
Improving Depth-First PN-Search: 1 + ε Trick

Jakub Pawlewicz and �Lukasz Lew

Institute of Informatics,
Warsaw University, Warsaw, Poland

{pan,lew}@mimuw.edu.pl

Abstract. Various efficient game problem solvers are based on PN-
Search. Especially depth-first versions of PN-Search like DF-PN or PDS
– contrary to other known techniques – are able to solve really hard
problems. However, the performance of DF-PN and PDS decreases dras-
tically when the search space significantly exceeds the available memory.
A straightforward enhancement trick to overcome this problem is pre-
sented. Experiments on Atari Go and Lines of Action show great practical
value of the proposed enhancement.

1 Introduction

In many two-person zero-sum games with perfect information we frequently en-
counter game positions there often with a non-trivial but forced win for one of
the players. To compute such a winning strategy a large tree search is performed.
The most profitable algorithms that successfully perform the task of finding a
solution are the Proof-number search algorithms [1]. They may search as deep
as 20 plies and even more deeply. However, the usage of the basic PN-Search
is limited to rather short runs because of the high memory requirements. A
straightforward improvement is the PN2 algorithm which was thoroughly inves-
tigated in [3]. Yet, it is still a best-first algorithm and therefore needs memory
to work with. So, the length of a single run is still limited. As a further im-
provement, several depth-first versions of PN-Search have appeared to overcome
the memory requirements problem. They were successful in many fields. Seo
[7] successfully applied it to many difficult problems in his Tsume-Shogi solver
using PN∗. The PDS algorithm – an extension of PN∗ was developed by Na-
gai [5]. Another successful algorithm is DF-PN [6] which is a straightforward
transformation of PN-Search to a depth-first algorithm.

Yet even, all these methods lose their effectiveness on very hard problems
when the search lasts so long that the number of positions to explore significantly
exceeds the available memory. The methods spend most of the time repeatedly
re-producing trees stored in the transposition table but overwritten by a search
in other branches of a game tree. So, we must admit that this kind of performance
leak does not only occur in alpha-beta search.

From these results, there is room for improvement of these methods. For
instance, Winands et al. [9] presented a method called PDS-PN used in the
LOA program MiA. This variation was created by taking the best of PN2 and

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 160–171, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Improving Depth-First PN-Search: 1 + ε Trick 161

PDS. Kishimoto and Müller [4] successfully applied DF-PN in their tsume-Go
problems solver. They enhanced DF-PN by additional threshold increments.

This paper presents a more general approach of threshold increments, which
reduces the number of tree reproductions during the search and results in a quite
efficient practical enhancement. The enhancement is applicable both to DF-PN
and PDS and possibly to other variants of tree-traversing algorithms.

A deeper understanding of DF-PN is needed to understand the merits of
the enhancement. Section 2 precisely describes the transformation of the PN-
Search algorithm to a depth-first search algorithm. Section 3 provides a further
insight into DF-PN search and shows its weak point along with a remedy. The
same section presents also an application of our enhancement to PDS. Section 4
presents results of experiments. The last section concludes.

2 A Depth-First Transformation of PN-Search

Section 2.1 briefly describes PN-Search. Section 2.2 describes DF-PN as a depth-
first transformation of PN-Search.

2.1 PN-Search

For detailed description of PN-Search we refer to [1]. We recall only a few selected
properties essential for an analysis in the later sections.

The algorithm maintains a tree in which each node represents a game posi-
tion. With each node we associate two numbers: the proof-number (PN) and the
disproof-number (DN).

The PN(DN) of a node v is the minimum number of leaves in the subtree
rooted at v valued unknown such that if they change theirs value to true(false)
then the value of v would also change to true(false).

In other words, the PN(DN) is a lower bound on the number of leaves to
expand in order to prove(disprove) v.

PN and DN for a proved node are set to 0 and +∞ and for a disproved node
are set to +∞ and 0. In an unsolved leaf node we set both PN and DN to 1. In
an unsolved internal node PN and DN can be calculated recursively as shown in
Fig. 1. A square denotes an OR node and a circle denotes an AND node.

The algorithm iteratively selects a leaf and expands it. To minimize the total
number of expanded nodes in the search it chooses a leaf to expand in a such
way that proving(disproving) it decreases the root’s PN(DN) by 1. Such a leaf
is called the most proving node (MPN).

It can be easily shown that an MPN always exists. This leaf may be found by
traversing downwards through the tree and choosing a child only on the basis of
the PNs and DNs of the node’s children. In a node of type OR(AND) we choose
a child with the minimum PN(DN). That is the child with the same PN(DN) as
its parent.

After expanding the MPN, PNs and DNs are updated by going back on the
path up to the root. The algorithm stops when it determines a game value of



162 J. Pawlewicz and �L. Lew

OR node AND node

· · ·

p = min pi d =
∑

di

p1 d1 p2 d2 pn dn

· · ·

p =
∑

pi d = min di

p1 d1 p2 d2 pn dn

Fig. 1. In an OR node PN is a minimum of children’s PNs while DN is a sum of
children’s DNs. In an AND node PN is a sum of children’s PNs while DN is a minimum
of children’s DNs.

4 3

5 1
4 2

3 2

3 1

1 4 1 3 1 1

3 1

1 2

4 3

5 1
4 2

3 4

3 3

1 4 1 3 1 3

3 1

1 2

1 1 1 1 1 1

selecting MPN updating PNs and DNs

Fig. 2. Selecting MPN and updating PNs and DNs

the root, i.e., if one of the root’s numbers will be infinity while the other will
drop to zero. An example of selecting an MPN and updating PNs and DNs is
shown in Fig. 2.

2.2 DF-PN

As in Fig. 2 we see that updating PNs and DNs can be stopped before we reach
the root. It happens for instance when updating a node does change neither PN
nor DN. In that case we may begin the search of the next MPN from the last
updated node instead of from the root.

In fact we can shorten the way up even more. If the next MPN is in a subtree
rooted in the node currently visited we can suspend update of the parent and
further ancestors. Observe that we need valid values of PNs and DNs of the
ancestors only while traversing downwards and selecting the MPN. Then, in
general, we can suspend updating the ancestors as long as the MPN resides in
the subtree of the node.



Improving Depth-First PN-Search: 1 + ε Trick 163

To take advantage of the above observation we introduce PN and DN thresh-
olds. The thresholds are stored only for nodes along the path from the root to
the current node. Let p and d be the PN and DN of node v. We want to define
the thresholds pt and dt for node v in such a way that if p < pt and d < dt then
there exists an MPN in the subtree rooted at v and conversely if there exists an
MPN in the subtree rooted at v then p < pt and d < dt.

We will now determine the rules for setting the thresholds. For the root we
set the thresholds to +∞. Clearly, the condition p < +∞ and d < +∞ holds
only if the tree is not solved.

Now we take a closer look on what happens in an internal OR node
(Fig. 3). Let p and d be the node’s PN and DN respectively. Let pt and dt be

· · ·

p = min pi d =
∑

di

pt dt

pt1 dt1

p1 d1 p2 d2 pn dn

Fig. 3. Visiting the first child in an OR node and setting the thresholds

its thresholds. Assume the node has n children. Assume the i-th child’s PN and
DN equal pi and di. Without loss of generality we assume p1 ≤ p2 ≤ . . . ≤ pn.

The subtree where the MPN resides is rooted at the child with the minimum
PN. Since p1 is the smallest value, MPN lies in the leftmost subtree, so we are
going to visit the first child. We have to set the thresholds pt1 and dt1 for this
child such that if the PN or DN reaches its threshold (i.e., if p1 ≥ pt1 or d1 ≥ dt1)
then MPN must lie outside this child’s subtree.

Now, we set constraints for pt1 to deduce the actual value. When p1 exceeds
p2, then the second child will have the minimum PN, and MPN will no longer
lie in the first child’s subtree. Hence pt1 ≤ p2 + 1. When p1 reaches pt, but does
not exceed p2, then the PN p in the parent will also reach its threshold pt, and
by pt threshold definition, MPN will no longer be a descendant of the parent
and thus it will not lie in the child’s subtree. Hence, the second constraint is
pt1 ≤ pt. These two constraints give us the formula pt1 = min(pt, p2 + 1).

Consequently, when d1 increases such that d reaches dt, then again MPN will
be outside the current subtree. Now we calculate how d changes when d1 changes
to d′1. Let d′ denote DN of the parent, after DN of the first child has changed
from d1 to d′1. Then we have d′ = d + (d′1 − d1). We are interested whether
d′ ≥ dt. Replacing d′ and rewriting the inequality we may obtain the answer.
That is: if d′1 ≥ dt − d + d1 then d′ ≥ dt. Therefore we have a formula for the
DN threshold dt1 = dt − d + d1.



164 J. Pawlewicz and �L. Lew

In summary, we arrive at the following formulas for an OR node for the first
child’s thresholds:

pt1 = min(pt, p2 + 1) , (1)
dt1 = dt − d + d1 . (2)

It remains to show that for the above thresholds the inequalities p1 < pt1 and
d1 < dt1 hold if and only if MPN is in the first child’s subtree. We have already
seen that if p1 ≥ pt1 or d1 ≥ dt1 then MPN is not in the child’s subtree. So
assume p1 < pt1 and d1 < dt1. Then p < pt and d < dt, thus MPN lies in the
parent’s subtree. Moreover p1 < p2 + 1. This is the same as p1 ≤ p2. Thus the
first child has the smallest PN among all children. Therefore MPN lies in the
first child’s subtree.

Similarly, we arrive at the formulas for an AND node for the first child’s
thresholds (assuming d1 ≤ d2 ≤ . . . ≤ dn):

pt1 = pt − p + p1 , (3)
dt1 = min(dt, d2 + 1) . (4)

A main advantage is that using thresholds we can suspend updates as long as it
is possible.

A second important advantage of this approach is the possibility of switching
from (1) maintaining a whole search tree to (2) using a transposition table to
store positions’ (nodes’) PN and DN.

If in such implementation the algorithm visits a node, we may try to retrieve
its PN and DN from the transposition table searching for an early cut. In case
of failure we initialize the node’s PN and DN the same way as we do it for a leaf
allowing the further search to reevaluate them. The resulting algorithm called
DF-PN [6] is a depth-first algorithm, and it can be implemented in a recursive
fashion.

The main property of DF-PN is the following. If all nodes can be stored in
a transposition table, then the nodes are expanded in the same order as in the
standard PN-Search. Of course, in DF-PN, we are not forced to store all nodes,
and usually we store only a fraction of them, with a slight loss of efficiency.

3 Enhancement

Section 3.1 shows a usual scenario for which DF-PN has a poor performance.
Section 3.2 shows our enhancement (i.e., the 1 + ε trick) applied to DF-PN.
Section 3.3 describes an analogous improvement of PDS.

3.1 Weak Point of DF-PN

We remind that in case of a failure in retrieving the children’s values from a
transposition table, DF-PN initializes the children’s PNs and DNs to 1 and re-
search their values. Usually in an OR(AND) node with a large subtree all the



Improving Depth-First PN-Search: 1 + ε Trick 165

children’s PNs (DNs) are very similar, because DF-PN searches the child with
the smallest PN (DN) and returns as soon as it exceeds the second smallest
number.

Let us consider the following typical situation during a run of DF-PN. Assume
we are in an OR node with at least two children. Assume further that the
threshold is big and search lasts so long that most of the investigated nodes do
not fit in the transposition table.

After some time, the searched tree will be so large, that the algorithm will not
be able to store most of the searched nodes. Now DF-PN will make a recursive
tree search for the first child with a PN threshold fixed to the second child’s PN
plus one. Eventually, search will return but due to the weak threshold the new
PN will be only slightly greater than before the recursion. For an example see
Fig. 4.

tt

rebuilt
nodes

expanded
nodes

tt

3010 1734 3012 1741

3010 3475

3013 7259

7500 9000

tt tt
3014 1740 3012 1741

3012 3481

7500 9000

visiting the first child state after the recursive call

Fig. 4. Example of a single recursive call in an OR node during a run of DF-PN. The
numbers are potential values during the search. Gray part of a tree marked as tt denotes
nodes stored in a transposition table. The left picture shows what happens during the
recursive call for the first child. The state after the call is shown in the right picture.

Then the control goes back to the parent level and we call DF-PN for its second
child, again setting the PN threshold to its sibling’s PN plus one. After expensive
reconstruction of the second child’s tree, its PN increases insignificantly and we
will have to switch again to its sibling. However, most information from the
previous search in the first child has been lost due to insufficient memory.

We see that for each successive recursive call, we have to rebuild almost the
whole child’s tree. Usually the number of recursive calls in the parent node is
linear to the parent’s PN threshold.

3.2 The 1 + ε Trick

The above example shows that when we are in an OR node, setting the PN
threshold to the number one larger than p2 can lead to quite a large number of
visits in a single child, causing multiple reconstructions of a tree rooted in that



166 J. Pawlewicz and �L. Lew

child. To be more effective we should spend more time in a single node, doing
some search in advance.

We have a constraint pt1 ≤ p2 +1 for the child’s PN threshold in an OR node.
We can relax that constraint somewhat to a small multiplicity of p2, for example
to 1 + ε, where ε is a small real number greater than zero. Thus we change the
constraint to pt1 ≤ �p2(1 + ε)� and the old formula (1) transforms into the new
formula (5) for the child’s PN threshold in an OR node

pt1 = min(pt, �p2(1 + ε)�) . (5)

So, after each recursive call the child’s PN increases by a constant factor rather by
a constant addend. More precisely after the call either the parent’s DN threshold
is reached or the child’s PN increases by at least 1 + ε times. Therefore, a
single child can be called at most log1+ε pt = O(log pt) times before reaching the
parent’s PN threshold. As a consequence the described trick has a nice property
of reducing the number of recursive calls from linear to logarithmic in the parent’s
PN threshold.

This enhancement not only improves the way a transposition table is used,
but also reduces the overhead of multiple replaying the same sequences of moves.
Here we may observe that using the presented trick we lose the property of
visiting nodes in the same order as in PN-Search.

3.3 Application to PDS

The 1+ε trick is also applicable to PDS. In PDS we use two thresholds pt and dt
like in DF-PN. The main difference is their meaning. The algorithm remains in
a node until both thresholds are reached or the node is solved. PDS introduces
the notion of proof-like and disproof-like nodes. When making a recursive call at
a child with PN p1 and DN d1, it sets the thresholds pt1 = p1 +1 and dt1 = d1 if
the node is proof-like, and pt1 = p1 and dt1 = d1 + 1 if the node is disproof-like.
PDS uses a straightforward heuristic to decide whether the node is proof-like or
disproof-like. We refer the reader to [5] for the details.

The similar weakness as in DF-PN, described in 3.1, harms PDS. Here we
apply our technique by setting the thresholds: pt1 = �p1(1 + ε)�, dt1 = d1 for a
proof-like child, and pt1 = p1, dt1 = �d1(1 + ε)� for a disproof-like child.

4 Experiments

Below we examine the practical efficiency of DF-PN and PDS with and without
the presented enhancement. We focus on the solving times for various set-ups.
First, Subsection 4.1 describes the background for the performed experiments.
Then the results of these experiments are described. In Subsection 4.2 we test
the influence of the size of a transposition table. In Subsection 4.3 we com-
pare the algorithms under tournament conditions. In Subsection 4.4 we explore
capabilities to solve hard problems.



Improving Depth-First PN-Search: 1 + ε Trick 167

4.1 Experimental Environment

We choose two games for our experiments. The first one is Atari Go, the capture
game of Go. In Subsection 4.2 we take as a starting position a 6 × 6 board
with a crosscut in the centre. The second game is Lines of Action. For more
information we refer to Winands’ web page [8]. The rules and testing positions,
used in Subsection 4.3 and 4.4, were taken from that web page.

Our implementations of four search methods in the Atari Go and LOA games
do not have any game-specific enhancements. For a transposition table, TwoBig
scheme [2] is used.

For the accelerated version of DF-PN with the 1+ε trick, ε was set empirically
to 1/4. With larger values of ε, enhanced DF-PN tends to over-explore signifi-
cantly some nodes. With smaller values, enhanced DF-PN is usually slower.

In PDS, spending more time in one child is a common behavior because the
ending condition requires to exceed both thresholds simultaneously. Usage of 1+ε
trick in PDS makes this deep exploring behavior even more exhaustive, which
often leads to over-exploring. Therefore ε should be much smaller in enhanced
version of PDS. We found 1/16 as the best ε value.

All experiments were performed on 3GHz Pentium 4 with 1GB RAM under
Linux.

4.2 The Size of a Transposition Table, Tested on Atari Go

We run all four methods with different transposition table sizes. The results are
shown in Fig. 5 and exact times for the sizes between 212 and 222 nodes are
shown in Table 1.

Table 1. Solving times in seconds of Atari Go 6 × 6 with a crosscut

TT size in nodes
Algorithm 212 213 214 215 216 217 218 219 220 221 222

DF-PN with 1 + ε trick 672 236 95 98 55 70 32 77 38 54 68
DF-PN − − 3403 279 189 187 104 168 111 113 106
PDS with 1 + ε trick − 4895 3246 1017 468 440 527 350 400 235 269
PDS − − − 4057 1448 1124 776 494 353 261 195

Obviously enhanced DF-PN is the fastest method and plain DF-PN is the
second fastest.

Setting the size greater than 220 does not noticeably affect the times. In that
range there is no remarkable difference between plain and enhanced PDS. For
sizes smaller than 220, enhanced PDS becomes faster than plain PDS.

A noticeable drop of performance can be observed when the size is below 216.
Within a 2 hour time limit the following results are te be reported: (1) PDS is
unable to solve the problem for transposition table with a size of 214 nodes, (2)
DF-PN with a size of 213 nodes and (3) the enhanced PDS with a size of 212

nodes.



168 J. Pawlewicz and �L. Lew

2h
1.5h

1h

30m
20m

10m

5m

3m
2m

1m
40s

26 28 210 212 214 216 218 220 222 224

ru
nn

in
g

ti
m

e

transposition table size in number of nodes

DF–PN with 1 + ε trick
DF–PN

PDS with 1 + ε trick
PDS

Fig. 5. Solving times of Atari Go 6 × 6 with a crosscut

The enhanced versions are much better for really small transposition tables.
For sizes 214 and smaller, enhanced DF-PN is far better than any other method.
Enhanced DF-PN is able to solve the problem almost not using a transposition
table at all. With a memory of 256 nodes it needed 1535 seconds and with a
memory of 32 nodes it needed 5905 seconds. Of course there is a substantial
information stored in the local variables in each recursive call.

4.3 Efficiency Under Tournament Conditions, Tested on a Set of
Easy LOA Positions

We have already seen that DF-PN with the 1 + ε trick performs excellently when
the search space significantly exceeds the size of a transposition table. In this Sub-
section we check the practical value of the methods on the set of 488 LOA posi-
tions. The purpose of this test is to evaluate the efficiency of solving the positions
with tournament time constraints, as it is desired in the best computer programs.

The size of a transposition table is set to 220 nodes and should fit into the
memory of most computers. The results are shown in Fig. 6. The figure was
created by measuring solving time for each method for every position from the
set. Then for every time limit we can easily find the number of solved positions
with time not exceeding the limit. Exact numbers of solved positions for selected
time limits are shown in Table 2.

Here enhanced DF-PN is clearly the most efficient method, plain DF-PN is
the second best and both PDS versions are the least efficient. The difference
between enhanced PDS and plain PDS is unnoticeable.



Improving Depth-First PN-Search: 1 + ε Trick 169

Table 2. Numbers of solved positions from the set tscg2002a.zip [8] for selected time
limits

Time limit
Algorithm 0.5s 1s 2s 5s 10s 20s 30s 1m 2m 5m

DF-PN with 1 + ε trick 214 278 343 410 438 457 468 478 482 486
DF-PN 184 246 304 379 419 449 457 471 479 486
PDS with 1 + ε trick 100 154 217 299 358 414 430 450 471 481
PDS 102 144 214 300 365 409 425 451 466 480

488

450

400

350

300

250

200

150

100

2m1m30s20s10s5s2s1s500ms

po
si

ti
on

s
so

lv
ed

ou
t

of
48

8

time limit

DF–PN with 1 + ε trick
DF–PN

PDS with 1 + ε trick
PDS

Fig. 6. Numbers of solved easy LOA positions from the set tscg2002a.zip [8] for given
time limit

4.4 Efficiency of Solving Hard Problems, Tested on a Set of Hard
LOA Positions

This experiment is aimed at checking our ability of solving harder problems in rea-
sonable time. The 286 test positions were taken from [8]. Again we define the size
of a transposition table to be 220 nodes. The results are shown in Fig. 7 and the
exact numbers of solved positions for selected time limits are shown in Table 3.

Again, as in the previous test, the enhanced DF-PN is the most efficient method,
plain DF-PN is the second best, and both PDS versions are the least efficient. The
difference between enhanced PDS and plain PDS is now noticeable. For each time
limit greater than 90 seconds enhanced PDS solves more positions than plain PDS.
It shows the advantage of enhanced PDS over plain PDS for harder positions.

To illustrate the speed differences in numbers for each two methods we calcu-
lated a geometric mean of the ratios of solving times (see Table 4). The geometric



170 J. Pawlewicz and �L. Lew

Table 3. Numbers of solved positions from the set tscg2002b.zip [8] for selected time
limits.

Time limit
Algorithm 5s 10s 20s 30s 1m 2m 3m 5m 10m 20m 30m

DF-PN with 1 + ε trick 44 107 158 182 228 258 272 280 285 286 286
DF-PN 25 64 123 154 198 241 258 273 282 284 285
PDS with 1 + ε trick 1 18 52 80 138 186 212 228 257 272 278
PDS 3 22 56 83 134 179 206 224 252 265 274

286

250

200

150

100

50

30m20m10m5m3m2m1m30s20s10s5s

po
si

ti
on

s
so

lv
ed

ou
t

of
28

6

time limit

DF–PN with 1 + ε trick
DF–PN

PDS with 1 + ε trick
PDS

Fig. 7. Numbers of solved hard LOA positions from the hard set tscg2002b.zip [8]
for given time limit

Table 4. Overall comparison for positions from the set tscg2002b.zip. The number
r in the row A and the column B says A is r times faster than B in average.

DF-PN enhanced DF-PN PDS enhanced PDS

DF-PN 1.00 0.63 2.83 2.64
enhanced DF-PN 1.58 1.00 4.46 4.17
PDS 0.35 0.22 1.00 0.93
enhanced PDS 0.38 0.24 1.07 1.00

mean is more appropriate for averaging ratios than the arithmetic mean because
of the following property: if A is r1 times faster than B, B is r2 times faster than
C, and A is r3 times faster than C then r3 = r1r2.



Improving Depth-First PN-Search: 1 + ε Trick 171

5 Conclusions and Future Work

The 1+ε trick has been introduced to enhance DF-PN. We have shown that the
trick can also be used in PDS. The experiments showed a noticeable speedup
when the search space significantly exceeds the size of a transposition table.

The trick is particularly well-suited to DF-PN, since the experiments have
shown a large advantage of enhanced DF-PN over the other methods. The
AtariGo experiment has shown that this method performs extremely well in
low memory conditions. Moreover, DF-PN with the 1 + ε trick was the most
efficient method in the “real-life” experiment on the LOA positions so it should
be valuable in practice. The 1 + ε trick is possibly applicable to other threshold-
based depth-first versions of PN-Search.

The nice property of the enhancement is that it can be added to existing
implementations with little effort. Its value has to be confirmed in other games
different from Atari Go and LOA. We notice that in other games and in other
depth-first variants of PN-Search, the value of ε can be different, and it should
be further investigated.

We hope that the presented enhancement becomes attractive for a brute-force
search for solving games. However, there are still some weak points in PN-based
methods and more work for improvements is required to make depth-first PN-
Search even more useful.

References

1. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-Number Search. Artificial
Intelligence 66, 91–124 (1994)

2. Breuker, D.M., Uiterwijk, J.W.H.M., van der Herik, H.J.: Replacement Schemes and
Two-Level Tables. ICCA J. 19(3), 175–180 (1996)

3. Breuker, D.M., Uiterwijk, J.W.H.M., van der Herik, H.J.: The PN2-Search Algo-
rithm. In: van den Herik, H.J., Monien, B. (eds.) 9th Advances in Computer Games
(ACG9), pp. 115–132. Department of Computer Science, Universiteit Maastricht,
Maastricht, The Netherlands (2001)

4. Kishimoto, A., Müller, M.: Search Versus Knowledge for Solving Life and Death
Problems in Go. In: Twentieth National Conference on Artificial Intelligence (AAAI-
05), pp. 1374–1379 (2005)

5. Nagai, A.: A New AND/OR Tree Search Algorithm using Proof Number and
Disproof Number. In: Proceeding of Complex Games Lab Workshop, pp. 40–45,
Tsukuba, ETL (November 1998)

6. Nagai, A.: Df–pn Algorithm for Searching AND/OR Trees and its Applications.
Ph.d. thesis, The University of Tokyo, Tokyo, Japan (2002)

7. Seo, M., Iida, H., Uiterwijk, J.W.H.M.: The PN∗–Search Algorithm: Application to
Tsume-Shogi. Artificial Intelligence 129(1–2), 253–277 (2001)

8. Winands, M.H.M.: Mark’s LOA Homepage (2007),
http://www.cs.unimaas.nl/m.winands/loa/

9. Winands, M.H.M., Uiterwijk, J.W.H.M., van den Herik, H.J.: An Effective Two-
Level Proof-Number Search Algorithm. Theoretical Computer Science 313(3), 511–
525 (2004)

http://www.cs.unimaas.nl/m.winands/loa/

	Improving Depth-First PN-Search: 1 + ε Trick
	Introduction
	A Depth-First Transformation of PN-Search
	PN-Search
	DF-PN

	Enhancement
	Weak Point of DF-PN
	The 1+ ε Trick
	Application to PDS

	Experiments
	Experimental Environment
	The Size of a Transposition Table, Tested on Atari Go
	Efficiency Under Tournament Conditions, Tested on a Set of Easy LOA Positions
	Efficiency of Solving Hard Problems, Tested on a Set of Hard LOA Positions

	Conclusions and Future Work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




