Counting the Number of Three-Player Partizan Cold Games

Alessandro Cincotti

Research Unit for Computers and Games, School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan cincotti@jaist.ac.jp

Abstract. We give upper and lower bounds on $S_3[n]$ equal to the number of three-player partizan cold games born by day n . In particular, we give an upper bound of $O(S_2[n]^3)$ and a lower bound of $\Omega(S_2[n])$ where $S_2[n]$ is the number of surreal numbers born by day n.

1 Introduction

Games r[ep](#page-8-0)[re](#page-8-1)sent a conflict of interests between two or more parties and, as a consequence, they are a good framework to study com[pl](#page-8-2)ex problem-solving strategies. Typically, a real-world economical, social or political conflict involves more than two parties and a winning strategy is often th[e](#page-8-3) result of coalitions. For this reason, it is important to determine the winning strategy of a player in the worst scenario, i.e., assuming that [a](#page-8-4)ll his/her opponents are allied against him/her.

It is therefore, a challenging and fascinating problem to extend the field of combinatorial game theory [1,3] so as to allow more than two players. Past effort to classify impartial three-player combinatorial games (the theories of Li [5] and Straffin [8]) have made various restrictive assumptions about the rationality of [on](#page-8-1)[e's](#page-8-5) opponents and the formation and behavior of coalitions. Loeb [6] introduces the notion of a stable winning coalition in a multi-player game as a new system of classification of games. Differently, Propp [7] adopts in his work an agnostic attitude toward such issues, and seeks only to understand in what circumstances one player has a winning strategy against the combined forces of the other two.

Cincotti [2] presents a theory to classify three-player partizan games adopting the same attitude. Such a theory represents a possible extension of Conway's theory of partizan games [3,4] a[nd i](#page-8-6)t is therefore both a theory of games and a theory of numbers.

In order to understand the mathematical structure of three-player partizan games, counting the number of cold games born by day n is a crucial point. We recall that the number of surreal numbers born by day n is $S_2[n]=2^{n+1}-1$. Moreover, a lower and upper bound of two-player games is given by Wolfe and Fraser in [9].

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 181–189, 2007.

-c Springer-Verlag Berlin Heidelberg 2007

182 A. Cincotti

2 Three-Player Partizan Games

For the sake of self-containment we recall in this section the main results concerning three-player partizan games obtained in the previous work [2].

2.1 Basic Definitions

Definition 1. *If* L, C, R *are any three sets of numbers previously defined and*

- *1. no element of* L *is* \geq_L *any element of* $C \cup R$ *, and*
- *2. no element of* C *is* $≥_C$ *any element of* $L ∪ R$ *, and*
- *3. no element of* R *is* ≥*R any element of* $L ∪ C$ *,*

then {L|C|R} *is a number. All numbers are constructed in this way.*

This definition for numbers is based on the definition and comparison operators for games given in the following two definitions.

Definition 2. *If* L, C, R *are any three sets of games previously defined then* {L|C|R} *is a game. All games are constructed in this way.*

We introduce three different relations (\geq_L, \geq_C, \geq_R) that represent the subjective point of view of every player which is independent from the point of view of the other players.

Definition 3. *We say that*

1. $x \geq_L y$ iff $(y \geq_L n \text{ or } x^C \text{ and } y \geq_L n \text{ or } x^R \text{ and no } y^L \geq_L x$, 2. $x \geq_C y$ iff $(y \geq_C n o x^L$ and $y \geq_C n o x^R$ and $no y^C \geq_C x$, *3.* $x \geq_R y$ iff $(y \geq_R n \text{ or } x^L \text{ and } y \geq_R n \text{ or } x^C \text{ and } n \text{ or } y^R \geq_R x$.

Numbers are totally ordered with respect to \geq_L , \geq_C , and \geq_R but games are just partially-ordered, e.g., there exist games x and y for which we have neither $x \geq_L y$ nor $y \geq_L x$.

Definition 4. *We say that*

[1.](#page-8-7) $x = L$ y *if and only if* $(x \geq_L y$ *and* $x \leq_L y$ *)*, 2. $x = C y$ if and only if $(x \geq C y$ and $x \leq C y$, *3.* $x = R$ y *if and only if* $(x \geq R$ y *and* $x \leq R$ y), *4.* $x = y$ if and only if $(x = L y, x = C y, and x = R y)$, 5. $x + y = \{x^L + y, x + y^L | x^C + y, x + y^C | x^R + y, x + y^R\}.$

Moreover, it is possible to classify numbers in 11 classes as shown in Table 1. The entries '?' are unrestricted and indicate that we can have different outcomes. For further details, see [2].

Short notation	Class	Left starts	Center starts	Right starts
$= 0$	$=_L 0, =_C 0, =_R 0$	Right wins	Left wins	Center wins
$>$ _L 0	$>_{L} 0, \lt_C 0, \lt_R 0$	Left wins	Left wins	Left wins
$>c$ 0	$\langle L 0, \rangle_C 0, \langle R 0 \rangle$	Center wins	Center wins	Center wins
$>$ _R 0	$\lt_L 0, \lt_C 0, \gt_R 0$	Right wins	Right wins	Right wins
$=_{LC} 0$	$=_L 0, =_C 0, <_R 0$	Center wins	Left wins	Center wins
$=$ _{LR} $=$ 0	$=_{L} 0, \leq_{C} 0, =_{R} 0$	Right wins	Left wins	Left wins
$=c_R 0$	$\lt_L 0, =_C 0, =_R 0$	Right wins	Right wins	Center wins
$\leq_{CR} 0$	$=_{L} 0, \leq_{C} 0, \leq_{R} 0$	7	Left wins	Left wins
ϵ_{LR} 0	$\lt_L 0, =_C 0, \lt_R 0$	Center wins	7	Center wins
ϵ_{LC} 0	$\lt_L 0, \lt_C 0, =_R 0$	Right wins	Right wins	?
< 0	$\lt_L 0, \lt_C 0, \lt_R 0$?	?	?

Table 1. Classification of numbers

2.2 Examples of Numbers

Acc[o](#page-2-0)rding [t](#page-2-0)o the construction procedure, every number has the form ${L|C|R}$, where L, C , and R are three sets of earlier constructed numbers. At day zero, we have only the empty set ∅ therefore the earliest constructed number could only be $\{L|C|R\}$ with $L = C = R = \emptyset$, or in the simplified notation $\{| \rangle\}$. We denote it by 0.

The first day we have only three new numbers which we call $1_L = \{0 | | \}$, $1_C = \{ |0| \}$, and $1_R = \{ |0| \}$. We observe that $\{0|0| \}$, $\{0|0\}$, $\{ |0|0 \}$, and ${0|0|0}$ are not numbers. Table 2 shows the numbers created the second day.

Note 1. In [2] the list of numbers created the second day was incomplete because we can create 24 (not 18) different numbers.

Table 2. Numbers created the second day

$\{1_L \}\$	$\{ 1_C \}$	$\{ 1_R\rangle$	$\{1_C 1_L \}$
$\{0,1_C,1_R \}\$	$\{ 0,1_L,1_R \}$	$\{ 0, 1_L, 1_C \}$	$\{1_R 1_L\}$
$\{0,1_C \}\$	$\{ 0,1_L \}\$	$\{ 0, 1_L \}$	$\{ 1_R 1_C\}$
$\{0, 1_R\}$ }	$\{ 0,1_R \}$	$\{ 0,1_C\}$	$\{1_C, 1_R \}\$
$\{0 1_L $ }	$\{1_C 0 \}$	$\{1_R 0\}$	$\{ 1_L, 1_R \}\$
$\{0 1_L\}$	$\{ 0 1_C\}$	$\{ 1_R 0 \}$	$\{ 1_L, 1_C \}$

3 Counting the Numbers

How many numbers will be created by day n ?

Definition 5. Let S_2 and S_3 be respectively Conway's surreal numbers and the *new set of numbers previously defined. We define three different maps* $\pi : S_3 \rightarrow$ S² *as follows:*

184 A. Cincotti

1.
$$
\pi_L(\{x^L | x^C | x^R\}) = \{\pi_L(x^L) | \pi_L(x^C), \pi_L(x^R)\}
$$

\n2. $\pi_C(\{x^L | x^C | x^R\}) = \{\pi_C(x^C) | \pi_C(x^L), \pi_C(x^R)\}$
\n3. $\pi_R(\{x^L | x^C | x^R\}) = \{\pi_R(x^R) | \pi_R(x^L), \pi_R(x^C)\}$

Theorem 1. *For any* $x, y \in S_3$

1. $x \leq_L y \iff \pi_L(x) \leq \pi_L(y)$ 2. $x \leq_C y \iff \pi_C(x) \leq \pi_C(y)$ *3.* $x \leq_R y \iff \pi_R(x) \leq \pi_R(y)$

Proof. 1. If $x \leq_L y$ then $\sharp x^L \geq_L y$ and, by the inductive hypothesis

$$
\nexists \pi_L(x^L) \ge \pi_L(y) \Rightarrow \nexists \pi_L(x)^L \ge \pi_L(y). \tag{1}
$$

Moreover, $\frac{4}{7}y^C \leq_L x$, $\frac{4}{7}y^R \leq_L x$, and by the inductive hypothesis

$$
\frac{\nexists \pi_L(y^C) \le \pi_L(x)}{\nexists \pi_L(y^R) \le \pi_L(x)} \Rightarrow \nexists \pi_L(y)^R \le \pi_L(x). \tag{2}
$$

Conversely, if $\pi_L(x) \leq \pi_L(y)$ then

$$
\nexists \pi_L(x)^L \ge \pi_L(y) \Rightarrow \nexists \pi_L(x^L) \ge \pi_L(y)
$$
\n(3)

and by the inductive hypothesis $\sharp x^L \geq_L y$. Also,

$$
\nexists \pi_L(y)^R \le \pi_L(x) \Rightarrow \begin{cases} \nexists \pi_L(y^C) \le \pi_L(x) \\ \nexists \pi_L(y^R) \le \pi_L(x) \n\end{cases} \tag{4}
$$

 \Box

and by the inductive hypothesis $\sharp y^C \leq_L x$ and $\sharp y^R \leq_L x$.

- *2.* Analogous to *1*.
- *3.* Analogous to *1*.

We have two corollar[ies](#page-4-0) of the above theorem.

Corollary 1. *If* $x \in S_3$ *is a number then* $\pi_L(x)$ *,* $\pi_C(x)$ *, and* $\pi_R(x)$ *are numbers.*

Corollary 2. *Let* $x, y \in S_3$ *be two numbers. Then* $x = y$ *if and only if* $\pi_L(x) =$ $\pi_L(y)$, $\pi_C(x) = \pi_C(y)$, and $\pi_R(x) = \pi_R(y)$.

It follows that to every number $x \in S_3$ there corresponds a unique triple $(\pi_L(x),$ $\pi_C(x)$, $\pi_R(x)$ of surreal numbers. Table 3 shows all numbers born by day 2 and their corresponding triples of surreal numbers.

Theorem 2. Let $x = \{x^L | x^C | x^R\} \in S_3[n]$ be a number born by day n. Then $\pi_L(x)$, $\pi_C(x)$, and $\pi_R(x) \in S_2[n]$.

Proof. By the hypothesis x^L , x^C , and $x^R \in S_3[n-1]$ and by the inductive hypothesis $\pi_L(x^L)$, $\pi_L(x^C)$, and $\pi_L(x^R) \in S_2[n-1]$ therefore $\pi_L(x) \in S_2[n]$. Analogously, $\pi_C(x)$ and $\pi_R(x)$ are numbers born by day *n*. \Box

Unfortunately, the above theorem is not reversible.

	Day 0	Day 1	Day 2
$=$	$ \; \; \} (0,0,0)$		
$>_L$		$\{0\vert\vert\}$ $(1,-1,-1)$	$(2,-2,-2)$ $\{1_L \}\$
$>_L$			$\{0, 1_C, 1_R\vert\}$ $\{1, -2, -2\}$
$>_L$			$\{0, 1_C \}$ $(1,-1,-2)$
$>_L$			$\{0, 1_R \}$ $(1,-2,-1)$
$>_L$			$\{0 1_L \}$ $(1/2,-1/2,-2)$
$>_L$			$\{0\vert \vert 1_L\}$ $(1/2,-2,-1/2)$
$>_{C}$		$\{ 0 \}\ (-1,1,-1)$	$\{ 1_C \}$ (-2,2,-2)
$>_{C}$			$\{ 0,1_L,1_R \}$ (-2,1,-2)
>c			$\{ 0,1_L \}$ $(-1,1,-2)$
$>_{C}$			$\{ 0,1_R \}\$ $(-2,1,-1)$
>c			$(-1/2,1/2,-2)$ $\{1_C 0 \}$
$>_{C}$			$\{ 0 1_C \}$ $(-2,1/2,-1/2)$
$>$ R		$\{ 0 \} (-1,-1,1)$	$\{ 1_R \}$ $(-2,-2,2)$
$>_R$			$\{ 0, 1_L, 1_C \}$ (-2,-2,1)
$>_R$			$\{ 0, 1_L \}$ $(-1, -2, 1)$
$>_R$			$\{ 0, 1_C \}$ (-2,-1,1)
$>$ R			$\{1_R 0\}$ $(-1/2,-2,1/2)$
$>_R$			$(-2,-1/2,1/2)$ $\{ 1_R 0\}$
$=_{LC}$			$\{1_C 1_L \}$ $(0,0,-2)$
$=_{LR}$			$\{1_R 1_L\}$ $(0,-2,0)$
$=CR$			$\{ 1_R 1_C\}$ (-2,0,0)
\leq_{CR}			$\{1_C, 1_R\vert\,\vert\}$ $(0,-2,-2)$
\leq_{LR}			$\{ 1_L, 1_R \}$ $(-2, 0, -2)$
$<_{LC}$			$\{ 1_L, 1_C \}$ (-2,-2,0)

Table 3. Numbers born by day 2 and their corresponding triples of surreal numbers

Example 1. Let's consider $1_L + 1_C + 1_R = \{ \{ |1_R|1_C \} | \{ 1_R | 1_L \} | \{ 1_C | 1_L | \} \}$. We observe that $\pi_L(x) = \pi_C(x) = \pi_R(x) = -1$ therefore they all belong to $S_2[1]$ but $1_L + 1_C + 1_R \notin S_3[1]$ because it will be created only the third day.

It follows that a rough upper bound on $S_3[n]$ is given by the number of distinct triples of surreal numbers born by day n, i.e., $(S_2[n])^3$. Moreover, a simple lower bound is given by $S_2[n]$.

Theorem 3. *For any* $x, y \in S_3$

1. $\pi_L(x+y) = \pi_L(x) + \pi_L(y)$ 2. $\pi_C(x+y) = \pi_C(x) + \pi_C(y)$ *3.* $\pi_R(x+y) = \pi_R(x) + \pi_R(y)$

Proof. 1.

$$
\pi_L(x+y) = \pi_L(\{x^L + y, x+y^L | x^C + y, x+y^C | x^R + y, x+y^R\}) \tag{5}
$$

$$
= \{\pi_L(x^L + y), \pi_L(x+y^L) |
$$

$$
\pi_L(x^C + y), \pi_L(x+y^C), \pi_L(x^R + y), \pi_L(x+y^R)\}
$$

$$
= \{\pi_L(x^L) + \pi_L(y), \pi_L(x) + \pi_L(y^L) | \n\pi_L(x^C) + \pi_L(y), \pi_L(x) + \pi_L(y^C), \n\pi_L(x^R) + \pi_L(y), \pi_L(x) + \pi_L(y^R) \}
$$
\n
$$
= \pi_L(x) + \pi_L(y)
$$

- *2.* Analogous to *1.*
- *3.* Analogous to *1.*

Theorem 4. *Let* $x \in S_3$ *be a number. Then*

1. $\pi_L(x) + \pi_C(x) \leq 0$, *2.* $\pi_L(x) + \pi_R(x) \leq 0$, *3.* $\pi_C(x) + \pi_R(x) \leq 0$.

Proof. 1. We observe that

$$
\pi_L(x^L) + \pi_C(x) < \pi_L(x^L) + \pi_C(x^L) \tag{6}
$$

and by the inductive hypothesis

$$
\pi_L(x^L) + \pi_C(x^L) \le 0.
$$
\n⁽⁷⁾

Analogously,

$$
\pi_L(x) + \pi_C(x^C) < \pi_L(x^C) + \pi_C(x^C) \le 0 \tag{8}
$$

- therefore no left option of $\pi_L(x) + \pi_C(x)$ is ≥ 0 .
- *2.* Analogous to *1.*
- *3.* Analogous to *1.*

Theorem 5. Let $x \in S_3[n]$ and $y \in S_3[m]$ be two numbers. Then $x + y \in S_3[n]$ $S_3[n+m]$.

Proof. We recall that $x + y = \{x^L + y, x + y^L | x^C + y, x + y^C | x^R + y, x + y^R \}.$ By the hypothesis, x^L , x^C , and x^R belong to $S_3[n-1]$ and y^L , y^C , y^R belong to $S_3[m-1]$. By the inductive hypothesis, $x^L + y$, $x + y^L$, $x^C + y$, $x + y^C$, $x^R + y$, $x + y^R$ belong to $S_3[n + m - 1]$ therefore $x + y \in S_3[n + m]$. \Box

3.1 Lower and Upper Bound

Below we give a more accurate upper and lower bound for each class. We start recalling four statements.

1. The number of surreal numbers born by day n is

$$
S_2[n] = 2^{n+1} - 1\tag{9}
$$

2. The number of positive (negative) surreal numbers born by day n is

$$
\frac{1}{2}(S_2[n]-1)
$$
\n(10)

 \Box

 \Box

3. The number of positive (negative) dyadic fraction born by day n is

$$
\frac{1}{2}(S_2[n] - 2n - 1) \tag{11}
$$

4. The following equality holds

$$
1^{2} + 2^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}
$$
 (12)

Definition 6. *We define*

$$
(i+1)L = {iL | }
$$
 (13)

$$
(j+1)_C = \{ |j_C| \}
$$
 (14)

$$
(k+1)_R = \{ | |k_R \} \tag{15}
$$

where $i, j, k \in \mathbb{N}$ *and* $0_L = 0_C = 0_R = 0$ *.*

Definition 7. *We define*

$$
\left(\frac{2p+1}{2^{q+1}}\right)_{LC} = \left\{ \left(\frac{p}{2^q}\right)_{LC} \middle| \left(\frac{p+1}{2^q}\right)_{LC} \middle| \right\} \tag{16}
$$

$$
\left(\frac{2p+1}{2^{q+1}}\right)_{LR} = \left\{ \left(\frac{p}{2^q}\right)_{LR} \middle| \left| \left(\frac{p+1}{2^q}\right)_{LR} \right\} \right\}
$$
\n(17)

where $p, q \in \mathbb{N}$ *.*

Note 2. If $\left(\frac{p}{2^q}\right) \in \mathbb{N}$ then $\left(\frac{p}{2^q}\right)_{LC} = \left(\frac{p}{2^q}\right)_{LR} = \left(\frac{p}{2^q}\right)_{LR}$. Analogously, if $\left(\frac{p+1}{2^q}\right) \in$ **N** then $\left(\frac{p+1}{2^q}\right)_{LC} = \left(\frac{p+1}{2^q}\right)_{LR} = \left(\frac{p+1}{2^q}\right)_{LR}$ *L* .

Theorem 6. If $x = \left(\frac{2p+1}{2^{q+1}}\right)_{LC}$ is born the bth day then $\pi_R(x) = -b$.

Proof. By definition

$$
\pi_R\left(\left(\frac{2p+1}{2q+1}\right)_{LC}\right) = \left\{ \left| \pi_R\left(\left(\frac{p}{2q}\right)_{LC}\right), \pi_R\left(\left(\frac{p+1}{2q}\right)_{LC}\right) \right\} \right\} \tag{18}
$$

We observe that either $\left(\frac{p}{2^q}\right)$ $_{LC}$ or $\left(\frac{p+1}{2^q}\right)_{LC}$ must be born the $(b-1)^{th}$ day therefore by the inductive hypothesis we have $\pi_R(x) = \{ |-(b-1)\} = -b.$ \Box

Below we make eight observations

- 1. The first class contains only the number 0.
- 2. In the class $\geq_L 0$, $\pi_L(x)$ is positive, $\pi_C(x)$ and $\pi_R(x)$ are negative therefore we have an upper bound of $\frac{1}{8}(S_2[n]-1)^3$. Using Theorem 4 and the equality 12 we can refine this value obtaining $\frac{1}{24}(S_2[n]^2-1)S_2[n]$.

188 A. Cincotti

In contrast, we can express every triple $(i, -j, -k)$ by the number $\{(i-1)_L, (k-1)_C, (j-1)_R|\}\$ $\{(i-1)_L, (k-1)_C, (j-1)_R|\}\$ $\{(i-1)_L, (k-1)_C, (j-1)_R|\}\$ where $i-j\leq 0, i-k\leq 0$ and $i,j,k\in \mathbf{Z}^+$. Moreover, for every positive dyadic fraction we can create two different numbers $\left(\frac{2p+1}{2^{q+1}}\right)_{LC}$ and $\left(\frac{2p+1}{2^{q+1}}\right)_{LR}$ corresponding respectively to $\left(\frac{2p+1}{2^{q+1}}, -\frac{2p+1}{2^{q+1}}, -b\right)$ and $\left(\frac{2p+1}{2q+1}, -b, -\frac{2p+1}{2q+1},\right)$ where b is the day $\left(\frac{2p+1}{2q+1}\right)$ was born. Summing up,

- we have a lower bound of $\frac{1}{6}n(n+1)(2n+1) + S_2[n] 2n 1.$ 3. The classes $>_{C} 0$ and $>_{R} 0$ are analogous to the class $>_{L} 0$.
- 4. If $x =_{LC} 0$ then $x^R = \emptyset$ therefore $\pi_R(x) = \{ |\pi_R(x^L), \pi_R(x^C) \} \in \mathbb{Z}^-$. If $x \in S_3[n]$ then by Theorem 2, $-n \leq \pi_R(x)$ therefore *n* is an upper bound. Moreover, we observe that the number $\{ \{ |0|1_C \} | \{0| |1_L \} | \}$ corresponding to $(0, 0, -1)$ belongs to $S_3[3]$ therefore the lower bound is n with $n > 2$.
- 5. The classes $=_{LR} 0$ and $=_{CR} 0$ are analogous to the class $=_{LC} 0$.
- 6. In the class $\langle CR \, 0, \pi_L(x) = 0, \pi_C(x)$ and $\pi_R(x)$ are negative therefore we have an upper bound of $\frac{1}{4}(S_2[n]-1)^2$. In contrast, we can express every triple $(0, -j, -k)$ by the number $\{(k - j, -k)\}$ 1 _{*C*}, $(j-1)$ _{*R*}||} where $j, k \in \mathbb{Z}^+$ with $j, k \geq 2$. Moreover, for every positive dyadic fraction we can create the number $\left(\frac{2p+1}{2^{q+1}}\right)_{LC} + \left(\frac{2p+1}{2^{q+1}}\right)_{RL}$ corresponding to $(0, -b - \frac{2p+1}{2q+1}, -b + \frac{2p+1}{2q+1})$ where b is the day $(\frac{2p+1}{2q+1})$ was born. Summing up, we have a lower bound of $(n-1)^2 + \frac{1}{2}(S_2\lfloor n/2 \rfloor - 2\lfloor n/2 \rfloor - 1)$. 7. The classes $\lt_{LR} 0$ and $\lt_{LC} 0$ are analogous to the class $\lt_{LR} 0$.
- 8. In the last class, we have an upper bound of $\frac{1}{8}(S_2[n]-1)^3$ because $\pi_L(x)$, $\pi_C(x)$, and $\pi_R(x)$ are all negative.
	- We recall that

(a) If $x <_{CR} 0 \in S_3[n-2]$ and $y = \{ |1_R|1_C \} \in S_3[2]$ then $x + y < 0 \in S_3[n]$. (b) If $x <_{LR} 0 \in S_3[n-2]$ and $y = \{1_R | 1_L\} \in S_3[2]$ then $x + y < 0 \in S_3[n]$. (c) If $x <_{LC} 0 \in S_3[n-2]$ and $y = \{1_C|1_L| \} \in S_3[2]$ then $x + y < 0 \in S_3[n]$. To be sure that the sets of numbers given by (a), (b), and (c) are disjoint, we do not consider the numbers $x \leq_{CR} 0 \in S_3[n-2]$ corresponding to $(0, -i, -k)$ where either $i = 2$ or $k = 2$. Analogously, we do not consider the numbers $x \leq_{LR} 0 \in S_3[n-2]$ corresponding to $(-j, 0, -k)$ where either $j = 2$ or $k = 2$ and the numbers $x \lt_{LC} 0 \in S_3[n-2]$ corresponding to $(-j, -k, 0)$ where either $j = 2$ or $k = 2$. Therefore, we have a lower bound of $\frac{3}{2}S_2\left[\left\lfloor n/2\right\rfloor - 1\right] + 3n^2 - 24n - 3\left\lfloor n/2\right\rfloor + \frac{99}{2}.$

Summarizing, we have an upper bound of

$$
\frac{1}{4}S_2[n]^3 + \frac{3}{8}S_2[n]^2 - \frac{5}{4}S_2[n] + 3n + \frac{13}{8} = O(S_2[n]^3)
$$
 (19)

and a lower bound of

$$
3S_2[n] + \frac{3}{2}S_2[[n/2]] + \frac{3}{2}S_2[[n/2] - 1] +
$$

$$
n^3 + \frac{15}{2}n^2 - \frac{65}{2}n - 6[n/2] + 49 = \Omega(S_2[n])
$$
\n(20)

Table 4 shows the results so far obtained but to establish the exact value of $S_3[n]$ as well as the canonical form of a three-player game is still an open problem.

\boldsymbol{x}	Lower bound	Upper bound
$= 0$		
\sum_{L} 0	$S_2[n] + \frac{1}{3}n^3 + \frac{1}{2}n^2 - \frac{11}{6}n - 1$	$\frac{1}{24}(S_2[n]^2-1)S_2[n]$
$>c$ 0	$S_2[n] + \frac{3}{3}n^3 + \frac{1}{2}n^2 - \frac{11}{6}n - 1$	$\frac{1}{24}(S_2[n]^2-1)S_2[n]$
$>$ _R 0	$S_2[n] + \frac{1}{3}n^3 + \frac{1}{2}n^2 - \frac{11}{6}n - 1$	$\frac{1}{24}(S_2[n]^2-1)S_2[n]$
$\equiv_{LC} 0$	n, n > 2	$n_{\rm c}$
$\equiv_{LR} 0$	n, n > 2	η
$=_{{CR} } 0$	n, n > 2	$\, n$
$\langle C_R 0$	$\frac{1}{2}S_2[n/2]+n^2-2n- n/2 +\frac{1}{2},n>1$	$\frac{1}{4}(S_2[n]-1)^2$
ϵ_{LR} 0	$\frac{1}{2}S_2[n/2]+n^2-2n-[n/2]+ \frac{1}{2}, n>1$	$\frac{1}{4}(S_2[n]-1)^2$
ϵ_{LC} 0	$\frac{1}{2}S_2[n/2]+n^2-2n- n/2 +\frac{1}{2},n>1$	$\frac{1}{4}(S_2[n]-1)^2$
< 0	$\frac{3}{2}S_2[n/2 -1]+3n^2-24n-3 n/2 +\frac{99}{2}, n>3$	$\frac{1}{8}(S_2[n]-1)^3$

Table 4. Results obtained so far

Acknowledgments

I would like to thank the anonymous referees for their useful comments.

References

- 1. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways For Your Mathematical Plays. Academic Press, San Diego (1982)
- 2. Cincotti, A.: Three-Player Partizan Games. Theoretical Computer Science 332, 367– 389 (2005)
- 3. Conway, J.H.: On Numbers and Games. Academic Press, San Diego (1976)
- 4. Knuth, D.: Surreal Numbers. Addison-Wesley, London, UK (1974)
- 5. Li, S.Y.R.: N-Person Nim and N-Person Moore's Games. Game Theory 7, 31–36 (1978)
- 6. Loeb, D.E.: Stable Winning Coalitions. In: Nowakowski, R.J. (ed.) Games of No Chance, vol. 29, pp. 451–471. MSRI Publ. Cambridge University Press (1994)
- 7. Propp, J.: Three-player Impartial games. Theoretical Computer Science 233, 263– 278 (2000)
- 8. Straffin Jr., P.D.: Three-Person Winner-Take-All Games with Mc-Carthy's Revenge Rule. College Journal of Mathetmatics 16, 386–394 (1985)
- 9. Wolfe, D., Fraser, W.: Counting the Number of Games. Theoretical Computer Science 313, 527–532 (2004)