
A New Heuristic Search Algorithm for

Capturing Problems in Go

Keh-Hsun Chen and Peigang Zhang

Department of Computer Science,
University of North Carolina at Charlotte, NC, USA

{chen,pzhang1}@uncc.edu

Abstract. We propose a highly selective heuristic search algorithm for
capturing problems in Go. This iterative deepening search works on the
crucial chain in which the prey block is located. The algorithm starts
using three order liberties of the chain as the basis of the position
evaluation, the value is then adjusted by the presence of few liberty-
surrounding opponent blocks. The algorithm solved most capturing prob-
lems in Kano’s four volumes of graded Go problems. Moreover, it is fast
enough to be used by Go programs in real time.

1 Introduction

Whether a block of stones in a Go board configuration can be captured by the
opposite side is a fundamentally important knowledge item for a Go program.
Without any knowledge of the block capture ability, other tactical problems in
Go, such as life/death and connection cannot be accurately resolved. The global
positional judgement could be totally wrong due to misjudgment of the capture
ability of some blocks. Move decisions could become big blunders if made without
recognizing the capture ability of some key stones [4]. Most Go programs spend
over 90% of their processing time in doing capturing search of blocks of stones
on the board. The quality of their capturing search routine is a key factor in the
strength of a Go program.

In this paper, we shall describe a highly selective heuristic capturing search
algorithm based on the classical α-β game-tree-search paradigm. The algorithm,
called HuPrey (from Hunter-Prey), is a significantly improved version of the
capturing algorithm used in Go Intellect in the past. Experimental results
show that its performance compares favorably to other Go capturing algorithms
[1,2,11].

Section 2 describes ladder capturing, which is a simple form of capturing;
its routine is used extensively in our heuristic search capturing algorithm. We
discuss the capturing target in Sect. 3 and its evaluation in Sect. 4; the genera-
tion of candidate moves in Sect. 5. The search paradigm and enhancements are
examined in Sect. 6 and 7, respectively. The special situations of seki and ko
are considered in Sect. 8. The experimental results are presented in Sect. 9. The
paper is concluded with suggested future work in Sect. 10.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 26–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A New Heuristic Search Algorithm for Capturing Problems in Go 27

2 Ladder

We shall call the capturing target block the prey (block). The player who attacks
the prey is the Hunter and the player who defends the prey block is called Prey.
The simplest form of capturing is so-called ladder capturing. In this case, the
prey block should have fewer than 3 liberties. Once the prey gets 3 or more
liberties, the ladder chase fails. In a game, the Hunter will continue to play
atari moves. The Prey will always extend its only liberty or capture adjacent
opponent’s blocks with just one liberty if they exist. The move sequence in a
ladder chase usually forms a zigzag pattern like a step ladder. This is a key
routine that every Go-playing program must have.

Keeping track of the prey’s liberties and those of the adjacent blocks under
atari is the key of an efficient ladder algorithm. We note that the average branch-
ing factor of a ladder search is near 1; so, the ladder procedure is extremely fast.
A normal diagonal ladder from one side of the board to the other side takes less
than one millisecond on a modern computer.

A capturing search routine frequently needs to know (1) in its move generation
and (2) in its position evaluation whether a block can be captured by a ladder.
Obviously, for the general capturing problem, we cannot just consider the prey’s
liberties and those of the adjacent blocks in atari as candidate moves like in a
ladder search.

3 Crucial Block and Crucial Chain

To generate the candidate moves adequately and to evaluate positions appropri-
ately, one has to consider the whole chain, called the crucial chain, to which the
prey block (also called crucial block) belongs. Figure 1 shows a simple example,
in which just considering liberties and second liberties of the prey block (marked
by a triangle) is obviously inadequate in finding the correct capture/escape move.
The key move ‘a’ is not a liberty or secondary liberty of the crucial block marked
by the triangle. The whole crucial chain, to which the prey belongs, needs to be
considered.

Fig. 1. Why the crucial chain
should be connected

A chain is a set of blocks of same color, which
cannot be separated by the opponent [3]. We rec-
ognize two blocks being in the same chain if they
obey either one of C1 to C3.

C1 They share two or more common liberties.
C2 They share one protected common liberty. By

a ’protected empty point’, we mean either it is
illegal for the opponent to play there or if the
opponent plays there, the played stone can be
captured by a ladder (and the opponent cannot
reoccupy the point through ko or snapback).

C3 They are adjacent to a common opponent’s
dead block.

28 K.-H. Chen and P. Zhang

In practice, we can compute the transitive closure of the crucial block under
C1, C2, and C3 to obtain the crucial chain. We should note that C1 to C3 do
not completely define connectivity; they are just simple heuristics used by the
capturing search routine in recognizing chains.

4 Position Evaluation

We define the empty points vertically or horizontally adjacent to a block as
its liberties. A block is captured when it loses all its liberties. The first-order
liberties are the ordinary liberties as defined above. We define a second-order
liberty as a liberty of the augmented block when one additional stone of the
block’s color is added to the block (this stone may join additional blocks), which
is not a first-order liberty. Similarly, we define a third-order liberty as a liberty of
the augmented block when two additional stones of the block’s color are added
to the block (these stones may join additional blocks), which is not a first-order
or second-order liberty. The first-order, second-order, and third-order liberties
of the crucial chain can be computed via a breadth-first search. Let n1, n2, and
n3 be the total numbers of the first-order, second-order, and third-order liberties
respectively. Assume Prey is to play. The basic evaluation is

V = n1 × 16 + n2 × 8 + n3 × 4 . (1)

We consider a first-order liberty twice as valuable as a second-order liberty
and four times as valuable as a third-order liberty. If there is an adjacent Hunter
block which can be captured by a ladder, we add 50 to V. If Prey has a block
that can be captured by a ladder, we subtract 25 (since Prey plays next, the
block could be saved).

When the crucial chain has two eyes, then it does not matter how many
liberties it has, it is completely safe. Hence, in addition to liberties we should
also check for solid eyes of the crucial chain. We go through each of the first-
order liberties of the crucial chain to determine whether it is a solid eye. An eye
is solid if (1) a liberty is surrounded only by stones of Prey and borders plus at
least 3 of the 4 diagonal board points are secure for liberties away from edges, or
(2) both diagonals are secure for liberties on a board edge, or (3) the diagonal
is secure for liberties at board corners.

By a diagonal being secure, we mean it is occupied by a Prey’s stone or it
is a protected empty point. When we find a chain having two solid eyes, the
evaluation value V will be reassigned to a large positive constant representing
definite safe. Of course, when the prey is captured, the evaluation will be a
negative constant with a large absolute value representing capture. We use the
numbers of liberties of surrounding opponent chains to adjust the evaluation. We
add 15 to the evaluation for each surrounding opponent chain with 2 or fewer
effective liberties.

When it is Hunter to play, then we reverse the sign of evaluation V except
when the prey block can be captured by a ladder, a very large positive constant
representing successful capture will be assigned to V. This evaluation is used in

A New Heuristic Search Algorithm for Capturing Problems in Go 29

the node evaluation as well as in the candidate move generating and ordering in
the search tree.

5 Candidate Move Generation

Below we shall discuss the generation of candidate moves. The relevant blocks
include:

(A) the adjacent blocks of blocks in the crucial chain with:
(a1) max(3, #liberties of crucial block) or fewer liberties if Hunter is to play;
(a2) max(3, #liberties of crucial block) + 1 or fewer liberties if Prey is to

play;
(B) the adjacent blocks of the relevant hunter blocks, not in the crucial chain

and with 3 or fewer liberties.

The blocks listed under (A) will be called the relevant hunter blocks, the blocks
listed under (B) will be called the relevant prey blocks.

We first take up to 4 first-order and second-order liberties at which the move
would produce the best evaluations (see Section 4). Almost all Prey’s moves that
can be captured by a ladder or that fill its own solid eyes are eliminated. Hunter’s
sacrifice moves are allowed. We then first add 2 or 3 selected liberties of the
relevant hunter blocks and subsequently add 2 selected liberties of the relevant
prey blocks. The algorithm selects the best liberties by checking the surroundings
of the liberties. It favors the liberties of the blocks with fewer liberties; liberties
could further increase liberties or could connect to other blocks.

If a move can be captured by a ladder then we add the first move of the ladder
capturing sequence into the candidate move set. This procedure introduces moves
with an indirect approach. All the capturing moves, which can capture a block
in a crucial chain or a relevant block or a block adjacent to a relevant prey block,
are promoted or inserted to the front of the move list during the move ordering.
When the number of candidate moves is two or one, Pass move is added as a
candidate.

The power of HuPrey comes from the compact yet generally adequate can-
didate move set. The following three examples (see Figs. 2 to 4) illustrate the
point.

Figure 2 shows candidate moves of Hunter (Black) in an attempt to capture
the marked block. Candidate moves 1 to 4 are all from first-order and second-
order liberties of the crucial block which is marked by a triangle. The relevant
hunter blocks contain only the adjacent single stone block. It is Hunter’s turn to
play, the adjacent hunter blocks with more liberties than the prey are not consid-
ered. But the only relevant hunter block did not contribute any new candidate
moves in this case. The relevant prey blocks are empty. Move 1 was promoted
to become first candidate, since it is a ladder capture move (of the single stone
adjacent hunter block). Candidate move 3 is the correct first move to capture
the prey (followed by W2 andB4).

30 K.-H. Chen and P. Zhang

Fig. 2. Candidate moves for Black
for capturing the marked white
block. The correct black first move
is at 3.

Fig. 3. A compact set of candidate moves
from the crucial chain, relevant hunter
blocks, and relevant prey blocks contains
the winning first move at location 2

Fig. 4. Candidate moves for Black
to capture the marked white block.
The correct black first move is at 7
(followed by W2, B4).

The next example (Fig. 3) is for Black
to play to save the marked prey. Move 1
is the only move from the first-order liber-
ties and second-order liberties of the prey,
the other liberty moves can be captured by
ladders, and are thus suppressed. Candidate
moves 2 and 3 are liberties of the relevant
hunter blocks and candidates 4 and 5 are lib-
erties from the relevant prey blocks. Candi-
date move 2 is the key first move to save the
prey.

In Fig. 4, Black to play, the crucial chain
has two blocks, the marked one and the sin-
gle white stone at the edge. They produce only one candidate move 4, a secondary
liberty of the prey. Candidates 1, 2, and 3 are all ladder capturing moves, they
have been promoted to the front. The two three-in-a-line black blocks form the
relevant hunter blocks. They produce candidates 5 and 6. The relevant prey block
is the n shape white five-stone block in the middle, which produces candidate
move 7 - the winning first move.

6 Iterative Deepening with Hash Table

We use iterative deepening with a minimum of depth 2, a maximum of depth
20, and a depth increment of 2. The search terminates when the definitive result
is obtained, or the maximum depth is reached, or the time limit is over 50%
consumed. When Hunter is the first player, a definitive result means the crucial
block (1) is removed from the board or (2) has two eyes or (3) is in seki. When

A New Heuristic Search Algorithm for Capturing Problems in Go 31

Prey is the first player, a definitive result means that the absolute value of the
evaluation reaches a value above the search cut value (150).

Fig. 5. Search outcome of the prob-
lem in Fig. 2. Note that at this point
the algorithm knows the prey can be
captured by a ladder, it returns suc-
cess.

A hash table is used to store the search
results from transposition and from pre-
vious iterations. Zobrist’s hashing method
[13] is used to produce hash codes. Subtree
search results with sufficient search depth are
stored. At each node of the search tree, the
hash table is searched to find the previously
found best next move, which will be tried
first.

Forward pruning is used in a conserva-
tive way: only when the evaluation of the
current node is outside the α-β window by
the search cut, Δ value (50) or more, a
forward pruning is performed and no fur-
ther node expansion will be done under the
node.

Figure 5 shows the solution sequence
found by the heuristic capturing search
HuPrey on the problem in Fig. 2. It took 0.422 second searching to 6 plies.
When Hunter finds that the prey block can be captured by a ladder, the search
terminates. The moves in the ladder capturing sequence are not counted in the
search depth.

7 Try Opponent’s Best Refute Move

GoTools [12] tries the opponent’s best refute move as the next candidate move
in life/death search with great success. So, we borrowed this idea in HuPrey. It
explores the opponent’s refute move next regardless whether the move is in the
current candidate list or not. This technique speeds up the search significantly.
Since when a refute move does not help, it slows the search by a small fraction;
when a refute move helps identifying a key sequence, it usually cuts the search
time drastically. On the capturing problems in Kano [7], this technique speeds
up the search by about 20% on average (see Table 1).

There is an additional merit of this technique. When the set of selected candi-
date moves does not include the winning key move, the technique may introduce
the missing move in the search tree. In Fig. 6, the left-hand-side diagram shows
the initial candidate moves for White. The right-hand-side diagram shows the
successful capturing sequence found by the augmented HuPrey. Looking closely
on the left-hand-side diagram, we notice the “best” four first-order and second-
order liberties of the crucial chain are candidates 3, 4, 5, and 6 — the winning
first move was not even there!

32 K.-H. Chen and P. Zhang

Fig. 6. The left diagram shows the initial candidate moves of Hunter (White). The right
diagram shows the winning capturing sequence produced by HuPrey. The winning first
move was not generated by the move generator. The technique of trying the opponent’s
best refute move introduced the winning move to the search tree.

8 Seki and Ko

When there are two consecutive passes, the prey is considered safe — either it
has made two eyes or it has created a seki situation. In this case a large value
will be returned by the evaluation function instead of first counting the three
order liberties.

We use a simple approach to deal with ko. We assume the first player for the
capturing problem can win kos up to three times and the other player cannot
win any ko. If the capturing relied on winning kos, the value returned would
not be as high as capturing without requiring to win a ko. This ko treatment is
modified from Kierulf [9].

9 Experimental Results

We tested HuPrey on capturing problems in Kano’s Graded Go Problems for
Beginners four-book series [5,6,7,8]. Book 1 contains trivial problems. Book 2
requires some Go knowledge. Book 3 contains problems interesting to average
players. Book 4 contains problems challenging to advanced amateur players. The
books contain all types of Go problems: life/death, connection, capturing, and
opening. We test our algorithm exclusively on capturing problems. There are a
total of 180 capturing problems in the four books.

Book 1 (34 problems) – problems 1→22, 61→64, 179→182, 193→196.
Book 2 (34 problems) – problems 31→36, 130→141, 219→222, 316→327.
Book 3 (61 problems) – problems 2, 3, 7, 8, 11→13,15, 16, 20, 21, 24→26,

30, 31, 36, 38→43, 45, 95, 98, 105→108, 112→115, 118, 123, 124,
127, 128, 132, 157→160, 163, 278→293.

Book 4 (51 problems) – problems 1, 2, 11, 18, 19, 23, 27→41, 103→115,
135→138, 168, 184, 257→263, 387→390.

A New Heuristic Search Algorithm for Capturing Problems in Go 33

Table 1. Performance of HuPrey on Kano’s graded Go capturing problems. The
columns contain the following item for each book (from left to right column): the
average time in seconds per problem, the average number of nodes per problem, the
average depth per problem, the number of solved problems, the number of unsolved
problems.

ave. time ave. nodes ave. depth num. solved num. unsolved

Book 1 0.007 27 2.00 34 0
Book 2 0.830 4,912 6.76 33 1
Book 3 0.750 4,304 6.29 55 6
Book 4 8.100 35,933 5.97 40 11

We found that HuPrey can solve all the capturing problems in Books 1 and
2, 90% of the capturing problems in Book 3, and 80% of the capturing problems
in Book 4, which outperforms all known testing results so far [1,2].

HuPrey is implemented in the latest version of Go Intellect. We run our
tests on a 2.8 GHz Pentium 4. Table 1 summarizes the average testing results
per solved problem.

For HuPrey, Book 2 capturing problems are slightly more time consum-
ing than Book 3 capturing problems. Problem 28 of Book 2 can be solved by
HuPrey in its stated setting in 165 seconds generating over 300,000 nodes. In
order not to obscure the average statistics, we count it as unsolved in Table 1.
This problem is not really a hard problem. After widening the candidate move
set by one, our algorithm solved it in less than 0.01 second.

Every capturing problem in Book 1 was solved by HuPrey in less than 0.1
second. Figs. 7, 8, and 9 show the time allowance vs. percentage of problems
solved for capturing problems in Kano Books 2, 3, and 4, respectively [6,7,8].
In each figure, the X-axis represents log(time allowance in seconds), the Y-axis
represents the percentage of problems solved under the time constraint.

Fig. 7. The algorithm’s time and solvability trade-off on the capturing problems in
Kano Book 2

34 K.-H. Chen and P. Zhang

Fig. 8. The algorithm’s time and solvability trade-off on the capturing problems in
Kano Book 3

Fig. 9. The algorithm’s time and solvability trade-off on the capturing problems in
Kano Book 4

Figure 9 shows that about 43% of the capturing problems in Book 4 can be
solved in less than 0.5 seconds. If we double the time limit to one second, about
57% of the problems can be solved. Double the time again to 2 seconds, 59%
the problems can be solved. With a 4-second time limit, 67% of the problems
can be solved. After passing the 75% result by this procedure, doubling the time
produces very little improvements on the number of problems that can be solved.

Typically, a Go program will allocate 1 second or less for a capturing tactic
search. Longer than one second time allocation for a capturing problem can be
made only during the opponent time in a tournament setting. In practice, Hunter
is set to be the first player. When the search finds that the prey can be captured,
a second search with Prey going first is done to determine whether the prey can
escape. Solved problems are stored in a solution hash table to be retrieved many

A New Heuristic Search Algorithm for Capturing Problems in Go 35

times until the surrounding changes, which will be reflected in the hash code.
This solution hash table is not the hash table used by the capturing search,
which is cleared for each new problem before the start of the capturing search.

10 Future Work

Since the candidate move generation of HuPrey is highly selective, inevitably it
will miss some key moves once in a while and if these key moves are not produced
by the opponent’s best refute then the algorithm may spend unnecessary long
time in searching for a solution - it may even claim a wrong conclusion. Incor-
porating some suitable widening scheme into the iterative deepening framework
is likely to fix the problem and to produce a more powerful capturing search
algorithm. We shall investigate such a mixed widening/deepening algorithm in
the near future.

Proof number search has been used very successfully on the tactical problems
with fully enclosed boundaries [10]. Capturing problems are in general quite
open, requiring dynamic determination of the candidate move region. Whether
PN+ search can work nearly as well for open-region capturing problems is worth
investigating.

Acknowledgments

We would like to thank Martin Müller for providing SGF files of the graded Go
problems in Kano Books 1, 2, and 3 [5,6,7]. As a result, we only needed to enter
the capturing problems of Book 4 by hand [8]. This saved us much time.

References

1. Cazenave, T.: Abstract Proof Search. In: Marsland, T., Frank, I. (eds.) CG 2001.
LNCS, vol. 2063, pp. 39–54. Springer, Heidelberg (2002)

2. Cazenave, T.: Iterative Widening. In: Nebel, B. (ed.) Proceedings of IJCAI-01,
vol. 1, pp. 523–528 (2001)

3. Chen, K.: Group Identification in Computer Go. In: Levy, D., Beal, D. (eds.)
Heuristic Programming in Artificial Intelligence, pp. 195–210. Ellis Horwood,
Chichester (1989)

4. Chen, K.: Computer Go: Knowledge, Search, and Move Decision. ICGA Jour-
nal 24(4), 203–215 (2001)

5. Kano, Y.: Graded Go Problems For Beginners. In: Introductory Problems, vol. 1.
Kiseido Publishing Company (1985)

6. Kano, Y.: Graded Go Problems For Beginners. In: Elementary Problems, vol. 2.
Kiseido Publishing Company. ISBN 1985

7. Kano, Y.: Graded Go Problems For Beginners. In: Intermediate Problems, vol. 3.
Kiseido Publishing Company (1987) ISBN 4-906574-48-3

8. Kano, Y.: Graded Go Problems For Beginners. In: Advanced Problems, vol. 4.
Kiseido Publishing Company (1990)

36 K.-H. Chen and P. Zhang

9. Kierulf, A.: Smart Game Board: A Workbench for Game Playing Programs, with
Go and Othello as Case Studies. PhD thesis, ETH Zurich (1990)

10. Kishimoto, A.: Correct and Efficient Search Algorithms in the Presence of Repeti-
tions, PhD thesis, University of Alberta (2005)

11. Thomsen, T.: Lambda-Search in Game Trees - with Application to Go. ICGA
Journal 23(4), 203–217 (2000)

12. Wolf, T.: Forward Pruning and Other Heuristic Search Techniques in Tsume Go.
Information Sciences 122(1), 59–76 (2000)

13. Zobrist, A.L.: A New Hashing Method with Application for Game Playing, Techn.
Rep. No. 88, Univ. of Wisconsin, Madison, 1970. Republished in 1990, ICGA Jour-
nal, 13(2):69–73 (1970)

	A New Heuristic Search Algorithm for Capturing Problems in Go
	Introduction
	Ladder
	Crucial Block and Crucial Chain
	Position Evaluation
	Candidate Move Generation
	Iterative Deepening with Hash Table
	Try Opponent's Best Refute Move
	Seki and Ko
	Experimental Results
	Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

