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Abstract. We apply Monte-Carlo simulation and alpha-beta search to
the card game of Skat, which is similar to Bridge, but sufficiently dif-
ferent to require some new algorithmic ideas besides the techniques
developed for Bridge. Our Skat-playing program, called DDS (Double
Dummy Solver), integrates well-known techniques such as move ordering
with two new search enhancements. Quasi-symmetry reduction general-
izes symmetry reductions, disseminated by Ginsberg’s Partition Search
algorithm, to search states which are “almost equivalent”. Adversarial
heuristics generalize ideas from single-agent search algorithms like A∗ to
two-player games, leading to guaranteed lower and upper bounds for the
score of a game position. Combining these techniques with state-of-the-
art tree-search algorithms, our program determines the game-theoretical
value of a typical Skat hand (with perfect information) in 10 milliseconds.

1 Introduction

Although mostly unknown in the English-speaking world, the game of Skat is
the most popular card game in continental Europe, surpassed in world-wide
popularity only by Bridge and Poker. With about 30 million casual players and
about 40,000 people playing at a competitive level, Skat is mostly a German
phenomenon, although national associations exist in twenty countries on all six
inhabited continents. It is widely considered the most interesting card game for
three players.

Despite its popularity, Skat has not been studied extensively by the AI com-
munity. This is not due to a lack of challenge, as Skat is definitely a game of
skill: significant experience is required to reach tournament playing strength. So
far, all existing computer implementations play rather poorly. In this paper, we
explore how an existing approach for playing Bridge, Monte-Carlo simulation
using a fast solver for perfect information games, can be applied to the game of
Skat.

The paper is structured as follows. Section 2 briefly introduces the rules of
Skat. In Section 3, we review the idea of Monte-Carlo simulation for card games.
Section 4 describes the general architecture of DDS (Double Dummy Solver), is
followed by the central Section 5, which describes a fast algorithm for computing
the outcome of Skat games with perfect information. Section 6 presents empirical
results and Section 7 provides an estimation of the playing strength of the overall
system. Moreover, directions for future research are given.
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2 Skat

Skat is a three-player game played with 32 cards, a subset of the usual Bridge
deck. At the beginning of a game, each player is dealt ten cards, which must
not be shown or communicated to the other players. The remaining two cards,
called the skat, are placed face down on the table. Like in Bridge, each hand is
played in two stages, bidding and card play.

The bidding stage determines the alliances for this hand: the successful bidder,
henceforth called the declarer, plays against the other two. Often, several players
compete to become the declarer. In this event, the winner of the bidding process
mostly depends on the number of jacks a player holds, and on their suits. Players
may also improve their bids by declaring some special contracts (such as hand,
schneider, and schwarz games), but these are nuances that we will not discuss
further. We point out that, different to Bridge, bidding does not have a significant
influence on the number of tricks needed to win the deal, with some minor
exceptions.

We will not explain the bidding process further and refer to the official rules
[7] for details. The declarer decides on the kind of game, for which there are six
possibilities: (1) grand games, (2) null games, and (3-6) suit games for each of
the four suits (♣, ♠, ♥, ♦).

Card play proceeds as in Bridge, except that the trumps and card ranks are
different. In grand games, the four jacks are the only trumps. In suit games, the
four jacks and the seven other cards of the selected suit are trumps. There are
no trumps in null games. Non-trump cards are grouped into suits as in Bridge.
Each card has an associated point value between 0 and 11, and the declarer
must score more points than the opponents (i.e., at least 61 points) to win.
Null games are an exception and follow misère rules: the declarer wins iff he
scores no trick. Trumps, ranks, and point values of the cards are illustrated in
Fig. 1.

Before declaring the game, the declarer may pick up the skat and then discard
any two cards from his hand, face down. These cards count towards the declarer’s
score.

Ranks

Grand games ♣J, ♠J, ♥J, ♦J (trumps)
A, 10, K, Q, 9, 8, 7 (non-trumps)

Suit games ♣J, ♠J, ♥J, ♦J, A, 10, K, Q, 9, 8, 7 (trumps)
A, 10, K, Q, 9, 8, 7 (non-trumps)

Null games A, K, Q, J, 10, 9, 8, 7

Point values

A: 11, 10: 10, K: 4, Q: 3, J: 2, 9: 0, 8: 0, 7: 0

Fig. 1. Ranks and point values of Skat cards. Higher ranking cards are listed further
to the left.
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3 Monte-Carlo Simulation

The main algorithmic problem when dealing with card games like Bridge or
Skat is uncertainty. For perfect-information games like Chess, efficient algorithms
exist that could be readily applied if it were not for the fact that the opponents’
cards are hidden. In fact, the state space of these card games is comparatively
small, and it is not too difficult to compute an optimal strategy with knowledge
of the deal. However, taking randomness into account is much more challenging
(cf. the work by Koller and Pfeffer [9]).

Monte-Carlo approaches, first proposed in this context by Levy [11] and later
implemented by Ginsberg [6] in his Bridge-playing program GIB, reduce the
problem to the perfect information case using the following strategy: whenever
the computer player is asked to play a card, it generates a set of deals which are
consistent with previous play. Each of these deals is then completely analyzed
by a fast solver for perfect information games. In theory, this can be done with a
traditional alpha-beta search engine. The results of these analyses are then used
to vote on the card to play in the actual (uncertain) game.

The Monte-Carlo approach has two fundamental problems. The first problem
is that the samples might not be representative of the real card distribution.
This is not so much caused by the fact that only a limited number of deals are
analyzed, because the law of large numbers guarantees that this statistical error
can be made arbitrarily small. The real issue is that not all deals should be
generated with equal probability, because different distributions are not equally
plausible given the previous course of play.

To reflect this, we would need to take into account the conditional probability
that an opponent will play a given card given a certain deal and previous play.
For example, if the declarer starts the game with ♣A and the other players
follow suit with ♣7 and ♣10, it is highly unlikely that the third player still holds
a clubs card (except for ♣J, which is part of the trump suit, not the clubs suit).
However, it is difficult to quantify information of that kind, both in theory and
in practice.1

The second fundamental problem of the Monte-Carlo approach is that even
if all possible deals are analyzed and the conditional probabilities are correct,2

the algorithm does not play perfectly. Intuitively, the reason for this is the fact
that the correct card to play may depend on information that the player cannot
possibly know. Formally, this problem is discussed extensively by Frank and
Basin [4].

Despite these fundamental limitations, Monte-Carlo-based approaches have
been successful in the Computer Bridge world. Indeed, most current systems
rely on sampling methods to some extent. We believe that they should be at
least as effective for Computer Skat, and possibly more so, because the bidding
phase of a Skat game allows for much less information gathering than in Bridge.
1 Mixed-Strategy Nash Equilibria are the most commonly applied theoretical solution

concept for such games [12].
2 This condition requires an exact mental model of the opponents, and is thus not

practically possible for human opposition.
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4 General Architecture

Our Skat player consists of two parts, a bidding engine and a card play engine.
The bidding engine is responsible for determining the highest bid that the player
is willing to make and for deciding which two cards to discard in case it wins the
bid. The card play engine is responsible for the actual card play after the game
has been declared. At its core is a fast algorithm for solving Skat games with
perfect information. We call this component DDS, the double dummy solver.
The name is borrowed from Bridge terminology, even though the term dummy
is Bridge-specific. DDS is explained in Section 5, while the rest of this section is
dedicated to the bidding and card play engines.

4.1 Bidding Engine

In theory, it is possible to implement the bidding engine by Monte-Carlo sam-
pling using the following strategy. First, select N random deals. Then, for each of
the six kinds of games and each possible way of discarding two cards, query the
double dummy solver to decide whether or not the game can be won. However,
this requires 6 · (12

2

) · N = 396N queries, which is prohibitively high even for a
modest number of samples.

Typically, the choice of cards to discard is straightforward, as most candidates
can be eliminated by simple rules of thumb. A mixed approach that computes
Monte-Carlo samples for each kind of game and implements rules for discarding
requires only 6N queries.

We have instead adopted a completely rule-based approach for both bidding
and discard procedure. The rules were generated by the following learning algo-
rithm. First, we used DDS to analyze 126,000 deals, where both the discarded
cards and the kind of game were randomized. For each of the resulting hands of
the computer player, the algorithm evaluated a number of hand-crafted features,
e.g., number of jacks and length of each suit, and paired these with the outcome
of the game (1 for win or 0 for loss). Then, a Least Mean Squares algorithm fitted
a linear function from the feature space to the real numbers. The resulting success
estimator was supposed to estimate the winning probability given the features of
a hand. It was then used in place of DDS in the bidding stage of the game, so
that instead of 396N calls to DDS, a corresponding number of computations of
the success estimate was needed, which could be computed sufficiently fast.

Regrettably, the resulting bidding behavior leaves something to be desired.
Although reasonable choices were made most of the time, some decisions were
truly puzzling. While we do not discuss the bidding engine further, as this part
contains no technical innovations and requires some domain knowledge for un-
derstanding the choice of features, we note that it is currently the Achilles heel
of the Skat player.

4.2 Card Play Engine

As noted before, the card play engine is based on Monte-Carlo simulations using
DDS. In Ginsberg’s GIB, a score is calculated for each card and each sample
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deal. The algorithm plays the card with the highest average score. A similar
scheme can be used for Skat. Yet, it is not immediately clear how the score
should be measured. Counting the point total achieved by the computer player
is not reasonable, since playing a card that reliably achieves a point total of 65
(and thus a win) is preferable to playing a card that leads to a total of 80 most
of the time but rarely drops to 55 (and thus a loss).

However, simply counting whether or not the deal is won is also problematic,
as there is no incentive for the algorithm to win the game by a score of 100:20,
rather than, say, 63:57. Thus it will willingly give away points to the opponent
as long as it does not see its victory endangered.3 Because of statistical error
and the inaccuracies of Monte-Carlo methods mentioned earlier, this can lead to
situations where an easy victory is cast away lightly.

To avoid both problems, we follow a combined approach. Winning a hand is
most important, so the set of winning cards of each sample deal is computed first.
Those cards which win a maximal number of sample deals are further analyzed
by computing the average point total across all sample deals. The card play
engine finally selects a card which maximizes this value. This leads to card play
that prefers safety to point accumulation, but accumulates points where safely
possible.

To support this approach, DDS can run in a fast qualitative mode, in which
it only determines whether a given card is a winner, and in a slower quantitative
mode, in which it computes exact scores for cards. We describe these in the
following section. Null games are always solved in qualitative mode as they end
as soon as the declarer wins a trick. They are not computationally challenging
and we do not describe them further, assuming grand or suit games in the
following.

5 Double Dummy Solver

When running in qualitative mode, DDS uses a zero-window alpha-beta search to
determine whether the score for the declarer when playing a given card is at least
61. When running in quantitative mode, DDS uses the MTD framework proposed
by Plaat et al. [14]. Specifically, we employ the MTD(0) algorithm: First, we de-
termine whether the declarer can achieve a single point. If the answer is positive,
a new search determines whether he can achieve two points4, three points, and
so on, until the answer is negative. Although it is somewhat counter-intuitive
that this procedure should be an improvement over standard alpha-beta search,
the higher number of cut-offs, combined with the use of a transposition table
for storing intermediate results, usually makes it much faster. Most recomputa-
tions of subtree values only require a transposition table lookup, reducing the
3 This is a general problem for game- playing algorithms searching to the end of

the game. Schaeffer reports similar “unreasonable” behavior in his checkers-playing
program Chinook, which uses perfect endgame databases. The Chinook team went
to some lengths to change this behavior Chinook.

4 This is actually redundant, as scores of 1 or 119 are impossible.
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def search(p):

if p isa leaf position:

return p.declarer score ≥ 61

else if p isa declarer node:

for q in succ(p):

if search(q) = true:

return true

return false

else:

for q in succ(p):

if search(q) = false:

return false

return true

Fig. 2. Basic search algorithm

cost of re-search. In our experiments, zero-window search outperformed standard
alpha-beta by an order of magnitude when using a transposition table.

Therefore, regardless of mode, in the following we can assume that we are
conducting a zero-window search. For clarity of presentation, we will only con-
sider the most common search window [60, 61], although other search bounds
do occur in quantitative mode. The basic search algorithm, without any search
enhancements, is shown in Fig. 2. In the rest of this section, we discuss four
enhancements to the basic search algorithm which lead to significant speed-ups,
concluding our presentation with a refined search algorithm that includes all
enhancements.

5.1 Transposition Table

The first and obvious enhancement to Fig. 2 is the use of a transposition table.
However, using a transposition table efficiently in this setting requires some care.
At every stage of the game, the current position can be adequately represented
by the player to move, the remaining cards, the cards in the current trick (if
any), and the running score, i.e., the number of points won by the declarer in
previous tricks. The running score is an important part of the position because
it influences the evaluation of the position (win/loss and exact point value).
However, it has no effect on the optimal strategy for the rest of the game, the
subgame rooted at this position in game theory terminology.

Therefore, to keep the transposition table small and to allow as many lookups
as possible, it is desirable not to consider the running score a part of the posi-
tion information. This means that it is not sufficient to store win/loss values in
the transposition table, not even for the qualitative solver: a subgame in which
the declarer can achieve 40 points can be either a win or a loss, depending on
the running score as this subgame is reached. Thus, the transposition table must
always store exact point values or bounds on exact values, not boolean results.

Using transposition tables in this way, we have a simple cut-off criterion for
search nodes: a subgame is not searched further if (1) the transposition table
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shows that the total of the running score and the lower bound on the future
score is at least 61, or (2) the total of the running score and the upper bound
on the future score is at most 60.

5.2 Move Ordering

It is commonly known that alpha-beta search performance is drastically influ-
enced by the order in which the different move alternatives are considered [13].

Typical implementations of alpha-beta search use three heuristics for finding
a good ordering, i.e., one where an optimal move is considered early: transpo-
sition table moves, history heuristic, and killer heuristic. All these techniques
are roughly based on the idea that a move which is good in a certain context
is often good in other contexts. We have implemented the first of these tech-
niques. If playing a certain card leads to a cut-off in some subgame, this card
is always considered first when this subgame is later reexamined with different
search bounds.

The remaining cards are ordered with the aim of reducing branching. If there
is currently no card on the table, we prefer playing a suit of which the other
players hold at least one card (so that they must follow suit), but only few cards
(so that their choice is limited). More to the point, for each card we multiply
the number of allowed answers for the other two players, preferring cards which
minimize this value. Within a suit, cards of higher rank are preferred.

In our experiments, this ordering heuristic reduces the average number of
investigated search nodes by a factor of 3.45, while reducing the average search
time by a factor of 3.02, compared to the original, arbitrary move ordering. We
analyze the impact of move ordering in more detail in Section 6, together with
the effect of the other search enhancements introduced now.

5.3 Quasi-symmetry Reduction

Ginsberg reports that his Bridge-playing program GIB [6] is accelerated by an
order of magnitude by replacing alpha-beta search with his Partition Search
algorithm [5]. Partition Search aims at increasing the number of subgames that
can be solved by transposition table lookups. It does so by not storing single
game positions but equivalence classes of game positions in the transposition
table. This is very effective in Bridge as the number of equivalent positions can
be expected to be high.

Many of the equivalences of Bridge positions are due to the fact that only the
relative rank of cards is important for determining optimal play; the absolute
rank is irrelevant. We say that two cards held by the same player are rank-
equivalent iff they are in the same suit and no card on the table or in another
player’s hand is ranked between them.

Unfortunately, unlike Bridge, it is usually the case in Skat games that all
rank-equivalent cards must be considered because of different point values. In
a Bridge game, a player that holds both ♠K and ♠Q need never play the king
before the queen (or vice versa). The same is not true of a Skat position. For



142 S. Kupferschmid and M. Helmert

example, if the player can win the trick playing the king, eventually winning the
deal by a margin of 61:59 points, playing the queen instead might lose the deal.
Especially if the difference in value between the two cards is greater than one,
for example in the case of ♠10 and ♠K, the lines of play that begin with these
cards often look completely different.

However, it can be proven that if two cards are rank-equivalent, then the
difference between the values of the subgames started by playing either of these
cards is bounded by their difference in point value [10]. Thus, if we can prove
that playing ♠10 results in a declarer score of 72 and ♠K is no longer in play,
then playing ♠Q results in a declarer score in the interval [65, 79], since in this
situation ♠10 and ♠Q are rank-equivalent, and the difference in point value is
10 − 3 = 7.

We use rank-equivalence for a technique we call quasi-symmetry reduction,
which decreases the branching factor of interior nodes of the search tree. When-
ever the search algorithm considers playing a card c which is rank-equivalent to
a previously considered card c′, we fetch the transposition table entry for the
position reached by playing c′ and check if there is any hope in playing c instead
of c′. For example, if the transposition table shows that playing ♠Q at some
declarer node yields at most 57 points, then playing ♠K can yield at most 58
points, so that the move need not be considered.

In our experiments, exploiting quasi-symmetries significantly reduces the
number of search nodes. However, much of this gain is countered by an increased
cost per node for rank-equivalence checking and transposition table lookups. The
most efficient version of the algorithm, which is the one we report on, only ex-
ploits quasi-symmetries for cards of which the point values differ by at most
one.

In our experiments, quasi-symmetry reduction reduces the average number of
search nodes by a factor of 2.38 and average running time by a factor of 2.03.

5.4 Adversarial Heuristics

As a final search enhancement, the double dummy solver uses a forward pruning
technique which we will now describe. In Section 5.1, we explained that whenever
a position is re-explored during search, the search algorithm fetches a lower
bound L and upper bound U on the declarer score in this subgame from the
transposition table. If M is the running declarer score, then the subgame is not
searched further if M + L ≥ 61 or M + U ≤ 60. Our forward pruning technique
extends this early termination check to positions which are not present in the
transposition table. To this end, we must compute (preferably narrow) bounds
L and U for arbitrary subgames.

How can such bounds be calculated? In single-agent search problems, lower
bounds on the actual search cost are typically computed by relaxing the problem
at hand, i.e., by increasing the set of allowed moves. For example, the minimal
weighted matching heuristic for Sokoban [8] can be interpreted as the length of
an optimal solution to a relaxed problem where boxes may be moved to adjacent
empty squares regardless of the position of the man. The Manhattan heuristic
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for the n2 − 1 puzzle can be similarly understood as the length of an optimal
solution to a relaxed problem where tiles may always be moved to adjacent
positions, even if these are occupied.

When extending these ideas to an adversarial search context, care must be
taken to reflect correctly the role of the MAX and MIN players. For any given
subgame, we can compute an upper bound to the score of the MAX player by
extending the set of possible moves for MAX and/or reducing the set of possible
moves for MIN. Conversely, a lower bound can be computed by extending the
set of possible moves for MIN and/or reducing the set of possible moves for
MAX. Any such modification leads to correct bounds that can be exploited
during search without compromising the validity of the search in any way, unlike
common forward pruning techniques such as null-move pruning in Chess or
Buro’s ProbCut [3] in Othello. We call bounds derived in such a way adversarial
heuristics because of their similarity to heuristics used in single-agent (non-
adversarial) search.

The key to good adversarial heuristics is modifying the sets of allowed moves
in such a way that the resulting bounds are reasonably narrow, but cheap to
compute. For lower bounds on the declarer score in Skat, the following two
modifications of the game rules satisfy this criterion.

1. The declarer may only play cards that are guaranteed to win the trick. If this
means that he has no legal moves, the opponents may claim the remaining
points.

The rationale between this modification is that the optimal strategy for the
opponents becomes difficult to compute once they are able to control the game.
We eliminate this expensive computation by requiring the declarer to force the
game.

2. In addition to normal moves, an opponent may swap the point values of two
cards in his hand before playing a card, provided that the two cards are in
the same suit.

This modification eliminates a strategic dilemma for the opponents. In some
situations, it is difficult to decide whether they should play a card of minimal
point value or minimal rank. For example, consider a diamonds game where the
declarer plays ♣J and is thus guaranteed to win the trick. The first opponent
holds two trumps, ♥J and ♦A. In some situations, it is preferable to play ♥J ,
only losing two points to the declarer. In other situations, it is better to play
♦A, losing eleven points to the declarer but keeping the higher-ranked card in
order to win a trick later. In the modified game, the best reply is obvious: swap
the point values of the ace and jack, so that the ace is worth two points and the
jack is worth eleven points, then play the ace.

We point out that swapping the point values of cards is rarely needed, because
rank ordering and point value ordering are consistent for all non-trump suits, and
in the case of grand games even for the trump suit. Thus, the second modification
does not usually have a large impact on the quality of the bounds.
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def search(p):

if p isa leaf position:

return p.declarer score ≥ 61

else if p isa declarer node:

if p in transposition table:

(L, U) := transposition table(p)

else:

(L, U) := adversarial heuristics(p)

if M + L ≥ 61:

return true

if M + U ≤ 60:

return false

for q in order moves(succ(p)):

if q ∼ q’ for q’ considered earlier:

(L’,U’) := transposition table(q’)

if M + U’ + δ(q,q’) ≤ 60:

continue

if search(q) = true:

return true

return false

else:

... {analogous to declarer node case}

Fig. 3. Search algorithm with all search enhancements; δ(q, q′) denotes the point dif-
ference between the two cards being played. We omit some details like updating the
transposition table, which are handled in the standard way.

An experienced Skat player will notice that computing an optimal strategy in
the modified game is almost trivial, except for situations where an opponent need
not follow suit. Indeed, the value of a game position in the modified game can be
computed in time O(N), where N is the number of remaining cards. For details
on how this can be done, we refer to the first author’s master’s thesis [10]. Similar
ideas can be applied to obtain upper bounds on the declarer score. However, this
case is slightly more complicated, so we refer to [10] again for details.

In our experiments, using adversarial heuristics reduces the average number
of search nodes by a factor of 1.80 and the average run time by a factor of 1.58.
The complete search algorithm, including all enhancements, is shown in Fig. 3.

6 Experiments

In Section 5, we described the implementation of DDS, focusing on three central
search enhancements: move ordering, quasi-symmetry reduction, and adversarial
heuristics. In this section, we provide a more detailed empirical analysis of the
performance gains offered by these features.

In practice, it is not sufficient to consider the effectiveness of a search enhance-
ment in isolation. It is quite possible that a given enhancement leads to a drastic
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improvement in run time by itself, but offers no gain when implemented together
with other features. For this reason, we evaluated all possible combinations of
move ordering (MO), quasi-symmetry reduction (QR) and adversarial heuristics
(AH), including the empty set. All configurations used a transposition table.

Table 1. Mean value, standard deviation and median of node count and running time
for 100,000 randomly generated Skat games

Features Nodes × 1,000 Run time in seconds
MO QR AH Mean St.dev. Median Mean St.dev. Median

2,772 8,853 181 0.84 3.11 0.04
× 804 3,669 29 0.28 1.42 0.01

× 1,163 3,457 102 0.41 1.36 0.03
× 1,538 5,223 57 0.53 2.02 0.02

× × 317 1,499 17 0.12 0.65 0.01
× × 626 3,182 12 0.20 1.10 0.01

× × 658 2,152 34 0.25 0.87 0.01
× × × 244 1,300 7 0.11 0.60 0.01

Table 1 shows that the three enhancements work well in combination. Al-
though the speedups are not completely orthogonal, each of the three features
is a useful addition to all configurations without it. The results are based on
100,000 randomly generated suit games. Grand games are easier, null games
much easier to solve. The high standard deviations and low medians show that
the results are far from being normally distributed. Most deals are solved very
quickly, but occasional outliers heavily influence the average case performance.

None

MO QR AH

MO
QR

MO
AH

QR
AH

All

3.45

2.
38

1.80

2.
53

1.28 3.67 1.77 2.45

2.
34

1.30

2.
56 2.70

Fig. 4. Node count reductions for the various search enhancements

Fig. 4 depicts a lattice illustrating the usefulness of adding each feature to
any configuration. The arrow labels show the reduction of average node count
achieved when going from one configuration to another. The figure shows that
there are some diminishing returns, but the general picture is quite positive.
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7 Results and Future Directions

We have shown that by enhancing a state-of-the-art game-playing algorithm
with a number of suitable search enhancements, it is possible to build a fast
double dummy solver for the game of Skat (called DDS). Of course, in practice
we are not just interested in the performance of DDS, but also in the quality of
play of the overall system.

This is somewhat harder to quantify because such experiments are difficult to
automate. We played 18 games against human and machine opposition. Against
two human players of moderate strength, the system ended on a close second
place. Post-mortem analysis revealed flawless card play but improvable bidding
behavior. Against two computer players5 the system played very convincingly,
winning every single game when it played as a declarer and all games but one
when it played in the opposing side [10].

The first logical next step for future work is to improve the bidding engine. In
theory, the general approach of learning rules from a set of features and self-play
data seems reasonable. However, our choice of features and learning algorithm
might not be the best possible. Alternatively, hand-crafted rules could be used,
but this is tedious and requires expert domain knowledge.

A second possible direction for further study is the investigation of alterna-
tive search algorithms, such as proof number search [1] or B∗ [2]. The classical
drawback of these approaches is their high memory consumption, but in Skat
games, all visited positions can easily be kept in memory.

Third, it would be interesting to apply our search enhancements to other
games. (1) Quasi-symmetry reduction is a potentially useful technique for all
games where points are accumulated in the course of play, which includes, but
is not limited to, all trick-based card games. (2) Adversarial heuristics can be
usefully applied in a similar way to classical heuristics whenever a complete
solution of a game is feasible. (3) We see a good potential for other games
amenable to Monte-Carlo approaches, for games with a strong threat structure
such as Go-Moku and Hex, and for Amazon subgames.
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