Counting the Number of Three-Player Partizan Cold Games

Alessandro Cincotti

Research Unit for Computers and Games, School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan cincotti@jaist.ac.jp

Abstract. We give upper and lower bounds on $S_3[n]$ equal to the number of three-player partizan cold games born by day n. In particular, we give an upper bound of $O(S_2[n]^3)$ and a lower bound of $\Omega(S_2[n])$ where $S_2[n]$ is the number of surreal numbers born by day n.

1 Introduction

Games represent a conflict of interests between two or more parties and, as a consequence, they are a good framework to study complex problem-solving strategies. Typically, a real-world economical, social or political conflict involves more than two parties and a winning strategy is often the result of coalitions. For this reason, it is important to determine the winning strategy of a player in the worst scenario, i.e., assuming that all his/her opponents are allied against him/her.

It is therefore, a challenging and fascinating problem to extend the field of combinatorial game theory [1,3] so as to allow more than two players. Past effort to classify impartial three-player combinatorial games (the theories of Li [5] and Straffin [8]) have made various restrictive assumptions about the rationality of one's opponents and the formation and behavior of coalitions. Loeb [6] introduces the notion of a stable winning coalition in a multi-player game as a new system of classification of games. Differently, Propp [7] adopts in his work an agnostic attitude toward such issues, and seeks only to understand in what circumstances one player has a winning strategy against the combined forces of the other two.

Cincotti [2] presents a theory to classify three-player partizan games adopting the same attitude. Such a theory represents a possible extension of Conway's theory of partizan games [3,4] and it is therefore both a theory of games and a theory of numbers.

In order to understand the mathematical structure of three-player partizan games, counting the number of cold games born by day n is a crucial point. We recall that the number of surreal numbers born by day n is $S_2[n] = 2^{n+1} - 1$. Moreover, a lower and upper bound of two-player games is given by Wolfe and Fraser in [9].

2 Three-Player Partizan Games

For the sake of self-containment we recall in this section the main results concerning three-player partizan games obtained in the previous work [2].

2.1 Basic Definitions

Definition 1. If L, C, R are any three sets of numbers previously defined and

- 1. no element of L is \geq_L any element of $C \cup R$, and
- 2. no element of C is \geq_C any element of $L \cup R$, and
- 3. no element of R is \geq_R any element of $L \cup C$,

then $\{L|C|R\}$ is a number. All numbers are constructed in this way.

This definition for numbers is based on the definition and comparison operators for games given in the following two definitions.

Definition 2. If L, C, R are any three sets of games previously defined then $\{L|C|R\}$ is a game. All games are constructed in this way.

We introduce three different relations (\geq_L, \geq_C, \geq_R) that represent the subjective point of view of every player which is independent from the point of view of the other players.

Definition 3. We say that

1. $x \geq_L y$ iff $(y \geq_L no x^C \text{ and } y \geq_L no x^R \text{ and no } y^L \geq_L x)$, 2. $x \geq_C y$ iff $(y \geq_C no x^L \text{ and } y \geq_C no x^R \text{ and no } y^C \geq_C x)$, 3. $x \geq_R y$ iff $(y \geq_R no x^L \text{ and } y \geq_R no x^C \text{ and no } y^R \geq_R x)$.

Numbers are totally ordered with respect to \geq_L , \geq_C , and \geq_R but games are just partially-ordered, e.g., there exist games x and y for which we have neither $x \geq_L y$ nor $y \geq_L x$.

Definition 4. We say that

1. $x =_L y$ if and only if $(x \ge_L y \text{ and } x \le_L y)$, 2. $x =_C y$ if and only if $(x \ge_C y \text{ and } x \le_C y)$, 3. $x =_R y$ if and only if $(x \ge_R y \text{ and } x \le_R y)$, 4. x = y if and only if $(x =_L y, x =_C y, \text{ and } x =_R y)$, 5. $x + y = \{x^L + y, x + y^L | x^C + y, x + y^C | x^R + y, x + y^R\}$.

Moreover, it is possible to classify numbers in 11 classes as shown in Table 1. The entries '?' are unrestricted and indicate that we can have different outcomes. For further details, see [2].

Short notation	Class	Left starts	Center starts	Right starts
= 0	$=_L 0, =_C 0, =_R 0$	Right wins	Left wins	Center wins
$>_{L} 0$	$>_L 0, <_C 0, <_R 0$	Left wins	Left wins	Left wins
$>_C 0$	$<_L 0,>_C 0,<_R 0$	Center wins	Center wins	Center wins
$>_{R} 0$	$<_L 0, <_C 0, >_R 0$	Right wins	Right wins	Right wins
$=_{LC} 0$	$=_L 0, =_C 0, <_R 0$	Center wins	Left wins	Center wins
$=_{LR} 0$	$=_L 0, <_C 0, =_R 0$	Right wins	Left wins	Left wins
$=_{CR} 0$	$<_L 0,=_C 0,=_R 0$	Right wins	Right wins	Center wins
$<_{CR} 0$	$=_L 0, <_C 0, <_R 0$?	Left wins	Left wins
$<_{LR} 0$	$<_L 0,=_C 0,<_R 0$	Center wins	?	Center wins
$<_{LC} 0$	$<_L 0, <_C 0, =_R 0$	Right wins	Right wins	?
< 0	$<_L 0, <_C 0, <_R 0$?	?	?

Table 1. Classification of numbers

2.2 Examples of Numbers

According to the construction procedure, every number has the form $\{L|C|R\}$, where L, C, and R are three sets of earlier constructed numbers. At day zero, we have only the empty set \emptyset therefore the earliest constructed number could only be $\{L|C|R\}$ with $L = C = R = \emptyset$, or in the simplified notation $\{ \mid \mid \}$. We denote it by 0.

The first day we have only three new numbers which we call $1_L = \{0 | | \}$, $1_C = \{ |0| \}$, and $1_R = \{ | |0 \}$. We observe that $\{0|0| \}$, $\{0| |0 \}$, $\{ |0|0 \}$, and $\{0|0|0\}$ are not numbers. Table 2 shows the numbers created the second day.

Note 1. In [2] the list of numbers created the second day was incomplete because we can create $24 \pmod{18}$ different numbers.

Table	2.	Numbers	created	the	second	day
-------	----	---------	---------	-----	--------	-----

$\{1_L \}$	$\{ 1_C \}$	$\{ \mid 1_R \}$	$\{1_C 1_L \}$
$\{0, 1_C, 1_R \mid \mid \}$	$\{ 0, 1_L, 1_R \}$	$\{ \mid 0, 1_L, 1_C \}$	$\{1_R 1_L\}$
$\{0, 1_C \}$	$\{ 0, 1_L \}$	$\{ \mid 0, 1_L \}$	$\{ 1_R 1_C \}$
$\{0, 1_R \}$	$\{ 0, 1_R \}$	$\{ \mid 0, 1_C \}$	$\{1_C, 1_R \}$
$\{0 1_L \}$	$\{1_C 0 \}$	$\{1_R 0\}$	$\{ 1_L, 1_R \}$
$\{0 1_L\}$	$\{ 0 1_C \}$	$\{ 1_R 0 \}$	$\{ \mid 1_L, 1_C \}$

3 Counting the Numbers

How many numbers will be created by day n?

Definition 5. Let S_2 and S_3 be respectively Conway's surreal numbers and the new set of numbers previously defined. We define three different maps $\pi : S_3 \rightarrow S_2$ as follows:

1. $\pi_L(\{x^L|x^C|x^R\}) = \{\pi_L(x^L)|\pi_L(x^C), \pi_L(x^R)\}\$ 2. $\pi_C(\{x^L|x^C|x^R\}) = \{\pi_C(x^C)|\pi_C(x^L), \pi_C(x^R)\}\$ 3. $\pi_R(\{x^L|x^C|x^R\}) = \{\pi_R(x^R)|\pi_R(x^L), \pi_R(x^C)\}\$

Theorem 1. For any $x, y \in S_3$

1. $x \leq_L y \iff \pi_L(x) \leq \pi_L(y)$ 2. $x \leq_C y \iff \pi_C(x) \leq \pi_C(y)$ 3. $x \leq_R y \iff \pi_R(x) \leq \pi_R(y)$

Proof. 1. If $x \leq_L y$ then $\nexists x^L \geq_L y$ and, by the inductive hypothesis

$$\nexists \pi_L(x^L) \ge \pi_L(y) \Rightarrow \nexists \pi_L(x)^L \ge \pi_L(y).$$
(1)

Moreover, $\nexists y^C \leq_L x$, $\nexists y^R \leq_L x$, and by the inductive hypothesis

$$\frac{\sharp}{\pi_L}(y^C) \le \pi_L(x) \\
\frac{\sharp}{\pi_L}(y^R) \le \pi_L(x) \\
\end{cases} \Rightarrow \frac{\sharp}{\pi_L}(y)^R \le \pi_L(x).$$
(2)

Conversely, if $\pi_L(x) \leq \pi_L(y)$ then

$$\nexists \pi_L(x)^L \ge \pi_L(y) \Rightarrow \nexists \pi_L(x^L) \ge \pi_L(y)$$
(3)

and by the inductive hypothesis $\nexists x^L \ge_L y$. Also,

$$\nexists \pi_L(y)^R \le \pi_L(x) \Rightarrow \begin{cases} \nexists \pi_L(y^C) \le \pi_L(x) \\ \nexists \pi_L(y^R) \le \pi_L(x) \end{cases}$$
(4)

and by the inductive hypothesis $\nexists y^C \leq_L x$ and $\nexists y^R \leq_L x$.

- 2. Analogous to 1.
- 3. Analogous to 1.

We have two corollaries of the above theorem.

Corollary 1. If $x \in S_3$ is a number then $\pi_L(x)$, $\pi_C(x)$, and $\pi_R(x)$ are numbers.

Corollary 2. Let $x, y \in S_3$ be two numbers. Then x = y if and only if $\pi_L(x) = \pi_L(y)$, $\pi_C(x) = \pi_C(y)$, and $\pi_R(x) = \pi_R(y)$.

It follows that to every number $x \in S_3$ there corresponds a unique triple $(\pi_L(x), \pi_C(x), \pi_R(x))$ of surreal numbers. Table 3 shows all numbers born by day 2 and their corresponding triples of surreal numbers.

Theorem 2. Let $x = \{x^L | x^C | x^R\} \in S_3[n]$ be a number born by day n. Then $\pi_L(x), \pi_C(x), \text{ and } \pi_R(x) \in S_2[n].$

Proof. By the hypothesis x^L , x^C , and $x^R \in S_3[n-1]$ and by the inductive hypothesis $\pi_L(x^L)$, $\pi_L(x^C)$, and $\pi_L(x^R) \in S_2[n-1]$ therefore $\pi_L(x) \in S_2[n]$. Analogously, $\pi_C(x)$ and $\pi_R(x)$ are numbers born by day n.

Unfortunately, the above theorem is not reversible.

	Day 0	Day 1	Day 2
=	$\{ \mid \mid \} (0,0,0)$		
$>_L$		$\{0 \}$ (1,-1,-1)	$\{1_L \mid \}$ (2,-2,-2)
$>_L$			$\{0, 1_C, 1_R \mid \} (1, -2, -2)$
$>_L$			$\{0, 1_C \mid \mid \}$ (1,-1,-2)
$>_L$			$\{0, 1_R \mid \}$ (1,-2,-1)
$>_L$			$\{0 1_L \}$ (1/2,-1/2,-2)
$>_L$			$\{0 1_L\}$ $(1/2, -2, -1/2)$
$>_C$		$\{ 0 \} (-1,1,-1)$	$\{ 1_C \}$ (-2,2,-2)
$>_C$			$\{ 0, 1_L, 1_R \} (-2, 1, -2)$
$>_C$			$\{ 0, 1_L \}$ (-1,1,-2)
$>_C$			$\{ 0, 1_R \}$ (-2,1,-1)
$>_C$			$\{1_C 0 \}$ (-1/2,1/2,-2)
$>_C$			$\{ 0 1_C \} $ (-2,1/2,-1/2)
$>_R$		$\{ \mid \mid 0 \} \ (-1, -1, 1)$	$\{ \mid \mid 1_R \}$ (-2,-2,2)
$>_R$			$\{ \mid 0, 1_L, 1_C \} \ (-2, -2, 1)$
$>_R$			$\{ \mid 0, 1_L \}$ (-1,-2,1)
$>_R$			$\{ \mid 0, 1_C \}$ (-2,-1,1)
$>_R$			$\{1_R \mid 0\}$ (-1/2,-2,1/2)
$>_R$			$\{ 1_R 0\} $ (-2,-1/2,1/2)
$=_{LC}$			$\{1_C 1_L \}$ (0,0,-2)
$=_{LR}$			$\{1_R 1_L\}$ (0,-2,0)
$=_{CR}$			$\{ 1_R 1_C \} $ (-2,0,0)
\leq_{CR}			$\{1_C, 1_R \mid \} (0, -2, -2)$
\leq_{LR}			$\{ 1_L, 1_R \}$ (-2,0,-2)
$<_{LC}$			$\{ \mid \mid 1_L, 1_C \}$ (-2,-2,0)

Table 3. Numbers born by day 2 and their corresponding triples of surreal numbers

Example 1. Let's consider $1_L + 1_C + 1_R = \{\{ |1_R| |1_C\} | \{1_R| |1_L\} | \{1_C| |1_L| \}\}$. We observe that $\pi_L(x) = \pi_C(x) = \pi_R(x) = -1$ therefore they all belong to $S_2[1]$ but $1_L + 1_C + 1_R \notin S_3[1]$ because it will be created only the third day.

It follows that a rough upper bound on $S_3[n]$ is given by the number of distinct triples of surreal numbers born by day n, i.e., $(S_2[n])^3$. Moreover, a simple lower bound is given by $S_2[n]$.

Theorem 3. For any $x, y \in S_3$

1. $\pi_L(x+y) = \pi_L(x) + \pi_L(y)$ 2. $\pi_C(x+y) = \pi_C(x) + \pi_C(y)$ 3. $\pi_R(x+y) = \pi_R(x) + \pi_R(y)$

Proof. 1.

$$\pi_L(x+y) = \pi_L(\{x^L+y, x+y^L | x^C+y, x+y^C | x^R+y, x+y^R\}) \quad (5)$$

= $\{\pi_L(x^L+y), \pi_L(x+y^L) | \pi_L(x^C+y), \pi_L(x+y^C), \pi_L(x^R+y), \pi_L(x+y^R)\}$

$$= \{\pi_L(x^L) + \pi_L(y), \pi_L(x) + \pi_L(y^L) | \\ \pi_L(x^C) + \pi_L(y), \pi_L(x) + \pi_L(y^C), \\ \pi_L(x^R) + \pi_L(y), \pi_L(x) + \pi_L(y^R) \} \\ = \pi_L(x) + \pi_L(y)$$

- 2. Analogous to 1.
- 3. Analogous to 1.

Theorem 4. Let $x \in S_3$ be a number. Then

1. $\pi_L(x) + \pi_C(x) \le 0$, 2. $\pi_L(x) + \pi_R(x) \le 0$, 3. $\pi_C(x) + \pi_R(x) \le 0$.

Proof. 1. We observe that

$$\pi_L(x^L) + \pi_C(x) < \pi_L(x^L) + \pi_C(x^L)$$
(6)

and by the inductive hypothesis

$$\pi_L(x^L) + \pi_C(x^L) \le 0. \tag{7}$$

Analogously,

$$\pi_L(x) + \pi_C(x^C) < \pi_L(x^C) + \pi_C(x^C) \le 0$$
(8)

therefore no left option of $\pi_L(x) + \pi_C(x)$ is ≥ 0 .

- 2. Analogous to 1.
- 3. Analogous to 1.

Theorem 5. Let $x \in S_3[n]$ and $y \in S_3[m]$ be two numbers. Then $x + y \in S_3[n + m]$.

Proof. We recall that $x + y = \{x^L + y, x + y^L | x^C + y, x + y^C | x^R + y, x + y^R\}$. By the hypothesis, x^L , x^C , and x^R belong to $S_3[n-1]$ and y^L , y^C , y^R belong to $S_3[m-1]$. By the inductive hypothesis, $x^L + y, x + y^L, x^C + y, x + y^C, x^R + y, x + y^R$ belong to $S_3[n + m - 1]$ therefore $x + y \in S_3[n + m]$.

3.1 Lower and Upper Bound

Below we give a more accurate upper and lower bound for each class. We start recalling four statements.

1. The number of surreal numbers born by day n is

$$S_2[n] = 2^{n+1} - 1 \tag{9}$$

2. The number of positive (negative) surreal numbers born by day n is

$$\frac{1}{2}(S_2[n] - 1) \tag{10}$$

3. The number of positive (negative) dyadic fraction born by day n is

$$\frac{1}{2}(S_2[n] - 2n - 1) \tag{11}$$

4. The following equality holds

$$1^{2} + 2^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
(12)

Definition 6. We define

$$(i+1)_L = \{i_L \mid \mid \}$$
(13)

- $(j+1)_C = \{ |j_C| \}$ (14)
- $(k+1)_R = \{ \mid |k_R\}$ (15)

where $i, j, k \in \mathbf{N}$ and $0_L = 0_C = 0_R = 0$.

Definition 7. We define

$$\left(\frac{2p+1}{2^{q+1}}\right)_{LC} = \left\{ \left(\frac{p}{2^q}\right)_{LC} \left| \left(\frac{p+1}{2^q}\right)_{LC} \right| \right\}$$
(16)

$$\left(\frac{2p+1}{2^{q+1}}\right)_{LR} = \left\{ \left(\frac{p}{2^q}\right)_{LR} \middle| \left| \left(\frac{p+1}{2^q}\right)_{LR} \right\}$$
(17)

where $p, q \in \mathbf{N}$.

Note 2. If
$$\left(\frac{p}{2^q}\right) \in \mathbf{N}$$
 then $\left(\frac{p}{2^q}\right)_{LC} = \left(\frac{p}{2^q}\right)_{LR} = \left(\frac{p}{2^q}\right)_L$. Analogously, if $\left(\frac{p+1}{2^q}\right) \in \mathbf{N}$ then $\left(\frac{p+1}{2^q}\right)_{LC} = \left(\frac{p+1}{2^q}\right)_{LR} = \left(\frac{p+1}{2^q}\right)_L$.

Theorem 6. If $x = \left(\frac{2p+1}{2^{q+1}}\right)_{LC}$ is born the b^{th} day then $\pi_R(x) = -b$.

Proof. By definition

$$\pi_R\left(\left(\frac{2p+1}{2^{q+1}}\right)_{LC}\right) = \left\{ \left| \pi_R\left(\left(\frac{p}{2^q}\right)_{LC}\right), \pi_R\left(\left(\frac{p+1}{2^q}\right)_{LC}\right) \right\}$$
(18)

We observe that either $\left(\frac{p}{2^q}\right)_{LC}$ or $\left(\frac{p+1}{2^q}\right)_{LC}$ must be born the $(b-1)^{th}$ day therefore by the inductive hypothesis we have $\pi_R(x) = \{ | -(b-1) \} = -b$. \Box

Below we make eight observations

- 1. The first class contains only the number 0.
- 2. In the class $>_L 0$, $\pi_L(x)$ is positive, $\pi_C(x)$ and $\pi_R(x)$ are negative therefore we have an upper bound of $\frac{1}{8}(S_2[n]-1)^3$. Using Theorem 4 and the equality 12 we can refine this value obtaining $\frac{1}{24}(S_2[n]^2-1)S_2[n]$.

187

In contrast, we can express every triple (i, -j, -k) by the number $\{(i-1)_L, (k-1)_C, (j-1)_R | | \}$ where $i-j \leq 0, i-k \leq 0$ and $i, j, k \in \mathbb{Z}^+$. Moreover, for every positive dyadic fraction we can create two different numbers $\left(\frac{2p+1}{2^{q+1}}\right)_{LC}$ and $\left(\frac{2p+1}{2^{q+1}}\right)_{LR}$ corresponding respectively to $\left(\frac{2p+1}{2^{q+1}}, -\frac{2p+1}{2^{q+1}}, -b\right)$ and $\left(\frac{2p+1}{2^{q+1}}, -b, -\frac{2p+1}{2^{q+1}}, \right)$ where b is the day $\left(\frac{2p+1}{2^{q+1}}\right)$ was born. Summing up, we have a lower bound of $\frac{1}{6}n(n+1)(2n+1) + S_2[n] - 2n - 1$.

- 3. The classes $>_C 0$ and $>_R 0$ are analogous to the class $>_L 0$.
- 4. If $x =_{LC} 0$ then $x^R = \emptyset$ therefore $\pi_R(x) = \{ |\pi_R(x^L), \pi_R(x^C) \} \in \mathbf{Z}^-$. If $x \in S_3[n]$ then by Theorem 2, $-n \leq \pi_R(x)$ therefore n is an upper bound. Moreover, we observe that the number $\{\{ |0|1_C\} | \{0| |1_L\} | \}$ corresponding to (0, 0, -1) belongs to $S_3[3]$ therefore the lower bound is n with n > 2.
- 5. The classes $=_{LR} 0$ and $=_{CR} 0$ are analogous to the class $=_{LC} 0$.
- 6. In the class $<_{CR} 0$, $\pi_L(x) = 0$, $\pi_C(x)$ and $\pi_R(x)$ are negative therefore we have an upper bound of $\frac{1}{4}(S_2[n]-1)^2$. In contrast, we can express every triple (0, -j, -k) by the number $\{(k-1)_C, (j-1)_R | \mid \}$ where $j,k \in \mathbb{Z}^+$ with $j, k \ge 2$. Moreover, for every positive dyadic fraction we can create the number $\left(\frac{2p+1}{2^{q+1}}\right)_{LC} + \left(\frac{2p+1}{2^{q+1}}\right)_{RL}$ corresponding to $\left(0, -b - \frac{2p+1}{2^{q+1}}, -b + \frac{2p+1}{2^{q+1}}\right)$ where b is the day $\left(\frac{2p+1}{2^{q+1}}\right)$ was born.
- Summing up, we have a lower bound of $(n-1)^2 + \frac{1}{2}(S_2\lfloor\lfloor n/2 \rfloor\rfloor 2\lfloor n/2 \rfloor 1)$. 7. The classes $<_{LR} 0$ and $<_{LC} 0$ are analogous to the class $<_{LR} 0$.
- 8. In the last class, we have an upper bound of $\frac{1}{8}(S_2[n]-1)^3$ because $\pi_L(x)$, $\pi_C(x)$, and $\pi_R(x)$ are all negative. We recall that
 - (a) If $x <_{CR} 0 \in S_3[n-2]$ and $y = \{ |1_R|1_C \} \in S_3[2]$ then $x + y < 0 \in S_3[n]$. (b) If $x <_{LR} 0 \in S_3[n-2]$ and $y = \{1_R | |1_L\} \in S_3[2]$ then $x + y < 0 \in S_3[n]$. (c) If $x <_{LC} 0 \in S_3[n-2]$ and $y = \{1_C|1_L| \} \in S_3[2]$ then $x + y < 0 \in S_3[n]$. To be sure that the sets of numbers given by (a), (b), and (c) are disjoint, we do not consider the numbers $x <_{CR} 0 \in S_3[n-2]$ corresponding to (0, -j, -k) where either j = 2 or k = 2. Analogously, we do not consider the numbers $x <_{LR} 0 \in S_3[n-2]$ corresponding to (-j, 0, -k) where either j = 2 or k = 2 and the numbers $x <_{LC} 0 \in S_3[n-2]$ corresponding to (-j, -k, 0) where either j = 2 or k = 2. Therefore, we have a lower bound of $\frac{3}{2}S_2[[n/2] - 1] + 3n^2 - 24n - 3[n/2] + \frac{99}{2}$.

Summarizing, we have an upper bound of

$$\frac{1}{4}S_2[n]^3 + \frac{3}{8}S_2[n]^2 - \frac{5}{4}S_2[n] + 3n + \frac{13}{8} = O(S_2[n]^3)$$
(19)

and a lower bound of

$$3S_{2}[n] + \frac{3}{2}S_{2}[\lfloor n/2 \rfloor] + \frac{3}{2}S_{2}[\lfloor n/2 \rfloor - 1] +$$

$$n^{3} + \frac{15}{2}n^{2} - \frac{65}{2}n - 6\lfloor n/2 \rfloor + 49 = \Omega(S_{2}[n])$$
(20)

Table 4 shows the results so far obtained but to establish the exact value of $S_3[n]$ as well as the canonical form of a three-player game is still an open problem.

x	Lower bound	Upper bound
= 0	1	1
$>_L 0$	$S_2[n] + \frac{1}{3}n^3 + \frac{1}{2}n^2 - \frac{11}{6}n - 1$	$\frac{1}{24}(S_2[n]^2-1)S_2[n]$
$>_C 0$	$S_2[n] + \frac{1}{3}n^3 + \frac{1}{2}n^2 - \frac{11}{6}n - 1$	$\frac{1}{24}(S_2[n]^2-1)S_2[n]$
$>_R 0$	$S_2[n] + \frac{1}{3}n^3 + \frac{1}{2}n^2 - \frac{1}{6}n - 1$	$\frac{1}{24}(S_2[n]^2-1)S_2[n]$
$=_{LC} 0$	n, n > 2	n
$=_{LR} 0$	n, n > 2	n
$=_{CR} 0$	n, n > 2	n
$<_{CR} 0$	$\frac{1}{2}S_2[\lfloor n/2 \rfloor] + n^2 - 2n - \lfloor n/2 \rfloor + \frac{1}{2}, n > 1$	$\frac{1}{4}(S_2[n]-1)^2$
$<_{LR} 0$	$\frac{1}{2}S_2[\lfloor n/2 \rfloor] + n^2 - 2n - \lfloor n/2 \rfloor + \frac{1}{2}, n > 1$	$\frac{1}{4}(S_2[n]-1)^2$
$<_{LC} 0$	$\frac{1}{2}S_2[n/2] + n^2 - 2n - n/2 + \frac{1}{2}, n > 1$	$\frac{1}{4}(S_2[n]-1)^2$
< 0	$\frac{3}{2}S_2[\lfloor n/2 \rfloor - 1] + 3n^2 - 24n - 3\lfloor n/2 \rfloor + \frac{99}{2}, n > 3$	$\frac{1}{8}(S_2[n]-1)^3$

Table 4. Results obtained so far

Acknowledgments

I would like to thank the anonymous referees for their useful comments.

References

- Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways For Your Mathematical Plays. Academic Press, San Diego (1982)
- Cincotti, A.: Three-Player Partizan Games. Theoretical Computer Science 332, 367– 389 (2005)
- 3. Conway, J.H.: On Numbers and Games. Academic Press, San Diego (1976)
- 4. Knuth, D.: Surreal Numbers. Addison-Wesley, London, UK (1974)
- Li, S.Y.R.: N-Person Nim and N-Person Moore's Games. Game Theory 7, 31–36 (1978)
- Loeb, D.E.: Stable Winning Coalitions. In: Nowakowski, R.J. (ed.) Games of No Chance, vol. 29, pp. 451–471. MSRI Publ. Cambridge University Press (1994)
- Propp, J.: Three-player Impartial games. Theoretical Computer Science 233, 263– 278 (2000)
- Straffin Jr., P.D.: Three-Person Winner-Take-All Games with Mc-Carthy's Revenge Rule. College Journal of Mathetmatics 16, 386–394 (1985)
- Wolfe, D., Fraser, W.: Counting the Number of Games. Theoretical Computer Science 313, 527–532 (2004)