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Abstract. A Monte-Carlo evaluation consists in estimating a position
by averaging the outcome of several random continuations. The method
can serve as an evaluation function at the leaves of a min-max tree. This
paper presents a new framework to combine tree search with Monte-
Carlo evaluation, that does not separate between a min-max phase and
a Monte-Carlo phase. Instead of backing-up the min-max value close to
the root, and the average value at some depth, a more general backup
operator is defined that progressively changes from averaging to min-
max as the number of simulations grows. This approach provides a fine-
grained control of the tree growth, at the level of individual simulations,
and allows efficient selectivity. The resulting algorithm was implemented
in a 9 × 9 Go-playing program, Crazy Stone, that won the 10th KGS
computer-Go tournament.

1 Introduction

When writing a program to play a two-person zero-sum game with perfect infor-
mation, the traditional approach consists in combining alpha-beta search with
a heuristic position evaluator [20]. The heuristic evaluator is based on domain-
specific knowledge, and provides values at the leaves of the search tree. This
technique has been very successful for games such as chess, draughts, checkers,
and Othello.

Although the traditional approach has worked well for many games, it has
failed for the game of Go. Experienced human Go players still easily outplay
the best programs. So, the game of Go remains an open challenge for artificial-
intelligence research [8].

Among the main difficulties in writing a Go-playing program is the creation
of an accurate static position evaluator [8,15]. When played on a 9 × 9 grid,
the complexity of the game of Go, in terms of the number of legal positions,
is inferior to the complexity of the game of chess [2,27]; the number of legal
moves per position is similar. Nevertheless, chess-programming techniques fail
to produce an artificial 9× 9 Go player stronger than experienced humans. One
reason is that tree search cannot be easily stopped at quiet positions, as it is
done in chess. Even when no capture is available, most of the positions in the
game of Go are very dynamic.
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A useful alternative to static evaluation that fits the dynamic nature of Go
positions is Monte-Carlo evaluation. It consists in averaging the outcome of
several continuations. Monte-Carlo evaluation is an usual technique in games
with randomness or partial observability [5,14,17,23,26], but can also be applied
to deterministic games, by choosing actions at random until a terminal state is
reached [1,9,10].

The accuracy of Monte-Carlo evaluation can be improved with tree search.
Juillé [18] proposed a selective Monte-Carlo algorithm for single-agent determin-
istic problems, and applied it successfully to grammar induction, sorting-network
optimization, and a solitaire game. Bouzy [6] also applied a similar method to
9 × 9 Go. The algorithms of Juillé and Bouzy let grow a tree grow by iterative
deepening, and prune it by keeping only the best-looking moves after each iter-
ation. A problem with these selective methods is that they may prune a good
move because of evaluation inaccuracies. Other algorithms with better asymp-
totic properties (given enough time and memory, they will find an optimal action)
have been proposed in the formalism of Markov decision processes [12,19,22].

This paper presents a new algorithm for combining Monte-Carlo evaluation
with tree search. Its basic structure is described in Section 2. Its selectivity and
backup operators are presented in the Sections 3 and 4, respectively. In Section
5, game results are discussed. Section 6 summarizes the contributions of this
research, and gives directions for future developments.

2 Algorithm Structure

The structure of our algorithm consists in iteratively running random simulations
from the root position. This produces a tree made of several random games. The
tree is stored in memory. At each node of the tree, the number of random games
that passed through this node is counted, as well as the sum of the values of
these games, and the sum of the squares of the values. In Crazy Stone, the
value of a simulation is the score of the game.

Our approach is similar to the algorithm of Chang, Fu, and Marcus [12], and
provides some advantages over Bouzy’s method [6]. First, the algorithm is any-
time: each simulation brings additional information that is immediately backed
up to the root, which is convenient for time management (Bouzy’s algorithm only
provides information at each deepening iteration). Also, the framework allows
algorithms with proved convergence to the optimal move, because selectivity can
be controlled at the level of individual simulations, and does not require that
complete branches of the tree be cut off.

In practice, not all the nodes are stored. Storing the whole tree would waste
too much time and memory. Only nodes close to the root are memorized. This
is done by applying the following two rules.

– Start with only one node at the root.
– Whenever a random game goes through a node that has been visited once,

create a new node at the next move, if it does not already exist.
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As the number of games grows, the probability distribution for selecting a
move at random is altered. In nodes that have been visited less than the number
of points of the goban (this threshold has been empirically determined as a good
compromise), moves are selected at random according to heuristics described in
Appendix A. Beyond this number of visits, the node is called an internal node,
and moves that have a higher value tend to be selected more often, as described
in Section 3. This way, the search tree is grown in a best-first manner.

3 Selectivity

In order not to lose time exploring useless parts of the search tree, it is important
to carefully allocate simulations at every node. Moves that look best should be
searched more deeply, and bad moves should be searched less.

3.1 Background

Over the years, a large variety of selectivity algorithms have been proposed in
the framework of Monte-Carlo evaluation. Most of them rely on the central-
limit theorem, that states that the mean of N independent realizations of a
random variable with mean μ and variance σ2 approaches a normal distribution
with mean μ and variance σ2/N . When trying to compare the expected values
of many random variables, this theorem allows to compute a probability that
the expected value of one variable is larger than the expected value of another
variable.

Bouzy [7,9] used this principle to propose progressive pruning. Progressive
pruning cuts off moves whose probability of being best according to the dis-
tribution of the central-limit theorem falls below some threshold. Moves that
are cut off are never searched again. This method provides a very significant
acceleration.

Progressive pruning can save many simulations, but it is very dangerous in
the framework of tree search. When doing tree search, the central-limit theorem
does not apply, because the outcomes of random simulations are not identically
distributed: as the search tree grows, move probabilities are altered. For instance,
the random simulations for a move may look bad at first, but if it turns out that
this move can be followed up by a killer move, its evaluation may increase when
it is searched more deeply.

In order to avoid the dangers of completely pruning a move, it is possible to
design schemes for the allocation of simulations that reduce the probability of
exploring a bad move, without ever letting this probability go to zero. Ideas for
this kind of algorithm can be found in two fields of research: n-armed bandit
problems, and discrete stochastic optimization. The n-armed bandit techniques
(Sutton and Barto’s book [25] provides a suitable introduction) are the basis for
the Monte-Carlo tree-search algorithm by Chang, Fu, and Marcus [12]. Opti-
mal schemes for the allocation of simulations in discrete stochastic optimization
[3,13,16], could also be applied to Monte-Carlo tree search.
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Although they provide interesting sources of inspiration, the theoretical frame-
works of n-armed bandit problems and discrete stochastic optimization do not
fit Monte-Carlo tree search perfectly. We provide two reasons: First, and most
importantly, n-armed bandit algorithms and stochastic optimization assume
stationary distributions of evaluations, which is not the case when searching
recursively. Second, in n-armed bandit problems, the objective is to allocate
simulations in order to minimize the number of selections of non-optimal moves
during simulations. This is not the objective of Monte-Carlo search, since it does
not matter when bad moves are searched, as long a good move is finally selected.

The field of discrete stochastic optimization is more interesting in this respect,
since its objective is to optimize the final decision, either by maximizing the
probability of selecting the best move [13], or by maximizing the expected value
of the final choice [16]. This maximizing principle should be the objective at the
root of the tree, but not in internal nodes, where the true objective in Monte-
Carlo search is to estimate the value of the node as accurately as possible. For
instance, let us take Chen’s formula [13], with the choice between two moves, and
let the simulations of these two moves have the same variance, then the optimal
allocation consists in exploring both moves equally more deeply, regardless of
their estimated values. This does indeed optimize the probability of selecting
the best move, but is not at all what we wish to do inside a search tree: the best
move should be searched more than the other move, since it will influence the
backed-up value more.

3.2 Crazy Stone’s Algorithm

The basic principle of Crazy Stone’s selectivity algorithm is to allocate simu-
lations to each move according to its probability of being better than the current
best move. This scheme seems to be sound when the objective is to obtain an
accurate backed-up value, since the probability of being best corresponds to the
probability that this simulation would have an influence on the final backed up
value if the algorithm had enough time to converge.

Assuming each move has an estimated value of μi with a variance of σ2
i , and

moves are ordered so that μ0 > μ1 > . . . > μN , each move is selected with a
probability proportional to

ui = exp
(
− 2.4

μ0 − μi√
2(σ2

0 + σ2
i )

)
+ εi. (1)

This formula is an approximation of what would be obtained assuming Gaussian
distributions (the 2.4 constant was chosen to match the normal distribution
function). The formula is very similar to the Boltzmann distributions that are
often used in n-armed bandits problems. The value εi is a constant. It ensures
that the urgency of a move never goes to zero, and is defined by

εi =
0.1 + 2−i + ai

N
, (2)

where ai is 1 when move i is an atari, and 0 otherwise. This formula for εi was
determined empirically by trial and error from the analysis of tactical mistakes
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by Crazy Stone. It is important to increase the urgency of atari moves, because
they are likely to force an answer by the opponent, and may be underestimated
because their true value requires another follow-up move.

For each move i, μi is the opposite of the value μ of the successor node, and σ2
i

is its variance σ2. For internal nodes of the search tree, μ and σ2 are computed
with the backup method described in Section 4. For external nodes, i.e., nodes
that have been visited fewer times than the threshold defined in Section 2, μ
and σ2 are computed as μ = Σ/S, and

σ2 =
Σ2 − Sμ2 + 4P 2

S + 1
, (3)

where P is the number of points of the board, Σ2 is the sum of squared values
of this node, Σ is the sum of values, and S is the number of simulations. The
formula for σ2 does as if a virtual game with a very high variance had been
played. This high prior variance is necessary to make sure that nodes that have
been rarely explored are considered very uncertain.

4 Backup Method

The most straightforward method to backup node values and uncertainties con-
sists in applying the formula of external nodes to internal nodes as well. As the
number of simulations grows, the frequency of the best move will dominate the
others, so the mean value of this node will converge to the maximum value of all
its moves, and the whole tree will become a negamax tree. This is the principle
of the algorithm of Chang, Fu, and Marcus [12].

This approach is simple but very inefficient. If we consider N independent
random variables, then the expected maximum of these variables is not equal, in
general, to the sum of the expected values weighted by the probabilities of each
variable to be the best. This weighted sum underestimates the best move.

Backing up the maximum (maxi μi) is not a good method either. When the
number of moves is high, and the number of simulations is low, move estimates
are noisy. So, instead of being really the best move, it is likely that the move with
the best value is simply the most lucky move. Backing up the maximum evalu-
ation overestimates the best move, and generates a great amount of instability
in the search.

Other candidates for a backup method would be algorithms that operate
on probability distributions [4,21]. The weakness of these methods is that they
have to assume some degree of independence between probability distributions.
This assumption of independence is wrong in the case of Monte-Carlo evaluation
because, as explained in the previous paragraph, the move with the highest value
is more likely to be overestimated than other moves. Also, a refutation of a move
is likely to refute other moves of a node, too.

Since formal methods seem difficult to apply, the backup operator of Crazy
Stone was determined empirically, by an algorithm similar to the temporal
difference method [24]. In the beginning, the backup method for internal nodes



Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search 77

was the external-node method. An amount of 1,500 positions were sampled at
random from self-play games. For each of these 1,500 positions, the tree search
was run for 219 simulations. The estimated value of the position was recorded
every 2n simulations, along with useful features to compute the backed-up value.
Backup formulas were tuned so that the estimated value after 2n simulations
matches the estimated value after 2n+1 simulations. This process was iterated a
few times during the development of Crazy Stone.

4.1 Value Backup

Numerical values of the last iteration are provided in Table 1. This table contains
the error measures for different value-backup methods. 〈δ2〉 is the mean squared
error and 〈δ〉 is the mean error. The error δ is measured as the difference between
the value obtained by the value-backup operator on the data available after S
simulations, with the “true” value obtained after 2S simulations. The “true”
value is the value obtained by searching with the “Mix” operator, described in
Figure 1.

Table 1. Backup experiments

Mean Max Robust Max Mix

Simulations
√〈δ2〉 〈δ〉 √〈δ2〉 〈δ〉 √〈δ2〉 〈δ〉 √〈δ2〉 〈δ〉

128 6.44 −3.32 41.70 37.00 39.60 35.30 5.29 −1.43
256 7.17 −4.78 25.00 22.00 23.60 20.90 4.72 −1.89
512 7.56 −5.84 14.90 12.70 13.90 11.90 4.08 −1.70

1,024 6.26 −4.86 9.48 7.91 8.82 7.41 3.06 0.13
2,048 4.38 −3.15 6.72 5.37 6.11 4.91 2.63 0.77
4,096 2.84 −1.55 4.48 3.33 3.94 2.91 2.05 0.69
8,192 2.23 −0.62 2.78 1.47 2.42 1.07 1.85 0.32

16,384 2.34 −0.57 2.45 0.01 2.40 −0.30 2.10 −0.19
32,768 2.15 −0.52 2.19 0.10 2.26 −0.12 1.93 −0.02
65,536 2.03 −0.50 1.83 0.23 1.88 0.01 1.70 0.01

131,072 2.07 −0.54 1.80 0.25 1.94 0.02 1.80 −0.02
262,144 1.85 −0.58 1.49 0.25 1.51 0.07 1.39 −0.02

These data clearly demonstrate what was suggested intuitively in the begin-
ning of this section: the mean operator (Σ/S) under-estimates the node value,
whereas the max operator over-estimates it. Also, the mean operator is more
accurate when the number of simulations is low, and the max operator is more
accurate when the number of simulations is high.

The robust max operator consists in returning the value of the move that
has the maximum number of games. Most of the time, it will be the move with
the best value. In case it is not the move with the best value, it is wiser not to
back up the value of a move that has been searched less frequently. A similar
idea had been used by Alrefaei and Andradóttir [3] in their stochastic simulated
annealing algorithm.
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float MeanWeight = 2 ∗ WIDTH ∗ HEIGHT;
if (Simulations > 16 ∗ WIDTH ∗ HEIGHT)
MeanWeight ∗= float(Simulations) / (16 ∗ WIDTH ∗ HEIGHT);

float Value = MeanValue;
if (tGames[1] && tGames[0])
{
float tAveragedValue[2];
for (int i = 2; −−i >= 0;)
tAveragedValue[i] =
(tGames[i] ∗ tValue[i ] + MeanWeight ∗ Value) / (tGames[i] + MeanWeight);

if (tGames[0] < tGames[1])
{
if (tValue[1] > Value)
Value = tAveragedValue[1];

else if (tValue[0] < Value)
Value = tAveragedValue[0];

}
else
Value = tAveragedValue[0];

}
else
Value = tValue[0].

return Value;

Fig. 1. Value-backup algorithm. The size of the goban is given by “WIDTH” and
“HEIGHT”. “Simulations” is the number of random games that were run from this
node, and “MeanValue” the mean value of these simulations. Move number 0 is the best
move, move number 1 is the second best move or the move with the highest number of
games, if it is different from the two best moves. tValue[i] are the backed-up values of
the moves and tGames[i] their numbers of simulations.

Figure 1 describes the “Mix” operator, that was found to provide the best
value back up. It is a linear combination between the robust max operator and
the mean operator, with some refinements to handle situations where the mean
is superior to the max (this may actually happen, because of the non-stationarity
of evaluations).

4.2 Uncertainty Backup

Uncertainty back-up in Crazy Stone is also based on the data presented in
the previous section. These data were used to compute the mean squared differ-
ence between the backed-up value after S simulations and the backed-up value
after 2S simulations. To approximate the shape of this squared difference, the
backed-up variance was chosen to be σ2/ min(500, S) instead of σ2/S. This is an
extremely primitive and inaccurate way to back up uncertainty. It seems possible
to find better methods.

5 Game Results

As indicated in the abstract, Crazy Stone won the 10th KGS computer-Go
tournament, ahead of 8 participants, including GNU Go, Neuro Go, Viking
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5, and Aya [28]. This is a spectacular result, but this was only a 6-round tour-
nament, and luck was probably one of the main factors in this victory.

In order to test the strength of Crazy Stone more accurately, 100-game
matches were run against GNU Go, and the latest version of Indigo (I thank
Bruno Bouzy for providing it to me), performing a search at depth 3, with a
width of 7. Games were run on an AMD Athlon 3400+ PC running Linux.
Results are summarized in Table 2.

Table 2. Match results with 95% confidence intervals

Player Opponent Winning Rate Komi

CrazyStone (5 min/game) Indigo 2005 (8 min/game) 61% (±4.9) 6.5
Indigo 2005 (8 min/game) GNU Go 3.6 (level 10) 28% (±4.4) 6.5
CrazyStone (4 min/game) GNU Go 3.6 (level 10) 25% (±4.3) 7.5
CrazyStone (8 min/game) GNU Go 3.6 (level 10) 32% (±4.7) 7.5
CrazyStone (16 min/game) GNU Go 3.6 (level 10) 36% (±4.8) 7.5

These results show that Crazy Stone clearly outperforms Indigo. This
is a good indication that the tree search algorithm presented in this paper is
more efficient than Bouzy’s algorithm. Nevertheless, it is difficult to draw defini-
tive conclusions from this match, since Indigo’s algorithm differs from Crazy
Stone’s in many points. First, it relies on a knowledge-based move pre-selector,
that Crazy Stone does not have. Also, the random simulations are different.
Crazy Stone’s simulations probably have better handling of the urgency of
captures. Indigo’s simulations use patterns, while Crazy Stone’s simulations
are based on an uniform distribution. All in all, this victory is still a rather
convincing indication of the power of the algorithm presented in this paper.

The results against GNU Go indicate that Crazy Stone is still weaker,
especially at equal time control (GNU Go used about 22 seconds per game, on
average). The progression of results with a longer time control indicates that the
strength of Crazy Stone scales well with the amount of CPU time it is given.

Beyond the raw numbers, it is interesting to take a look at the games, and
the playing styles of the different players1. Most of the losses of Crazy Stone
against GNU Go are due to tactics that are too deep, such as ladders, long
semeais, and monkey jumps, that GNU Go has no difficulty to see. The wins of
Crazy Stone over GNU Go are based on a better global understanding of the
position. Because they are based on the same principles, the styles of Crazy
Stone and Indigo are quite similar. It seems that the excessive pruning of
Indigo cause it to play tactical errors that Crazy Stone knows how to exploit.

6 Conclusion

In this paper we have presented a new algorithm for Monte-Carlo tree search.
It is an improvement over previous algorithms, mainly thanks to a new efficient
1 Games of the matches are available at http://remi.coulom.free.fr/CG2006/

http://remi.coulom.free.fr/CG2006/
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backup method. It was implemented in the computer-Go program CrazyStone
that performed very well in tournaments, and won a 100-game match convinc-
ingly against a state-of-the-art Monte-Carlo Go-playing program. Directions for
future research include these items.

1. Improving the selectivity algorithm and uncertainty-backup operator. In par-
ticular, it might be a good idea to use stochastic optimization algorithms at
the root of the search tree.

2. Trying to overcome tactical weaknesses by incorporating game-specific
knowledge into random simulations.

3. Scaling the approach to larger boards. For 19x19, an approach based on a
global tree search does not seem reasonable. Generalizing the tree search
with high-level tactical objectives such as Cazenave and Helmstetter’s algo-
rithm [11] might be an interesting solution.
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A Random Simulations in Crazy Stone

The most basic method to perform random simulations in computer Go consists
in selecting legal moves uniformly at random, with the exception of eye-filling
moves that are forbidden. The choice of a more clever probability distribution
can improve the quality of the Monte-Carlo estimation. This section describes
domain-specific heuristics used in Crazy Stone.

A.1 Urgencies

At each point of the goban, an urgency is computed for each player. The urgency
of the black player on a particular point is computed as follows.

– If playing at this point is illegal, or this point is completely surrounded
by black stones that are not in atari, then the urgency is set to zero, and
processing of this urgency is stopped. This rule will prevent some needed
connection moves, but distinguishing false eyes from true eyes was found to
be too difficult to be done fast enough during simulations.

– Otherwise, the urgency is set to 1.
– If this point is the only liberty of a black string2 of size S, then 1, 000×S is

added to the urgency, unless it is possible to determine that this point is a
hopeless extension. A point is considered a hopeless extension when
• there is at most one contiguous empty intersection, and
• there is no contiguous white string in atari, and
• there is no contiguous black string not in atari.

– If this point is the only liberty of a white string of size S, and it is not
considered a hopeless extension for White, then 10, 000× S is added to the
urgency. Also, if the white string in question is contiguous to a black string
in atari, then 100, 000 × S is added to the urgency (regardless of whether
this point is considered a hopeless extension for White).

The numerical values for urgencies are arbitrary. No effort was made to try other
values and measure their effects. They could probably be improved.

A.2 Useless Moves

Once urgencies have been computed, a move is selected at random with a prob-
ability proportional to its urgency. This move may be undone and another may
be selected instead, in the following situations.
2 A string is a maximal set of orthogonally-connected stones of the same color.
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– If the move is surrounded by stones of the same color except for one empty
contiguous point, and these stones are part of the same string, and the empty
contiguous point is also contiguous to this string, then play in the contiguous
point instead. Playing in the contiguous point is better since it creates an
eye. With this heuristic, a player will always play in the middle of a 3-point
eye (I thank Peter McKenzie for suggesting this idea to me).

– If a move is surrounded by stones of the opponent except for one empty
contiguous point, and this move does not change the atari status of any
opponent string, then play in the empty contiguous point instead.

– If a move creates a string in atari of more than one stone then
• if this move had an urgency that is more than or equal to 1,000, then

this move is undone, its urgency is reset to 1, and a new move is selected
at random (it may be the same move);

• if this string had a contiguous string in atari before the move, then cap-
ture the contiguous string in atari instead (doing this is very important,
since capturing the contiguous string may not have a high urgency);

• otherwise, if the string had two liberties before the move, play in the
other liberty instead.

A.3 Performance

On an AMD Athlon 3400+, compiled with 64-bit gcc 4.0.3, Crazy Stone sim-
ulates about 17,000 random games per second from the empty 9 × 9 goban.
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