture.”

3.4 Fundamental Causes for the Problems

If both Japanese companies and overseas vendors accumulate more experiences in IT
offshoring, the performance will be eventually improved, depending on the interactive
learning curve. Through various company interviews conducted, the authors
tentatively concluded that Japanese companies (outsourcers) are primarily responsible
for the performance:

8 Currently, there are more than 70 Indian IT vendors in Japan (as of 2005), according to the IT

Club.

74 S. Kojima and M. Kojima

First and foremost, unique Japanese software development process or technique
bears the blame for the problems when it is applied to overseas outsourcing. They
usually start software development with loosely defined requirements and
specifications and change specifications frequently to meet the targeted quality levels
and final configurations. This gradual improvement approach with continuous
adjusting and changing is called “integral architecture,” rather than “modular
architecture” [20]. Because of the complexity and interdependence of subsystems in
the integral architecture, collaboration with foreign engineers or slicing off software
only for outsourcing is difficult.

This technique or approach has been recently recognized as inefficient and time-
consuming even among Japanese companies [21]. A Software Engineering approach
has not yet been well diffused to the Japanese IT industry, especially in the embedded
software sphere [22]. Japanese companies should endeavor to adopt global standard
techniques as much as possible if they want to succeed in getting benefits from IT
offshoring.

Second, ambiguous expressions (based on a tacit understanding) observed in
requirements, specifications, and documents have caused serious problems including
fatal errors when it comes to transmitting business requirements or technological
specifications which require strictness, were it done with foreign entities outside
Japan. Ambiguity is the great bugaboo of requirements specifications. Many software
problems arise from shortcomings in the ways that people gather, document, agree on,
and modify product requirements [23]. Errors made during the requirements stage
account for 40 to 60 % of all defects found in a software project [24]. Ambiguity
should be reduced as much as possible, and the writing skills of technology
specifications among engineers need to be improved through training. A
Requirements Engineering approach is very much needed in Japan. A major
consequence of requirements-related problems is rework which can consume 30 to 50
% of the total development cost, and requirements errors account for 70 to 85 % of
the rework cost [25]. It costs far more to correct a defect that is found late in the
project cycle than to fix it shortly after its creation [26]. Quality level to be required
by clients should also be clearly defined beforehand.

Third, Japanese companies should have clearly-defined strategy for what to be
outsourced and how to manage the divided process. Especially, nurturing the high-
level manpower who is in charge of managing IT offshoring process is an urgent task
[27]. Differentiating offshorable (suitable for offshore) from non-offshorable
processes or business is a prerequisite for successful offshoring. The requirements
that are unsuitable for offshoring are, for example, small development projects; short-
term delivery business; the case where frequent change is being required; products
requiring high quality and superior performance; and products containing critical
technology. Modularized functions which are separable and not integrated with other
functions could be preferable for offshoring.

Fourth, Japanese companies tend to treat overseas IT vendors as their
subcontractors, rather than partners. The “client-subcontractor relationship” has long
been the norm of the software industry in Japanese domestic outsourcing. IT vendors
must learn the customers’ unique and specific business terminology and development
techniques, and adapt everything to the customer’s business environment. It must be
quite hard for foreign IT vendors to emulate. Problematic is that offshoring was still

 Making IT Offshoring Work for the Japanese Industries 75

considered a mere extension of domestic IT outsourcing by many client companies.
To maximize the benefits from IT offshoring, the client companies are advised to
change their attitudes toward IT vendors, and build an partnership with them from a
long term viewpoint.

Fifth, successful offshoring constitutes good communication and comprehension
capability on different cultural background. Steeped in a monolithic culture, most
Japanese are poor in understanding different cultural or multi-cultural context. To
cope with globalization, English proficiency and comprehension capability on
different cultures among IT engineers should be enhanced either through intensive
training or increased exposure to the multi-cultural context.

4 Strategic IT Offshoring for Maintaining Competitiveness

The most promising and potentially competitive software sphere left for Japan must
be embedded software. Until recently, Japanese software companies have exclusively
supplied their custom-made products to the domestic market rather than supplying
generic package products to the global market [13]. They have avoided competing
outside Japan, and remained in a cozy domestic market. However, the Japanese
domestic consumer market will soon start to get shrinking due to continuous lower-
birth-rate. According to the Government estimate, one of the serious economic effects
may be lowering her economic growth rate (from 2.6% in 2000 through 1.8% in 2010
to 0.8% in 2025) and reducing annual growth rate of per capita income (from 1.9% in
2000 to – 0.3% in 2025) [15]. It is also said that the software companies would not
survive in the future unless they become dominant players in a global market.

If they would like to become global suppliers of embedded system, Japanese
companies need to renovate their corporate culture and management drastically,
including adoption of a globally accepted development methodology. The authors
believe that IT offshoring, especially to India, may provide one effective route for
them to transform their inward-looking corporate culture and mindsets.

4.1 Strategic Selection of Offshore Locations: Benchmarking Indian and
Chinese Software Strength

China still remains most favored destination, while some companies turn their
concerns to Vietnam, for example, for risk-spreading and avoiding a wage-hike in
China. When supplying to the Chinese and Japanese domestic markets, it must be
logical for the Japanese client companies to outsource to Chinese IT vendors.
However, when supplying to the global market, Japanese companies likely turn to
Indian IT vendors for collaboration because of their rich business experience with
major U.S. and EU companies.

India and China have rapidly come to the forefront in a global IT services
offshoring market, thanks to their rich reservoir of human resources. Given that
offshoring to China and India is further accelerating, Japanese companies are
increasingly keen to benchmark Indian and Chinese IT vendors and assess their
weakness and strengths, which may be necessary and helpful for making effective
sourcing strategy [29].

76 S. Kojima and M. Kojima

The 2002 annual Chinese software industry turnover reached US$ 13.3 billion,
finally overtaking the Indian IT service industry (see Fig.2). However, the Chinese
software industry significantly fallen behind India in global offshoring business.
China has much less experience in IT offshoring, to say nothing of global business
experience. At least, India’s top five players like TCS, Infosys, Wipro. Satyam, and
HCL have rich global business knowledge and experience, which Chinese IT
companies are eager to learn from them [30]. Almost 90% of Chinese software
industry turnover was from her domestic market, with majority of Chinese exports
heading for Japan, while most of India’s sales (80%) accrued from overseas: 70%
from the U.S., 23% from the EU, and 3% from Japan [9]. India surpasses China
significantly for IT services export (see Fig.3).

Fig. 2. Annual Turnovers of Software Industry in China and India

Fig. 3. Software Exports from China and India (Source: CSIA [8] and NASSCOM [9])

 Making IT Offshoring Work for the Japanese Industries 77

The authors tentatively found the strength and weakness of Chinese and Indian
software industry as follows:

First, export-oriented Indian IT industry has much more experiences in global
offshoring businesses, compared to China.

Second, the average IT worker wage levels in India are higher than those in China.
NASSCOM admitted the recent Indian IT industry labor wage hike [9].

Third, Chinese IT industry has rich domain knowledge in manufacturing, which
may become competitive in embedded software in future.

Fourth, India is superior to China in higher quality and adhering to global quality
standards. By 2005, India had 85 companies at SEI-CMM Level 5 [9], while China
has 17 companies only [8].

Fifth, one major difference between Indian and Chinese software industries is in
the size of the companies and projects. India has many larger-sized companies among
which top ranked TCS, for example, employs 45,000 (as of 2005), while China has
mainly medium- and small-sized companies. Even 2nd ranked Neusoft had only about
6,000 employees (as of 2004).

Company size seems closely related to project size. Especially big Indian
companies have had long offshore business history with major American MNCs
(Multinational Corporations), and experienced numerous big projects. Through this,
they have learned how to manage larger projects effectively, mastering the best
practices in project management techniques. China, meanwhile, has generally lacked
such experiences, consequently falling greatly short of project managers.

4.2 One Effective Way Leading to Successful Offshoring: Training in India

Although Indian IT industry is nowadays much more evaluated in terms of export-
orientation, rich global experiences, higher quality levels, and higher capability of
larger-sized project management, India had been psychologically and geographically
remote and negatively-stereotyped for most Japanese companies. However, recently,
a risk-spreading mentality and recent serious concerns over intellectual property have
also made Japan’s offshoring business swing from China to India. Although there are
many more hurdles to overcome when they outsource to India than to China, major
Japanese companies begin to recognize various advantages of utilizing Indian
vendors.

The authors believe that deepening offshoring businesses with Indian IT vendors
who have rich experiences and accumulated know-how in business with global
players, will eventually bring benefits to the Japanese companies when they start to
learn globally standardized development style or methods prevailing among major
Western companies, to say nothing of tapping emerging market in India.

Recently, major Japanese electronics companies like NEC and Toshiba, for
example, have begun to utilize India for their IT training.

Both Toshiba and NEC have dispatched their engineering employees to India
where they would be given several-months intensive training. The person at Toshiba,
told us that nurturing Japanese IT engineers with global mindsets is critical not only
for future successful IT offshoring but also for the global competitiveness of the

78 S. Kojima and M. Kojima

company, and India is most suitable place for training of Japanese engineers in
various meanings:

First, training curricula are more sophisticated and comprehensive than those at
Japanese training institutes, which provide only patchy and insufficient curricula.

Second, knowledge of state-of-the-art technology is available.
Third, accumulation of rich knowledge and experiences in global offshoring with

major Western client companies could be learnt.
Fourth, the training menu is more practical and business-oriented.
Fifth, training fees are less expensive.

Training in India was expected to improve the weaknesses of Japanese software
engineers, i.e. enhancing their cross-cultural communication skills, English
proficiency, requirements and specifications writing skills, and project management
capability [16].

Considering that there are much more hurdles to overcome when they outsource to
India than to China, training Japanese IT engineers in India may indirectly contribute
to the successful offshoring to India in the future.

5 Making Offshoring Work for the Japanese Industries

Generally speaking, there are, so far, very few success stories in offshoring business
with India mainly because of language and cultural barriers. But the authors found
one successful case (Firm JO) which has already started LSI design and embedded
software offshoring to India since 1988. This case is exceptional but considered to
provide many useful lessons for other Japanese companies.

In this section, through introducing and analyzing this case, the authors try to
provisionally determine the critical factors making offshoring work for the Japanese
industries. Before introducing the case study, the authors briefly describe the
overview of the Japanese embedded software industry.

5.1 Overview of the Embedded Software Industry

According to the first comprehensive survey conducted by METI in 2004, the annual
turnover of embedded software was estimated at more than 2 trillion yen (US$ 17
billion) in 20039 and the figures for embedded systems amounted to 5 trillion yen
(US$ 43 billion) [12]. The total turnover of Japanese electronics industry was about
20 trillion yen (US$ 174 billion) in 2003, according to JEITA (Japan Electronics and
Information Technology Industries Association), of which 10% was, therefore,
produced by the embedded software [28]. The importance of software vis-à-vis
hardware in a system has significantly increased.

The engineers who specialize in embedded system development are divided into
two: embedded software engineer and embedded hardware engineer. A number of
embedded system engineer was estimated at 380 thousands in 2004 of which 175
thousands were classified as embedded software engineer [12]. A large number of

9 The Japanese IT services industry as a whole produced annual sales of 14 trillion yen in 2003

[3].

 Making IT Offshoring Work for the Japanese Industries 79

companies are suffering from dire shortages of embedded software engineers
especially in such fields as factory automation and robotics, digital consumer
electronics, wireless communication equipment (including mobile phones),
automotive electronics and have plans to significantly increase their numbers within
three years. According to a reliable estimate, the deficiency is in a range of 75,000 to
90,000.

5.2 Recent Trends in Embedded Software Offshoring

Especially, application and middleware layers of embedded software, of which
program volume has been mushrooming, are said to be suitable for offshoring either
to China or India, compared with other layers. Japanese companies have recently been
more cautious about offshoring in this field to China, who is rapidly catching up to
Japanese hardware industry and whose intellectual property regulations are unreliable
and weak. In this regard, India or Vietnam (to a lesser extent) is considered
appropriate alternative location. India is said to be rather weak in hardware
manufacturing, but its chip design capability is highly evaluated and especially, since
2000, the number of chip designers and embedded software engineers has greatly
increased [31]. Rapidly expanding Indian domestic market in consumer electronics
also becomes attractive for them.

Recently, many Japanese electronics and semiconductor manufacturers have
rushed to start offshoring to India. Renesas Technologies, Elpida Memory and NEC
Electronics are the cases. However, it was only last year (in 2006) for them to begin
offshoring to India, while global top players like Texas Instruments and
STMicroelectronics had already started offshoring to India since the latter half of
1980s [32].

5.3 Successful Offshoring of VLSI Design and Embedded Software to India:
The Case of Firm JO

The earliest successful offshoring projects in the embedded software to India can be
found in the case of Firm JO which had started business with India since 1988. Firm
JO has outsourced design and development of OS for 16 bit (recently 32 bit)
microcomputer and various kinds of application software to medium-sized Indian IT
vendor which is based in the U.S. There is no capital relationship. There is an
offshore development center (ODC) in Noida where 75 Indian and 25 Japanese
engineers work together.

According to the Executive Director of Firm JO, the firm could achieve the highest
efficiency and performance that it had ever attained (20 to 30 % above the global
levels) and the highest quality in addition to the enormous cost savings [33]. The firm
has evaluated IT offshoring to India “successful” for almost 18 years. It has a clear-
cut definition on what the “success” is. There are three criteria: “on-time rate,”
measuring to what extent each work being done according to the original schedule;
“process compliance rate,” assessing to what extent the work being done process by
process in due order that was defined in the specifications; “function achievement
rate,” measuring to what extent the functions being fulfilled and achieved. [33].

80 S. Kojima and M. Kojima

The authors analyzed the case carefully, and tentatively drew some lessons:

First, IT vendor selection must be a key factor influencing the outcomes. The
Indian vendor in this case has already proved sufficient high performance in
offshoring business, and is furnished with excellent manpower and better
development infrastructure. Quality control concept at the vendor could be shared
with Firm JO since it fully implements and applies Japanese quality and production
system (TQM) to its software development and maintenance processes, in addition to
achieving the highest quality levels in terms of CMM and ISO.

Second, long-term relationship, based on “partnership,” may bring benefits for the
client company in terms of significant cost savings (since vendor is said to be willing
to provide a service at discounted rate to Firm JO, presupposing their long-term
contract); fine-tuned communications; and shared destiny.

Third, unlike other typical Japanese companies, Firm JO strictly defines
requirements and various specifications, and excludes ambiguity in the Japanese
language before translating into English. Specification itself is verified beforehand as
much as possible. Some critical terminology is always defined beforehand to have
same meaning to both Indian and Japanese engineers.

Fourth, concerning which processes are to be outsourced, Firm JO found that
offshoring from the detailed specification design process proved to be more efficient.

Fifth, to cope with specification changes effectively, Indian vendor implements
either feasibility studies or developing a prototype [33].

This case indicates that if software engineering approach is properly implemented,
language barriers which constitute most formidable challenge could not be such a
serious bottleneck for Japanese companies.

The authors attempt to collect and analyze the successful cases like Firm JO more,
and will quantitatively determine the critical factors making Japanese offshoring work
in the near future.

Acknowledgements

The authors are deeply grateful to the representatives of the 21 companies for their
extensive cooperation in interviews and detailed answers to my many questions.

References

1. WISTA: Digital Planet 2004. Arlington (2004)
2. NASSCOM-McKinsey Report 2005. NASSCOM, New Delhi (2005)
3. JISA: White Paper on Information Technology Services Industry 2004. Computer Age,

Tokyo (2004)
4. Aspray, W., Mayadas, F., Vardi, M.Y.: Globalization and Offshoring of Software. A

Report of the ACM Job Migration Task Force. ACM (2006),
 http://www.acm.org/globalizationreport

5. Gold, T.: Outsourcing Software Development Offshore. Auerbach Publication,
Washington, D.C (2005)

 Making IT Offshoring Work for the Japanese Industries 81

6. Jinnai, K.: Learn from Offhoring. Project Management Magazine (in Japanese), Shoeisha,
Tokyo, vol. 1, pp. 83–103 (2005)

7. Gartner Japan: Offshoring to India and China: Competitors? Subcontractors? Partners?. In:
IT Management (October 5, 2005)

8. CSIA: Annual Report of China Software Industry 2005. CSIA, Beijing (in Chinese) (2005)
9. NASSCOM: Strategic Review 2006. The IT Industry in India. NASSCOM, New Delhi

(2006)
10. Study Group of Overseas Outsourcing: Overseas Outsourcing Guide Book of Software

Development to China. Computer Age, Tokyo (in Japanese) (2005)
11. IPA (Information Technology Promotion Agency), SEC (Software Engineering Center):

Embedded Technology Report, Shoeisha, Tokyo (2005) (in Japanese) (2005)
12. METI (Ministry of Economy, Trade and Industry), Commerce and Information Policy

Bureau: Survey on the Current Embedded Software Industry, METI, Tokyo (2005) (in
Japanese) (2005)

13. Cusumano, M.: The Puzzle of Japanese Software. In: Communications of the ACM,
vol. 48(7), ACM Press, New York (2005)

14. S-open Offshoring Development Study Committee: Comprehensive Guide Book on
Software Development Offshoring. Nikkei BP, Tokyo (in Japanese) (2004)

15. National Institute of Population and Social Security Research: Web Page on Problems of
Population, http://www. Ipss.go.jp/syoushika/seisaku/html/121b1.htm

16. Interview with Toshiba (April 2006)
17. Interview with three Japanese clients companies (JI; JF; and JH) and three Chinese IT

vendors (CS; CT; and CB)
18. Interview with four Indian IT vendors (II; IK; IN; IA) and five Chinese IT vendors (CY;

CP; CB; CS; and CO)
19. Interview with Indian IT vendor (IK)
20. Cusumano, M.: The Business of Software. Free Press, New York (2004)
21. IPA SEC: Establishing the Software Engineering Approach in Japan. Nihon Keizai

Shinbun (in Japanese) (April 28th 2005)
22. Interview with Japanese client company (JO and JT)
23. Wiegers, K.: Software Requirements, 2nd edn. Microsoft Press, Washington (2003)
24. Davis, A.: Software Requirements: Objects, Functions, and States. Englewood Cliffs, NJ

(1993)
25. Leffingwell, D.: Calculating the Return on Investment from More Effective requirements

Management. American Programmer 10(4), 13–16 (1997)
26. Grady, R.: An Economic Release Decision Model. Insights into Software Project

Management. In: Proceedings of the Applications of Software Measuremnet Conference,
pp. 227–239. Orange Park, FL (1999)

27. Interview with three Japanese Client Companies (JT; JH; and JF)
28. JEITA: Data Map for the Electronics and Information Technology Industries in Japan.

JEITA, Tokyo (2003)
29. Kojima, M., Kojima, S.: The Catch-up Game between India and China. In: Asian

Management Review (October- December, 2005)
30. Interview with vice director of Beijing City Software Industry Promotion Center,

(September 7, 2005)
31. Indian Semiconductor Association-Frost & Sullivan Study on the Indian Semiconductor

Industry: VLSI and Embedded Design Market and Its Impact on Indian Economy,
http://www.isaonline.org/pub-mrreport.html

82 S. Kojima and M. Kojima

32. Kojima, Ikutaro: Indian Power in LSI Design. In: Nikkei Microdevices (In Japanese)
(December 2006)

33. Interview with Company (JO) in (December, 2004 and January 2007)

Appendix: Abbreviation of 21 Companies Interviewed

The author avoids mentioning the names of the companies interviewed in order to
protect their privacy.

Japanese Client

Companies
Indian Vendors Chinese Vendors

1. JT
2. JH
3. JO
4. JI
5. JF

1. II
2. IT
3. IK
4. IJ
5. IN
6. IA

1. CT
2. CN
3. CF
4. CH
5. CB
6. CP

7. CW
8. CO
9. CH
10. CS

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 83–95, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Mastering Dual-Shore Development – The Tools and
Materials Approach Adapted to Agile Offshoring

Andreas Kornstädt and Joachim Sauer

Software Engineering Group, Department of Informatics, University of Hamburg
and C1 WPS GmbH, Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

{ak,js}@c1-wps.de

Abstract. Software development in offshoring settings with distributed teams
presents particular challenges for all participants. Process models that work well
for conventional projects may have to be adapted. In this paper we present case-
study-reinforced advice on how to extend the Tools & Materials approach –
a well established communication-centered agile design and development
approach – to the field of dual-shore development in offshoring projects. We
show how communication challenges can be tackled with common guiding and
design metaphors, architecture-centric development, task assignments with
component tasks and extensive quality assurance measures.

Keywords: Offshoring, Tools & Materials approach, dual-shore, architecture-
centric development, agile practices.

1 Motivation

Offshoring is a dominant trend in software development with annual growth rates of
about 33% in markets such as India [1]. It promises benefits in the areas of costs,
flexibility and concentration on core competencies. Empirical studies have shown,
however, that offshoring also entails a considerable number of challenges. Offshoring
projects are at the top of the complexity scale with diverse issues in areas of organiza-
tion, management, communication and teamwork. This is especially true for projects
that feature geographically separated onshore and offshore project teams [2]. When
over 5000 executives across North America and Europe were asked about the success
of their offshore strategy in 2004, 36% considered their offshore strategy failed
and over one in three had to move work back from their offshore to their onshore
team [3].

Given these figures, it is easy to see why looking at measures that help preventing
project failure is worth the effort. In this paper we show how process models can be
extended and adapted to the complex challenges of offshore projects. We have ex-
plored these issues based on the Tools & Materials approach (T&M) [4] which has
been used successfully in many single-site agile development projects. The extensions
have been validated in a first substantial case study with onshore and offshore teams.

After giving an overview of different offshoring approaches and limiting this pa-
per’s scope to the dual-shore approach we go on to demonstrate that communication
is a core challenge in offshoring projects. We then present the T&M approach and

84 A. Kornstädt and J. Sauer

show how it has helped us meeting communication challenges in single-site projects.
We describe how this approach has been adapted to dual-shore development by aug-
menting it by four new elements. Then we present findings from the case study. Fi-
nally, in the concluding section, we will sum up the essence of the extended approach
and give an outlook on future research.

2 Collaboration Models for Offshoring

Offshoring comes in many flavors, but not all of them are pertinent to solutions in the
area of software architecture. The only – although highly relevant – two complica-
tions that classic offshoring projects introduce are those of cultural differences and
split locations. While these problems are not to be underestimated, they can be seen as
just an exacerbation of the classic problems between the business-side and the engi-
neering-side of a “normal” single-site software project because the line between on-
site and offshore is identical with the line between specification and implementation.
These difficulties, however, aren’t new and have been thoroughly dealt with in soft-
ware engineering literature [4].

Experience reports have shown [5] that this classic offshoring setting works best
with stable specifications and a minimal need for communication during implementa-
tion. To put it in an oversimplified way: The specification is sent to the offshore
location and after a while the binaries are shipped back for testing. Many software de-
velopment projects are too complex to be dealt with in such a fashion. They require
frequent interaction between the business-side and the engineering-side due to com-
plex and rapidly changing requirements on the business-side. The dual-shore model
for offshoring caters to these needs: As trying to discuss these changes in requirement
over huge distances with people from different cultural backgrounds appears to be too
difficult, development is carried out on-site as well as offshore. The on-site team is
staffed with local developers who deal with the business-side. As both sides are from
the same cultural group and located at the same site, classic offshoring problems be-
tween business-side and engineering-side can be avoided completely. The divide be-
tween shores now runs right through the development team. But this location of the
rift is still advantageous to the classic setting because now communication partners on
both sides are engineers.

It is this dual-shore setting that we have in mind when dealing with offshoring in
this paper. Before describing the specifics of our dual-shore approach in section 5, we
will first establish the necessary basis by taking a closer look at the challenges that
these projects are faced with (section 3) and by introducing the T&M approach which
encompasses many helpful concepts in overcoming them (section 4).

3 Offshoring Benefits and Offshoring Challenges

Clearly, the dominant expectation of corporations that outsource (parts of) their IT is
cost saving [6]. While there are other factors such as increased flexibility, none of
these factors comes close to the 90% mark that is reached by cost benefits.

 Mastering Dual-Shore Development 85

While past studies used to focus on benefits, recent studies have also examined
challenges that offshoring entails. These include unexpectedly high costs for infra-
structure, communications, travel and cultural training; lower productivity due to high
staff turnover at the offshore site and low morale at the onshore site; management
problems due to cultural differences and a poor spread of information; problems when
communicating with customers; and technical mismatches of all sorts [2, 5, 7].

When faced with these problems in an unsorted and condensed form as above, they
appear to be very hard to tackle. It helps, however, to examine how these problems in-
terrelate. This leads to a distinction between problems on different levels where the
problems at the higher levels are direct consequences of problems at the lower levels.
We describe these levels here as introduced in [8].

Primary or root challenges stem directly from the decision to outsource to an off-
shore location:

− Morale at the onshore site is low.
− It is difficult to develop a team spirit that spans two sites. Sharing the goals of the

project, expectations, and domain-specific as well as technical knowledge is not
easy.

− Onshore and offshore staff comes from different cultural backgrounds. This entails
various kinds of misunderstandings. Different views about how to deal with the
role of authority make management an especially hard challenge. Direct communi-
cation between the customer and the offshore site can make these problems stand
out in a very pronounced way.

− Transferring data to and exchanging data with an offshore site usually reveals tech-
nical incompatibilities of some sort.

− Serving as an offshore development center for many different distant corporations,
there is often a high staff turnover at the offshore site which exacerbates all other
primary challenges above.

When the following measures are taken, they constitute secondary challenges in their
own right:

− travel to establish as much face-to-face contact as possible
− cultural training for onshore and offshore teams
− additional planning to accommodate the lack of direct communication
− technical harmonization

All of these measures eventually lead to tertiary challenges which directly affect bal-
ance sheets:

− unexpectedly high costs
− lower than expected productivity

With this distinction between primary, secondary and tertiary levels in place, it is ob-
vious that it is advantageous to start tackling the five challenges at the root level be-
fore proceeding to derived ones.

Software related technologies cannot do anything to ameliorate problems in the
area of morale and they cannot change inherent cultural characteristics. They can help
only indirectly in establishing a better understanding between people from different

86 A. Kornstädt and J. Sauer

cultural backgrounds. Of the remaining three challenges, technical incompatibilities
pertain to infrastructure software exclusively and not to the software under develop-
ment proper, so they are out of the scope of this paper. Both of the final two chal-
lenges (sharing knowledge of any kind, facilitating staff changes at the offshore site)
are about communication about the software under development – in the first case be-
tween onshore and offshore locations, in the second case between staff members at
the offshore site.

These challenges have to be dealt with in development processes. We chose the
T&M approach that already incorporates measures to improve communication in de-
velopment projects to give an example of how to evaluate and further enhance estab-
lished development processes for dual-shore development. We will present its
relevant basic concepts in the next section before we continue to describe necessary
enhancements in the following section.

4 The Tools and Materials Approach

The Tools & Materials approach (T&M) facilitates application software development
by providing guidance in matters of software architecture and the software develop-
ment process. It is based upon object-oriented design and development and an evolu-
tionary, agile proceeding.

4.1 Enhancing Communication

T&M focuses on two aspects of communication:

− precise communication between all stakeholders (customers-developers, develop-
ers-developers, customers-customers), and

− frequent communication between all stakeholders

Both aspects aim at reducing to a minimum the impact of unavoidable miscommuni-
cation – the core problem of software development in general and especially of off-
shore outsourcing.

Precise Communication
Based on the realization that communication works best on the basis of a common
frame of reference, T&M provides several means of providing this very frame. To do
this, it does not introduce new concepts, but recurs to culturally established concepts:
metaphors, leitmotifs, and patterns:

Metaphors are at the core of the approach. They provide a very high level of ab-
straction which is ideally suited for a field that is governed by a high degree of com-
plexity. Without reducing complexity to meaningless statements, metaphors are very
compact ways of throwing light on specific aspects of an issue. The main metaphors
of T&M are Tool, Material, Automaton, Container and Working Environment
(see Fig. 1). These metaphors have the benefit that they are so basic that every cus-
tomer and every developer has a precise of what a tool is like and – equally important
– what a tool is not. By recurring to these five metaphors, there is a level playing field
on which all stakeholders can move freely without one of them gaining the upper

 Mastering Dual-Shore Development 87

hand due to an advantage in communication. Developer organizations often uninten-
tionally tend to have these advantages over customers by using UML diagrams that
customers do not fully understand. While customers agree to what can be seen in the
diagram out of insecurity about its precise semantics, they later complain about the
software that has been developed based on this miscommunication.

Working Environment

Tool

Automaton

MaterialContainer

Fig. 1. Main Metaphors of the T&M approach and dependencies between them

As individual metaphors are not necessarily perfect fits, T&M makes use of guid-
ing metaphors which establish a common framework into which individual metaphors
fit. For generic office applications, the guiding metaphor “Expert Workplace” is a
good fit: It is easy to envision Tools, Materials, Automatons (such as a calculator),
Containers (such as folders) and a Working Environment (such as a desk with in and
out boxes) at an Expert Workplace. Depending on the project in question, the individ-
ual set of (guiding) metaphors has to be determined. In many cases, however, only a
few metaphors have to be exchanged.

Metaphors of any kind are great for communication between customers and devel-
opers (and customers and customers as well) but they are too imprecise when making
the transition to executable code [9]. T&M uses two kinds of patterns to smooth that
transition:

Conceptual patterns are based on one design metaphor and delineate what a soft-
ware artifact based on that metaphor behaves like and what it does not behave like.
For example, conceptual patterns for materials include “materials never change their
state except when handled by a tool or an automaton” and “materials do not hold dis-
play code – it is the sole responsibility of tools to display the materials they let the us-
ers work on”.

Design patterns describe the static and dynamic interaction of individual classes /
objects. While some conceptual patterns can be broken down to at least some of the
patterns introduced in [10] (Tools are Observers of Material), most T&M design pat-
terns, are custom patterns that stem directly from T&M.

(Guiding) Metaphors and conceptual as well as design patterns are excellent means
of establishing communications between all stakeholders and have been tested time
and again since the 1990’s in numerous projects of radically different application

88 A. Kornstädt and J. Sauer

domains such as insurances, public utilities, oncology, logistics and oncology. Never-
theless, these means can only provide the elements that are discussed during business
process analysis. As conventional UML diagrams have the inherent problems men-
tioned in the preceding paragraph on metaphors, T&M makes use of exemplary busi-
ness process modeling (EBPM [11]). In contrast to UML diagrams, EBPM diagrams
tell the story of a certain process in pictures complete with actors, materials, tools,
automatons and containers as well as a different kinds of communication and a ex-
plicit thread (indicated by ordinals) along which the story unfolds. See Fig. 2 for an
exemplary diagram.

Letter with Insurance
Application + X - Ray

Application
Scan

Field Manager Mail Room of
Administrative Center

Electronic Archive Process Support System

Application Processing

Insurance
ApplicationFile with

Application Scan

11

55

66

Insurance Application File
indicating: INCOMPLETE!

opens

77

Additional documents for
specific Application Number
needed!

88

X-Ray

99

by interoffice mailAttaches
Application Number

2 2

X - Ray

Insurance Application

scans
3 3

Application Scan

44

Annotation:
INCOMPLETE

Application

Scan

Electronic Insurance Application

Enters
Application Data

1010

INSURANCE APPLICATION WITH
NON - SCANNABLE ATTACHMENT:

A potential customer applies for a
capital life insurance. Because he
had an accident recently, he adds an
X-ray scan to his medical status
information.

Fig. 2. Example of an EBPM cooperation scenario in the insurance sector

Frequent Communication
As has been shown in the beginning, large communication gaps will eventually lead
to costly miscommunications. This is especially true in projects with complex appli-
cation domains and / or complex team structures. To avoid this source of miscommu-
nications, T&M employs an agile development process with numerous feedback loops
ranging from months to seconds in length. For a full list see [9]. Important loops
include:

Releases aim at developing new application functionality. The scope is negotiated
by customers and developers in planning games about every 6 weeks. This allows for
maximum flexibility and avoids the typical problems of formal “complete” specifica-
tions which are usually outdated the moment they have been completed (see [9] for
benefits of agile development).

Daily stand-up meetings during which developers tell each other what they did
since the last stand-up and what they intend to do until the next one. These meetings
help to evenly spread knowledge about what goes on in every corner of the project.

 Mastering Dual-Shore Development 89

Programming pair negotiations take place twice a day. By sharing a single com-
puter, developers derive a common understanding about almost every part of the
source code. During pair programming, developers are exposed to each others con-
structive criticism every second so that the software’s architecture is constantly a mat-
ter of discussion.

Developers can request the presence of an On-Demand-Customer any time in case
they have questions that cannot be answered by looking at the specification made dur-
ing the planning game. The customer is obliged to help them within one day. [12]

4.2 Architecture-Based Development

For the implementation part, T&M encourages architecture-based development. Ac-
cording to Bass and Kazman [13], architecture-based development “differs from tradi-
tional development in that it concentrates on driving design and maintenance from the
perspective of a software architecture. The motivation for this change of focus is that a
software architecture is the placeholder for system qualities such as performance,
modifiability, security, and reliability. The architecture not only allows designers to
maintain intellectual control over a large, complex system but also affects the devel-
opment process itself, suggesting (even dictating) the assignment of work to teams, in-
tegration plans, testing plans, configuration management, and documentation. In short,
the architecture is a blueprint for all activities in the software development life-cycle.”

Architecture-based development thus facilitates communication by improving
comprehension through one common object of work that all project participants use
and understand. The architecture description introduces terms and concepts that serve
as a common language for all stakeholders. Hence it enables precise discussions and
arrangements. It also constitutes the basis for verifiable architecture rules. Automatic
rule checking improves implementation consistency and reduces the number of errors.

4.3 Summary

Fig. 3 brings together the most pertinent features of the T&M approach:
(Guiding) Metaphors form the basis for communication between all stakeholders.

……

Customer on
Demand

Customer on
Demand

Planning GamePlanning Game

EBPMs

Metaphors

Guiding Metaphors

Architecture
Design Patterns

Conceptual Patterns

……

Pair
Programming

Pair
Programming

Stand Up MeetingStand Up Meeting

Customers Developers

……

Customer on
Demand

Customer on
Demand

Planning GamePlanning Game

EBPMs

Metaphors

Guiding Metaphors

Architecture
Design Patterns

Conceptual Patterns

……

Pair
Programming

Pair
Programming

Stand Up MeetingStand Up Meeting

Customers Developers

Fig. 3. Overview of the main features of the T&M approach

90 A. Kornstädt and J. Sauer

Customer-Customer and Customer-Developer communication also draws upon
EBPMs while Developer-Developer communication uses Conceptual Patterns, Design
Patterns and architecture on top of the Metaphors.

All stakeholders communicate on the basis of guiding metaphors and metaphors.
On top of that, EBPMs are used between customers and developers. Among develop-
ers, architecture descriptions as well as conceptual and design patterns are employed.

5 Extending T and M for Offshore Projects

In section 3 we have discussed the basic problems affecting offshoring projects, lead-
ing to the conclusion that communication is of paramount importance. In section 4,
we then continued to describe the (single-site) T&M approach which already puts a
strong emphasis on communication by introducing metaphors and assigning much
importance to architecture. In this section, we draw conclusions from our extensive
experience with the application of the T&M approach in single-site projects and chal-
lenges and solutions we found in case studies with offshoring projects.

We will first present how single-site T&M should be extended to a dual-shore
T&M which can facilitate dealing with offshore communication problems. After in-
troducing our dual-shore model, we will discuss the importance of having a strong fo-
cus on architecture and assigning offshore-development tasks component-wise before
validating our approach in section 6.

5.1 Dual-Shore Development with Adjusted Agile Practices

The geographical separation of teams in the dual-shore model prevents offshore de-
velopers from having an on-site customer at their disposal (Customer-On-Demand)
and from participating in iteration Planning Games. To accommodate for these
changed settings, roles are unequally distributed across the teams. The onshore team
is made up of software architects and developers. Software architects are responsible
for designing and maintaining the application’s architecture and carrying out quality
assurance. They also serve as business analysts that directly interact with the cus-
tomer, elucidate the requirements, plan iterations and releases and design the applica-
tion. The onshore developers train their offshore counterparts at the beginning of
projects, perform the main implementation work during the first iterations and tackle
difficult implementation work in later iterations. They may also directly interact with
the customer to resolve questions.

The offshore team consists entirely of developers. They receive work assignments
in the form of component tasks (see 5.3) which they implement in a largely independ-
ent fashion, possibly clarifying questions with onshore software architects or in ex-
ceptional circumstances with onshore developers.

If possible, the first iterations should be tackled in mixed teams so that the devel-
opers get to know each other and develop a common understanding of the domain and
the development process. This phase of common development establishes a sound
communication basis which can be drawn upon after the offshore team has moved to
its offshore location.

 Mastering Dual-Shore Development 91

5.2 Architecture-Centric Development in Offshoring Projects

While we use architecture-centric development in conventional projects following the
T&M approach, it becomes even more valuable in offshoring settings. Communica-
tion between the teams benefits greatly from a uniform language and a common tech-
nical basis [8].

Architecture also helps in assigning tasks that are decoupled from each other and
thus can be developed largely independent by teams at distant sites. So the organiza-
tion can be split along the product structure [14], reducing the need for inter-site co-
ordination. Additional communication can also be avoided when developers know
how they can introduce new features to an application without asking for permission
or detailed instructions, e.g. by providing hot spots for enhancements or an explicit
plugin-concept.

Architecture rules are defined and regularly checked with automated tools. On-
shore software architects design and maintain the application’s architecture. The
architecture description is regularly communicated to all developers. Changes to the
architecture by the developers have to be arranged with the software architects. This
way the architecture also evolves from the basis, not only top-down from a software
architect’s specification. It would be impractical if developers always had to consult a
software architect regarding these changes. They should on the other hand be guided
in their actions to ensure a reasonable evolution of the architecture.

In the extended T&M approach, the architecture is maintained by an onshore soft-
ware architect. He verifies that changes and enhancements by the developers are valid
and compliant with his architectural vision against the background of the overall ap-
plication architecture and planned future requirements. He also maintains a master de-
scription of the project-specific architecture that is made available to all developers,
e.g. through the common version control system. Controversial or comprehensive ar-
chitectural changes should be discussed with the development team to ensure a com-
mon understanding.

This division of labor guarantees that developers can work without bottlenecks and
that the evolution of the architecture is guided by an experienced architect. Our ex-
perience shows few cases where architectural changes by the developers had to be
corrected by the software architect. With the guidance of a common architecture, ex-
plicit metaphors and good examples in the existing implementation, developers have a
good basis for their design decisions.

With the importance of architecture validation and the complexity of today’s appli-
cations, a software architect has to rely on software tools for quality assurance. Their
help permits an automated comparison of the planned and the really implemented ar-
chitecture. They also provide metrics and queries for an in-depth review of the im-
plementation [15].

5.3 Component Tasks

The story cards of the widespread agile process model of Extreme Programming, that
are also used in most current projects based on the T&M approach, capture only the
essence of requirements in the form of informal stories. The details need to be dis-
cussed and clarified with the customer and the team. This is difficult in offshoring

92 A. Kornstädt and J. Sauer

settings and increases the demand for communication. Therefore, we use component
tasks in the adapted T&M approach.

The use of component-based development is well-suited for agile projects [16].
Components make it possible to divide along well-defined interfaces. The relationship
between components has to be explicitly defined by architecture rules so that they can
be developed and tested mutually independently to a large extent. The component de-
scriptions can serve as a basis for coordination and discussion between teams.

Components can have different sizes and can be ordered hierarchically. This en-
ables an incremental shift of more and more tasks from the onshore to the offshore
team. Small initial components give offshore developers a manageable task to start
with. They do not have to understand all of the domain and the business logic from
the beginning. These components are assembled into more complex components and
integrated into the application by an experienced onshore team. Over time, bigger and
bigger components can be constructed and integrated offshore, leading to overall cost
reduction.

Component tasks define not only components to be developed but also the required
context of the application domain to minimize callbacks, the hot spots or extension
points for this component and, if possible, tests that the component has to satisfy.
Fig. 4 shows the adapted T&M approach.

……

Customer on
Demand

Customer on
Demand

Planning GamePlanning Game

EBPMs

Metaphors

Guiding Metaphors

Architecture
Design Patterns

Conceptual Patterns

……

Component
Tasks

Component
Tasks

Stand Up CallsStand Up Calls

Customers On-Site
Developers

Off-Shore
Developers

……

Customer on
Demand

Customer on
Demand

Planning GamePlanning Game

EBPMs

Metaphors

Guiding Metaphors

Architecture
Design Patterns

Conceptual Patterns

……

Component
Tasks

Component
Tasks

Stand Up CallsStand Up Calls

Customers On-Site
Developers

Off-Shore
Developers

Fig. 4. The adapted T&M approach

As in the basic T&M approach, developers communicate on the basis of guiding
metaphors, metaphors, conceptual patterns, design patterns and architecture descrip-
tions. Single-site agile techniques which are incompatible with dual-shore develop-
ment are replaced with suitable alternatives. The communication between customers
and (on-site) developers remains unchanged.

6 Case Study

To validate the extensions for offshoring projects to the T&M approach, a case study
was conducted. During four months (March to June 2005) two teams developed a

 Mastering Dual-Shore Development 93

prototype for an order entry and customer information system. The teams consisted of
up to six onshore developers at Hamburg, Germany, and six offshore developers at
Pune, India.

6.1 Setting and Process

The development was carried out following the dual-shore offshoring model. The
elicitation of business requirements and the iteration planning was done by onshore
analysts with the customer. Onshore developers built a core system during the first it-
eration while instructing two offshore colleagues on site. These returned to India after
the first iteration and established a developer team there, consisting of about half a
dozen members. In the following iterations, offshore and onshore developers worked
in parallel, with the onshore developers concentrating on work that required customer
interaction, architectural know how such as integrating components that were built
offshore. These components were aligned with the application architecture. They
were specified in fair detail with the necessary domain knowledge. Unit tests were
developed together with the components. Quality assurance was carried out onshore
before integrating the components.

A software architect was responsible for the initial design of the architecture and
for quality assurance. Advancements of the architecture were done autonomously by
the developers and checked weekly by the architect who also maintained the central
architecture description. The architecture descriptions were shared with the offshore
team after updates.

6.2 Findings

The results from the case study show that the described extensions to the T&M ap-
proach work well in practice. The following issues are worth noting:

Dual-Shore Development
The separation of tasks between onshore and offshore-teams worked very well. There
was no need for direct communication between onshore and offshore developers. Co-
ordination occurred solely between the onshore and offshore project leads. The off-
shore team also did not communicate directly with the customer. Tasks that demanded
direct communication, e.g. set-up of the database connection, were handled onshore.

Architecture-Centric Development
Almost no architecture violations were committed by the onshore or offshore teams.
The few ones that occurred could be detected and resolved very fast. Extending the
architecture was solely the onshore teams’ tasks. The learning curve for the offshore
developers was quite steep. Comprehension could be significantly improved by pro-
viding good examples, e.g. similar components implemented by experienced onshore
developers. A longer prior training and pair programming with experienced develop-
ers at the start of the project could help.

Our experience also shows that architecture violations are much easier to correct
right after they are introduced rather than at later stages. This is especially true for cy-
clical dependencies. Small cycles are easy to comprehend and dissolve. As cycles

94 A. Kornstädt and J. Sauer

tend to grow rapidly, it usually does not take long before they embrace so many arti-
facts that it is not obvious where to cut them. The conclusion is to take architecture
validation seriously and to correct mistakes right away.

Component Tasks
We found that a stronger orientation on components can improve task sharing be-
tween onshore and offshore teams with a more strongly formalized approach on the
basis of a common architecture.

The concept of component tasks worked well. The structure of the task descrip-
tions was refined throughout the project. Most of the time the tasks were defined clear
enough and only minor misunderstandings occurred. At first, only small tasks were
handled offshore. In later iterations of the project, bigger tasks, e.g. larger compo-
nents, could be developed offshore. At the peak about a quarter of the overall work
was done offshore.

7 Conclusion – An Extended T and M Approach

In this paper we examined benefits and challenges of offshoring and described how
process models can be adapted to offshoring projects by the example of the Tools &
Material approach.

While the basic concepts, such as guiding and design metaphors, conceptual and
design patterns, architecture-centric development based on an explicit model architec-
ture and agile, iterative development remain unchanged, the process model was
adapted to incorporate onshore and offshore teams with fixed assignments and re-
sponsibilities. Architecture-centric development plays an even more important role in
the extended T&M approach and helps in assigning tasks to teams, directing and for-
malizing communication between them and thus reducing the need for direct commu-
nication. We also presented results from a case study that we conducted to evaluate
the adapted approach and where we could validate the extensions for offshoring. In
the future, we plan to evaluate the approach in other projects and advance it further.

We hope that our results on how a single-site approach can be extended to offshor-
ing settings will be transferable to other development approaches and that this helps to
decrease the rate of failed offshore projects in the medium term.

References

1. Ribeiro, J.: India’s offshore outsourcing revenue grew 33%, Computerworld, 06/06 (2006),
http://www.computerworld.com/action/artcle.do?command=printArticleBasic&articleId=
9000877

2. Kalakota, R., Robinson, M.: Dual-shore project management: Seven techniques for coor-
dinating onshore-offshore projects (2005),

 http://www.informit.com/articles/article.asp?p=409917
3. Hatch, P.J.: Offshore 2005 Research: Preliminary Findings and Conclusions, Vers.1.2.5

Ventoro (2005), http://www.ventoro.com/Offshore2005ResearchFindings.pdf

 Mastering Dual-Shore Development 95

4. Züllighoven, H.: Object-Oriented Construction Handbook: Developing Application-
Oriented Software with the Tools & Materials Approach, dpunkt.verlag. Co-publication
with Morgan-Kaufmann (2004)

5. Sauer, J.: Agile practices in offshore outsourcing – an analysis of published experiences.
In: Proceedings of the 29th Information Systems Research Seminar in Scandinavia, IRIS
29 - Paradigms, Politics, Paradoxes, August 12-15, pp. 12–15. Helsingoer, Denmark
(2006)

6. McCarthy, J.C.: Offshore Outsourcing: The Complete Guide. Forrester Research, Cam-
bridge, MA (2004)

7. Huntley, H.: Five Reasons Why Offshore Deals Fail, Gartner, Stamford, CT (2005)
8. Kornstädt, A., Sauer, J.: Tackling Offshore Communication Challenges with Agile Archi-

tecture-Centric Development. In: Proc. of the Sixth Working IEEE/IFIP Conference on
Software Architecture (WICSA 2007), Mumbai, India, January 6-9, pp. 6–9 (to appear,
2007)

9. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley Longman
Publishing Co., Inc, Boston, MA, USA (1999)

10. Gamma, E., et al.: Design-Patterns – Elements of Reusable Object-Oriented Software. Ad-
dison-Wesley, London, UK (1995)

11. Breitling, H., Kornstädt, A., Sauer, J.: Design Rationale in Exemplary Business Process
Modeling. In: Dutoit, A.H., McCall, R., Mistrik, I., Paech, B. (eds.) Rationale Manage-
ment in Software Engineering, pp. 191–208. Springer, Heidelberg (2006)

12. Lippert, M., Becker-Pechau, P., Breitling, H., Koch, J., Kornstädt, A., Roock, S., Schmo-
litzky, A., Wolf, H., Züllighoven, H.: Developing Complex Projects Using XP with Exten-
sions. IEEE Computer Magazine 36, 06/03 (2003)

13. Bass, L., Kazman, R.: Architecture-Based Development, Technical Report CMU/SEI-99-
TR-007, ESC-TR-99-007 (1999)

14. Grinter, R.E., Herbsleb, J.D., Perry, D.E.: The Geography of Coordination: Dealing with
Distance in R&D Work. In: Proceedings of the international ACM SIGGROUP Confer-
ence on Supporting Group Work, November 14-17. GROUP ’99, pp. 306–315. ACM
Press, New York (1999)

15. Bischofberger, W.R., Kühl, J., Löffler, S.: Sotograph – a pragmatic approach to source
code architecture conformance checking. In: Oquendo, F., Warboys, B.C., Morrison, R.
(eds.) EWSA 2004. LNCS, vol. 3047, pp. 1–9. Springer, Heidelberg (2004)

16. Stojanovic, Z., Dahanayake, A.N.W., Sol, H.G.: Component-oriented agile software de-
velopment. In: Marchesi, M., Succi, G. (eds.) XP 2003. LNCS, vol. 2675, pp. 315–318.
Springer, Heidelberg (2003)

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 96–108, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Evaluating Collaboration Platforms for Offshore
Software Development Scenarios

Felix Rodriguez1, Michael Geisser2, Kay Berkling1, and Tobias Hildenbrand2

1 Caribbean Artificial Intelligence Group CAIG, Polytechnic University of Puerto Rico,
Electrical and Computer Engineering and Computer Science Department, 377 Ponce de Leon

Ave, Hato Rey, PR 00918, Puerto Rico
felix.rodriguez@ieee.org, kay@berkling.com

2 Lehrstuhl für ABWL und Wirtschaftsinformatik, Universität Mannheim,
D-68131 Mannheim, Germany

{geisser,hildenbrand}@uni-mannheim.de

Abstract. Offshore software development has become one of the prominent
software engineering trends in recent years. Many software development
projects are switching to offshore sites due to global and economic reasons.
This trend has resulted in the need for new tools and platforms to provide
support for the challenges that are faced by collaborators in global teams in
distributed communication, coordination and knowledge management.
Understanding and employing appropriate platforms presents one of the
important factors in successful global software development projects. The
purpose of this paper is to compare several market-leading tools that aim at
assisting software development within an offshore scenario. In doing so, new
and important aspects of evaluating these tools are taken into account that are
specific to the distributed aspects of these projects.

Keywords: Collaboration Platform, Collaborative Software Development,
Offshore Software Development Tools, Computer-Aided Software Engineering.

1 Introduction

Offshore software development (OSD) is a particular kind of outsourcing that deals
with the enhanced challenges and complexity of developing software when the
contracting parties reside in different countries [8, 15]. The additional complexity
factor of OSD is due to the fact that the development team is spread out remotely and
over several cultural environments. Our experience shows that special attention needs
to be brought into place when offshoring a software development project [2]. We
have analyzed the functionality of several tools that have shown to be helpful in
managing an OSD project. Even though there are no definite answers for tool
selection along with the tool’s functionality there are influence factor’s such as costs,
ease of use and training time that support the final choice. However tradeoffs are
always inevitable when selecting a tool.

The goal of this article is to provide a method for evaluating a set of available
software development tools and their capabilities to facilitate managing the software

 Evaluating Collaboration Platforms for Offshore Software Development Scenarios 97

development workflow or lifecycle for an OSD project – thus providing guidelines for
the process of tool selection in these contexts.

This paper is structured as follows: Section 2 will provide some background
information on OSD projects and the major problem areas for managing such
projects. Section 3 explains the setup of the analysis to be performed on the selected
tools, and Section 4 presents the results of the analysis performed. Finally, a
conclusion of the tools analysis as well as future directions will be presented.

2 Offshore Software Development

To get a better understanding of the OSD requirements it is useful to understand its
crucial activities. All OSD projects vary from one project to the other. Since this
practice is still in development, some major challenges are still ahead. Some of these
challenges [14] faced by OSD projects are listed in the following table:

Table 1. Major Offshore Development Challenges [14]

1 Communication Gap
2 Transfer Business Domain
3 Decreased Project Visibility
4 Configuration Management
5 Disconnection on Project Estimation
6 Client Business Security
7 Document Maintenance and Synchronization
8 Cultural Differences

The list of activities that usually takes place during an OSD project can be

summarized in two groups. One group includes all activities that take place at the
front office through the project management team. The other group denotes the
activities that are usually outsourced or developed externally. Notice that in an OSD
project these activities can be moved from one group to another depending on the
needs of a specific project [14]. Table 2 gives a summary of these activities.

Table 2. Typical Offshore Activities Division [14]

Front Office Activities Back Office Activities
- Project Inception
- Requirements Specifications
- Requirements Change Management
- Analysis
- Integration Testing
- Deployment
- Project Monitoring

- Design
- Implementation
- Testing
- Maintenance
- Change Implementation

98 F. Rodriguez et al.

Most of the typical OSD activities listed in Table 2 can be characterized into at
least one of three functional groups of software development:

1. Project management,
2. requirements management, or
3. source code management.

In other words, a tool that can be characterized according to its capabilities in one
or more of these functional groups would allow an OSD project to carry out some of
the activities listed on Table 2. Many other available software development tools
could be characterized a part of one of those three software functional groups as well.
We will analyze the common functionalities found within each of these functional
groups that could be used to support in OSD projects.

2.1 Project Management

The project management (PM) functionalities comprise the tool’s capability to
facilitate common management tasks within software projects. Such tools shall have
capabilities that include project planning and control, project governance and team
management [11]. It deals with functionalities such as assigning tasks as well as
managing identified project risks. This also includes tracking changes. PM tools try to
provide project visibility to the client and serve as well to provide time and cost
estimates to the development organization. For an OSD scenario, it is very critical that
the users’ access to the platforms is controlled and information sharing can be
managed effectively. Important features of these tools include project management
activities such as task assignment, track requirements or tasks changes as well as task
status view. For this purpose, the tools are also evaluated with respect to their ability
to generate reports on tasks, deliverable status or time spent compared to time
allocated. Other functions include user access controls, enforcement of a project
workflow or support of different development methodologies. The tool should also
provide the basis for communications and knowledge transfer; provide the means to
inform remote members of project status and centralize the project’s risk
management. It must also provide the capabilities to support and enforce any
standards adopted for the offshore development. In fact, it shall enable the
management team to control the project as a whole.

2.2 Requirements Management

The requirements management (RM) functionalities of a tool have to support the
organization of software requirements, the information gathered from customers’
requests, encompassing the requirements engineering process in general [17]. The
process of managing requirements is a systematic approach of organizing and storing
relevant information about requirements, while ensuring their traceability in the
subsequent process and managing changes to these requirements during the whole
lifecycle of the development [12]. RM serves as a basis for the system under
development and is one of the most important risk factors for successful project
completion [9, 16]. A tool has to provide the capability to manage requirements in
such a way that team members for all roles are aware of the underlying requirements

 Evaluating Collaboration Platforms for Offshore Software Development Scenarios 99

despite the globally distributed nature of the project and its different artifacts [15].
Apart from effectively yielding an overview, the tool has to provide project analysts
with the ability to review, iterate and update requirements, models, and project
deliverable documents. Customers should receive a role enabling their review,
approval or recommendations with respect to the requirements. The tool in fact should
provide the basis for such iterations to occur [13]. The tools are therefore evaluated
with respect to how well they manage required functionality, track their changes and
deliver the functionality stated above [12].

2.3 Source Code Management

The code management capabilities of the tool must handle the development team
workspaces where the developers build, test and debug source code. The tool should
also handle a large amount of code, code branches, the propagation of code changes,
and automated build [5, 22, 24]. A tool with code management capabilities should
interface with common source code repositories such as CVS and or SVN. This
allows all necessary personnel to access the repository to work or review information.
It also enables developers and testers to work together with the intention of speeding
up development and test time by providing concurrency. One of the most important
features of an integrated code management system is the ability to relate code changes
to feature and bug requests for the purpose of project tracking [5].

3 Evaluation Criteria for OSD Tools

This section presents the evaluation criteria that will serve as a guideline for the
process of tool selection. Based on the three main management areas that require tool
support (project, requirements and source code management), a set of functionalities
will be defined and assigned a weight relating its importance in OSD. First, a defined
list of all activities that are intended to be carried out in OSD environments is
required. Once this list is compiled the activities can be sorted out between back
office and front office activities. This activities list would vary from one OSD team to
the other because it will depend on the actual location of the project team and the
distribution of the activities over the different locations. Based on the activities list
and particular project needs all weights are assigned according to the degree to which
they allow more control, more project visibility and provide the means for better
communication and information sharing in OSD [11, 21].

3.1 Criteria for Tool Comparison

A criteria set for comparing tools provides us with the ability to quantitatively reason
about various tools. For this purpose, the following chart was developed. The chart
in Table 3 below summarizes a set of important capabilities along with the
corresponding weights. The selected functionalities per area were chosen and
weighted by the project team based on what they identified as functions that would
facilitate their software development project in a distributed collaboration
environment, OSD, for instance.

100 F. Rodriguez et al.

Table 3. Tools Analysis Table

Tool Capability Tool Functionality Weight [%] Overall [%]
Collaborative User Access

Control 6 %

Task Assignment 8 %
Changes Tracking 8 %

Automated Report Generation 5 %
Workflow Enforcement 5 %

Project
Management

Time Tracking Functions 3 %

35%

Requirements Text 9 %
Requirements Modeling 8 %
Requirements Baseline 4 %

Requirements Traceability 5 %
Exporting/Importing

Requirements 3 %

Requirements
Management

Requirement Docs Automation 6 %

35%

Automated Code Builds 7 %
Check In / Check Out Code 9 %

Code Versioning 9 %
Code

Management
Code Testing 5 %

30%

3.2 Market Research

Preceding the actual comparison of tools, a market research was performed with the
purpose of gathering the list of tools that would fit into the collaborative development
scenario. This list served as a mechanism for selecting a subset of the most relevant
tools for evaluation, and excluding others from the analysis as follows: Tools that did
not have any capabilities in at least one of the areas were left out of the study. After
this market research, 12 tools were selected as a subset to be evaluated. They are
summarized in Table 4.

4 Evaluation Results

The process of evaluating the tools listed in Table 4 consisted of a complete analysis
with respect to the criteria listed in Table 3. It is clear that not all tools have the same
functionality but the evaluation chart for each tool was standardized and weighed in
the same manner for all tools. Tools were given partial credit for their capability to
integrate with other products within the same brand or external programs in order to
comply with a given functionality. Tools were given full credit for having the specific
functionality integrated and ready to use in a collaborative environment [21]. Table 5
was thus derived from Table 3 and it provides an example of the tool evaluation
process. It demonstrates how the tool CodeBeamer was evaluated following the
chosen criteria. As full credit was given only if the evaluated tool provided the

 Evaluating Collaboration Platforms for Offshore Software Development Scenarios 101

Table 4. Summary of the selected tools

Tool Name Short Description Website

CodeBeamer
(version 4.2)

Delivers a J2EE-based, collaborative
software development platform that
provides software life cycle management
capabilities and captures the invaluable
intellectual capital generated and
transferred in development related
communications [3].

www.intland.com

CollabNet
(version 4.0)

Delivers a fully integrated web-based
collaborative environment specifically
tailored to the needs of Open Source
communities and public developer
networks [4].

www.collab.net

Doors
(version 8.1)

Delivers a Requirements Management and
traceability tool for teams working from the
same geographic (co-located) site [6].

www.telelogic.com

GForge
(version 4.5)

Delivers tools to help your team
collaborate, like message forums and
mailing lists; tools to create and control
access to Source Code Management
repositories [10].

www.gforge.org

Rhapsody
(version 7.0)

Delivers a Model-Driven Development
(MDD) environment for systems, software,
and test [20].

www.ilogix.com

Visual Paradigm Team
Work Center
(version 2.3)

Delivers a version control system for
Visual Paradigm's products which helps
you to carry out the Collaborative Software
Development for your team. Allows to
work within an integrated set of software
development tools [26].

www.visual-paradigm.com

ArcStyler
(version 5.5)

Provides the ability to create a dynamic
link between business and technology.
Application logic is captured in models
which serve as the basis for automatic
transformation to various technologies [1].

www.interactive-
objects.com

Polarion
(version 2.5)

Delivers Software Lifecycle Management
solutions providing a collaboration
environment and CM controls [18].

www.polarion.com

EProject
(version PPM6)

Delivers On Demand project and portfolio
management solutions [7].

www.eproject.com

Sun Java Studio
Enterprise
(version 8)

Java IDE that includes powerful features to
speed development, such as UML
modeling, instant collaboration, and
application profiling [23].

www.sun.com

Twiki
(version 4.0)

Flexible and powerful enterprise
collaboration platform and knowledge
management system [25].

www.twiki.org

Rational Suite
(version 7)

Integrated set of software development
tools [19].

www.ibm.com

102 F. Rodriguez et al.

specific functionality, CodeBeamer received full credit for its collaborative user
access control because the tool provides this functionality. As partial credit was given
to the tool if it provides partial capability itself or a means for integration with another
tool, CodeBeamer received partial credit for the requirements modeling functionality.
Even though CodeBeamer does not provide this capability directly, it provides
version control for requirements modeling documents via its repository. This supports
the requirements modeling functionality partially in an OSD project. All the selected
tools where subject to the same evaluation process to produce objective and
reproducible results for the tool evaluation.

Table 5. Tools Evaluation Example: CodeBeamer (overall score: 77%)

Tool
Capability

Tool Functionality
Maximum

Weight [%]
Functionality
Weight [%]

Overall [%]

Collaborative User
Access Control

6 % 6 %

Task Assignment 8 % 8 %
Changes Tracking 8 % 8 %
Automated Report

Generation
5 % 4 %

Workflow
Enforcement

5 % 5 %

Project
Management

Time Tracking
Functions

3 % 3 %

34 %

Requirements Text 9 % 8 %
Requirements

Modeling
8 % 2 %

Requirements
Baseline

4 % 3 %

Requirements
Traceability

5 % 5 %

Exporting/Importing
Requirements

3 % 3 %

Requirements
Management

Requirement Docs
Automation

6 % 1 %

22 %

Automated Code
Builds

7 % 6 %

Check In / Check Out
Code

9 % 8 %

Code Versioning 9 % 7 %

Code
Management

Code Testing 5 % 0 %

21 %

 Evaluating Collaboration Platforms for Offshore Software Development Scenarios 103

4.1 Tool Comparison

All tools were analyzed following the three most important characteristics identified
for collaboration in OSD projects with the resulting scores depicted in various figures
in this section.

Figure 1 summarizes the results obtained from the evaluation in terms of the
project management capabilities of the tool. The chart clearly identifies the tools
with the strongest features. CodeBeamer, Polarion, EProject, and CollabNet show
their strength in the project management capabilities according to the criteria outlined
in Table 3 that were selected for this study.

Fig. 1. Comparison of Project Management Capabilities

Table 6 provides a detailed summary of how the top scores under the Project
Management capabilities were evaluated on the basis on the selected criteria
presented in Table 3.

The chart in Figure 2 summarizes the results obtained from the evaluation in
terms of the requirement management capabilities of the tool. As can be
identified from the chart there are tools that show clear advantage over the rest.
Tools such as Rhapsody, Doors, Rational Suite and ArcStyler show their strength in
the requirement management capabilities via the selected functionality evaluated by
this study as described in Table 3.

104 F. Rodriguez et al.

Table 6. Results Summary for Project Management Functionality

Tool Functionality
Max

Weight
[%]

CodeBeamer Polarion Eproject CollabNet

Collaborative User
Access Control 6 % 6 % 6 % 6 % 6 %

Task Assignment 8 % 8 % 7 % 7 % 6 %
Changes Tracking 8 % 8 % 7 % 7 % 6 %
Automated Report

Generation 5 % 4 % 7 % 3 % 3 %

Workflow
Enforcement 5 % 5 % 2 % 3 % 3 %

Time Tracking
Functions 3 % 3 % 2 % 2 % 2 %

Fig. 2. Comparison of Requirement Management Capabilities

Table 7 provides a detailed summary of how the top scores under the requirements
management capabilities were evaluated on the basis of the selected criteria presented
in Table 3

The chart in Figure 3 summarizes the results obtained from the evaluation in terms
of the source code management capabilities of the tool. As can be identified from
the chart, there are tools that show clear advantage over the rest. Tools such as

 Evaluating Collaboration Platforms for Offshore Software Development Scenarios 105

Table 7. Results Summary for Requirements Management Functionality

Tool Functionality
Max

Weight
[%]

Rhapsody Doors
Rational

Suite
ArcStyler

Requirements Text 9 % 9 % 9 % 8 % 8 %
Requirements

Modeling 8 % 8 % 5 % 5 % 8 %

Requirements Baseline 4 % 4 % 3 % 2 % 2 %
Requirements
Traceability 5 % 5 % 5 % 3 % 3 %

Exporting/Importing
Requirements 3 % 3 % 3 % 2 % 1 %

Requirement Docs
Automation 6 % 6 % 4 % 6 % 3 %

Fig. 3. Comparison of Code Management Capabilities

GForge, Team Work Center, Rational Suite, and Sun Java Studio demonstrate their
strengths as regards the code management criteria in this study.

Table 8 provides a detailed summary of how the top scores under the project
management capabilities were evaluated on the basis of the selected criteria presented
in Table 3.

106 F. Rodriguez et al.

Table 8. Results Summary for Code Management Functionality

Tool Functionality
Max

Weight
[%]

GForge
Team
Work
Center

Rational
Suite

Sun Java
Studio

Automated Code
Builds 7 % 7 % 7 % 5 % 6 %

Check In / Check Out
Code 9 % 9 % 8 % 8 % 7 %

Code Versioning 9 % 9 % 9 % 8 % 8 %
Code Testing 5 % 2 % 2 % 5 % 4 %

4.2 Results of Tool Analysis

We can observe that there are certain tools that provide a good basis for OSD. Not all
tools may have the entire set of features but they have a good foundation for
controlling an OSD project. Most importantly, many tools have a basis for integration
with other tools during the development project. This is an important aspect of the tool
selection process in order to maintain independence of technology environment and
include several existing technologies at different sites. For this reason, partial credit
was given to a tool that provided interfaces for functionality that was not intrinsically
provided. As depicted in figure 4, there are tools that show a slight advantage over the
rest: CodeBeamer, Polarion, Rhapsody and Rational Suite provide a good foundation
for OSD according to our analysis, when giving equal weight to all three areas of
project management, requirements management and source code management.

Fig. 4. Overall Comparison of Collaborative Tools

 Evaluating Collaboration Platforms for Offshore Software Development Scenarios 107

5 Conclusion

In this article we have listed a set of challenges that usually have to be faced by OSD
stakeholders. A list of criteria was compiled to evaluate a set of available software
development tools. During the tool selection and evaluation there were a few critical
questions to be answered. Are the tools readily available? Can the tool be integrated
with other tools? Does the tool supports the OSD team in mastering the challenges of
global development? We developed and presented one way of selecting a predefined
set of tool functionality as a framework for a systematic comparison of tools. It is
clear that there cannot be one definite framework for OSD evaluation because each
project has different needs depending on the particular project teams and settings.
Also, a framework for evaluating tools needs to take into consideration which
activities are going to be distributed and how.

The results from the tool comparison confirm that there is no definite solution for
picking up a tool for offshore development. It has been demonstrated that the platform
selection processes always involves additional tradeoffs along with the technology
and functional capabilities. Considerations such as platforms costs, estimated learning
curve or project team expertise would definitely have to be taken into account in the
equation. Tool selection depends on whether the emphasis is on one particular
functional area or a balance across all areas desired. During the tool evaluation
process it becomes clear that most tool strengths reside in one particular functional
area and two at the most. As a result, it is evident that any OSD project will require
integration capabilities of the chosen tool to account for any flaws with a particular
tool over a functional area. This is another aspect that was considered during this
research but will also be taken into more consideration in future work.

Acknowledgments. The authors would like to thank Polytechnic University of Puerto
Rico and collaboration with the Lehrstuhl für ABWL und Wirtschafts Informatik at
the University of Mannheim for making this work possible. This work is also a result
of the project CollaBaWue supported by the German state of Baden-Wuerttemberg.
CollaBaWue is part of the research association PRIMIUM.

References

1. ArcStyler, http://www.interactive-objects.com
2. Berkling, K., Zundel, A., Rodriguez, F., Rivera, E., Bentine, N.: Experience Report:

Offshore Software Development in the Classroom. Knowledge Sharing and Collaborative
Engineering. In: Proceedings of KSCE, Acta Press, Virgin Islands (2006)

3. CodeBeamer, http://www.intland.com
4. CollabNet, http://www.collab.net
5. Cusumano, M., Yoffie, D.: Software Development on Internet Time. IEEE Computer

Magazine, 60–69 (1999)
6. Doors, http://www.telelogic.com
7. Eproject, http://www.eproject.com
8. Erickson, J., Ranganathan,: Project Management Capabilities: Key to Application

Development Offshore Outsourcing. In: Proceeding of the 39th Hawaii International
Conference on System Sciences, Hawaii (2006)

108 F. Rodriguez et al.

9. Fairley, R.E.: Software engineering concepts. McGraw Hill, New York (1985)
10. GForge, http://www.gforge.org
11. Gopal, A., Sivaramakrishnan, K., Krishnan, M.S., Mukhopadhyay, T.: Contracts in

Offshore Software Development: An Empirical Analysis. Management Science 49(12),
1671–1683 (2003)

12. Gotel, O., Finkelstein, A.: An Analysis of the Requirements Traceability Problem. In:
Proceedings of the First International Conference on Requirements Engineering
(ICRE’94), pp. 94–101 (1994)

13. Grehag, A.: Requirements Management In A Life Cycle Perspective – A Position Paper.
In: Proceedings of the 7th International Workshop on Requirements Engineering:
Foundation for Software Quality, Interlaken, Switzerland. Essener Informatik Beiträge, pp.
183–188 (2001)

14. Hameed, T., Nisar, M.: Agile Methods handling Offshore Software Development Issues,
IEEE Instrumentation and Measurement Technology Conference, Pakistan (2004)

15. Heeks, R., Krishna, S., Nicholson, B., Sahay, S.: Synching or Sinking: Global Software
Outsourcing Relationships. IEEE Software 18(2), 54–61 (2001)

16. Balzert, H.: Lehrbuch der Software-Technik II: Software-Management, Software-
Qualitätssicherung, Unternehmensmodellierung, 769 S, Spektrum Akademischer Verlag
Heidelberg (1998)

17. Hoffmann, M., Kuehn, N., Bittner, M.: Requirements for Requirements Management
Tools. In: Proceedings of the 12th IEEE International Requirements Engineering
Conference, pp. 301–308. IEEE Computer Society Press, Los Alamitos (2004)

18. Polarion, http://www.polarion.com
19. Rational Suite, http://www.ibm.com
20. Rhapsody, http://www.ilogix.com
21. Robbins, J., Feller, J., Fitzgerald, B., Hissam, S.A., Lakhani, K.R. (eds.): Adopting Open

Source Software Engineering (OSSE) Practices by Adopting OSSE Tools, pp. 245–264.
Free/Open Source Processes and Tools MIT Press (2005)

22. Seinwald, S., Wingerd, L.: High-Level Best Practices in Software Configuration
Management. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 57–66. Springer,
Heidelberg (1998)

23. Tosic, V., Mennie, D., Pagurek, B.: Software Configuration Management Related to the
Management of Distributed Systems and Service Oriented Architectures (SOA). In:
Westfechtel, B., van der Hoek, A. (eds.) SCM 2001 and SCM 2003. LNCS, vol. 2649, pp.
54–69. Springer, Heidelberg (2003)

24. Twiki, http://www.twiki.org
25. Visual Paradigm Team Work Center, http://www.visual-paradigm.com

Outsourcing and Offshoring:

The Consultancies’ Estimates

Christian Sommer and Georg Troxler

ETH Zurich, Switzerland

Abstract. Offshoring project work ideally would decrease the overall
cost of a software project. We give a short survey of current trends based
on different studies and our own poll, covering advantages, risk, and the
impact for the job situation in saturated markets. Several questions show
unity among the different consultancies where the opinions about trends
are quite diverse.

1 Introduction

Offshoring is mainly supported by communication infrastructure, cost pressure
after the internet hype, and new near-shoring alternatives in the east of Europe.
However, during the first wave of outsourcing and offshoring, high expexcta-
tions for cost reductions often were not met. A study of The Boston Consulting
Group [11] results in the following sentence:

Most banks that have engaged in offshoring have not fully achieved their
most important goals, such as significant reductions in labor costs.

Some companies even started to source their IT-infrastructure back in [8], how-
ever, they still intend to expand application outsourcing [15]. Sourcing models
for the banking sector are analysed in more detail by Alt and Zerndt in [3].

The technical communication support is satisfactory, though, successful com-
munication necessitates more than a reliable channel. Besides cultural discrep-
ancies, difficulties in language and, thus, understanding need to be managed, as
a study of The Boston Consulting Group [11] describes.

...first ensure that their institutions are ready, both organizationally and
culturally.

Legal comprehension varies between different countries and often leads to misun-
derstandings. Asian countries, for example, consider contracts as a commitment
to work together, whereas Europeans specify every single detail to ensure a pos-
itive outcome. Furthermore, the ongoing trade-off between cost and control has
not been solved sufficiently yet. Both quality and security are difficult to control
if a project or a process are not performed in-house. Within planning, it remains
hard to keep the golden mean between cost and control.

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 109–113, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

110 C. Sommer and G. Troxler

1.1 Our Contribution

We asked employees from different consultancies (Accenture, ALTRAN, A.T.
Kearney, Bain, Bearing Point, ELCA, McKinsey, Roland Berger, The Boston
Consulting Group) for their estimates about outsourcing and offshoring. Fur-
thermore, studies of the aforementioned companies were used to get an overview.
The results are presented briefly in this paper.

2 Reasons and Advantages

The main advantage always mentioned is significant cost advantage. To gain an
insight about the reasons other than costs, we distinguish between outsourcing
and offshoring. The consultants interviewed identified innovation, consolidation,
and optimisation aspects especially for outsourcing. A capable outsourcing part-
ner can influence future business activities.

An important strategic motive is to keep a company’s core competencies and
to rely on a partner for other tasks. An outsourcing of support processes re-
sults in flexible structures (on-demand), transparent and reduced costs, and risk
reduction [14].

3 Risks

Groetschel from the Computerwoche magazine [7] identifies the most important
problems with outsourcing projects as dissacordance within management, un-
sufficient strategic preparations before outsourcing, and contract negotiations
under time pressure. IT-managers tend to premature implementations in order
to present cost savings. However, without diligent preparations, specifications,
and planning, outsourcing projects will fail. Iyengar et al. from Gartner offer an
overview about different vendors for offshoring services [12] to support companies
in the risky selection process.

An elaborate list of offshoring risks is presented in [14]. Besides the aforemen-
tioned aspects, vendor dependencies, loss of knowledge and control [5], doubtful
cost advantage, difficult performance measurements, interface management, and
resistance of employees are itemised.

According to the consultant’s opinions, even successful implementations still
hold risks such as loss of knowledge and control [5], increased complexity, and
high communication overhead. However, the most important aspects to cover
remain specified requirements, a clean contract, and coordination.

4 Countries

It is not surprising that India was mentioned by all consultants asked for our
poll, followed by Vietnam and China. Asian companies offer the best price for
offshoring services. Furthermore, India assures high quality standards with le-
gions of well-trained IT specialists. An A.T. Kearney study [13] ranks India

Outsourcing and Offshoring: The Consultancies’ Estimates 111

before China and Malaysia. Considering people skills and availability, India is
followed by Canada and Australia. Drucker and Solomon’s Wall Street Journal’s
article [9] mentions increasing salaries as follows:

Indian software workers’ salaries have increased over the past few years
because of rising attrition rates, sparking some worries about cost pres-
sures. But the strong demand for software services and increasing effi-
ciencies by the Indian companies could offset some of the impact, say
analysts.

However, a McKinsey study by Farrell et al. [10] recognises a few dangers for
India’s offshoring future:

... India’s vast supply of graduates is smaller than it seems once their
suitability for employment by multinational companies is considered.
And in the country’s most popular offshoring locations, such as Banga-
lore, rising wages and high turnover are evidence that local constraints
on talent supply have already appeared. Worse for India, other low-wage
countries such as China, the Philippines, and Hungary are gearing up to
challenge its lead.

Since cultural differences are smaller wihin Europe, near-shoring, especially in
eastern Europe, is an interesting alternative. A.T. Kearney identified the Czech
Republic, Poland, and Hungary as most attractive countries [13].

Eastern Europe as a whole offers cultural similarities, attractive costs,
good language skills, solid technical capabilities, and minimal regulatory
problems for European firms.

5 Impacts on Jobs

Our poll showed that when announcing an outsourcing/offshoring project, first of
all, employees fear to loose their jobs. However, these feelings depend on the cor-
porate culture and temper. In some companies, employees are sceptical and not
too optimistic for the project’s success, while in others, employees feel challenged
and understand cost pressure and the outsourcing of non-core-competencies.

Agrawal et al. from McKinsey predict a change of the job market [2], however,
mainly the kind of the jobs will adapt.

Redeployed labor - U.S. workers who lose their jobs to offshoring will
take up other jobs, which will in turn generate additional value for the
economy.

However, a study by Frank from Deutsche Bank Research [14] sees 3.5% of IT-
jobs in Germany endangered by offshoring trends.

Clearly, repetitive activities will wither from western countries. Main actions
within IT will contain analysis, specification, and client contact. Consequences
are that IT-workers are required to be well educated and to have excellent com-
munication skills.

112 C. Sommer and G. Troxler

6 Trends

The interviewed consultants predict a variety of scenarios. Where today mostly
simple tasks are offshored, in the near future this might change to more skilled
labour. Others prophecy decreases in offshoring because many projects were
unsuccessful. The majority forebodes a constant development.

Accenture [1] anticipates:

Outsourcing and offshoring will become increasingly attractive ways to
take advantage of the full global talent pool and to carry out work round
the clock.

Bain proposes a more pragmatic IT-management, consequently oriented on busi-
ness goals [6]. Finally, Arthur D. Little’s study by Brabandt and Eichin [4] pre-
dicts a slow establishment of offshoring and sees the highest potential for cost
savings within IT maintenance.

References

1. Accenture. The Major Trends that will shape IT (2006), URL
http://www.accenture.com/Global/Services/Accenture Technology Labs/
Services/FromIT.htm

2. V. Agrawal, V. Bansal, T. Beacom, D. Farrell (McKinsey & Company Global Insti-
tute). Offshoring: Is it a Win-Win Game? (2003), URL http://www.mckinsey.com/
mgi/reports/pdfs/offshore/Offshoring MGI Perspective.pdf

3. Alt, R., Zerndt, T.: Beurteilung von Sourcing-Modellen in der Bankenbranche.
Zeitschrift für Controlling & Management, Sonderheft Industrialisierung des Con-
trolling (2006)

4. Brabandt, M., Eichin, R., Little, A.D.: Ready for Offshoring? (2005),
http://www.adlittle.de/asp/studie offshoring.asp

5. Bugajska, M., Schwabe, G., Voigt, B.J.J.: Demand analysis [DEAN] method for
knowledge transfer in IT outsourcing relationships. IT-outsourcing case: Postfi-
nance (to appear). Journal of Information & Knowledge Management (to appear,
2007)

6. Bain & Company.: Outsourcing allein reicht nicht! (2004), URL
http://www.bain.de/documents/176 1075478223.pdf

7. Groetschel, E.: (Computerwoche). Warum Outsourcing-Projekte schei-tern (2006),
URL http://www.computerwoche.de/it strategien/outsourcing offshoring/
571060/

8. Richert, V.: (Computerworld). D-LUX: Insourcing bei der Credit Suisse (2006),
URL http://www.computerworld.ch/aktuell/itservices/35848/index.html

9. Drucker, J., Solomon, J.: (The Wall Street Journal). Outsourcing Booms, Although
Quietly Amid Political Heat (2004)

10. Farrell, D., Kaka, N., Stürze, S.: (McKinsey). Ensuring India’s offshoring future
(2005), URL http://www.mckinseyquarterly.com/links/18842

11. The Boston Consulting Group. IT Outsourcing and Offshoring: Hype or Opportu-
nity? IT Cost Benchmarking in the European Banking Industry (2005),
http://209.83.147.85/publications/files/IT Outsouring Excerpt.pdf

http://www.accenture.com/Global/Services/Accenture_Technology_Labs/Services/FromIT.htm
http://www.accenture.com/Global/Services/Accenture_Technology_Labs/Services/FromIT.htm
http://www.mckinsey.com/mgi/reports/pdfs/offshore/Offshoring_MGI_Perspective.pdf
http://www.mckinsey.com/mgi/reports/pdfs/offshore/Offshoring_MGI_Perspective.pdf
http://www.adlittle.de/asp/studie_offshoring.asp
http://www.bain.de/documents/176_1075478223.pdf
http://www.computerwoche.de/it_strategien/outsourcing_offshoring/571060/
http://www.computerwoche.de/it_strategien/outsourcing_offshoring/571060/
http://www.computerworld.ch/aktuell/itservices/35848/index.html
http://www.mckinseyquarterly.com/links/18842
http://209.83.147.85/publications/files/IT_Outsouring_Excerpt.pdf

Outsourcing and Offshoring: The Consultancies’ Estimates 113

12. Iyengar, P., Karamouzis, F., Marriott, I., Young, A.: (Gartner). Magic Quadrant
for Offshore Application Services 2006 (2006), URL
http://www.gartner.com/ DisplayDocument?doc cd=137244

13. Kearney, A.T.: Making Offshore Decisions, A.T. Kearney’s 2004 Offshore Location
Attractiveness Index (2004), URL
http://www.atkearney.com/shared res/pdf/Making Offshore S.pdf

14. Frank, H.-J.: (Deutsche Bank Research). IT-Outsourcing: Zwi-schen Hungerkur
und Nouvelle Cuisine (2004) URL http://www.dbresearch.de/PROD/
DBR INTERNET DE-PROD/PROD0000000000073793.pdf

15. Zeitung, N.Z.: Interview with Karl Landert (Credit Suisse). Schafft Offshoring bei
uns Arbeitsplätze?,NZZ (November 10, 2006)

http://www.gartner.com/DisplayDocument?doc_cd=137244
http://www.gartner.com/DisplayDocument?doc_cd=137244
http://www.atkearney.com/shared_res/pdf/Making_Offshore_S.pdf
http://www.dbresearch.de/PROD/DBR_INTERNET_DE-PROD/PROD0000000000073793.pdf
http://www.dbresearch.de/PROD/DBR_INTERNET_DE-PROD/PROD0000000000073793.pdf

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 114–127, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Questionnaire-Based Risk Assessment Scheme for
Japanese Offshore Software Outsourcing

Hiroshi Tsuji1, Akito Sakurai2, Ken'ichi Yoshida3, Amrit Tiwana4, and Ashley Bush5

1 Osaka Prefecture University, Graduate School of Engineering,
1-1 Gakuencho, Nakaku, Sakai, 559-8531 Japan

tsuji@cs.osakafu-u.ac.jp
2 Keio University, Graduate School of Science and Engineering

4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8521, Japan
sakurai@ae.keio.ac.jp

3 Tsukuba University,
3- 29-1, Otsuka, Bunkyo, Tokyo 112-0012, Japan
yoshida@gssm.otsuka.tsukuba.ac.jp

4 Iowa State University, Postfach 10 52 80,
2340 Gerdin Business Building Ames, Iowa 50011-1350, USA

tiwana@iastate.edu
5 Florida State University,

Tallahassee, FL 32306-1110, USA
abush@garnet.acns.fsu.edu

Abstract. As the volumes of software development increase and the cost reduc-
tion is required, most Japanese IT companies are interested in offshore software
outsourcing. Although a lot of engineers have experienced the success and fail-
ure on their projects, their know-how still remains as tacit knowledge. This pa-
per proposes a risk assessment scheme for new projects by externalizing such
tacit knowledge. Such a scheme requires collaboration between industry and
academia because the tacit knowledge is scattered over many companies and
cannot be formalized by a single company or academic institute. Defining four-
teen attributes related to software development and designing questionnaire
about project evaluation, this paper clarifies how to quantify the risk of offshore
software outsourcing. Risk assessment tool based on the proposed scheme will
promote a knowledge spiral for project management.

1 Introduction

As the volumes of software development increases, most Japanese companies are
interested in offshore outsourcing [9]. Their expected benefits in offshore outsourcing
include flexible human resource procurement, cost reduction and an improved ability
to meet short deadline [2, 5, 6, 7, 10, 11, 13, 14]. There are many excellent Java pro-
grammers in India and their salaries are generally lower than those of ordinary Japa-
nese ordinal programmers. Furthermore, the shorter development time afforded by the
extra man power can save a company from losing a market opportunity.

 Questionnaire-Based Risk Assessment Scheme 115

However, there are still risks in offshore outsourcing: miscommunication, cultural
difference in business customs, quality issues, and so on [2, 6, 7]. Although the off-
shore outsourcing is not a new concept and there are many experienced managers,
such risks management know-how still remains as tacit knowledge [10, 11]. Then it is
not easy to transfer such tacit knowledge from a project manager to others [8]. While
nominal risk items are known, their magnitudes have not been measured. Note that
some risks have a trade-off relationship. If one tries to avoid one kind of risk, one
may increase other kinds.

Therefore, it is important to measure risks and analyze their relationship to the suc-
cess or failure of offshore software outsourcing. Such a task cannot be completed by
only academic people because they do not have real project experiences. And it can-
not be done by only a corporate people either because they are reluctant to disclose
their confidential experiences. The only possible way to do it is through an academia-
industry collaboration.

This paper presents an overview of how we are promoting a project of the Joint Fo-
rum of Strategic Software Research in Japan. First, showing the black box in software
development, section 2 presents our motivation, research framework and research
steps. This project involves five academic people and thirteen industrial people (from
Toshiba, Hitachi, Fujitsu, IBM-J and Mitsubishi). Next, section 3 introduces company
visits for pre-analysis. The pre-analysis included structured interviews with a protocol
and voting for the likelihood of successful outsourcing on virtual projects with nine
attributes. Reviewing the pre-analysis, section 4 describes our design for a new ques-
tionnaire for externalizing tacit knowledge from skilled managers. The responses to
the questionnaire were analyzed by three methods in section 5. Detailed discussions
on the analysis are given elsewhere individually [14, 15]. Section 6 discusses what we
did in the context of knowledge spiral.

2 Framework for Risk Assessment

Taking an engineering approach to risk assessment, we regard software development
as a function with input, output and control parameters [11] as illustrated in Fig. 1. Our
motivation is to clarify the causal relationship among input, output and control parame-
ters. Once the structure of the function is identified, the output of new software devel-
opment can be estimated by assigning values for the input and control parameters.

Blackbox in Offshore
Software Outsourcing

Project Risk
Project

Attributes

Control Parameters

Fig. 1. Causal Relationship between Risk and Project

116 H. Tsuji et al.

Industry Consortium
(SSR & JEITA)Industry Consortium

(SSR & JEITA)

Japanese Academy US Academy

Collaboration

Questionnarie for
Project Managers

Interview for
Pre-Analysis

Fig. 2. Framework for Offshore Software Outsourcing Research

Table 1. Interview Protocol in Company Visit

Trigger, flexibility

Intellectual propriety

Bridge SE

- Business custom

- Domain Knowledge projection

- Communication quality
maintenance

Collaboration

Success and failureThree top considerationsConclusion

Platform, Development
methodology, etc
Mile stones, budget, etc.
Co-location, Weekly meeting
US style vs. JP style

- Project decision

- Outcome setting
- Change Management
-Contract Detail

Project
Control

Capital Relationship

Both for client and vendor

Design, Coding, Test, etc.

Cost, vendor expertise, etc.

Effectiveness and quality

- Vendor Type

- Expected and actual man-month,
budget and duration

- Stage vendor become involved

- Benefit

- Satisfaction on outcome

Project
Background

notesContentsParts

Trigger, flexibility

Intellectual propriety

Bridge SE

- Business custom

- Domain Knowledge projection

- Communication quality
maintenance

Collaboration

Success and failureThree top considerationsConclusion

Platform, Development
methodology, etc
Mile stones, budget, etc.
Co-location, Weekly meeting
US style vs. JP style

- Project decision

- Outcome setting
- Change Management
-Contract Detail

Project
Control

Capital Relationship

Both for client and vendor

Design, Coding, Test, etc.

Cost, vendor expertise, etc.

Effectiveness and quality

- Vendor Type

- Expected and actual man-month,
budget and duration

- Stage vendor become involved

- Benefit

- Satisfaction on outcome

Project
Background

notesContentsParts

To identify the structure of the function, we established the framework for a re-

search project as shown in Fig. 2. This framework is an instance of a joint forum
called SSR (Strategic Software Research) in IISF (International Information Science

 Questionnaire-Based Risk Assessment Scheme 117

Foundation). SSR sends requests for proposal (RFPs) to Japanese academic institutes
every year. The requirements in an RFP include: 1) the participants should involve
industry people, and 2) the theme should be related to an international matter.

To promote the research, Japanese researchers collaborate with US researchers.
The basic idea in this questionnaire scheme is borrowed from the original work of a
US researcher [11]. To design the questionnaire and ensure a high response rate to it,
we asked the industry members of JEITA as well as SSR to collaborate with us.
JEITA (Japan Electronics and Information Technology Industries Association) has a
committee on future human resource for software development and has interest in our
work.

The research steps can be summarized as follows: 1) company visit for pre-analysis
during one week, 2) repetitive face-to-face meetings and electronic meetings for ques-
tionnaire design during three months, 3) questionnaire delivery and collection during
two months and 4) statistical analysis during two months. These steps are overviewed
in the following sections.

3 Pre-analysis by Visiting Skilled Project Managers

Under the premise that the questionnaire is clue for risk assessment, one of our mis-
sions is to design a questionnaire. Since there already was a questionnaire for US
project managers, we wanted to check whether it is applicable for Japanese project
managers.

3.1 Interview Analysis

To overview the risk factors and find out the difference between Japanese offshore
and America offshore outsourcing if any, we visited five Japanese client companies
and two vendor companies (One Chinese and the other Indian) in October, 2005. The
analysis was done as follows:

1) Each client company was visited by three or more of the authors who met at
least two engineers there.

2) Each interview ran for thirty minutes. All questions and answers including
translation were recorded using a voice recorder.

3) Each interview followed the structured protocol shown in Table 1.
4) To avoid hearsay and to obtain specific comments, the interviewee was asked to

remind the last project and to describe it.

Then the followings are found while the interpretation of the reasons for the differ-
ence between Japan and American cases will be discussed elsewhere [13]:

1) There are three categories of attributes for offshore software development: soft-
ware, vendor and project properties,

2) Each attribute seems to have a preference value for outsourcing and is not negli-
gible in the decision to choose outsourcing,

3) Each company has a different strategy, especially for project control, for dealing
with vendors.

118 H. Tsuji et al.

3.2 Feasibility on Votes for Projects Evaluation

The questionnaire designed in the previous research makes use of three theories as
shown in Table 2: transaction cost theory, agency theory and knowledge-based the-
ory. We performed conjoint analysis on nine attributes based on these theories where
each attribute has the value HIGH or LOW [11].

For the feasibility test, we asked skilled engineers to vote on the likelihood of suc-
cess in the project using nine attributes where the range of vote was from 1 to 9. The
results show the differences between Japanese and American outsourcing. This will
be discussed elsewhere. It worked well for sophisticated professionals but still had
some problems for various types of engineers.

1) It is difficult to imagine a project with nine attributes. Some participants in the
experiments claimed that they could consider at most five attributes at once,

2) While HIGH means a positive value for outsourcing and LOW means the oppo-
site from the view of a designer, these expressions confused interviewees some-
what,

3) A nine-point range was too wide for vote when there were twelve projects to
evaluate.

Table 2. Project Attributes for Pre-Analysis

Requirements volatility

Requirements knowledge specifiability

Client technical knowledge
Knowledge

Based Theory

Vendor behavior observability

Project outcomes measurability
Agency Theory

Project strategic importance

Project complexity

Threat of opportunism

Relative cost advantage

Transaction
Cost Theory

AttributesCategory

Requirements volatility

Requirements knowledge specifiability

Client technical knowledge
Knowledge

Based Theory

Vendor behavior observability

Project outcomes measurability
Agency Theory

Project strategic importance

Project complexity

Threat of opportunism

Relative cost advantage

Transaction
Cost Theory

AttributesCategory

4 Questionnaire Design

Based on the pre-analysis, we choose three property types for describing software
development as shown in Table 3 instead of the previous nine attributes: software
property with four attributes, vendor property with five attributes and project property
with five attributes. The questionnaire has four parts and was designed so that a re-
sponder could answer all items in thirty minutes.

 Questionnaire-Based Risk Assessment Scheme 119

4.1 Part 1: Control Parameters

This part requires the personal information from the responder. These parameters are
designed so as to adjust the bias of answers:

1) Numbers of years of IT experience, number of years of experience in the current
company, and number of offshore projects experienced,

2) Position/ role: planner, project manager, project member,
3) Standard for evaluating vendors: ISO or CMM [4] ratings,
4) Type of projects: customer application, middleware or embedded software,
5) Vendor countries: China, India, Vietnam or others.

Table 3. Attributes of Offshore Software Development in Questionnaire

Difficult to monitor Easy to monitor Ability to monitor vendor behaviourP5

LowHighStrategic importance for future projectP4

Suffcient expertiseLackClient side technical expertiseP3

Low advantage High advantage Relative cost advantageP2

Not urgent Urgent Deadline urgency

Project
Property

P1

NoYesLong term strategyV5

Large rate Smal rate Attrition rateV4

Not flexible flexible Vendor flexibility on specification changesV3

UnreliableMuch reliableProject management capabilityV2

BadGoodCommunication skill

Vendor
Property

V1

Shall changeNo change Requirement volatilityS4

Difficult to specifyEasy to specifyRequirement specifiablityS3

Difficult to measureEasy to measureSoftware quality measurablityS2

Complex/ large
Simple and

small
Software complexity and scale

Software
Property

S1

Two levels for AttributeAttributesCategory

Difficult to monitor Easy to monitor Ability to monitor vendor behaviourP5

LowHighStrategic importance for future projectP4

Suffcient expertiseLackClient side technical expertiseP3

Low advantage High advantage Relative cost advantageP2

Not urgent Urgent Deadline urgency

Project
Property

P1

NoYesLong term strategyV5

Large rate Smal rate Attrition rateV4

Not flexible flexible Vendor flexibility on specification changesV3

UnreliableMuch reliableProject management capabilityV2

BadGoodCommunication skill

Vendor
Property

V1

Shall changeNo change Requirement volatilityS4

Difficult to specifyEasy to specifyRequirement specifiablityS3

Difficult to measureEasy to measureSoftware quality measurablityS2

Complex/ large
Simple and

small
Software complexity and scale

Software
Property

S1

Two levels for AttributeAttributesCategory

4.2 Part 2: Separate Evaluation on Attribute Importance

This part is designed to verify whether a responder knows the weight of each attribute
in the outsourcing decision. The question is “According to your experience and
knowledge, how important is each attribute in Table 3? Assume that you are the per-
son in charge even if you should actually follow the decision made by a top man-
ager”. There are five options for the answer, ranging from 1 (negligible) to 5 (Very
important).

4.3 Part 3: Evaluation of an Experienced Project

This part is designed to reveal the relative weight among software, vendor and project
properties by evaluating fourteen attributes at once. While it was difficult for a

120 H. Tsuji et al.

responder to imagine a virtual project described by nine attributes in the pre-analysis,
we suppose that it would not be difficult to imagine all attributes of a experienced
project that they had actually experienced.

The question is “Think of one recently outsourced software development project.
Keeping this project in mind, please evaluate its result in terms of fourteen attributes.”
Each attribute has two possible values as shown in Table 3. The development result is
assigned by a value ranging from 1(fatal failure) to 5 (success beyond expectation)].

4.4 Part 4: Evaluation on Virtual Projects

This part is designed to identify the importance of attributes in the separate properties
by conjoint analysis [1] [14]. Because the pre-analysis showed that it was difficult to
image nine attributes at once, we classify fourteen attributes into four software attrib-
utes, five vendor attributes and five project attributes. Based on orthogonal planning
of conjoint analysis, we prepare three sets of virtual projects.

An example question for the vendor property is “You will be presented with a se-
ries of 9 virtual vendor profiles in Table. Based on this information and your own
experience and knowledge, please circle the appropriate numbers in the following
table. How attractive would it be for your company to OUTSOURCE to this vendor?”
The similar questions are provided on software property and project property, too.
The evaluation for profile is assigned by value ranging from 1 (low possibility for
success) to 5 (high possibility for success) .

5 Overview of Risk Extraction by Statistical Method

There are two approaches to sampling: random sampling and intentional sampling. In
general random sampling does not include bias, but the return rate may be terrible
because the contents requested by the questionnaire are too confidential for respond-
ers to disclose. Therefore, we use two channels for questionnaire delivery as men-
tioned before: SSR and JEITA. Each company in SSR collected twenty responses and
JEITA collected thirty responses. There were other volunteers who answered the
questionnaire. In total, we collected one hundred and seventy five responses. They are
all Japanese client-side people.

5.1 Frequency Analysis

The first Analysis is a simple frequency analysis, Figure 3 shows the distribution of
software category and Figure 4 shows that of vendor countries. Note that about sixty
percent of outsourced software to foreign countries is customer applications and fifty
percent are outsourced to china.

Table 4 shows attribute importance by separate evaluation for Part 2 questions de-
scribed in 4.2. It shows that there is little difference in importance among attributes
for any property. In a sense, this confirms that separate evaluation has no meaning in
determining risk magnitude.

 Questionnaire-Based Risk Assessment Scheme 121

Fig. 3. Rate of Software Categories

Table 4. Attributes Importance by Separate Evaluation

Score in
Software

Software
complexity and

scale

Quality
measurability

Requirement
Specifiability

Requirement
volatility

5 59 38 53 54
4 49 67 67 50
3 34 32 24 34
2 10 14 8 13
1 4 5 4 5

Average 3.96 3.76 4.01 3.87
Rage 0.25 0.24 0.26 0.25

Score in
Vendor

Communication
skill

Project
management

capability

Vendor
flexibility

Attribution rate
Long term

strategy

5 90 82 47 23 48
4 56 53 60 68 51
3 9 20 40 49 47
2 1 1 8 13 6
1 0 0 1 3 3

Average 4.51 4.38 3.92 3.61 3.87
Rage 0.22 0.22 0.19 0.18 0.19

Score in
Project

Deadline urgency
Relative cost

advantage

Client side
technical
expeitise

Strategic
impoitance for
future project

Ability to
monitor
vender

behavior

5 66 64 51 18 35
4 36 56 68 54 64
3 47 29 29 60 50
2 4 6 6 17 7
1 3 1 2 7 0

Average 4.01 4.13 4.03 3.38 3.81
Rage 0.21 0.21 0.21 0.17 0.2

5.2 SEM Analysis

This analysis is done for the experienced projects collected by Part 3 of questionnaire.
The main concern is to determine the degree of importance among three property
types: software, vendor and project properties. Introducing four latent variables

122 H. Tsuji et al.

Fig. 4. Rate of Vendor Countries

(software, vendor, project and satisfaction) that are not observed in answers from
responders, we refine path diagrams step by step. The modifications and findings are
discussed in detail elsewhere [15].

The final model is shown in Fig. 5. The findings are summarized as follows:

1) Vendor property such as communication ability and project management ability
mainly affected the result of development,

2) Software property such as requirements specificity and requirements volatility
did not affect the result directly but did affect it indirectly through project prop-
erty such as relative cost advantage and project strategic importance,

3) Control parameters such as vendor companies and software type did not im-
prove the precision of the models.

S1S1

S2S2

S3S3S4S4

V1V1 V2V2V3V3

V4V4

V5V5

P1P1 P2P2

P3P3

P4P4

P5P5

resultresult

e_S3e_S3e_S4e_S4

e_V3e_V3

e_V5e_V5

e_P4e_P4

.57

satisfactionsatisfaction

e_sate_sat

.63

.37

.21

.49.26

.62

-.35

.24

.32
.27

.29

.27

-.44

.27

.19

-.17 .43

.71

.35

.68

.93

.61

.18

.57

165.0AIC

.898AGFI

.280P

89.0χ２

165.0AIC

.898AGFI

.280P

89.0χ２

projectproject

vendorvendor

softwaresoftware

Fig. 5. Result of Structural Equation Modeling

5.3 Conjoint Analysis

As introduced in the description of Part 4 of the questionnaire, this analysis is done
for the assessment of virtual projects generated by orthogonal planning [1]. There are
three sets for virtual projects. One set is described in software attributes defined in

 Questionnaire-Based Risk Assessment Scheme 123

Table 3, second set is described in the vendor attributes and the final set is described
in the project attributes.

The main concern is to detect the relative importance of attributes in their proper-
ties. Conjoint analysis [1] calculates the relative importance rate and partial utility of
attributes. The sum of partial utility decides the range of total utility. The total utility
is an estimated value for project evaluation.

∑ += ConstlityPartialUtityTotalUtili

Table 5 shows an example result of a conjoint analysis result where the samples are
classified by software category: customer application, middleware and embedded
software. From this table, we obtained followings:

1) There are different risk magnitudes for attributes in each category. For exam-
ple, in outsourcing embedded software, the attrition rate cannot be used to
evaluate a vendor. Instead, communication skill and project management ca-
pability are the key attributes for selecting vendors for this category,

2) Because the sum of partial utilities and a constant for middleware is smaller
than those for the other two categories, the success beyond expectation is
unlikely to occur in the middleware category.

3) According to Pearson's R and Kendall's taw, the fitness of the model is excel-
lent for any category.

Let us show another example result of conjoint analysis results. Fig. 6 shows the indi-
vidual partial utilities in software property: software complexity and scale, and re-
quirement volatility.

Table 5. An Example Result of Conjoint Analysis

1.000.9821.000Kendall's tau

.997.994.983Pearson's R

2.5002.36542.4480Constant

1.40531.25961.3414Sum of Partial Utilities

.195918.92.173116.48.189619.68Long term strategy

.09469.89.250019.83.209316.74Attrition rate

.270318.72.278818.2.279518.61
Vendor flexibility on
specification changes

.398624.21.317321.44.299219.95
Project management

capability

.445928.26.240424.05.363825.02Communication skill

Partial
Utility

Importance
Rate

Partial
Utility

Importance
Rate

Partial
Utility

Importance
Rate

Vendor Property

Embedded Software
(26)

Middleware
(28)

Customer Applications
(92)

1.000.9821.000Kendall's tau

.997.994.983Pearson's R

2.5002.36542.4480Constant

1.40531.25961.3414Sum of Partial Utilities

.195918.92.173116.48.189619.68Long term strategy

.09469.89.250019.83.209316.74Attrition rate

.270318.72.278818.2.279518.61
Vendor flexibility on
specification changes

.398624.21.317321.44.299219.95
Project management

capability

.445928.26.240424.05.363825.02Communication skill

Partial
Utility

Importance
Rate

Partial
Utility

Importance
Rate

Partial
Utility

Importance
Rate

Vendor Property

Embedded Software
(26)

Middleware
(28)

Customer Applications
(92)

():Sample size

124 H. Tsuji et al.

Software complexity and scale Requirement volatility

Fig. 6. Examples of Partial Utility in Software Property

Each bar expresses a responder's utility value. An upward bar expresses negative
feeling for offshore outsourcing because there must be risk while a downward bar
expresses positive feeling. Most people agree that the potential requirement volatility
is risk. On the other hand, there are two different views of whether or not software
complexity and scale is a risk.

To confirm the fitness of the model for vendor property, let us depict the frequency
diagram as shown in Fig 7. The x-axis is the estimated total utility based on the previ-
ous formula and the y axis is the occurrence count. There are five lines and each ex-
presses the same result of a project where the range is from1 to 5.

6 Discussion

Let us discuss what we did. Again, our basic assumption is that the experienced man-
agers know risk factors and their magnitudes as their tacit knowledge. Asking them to
answer the designed questionnaire forced them to externalize their knowledge. Then
the written knowledge can be shared with other people. However, it is difficult to use
such written knowledge separately because it is too subjective.

There is a hint in the SECI model proposed by Nonaka [8] where SECI means so-
cialization, externalization, connection and internalization. To connect individual
items of externalized knowledge, we have used statistical analysis methods like SEM
and conjoint analysis. The connected knowledge based on statistical analysis can be
shared as discussed in the previous section.

Furthermore, there should be internalization for knowledge transfer. Internalization
allows persons to learn connected knowledge and increase their tacit knowledge. In
our case, risk assessment for new project corresponds to the internalization. The
model of knowledge spiral is shown in Fig. 8. Thus, we have chance to design and to
install risk assessment tool.

Assigning values to the attributes of a new project, IT manager has chance to get
diagnosis result. The risk assessment tool refers to the relative importance among

 Questionnaire-Based Risk Assessment Scheme 125

Fig. 7. Freuuency of Estimated Preference by Vendor Property

Questionnaire ＤB

(1) Software Property
(2) Vendor Property

(3) Project Property, etc
Data Mining for
Risk Extraction
（Connection）

Risk Assessment
Tool

（Internalization）

Project Attributes

Knowledge on
Risk Factors &

Their Magnitudes

Risk Factors Report
（By Software categories,
By Vendors Company,

etc）

Diagnosis

Project Evaluation by
IT Managers

（Externalization）

New Software
Development

(Socialization）

Project Evaluation by
IT Managers

（Externalization）

Project Evaluation by
IT Managers

（Externalization）

Fig. 8. Knowledge Spiral in Offshore Software Development

three properties discussed in 5.2 and the partial utilities values for attributes discussed
in 5.3. The basic idea for tool itself is borrowed from [12] and the example screen is
shown in Fig. 9.

Persons who internalize the experience in the past projects will collaborate with
other people and outsource new project to a vendor. In SECI model, this collaboration

126 H. Tsuji et al.

RASOD

Assessment for Project Attributes
On a scale of 1-10, where 1 is low and 10 is high, how would characterize this
project compared to other projects completed in your company

Enter

DATE:
USER ID:

LOGIN Property
Selection

Evaluation for
Attributes

Risk
Diagnosis

(1) Deadline Urgency

（Urgent：0 - Not Urgent：10）

(2) Relative Cost Advantage

（Low Advantage：0 - High Advantage：10）

(3) Client side Technical Expertise

（Sufficient：0 - Lack：10）

(4) Strategic importance for Future PJ

（LOW：0 - HIGH：10）
(5) Ability to Monitor Vendor Behaviour

(Difficult：0 - Easy：10）

Fig. 9. An Example Screen for Offshore Software Outsourcing Assessment Tool

is socialization. Thus, their tacit knowledge will propagate among their brain. Then
their externalization in the future should be new. This will lead to a knowledge spiral
in offshore software outsourcing.

7 Conclusion

This paper has presented a questionnaire-based risk assessment scheme. Our contribu-
tions are as follows:

− We established an academia-industry collaborative framework for research on
offshore software outsourcing.

− To approach the issues from an engineering viewpoint, we presented how to
collect sample data from experienced managers and how to identify risks and their
magnitudes.

− By visiting companies for pre-analysis and by testing its feasibility on collecting
reasonable responses, we have designed a four-part questionnaire.

− Delivering the designed questionnaire through two intentional channels, we col-
lected one hundred and seventy five responses.

− The collected samples were analyzed by three statistical methods: frequency analy-
sis, structural equation modeling and conjoint analysis. This paper has shown an
example of the statistical analysis results and what they reveal.

− This paper also showed that our research plays the role of a knowledge spiral in the
context of the SECI model. The development of the risk assessment tool is on
going.

 Questionnaire-Based Risk Assessment Scheme 127

Acknowledgements

The authors would like to sincere thanks to members of Strategic Software Research
forum (SSR) and Japan Electronics and Information Technology Industries Associa-
tion (JEITA) who contributed to collect responses of questionnaire. Special thanks are
also due to Mr. Yoshihisa WADA and Mr. Daiki Nakahigashi who helped our statisti-
cal analysis and developing risk assessment tool.

References

1. Andrews, R.L., Ansari, A., Currim, I.S.: Hierarchical Bayes Versus Finite Mixture Con-
joint Analysis Models: A Comparison of Fit, Prediction, and Partworth Recovery. Journal
of Marketing Research XXXIX, 87–98 (2002)

2. Aspray, W., Mayadas, F., Vardi, M.Y. (eds.): Globalization and Offshoring of Software,
Report of the ACM Job Migration Task Force, Association for Computing Machinery
(2006)

3. Bharadwaj, A., Tiwana, A.: Managerial Assessments of E-Business Investment Opportuni-
ties: A Field Study. IEEE Trans. on Engineering Management 52(4), 449–460 (2005)

4. Carnegie Mellon University: The Capability Maturity Model: Guidelines for Improving
the Software Process, Addison Wesley Longman, Inc. (1994)

5. Gold, T.: Outsourcing Software Development Offshore - Making It Work. Auerbach Pub-
lications (2005)

6. Krishna, S., Sahay, S., Walsham, G.: Managing Cross-Cultural Issues in Global Software
Outsourcing. CACM 47(4), 62–66 (2004)

7. Mayer, B.: The Unspoken Revolution in Software Engineering, Computer, pp. 121–124
(January 2005)

8. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies
Create the Dynamics of Innovation. Oxford Univ. Pr., Oxford (1995)

9. Software Business Comittee: Report on Software Development Resource, Japan Electron-
ics and Information Technology Industries Association, No. 06-P-9 (2006)

10. Thondavadi, N., Albert, G.: Offshore Outsourcing - Path to New Efficiencies in IT and
Business Processes, 1st Books Library (2004)

11. Tiwana, A.: Beyond the Black Box: Knowledge Overlaps in Software Outsourcing. IEEE
SOFTWARE 21(5), 51–58 (2004)

12. Tiwana, A., Keil, M.: The One-Minute Risk Assessment Tool. CACM 47(11), 73–77
(2004)

13. Tiwana, A.B., Tsuji, H., Sakurai, A., Yoshida, K.: Myths and Paradoxes in Japanese IT
Outsourcing.Communications of the ACM (forthcoming)

14. Tsuji, H., Sakurai, A., Yoshida, K., Tiwana, A., Bush, A.: Risk Factors on Offshore Soft-
ware Development by Conjoint Analysis (In Japanese). Transaction on Information Proc-
essing Society for Japanese 48(2), 823–831 (2007)

15. Wada, Y.D.N., Tsuji, H.: An Evaluation Method for Offshore Software Development by
Structural Equation Modeling. In: Proc. of the First Software Engineering Approaches For
Offshore and Outsourced Development, vol. 4716, pp. 114–127 (2007)

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 128–140, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Evaluation Method for Offshore Software
Development by Structural Equation Modeling

Yoshihisa Wada, Daiki Nakahigashi, and Hiroshi Tsuji

Graduate School of Engineering, Osaka Prefecture University,
1-1, Gakuencho, Naka-ku, Sakai,

599-8531 Osaka, Japan
{Wada,Nakahigashi,Tsuji}@mis.cs.osakafu-u.ac.jp

http://www.cs.osakafu-u.ac.jp/mis/

Abstract. To determine the magnitude of risk factors in offshore software de-
velopment, we explain how structural equation modeling works for question-
naire samples. Each response to our questionnaire consists of one offshore
software development instance including its result in terms of success/failure
and fourteen attributes. The attributes are classified into software, vendor or
project properties. Collecting 172 responses from Japanese project managers
and following a series of modifications from a basic model to the final model,
we have found the followings: 1) the vendor properties mainly affect the result
of development, 2) the software properties do not affect the result directly but
did affect it indirectly through the project properties, and 3) control parameters
such as vendor companies and software type do not improve the fit indices of
the models.

1 Introduction

These days, there is a strong trend in the Japanese software industry for offshore soft-
ware development, in which client companies outsource their software development
to vendor companies in developing countries like India, China and Vietnam. The
main reasons for this trend are a shortage of human resources at home and the need to
reduce costs and meet shorter deadlines.

While there have been some great successes in offshore software development pro-
jects, there have also been some fatal failures because of mis-communication, cultural
differences, quality issues, and so on. To avoid failure and achieve success, one must
consider research from various fields including science and engineering [1] [2] [5] [6]
[9] [10] [11]. In fact, social science and economics as well as software engineering
will contribute to improve the success rate of offshore software development. Deci-
sion science and knowledge engineering will also be useful to clarify the risks in
offshore software development.

As the first step of a field approach, SSR (Strategic Software Research forum)
established a project in 2005 [14]. It consists of three Japanese professors, two US
professors, and twelve engineers from IT companies (Toshiba, Mitsubishi, Fujitsu,
Hitachi and IBM-Japan). In order to acquire knowledge about risks from project

 An Evaluation Method for Offshore Software Development 129

managers, they designed a questionnaire, delivered it to many experienced project
managers, and collected the results [15].

Thus we have the opportunity to mine the risk factors in the responses. The ques-
tionnaire asked for votes on two kinds of offshore software development: existing
development and virtual development.

This paper concerns structural equation modeling (SEM) [3] [8] [13] [16] for the
former while another paper [14] discusses conjoint analysis [4] for the latter. First,
this paper defines our goal and means. Then, we introduce the means, namely the
questionnaire and statistical method, SEM. In section 3, we explain how to build an
initial basic model and how to refine it to the final model. Finally, section 4 discusses
the fit indices and effects of latent variables for the final model and three findings.

2 Approach for Evaluation

Our goal is to reduce the risks of offshore software development. To achieve this
goal, it is helpful to use an offshore software development evaluation tool such as the
one discussed in [12]. The evaluation tool should be based on statistical analysis
methods and sample data. In our case, the method is SEM and the sample data come
from replies to a questionnaire. An overview of our approach is shown in Fig. 1.

Questionnaire

To Reduce Risks in
Offshore Software

Development

Evaluation Tool

on Offshore Software Development

Goal

SEMSEMStructural
Equation Modeling

Assumed Model

Analysis

Means

Review for Experienced Projects

Factor anaalysis,

Bayesian Network Model,

Questionnaire

To Reduce Risks in
Offshore Software

Development

Evaluation Tool

on Offshore Software Development

Goal

SEMSEMStructural
Equation Modeling

Assumed Model

Analysis

Means

Review for Experienced Projects

Factor anaalysis,

Bayesian Network Model,

Fig. 1. Approach for Evaluation

2.1 Questionnaire Design

Our basic premise is that the experienced people know the risks of offshore software
development as their tacit knowledge. Therefore, the first issue is how to acquire this
knowledge from them. A questionnaire is a simple but powerful means of obtaining it.

130 Y. Wada, D. Nakahigashi, and H. Tsuji

We made the following assumptions about the questionnaire:

1) The responses may differ according to the responders' backgrounds. For exam-
ple, there may be differences in software types and vendor countries. Their ex-
perience and careers may also cause differences.

2) It is not easy for people to answer general questions but it is possible to give
facts about projects of which they have experience.

For the first assumption, we included the following items in our questionnaire to
handle the responders’ demography: number of years of IT experience, number of
years of experience in the current company, number of offshore projects you have
previously been involved with in the outsourcing decision process, current posi-
tion/role, vendor ISO/ CMM ratings, type of software and vendor countries.

For the second assumption, we ask each responder to remember his/her last project
and describe it including its result and attributes. In our questionnaire, these attributes
are classified into software, vendor, and project properties as shown in
Table 1. How to design these attributes is discussed elsewhere [15]. While the soft-
ware and project properties can also be applied to onshore software development,
there are differences in the vendor properties between them. Communication skills
cover cross-cultural problems and Japanese language ability for offshore software
development. Furthermore, although the worker attrition rate is low and thus not an
important attribute in onshore cases, that for offshore is considered as ineligible. The
selectable values for describing the result ranged from 1(fatal failure) to 5(success
beyond expectation). Two-level evaluations (High- or low) were used for the ob-
served variables to show clear differences between successes and failures.

2.2 Sample Sources

There are two ideas for collecting samples: random sampling and intentional sam-
pling. In general, random sampling provides impartial precision but leads to a low
response rate, while the intentional sampling may be biased, but should produce a
higher return rate.

Since most companies want to keep project results confidential, random sampling
would seem likely to get a very low response rate in our situation. Therefore, we
chose to use the intentional sampling. We had two channels for delivering and collect-
ing questionnaires: via SSR and JEITA. While SSR has five channels, which are ma-
jor Japanese IT companies (Hitachi, Fujitsu, Mitsubishi, IBM-Japan, and Toshiba),
JEITA has about five hundred affiliated companies. We asked representative persons
of these consortiums to collect responses, and we got one hundred and seventy five
responses. Of these, thirteen were considered unusable because of various deficien-
cies, leaving one hundred sixty two responses for analysis. The correlation among the
results and attributes is shown in the Appendix. The distribution of the project results
is shown in Table 2.

 An Evaluation Method for Offshore Software Development 131

Table 1. Attributes in Questionnaire

Software
S1 Software complexity and scale
S2 Software quality measurability
S3 Requirement specificity
S4 Requirement volatility

Vendor
V1 Communication skill (Including language ability)
V2 Project management capability by vendors accomplishment
V3 Vendor flexibility on specification changes
V4 Work attrition rate
V5 Strategic long-term relationship

Project
P1 Deadline urgency
P2 Relative cost advantage
P3 Client side technical expertise
P4 Strategic importance for related future project
P5 Ability to monitor vendor behavior

Table 2. Distribution of Result Index in Questionnaire

Result Meaning Frequency Proportion (%)
1 Fatal Failure 6 3.70
2 Failure 16 9.88
3 Not Bad 71 43.83
4 Success 64 39.51
5 Great Success 5 3.09

Total 162 100.00

3 Structural Equation Modeling

There are many methods like multi-regression analysis and conjoint analysis for sta-
tistical methods [4] [7] [13]. Although the former is simple and popular, it cannot to
express a chain structure or the ring structure among variables. On the other hand, the
latter is powerful for market research like product design, but it absolutely requires
complete combinations of attributes for samples. Therefore, we chose to use another
method. For research of this type, we prefer a visualization method for capturing
hidden knowledge structures about risks from project managers. In our risk analysis
of offshore software development, visual models with precise indices are helpful to
establish an initial model and modify it. So it is very meaningful to introduce a quan-
titative and visual approach for our task. The correlation coefficient is also useful
to figure out the characteristics of samples (Refer to the Appendix). While we con-
sidered the correlation coefficient in the first phase of analyzing data, it is not very

132 Y. Wada, D. Nakahigashi, and H. Tsuji

versatile. Therefore, we decided to use SEM to reveal causality among variables in a
visual manner. Moreover, it enabled us to find many compiled observed variables at
the same time based on the notion of structure. The main features of SEM are as fol-
lows [3] [8] [13] [16]:

(1) It is a modeling method based on regression analysis and factor analysis.
These are traditional multivariate analyses.

(2) It uses not only directly observed variables but also latent variables that are
unobserved.

(3) Both variables are connected by arrows, called paths, which express linear re-
lations and the bases of fitness.

(4) The path coefficient, which is the degree of causality for making a better
model, should be calculated. A better model fits the sample data better and
shows the causality.

(5) Squares and ellipses should be drawn for observed and latent variables, re-
spectively, in the path diagram. The path coefficient is on its path and is re-
garded as effective when it is close to one.

In particular, we considered item (2) to be a key feature of SEM. Latent variables
are typical characteristics of SEM for visualizing hidden factors. By showing the
path-coefficient among variables, SEM suggests that we should explore data analysis
and modify the models.

3.1 Skeleton of Model

The basic procedure for SEM is as follows:

1) Assume a causal model,
2) Verify it,
3) If the conditions are satisfied, stop modification, else modify the model and

return to 1).

Thus we should establish the skeleton of the model first. As we have already ob-
tained the observed variables, we need to know how to introduce latent variables and
how to incorporate them in the model. Because the attributes in the questionnaire
were classified into three property types, we introduced three latent variables: soft-
ware, vendor, and project.

We also introduced a latent variable called satisfaction because there should be a
unique variable that affects the observed variable “result”. We were, however, con-
cerned the model would have been almost equal to one of the multi-regression models
if we had ignored the latent variables. Therefore, we established the model skeleton
shown in Fig. 2.

Here, we discuss the value of the observed variable “result” in Fig. 2. As shown in
Table 2, the possible values of result is from 1 to 5. Therefore, there are some alterna-
tives for handling the value because it is not a cardinal number but an ordinal number.
One idea is to use the original five numbers. Another is to separate them into success
and failure by ignoring the middle result value "3". A third idea is to unify the fre-
quency of result.

 An Evaluation Method for Offshore Software Development 133

software

vendor

project

satisfaction

ResultFour Items
on Software Properties

Five Items on Project Properties

Five Items
on Software Properties

software

vendor

project

satisfaction

ResultFour Items
on Software Properties

Five Items on Project Properties

Five Items
on Software Properties

Fig. 2. Assumed Model

Based on preliminary-experimentation for evaluating these alternatives, we decided
to use the original five numbers. This idea is valid because SEM works well under the
premise that the distribution is normal.

3.2 Scratch Building

To confirming the fit indices, we scratch built the model for the samples. In this sec-
tion, we focus mainly on path coefficients and sometimes on chi-square goodness of
fit and significance level (P). Note that chi-square goodness of fit shows the degree of
agreement to the original population and is close to 0 if the model is appropriate. The
significance level (P) should be greater than 0.05 for the 5% confidence level.

(1) Basic Model. As shown in Fig. 3, it is a simple model in the view of the skeleton.
Three latent variables are connected to the latent variable "satisfaction" and there are
no paths among them. We used AMOS 6.0 [8], which is a commercial software pack-
age for SEM. This gave us the coefficients shown in Fig. 3.

As a result, chi-square goodness of fit was 183.063 and its significance level (P)
was 0.000. Therefore, we should regard this model as improper. In particular, we
found that the coefficient between "satisfaction" and "software" was too small.
(2) Modified Model. Because the coefficient between "satisfaction" and "software"
was small, we cut the path. Because the relation between "project" and "software"
seemed to be stronger than the relation between "software" and "vendor", we con-
nected a path for the former relation. Comparing a bi-directional path with a unidirec-
tional one, we found better fit indices for the former. Note that one feature of SEM is

134 Y. Wada, D. Nakahigashi, and H. Tsuji

S1

S2

S3
S4

V1

V2
V3

V4

V5

P1

P2

P3

P4

P5

software

vendor

project
result

satisfaction

.60

.35

.44

.28

.66

.20

.39

-.34

.23

.48

.65

.31

.64

.97

.65

.14

.45

.04

Weak Relation

S1

S2

S3
S4

V1

V2
V3

V4

V5

P1

P2

P3

P4

P5

software

vendor

project
result

satisfaction

.60

.35

.44

.28

.66

.20

.39

-.34

.23

.48

.65

.31

.64

.97

.65

.14

.45

.04

Weak Relation

Fig. 3. Basic Model

S1

S2

S3
S4

V1

V2
V3

V4

V5

P1

P2

P3

P4

P5
software

vendor

project
result

satisfaction

.61

.36

.43

.35

.37

.64

.06

.53
.37

-.31

.24

.48

.66

.31

.63

.95

.66

.13

Added
Bi-Directional

Path

Fig. 4. Modified Model

 An Evaluation Method for Offshore Software Development 135

that it can handle bi-directional relations while the multi-regression model can handle
only unidirectional ones. The model is shown in Fig 4 with its coefficients.
(3) Final Model. Based on the modified model, we took two different approaches to
improving fitness. One was based on a modification index and the other on the do-
main principle.

The modification index in SEM shows the sensitivity of fitness for adding new
paths. Adding a variety of new paths to the modified model revealed four causal rela-
tions for improving fitness.

1. Relation from observed variable “S1” (software complexity and scale) to ob-
served variable “P1”(deadline urgency),

2. Relation from latent variable “software” to observed variable “P4” (strategic
importance for related future projects),

3. Relation from latent variable “vendor” to observed variable “P5” (ability to
monitor vendor behavior),

4. Relation between latent variable “vendor” and error variable “e_S3” for “S3”
(requirements for specificity),

From the viewpoint of principles, we added new paths. The principles were based
on background knowledge about software development. Referring to the attributes in
the questionnaire, we reminded some principles. Among them, there were two modi-
fication indices.

S1

S2

S3
S4

V1

V2
V3

V4

V5

P1

P2

P3

P4

P5
software

vendor

project
result

e_S1

e_S2

e_S3

e_S4

e_V1 e_V2e_V3

e_V4

e_V5

e_P1 e_P2

e_P3

e_P4
e_P5

e_re

.57

satisfaction

e_sat.63

.37

.21

.49

.26

.62

☆-.35

.24

.32
.27

☆.29

☆.27 -.44

☆.27 .19

☆-.17

.43

.71

.35

.68

.93

.61

.18

☆.57 ☆：Added Relations

Fig. 5. Final Model

136 Y. Wada, D. Nakahigashi, and H. Tsuji

First, we set the causality between error variable “e_S4” for “S4” (requirement
volatility) and error variable “e_V3” for “V3” (vendor flexibility on specification
changes). This is because we considered that these variables concern the complexity
of the software requirement.

Second, we set the causality between the error variable “e_P4” for “P4” (strategic
importance for related future projects) and the error variable “e_V5” for “V5” (strate-
gic long-term relationship). This is because we considered that these variables con-
cern future projects (Fig. 5).

Note we should consider these two approaches in a complementary manner. If the
modification index is high but there is no domain principle, then no modification
should be made. Furthermore, if there is a domain principle but the modification in-
dex is low, the modification should not be made.
(4) Expansion based on control parameters As introduced in 2.1, there are parameters
related to responders. In particular, we paid attention to the software category and ven-
dor countries because they affect the model. For such parameters, SEM accepts a special
variable called dummy. We refer to the expanded model with the dummy variables.

We built another two models by adding observed variables related to the respond-
ers’ demography. Suppose that there are m-1 variables D1, D2,..., Dm-1 when one pa-
rameter X has m categories. Di =1 or Dj =0 (j≠i) was represented when the case is
category i. For example, dummy variables DIndia=1 and DChina=0 for Indian vendors if
there are three alternatives for vendor countries. Locations (India, China, others) are
introduced. Dummy variables and their relations were added as follows:

Table 3. Fit Indices

Model
Chi-

square
P AGFI AIC

Basic 183.1 .000 .820 247.5
Modified 175.5 .000 .826 239.5

Final 89.0 .280 .898 165.0
Expanded-1 155.9 .003 .857 239.8
Expanded-2 99.7 .376 .894 179.7

Expanded 1. From software types to satisfaction (customer applications, middle-

ware, embedded software)
Expanded 2. From vendor countries to satisfaction (India, China)

These two expanded models were not effective because the coefficients for the
paths added by dummy variables were close to 0.1 and these coefficients were re-
garded as insignificant. Note that models with the following paths are less appropri-
ate than the models we presented: from software type to software, and from vendor
countries to vendor.

4 Discussion

Let us discuss which model is appropriate for the samples based on fit indices and
which latent variables affect the result based on path coefficients.

 An Evaluation Method for Offshore Software Development 137

4.1 Fit Indices and Path Coefficient

For the fit indices, SEM has the chi-square goodness of fit, significance level (P),
AGFI (Adjusted Goodness of Fit Index) and AIC (Akaike Information Criterion). The
AGFI score should be greater than 0.9 if the model is appropriate while a lower AIC
implies a better model.

The indices for the five discussed models are shown in Table 3. The final model is
much better than the basic model. This means that the software properties do not
affect the result directly but affect it indirectly through the project properties. Fur-
thermore, the final model is slightly better that the expanded models. This means that
the control parameters do not work in our case.

4.2 Effects of Variables

For checking the path coefficients, let us review Fig. 5. The path coefficient between
the satisfaction and the project is 0.27, while the path coefficient between the satisfac-
tion and the vendor is 0.71. The causality between the project and the software is
0.21. In addition, the square of multiple-correlation-coefficients of the satisfaction is
0.57 (shown at the upper right of satisfaction). It is calculated as 0.712+0.272. This
means that these variables account for 57% of the satisfaction.

For the magnitude of risk, the path coefficient could be clue for the estimation. For
SEM, there are two kinds of effects: direct effect and indirect effect. While the direct
effect is the path coefficient itself, the indirect effect is calculated by summing the
products of the path coefficients through passing variables. For example, the latent
variable 'software' affected 'project' by 0.21 while it affected 'satisfaction' by
0.21*0.27. Note that there is only one path from 'software' to 'satisfaction'. If there are
multiple paths, such product should be added.

We got the effects of latent variables for the observed variable 'result' as shown in
Table 4. We found that vendor properties were the main property type affecting the
result of development.

To validate our analysis, we checked correlation coefficients. As path-coefficients,
some of them explain how to scratch build models in section 3. Actually, the correla-
tion coefficients between Result and V1-V5 are high while those of between Result
and S1-S4 are low. On the other hand, correlation coefficients between S1-S4 and P1-
P5 are not low, and they provided clues for changing models in the Basic Model. Of
course, those between Result and P1-P5 are significant and are not low. The explora-
tory data analysis in this research is very useful and relates to correlation coefficients.

4.3 Experimentation in Progress

Although our analysis is still in progress, we briefly disclose here what we are doing.
We have explored models to get higher indices by SEM with intuitive latent variables.
On the other hand, it is important to define latent variables rationally as assumptions
under SEM. In addition, finding and introducing unique variables that affect only
satisfaction and do not relate the other variables may give better models. For this
purpose, factor analysis will be used in the future. It should help to reveal common
combinatorial notions for observed variables like latent variables in SEM. Before

138 Y. Wada, D. Nakahigashi, and H. Tsuji

using SEM, we can get common factors and unique variables through factor analysis.
Then, to verify the effectiveness of the Final Model, we must plan to compare it with
models suggested by factor analysis. If this factor analysis approach is different from
our exploratory data analysis, there may be a chance to get a better model. Otherwise,
it will provide a double checked that our results are significance.

Table 4. Effects of Latent Variables for Result

Latent
Variable

Direct
effects

Indirect
effects

Total
effects

Project .27 .27
Software .06 .06
Vendor .71*** .71

 ***P<0.001

Second, questionnaire data are essential to justify this research. In this question-

naire, two-level evaluations (high or low) were used for the observed variables to
show clear differences between successes and failures. On the other hand, if we
choose n-level evaluations (n>2), we may get more precise indices for showing the
model. This would also enable use to figure out the validity of the Final Model.

Finally, we should consider the demographic data mentioned in section2.1. Al-
though we tried introducing dummy variables to treat parameters related to respond-
ers, we have not gotten good results. That is to say, few indices were changed by
introducing dummy variables. There might be a better way to introduce dummy vari-
ables for SEM. There is an inherent problem of SEM. We should consider the actual
meanings of indices and models because SEM is a very flexible method. Analyzing
partial correlation coefficients as well as introducing dummy variables may lead to a
better model.

5 Conclusion

This paper has described SEM analysis for offshore software development. The pur-
pose of the analysis is to determine the magnitude of risk factors where the risks
might have been hidden in past projects or remained as tacit knowledge of project
managers. The other purpose, or rather the goal of this research, is to apply the find-
ings to new offshore software development in order to assess the risks and reduce
them.

To apply SEM to offshore software development, we designed a questionnaire for
collecting the experiences of project managers. The questionnaire contained four
software attributes, five vendor attributes and five project attributes of outsourced
development and its results. Each attribute had a binary value and the results ranged
from 1 to 5. Starting with a simple model in which three properties were directly
connected to the result, we modified the domain model step by step based on path
coefficients and the principle of attributes. Finally, we identified the model that satis-
fied the statistical fit indices such as chi-square goodness of fit and AGFI. According
to the results of analysis:

 An Evaluation Method for Offshore Software Development 139

1) vendor properties such as communication ability and project management
ability mainly affect the results of development,

2) software properties such as requirements for specificity and requirements
volatility do not affect the result directly but did affect it indirectly through
the project properties such as relative cost advantage and project strategic
importance,

3) control parameters such as vendor companies and software type do not im-
prove the precision of the models.

For the goal of this research, we are going to develop risk assessment tool.

Acknowledgement

The authors would like to sincere thanks to Prof. Akito Sakurai, Prof. Kenichi Yo-
shida, Prof. Amrit Tiwana and Prof. Ashley Bush who gave valuable comments on
designing questionnaire. Special thanks are also due to members of Strategic Software
Research forum (SSR) and Japan Electronics and Information Technology Industries
Association (JEITA) who contributed to collect responses of questionnaire. This work
is partly supported by the ICOM Electronic Communication Engineering Promotion
Foundation, Japan.

References

1. Aspray, W., Mayadas, F., Vardi, M.Y. (eds.): Globalization and Offshoring of Software,
Report of the ACM Job Migration Task Force, Association for Computing Machinery
(2006)

2. Gold, T.: Outsourcing Software Development Offshore - Making It Work. Auerbach Pub-
lications (2005)

3. Hiramatsu, A., Oiso, H.: Analysis of Customer Unsubscription Intention for a Mobile con-
tent service, The Papers of Technical Meeting on Information Systems, IEE Japan, IS-05-
23 (2005)

4. Kinosita, A., Ono, E.: AHP and Conjoint Analysis (In Japanese). Gendaisuugakusya Co.,
Ltd. (2004)

5. Krishna, S., Sahay, S., Walsham, G.: Managing Cross-Cultural Issues in Global Software
Outsourcing. CACM 47(4), 62–66 (2004)

6. Mayer, B.: The Unspoken Revolution in Software Engineering, Computer, 121–124
(January 2005)

7. Nagano, H.: Introduction of Statistics (In Japanese). KyourituShuppan Co., Ltd. (2003)
8. Oshio, A.: Psychological and Survey Data Analysis using SPSS and Amos (In Japanese).

TokyoTosho Co., Ltd. (2005)
9. Shindo, T., Takei, T.: the Division of Labor of Software Development in the World,

NIKKEI ELECTRONICS, pp. 107–121 (2004)
10. Thondavadi, N., Albert, G.: Offshore Outsourcing - Path to New Efficiencies in IT and

Business Processes, 1st Books Library (2004)
11. Tiwana, A.: Beyond the Black Box: Knowledge Overlaps in Software Outsourcing. IEEE

SOFTWARE 21(5), 51–58 (2004)

140 Y. Wada, D. Nakahigashi, and H. Tsuji

12. Tiwana, A., Keil, M.: The One-Minute Risk Assessment Tool. CACM 47(11), 73–77
(2004)

13. Toyota, H.: Covariance Structure Analysis [introduction] (In Japanese). Asakura Shoten
Co., Ltd. (2004)

14. Tsuji, H., Sakurai, A., Yoshida, K., Tiwana, A., Bush, A.: Risk Factors on Offshore Soft-
ware Development by Conjoint Analysis (In Japanese). Transaction on Information Proc-
essing Society for Japanese 48(2), 823–831 (2007)

15. Tsuji, H., Sakurai, A., Yoshida, K., Tiwana, A., Bush, A.: Questionnaire-based Risk As-
sessment Scheme for Japanese Offshore Software Outsourcing. In: Meyer, B., Joseph, M.
(eds.) SEAFOOD 2007. LNCS, vol. 4716, pp. 128–140. Springer, Heidelberg (2007)

16. Yamamoto, K., Onodera, T.: Covariance Structure Analysis and the Case of Analysis by
Amos (In Japanese). Nakanishiya Syuppan Co., Ltd. (2002)

Appendix

Table A2. Correlation among Result and Attributes

Note: Symbols such as S1 and S2 come from Table 1.
*: P<0.05

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 141–151, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Value of Outsourced Software

Gio Wiederhold, Amar Gupta, Rajat Mittal, and Erich Neuhold

1 Computer Science Department, Stanford University
2 Entrepreneurship, MIS, and MAP Departments, University of Arizona

3 Eller College of Management, University of Arizona
4 University of Vienna, Vienna, Austria

gio@cs.stanford.edu, gupta@eller.arizona.edu,
rajatprm@email.arizona.edu, erich.neuhold@univie.ac.at

Abstract. Outsourcing of work to support software development and services is
seen primarily as a transfer of labor to another shore. But intellectual property,
as software, is transferred as well. There are risks when IP is transferred. In
order to assess the extent of those risks, one needs to know the value of that
concerned software. Software is an intangible good, and the value of intangibles
is based on the income they are expected to generate in the future. This paper
exploits a model for software valuation based on principles of IP valuation,
sales expectations, net present value, and related parameters. Having a
quantitative model on a spreadsheet allows for the exploration of business
alternatives in outsourcing. The motivation for this paper is to increase the
awareness of members in the computing community. Software valuation plays a
role in a global economy where the developers of the software and the users of
the company reside in different countries.

1 Introduction

Outsourcing of work to support software development and services to other countries
has been presented primarily as a transfer of labor to another shore. However, such
offshoring also requires transfer of supporting materials. Much of that material has
value, and represents intellectual capital. While Marx was concerned about labor and
financial capital as the drivers of the economy, in today’s knowledge-driven
environment it is the intellectual capital that counts. A significant part of that
intellectual capital is software, and is property (IP) of the outsourcer. This paper
discusses the relevance of valuing software when offshoring. The actual valuation
method has been presented in a recent paper by one of the authors [13]. The analyses
that led to the development of the software valuation method was indeed motivated
and supported by the need to assess software IP exports.

Little specific guidance existed for software valuation. It was left to lawyers,
economists, software vendors, or promoters to quantify the benefits of software in
commerce. The results were mostly inconsistent [8]. To value software information
from domains that rarely interact directly: software engineering, economics, business
practice, and legal sources, had to be brought together. Now, the more formal

142 G. Wiederhold et al.

methods presented can be exploited, and further developed to put the aspect
complementary top labor transfer into a manageable setting. More than software alone
is involved in IP transfer, but this paper will focus on that aspect. When software is
exported or imported during outsourcing, assigning an appropriate value is crucial.
Software that is broadly used can have values ranging to millions of dollars, and
companies can thrive or collapse based on those results.

1.1 Outline

The next section will discuss the motivation and types of off shoring as relevant for
software and IP transfer. Section 2 provides a brief introduction to the principles of IP
valuation, both for the creator and the user. The issue of offshored maintenance is also
addressed. Section 3 summaries valuation principles.

Section 4 presents the changes to the value of software over time, as they pertain to
an offshored operation. The conclusion in Section 5 summarizes the use of software
valuation when offshoring is planned or re-evaluated.

2 Outsourcing and Software

In this section we cover the generalities that are relevant when the value of outsourced
software is an issue.

2.1 Why Should Software Exporters Care?

In general, exporters have a good idea of the value of their products. That knowledge
is lacking is software, so that software and related IP necessary for a successful
offshoring project is often transferred without valuing that property, although the risks
of losing that property is often discussed.

For a software company, its entire value depends on its products. A first-order
estimate of the value is then the company’s market capitalization – the number of
shares times the value of each share, as determined by its investors. Losing a
significant fraction could be devastating. But other companies, as manufacturers and
financial institutions, also depend on software for their revenues. If they distinguish
themselves from others by IP embedded in software they are equally at risk. If
outsourcers know the value of their implicit IP exports, they will be better prepared to
make decisions about those exports, expected income, and resulting taxation. They
will also be able to better report to their stockholders the costs, risks, and benefits of
their actions.

2.2 Outsourcing Operations That Involve Software

Common applications for the information technology involving software exports
include:

A. Call Centers, where the servitor provides assistance to customer having
problems with a product.

 The Value of Outsourced Software 143

B. Production settings, where software supports a manufacturing or service
process, including software production, but also financial or supply-chain
services.

C. Software Maintenance, where existing software products are repaired,
adapted, or extended [1].

D. Software creation, where new products are developed.
E. Software localization, with regional marketing and sales.
F. Web services, where products are made available to process customer data.

In this paper, a general model is described that can be applied to any such application
even though the parameters, the dependencies, and the risks among the partners differ.

2.3 Risks

Since the cost of copying software is very low, it is easy to copy. But software also
looses its value rapidly. Software must be maintained to keep up with changes
expected by users and the setting where the software is being used. While a book
written and printed two years ago can be profitably sold for, say 80% of its new price,
a prior version of software has little value for a user. Version life is hence an
important aspect of software valuation in outsourcing. Software life is also important
for valuation within a company, but has to include successive versions, since a new
version of the software product includes much of the code and all of the functionality
of its prior versions. The base paper covers software life for valuation only for the
owners of the software. When risk assessment has to be done the metrics change,
based on the type of risk being considered. This paper does not deal with risk models.

2.4 Locations

The basic model is that outsourced work is performed under contract by a wholly
Independent Foreign Company (IFC). While that approach was common initially, it
also carries the greatest risk. An IFC will seek to serve multiple customers, and
maintaining fences to protect each customer's IP will be hard. For call centers such an
approach is still common, and it is also used when the software does not represent
important IP of the owner. Unless the IFC accepts liability for losses in its contracts
little valuation effort is required.

When significant IP is involved most outsourcing companies have set up a fully
owned, but independent entity, a Controlled Foreign Corporation (CFC), as shown as
Alternative 1 in Figure 1. Such a company operates now a complete business, with
records of costs and revenues. Payment for the use of intangibles that remain at the
source can be in the form of royalties. The royalties should fairly reflect the
contribution to income at the CFC. That income determines the value of the software
and other IP being used. Such an arrangement typically requires valuation of all the IP
used, including the software. Such software will be maintained at the source, and the
valuation model should include that ongoing effort. If the royalties are set too low, the
CFC will show a higher profit than it should, and the owner of the IP will show less
profit. If the royalties are set too high, the CFC will show a lower profit than it
should, and the income shown at the source will be excessive.

144 G. Wiederhold et al.

Fig. 1. Alternative IP locations and payment flow

The second alternative for the CFC is to invest in importing the software. Since in
general investments are needed to create a profitable entity, purchasing IP is a
common strategy. A one-time investment charge will appear in the books of the CFC,
and the source will show a sale to the CFC. Ongoing costsharing payments are needed
to compensate for software maintenance. Differences in the income streams and
hence taxation can affect the total profit of the company, but are not addressed in this
paper.

3 Principles of IP Valuation

Assigning value to intangible property is assuming greater importance as our society
moves from dependence on hard, tangible goods to a world where knowledge and
talent create intangible goods that everyone needs and desire. Many approaches for IP
valuation compete [3].

To be considered property the intellectual good has to be owned, and its ownership
has to be protected. Evidence of protected ownership is having patents, copyrights,
and coverage by trade secret. Since patents and copyrights are unsuitable in many
instances, trade secret, enforced by having personnel sign non-disclosure agreements
is the primary means of protection.

The intangible property owned by a company in the knowledge-based domain
includes the technical knowledge of its staff, the competence and insights of its sales
force, the business knowledge of its management, the worth of its trademark, its
reputation, and the value of its software inventory.

3.1 The Value of Software IP for Software Producers

Since the value of IP cannot be assessed by its development cost, it has to be valued
by its contribution to the income of a business. The general rule is: The value of
Intellectual Property is the income it generates over its lifetime [10]. From the

 The Value of Outsourced Software 145

viewpoint of software seller, the income generated from the software depends on the
sales revenue, i.e., the product of software sales and its unit price. In the base paper
the value of the IP inherent in software is estimate by considering its price, its useful
life, and the expected sales [13]. While many assumptions are required, there are
useful guidelines and rules that can support valuations. When the outsourced software
has been in use prior to its transfer to a foreign shore, information for estimating the
required parameters can be made available.

In an outsourced setting, some of the ongoing costs will be incurred at the home
site and some at the remote site, the CFC. A standard approach is costsharing. For
costsharing all the research and development costs are first aggregated and then
allocated according to revenues in the home and CFC geographical areas. Any costs
that exceed the revenue apportionment are then reimbursed from the other side.
While in principle this arrangement is simple, it becomes complex when multiple
sources of IP exist, since IP is also generated by brand and product marketing, which
will have different lives than the technological components. Since no amount of
marketing can overcome poor product quality, we concentrate on software.

3.2 The Value of Software IP for Software Users

Since the value of IP cannot be assessed by its development cost one has to focus on
income. But for companies that use software, as listed as categories A and B in
Section 2.2, only a fraction of the company's income can be attributed to the software.
In that case an allocation has to be made. Then income can be assigned based on the
assumption that the management of a company is rational in the allocation of its
resources, a standard textbook assumption. If a company spends more than is optimal
on software and less on people or marketing, its potential income is reduced. Given
that rule, corporate net income created by diverse expenses can be allocated according
to the proportion of costs incurred. The fraction spent on software from year to year
will vary, but over its life such variations even out. If a company behaves irrationally
in its spending, it is bound to have lower net profits, and both its IP and its prospects
will suffer as a result.

3.3 Revenue and Gross Profit

Once the value of the concerned software is estimated, one can compare that value
with the cost of its creation and evaluate if the overall project is at all profitable.

In most businesses manufacturing expenses have to be deducted as Cost of Goods
Sold (CoGS) before the net revenue can be determined. Determining software income
can typically be simplified, once a single copy exists. Every subsequent instance of
software is assumed to be produced at a negligible incremental cost. If software is
distributed over the Internet, there are no incremental costs involved for each sale.
Consequently, revenue and gross profit become similar. Now common financial
indicators such as gross margin becomes close to one, and thus meaningless.

However, there will be substantial ongoing costs to keep the software viable. Such
maintenance costs typically amount to about 15% annually of the original

146 G. Wiederhold et al.

development cost. The financial picture would be clearer if such cost would be
considered as part of the CoGS, but current accounting practice lump development
and maintenance costs [8]. When IP is paid for in a royalty scheme, maintenance
costs are included, and product improvements are made available at no extra charge.
If a CFC or CFH has imported a version of the software, it must pay for any needed
maintenance as a distinct activity.

3.4 Offshoring Maintenance

From financial analyses we find that maintenance of long-lived software has
substantial costs, but the resulting longevity of software provides major benefits to the
owner. Quality maintenance is a major contributor to software costs and its benefits.
With five years cost of maintenance exceeds the original investment [13]. But by year
10 the income from maintenance licenses can exceed the income from sales, as
sketched in Figure 2 [12].

Fig. 2. Income for a software company that charges maintenance fees

It is commonly accepted that over the lifetime of software maintenance costs are
60-80% of total cost [9]. Managers bemoan the high cost of maintenance, since they
are not clear about the benefits [11]. Education also ignores this cost component of
software. It is an illusion that cheap labor reduces the overall costs; it essentially
reduces the benefits of maintenance [7].

Input to the IP created during maintenance flows from many sources, customers,
participation in standards committees, and business intelligence. When offshoring of
maintenance is being considered care must be given that these flows will not be
hindered, so that the software retains its quality in the competitive market place.

4 Diminution of Software Value

If the software has been imported by the CFC or CFH, the value of the initial
investment will diminish. Ongoing maintenance will keep the software effective, but
also requires an ongoing reimbursement by the importer.

4.1 Estimating the Diminution

Since the software IP was embedded in the original code, and that body of code
changes over time, the base paper predicts typical code contributions due to

 The Value of Outsourced Software 147

maintenance [13]. For current assessments the actual code can be analyzed. The
fraction of original code remaining is taken a surrogate for its relative value, as shown
in Figure 3.

The unit price for much software tends to be stable. Customer expectations and
competitive threats make it hard to raise software prices for the same functionality,
even if the software now has fewer problems, increased capacities, and a smoother
interface.

Fig. 3. Diminution of the value of the original IP contribution in software

Combining the relative growth and constant price allows an assessment of the
value remaining of the original investment and setting of appropriate royalty rates.

The maintenance effort is likely carried out by the CFC as well as by the original
creators. An easy way to account for the relative contribution is to pool all
maintenance costs, and use those as the basis for cost-sharing. Maintenance income
and revenues beyond the diminished software value are then contributed to that pool.
Out of that pool the contributors can be reimbursed.

A typical life span for a successful software product is about 15 years. Over that
life, there may be 10 significant version releases. Early in its life, there maybe several
versions in a year and later in life, several years may elapse before a new version is
warranted. Software that has significant dependencies to external conditions will
require more frequent update, and hence a higher level of royalties or cost-sharing.
For instance, software that supports logistics will require updates whenever
capabilities of carriers change.

Note that there is no attempt to actually value the software by quantity. Only the
relative size matters, so that contributions to be allocated to the original IP can be
determined as part of the software at some future point.

Software does not wear out, but rather improves over time due to maintenance. But
the original content diminishes in value. The end-of-life for software occurs when its
sales no longer bring in sufficient income to warrant the ever-increasing maintenance
costs. Hence, the estimation of the IP value of software requires estimates of the
current sale price, future version frequencies, maintenance cost expectations, and
sales volumes over time. A spreadsheet is available with one of the authors [13] to
assess the values of possible business alternatives.

148 G. Wiederhold et al.

4.2 Importing Mature Software

The curve in Figure 3 shows the diminution of value from the point of initial creation.
If the export pertains to software that has reached a more mature point, the curve from
that point on will be less steep, and the relative diminution with each new version will
be less. But the remaining life will also be less. Such a situation is actually typical,
since during initial development creators will have given little thought to outsourcing
possibilities. Only when the software is successful, and call center and maintenance
demands grow, is outsourcing considered.

At that time the business risk is less. Especially if the software has already been
successfully used outside of the country of origin, the risk normally associated with a
new venture is reduced. That will be reflected in the cost of funds needed for the
import. Funding of mature software still has risks, and discount rates as high as 15%
are appropriate for such an investment. That cost has to be included in the business
models. Again, without having valuations of the IP needed at the CFC a business
model which only considers labor costs will be incomplete.

4.3 Outsourced Operations

Section 1.2 lists some of businesses operations that are often outsourced. Each of
these is associated with specific types of intellectual property. After describing the
principle of valuation of intellectual property, including software, a business case
“for” or “against” outsourcing those components can be made, especially when
offshoring.

There are two aspects here, first the risk that valuable IP will be lost, and then, the
value of the IP exports that will be needed to achieve the business goals.

Information about the current operations can provide the quantitative information
needed. If there is an existing call center, there has been training experience; as such,
there is a record of the information needed and of supplementary material that was
produced. Since a call center also provides valuable information for improving
products, IP input from the call center should also be valued. Losing contact with
customers is potentially a great loss, and needs to be quantified as well. Often, the
expected output from a call center focuses merely on sales leads, and not on
technology drivers.

If maintenance of an existing product is outsourced, then there tends to be an
experience base that allows the valuation of the IP being transferred to the servitor.
Here again, there is significant risk of creating disconnects. It is hard to transfer all the
needed IP effectively, because it cannot be adequately documented. For instance, a
reason for not employing a certain method is rarely documented. Such a
determination may have been done, but it does not appear with the code, since another
method was chosen and documented. It has been observed that successful software
companies keep maintenance responsibilities with the creators, who are in a better
position to respond and to enhance products than new hires or remote experts.
However, in a setting where novelty is valued above all, it is hard to assign
maintenance tasks to the best qualified staff.

 The Value of Outsourced Software 149

When ongoing work is performed both by the owner and the servitor, then a split
of IP inputs is needed to allocate income from the resulting IP. When the proportions
of effort change, the allocation from each year should change as well. Since there are
already many assumptions about the life of the software, it is probably best to use the
simplest possible model. Clarity and stability have more utility than fictional
accuracy.

4.4 Market Allocation

It is effective for the CFC to market and sell the products in its local region.
Especially when software interfaces have to be translated and adapted to local
requirements local knowledge and feedback loops are most effective. Now also the
income has to be split. Estimation of income from software marketed to customers
requires an estimation of future sales of copies of the software.

When setting up a CFC which depends on local sales additional planning is
needed. How much effort at the CFC will be expended for local sales? That effort
represents investments towards new IP, not useful to the source software. At the same
time, feedback to the source can initiate changes that will greatly assist translation and
adaptation. If, for instance Unicode is used throughout the software, it becomes much
easier to adapt to foreign alphabets. If the direction of printing is a parameter, the
efforts at CFCs will be greatly reduced,

Income estimation requires prediction of sales. This aspect is always risky, but
even more so when operations are moved to foreign settings. Common ways include
using information about a predecessor product, estimating the number of businesses
that need the functionality of the new product, the number of customers who can
afford the product, the number of certain type of computers or operating system in
use, and similar bounds.

4.5 Complementary IP

IP is not only generated by software investments, but also by marketing investments.
The distribution of investments for a CFC may well differ form the overall expense
allocation of the company. At a first estimate we find that companies spend similar
amounts on research and development as on marketing. If a company or product is
already well known internationally, the CFC may have to spend less. In that case the
CFC profits from trademarks and brand names have been previously established.
These also represent IP and should be reimbursed.

Advertising expenses are typically taken as current expenses, even though they
increase the IP value of the company. However, the effects of advertising tend to be
short-lived, and have less importance than word-of-mouth recommendations for
quality software.

The allocation and reimbursement policies for such market-related IP are beyond
the scope of this presentation, but will convolute the valuation of software exports and
imports.

150 G. Wiederhold et al.

5 Conclusions

We believe that transfer of capital, intellectual and real, should not be ignored when
outsourcing is discussed. While transfer of jobs has a high emotional interest, the
long-range aspect of capital transfer may well be of greater import.

Valuation is essential to assess the risk of offshoring: With the continuing trend
towards globalization, a company in a developed country is increasingly likely to
have a piece of software developed in a country that offers lower costs.

Valuation is essential to assess the investment needed for offshoring: Obtaining
proprietary software or other IP for an outsourced operation requires ongoing
payments or an investment. A valuation is needed both to determine the cost and
the life of such an investment. The maturity of the software must be assessed to
set an appropriate discount rate in making the investment decision.

Valuation of software is not easy, and requires many assumptions. But not knowing
what IP exports are worth is dangerous. The cost-benefit and risk analyses required
for outsourcing software and software production depend on such valuations.

Having a documented quantitative model allows rapid re-evaluation of offshoring
benefits when labor rates, product prices, sales volume, levels of IP protection, and
tax regulations change. Without a model, decisions will be based on obsolete
assumptions, a situation not acceptable in a rapidly changing world.

Acknowledgements

Discussions with Treasury economists helped in establishing the principles discussed
in the paper. We received constructive feedback from Bhavin Mankad, Ravi Sheshu
Nadella and other readers. Any errors in this paper are our responsibility, but we will
not assume any responsibility for business decisions based on applying the presented
concepts. This work is based on the confluence of material from many sources. Only
a few are cited below. Many more are listed with the full version of the base paper,
available at http: infolab.stanford.edu/pub/gio/inprogress.html#worth.

References

1. Basili, V.: Viewing Maintenance as Reuse-Oriented Software Development. IEEE
Software 7(1), 19–25 (1990)

2. Public Scorn for Private Equity. Business Week (December 4, 2006)
3. Damodaran, A.: The Dark Side of Valuation: Valuing Old Tech, New Tech, and New

Economy Companies. Prentice-Hall, Englewood Cliffs (2002)
4. Gimme Shelter: The Economist (January 27, 2000)
5. Feinschreiber, R.: Transfer Pricing Handbook, 3rd edn. Transfer Pricing Consortium. John

Wiley Publishers, Chichester (2001)
6. Kroppen, H.-K., Eigelshoven, A., Roeder, A.: Chapter 24 in [5] Transfer Pricing

Handbook, 3rd edn., vol. 2, Germany (additions in 2002 supplement)
7. Landsbaum, J.B., Glass, R.L.: Measuring and Motivating Maintenance Programmers.

Prentice-Hall, Englewood Cliffs (1985)

 The Value of Outsourced Software 151

8. Lev, B.: Intangibles, Management, Measurement and Reporting. Brookings Institution
Press, Washington, DC (2001)

9. Pigoski, T.M.: Practical Software Maintenance - Best Practices for Managing Your
Software Investment. IEEE Computer Society Press (1997)

10. Smith, G., Parr, R.: Valuation of Intellectual Property and Intangible Assets, 3rd edn.
Wiley, Chichester (2000)

11. Spolsky, J.: Joel on Software. Apress (2004)
12. Wiederhold, G.: The Product Flow Model. In: Proc. 15th Conf. on Software Engineering

and Knowledge Engineering (SEKE), Keynote 2. Knowledge Systems Institute, Skokie,
IL, pp. 183–186 (2003)

13. Wiederhold, G.: What is Your Software Worth. Comm. ACM 49(9), 65–75 (2006)

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 152–169, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Reducing the Cost of Communication and Coordination
in Distributed Software Development

Yunwen Ye1,3, Kumiyo Nakakoji1,2, and Yasuhiro Yamamoto2

1 SRA Key Technology Laboratory, Inc.
3-12 Yotsuya, Shinjuku, Tokyo 160-0004, Japan

2 Research Center for Advanced Science and Technology, University of Tokyo
4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan

3 Center for LifeLong Learning and Design, University of Colorado at Boulder
Boulder, CO80309-0430, USA

yunwen@colorado.edu; kumiyo@kid.rcast.u-tokyo.ac.jp;
yxy@kid.rcast.u-tokyo.ac.jp

Abstract. Decades of software engineering research have tried to reduce the
interdependency of source code to make parallel development possible.
However, code remains helplessly interlinked and software development
requires frequent formal and informal communication and coordination among
software developers. Communication and coordination cost still dominates the
cost of software development. When the development team is separated by
oceans, the cost of communication and coordination increases dramatically. To
better understand the cost of communication and coordination in software
development, this paper proposes to conceptualize software as a knowledge
ecosystem that consists of three interlinked elements: code, documents, and
developers. This conceptualization enables us to understand and pinpoint the
social dependency of developers created by the code dependency. We show that
a better understanding of the social dependency would increase the economic
use of the collective attention of software developers with a proposed new
communication mechanism that frees developers from the overload of
communication that does not interest them, and thus reduces the overall cost of
communication and coordination in software development.

Keywords: distributed software development; knowledge collaboration; cost of
communication and coordination; attention cost.

1 Introduction

When a large software project is created by developers separated by oceans and time
zones, communication and collaboration becomes the more dominant forces in
determining the productivity and quality of software development [13]. Most of the
current research in supporting offshore outsourcing software development has mainly
focused on the brawny power brought by many hands through collaboration. The
major concerns have been on the cooperation, communication, and coordination
problems brought by the consequences of division of labor [12, 34].

 Reducing the Cost of Communication and Coordination 153

This paper focuses on another aspect of collaboration in offshore outsourcing
software development that has not been paid enough attention—the brainy power
brought by multiple heads of software developers; that is, the knowledge
collaboration that takes place during the process of software development.

Software development is a knowledge-intensive and creative activity [22]. It
requires knowledge from several different domains, including both the computing
domain and the application domain. As computer applications get larger and more
complex, the amount and kinds of knowledge required grow [38]. Few developers, if
any, have all the knowledge needed in their own heads. The knowledge necessary for
software development is distributed between the developer and the external world,
and the development of a software system requires learning from and integrating the
knowledge from various external sources in the world. Knowledge in the world comes
from cognitive tools that support programming and from peer developers. The
development of software is therefore no longer confined to an individual developer
but has to rely on distributed cognition by reaching into a complex networked world
of information and computer mediated collaboration.

With the current trend of offshore outsourcing, software projects are increasingly
become distributed along different times zones, locations, and cultures. The
distribution of software projects has become necessary due to not only the needs of
shifting labors to places that have lower costs, but also the pursuit of local talents that
are otherwise unavailable. In other words, in addition to delegating the task of
development to the most economically viable places, which is the current driving
force of outsourcing, software development companies need also to ship the task to
the most talented and suitable people regardless of location, time zone, and national
boundary. This, we strongly believe, will soon be the upcoming driving force of
offshore outsourcing. Knowledge-based collaboration is becoming as important as, if
not more than, the current labor-based collaboration in outsourcing.

2 Knowledge Distribution and Collaboration

Software development involves the application of knowledge from a variety of
sources, which are constantly changing. For example, application domains are subject
to rapid change; a vast amount of third-party libraries are continually updated; new
features and functionalities continue to be introduced in programming tools and
environments. Software development therefore is a continual learning process during
which developers have to constantly acquire new knowledge [39].

The knowledge required in software development is not only about the process
knowledge and domain knowledge that are applied in the software system; it also
includes knowledge about the software system itself that developers are currently
creating. One may argue that since the software developer participates in the creation
of the system, he/she should know the system inside out. However, because large
systems are created collaboratively by many developers, not all developers, if any,
would have complete knowledge about the whole system. Meanwhile, with the
increasingly accepted view of software systems as evolving entities, the percentage of
incremental, continuous development in software has risen quickly. Such software
systems need to be continuously developed with iterative processes. Coupled with the

154 Y. Ye, K. Nakakoji, and Y. Yamamoto

high turnover rate in software industry, many software developers find themselves
working to make incremental changes to systems that have been partially developed.
This is especially true in offshore outsourcing software development: local developers
do not have the global knowledge of the whole system.

Software development, therefore, should be viewed as a distributed cognitive
activity [10, 16]. The overall capability of a project team, termed as group knowing, is
determined not only by the sum of the capability of individual developers, but also by
the socio-technical environment consisting of the developers, tools, and accessible
communication channels that affect how they contribute their knowledge to the
project and how they collaborate with each other.

In offshore outsourcing development where software developers are dispersed
geographically, they lost the opportunities of spontaneous and informal fact-to-face
communication that has been shown critical in sharing context awareness and
knowledge in software development [18]. The lost of communication opportunities,
however, is not unique to offshore development; it is similarly detrimental to large
software projects where all developers cannot be collocated in closeness. Allen [1]
reported that when engineers’ office were about 30 meters or more apart, the
frequency of informal communication dropped to nearly the same level as people with
offices separated by many miles.

The key challenge of supporting offshore development, therefore, lies not in
developing tools that make offshore development same as same-site development, but
in seamless integration of individual knowledge to enhance the group knowing
regardless of location. Software developers, especially in offshore development, do
not have a uniformed knowledge structure; each of them has a unique set of skills and
expertise. The key is how to integrate this diversity of expertise and synthesize it into
the group knowing of a software project team through knowledge collaboration in
which ideas and inspiration cross fertilize and feed on each other.

3 Software = Code + Documents + Developers

3.1 Knowledge Resources for Software Development

As a knowledge artifact, software code is the ultimate knowledge resource about the
system. Due to the essential invisibility of software code [3], however, it is not easy to
recover knowledge about the system by simply reading the code. It has long been
recognized that documents that provide high level descriptions of the code and the
design rationale are needed to coordinate the development.

Code and documents, however, are often insufficient for supporting knowledge
collaboration. Documents do not always exist, or quickly fall out of sync with the
code. Much of the knowledge about the code and the design decisions remain in the
head of developers. Many empirically studies have shown that software developers
routinely access their peer developers for knowledge during the development process
through informal communications [19, 21]. Peer developers remain the most
commonly used and valued sources of expertise in software projects [32].

 Reducing the Cost of Communication and Coordination 155

3.2 Software Project as an Evolving Knowledge Ecosystem

We conceptualize a software project as a self-organizing and evolving knowledge
ecosystem [4] that consists of three interlinked elements: code, documents and
developers. In such a knowledge ecosystem, knowledge is embedded in both its
constituting elements and its structure that regulates their inter-relationship, and flows
along the hyperlinked relationship. As developers create artifacts (code and
documents), their knowledge gets distilled into the artifacts. Knowledge gets shared,
exchanged and combined through the dynamic interactions between software
developers, mediated by code, document, and communications.

This conceptualization enables us to model a software project as a socio-technical
information space that has triangulated relationships among code parts, documents
and developers. The nodes that constitute the socio-technical information space
associated with a software system include not only parts of code at different levels of
granularities, but also the documents that have been generated during the
development process, as well as the developers that hold knowledge about them.
Code, documents, and developers are therefore equally important knowledge
resources that should be utilized during software development.

In this knowledge ecosystem, relationships among code, documents and developers
dynamically change as the development process proceeds. The interacting developers
form a knowledge community, defined as a group of people who collaborate with one
another for the construction of knowledge artifacts. In a knowledge community,
people are bonded through the construction of common artifacts. This is especially
true in the case of offshore outsourcing development because, unlike a collocated
software project in a single organization, those developers often do not have a shared
identity defined by their shared belongingness to the organization. In most cases, they
have different organizational and cultural identities [8]; and when they come together
for a software project, they are bonded by the needs of constructing a common
artifact.

3.3 Evolution in Software Projects

The knowledge community aspect has important implications when viewing software
development as collective creative knowledge work that depends on the learning of
developers through knowledge collaboration. The roles of individual developers, both
formally assigned ones and informally perceived ones, change over time during a
project. The social relationships among the developers grow through their

engagement in the project,
affecting how they collaborate,
communicate, and coordinate
with each other, which results in
different ways of sharing and
integrating knowledge.

All three elements constantly
evolve during the process of
software development (Fig. 1).
Artifacts (code and elements)
change over time throughout the Fig. 1. Software Project as a Knowledge Ecosystem

156 Y. Ye, K. Nakakoji, and Y. Yamamoto

development. Individual developers—or, more precisely, what individual developers
know—grow by gaining experience through the engagement with artifacts and peer
developers. The community of developers changes when new members join, old
members leave, both the assigned or perceived roles of members change, and
members’ relationships change.

Existing studies on understanding and supporting software evolution have
primarily focused on the evolution of artifacts. More recent work has started to look at
how individuals change through learning about the system. People learn by reading
source code and documents, and they learn by asking peers questions. They also learn
by solving new problems and experiencing unfamiliar situations. Their old knowledge
is replaced with new knowledge and is restructured during the development process.
A community evolves through individual activities in software development that
result in the change of software artifacts and/or in the individual growth of knowledge
about the system. This paper views the evolutionary process of the developer
community and software systems from the following three relationships (Fig. 2):

(1) The relationship of an individual with artifacts. How one relates with artifacts is
concerned with what knowledge, expertise, and experience the individual has on what
artifacts. This information is useful in identifying a set of people who are likely to
have expertise with a certain artifact.
(2) The relationship of an individual with other developers. How one relates with
other developers impacts knowledge collaboration among developers. This
information helps a developer determine whom to ask for help about a certain artifact
as well as decide whether and how to respond to a question posed by an asker.
(3) The relationship of an individual with the community as a whole. How one relates
with the community is concerned with that individual’s role within the community:
whether he/she is a peripheral member, a core member, or a member in between. This
relationship helps a developer decide how much he/she should contribute to the
community by gaining trust and social reputation within the community.

Fig. 2. Evolutionary Process in a Software Project

3.4 Socio-technical Costs in Knowledge Collaboration

When peer developers become critical resources for expertise, simply knowing who
has the knowledge is not enough. The knowledge seeker needs to contact the
knowledge providers and ask the question, and the knowledge providers then have to
consent to engage in knowledge collaboration activities [17]. These steps become
exceptionally costly in a globally distributed development project because developers
in one site often do not “know” about those located in another site.

 Reducing the Cost of Communication and Coordination 157

This knowledge collaboration act is affected by and affects the characteristics of
the social relationship between developers and of their relationships with the
community. The communication channels used, the contents of the question and
answer, the ways the questions is asked and the answers provided, as well as the
timing of asking and answering depends on a set of perceived social variables.

All the communication and coordination required for knowledge collaboration
among developers come with a great cost that demands attention and time that can
otherwise be used for development [19]. The technology used in supporting
knowledge collaboration could affect positively or negatively of the perception of
social variables, and the associated total cost of communication and coordination [33].
From the socio-technical perspective [24], we analyze those social factors that affect
knowledge collaboration behaviors and cost (both social and attentional).

Awareness. For a developer to seek external expertise from peers, he/she has to know
who might have the expertise. From a set of potential expertise providers, he/she
needs to choose whom to ask, and then make the decision to ask. This conscientious
decision making process is related to the following social and technical factors.

The asker needs to find where the needed expertise is located, and who potentially
has the expertise. Previous research has shown that such transactive knowledge takes
extensive time to develop [21, 30], and its utilization consumes intensive attentional
cost [23]. The geographical distance in offshore development lowers significantly the
knowledge of knowing who are the experts [18].

Asking a question shows that the developer is missing some knowledge, and he/she
risks of appearing ignorant that impacts his/her overall relationship with the
community. People demonstrate different asking behaviors when they are in public or
in private; to a stranger or to a friend. Generally speaking, people are more willing to
ask questions covertly to those that they are closely related because the close social
relationship provides a psychological safety of admitting a lack of knowledge [6].

Asking question is also challenging because the expertise seeker needs to assess
the reliability of and then understand the answer. Research has shown that a strong tie
between the expertise seeker and the provider resulted from previous interactions
leads to easier quality judgment and helps the interpretation of answers [29].

Asking. When a developer decides to ask a question, he/she needs to make contact
with the experts. A study by Herbsleb and Grinter [14] observed that collocated
developers feel socially comfortable to initiate contact easily because they know each
other, know how to approach them, and have a good sense of how important their
question is related to what the experts seem to be doing at the moment. When
collocation is replaced with remote communication tools in offshore development,
initiating a contact became more difficult due to the loss of such social cues.

The way that the question is presented has a direct impact on the response it will
receive. Rhetorical strategies, linguistic complexity and word choice of the question
all influence the likelihood of others responding to a question [2]. The needs for a
developer to seek expertise mostly arise from a problematic situation that needs to be
resolved in a specific timeframe. The expectation of how soon a help would come is
shaped by a history of interactions with the other party [36].

158 Y. Ye, K. Nakakoji, and Y. Yamamoto

Engagement. Upon receiving a question, the experts need to decide whether to
engage in collaboration with the expertise seeker based on social factors: their
perceived social relationship with the expertise seeker and the community at large.

The theory of social capital provides an analytic framework to understand this
decision-making process. Social capital is the “sum of the actual and potential
resources embedded within, available through, and derived from the network of
relationships possessed by an individual or social unit [25]” and is regarded as
important as financial capital and intellectual capital for an individual as well as a
social organization because it promotes cooperation and reduce transaction cost.
Social capital manifests itself in forms of obligations, expectations, trust, norms of
generalized reciprocity, and reputations.

Social capitals are derived from social interactions. If A helps B, A then holds a
credit slip for B to reciprocate the favor in the future. In other words, A can have a
reasonable expectation that B will do something for him or her down the road, and B
will feel an obligation to help A [5]. Regularly reciprocated fulfillment of obligations
leads to the development of trust among the interacting parties. When this direct
interpersonal reciprocity becomes a norm, it promotes generalized reciprocity.
Persons with a large amount of credit slips are easier to draw collaboration in the
social unit. The norm would also apply social pressure for those who have a large
amount of obligations to engage actively in collaboration with others.

Engagement consumes time and attention. No action, however, has social cost too.
Saying no untactfully to a peer who seeks for your help deteriorate your relation with
him or her, and affects negatively your social reputation among other peers because it
deviates from social norms.

Collective Attention Cost. Asking and answering a question takes cost. In addition to
the time and attention for the asker to formulate and compose the question, and the
expertise provider to read, think and post the reply, considerable collective cost is also
incurred.

All the people who have received the question would at least spend some attention
about the question before they decide to answer or not. When the number of people
who receive the question becomes large, the collective attention consumed also
becomes considerably large. Given the fact that we are now entering a world where
our lives are guided more by the laws of the economics of attention because attention
is quickly becoming the scarcest resource in our society [11], it is imperative for
system designers to take this factor into consideration because the project has a
limited supply of collective attention and should be used economically.

A question means an interruption. The cost of interruption includes both the loss of
working context and the destruction of flow [35]. When multiple project members
receive the request for help, for example, if the request is sent through the project
mailing list, this interruption cost is multiplied with the number of receivers.
Collectively, this cost might outweigh the benefits of knowledge collaboration and
decreases the overall productivity of the whole project [33]. Communication
mechanisms used for knowledge collaboration have to be carefully designed and
chosen by paying attention that the communication would not impact negatively the
overall performance of the project team.

 Reducing the Cost of Communication and Coordination 159

4 A Socio-technical Framework to Supporting Knowledge
Collaboration

We have developed the Dynamic Community framework to help software developers
engage in knowledge collaboration during the process of software development
through sharing and exchanging expertise required for the project. The goals of the
framework are twofold: to increase the ease of accessing external expertise either
through a knowledge repository or from peer experts, and at the same time to reduce
the total cost of experts being interrupted and that of providing help. The essential
guidelines of the Dynamic Community framework are:

(1) Expertise is not an absolute attribute but a relative attribute of a developer. A
group of experts can be identified only after the task is known.

(2) Knowledge collaboration is not the goal; it is only the means to support
developers to solve their current task. The social and technical cost of
knowledge collaboration has to be balanced with the primary goal: to improve
the productivity of the team.

(3) Existing social relationships among developers play an important role and
should be taken into consideration to facilitate knowledge collaboration.

(4) The success of one knowledge collaboration transaction should not come at the
price of developers’ reluctance of further participation in future knowledge
collaboration. The goodwill and limited attention of experts should be
economically utilized to achieve sustainable and long term success. Rather than
focusing only on the success of one act of knowledge collaboration; we focus on
the sustainability of knowledge collaboration because it has to recur repeatedly
during the whole lifecycle of the project.

(5) Social support is costly and should only be used as a back up mechanism for
technical approaches.

4.1 Modeling the Knowledge Ecosystem of a Software Project

The knowledge elements in a software project create a knowledge ecosystem with
complicated interdependency. It consists of a group of developers, their code, related
documents, and the relationships among them (Fig. 3). Three kinds of relationships
exist: those between programmers, those between a programmer and information, and
those between information. We use the term information to refer to both code and

documents (such as design
documents, configuration
management logs, bug reports, and
email archives that are associated
with the development of the code).
The relationship between
programmers captures the social
relationship between them, including
who helped whom, and who sent
emails to whom, as well as their
social dependency derived from the Fig. 3. An Actor-Network of a Software Project

160 Y. Ye, K. Nakakoji, and Y. Yamamoto

technical dependency of the code and documents, such as which software developers
depend on which other software developers for a given piece of code or a document
through calling, using, or describing [7].

The relationship between information includes the syntactic and semantic
dependency among code parts that are linked through data flow, control flow or linear
order. Code nodes in Fig. 4 can have different levels of granularity: code segments,
methods, files, classes and packages. Documents are related to code through multiple
dimensions. For example, a code node implements a portion of a design document;
the design rationale of the code is described in a series of email discussions; a bug
report is fixed by modifying several nodes of code; or a document describes the
functionality of reusable code components.

The relationship between a developer and information includes who writes or
changes the code, who has commented on the code, and who has reused the code
component in his/her own programs.

The knowledge network in Fig. 3 is an actor-network that consists of actants (both
human and artifacts) [20]. The knowledge embedded in each node as well as the links
constitutes the group knowing of a project. The network, as well as the group
knowing, changes as new actants are brought into or removed from the network (e.g.
new information is added or a developer leaves), and as new relationships are
developed, strengthened, or weakened (e.g. another developer started working on a
module, a link between documents were discovered). An individual’s capability about
the project progresses as he/she develops more relationships with other actants.

4.2 A Continuum of Technical Support and Social Support

Using external expertise can be viewed as a software developer’s activating the links
in the actor-network in Fig. 3, and engaging in collaboration with actants. To do so, a
software developer are faced with the following challenges:

(1) He/she might not be aware of where the expertise is located: what is the relevant
information, and who has the expertise on this particular problem?

(2) When the actants are peer developers, how should he/she approach them,
without causing too much communication cost of interruption?

(3) Whether the human actants are willing to engage in providing help?

Accordingly, the Dynamic Community approach (Fig. 4) provides three kinds of
support for in situ knowledge collaboration. Assume a developer (A) is dealing with a
task (α) and needs external expertise.

First, it employs both information access and information delivery mechanisms
[27] to help developers find task-relevant information in the repository that models
the actor-network of the knowledge ecosystem of a project (Fig. 4). Information
access includes browsing or searching, in which the developer articulates what he/she
needs through either traversing the links between the information (browsing) or
formulating a query (searching). Contrary to information access that has to be
initiated by the developer, information delivery proactively provides information by
watching what the developer is writing, inferring what his/her information needs are,
and then recommending the needed information without user initiated search
activities. Information delivery is able to make developers access external expertise in
the repository whose existence they are not even aware of [41].

 Reducing the Cost of Communication and Coordination 161

Fig. 4. The Dynamic Community Framework

When the relevant information retrieved or delivered from the repository is not
sufficient for the developer to obtain the expertise, he/she need to access
knowledgeable peers. In the Dynamic Community framework, a developer can post a
question about the topic he/she is currently interested in, and a sub-network
of developers is dynamically formed by activating the links in the actor-network of
Fig. 5 through two processes: expert identification and expert selection.

The expert identification process traces the link between a developer and
information, and identifies peer developers that are related to the set of relevant
information nodes (i.e. α, β and γ in Fig. 3 where β and γ are related to α). Depending
on the definition of the relation, those peer developers might have expertise or hold
special interest in the set of information nodes. For brevity, we refer them as experts.
The experts list obtained in this phase is {B, C, D, E, M, N} because they are linked to
either α, β or γ in Fig. 3.

From the above experts list, the expert select process selects those who have good
social relations with the developer A, which is {B, C, D, E}. The relationship between
developers is derived from their previous interaction history and represents the
affinitive relationship existing among them. A link from developer B to A indicates a
high possibility that B is likely to help A when B’s expertise is needed for A’s task.

An ephemeral mailing list (called a DynC) is then dynamically created for the
selected experts and A on the topic α (noted as DynC(A, α) ={A, B, C, D, E}), and A’s

162 Y. Ye, K. Nakakoji, and Y. Yamamoto

question is sent to the members of DynC(A, α). DynC(A, α) members who reply to the
question posted by A is also sent to all the members. When the developer A thinks
there is no more need to discuss about the topic, he/she needs to terminate the DynC,
and the associated dynamic mailing list dissolves. All the discussions, however, are
archived in the repository so that other developers who have similar questions can
benefit by either browsing or searching the repository.

4.3 Cost Reduction Strategies

The Dynamic Community approach attempts to reduce the overall communication
cost in knowledge collaboration in a globally distributed project by utilizing the
following strategies.

First, it considers social support as a costly transaction, and encourages software
developers to explore the technical support afforded by the rich knowledge repository
that weaves together the code, document and previous discussions. All the discussions
in DynC mailing lists are archived and linked with the related information so that
repeated DynCs can be avoided. The combination of sophisticated search, browsing
and delivery mechanisms is employed to make locating relevant information easier
for software developers. The Dynamic Community framework requires a developer to
initiate a DynC from the search results, ensuring he/she has at least spending some
time exploring the related information. Social support is very costly and should not be
used as the main resources for expertise.

Second, the automatic identification of experts relieves a software developer from
gaining an awareness of who the experts are, and thus reduces the cost of finding the
location of expertise and asking the question. Knowing the experts is one of the major
obstacles faced by developers in offshore outsourcing projects due to the lack of
informal and spontaneous communication available in collocated projects.

Third, it reduces the cost incurred on expertise providers by limiting the recipients
of the question only to those who are both able to (through the expert identification
process) and very likely to willing to (through the expert selection process) to answer
the question. Other developers who either do not have the necessary expertise or
whose relationships with the expertise seeker are not strong enough to be motivated to
engage in knowledge collaboration with the seeker are not disturbed. The strong
social relationship also increases the intensity of the engagement and therefore the
effectiveness of knowledge collaboration among participants [6].

Fourth, the DynC mailing list follows the principle of asymmetric disclosure of
information [26] to conserve further the attention and good will of experts. On one
hand, when the question is posted to a DynC, the members selected to the DynC are
not made public either to the expertise seeker or to other members; only a receiver of
the question message knows that he/she is selected as a member of the DynC. Only
when a DynC member sends a reply message, his/her identity is revealed. A DynC
member, therefore, may leave the DynC (a social equivalent of saying “no”) at any
moment without being publicly known. Due to this principle, no participation does not
constitute the violation of social norms, which is punishable by the “iron hand of social
pressure” of enforcing required individual behavior in a social unit [31]. On the other
hand, because replying to the DynC reveals the identity of the sender of the message,
the DynC members’ contribution is publicly acknowledged and can lead to

 Reducing the Cost of Communication and Coordination 163

the improvement of motivation [9]. This socially aware communication mechanism
that allows unwilling peer developers exit socially safely has two implications. The
remaining peers are the participants of willing, and hence the expertise sharing
becomes more effective. From the perspective of the expertise seeker, knowing that
other developers could easily exit, he/she feels less pressured to post a question
because the choice of participation is controlled by the experts.

5 System Development

To illustrate how the Dynamic Community framework supports knowledge
collaboration in distributed software projects while reducing the overall cost of
communication and collaboration, we describe two systems: CodeBroker [40] and
STeP_IN [28] that we have developed. The two systems in combination provide
continuous support for accessing external expertise. In the following usage scenario,
which illustrates the functionality of the two systems, we use the Lucene-java
(http://lucene.apache.org/java/docs/index.html) project as the data (the source code
and its mailing list archive from 2001 to Aug. 2006) to populate the repository.

Suppose a developer (lu1283) needs to write a program that processes a stream of
token extracted from a document in an information retrieval system, which uses the
third-party open source library (Lucene-java). He first needs to normalize each token
by lowering its cases, but he is not aware that a method already exists in the library.
He sets to create his own program and writes a doc comment in the editor to describe
his task (Fig. 5). As soon as the doc comment is written in the editor, CodeBroker
automatically delivers a set of task-relevant library methods in the lower buffer of the
editor. Lu1283 finds the second method probably does what he needs, and clicks the
method name in the buffer.

The document for the method is shown (Fig. 7). Now he knows this method is
what he wants but he is not sure how it can be used. So he clicks the Examples button,
and looks at the example code (Fig. 8). Now he wonders if this method does more
than lowering the case. He clicks the Discussion Archive link and reads previous
discussions on this method (Fig. 9) but could not find answers to his question. He
thinks that other developers in the team might have used it before, so he clicks the Ask
Experts link and posts a question (Fig.10).

Fig. 5. CodeBroker: An Enhanced Emacs Editor for Java Programming

164 Y. Ye, K. Nakakoji, and Y. Yamamoto

Fig. 6. Enhanced Javadoc documentation

Fig. 7. Example code

Fig. 8. Discussion Archive

Upon the submission of the question, a DynC mailing list is created by the
STeP_IN system. Five members (lu292, lu1192, lu229, lu953 and lu1953) are
selected, regardless of their physical locations. They all have used this method before
(5, 4, 2, 2, 1 times respectively) in their previous programs and have expertise on this

 Reducing the Cost of Communication and Coordination 165

method. In addition, all five members have affinitive social relationships with lu1283
and the community, and they are very likely to help lu1283. Lu292 and lu1953 have
sent emails to lu1293 before, so they should have known lu1283 by certain degree.
Lu1192 and lu229 have got helped in the community by others more than they have
helped others; therefore, it is their turn to fulfill their social obligations to reciprocate
the favor they have received. Lu953 is an eager helper [15], and had helped others
more than 101 times, so he might also offer help this time.

The members, however, are not forced to help because lu1283 as well as other
members do not know that they received this question due to the design principle of
asymmetry of information disclosure. If some of the members are currently busy and
do not have time to offer help for lu1283, no body would notice; and they will not
face social consequences of being non-cooperative in this case.

Fig. 9. Ask Experts

6 Discussions

The two systems introduced in the paper are meant to illustrate how the conceptual
framework of Dynamic Community can be applied to support knowledge
collaboration in globally distributed software development while reducing the cost of
communication. The conceptual framework can be applied to support different tasks
in distributed offshore projects. To illustrate its potential, we briefly sketch its
possible application in maintenance support and agile development.

After a software system has been developed and deployed, the original developers
are often assigned to other projects and the maintenance work is handed over to other
members. Under such conditions, maintainers often do not know who are the original
designers and developers of the module under maintenance and do not know who to
approach for design rationales. The dynamic community can be applied to deal with
this situation. Suppose a maintainer A needs to modify a module α. It is quite possible
that many programmers have used or changed module α during its lifecycle. All those
programmers can be considered experts on α and they can be identified from the
configuration management systems such as CVS used during the development phase
[23]. Because those original programmers have new assignments as their current
work, they might not be readily available to help A. Using the two-phase selection of
experts in the Dynamic Community framework, a list of experts who have knowledge
and are most likely to assist A can be selected to form a DynC for this task.

166 Y. Ye, K. Nakakoji, and Y. Yamamoto

Communication can be limited to those selected members and the results archived for
later use.

In agile development, document-based formal coordination mechanisms are
replaced with frequent, intensive, and informal communications. As systems are
incrementally developed, the dependency of code changes accordingly; and the
related developers that need to be involved in communication and coordination
change, too [37]. Currently, developers have to decide by themselves who they should
engage in collaboration. If we apply the Dynamic Community framework to this, a
system can be developed to identify automatically the subgroup of developers that
should be involved based on the social dependency derived from the dependency of
code that each developer is developing, and create a DynC mailing list for their
communication. As a developer moves his focus of development, different DynC
mailing lists can be created accordingly in an automatic manner to reduce the cost of
communication by limiting the number of communicants to the concerned members
and by reducing the cost of determining communicants.

7 Concluding Remarks

In this paper, we conceptualize a distributed software project as a distributed
knowledge ecosystem, and model it as an actor-network. This modeling enables us to
view software artifacts produced in the development process and developers as
knowledge actants, which constitute the organizational knowing of the project, and
which should be engaged equally as knowledge resources for the indispensable
knowledge collaboration in software development. Based on this conceptualization
and modeling, we proposed the Dynamic Community framework as a new
communication mechanism for knowledge collaboration. The framework reduces the
cost of communication in offshore outsourcing software development by (1) using
information delivery and search mechanisms to allow developers locate relevant
knowledge from a knowledge repository that consists of code, documents and
discussions in order to reduce the frequency of collaboration with other developers;
(2) automatically selecting experts to mitigate the difficulty of finding the experts and
initiating contacts; and (3) forming an ephemeral DynC mailing list that consists only
of developers who are both technically capable and socially willing to engage in
collaboration with a particular developer on a particular topic.

The ephemeral DynC mailing list resulted from the Dynamic Community approach
is neither a direct emails, nor a mail list, it is something in between with persistent
storage similar to discussion forums. It is similar to mailing lists in that the email is
sent to unspecified members, and the participation in knowledge collaboration is
completely controlled by its recipients. It is not mailing lists in that the recipients are
not determined by their own subscriptions but by their social relationships with the
initiator and their technical expertise on the topic. The latter point makes DynC
mailing list similar to direct emails because they are intentionally targeted recipients
who have already established social ties with the sender. However, it differs from
direct emails in that recipients remain anonymous to the sender and other members,
leaving the control of participation to the recipients, and in that the recipients are
automatically identified and chosen.

 Reducing the Cost of Communication and Coordination 167

In offshore outsourcing software development, many development activities need
to be coordinated and collaborated through communication channels. To reduce the
communication cost, it is important for a project team to be able to operate within a
communicative economy with a variety of communicative resources at its developer’s
disposal [33]. Both the unique structure of each communication channel and the
socio-technical relationships among developers determine the collective cost and
benefits of each communicative act. To reduce the cost of communication and
coordination, developers should be able to choose the most appropriate channel for
their needs. The Dynamic Community framework provides a new communication
mechanism that has its special niche. It is not meant to replace any of the currently
dominating communication channels such as face-to-face, direct emails or mailing
lists, but as a complimentary one. For example, if a developer happens to know who
are the experts on a topic of interest, and is socially comfortable to directly approach
the experts, he/she can use the face to face or direct emails (if not collocated). If the
developer feels that the topic is important enough to be known by all members of the
project, he/she can send it through project-wide mailing lists. If the developer thinks
that his/her question only concerns a few, but does not know who they are, the DynC
mailing list is a perfect match for that.

References

1. Allen, T.J.: Managing the flow of technology. MIT Press, Cambridge, MA (1977)
2. Arguello, J., et al.: Talk to me: Foundations for successful individual-group interactions in

online communities. In: Proceedings of conference on human factors in computer systems
(chi06)., pp. 959–968. ACM Press, Montréal, Canada (2006)

3. Brooks, F.P.J.: The mythical man-month: Essays on software engineering, 20th edn.
Addison-Wesley, Reading, MA (1995)

4. Brown, J.S., Duguid, P.: Organizing knowledge. Society for Organizational Learning
Journal 1(2), 28–44 (1999)

5. Coleman, J.C: Social capital in the creation of human capital. American Journal of
Sociology 94, S95–S120 (1988)

6. Cross, R., Borgatti, S.P: The ties that share: Relational characteristics that facilitate
information seeking. In: Huysman, M., Wulf, V. (eds.) Social capital and information
technology, pp. 137–161. MIT Press, Cambridge, MA (2004)

7. de Souza, C.R.B., et al.: How a good software practice thwarts collaboration: The multiple
roles of apis in software development. In: de Souza, C.R.B., et al. (eds.) Proceedings of the
12th acm sigsoft twelfth international symposium on foundations of software engineering
(fse04), pp. 221–220. Newport Beach, CA (2004)

8. Dorina, C.G: Distribution dimensions in software development projects: A taxonomy.
IEEE Software 23(5), 45 (2006)

9. Fischer, G., Scharff, E., Ye, Y.: Fostering social creativity by increasing social capital. In:
Huysman, M., Wulf, V. (eds.) Social capital, pp. 355–399 (2004)

10. Goldberg, A.: Collaborative software engineering. Journal of Object Technology 1(1), 1–
19 (2002)

11. Goldhaber, M.H.: The attention economy. First Monday, vol. 2(4) (1997)
12. Herbsleb, J., Grinter, R.E.: Splitting the organization and integrating the code: Conway’s

law revisited. In: Proceedings of international conference on software engineering
(icse99), pp. 85–95 (1999)

168 Y. Ye, K. Nakakoji, and Y. Yamamoto

13. Herbsleb, J., Mockus, A.: An empirical study of speed and communication in globally-
distributed software development. IEEE Transactions on Software Engineering 29(3), 1–
14 (2003)

14. Herbsleb, J.D., Grinter, R.E: Architectures, coordination, and distance: Conway’s law and
beyond. IEEE Software, 63–70 (September- October 1999)

15. Hoff, B.v.d., Ridder, J.d., Aukema, E.: Exploring the eagerness to share knowledge: The
role of social capital and ict in knowledge sharing. In: Huysman, M., Wulf, V. (eds.)
Social capital and information technology, pp. 163–186. MIT Press, Cambridge, MA
(2004)

16. Hollan, J., Hutchins, E., Kirsch, D.: Distributed cognition: Toward a new foundation for
human-computer interaction research. In: Carroll, J.M. (ed.) Human-computer interaction
in the new millennium, pp. 75–94. ACM Press, New York (2001)

17. Illich, I.: Deschooling society. Harper and Row, New York (1971)
18. Kraut, R.E., et al.: Informal communications in organizations: Form, function, and

technology. In: Oskamp, I.S., Spacapan, S. (eds.) Human reactions to technology: The
claremont symposium on applies social psychology, Sage Publications, Beverly Hills, CA
(1990)

19. Kraut, R.E., Streeter, L.: Coordination in software development. CACM 38(3), 69–81
(1995)

20. Latour, B.: Reassembling the social: An introduction to actor-network-theory. Oxford
University Press, Oxford (2005)

21. McDonald, D.W., Ackerman, M.S.: Just talk to me: A field study of expertise location. In:
McDonald, D.W., Ackerman, M.S. (eds.) Proceedings of conference on computer
supported cooperative work (cscw’98), pp. 315–324. Seattle, WA (1998)

22. Meyer, B.: The unspoken revolution in software engineering, pp. 121–124. IEEE
Computer Society Press, Los Alamitos (2006)

23. Mockus, A., Herbsleb, J.: Expertise browser: A quantitative approach to identifying
expertise. In: Proceedings of 2002 international conference on software engineering,
Orlando, FL, pp. 503–512 (2002)

24. Mumford, E.: Socio-technical system design: Evolving theory and practice. In: Bjerknes,
P.G., Ehn, P., Kyng, M. (eds.) Computers and democracy, pp. 59–76. Averbury,
Aldershot, UK (1987)

25. Nahapiet, J., Ghoshal, S.: Social capital, intellectual capital, and the organizational
advantage. Academy of Management Review 23, 242–266 (1998)

26. Nakakoji, K.: Supporting software development as collective creative knowledge work. In:
Nakakoji, K. (ed.) Proceedings of ase workshop on supporting knowledge collaboration in
software development, Tokyo, (in press) (2006)

27. Nakakoji, K., Fischer, G.: Intertwining knowledge delivery and elicitation: A process
model for human-computer collaboration in design. Knowledge-Based Systems 8(2-3),
94–104 (1995)

28. Nishinaka, Y., et al.: Please step_in: A socio-technical platform for in situ networking. In:
Proceedings of the 12th Asia-Pacific Software Engineering Conference, pp. 813–820.
IEEE CS Press, Taipei (2005)

29. O’Reilly, C.A.: Variations in decision makers’ use of information sources: The impact of
quality and accessibility of information. Academy of Management Journal 25(4), 756–771
(1982)

30. Orlikowski, W.J.: Knowing in practice: Enacting a collective capability in distributed
organizing. Organization Science 13(3), 249–273 (2002)

 Reducing the Cost of Communication and Coordination 169

31. Pentland, A.: Socially aware computation and cmmunication. Computer 38(3), 33–40
(2005)

32. Perlow, L.A.: The time famine: Toward a sociology of work time. Administrative Science
Quarterly 44(1), 57–81 (1999)

33. Reder, S.: The communication economy of the workgroup: Multi-channel genres of
communication. In: Proceedings of cscw1988, pp. 354–368. ACM Press, New York
(1988)

34. Sengupta, B., Chandra, S., Sinha, V.: A research agenda for distributed software
development. In: Proceedings of 2006 international conference on software engineering,
Shanghai, pp. 731–740 (2006)

35. Szoestek, A.M., Markopoulos, P.: Factors defining face-to-face interruptions in the office
environment. In: Proceedings of conference on human factors in computer systems, pp.
1379–1384 (2006)

36. Tyler, J.R., Tang, J.C: When can i expect an email response? A study of rhythms in email
usage. In: Proceedings of the eighth european conference on computer supported
cooperative work (ecscw2003), pp. 239–258. Helsinki (2003)

37. Wagstrom, P., Herbsleb, J.: Dependency forecasting. CACM 49(10), 55–56 (2006)
38. Walz, D.B., Elam, J.J., Curtis, B.: Inside a software design team: Knowledge acquisition,

sharing, and integration. CACM 36(10), 63–77 (1993)
39. Weinberg, G.M.: The psychology of computer programming. Van Nostrand Reinhold,

New York (1971)
40. Ye, Y., Fischer, G.: Information delivery in support of learning reusable software

components on demand. In: Proceedings of 2002 International Conference on Intelligent
User Interfaces (IUI’02), pp. 159–166. ACM Press, San Francisco (2002)

41. Ye, Y., Fischer, G.: Supporting reuse by delivering task-relevant and personalized
information. In: Proceedings of 2002 international conference on software engineering
(icse’02), pp. 513–523. Orlando, FL (2002)

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 170–181, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Survey on Japan-Oriented Offshore Software
Development in China

Lei Zhang1, Meiping Chai1, Xuan Zhang1, Shigeru Miyake1, and Ryota Mibe2

1 Hitachi (China) Research & Development Corporation, 301,Tower C Raycom Infotech
Park, 2 Kexueyuan Nanlu, Haidian District, Beijing 100080, China
{leizhang,mpchai,xzhang,smiyake}@hitachi.cn

2 Hitachi, Ltd., Systems Development Laboratory, 292, Yoshida-cho, Totsuka-ku,
Yokohama-shi, Kanagawa-ken, 244-0817 Japan

mibe@sdl.hitachi.co.jp

Abstract. In order to find out the main features and the existent problems in the
Japan-oriented offshore software development in China, a survey was
conducted in 24 Japan-oriented offshore companies. The questionnaire included
the company information, the project information, the software development
process, and the existent problems and expectations. The survey results were
classified and analyzed according to the company scale and the project style.
The analysis results showed that almost all of the basic features of the projects,
the software development process and the existent problems had close relations
with the company scale and the project type. Finally, based on the survey
results some solution suggestions were proposed for the Japan-oriented offshore
software development.

1 Introduction

In the recent several decades, outsourcing software development has become a
popular way to decrease the software development cost and improve the core
technical competence for many companies in the world.

China, as a big country with the huge manpower, is playing a more and more
important role in the global offshore market. Furthermore, from the survey results of
the market share of the offshore development in China [1], we found that Japan
occupied 59% of the China offshore market, which was much more than the share of
Occident (Europe and US). On the other hand, from the survey results of the market
share of the outsourcing development in Japan [2], it could also be seen that China
occupied the highest share (38%), which was higher than India, Philippine and other
countries. In a word, Japan and China are the most important partners for each other
in the offshore market. Therefore, researching on the offshore software development
between Japan and China is significant to both Japan and China.

In recent years, some surveys on the offshore software development between Japan
and China have been conducted by some organizations in both Japan and China. In
Japan, some researchers [2][3] conducted the surveys on the Japanese outsourcing

 Survey on Japan-Oriented Offshore Software Development in China 171

companies and the Japan-oriented offshore companies in China. They found out some
existent problems of the offshore software development between Japan and China
from the viewpoint of Japan side. In China, several consulting companies or research
firms also conducted some surveys on the Japan-oriented offshore companies, but
mainly focused on the market information. Therefore, it is necessary to conduct a
survey on the Japan-oriented offshore companies in China to find out the existent
technical problems from the viewpoint of China side. This is the consideration of the
present paper.

This paper concludes the survey results based on 24 samples, which was conducted
in China during July and August in 2006. The questionnaire mainly consisted of four
parts: company information, project information, software development process,
existent problems and expected solutions. Detailed results of this survey will be
described in section 2. The main conclusions will be drawn in Section 3.

2 Survey Results and Analysis

2.1 Sample Introduction

The samples included 24 companies in Beijing, Shanghai, Dalian and other three
cites, because there are many Japan-oriented offshore companies in these cities. The
employee number and the number of the finished Japan-oriented projects of these
companies are relatively larger compared with other offshore companies in China.
Therefore, it can be said that these samples were representative. The scale and the
employee structure of these companies were analyzed as follows.
(1) Company scale

The surveyed companies were classified into three kinds of scales according to their
employee number or the number of finished Japan-oriented projects in Table 1. We
can see that 24 samples were mainly large or small companies. Only about 20% were
middle companies.

Table 1. Classification of Company Scale

Company
scale

Employee Number
(or Project Number)

Percentage

Large >500 41.67%
Middle 100 – 500 20.83%
Small <100 37.50%

(2) Employee Structure

All of the companies had the similar employee structure and bachelors were the main
manpower in these companies. Masters and above were more in large companies than
those in other companies (see Fig. 1). This states that the technology level of the
employees in large companies were relatively higher.

172 L. Zhang et al.

Personnel structure-Company scale

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

master /above bachelor others

large

middle
small

Fig. 1. Employee Structure

2.2 Basic Information

(1) Project style

The styles of the outsourced projects from Japan to China were divided into three
types: (a) Whole project development; (b) Module development; (c) Maintenance or
upgrade of an existent project. The survey results showed that the whole project
development and the module development were both main styles of the offshore
projects (Fig. 2). Furthermore, there was no obvious relation between the project
styles and the company scales.

Project style-Company scale

0.00%

15.00%

30.00%

45.00%

60.00%

whole project module maintenance
&upgrade

large

middle
small

Fig. 2. Project Style

(2) Service mode

The service modes of the offshore companies include three types: (a) On-site; (b) Near-
site; (c) Off-site. The results showed that off-site was the major service mode in the
offshore market. Moreover, the larger scale the company was, the more off-site mode
and the less near-site mode were (see Fig. 3(a)). This might be resulted from the higher
technology level of the larger companies and their less dependency on Japan side.

In addition, the module development had higher proportion of the on-site mode
compared with the whole project development, due to the higher dependency of the
module development on Japan side (see Fig. 3(b)).

(3) Software form

Software form was divided into three types: (a) application software; (b) embedded
software; (c) support software and other special software form like the ported
software. The survey results obviously demonstrated that the software form was

 Survey on Japan-Oriented Offshore Software Development in China 173

Service mode - Company scale

0.00%

20.00%

40.00%

60.00%

80.00%

on-site near-site off-site

large
middle
small

 Service mode - Project style

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

on-site near-site off-site

module

whole project

 (a) (b)

Fig. 3. Service mode

mainly application software. However, in the large and middle companies the
proportion of the application software was lower than that in the small companies,
while the proportion of the embedded software was higher (see Fig. 4(a)). This is
because that the development of the embedded software is more difficult than the
application software. Therefore, generally only the larger companies have the ability
to complete the embedded software. In addition, the embedded software was mainly
developed in China as modules, because the hardware part of the embedded system
generally was done by Japan side (see Fig. 4(b)).

Software form - Company scale

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

application embedded support/others

large

middle
small

Software form - Project style

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

application embedded support/others

module

whole project

 (a) (b)

Fig. 4. Software Form

(4) Project scale

We classified the project scale into four kinds of scales: (a) Small (≤6 person-months
or code size≤10K); (b) Middle (≤240 person-months or code size≤100K); (c) Large
(≤1440 person-months or code size≤500K); (d) Oversize (>1440 person-months or
code size>500K). In average, the middle-scale projects occupied the highest share in
the Japan-oriented market. Moreover, generally the larger the company was, the
larger the project was (see Fig. 5(a)). In addition, in the module development, the
project scale was mainly small or middle because the development work was partly
done by Japan side or other companies (see Fig. 5(b)).

2.3 Software Development Process

(1) Software development process
According to the survey, the large or middle companies mostly used the waterfall
process in the offshore development, while the small companies applied the spiral

174 L. Zhang et al.

Project scale - Company scale

0.00%

20.00%

40.00%

60.00%

80.00%

small middle large oversize

large

middle

small

Project scale - Project style

0.00%

20.00%

40.00%

60.00%

80.00%

small middle large oversize

module

whole project

 (a) (b)

Fig. 5. Project Scale

process more often (see Fig.6 (a)). This maybe is caused by the higher flexibility and
the higher acceptability of new software development process in the small companies.

On the other hand, the module development mostly applied the waterfall process,
while the whole project development used more new software development processes,
such as the iterative process and the V type process (see Fig.6 (b)). This is because the
system design was mostly completed by Japan side in the module development, which
resulted in the less flexibility of the module development process. However, the
whole project development was easier to adopt the new software development
processes.

Development process - Company scale

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

waterfall evolutionary spiral prototype RUP others

large

middle

small

(a)

Development process - Project style

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

waterfall evolutionary spiral prototype RUP others

module

w hole project

(b)

Fig. 6. Software Development Process

(2) Task assignment between Japan side and China side

The life cycle of software development mainly includes five steps: RS (requirement
specification), system design, programming & unit test, system test and acceptance
test. From the survey results, we found that in the Japan-oriented offshore
development, RS was always provided by Japan side and the work of programming &

 Survey on Japan-Oriented Offshore Software Development in China 175

unit test were always completed in China side. However, the task assignment of
system design, system test and acceptance test between Japan side and China side
were not constant.

Averagely, the system design was mainly completed by the cooperation of both
Japan side and China side. Furthermore, there was not obvious relation between the
task assignment of system design and the company scale (see Fig. 7(a)). However, for
the module development the system design was mainly done by Japan side or both
sides, while for the whole project development, the system design was mainly done
by China side or both sides (see Fig. 7(b)).

On the other hand, generally the system test and the acceptance test were mainly
completed by China side and Japan side, respectively. However, for the large
companies, the acceptance test was often done by China side (see Fig.8 (a)). This
maybe is due to the higher reliability of the large company in China for Japan side. In
addition, half of the acceptance tests of the module development were executed by
Japan side.

System design - Company scale

0.00%

20.00%

40.00%

60.00%

China side both sides Japan side

large

middle
small

System design - Projrct style

0.00%

20.00%

40.00%

60.00%

China side both sides Japan side

module

whole project

(a) (b)

Fig. 7. Task Assignment of System Design

System/Acceptance test - Company scale

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

China
side(S)

Japan
side(S)

China
side(A)

Japan
side(A)

large
middle
small

System(S)/Acceptance(A) test - Project style

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

China
side(S)

Japan
side(S)

China
side(A)

Japan
side(A)

module
w hole project

 (a) (b)

Fig. 8. Task Assignment of System Test / Acceptance Test

2.4 Existent Problems

(1) Existent Problems

The severity rank of the existent problems in the large or small companies was
delayed delivery, overspent cost and bad software quality. While the rank for the
middle companies was different (see Fig. 9 (a)). However, due to the limited sample
number of the middle companies, it was difficult to explain the reasons. On the other
hand, the problem of the whole project mainly focused on delivery (see Fig.9 (b)).

176 L. Zhang et al.

Main problems - Company scale

0.00%

20.00%

40.00%

60.00%

80.00%

delivery cost quality

large
middle
small

Main problems - Project style

0.00%

20.00%

40.00%

60.00%

80.00%

delivery cost qulaity

module
whole project

 (a) (b)

Fig. 9. Main Problems

The reasons of the above existent problems were also analyzed and showed in
Fig. 10. In the large companies, bug fixing was the most important reason while the
Japan side’s factors had little impact. This is because the projects were developed
more independently in the large companies and they paid more attention to the quality
problems. However, this also demonstrated that in the large companies it was needed
to strengthen the progress and quality management to reduce the time of bug fixing
and shorten the delivery time.

In the smaller companies the Japan side’s factors had more impact, such as the
requirement change, the misestimating of the delivery and cost in Japan-side, Japan
side’s delayed feedback and the inconsistent understanding of RS between Japan side
and China side. This showed that the small companies should communicate with
Japan side more closely and frequently.

On the other hand, in the module development, the existent problems were mainly
related to Japan side. While in the whole project development, the problems were
mainly caused by China sides’ abilities, such as bug fixing.

Reasons of problems - Company scale

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

requirement
change

bug fix Japan side's
estimation

Japan side's
delay

different
understanding

large

middle

small

(a)

Reasons of problems - Project style

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

requirement
change

bug fix Japan side's
estimation

Japan side's
delay

different
understanding

module

whole project

(b)

Fig. 10. Reasons of Existent Problems

 Survey on Japan-Oriented Offshore Software Development in China 177

(2) Requirement change

From the survey results, it was found that 96.7% of the projects’ requirements were
changed frequently during the development process. Moreover, the frequent
requirement change usually led to the delivery and the cost problems.

The experiences of dealing with the requirement change in the offshore companies
and the detailed proportion of each experience are showed in Fig. 11. It can be
concluded that communicating timely with Japan side was the most effective way to
deal with the requirement change.

Experiences of requirement change

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

communicate
timely

apply
prototype
process

require more
detailed RS

control cost
to limit
change

Fig. 11. Experiences of Requirement Change

(3) Communication ways

The communication ways between Japan side and China side were ranked according
to their application frequency as follows: Email, TV meeting, telephone, instant
messenger and face to face. We can see that Email was the most popular
communication way in the offshore development. Although face to face is most
effective, it was seldom used due to the high cost (see Fig. 12).

Frequency rank of communication ways

101.5

559.3

325.6 315.9
236.7

0.0
100.0

200.0
300.0

400.0
500.0

600.0

face to face Email TV meeting telephone instant
messenger

Fig. 12. Frequency Rank of Communication Ways

In order to keep full communication between Japan side and China side, the
companies proposed four suggestions, which were shown in Fig. 13. It can be seen
that more frequent face to face communication was most expected. In addition,
sending progress and quality reports to Japan side more frequently or sending BSE
(Bridge Software Engineer) to Japan side were also effective. Of course, if the
employees could master Japanese, it also would be helpful.

2.5 Information of the Most Successful Projects

The survey results showed that 62.5% of the most successful projects were the whole
project development (Fig. 14). Because compared with the module development

178 L. Zhang et al.

Suggested communication ways
62.06%

26.30%
21.16%

8.72%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

more frequent
face to face

more frequent
reports

BSE to Japan side employees
mastering
Japanese

Fig. 13. Suggested Communication Ways

which was distributed in different companies, the whole project development was
easier to be managed, especially when the design or the requirements were often
changed.

Styles of successful projects

62.50%

20.83% 16.67%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

whole project module not clear

Fig. 14. Styles of Successful Projects

In addition, 79.17% of the most successful projects were middle scale, which were
also easier to be managed compared with the large or oversize projects (Fig. 15).

Scales of successful projects

79.17%

8.33% 12.50%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

middle large oversize

Fig. 15. Scales of Successful Projects

From the survey results, it was found that the success factors of these projects
included four aspects (see Fig. 16): (a) Full communication of both sides; (b) China
side’s abilities, including the accurate estimation of delivery and cost, the suitable
task assignment and the developers’ technology level; (c) Japan side’s ability,
including the good design, the project management and the detailed RS; (d) Iterative
process.

In the modules development, Japan side’s factors were most significant, especially
the design of Japan side. However, for the whole project development, the full
communication was the most crucial success factor.

 Survey on Japan-Oriented Offshore Software Development in China 179

Success factors - Project style

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

communication C's abilities J's design J's estimation detailed RS iterative
process

module

whole project

Fig. 16. Success Factors

2.6 Suggestions to Japan Side

In this survey, the suggestions to Japan side mainly focused on the more detailed RS,
the better design and the special manager. However, the more detailed RS was more
important for the large or middle companies, while the special manager was more
expected by the small companies due to their more dependency on Japan side (see
Fig.17 (a)).

On the other hand, the suggestions to Japan side for the module development
mainly focused on the more detailed RS while those for the whole project
development mainly focused on the special manager (see Fig.17 (b)). This is because
for the module development the system design was mostly done by Japan side, the
correct understanding of the requirement from Japan was most important for China
side. However, for the whole project development, the system design was mostly
completed by China side and more communication was needed. In this case, the
special manager in Japan side was more significant.

Suggestions to Japan side - Company scale

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

more detailed
RS

better design special
manager

progress
control

qulity control

large

middle
small

(a)

Suggestions to Japan side - Project style

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

more detailed
RS

better design special
manager

progress
control

qulity control

mudule

w hole project

(b)

Fig. 17. Suggestions to Japan Side

3 Conclusions

Based on the survey results, it was found that almost all the basic features of the
projects, such as the service mode, the software form and the project scale, had close

180 L. Zhang et al.

relation with the company scales and the project styles. Furthermore, the software
development process and the existent problems and expectations also had different
tendency for different company scales and project styles. Some main conclusions
were drawn as follows:

• The large offshore companies had higher technology level and less dependency on
Japan side, so the large projects and the embedded projects were more than the
smaller companies, and the projects were mainly completed by off-site mode.
Waterfall process was mostly applied and the system and acceptance tests were
also mostly done by China side. The software quality was paid more attention and
the delivery was often delayed due to bug fixing. This showed the need to
strengthen the progress and quality management in the large companies. In
addition, the more detailed requirement from Japan side was mostly expected by
the large companies.

• The small offshore companies had lower technology level and more dependency
on Japan side, so their projects were mostly small and application software. Both
near-site and off-site were main service modes. New software development process
seemed more easily accepted by the small companies. However, the acceptance test
was mainly done by Japan side. The delivery and quality problems were mainly
caused by the requirement change, the misunderstanding of the requirement and
the misestimating of delivery time in Japan side. This demonstrated that the small
companies should communicate with Japan side more closely and frequently.
Therefore, the special manager in Japan side was mostly expected by the small
companies.

• For the module development, the system design and the acceptance test were
mainly done by Japan side. Therefore, the good design from Japan side and the
correct understanding of the requirement were important for China side. The
proportion of the embedded software was higher and the project scale was mostly
smaller compared with the whole project development. Due to the less flexibility
of the module development, the waterfall process was mostly applied.

• For the whole project development, the system design and the acceptance test were
mainly done by China side, so the full communication with Japan side and the
ability of China side were crucial to ensure the project successful. The special
manager in Japan side was mostly expected for the whole project development. In
addition, the application software and the large projects in the whole project
development were more than the module development. New software development
process was more often applied.

Furthermore, based on these companies’ problems and successful experiences,
some solution proposals were presented as follows:

• Firstly, in order to ensure the offshore project successful, Japan side should assign
the special manager who is responsible for providing the detailed and exact RS, the
good design and the fast feedback. China side should improve the technology level
and strengthen the progress and quality management.

• Secondly, due to the frequent requirement change and the different understanding
of RS between Japan side and China side, it is suggested to apply new software
development process and practices. For example, applying the iterative process

 Survey on Japan-Oriented Offshore Software Development in China 181

[4][5] to more flexibly adapt to the requirement changes and applying the XP
practice of Customer Test Driven Development [6] to keep the consistency of RS
understanding between Japan side and China side.

• Finally, the suitable assistant tools should be applied to improve the development
efficiency and help the project managers find the potential problems. For example,
some software configuration management tools can be used to collect the progress
and quality information, the requirement management tools can track the
requirement changes, and etc.

Of course, 24 samples maybe seem limited from the viewpoint of statistics, so
further survey is needed to collect more detailed information and verify the above
conclusions. Moreover, the above solution proposals should also be verified and
improved by the application in the real offshore software development. In the near
future, an experiment will be conducted to evaluate the effect of our new offshore
software development process, which is based on the iterative process and the
customer test driven practice.

References

1. http://www.analysis.com.cn
2. S-open offshore development seminar, Guide of Offshoring, Nikei BP Press (Japanese)

(2004)
3. Software oversea supply seminar, Guide of Offshore Development in China, Computer Age

Company (Japanese) (2005)
4. Beck, K.: Extreme Programming Explained: embrace change. Addison-Wesley, London,

UK (2000)
5. Kruchten, P.: The Rational Unified Process: An Introduction. China Machine Press, Beijing

(2004)
6. Jeffries, R., et al.: Extreme Programming Installed. Addison-Wesley, London, UK (2002)

B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 182–199, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Toward Visualization and Analysis of Traceability
Relationships in Distributed and Offshore Software

Development Projects

Cleidson R.B. de Souza1, Tobias Hildenbrand2, and David Redmiles3

1 Departamento de Informática, Universidade Federal do Pará
Campus Universitário do Guamá, Belém, PA, 66.075-110, Brazil

cdesouza@ufpa.br
2 Lehrstuhl für ABWL und Wirtschaftsinformatik, Universität Mannheim,

Schloss, D-68131 Mannheim, Germany
hildenbrand@uni-mannheim.de

3 Department of Informatics, Donald Bren School of Information and Computer Sciences,
University of California, Irvine
Irvine, CA 92697-3430, USA
redmiles@ics.uci.edu

Abstract. Offshore software development projects provoke new issues to the
collaborative endeavor of software development due to their global distribution
and involvement of various people, processes, and tools. These problems relate
to the geographical distance and the associated time-zone differences; cultural,
organizational, and process issues; as well as language problems. However,
existing tool support is neither adequate nor grounded in empirical
observations. This paper presents two empirical studies of global software
development teams and their usage of tools. The results are then used to
motivate and inform the construction of more useful software development
tools for offshore projects. This research focuses on issues that are tool-related
but have not yet been solved by existing tools. The two software tools presented
as solutions, Ariadne and TraVis, explicitly address yet unresolved issues in
global software development and also integrate with prevalent other solutions.

Keywords: Traceability Relationships, Dependencies, Visualization,
Distributed and Global Software Development, Offshore Software
Development.

1 Introduction

Software development is one of the most common examples of collaborative work.
Software developers interact face to face and through different artifacts to reach their
common goal. To support this effort, several approaches and tools have been
proposed. For instance, software processes [1] establish the sequence of activities that
software developers need to perform, and modularization techniques [2] allow a
software system to be decomposed and developed in pieces (artifacts) that can be later

 Toward Visualization and Analysis of Traceability Relationships 183

reintegrated. Tool support has also been adapted, ranging from simple tools such as
instant messenger systems and email, to configuration management tools [3, 4], and to
even more specialized collaborative tools such as Ariadne [5, 6], Augur [7], Jazz [8],
and Palantír [9], among others.

More recently, due largely to economic considerations [10], engineers from
different countries and continents have collaborated in global software development
(GSD) efforts—software projects that span countries, time zones, and even continents
[10]. Therefore, projects involving organizations from other continents are called
“offshore” projects. However, these projects bring additional problems to the
collaborative endeavor of software development: the geographical distance and the
associated time-zone differences; cultural, organizational, and process issues; as well
as language problems [11, 12]. Despite the commonalities in such global efforts,
adequate tool support for these activities has not yet been fully realized. Furthermore,
the few existing tools that have been proposed for offshore scenarios are rarely
grounded in empirical data. The contribution of this paper is exactly that—it presents
two empirical studies about GSD teams in offshore scenarios and their utilization of
tools. The results are then used to motivate the construction of more adequate and
useful software tools in this context. The empirical studies identify persistent
problems in organizations conducting GSD projects. The focus is on issues that are
tool-related but have not yet been solved by existing solutions. These particular issues
are used to motivate the construction of two novel software tools, Ariadne and
TraVis, which explicitly address yet unresolved issues in global software
development and complement existing tools in practice.

This paper is organized as follows. The next section presents the empirical studies
and section 3 then describes the tools that were developed grounded on the analysis of
the empirical data. A discussion section about the tools specific usefulness and value
added follows. Finally, conclusions and suggestions for future work are presented.

2 Empirical Studies

This section presents the two empirical studies that were conducted. The first one is a
qualitative study that aimed to explore the advantages and disadvantages of offshore
software development (OSD). The second one is an analysis of feature and change
requests for a collaboration platform aimed at collaborative and distributed software
development teams.

2.1 The MBL Offshore Software Development Project

This empirical study describes a qualitative investigation of an offshore software
development project that took place in a large software development organization. A
qualitative approach was adopted because it allowed us to investigate our own
research questions while it also offered the flexibility to explore issues from the
perspectives of the informants [13].

184 C.R.B. de Souza, T. Hildenbrand, and D. Redmiles

2.1.1 Setting and Methods
Our fieldwork was conducted in a large software development company we will call
LAR (a pseudonym). LAR is one of the largest software development companies in
the United States, with products ranging from operating systems to software
development tools, including e-business and tailored applications. The project we
studied, MBL (another pseudonym), was responsible for developing a mobile
application that had not yet been released during the period of the study. The project
staff was divided into three major groups: user interface (UI) designers, software
developers, and the quality assurance (QA) team. The staff was distributed over five
different sites spread in three different countries: North Carolina, US; Massachusetts,
US; Beijing, China; Shanghai, China; and Taipei, Taiwan. To be more specific, user
interface design and evaluation was performed by six professionals in North Carolina,
and the implementation was performed in all other sites distributed as follows: nine
developers in Massachusetts, five in Shanghai, five in Beijing, and four in Taipei. The
quality assurance team was divided between the US and Chinese sites: three engineers
were located in Massachusetts and six engineers in Beijing. The main coordination of
the project and the project manager for this project were located in Massachusetts,
where all the data were collected.

Data were collected through document analysis and semi-structured interviews
[14]. Among other documentation, we collected artifacts, emails and instant messages
exchanged among the software engineers. We were also granted access to shared
discussion databases used by the software engineers. All of this information was used
in addition to notes generated by the interviews. We conducted 17 semi-structured
interviews with members of all teams from the different sites: some interviews were
conducted face to face, and others were conducted by telephone, with one interview
conducted by using instant messaging. The interview questions were designed to
encourage the participants to talk about their everyday work, including work
processes, problems, tools, communication, collaboration, and coordination efforts
between their collocated and distributed colleagues. Interviews also aimed to explore
the relationship between software dependencies and the coordination of software
development projects, or, to be more specific, the potential usage of dependency
information to facilitate collaborative software development. Interviews lasted
between 20 and 70 minutes. All the material collected has been analyzed using
grounded theory techniques [13]. The following sections describe the results of this
analysis.

2.1.2 MBL’s Software Development Process
As expected, user interface designers wrote specifications in the very beginning of the
process. These specifications were aimed at managers and contained high-level
descriptions of the functionalities of the application. Detailed specifications, also
called design documents, were written by software developers and contained parts of
source code (method calls, Java interfaces, etc.). The goal of these specifications was
to allow the reader to learn how to use the software component being implemented;
that is, they provided as much detail as possible about how the specifications would
be implemented without actually coding them. UI designers and software developers
reviewed the initial versions of these documents, which were stored in shared folders
accessible to all team members.

 Toward Visualization and Analysis of Traceability Relationships 185

Specifications and design documents were used to develop test plans, which would
be shown to the developers once they finished their implementation work. In fact,
testing had already started: the QA engineers tested the software, and when they
found an issue, they filled a request in the bug database that would automatically
generate an email to the developers. It was the developers’ responsibility to find out
where in the architecture the bug was to be found because the testing was performed
from the point of view of the user. At the time, most issues were simply ignored by
developers because they were aware that the issues reflected either things that were
not implemented yet or things that they already knew were not working. Based on the
specifications, software developers created methods in the source code but without
actually providing an implementation for them. When the data collection was
conducted, UI designers had just started opening issues in the database for problems
in the software. Previously, they informed the developers about issues by using email
or instant messages.

2.1.3 Changes in the Specifications and Notifications
UI designers performed usability tests in the specifications even before the
implementation was finished. The results of these tests could lead designers to
propose changes to the specifications they had created, and as a consequence could
impact software developers’ work. Indeed, according to one of members of the test
team, the specifications changed fairly often. Another software developer reported
overhearing his colleagues mentioning they had finished implementing a particular
feature and then UI designers requested a change: “Well, I just implemented it this
way and now they want us to change it” (informant 16). Other informants also
reported not being notified about changes in the specifications. Another reason that
led to changes in the specifications involved requests from the software developers.
They requested changes to the UI specifications, arguing that some of the UI designs
were not technically feasible in the amount of time they had.

Changes in the specifications also impacted the quality assurance team. Members
of this team had to write test plans and rewrite them every time the specifications
were updated. According to a tester: “it [the process of re-writing test plans] is a very
boring job” (informant 09). To minimize this problem, QA engineers broke the test
plans into two parts—the test design and the test data—so that only one of them had
to be changed when the specification changed. The QA manager in China reported
that QA members could not wait for the specifications to be finished to write their test
plans because, if they did, they would not have enough time to write the test cases.

In any of these cases, changes in the specifications were preceded by discussions
between the UI designers and the software developers through conference calls,
emails, instant messaging, or even meetings (informants 14 and 16).

2.1.4 Notification of the Changes
A relevant aspect that came up in the data regarded change notifications, that is,
notifications that were sent because of changes in the different artifacts. A software
engineer in China reported that he would not receive notifications from his “contact
person” in the US. In contrast, the UI designer interviewed reported that she would
notify developers and testers of changes in the specifications. Whenever notifications

186 C.R.B. de Souza, T. Hildenbrand, and D. Redmiles

were received, however, they overwhelmed developers because they were not tailored
to them, as a developer in the US properly put it (informant 03):

I will never go into one document trying to figure out what other people did. ... But
I also wouldn’t like it—the way that—I get a … ten million different email
messages just because somebody did over something that had nothing to do with
me.

This quote also illustrates the importance to developers of change management
systems that track the changes in artifacts.

2.1.5 Dependency Analysis
As mentioned in the previous section, one of the goals of the interviews was to
investigate the usage of software dependency information to coordinate distributed
projects. One informant mentioned that by inspecting configuration files of the
project, he could find out which components depended on the component he was
developing. With that information, this developer could find out which developers
depended on his code, another piece of information that could be used to guide the
notifications to be sent whenever artifacts changed.1

Another software developer reported a similar interest in finding out who the
developers were that were calling her code: “There is no really … good way to keep
track of who’s consuming your code.” The distributed nature of this project was
particularly relevant in this case, as the conversation below attests:

Informant 03: … local people like Mike [pseudonym]. It’s easy just to say, “Well,
have you tried this? Have you tried this as well?” … “I didn’t have time. I’m
going to try it tomorrow.” And then the second day I bumped into him again. I
would bug him and say, “Well, have you tried it? How did it go?” [He would] say,
“Oh, that didn’t work. I would send you the exception.” It’s much easier at this
point, but let’s say the … people in Taiwan … I don’t actively go ahead and chase
them around and say, “How many—this interface, how many methods have you
exercised?” You don’t need this. I don’t—I mean I don’t have time, simply I just
don’t have time to do that. So … is so much harder.

Researcher: Would you like to know that information?

Informant 03: I definitely would have liked to—would love to—have that
information as early as possible … because that makes my life much easier. For
example, Mike [a local colleague] starts to use my stuff so late and we have …
builds supposedly by 23rd. That’s when we have all of the … work. And he only
starts to test my stuff on the 21st and by [the] 22nd he realized there are two
methods [that are] not really doing what I want it to do. And he told me on the
22nd and I only have one day—actually, not even one day … to do it because we
do build like once a day. Well, I would have had like any other build … have to
get up at four. … So, of course, I would love to hear them telling me, “Okay, I
have ... I did all of testing, [and it] worked.”

1 We will illustrate in the following section that this is exactly the principle used in Ariadne.

 Toward Visualization and Analysis of Traceability Relationships 187

The quote above illustrates how it is important for developers to know who is
consuming their codes and when this integration with their codes starts. This
information is useful because it allows the developer to anticipate the work that will
be requested of them before the deadline. This information is necessary from both
collocated and distributed colleagues. The informal conversations that are afforded by
the collocation simplify this process among local colleagues; in contrast, however,
developers are not able to find this status information when their colleagues are
distributed over different countries. This is again made clear by informant 03:

With Mike [a collocated developer], I can say, “Can you please try …?” With
Taiwan, I don’t do that. I don’t really know them that well. I talk to them, but
unless something … unless something [is] really important, you don’t …

In fact, this informant reported that in one occasion a developer in China was already
using her code and she did not know it.

Developers in China reported the exact same problem during the interviews: the
Shangai team was developing a software component already in use by the Beijing
team for two months and by the US team for only a week. According to the Shangai
team leader, his distributed colleagues were giving low priority to his component, and
that could lead to problems in the end of the implementation phase for his team
because they would have only a short time to fix potential problems. This happened
with both the Beijing and the US teams. In fact, he reported having to email his
colleagues in Beijing asking them to integrate his component into their code and
requesting a deadline for that. During weekly “checkpoints,” he would confirm how
the integration was going. This team leader trained the Beijing developers on the
usage of his component. During the period of data collection, a Beijing developer was
in the United States, training the developers on the same component. To accompany
this process, the Shangai team leader and the Beijing developer who was in the United
States had weekly “checkpoints.” It was through one of these checkpoints that the
Shangai team found out that the US team had started using his component.

These results are not surprising (the effect of distance on the coordination of the
work has been known for decades); however, the possibility of using software
dependency information to minimize the coordination problems is an important result
of this study. This will be discussed in more detail in the following section.

2.2 Feature and Change Requests for Offshore Collaboration Platforms

Collaborative software development platforms (CSDPs) comprise and unify not only
source code management, but multiple software development and knowledge
management tools. CSDPs include build management systems, issue trackers, Wikis,
and discussion forums [25]. These tools have often been successfully used in
distributed open source software development projects as well as offshore software
development scenarios [24, 25],. Using a CSDP is state-of-the-art in OSD [26] and
also serves as a method for capturing and maintaining more relevant traceability and
rationale information [23, 27]. Therefore, in a second empirical effort, customer
feature and change requests of one of the market-leading collaborative software

188 C.R.B. de Souza, T. Hildenbrand, and D. Redmiles

development platform vendors, VCI (pseudonym), have been investigated and
analyzed for evidence about yet open tool–related issues in distributed and offshore
software development.

2.2.1 Settings and Methodology
VCI has a broad customer base, ranging from large producing companies and
financial service providers to software development companies. In fact, most
companies use VCI’s tool for globally distributed development projects. VCI’s
collaboration platform supports most common collaboration features such as a
document management system (DMS), a Wiki system, issue trackers, reporting, Wiki-
enabled discussion forums, and chat rooms, as well as code-related features such as
source code and build management (cp. [25]). The platform is not a stand-alone
solution for software development, but also integrates various established tools (e.g.,
the Eclipse development environment, CVS, and Subversion), as well as numerous
other tools. The platform does not prescribe one particular development process,
which can be an advantage with several heterogeneous sites involved.

Customers are allowed and encouraged to post their requests concerning the
platform directly to VCI’s change request tracker. This tracker is based on VCI’s own
tool and establishes something comparable to a community of practice among its
customers. The tracker also supports an item-related discussion among users and
support personnel. Moreover, users can link change requests to other requests and
artifacts and refer to those.

The data inspected was extracted from the change request tracker and contained
183 items from 34 different customers. Each item has a unique identification (ID)
number, a brief summary in addition to a more detailed description with comments
from different users, as well as responses from VCI’s support team, a time stamp, a
resolution status, and an issue category.2 Table 1 shows the distribution of these
feature requests over different categories and users. These figures illustrate that
besides many unspecified items, the design of the Internet-based (Web) user interface
and the lately added Wiki system drew most of the attention from customers.
However, many unspecified issues also revolved around UI and Wiki.

In a second analytic step, 232 already resolved items were also investigated
because some of those were not yet incorporated in the latest release of the software
or were only partly implemented so far. Moreover, some customer needs could not be
implemented due to time restrictions, but were valid expressions of their requirements
as well. The distribution of categories is comparable to one of the unresolved issues
(cp. Table 1) and thus complements the initial data set.

As for the interpretative analysis, each tracker item was investigated, including its
cross references and the customers involved3. This in-depth analysis revealed that
there are currently three major fields of interest among the CSDP users: artifact
change propagation, artifact linking and traceability, and relationship visualization.

2 Please note that the categories have been set by the vendor and several other attributes were

not considered for this particular analysis.
3 In the following sections, different customers, as representatives of their companies, will be

coded with capital letters starting with “customer A.”

 Toward Visualization and Analysis of Traceability Relationships 189

Table 1. Distribution of Feature Requests over Categories and Users

Category #Requests #Users
Client 1 1

Communication 4 4
Database 15 4

Documentation 5 4
Eclipse Plug-in 3 1

Release 2 2
Remote Interface 12 2

Run Time 2 2
Server 11 7

Web User Interface 29 12
Wiki 22 5

Unspecified 77 23
TOTAL 183 34 (unique)

2.2.2 Artifact Change Propagation
Many customers referred to the default notification mechanism for artifact changes as
being too exhaustive or not fine-grained enough (e.g., customers C and D, among
others). As one customer put it, “there [sometimes] is a mail flood” produced by the
platform. In offshore software development (OSD) projects, however, an automated
subscription and notification mechanism is critical for global change propagation and
management [15]. VCI’s collaboration platform already provides capabilities to adapt
the propagation and notification patterns, but customers still bring up very special
requirements, such as the “ability to subscribe individuals to be notified for a
particular task” (customer E) and being able to configure the notification content in
order to “quickly decide whether it could be important or not” (customer D).

Regarding distributed change management, there is also a demand for an
automatically generated “change history” for certain artifacts or aggregated sets of
artifacts. Examples include “a compilation of all changes in a whole subtree [of
artifacts]” (customer A) and a more complete presentation of related notifications as a
whole because they do not want to have “two separate systems, [the CSDP] and the
email system” (customer B). This leads to issues of traceability of development
processes and rationale, which are discussed in the next section.

2.2.3 Artifact Linking and Traceability
Capturing and managing traceable information about artifacts, processes, and
development rationale seems to be a major issue among VCI’s customers. Many
issues were related to this problem, half of which are still unresolved in the current
version of the platform.

Customers like the idea of being able to link related artifacts by using either Wiki
links or the standards association mechanism incorporated in the CSDP. They use
Wiki pages and Wiki comments attached to various other artifact types to create a
project-specific traceability network (as stated by customers A and F). However,
various customers mention sophisticated ways of linking artifacts not yet supported

190 C.R.B. de Souza, T. Hildenbrand, and D. Redmiles

by the platform. Customer A asked for a unified way of linking different types of
artifacts and even automatic synchronization between Wiki links and associations:
“The Wiki-description of documents and tracker items should be scanned for inter-
Wiki links to tracker items or documents, and those should figure in the [association]
tab automatically.”

This suggests that an easier and more concise way of capturing and managing links
is required. Other customers also required easier and semi-automated linking of
external artifacts, such as Internet, intranet, and Wikipedia resources. This
requirement has been explicitly stated by customer A and confirmed by the VCI
management in another tracker issue: “We need to be able to configure our own
[CSDP] extensions.”

The concept of rationale management is deeply related to that of artifact linking.
Customers use the platform to capture their rationale for decision processes in
different software development disciplines, such as requirements engineering,
architectural design, and implementation. For instance, customers postulate their need
to export the full contents of a tracker into their process reports. Customer G, for
instance, expressed a need for a “way to export the full contents of a tracker including
the comments.”

Even though many requests revolved around Wiki-related issues, this seems to
have spurred the general thoughts on different means of linking artifacts and
retrieving this information from the platform. When analyzing the dates of committed
requests, the discussion about traceability networks established by Wiki webs has
apparently ignited more general requests pertaining to artifact linking. For example,
customer A requested automatic synchronization of Wiki links with other association
mechanisms: “[links] need to be [automatically] added to the [association] tab and
removed.”

Instead of just providing listed links to certain artifacts or resources, as customer A
did, several parties demanded alternative ways of representing the network of links.
VCI, as represented by their customer support, responded to this in the following way,
according to VCI management: “In the first step we provide the relationship
visualization with a quite simple GUI. In the next releases we will add graph,
hypergraph, [and] MindMap visualization.” VCI regards these features as
complementary to the existing reporting functionality of their CSDP.

2.3 Brief Summary of Empirical Findings

As has been shown in the empirical studies in section 2, tool-related issues in offshore
software development revolved around change management and traceability issues, in
addition to the more general issues of distributed collaboration and asynchronous
communication, which have been improved by the use of a CSDP in the VCI study.
Both studies showed that change propagation and notification are still major issues in
different tool settings. The MBL study also revealed many issues pertaining to
dependency analysis and management, whereas the VCI customers had problems with
linking different artifacts and visualizing these relationships.

 Toward Visualization and Analysis of Traceability Relationships 191

3 Tool Support for Offshore Software Development

This section describes two different tools created to support OSD. The first, Ariadne,
is an Eclipse plug-in, whereas the second tool, TraVis, is built on top of the same
collaborative software development platform VCI used in our second empirical study.
More important, the designs of both tools were informed by the empirical data
described in the previous section. Both tools focus on the identification, analysis, and
visualization of dependency and traceability information that exist among the
software development artifacts. With this information, it is possible to identify
software developers associated with these artifacts and provide tailored notification of
changes and proper impact analysis. Furthermore, it is also possible to perform social
network analysis to identify developers who play special roles in the software
development process.

3.1 Ariadne

3.1.1 Functionality and Features
Ariadne is designed to perform automatic dependency analysis on software projects
shared in configuration management repositories, and to generate visualizations of
social dependency information. Generating social dependencies involves three types
of dependency information. Initially, Ariadne identifies the technical dependencies in
the source code by constructing call-graphs. According to Callahan and colleagues, a
call-graph “summarizes the dynamic invocation relationships between procedures”
[16]. Second, by describing dependencies in the source code, a call-graph potentially
unveils dependencies among software developers responsible for the software
components [17, 18]. In order to reveal dependencies among developers, it is
necessary to populate the call-graph with “social information.” The ultimate goal is to
create a data structure that describes which software developers depend on which
other software developers for a given piece of code. An example of this data-
structure, called a social call-graph [17]. Last, because social call-graphs describe
both technical dependencies and authorship information, they can be used to generate
sociograms describing the dependence relationship only among software developers.
That is, they can show social dependencies among developers that exist because of
dependencies in the source code on which they are working. A sociogram, as used in
social network analysis [19], is a graphical representation of a set of items, vertices, or
nodes connected to one another via links or edges. The sociogram of the Tyrant
project is shown on Figure 1.

The sociograms generated by Ariadne can be used by software developers to
identify two important pieces of information: who they depend on and who depends
on their work. As the MBL data indicate, this information is very important
to facilitate the coordination of distributed software development projects. We
have also used these sociograms to understand free/open source software
development [20].

192 C.R.B. de Souza, T. Hildenbrand, and D. Redmiles

Fig. 1. Tyrant’s Sociogram

3.1.2 Architecture
Ariadne is implemented as a Java plug-in to the popular Eclipse IDE. As such,
Ariadne is integrated into this environment and makes use of Eclipse functionality
and its plug-in model. The dependency processing functionality is encapsulated in a
main control plug-in that delegates source-code analysis, annotation of the source-
code analysis data, and visualization of the created data structure to sub-plug-ins. As a
result, Ariadne offers users the flexibility to use dependency generators for a diverse
set of source languages, configuration management repositories, and methods of
visualization.

Ariadne automatically selects (while offering users the ability to override this
choice) appropriate plug-ins for analyzing the user’s project based on the project’s
context. Once the control plug-in has located appropriate sub-plug-ins to analyze the
project’s source code and query the project’s configuration management, the control
plug-in automatically generates social dependencies for that project. By using one of
the installed visualization plug-ins, it is possible to display all three types of
dependency information to the user: technical dependencies, social call-graph, and
sociograms.

Our current implementation can present call-graphs and social call-graphs at three
different levels of abstraction, based on the programming language’s hierarchy (e.g.,
packages, classes, methods in Java). Essentially, information is aggregated at each
hierarchy level to, potentially, average the different results provided by diverse call-
graph extractors [21]. For instance, class dependencies are displayed as the
aggregation of method dependencies (i.e., the call-graph).

Ariadne was initially implemented to analyze only Java projects and extract
information from CVS repositories. Later, we redesigned it based on a layered
architecture to be general enough to support various programming languages,
configuration management (CM) systems, and visualizations. The configuration
management and dependency management parts of the API are used to isolate the

 Toward Visualization and Analysis of Traceability Relationships 193

programming language and configuration management tools from the visualizations
provided by Ariadne. Through this approach, independent developers can contribute
new plug-ins (configuration management tools and programming languages) to
Ariadne while reusing previous visualizations. It is also possible to easily design new
visualizations to already supported programming languages and CM tools. Ariadne
has default graph and tree view visualizations built in. Note that although Eclipse has
a generic Team API for accomplishing simple tasks involving version-controlled files,
programmers must use the internal (unpublished) API to accomplish more
complicated tasks. The inability to directly manipulate remote resources motivated us
to create our own remote resource API.

To facilitate the understanding and usage of Ariadne’s API, we utilize the façade
design pattern [22] to aggregate methods to be used to query program dependency,
authorship information and both types of information combined (the social call-
graph). For example, developers may query the classes that depend on a particular
class, the authors of a particular piece of code, all the authors of a file, how the
ownership of a class changes from one release to the next, and so on.

3.2 TraVis – Trace Visualization

The TraVis (Trace Visualization) tool leverages the use of dependencies among
distributed assets unified in one CSDP and their users by allowing the visualization
and analysis of these different relationships. The traceability and rationale information
is captured as distributed CSDP users develop and document their processes in OSD
projects. The artifacts are then annotated and connected with their respective
descriptions, discussions (e.g., design-related), as well as inter-related process steps
represented as issue tracker items. TraVis captures both traces explicitly modeled as
associations and more implicit links as built by Wiki systems integrated in the CSDP.

This way, they form a heterogeneous network of information. Managing all this
information on one single CSDP allows linking all the artifacts, activity descriptions,
and responsible users, consequently establishing the actual “traceability network,” as
described by [23]. This network is complemented by capturing rationale information,
that is, making decision processes (e.g., design or code-related changes) traceable by
storing the history of artifacts and users’ justifications behind decisions (see [27]).
TraVis provides advanced visualization and analysis capabilities for traceability
networks, including several logical filters for displaying certain aspects (e.g.,
particular artifact types, process categories, or user groups). Thus, different role-based
views, e.g. for source code developers, designers, and project managers, can be
defined. Moreover, TraVis is able to display networks originating from particular
artifacts, activities, and users (see Figure 2).

This allows analyzing the graphs that grow around one particular entity (in
Figure 2: task 1195), for instance in order to conduct impact analyses centered on
certain artifacts that are subject to change. Moreover, the latest version of TraVis
displays artifact nodes according to their user value (value-based software
engineering, VBSE, see [28]). Because OSD projects contain a plethora of linked
information, we implemented methods like VBSE to reduce and enrich the network
information in order to be more useful to both developers and managers (see [29]). To

194 C.R.B. de Souza, T. Hildenbrand, and D. Redmiles

Fig. 2. Value-Based Trace Visualization with TraVis

this aim, not only the node but also the edges contain additional information, such as
the type of relationship (i.e. link semantics) or the rationale for linking one artifact
with another or replacing it by a changed version. Rationale information (e.g.,
comments on committed code or changed artifacts) is displayed in one context with
the related artifacts (see right column in Figure 3).

Technologically, TraVis extracts traceability information from CSDPs over their
remote APIs (e.g., via Web Services) or directly from their Web interfaces. TraVis
stores this information internally and so far, no redundant persistent storage is
implemented. TraVis then constructs the traceability network structure from the
CSDP information. Artifacts, such as documents, code, Wiki pages, and tracker items,
as well as related users are graphically represented as nodes, whereas their
relationships are stored as edges. For visualization purposes, the open source software
“Java Universal Network/Graph Framework” (JUNG)4 was chosen. It enables many
helpful features such as zooming as well as manual and automatic graph
reorganization according to pre-defined patterns and algorithms.

4 Discussion

The most important aspect that can be identified in both the MBL and the VCI studies
is the possibility of using dependency information to facilitate the coordination of
OSD activities. Being able to find out when a dependency started to exist between
software artifacts is an important aspect raised in the MBL study. Providing that
information can facilitate the coordination of software development projects through

4 http://jung.sourceforge.net/ (09/30/2006)

 Toward Visualization and Analysis of Traceability Relationships 195

the awareness of other developers’ work status [4, 30]. This aspect is deeply
embedded into both Ariadne and TraVis. In fact, Ariadne supports the automatic
identification of dependencies among software components. By doing that, Ariadne
allows software developers to determine the set of developers who are using their
codes as well as when this usage started. Ariadne is limited to source code to allow
the automatic creation of dependency links because the source code can be properly
parsed. Ariadne finds the dependency links automatically, so developers do not have
to worry about manual artifact linking and trace capturing. As postulated by several
VCI customers, Ariadne’s automatic extraction of dependencies addresses the issue of
extensive exports of traceability network information—at least for code-related
artifacts and their authors.

In contrast, TraVis is based on the manual creation of dependency relationships. Its
information base is not limited to source code only, however, and it supports all
ranges of software development artifacts. TraVis also provides a real-time view of the
project’s traceability network of artifacts and users, which contains valuable
information about dependencies between software developers (similar to Ariadne) and
therefore supports better awareness for what other people work on. TraVis thus allows
for real-time graphical representations and analyses. TraVis is also able to display the
current status of inter-related tasks represented as tracker items. This allows for even
better awareness in OSD scenarios. By providing a finer-grained dependency and
tracking analysis of artifacts produced by distributed teams, both TraVis and Ariadne
permit individual users to understand their roles in the broader software development
process with respect to other users and the artifacts that they produce. This
understanding is crucial to the coordination of collaborative software development
efforts [31].

Once the dependency information is available to our tools, it is possible to tailor
the notification messages that are sent due to changes in the artifacts; that is,
notifications about the changes can now be sent only to the subset of developers who
are interested in the changes. We assume that this subset is basically the set of
developers who depend on the artifact being changed, but that assumption is grounded
on our empirical data (see sections 0 and 2.2.2). The goal here is to reduce the number
of notifications that software developers receive because a common problem in both
the MBL and VCI studies was the overwhelming flood of notification messages
initiated by other software developers or software tools due to changes in the artifacts.
TraVis’s role-based views and filtered visualization can also be used to alleviate this
problem. TraVis can also help information brokers in offshore settings, as in the MBL
study (section 2.1), to manage their immense workload of emails. By providing
information about other users related to networks of artifacts and the possibility of
starting an instant messaging session or Voice-over-IP conversation using the
collaboration platform interface, TraVis supports self-selection of relevant users and
an easy communication process. This, in turn, should relieve the brokers in their
dispatching tasks. Again, the filters and the value-based software engineering
perspective provide a better overview of the project to both managers and developers.
In some ways comparable to TraVis, Ariadne also facilitates the management of
notifications by providing visualizations of technical and social dependencies. The
developers are thus able to actually see who is working on code artifacts related to
theirs and contact these persons purposefully.

196 C.R.B. de Souza, T. Hildenbrand, and D. Redmiles

As mentioned before, notification messages are necessary because of changes in
the artifacts. Often, these changes are preceded by discussions. However, these
discussions were not visible to all interested parties (section 0) due to the distributed
nature of the project. TraVis addresses issues related to unexpected changes in
software development artifacts (including specifications) as follows: rationale
information from a Wiki-based software development platform allows one to notice
whenever there is a discussion going relating to a certain artifact of interest. For
example, if the specification is assembled using a Wiki or the specification document
is annotated and discussed through the Wiki, TraVis can display this correspondence
with the affected artifact. By doing that, the relevant information is accessible to
everybody entitled to read it according to the roles defined on the CSDP. In short,
software developers who depend on a particular artifact can find out that this artifact
is likely to change and therefore impact their own work by accessing the discussion
that takes place about the artifact.

Finally, a relevant aspect of both Ariadne and TraVis is the focus on visualizations.
Visualizations shift the load from the cognitive system to the perceptual system,
capitalizing on the human visual system’s ability to recognize patterns and structures
in the visual information [32]. In terms of relationship visualization, Ariadne provides
different types of network graphs (i.e., call-graphs, social call-graphs, and sociograms
(see section 0)). As discussed in the previous paragraphs, these representations can be
utilized to facilitate team communication in distributed and collocated settings.

TraVis visualizes all possible artifact relations and is thus able to provide
traceability and rationale information to different project stakeholders. Role-based
filters and the value-based perspective guarantee the appropriateness of the traceability
network for diverse users. The integration with Wiki-enabled CSDPs ensures that
capturing and managing the network information is easy and concise. TraVis also
includes a set of predefined views and filters (see section 3.2.1) in order to enable
alternative visualizations of relationships. As can be seen in Figure 2, different network
compositions and layouts can be chosen. By means of a Wiki plug-in, it is also possible
to include TraVis snapshots in a Wiki page, for example, for better communication.
Due to TraVis’s component-based architecture, an easy transition to other network
representations, such as semantic networks and topic maps, is assured. In short, TraVis
provides increased awareness within offshore software development projects based on
a broad range of traceability and rationale visualizations that are created with
information extracted from the collaborative development platform.

TraVis supports artifact change propagation as well as linking and the visualization
of these relationships in multiple respects: First, it supports change histories (see
section 2.2.2) by providing rationale information for each artifact. Hence, TraVis
users can always check the artifacts’ history and related discussions. Like Ariadne,
TraVis creates better overall awareness through visualizations of the artifacts’
dependencies and their related users. As has been concluded before, this enables more
targeted communication processes complementary to the CSDP’s notification engine.

5 Conclusions and Future Work

When comparing the issues arising in both studies, one can notice that they mostly
deal with problems of change management and propagation as well as dependency

 Toward Visualization and Analysis of Traceability Relationships 197

management in traceability networks. These issues are analyzed in distributed and
OSD contexts in order to empirically ground our requirements for tools to support
these processes.

In addition to commonplace source code management and CSDP solutions, the
analysis and visualization tools Ariadne and TraVis are designed and presented. The
discussion in section 4 shows that these tools provide advanced functionality as
demanded by practitioners in real-world offshore projects. However, in doing so we
take a rather tool-centered perspective on OSD issues, deliberately not addressing
social and inter-cultural problems in the first place.

Our future work basically includes two streams of research: First, further empirical
studies will be conducted with other companies developing software in distributed
and offshore scenarios. Second, a deeper integration of the two tools, Ariadne and
TraVis, is planned to allow Ariadne to read other than code-related information from
CSDPs. Because CSDPs are evolving as state-of-the-art in OSD, however, TraVis
will be the basis for further tool development and will be enhanced by automated link
extraction and social network analysis capabilities from Ariadne.

In addition to continuing our empirically informed design, the tools will be
evaluated in various settings, such as open source software development (OSSD)
projects. OSSD projects already use CSDPs and are therefore comparable to OSD
settings from a tool-based perspective. They contain freely available data than can be
applied to show the usefulness of our approaches in large-scale distributed projects.
We also intend to have OSSD practitioners evaluate our various visualizations in
order to determine the most useful ones. The tools will also be evaluated within
globally distributed student projects involving universities in Brazil, Germany, Puerto
Rico, and the United States.

Acknowledgments. This work was supported in part by the National Science
Foundation under awards 0205724 and 0326105; by IBM through the Eclipse
Innovation Program; and by the Brazilian government under CAPES Grant BEX
1312/99-5 and CNPq grant 479206/2006. This work is also a result of the project
CollaBaWue supported by the German state of Baden-Wuerttemberg. CollaBaWue is
part of the research association PRIMIUM. The authors would like to thank Li-Te
Cheng, David Millen, and John Patterson for their comments on earlier versions of
this paper.

References

1. Garg, P.K.: Process-Centered Software Engineering Environments. IEEE Computer
Society Press, Los Alamitos, CA (1996)

2. Parnas, D.L.: On the Criteria to Be Used in Decomposing Systems into Modules.
Communications of the ACM 15(12), 1053–1058 (1972)

3. Dart, S.: Concepts in Configuration Management Systems. In: Proceedings of the 3rd
International Workshop on Software Configuration Management, Trondheim, Norway,
ACM Press, New York (1991)

4. Grinter, R.: Supporting Articulation Work Using Configuration Management Systems.
Computer Supported Cooperative Work 5(4), 447–465 (1996)

198 C.R.B. de Souza, T. Hildenbrand, and D. Redmiles

5. de Souza, C.R.B., et al.: From Technical Dependencies to Social Dependencies. In:
Workshop on Social Networks for Design and Analysis: Using Network Information in
CSCW, Chicago (2004)

6. Trainer, E., et al.: Bridging the Gap between Technical and Social Dependencies with
Ariadne. In: Eclipse Technology Exchange, San Diego, CA (2005)

7. Froehlich, J., Dourish, P.: Unifying Artifacts and Activities in a Visual Tool for
Distributed Software Development Teams. In: International Conference on Software
Engineering, Edinburgh, UK (2004)

8. Cheng, L.-T., et al.: Building Collaboration into IDEs. Edit -> Compile -> Run -> Debug -
>Collaborate? In: ACM Queue, pp. 40–50 (2003)

9. Sarma, A., Noroozi, Z., van der Hoek, A.: Palantír: Raising Awareness among
Configuration Management Workspaces. In: Twenty-fifth International Conference on
Software Engineering, Portland, Oregon (2003)

10. Carmel, E.: Global Software Teams: Collaborating Across Borders and Time-Zones.
Prentice-Hall, Englewood Cliffs (1999)

11. Herbsleb, J.D., Moitra, D.: Global software development. IEEE Software 18(N2), 16–20
(2001)

12. Meyer, B.: The Unspoken Revolution in Software Engineering. IEEE Computer 23(1),
121–124 (2006)

13. Strauss, A., Corbin, J.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory, 2nd edn. SAGE Publications, Thousand Oaks (1998)

14. McCracken, G.: The Long Interview. SAGE Publications, Thousand Oaks (1988)
15. de Souza, C.R.B., Basaveswara, S.D., Redmiles, D.: Supporting Global Software

Development with Event Notification Servers. In: Workshop on Global Software
Development, Orlando, FL (2002)

16. Callahan, D., et al.: Constructing the Procedure Call Multigraph. IEEE Transactions on
Software Engineering 16(4), 483–487 (1990)

17. de Souza, C.R.B., et al.: How a Good Software Practice Thwarts Collaboration—The
Multiple Roles of APIs in Software Development. In: Foundations of Software
Engineering, Newport Beach, CA, ACM Press, New York (2004)

18. de Souza, C.R.B.: On the Relationship between Software Dependencies and Coordination:
Field Studies and Tool Support, Department of Informatics, Donald Bren School of
Information and Computer Sciences, University of California, Irvine. p. 186 (2005)

19. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. In:
Structural Analysis in the Social Sciences, Cambridge, UK, Cambridge University Press,
Cambridge (1994)

20. de Souza, C.R.B., Froehlich, J., Dourish, P.: Seeking the Source: Software Source Code as
a Social and Technical Artifact. In: ACM Conference on Group Work (to appear)

21. Murphy, G., et al.: An Empirical Study of Static Call Graph Extractors. ACM Transactions
on Software Engineering and Methodology 7(2), 158–191 (1998)

22. Gamma, E., et al.: Design Patterns: Elements of Reusable Object-Oriented Software. In:
Addison-Wesley Professional Computing Series, Reading, MA: Addison-Wesley (1995)

23. Lindvall, M., Sandahl, K.: Practical Implications of Traceability Software—Practice and
Experience, vol. 26, pp. 1161–1180. John Wiley & Sons, Inc., New York (1996)

24. Augustin, L., Bressler, D., Smith, G.: Accelerating Software Development through
Collaboration. In: Proceedings of the 24th International Conference on Software
Engineering (ICSE’02), pp. 559–563. ACM Press, New York (2002)

 Toward Visualization and Analysis of Traceability Relationships 199

25. Robbins, J.: Adopting Open Source Software Engineering (OSSE) Practices by Adopting
OSSE. In: Feller, J., Fitzgerald, B., Hissam, S.A., Lakhani, K.R. (eds.) Tools Free/Open
Source Processes and Tools, Cambridge, MA, pp. 245–264. MIT Press, Cambridge (2005)

26. Rodriguez, F., Geisser, M., Berkling, K., Hildenbrand, T.: Evaluating Collaboration
Platforms for Offshore Software Development Scenarios. In: Proceedings of the First
International Conference on Software Engineering Approaches For Offshore and
Outsourced Development, Zurich, Switzerland (2007)

27. Dutoit, A.H., McCall, R., Mistrik, I., Paech, B. (eds.): Rationale Management in Software
Engineering. Springer Verlag, Heidelberg (2006)

28. Boehm, B.: Value-Based Software Engineering Software Engineering Notes, vol. 28, pp.
1–12 (2003)

29. Egyed, A., Biffl, S., Heindl, M., Gruenbacher, P.: A Value-Based Approach for
Understanding Cost-Benefit Trade-Offs During Automated Software Traceability. In:
Proceedings of the 3rd International Workshop on Traceability in Emerging Forms of
Software Engineering (TEFSE ’05), pp. 2–7. ACM Press, New York (2005)

30. Heath, C., Luff, P.: Collaboration and Control: Crisis Management and Multimedia
Technology in London Underground Control Rooms. Computer Supported Cooperative
Work 1(1-2), 69–94 (1992)

31. Grinter, R.E.: Doing Software Development: Occasions for Automation and
Formalisation. In: Fifth European Conference on Computer Supported Cooperative Work
(ECSCW’97), Lancaster, UK, Kluwer Academic Publishers, Dordrecht (1997)

32. Robertson, G.G., Card, S.K., Mackinlay, J.D.: Information Visualization using 3D
Interactive Animation. Communications of the ACM 36(4), 57–71 (1993)

Author Index

Berkling, Kay 1, 96
Bush, Ashley 114

Chai, Meiping 170
Christiansen, Henrik Munkebo 19
Corriveau, Jean-Pierre 27

de Souza, Cleidson R.B. 182

Geisser, Michael 1, 96
Gotel, Olly 44
Gupta, Amar 141

Hildenbrand, Tobias 1, 96, 182

Kancharla, Mohan 59
Kojima, Makoto 67
Kojima, Sakura 67
Kornstädt, Andreas 83
Kulkarni, Vidya 44

Mibe, Ryota 170
Mittal, Rajat 141
Miyake, Shigeru 170

Nakahigashi, Daiki 128
Nakakoji, Kumiyo 152

Neak, Long Chrea 44
Neuhold, Erich 141

Redmiles, David 182
Rodriguez, Felix 96
Rothlauf, Franz 1

Sakurai, Akito 114
Sauer, Joachim 83
Scharff, Christelle 44
Seng, Sopheap 44
Sommer, Christian 109

Tiwana, Amrit 114
Troxler, Georg 109
Tsuji, Hiroshi 114, 128

Wada, Yoshihisa 128
Wiederhold, Gio 141

Yamamoto, Yasuhiro 152
Ye, Yunwen 152
Yoshida, Ken’ichi 114

Zhang, Lei 170
Zhang, Xuan 170

	Title Page
	Preface
	Organization
	Table of Contents
	Offshore Software Development: Transferring Research Findings into the Classroom
	Introduction
	The Fundamental Problem of Global and Offshore Software Development
	Objective and Methodology

	Offshore Software Development: Issues and Requirements
	Project and Process Management Issues
	Communication Issues
	Knowledge Management Issues

	Offshore Software Development in the Classroom
	Classroom Scenarios
	The Collaborative Software Development Platform CodeBeamer
	Learning Objectives and Evaluation

	Functional Support for Problem Areas
	Mapping Tools to Functionalities
	The Ibere Tool for Supporting Requirements Selection in OSD Projects
	Trace Visualization and Analysis with TraVis

	Utilization and Evaluation of Tools in Educational Projects
	Summarizing Discussion and Future Work
	References

	Meeting the Challenge of Communication in Offshore Software Development
	Introduction
	Factors That Have an Impact on Communication
	Different Time Zones
	Different Cultures
	Language
	Thin Communication Channels
	Different Platforms

	How to Meet the Challenges of Communication
	Put Stress on Synchronous Communication
	Adapt to and Understand Other Cultures
	Put Emphasis on Spoken Language Skills
	Rotate People Between Shores
	Use Artefacts Properly
	Aligning IT Infrastructure
	Use Requirement Specifications with Care

	Conclusion
	References

	Testable Requirements for Offshore Outsourcing
	Introduction
	Properties for Conformance Testing
	Strong Testability
	Executable Tests
	Responsibilities and Scenarios
	Coverage
	Modeling a Continuum of Levels of Abstraction

	On Existing Modeling Approaches
	A Prototype
	References

	Introducing Global Supply Chains into Software Engineering Education
	Introduction and Background
	Context
	The Institutions
	Institutional Roles and Targeted Courses
	Teams
	Projects
	Process, Technology and Communication Tools

	Preparation
	Project Planning
	Communication and Coordination
	Faculty and Their Roles
	Data Gathering

	Findings
	Requirements Engineering
	Communication and Coordination
	Social and Cultural Aspects
	Interaction and Quality

	Conclusions and Recommendations
	References

	Turn on Lean Governance … for Return on Outsourcing
	Outsourcing Definition
	Lean Governance Model [1]
	Application of Lean Governance
	Results of Lean Governance

	Case Studies on Lean Governance [1]
	Case Study 1: Lean Governance for Value Enhancement in Outsourcing
	Case Study 2: Outsourcing Maturity Through Lean Governance

	Conclusion
	References

	Making IT Offshoring Work for the Japanese Industries
	Introduction
	Japanese IT Offshoring Trends
	Size of the Japanese IT Offshoring
	Main Features
	Background of Japanese IT Offshoring
	Immature Stage of IT Offshoring

	Problems of Japanese IT Offshoring
	Lessons from the Earlier Projects
	Problems of IT Offshoring: Japanese Client Views
	Problems of IT Offshoring: Overseas Vendors Views
	Fundamental Causes for the Problems

	Strategic IT Offshoring for Maintaining Competitiveness
	Strategic Selection of Offshore Locations: Benchmarking Indian and Chinese Software Strength
	One Effective Way Leading to Successful Offshoring: Training in India

	Making Offshoring Work for the Japanese Industries
	Overview of the Embedded Software Industry
	Recent Trends in Embedded Software Offshoring
	Successful Offshoring of VLSI Design and Embedded Software to India: The Case of Firm JO

	References

	Mastering Dual-Shore Development – The Tools and Materials Approach Adapted to Agile Offshoring
	Motivation
	Collaboration Models for Offshoring
	Offshoring Benefits and Offshoring Challenges
	The Tools and Materials Approach
	Enhancing Communication
	Architecture-Based Development
	Summary

	Extending T and M for Offshore Projects
	Dual-Shore Development with Adjusted Agile Practices
	Architecture-Centric Development in Offshoring Projects
	Component Tasks

	Case Study
	Setting and Process
	Findings

	Conclusion – An Extended T and M Approach
	References

	Evaluating Collaboration Platforms for Offshore Software Development Scenarios
	Introduction
	Offshore Software Development
	Project Management
	Requirements Management
	Source Code Management

	Evaluation Criteria for OSD Tools
	Criteria for Tool Comparison
	Market Research

	Evaluation Results
	Tool Comparison
	Results of Tool Analysis

	Conclusion
	References

	Outsourcing and Offshoring: The Consultancies’ Estimates
	Introduction
	Our Contribution

	Reasons and Advantages
	Risks
	Countries
	Impacts on Jobs
	Trends
	References

	Questionnaire-Based Risk Assessment Scheme for Japanese Offshore Software Outsourcing
	Introduction
	Framework for Risk Assessment
	Pre-analysis by Visiting Skilled Project Managers
	Interview Analysis
	Feasibility on Votes for Projects Evaluation

	Questionnaire Design
	Part 1: Control Parameters
	Part 2: Separate Evaluation on Attribute Importance
	Part 3: Evaluation of an Experienced Project
	Part 4: Evaluation on Virtual Projects

	Overview of Risk Extraction by Statistical Method
	Frequency Analysis
	SEM Analysis
	Conjoint Analysis

	Discussion
	Conclusion
	References

	An Evaluation Method for Offshore SoftwareDevelopment by Structural Equation Modeling
	Introduction
	Approach for Evaluation
	Questionnaire Design
	Sample Sources

	Structural Equation Modeling
	Skeleton of Model
	Scratch Building

	Discussion
	Fit Indices and Path Coefficient
	Effects of Variables
	Experimentation in Progress

	Conclusion
	References

	The Value of Outsourced Software
	Introduction
	Outline

	Outsourcing and Software
	Why Should Software Exporters Care?
	Outsourcing Operations That Involve Software
	Risks
	Locations

	Principles of IP Valuation
	The Value of Software IP for Software Producers
	The Value of Software IP for Software Users
	Revenue and Gross Profit
	Offshoring Maintenance

	Diminution of Software Value
	Estimating the Diminution
	Importing Mature Software
	Outsourced Operations
	Market Allocation
	Complementary IP

	Conclusions
	References

	Reducing the Cost of Communication and Coordination in Distributed Software Development
	Introduction
	Knowledge Distribution and Collaboration
	Software = Code + Documents + Developers
	Knowledge Resources for Software Development
	Software Project as an Evolving Knowledge Ecosystem
	Evolution in Software Projects
	Socio-technical Costs in Knowledge Collaboration

	A Socio-technical Framework to Supporting Knowledge Collaboration
	Modeling the Knowledge Ecosystem of a Software Project
	A Continuum of Technical Support and Social Support
	Cost Reduction Strategies

	System Development
	Discussions
	Concluding Remarks
	References

	Survey on Japan-Oriented Offshore Software Development in China
	Introduction
	Survey Results and Analysis
	Sample Introduction
	Basic Information
	Software Development Process
	Existent Problems
	Information of the Most Successful Projects
	Suggestions to Japan Side

	Conclusions
	References

	Toward Visualization and Analysis of Traceability Relationships in Distributed and Offshore Software Development Projects
	Introduction
	Empirical Studies
	The MBL Offshore Software Development Project
	Feature and Change Requests for Offshore Collaboration Platforms
	Brief Summary of Empirical Findings

	Tool Support for Offshore Software Development
	Ariadne
	TraVis – Trace Visualization

	Discussion
	Conclusions and Future Work
	References

	Author Index

