

Lecture Notes in Computer Science 4630
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

H. Jaap van den Herik Paolo Ciancarini
H.H.L.M. (Jeroen) Donkers (Eds.)

Computers
and Games

5th International Conference, CG 2006
Turin, Italy, May 29-31, 2006
Revised Papers

13

Volume Editors

H. Jaap van den Herik
Institute for Knowledge and Agent Technology (IKAT)
MICC, Universiteit Maastricht
P.O. Box 616, 6200 MD Maastricht, The Netherlands
email: herik@micc.unimaas.nl

Paolo Ciancarini
Dipartimento di Scienze dell’Informazione
Università di Bologna
Mura Anteo Zamboni 7
40127 Bologna, Italy
email: cianca@cs.unibo.it

H.H.L.M. (Jeroen) Donkers
Institute for Knowledge and Agent Technology (IKAT)
MICC, Universiteit Maastricht
P.O. Box 616, 6200 MD Maastricht, The Netherlands
email: donkers@micc.unimaas.nl

Library of Congress Control Number: 2007936369

CR Subject Classification (1998): G, I.2.1, I.2.6, I.2.8, F.2, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-75537-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75537-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12171316 06/3180 5 4 3 2 1 0

Preface

This book contains the papers of the Fifth Computers and Games Conference
(CG 2006) held in Turin, Italy. The conference took place during May 29–31,
2006 in conjunction with the 11th Computer Olympiad and the 14th World
Computer Chess Championship.

The Computers and Games conference series is a major international forum
for researchers and developers interested in all aspects of artificial intelligence
and computer-game playing. The Turin conference was definitively character-
ized by fresh ideas for a great variety of games. Earlier conferences took place
in Hamamatsu, Japan (2000), Edmonton, Canada, (2002), Ramat Gan, Israel
(2004), and Taipei, Taiwan (2005).

The Program Committee (PC) received 45 submissions. Each paper was ini-
tially sent to at least two referees. If conflicting views on a paper were reported,
it was sent to an additional referee. Out of the 45 submissions, 2 were withdrawn
before the final decisions were made. With the help of many referees (listed after
the preface), the PC accepted 24 papers for presentation at the conference and
publication thereafter provided that the authors submitted their contribution to
a post-conference editing process. The two-step process was meant (i) to give
authors the opportunity to include the results of the fruitful discussion after the
lecture in their paper, and (ii) to maintain the high-quality threshold of the CG
series. The authors enjoyed this procedure.

The above-mentioned set of 24 papers covers a wide range of computer games.
Ten of these games are also played in practice by human players, viz., Western
Chess, Chinese Chess (Xiangqi), Japanese Chess (Gunjin Shogi), Hex, Go, Lines
of Action, Hearts, Skat, Lumines, and Pool. Moreover, there are three theoretical
games, viz., Rush Hour, the Penny Matching Game, and One Player Can’t Stop.

The games cover a wide range of research topics, including combinatorial
game theory, machine learning, networked games, search, knowledge representa-
tion, and optimization.

We hope that the readers will enjoy the efforts of our researchers. Below we
provide a brief characterization of the 24 contributions, in the order in which
they are printed in the book.

“Computer Analysis of Chess Champions” by Matej Guid and Ivan Bratko com-
pares the performance of World Chess Champions. The comparison is achieved
with the help of a chess-playing program that analyzes games played by the
World Chess Champions.

“Automated Chess Tutor” is authored by Aleksander Sadikov, Martin Možina,
Matej Guid, Jana Krivec, and Ivan Bratko. The article describes a tutoring
program which employs descriptions of tactical goals. Core mechanisms for the
production of automated comments in terms of relevant goals are presented.

VI Preface

“A New Heuristic Search Algorithm for Capturing Problems in Go” by Keh-Hsun
and Peigang Zhang Chen introduces a domain-specific heuristic for iterative-
deepening that is based on third-order liberties. The search is applied to life-
and-death problems in Go.

“An Open Boundary Safety-of-Territory Solver for the Game of Go” is written
by Xiaozhen Niu and Martin Müller. It describes the Safety Solver 2.0. The
program identifies open boundary problems under real game conditions, and
generates moves for invading and defending such areas.

“Monte-Carlo Proof-Number Search for Computer Go” by Jahn-Takeshi Saito,
Guillaume Chaslot, H. Jaap van den Herik, and Jos W.H.M. Uiterwijk introduces
an enhancement to the Proof-Number Search algorithm. The new enhancement
uses Monte-Carlo sampling to initialize proof and disproof numbers. The algo-
rithm is tested on life-and-death problems in the game of Go.

“Virtual Global Search: Application to 9×9 Go” is authored by Tristan Cazenave.
Virtual Global Search is a variation of Monte-Carlo search. Sample sequences are
grouped according to their similarity under a variety of permutations in order
to reduce the number of simulations. The algorithm is tested on 9 × 9 Go.

“Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search” by
Rémi Coulom describes the algorithmic framework underlying the Go program
Crazy Stone The framework develops a selective search tree by repeatedly
applying Monte-Carlo evaluations at leaf nodes.

“Combinatorics of Go,” written by John Tromp and Gunnar Farnebäck, presents
a dynamic programming algorithm for computing the number of legal moves in
n× m Go boards. For approximating this number on large boards, a formula is
given. Moreover, the lower and upper bounds for the game-tree complexity of
Go are mentioned (proof available at Tromp’s Web site).

“Abstracting Knowledge from Annotated Chinese Chess game records” is a con-
tribution by Bo-Nian Chen, Pangfang Liu, Shun-Chin Hsu, and Tsan-sheng Hsu.
The authors introduce a method for automatically extracting knowledge from
professional Chinese Chess game records. The article describes how the suggested
procedure is successfully applied to about 2,000 game positions.

“Automatic Strategy Verification for Hex” is a joint effort by Ryan B. Hayward,
Broderick Arneson, and Philip Henderson. The authors propose an AND/OR-
tree annotation to describe Hex strategies concisely and an algorithm for veri-
fying the correctness of Hex strategies. Both items are applied to Jing Yang’s
7 × 7 center-opening strategy.

“Feature Construction for Reinforcement Learning in Hearts” is a contribution
by Nathan R. Sturtevant and Adam M. White. The paper focuses on training a
Hearts playing program by TD learning and stochastic linear regression. Special
attention is directed to the underlying model for integrating features into the
training.

Preface VII

“A Skat Player Based on Monte-Carlo Simulation,” is by Sebastian Kupfer-
schmid and Malte Helmert. The authors present a program that plays the card
game Skat. The bidding engine and the card-playing engine are both based on
Monte-Carlo simulation.

“A Retrogade Approximation Algorithm for One-Player Can’t Stop,” by James
Glenn, Haw-ren Fang, and Clyde P. Kruskal, reports a retrograde approxima-
tion algorithm for solving small versions of One-Player Can’t Stop based on a
representation of the game as bipartite graph. The paper also gives a proof for
the existence of a solution for some instances of One-Player Can’t Stop.

“Improving Depth-First PN-Search: The 1 + ε Trick” is written by Jakub Paw-
lewicz and Lukasz Lew. The paper introduces an improvement for Proof-Number
Search algorithms. The improvement helps to reduce the space complexity in
practical applications. It mainly consists of slightly loosening the proof-number
boundaries for expanding sub-trees. An application of the improved search al-
gorithm to Lines of Action and Atari Go is presented.

“Search Versus Knowledge Revisited Again” is a contribution by Aleksander
Sadikov and Ivan Bratko. The article describes the phenomenon of diminishing
returns in chess and the effect of domain-dependent knowledge on diminishing
returns.

“Counting the Number of Three-Player Partisan Cold Games,” by Alessandro
Cincotti, generalizes combinatorial game theory from two-player games to three-
player games and investigates lower and upper bounds for the number of three-
player games born on day n. The paper also covers the number of surreal numbers
born on day n.

“Lumines Strategies” is a contribution by Greg Aloupis, Jean Cardinal, Sébastien
Collette, and Stefan Langerman. It describes how two parameters, the grid size
and the frequency of block deletion, determine the solvability of instances of the
computer game Lumines.

“Computing Proper Equilibria of Zero-Sum Games” is by Peter Bro Miltersen
and Troels Bjerre Sørensen. A proper equilibrium of a matrix game can be
found in polynomial time by solving a number of linear programs. An exemplary
application is provided for the Penny Matching game.

“Comparative Study of Approximate Strategies for Playing Sum Games Based
on Subgame Types,” written by Cherif R.S. Andraos, Manal M. Zaky, and Salma
A. Ghoneim, presents a scheme for evaluating different strategies of playing sums
of left-excitable, right-excitable, or equitable combinatorial games. The presented
evaluation scheme analyzes the strategies in greater detail than previously found
evaluation schemes do.

“On the Symbolic Computation of the Hardest Configurations of the Rush
Hour Game” is a paper by Sébastien Collette, Jean François Raskin, and
Frédéric Servais. It describes a method for finding difficult initial configurations

VIII Preface

for the puzzle game Rush Hour. The method is based on a representation in
propositional logic and requires symbolic model checking.

“Cheat-Proof Serverless Network Games” by Shunsaku Kato, Shuichi Miyazaki,
Yusuke Nishimura, and Yasuo Okabe outlines an algorithm for preventing cheat-
ing in games played on peer-to-peer networks. An example application of the
algorithm to Gunjin Shogi is provided.

“Monte-Carlo Methods in Pool Strategy Game Trees” is a joint effort by Will
Leckie and Michael Greenspan. The paper discusses a successful application of
probabilistic search techniques to the task of choosing strategies in the game of
Pool.

“Optimization of a Billiard Player — Tactical Play” is a contribution by Jean-
Pierre Dussault and Jean François Landry. It compares heuristics for optimizing
the choice of targets after repositioning in the game of Pool.

“Gender and Cultural Differences (If Any!): South African School Children and
Computer Games,” written by Lizette de Wet and Theo McDonald, reports
the findings of a quantitative empirical study on the computer-game-playing
behavior of school children in South Africa. The results indicate that there are no
major differences in the game-playing behavior dependent on gender or culture.

This book would not have been produced without the help of many persons. In
particular, we would like to mention the authors and the referees for their help.
Moreover, the organizers of the three events in Turin (see the beginning of this
preface) have contributed substantially by bringing the researchers together. We
thank Tons van den Bosch, Jahn-Takeshi Saito, and Marijke Verheij for their
expert assistance in making the manuscript fit for publication. They did a very
good job. Without much emphasis, we recognize the work by the committee of
CG 2006 as essential for this publication. Finally, the editors happily recognize
the generous sponsors Fiat Group, Sao Paolo, General Electrics, and ChessBase.

March 2007 Jaap van den Herik
Paolo Ciancarini
Jeroen Donkers

Organization

Executive Committee

Editors H. Jaap van den Herik
Paolo Ciancarini
H. (Jeroen) H. L. M. Donkers

Program Co-chairs Paolo Ciancarini
H. Jaap van den Herik

Organizing Committee

Johanna W. Hellemons (Chair) Paolo Ciancarini
Antonia (Tons) E.M. van den Bosch H. (Jeroen) H. L. M. Donkers
H. Jaap van den Herik

Sponsors

Institutional Sponsors Regione Piermonte
Provincia di Torino
Cittá di Torino
Chessbase, Hamburg, Germany

Main Sponsor Fiat Group
Official Sponsor Sao Paolo

General Electrics
Partners Federazione Scacchistica Italiana

Societá Scacchistica Torinese
FIDE

Official Suppliers IKON Blubs Viaggi
The Place Chessbase
I.Net Directa Sim
Istituto Boella Aquanova
Sai Assicurazioni

We also thank the following sponsors of the Olympics Scientific Program “Mosse
d’Autore” of which the conference was part.

Compagnia di Sao Paolo
Fondazione CRT
Regione Piemonte (assessorato alla

cultura)

X Organization

Program Committee

Yngvi Björnsson
Bruno Bouzy
Michael Buro
Tristan Cazenave
Guillaume Chaslot
Keh-Hsun Chen
Paolo Ciancarini
Rémi Coulom
Jeroen Donkers
Markus Enzenberger
Haw-ren Fang
Aviezri Fraenkel
Michael Greenspan
Reijer Grimbergen

Guy Haworth
Ryan Hayward
Jaap van den Herik
Shun-Chin Hsu
Tsan-sheng Hsu
Hiroyuki Iida
Graham Kendall
Akihiro Kishimoto
Yoshiyuki Kotani
Hams Kuijf
Shun-Shii Lin
Ulf Lorenz
Shaul Markowitz
Alberto Martelli

Martin Müller
Jacques Pitrat
Christian Posthoff
Mathias Rauterberg
Jahn-Takeshi Saito
Jonathan Schaeffer
Pieter Spronck
Nathan Sturtevant
Jos Uiterwijk
Tobias Walsh
Jan Willemson
Mark Winands
I-Chen Wu
Shi-Jim Yen

Referees

Ingo Althöfer
Don Beal
Yngvi Björnsson
Bruno Bouzy
Ivan Bratko
Andries Brouwer
Michael Buro
Tristan Cazenave
Guillaume Chaslot
Keh-Hsun Chen
Paolo Ciancarini
Rémi Coulom
Jean Derks
Jeroen Donkers
Jean-Pierre Dussault
Peter van Emde Boas
Markus Enzenberger
Haw-ren Fang
Rudolf Fleischer
David Fotland
Aviezri Fraenkel
William Fraser
Johannes Fürnkranz
Matthew Gams
Michael Greenspan
Reijer Grimbergen
Dap Hartmann
Guy Haworth

Ryan Hayward
H. Jaap van den Herik
Kai Himstedt
Shun-Chin Hsu
Tsan-sheng Hsu
Robert Hyatt
Hiroyuki Iida
Hermann Kaindl
Kuo-Yuan Kao
Graham Kendall
Akihiro Kishimoto
Masashi Kiyomi
Joghan de Koning
Richard Korf
Hans Kuijf
Jeroen Kuipers
David Levy
Michael Littman
Richard J. Lorentz
Ulf Lorenz
Thomas Maarup
Shaul Markovitch
Tony Marsland
Alberto Martelli
Martin Müller
Katsuhiko Nakamura
Dana Nau
Kohei Noshita

Jacques Pitrat
Christian Posthoff
Jan Ramon
Mathias Rauterberg
Jeff Rollason
Leon Rothkrantz
Jahn-Takeshi Saito
Jonathan Schaeffer
Pieter Spronck
Nathan Sturtevant
Gerald Tesauro
Thomas Thomsen
John Tromp
Jos Uiterwijk
Paul Utgoff
Tobias Walsh
Erik van der Werf
Karin Wenz
Janet Wiles
Jan Willemson
Mark Winands
Thomas Wolfe
I-Chen Wu
Hiroshi Yamashita
Shi-Jim Yen
Jan van Zanten

Table of Contents

Computer Analysis of Chess Champions . 1
Matej Guid and Ivan Bratko

Automated Chess Tutor . 13
Aleksander Sadikov, Martin Možina, Matej Guid, Jana Krivec, and
Ivan Bratko

A New Heuristic Search Algorithm for Capturing Problems in Go 26
Keh-Hsun Chen and Peigang Zhang

An Open Boundary Safety-of-Territory Solver for the Game of Go 37
Xiaozhen Niu and Martin Müller

Monte-Carlo Proof-Number Search for Computer Go 50
Jahn-Takeshi Saito, Guillaume Chaslot, Jos W.H.M. Uiterwijk, and
H. Jaap van den Herik

Virtual Global Search: Application to 9×9 Go . 62
Tristan Cazenave

Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search . 72

Rémi Coulom

Combinatorics of Go . 84
John Tromp and Gunnar Farnebäck

Abstracting Knowledge from Annotated Chinese-Chess Game
Records . 100

Bo-Nian Chen, Pangfang Liu, Shun-Chin Hsu, and Tsan-sheng Hsu

Automatic Strategy Verification for Hex . 112
Ryan B. Hayward, Broderick Arneson, and Philip Henderson

Feature Construction for Reinforcement Learning in Hearts 122
Nathan R. Sturtevant and Adam M. White

A Skat Player Based on Monte-Carlo Simulation . 135
Sebastian Kupferschmid and Malte Helmert

A Retrograde Approximation Algorithm for One-Player Can’t Stop 148
James Glenn, Haw-ren Fang, and Clyde P. Kruskal

Improving Depth-First PN-Search: 1 + ε Trick . 160
Jakub Pawlewicz and �Lukasz Lew

XII Table of Contents

Search Versus Knowledge Revisited Again . 172
Aleksander Sadikov and Ivan Bratko

Counting the Number of Three-Player Partizan Cold Games 181
Alessandro Cincotti

Lumines Strategies . 190
Greg Aloupis, Jean Cardinal, Sébastien Collette, and
Stefan Langerman

Computing Proper Equilibria of Zero-Sum Games . 200
Peter Bro Miltersen and Troels Bjerre Sørensen

Comparative Study of Approximate Strategies for Playing Sum Games
Based on Subgame Types . 212

Cherif R.S. Andraos, Manal M. Zaky, and Salma A. Ghoneim

On the Symbolic Computation of the Hardest Configurations of the
Rush Hour Game . 220

Sébastien Collette, Jean-François Raskin, and Frédéric Servais

Cheat-Proof Serverless Network Games . 234
Shunsaku Kato, Shuichi Miyazaki, Yusuke Nishimura, and
Yasuo Okabe

Monte-Carlo Methods in Pool Strategy Game Trees 244
Will Leckie and Michael Greenspan

Optimization of a Billiard Player – Tactical Play . 256
Jean-Pierre Dussault and Jean-François Landry

Gender and Cultural Differences (If Any!): South African School
Children and Computer Games . 271

Lizette de Wet and Theo McDonald

Author Index . 283

Computer Analysis of Chess Champions

Matej Guid and Ivan Bratko

Artificial Intelligence Laboratory, Faculty of Computer and Information Science,
University of Ljubljana, Slovenia

{matej.guid,bratko}@fri.uni-lj.si

Abstract. Who is the best chess player of all time? Chess players are
often interested in this question that has never been answered authorita-
tively, because it requires a comparison between chess players of different
eras who never met across the board. In this contribution, we attempt
to make such a comparison. It is based on the evaluation of the games
played by the World Chess Champions in their championship matches.
The evaluation is performed by the chess-playing program Crafty. For
this purpose we slightly adapted Crafty. Our analysis takes into ac-
count the differences in players’ styles to compensate the fact that calm
positional players in their typical games have less chance to commit gross
tactical errors than aggressive tactical players. Therefore, we designed a
method to assess the difficulty of positions. Some of the results of this
computer analysis might be quite surprising. Overall, the results can be
nicely interpreted by a chess expert.

1 Introduction

Who is the best chess player of all time? This is a frequently posed and interesting
question, to which there is no well founded, objective answer, because it requires
a comparison between chess players of different eras who never met across the
board. With the emergence of high-quality chess programs a possibility of such
an objective comparison arises. However, so far computers were mostly used as
a tool for statistical analysis of the players’ results. Such statistical analyses
often do neither reflect the true strengths of the players, nor do they reflect
their quality of play. It is common that chess players play against opponents of
different strengths and that the quality of play changes in time. Furthermore,
in chess a single bad move can decisively influence the final outcome of a game,
even if all the rest of the moves are excellent. Therefore, the same result can be
achieved through play of completely different quality.

The most complete and resounding attempt made to determine the best chess
player in history has recently been put forward by Jeff Sonas, who has become a
leading authority in the field of statistical analysis in chess during the past years.
Sonas devised a specialized rating scheme [4], based on tournament results from
1840 to the present. The rating is calculated for each month separately, with the
player’s activity taken into account. A player’s rating, therefore, starts declining
when he is no longer active, which differs from the classic FIDE rating.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 M. Guid and I. Bratko

Having a unified system of calculating ratings represents an interesting solu-
tion to determining a “common denominator” for all chess players. However, it
does not take into account that the quality of play has risen drastically in the
recent decades. The first official World Champion, Steinitz, achieved his best
Sonas rating, which is on a par with ratings of recent champions, in April 1876.
His rating is determined from his successes in tournaments in a time when the
general quality of play was well below that of today. The ratings in general reflect
the players’ success in competition, but not directly their quality of play.

Other estimates about who was the strongest chess player of all times, are
primarily based on the analyses of their games as done by chess grandmasters;
obviously these are often subjective. In his unfinished set of books My Great
Predecessors, Gary Kasparov [3], the thirteenth World Chess Champion, analyses
in detail numerous games of the best chess players in history and will most
probably express his opinion regarding who was the best chess player ever. But
it will be merely an opinion, although very appreciated in the chess world.

Our approach was different: we were interested in the chess players’ quality of
play regardless of the game score, which we evaluated with the help of computer
analyses of individual moves made by each player.

2 Method

We evaluated fourteen classic-version World Champions, from the first World
Chess Championship in 1886 to the present. Matches for the title of “World
Chess Champion”, in which players contended for or were defending the title,
were selected for analysis.

Roughly, the basis for evaluation of a human’s play was the difference between
the position values resulting from the moves played by the human and the moves
chosen as best by the chess program. This approach can be criticized on the
basis that (1) sometimes there are alternative, equally strong moves, and (2) the
choice between them is a matter of playing style and not merely a matter of
chess strength. We will return to this issue later and provide a refinement and a
justification for this approach.

Evaluation of each game started on the 12th move, without the use of an
openings library, of course. This decision was based on the following careful
deliberation. Not only today’s chess programs poorly evaluate positions in the
first phase of a game, but also analyzing games from the start would most likely
favor more recent champions, due to the vast progress made in the theory of chess
openings. In contrast, starting the analyses on a later move would discard too
much information. The chess program Crafty [2], which we slightly modified
for the purpose of our analyses, was used. Instead of a time limit, a constant fixed
search depth was applied on every move. With such an approach we achieved
the following.

(1) Complex positions, which require processing larger search trees to achieve a
more accurate evaluation, automatically obtain more computation time.

Computer Analysis of Chess Champions 3

(2) The program could be run on different computers and still obtain the same
evaluations for a given set of positions on each of the computers.

Item (2) enabled us to speed up the calculation process considerably by dis-
tributing the computation among a network of machines, and as a consequence, a
greater search depth was possible. We chose to limit the search depth to 12 plies
plus quiescence search. There were some speculations that a program search-
ing 12 plies would be able to achieve a rating that is greater than that of the
World Champion [1], arguably a long time ago. However, the search depth men-
tioned was chosen as the best alternative, since deeper search would mean a vast
amount of additional computation time (more than ten full days of computation
time on 36 machines with an average speed of 2.5 GHz were required to perform
the analyses of all games). The limit of search was increased to 13 plies in the
endgame. Crafty’s definition of endgame was used: the endgame starts when
the total combined numerical value of both white and black pieces on the board
(without Pawns) is less than 15. We also changed the ‘King’s safety asymme-
try’ parameter thus achieving a shift from Crafty’s usual defensive stance to
a more neutral one where it was neither defensive nor offensive. The option to
use quiescence search was left turned on to prevent horizon effects.

With each evaluated move, data was collected for different search depths
(which ranged from 2 to 12), comprising (1) the best evaluated move and its
evaluation , (2) the second-best evaluated move and its evaluation, (3) the move
made by the human and its evaluation. We also collected data on the material
state of both players from the first move on.

2.1 Average Difference Between Moves Made and Best Evaluated
Moves

The basic criterion was the average difference between numerical evaluations of
moves that were played by the players and numerical evaluations of moves that
were suggested by computer analysis as the best possible moves.

MeanLoss =
∑ |best move evaluation − move played evaluation|

number of moves
(1)

Additional limitations were imposed upon this criterion. Moves, where both
the move made and the move suggested had an evaluation outside the interval [-
2, 2], were discarded and not taken into account in the calculations. The reason
for this is the fact that a player with a decisive advantage often chooses not
to play the best move, but rather plays a move which is still ‘good enough’
to lead to victory and is less risky. A similar situation arises when a player
considers his1 position to be lost, a deliberate objectively worse move may be
made in such a case to give the player a higher practical chance to save the
game against a fallible opponent. Such moves are, from a practical viewpoint,
justified. Taking them into account would wrongly penalize players that used
this legitimate approach trying (and sometimes succeeding) to obtain a desired
1 For brevity we will use ‘he’ (‘his’) when ‘he or she’ (‘his or her’) is meant.

4 M. Guid and I. Bratko

result. All positions with evaluations outside the interval specified were declared
lost or won.

2.2 Blunders

Big mistakes or blunders can be quite reliably detected by a computer, even
up to a high percentage of accuracy. Individual evaluations could be inaccurate,
but such inaccuracies rarely prevent the machine from distinguishing blunders
(made in play) from reasonable moves.

Detection of errors was similar to the aforementioned criterion. We used a
measure of difference between evaluations of moves played and evaluations of
moves suggested by the machine as the best ones. We label a move as a blunder
when the numerical error exceeds 1.00, which is equivalent to losing a Pawn
without compensation. Like before we discarded moves where both evaluations
of the move made by a player and the move suggested by the machine lie outside
the [-2, 2] interval, due to reasons already mentioned.

2.3 Complexity of a Position

The main deficiency of the two criteria, as detailed in the previous subsections,
is in the observation that there are several types of players with specific prop-
erties, to whom the criteria do not directly apply. It is reasonable to expect
that positional players in average commit fewer errors due to the somewhat less
complex positions in which they find themselves as a result of their style of play,
than tactical players. The latter, on average, deal with more complex positions,
but are also better at handling them and use this advantage to achieve excellent
results in competition.

We wanted to determine how players would perform when facing equally com-
plex positions. In order to determine this, a comparison metric for position com-
plexity was required.

Although there are enormous differences in the amount of search, nevertheless
there are similarities regarding the way chess programs and human players con-
duct a search for the best possible move in a given position. They both deal with
a giant search tree, with the current position as the root node of the tree, and
positions that follow with all possible moves as children of the root node, and so
on recursively for every node. They both search for the best continuations and
doing so, they both try to discard moves that are of no importance for the eval-
uation of the current position. They only differ in the way they discard them.
A computer is running algorithms for efficient subtree pruning whereas a hu-
man is depending mainly on his knowledge and experience. Since they are both
limited in time, they cannot search to an arbitrary depth, so they eventually
have to evaluate a position at one point. They both utilize partial evaluations at
given depths of search. While a computer uses evaluations in a numerical form,
a human player usually has in mind descriptive evaluations, such as “small ad-
vantage”, “decisive advantage”, “unclear position”, etc. Since they may have a
great impact on the evaluation, they both check all forced variations (the com-
puter uses quiescence search for that purpose) before giving an assessment to

Computer Analysis of Chess Champions 5

complexity := 0

FOR (depth 2 to 12)

IF (depth > 2) {

IF (previous_best_move NOT EQUAL current_best_move) {

complexity += |best_move_evaluation

- second_best_move_evaluation|

}

}

previous_best_move := current_best_move

}

Fig. 1. An algorithm for calculating the complexity of a position

the root position. One can therefore draw many parallels between machine and
human best-move search procedures, which served as a basis for assessing the
complexity of positions.

The basic idea is as follows: a given position is difficult with respect to the task
of accurate evaluation and finding the best move, when different “best moves”,
which considerably alter the evaluation of the root position, are discovered at
different search depths. In such a situation, a player has to analyze more con-
tinuations and to search to a greater depth from the initial position to find
moves that may greatly influence the assessment of the initial position and then
eventually choose the best continuation.

As complexity metric for an individual move, we chose the sum of the absolute
differences between the evaluation of the best and the second best move. It is
invoked at every time that a change in evaluation occurs when the search depth is
increased. A corresponding algorithm for calculating the complexity of a position
is given in Fig. 1.

The difference between the evaluations of the best and the second-best move
represents the significance of change in the best move when the search depth is
increased. It is reasonable to assume that a position is of higher complexity, and
that it is more difficult to make a decision on a move, when larger changes regard-
ing the best move are detected when increasing search depth. Merely counting
the number of changes of the best move at different search depths would give
an inadequate metric, because making a good decision should not be difficult in
positions where several equally good choices arise.

We used the described metric of position complexity to determine the distribu-
tion of moves played across different intervals of complexity, based on positions
that players had faced themselves. This, in turn, largely defines their style of
play. For example, Capablanca who is regarded as a calm positional player, had
much less dealing with complex situations compared to Tal, who is to be re-
garded as a tactical player. For each player who was taken into consideration,
the distribution over complexity was determined and the average error for each
complexity interval was calculated (numerical scale of complexity was divided

6 M. Guid and I. Bratko

into intervals in steps of 0.1). We also calculated an average distribution of
complexity of moves made for the described intervals for all players combined.

The described approach enabled us to calculate an expected average error
of World Champions in a hypothetical case where they would all play equally
complex positions. We calculated the errors for two cases. Firstly, for a game of
average complexity, averaged among games played by all players and, secondly,
for a game of average complexity, averaged among games played by a single
player. The latter represents an attempt to determine how well the players would
play, should they all play in the style of Capablanca, Tal, etc.

2.4 Percentage of Best Moves Played and the Difference in Best
Move Evaluations

The percentage of best moves played alone does not actually describe the quality
of a player as much as one might expect. In certain types of position it is much
easier to find a good move than in others. Experiments showed that the percent-
age of best moves played is highly correlated to the difference in evaluations of
the best and second-best move in a given position. The greater the difference,
the better was the percentage of player’s success in making the best move (see
Fig. 2).

0

20

40

60

80

100

0,05 0,15 0,25 0,35 0,45 0,55 0,65 0,75 0,85 0,95 1,05

difference in best move evaluations

%
o

f
b

e
s
t

m
o

v
e

s
p

la
y
e

d

Fig. 2. Proportion of the best moves played in dependence of the difference in best-
move evaluations

Such a correlation makes sense, because the bigger the difference between the
best two moves, the greater the error made when selecting the wrong move.
The height of the curve is amplified by the fact that we are dealing with World
Champions, experts at the game of chess. Analysis of weaker players would give
a curve of lesser height.

By analyzing the correlation between (1) the percentage of best moves played
and (2) the difference in best two moves’ evaluations, we derive information
about the quality of each individual player. It turned out that curves for indi-
vidual players differ significantly. This behavior served as a basis for creating a
criterion, used to infer information on the quality of individual players.

Computer Analysis of Chess Champions 7

For each player we calculated the distribution of moves across separate inter-
vals of the difference in evaluations of two best moves (where the step was 0.1).
We also calculated an average distribution for all players combined. Given this
average distribution, we then determined the expected percentage of the best
moves played for each individual player. Due to reasons already mentioned, we
did not count clearly lost or won positions in this statistics.

2.5 Material

The purpose of calculating the average material quantity, that is the sum of the
numerically expressed values of all pieces on board, was not to determine the
quality of play, but to collect additional information on a player’s style of play.
We mainly tried to observe a player’s inclination to simplify positions.

2.6 Credibility of Crafty as an Analysis Tool

It is important to determine whether Crafty represents a valid analysis tool
for evaluating World Champions. Chess programs of the present time are still
being regarded as somewhat weaker than the best human chess players. It is
very likely that Crafty is weaker than at least some of the World Champions
who were taken into consideration.

There are many arguments in favor of computer programs being an appropri-
ate tool for evaluating chess players: (1) they use numerical values as evaluations,
(2) they adhere to the same rules all the time, and (3) they are therefore more
consistent than human observers. In particular, they are very good at evaluating
tactical positions, where a great deal of computation is required.

Modified Crafty that was used in our work, has a great advantage when
compared to standard chess programs. By limiting and fixing the search depth
we achieved automatic adaptation of time used to the complexity of a given
position. Another important fact is that we were able to analyze a relatively large
sample of 1,397 games, containing over 37,000 positions. As a direct consequence,
occasional errors made in the evaluating of positions do only marginally affect
the final, averaged results (see Fig. 3).

To assess how trustworthy Crafty is as our assumed golden standard, we
checked the correlation between our calculated error rates made in the games and
the actual outcomes of these games. As stated before, in our opinion game re-
sults do not always reflect the actual quality of play and therefore the statistical
analysis of game outcomes alone is not sufficient to compare World Champi-
ons. Because of this, we did not expect absolute correlation, but for Crafty’s
credibility a significant level of correlation should be detected nonetheless. We
determined the correlation between the difference in measured average errors
made by opposing players in a given game and the outcome of that game. Cal-
culated Spearman correlation was found to be ρ = 0.89 (with significance level
p < 0.0001).

8 M. Guid and I. Bratko

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

complexity

a
v
e
ra

g
e

e
rr

o
r

Fig. 3. Graph of errors made by players at different levels of complexity clearly indi-
cates the validity of the chosen measure of complexity of positions. The players made
little errors in simple positions, and the error rate increased with increasing complexity.

3 Results

Below we list the fourteen World Champions by five different criteria (Subsec-
tions 3.1 to 3.5). Finally, in Subsection 3.6, we provide an overview of the players’
tendency to exchange pieces.

3.1 The Basic Criterion

The basic criterion for evaluating World Champions was the average difference
between moves played and best evaluated moves by computer analysis.

According to this analysis (see Fig. 4), the winner was the third World Cham-
pion, José Raúl Capablanca. We expected positional players to perform better
by this criterion than tactical players. Capablanca is widely renowned to be a
pure positional player. In compliance with this observation, Steinitz, who lived
in an era of tactical ‘romantic chess’, took clearly last place.

3.2 The Blunder-Rate Measurement

The results of blunder-rate measurement are similar (see Fig. 5). We note the
excellent result by Petrosian, who is widely renowned as a player who almost
never blundered. Gary Kasparov [3] describes Capablanca with the following
words: “He contrived to win the most important tournaments and matches,
going undefeated for years (of all the champions he lost the fewest games).” and
“his style, one of the purest, most crystal-clear in the entire history of chess,
astonishes one with his logic.”

3.3 The Complexity Measurement

Capablanca is renowned for playing a ‘simple’ chess and avoiding complications,
while it is common that Steinitz and Tal faced many ‘wild’ positions in their

Computer Analysis of Chess Champions 9

0,1008

0,1058

0,1275

0,1292

0,1334

0,1343

0,1370

0,1383

0,1402

0,1403

0,1492

0,1581

0,1777

0,2300

0,00 0,05 0,10 0,15 0,20 0,25

Capablanca

Kramnik

Karpov

Kasparov

Spassky

Petrosian

Lasker

Fischer

Alekhine

Smyslov

Tal

Botvinnik

Euwe

Steinitz

average error

Fig. 4. Average difference between moves
played and best evaluated moves (loss per
move)

0,0108

0,0145

0,0149

0,0158

0,0185

0,0192

0,0197

0,0230

0,0234

0,0264

0,0265

0,0275

0,0406

0,0539

0,00 0,01 0,02 0,03 0,04 0,05 0,06

Capablanca

Petrosian

Karpov

Kramnik

Smyslov

Kasparov

Spassky

Alekhine

Lasker

Fischer

Tal

Botvinnik

Euwe

Steinitz

% of blunders

Fig. 5. Blunder rate

0,4102

0,4029

0,3797

0,3570

0,3546

0,3528

0,3225

0,3193

0,3176

0,3094

0,3075

0,2990

0,2946

0,2750

0,25 0,30 0,35 0,40 0,45

Steinitz

Tal

Fischer

Lasker

Euwe

Alekhine

Kramnik

Kasparov

Botvinnik

Karpov

Smyslov

Petrosian

Spassky

Capablanca

complexity

Fig. 6. Average position complexity

games. The results of the complexity measurement (see Fig. 6) clearly coincide
with this common opinion.

3.4 The Player’s Style

Figure 7 demonstrates that Capablanca indeed had much less dealings with
complex positions compared to Tal. Distribution of moves in different intervals
regarding complexity is closely related with a player’s style. Calculated players’
expected errors with a variety of such distributions was another criterion. The
winner was the fourteenth World Champion Vladimir Kramnik. Kramnik also
had the best performance of all the matches; the average error in his match
against Kasparov (London, 2000) was only 0.0903. It is interesting to notice
that Kasparov would outperform Karpov, providing they both played in Tal’s
style.

10 M. Guid and I. Bratko

0,1110

0,1286

0,1303

0,1361

0,1365

0,1384

0,1387

0,1390

0,1461

0,1462

0,1577

0,1745

0,2219

0,1053

0,05 0,10 0,15 0,20 0,25

Kramnik

Capablanca

Karpov

Kasparov

Petrosian

Fischer

Lasker

Alekhine

Spassky

Smyslov

Tal

Botvinnik

Euwe

Steinitz

expected error

average Capablanca Tal

0

10

20

30

40

50

60

0,1 0,3 0,5 0,7 0,9 1,1

complexity

%
o
f
m

o
v
e
s

average Capablanca Tal

Fig. 7. Expected errors when playing in different styles

3.5 The Expected Number of Best Moves Played

A fifth criterion was the expected number of best moves played providing that
all players dealt with positions with equal difference between the best two moves,
as was described in the previous section. It represents another attempt to bring
the champions to a common denominator (see Fig. 8). Kramnik, Fischer, and
Alekhine had the highest percentage of best moves played, but also the above-
mentioned difference was high. In contrast, Capablanca, who was right next
regarding the percentage of the best move played, on average dealt with the
smallest difference between the best two moves. The winner by this criterion
was once again Capablanca. He and Kramnik again clearly outperformed the
others.

57,16

56,16

53,58

52,69

52,41

52,10

51,89

51,17

50,98

50,83

50,44

50,14

49,11

46,09

45 47 49 51 53 55 57 59

Capablanca

Kramnik

Fischer

Alekhine

Smyslov

Kasparov

Karpov

Tal

Lasker

Spassky

Botvinnik

Euwe

Petrosian

Steinitz

% of best moves

expected % of best moves actual % of best moves

0,40 0,45 0,50 0,55 0,60 0,65

Fischer

Euwe

Kramnik

Alekhine

Kasparov

Lasker

Steinitz

Karpov

Tal

Spassky

Botvinnik

Petrosian

Smyslov

Capablanca

difference between best moves

Fig. 8. Percentage of the best move played and the difference between the best two
moves

Computer Analysis of Chess Champions 11

3.6 The Tendency to Exchange Pieces

The graphs in Fig. 9 show the players’ tendencies to exchange pieces. Among
the players who stand out from the others, Kramnik obviously dealt with less
material on board. The opposite could be said for Steinitz, Spassky, and Pet-
rosian.

-20

-15

-10

-5

0

5

10

1 11 21 31 41 51 61 71 81 91

move no.

d
e

v
ia

ti
o

n

Kramnik Petrosian Spassky Steinitz

0

10

20

30

40

50

60

70

80

1 11 21 31 41 51 61 71 81

move no.

m
a
te

ri
a
l

Kramnik Petrosian Spassky Steinitz

Fig. 9. Material during the game and players’ deviations regarding it

4 Conclusion and Future Work

We applied the slightly modified chess program Crafty as tool for computer
analysis of games played by World Chess Champions aiming at an objective
comparison of chess players of different eras. Generally, the results of our com-
puter analysis can be nicely interpreted by a chess expert. Some of the results
might appear quite surprising and may thus be considered also as an interesting
contribution to the field of chess. Capablanca’s outstanding score in terms of
mean value loss will probably appear to many as such an interesting finding,
although it probably should not come as a complete surprise. As we did in the
study, this result should be interpreted in the light of the comparatively low
complexity of positions in Capablanca’s games which is quite in line with the
known assessments in the chess literature of his style. For example, Kasparov [3]
when commenting Capablanca’s games speculates that Capablanca occasionally
did not even bother to calculate deep tactical variations. The Cuban simply pre-
ferred to play moves that were clear and positionally so strongly justified that
calculation of variations was simply not necessary.

Our approach assumes that Crafty’s evaluation, based on search limited to
12 ply plus quiescence, is sufficiently accurate to be used as the golden standard. It
seems indeed that this worked fine in our analysis. Even if Crafty’s evaluations
are not always perfect, for our analysis they just need to be sufficiently accurate
on average since small occasional errors cancel out through statistical averaging.

Still, as one idea for future work, it would be nice to obtain some more firm,
quantitatively supported evidence about the evaluation error of Crafty with
respect to some sort of ideal evaluation.

12 M. Guid and I. Bratko

A related question is whether using more recent chess programs that in tour-
naments perform better than Crafty would make a significant difference if ap-
plied instead of Crafty. This question is difficult to answer directly. Since by
simply plugging another program into the analysis system instead of Crafty,
these other programs would have to be modified for the analysis similarly to
Crafty. It would require source code of these programs that was not avail-
able. An indirect way of tentatively answering this question is however possible
by evaluating these strong chess programs by our method using Crafty. High
scores of these programs evaluated by Crafty would indicate that Crafty
competently appreciates the strength of these programs, and that thus using
these programs to evaluate human players instead of Crafty would be likely
to produce similar results. To retain the style of human play, we chose to use for
this experiment games played between these top programs against top human
players. The results of the evaluation, presented in Table 1, give some indication
that using other very strong chess programs instead of Crafty would probably
not affect the results significantly.

Table 1. Evaluation of strong chess programs by Crafty

Program Mean loss per move Games Opponent Place Year

Deep Blue 0.0757 6 Kasparov New York 1997
Deep Fritz 0.0617 8 Kramnik Bahrain 2002
Deep Junior 0.0865 6 Kasparov New York 2003
Fritz X3D 0.0904 4 Kasparov New York 2003
Hydra 0.0743 6 Adams London 2005

As the mean evaluation loss per move is obviously not sufficient to assess a
player’s strength, we also took into account the average difficulty of positions
encountered in the player’s games. This made it possible to compare players
of different playing styles. Our measure of position complexity seems to have
produced sensible results. These results are qualitatively much in line to the
observation of how an expert chess commentator would describe the players in
this study in terms of their playing style. As another line of future work, it
would be interesting to explore by means of a psychological study, how well our
complexity measure reflects the true cognitive difficulty of a chess position.

References

1. Hsu, F., Anantharaman, T., Campbell, M., Nowatzyk, A.: A grandmaster chess
machine. Scientific American 263(4), 44–50 (1990)

2. Hyatt, R.: The Crafty ftp site (2006), ftp://ftp.cis.uab.edu/pub/hyatt/
3. Kasparov, G.: My Great Predecessors, Parts 1–5. Everyman Chess, London, (2003–

2006). ISBN 1857444043
4. Sonas, J.: Chessmetrics (2005), http://www.chessmetrics.com

ftp://ftp.cis.uab.edu/pub/hyatt/
http://www.chessmetrics.com

Automated Chess Tutor

Aleksander Sadikov, Martin Možina, Matej Guid,
Jana Krivec, and Ivan Bratko

Artificial Intelligence Laboratory, Faculty of Computer and Information Science,
University of Ljubljana, Slovenia

{aleksander.sadikov,martin.mozina,matej.guid,bratko}@fri.uni-lj.si

Abstract. While recently the strength of chess-playing programs has
grown immensely, their capability of explaining in human understand-
able terms why some moves are good or bad has enjoyed little attention.
Progress towards programs with an ability to provide intelligent com-
mentary on chess games, either played by a program or by a human,
has been negligible in comparison with the progress concerning playing
strength. The typical style of a program’s “comments” (in terms of the
best variations and their numerical scores) is of little use to a human
who wants to learn important concepts behind the variations.

In this paper, we present some core mechanisms for automated com-
menting in terms of relevant goals to be achieved or preserved in a given
position. By combining these mechanisms with an actual chess engine
we were able to transform this engine into a chess tutor/annotator that
is capable of generating rather intelligent commentary. The main advan-
tages of our work over related approaches are: (a) it has the ability to
act as a tutor for the whole game of chess, and (b) it has a relatively
solid chess understanding and is thus able to adequately comment on
positional aspects.

1 Introduction

In the last five years the strength of computer chess programs has grown im-
mensely. They have now reached and most likely surpassed the level of the hu-
man World Champion. These programs (some of them are free to use) run on
ordinary personal computers, thus enabling practically everyone to have a world-
champion caliber player at home to play with whenever they wish to. This is a
commodity that no one imagined possible a decade or two ago.

However, there is one big difference between having a strong computer pro-
gram and having a human grandmaster at home. The latter can be asked ques-
tions, you can learn from him or her1, you can analyze games together and he or
she can explain complex concepts to you. But why cannot a computer program
do that? A program is tactically impeccable and in play it exhibits an amount
of strategic knowledge comparable to a solid grandmaster. In 2003, Garry Kas-
parov, the highest rated chess player in the world, said that computers are over
1 In the remainder of this paper we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his of

her’ are meant.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 13–25, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

14 A. Sadikov et al.

2800 Elo in tactics and about 2500 Elo in strategy. Since then, they improved
in both categories. So why cannot they give us lessons?

The answer lies in the output the programs give. They usually output noth-
ing more than a principal variation and the numerical evaluation of several best
moves — in other words, some moves and numbers are given. Typically, people
are not good in comprehending numbers, but in this case we grew accustomed to
interpreting that a value of −3 would mean losing a Knight or some other equiv-
alent of three Pawns. Yet, we are puzzled by that cheeky evaluation of −0.39;
what does that mean? That we are 0.39 Pawns behind in material? What is 0.39
Pawns? The point we are trying to make is that there exists a communication
barrier between humans and chess programs. We clearly do not speak the same
language. While we can understand the tactical lines with a forced win or a loss
of material (even though it would not hurt hearing it in words like “you lose a
Knight”), we may have difficulties understanding the quiet, strategic lines.

This is a pity. On the one hand we have at our disposal an oracle of knowledge,
yet on the other hand we cannot understand what it is saying for the most part.
Imagine that you were given to understand what that tricky −0.39 really stands
for. For example, “You own a bishop pair, and have a safer King, but it does
not compensate for the two isolated Pawns on the queenside and the strong
Knight’s outpost on d3. Your position is somewhat (−0.39) worse.” This would
be something that one could learn from. There is a myriad of games between
strong players played or relayed on the internet. With a chess program that
could provide comments that we understand, we would be able to learn while
watching those games.

This is the long-term goal of our research. The current paper presents an
initial, though perhaps most important, step towards this goal. We took Robert
Hyatt’s Crafty [4], a strong freeware chess program, as our underlying chess
engine and on top of it built an annotating/tutoring module. The chess program
is thus turned into an intelligent chess tutor.

2 Related Work

The idea of the automatic construction of commentary is not new. Its importance
was realized long ago. Around 1980, Donald Michie was probably the first to pro-
pose research in this direction. The ICGA (then still ICCA) Journal started an
annual competition for the best chess annotation program — named after the
late Professor Herschberg. The first winner of the competition was Chessmas-
ter 4000 for the year 1993 [1]. The program commented practically every move
with some prose, but it was mostly very simplistic. The next year, Jeff Mallet’s
Innovation, an amateur program, won as the only entrance. It gave interest-
ing comments, but was hampered by a relatively poor chess engine. Then, three
years in a row (with no award given for 1997) different versions of the Dutch
program Fritz won the prize. It had a very strong engine and gave good anal-
ysis — but its commentary lacked prose. This handicap slightly improved from
version to version, yet the version that was the winner of 1998 — it was the last

Automated Chess Tutor 15

winner — still lacks a great deal in this respect. It has a good selection of (1)
when to comment, (2) which subvariations to give (not easy problems at all),
and (3) how long the variations should be. A very fine point is that it also points
out the tactical pitfalls the players avoided. Yet, it still explains only tactical
nuances and ignores what we discussed in the introduction — why is a position
−0.39 in strategic terms.

Still, in the mid 1990s, the spirits were high and the progress made even
prompted David Levy and Tony Marsland [5], members of the competition jury,
to write: “If progress in this field continues to be made at the same rate we
would expect that, by the end of the century, there will be annotation programs
available which can offer a very useful service to chess-players of every strength.”
Surprisingly, though, the 1998 Fritz was the last entrance in the competition
to this day.

On the other side of the field, Seidel [7] made an attempt to create endgame
programs that could annotate their play. He tackled elementary endgames of
the lone-king type such as KRK and KBBK. At the core of the system is a
general rule for generating moves for the stronger side that (1) determines the
threats by the weaker side, (2) generates possible actions, and (3) eliminates
those moves that do not parry the threats. Threats and actions are very specific
for various endgames and rely heavily on chess theory. They represent the chess
knowledge of the system and are defined manually. The annotation mechanism
follows simply from the move-generating scheme by commenting which actions
and threats are encountered. The chess knowledge in this form is both a strong
and a weak point — strong, because it enables specific annotations, and weak
because a vast amount of manually entered knowledge is required even for very
simple endgames. For example, there are six different types of moves (actions)
for just a part of the KBBK endgame. This severely limits the extendability
of the scheme to more complex endgames, not to mention the whole game. A
problem with the whole game, apart from just the raw amount of knowledge
needed, is the lack of strict rules — something Seidel’s system requires.

Herbeck and Barth [3] took a different and in some ways perhaps a more
conventional approach. They combined alpha-beta search with knowledge in the
form of rules. Their domains were also chess endgames (up to four pieces), though
the knowledge was somewhat more involved than in Seidel’s [7] case. Herbeck and
Barth’s algorithm performed a standard search and then followed the principal
variation until a position was encountered in which a rule from the knowledge
base stated the outcome (or a bound on the outcome) of the game. This rule
(or a set of them) is offered to the user as an explanation. The algorithm is
also capable of giving comments (rules) for alternative variations. An example
of the rules in KPKP is “White wins, because the white Pawn promotes first
with check and Black is in a bad position”. As in Seidel’s case the rule base can
be viewed both as a strong and a weak point of the scheme — strong because
the annotations are quite good, and weak because (a) the rules are manually
crafted, and (b) there are no such exact rules for more complex endgames, let

16 A. Sadikov et al.

alone for the middlegame. The latter prevents the scheme to be extended beyond
relatively simple endgames.

We should also briefly mention here Gadwal et al.’s work on tutoring King and
Bishop and two Pawns on the same file versus lone King endgame [2]. As with
the other studies mentioned the main problem with it is the lack of extendability
beyond the simple endgames.

3 The Tutoring System

Our main underlying idea is to use the chess engine’s evaluation function’s fea-
tures to describe the changes in the position when a move is made. These elemen-
tary features can later be combined to form higher-level concepts understandable
to humans. In this manner we bridge the communication barrier between ma-
chines and humans.

Our tutoring system consists of three components: (1) the chess engine, bring-
ing chess knowledge and search to the table, (2) the commenting module for
generating raw comments from the engine’s evaluations, and (3) a simple expert
system for refining the raw comments into (an even more) human understandable
language.

The first component, the chess engine, serves to (1a) calculate variations,
(1b) analyze positions, and (1c) evaluate possible moves. It is essentially an
unmodified version of Crafty (apart for some routines that transfer calculated
variations, moves, and detailed evaluations to our commenting module). The
depth of search is either fixed or time-controlled; higher depths provide better
variations and thus better (in terms of playing strength) commentary. As for the
greater part the other two components are relatively independent of the engine,
any other chess engine could be used in Crafty’s place. In fact, we believe
it would be quite advantageous to use an engine that champions knowledge in
favor of search.

The other two components, which form the backbone of the tutoring system,
will be described in Sections 3.1 and 3.2.

3.1 The Commenting Module

At first glance, moves can be divided into two categories: good moves and bad
moves. Yet, when delving deeper into the matter, one can see that most moves in
games, pitting two players with opposing interests against each other, are a sort
of tradeoff of positive and negative characteristics of the position. With most
moves you gain something and you lose something.

These characteristics and their tradeoffs are what our commenting module
is calculating and analyzing. For any given move, it shows what characteristics
of the position have changed and on the basis of this and the change in score,
as given by the engine, the tutor can elaborate what is the essence of the given
move or variation. The general merit of the move, however, is obtained by simply
comparing its score with the scores of other possible moves in the given position.

Automated Chess Tutor 17

Most chess engines, Crafty being no different, employ an evaluation function
in the form of a weighted sum of the position’s features. These features, along
with their associated weights, are actually the position’s characteristics on which
our commenting module is operating. The weights are important too, because
they define the relative importance of the features (characteristics).

Commenting Good Characteristics. In general, the tutoring system has two
possibilities to generate a comment why a certain move is good: (a) the move
achieves progress towards some goal, or (b) the move eliminates some weakness
or deficiency of the current position. Let us take a look at both options in more
detail.

The basic idea behind the first option is that making headway involves achiev-
ing progress towards goals, eventually accomplishing them. The goals in our
schema are simply the evaluation function’s features. We believe this is a natu-
ral way to state straightforward, comprehensible goals to be achieved. Later we
show how the expert system can combine several straightforward goals into a
more structured one thus increasing the expressive power of the tutoring system.

Figure 1a illustrates the setting for this idea. First, a search procedure is
employed to obtain a principal variation starting with the move to be commented
upon. The final position in the principal variation represents the goal position
— this is the position that one can reach from the initial position with the move
under investigation. This position might be viewed as envisioned by the player
when he made the move. After we have obtained this envisioned position, we
calculate which features of the evaluation function have changed and by how
much they changed when comparing this position with the starting position. If
one looks at the evaluation function’s estimation of a position as a vector of
values this operation is a simple difference between the corresponding position
vectors.

The positive characteristics (or rather positively changing characteristics)
achieved are those that have positive values in the resulting vector of differ-
ences (here we assume that we comment from White’s perspective; otherwise it
is just the opposite). In the raw output, each such characteristic represents a
separate comment of what the move under investigation aims to achieve. Basi-
cally, at this stage, the commentary is a list of positive characteristics the move
(or rather the principal variation starting with the move under investigation)
aims to achieve.

For example, if the following two characteristics were singled out as the ones
that changed positively:

WHITE KNIGHTS CENTRALIZATION
WHITE KING SAFETY

then the raw commentary would be “The move aims to centralize the Knight
and to improve King’s safety”.

It should be noted that both, the starting position and the envisioned position,
must be quiescent. The starting position should be quiescent, because there is

18 A. Sadikov et al.

. . .

principal variation

best move

Progress towards GOOD characteristics

CONTEXT:

{ a set of good features that hold }

. . .

best move

Progress out of BAD characteristics

CONTEXT:

{ a set of bad features that hold }

(a) (b)

Fig. 1. Commenting good characteristics

no point in commenting in the middle of a tactical sequence; such a sequence
should be viewed as a whole. The envisioned position should be quiescent for
obvious reasons — the evaluation based on a non-quiescent position is completely
unreliable and thus of little use.

Let us now take a look at the other possibility why a move can be good —
namely, because it eliminates some weakness or deficiency of the current position.
This situation is illustrated in Fig. 1b. However, computationally this possibil-
ity is implemented exactly as the first one. We note that good characteristics
for the opponent are bad for us, and are represented with negative numbers in
the position’s vector. For example, one such negative characteristic (position’s
deficiency) could be:

BLACK BISHOP PAIR

and in this case the generated raw commentary would be “The move aims to
eliminate the Black’s bishop pair”.

Commenting Bad Characteristics. The tutoring system has three possibil-
ities to generate a comment why a certain move is bad: (a) the move creates
a weakness or deficiency in the position, (b) the move spoils some good char-
acteristic of the current position, or (c) the move is compared to a better (the
best) possible move and the differences are pointed out. Possibilities (a) and (b)
are quite similar to the two possibilities we encountered earlier when discussing
how commenting of good aspects of a move is accomplished. Therefore we first
briefly debate these two options and then take a look at option (c).

Possibility (a) mirrors possibility (a) for generating comments for good moves.
The difference is that there we attempted to achieve some positive goals, while
here the move achieves some negative goal(s). Similarly, possibility (b) mirrors

Automated Chess Tutor 19

possibility (b) for generating comments for good moves. Here, the difference is
that instead of removing some weakness or deficiency of the current position,
the move removes some positive characteristic of the current position.

From the computational point of view, the only difference is that we are now
looking at the evaluation features that are negative in the vector of differences
between the starting position and the envisioned position. The rest is the same.
For example, if the following features were flagged as changed for the worse (neg-
atively changing characteristics):

EVALUATE PAWNS
BLACK ROOK BEHIND PASSED PAWN

the raw commentary generated would be “The move allows the opponent to
improve the pawn structure and to get a Rook behind a passed Pawn”.

However, there is a further difficulty when commenting really bad moves —
be it bad in positional or tactical sense. The nature of minimax search is such
that it does not search for a sort of “bad envisioned position”, but rather allows
the mistake (as it is forced upon it by the user) and then searches for best play
for both sides from that point on. So, in essence, the envisioned position at the
end of the principal variation returned by the search may not necessarily reflect
the real weakness of the bad move (which is what we would like to comment
upon), because this weakness was perhaps traded for some other weakness later
in the variation.

Let us illustrate this by an example. Assume that White made a mistake by
moving a Pawn and that as a consequence Black gained a strong outpost for
his Knight. Later in the principal variation, stemming from this initial pawn
move, however, Black exchanged this strong Knight for White’s Bishop and so
eliminated White’s strong bishop pair and doubled White’s Pawns. The tutor-
ing system, comparing the starting position with the position at the end of the
principal variation, would comment that “The move allows the opponent to elim-
inate your bishop pair and to weaken your pawn structure”. While in principle
this is true, it may be more in the spirit of tutoring to say instead “The move
allows the opponent to gain a strong knight outpost”. The initial comment can
prove too abstract to the user. Or, after all, the user can choose not to follow
the principal variation at all.

The difficulty we described is actually a special case of a more general problem
— namely, how long should the principal variation be and where in it we should
decide to comment. This is a cognitive problem and amongst other things it
depends on the chess strength of the user whom the system attempts to tutor.
In some cases only a single move should be commented, in other cases the whole
variation, and in a third group of cases a part of the variation. This problem
indicates our future work.

The idea behind possibility (c) is different from the concepts we discussed
so far. Instead of observing what the move achieved, positive or negative, we
observe what the move did not achieve although it could have. Therefore, we

20 A. Sadikov et al.

compare the move with the best move that is available. In essence, we generate
comments for the move played and for the best move that could have been
played, and attempt to compare their respective merits. This possibility is still
highly experimental and is mentioned here just to give the reader the idea how
we plan to extend our tutoring system’s capabilities.

3.2 The Expert System for Commentary Refinement

In principle, the raw comments generated by the commenting module are in
itself sufficient to produce relatively intelligent tutoring and annotations. How-
ever, it is both easy and rather beneficial to refine these comments to obtain
quite human-like commentary. This is the purpose of the expert system for com-
mentary refinement.

It is useful to refine the raw comments for several reasons: (a) to remove
the unnecessary complementary comments, (b) to explain further or better the
meaning of some features in the given context, and (c) to combine some basic
features into higher-level, structured features that are more understandable to
humans, thus increasing the expressive power of the system. Below we take a
more detailed look at these options.

The structure of Crafty’s evaluation function (other engines are probably
quite similar in this respect) is such that it separately looks for the same features
for White and for Black [4]. For example, it looks for White’s Rook on an open
file and for Black’s Rook on an open file. These are two different features. Yet,
they can be looked upon as a pair of complementary features. If, in a given
variation, the commenting module realized that both these features changed —
meaning that both players got a Rook on the open file — it would comment on
both of them with something like “The move aims to get a Rook on open file.
The move allows the opponent to get a Rook on open file”. The expert system
removes such comments provided that the complementary features are worth
about the same amount (by directly comparing their respective values in the
vector of differences)2.

The features sometimes have a different meaning depending on the context
as defined by other features. The expert system detects which meaning is ap-
propriate in a given situation and modifies the raw comment accordingly. Let us
explain this by an example. Assume that the commenting module flagged the
feature WHITE BISHOP PLUS PAWNS ON COLOR as a characteristic that
changed positively for White. This feature is designed to modify (reduce) the
value of a Bishop if there are own Pawns on the squares of the same color
that this Bishop moves on. There are two very different cases when this feature
can change positively. In the first case, we improve the Bishop by moving some
Pawns thus creating more space for the Bishop. In this case the raw comment
“The move aims to improve Bishop plus Pawns with respect to color” is slightly
2 The complementary features are not always worth the same, for example, White’s

bishop pair can be better than Black’s bishop pair. That is why the expert system
has to take their worth into account when attempting to remove comments based
on complementary features.

Automated Chess Tutor 21

awkward but still understandable. However, in the second case this (bad) Bishop
is simply exchanged. Now the raw comment is completely out of place; though
in essence correct if one knows the hidden meaning. By looking at other features
(in this case whether the Bishop is exchanged) the expert system knows what
commentary should be given; in this case “Bad Bishop was exchanged”.

The third role of the expert system is to combine several elementary features
into higher-level, structured features that represent concepts understandable to
humans. Let us take a look at one example rule in the expert system that does
so:

if (BLACK_BISHOPS = 2) then
if (BLACK_BISHOPS_POSITION + BLACK_BISHOPS_MOBILITY +

BLACK_BISHOPS_BLOCK_CENTER + BLACK_BISHOP_PAIR +
BLACK_BISHOP_KING_SAFETY <= -65) then

comment("Black has an active bishop pair.")

This rule combines six elementary features to derive whether Black has an active
bishop pair (higher-level concept). As we can see the bishop pair can be active
for various reasons. It can simply be that the Bishops have great mobility. Or
it can be that the Bishops guard the King well and at the same time are well
positioned. The raw comments for every elementary aspect of the position are
less instructive in this case than a single high-level comment. Even more, not all
elementary features need to change positively for the same side. In this case the
raw comments might even be confusing. The high-level comment “Black has an
active bishop pair” is usually preferable to commenting separately on the good
positions of the Bishops and how the Bishops defend the King well. Moreover,
the commentary can easily be extended to explain why the bishop pair is active
— simply state which parts of the rule contribute (most) to the score.

Our expert system consists of about 25 rules. The rules were constructed by
chess experts3 who also set the threshold values in the rules (cf. −65 in the above
example rule). The expert system can easily be extended with new rules or by
refining the existing ones. Further refining and in particular fine-tuning of the
thresholds can perhaps also be accomplished by machine learning methods.

4 Some Tutoring Examples

In the previous sections we explained the ideas behind our tutoring/annotating
mechanism. Now we shall demonstrate how they work in practice on some posi-
tions taken from grandmaster games. The positions are taken from John Nunn’s
tutoring book [6].

Let our tutoring system work on the position from the game Kasparov versus
Shirov shown in Fig. 2a. It, or rather Crafty, evaluates the position after 16.
... Nc5 as slightly worse for Black (+0.43). In its place it recommends the move

3 The chess expertise was provided by FM Matej Guid and WIM Jana Krivec who are
both rated over 2300 ELO.

22 A. Sadikov et al.

XABCDEFGHY
8r+-wqk+-tr(
7+l+n+pzpp'
6p+-zp-vl-+&
5+-+Nzp-+-%
4-tR-+P+-+$
3+-zP-+-+-#
2-zPN+-zPPzP"
1+-+QmKL+R!
xabcdefghy

XABCDEFGHY
8-+-wq-trk+(
7tr-+n+pzpp'
6-+-zp-+-+&
5+-+Pzp-vl-%
4p+-+-+-+$
3tR-zPL+-+-#
2-zPN+-zPPzP"
1+-+Q+RmK-!
xabcdefghy

(a) (b)

Fig. 2. Kasparov versus Shirov, Horgen, 1994

Table 1. Vector of differences

Feature (positive change) Score Feature (negative change) Score

black bishop pair 20 king tropism −51
black back rank 12 evaluate pawns −27
black bishop plus pawns on color 12 white knights outposts −15
white bishops mobility 12 white back rank −12
white bishops position 10 white knights centralization −6
black bishops mobility 6

16. ... Ra7, which, it suggests, would lead to an equal position (−0.01) after 17.
Bd3 O-O 18. O-O a5 19. Rb3 Bxd5 20. exd5 a4 21. Ra3 Bg5. The position after
21. ... Bg5 is our envisioned position and is shown in Fig. 2b.

Table 1 shows the vector of differences for the 16. ... Ra7 variation. Let the
tutor comment from Black’s perspective. The positive changes for Black are listed
on the right side of the table, and negative changes for Black on the left side of the
table. The raw commentary would thus be “The move 16. ... Ra7 aims to improve
king tropism, improve pawn structure, eliminate opponent’s knight outposts,
weaken opponent’s back rank, and reduce opponent’s knights centralization. The
move allows the opponent to eliminate your bishop pair, weaken your back rank,
weaken your Bishop plus Pawns on same color, increase the Bishops’ mobility,
improve the Bishop’s position, decrease your Bishops’ mobility”. As we can see,
the raw commentary is directly translated from the vector of differences. Let us
now take a look how the expert system for commentary refinement improves the
raw comments.

First of all, the back rank weakness comments are eliminated as they are
worth the same (for their respective sides) and are complementary. Next, from

Automated Chess Tutor 23

material features it is observed that Black lost the bishop pair. However, truly
interesting are the rules below.

if (WHITE_ACTIVITY_CHANGE + BLACK_ACTIVITY_CHANGE <= -10) then
comment("Black has improved the activity of pieces")

if (WHITE_BISHOPS = 1 and WHITE_BISHOPS_MOBILITY >= 12 and
WHITE_BISHOPS_POSITION >= 6) then

comment("White has improved the bishop")
if (abs(KING_TROPISM + EVALUATE_KING_SAFETY) > 60) then

comment("White has the initiative against black’s king")
if (EVALUATE_PAWNS <= -10)

comment("Black has improved the pawn structure")
if (WHITE_KNIGHTS_CENTRALIZATION + WHITE_KNIGHTS_OUTPOSTS <= -14)

then comment("White no longer has a strong knight")

These rules achieve the following. The first one combines two elementary
features to detect that Black has improved the activity of pieces. The second
rule again combines three elementary features to observe that White’s Bishop
has improved. The third rule actually removes the king tropism raw comment,
because it should be combined with King’s safety and the required threshold for
the initiative against the King was not reached. The fourth rule is simple (and
should be refined with further work) and observes that Black improved the pawn
structure. The last rule combines two elementary features to note that White lost
(exchanged) a strong Knight. After applying these rules the refined commentary
is: “Black has improved the pawn structure, White no longer has a strong Knight,
and Black has improved the activity of his pieces. On the other hand: Black no
longer has the advantage of a bishop pair, White has improved the Bishop.” We
can see that the refined commentary, using higher-level concepts, is much better
than the original raw commentary.

XABCDEFGHY
8r+l+-trk+(
7+pzp-+pvlp'
6-+-+p+p+&
5zp-+nzP-+-%
4Pwq-+Q+-+$
3+L+-+N+P#
2-zPP+-zPP+"
1tR-vL-tR-mK-!
xabcdefghy

XABCDEFGHY
8r+-+r+k+(
7+pzp-+pvlp'
6-+-+-+p+&
5zpP+lzP-+-%
4-+-sN-vL-+$
3+-+-+-+P#
2-zPP+-zPP+"
1tR-+-tR-mK-!
xabcdefghy

(a) (b)

Fig. 3. Short versus Timman, Tilburg, 1991

24 A. Sadikov et al.

A second position is from the famous game Short versus Timman. In the
position of the diagram in Fig. 3a Short played 17. Bc4 and GM John Nunn in
his book agrees with him [6]: “White is not deflected by the prospect of winning
a Pawn with 17.Bxd5 exd5 18.Qxd5 Be6, when Black would have reasonable
drawing chances in view of his good development and active Bishops.” The tutor,
however, prefers 17. Bxd5 exd5 18. Qxd5 Be6 19. Qb5 Qxb5 20. axb5 Rfe8 21.
Nd4 Bd5 22. Bf4 (position in Fig. 3b) and backs it up with: “White has won
a Pawn. Black has gained a bishop pair, Black has improved the Bishops”. In
essence, the tutor agrees that Black has reasonable compensation for the Pawn.

5 Conclusions and Future Work

The work presented in this paper is intended as a founding step towards turning
a chess engine into a competent chess tutor and annotator. Even at this early
stage of development, the core mechanism exhibited that it is able to generate
rather intelligent commentary as demonstrated by the examples shown. The
main advantage of our approach over the related proposals is that it could be,
and consequently was, applied to the complete domain of chess. The advantage
of our program over various annotating programs is that while our program is
able to understand and comment on tactical positions, it also exhibits a solid
understanding4 of positional intricacies of positions. Hence, it is able to provide
adequate commentary on positional aspects as well.

An interesting side-effect of our approach is that it can potentially prove useful
to chess engine programmers as they can now practically see how their programs
“think”.

There is an array of cognitive issues still to be solved to arrive at really good
tutoring system, e.g., (1) when to comment and when not to, (2) which move (the
best or some similar but better) to compare the move to, (3) the most suitable
depth of lookahead, to name but a few. These are obvious tasks for future work.

The system’s knowledge is easily extendable, either by employing a more
knowledge-oriented chess engine or by enriching the expert system with new
concepts. Also, the functionality of the system can be extended by adding various
functions, e.g., implementing the ability to ask the tutor questions, but this is
more a matter of engineering than of scientific work.

References

1. The Board of the ICCA: The Best Annotation Award for 1993. ICCA Journal 17(2),
106–108 (1994)

2. Gadwal, D., Greer, J.E., McCalla, G.I.: Tutoring Bishop-Pawn Endgames: An Ex-
periment in using Knowledge-Based Chess as a Domain for Intelligent Tutoring.
Applied Intelligence 3(3), 207–224 (1993)

4 Of course, positional understanding of the tutor is limited with the level of positional
understanding as exhibited by today’s chess programs — e.g., long-term planning is
still absent.

Automated Chess Tutor 25

3. Herbeck, H., Barth, W.: An Explanation Tool for Chess Endgames Based on Rules.
ICCA Journal 19(2), 75–82 (1996)

4. Hyatt, R.: The Crafty ftp site. (2006), ftp://ftp.cis.uab.edu/pub/hyatt/
5. Levy, D., Marsland, T.: The ICCA Best Annotation Award for 1995. ICCA Jour-

nal 19(2), 135–136 (1996)
6. Nunn, J.: Understanding Chess Move by Move. Gambit Publications Limited (2001)
7. Seidel, R.: Self-annotating Elementary Endgames. ICCA Journal 17(2), 51–62 (1994)

ftp://ftp.cis.uab.edu/pub/hyatt/

A New Heuristic Search Algorithm for

Capturing Problems in Go

Keh-Hsun Chen and Peigang Zhang

Department of Computer Science,
University of North Carolina at Charlotte, NC, USA

{chen,pzhang1}@uncc.edu

Abstract. We propose a highly selective heuristic search algorithm for
capturing problems in Go. This iterative deepening search works on the
crucial chain in which the prey block is located. The algorithm starts
using three order liberties of the chain as the basis of the position
evaluation, the value is then adjusted by the presence of few liberty-
surrounding opponent blocks. The algorithm solved most capturing prob-
lems in Kano’s four volumes of graded Go problems. Moreover, it is fast
enough to be used by Go programs in real time.

1 Introduction

Whether a block of stones in a Go board configuration can be captured by the
opposite side is a fundamentally important knowledge item for a Go program.
Without any knowledge of the block capture ability, other tactical problems in
Go, such as life/death and connection cannot be accurately resolved. The global
positional judgement could be totally wrong due to misjudgment of the capture
ability of some blocks. Move decisions could become big blunders if made without
recognizing the capture ability of some key stones [4]. Most Go programs spend
over 90% of their processing time in doing capturing search of blocks of stones
on the board. The quality of their capturing search routine is a key factor in the
strength of a Go program.

In this paper, we shall describe a highly selective heuristic capturing search
algorithm based on the classical α-β game-tree-search paradigm. The algorithm,
called HuPrey (from Hunter-Prey), is a significantly improved version of the
capturing algorithm used in Go Intellect in the past. Experimental results
show that its performance compares favorably to other Go capturing algorithms
[1,2,11].

Section 2 describes ladder capturing, which is a simple form of capturing;
its routine is used extensively in our heuristic search capturing algorithm. We
discuss the capturing target in Sect. 3 and its evaluation in Sect. 4; the genera-
tion of candidate moves in Sect. 5. The search paradigm and enhancements are
examined in Sect. 6 and 7, respectively. The special situations of seki and ko
are considered in Sect. 8. The experimental results are presented in Sect. 9. The
paper is concluded with suggested future work in Sect. 10.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 26–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A New Heuristic Search Algorithm for Capturing Problems in Go 27

2 Ladder

We shall call the capturing target block the prey (block). The player who attacks
the prey is the Hunter and the player who defends the prey block is called Prey.
The simplest form of capturing is so-called ladder capturing. In this case, the
prey block should have fewer than 3 liberties. Once the prey gets 3 or more
liberties, the ladder chase fails. In a game, the Hunter will continue to play
atari moves. The Prey will always extend its only liberty or capture adjacent
opponent’s blocks with just one liberty if they exist. The move sequence in a
ladder chase usually forms a zigzag pattern like a step ladder. This is a key
routine that every Go-playing program must have.

Keeping track of the prey’s liberties and those of the adjacent blocks under
atari is the key of an efficient ladder algorithm. We note that the average branch-
ing factor of a ladder search is near 1; so, the ladder procedure is extremely fast.
A normal diagonal ladder from one side of the board to the other side takes less
than one millisecond on a modern computer.

A capturing search routine frequently needs to know (1) in its move generation
and (2) in its position evaluation whether a block can be captured by a ladder.
Obviously, for the general capturing problem, we cannot just consider the prey’s
liberties and those of the adjacent blocks in atari as candidate moves like in a
ladder search.

3 Crucial Block and Crucial Chain

To generate the candidate moves adequately and to evaluate positions appropri-
ately, one has to consider the whole chain, called the crucial chain, to which the
prey block (also called crucial block) belongs. Figure 1 shows a simple example,
in which just considering liberties and second liberties of the prey block (marked
by a triangle) is obviously inadequate in finding the correct capture/escape move.
The key move ‘a’ is not a liberty or secondary liberty of the crucial block marked
by the triangle. The whole crucial chain, to which the prey belongs, needs to be
considered.

Fig. 1. Why the crucial chain
should be connected

A chain is a set of blocks of same color, which
cannot be separated by the opponent [3]. We rec-
ognize two blocks being in the same chain if they
obey either one of C1 to C3.

C1 They share two or more common liberties.
C2 They share one protected common liberty. By

a ’protected empty point’, we mean either it is
illegal for the opponent to play there or if the
opponent plays there, the played stone can be
captured by a ladder (and the opponent cannot
reoccupy the point through ko or snapback).

C3 They are adjacent to a common opponent’s
dead block.

28 K.-H. Chen and P. Zhang

In practice, we can compute the transitive closure of the crucial block under
C1, C2, and C3 to obtain the crucial chain. We should note that C1 to C3 do
not completely define connectivity; they are just simple heuristics used by the
capturing search routine in recognizing chains.

4 Position Evaluation

We define the empty points vertically or horizontally adjacent to a block as
its liberties. A block is captured when it loses all its liberties. The first-order
liberties are the ordinary liberties as defined above. We define a second-order
liberty as a liberty of the augmented block when one additional stone of the
block’s color is added to the block (this stone may join additional blocks), which
is not a first-order liberty. Similarly, we define a third-order liberty as a liberty of
the augmented block when two additional stones of the block’s color are added
to the block (these stones may join additional blocks), which is not a first-order
or second-order liberty. The first-order, second-order, and third-order liberties
of the crucial chain can be computed via a breadth-first search. Let n1, n2, and
n3 be the total numbers of the first-order, second-order, and third-order liberties
respectively. Assume Prey is to play. The basic evaluation is

V = n1 × 16 + n2 × 8 + n3 × 4 . (1)

We consider a first-order liberty twice as valuable as a second-order liberty
and four times as valuable as a third-order liberty. If there is an adjacent Hunter
block which can be captured by a ladder, we add 50 to V. If Prey has a block
that can be captured by a ladder, we subtract 25 (since Prey plays next, the
block could be saved).

When the crucial chain has two eyes, then it does not matter how many
liberties it has, it is completely safe. Hence, in addition to liberties we should
also check for solid eyes of the crucial chain. We go through each of the first-
order liberties of the crucial chain to determine whether it is a solid eye. An eye
is solid if (1) a liberty is surrounded only by stones of Prey and borders plus at
least 3 of the 4 diagonal board points are secure for liberties away from edges, or
(2) both diagonals are secure for liberties on a board edge, or (3) the diagonal
is secure for liberties at board corners.

By a diagonal being secure, we mean it is occupied by a Prey’s stone or it
is a protected empty point. When we find a chain having two solid eyes, the
evaluation value V will be reassigned to a large positive constant representing
definite safe. Of course, when the prey is captured, the evaluation will be a
negative constant with a large absolute value representing capture. We use the
numbers of liberties of surrounding opponent chains to adjust the evaluation. We
add 15 to the evaluation for each surrounding opponent chain with 2 or fewer
effective liberties.

When it is Hunter to play, then we reverse the sign of evaluation V except
when the prey block can be captured by a ladder, a very large positive constant
representing successful capture will be assigned to V. This evaluation is used in

A New Heuristic Search Algorithm for Capturing Problems in Go 29

the node evaluation as well as in the candidate move generating and ordering in
the search tree.

5 Candidate Move Generation

Below we shall discuss the generation of candidate moves. The relevant blocks
include:

(A) the adjacent blocks of blocks in the crucial chain with:
(a1) max(3, #liberties of crucial block) or fewer liberties if Hunter is to play;
(a2) max(3, #liberties of crucial block) + 1 or fewer liberties if Prey is to

play;
(B) the adjacent blocks of the relevant hunter blocks, not in the crucial chain

and with 3 or fewer liberties.

The blocks listed under (A) will be called the relevant hunter blocks, the blocks
listed under (B) will be called the relevant prey blocks.

We first take up to 4 first-order and second-order liberties at which the move
would produce the best evaluations (see Section 4). Almost all Prey’s moves that
can be captured by a ladder or that fill its own solid eyes are eliminated. Hunter’s
sacrifice moves are allowed. We then first add 2 or 3 selected liberties of the
relevant hunter blocks and subsequently add 2 selected liberties of the relevant
prey blocks. The algorithm selects the best liberties by checking the surroundings
of the liberties. It favors the liberties of the blocks with fewer liberties; liberties
could further increase liberties or could connect to other blocks.

If a move can be captured by a ladder then we add the first move of the ladder
capturing sequence into the candidate move set. This procedure introduces moves
with an indirect approach. All the capturing moves, which can capture a block
in a crucial chain or a relevant block or a block adjacent to a relevant prey block,
are promoted or inserted to the front of the move list during the move ordering.
When the number of candidate moves is two or one, Pass move is added as a
candidate.

The power of HuPrey comes from the compact yet generally adequate can-
didate move set. The following three examples (see Figs. 2 to 4) illustrate the
point.

Figure 2 shows candidate moves of Hunter (Black) in an attempt to capture
the marked block. Candidate moves 1 to 4 are all from first-order and second-
order liberties of the crucial block which is marked by a triangle. The relevant
hunter blocks contain only the adjacent single stone block. It is Hunter’s turn to
play, the adjacent hunter blocks with more liberties than the prey are not consid-
ered. But the only relevant hunter block did not contribute any new candidate
moves in this case. The relevant prey blocks are empty. Move 1 was promoted
to become first candidate, since it is a ladder capture move (of the single stone
adjacent hunter block). Candidate move 3 is the correct first move to capture
the prey (followed by W2 andB4).

30 K.-H. Chen and P. Zhang

Fig. 2. Candidate moves for Black
for capturing the marked white
block. The correct black first move
is at 3.

Fig. 3. A compact set of candidate moves
from the crucial chain, relevant hunter
blocks, and relevant prey blocks contains
the winning first move at location 2

Fig. 4. Candidate moves for Black
to capture the marked white block.
The correct black first move is at 7
(followed by W2, B4).

The next example (Fig. 3) is for Black
to play to save the marked prey. Move 1
is the only move from the first-order liber-
ties and second-order liberties of the prey,
the other liberty moves can be captured by
ladders, and are thus suppressed. Candidate
moves 2 and 3 are liberties of the relevant
hunter blocks and candidates 4 and 5 are lib-
erties from the relevant prey blocks. Candi-
date move 2 is the key first move to save the
prey.

In Fig. 4, Black to play, the crucial chain
has two blocks, the marked one and the sin-
gle white stone at the edge. They produce only one candidate move 4, a secondary
liberty of the prey. Candidates 1, 2, and 3 are all ladder capturing moves, they
have been promoted to the front. The two three-in-a-line black blocks form the
relevant hunter blocks. They produce candidates 5 and 6. The relevant prey block
is the n shape white five-stone block in the middle, which produces candidate
move 7 - the winning first move.

6 Iterative Deepening with Hash Table

We use iterative deepening with a minimum of depth 2, a maximum of depth
20, and a depth increment of 2. The search terminates when the definitive result
is obtained, or the maximum depth is reached, or the time limit is over 50%
consumed. When Hunter is the first player, a definitive result means the crucial
block (1) is removed from the board or (2) has two eyes or (3) is in seki. When

A New Heuristic Search Algorithm for Capturing Problems in Go 31

Prey is the first player, a definitive result means that the absolute value of the
evaluation reaches a value above the search cut value (150).

Fig. 5. Search outcome of the prob-
lem in Fig. 2. Note that at this point
the algorithm knows the prey can be
captured by a ladder, it returns suc-
cess.

A hash table is used to store the search
results from transposition and from pre-
vious iterations. Zobrist’s hashing method
[13] is used to produce hash codes. Subtree
search results with sufficient search depth are
stored. At each node of the search tree, the
hash table is searched to find the previously
found best next move, which will be tried
first.

Forward pruning is used in a conserva-
tive way: only when the evaluation of the
current node is outside the α-β window by
the search cut, Δ value (50) or more, a
forward pruning is performed and no fur-
ther node expansion will be done under the
node.

Figure 5 shows the solution sequence
found by the heuristic capturing search
HuPrey on the problem in Fig. 2. It took 0.422 second searching to 6 plies.
When Hunter finds that the prey block can be captured by a ladder, the search
terminates. The moves in the ladder capturing sequence are not counted in the
search depth.

7 Try Opponent’s Best Refute Move

GoTools [12] tries the opponent’s best refute move as the next candidate move
in life/death search with great success. So, we borrowed this idea in HuPrey. It
explores the opponent’s refute move next regardless whether the move is in the
current candidate list or not. This technique speeds up the search significantly.
Since when a refute move does not help, it slows the search by a small fraction;
when a refute move helps identifying a key sequence, it usually cuts the search
time drastically. On the capturing problems in Kano [7], this technique speeds
up the search by about 20% on average (see Table 1).

There is an additional merit of this technique. When the set of selected candi-
date moves does not include the winning key move, the technique may introduce
the missing move in the search tree. In Fig. 6, the left-hand-side diagram shows
the initial candidate moves for White. The right-hand-side diagram shows the
successful capturing sequence found by the augmented HuPrey. Looking closely
on the left-hand-side diagram, we notice the “best” four first-order and second-
order liberties of the crucial chain are candidates 3, 4, 5, and 6 — the winning
first move was not even there!

32 K.-H. Chen and P. Zhang

Fig. 6. The left diagram shows the initial candidate moves of Hunter (White). The right
diagram shows the winning capturing sequence produced by HuPrey. The winning first
move was not generated by the move generator. The technique of trying the opponent’s
best refute move introduced the winning move to the search tree.

8 Seki and Ko

When there are two consecutive passes, the prey is considered safe — either it
has made two eyes or it has created a seki situation. In this case a large value
will be returned by the evaluation function instead of first counting the three
order liberties.

We use a simple approach to deal with ko. We assume the first player for the
capturing problem can win kos up to three times and the other player cannot
win any ko. If the capturing relied on winning kos, the value returned would
not be as high as capturing without requiring to win a ko. This ko treatment is
modified from Kierulf [9].

9 Experimental Results

We tested HuPrey on capturing problems in Kano’s Graded Go Problems for
Beginners four-book series [5,6,7,8]. Book 1 contains trivial problems. Book 2
requires some Go knowledge. Book 3 contains problems interesting to average
players. Book 4 contains problems challenging to advanced amateur players. The
books contain all types of Go problems: life/death, connection, capturing, and
opening. We test our algorithm exclusively on capturing problems. There are a
total of 180 capturing problems in the four books.

Book 1 (34 problems) – problems 1→22, 61→64, 179→182, 193→196.
Book 2 (34 problems) – problems 31→36, 130→141, 219→222, 316→327.
Book 3 (61 problems) – problems 2, 3, 7, 8, 11→13,15, 16, 20, 21, 24→26,

30, 31, 36, 38→43, 45, 95, 98, 105→108, 112→115, 118, 123, 124,
127, 128, 132, 157→160, 163, 278→293.

Book 4 (51 problems) – problems 1, 2, 11, 18, 19, 23, 27→41, 103→115,
135→138, 168, 184, 257→263, 387→390.

A New Heuristic Search Algorithm for Capturing Problems in Go 33

Table 1. Performance of HuPrey on Kano’s graded Go capturing problems. The
columns contain the following item for each book (from left to right column): the
average time in seconds per problem, the average number of nodes per problem, the
average depth per problem, the number of solved problems, the number of unsolved
problems.

ave. time ave. nodes ave. depth num. solved num. unsolved

Book 1 0.007 27 2.00 34 0
Book 2 0.830 4,912 6.76 33 1
Book 3 0.750 4,304 6.29 55 6
Book 4 8.100 35,933 5.97 40 11

We found that HuPrey can solve all the capturing problems in Books 1 and
2, 90% of the capturing problems in Book 3, and 80% of the capturing problems
in Book 4, which outperforms all known testing results so far [1,2].

HuPrey is implemented in the latest version of Go Intellect. We run our
tests on a 2.8 GHz Pentium 4. Table 1 summarizes the average testing results
per solved problem.

For HuPrey, Book 2 capturing problems are slightly more time consum-
ing than Book 3 capturing problems. Problem 28 of Book 2 can be solved by
HuPrey in its stated setting in 165 seconds generating over 300,000 nodes. In
order not to obscure the average statistics, we count it as unsolved in Table 1.
This problem is not really a hard problem. After widening the candidate move
set by one, our algorithm solved it in less than 0.01 second.

Every capturing problem in Book 1 was solved by HuPrey in less than 0.1
second. Figs. 7, 8, and 9 show the time allowance vs. percentage of problems
solved for capturing problems in Kano Books 2, 3, and 4, respectively [6,7,8].
In each figure, the X-axis represents log(time allowance in seconds), the Y-axis
represents the percentage of problems solved under the time constraint.

Fig. 7. The algorithm’s time and solvability trade-off on the capturing problems in
Kano Book 2

34 K.-H. Chen and P. Zhang

Fig. 8. The algorithm’s time and solvability trade-off on the capturing problems in
Kano Book 3

Fig. 9. The algorithm’s time and solvability trade-off on the capturing problems in
Kano Book 4

Figure 9 shows that about 43% of the capturing problems in Book 4 can be
solved in less than 0.5 seconds. If we double the time limit to one second, about
57% of the problems can be solved. Double the time again to 2 seconds, 59%
the problems can be solved. With a 4-second time limit, 67% of the problems
can be solved. After passing the 75% result by this procedure, doubling the time
produces very little improvements on the number of problems that can be solved.

Typically, a Go program will allocate 1 second or less for a capturing tactic
search. Longer than one second time allocation for a capturing problem can be
made only during the opponent time in a tournament setting. In practice, Hunter
is set to be the first player. When the search finds that the prey can be captured,
a second search with Prey going first is done to determine whether the prey can
escape. Solved problems are stored in a solution hash table to be retrieved many

A New Heuristic Search Algorithm for Capturing Problems in Go 35

times until the surrounding changes, which will be reflected in the hash code.
This solution hash table is not the hash table used by the capturing search,
which is cleared for each new problem before the start of the capturing search.

10 Future Work

Since the candidate move generation of HuPrey is highly selective, inevitably it
will miss some key moves once in a while and if these key moves are not produced
by the opponent’s best refute then the algorithm may spend unnecessary long
time in searching for a solution - it may even claim a wrong conclusion. Incor-
porating some suitable widening scheme into the iterative deepening framework
is likely to fix the problem and to produce a more powerful capturing search
algorithm. We shall investigate such a mixed widening/deepening algorithm in
the near future.

Proof number search has been used very successfully on the tactical problems
with fully enclosed boundaries [10]. Capturing problems are in general quite
open, requiring dynamic determination of the candidate move region. Whether
PN+ search can work nearly as well for open-region capturing problems is worth
investigating.

Acknowledgments

We would like to thank Martin Müller for providing SGF files of the graded Go
problems in Kano Books 1, 2, and 3 [5,6,7]. As a result, we only needed to enter
the capturing problems of Book 4 by hand [8]. This saved us much time.

References

1. Cazenave, T.: Abstract Proof Search. In: Marsland, T., Frank, I. (eds.) CG 2001.
LNCS, vol. 2063, pp. 39–54. Springer, Heidelberg (2002)

2. Cazenave, T.: Iterative Widening. In: Nebel, B. (ed.) Proceedings of IJCAI-01,
vol. 1, pp. 523–528 (2001)

3. Chen, K.: Group Identification in Computer Go. In: Levy, D., Beal, D. (eds.)
Heuristic Programming in Artificial Intelligence, pp. 195–210. Ellis Horwood,
Chichester (1989)

4. Chen, K.: Computer Go: Knowledge, Search, and Move Decision. ICGA Jour-
nal 24(4), 203–215 (2001)

5. Kano, Y.: Graded Go Problems For Beginners. In: Introductory Problems, vol. 1.
Kiseido Publishing Company (1985)

6. Kano, Y.: Graded Go Problems For Beginners. In: Elementary Problems, vol. 2.
Kiseido Publishing Company. ISBN 1985

7. Kano, Y.: Graded Go Problems For Beginners. In: Intermediate Problems, vol. 3.
Kiseido Publishing Company (1987) ISBN 4-906574-48-3

8. Kano, Y.: Graded Go Problems For Beginners. In: Advanced Problems, vol. 4.
Kiseido Publishing Company (1990)

36 K.-H. Chen and P. Zhang

9. Kierulf, A.: Smart Game Board: A Workbench for Game Playing Programs, with
Go and Othello as Case Studies. PhD thesis, ETH Zurich (1990)

10. Kishimoto, A.: Correct and Efficient Search Algorithms in the Presence of Repeti-
tions, PhD thesis, University of Alberta (2005)

11. Thomsen, T.: Lambda-Search in Game Trees - with Application to Go. ICGA
Journal 23(4), 203–217 (2000)

12. Wolf, T.: Forward Pruning and Other Heuristic Search Techniques in Tsume Go.
Information Sciences 122(1), 59–76 (2000)

13. Zobrist, A.L.: A New Hashing Method with Application for Game Playing, Techn.
Rep. No. 88, Univ. of Wisconsin, Madison, 1970. Republished in 1990, ICGA Jour-
nal, 13(2):69–73 (1970)

An Open Boundary Safety-of-Territory Solver

for the Game of Go

Xiaozhen Niu and Martin Müller

Department of Computing Science,
University of Alberta, Edmonton, Canada
{xiaozhen,mmueller}@cs.ualberta.ca

Abstract. This paper presents Safety Solver 2.0, a safety-of-territory
solver for the game of Go that can solve problems in areas with open bound-
aries. Previous work on assessing safety of territory has concentrated on
regions that are completely surrounded by stones of one player. Safety
Solver 2.0 can identify open boundary problems under real game con-
ditions, and generate moves for invading or defending such areas. Several
search enhancements improve the solver’s performance. The experimen-
tal results demonstrate that the solver can find good moves in small to
medium-size open boundary areas.

1 Introduction

Since the final score of the game of Go is determined by who can create more
territory, estimating the safety of territories is a major component of a Go pro-
gram. In previous work [7,8], the search-based safety-of-territory solver Safety
Solver 1.0 was used to determine the safety status of a given region. How-
ever, the program operated under several restrictions. First, the region had to
be completely enclosed. Second, the search was strictly local and did not utilize
any external liberties of the boundary blocks.

In real games, most territories do not become fully enclosed until the late
endgame. During most of the game, they have open boundaries. The surrounding
conditions of a region, such as the number of external liberties of boundary
blocks, are also very important. Ignoring them can lead to overly pessimistic
safety estimates.

Safety Solver 2.0 is an improved safety-of-territory solver for open bound-
ary areas. This program can generate moves for either invading or defending such
areas. Additional searches provide answers to a series of related safety questions
such as whether who plays first matters, whether the number of external liber-
ties changes the local safety status, and whether changing the winner of ko fights
affects safety.

The effectiveness of Safety Solver 2.0 depends crucially on providing it
with useful input. A heuristic board-partitioning technique based on the concept
of zones as implemented in the Go program Explorer [6] is used to identify
open boundary areas in a full-board position.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 37–49, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

38 X. Niu and M. Müller

1.1 Safety of an Open Boundary Area

In a game of Go, as more and more stones are played, the board is gradually
partitioned into relatively small areas. These areas can be completely surrounded
by stones of one player, but more often they are not. Current Go programs use
heuristic rules or pattern matching to generate moves to invade or defend open
boundary areas. This approach is hit-and-miss, and chances to play better moves
often exist. Figure 1 shows a typical example from our test set.

7 � � �
6 � � � � � � � �
5 � � � � � �� � �
4 � � � � �� � �
3 � � � � �
2 � � � � � � � �
1 � � � �� �� ��

a b c d e f g h j

7 � � �
6 � � � � � � � �
5 � � � � � �� Ǳ �
4 � � � � �� �� �� Ǳ �
3 � � 	� �
� ��� Ǳ �
2 � � � � �� � � � �
1 � � � �� � ���

a b c d e f g h j

7 � � �
6 � � � � � � � �
5 � � � � � �� Ǳ �
4 � � � � �� �� �� Ǳ �
3 � � 	�
� � �� �� Ǳ �
2 � � � � � � � �
1 � � � ��� ���

a b c d e f g h j
�� @ �� ��� @ ��
��� @ ��

Simple minded play Best for both Variation: Black dies

Fig. 1. An open boundary example

Assume that White, the attacker, plays first. In this position most Go pro-
grams will play the simple endgame moves shown on the left of Figure 1. These
moves lead to a 10 point Black territory. Eventually, Black must add one more
stone inside to prevent double-atari at f4. However, f4 is a much better first
move for White. The diagram in the middle of Figure 1 shows a best move se-
quence. After this sequence, in order to make the whole group alive Black has to
give up the block marked by Ǳ . The rightmost diagram in Figure 1 demonstrates
that if Black resists White f4 with g4, the whole group dies. In this example
although the size of Black’s open area is small (only 10), White’s best attacking
play gains large benefit compared to the simple-minded play.

The safety status of an open boundary area is strongly related to its external
context such as the number of external liberties of boundary blocks, possible
outside connections, and the number and size of ko threats for each player. In
the above example, if Black’s boundary blocks had more external liberties, then
the whole area would be safe territory. In many cases, the number of external
ko threats also affects the local safety status. Therefore, an exact open bound-
ary safety-of-territory solver needs to take all relevant context information into
account.

The major difference between a life-and-death solver and a safety-of-territory
solver is that a life-and-death solver does not consider territory. As long as a
group is alive, the three alternatives of living with a large area, living with
two small eyes, and forming a seki are all equally correct. In contrast, the goal
of an open boundary safety-of-territory solver is to maximize (or minimize the

An Open Boundary Safety-of-Territory Solver for the Game of Go 39

opponent’s) safe territory. Safety Solver 2.0 achieves that in a flexible way.
It can switch between different search goals, including a life-and-death solver.
Subsection 2.2 describes these options in detail.

1.2 Related Work

Many approaches to territory evaluation in Go have been proposed in the litera-
ture. Static methods include Benson’s algorithm for unconditionally alive blocks
[1], Van der Werf’s extension of Müller’s static rules for safety under alternating
play, and Vilà and Cazenave’s static classification rules for regions up to a size of
7 points [11]. Search-based methods include Müller’s local search for identifying
the safety of regions by alternating play, and Safety Solver 1.0 as described
in [7,8]. All these methods can handle only fully enclosed problems.

Several approaches for dealing with open boundary areas have been discussed
or developed for life-and-death solvers. Solvers such as Kishimoto’s tsume-Go
solver [3] can deal with cases where the defender’s boundary is open. However,
the whole search region must be fully enclosed by safe attacker stones. Wolf
[12] discusses practical issues about extending his program GoTools to open
problems. Heuristic static eye-space analysis introduced by Chen and Chen [2]
can also handle open problems.

1.3 Contributions

The main contributions of this paper are as follows.

– Safety Solver 2.0, a new improved solver for open boundary safety of
territory problems.

– Re-search techniques for different search goals in the same position.
– Forward pruning techniques to safely reduce the search space and improve

the performance of the solver.
– A heuristic method, using the Go program Explorer, to identify open

boundary problems in real game positions.

The structure of this paper is as follows. Section 2 describes the structure and
processing steps of the safety solver. Section 3 describes heuristic board parti-
tioning for identifying open boundary problems. Section 4 introduces multiple
searches for solving different goals. Section 5 introduces two forward pruning
techniques. Section 6 provides experimental results. Conclusions and discussions
about future work are given in the final section.

2 Open Boundary Safety-of-Territory Solver

2.1 Safety Solver

The safety solver described in this paper extends previous ones in [5,7,8]. It has
been integrated into the Go program Explorer [5]. The solver uses the df-pn(r)
search algorithm [3,4] with domain-specific heuristic functions for initializing
proof and disproof numbers. Safety Solver 2.0 contains the following new
features.

40 X. Niu and M. Müller

– Search goals customized by different parameters.
– Re-searches to provide solutions for different search goals.
– Preliminary integration into the Go program Explorer.

2.2 Input Parameters for the Search

Defining search goals for open boundary areas is more complex than for enclosed
areas. In Safety Solver 2.0, the following input parameters specify a search
goal for an open area. Figure 2 provides an example for two of these parameters.

– A set of points, called the area.
– The color of the defender and attacker.
– The first player. The search result is from this player’s point of view.
– Two different search goals: prove boundary safe or territory safe? For the

boundary safe goal, all boundary blocks surrounding an area must be proven
safe. This goal is equivalent to a life-and-death search. For the territory safe
goal, all interior points of the area need to be proven safe as well. The attacker
may neither live inside the area, nor reduce the area from the outside.
For example in Figure 2, White is the attacker and plays first at a2. If the
goal is boundary safe, Black can play c1 to make eyes and does not need
to consider whether the territory is safe, as shown in the left of Figure 2.
However if the goal is territory safe, then Black has to disconnect White by
playing at a3. The move sequence on the right of Figure 2 indicates that
eventually White has the choice to form a seki or kill all black blocks by ko.
The black zone is boundary safe but not territory safe.

– Seki recognition. Seki is a position where neither player can capture the
opponent’s stones, so coexistence is the best result. When seki recognition is
switched on, the solver distinguishes between the three results - win, loss and
seki - by using the re-search techniques of [7]. Otherwise, the only possible
outcomes are a win or a loss for the first player.

– Using external liberties. An external liberty of a boundary block lies outside
the search area. Such liberties can affect the safety status of an area. For
example, in Figure 2 the black block Ǳ has no external liberties and block
� has one at f1. If either of them had one more external liberty, the area
would be safe territory. When external liberties are not considered by the
solver, it performs a quicker search to decide whether the area is locally safe.
If external liberties are used, then the solver generates such external moves
for the attacker and the defender as well, leading to a larger search space.
Subsection 5.1 contains details on extended move generation for external
liberties.

– The ko winner can also affect the safety status. For example, after the move
sequence shown in the right of Figure 2, given enough ko threats White can
capture all Black blocks. If Black is the ko winner, then Black can make the
territory safe by winning a “thousand-year ko”.

Safety Solver 2.0 concentrates on proving whether an area is safe or not
locally. It does not consider whether the defender’s boundary blocks can connect

An Open Boundary Safety-of-Territory Solver for the Game of Go 41

5 � � �
4 � � � � � �
3 � � � � � � � � � �
2 � � � � � � � � � �
1 �� � � � � �� � �

a b c d e f g h j k l m n

5 � � �
4 � Ǳ � � �
3 �� Ǳ Ǳ Ǳ � �
2 �� Ǳ �� � � � � �
1 �� 	� �

a b c d e f g h j

Boundary safe Territory not safe

Fig. 2. Safety status changes under different goals

to other outside safe blocks from a full-board view. By default, the search goal of
the solver is set to prove territory safe. To ensure that the local result is correct,
the solver must handle seki and count external liberties. However, no ko winner
needs to be set initially, which relaxes the assumption in Safety Solver 1.0
that the attacker wins all ko’s.

2.3 Integration with Explorer: First Steps

Safety Solver 1.0 as described in [7,8] was implemented within the framework
of the Go program Explorer but not called during game play. In Safety
Solver 2.0, attacking and defending moves generated by the safety solver are
passed to Explorer’s global move generator. The solver uses the standard goal
setting as described in Section 2.2. The heuristic value of these moves is set as
follows.

– If the current search goal is boundary safe, then the best attacking or de-
fending move is given the defender’s minimum block value.

– If the search goal is territory safe, then the best attacking or defending move
receives a value proportional to the number of interior points of the area.

3 Board Partitioning for Identifying Open Boundary
Problems

The Go program Explorer uses heuristic territory evaluation to partition the
board into zones [6]. On a board, empty points in gaps between stones of the
same color can function as dividers or potential dividers. Dividers are small gaps
that are sufficiently narrow so that the opponent can always be stopped from
connecting through. Potential dividers are larger gaps that can be converted
into dividers by a single move. Zones are computed by using dividers, potential
dividers, and heuristic knowledge. They are surrounded by stones, dividers, and
potential dividers. Figure 3 shows two black zones. The boundary of the left
zone consists of three stones and four dividers marked by A. The right zone’s
boundary contains six stones and two dividers marked by B. Both zones have
15 interior points.

Search areas for Safety Solver 2.0 are computed by processing all zones.
The first step selects candidate zones for search. Zones that are too large, with

42 X. Niu and M. Müller

A � A � A � � � � � B
� �
A �
A B

Fig. 3. Two examples of open boundary zones

over 15 empty interior points are ignored since such large areas can rarely be
solved in reasonable time by the current system. Zones that are too open are
also not suitable. In the current implementation, if more than one third of a
zone boundary consists of dividers, it is not searched. The left zone in Figure 3
is such an example. The solver will only search the right zone.

As in Safety Solver 1.0 [8], related zones need to be merged. Two zones
are related if they share one or more common boundary blocks. The merging
algorithm in Safety Solver 2.0 extends the one for fully enclosed zones by
dealing with dividers. The left side of Figure 4 shows two related black zones.
Their interior points are marked by A and B. Inner dividers which are adjacent
only to related zones are added to the merged zone. In the example, d3 is a
divider between A and B and is added to the merged zone M shown on the right
side of the figure.

As a final step, the opponent’s connectible points are removed from the areas
to avoid trivial attacker “wins”. For example, in the right side of Figure 4, h1
is originally part of the merged area M. However, the attacker can directly play
there and is connected to the outside through j1.

6 � � � � �
5 � � � � � � � �
4 � � B � � � �
3 � � � � A � �
2 � � � A � A A � �
1 A A A A A

a b c d e f g h j

6 � � � � �
5 � � � � � � � �
4 � � M� � � �
3 � � M� � M � �
2 � � � M � M M � �
1 M M M M

a b c d e f g h j

Fig. 4. Merging related zones

4 Multiple Searches for Related Goals

Since df-pn(r) only resolves boolean questions, the re-search technique described
in [7] is used to distinguish between wins, seki, and losses. However, in order to
provide solutions for different search goals, further searches with different goal
settings may be required. One important case is switching the first player. In
a given board position, assume that Black plays first. The zone processing step
discussed in the previous section provides the solver with a list of black and
white areas as inputs. For white areas, performing seki re-searches when Black

An Open Boundary Safety-of-Territory Solver for the Game of Go 43

plays first as the attacker can distinguish between a black win, black loss and a
seki. However, for black zones, a second search with a different first player may
be required. The detailed steps are as follows.

1. Set the first player to White and perform the first seki re-search to determine
the outcome. If the result is a loss, White cannot do anything in this area
and the black area is safe. In this case further search is unnecessary.

2. If the outcome is win or seki, the zone is unsafe when White plays first. A
second seki re-search is performed to check whether the zone is safe if Black
plays first. If the second outcome is a win, Black can successfully defend the
zone. If the second outcome is seki, then the zone is unsafe, and the best result
for Black is to form a seki. If the outcome is a loss, the black zone is not safe.

Further searches can be used to determine when external liberties affect the
safety status of an area. Figure 5 on the left shows a black bent-four area with
no outside liberties. If White plays at b1 the result is ko. Black playing first can
defend the territory. The same example with three external liberties is shown on
the right of Figure 5. If White tries b1 again, Black can live with B:a1, W:a2,
B:c2 because of the external liberties. In this scenario the question is, if White
starts taking external liberties such as c3, when does Black need to respond? To
answer such questions, a search taking external liberties into account is required.
The detailed steps, explained using the example from Figure 5 are as follows.

5
4 � � � �
3 Ǳ Ǳ � � �
2 �� Ǳ Ǳ Ǳ �
1 �� �� Ǳ �

a b c d e f g h j
Bent four with no external liberties

5 � � �
4 � � � �
3 Ǳ Ǳ �� �
2 Ǳ Ǳ Ǳ �
1 Ǳ �

a b c d e f g h j
Bent four with 3 external liberties

Fig. 5. External liberties affect zone’s safety status

– Step 1: After W: c3 it is Black’s turn. The first search is local within Black’s
area and pessimistically assumes no external liberties. If the outcome is a
win, the area is safe without using any external liberties. No further search
is necessary.

– If the outcome is seki or loss for Black, then a second search using the
real external liberties is performed. In the left of Figure 5, the first search
returns a loss. The second search establishes that with two external liberties
the Black area is safe. In the future, after White plays b4 or d3, another
search will show that Black needs to defend the territory to avoid ko.

5 Forward Pruning Techniques

For an enclosed area, all legal moves inside the area are generated for both players.
In an open boundary area, many external moves must also be generated. This

44 X. Niu and M. Müller

leads to a larger search space, with the increase depending on how many external
moves have been added. In order to improve the performance, two forward pruning
techniques for defender moves are used in Safety Solver 2.0.

5.1 External Moves

The first technique is used for generating external moves. Figure 6 shows an
open boundary example. First, the program generates all legal moves on interior
points. In this example, all 12 interior points will be generated for either attacker
or defender.

6 � � � �
5 � � � � � �
4 � � � � � � � �
3 � � � �
2 � � � �
1

a b c d e f g h j k l m n

Fig. 6. External move generation for an open boundary area

Second, the generator needs to identify all external liberties for all boundary
blocks of the zone. In this example, the white boundary block has 4 external
liberties at e1, g5, h5, k1. Among them e1 and k1 are dividers of the area, and
g5, h5 are pure external liberties not related to dividers. Attacker plays on these
external liberties can affect the safety of the area. However, defender plays on
these liberties can be pruned since they can only decrease the liberties of defender
blocks, and can neither be used to form an eye nor to create a seki. Safety
Solver 2.0 focuses on proving the local safety status, and ignores possible
outside connections or counterattacks on outside attacker stones. Therefore, pure
external liberties, moves such as g5, h5, can be pruned for the defender.

Third, the program generates moves around dividers. In this example, if White
plays d1 Black can block by playing at c1. Moves such as d1, l1 are called layer
one moves and moves c1, m1 are called layer two moves. The defender must
generate layer one moves but not layer two moves because playing directly in
layer two moves will not help to prove the inside area safety (the connection
problem is ignored). Therefore, layer two moves are pruned for the defender.
For the attacker, moves in both layers around dividers will be generated. In this
example, the program generates 16 moves for the defender. For the attacker,
since layer one and dividers are all empty points, layer two moves are pruned,
giving 18 attacker moves including g5 and h5.

5.2 Inner Eyes

During search, the defender might be able to form eyes inside the area. In this
paper, only one-point eyes inside the area are called inner eyes. Inner eyes are

An Open Boundary Safety-of-Territory Solver for the Game of Go 45

6 � � � �
5 � � � � � �
4 � � � � � � � �
3 � � � � � �
2 � � � � � � � �
1 � � � � � �

a b c d e f g h j k l m n

Fig. 7. Pruning inner eyes for the defender

very helpful for the evaluation function to evaluate the safety status. Since the
defender should not fill them, such defender moves are pruned. For example, in
Figure 7 the move f3 can be pruned for the defender. Since the attacker playing
at f3 is illegal, f3 will also be pruned for the attacker. In this example, five
moves are generated for the attacker (g5, h1, h5, j1, j3) and only three for the
defender (h1, j1, j3).

6 Experimental Results

Three test sets were created for three experiments. Set 1 contains a total of 120
test positions, including 60 original open boundary problems and 60 modified
problems that are versions of the original problems with some external liberties
added. Most original positions are taken from the classic Guan Zi Pu [9]. The
remaining problems are collected from several resources, including [10] and posi-
tions created by the authors. Set 2 contains 20 positions from computer-computer
games. Since Safety Solver 1.0 cannot handle open boundary problems, it
cannot solve any positions from Set 1 and 2. Set 3 contains 100 final positions
of 19 × 19 games played by amateur and professional players. All three test sets
are available at: http://games.cs.ualberta.ca/go/open/.

Experiments were performed on a Pentium IV/2.4GHz with 1024 Mb memory.
The time limit is 200 seconds per position in experiment one and two, and 10
seconds per local area in experiment three.

6.1 Experiment One: Correctness Test

The purpose of this experiment is to test the correctness of the solver. The diffi-
culty of positions varies from easy to hard. The standard search setup described
in the end of Subsection 2.2 is used for all these positions. The solver correctly
proves that the territories of all 60 original problems are not safe, and generates
White’s best invading or reducing move. In the 60 modified problems, the solver
proves that the territories are safe due to the external liberties added.

Figure 8 shows four Black open boundary positions from the 60 original prob-
lems in Test set 1. White as the attacker plays first.

The two black zones on the top are easy problems. On the left, after White’s
best invading move at a18, Black can choose to either let White connect back
through a17, or form a seki as shown in the Figure. Either way the territory is

http://games.cs.ualberta.ca/go/open/

46 X. Niu and M. Müller

19 �� �� �� � � � � �� �� �� 	� �� �
18 	� � �� � � � �
� �� � � �
17
� � �� �� � � � � � � � � �
16 � � � � � � � � � � � � � � �
15 � � � � � � � � � � � � �
14 � � �
13
12
11
10 � � �

9
8 � �
7 � �
6 � � � � �
5 � � � � � � � � �
4 � � � � � � � � � � � � � � ��
3 �� � �� � � � � � � � �� � �� ��
2
� 	� � � � � � � � � � � �� 	�
� ��
1 �� �� �� �� �� 	�� �� 		� ��
�

a b c d e f g h j k l m n o p q r s t
�� @ ��

Fig. 8. Four open positions in Test set 1

not safe. The solver finds the best invading move a18 in 0.01 seconds. On the
right, the solver finds the best move r19 in 0.1 seconds.

The problem at the bottom left corner is moderately difficult. It takes 51
seconds for the solver to find the best invading move b2. White can form a seki
inside Black’s zone. The problem at the bottom right corner is hard. The solver
finds the best invading move r2 in 179 seconds. Figure 8 shows strongest move
sequences for each problem.

6.2 Experiment Two: Game Play Test

The purpose of this test set is to test whether Explorer enhanced by the
safety solver is able to play the correct defending or invading move in 20 real
game positions. Before integrating the safety solver, Explorer failed all these
test cases. The standard setup described at the end of Subsection 2.2 is used. The
time limit is 200 seconds per position. The results show that current Explorer
correctly identifies the problems and generates best first moves for all of them.

Figure 9 shows an example in Test set 2. Before using the safety solver, Ex-
plorer as Black played k1 to capture three white stones marked by � . White
played d2 to capture one black stone and finished the play in this local area with
a safe territory of 9 points. After integrating the safety solver, Explorer finds
the move d1, which leads to a seki in the corner. Black is still able to capture
the three White stones � .

An Open Boundary Safety-of-Territory Solver for the Game of Go 47

5
4
3
2
1

a b c d e f g h j k l m n

5
4
3
2
1

a b c d e f g h j k l m n

@ d2 @

Before After

Fig. 9. An example from Test set 2

6.3 Experiment Three: Comparison of Solvers

This experiment compares the performance of four solvers Benson, Static,
Safety Solver 1.0, and Safety Solver 2.0 on 100 completed games. The
proven safe points are computed by each program starting from the end of the
games, then backwards every 10 moves. Figure 10 shows the average number of
proven safe points by solvers. At the end of the game, Safety Solver 2.0 proves
202 points on average, while Safety Solver 1.0, Static and Benson prove
137, 85, and 46 points respectively. Safety Solver 2.0 outperforms Safety
Solver 1.0 by a large margin, proving 47% more points. More importantly, the
solver is useful much earlier in the game. Even 80 moves before the end of games,
Safety Solver 2.0 can prove 42 points safe on average, while the other solvers
can hardly prove any.

Fig. 10. Comparison of four solvers on 100 games

7 Conclusions and Future Work

Safety Solver 2.0 is an improved safety solver that provides exact evaluations
for the safety status of open boundary areas. By using re-search techniques, it
can compute different search goals in the same position. In addition, it has been

48 X. Niu and M. Müller

used in Go program Explorer to identify and solve open boundary problems in
real game positions. Although experimental results are very encouraging, there
are still numerous ideas on how to improve the performance.

One major limitation of the current safety solver is the size of an open area.
The search space for an open area is often much larger than for an enclosed area,
depending on the number of dividers and external liberties. An open area with 15
interior points can easily have over 20 legal moves for each player. In practice the
current size limit for the solver is around 15 interior points. A second problem is
time control. Under tournament time conditions, it is not feasible to spend too
much time on one local area. In addition, searching every unsafe zone using the
same amount of time is also not wise. Concentrating the effort on areas where
good invading or defending moves are most likely to exist would greatly improve
the effectiveness of the solver in game play. Developing a flexible time control
scheme that uses heuristics to select suitable problems to solve is an interesting
topic for future research.

Three further ideas for improvements are as follows.

1. Store a subtree of search results of local problems in a hash table, then look
up solutions when they are needed.

2. Use the most promising move from the search as the best try, even if a search
runs out of time.

3. Integrate other tactical solvers into the safety solver. For example, if an
open area has been proved as locally unsafe, it should be checked whether
its boundary blocks can be connected to other outside blocks.

References

1. Benson, D.B.: Life in the Game of Go. Information Sciences, 10, 17–29 (1976).
Reprinted In: Levy, D. (ed.) Computer Games, vol. II, pp. 203–213. Springer, New
York (1988)

2. Chen, K., Chen, Z.: Static Analysis of Life and Death in the Game of Go. Infor-
mation Science 121, 113–134 (1999)

3. Kishimoto, A.: Correct and Efficient Search Algorithms in the Presence of Repeti-
tions. PhD thesis, Department of Computing Science, University of Alberta (2005)

4. Kishimoto, A., Müller, M.: Df-pn in Go: Application to the One-eye Problem.
In: van den Herik, H.J., Iida, H., Heinz, E.A. (eds.) 10th Advances in Computer
Games (ACG10), Many Games, Many Challenges, pp. 125–141. Kluwer Academic
Publishers, Dordrecht (2004)

5. Müller, M.: Computer Go as a Sum of Local Games: An Application of Combina-
torial Game Theory. PhD thesis, ETH Zürich, Diss. ETH Nr. 11.006 (1995)

6. Müller, M.: Counting the Score: Position Evaluation in Computer Go. ICGA Jour-
nal 25(4), 219–228 (2002)

7. Niu, X., Kishimoto, A., Müller, M.: Recognizing Seki in Computer Go. In: van
den Herik, H.J., Hsu, S.-C., Hsu, T.-s., Donkers, H.H.L.M. (eds.) CG 2005. LNCS,
vol. 4250, pp. 88–103. Springer, Heidelberg (2006)

8. Niu, X., Müller, M.: An Improved Safety Solver for Computer Go. In: van den
Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp.
97–112. Springer, Heidelberg (2006)

An Open Boundary Safety-of-Territory Solver for the Game of Go 49

9. Tao, S.Y.: Guan Zi Pu. 1689 (Reprinted) In: Jiang, M., Jiang, Z. (eds.) Wei Qi Ji
Qiao Da Quan. Shu Rong Qi Yi Press, Cheng Du, China (1996)

10. van der Werf, E.: AI Techniques for the Game of Go. PhD thesis, Maastricht
University (2005)

11. Vilà, R., Cazenave, T.: When One Eye is Sufficient: a Static Classification. In: van
den Herik, H.J., Iida, H., Heinz, E.A. (eds.) 10th Advances in Computer Games
(ACG10), Many Games, Many Challenges, pp. 109–124. Kluwer, Dordrecht (2004)

12. Wolf, T.: About Problems in Generalizing a Tsumego Program to Open Positions.
In: proceedings of the Game Programming Workshop in Hakone/Japan, pp. 20–26
(1996)

Monte-Carlo Proof-Number Search for

Computer Go

Jahn-Takeshi Saito, Guillaume Chaslot,
Jos W.H.M. Uiterwijk, and H. Jaap van den Herik

MICC-IKAT,
Maastricht University, Maastricht, The Netherlands

{j.saito,g.chaslot,uiterwijk,herik}@micc.unimaas.nl

Abstract. In the last decade, proof-number search and Monte-Carlo
methods have successfully been applied to the combinatorial-games do-
main. Proof-number search is a reliable algorithm. It requires a well
defined goal to prove. This can be seen as a disadvantage. In contrast
to proof-number search, Monte-Carlo evaluation is a flexible stochastic
evaluation for game-tree search. In order to improve the efficiency of
proof-number search, we introduce a new algorithm, Monte-Carlo Proof-
Number search. It enhances proof-number search by adding the flexible
Monte-Carlo evaluation. We present the new algorithm and evaluate it
on a sub-problem of Go, the Life-and-Death problem. The results show
a clear improvement in time efficiency and memory usage: the test prob-
lems are solved two times faster and four times less nodes are expanded
on average. Future work will assess possibilities to extend this method
to other enhanced Proof-Number techniques.

1 Introduction

Since 1994, proof-number search (pns) has enjoyed wide acceptance in the combi-
natorial-games domain (cf. Sect. 1.1). The advantage of pns is its effectiveness
and speed. Given enough time and space, it finds a proof or disproof of a binary
goal in a game tree. Its disadvantage lies in the requirement for a testable binary
goal. In contrast, Monte-Carlo evaluations of combinatorial game positions, in-
troduced in 1993 (cf. Sect. 1.2), offer the advantage of flexibility. A Monte-Carlo
evaluation may change its goal because it looks for scores.

This article describes a new algorithm, Monte-Carlo Proof-Number search. It
successfully exploits the flexibility of Monte-Carlo evaluation and so it improves
the efficiency of the reliable proof-number search.

The remainder of this section outlines the two established techniques, presents
the motivation for the new algorithm, and situates the work in the context of
proof-number search and Monte-Carlo evaluation. Section 2 offers a detailed
description of the new algorithm. Section 3 describes an experiment applying the
algorithm to the Life-and-Death problem in Go. Section 4 presents experimental
results. Section 5 discusses the findings. Section 6 provides a conclusion and an
outlook on future research.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 50–61, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Monte-Carlo Proof-Number Search for Computer Go 51

1.1 Proof-Number Search

Proof-number search (pns) mechanisms are nowadays accepted as standard
means of game-tree search. They were introduced by [1] and since then devel-
oped into a whole family of search algorithms (e.g., [5,10,15]) with applications
to many combinatorial games such as Shogi [12], the one-eye problem in Go
[9], and checkers [11]. pns is a heuristic search applied to game trees to prove
or disprove a goal. The status of the goal has to be determined as reachable or
non-reachable.1 The core idea of standard pns is to order branches efficiently. To
that end, the expansion mechanism prefers nodes which require the least number
of estimated further expansions for proving or disproving the goal. To achieve
such an ordering, the algorithm performs a best-first search strategy based on
two figures in each node. One of the numbers is the proof number. It maintains
the minimal number of successor nodes that require expansion to prove the goal.
Analogously, the disproof number represents the minimal number of successors
necessary to disprove the goal. Leaf nodes are evaluated, interior nodes receive
their respective proof and disproof numbers by bottom-up back-propagation.
The heuristic exploits the AND/OR tree characteristic that proving the goal
requires only to prove the single best OR branch.

1.2 Monte-Carlo Evaluation

Extensive investigation has been conducted on the Monte-Carlo method within
the field of Go. The first occurrence of Monte-Carlo (mc) evaluation for the
game of Go emerged more than a decade ago [6]. Since then, mc evaluation
has been attracting attention in the field of computer Go, particularly in recent
years [2,3,4,7,13]. The core idea of the mc approach is to evaluate a game position
statistically. This is achieved by playing a number of randomly generated games.
The results are stored and then mapped by statistical evaluation to a single
value, e.g., by calculating the mean of the scores of all games. In this paper, we
call the mapping that achieves the statistical evaluation on the games’ values the
accumulative function. Each random game we call a simulated game. A simulated
move is a move played in a simulated game. A defining characteristic of the
mc evaluation lies in its scarce requirement for domain-specific knowledge as
the amount of knowledge necessary for playing random games and for scoring
finished games suffices.

1.3 Integrating MC and PNS

For integrating mc evaluation and pns two approaches are possible. First, a
global mc move-selection framework might take advantage of local pns. In this
case a top-level co-ordination mechanism needs to determine when to shift from
mc evaluation to local pns. Second, joining mc evaluation with pns for solving
local tactical search may be advantageous. In this article, we address only the
latter approach.
1 One variation of the algorithm also deals with the unknown status [8, Section 2.1.8].

52 J.-T. Saito et al.

2 MC-PNS

Below, we propose a new algorithm, Monte-Carlo Proof-Number Search (mc-
pns). It extends pns’ best-first heuristic by adding an mc evaluation. The aim is
to achieve a better ordering of moves and thereby to omit investigating branches
which are not promising according to the mc evaluation.

2.1 Algorithm

mc-pns performs a best-first search in an AND/OR game tree. The search aims
at proving or disproving a binary goal, i.e., a goal that can be reached by player
MAX or be refuted by player MIN under optimal play by both sides. Each node
n in the tree contains two real-valued numbers called the proof number (pn(n))
and the disproof number (dn(n)), respectively.

mc-pns performs a two-step cycle fully identical to that of pns. For reasons of
readability we summarize the two-step cycle here. In the first step, the best-first
strategy requires the algorithm to traverse down the tree starting at the root
guided by the smallest proof or disproof number until leaves are reached and
expanded. The second step of the cycle begins after that expansion of the leaf.
Now, the newly assigned proof and disproof numbers are propagated back to the
root updating the proof and disproof number in each node throughout the path
back to the root. The cycle is complete as soon as the root has been reached and
its values are updated. The cycle is repeated until the termination criterion is
met. The criterion is satisfied exactly if either the root’s proof number is 0 and
the disproof number is infinity, or vice versa. In the first case, the goal is proven.
In the latter instance it is refuted. Still, there is a difference between pns and
mc-pns. The next paragraph outlines the details of the algorithm more formally
and shows the small differences.2

Let l be a leaf node. If l is a node proving the goal then pn(l) = 0 and
dn(l) = ∞ holds. If l is a node disproving the goal then pn(l) = ∞ and dn(l) = 0
holds. If l does not immediately prove or disprove a goal pn(l) = pmc(l) and
dn(l) = dmc(l), where pmc and dmc are the Monte-Carlo based evaluation
functions mapping a node to a target domain. This domain could be (0, 1),
with pmc reflecting a node’s estimated probability to reach the goal, and dmc
reflecting a node’s expected probability not to reach a goal. The value 0 is
excluded to avoid incorrectly setting pn = 0 or dn = 0 which could exclude the
node from further exploration falsely.

The pmc and dmc numbers for a position with N simulated games are gained
by calculating the evaluation function evalN : {0, ..., N} → (0, 1). The function
evalN depends on the number N+ of simulated games in which the goal was
reached and the number N− of simulated games in which the goal was not
reached. Since N = N+ + N−, evalN depends on N . We let evalN(0) = ε for

2 The two-step cycle can be optimised by not fully back-propagating the values when
this is not required. Thereby, the cost of traversal can be reduced. The implementa-
tion used in the experiments described here does not include this optimisation.

Monte-Carlo Proof-Number Search for Computer Go 53

some small positive real number ε < 1 and evalN (N+) = N+/(N+1) for N+ �= 0.
We set dmc = evalN (N+) and pmc = 1 − dmc.

Starting at the leaf node expanded last, pn and dn values are back-propagated
by pns’ back-propagation rule (Fig. 1). Note that mc-pns assigns a new ordering
to the branches.

Rules for AND nodes:

pn(n) =
∑

s∈successor(n)

pn(s)

dn(n) = min
s∈successor(n)

(pn(s))

Rules for OR nodes:

pn(n) = min
s∈successor(N)

(pn(s))

dn(n) =
∑

s∈successor(N)

dn(s)

Fig. 1. Rules for updating proof and disproof numbers, respectively

2.2 Controlling Parameters

mc-pns imposes an evaluation cost for each expansion of a node. The algorithm
aims at achieving a better move ordering as a trade-off. Two extreme approaches
can be distinguished: (1) mc-pns spends hardly any time on evaluation, and (2)
mc-pns takes plenty time on evaluation. Below, three control parameters are
introduced which will enable a trade-off between these extremes.

Number of MC evaluations per node. The precision of the mc evaluation
can be determined by the number of simulated games at each evaluated node.
Henceforth, this number will be denoted by N .

Look-ahead for MC evaluation. The look-ahead (la) is the maximal length
of a simulated game.

Launching level of the MC evaluation. Given a limited look-ahead, it is not
useful to waste time on evaluating close to the root of the search-tree. The nodes
close to the root must be expected to be expanded anyway. The launching level
(depth) is the minimal required level of the tree at which nodes are evaluated.

3 Experimental Application of MC-PNS to Go

This section describes an experimental comparison of pns and the mc-pns vari-
ations introduced above (Subsection 2.2). The experiment is conducted by ap-
plying the algorithms to a test set of Life-and-Death problems. Subsection 3.1
outlines the experiment’s application domain, Go. Subsection 3.2 poses research
questions to be tested. Subsection 3.3 provides an account of the experimental
setup.

54 J.-T. Saito et al.

3.1 Application to the Go Domain

We applied mc-pns for solving instances of the Life-and-Death problem which
is a frequently occurring sub-problem in Go games. Search for solving the Life-
and-Death problem has been addressed before (e.g., [16]). The general Life-and-
Death problem consists of a locally bounded game position with a target group
of stones. Black moves first and has to determine the group’s status as either
alive, dead, ko, or seki. For the current investigation, however, the problem is
reduced to a binary classification of the target group to either alive or dead.

In order to fit the algorithm to the Go domain, the goal to prove, i.e., the
status of a group of stones as either alive or dead, is checked by a simple status-
detection function. This function is called by each simulated move to determine
whether to play further moves or stop expanding. Each simulated game halts
after either the goal has been met or a certain previously determined number of
moves has been played.

3.2 Research Questions

The experiment is conducted in order to test the viability of the mc-pns al-
gorithm and its variations created by the parameter settings. The experiment
should answer which, if any, of the mc-pns settings can be of practical use or
may lead to enhanced algorithms. To account for the tested expectations con-
cisely, we formulate a list of five operational research questions which should
be answered by the experiment. The questions are ordered descendingly by the
expected likelihood of being answered positively. The first question is therefore
the weakest and the last one the strongest.

1. Can assigning a heuristic weighting in the expansion of pns achieve a more
efficient move ordering?

2. Can a mc-pns variation achieve such an ordering?
3. Do the number of evaluations per node, the look-ahead, and the launching

level trade off between the run-time characteristics of pns and mc-pns?
4. Do they thereby contribute to establishing a trade-off for practical work?
5. Does mc-pns work more efficiently with respect to time and space complexity

than pns?

3.3 Setup

In order to describe the experimental setup, this subsection specifies the Life-
and-Death test set, algorithmic details, and the test procedure.

Life-and-Death test set. The test set consists of 30 Life-and-Death problems.
The game problems have a beginner and intermediate level (10 Kyu to 1 Dan)
and are taken from a set publicly available at GoBase [14]. All test problems can
be proven to be advantageous for player Black. For each case there exists a best
first move. The test cases were annotated with marks for playable intersections
and marks for the groups subject to the alive-or-dead classification. The number

Monte-Carlo Proof-Number Search for Computer Go 55

of intersections I becoming playable during search is determined by the initial
empty intersections and by intersections which are initially occupied but become
playable because the occupying stones are captured. For the test cases this in-
dicator I of the search space varied from 8 to 20. The factorial of I provides a
rough lower bound for the number of nodes in the fully expanded search tree.
Thereby, it provides an estimate for the size of the search space.

Algorithmic and implementational details. pns and various parameter
settings for mc-pns were implemented in a C++ framework. All experiments
were conducted on a Linux workstation with AMD Opteron architecture and 2.8
GHz clock rate. 32 GB of working memory were available. No special pattern
matcher or other feature detector was implemented to enhance the mc evaluation
or detect the Life-and-Death status of a position. Instead, tree search and mc
evaluation are carried out in a brute-force manner in the implementation. In the
experiment, Zobrist hashing [17] was implemented to store proof and disproof
numbers estimated by mc evaluation. In order to save memory the game boards
are not stored in memory for any leaf. A complete game is played for each cycle.
The proof tree is stored completely in memory.

The mc evaluation used was based on our Go program Mango. The pro-
gram’s mc engine provides a speed of up to 5,000 games of 19 × 19 Go of an
average length of 120 moves per second on the hardware specified above. The
mc engine was not specially designed for the local Life-and-Death task. Its speed
and memory consumption must therefore be expected to perform sub-optimally.
The mc evaluation was introduced in Subsection 2.1 as evalN .

Test procedure. Three independent parameters and three dependent variables
describe the experiment. The independent parameters control the amount and
manner of mc evaluation during search. The dependent variables measure the time
and memory resources required to solve a problem by a specified configuration of
the algorithm. The configuration is synonymously called parameter setting.

The independent parameters available for testing are: (1) the number of sim-
ulated games per evaluated node (N ∈ N), (2) the look ahead (la ∈ N), and (3)
the launching depth level for mc evaluations (depth ∈ N).

There are three dependent test variables measured: (1) the time spent for
solving a problem measured in milliseconds (time ∈ T ime = R), (2) the number
of nodes expanded during search (nodes ∈ Nodes = N), and (3) a move (move ∈
Moves = {0, 1, ..., 361}) proven to reach the goal.3 The set Moves represents
the range of possible intersections of the 19 × 19 Go board together with an
additional null move (0). The null move is returned if no answer can be found
in the time provided (see below). Because no other dynamic-memory cost is
imposed, nodes suffices for calculating the amount of memory occupied. The
memory consumption of a single node in the search tree is 288 bytes.

For the experiment, each configuration consisted of a triple of preset pa-
rameters ∈ (N, la, depth). The following parameter ranges were applied: N ∈
3 For three test problems, some proof systems found a forcing move first, i.e., there

were two best first moves.

56 J.-T. Saito et al.

{3, 5, 10, 20}, la ∈ {3, 5, 10}, depth ∈ {I, 1
2I, 3

4I}. The depth parameter requires
additional explanation. In the experiment’s implementation, the number of ini-
tially empty intersections I is employed to calculate a heuristical depth value.
Thus I, 1

2I, and 3
4I represent functions dependent on the specific instance of I

given by each test case. We will call these choices of I the starting strategies and
refer to them as 1, 2, and 3 for I, 1

2I, and 3
4I, respectively.

The outcome of an experiment is a triple of measured variables ∈ T ime ×
Nodes×Moves. Each experimental record consists of a configuration, a problem
it is applied to, and an outcome. An experiment delivers a set of such records.
In order to account for the randomness of the mc evaluations and potential
inaccuracy for measuring the small time spans well below a 10th of a second,
pns and each configuration of mc-pns was applied to each test case 20 times
resulting in 20 records.

4 Results

This section outlines the results of the experiment. First, a statistical measure for
comparing the algorithms is introduced, then the experimental results for differ-
ent configurations are presented and described in detail. The section concludes
by summarizing the results in six propositions.

The experiment consumed about 21 hours and produced 22,200 records. All
solutions by pns as well as by mc-pns configurations were correct.

Aggregates for each combination of test cases and configurations are consid-
ered in order to enable a comparison of different parameter settings. For a pa-
rameter setting p = (N, la, depth) and a test case ϑ the average result is the triple
(t, s, m) ∈ T ime×Nodes×Moves. For this triple t, s, and m are averaged over
all 20 records with the parameter p applied to the test case ϑ. t(p,ϑ) is the average
time and s(p,ϑ) the average number of nodes expanded for solving ϑ. In order to
make a parameter setting p comparable, its average result is compared to average
result of pns. We define the gain of time as gaintime(p) = 1

30

∑30
ϑ=1 t(pns,ϑ)/t(p,ϑ).

(Here, t(pns,ϑ) is the average time consumed by pns to solve test case ϑ.) The gain
of space is defined analogously. The positive real numbers gaintime and gainspace

express the average gain of a parameter setting for all thirty test cases. Each
gain value is a factor relative to the performance of the pns benchmark.

In the experiment the configuration using 3 mc evaluations per node, a look-
ahead of 10 moves, and starting strategy 3, is found to be the fastest configuration
(pfast = (3, 10, 3)). The gaintime(pfast) = 2.05 indicating that it is about twice
as fast as the pns benchmark (see Table 1, left and the definition of the gain of
speed and gain of space). The gainspace(pfast) = 4.26. Thus pfast expands less
than a quarter of nodes which pns expands. The parameter setting pnarrow =
(20, 10, 3) is expanding the smallest number of nodes. It requires less than a fifth
of the expansions compared to the benchmark on average on the test set. It is
slightly slower than pns in spite of that (see Table 1, right).

Monte-Carlo Proof-Number Search for Computer Go 57

Table 1. Time and node consumption of pns and various configurations of mc-pns
relative to pns. Each table presents the ten best ranked settings of the 36 parameter
settings. Left: ordered by a factor representing the gain of speed. Right: ordered by a
factor representing the decrease of nodes.

Rank N la depth gaintime gainspace

1 3 10 3 2.05 4.26
2 5 10 3 1.93 4.54
3 3 10 2 1.87 3.90
4 5 10 1 1.80 4.59
5 3 10 1 1.75 4.30
6 5 10 2 1.74 4.11
7 3 5 3 1.56 2.70
8 3 5 1 1.51 2.70
9 10 10 3 1.42 4.99
10 10 10 1 1.36 4.95

Rank N la depth gainspace gaintime

1 20 10 3 5.31 0.95
2 20 10 1 5.23 0.96
3 10 10 3 4.99 1.42
4 10 10 1 4.95 1.36
5 5 10 1 4.59 1.80
6 20 10 2 4.56 0.87
7 5 10 3 4.54 1.93
8 3 10 1 4.30 1.75
9 10 10 2 4.28 1.26
10 3 10 3 4.26 2.05

Parameter settings with large N and large look-ahead require the least number
of nodes to prove or disprove the goal. Parameter settings with small N but large
look-ahead perform fastest.

So far, this subsection focused on outlining the results relevant for charac-
terizing the set consisting of pns and mc-pns variations. The remainder of this
subsection describes the results required for comparing pfast, pnarrow, and pns
in greater detail. For this purpose, the data hidden in the aggregates of test
cases are unfolded. This is achieved by comparing the average time and space
performance for each test case. Figures 2 and 3 illustrate this comparison.

100

1000

10000

100000

1e+006

1e+007

1e+008

5 10 15 20 25 30

log space (nodes)

Test case (ordered by space consumption of pns)

pns benchmark♦ ♦

♦ ♦ ♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦

♦
♦ ♦

♦

♦
mc-pns 20 samples/node, look-ahead 10, starting strategy 3+

+

+ +
+

+
+

+

+
+ +

+
+ +

+

+

+

+ +
+

+
+

+ + + +

+
+ +

+

+
mc-pns 3 samples/node, look-ahead, starting strategy 3

� �

� � �
�

�
�

�
� � � � � � �

�

� � �
�

�
� � � �

�
� �

�

�

Fig. 2. Space complexity of various configurations

58 J.-T. Saito et al.

0.0001

0.001

0.01

0.1

1

10

100

5 10 15 20 25 30

log time (ms)

Test case (ordered by space consumption for pns)

pns benchmark

♦ ♦

♦
♦ ♦

♦ ♦ ♦
♦ ♦ ♦

♦
♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦
♦ ♦

♦ ♦ ♦
♦

♦
♦ ♦

♦
mc-pns 20 samples/node, look-ahead 10, starting strategy 3

+
+

+
+

+
+ +

+
+

+
+ +

+
+

+
+

+

+ +
+ +

+
+ + + +

+
+ +

+

+
mc-pns 3 samples/node, look-ahead 10, starting strategy 3

� �

� � �
� �

�
�

� � �
� � � �

�
� � � � �

� � � �

�
� �

�

�

Fig. 3. Time complexity of various configurations

A comparison of the space behaviour (Figure 2) shows that pns requires the
highest number of node expansions to prove or disprove a goal irrespectively of
the test case. Its memory requirements are roughly the same as those of pfast and
pnarrow except for two test cases. pns requires much more space than the two mc-
pns variations on virtually all other test cases. pfast and pnarrow show a similar be-
haviour in memory consumption with pnarrow performing slightly more efficient.

A comparison of the time behaviour (Figure 3) shows a pattern containing
more variety. Overall, pnarrow is characterized by the least time efficient results:
in 22 of the 30 test cases it is the slowest of the three compared proof systems.
pns performs slowest on the remaining 8 test problems. But pns also performs
as single fastest solver in 6 cases and as fast as pfast in 6 cases. pfast shows the
most efficient time consumption in 25 cases including the 6 cases in which it is
as fast as pns.

The results show that the performance depends on the complexity inherent to
the tested problem. pns finds its proofs faster than the other problem solvers on
simple problems, i.e., problems requiring fewer than 5,000 nodes to be solved.
It outperforms its competitors only once in the 20 more complex tasks while
achieving this five times in the 10 least complex problems. The two mc-pns
variations perform comparably faster on the 20 most complex tasks. The exper-
imental outcome shows that the speed advantage of pfast relative to pns grows
with the complexity of the tested problem.

The main results of this section can be summarized in six propositions.

(1) (3,10,3) is the fastest parameter configuration. On average it performs two
times faster than pns on the test set and expands less than a quarter of the
nodes.

Monte-Carlo Proof-Number Search for Computer Go 59

(2) The configuration (20,10,3) is the mc-pns configuration with the least node
expansions on average. It expands only a fifth of the number of nodes ex-
panded by pns.

(3) pfast and pnarrow reliably expand considerably fewer nodes than mc-pns.
(4) pfast performs reliably faster than mc-pns.
(5) The advantage of time performance of pfast relative to pns even grows with

the complexity of the problem.
(6) pns performs better than pfast on problems with small complexity.

5 Discussion

This section discusses the results outlined in the previous section. First, expla-
nations for the results experimentally gained are offered. A critical remark on
the suitability of the setup concludes this section.

On average pfast solves problems twice as fast as pns. This is coherent with
a general tendency observed. As outlined above, settings with small N (i.e., few
simulated games) and large la (i.e., far look-ahead) are generally the fastest.
The speed of a mc-pns depends mainly on two items: (1) the amount of nodes
it expands, and (2) the speed needed to evaluate a node. These two items are
mutually dependent. The number of expansions decreases with the intensity of
evaluation because the heuristic is more reliable and prunes more nodes. This is
reflected by the experimental finding that nodes with thorough evaluation (large
N and large la) reach their goals with few expansions (see Table 1). But more
intensive evaluations require more time. Therefore, an optimization problem has
to be solved to compensate for the intensity of the evaluation. The optimum
trades off between the number of nodes visited and the evaluation time for
each single node. This optimum is found to be pfast = (3, 10, 3). Extensively
evaluating each node, as pursued by pnarrow, devotes too much time on each
single evaluation. The strategy of omitting a heuristic evaluation entirely, as
embodied by pns, is cheap on each node but fails to prune the tree sufficiently
on a global scale.

Thus the N and la parameters can be said to control the intensity of each
evaluation successfully. The depth parameter has a minor impact on controlling
this intensity. More importantly, only few mc evaluations per node can yield a
reasonable heuristic for the mc-pns framework.

The design of the pns framework requires running up and down the branch
leading to the currently expanded node (see Sect. 2.1). The deeper the tree grows
the higher are the costs for this traversal. The cost grows linearly with the tree’s
depth as more nodes are expanded. Additionally, the traversal takes longer. There-
fore, pruning the tree will have a much stronger impact on larger trees. The point
at which pruning pays off is reached at a search tree complexity equivalent to a
size which requires about 5,000 nodes to be solved by pns. Any problem beyond
this threshold of complexity must be expected to be solved faster by pfast. Two
thirds of the test cases employed lie beyond that threshold. One might argue that
this composition of the set is arbitrary. But there are two strong reasons for as-
suming that the inferences made about the quality of pfast are valid in general.

60 J.-T. Saito et al.

First, the test cases chosen are rather easy. One may therefore expect that real-
life problems are harder than the cases presented. Thus in practice pfast should be
more relevant. Second, the absolute time saved by pfast is much larger for complex
problems. For instance, pns requires 47.7 sec to solve the most complex problem
whereas pfast solves the problem in less than 6 sec (eight times faster). The ab-
solute time saved is crucial for real-life applications, e.g., in a Go program. Thus
we may conclude that it is valid to generalize our finding that pfast is performing
faster than pns beyond our test set.

6 Conclusion and Outlook

We introduced a new algorithm, mc-pns, based on mc evaluation within a pns
framework. An experimental application of the new algorithm and several vari-
ations to the Life-and-Death sub-problem of Go were described; moreover, its
interpretation was presented. It was demonstrated experimentally that given the
right setting of parameters mc-pns will outperform pns. For such a configuration
mc-pns will be two times faster than pns on average and use less than a quarter
of the node expansions. Section 5 presented strong evidence for assuming that
this result will be generalized beyond the test cases observed.

Thus, we may conclude that all research questions posed in Subsection 3.2
can be answered positively on the basis of the experimental findings.

Future work will be required to assess the possibility of successfully extending
the mc-pns approach to the practically more relevant Depth-first Proof-Number
Search (df-pn, [10]). Its characteristics are slightly different but we believe that
efficiency of df-pn can be improved with our approach, too. Furthermore, de-
tailed tuning of the algorithm and including more domain knowledge by applying
patterns remain to be tested.

Acknowledgments

We would like to thank Mark Winands, Ulaş Türkmen, Benjamin Torben-Nielsen,
Steven de Jong, and Jeroen Donkers for their support. The comments by the
anonymous referees are gratefully acknowledged. In particular, we would like to
thank one referee for his or her constructive criticism which led to crucial improve-
ments of the implementational work. Without this feedback the current results
would not have been possible. The work is financed by the Dutch Organization
for Scientific Research in the framework of the project Go for Go, grant number
612.066.409.

References

1. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-Number Search. Arti-
ficial Intelligence 66, 91–124 (1994)

2. Bouzy, B., Helmstetter, B.: Monte Carlo Developments. In: van den Herik, H.J., Iida,
H., Heinz, E.A. (eds.) 10th Advances in Computer Games (ACG10), Many Games,
Many Challenges, pp. 159–174. Kluwer Academic Publishers, Dordrecht (2004)

Monte-Carlo Proof-Number Search for Computer Go 61

3. Bouzy, B.: Associating Shallow and Selective Global Tree Search with Monte Carlo
for 9×9 Go. In: van den Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004.
LNCS, vol. 3846, pp. 76–80. Springer, Heidelberg (2006)

4. Bouzy, B.: History and Territory Heuristics for Monte-Carlo Go. In: Chen, K., et
al. (eds.) Joint Conference on Information Sciences JCIS 2005, p. 4 (2005)

5. Breuker, D.M.: Memory versus Search. PhD thesis, Maastricht University (1998)
6. Brügmann, B.: Monte Carlo Go. White paper (1993)
7. Cazenave, T., Helmstetter, B.: Search for Transitive Connection. Information Sci-

ences 132(1), 93–103 (2004)
8. Kishimoto, A.: Correct and Efficient Search Algorithms in the Presence of Repeti-

tions. PhD thesis, University of Alberta (2005)
9. Kishimoto, A., Müller, M.: DF-PN in Go: Application to the One-Eye Problem.

In: van den Herik, H.J., Iida, H., Heinz, E.A. (eds.) 10th Advances in Computer
Games (ACG10), Many Games, Many Challenges, pp. 125–141. Kluwer Academic
Publishers, Dordrecht (2003)

10. Nagai, A.: Df-pn Algorithm for Searching AND/OR Trees and Its Applications.
PhD thesis, University of Tokio (2002)

11. Schaeffer, J., Björnsson, Y., Burch, N., Kishimoto, A., Muller, M., Lake, R., Lu,
P., Sutphen, S.: Solving Checkers. In: International Joint Conference on Artificial
Intelligence (IJCAI), pp. 292–297 (2005)

12. Seo, M., Iida, H., Uiterwijk, J.W.H.M.: The PN*-Search Algorithm: Application
to Tsume-Shogi. Artificial Intelligence 129(1-2), 253–277 (2001)

13. Sheppard, B.: Efficient Control of Selective Simulations. ICGA Journal 27(3), 67–
80 (2005)

14. van der Steen, J.: GoBase.org website (2006), http://www.gobase.org
15. Winands, M.H.M., Uiterwijk, J.W.H.M., van den Herik, H.J.: An Effective Two-

Level Proof-Number Search Algorithm. Theoretical Computer Science 313(3), 511–
525 (2004)

16. Wolf, Th.: Forward Pruning and Other Heuristic Search Techniques in Tsume Go.
Information Sciences 122(1), 59–76 (2000)

17. Zobrist, A.L.: A New Hashing Method with Application for Game Playing. ICCA
Journal 13(2), 69–73 (1990)

http://www.gobase.org

Virtual Global Search: Application to 9×9 Go

Tristan Cazenave

LIASD, Dept. Informatique,
Université Paris 8, Saint-Denis, France

cazenave@ai.univ-paris8.fr

Abstract. In games, Monte-Carlo simulations can be used as an eval-
uation function for Alpha-Beta search. Assuming w is the width of the
search tree, d its depth, and g the number of simulations at each leaf,

then the total number of simulations is at least g × (2 × w
d
2). In games

where moves permute, we propose to replace this algorithm by a new
algorithm, Virtual Global Search, that only needs g × 2d simulations for
a similar number of games per leaf. The algorithm is also applicable to
games where moves often but not always permute, such as Go. We specify
the application for 9×9 Go.

1 Introduction

Monte-Carlo methods can be used to evaluate moves and states in perfect in-
formation games. They can be combined with Alpha-Beta search, using Monte-
Carlo simulations at the leaves of the search tree to evaluate positions [1]. In the
remaining of the paper, w is the width, and d the depth of the global search,
and a global move is a move that can be tried in a global search. The time
complexity of the combination is at least proportional to g × (2 × w

d
2), and the

space complexity is linear in d.
In some games such as Hex, moves always permute. The final position of a

game is the same when two moves by the same color were switched during the
game. It is not true in other games such as Go. However, it is often true in Go,
and this property can be used efficiently to combine Alpha-Beta search with
Monte-Carlo evaluation at the leaves. The algorithm we propose, named Virtual
Global Search(VGS), has a time complexity proportional to g × 2d, and a space
complexity proportional to wd. In games where moves always permute, VGS
gives results close to the normal best moves within the complexity frameworks
mentioned above. We have found that VGS is also interesting in games such as
Go, where moves often permute.

The course of the article is as follows. Section 2 describes related work. Section
3 exposes Standard Global Search (SGS). Section 4 presents Virtual Global
Search. Section 5 estimates the complexities of the two search algorithms. Section
6 provides details on experimental results. Section 7 outlines future work. Section
8 completes with a conclusion.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 62–71, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Virtual Global Search: Application to 9×9 Go 63

2 Related Work

Below we briefly discuss related works. They are on Monte Carlo and games
(2.1), Standard Monte-Carlo Go (2.2), Monte-Carlo Go enhancements (2.3), and
Global search in Go (2.4).

2.1 Monte Carlo and Games

Monte-Carlo methods have been used in many games. In Bridge, GIB uses Monte
Carlo to compute statistics on solved double dummy deals [12]. In Poker, Poki
uses selective sampling and a simulation-based betting strategy for the game of
Texas Hold’em [2]. In Scrabble, Maven controls selective simulations [15]. More-
over, Monte Carlo has also been applied to Phantom Go by randomly putting
opponent stones before each random game [6], and to probabilistic combinatorial
games [16].

2.2 Standard Monte-Carlo Go

The first Go program based on Monte Carlo techniques is Gobble [5]. It uses
simulated annealing on a list of moves. The list is sorted by the mean score of
the games in which the move under investigation has been played first. Moves
in the list are switched with their neighbor with a probability dependent on
the temperature. The moves are tried in the games in the order of the list. At
the end, the temperature is set to zero for a small number of games. After all
games have been played, the value of a move is the average score of the games
in which it has been played as a first move. Gobble[5]has a good global sense
but lacks tactical knowledge. For example, it often plays useless atari, or tries
to save captured strings.

2.3 Monte-Carlo Go Enhancements

An enhancement of Gobble [5] is to combine its Monte-Carlo techniques with
Go knowledge. Indigo has been using Go knowledge to select a small number
of moves that are later evaluated with the Monte-Carlo method [3]. A second
use of Go knowledge is to bias the selection of moves during the random games
using patterns and rules [3,8]. A third enhancement is to compute statistics on
unsettled tactical goals instead of only computing statistics on moves [7].

2.4 Global Search in Go

The combination of global search with Monte-Carlo Go has been studied by
Bouzy [4] for 9×9 Go. His algorithm associates progressive pruning with Alpha-
Beta search to discriminate moves in a global-search tree with a Monte-Carlo
evaluation at the leaves.

Crazy Stone [11] uses a back-up operator and biased move exploration in
combination with a Monte-Carlo evaluation at the leaves. It finished first in the
9×9 Go tournament in the 2006 Computer Olympiad [10].

The analysis of decision errors during selective tree search has been studied
by Chen [9].

64 T. Cazenave

3 Standard Global Search

In this section we first present how global moves are selected (3.1), and then
how they are used for Standard Global Search (3.2).

3.1 Selection of Moves

Global search in Go is highly selective due to the large number of possible moves.
In order to select the global moves to be considered in the search, we use a pro-
gram that combines tactical search and Monte-Carlo search [7], called TSMC.
It gives a static evaluation to each move. In this paper, TSMC only uses con-
nection search in association with Monte-Carlo simulations. The w moves that
have the best static evaluation according to TSMC are selected as global moves.
They are sorted according to their static evaluation. An alternative is treshold-
ing, i.e., to select the global moves that have a static evaluation above a fixed
percentage of the static evaluation of the best move, so far.

It is important to note that only the locations of the selected global moves
are used for the search and not the moves themselves. The w locations are used
in the global search to generate possible moves for both colors.

3.2 Standard Global Search

Standard Global Search (SGS) is a global search with Monte-Carlo evaluation
at the leaves. Performing Monte-Carlo simulations at the leaves of the tree in
order to evaluate them is a natural idea when combining Monte-Carlo sampling
and game tree search [1].

4 Virtual Global Search

The selection of moves for Virtual Global Search (VGS) is the same as for Stan-
dard Global Search. The difference with SGS is in the second phase (the search).
In this section, we first specify, how the permutation of moves is transformed
into sequences of moves (4.1). Then we explain how sequences are evaluated at
the end of the random games (4.2). Eventually, we explain how the global search
tree is developed (4.3).

4.1 Permutation of Moves

The main idea underlying the algorithm is that a move in a random game has
roughly the same influence when it is played (1) at the beginning, (2) in the
course of a random game, or (3) at the end. Gobble [5] uses a similar idea
when evaluating the moves independently of the depth where they occurred in
the random games. In Gobble, a move is evaluated using all the games where it
has been played as first move on an intersection, not taking into account whether
it has been played at the beginning or at the end of a game.

We extend this idea to sequences of moves. Therefore, we assume that a
sequence of moves has roughly the same value even when (in a random game)

Virtual Global Search: Application to 9×9 Go 65

the moves of the sequence are played in any order. This leads to count a random
game by sequence (instead of by move), i.e., when all the moves of the sequence
have been played on their intersection during the random game. (Please note that
the program only takes into account the first move played on an intersection,
it does not take into account moves that are played on an intersection where a
string has been captured earlier during the random game).

4.2 Random Games with Evaluation of the Sequences at the End

If we consider that a sequence is valid when its moves have been played in any
order during a random game, TSMC may store at the end of the game the
score of the game and associate it to the sequence.The length of the sequences
considered is d, and it is assumed that the same selection of w moves at the root
node is used for all positions.

TSMC has a structure which records, for every possible sequence of selected
moves, the mean score of the games. We note again that the sequence has been
played in any order. The size of the memory used to record mean scores is
proportional to wd as it is approximately the number of possible sequences.

A sequence of moves is associated to an index. Moreover, each global move
is associated to an index in the sorted array of selected global moves. TSMC
allocates b bits for representing the index of a move. If d is the maximum depth
allowed, a sequence is coded with b×d bits. The move at depth i in the sequence
is coded starting at the bit number (i − 1) × b.

To each sequence a structure is associated. This structure records (1) the
number of games where the sequence has been played in any order, and (2) the
cumulated scores of the games where the sequence has been played. These two
kinds of data are used at the end of the simulations to compute the mean score
of the games where the sequence has been played in any order. The size of the
array of structures is 2b×d entries, each entry has the size of two integers.

When a random game is completed, TSMC develops a search tree using the
selected global moves. We call this search tree a virtual search tree since it does
not really play moves during the expansion of the tree, but only updates the
index of the sequence, for each global move chosen (it also forbids to choose a
move that is already played in the sequence).

In the virtual search tree, a global move of a given color is played only if it
has the same color as the first move on the intersection, in the random game. On
average, the move in the random game is of the same color half of the time. Out
of the w possible global moves, only w

2 have the required color in the random
game on average. At the leaves of the search tree, TSMC updates the score of
the sequence that has been played until the leaf: it increments the number of
times the sequence has been played, and it adds the score of the game to the
cumulated score. Given that TSMC tries w

2 moves at each node, and that it
searches to depth d, the number of leaves of the search tree is roughly (w

2)d (a
little less in fact since moves cannot be played twice on the same intersection,
and sometimes even less than w

2 moves have been played with a color).

66 T. Cazenave

4.3 Search After All the Random Games Are Completed

Virtual Global Search is a global search with a virtual pre-computed evaluation
at the leaves. It is performed after all the random games have been played, and
after all possible sequences have been associated to a mean score.

An Alpha-Beta search is used to develop the Virtual Global Search tree. Moves
are not played, actually, but instead the index of the current sequence is updated
at each move. The evaluation at the leaves is pre-computed; it consists in re-
turning the mean of the random games where the current sequence has been
detected. It only costs an access to the array of structures at the index of the
current sequence. Developing the search tree of Virtual Global Search takes little
time in comparison to the time used for the random games.

5 Estimated Complexities

In this section, we give estimations of the complexity of SGS (5.1) and of VGS
(5.2).Then we give a comparison of the sibling leaves (5.3).

5.1 Complexity of Standard Global Search

Let g be the number of random games played at each leaf of the SGS tree in
order to evaluate the leaf. The Alpha-Beta algorithm, with an optimal move
ordering, has roughly 2×w

d
2 leaves [14]. Therefore, the total number of random

games played is g × (2×w
d
2). The space complexity of the Alpha-Beta search is

linear in the depth of the search.

5.2 Complexity of Virtual Global Search

There are a little less than wd possible global sequences. At the end of each
random game, approximately (w

2)d sequences are updated. Let g1 be the number
of random games necessary to have a mean computed with g random games for
each sequence. We have:

g1 =
g × wd

(w
2)d

= g × 2d . (1)

Therefore, TSMC has to play g × 2d random games, for the Virtual Global
Search, in order to have an equivalent of the Standard Global Search with g
random games at each leaf.

The space complexity of VGS is wd, as there are wd possible sequences and
the program has to update statistics on each detected sequence at the end of
each random game.

5.3 Comparison of Sibling Leaves

Two leaves that have the same parent share half of their random games. To prove
this statement we consider all the random games where the move that links the

Virtual Global Search: Application to 9×9 Go 67

parent and one of the leaves has been played. Half of these random games also
contain the move that links the parent and the other leaf. Therefore, in order
to compare two leaves based on g different games as in Standard Global Search,
g × 2d+1 random games are necessary instead of g × 2d random games.

6 Experimental Results

Experiments were performed on a Pentium 4 3.0 GHz with 1GB of RAM. Table 1
gives the time used by different algorithms to generate the first move of a game.
It is a good approximation of the mean time used per move during a game. From
lines 1 and 2, we can see that for a similar precision, VGS with width 8 and at
depth 3 takes 0.3 seconds when SGS with a similar setting takes 15.8 seconds.

Table 1. Comparison of times for the first move

Algorithm w d Games Time

SGS 8 3 g = 100 15.8s
VGS 8 3 g1 = 800 0.3s
SGS 16 3 g = 100 118.2s
VGS 16 3 g1 = 800 0.3s
VGS 81 3 g1 = 800 0.6s

An interesting result is given in the last line, where VGS only takes 0.6 seconds
for a full width depth-3 search, and 800 games played in total for all sequences.
This number is equivalent to 100 random games at each leaf according to the
description given in Subsection 5.2.

Lines 2 and 4 have the same time since the time used for the tree search is
negligible compared to the time used for the random games, and the number of
random games needed is not related to the width of the tree.

Table 2 compares the two different algorithms. Each line of the table resumes
the result of 100 games between the two programs on 9×9 boards (50 games with
Black, and 50 with White). The first column gives the name of the algorithm for
the max player. The second column gives the maximum number of global moves
allowed for Max. The third column gives the maximum global depth for Max.
The fourth column gives the total number of random games played for VGS.
The fifth column gives the minimum percentage of the best-move static evalua-
tion required to select a global move: a move is selected if its static evaluation
is greater than the static evaluation of the best move adjusted by a given per-
centage. The sixth column gives the average time used for VGS (including the
random games). The next columns give similar information for the min player.
The last two columns give the average score of the 100 games for Max, and the
number of games won by Max out of the 100 games.

For example, the first line of Table 2 shows that VGS, with width eight, depth
three, two thousand random games, all moves allowed, takes half a second per
move and loses against SGS with similar settings. This experiment shows that

68 T. Cazenave

Table 2. Comparison of algorithms

Max w d g1 % Time Min w d g Time Result Won

VGS 8 3 2,000 0% 0.5s SGS 8 3 250 11.5s −3.3 42
VGS 8 3 8,000 0% 2.1s SGS 8 3 100 7.2s 5.6 66
VGS 8 3 8,000 50% 2.2s SGS 8 3 100 7.0s 7.2 75
VGS 16 3 8,000 50% 1.8s SGS 8 3 100 6.4s 9.6 70
VGS 8 5 32,000 0% 13.1s SGS 8 3 100 7.6s 10 73

with equivalent precisions on the evaluation (here the number of games per leaf
for VGS is 2000

23 = 250, the same as for SGS), the virtual global search takes 23
times less time for an average loss of 3.3 points per game.

The next lines test different options for VGS against a fixed version of SGS
(100 games per leaf, width 8, depth 3). A depth-3 VGS, with at most 16 global
moves that have a static evaluation which is at least half the best static evalu-
ation, and 8,000 games takes less than 2 seconds per move and wins by almost
10 points against a SGS that takes more than 6 seconds per move. In these ex-
periments the number of games used to select the moves to search is the same
as the number of games per leaf.

In the next experiments, we have decorrelated these two numbers. Table 3
gives some results of 100-game matches against Gnugo 3.6. The first column is
the algorithm used for the max player, the second column the maximum width
of the search tree, the third column the depth, the fourth column (Pre) is the
number of games played before the search in order to select the moves to try, the
fifth column is the number of games for each leaf of the search tree, then comes
the minimum percentage of the best move used to select moves (sixth column),
the average time of the search per move (seventh column), the mean result of the
100 games against Gnugo 3.6 (eight column), the associated standard deviation
(nineth column), and the number of won games (tenth column).

The best number of won games is 31 for VGS with g1 = 80, 000 (g = 10, 000
and d = 3). However, the best mean is −11.1 for SGS with g = 1, 000 and
d = 3, but it only wins 21 games. The two results for depth 1 are close to a
standard Monte-Carlo evaluation without global search. The results show that

Table 3. Results against Gnugo 3.6

Max w d Pre g % Time Mean σ Won

VGS 8 3 100 100 80% 0.4s −34.4 27.6 4
VGS 8 3 1,000 1,000 80% 3.7s −26.6 27.7 10
VGS 8 1 1,000 4,000 80% 3.7s −17.7 28.6 16
VGS 8 3 16,000 2,000 80% 4.7s −16.1 23.1 17
VGS 8 3 1,000 10,000 80% 37.4s −14.4 28.5 31
SGS 8 3 100 100 80% 3.3s −23.9 22.3 10
SGS 8 1 1,000 4,000 80% 4.4s −17.3 24.7 16
SGS 8 3 1,000 1,000 80% 23.6s −11.1 23.9 21

Virtual Global Search: Application to 9×9 Go 69

more accuracy (4,000 games instead of 1,000) may be more important in some
cases than more depth when comparing lines two and three of the table.

A result of this table is that for the same number of games per leaf and for a
width-8 and depth-3 search, standard search is better than virtual search.

Table 4 gives some results of 100 game matches with width-16 global search
against Gnugo 3.6. In these experiments, the global search is given more impor-
tance since the number of locations investigated is 16 and those locations that
are not highly evaluated by the static evaluation are searched.

Table 4. Results of width 16 against Gnugo 3.6

Max w d Pre g % Time Mean σ Won

VGS 16 3 1,000 2,000 0% 7.6s −12.2 25.4 29
VGS 16 3 1,000 10,000 0% 23.7s −16.1 26.1 23
VGS 16 1 1,000 8,000 0% 4.8s −23.0 32.4 18
SGS 16 3 1,000 2,000 0% 515.7s −15.0 23.9 19

The results of Table 4 show that VGS outperforms SGS for width 16 and
depth 3. It plays moves in 7.6 seconds instead of 515.7 seconds, scores −12.2
points instead of −15.0, and wins 29 games instead of 19.

7 Future Work

In Go, permutation of moves does not always lead to the same position. For
example, in Fig. 1, White 1 followed by Black 2 does not give the same position
as Black 2 followed by White 1. In other games, such as Hex, moves always
permute. Using VGS in such games is appropriate.

Fig. 1. The order of moves
can be important

Concerning Go, we list five potential improve-
ments below. A first improvement of our current
program would be to differentiate between permut-
ing and non-permuting moves. There are two im-
plementation possibilities. First, two moves at the
same location and of the same color may be consid-
ered different if one captures a string, and the other
not. This would enable to detect problems such as
the non permutation of Fig. 1. The idea is linked
with some recent work on single agent search [13].
Second,the order of the moves in the random game
should be matched with the order of the moves in
the sequence to evaluate.

A second improvement is in selection of moves. Currently the moves are chosen
according to their static evaluation at the root, not taking into account moves
that are answers to other moves. Three straightforward implementations are:
(1) investigate whether the move played is a ”forced”’ answer, (2) improve the
evaluation at the leaf; (3) add Go knowledge such as in Indigo [3,8].

70 T. Cazenave

A third improvement is to combine global search with tactical goals. This
means searching in a global tree of goals instead of a global tree of moves, and
evaluating a sequence of goals instead of a sequence of moves [7].

A fourth improvement is to combine Virtual Global Search with progressive
pruning [4]. We keep investigating the global search tree while playing the ran-
dom games, and stop as soon as one move is clearly superior to the others.

A fifth improvement may be to combine the virtual search with (1) new back-
up operators and (2) biased move exploration, such as in Crazy Stone [10].

8 Conclusion

We presented a new algorithm VGS that combined Alpha-Beta search with
Monte-Carlo simulations. It takes g × 2d simulations and wd memory instead
of more than g× (2×w

d
2) simulations and linear memory in d for the usual com-

bination of Alpha-Beta and Monte-Carlo simulations (SGS). In games where
moves permute VGS gives better results than SGS. In 9×9 Go, it also gives
good results even through the moves do not always permute. Hence, we may
conclude that VGS is a viable idea to elaborate upon even in games where the
moves not always permute.

References

1. Abramson, B.: Expected-Outcome: a General Model of Static Evaluation. IEEE
Transactions on PAMI 12(2), 182–193 (1990)

2. Billings, D., Davidson, A., Schaeffer, J., Szafron, D.: The Challenge of Poker. Ar-
tificial Intelligence 134(1-2), 210–240 (2002)

3. Bouzy, B.: Associating Domain-Dependent Knowledge and Monte Carlo Ap-
proaches Within a Go Program. Information Sciences 175(4), 247–257 (2005)

4. Bouzy, B.: Associating Shallow and Selective Global Tree Search with Monte Carlo
for 9x9 Go. In: van den Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004.
LNCS, vol. 3846, pp. 67–80. Springer, Heidelberg (2006)

5. Brügmann, B.: Monte Carlo Go (1993),ftp://ftp-igs.joyjoy.net/go/computer/
mcgo.tex.z

6. Cazenave, T.: A Phantom Go Program. In: van den Herik, H.J., Hsu, S.-C., Hsu,
T.-s., Donkers, H.H.L.M. (eds.) CG 2005. LNCS, vol. 4250, pp. 120–126. Springer,
Heidelberg (2006)

7. Cazenave, T., Helmstetter, B.: Combining Tactical Search and Monte-Carlo in the
Game of Go. In: CIG’05, pp. 171–175 (2005)

8. Chaslot, G.: Apprentissage par Renforcement dans une Architecture de Go Monte
Carlo. Mémoire de DEA, Ecole Centrale de Lille (September 2005)

9. Chen, K.: A Study of Decision Error in Selective Game Tree Search. Information
Science 135(3-4), 177–186 (2001)

10. Coulom, R., Chen, K.: Crazy Stone wins 9× 9 Go Tournament. Note. ICGA Jour-
nal 29(2), 92 (2006)

11. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M. (eds.) 5th Com-
puters and Games Conference (CG 2006). LNCS, vol. 4630, pp. 73–84. Springer,
Heidelberg (2007)

ftp://ftp-igs.joyjoy.net/go/computer/mcgo.tex.z
ftp://ftp-igs.joyjoy.net/go/computer/mcgo.tex.z

Virtual Global Search: Application to 9×9 Go 71

12. Ginsberg, M.L.: GIB: Steps Toward an Expert-level Bridge-playing Program. In:
IJCAI-99, pp. 584–589, Stockholm, Sweden (1999)

13. Helmstetter, B., Cazenave, T.: Incremental Transpositions. In: van den Herik, H.J.,
Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp. 220–231.
Springer, Heidelberg (2006)

14. Knuth, D.E., Moore, R.W.: An Analysis of Alpha-Beta Pruning. Artificial Intelli-
gence 6(4), 293–326 (1975)

15. Sheppard, B.: Efficient Control of Selective Simulations. ICGA Journal 27(2),
67–80 (2004)

16. Zhao, L., Müller, M.: Solving Probabilistic Combinatorial Games. In: van den
Herik, H.J., Hsu, S.-C., Hsu, T.-s., Donkers, H(J.) H.L.M. (eds.) CG 2005. LNCS,
vol. 4250, pp. 225–238. Springer, Heidelberg (2006)

Efficient Selectivity and Backup Operators in

Monte-Carlo Tree Search

Rémi Coulom

CNRS-LIFL, INRIA-SequeL,
Université Charles de Gaulle, Lille, France

remi.coulom@univ-lille3.fr

Abstract. A Monte-Carlo evaluation consists in estimating a position
by averaging the outcome of several random continuations. The method
can serve as an evaluation function at the leaves of a min-max tree. This
paper presents a new framework to combine tree search with Monte-
Carlo evaluation, that does not separate between a min-max phase and
a Monte-Carlo phase. Instead of backing-up the min-max value close to
the root, and the average value at some depth, a more general backup
operator is defined that progressively changes from averaging to min-
max as the number of simulations grows. This approach provides a fine-
grained control of the tree growth, at the level of individual simulations,
and allows efficient selectivity. The resulting algorithm was implemented
in a 9 × 9 Go-playing program, Crazy Stone, that won the 10th KGS
computer-Go tournament.

1 Introduction

When writing a program to play a two-person zero-sum game with perfect infor-
mation, the traditional approach consists in combining alpha-beta search with
a heuristic position evaluator [20]. The heuristic evaluator is based on domain-
specific knowledge, and provides values at the leaves of the search tree. This
technique has been very successful for games such as chess, draughts, checkers,
and Othello.

Although the traditional approach has worked well for many games, it has
failed for the game of Go. Experienced human Go players still easily outplay
the best programs. So, the game of Go remains an open challenge for artificial-
intelligence research [8].

Among the main difficulties in writing a Go-playing program is the creation
of an accurate static position evaluator [8,15]. When played on a 9 × 9 grid,
the complexity of the game of Go, in terms of the number of legal positions,
is inferior to the complexity of the game of chess [2,27]; the number of legal
moves per position is similar. Nevertheless, chess-programming techniques fail
to produce an artificial 9 × 9 Go player stronger than experienced humans. One
reason is that tree search cannot be easily stopped at quiet positions, as it is
done in chess. Even when no capture is available, most of the positions in the
game of Go are very dynamic.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 72–83, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search 73

A useful alternative to static evaluation that fits the dynamic nature of Go
positions is Monte-Carlo evaluation. It consists in averaging the outcome of
several continuations. Monte-Carlo evaluation is an usual technique in games
with randomness or partial observability [5,14,17,23,26], but can also be applied
to deterministic games, by choosing actions at random until a terminal state is
reached [1,9,10].

The accuracy of Monte-Carlo evaluation can be improved with tree search.
Juillé [18] proposed a selective Monte-Carlo algorithm for single-agent determin-
istic problems, and applied it successfully to grammar induction, sorting-network
optimization, and a solitaire game. Bouzy [6] also applied a similar method to
9 × 9 Go. The algorithms of Juillé and Bouzy let grow a tree grow by iterative
deepening, and prune it by keeping only the best-looking moves after each iter-
ation. A problem with these selective methods is that they may prune a good
move because of evaluation inaccuracies. Other algorithms with better asymp-
totic properties (given enough time and memory, they will find an optimal action)
have been proposed in the formalism of Markov decision processes [12,19,22].

This paper presents a new algorithm for combining Monte-Carlo evaluation
with tree search. Its basic structure is described in Section 2. Its selectivity and
backup operators are presented in the Sections 3 and 4, respectively. In Section
5, game results are discussed. Section 6 summarizes the contributions of this
research, and gives directions for future developments.

2 Algorithm Structure

The structure of our algorithm consists in iteratively running random simulations
from the root position. This produces a tree made of several random games. The
tree is stored in memory. At each node of the tree, the number of random games
that passed through this node is counted, as well as the sum of the values of
these games, and the sum of the squares of the values. In Crazy Stone, the
value of a simulation is the score of the game.

Our approach is similar to the algorithm of Chang, Fu, and Marcus [12], and
provides some advantages over Bouzy’s method [6]. First, the algorithm is any-
time: each simulation brings additional information that is immediately backed
up to the root, which is convenient for time management (Bouzy’s algorithm only
provides information at each deepening iteration). Also, the framework allows
algorithms with proved convergence to the optimal move, because selectivity can
be controlled at the level of individual simulations, and does not require that
complete branches of the tree be cut off.

In practice, not all the nodes are stored. Storing the whole tree would waste
too much time and memory. Only nodes close to the root are memorized. This
is done by applying the following two rules.

– Start with only one node at the root.
– Whenever a random game goes through a node that has been visited once,

create a new node at the next move, if it does not already exist.

74 R. Coulom

As the number of games grows, the probability distribution for selecting a
move at random is altered. In nodes that have been visited less than the number
of points of the goban (this threshold has been empirically determined as a good
compromise), moves are selected at random according to heuristics described in
Appendix A. Beyond this number of visits, the node is called an internal node,
and moves that have a higher value tend to be selected more often, as described
in Section 3. This way, the search tree is grown in a best-first manner.

3 Selectivity

In order not to lose time exploring useless parts of the search tree, it is important
to carefully allocate simulations at every node. Moves that look best should be
searched more deeply, and bad moves should be searched less.

3.1 Background

Over the years, a large variety of selectivity algorithms have been proposed in
the framework of Monte-Carlo evaluation. Most of them rely on the central-
limit theorem, that states that the mean of N independent realizations of a
random variable with mean μ and variance σ2 approaches a normal distribution
with mean μ and variance σ2/N . When trying to compare the expected values
of many random variables, this theorem allows to compute a probability that
the expected value of one variable is larger than the expected value of another
variable.

Bouzy [7,9] used this principle to propose progressive pruning. Progressive
pruning cuts off moves whose probability of being best according to the dis-
tribution of the central-limit theorem falls below some threshold. Moves that
are cut off are never searched again. This method provides a very significant
acceleration.

Progressive pruning can save many simulations, but it is very dangerous in
the framework of tree search. When doing tree search, the central-limit theorem
does not apply, because the outcomes of random simulations are not identically
distributed: as the search tree grows, move probabilities are altered. For instance,
the random simulations for a move may look bad at first, but if it turns out that
this move can be followed up by a killer move, its evaluation may increase when
it is searched more deeply.

In order to avoid the dangers of completely pruning a move, it is possible to
design schemes for the allocation of simulations that reduce the probability of
exploring a bad move, without ever letting this probability go to zero. Ideas for
this kind of algorithm can be found in two fields of research: n-armed bandit
problems, and discrete stochastic optimization. The n-armed bandit techniques
(Sutton and Barto’s book [25] provides a suitable introduction) are the basis for
the Monte-Carlo tree-search algorithm by Chang, Fu, and Marcus [12]. Opti-
mal schemes for the allocation of simulations in discrete stochastic optimization
[3,13,16], could also be applied to Monte-Carlo tree search.

Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search 75

Although they provide interesting sources of inspiration, the theoretical frame-
works of n-armed bandit problems and discrete stochastic optimization do not
fit Monte-Carlo tree search perfectly. We provide two reasons: First, and most
importantly, n-armed bandit algorithms and stochastic optimization assume
stationary distributions of evaluations, which is not the case when searching
recursively. Second, in n-armed bandit problems, the objective is to allocate
simulations in order to minimize the number of selections of non-optimal moves
during simulations. This is not the objective of Monte-Carlo search, since it does
not matter when bad moves are searched, as long a good move is finally selected.

The field of discrete stochastic optimization is more interesting in this respect,
since its objective is to optimize the final decision, either by maximizing the
probability of selecting the best move [13], or by maximizing the expected value
of the final choice [16]. This maximizing principle should be the objective at the
root of the tree, but not in internal nodes, where the true objective in Monte-
Carlo search is to estimate the value of the node as accurately as possible. For
instance, let us take Chen’s formula [13], with the choice between two moves, and
let the simulations of these two moves have the same variance, then the optimal
allocation consists in exploring both moves equally more deeply, regardless of
their estimated values. This does indeed optimize the probability of selecting
the best move, but is not at all what we wish to do inside a search tree: the best
move should be searched more than the other move, since it will influence the
backed-up value more.

3.2 Crazy Stone’s Algorithm

The basic principle of Crazy Stone’s selectivity algorithm is to allocate simu-
lations to each move according to its probability of being better than the current
best move. This scheme seems to be sound when the objective is to obtain an
accurate backed-up value, since the probability of being best corresponds to the
probability that this simulation would have an influence on the final backed up
value if the algorithm had enough time to converge.

Assuming each move has an estimated value of μi with a variance of σ2
i , and

moves are ordered so that μ0 > μ1 > . . . > μN , each move is selected with a
probability proportional to

ui = exp
(
− 2.4

μ0 − μi
√

2(σ2
0 + σ2

i)

)
+ εi. (1)

This formula is an approximation of what would be obtained assuming Gaussian
distributions (the 2.4 constant was chosen to match the normal distribution
function). The formula is very similar to the Boltzmann distributions that are
often used in n-armed bandits problems. The value εi is a constant. It ensures
that the urgency of a move never goes to zero, and is defined by

εi =
0.1 + 2−i + ai

N
, (2)

where ai is 1 when move i is an atari, and 0 otherwise. This formula for εi was
determined empirically by trial and error from the analysis of tactical mistakes

76 R. Coulom

by Crazy Stone. It is important to increase the urgency of atari moves, because
they are likely to force an answer by the opponent, and may be underestimated
because their true value requires another follow-up move.

For each move i, μi is the opposite of the value μ of the successor node, and σ2
i

is its variance σ2. For internal nodes of the search tree, μ and σ2 are computed
with the backup method described in Section 4. For external nodes, i.e., nodes
that have been visited fewer times than the threshold defined in Section 2, μ
and σ2 are computed as μ = Σ/S, and

σ2 =
Σ2 − Sμ2 + 4P 2

S + 1
, (3)

where P is the number of points of the board, Σ2 is the sum of squared values
of this node, Σ is the sum of values, and S is the number of simulations. The
formula for σ2 does as if a virtual game with a very high variance had been
played. This high prior variance is necessary to make sure that nodes that have
been rarely explored are considered very uncertain.

4 Backup Method

The most straightforward method to backup node values and uncertainties con-
sists in applying the formula of external nodes to internal nodes as well. As the
number of simulations grows, the frequency of the best move will dominate the
others, so the mean value of this node will converge to the maximum value of all
its moves, and the whole tree will become a negamax tree. This is the principle
of the algorithm of Chang, Fu, and Marcus [12].

This approach is simple but very inefficient. If we consider N independent
random variables, then the expected maximum of these variables is not equal, in
general, to the sum of the expected values weighted by the probabilities of each
variable to be the best. This weighted sum underestimates the best move.

Backing up the maximum (maxi μi) is not a good method either. When the
number of moves is high, and the number of simulations is low, move estimates
are noisy. So, instead of being really the best move, it is likely that the move with
the best value is simply the most lucky move. Backing up the maximum evalu-
ation overestimates the best move, and generates a great amount of instability
in the search.

Other candidates for a backup method would be algorithms that operate
on probability distributions [4,21]. The weakness of these methods is that they
have to assume some degree of independence between probability distributions.
This assumption of independence is wrong in the case of Monte-Carlo evaluation
because, as explained in the previous paragraph, the move with the highest value
is more likely to be overestimated than other moves. Also, a refutation of a move
is likely to refute other moves of a node, too.

Since formal methods seem difficult to apply, the backup operator of Crazy
Stone was determined empirically, by an algorithm similar to the temporal
difference method [24]. In the beginning, the backup method for internal nodes

Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search 77

was the external-node method. An amount of 1,500 positions were sampled at
random from self-play games. For each of these 1,500 positions, the tree search
was run for 219 simulations. The estimated value of the position was recorded
every 2n simulations, along with useful features to compute the backed-up value.
Backup formulas were tuned so that the estimated value after 2n simulations
matches the estimated value after 2n+1 simulations. This process was iterated a
few times during the development of Crazy Stone.

4.1 Value Backup

Numerical values of the last iteration are provided in Table 1. This table contains
the error measures for different value-backup methods. 〈δ2〉 is the mean squared
error and 〈δ〉 is the mean error. The error δ is measured as the difference between
the value obtained by the value-backup operator on the data available after S
simulations, with the “true” value obtained after 2S simulations. The “true”
value is the value obtained by searching with the “Mix” operator, described in
Figure 1.

Table 1. Backup experiments

Mean Max Robust Max Mix

Simulations
√〈δ2〉 〈δ〉 √〈δ2〉 〈δ〉 √〈δ2〉 〈δ〉 √〈δ2〉 〈δ〉

128 6.44 −3.32 41.70 37.00 39.60 35.30 5.29 −1.43
256 7.17 −4.78 25.00 22.00 23.60 20.90 4.72 −1.89
512 7.56 −5.84 14.90 12.70 13.90 11.90 4.08 −1.70

1,024 6.26 −4.86 9.48 7.91 8.82 7.41 3.06 0.13
2,048 4.38 −3.15 6.72 5.37 6.11 4.91 2.63 0.77
4,096 2.84 −1.55 4.48 3.33 3.94 2.91 2.05 0.69
8,192 2.23 −0.62 2.78 1.47 2.42 1.07 1.85 0.32

16,384 2.34 −0.57 2.45 0.01 2.40 −0.30 2.10 −0.19
32,768 2.15 −0.52 2.19 0.10 2.26 −0.12 1.93 −0.02
65,536 2.03 −0.50 1.83 0.23 1.88 0.01 1.70 0.01

131,072 2.07 −0.54 1.80 0.25 1.94 0.02 1.80 −0.02
262,144 1.85 −0.58 1.49 0.25 1.51 0.07 1.39 −0.02

These data clearly demonstrate what was suggested intuitively in the begin-
ning of this section: the mean operator (Σ/S) under-estimates the node value,
whereas the max operator over-estimates it. Also, the mean operator is more
accurate when the number of simulations is low, and the max operator is more
accurate when the number of simulations is high.

The robust max operator consists in returning the value of the move that
has the maximum number of games. Most of the time, it will be the move with
the best value. In case it is not the move with the best value, it is wiser not to
back up the value of a move that has been searched less frequently. A similar
idea had been used by Alrefaei and Andradóttir [3] in their stochastic simulated
annealing algorithm.

78 R. Coulom

float MeanWeight = 2 ∗ WIDTH ∗ HEIGHT;
if (Simulations > 16 ∗ WIDTH ∗ HEIGHT)
MeanWeight ∗= float(Simulations) / (16 ∗ WIDTH ∗ HEIGHT);

float Value = MeanValue;
if (tGames[1] && tGames[0])
{
float tAveragedValue[2];
for (int i = 2; −−i >= 0;)
tAveragedValue[i] =
(tGames[i] ∗ tValue[i] + MeanWeight ∗ Value) / (tGames[i] + MeanWeight);

if (tGames[0] < tGames[1])
{
if (tValue[1] > Value)
Value = tAveragedValue[1];

else if (tValue[0] < Value)
Value = tAveragedValue[0];

}
else
Value = tAveragedValue[0];

}
else
Value = tValue[0].

return Value;

Fig. 1. Value-backup algorithm. The size of the goban is given by “WIDTH” and
“HEIGHT”. “Simulations” is the number of random games that were run from this
node, and “MeanValue” the mean value of these simulations. Move number 0 is the best
move, move number 1 is the second best move or the move with the highest number of
games, if it is different from the two best moves. tValue[i] are the backed-up values of
the moves and tGames[i] their numbers of simulations.

Figure 1 describes the “Mix” operator, that was found to provide the best
value back up. It is a linear combination between the robust max operator and
the mean operator, with some refinements to handle situations where the mean
is superior to the max (this may actually happen, because of the non-stationarity
of evaluations).

4.2 Uncertainty Backup

Uncertainty back-up in Crazy Stone is also based on the data presented in
the previous section. These data were used to compute the mean squared differ-
ence between the backed-up value after S simulations and the backed-up value
after 2S simulations. To approximate the shape of this squared difference, the
backed-up variance was chosen to be σ2/ min(500, S) instead of σ2/S. This is an
extremely primitive and inaccurate way to back up uncertainty. It seems possible
to find better methods.

5 Game Results

As indicated in the abstract, Crazy Stone won the 10th KGS computer-Go
tournament, ahead of 8 participants, including GNU Go, Neuro Go, Viking

Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search 79

5, and Aya [28]. This is a spectacular result, but this was only a 6-round tour-
nament, and luck was probably one of the main factors in this victory.

In order to test the strength of Crazy Stone more accurately, 100-game
matches were run against GNU Go, and the latest version of Indigo (I thank
Bruno Bouzy for providing it to me), performing a search at depth 3, with a
width of 7. Games were run on an AMD Athlon 3400+ PC running Linux.
Results are summarized in Table 2.

Table 2. Match results with 95% confidence intervals

Player Opponent Winning Rate Komi

CrazyStone (5 min/game) Indigo 2005 (8 min/game) 61% (±4.9) 6.5
Indigo 2005 (8 min/game) GNU Go 3.6 (level 10) 28% (±4.4) 6.5
CrazyStone (4 min/game) GNU Go 3.6 (level 10) 25% (±4.3) 7.5
CrazyStone (8 min/game) GNU Go 3.6 (level 10) 32% (±4.7) 7.5
CrazyStone (16 min/game) GNU Go 3.6 (level 10) 36% (±4.8) 7.5

These results show that Crazy Stone clearly outperforms Indigo. This
is a good indication that the tree search algorithm presented in this paper is
more efficient than Bouzy’s algorithm. Nevertheless, it is difficult to draw defini-
tive conclusions from this match, since Indigo’s algorithm differs from Crazy
Stone’s in many points. First, it relies on a knowledge-based move pre-selector,
that Crazy Stone does not have. Also, the random simulations are different.
Crazy Stone’s simulations probably have better handling of the urgency of
captures. Indigo’s simulations use patterns, while Crazy Stone’s simulations
are based on an uniform distribution. All in all, this victory is still a rather
convincing indication of the power of the algorithm presented in this paper.

The results against GNU Go indicate that Crazy Stone is still weaker,
especially at equal time control (GNU Go used about 22 seconds per game, on
average). The progression of results with a longer time control indicates that the
strength of Crazy Stone scales well with the amount of CPU time it is given.

Beyond the raw numbers, it is interesting to take a look at the games, and
the playing styles of the different players1. Most of the losses of Crazy Stone
against GNU Go are due to tactics that are too deep, such as ladders, long
semeais, and monkey jumps, that GNU Go has no difficulty to see. The wins of
Crazy Stone over GNU Go are based on a better global understanding of the
position. Because they are based on the same principles, the styles of Crazy
Stone and Indigo are quite similar. It seems that the excessive pruning of
Indigo cause it to play tactical errors that Crazy Stone knows how to exploit.

6 Conclusion

In this paper we have presented a new algorithm for Monte-Carlo tree search.
It is an improvement over previous algorithms, mainly thanks to a new efficient
1 Games of the matches are available at http://remi.coulom.free.fr/CG2006/

http://remi.coulom.free.fr/CG2006/

80 R. Coulom

backup method. It was implemented in the computer-Go program CrazyStone
that performed very well in tournaments, and won a 100-game match convinc-
ingly against a state-of-the-art Monte-Carlo Go-playing program. Directions for
future research include these items.

1. Improving the selectivity algorithm and uncertainty-backup operator. In par-
ticular, it might be a good idea to use stochastic optimization algorithms at
the root of the search tree.

2. Trying to overcome tactical weaknesses by incorporating game-specific
knowledge into random simulations.

3. Scaling the approach to larger boards. For 19x19, an approach based on a
global tree search does not seem reasonable. Generalizing the tree search
with high-level tactical objectives such as Cazenave and Helmstetter’s algo-
rithm [11] might be an interesting solution.

Acknowledgments

I thank Bruno Bouzy and Guillaume Chaslot, for introducing me to Monte-Carlo
Go. Much of the inspiration for the research presented in this paper came from
our discussions. I also thank the referees of this paper for their feedback that
helped to improve this paper.

References

1. Abramson, B.: Expected-Outcome: A General Model of Static Evaluation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 12(2), 182–193 (1990)

2. Allis, L.V.: Searching for Solutions in Games and Artificial Intelligence. PhD thesis,
Universiteit Maastricht, Maastricht, The Netherlands (1994)

3. Alrefaei, M.H., Andradóttir, S.: A Simulated Annealing Algorithm with Constant
Temperature for Discrete Stochastic Optimization. Management Science 45(5),
748–764 (1999)

4. Baum, E.B., Smith, W.D.: A Bayesian Approach to Relevance in Game Playing.
Artificial Intelligence 97(1–2), 195–242 (1997)

5. Billings, D., Papp, D., Peña, L., Schaeffer, J., Szafron, D.: Using Selective-Sampling
Simulations in Poker. In: Proceedings of the AAAI Spring Symposium on Search
Techniques for Problem Solving under Uncertainty and Incomplete Information
(1999)

6. Bouzy, B.: Associating Shallow and Selective Global Tree Search with Monte Carlo
for 9 × 9 Go. In: van den Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG
2004. LNCS, vol. 3846, pp. 67–80. Springer, Heidelberg (2006)

7. Bouzy, B.: Move Pruning Techniques for Monte-Carlo Go. In: van den Herik, H.J.,
Hsu, S.-C., Hsu, T.-s., Donkers, H.H.L.M. (eds.) CG 2005. LNCS, vol. 4250, pp.
104–119. Springer, Heidelberg (2006)

8. Bouzy, B., Cazenave, T.: Computer Go: an AI-oriented Survey. Artificial Intelli-
gence 132, 39–103 (2001)

Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search 81

9. Bouzy, B., Helmstetter, B.: Monte Carlo Go Developments. In: van den Herik,
H.J., Iida, H., Heinz, E.A. (eds.) 10th Advances in Computer Games (ACG10),
Many Games, Many Challenges, pp. 159–174. Kluwer Academic Publishers, Boston
(2004)

10. Brügmann, B.: Monte Carlo Go, Unpublished technical report (1993)

11. Cazenave, T., Helmstetter, B.: Combining Tactical Search and Monte-Carlo in the
Game of Go. In: Kendall, G., Lucas, S. (eds.) Proceedings of the IEEE Symposium
on Computational Intelligence and Games, pp. 117–124. IEEE Computer Society
Press, Los Alamitos (2005)

12. Chang, H.S., Fu, M.C., Hu, J., Marcus, S.I.: An Adaptive Sampling Algorithm for
Solving Markov Decision Processes. Operations Research 53(1), 126–139 (2005)

13. Chen, C.-H., Lin, J., Yücesan, E., Chick, S.E.: Simulation Budget Allocation for
Further Enhancing the Efficiency of Ordinal Optimization. Journal of Discrete
Event Dynamic Systems: Theory and Applications 10(3), 251–270 (2000)

14. Chung, M., Buro, M., Schaeffer, J.: Monte-Carlo Planning in RTS Games. In:
Kendall, G., Lucas, S. (eds.) Proceedings of the IEEE Symposium on Computa-
tional Intelligence and Games, pp. 117–124. IEEE Computer Society Press, Los
Alamitos (2005)

15. Enzenberger, M.: Evaluation in Go by a Neural Network Using Soft Segmentation.
In: van den Herik, H.J., Iida, H., Heinz, E.A. (eds.) 10th Advances in Computer
Games (ACG10), Many Games, Many Challenges, pp. 97–108. Kluwer Academic
Publishers, Boston (2004)

16. Futschik, A., Pflug, G.Ch.: Optimal Allocation of Simulation Experiments in Dis-
crete Stochastic Optimization and Approximative Algorithms. European Journal
of Operational Research 101, 245–260 (1997)

17. Ginsberg, M.L.: GIB: Steps Toward an Expert-Level Bridge-Playing Program. In:
Dean, Th. (ed.) Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, pp. 584–593. Morgan Kaufmann, Los Altos, CA (1999)

18. Juillé, H.: Methods for Statistical Inference: Extending the Evolutionary Computa-
tion Paradigm. PhD thesis, Brandeis University, Department of Computer Science
(May 1999)

19. Kearns, M., Mansour, Y., Ng, A.Y.: A Sparse Sampling Algorithm for Near-
Optimal Planning in Large Markov Decision Processes. In: Dean, Th. (ed.) Pro-
ceedings of the Sixteenth Internation Joint Conference on Artificial Intelligence,
pp. 1324–1331. Morgan Kaufmann, Los Altos, CA (1999)

20. Knuth, D.E., Moore, R.W.: An Analysis of Alpha-Beta Pruning. Artificial Intelli-
gence 6, 293–326 (1975)

21. Palay, A.J.: Searching with Probabilities. Pitman, Marshfield, MA (1984)

22. Péret, L., Garcia, F.: On-line Search for Solving Large Markov Decision Processes.
In: De Mantaras, R.L., Saitta, L. (eds.) Proceedings of the 16th European Confer-
ence on Artificial Intelligence (2004)

23. Sheppard, B.: Efficient Control of Selective Simulations. ICGA Journal 27(2), 67–
79 (2004)

24. Sutton, R.S.: Learning to Predict by the Methods of Temporal Differences. Machine
Learning 3, 9–44 (1988)

25. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

26. Tesauro, G.: Programming Backgammon Using Self-Teaching Neural Nets. Artifi-
cial Intelligence 134, 181–199 (2002)

82 R. Coulom

27. Tromp, J., Farnebäck, G.: Combinatorics of Go. In: van den Herik, H.J., Ciancarini,
P., Donkers, H.L.L.M. (eds.) 5th Computers and Games Conference (CG 2006).
LNCS, vol. 4630, pp. 85–100. Springer, Heidelberg (2007)

28. Wedd, N.: Computer Go Tournaments on KGS (2005),
http://www.weddslist.com/kgs/

A Random Simulations in Crazy Stone

The most basic method to perform random simulations in computer Go consists
in selecting legal moves uniformly at random, with the exception of eye-filling
moves that are forbidden. The choice of a more clever probability distribution
can improve the quality of the Monte-Carlo estimation. This section describes
domain-specific heuristics used in Crazy Stone.

A.1 Urgencies

At each point of the goban, an urgency is computed for each player. The urgency
of the black player on a particular point is computed as follows.

– If playing at this point is illegal, or this point is completely surrounded
by black stones that are not in atari, then the urgency is set to zero, and
processing of this urgency is stopped. This rule will prevent some needed
connection moves, but distinguishing false eyes from true eyes was found to
be too difficult to be done fast enough during simulations.

– Otherwise, the urgency is set to 1.
– If this point is the only liberty of a black string2 of size S, then 1, 000×S is

added to the urgency, unless it is possible to determine that this point is a
hopeless extension. A point is considered a hopeless extension when
• there is at most one contiguous empty intersection, and
• there is no contiguous white string in atari, and
• there is no contiguous black string not in atari.

– If this point is the only liberty of a white string of size S, and it is not
considered a hopeless extension for White, then 10, 000 × S is added to the
urgency. Also, if the white string in question is contiguous to a black string
in atari, then 100, 000 × S is added to the urgency (regardless of whether
this point is considered a hopeless extension for White).

The numerical values for urgencies are arbitrary. No effort was made to try other
values and measure their effects. They could probably be improved.

A.2 Useless Moves

Once urgencies have been computed, a move is selected at random with a prob-
ability proportional to its urgency. This move may be undone and another may
be selected instead, in the following situations.
2 A string is a maximal set of orthogonally-connected stones of the same color.

http://www.weddslist.com/kgs/

Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search 83

– If the move is surrounded by stones of the same color except for one empty
contiguous point, and these stones are part of the same string, and the empty
contiguous point is also contiguous to this string, then play in the contiguous
point instead. Playing in the contiguous point is better since it creates an
eye. With this heuristic, a player will always play in the middle of a 3-point
eye (I thank Peter McKenzie for suggesting this idea to me).

– If a move is surrounded by stones of the opponent except for one empty
contiguous point, and this move does not change the atari status of any
opponent string, then play in the empty contiguous point instead.

– If a move creates a string in atari of more than one stone then
• if this move had an urgency that is more than or equal to 1,000, then

this move is undone, its urgency is reset to 1, and a new move is selected
at random (it may be the same move);

• if this string had a contiguous string in atari before the move, then cap-
ture the contiguous string in atari instead (doing this is very important,
since capturing the contiguous string may not have a high urgency);

• otherwise, if the string had two liberties before the move, play in the
other liberty instead.

A.3 Performance

On an AMD Athlon 3400+, compiled with 64-bit gcc 4.0.3, Crazy Stone sim-
ulates about 17,000 random games per second from the empty 9 × 9 goban.

Combinatorics of Go

John Tromp1 and Gunnar Farnebäck2

1 CWI, Amsterdam
john.tromp@gmail.com

2 Laboratory of Mathematics in Imaging,
Harvard Medical School, Boston, Massachusetts

gunnar@lysator.liu.se

Abstract. We present several results concerning the number of posi-
tions and games of Go. We derive recurrences for L(m,n), the number
of legal positions on an m × n board, and develop a dynamic program-
ming algorithm which computes L(m, n) in time O(m3n2λm) and space
O(mλm), for some constant λ < 5.4. An implementation of this algorithm
enables us to list L(n, n) for n ≤ 17. For larger boards, we prove the exis-
tence of a base of liberties lim mn

√
L(m, n) of ∼ 2.9757341920433572493.

Based on a conjecture about vanishing error terms, we derive an asymp-
totic formula for L(m,n), which is shown to be highly accurate.

We also study the Game Tree complexity of Go, proving an upper
bound on the number of possible games of (mn)L(m,n) and a lower bound

of 22n2/2−O(n)
on n × nboards and 22n−1

on 1 × n boards, in addition
to exact counts for mn ≤ 4 and estimates up to mn = 9. Most proofs
and some additional results had to be left out to observe the page limit.
They may be found in the full version available at [8].

1 Introduction

Go, originating over 3,000 years ago in China, is perhaps the oldest board game
in the world. It is enjoyed by millions of players worldwide. Its deceptively sim-
ple rules [7] give rise to an amazing strategic depth. The first results on the
computational complexity of Go date back some 25 years. In 1980, Lichten-
stein and Sipser [5] proved Go to be PSPACE-hard, while 3 years later, Rob-
son [6] showed Go with the basic ko rule to be EXPTIME-complete. More
recently, certain subproblems of the game have been shown PSPACE-complete,
like endgames [10] and ladders [3]. This paper focuses on the state complexity of
Go. We are motivated by the fact that the number of legal positions is a fun-
damental property of a game. The notion of a legal position is unambiguously
defined for Go, despite many variances in rule sets. However, the computation of
the number of legal positions turns out to be almost, but not quite, impossible.
In this contribution, we demonstrate in particular how computing the num-
ber of legal 19 × 19 positions, a number of 171 digits, will be feasible within a
decade.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 84–99, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Combinatorics of Go 85

2 Previous Work

Results on the state complexity of Go have been mostly published by the online
newsgroup rec.games.go and on the computer-go mailing list. In September
1992, a rec.games.go thread “complexity of Go” raised the question of how
many positions are legal. It was noted that a trivial upper bound is 3mn, since
every point on the board may be empty, black, or white. A position is legal if and
only if every string of connected stones of the same color has an empty point
adjacent to it. Achim Flammenkamp was the first to post simulation results,
showing that L(19, 19) ∼ 0.012× 3361 ∼ 2.089× 10170. In August 1994, a thread
“Complexity of Chess and Go” revisited the problem. Jack Hahn, Jonathan
Cano, and John Tromp all posted programs to compute the number of legal
positions by brute-force enumeration. The largest count published at the time
was L(4, 5) = 1, 840, 058, 693. A week’s worth of computation would have found
L(5, 5) as well, but enumerating L(6, 6) would take over 10,000 times longer,
severely limiting this approach.

In a January 2000 thread “Number of Legal Positions on Almost Rectangular
Boards”, (inspired by earlier remarks by John Tromp and Hans Zschintzsch), Les
Fables first explained in detail how to count using dynamic programming. His
remark “Calculation for 9×9 should be possible on any PC, and a supercomputer
should easily be able to handle 13 × 13.” proves to be exactly right. Much later,
on January 23, 2005, Eric Boesch independently discovered this method on the
computer-go mailing list. His method was implemented the next day by Tapani
Raiko, but a bug led him to post a wrong count for L(5, 5). Later that day Jeffrey
Rainy, based on his own implementation, gave the correct values for L(5, 5) and
L(6, 6), but wrong values for L(7, 7) and L(8, 8). Finally, the next day, Gunnar
Farnebäck posted the first bug free program, providing counts up to L(10, 10).

In June 1999, a thread “Math and Go” discussed the number of games of Go.
Robert Jasiek claimed an upper bound of n3n

, which still needs to be corrected
for intermediate passes. John Tromp showed how to obtain a double exponential
lower bound, which we formalize in this paper, while fixing a slight flaw. In the
same month, John Tromp started a thread “number of 2×2 games”, noting that
the number is 386,356,909,593, as was recently independently verified.

3 Preliminaries

A position on an m× n Go board is a mapping from the set of points {0, . . . , m−
1} × {0, . . . , n − 1} to the set of colors {empty, black, white}. Points are adja-
cent in the usual grid sense – equal in one coordinate and differing by one in the
other. A point colored black or white is called a stone. Adjacent stones of the same
color form connected components called strings. An empty point adjacent to a
string is called a liberty of that string. A game of Go starts with an empty board.
The players, Black and White, alternate turns, starting with Black. On his turn,
a player can either pass, or make a move which does not repeat an earlier position.
This is the so-called Positional SuperKo (PSK) rule. Some rule sets, notably the

86 J. Tromp and G. Farnebäck

American Go Association’s AGA rules, use the Situational SuperKo (SSK) rule,
which only forbids repeating a position with the same player to move. A move
consists of coloring an empty point by your color, followed by emptying all oppo-
nent strings without liberties (capture), followed by emptying all your own strings
which then have no liberties (suicide). Thus, in positions arising in a Go game,
strings always have liberties. Such positions are called legal. The number of legal
m×n positions is denoted L(m, n). Finally, two consecutive passes end the game.

Definition 1 (Game Graph). Let G(m, n) be the directed graph whose vertices
are the legal m×n positions, and which has a directed edge from position p to a
different position q, whenever q is the result of a white or black move from p.

Note that we exclude self-loops, corresponding to single-stone suicides. This will
prove useful in Lemma 1 below, and the PSK rule forbids them anyway.

Fig. 1. game graph G(1, 2) Fig. 2. game graph G(1, 3)

Figure 1 shows G(1, 2), consisting of 5 nodes and 12 edges; Figure 2 shows
G(1, 3), consisting of 15 nodes and 42 edges. Below we establish some basic
properties of Go game graphs.

Lemma 1. Outgoing edges from a position are in 1-1 correspondence with the
moves that are not single-stone suicides.

Corollary 1. A node with k empty points has outdegree at most 2k.

Corollary 2. Each edge has an implied black or white color.

We recall that a simple path is one that has no repeated vertices.

Lemma 2. Go games are in 1-1 correspondence with simple paths starting at
the all-empty node in the game graph.

Lemma 2 applies only to rules with Positional SuperKo. With Situational Su-
perKo, the corresponding paths are not necessarily simple, and a position can
be visited twice (once by each player) if the first visit is not followed by a pass.

Lemma 3. The game graph is strongly connected.

We note that this result depends on the possibility of suicide, and fails to hold
for alternative rule sets, such as the Japanese rules of Go, which forbid suicide.
Under such rules, a slightly weaker property can be shown.

Combinatorics of Go 87

Lemma 4. On all boards except 1×1, 1×2 and 2×1, the game subgraph obtained
by removing the all-empty node and all suicide edges, is strongly connected.

4 Counting Legal Positions

The easiest way to count L(m, n), the number of legal m×n positions, is by brute
force, just trying all 3mn positions and testing each one for legality. However, a
5 × 5 board already has over 400 billion possible positions, and 9 × 9 has over
1038. Instead, we establish a correspondence between legal positions and paths
in the so-called border state graph, whose size is much more manageable. The
problem thus reduces to that of counting paths of a certain length in a graph,
which can be done efficiently by a method known as Dynamic Programming.
To achieve this goal we introduce the notion of partial boards, from which the
border states naturally arise.

4.1 Partial Boards

We recall from the preliminaries that we number the points (x, y) ∈ {0, . . . , n−
1}× {0, . . . , m− 1}. We picture a Go board with the point (0, 0) in the top-left,
x-coordinates increasing to the right, and y-coordinates increasing downward.
For 0 ≤ x < n and 0 ≤ y < m, let a partial Go board up to column x and row
y consist of all the points to the left of and above (x, y). It has x full columns
and, if y > 0, one partial column of y points. Figure 3 shows two example partial
7 × n positions up to (3, 3).

0

1

2

3

6

5

4

0 1 2 3 0 1 2 3

Fig. 3. Two partial positions up to (3, 3) and their common border state

What these positions have in common is that the set of possible completions
into legal full-board positions is identical. In either case, the remainder of the
position has to provide a liberty to the top white group, to the black group it
surrounds, and to the middle black group. We say that the positions share the
same border state.

4.2 Border States

Definition 2 (Border State). A border state, or state for short, consists of
the following information (x acting only as a symbol whose value is immaterial
to the state):

88 J. Tromp and G. Farnebäck

(1) the board height m,
(2) the size 0 ≤ y < m of the partial column,
(3) the color of border points (x, 0), . . . , (x, y − 1), (x − 1, y), . . . , (x − 1, m − 1),
(4) for each stone on the border, whether it has liberties,
(5) connections among libertyless stones.

A state with height m and partial column size y is called an
(
m
y

)
-state, or

simply y-state if m is clear from context. A partial position is pseudolegal if
all libertyless stones are on, or connected to, the border. A state is called con-
structible if it is the border/edge state of some pseudolegal partial position of
arbitrary width.

Information of liberties and connections is assumed to be consistent within the
border.

In addition to these border states, we also have edge states for x = 0. These
are like border states, except that points (x − 1, y), . . . , (x − 1, m − 1) have the
special value ‘edge’.

In figures, libertyless stones and their connections are indicated with lines
emanating to the left.

4.3 The Border State Graph

The border state of a partial board up to (x, y + 1) is uniquely determined by
the border state up to (x, y) and the color of (x, y). If (x, y) is empty, then any
libertyless stones at (x, y − 1) and (x − 1, y) as well as all stones connected to
them, become stones with liberties. Now suppose (x, y) is black. If (x − 1, y)
is a libertyless white stone without connections, then it can no longer get any
liberties. This case cannot arise for a pseudolegal partial position. If either (x, y−
1) or (x−1, y) is black with liberties then so is (x, y), and it may provide liberties
to the other neighbor. Finally, if neither (x, y − 1) nor (x − 1, y) is black with
liberties, then (x, y) is without liberties and connects any black neighbors. The
cases for (x, y) being white are symmetric.

Definition 3 ((Augmented) Border State Graph). Let B(m) be the di-
rected graph whose vertices are the constructible border states of height m, and
which has edges from each y-state to its 2 or 3 successor ((y + 1) mod m) states.
The augmented border state graph AB(m) has additional vertices and outgoing
edges for all edge states.

Figure 4 shows the 3 successors of a border state, while Figure 5 shows the
augmented border state graph AB(1).

Lemma 5. There is a 1-1 correspondence between pseudolegal partial positions
up to (n, y) and paths of length mn+y through the augmented border state graph
that start at the all-edge state.

Combinatorics of Go 89

a border state empty successor black successor white successor

Fig. 4. A border state and its 3 successors

E

Fig. 5. Border state
graph AB(1)

4.4 Recurrences

Definition 4 (State Counts). For an
(
m
y

)
-state s, denote by L(m, n, y, s) the

number of pseudolegal partial positions up to (n, y) that have border/edge state
s. Call a y-state s legal if y = 0 and s has no libertyless stones.

This definition obviously implies Lemma 6.

Lemma 6 (color symmetry). Let state s′ be derived from state s by reversing
the colors of all stones. Then L(m, n, y, s) = L(m, n, y, s′).

Definition 5 (state classes). We define a state class, denoted [s], as the equiv-
alence class of state s under color reversal. Call a state class legal when its
members are, and define L(m, n, y, [s]) =

∑
s′∈[s] L(m, n, y, s′).

Note that all equivalence classes, except for stoneless states, consist of exactly 2
states. These definitions immediately imply Lemma 7.

Lemma 7. L(m, n) =
∑

legal s L(m, n, 0, s) =
∑

legal [s] L(m, n, 0, [s]).

Definition 6 (state count vector). Denote by L(m, n, y) the state-indexed
vector with elements L(m, n, y, s) for all constructible y-states s, and by lm the
characteristic vector of legal states of height m.

Now Lemma 7 can be expressed as

L(m, n) = lTmL(m, n, 0) . (1)

The following crucial observation forms the basis for the recurrences we de-
rive. Since L(m, n, y + 1, s′) equals the sum of L(m, n, y, s′) over all predecessor
states s′ of s in the augmented border state graph, it follows that the border
state vectors L(m, n, y), n > 0 are related by linear transformations Tm,y, such
that L(m, n, y + 1) = Tm,yL(m, n, y) (we abuse notation by taking L(m, n, m)
as a synonym for L(m, n + 1, 0)). Indeed, the Tm,y appear as submatrices of
the transposed adjacency matrix of the border state graph. As a consequence,
successive 0-state vectors are related as

L(m, n + 1, 0) = Tm,m−1Tm,m−2 . . .Tm,1Tm,0L(m, n, 0) . (2)

Thus we are led to define the recurrence matrix.

90 J. Tromp and G. Farnebäck

Definition 7 (Recurrence matrix). Let Tm = Tm,m−1 . . .Tm,0.

This leads to a matrix power expression for L(m, n):

L(m, n) = lTmTn−1
m L(m, 1, 0) . (3)

Furthermore, L(m, n) can be shown to satisfy a recurrence not involving the
border state counts. To simplify the following derivations, m is understood to
be fixed and is dropped from the notation, so that L(m, n) = lTTn−1L(1, 0).

Theorem 1. For fixed m, L(m, n) satisfies a linear recurrence whose order is
at most the number of constructible 0-state classes.

The structure of solutions to linear recurrences is well known [4]. Theorem 1
implies Corollary 3.

Corollary 3. For fixed m, L(m, n) can be written in the form

L(m, n) =
∑

k

qk(n)lnk , (4)

where lk are the distinct eigenvalues of T, and qk are polynomials of degree at
most multiplicity(lk) − 1.

Notice that some of the terms may vanish but not the largest eigenvalue, about
which we have additional information.

Theorem 2. There exist am > 0, 0 < λm ≤ 3m, and 0 < φm < 1 such that

L(m, n) = amλn
m(1 + r(m, n))withr(m, n) = O(φn

m) . (5)

4.5 1 × n Boards

For one-dimensional boards, with m = 1, Figure 5 shows the five possible border
states “empty”, “black with liberty”, “white with liberty”, “black without lib-
erty”, and “white without liberty”. The first three are legal, so l = (1, 1, 1, 0, 0)T .
The state count transformation is given by the transposed adjacency matrix
T = ((1, 1, 1, 1, 1), (1, 1, 0, 0, 0), (1, 0, 1, 0, 0), (0, 0, 1, 1, 0), (0, 1, 0, 0, 1)) and the
initial state count with one column gives L(1, 0) = (1, 0, 0, 1, 1)T . It follows that
L(1, n) = lTTn−1L(1, 0), which gives the sequence 1,5,15,41,113,313,867,2401,
6649,18413,. . .

The characteristic polynomial of T is p(λ) = det(λI−T) = λ5 − 5λ4 + 8λ3 −
6λ2 + 3λ − 1. It follows that L(1, n) satisfies the recurrence

L(1, k+5) = 5L(1, k+4)−8L(1, k+3)+6L(1, k+2)−3L(1, k+1)+L(1, k) . (6)

This is not a minimal order recurrence, however. Using state classes instead
yields

l =

⎛

⎝
1
1
0

⎞

⎠ ,T =

⎛

⎝
1 1 1
2 1 0
0 1 1

⎞

⎠ ,L(1, 0) =

⎛

⎝
1
0
2

⎞

⎠ (7)

Combinatorics of Go 91

and a characteristic polynomial p(λ) = λ3 − 3λ2 + λ− 1, leading to the minimal
recurrence

L(1, k + 3) = 3L(1, k + 2) − L(1, k + 1) + L(1, k) . (8)

The largest eigenvalue can be written in closed form as

λ1 = 1 +
1
3

(
(27 + 3

√
57)

1
3 + (27 − 3

√
57)

1
3

)
∼ 2.769292354 . (9)

4.6 2 × n Up to 9 × n Boards

Minimal orders and the λm values from theorem 2 are listed in Table 1 for
1 ≤ m ≤ 9.

Table 1. Small board recurrences

size order am λm

1 × n 3 0.69412340909080771809 2.76929235423863141524
2 × n 7 0.77605920648443217564 8.53365251207176310397
3 × n 19 0.76692462372625158688 25.44501470555814081494
4 × n 57 0.73972591465609392167 75.70934113501819973789
5 × n 217 0.71384057986002504205 225.28834590398701930674
6 × n 791 0.68921150040083474629 670.39821492744590475404
7 × n 3,107 0.66545979340188479816 1,994.92693537832618289977
8 × n 12,110 0.64252516474515096185 5,936.37229306818075324832
9 × n 49,361 0.62038058380200867949 17,665.06600837227629766227

4.7 The Dynamic Programming Algorithm

The algorithm first computes the state vector L(m, 1, 0), and then performs
m(n − 1) linear transformations Tm,y to obtain L(m, n, 0). Instead of keeping
exact counts L(m, n, y, s) as vector elements, we use state class counts modulo
some number M close to 264. Running the algorithm repeatedly (�mn log2(3)/64�
times suffices) with different, relatively prime, moduli gives us a set of equations

L(m, n) = ai mod Mi , (10)

which is readily solved using the Chinese Remainder Theorem. This technique
trades off memory and disk space (which are more constrained) for time.

The heart of the algorithm is an efficient representation of border state classes,
using just 3 bits per point, or 3m bits for a state class. This makes the standard
height of m = 19 fit comfortably in 64-bit integers. The non-crossing connections
can be represented with just 2 booleans per libertyless stone: whether it has a
connection above it, and whether it has a connection below it. The representation
further exploits the fact that neighboring points in the border highly constrain
each other. Figure 6 shows possible transitions from one point to the next in

92 J. Tromp and G. Farnebäck

5

6 7 76

4 54

1 32

Fig. 6. Intra-border transitions

a “bump-free” 0-state. Upward and downward pointing arrows from the line
indicating lack of liberties represent the two boolean flags.

Edges between boxed sets of points indicate the presence of edges from any
point in one set to any point in the other. Next to each point is shown its 3-bit
code. Note that no point has two different transitions to same-numbered points.
This reflects the fact that two libertyless adjacent stones have the same color
if and only if they are connected, and a stone with liberties cannot be adjacent
to a libertyless stone of the same color. The algorithm uses code 0 for ‘edge’
points in edge states. Two pieces of information are still lacking; the color of
a libertyless stone at (x, 0), and the color of a libertyless stone on (x − 1, y),
which is not adjacent to the previous border point at (x, y − 1). However, since
we represent state classes rather than states, we may assume that (x − 1, y), if
non-empty, is always white. In this case, the color of a libertyless stone at (x, 0)
can be stored in the boolean indicating connections above, since the latter is
always false. If (x − 1, y) is empty, then we can assume any stone on (x, 0) is
white. If both (x − 1, y) and (x, 0) are empty then we can normalize the color
of, e.g., the bottom-most stone on the border.

In order to compute L(m, n, y+1) = Tm,yL(m, n, y), the algorithm loops over
all state-count pairs (s, i) in L(m, n, y), computes the 2 or 3 successors s′ of s,
and stores the new pairs (s′, i) in some datastructure. Matching pairs (s′, i) and
(s′, j) need to be combined into a single pair (s′, i + j mod M), which is easy if
all states can be kept in memory. For large computations, like m = 19, this is
not possible and the state-count pairs need to be stored on disk. To allow for
efficient combining of states, we collect as many pairs as possible in memory,
before flushing them all to disk in sorted order. To save space, we store only
the differences between successive states (using 7 bits per byte, with the 8th bit
indicating the last byte). Note that a state can appear in as many files as it has

Combinatorics of Go 93

predecessors in L(m, n, y). The total number of state-count-pairs in all output
files is thus larger than the number of (y+1)-states by a factor in the range [1, 3).
This redundancy is the average number of files in which a (y + 1)-state occurs.
Merging all output files while combining like pairs removes this redundancy and
produces the required L(m, n, y + 1). To keep redundancy small, we want the
different predecessors of a state to be close together in the input ordering, so
that combination can take place before a memory flush. This ordering depends
on how the m 3-bit fields are joined into a 3m bit integer. We do this in different
ways, such that the most variable fields, namely, those close to y, end up in the
less significant bits of the 3m bit integer.

Finally, if L(m, n, 0) is computed, then we just sum all counters of legal states
to obtain the desired L(m, n) mod M result.

4.8 Complexity

The main factor in both time and space complexity is the number of state
classes s. This may be upperbounded by ignoring the connection constraints
(equivalent to balancing parentheses) and computing the largest eigenvalue of
the intra-border transition matrix, which turns out to be λ ∼ 5.372 (the largest
root of (λ − 2)(λ2 − 5λ − 2)). The number of paths of length m through the
intra-border transition graph, and hence s, is therefore bounded by O(λm). We
thus need λm(3m + 64) bits plus the overhead for the datastructure which is at
most linear, for a space complexity of O(mλm).

For time complexity, we have the product of the number of moduli, which is
�mn log2(3)/64�, the number mn of passes, the number O(λm) of states, and
the amount of work O(m) per state, which results in time O(m3n2λm).

4.9 Results

Table 2 shows the number of legal positions. The computation for 17 × 17 took
about 8,000 CPU-hours and 400 GB of disk-space.

4.10 Asymptotic Bounds

Let K denote the set of points on an m×n board, reachable from one (3,3) point
with ‘orthogonal’ knight moves, as shown in Figure 7. For simplicity, assume that
m and n are divisible by 5, so that set K has size mn/5 (for other m, n, |K| can
be shown equal to = mn/5 + δ, |δ| ≤ 3/5). We use K to derive both lower and
upper bounds on L(m, n).

Theorem 3. For m, n divisible by 5,

3
4mn

5 (1− 2
81

)
2(m+n)

5 ≤ L(m, n) ≤ 3mn(1− 2
81

)
2(m+n)

5 (1− 2
243

)
mn−2(m+n)

5 . (11)

Proof. For the lower bound, color the points in K empty, and all other points
randomly. Then illegality can only arise at the 2(m + n)/5 points on the edge
that neither belong to K nor neighbor K. For each such point, the probability

94 J. Tromp and G. Farnebäck

Table 2. Number of legal positions

n digits L(n, n)

1 1 1
2 2 57
3 5 12,675
4 8 24,318,165
5 12 414,295,148,741
6 17 62,567,386,502,084,877
7 23 83,677,847,847,984,287,628,595
8 30 990,966,953,618,170,260,281,935,463,385
9 39 103,919,148,791,293,834,318,983,090,438,798,793,469

10 47 96,498,428,501,909,654,589,630,887,978,835,098,088,148,177,857
11 57 793,474,866,816,582,266,820,936,671,790,189,132,321,673,383,112,185,151,899
12 68 57,774,258,489,513,238,998,237,970,307,483,999,327,287,210,756,991,189,655,

942,651,331,169
13 80 37,249,792,307,686,396,442,294,904,767,024,517,674,249,157,948,208,717,533,

254,799,550,970,595,875,237,705
14 93 212,667,732,900,366,224,249,789,357,650,440,598,098,805,861,083,269,127,196,

623,872,213,228,196,352,455,447,575,029,701,325
15 107 10,751,464,308,361,383,118,768,413,754,866,123,809,733,788,820,327,844,402,

764,601,662,870,883,601,711,298,309,339,239,868,998,337,801,509,491
16 121 4,813,066,963,822,755,416,429,056,022,484,299,646,486,874,100,967,249,263,

944,719,599,975,607,459,850,502,222,039,591,149,331,431,805,524,655,467,453,
067,042,377

17 137 19,079,388,919,628,199,204,605,726,181,850,465,220,151,058,338,147,922,243,
967,269,231,944,059,187,214,767,997,105,992,341,735,209,230,667,288,462,179,
090,073,659,712,583,262,087,437

of being a libertyless stone is 2 · 3−4 = 2/81, and these events are independent,
so the whole position is legal with probability (1 − 2/81)2(m+n)/5.

For the upper bound, we color all points randomly and only check if any point
in K is a one-stone string without liberties. For each of the 2(m+n)/5 edge points
of K this happens with probability 2/81 and for each of the mn/5− 2(m + n)/5
interior points of K this happens with probability 2 · 3−5 = 2/243. Again, these
events are all independent.

4.11 The Base of Liberties

The previous section shows that L(m, n)1/mn is roughly between 34/5 ∼ 2.4
and 3(1 − 2

243)1/5 ∼ 2.995. In this section we prove that L(m, n)1/mn in fact
converges to a specific value L, which we call the base of liberties. This is the
2-dimensional analogue of the 1-dimensional growth rate λ1 ∼ 2.7693 derived in
Subsection 4.5.

Fix m and n. Consider any M = qmm + rm and N = qnn + rn with 0 ≤ rm <
m, 0 ≤ rn < n. Since tiling legal positions together preserves legality, we have

L(M, N) ≥ L(m, n)qmqnL(m, rn)qmL(rm, n)qnL(rm, rn) . (12)

This proves Theorem 4 and 5.

Combinatorics of Go 95

Fig. 7. Knight subset of points on 5 × 5 and 10 × 10 boards

Theorem 4. ln L(m, n) is superadditive in both arguments.

Theorem 5. limmin(m,n)→∞ L(m, n)1/mn converges to some value L.

4.12 An Asymptotic Formula

Theorems 5 and 2 together imply that a
1/mn
m λ

1/m
m , and hence λ

1/m
m (since n can

go to infinity arbitrarily faster than m), converge to L. Table 1 confirms that
the λm values behave roughly as Lm for some L. In this Subsection we extend
Theorem 2 to derive a much stronger result, albeit contingent on a conjecture
about how fast the subdominant terms disappear. The central idea is that since
ln(L(m, n)) is asymptotically linear in n for each m, and symmetric, it can be
expected to be asymptotically bilinear in m and n.

Conjecture 1

r(m, n) = O(φm) for some φ < 1 and n = Θ(m) . (13)

(This should be read as: for any constant c ≥ 1, there exists a φ < 1 such that
r(m, n) = O(φm) for all m/c ≤ n ≤ cm.) This assumption suffices to prove
Theorem 6.

Theorem 6. Conjecture 1 implies

L(m, n) = A Bm+nLmn(1 + O(mφm)) (14)

for some constants A, B, φ < 1, and n = Θ(m).

The constants A, B, and L can all be computed as limits of expressions involving
legal counts of square and almost-square boards.

96 J. Tromp and G. Farnebäck

Corollary 4 (contingent on Conjecture 1)

L = lim
n→∞

L(n, n)L(n + 1, n + 1)
L(n, n + 1)2

,

B = lim
n→∞

L(n, n + 1)
L(n, n)Ln

= lim
n→∞

L(n, n)
L(n, n− 1)Ln

,

A = lim
n→∞

L(n, n)
B2nLn2 .

(15)

Of course L could also be approximated according to its definition as L(n, n)n−2

but the above formula offers much better convergence. Using almost-square le-
gal counts, as computed by our algorithm, our best estimates using L(17, 17),
L(17, 16), and L(16, 16) are

L ≈ 2.9757341920433572493 ,

B ≈ 0.965535059338374 ,

A ≈ 0.8506399258457 .

(16)

Although the formula for L(m, n) is only asymptotic, the convergence turns
out to be quite fast. Compared to the exact results in Table 2, it achieves relative
accuracy 0.99993 at n = 5, 0.99999999 at n = 9, and 1.00000000000025 at
n = 13. It is consistent with all the simulated results. For n = 99 it gives the
same result of 4 · 104638. Accuracy is also excellent far away from the diagonal.
For instance, at L(7, 268), the relative accuracy is still 1.0000007, witnessing the
wide range of application of Theorem 6.

For 19 × 19, the formula gives 2.08168199382 · 10170, of which we can expect
all digits to be correct.

5 Counting Games

5.1 Exact Values

By Lemma 2, the number of games equals the number of simple paths in the
game graph. For very small boards, we can find these numbers by brute-force
enumeration, as shown in Table 3.

5.2 Upper Bounds

We can relate the number of simple paths to the product of outdegrees. First,
we need a technical lemma.

Lemma 8. On boards larger than 1 × 1, every node in the game graph has
outdegree at least 2.

Now consider the game tree, consisting of all simple paths. We want to avoid
internal nodes with only one child, so we make them binary by duplicating

Combinatorics of Go 97

Table 3. Exact and estimated number of games on small boards

m \ n 1 2 3 4 5 6

1 1 9 907 ∼ 2.1 · 109� ∼ 1031 ∼ 10100

2 n.a. ∼ 3.9 · 1011�� ∼ 1086 10∼5.3·102
n.a. n.a.

3 n.a. n.a. 10∼1.1·103
n.a. n.a. n.a.

� The exact number is 2,098,407,841.
�� The exact number is 386,356,909,593.

their child subtree. By Lemma 8, the resulting tree still has no more than
(
∏

v outdeg(v))/mindeg leaves, where mindeg ≥ 2 is the minimum outdegree.
Furthermore, since the tree is at least binary, it must have fewer internal nodes
than leaves. This proves Lemma 9.

Lemma 9. The number of games on an m × n board with, mn > 1, is at most∏
v outdeg(v).

By Corollary 1, this is in turn bounded by (2mn)L(m,n). Most positions have
about mn/3 empty points though, and some of the moves are illegal self-loops,
so the average outdegree is much less than 2mn.

Theorem 7. The number of games on an m × n board is at most (mn)L(m,n).

This bound is quite crude for small boards. For example, the 1× 3 board has an
average outdegree of 42

15 = 2.8, an outdegree product of 3 ·219 = 1, 572, 864 which
is bounded by 315 = 14, 348, 907, while the actual number of games is only 907.

We conjecture that for any mn ≥ 3, the number of games is less than
(2mn/3)L(m,n). The fact that legal positions have on average more empty points
than arbitrary positions should be amply offset by the removal of self-loops and,
more importantly, the widening gap between geometric and arithmetic averages.

5.3 Lower Bounds

Note that the game graph need not be Hamiltonian, and constructing a game vis-
iting even 2mn legal positions is a major challenge (achievable for one-
dimensional boards as we will see later). We can still obtain a nontrivial lower
bound by visiting only a highly structured subset of legal positions.

Theorem 8. Suppose the mn points on the board can be partitioned into 3 sets
B, W, E such that

(1) |B| = |W | = k, |E| = l = mn − 2k,
(2) B and W are connected,
(3) each point in E is adjacent to both B and W.

Then there are at least (k!)2
l−1

possible games, all lasting over k2l−1 moves.

98 J. Tromp and G. Farnebäck

Corollary 5. There are between 22n2/2−O(n)
and 22n2 log 3+log log n+O(1)

Go games
on an n × n board,

Corollary 6. The number N of 19 × 19 Go games is

(103!)2
154 ≤ N ≤ 3610.012·3361

, (17)

in binary
22163

< N < 22569
, (18)

and in decimal
101048

< N < 1010171
. (19)

In one dimension, the conditions of Theorem 8 can only be met by taking E a
singleton set, giving a useless bound. Fortunately, the highly structured nature
of one-dimensional boards allows us to prove much better bounds.

Theorem 9. There are at least 22n−1
games on an 1 × n board with n ≥ 2,

which last from 3 · 2n−1 − 5 up to 2n+1 − 4 moves.

6 Open Problems

Computing L(19, 19), the number of legal positions on a standard size Go board,
remains the main open problem. The algorithm presented should suffice to com-
pute it within the next decade. Still, a more space efficient algorithm would be
welcome.

Theorem 6 and its corollaries are contingent on Conjecture 1. Proving this
would be important but might require a deep understanding of the structure of
the border state graphs and their spectral properties.

Game graphs are an interesting object of study for graph theorists. We con-
jecture that all G(1, n) with n > 2 have color symmetric cycles.

Finally, a significant gap remains in the double exponent between the upper
and lower bound on the number of games.

Acknowledgments

We are indebted to Martin Müller for suggesting publication of these results, to
Piet Hut for extensive commentary on preliminary versions, and especially to
Michal Koucký for the elegant idea of using Chinese Remaindering and for his
extensive help with developing and running the file-based implementations that
provided the counts for n = 14, . . . , 17.

References

1. Blahut, R.E.: Theory and Practice of Error Control Codes. Addison-Wesley, Lon-
don (1983)

2. Chen, P.: Heuristic Sampling: A Method for Predicting the Performance of Tree
Searching Programs. SIAM J. Comput. 21(2), 295–315 (1992)

Combinatorics of Go 99

3. Crâşmaru, M., Tromp, J.: Ladders are PSPACE-complete. In: Marsland, T., Frank,
I. (eds.) CG 2001. LNCS, vol. 2063, pp. 241–249. Springer, Heidelberg (2002)

4. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn.
Addison-Wesley, London (1994)

5. Lichtenstein, D., Sipser, M.: GO is Polynomial-Space Hard. Journal of the
ACM 27(2), 393–401 (1980)

6. Robson, J.M.: The Complexity of Go. In: Proc. IFIP (International Federation of
Information Processing), pp. 413–417 (1983)

7. Tromp, J.: The Game of Go (2006), http://www.cwi.nl/∼tromp/go.html
8. Tromp, J.: Number of Legal Go Positions (2006),

http://www.cwi.nl/∼tromp/go/legal.html
9. Woeginger, G.: Personal communication

10. Wolfe, D.: Go endgames are PSPACE-hard. In: Nowakowski, R.J. (ed.) More
Games of No Chance, vol. 42, pp. 125–136. MSRI Publications (2002)

http://www.cwi.nl/~tromp/go.html
http://www.cwi.nl/~tromp/go/legal.html

Abstracting Knowledge from Annotated

Chinese-Chess Game Records

Bo-Nian Chen1,�, Pangfang Liu1, Shun-Chin Hsu2, and Tsan-sheng Hsu3,��

1 Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan

{r92025,pangfeng}@csie.ntu.edu.tw
2 Department of Information Management,

Chang Jung Christian University, Tainan, Taiwan
schsu@mail.cju.edu.tw

3 Institute of Information Science, Academia Sinica, Taipei, Taiwan
tshsu@iis.sinica.edu.tw

Abstract. Expert knowledge is crucial for improving the strength of
computer Chinese-Chess programs. Although a great deal of expert
knowledge is available in text format that using natural languages, man-
ually transforming it into computer readable forms is time consuming
and difficult. Written expert annotations of Chinese-Chess games show
different styles. By analyzing and collecting commonly used phrases and
patterns from experts’ annotations, we introduce a novel pattern match-
ing strategy. It automatically epitomises knowledge from a large number
of annotated game records. The results of the experiments on the anal-
ysis of the middle phase of games indicate that our strategy achieves a
low error rate. We hope to exploit this approach to collect automatically
a great diversity of Chinese-Chess knowledge that is currently in text
format.1

1 Introduction

Computer Chinese-Chess has developed well over the last 20 years. There are
now several computer Chinese-Chess programs that show a human master level
of playing expertise [19]. A popular strategy for program designers is to use
variations of the α-β pruning search algorithm with rule-based evaluation func-
tions. The algorithm is the core component that identifies the best move, while
the evaluation function provides a standard measurement of the given position.
In this game-playing model, knowledge of Chinese Chess is embedded in the
evaluation functions.

� Supported in part by National Science Council (Taiwan) Grants 94-2213-E-001-014.
�� Corresponding author.
1 Early concepts of this paper appeared in “Automatic Expert Knowledge Retrieval

Strategy”, the 10th Conference on Artificial Intelligence and Applications, Taiwan,
2005, p. 11 (one page abstract only).

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 100–111, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Abstracting Knowledge from Annotated Chinese-Chess Game Records 101

For the program to be strong enough to play against human masters, extensive
expert knowledge must be embedded in the evaluation function [17]. A simple
strategy is to add the expert knowledge as rules to the evaluation function man-
ually; however, this strategy has a number of drawbacks. First, there is a bound
on the number of rules that can be accommodated by the evaluation function.
The more rules there are, the greater the likelihood of conflict between the rules.
Second, for the sake of efficiency, we cannot afford to use high-level knowledge
in the evaluation function. Third, adding rules manually is time consuming and
subject to human error.

In this paper, we propose a strategy that transforms expert knowledge into
information in a form that can be easily exploited by computer programs. In
Section 2, we introduce our approach. In Section 3, we describe our strategy for
retrieving expert knowledge automatically. In Section 4, we present the experi-
mental results. Finally, in Section 5, we present our conclusions.

2 Preliminaries

In this section, we first define expert knowledge in computer Chinese Chess [19].
Then, we introduce traditional knowledge retrieval schemes and compare them
with the automatic expert knowledge retrieval scheme proposed in this paper.

2.1 Expert Knowledge in Computer Chinese Chess

Chinese Chess, like Western Chess, is a two-player game in which each player al-
ternately moves his2 respective pieces toward a destination. Many theories about
playing Chinese Chess have been developed and a large amount of knowledge
has been accumulated. Some of this knowledge has been recorded in books or on
web sites, but expert knowledge available to researchers is mostly in text format.

There are three phases in a Chinese Chess game. The first phase is the opening
phase. It consists of the first 20 or so moves in the game. Opening strategies can
be divided into two types: popular opening strategies [3] and rarely used opening
strategies [2]. Many of the opening strategies developed by human masters have
been published in opening game books [4]. There are also books that discuss the
theories of opening games [8]. In the second phase of a game, called the middle
phase, each player decides the tactics he will use to strengthen his position and
thereby threaten the other player. Evaluating the advantage or disadvantage of
a middle-phase position is difficult, even for a master [1]. There are also many
books that teach the middle game knowledge by examples [7]. Third, we have
the end phase when the players have very few pieces left. In this phase, heuristics
and rules are used to play the game adequately as possible using the remaining
pieces. There are many books about endgame heuristics and rules [16]. There
are many hard endgame problems that cannot be solved by current computer
programs.
2 For brevity and readability we use ‘he’ and ‘his’ wherever we mean ‘he or she’ and

‘his or her’.

102 B.-N. Chen et al.

The positions of the opening games and the endgames have been stored in
opening game databases [14] and endgame databases [6,10], respectively. How-
ever, expert knowledge about the middle game is not clearly defined. Instead,
there are only annotated game records, which are just examples of human knowl-
edge about the middle game. Thus, in this paper, we focus on expert knowledge
about the middle game [13].

2.2 The Importance of Automatic Expert Knowledge Retrieval

Existing expert knowledge retrieval schemes have two potential drawbacks: (1)
designers may need to spend a large amount of time implementing the rules one
by one; and (2) the position sets of different expert knowledge schemes may be
different. Consequently, if two schemes are applied simultaneously, their knowl-
edge may overlap or conflict. The advantages of automatic expert knowledge
retrieval are; (1) reducing the implementation time and (2) partitioning the po-
sition set into several classes so that each class can be marked as a rule.

3 Automatic Expert Knowledge Retrieval

In this section, we define our strategy for automatically retrieving expert knowl-
edge from a large number of annotated game records in text format.

3.1 Expert Knowledge and Position Value

We focus on expert knowledge in the middle phase of games. We use a pro-
gram that automatically transforms a text-formatted annotated move in a game
record into a position value, which is the score of that position. Position value
assignment has been used in many applications, such as [15,11]. The position
value is an integer in the range of 0 to 9, where each number represents a class
used to measure the advantage or disadvantage of a given position to the red
side, as shown in Table 1.

Thus, a position that is advantageous to the red or black player is classified
into the red-advantage or red-disadvantage class respectively.

3.2 Novel Pattern Matching Algorithm

Text data used to annotate game records is written in a special form of natural
language. Instead of using classical natural language processing techniques, with
emphasis on efficiency and accuracy, we use a novel pattern matching algorithm
(see Figure 1) to parse the annotations of game records. The process uses a
processing algorithm and a keyword set. The latter is separated into several
classes, each of which is mapped to a position value. When the sentences of
annotations are recognized by one of the grammar rules or several consistent
rules, the score-related element of the current state is mapped to a class of
position values.

The algorithm recognizes the following classes of keywords: subject, score-
related, passive, passive-exception, condition, condition-exception, negation, and

Abstracting Knowledge from Annotated Chinese-Chess Game Records 103

Table 1. The position values with respect to the red side and their meanings

Value Class Description

0 excellent Red is sure to win.
1 very good Red has very little chance of losing, and a better

chance of winning than drawing.
2 good Red has more chances of winning than losing or drawing.
3 advantage The position of Red is a little better than that of the Black
4 even Both sides have an equal chance of winning.
5 draw Neither player can win.
6 disadvantage The red position is not as good as that of Black.
7 bad Red has more chances of losing than winning or drawing.
8 very bad Red has very little chance of winning, and many more chances

of losing than drawing.
9 worse Red is sure to lose.

negation-exception. In the following, we present a brief definition of each class
of keywords. We note that the sentences are originally written in Chinese. In
some of the examples, we used a word-by-word translation, which may not be
grammatically correct in English.

Subject element: a phrase that indicates which player is the main subject of
the discussion. For example:
“For the current position, the black side has material advantage.” (

)
“The black side” is a subject element.

Score-related element: a phrase that describes the property of a given posi-
tion, which can be mapped to the position’s value. For example:
“For the current position, the black side has an advantage, and the red side
has disadvantage.” ()
“Advantage” is a score-related element.

Passive element: a phrase that indicates a sentence is in the passive form,
i.e., the subject and object are exchanged. If there is a passive element, the
subject should be found after the score-related element. For example:
“The rook of the red player is threatened.” ()
“Threatened” is a passive element. The difference between English and Chi-
nese sentences is that the words indicating a passive meaning in English are
always verbs, but in Chinese there are special words that indicate a passive
meaning.

Condition element: a phrase that indicates the subsequent sentence is true,
subject to some conditions, i.e., it is not a true statement now, but it will
be true after the condition occurs. For example:
“If you move the advisor, the rook on the right will not have a good place
to move to and the situation would be more severe.” (

)
“If ” is a condition element; thus, we may not conclude that the red side will
win. For simplicity, we ignore sentences with condition elements.

104 B.-N. Chen et al.

Negation element: a phrase that invalidates a score-related element. For
example:
“The red side has no advantage.” ()
“No” is a negation element, which means the score-related element “advan-
tage” has no effect in this sentence.

Exception element: passive-exception elements, condition-exception elements,
and negation-exception elements are all called exception elements. They are
used to filter phrases that look similar to an element, but they have different
meanings. These classes of phrases usually only occur in Chinese.
For example:
“The position of the black side is not bad.” ()
Here “not bad”, which contains a negative word even if it is translated into
Chinese, does not really have a negative meaning; thus, it is a negative-
exception element.

3.3 Chinese-Chess Annotation Abstraction Algorithm

This processing algorithm (Fig. 1) is a novel pattern matching strategy, designed
especially for Chinese-Chess annotation abstraction. When the algorithm is ap-
plied to a sentence, it finds the elements and uses the grammar rules below to
extract the meaning of the input sentence. We note that these rules are designed
specifically for the annotations written in Chinese.

1. Stmt → Subject Score [Object]
This rule means that the player defined in the subject element receives the
score defined in the score-related element. In Chinese Chess, there may be
an object after the score-related element, which must be the opponent of the
subject element. For example: “In the current position, black has advantage,
red has a disadvantage.” ()

2. Stmt → Subject Negation Score [Object]
This rule has a negation element, so the player defined in the subject element
does not receive any points. For example: “Black uses cannon to threaten
red’s knight, thus red loses the advantage.” (

)
3. Stmt → Object Passive Score [Subject]

This rule has a passive element, so the object element occurs first. Thus, the
opponent of the player defined in the object element gets the score defined
in the score-related element. For example: “Black moves cannon, red’s ad-
vantage is lost. Because black threatens red’s knight, it also threatens red’s
cannon.” (

)
4. Stmt → Cond Stmt

This rule has a condition element so that the subsequent sentence is ignored.
For example: “If the red side moves his rook to exchange the black’s rook,
the formation of the black side will be flexible, because the red pawn in the
1st column is threatened by the black cannon in the 9th column. ” (

)

Abstracting Knowledge from Annotated Chinese-Chess Game Records 105

5. Stmt → Score
This rule does not have a subject element. There are two cases for this rule,
depending on the score-related element.
(a) The score-related element indicates a draw position value. We therefore

assign a draw score. For example: “After exchanging rooks, a draw w̄ould
be very likely.” ()

(b) In Chinese, a score-related element is a combination of a subject element
and a score-related element. We therefore assign the score to the subject.
For example: “Red wins.” ()

The algorithm returns a position value when the sentences match one of the
grammar rules, or several consistent rules. Conversely, it reports an error when
a sentence does not match any grammar rule, or it matches several rules with
contradictory results. Note, if an annotation consists of more than one sentence,
we parse each sentence individually. A conflict between two sentences means that
their scores are not consistent. In this situation, the algorithm chooses the last
score of the sentences, since the conclusion is more likely to be in the last few
sentences.

procedure CCAA(text, Score, Error) // output score and error
player = 0, subject = 0, score = 0, inconsistent_error = false
active = 1, positive = 1, condition = not found
keyword_found = not found
for i < Len(text) do

if(a new sentence is starting)
subject = 0, active = 1, positive = 1
condition = not found

if(condition == not found)
key_score = FindScoreKeyword (i, text)
if(keyword is found)

if(keyword_found == found)
if(! IsSlightError(key_score, score))

inconsistent_error = true
if(keyword doesn’t need subject)

score = active * positive * key_score
else

score = player * active * positive * key_score
keyword_found = found

if(FindPassiveKeyword(i, text) = found)
active = -1

if(subject not found or active == -1)
subject = FindPlayerKeyword(i, text)

if(FindConditionException(i, text) == not found)
condition = FindConditionKeyword(i, text)

if(FindNegativeException(i, text) == not found)
positive = FindNegativeKeyword(i, text)

if(keyword_found == not found)
Score = 0, Error = not found

else
Score = score, Error = inconsistent_error

end procedure

Fig. 1. The Chinese-Chess Annotation Abstraction Algorithm

106 B.-N. Chen et al.

3.4 Automatic Procedure

The procedure for automatically retrieving knowledge from a large number of
annotated game records uses an auto-feeder to read an annotated list of game
records and then feeds them into the Chinese-Chess annotation abstraction al-
gorithm one at a time. The keywords provided by the algorithm are stored in
a file, called the keyword pattern base. Each output from the language proces-
sor is the position value for the corresponding record. The value is classified by
the distributor, which automatically puts the position into the corresponding
class. The collected data is then saved in a Position Evaluation Database. Note
that the data in the database consists of scored positions. An advantage of the
database is that it can be used to train a reliable evaluation function for search
algorithms, or to measure the performance of an evaluation function.

4 Experimental Results

4.1 Experimental Design

The work in [17] describes many popular opening games and discusses games
that even may be extended to the endgame. The author, G. L. Wu., is considered
the best player in Taiwan. He uses several examples to formulate as precisely as
possible the knowledge about the opening, the middle game, and the end game.
An important issue is how to determine which position to select. To achieve this,
Grandmaster Wu has listed explicitly the advantages and the disadvantages of a
critical position in text format. With these lists, we first conducted an experiment
on expert knowledge data taken from all of the annotated game records in all
volumes of [17]. Since the leaf nodes of Wu’s game tree are the most critical
positions, we collected the annotations on the leaf nodes for our first experiment.
There are 26,831 nodes and 2,043 leaf nodes on the game tree in [17]; each node
represents a single position. We deleted 178 positions, which were not relevant
to the measurement of the position.

The remaining 1,865 positions cover the middle phase, and in some cases the
opening phase and the end phase. We first identify the phase of a game that is
assigned to a position. There are many different definitions for the phases of a
game. In [8], the opening game consists of about 10 plies; of course, there may
be more or fewer plies, depending on the state of the position. In [9], the middle
game starts before the actual battle proceeds. None of the phases is clearly
defined. Hence, for ease of implementation, we adopted the following definitions.

Opening game. None of the rooks, cannons, and horses, (which are the strong
pieces), are captured, but some pawns may be taken.

Middle game. For clarity, the middle game is divided into two cases: (1) at
least one player has more than four strong pieces, and at least one strong
piece of either player is captured; and (2) at least one player has exactly four
strong pieces, one of which is a rook. Note that the rook is considered as two
strong pieces, since its value is equal to two cannons or two horses, or one
of each.

Abstracting Knowledge from Annotated Chinese-Chess Game Records 107

Endgame. There are two cases in the definition of the endgame: (1) both play-
ers have less than or exactly three strong pieces, and (2) neither player has
a rook.

Based on the above definitions, the 1,865 positions consist of 424 opening
game positions, 1,377 middle game positions, and 64 endgame positions. All the
positions were annotated and the sentences were verified manually to ensure they
were free from grammatical errors and scoring conflicts. This set of test data,
called WU1865, is used to fine tune our algorithm and find various elements. In
the current algorithm, there are 306 score-related elements, 6 subject elements,
5 passive elements, 13 condition elements, 7 condition-exception elements, 5
negation elements, and 21 negation-exception elements.

The position values of the 1,865 annotated positions were manually assigned
in one week by the first author, who is a certified Chinese-Chess 2-Dan3 player.

By comparing the answers annotated manually and the results from our al-
gorithm, we were able to analyze the effectiveness of our approach statistically.

The statistical analysis of WU1865 is shown in Table 2. The numbers in the
first row are position values of the manually assigned values, while the numbers
in the first column are position values of the program results. Each grid in
the i-th row and the j-th column represents the number of cases for which the
answer is position value j, but our algorithm gives position value i, denoted
by val(i, j). The diagonal grids are correct cases, denoted by val(i, i). If the
numbers on the diagonal grids are much larger than on the vertical grids and
horizontal grids, it means the algorithm is very reliable. The numbers in the last
row and the last column are the summations of the rows or columns , denoted by
row sum(j) for summation of the i-th row and col sum(i) for summation of the
j-th column, respectively. We use val(i, j)/row sum(i) and val(i, j)/col sum(j)
to measure the error rate; the lower the error rate, the better the performance
of the algorithm.

As the experimental results show, the error rate is less than 1/10 for all rows
and columns. Our algorithm can identify the following three errors.

1. No keyword error, named as E1 error. There are two possible cases of this
error: (1) the input sentences are not relevant to the measurement of a po-
sition, and (2) the keyword cannot be found in the keyword pattern base.
For example: “Moving the red rook ahead is considered a traditional and
progressive move.” ()
There are no keywords in this example, i.e., it does not contain any words
relevant to the measurement of the position.
For case 1, the input sentence should be discarded and is not discussed here.
For case 2, we can increase our keyword pattern base to solve the problem.
In Table 2, positions that cause no keyword error are classified as class E1.

3 Dan is a measurement of the playing expertise of a Chinese-Chess player in Taiwan.
The range of Dan is from 1-Dan to 9-Dan. 1-Dan to 3-Dan are roughly consid-
ered experts, 4-Dan to 6-Dan are roughly masters, and 7-Dan to 9-Dan are roughly
grandmasters.

108 B.-N. Chen et al.

2. Inconsistent element error, named as E2 error. This error occurs when two or
more scores can apply to a position. As noted earlier, the algorithm chooses
the last score as the score of the position. In Table 2, positions that cause
inconsistent element errors are classified as class E2.
For example: “The black side was careless to check the red king and let a
piece be captured. He should have moved k6+1, which would have given him
an advantage.” ()
In this example, there are two elements: let a piece be captured and advan-
tage, which have different meanings for the position.

3. Scoring error: This occurs when the score generated by the algorithm is
different from that of manual annotation and, of course, the scoring error is
free from the first two errors. This type of error arises when the text uses
complicated grammar that our algorithm cannot recognize. It is also difficult
to formulate the underlying grammatical structure with our approach. This
error is relevant to the correctness of the algorithm.
For example: “The black side moves his rook in front of the river, using the
rightmost line containment to prevent the red side moving H4+6.” (

)
In this example, the keywords “containment” and “prevent”, which refer to
the black side are considered advantageous keywords in our algorithm, but
the actual annotation of the position should be even.

Furthermore, it is noteworthy that val(i, i + 1), val(i, i − 1), val(i + 1, i), or
val(i − 1, i) and the advantages or disadvantages are is not changed. Also in
the drawing state, which comprises even and draw, changes between the two
are called slight errors. This kind of error often occurs because of subjective
judgments of the annotators. Even so, such errors are tolerable in computer
Chinese-Chess applications.

We define the number of significant errors as the measurement of the total
errors due to the limitations of the algorithm: number of significant errors =
scoring errors − slight errors According to the statistical results, there are
11 no-keyword errors, 110 keyword-inconsistent errors, and 129 scoring errors.
There are also 75 slight errors in the training set. The number of significant
errors is 54.

It took less than 1 minute to parse the annotation of 1,865 positions and
generate a statistical analysis on an Intel Pentium IV 1.8GHz CPU with a 512MB
RAM. The code size of the system is approximately 2,000 lines (not including
the GUI code). The current size of the keyword pattern base is 3,158 bytes,
which can be increased if necessary.

4.2 Some Detailed Results

Next, we used our program to analyze an untrained data set called NET TEST.
There are two sources of NET TEST. The first is [18], which consists of 225
game records on a CD. On average, there are 5 annotated positions in each
game record. The second source consists of web sites. There are 249 positions in
the web annotated by some of the best grandmasters in China, such as Y. C. Xu.

Abstracting Knowledge from Annotated Chinese-Chess Game Records 109

Table 2. Comparison of manually annotated answers and algorithm-generated results
for WU1865. The horizontal axis represents the number of positions manually anno-
tated. The vertical axis represents the number of positions generated by the algorithm,
where E1 represents no element error and E2 represents inconsistent element error.

0 1 2 3 4 5 6 7 8 9 Sum

0 85 10 9 0 0 0 0 1 0 0 105

1 4 98 10 0 0 0 1 0 0 0 113

2 9 10 548 5 0 1 2 1 1 0 577

3 0 0 10 82 1 1 4 0 0 0 98

4 0 0 0 2 97 0 2 0 0 0 101

5 1 0 0 2 1 29 3 2 0 1 39

6 0 0 0 0 5 1 186 9 0 0 201

7 0 0 0 1 1 0 9 393 4 2 410

8 0 0 0 0 0 0 0 2 61 0 63

9 0 0 0 0 0 0 0 0 1 36 37

E1 0 0 2 2 1 2 1 2 1 0 11

E2 1 0 19 16 23 7 28 13 3 0 110

Sum 100 118 598 110 129 41 236 423 71 39 1865

There are totally 1,418 annotated positions, 55 of which are not relevant to the
measurement of the position. As a result, NET TEST contains 1,363 annotated
positions, comprised of 613 opening game positions, 627 middle game positions,
and 123 endgame positions.

Before discussing the results of the experiment, we describe the properties of
the test data. We discovered that there are three types of annotation in [17]

1. Grandmaster Wu made a conclusion to the specified position.
2. Grandmaster Wu discussed the advantages or disadvantages of the player’s

choice in a specific position.
3. In addition to 2, Grandmaster Wu discussed the advantages or disadvantages

of several possible positions.

Our algorithm works well for points 1 and 2 because it is deterministic. How-
ever, in point 3, it is hard to determine which strategy is suitable for the critical
position.

In our experiment, there are 351 no-keyword errors, 72 keyword-inconsistent
errors, 353 scoring errors, and 100 slight errors.

In Table 3, most of the values are near the diagonal grids, and the number of
significant errors is 253. Most errors occur in the column of class 4. The error
rate in most rows and columns is less than or about 1/10, except for val(2, 4) and
val(5, 4). The performance of our algorithm is good and stable for most cases.
It is also convenient to classify two error cases, E1 and E2, separately because
they are the first candidates to be modified manually.

110 B.-N. Chen et al.

Table 3. Comparison of manually annotated answers and algorithm-generated results
for NET TEST. The horizontal axis represents the number of positions manually anno-
tated. The vertical axis represents the number of positions generated by the algorithm,
where E1 represents no element error and E2 represents inconsistent element error.

0 1 2 3 4 5 6 7 8 9 Sum

0 7 0 0 2 0 1 1 0 0 0 11

1 0 28 3 2 3 1 1 0 1 0 39

2 0 0 190 13 74 4 13 1 1 1 297

3 0 1 1 64 7 1 3 2 0 1 80

4 0 0 0 1 55 3 3 2 0 0 64

5 1 1 2 11 70 69 12 3 2 1 172

6 0 1 0 2 16 3 52 0 0 0 74

7 0 1 7 14 37 2 10 99 0 1 171

8 0 0 0 0 4 2 0 0 20 0 26

9 0 0 1 0 1 1 0 0 0 3 6

E1 1 10 31 42 184 27 23 25 7 1 351

E2 0 2 9 15 29 4 10 2 1 0 72

Sum 9 44 244 160 480 118 128 134 32 8 1363

5 Concluding Remarks

We have proposed an automatic expert knowledge retrieval strategy that trans-
forms human knowledge into information that can be easily implemented in
computer programs. The experimental results show that the error rate of our
strategy is low and errors in annotated game records are often detected. Using
the program, a human expert can easily input Chinese Chess knowledge into the
algorithm and confirm the computer’s choices.

There are many books covering all phases of Chinese-Chess games. The cur-
rent method of collecting data is to translate manually each game record into a
computer file, which is very time consuming. Furthermore, the process is sub-
ject to human error. An automatic game-record-generating system can use either
OCR (Optical Character Recognition) to obtain data from published works, or
computer agents to find text data on the Web. It can then apply our automatic
expert knowledge retrieval strategy to construct the information. In the future,
we will incorporate machine learning techniques into the strategy to generate a
new evaluation function based on the abstracted expert knowledge.

References

1. Chang, S.S., Kuo, L.P.: Si Tsan Chong Ti Wu Chu (The Mistakes in Playing
Chinese Chess). Su Ron Qi Yi Publishing House (2001)

2. Chi, R.S.: Hsiang Chi Pu Chu Chu Yau (The Points of Opening Strategies in
Chinese Chess). San Hai Wun Hua Publishing House, p. 330 (1990)

Abstracting Knowledge from Annotated Chinese-Chess Game Records 111

3. Chiang, C.S.: Lio Sin Pu Chu Sin Pien Tan Suo (Discovery of The New Variations
of Popular Opening Strategies in Chinese Chess). Chen Du Xi Tai Publishing House
(1996)

4. Cho, T.Y., Tsu, C.G.: Xiao Lie So Pao Run Min Ti Yu Publishing House (1990)
5. Condon, J.H., Belle, K.T.: In: Frey, P.W. (ed.) Chess Skill in Man and Machine,

2nd edn., pp. 201–210. Springer, New York (1983)
6. Fang, H.R., Hsu, T.-s, Hsu, S.C.: Construction of Chinese Chess Endgame

Databases by Retrograde Analysis. In: Marsland, T., Frank, I. (eds.) CG 2001.
LNCS, vol. 2063, pp. 96–114. Springer, Heidelberg (2002)

7. Gin, C.T., Yan, D.: Hsiang Chi Chong Chu Tsan Su Ja Si (Analysis of Middle
Game Techniques in Chinese Chess). Su Ron Qi Yi Publishing House (1986)

8. Huang, S.L.: Hsiang Chi Kai Chu Tsan Li (Theory of Chinese Chess Opening
Games). Shi Che Wun Wu Publishing House (1986)

9. Huang, S.L.: Shi Tsan Chong Chu Tsan Li (Theory of Chinese Chess Middle
Games). Shi Che Wun Wu Publishing House (1986)

10. Hsu, T.-s., Liu, P.Y.: Verification of Endgame Databases. ICGA Journal 25(3),
132–144 (2002)

11. Iida, H.: Heuristic Theories on Game-Tree Search. Ph.D thesis. Tokyo University
of Agriculture and Technology, Tokyo (1994)

12. Jansen, P.: Problematic Positions and Speculative Play. In: Marsland, T.A., Scha-
effer, J. (eds.) Computers, Chess, and Cognition, pp. 169–182. Springer, New York
(1990)

13. Levinson, R., Snyder, R.: Distance. Toward the Unification of Chess Knowledge.
ICCA Journal 16(3), 228–229 (1993)

14. Lincke, T.R.: Strategies for the Automatic Construction of Opening Books. In:
Marsland, T., Frank, I. (eds.) CG 2001. LNCS, vol. 2063, pp. 74–86. Springer,
Heidelberg (2002)

15. Lincke, T.R.: Position-Value: Representation in Opening Books. In: Schaeffer, J.,
Müller, M., Björnsson, Y. (eds.) CG 2002. LNCS, vol. 2883, pp. 249–263. Springer,
Heidelberg (2003)

16. Tu, J.M.: Hsiang Chi Tsan Chu Li Dian (Bible of Endgame Examples in Chinese
Chess). San Hai Wun Hua Publishing House (1990)

17. Wu, G.L.: Hsiang Chi Pin Fa (Strategies of Chinese Chess Opening Games). A
Computer Software published by Sohare Information Co. Ltd. (1998)

18. Wu, G.L.: 2001 Chung Kuo Hsiang Chi Ker Run Sai (Chinese Chess National
Personal Contest in 2001). A Computer Software published by Sohare Information
Co. Ltd. (2001)

19. Yen, S.J., Chen, J.C., Yang, T.N., Hsu, S.C.: Computer Chinese Chess. ICGA
Journal 27(1), 3–18 (2004)

Automatic Strategy Verification for Hex�

Ryan B. Hayward, Broderick Arneson, and Philip Henderson

Department of Computing Science,
University of Alberta, Edmonton, Canada
{hayward,broderic,ph}@cs.ualberta.ca

Abstract. We present a concise and/or-tree notation for describing Hex
strategies together with an easily implemented algorithm for verifying
strategy correctness. To illustrate our algorithm, we use it to verify Jing
Yang’s 7×7 centre-opening strategy.

1 Introduction

Hex is the classic two-player board game invented by Piet Hein in 1942 and
independently by John Nash around 1948 [1,2,6,7,8,9]. The game is named after
the board, which consists of a parallelogram-shaped m×n array of hexagons,
also called cells. Each player is assigned a set of stones and two opposing board
sides; players alternately place a stone on an unoccupied cell; the first player
to form a path connecting her1 two sides with her stones wins the game. For
example, Fig. 1 shows the start and end of a game on a 3×3 board. White
succeeds in joining her two sides, so White wins this game. For more on Hex, see
the recent survey by Hayward and Van Rijswijck [3] or the web page by Thomas
Maarup [7].

a

a

b

b

c

c1

1

2

2

3

3
1

a

a

b

b

c

c1

1

2

2

3

3
1

2
3

4
5

6
7

Fig. 1. The start (left) and finish (right) of a Hex game on a 3×3 board

An intriguing aspect of the game of Hex is that for all n×n boards, although
a winning first-player strategy is known to exist [1,2,9], explicit such strategies
have been found only for small boards. While finding such strategies is routine on
very small boards, the task quickly becomes challenging as board size increases.
This is not surprising since, as Stefan Reisch has shown, determining the winner
of arbitrary Hex positions is PSPACE-complete [11].

� Authors gratefully acknowledge the support of NSERC and the University of Alberta
Games Group.

1 For brevity we use ‘she’ and ’her’ whenever ‘she or he’ and ‘his or her’ are meant.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 112–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Automatic Strategy Verification for Hex 113

c1

a1

c2

a2

c3

a3

c3

b1

c3

b2

c3

b3

c3

c3

b3

a2

c2

a1

c3

a3

c3

b1

c3

b2

c3

b3

c3

c3

b3

a3

c2

a1

c3

a2

c3

b1

c3

b2

c3

b3

c3

c3

b3

b1

c2

a1

c3

a2

c3

a3

c3

b2

c3

b3

c3

c3

b3

b2

c2

a1

c3

a2

c3

a3

c3

b1

c3

b3

c3

c3

b3

b3

a3

a1

b2

a2

b2

b1

b2

b2

a2

a1

b1

b1

a1

c2

a1

c3

a1

c2

b2

c3

b2

c2

b2

a1

a3

a2

a3

a3

b3

b1

a3

b3

a3

c3

a3

c3

b2

a1

a3

a2

a3

a3

b3

b1

a3

b3

a3

c2

a3

Fig. 2. A winning first-player 3×3 Hex strategy. Fig. 1 shows one line of this strategy.

For 7×7, 8×8, and 9×9boards, Jing Yang found strategies by hand [12,13,15,16].
Later, Hayward et al. found other 7×7 strategies by computer [4,5], while Noshita
found 7×7 strategies and one 8×8 strategy similar to Yang’s by hand [10]. For
boards 10×10 or larger, no winning strategies are known.

As the search for winning strategies on larger boards continues, it is of inter-
est to provide algorithms for verifying strategy correctness. Recently, Noshita
described strategies in a manner that arguably facilitates human verification
[10]. By contrast, in this paper we present a system that allows for computer
verification. To demonstrate the utility of our system, we use it to confirm the
correctness of Yang’s original 7×7 strategy [13].

2 Excised Trees and Autotrees

The underlying feature of our verification system is the condensed tree notation
we use to represent strategies.2 Our notation allows the standard tree description
of a strategy to be condensed in three ways. First, it permits the use of an “and”
operation corresponding to the combinatorial sum of independent substrategies.
Second, it permits the use of a macro descriptor for representing repeatedly
occurring substrategies. Third, it allows all opponent moves to be excised from
the tree by replacing each set of opponent responses with a single anonymous
meta-response.

The first two of these three ideas are well known; for example, they were used
by Yang in his description of his proofs [12,13,15,16]. The third idea, namely
using excised trees, is new. In the rest of this section we illustrate the excision
process and show that it does not hamper verification.

To begin, consider the first-player strategy tree in Fig. 2. The nodes at even
depth indicate first-player moves; the nodes at odd depth indicate second-player
moves; the game in Fig. 1 follows one root-to-leaf path through the tree. Notice
that the first-player strategy described by the tree is complete: after each second-
player move, there is a unique first-player response; after each first-player move,

2 This notation could also be used for other two-player board games in which game
pieces are fixed once they have been placed.

114 R.B. Hayward, B. Anderson, and P. Henderson

c1

•

c2

•

c3c3c3c3c3b3

c2

•

c3c3c3c3c3b3

c2

•

c3c3c3c3c3b3

c2

•

c3c3c3c3c3b3

c2

•

c3c3c3c3c3b3

a3

•

b2b2b2a2

•

b1a1a1a1

b2b2

b2

•

a3a3b3a3a3a3

b2

•

a3a3b3a3a3a3

c1

•

c2

•

c3b3

a3

•

b2a2

•

b1a1

b2

•

a3b3

Fig. 3. The tree obtained from the strategy tree in Fig. 2 by replacing each set of oppo-
nent response nodes with a single “•” meta-node (top), and the excised tree obtained
by then repeatedly merging identical subtrees (bottom)

there is every possible second-player response. Also, each leaf node establishes a
first-player win, so this is a winning strategy for the first player.

Next, consider the two trees shown in Fig. 3. The top tree is obtained from
the tree in Fig. 2 by excising nodes corresponding to second-player moves; each
set of second-player moves is replaced with a single meta-node, indicated in
our diagrams by a dot (•). The bottom tree is obtained from the top tree by
repeatedly merging identical subtrees into a single subtree until, for each node,
all subtrees are distinct. We refer to the bottom tree as an excised tree.

More generally, given any complete (but not necessarily winning) strategy
tree, the following process, which we call excision, replaces the tree with an
excised tree.

For each non-leaf first-player node, merge the children into a single meta-
node. Next, as long as some second-player node has two identical sub-
trees, remove one of these subtrees.

Excised trees represent equivalence classes of strategies, so some information
is lost when a strategy tree is replaced with its excised tree. However, excision
can be reversed in the following sense: for any excised tree E for a player, there
is a set S of strategy trees such that E is the excised tree of every tree in S.
Furthermore, it is easy to construct all elements of S from E via the following
process, which we call restoration:

At each meta-node m, for each possible opponent move to a cell c, select
for the player’s responding move any cell r that is the root of a subtree
of m in which c does not appear.

Automatic Strategy Verification for Hex 115

For example, consider the restoration process for the excised tree shown at
the bottom of Fig. 3. Start with the top-most meta-node m∗, namely the child
of c1. For this board position, the cell set of possible opponent moves is {a1,
a2, a3, b1, b2, b3, c2, c3}. Consider the first such cell, a1. The cell sets of the
subtrees of m∗ are {c2, b3, c3}, {a3, b2, a2, b1, a1}, and {b2, a3, b3}. Since a1 is
not in the first or third of these three cell sets, we can select the root of either
the first or third subtree of m∗. Let us assume in this example that we always
select the root of the first available subtree. Thus, as the response to a1 we select
the root of the first subtree, namely c2. Continuing in this fashion, we select c2
as the response for opponent moves to a2, a3, b1, and b2, and we select a3 as the
response for opponent moves to b3, c2, and c3. Having selected all responses to
m∗, we continue in top-down order to process meta-nodes until all such nodes
have been dealt with and the excised tree has been replaced with a complete
strategy tree S′ of S.

Notice that S′ is different from the strategy tree S of Fig. 2 from which E was
derived; for example, in the restoration process we never selected the root of the
third subtree of m∗ as a response to an opponent move. However, by repeating
the restoration process once for each of the possible permutations of choices for
r, we would construct all possible strategy trees associated with E, including S.

In the restoration process it will always be possible to find at least one value
of r at each meta-node as long as the excised tree being restored was obtained
from a complete strategy tree. This follows from Observation 1, which in turn
follows from the fact that in Hex, stones never move once played.

With respect to a strategy, a π-move is a move made by player π. With respect
to a strategy tree, a π-node is a node associated with a π-move, and a π-node is
a node associated with π’s opponent.

Observation 1. Let T be a complete Hex strategy tree for a player π, let p be
a π-node of T that is not a leaf, let S1,. . . ,Sk be the subtrees of T rooted at the
children of p, and for each Sj let Pj be the set of cells associated with the π-nodes
of Sj. Then the combined intersection I = P1 ∩ . . . ∩ Pk is empty.

Proof. For each index j, let qj be the cell associated with the root of Sj . T is
complete, so Q = {q1, . . . , qt} corresponds to all possible opponent responses to
p, namely all the unoccupied cells after the move p. Also, for each index j, qj is
occupied by an opponent’s stone and so is not in Pj , and so is not in I. Thus I
is empty.

The following is a corollary of the preceding observation.

Observation 2. Let E(T) be the excised tree obtained from a complete Hex
strategy tree T for a player π, let m be a meta-node of E(T) that is not a leaf,
let S1,. . . ,Sk be the subtrees of E(T) rooted at the children of m, and for each
Sj let Pj be the set of cells associated with the π-nodes of Sj. Then the combined
intersection I = P1 ∩ . . . ∩ Pk is empty.

We refer to the class of trees that we use in our verification system as “autotrees”;
we use this term since such trees make explicit mention only of a player’s own

116 R.B. Hayward, B. Anderson, and P. Henderson

moves. Autotrees have the same form and function as excised trees; however,
they may not have arisen via excision, and so we do not define them with re-
spect to excision. An autotree is defined as follows: each node at one set of
alternating levels is a special node called a meta-node; each node at the other
set of alternating levels is labeled with a board cell.

We call an autotree elusive if it satisfies the conditions of Observation 2. Notice
that restoration generates a complete strategy tree from an autotree if and only
if the autotree is elusive.

As an initial step in our verification algorithm, we check whether the input
autotree is elusive. The second and final step in our verification algorithm is to
determine whether the strategies associated with the input autotree are winning.
We call an autotree of a player satisfying if, for every leaf, the cells of the root-
to-leaf path satisfy the conditions of a win, namely join the player’s two sides
on the Hex board. An elusive autotree represents a winning strategy if and only
if the autotree is satisfying. This follows from the following theorems, which in
turn follow by straightforward arguments from our definitions and the discussion
to this point; we omit the details of the proofs.

Theorem 3. For Hex, for any complete strategy tree there is a unique associated
elusive excised tree, and for any elusive autotree there is a unique set of associated
complete strategy trees. Furthermore, for any complete strategy tree S and the
excised tree E(S) derived from S, S is winning if and only if all strategy trees
S′ created via restoration from E(S) are winning.

Theorem 4. An autotree represents a winning strategy if and only if the au-
totree is elusive and satisfying.

3 And/or Autotrees with Leaf Patterns

To complete the description of our notation, we need only to describe how we
add two features to autotrees: and-nodes and leaf patterns.

Notice that the children of a meta-node in an autotree correspond to an “or”
decision in a strategy; depending on the opponent’s move at the meta-node,
the player will play the strategy corresponding to the first subtree, or the next
subtree, or the next subtree, and so on; see the excised tree in Fig. 3. By contrast,
in Hex as in many other games, a particular strategy often decomposes into two
or more independent substrategies that each need to be followed.

Such “and” operations are easily incorporated into our notation by allowing
each labeled node (namely, not a meta-node) of a modified autotree to have any
number of children. We refer to autotrees that are modified in this way as and/or
autotrees since, when interpreting them as strategies, the odd depth nodes (the
meta-nodes) are or-nodes while the even depth nodes (with cell labels) are and-
nodes.

Consider for example Fig. 4, which shows an and/or autotree for a winning
4×4 strategy. The root is an and-node, so we have to play all substrategies simul-
taneously; in this case, there is only one subtree so there is only one substrategy

Automatic Strategy Verification for Hex 117

d1

•

c3

•

b4c4

•

c2d2

b3

•

a4b4

•

a2

•

a1b1

•

a3b2

c2

b3

•

a4b4

•

b2

•

b1c1

d2

•

c3d3

•

c4d4

d3

•

c4d4

•

d2b3

•

a4c3

•

c2a2

•

a1b1

•

a3b2

Fig. 4. An and/or autotree for a winning first-player 4×4 Hex strategy. Odd depth
nodes (•) are “or”-nodes; even depth nodes (cell labels) are “and”-nodes. Fig. 5 shows
one line of this strategy.

to follow. Suppose that the opponent’s response to the player’s initial move d1
is b3. Then the player can select any subtree not containing b3, say the first
subtree; thus the player moves to c3, the root of the first subtree. This root is
an and-node with two subtrees, so now the player has to follow these two sub-
strategies simultaneously; the player must ensure that she reaches a leaf node
in each of the subtrees of every and-node. For example, if the opponent’s next
move is at one of {b4, c4}, the player must immediately reply with the other of
these two cells or risk not reaching a leaf of the {b4, c4} subtree. Similarly, if the
opponent’s next move is at one of {c2, d2}, the player must immediately reply
with the other of these two cells. If the opponent’s next move is not in {b4, c4}
or {c2, d2}, the player can move anywhere. Fig. 5 illustrates another line of play
of this strategy.

Finally, subtrees of and/or autotrees that correspond to isomorphic substrate-
gies can be replaced with a special node corresponding to such substrategies. This
is illustrated in Fig. 6, where two substrategy macros are used to simplify the
tree of Fig. 4.

Modifying our verification algorithms to handle and- and or-nodes is straight-
forward. For or-nodes, the test for the elusive property is the same as with un-
modified autotrees: check whether the combined intersection of all child nodes is

a

a

b

b

c

c

d

d1

1

2

2

3

3

4

4

1

a

a

b

b

c

c

d

d1

1

2

2

3

3

4

4

1

2

3
4

5 6
7

8

9
10

11

12
13

14

15

Fig. 5. The start (left) and finish (right) of one line of the strategy of Fig. 4

118 R.B. Hayward, B. Anderson, and P. Henderson

d1

•

c3

A A

b3

A B

b3

A •

b2

A

d2

•

c3 d3

A

d3

A •

d2 b3

A B

Fig. 6. An and/or autotree with two macro pattern nodes. This tree is equivalent to
the tree in Fig. 4; pattern parameters have been omitted.

the empty set. For and-nodes, it is necessary to check whether the intersection
of each pair of child nodes is empty. Another algorithmic approach one might
take here is to expand the and/or autotree into the corresponding equivalent au-
totree; however, the resulting trees can be large,3 so this approach would require
significantly more space than our approach.

Testing the satisfying property on and/or autotrees involves checking every
root-to-leaf path in the associated expanded autotree. For reasons of efficiency
we do not want to generate the expanded autotree; we thus carry out this task
in an implicit fashion. By using a simple indexing scheme for each root-to-leaf
path in the and/or autotree, we can reconstruct the cell sets for each possible
root-to-leaf path in the associated autotree. Each node stores the number of
root-to-leaf paths it contains. We consider all such paths and verify that each
satisfies the winning condition.

We implement the isomorphic substrategy feature in the simplest possible way,
namely using macro substitution to generate the equivalent and/or autotree.

4 Verifying Yang’s Proof

As a benchmark for testing our system, we used it to verify the first known
winning 7×7 Hex strategy, namely Yang’s original 7×7 center-opening strategy
[14,13]. Yang described his strategy in an easily understood notation similar to
that used in the C programming language; an applet that follows this strategy is
available on his homepage[12]. The version of the strategy that we tested is from
a preprint also available from his web page [14]. In Yang’s notation, his strategy
uses about 40 patterns (not counting pattern variations) comprising about six
pages of text. A recursion tree indicating the hierarchy of his patterns is shown
in Fig. 7.

3 For example, an and-node with k subtrees of two nodes each corresponds in the
expanded autotree to a node with 2k subtrees.

Automatic Strategy Verification for Hex 119

1

3

9

18

14

24

31

3 +

4

15

25ab

5

916

26

+

65

+

78

917

27

33

+

910

919

28

34

11

5514+

416

+

177

+

919

+

616

+

1616

20

1422

25ab21

30

25ab

+

2314

29

2422+

2324

36

3122+

2331

37

222338

39

26

35

524+

264

+

727

+

928

+

266

29+

2616

40

5314+

733

+

934

6361641

54796371638

12

392022+

233

33 +

45

+

65

+

78

+

910

1112

Fig. 7. Part of the recursion tree for Yang’s proof. References to frequently occurring
small patterns have been omitted. Labels indicate pattern numbers. Nodes labeled +
are and-nodes; all other nodes are or-nodes.

(pattern8

// called by: 1

((c6 BR) (d4 BR))

(d6 e3 e4 e5 e6 f2 f3 f4 f5 f6 g1 g2 g3 g4 g5 g6)

(c6 d4 BR)

[(f3 [(pattern2ab (e3 e4) (d4 f3))]

[(pattern2ab (g2 g3) (f3 BR))])

(e5 [(d6) (e4)]

[(pattern13 (e6 f4 f5 f6 g3 g4 g5 g6) (e5 BR))])

(f2 [(pattern2ab (g1 g2) (f2 BR))]

[(pattern9 (g5 g4 f5 f4 f3 e5 e4 e3) (BR f2 d4))])

(e3 [(pattern17 (d6 e5 e6 f2 f3 f4 f5 g1 g2 g3 g4 g5) (c6 d4 e3 BR))])])

Fig. 8. Yang’s Pattern 8 in our notation

We translated Yang’s proof into our notation by hand, following his pattern
naming convention. As an example of our notation, see Fig. 8. The first line gives
the name of the pattern. The second line is a comment noting that the only pat-
tern calling this pattern is Pattern 1. The third line gives the connections that are
achieved by the pattern; in this case at least one of two connections is achieved,
either between c6 and the bottom right side of the board, or between d4 and
the bottom right side; this information is given only to aid in human debugging
purposes and is not used by our algorithm. The fourth line lists the cells that

120 R.B. Hayward, B. Anderson, and P. Henderson

pattern1 connect: (TL BR)

empty: (a1 a2 a3 a4 a5 a6 a7 b1 b2 b3 b4 b5 b6 b7 c1 c2 c3 c4 c5 c6 c7

d1 d2 d3 d5 d6 d7 e1 e2 e3 e4 e5 e6 e7 f1 f2 f3 f4 f5 f6 f7 g1

g2 g3 g4 g5 g6 g7)

played: (TL d4 BR)

stats: AND = 1480, OR = 2339, Leafs = 3514

paths: 25574/25574

VALID pattern.

Fig. 9. Diagnostics returned after verifying Yang’s proof

must be unoccupied at this point; the fifth line lists the cells that the player
must already occupy. The subsequent lines describe the and/or autotree, where
parentheses surround the subtrees of an or-node and square brackets surround
the subtrees of an and-node.

In the process of verifying the description of Yang’s proof, we found only one
typographical error: in the description of Pattern 11 there is a call to Pattern
17 that should instead be a call to Pattern 19.

Our notation represents Yang’s strategy in about 700 lines of text. The diag-
nostic message returned by our program after recursively verifying Yang’s proof
is shown in Fig. 9. The resulting tree had 1,480 and-nodes, 2,339 or-nodes, 3,514
leaves, and 25,574 implicit root-to-leaf paths. The verification took less than one
second to execute on our computer, a single-processor Athlon64 3200+ with 1
gigabyte of memory.

5 Conclusions

We have introduced the notion of an excised tree as a compressed representation
of a complete strategy tree from which all explicit opponent moves have been
excised. We used excised trees in a simple algorithm that verified the correctness
of Yang’s original winning 7×7 Hex strategy.

One way in which our system could be improved would be to automate the
process of translating strategies from other notations into our notation.

Another improvement concerns the number of paths that our algorithm checks
in verifying the correctness of a strategy. Currently our system explicitly verifies
that every possible cell set that a player might end up with contains a winning
path. For example, for Yang’s strategy this was a total of 25,574 cell sets that
were checked. The problem with this approach is that the number of such cell
sets, corresponding to the number of root-to-leaf paths in the complete strategy
tree, increases exponentially in the board size.

Consider for example Martin Gardner’s winning second-player strategy for
the player with the longer sides on an n×n − 1 board [2]. The strategy consists
of the and of f(n) = n × (n − 1)/2 substrategies each consisting of the or of
two moves. The associated excised tree thus has 2f(n) root-to-leaf paths. Even
for n as small as 14, 2f(n) = 291, and checking this many paths individually is
currently computationally infeasible.

Automatic Strategy Verification for Hex 121

Thus, as board size increases, verification algorithms will be required that do
not explicitly check the winning condition for each root-to-leaf path.

References

1. Gardner, M.: Mathematical Games. Scientific American 197, July, pp. 145–150,
August, pp. 120–127, October, pp. 130–138 (1957)

2. Gardner, M.: The Scientific American Book of Mathematical Puzzles and Diver-
sions, pp. 73–83. Simon and Schuster, New York (1959)

3. Hayward, R.B., van Rijswijck, J.: Hex and Combinatorics (formerly Notes on Hex).
Discrete Mathematics 306, 2515–2528 (2006)

4. Hayward, R.B., Björnsson, Y., Johanson, M., Kan, M., Po, N., van Rijswijck, J.:
Solving 7 × 7 Hex: Virtual Connections and Game-state Reduction. In: van den
Herik, H.J., Iida, H., Heinz, E.A. (eds.) Advances in Computer Games (ACG10),
Many Games, Many Challenges, pp. 261–278. Kluwer Academic Publishers, Boston
(2004)

5. Hayward, R.B., Björnsson, Y., Johanson, M., Kan, M., Po, N., van Rijswijck, J.:
Solving 7 × 7 Hex with Domination, Fill-in, and Virtual Connections. Theoretical
Computer Science 349, 123–139 (2005)

6. Maarup, Th.: Hex – Everything You Always Wanted to Know About Hex but
Were Afraid to Ask. Master’s thesis, Department of Mathematics and Computer
Science, University of Southern Denmark, Odense, Denmark (2005)

7. Maarup, Th.: Hex Webpage (2005), http://maarup.net/thomas/hex/
8. Nasar, S.: A Beautiful Mind. Touchstone, New York (1998)
9. Nash, J.: Some Games and Machines for Playing Them. Technical Report D-1164,

Rand Corp. (1952)
10. Noshita, K.: Union-Connections and Straightforward Winning Strategies in Hex.

ICGA Journal 28(1), 3–12 (2005)
11. Reisch, S.: Hex ist PSPACE-vollständig. Acta Informatica 15, 167–191 (1981)
12. Yang, J.: Jing Yang’s Web Site (2003), http://www.ee.umanitoba.ca/∼jingyang
13. Yang, J., Liao, S., Pawlak, M.: A Decomposition Method for Finding Solution in

Game Hex 7x7. In: International Conference on Application and Development of
Computer Games in the 21st Century, pp. 96–111 (November 2001)

14. Yang, J., Liao, S., Pawlak, M.: On a Decomposition Method for Finding Winning
Strategy in Hex Game (2001),
http://www.ee.umanitoba.ca/∼jingyang/hexsol.pdf

15. Yang, J., Liao, S., Pawlak, M.: Another Solution for Hex 7x7. Technical report,
University of Manitoba, Winnipeg, Canada (2002),
http://www.ee.umanitoba.ca/∼jingyang/TR.pdf

16. Yang, J., Liao, S., Pawlak, M.: New Winning and Losing Positions for 7x7 Hex.
In: Schaeffer, J., Müller, M., Björnsson, Y. (eds.) CG 2002. LNCS, vol. 2883, pp.
230–248. Springer, Heidelberg (2003)

http://maarup.net/thomas/hex/
http://www.ee.umanitoba.ca/~jingyang
http://www.ee.umanitoba.ca/~jingyang/hexsol.pdf
http://www.ee.umanitoba.ca/~jingyang/TR.pdf

Feature Construction for Reinforcement

Learning in Hearts

Nathan R. Sturtevant and Adam M. White

Department of Computing Science
University of Alberta, Edmonton, Canada

{nathanst,awhite}@cs.ualberta.ca

Abstract. Temporal difference (TD) learning has been used to learn
strong evaluation functions in a variety of two-player games. TD-gammon
illustrated how the combination of game tree search and learning meth-
ods can achieve grand-master level play in backgammon. In this work,
we develop a player for the game of hearts, a 4-player game, based on
stochastic linear regression and TD learning. Using a small set of basic
game features we exhaustively combined features into a more expressive
representation of the game state. We report initial results on learning
with various combinations of features and training under self-play and
against search-based players. Our simple learner was able to beat one of
the best search-based hearts programs.

1 Introduction and Background

Learning algorithms have the potential to reduce the difficulty of building and
tuning complex systems. But, there is often a significant amount of work required
to tune each learning approach for specific problems and domains. We describe
here the methods used to build a program to play the game of Hearts. This
program is significantly stronger than a previously built expert-tuned program.

1.1 Hearts

Hearts is a trick-based card game, usually played with four players and a stan-
dard deck of 52 cards. Before play begins, 13 cards are dealt out to each player
face-down. After all players have looked at their cards, the first player plays
(leads) a card face-up on the table. The other players follow in order, if possible
playing the same suit as was led. When all players have played, the player who
played the highest card in the suit that was led wins or takes the trick. This
player places the played cards face-down in his pile of taken tricks, and leads the
next trick. This continues until all cards have been played.

The goal of Hearts is to take as few points as possible. A player takes points
based on the cards in the tricks taken. Each card in the suit of hearts (♥) is
worth one point, and the queen of spades (Q♠) is worth 13. If a player takes
all 26 points, also called shooting the moon, they instead get 0 points, and the
other players get 26 points each.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 122–134, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Feature Construction for Reinforcement Learning in Hearts 123

There are many variations on the rules of Hearts for passing cards between
players before the game starts, determining who leads first, determining when
you can lead hearts, and providing extra points based on play. In this work we
use a simple variation of the rules: there is no passing of cards and there are no
limitations on when cards can be played.

Hearts is an imperfect information game because players cannot see their op-
ponents’ cards. Imperfect information in card games has been handled
successfully using Monte-Carlo search, sampling possible opponent hands and
solving them with perfect-information techniques. While there are known limi-
tations of this approach [10], it has been quite effective in practice. The strongest
bridge program, GIB [5], is based on Monte-Carlo search. This approach was also
used for Hearts in Sturtevant’s thesis work [12]. Instead of learning to play the
imperfect-information game of Hearts, we build a program that learns to play
the perfect-information version of the game. We then use this as the basis for a
Monte-Carlo player which plays the full game.

1.2 Hearts-Related Research

There have been several studies on learning and search algorithms for the game of
Hearts. Because Hearts is a multi-player game (more than two players) minimax
search cannot be used. Instead maxn [7] is the general algorithm for playing
multi-player games.

Perkins [9] developed two search-based approaches for multi-player imperfect
information games based on maxn search. The first search method built a maxn

tree based on move availability and value for each player. The second method
maximized the maxn value of search trees generated by Monte-Carlo. The resul-
tant players yielded a low to moderate level of play against human and rule-based
based players.

One of the strongest computer Hearts programs [12], uses efficient multi-
player pruning algorithms coupled with Monte-Carlo search and a hand-tuned
evaluation function. When tested against a well-known commercial program1, it
beat the program by 1.8 points per hand on average, and 20 points per game.
The game of Hearts is not ‘solved’: this program is still weaker than humans. We
used this program as an expert to train against in some of our experiments for
this paper. For the remainder of this paper we will refer to the full program as
the Imperfect Information Expert (IIE) and the underlying solver as the Perfect
Information Expert (PIE).

One of the first applications of temporal difference (TD) learning methods to
Hearts was by [6]. These results, however, are quite weak. The resulting program
was able to beat a random program, and in a small competition out-played other
learned players. But, it was unable to beat Monte-Carlo based players.

Fujita et al. performd several studies on applying reinforcement learning (RL)
algorithms to the game of Hearts. In their recent work [3], Fujita et al. modeled
the game as a partially-observable Markov decision process (POMDP), where the

1 Freeverse Software’s 3D Hearts Deluxe, http://www.freeverse.com/hearts/

124 N.R. Sturtevant and A.M. White

TDLearn(play history H , λ, �)
1 for each state i = 0..n in H // H[0] = Terminal; H[n] = Start
2 if Terminal(H [i])
3 V (H [i]) = �
4 else
5 V (H [i]) = (1 − λ)V (H [i]) + λV (H [i − 1])

Fig. 1. Learning using TD(λ) given a history of game play

agent can observe the game state, but other dimensions of the state, such as the
opponents’ hands, are unobservable. Using a one step history, they constructed a
new model of the opponents’ action selection heuristic according to the previous
action selection models. Although their learned player performed better than
their previous players and also beat rule-based players, it is difficult to know the
true strength of the learning algorithm and resultant player. This is due to the
limited number of training games and the lack of validation of the final learned
player. The work by Fujita et al. differs from ours in that they understate the
feature selection problem, which was a crucial factor in the high level of play
exhibited by our learning agents.

Finally, Fürnkranz et al. [4] have done initial work using RL techniques to
employ an operational advice system to play hearts. A neural network was used
with TD learning to learn a mapping from state abstraction and action selection
advice to a number of move selection heuristics. This allowed their system to
learn a policy using a very small set of features (15) and little training. However,
this work is still in its preliminary stages and the resulting player exhibited only
minor improvement over the greedy action selection of the operational advice
system on which the learning system was built.

1.3 Reinforcement Learning

In reinforcement learning an agent interacts with an environment by selecting
actions in various states to maximize the sum of scalar rewards given to it by
the environment. In hearts, for example, a state consists of the cards held by
and taken by each player in the game and negative reward is assigned each time
you take a trick with points on it. The environment includes other players as
well as the rules of the game.

The RL approach has strong links to the cognitive processes that occur in the
brain and has proved effective in Robocup soccer [11], industrial elevator control
[15] and backgammon [16]. These learning algorithms were able to obtain near
optimal policies simply from trial and error interaction with the environment in
high dimensional and sometimes continuous valued state and action spaces.

All of the above examples use TD learning [15]. In the simplest form of TD
learning an agent stores a scalar value for the estimated reward of each state,
V (s). The agent selects the action that leads to the state with the highest util-
ity. In the tabular case, the value function is represented as an array indexed
by states. At each decision point or step of an episode the agent updates the

Feature Construction for Reinforcement Learning in Hearts 125

value function according to the observed rewards. TD uses bootstrapping, where
an agent updates its state value with the reward received on the current time
step and the difference between the current state value and the state value on
the previous time step. TD(λ) updates all previously encountered state values
according to an exponential decay, which is determined by λ. The pseudo-code
for TD-learning used in this work is given in Figure 1, where H is the history of
game play and � is the reward (points taken) at the end of an episode.

1.4 Function Approximation

TD(λ) is guaranteed to converge to an optimal solution in the tabular case,
where a unique value can be stored for every state. Many interesting problems,
such as Hearts, have a restrictively large of number states. Given a deck of 52
cards with each player being dealt 13 cards, there are 52!/13!4 = 5.4 × 1028

possible hands in the game. This is, in fact, only a lower bound on actual size
of the state space because it does not consider the possible states that we could
encounter while playing the game. Regardless, we cannot store this many states
in memory, and even if we could, we do not have the time to visit and train in
every state.

Therefore, we need some method to approximate the states of the game. In
general this is done by choosing a set of features which approximate the states
of the environment. A function approximator must map these features into a
value function for each state in the environment. This generalizes learning over
similar states and increases the speed of learning, but potentially introduces a
generalization error as the features will not represent the state space exactly.

One of the simplest function approximators is the linear perceptron. A per-
ceptron2 computes a state value function as a weighted sum of its input features.
Weights w are updated according to the formula:

w ← w + α· errors·φs

given the current state s, current state output error errors, which is provided
by TD learning, and the features of the current state, φs.

Because the output of a perceptron is a linear function of its input, it can only
learn linearly separable functions. Most interesting problems require a nonlinear
mapping from features to state values. In many cases one would use a more
complex function approximator, such as neural networks, radial basis functions,
CMAC tile coding or kernel based regression. These methods can represent a
variety of nonlinear functions.

An alternate approach, which we take, is to use a simple function approxima-
tor with more complicated set of features. We use linear function approximation
for at least three reasons: (1) Linear regression is easy to implement, (2) the
learning rate scales linearly with the number of features, and (3) the learned

2 The computation performed by a perceptron with a real-value output is the same
as in stochastic linear regression, so for the purpose of this work these terms are
interchangeable.

126 N.R. Sturtevant and A.M. White

network weights are easier to analyze. Our results demonstrate that a linear
function approximation is able to learn and efficiently play the imperfect infor-
mation game of Hearts.

Below we illustrate how additional features can allow a linear function approx-
imator to solve a nonlinear task with a simple example [8]. Consider the task of
learning the XOR function based on two inputs. A two-input perceptron can-
not learn this function because XOR is not linearly separable. But, if we simply
augment the network input with an extra input which is the logical AND of the
first two inputs, the network can learn the optimal weights. In fact, all subsets
of n points are always linearly separable in n−1 dimensional space. Thus, given
enough features, a non-linear problem can have a exact linear solution.

2 Learning to Play Hearts

Before describing our efforts for learning in Hearts, we examine the features of
backgammon which make it an ideal domain for TD learning. In backgammon,
pieces are always forced to move forward, except in the case of captures, so games
cannot run forever. The set of moves available to each player are determined by a
dice roll, which means that even from the same position the learning player may
be forced to follow different lines of play in each game, unlike in a deterministic
game such as chess where the exact same game can easily be repeated. Thus,
self-play has worked well in backgammon.

Hearts has some similar properties. Each player makes exactly 13 moves in
every game, which means we do not have to wait long to get exact rewards
associated with play. Thus, we can quickly generate and play large numbers of
training games. Additionally, cards are dealt randomly, so, like in backgammon,
players are forced to explore different lines of play in each game. Another useful
characteristic of Hearts is that even a weak player occasionally gets good cards.
Thus, we are guaranteed to see examples of good play.

One key difference between Hearts and backgammon is that the value of board
positions in backgammon tend to be independent. In Hearts, however, the value
of any card is relative to what other cards have been played. For instance, it is
a strong move to play the 10♥ when the 2-9♥ have already been played. But,
if they have not been played, it is a weak move. This complicates the features
needed to play the game.

2.1 Feature Generation

Given that we are using a simple function approximator, we need a rich set of
features. In the game of Hearts, and card games in general, there are many very
simple features which are readily accessible. For instance, we can have a single
binary feature for each card that each player holds in their hand and for each
card that they have taken (e.g. the first feature is true if Player 1 has the 2♥,
the second is true if Player 1 has the 3♥, etc.). This would be a total of 104
features for each player and 416 total features for all players. This set of features

Feature Construction for Reinforcement Learning in Hearts 127

fully specifies a game, so in theory it should be sufficient for learning, given a
suitably powerful function approximator and learning algorithm.

However, consider a simple question like: “Does player 1 has the lowest heart
left?” Answering this question based on such simple features is quite difficult,
because the lowest heart is determined by the cards that have been played al-
ready. If we wanted to express this given the simple features described above, it
would look something like: “[Player 1 has the 2♥] OR [Player 1 has the 3♥ AND
Player 2 does not have the 2♥ AND Player 3 does not have the 2♥ AND Player 4
does not have the 2♥] OR [Player 1 has the 4♥ ...]”. While this full combination
could be learned by a non-linear function approximator, it is unlikely to be.

Another approach for automatically combining basic game features is GLEM
[2]. GLEM measures the significance of groups of basic features, building mutu-
ally exclusive sets for which weights are learned. This approach is well-suited for
many board games. But, as we demonstrated above, the features needed to play
a card game well are quite complex and not easily learnable. Similar principles
may be used to refine our approach, but we have yet to consider them in detail.

Our approach is to define a set of useful features, which we will call atomic
features. These features are perfect-information features, so they depend on the
cards other players hold. Then we built higher level features by combining these
atomic features together. One set of atomic features used for learning can be
found in Table 3.

Attempting to build manually all useful combinations of the atomic features
would be tedious, error-prone, and time consuming. Instead, we take a more
brute-force approach. Given a set of atomic features, we generate new features
by exhaustively taking all pair-wise AND combinations of the atomic features.
Obviously we could take this further by adding OR operations and negations.
But, to limit feature growth we currently only consider the AND operator.

2.2 Learning Parameters

For all experiments described here we used TD-learning as follows. The value of λ
was set to 0.75. We first generated and played out a game of Hearts using a single
learning player and either three expert search players taken from Sturtevant’s
thesis work [12] (PIE and IIE), or three copies of our learned network for self-
play. In most experiments we report results of playing the hand-tuned evaluation
function (PIE) against the learned network, without Monte-Carlo. Thus, the
expert player’s search and evaluation function took full advantage of the perfect
information provided (player’s hands) and is a fair opponent for our perfect
information learning player. Moves were selected using the maxn algorithm with
a lookahead depth of one to four, based on how many cards were left to play on
the current trick. When backing up values in the search tree, we used our own
network as the evaluation function for our opponents.

To simplify the learned network we only evaluated the game in states where
there were no cards on the current trick. We did not learn in states where all the
points had already been played. After playing a game we computed the reward
for the learning player and then stepped backwards through the game, using

128 N.R. Sturtevant and A.M. White

0 50000 100000 150000 200000
Games

3

3.5

4

4.5

5

A
ve

ra
ge

 s
co

re

QOS Atomic Features
QOS 2X Features
QOS 3X Features
QOS 4X Features

Fig. 2. Learning to not take the Q♠ using various combinations of atomic features.
The break-even point is at 3.25.

TD-learning to update our target output and train our perceptron to predict the
target output at each step. We did not attempt to train using more complicated
methods such as TDLeaf [1].

2.3 Learning to Avoid the Q♠
Our first learning task was to predict whether we would take the Q♠. We trained
the perceptron to return an output between 0 and 13, the value of the Q♠ in
the game. In practice, we cut the output off with a lower bound of 0 + ε and
an upper bound of 13 − ε so that the search algorithm could always distinguish
between states where we expected to take the Q♠ versus states where we already
had taken the Q♠, preferring those where we had not yet taken the queen. The
perceptron learning rate was set to 1/(13 × number active features).

We used 60 basic features, listed in Appendix A, as the atomic features for
the game. Then, we built pair-wise, three-wise and four-wise combinations of
these atomic features. The pair-wise combinations of these features results in
1,830 total features, three-wise combinations of the atomic features results in
34,280 total features, and four-wise combinations of features results in 523,685
total features. But, many of these features are mutually exclusive and can never
occur. We initialized the feature weights randomly between ±1/numfeatures.

The average score of the learning player during training is shown in Figure 2.
This learning curve is performance relative to PIE. Except for the four-wise
features, we did five training runs of 200,000 games against the expert program.
Scores were then averaged between each run and over a 5,000 game window.
With 13 points in each hand, evenly matched players would expect to take 3.25
points per hand. The horizontal line in the figure indicates the break-even point
between the learned and expert programs.

These results demonstrate that the atomic features alone were insufficient for
learning to avoid taking the Q♠. The pair-wise and three-wise features were

Feature Construction for Reinforcement Learning in Hearts 129

Table 1. Features predicting we can avoid the Q♠

Rank Weight Top Features - Predicting we will not take the Q♠
1. -0.103 One of J-2♠ Lead Q♠ player has no other ♠
2. -0.097 One of J-2♠ No ♥ Lead Q♠ player has no other ♠
3. -0.096 Two of J-2♠ We have K♠ Q♠ player has two other ♠.
4. -0.093 One of J-2♠ No ♣ Lead Q♠ player has no other ♠
5. -0.090 One of J-2♠ No ♦ Lead Q♠ player has no other ♠
148. -0.040 One of J-2♠ We have Q♠ Lead player has no ♠

Table 2. Features predicting we will take the Q♠

Rank Weight Top Features - Predicting we will take the Q♠
1. 0.125 We have Q♠ One of J-2♠ Lead
2. 0.123 We have Q♠ One of J-2♠
3. 0.117 We have Q♠ No ♣ No ♥ Lead
4. 0.116 Only A/K/Q♠ Lead
5. 0.112 We have Q♠ No ♣ No ♥ No ♦

also insufficient, but are better than the atomic features alone. The four-wise
combinations of features, however, are sufficient to beat the expert program.

The features which best predict avoiding the Q♠ are shown in Table 1. This
player actually uses all atomic, pair-wise, three-wise, and four-wise features, so
some of the best features in this table only have three atomic features. Weights
are negative because they reduce our expected score in the game.

There are a few things to note about these features. First, we can see that
the highest weighted feature is also one learned quickly by novice players: If
the player with the Q♠ has no other spades and we can lead spades, we are
guaranteed not to take the Q♠. In this case, leading a spade will force the Q♠
onto another player.

Because we have generated all four-wise combinations of features, and this
feature only requires three atomic features to specify, we end up getting the
same atomic features repeated multiple times with an extra atomic features
added. The features ranked 2, 4, and 5 are copies of the first feature with one
extra atomic feature added. The 148th ranked feature should seem odd, but
we will explain it when looking at the features that predict that we will take
the Q♠.

The features that best predict taking the Q♠ are found in Table 2. These
features are slightly less intuitive. We might expect to find symmetric versions
of the features from Table 1 in Table 2 (e.g., we have a single Q♠ and the player
to lead has spades). This feature is among the top 300 (out of over 500,000)
features, but not in the top five features.

What is interesting about Table 2 is the interactions between features. Again,
we see that the atomic features which make up the 2nd ranked feature are a
subset of the highest ranked feature. In fact, these two atomic features appear
259 times in the top 20,000 features. They appear 92 times as part of a feature

130 N.R. Sturtevant and A.M. White

Table 3. Atomic Features Used to Learn the Q♠. Unless explicitly stated, all features
refer to cards in our hand. The phrase “to start” refers to the initial cards dealt. “Exit”
means we have a card guaranteed not to take a trick. “Short” means we have no cards
in a suit. “Backers” are the J-2♠. “Leader” and “Q♠ player” refers to another player
besides ourself.

we have A♠ we have K♠ we have Q♠
≥5 spades besides AKQ♠ 0 spades besides AKQ♠ 1 spades besides AKQ♠
2 spades besides AKQ♠ 3 spades besides AKQ♠ 4 spades besides AKQ♠
≥ 3 diamonds to start 0 diamonds to start 1 diamonds to start
2 diamonds to start currently short diamonds currently not short diamonds
opponent short diamonds exit in diamonds ≥ 3 clubs to start
0 clubs to start 1 clubs to start 2 clubs to start
currently short clubs currently not short clubs opponent short clubs
exit in clubs ≥ 3 hearts to start 0 hearts to start
1 hearts to start 2 hearts to start currently short hearts
currently not short hearts opponent short hearts exit in hearts
we have single Q♠ we have single A♠ we have single K♠
we have lead Q♠ player has 0 backers Q♠ player has 1 backers
Q♠ player has 2 backers Q♠ player has ≥3 backers Q♠ player has 0 shorts
Q♠ player has 1 shorts Q♠ player has 2 shorts Q♠ player has 3 shorts
Q♠ player has short diamonds Q♠ player has short clubs Q♠ player has short hearts
leader short spades leader short diamonds leader short clubs
leader short hearts leader not short spades leader not short diamonds
leader not short clubs leader not short hearts we have forced high spade
we have forced high diamond we have forced high club we have forced high heart

which decreases the chance of us taking the Q♠, while 167 times they increase
the likelihood.

We can use this to explain what has been learned. Having the Q♠ with only
one other spade in our hand means we are likely to take the Q♠ (feature 2 in
Table 2). If we also have the lead (feature 1 in Table 2), we are even more likely
to take the Q♠. But, if someone else has the lead, and they do not have spades
(feature 148 in Table 1), we are much less likely to take the Q♠.

The ability to do this analysis is one of the benefits of putting the complexity
into the features instead of the function approximator. If we rely on a more
complicated function approximator to learn weights, it is very difficult to analyze
the resulting network. Because we have simple weights on more complicated
features it is much easier to analyze what has been learned.

2.4 Learning to Avoid Hearts

We used similar methods to predict how many hearts we would take within
a game, and learned this independently of the Q♠. One important difference
between the Q♠ and points taken from hearts is that the Q♠ is taken by one
player all at once, while hearts are gradually taken throughout the course of the
game. To handle this, we removed 14 Q♠ specific features and added 42 new
atomic features to the 60 atomic features used for learning the Q♠. The new
features were the number of points (0-13) taken by ourselves, the number of
points taken (0-13) by all of our opponents combined, and the number of points
(0-13) left to be taken in the game.

Given these atomic features, we then trained with the atomic (88), pair-
wise (3,916) and three-wise (109,824) combinations of features. As before, we

Feature Construction for Reinforcement Learning in Hearts 131

0 50000 100000 150000 200000
Games

2.75

3

3.25

3.5

3.75

4

A
ve

ra
ge

 s
co

re

Atomic Hearts Features
2X Hearts Features
3X Heats Features

Fig. 3. Learning to not take the Hearts using various combinations of atomic features

present the results averaged over five training runs (200,000 games each) and
then smoothed over a window of 5,000 games. The learning graph for this train-
ing is shown in Figure 3. An interesting feature of these curves is that, unlike
learning the Q♠, we are already significantly beating the expert with the two-
wise features set. It appears that learning to avoid taking hearts is a bit easier
than avoiding the Q♠. However, when we go from two-wise to three-wise fea-
tures, the increase in performance is much less. Because of this, we did not try
all four-wise combinations of features.

2.5 Learning Both Hearts and the Q♠
Given two programs that separately learned partial components of the full game
of Hearts, the final task is to combine them together. We did this by extracting
the most useful features learned in each separate task, and then combined them
to learn to play the full game. The final learning program used the top 2,000
features from learning to avoid hearts and the top 10,000 features used when
learning to avoid the Q♠.

We tried training this program in two ways: first, by playing against PIE,
and second, by self-play. During this training shooting the moon was disabled.
The first results are plotted in Figure 4(a). Instead of plotting the learning
curve, which is uninteresting for self-play, we plot the performance of the learned
network against the expert program. We did this by playing games between the
networks that were saved during training and the expert program. For two player
types there are 16 ways to place those types into a four-player game, however
two of these ways contain all learning players or all expert players. 100 games
were played for each of the 14 possible arrangements for a total of 1400 hands
played for each data point in the curve.

There are 26 points in the full game, so the break-even point, indicated
by a horizontal line, falls at 6.5 points. Both the self-trained player and the

132 N.R. Sturtevant and A.M. White

0 50000 100000 150000 200000 250000 300000
Games

6

7

8

9

A
ve

ra
ge

 s
co

re

Expert Trained
Self-Play Trained

0 25000 50000 75000 100000 125000
Games

6

7

8

A
ve

ra
ge

 s
co

re

Expert trained player
Self-play trained player

(a) (b)

Fig. 4. (a) Performance of expert-trained and self-trained player against the expert.
(b) Performance of self-trained and expert-trained programs against each other.

expert-trained player learn to beat the expert by the same rate, about 1 point
per hand.

In Figure 4(b) we show the results from taking corresponding networks trained
by self-play and expert-play and playing them in tournaments against each other.
(Again, 1400 games for each player type.) Although both of these programs beat
PIE program by the same margin, the program trained by self play managed to
beat PIE by a large margin; again about 1 point per hand.

While we cannot provide a decisive explanation for why this occurs, we spec-
ulate that the player which only trains against the expert does not sufficiently
explore different lines of play, and so does not learn to play well in certain situa-
tions of the game where the previous expert always made mistakes. The program
trained by self-play, then, is able to exploit this weakness.

2.6 Imperfect Information Play

Given the learned perfect-information player, we then played it against IIE. For
these tests, shooting the moon was enabled. Both programs used 20 Monte-
Carlo models and analyzed the first trick of the game in each model (up to 4
ply). When just playing single hands, the learned player won 56.9% of the hands
with an average score of 6.35 points per hand, while the previous expert program
averaged 7.30 points per hand. When playing full games (repeated hands to 100
points), the learned player won 63.8% of the games with an average score of 69.8
points per game as opposed to 81.1 points per game for IIE.

3 Conclusions and Future Work

The work presented in this paper presents a significant step in learning to play
the game of Hearts and in learning for multi-player games in general. We have
shown that a search-based player with a learned evaluation function can learn
to play Hearts using a simple linear function approximator and TD-learning

Feature Construction for Reinforcement Learning in Hearts 133

with either expert-based training or self-play. Furthermore, our learned player
beat one of the best-known programs in the world in the imperfect information
version of Hearts.

There are several areas of interest for future research. First, we would like to
extend this work to the imperfect information game to see if the Monte-Carlo
based player can be beat. Next, there is a question of the search algorithm used
for training and play. There are weaknesses in maxn analysis that soft-maxn [13]
addresses; the paranoid algorithm [14] could be used as well.

Our ultimate goal is to play the full game of Hearts well at an expert level,
which includes passing cards between players and learning to prevent other play-
ers from shooting the moon. It is unclear if just learning methods can achieve
this or if other specialized algorithms may be used to tasks such as shooting the
moon. But, this work is the first step in this direction.

Acknowledgments

We would like to thank Rich Sutton, Mark Ring, and Anna Koop for their feed-
back and suggestions regarding this work. The work was supported by Alberta’s
iCORE, the Alberta Ingenuity Center for Machine Learning, and NSERC.

References

1. Baxter, J., Trigdell, A., Weaver, L.: Knightcap: a Chess Program that Learns by
Combining TD(λ) with Game-Tree Search. In: Proc. 15th International Conf. on
Machine Learning, pp. 28–36. Morgan Kaufmann, San Francisco, CA (1998)

2. Buro, M.: From Simple Features to Sophisticated Evaluation Functions. In: van
den Herik, J., Iida, H. (eds.) CG 1998. LNCS, vol. 1558, pp. 126–145. Springer,
Heidelberg (1999)

3. Fujita, H., Ishii, S.: Model-based Reinforcement Learning for Partially Observable
Games with Sampling-based State Estimation. In: Advances in Neural Information
Processing Systems, Workshop on Game Theory, Machine Learning and Reasoning
under Uncertainty (2005)

4. Fürnkranz, J., Pfahringer, B., Kaindl, H., Kramer, S.: Learning to Use Operational
Advice. In: Proc. of the 14th European Conference on A.I. (2000)

5. Ginsberg, M.: GiB: Imperfect Information in a Computationally Challenging Game
(2001)

6. Kuvayev, L.: Learning to Play Hearts. In: Proceedings of the 14th National Con-
ference on Artificial Intelligence (AAAI-97) (1997)

7. Luckhardt, C., Irani, K.: An Algorithmic Solution of N-Person Games. In: AAAI-
86, vol. 1, pp. 158–162 (1986)

8. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
9. Perkins, T.: Two Search Techniques for Imperfect Information Games and Appli-

cation to Hearts. University of Massachusetts Technical Report, pp. 98–71 (1998)
10. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.

Prentice-Hall, Englewood Cliffs, NJ (2002)
11. Stone, P., Sutton, R.S.: Scaling Reinforcement Learning toward RoboCup Soccer.

In: Proc. 18th ICML, pp. 537–544. Morgan Kaufmann, San Francisco,CA (2001)

134 N.R. Sturtevant and A.M. White

12. Sturtevant, N.R.: Multi-Player Games: Algorithms and Approaches. PhD thesis,
Computer Science Department, UCLA (2003)

13. Sturtevant, N.R., Bowling, M.H.: Robust Game Play against Unknown Opponents.
In: AAMAS-2006, pp. 713–719 (2006)

14. Sturtevant, N.R., Korf, R.E.: On Pruning Techniques for Multi-Player Games. In:
AAAI-2000 (2000)

15. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge (1998)

16. Tesauro, G.: Temporal Difference Learning and TD-Gammon. Communications of
the ACM 38(3), 58–68 (1995)

A Skat Player Based on Monte-Carlo Simulation

Sebastian Kupferschmid and Malte Helmert

Institut für Informatik
Albert-Ludwigs-Universität, Freiburg, Germany

{kupfersc,helmert}@informatik.uni-freiburg.de

Abstract. We apply Monte-Carlo simulation and alpha-beta search to
the card game of Skat, which is similar to Bridge, but sufficiently dif-
ferent to require some new algorithmic ideas besides the techniques
developed for Bridge. Our Skat-playing program, called DDS (Double
Dummy Solver), integrates well-known techniques such as move ordering
with two new search enhancements. Quasi-symmetry reduction general-
izes symmetry reductions, disseminated by Ginsberg’s Partition Search
algorithm, to search states which are “almost equivalent”. Adversarial
heuristics generalize ideas from single-agent search algorithms like A∗ to
two-player games, leading to guaranteed lower and upper bounds for the
score of a game position. Combining these techniques with state-of-the-
art tree-search algorithms, our program determines the game-theoretical
value of a typical Skat hand (with perfect information) in 10 milliseconds.

1 Introduction

Although mostly unknown in the English-speaking world, the game of Skat is
the most popular card game in continental Europe, surpassed in world-wide
popularity only by Bridge and Poker. With about 30 million casual players and
about 40,000 people playing at a competitive level, Skat is mostly a German
phenomenon, although national associations exist in twenty countries on all six
inhabited continents. It is widely considered the most interesting card game for
three players.

Despite its popularity, Skat has not been studied extensively by the AI com-
munity. This is not due to a lack of challenge, as Skat is definitely a game of
skill: significant experience is required to reach tournament playing strength. So
far, all existing computer implementations play rather poorly. In this paper, we
explore how an existing approach for playing Bridge, Monte-Carlo simulation
using a fast solver for perfect information games, can be applied to the game of
Skat.

The paper is structured as follows. Section 2 briefly introduces the rules of
Skat. In Section 3, we review the idea of Monte-Carlo simulation for card games.
Section 4 describes the general architecture of DDS (Double Dummy Solver), is
followed by the central Section 5, which describes a fast algorithm for computing
the outcome of Skat games with perfect information. Section 6 presents empirical
results and Section 7 provides an estimation of the playing strength of the overall
system. Moreover, directions for future research are given.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 135–147, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

136 S. Kupferschmid and M. Helmert

2 Skat

Skat is a three-player game played with 32 cards, a subset of the usual Bridge
deck. At the beginning of a game, each player is dealt ten cards, which must
not be shown or communicated to the other players. The remaining two cards,
called the skat, are placed face down on the table. Like in Bridge, each hand is
played in two stages, bidding and card play.

The bidding stage determines the alliances for this hand: the successful bidder,
henceforth called the declarer, plays against the other two. Often, several players
compete to become the declarer. In this event, the winner of the bidding process
mostly depends on the number of jacks a player holds, and on their suits. Players
may also improve their bids by declaring some special contracts (such as hand,
schneider, and schwarz games), but these are nuances that we will not discuss
further. We point out that, different to Bridge, bidding does not have a significant
influence on the number of tricks needed to win the deal, with some minor
exceptions.

We will not explain the bidding process further and refer to the official rules
[7] for details. The declarer decides on the kind of game, for which there are six
possibilities: (1) grand games, (2) null games, and (3-6) suit games for each of
the four suits (♣, ♠, ♥, ♦).

Card play proceeds as in Bridge, except that the trumps and card ranks are
different. In grand games, the four jacks are the only trumps. In suit games, the
four jacks and the seven other cards of the selected suit are trumps. There are
no trumps in null games. Non-trump cards are grouped into suits as in Bridge.
Each card has an associated point value between 0 and 11, and the declarer
must score more points than the opponents (i.e., at least 61 points) to win.
Null games are an exception and follow misère rules: the declarer wins iff he
scores no trick. Trumps, ranks, and point values of the cards are illustrated in
Fig. 1.

Before declaring the game, the declarer may pick up the skat and then discard
any two cards from his hand, face down. These cards count towards the declarer’s
score.

Ranks

Grand games ♣J, ♠J, ♥J, ♦J (trumps)
A, 10, K, Q, 9, 8, 7 (non-trumps)

Suit games ♣J, ♠J, ♥J, ♦J, A, 10, K, Q, 9, 8, 7 (trumps)
A, 10, K, Q, 9, 8, 7 (non-trumps)

Null games A, K, Q, J, 10, 9, 8, 7

Point values

A: 11, 10: 10, K: 4, Q: 3, J: 2, 9: 0, 8: 0, 7: 0

Fig. 1. Ranks and point values of Skat cards. Higher ranking cards are listed further
to the left.

A Skat Player Based on Monte-Carlo Simulation 137

3 Monte-Carlo Simulation

The main algorithmic problem when dealing with card games like Bridge or
Skat is uncertainty. For perfect-information games like Chess, efficient algorithms
exist that could be readily applied if it were not for the fact that the opponents’
cards are hidden. In fact, the state space of these card games is comparatively
small, and it is not too difficult to compute an optimal strategy with knowledge
of the deal. However, taking randomness into account is much more challenging
(cf. the work by Koller and Pfeffer [9]).

Monte-Carlo approaches, first proposed in this context by Levy [11] and later
implemented by Ginsberg [6] in his Bridge-playing program GIB, reduce the
problem to the perfect information case using the following strategy: whenever
the computer player is asked to play a card, it generates a set of deals which are
consistent with previous play. Each of these deals is then completely analyzed
by a fast solver for perfect information games. In theory, this can be done with a
traditional alpha-beta search engine. The results of these analyses are then used
to vote on the card to play in the actual (uncertain) game.

The Monte-Carlo approach has two fundamental problems. The first problem
is that the samples might not be representative of the real card distribution.
This is not so much caused by the fact that only a limited number of deals are
analyzed, because the law of large numbers guarantees that this statistical error
can be made arbitrarily small. The real issue is that not all deals should be
generated with equal probability, because different distributions are not equally
plausible given the previous course of play.

To reflect this, we would need to take into account the conditional probability
that an opponent will play a given card given a certain deal and previous play.
For example, if the declarer starts the game with ♣A and the other players
follow suit with ♣7 and ♣10, it is highly unlikely that the third player still holds
a clubs card (except for ♣J, which is part of the trump suit, not the clubs suit).
However, it is difficult to quantify information of that kind, both in theory and
in practice.1

The second fundamental problem of the Monte-Carlo approach is that even
if all possible deals are analyzed and the conditional probabilities are correct,2

the algorithm does not play perfectly. Intuitively, the reason for this is the fact
that the correct card to play may depend on information that the player cannot
possibly know. Formally, this problem is discussed extensively by Frank and
Basin [4].

Despite these fundamental limitations, Monte-Carlo-based approaches have
been successful in the Computer Bridge world. Indeed, most current systems
rely on sampling methods to some extent. We believe that they should be at
least as effective for Computer Skat, and possibly more so, because the bidding
phase of a Skat game allows for much less information gathering than in Bridge.
1 Mixed-Strategy Nash Equilibria are the most commonly applied theoretical solution

concept for such games [12].
2 This condition requires an exact mental model of the opponents, and is thus not

practically possible for human opposition.

138 S. Kupferschmid and M. Helmert

4 General Architecture

Our Skat player consists of two parts, a bidding engine and a card play engine.
The bidding engine is responsible for determining the highest bid that the player
is willing to make and for deciding which two cards to discard in case it wins the
bid. The card play engine is responsible for the actual card play after the game
has been declared. At its core is a fast algorithm for solving Skat games with
perfect information. We call this component DDS, the double dummy solver.
The name is borrowed from Bridge terminology, even though the term dummy
is Bridge-specific. DDS is explained in Section 5, while the rest of this section is
dedicated to the bidding and card play engines.

4.1 Bidding Engine

In theory, it is possible to implement the bidding engine by Monte-Carlo sam-
pling using the following strategy. First, select N random deals. Then, for each of
the six kinds of games and each possible way of discarding two cards, query the
double dummy solver to decide whether or not the game can be won. However,
this requires 6 · (12

2

) · N = 396N queries, which is prohibitively high even for a
modest number of samples.

Typically, the choice of cards to discard is straightforward, as most candidates
can be eliminated by simple rules of thumb. A mixed approach that computes
Monte-Carlo samples for each kind of game and implements rules for discarding
requires only 6N queries.

We have instead adopted a completely rule-based approach for both bidding
and discard procedure. The rules were generated by the following learning algo-
rithm. First, we used DDS to analyze 126,000 deals, where both the discarded
cards and the kind of game were randomized. For each of the resulting hands of
the computer player, the algorithm evaluated a number of hand-crafted features,
e.g., number of jacks and length of each suit, and paired these with the outcome
of the game (1 for win or 0 for loss). Then, a Least Mean Squares algorithm fitted
a linear function from the feature space to the real numbers. The resulting success
estimator was supposed to estimate the winning probability given the features of
a hand. It was then used in place of DDS in the bidding stage of the game, so
that instead of 396N calls to DDS, a corresponding number of computations of
the success estimate was needed, which could be computed sufficiently fast.

Regrettably, the resulting bidding behavior leaves something to be desired.
Although reasonable choices were made most of the time, some decisions were
truly puzzling. While we do not discuss the bidding engine further, as this part
contains no technical innovations and requires some domain knowledge for un-
derstanding the choice of features, we note that it is currently the Achilles heel
of the Skat player.

4.2 Card Play Engine

As noted before, the card play engine is based on Monte-Carlo simulations using
DDS. In Ginsberg’s GIB, a score is calculated for each card and each sample

A Skat Player Based on Monte-Carlo Simulation 139

deal. The algorithm plays the card with the highest average score. A similar
scheme can be used for Skat. Yet, it is not immediately clear how the score
should be measured. Counting the point total achieved by the computer player
is not reasonable, since playing a card that reliably achieves a point total of 65
(and thus a win) is preferable to playing a card that leads to a total of 80 most
of the time but rarely drops to 55 (and thus a loss).

However, simply counting whether or not the deal is won is also problematic,
as there is no incentive for the algorithm to win the game by a score of 100:20,
rather than, say, 63:57. Thus it will willingly give away points to the opponent
as long as it does not see its victory endangered.3 Because of statistical error
and the inaccuracies of Monte-Carlo methods mentioned earlier, this can lead to
situations where an easy victory is cast away lightly.

To avoid both problems, we follow a combined approach. Winning a hand is
most important, so the set of winning cards of each sample deal is computed first.
Those cards which win a maximal number of sample deals are further analyzed
by computing the average point total across all sample deals. The card play
engine finally selects a card which maximizes this value. This leads to card play
that prefers safety to point accumulation, but accumulates points where safely
possible.

To support this approach, DDS can run in a fast qualitative mode, in which
it only determines whether a given card is a winner, and in a slower quantitative
mode, in which it computes exact scores for cards. We describe these in the
following section. Null games are always solved in qualitative mode as they end
as soon as the declarer wins a trick. They are not computationally challenging
and we do not describe them further, assuming grand or suit games in the
following.

5 Double Dummy Solver

When running in qualitative mode, DDS uses a zero-window alpha-beta search to
determine whether the score for the declarer when playing a given card is at least
61. When running in quantitative mode, DDS uses the MTD framework proposed
by Plaat et al. [14]. Specifically, we employ the MTD(0) algorithm: First, we de-
termine whether the declarer can achieve a single point. If the answer is positive,
a new search determines whether he can achieve two points4, three points, and
so on, until the answer is negative. Although it is somewhat counter-intuitive
that this procedure should be an improvement over standard alpha-beta search,
the higher number of cut-offs, combined with the use of a transposition table
for storing intermediate results, usually makes it much faster. Most recomputa-
tions of subtree values only require a transposition table lookup, reducing the
3 This is a general problem for game- playing algorithms searching to the end of

the game. Schaeffer reports similar “unreasonable” behavior in his checkers-playing
program Chinook, which uses perfect endgame databases. The Chinook team went
to some lengths to change this behavior Chinook.

4 This is actually redundant, as scores of 1 or 119 are impossible.

140 S. Kupferschmid and M. Helmert

def search(p):

if p isa leaf position:

return p.declarer score ≥ 61

else if p isa declarer node:

for q in succ(p):

if search(q) = true:

return true

return false

else:

for q in succ(p):

if search(q) = false:

return false

return true

Fig. 2. Basic search algorithm

cost of re-search. In our experiments, zero-window search outperformed standard
alpha-beta by an order of magnitude when using a transposition table.

Therefore, regardless of mode, in the following we can assume that we are
conducting a zero-window search. For clarity of presentation, we will only con-
sider the most common search window [60, 61], although other search bounds
do occur in quantitative mode. The basic search algorithm, without any search
enhancements, is shown in Fig. 2. In the rest of this section, we discuss four
enhancements to the basic search algorithm which lead to significant speed-ups,
concluding our presentation with a refined search algorithm that includes all
enhancements.

5.1 Transposition Table

The first and obvious enhancement to Fig. 2 is the use of a transposition table.
However, using a transposition table efficiently in this setting requires some care.
At every stage of the game, the current position can be adequately represented
by the player to move, the remaining cards, the cards in the current trick (if
any), and the running score, i.e., the number of points won by the declarer in
previous tricks. The running score is an important part of the position because
it influences the evaluation of the position (win/loss and exact point value).
However, it has no effect on the optimal strategy for the rest of the game, the
subgame rooted at this position in game theory terminology.

Therefore, to keep the transposition table small and to allow as many lookups
as possible, it is desirable not to consider the running score a part of the posi-
tion information. This means that it is not sufficient to store win/loss values in
the transposition table, not even for the qualitative solver: a subgame in which
the declarer can achieve 40 points can be either a win or a loss, depending on
the running score as this subgame is reached. Thus, the transposition table must
always store exact point values or bounds on exact values, not boolean results.

Using transposition tables in this way, we have a simple cut-off criterion for
search nodes: a subgame is not searched further if (1) the transposition table

A Skat Player Based on Monte-Carlo Simulation 141

shows that the total of the running score and the lower bound on the future
score is at least 61, or (2) the total of the running score and the upper bound
on the future score is at most 60.

5.2 Move Ordering

It is commonly known that alpha-beta search performance is drastically influ-
enced by the order in which the different move alternatives are considered [13].

Typical implementations of alpha-beta search use three heuristics for finding
a good ordering, i.e., one where an optimal move is considered early: transpo-
sition table moves, history heuristic, and killer heuristic. All these techniques
are roughly based on the idea that a move which is good in a certain context
is often good in other contexts. We have implemented the first of these tech-
niques. If playing a certain card leads to a cut-off in some subgame, this card
is always considered first when this subgame is later reexamined with different
search bounds.

The remaining cards are ordered with the aim of reducing branching. If there
is currently no card on the table, we prefer playing a suit of which the other
players hold at least one card (so that they must follow suit), but only few cards
(so that their choice is limited). More to the point, for each card we multiply
the number of allowed answers for the other two players, preferring cards which
minimize this value. Within a suit, cards of higher rank are preferred.

In our experiments, this ordering heuristic reduces the average number of
investigated search nodes by a factor of 3.45, while reducing the average search
time by a factor of 3.02, compared to the original, arbitrary move ordering. We
analyze the impact of move ordering in more detail in Section 6, together with
the effect of the other search enhancements introduced now.

5.3 Quasi-symmetry Reduction

Ginsberg reports that his Bridge-playing program GIB [6] is accelerated by an
order of magnitude by replacing alpha-beta search with his Partition Search
algorithm [5]. Partition Search aims at increasing the number of subgames that
can be solved by transposition table lookups. It does so by not storing single
game positions but equivalence classes of game positions in the transposition
table. This is very effective in Bridge as the number of equivalent positions can
be expected to be high.

Many of the equivalences of Bridge positions are due to the fact that only the
relative rank of cards is important for determining optimal play; the absolute
rank is irrelevant. We say that two cards held by the same player are rank-
equivalent iff they are in the same suit and no card on the table or in another
player’s hand is ranked between them.

Unfortunately, unlike Bridge, it is usually the case in Skat games that all
rank-equivalent cards must be considered because of different point values. In
a Bridge game, a player that holds both ♠K and ♠Q need never play the king
before the queen (or vice versa). The same is not true of a Skat position. For

142 S. Kupferschmid and M. Helmert

example, if the player can win the trick playing the king, eventually winning the
deal by a margin of 61:59 points, playing the queen instead might lose the deal.
Especially if the difference in value between the two cards is greater than one,
for example in the case of ♠10 and ♠K, the lines of play that begin with these
cards often look completely different.

However, it can be proven that if two cards are rank-equivalent, then the
difference between the values of the subgames started by playing either of these
cards is bounded by their difference in point value [10]. Thus, if we can prove
that playing ♠10 results in a declarer score of 72 and ♠K is no longer in play,
then playing ♠Q results in a declarer score in the interval [65, 79], since in this
situation ♠10 and ♠Q are rank-equivalent, and the difference in point value is
10 − 3 = 7.

We use rank-equivalence for a technique we call quasi-symmetry reduction,
which decreases the branching factor of interior nodes of the search tree. When-
ever the search algorithm considers playing a card c which is rank-equivalent to
a previously considered card c′, we fetch the transposition table entry for the
position reached by playing c′ and check if there is any hope in playing c instead
of c′. For example, if the transposition table shows that playing ♠Q at some
declarer node yields at most 57 points, then playing ♠K can yield at most 58
points, so that the move need not be considered.

In our experiments, exploiting quasi-symmetries significantly reduces the
number of search nodes. However, much of this gain is countered by an increased
cost per node for rank-equivalence checking and transposition table lookups. The
most efficient version of the algorithm, which is the one we report on, only ex-
ploits quasi-symmetries for cards of which the point values differ by at most
one.

In our experiments, quasi-symmetry reduction reduces the average number of
search nodes by a factor of 2.38 and average running time by a factor of 2.03.

5.4 Adversarial Heuristics

As a final search enhancement, the double dummy solver uses a forward pruning
technique which we will now describe. In Section 5.1, we explained that whenever
a position is re-explored during search, the search algorithm fetches a lower
bound L and upper bound U on the declarer score in this subgame from the
transposition table. If M is the running declarer score, then the subgame is not
searched further if M + L ≥ 61 or M + U ≤ 60. Our forward pruning technique
extends this early termination check to positions which are not present in the
transposition table. To this end, we must compute (preferably narrow) bounds
L and U for arbitrary subgames.

How can such bounds be calculated? In single-agent search problems, lower
bounds on the actual search cost are typically computed by relaxing the problem
at hand, i.e., by increasing the set of allowed moves. For example, the minimal
weighted matching heuristic for Sokoban [8] can be interpreted as the length of
an optimal solution to a relaxed problem where boxes may be moved to adjacent
empty squares regardless of the position of the man. The Manhattan heuristic

A Skat Player Based on Monte-Carlo Simulation 143

for the n2 − 1 puzzle can be similarly understood as the length of an optimal
solution to a relaxed problem where tiles may always be moved to adjacent
positions, even if these are occupied.

When extending these ideas to an adversarial search context, care must be
taken to reflect correctly the role of the MAX and MIN players. For any given
subgame, we can compute an upper bound to the score of the MAX player by
extending the set of possible moves for MAX and/or reducing the set of possible
moves for MIN. Conversely, a lower bound can be computed by extending the
set of possible moves for MIN and/or reducing the set of possible moves for
MAX. Any such modification leads to correct bounds that can be exploited
during search without compromising the validity of the search in any way, unlike
common forward pruning techniques such as null-move pruning in Chess or
Buro’s ProbCut [3] in Othello. We call bounds derived in such a way adversarial
heuristics because of their similarity to heuristics used in single-agent (non-
adversarial) search.

The key to good adversarial heuristics is modifying the sets of allowed moves
in such a way that the resulting bounds are reasonably narrow, but cheap to
compute. For lower bounds on the declarer score in Skat, the following two
modifications of the game rules satisfy this criterion.

1. The declarer may only play cards that are guaranteed to win the trick. If this
means that he has no legal moves, the opponents may claim the remaining
points.

The rationale between this modification is that the optimal strategy for the
opponents becomes difficult to compute once they are able to control the game.
We eliminate this expensive computation by requiring the declarer to force the
game.

2. In addition to normal moves, an opponent may swap the point values of two
cards in his hand before playing a card, provided that the two cards are in
the same suit.

This modification eliminates a strategic dilemma for the opponents. In some
situations, it is difficult to decide whether they should play a card of minimal
point value or minimal rank. For example, consider a diamonds game where the
declarer plays ♣J and is thus guaranteed to win the trick. The first opponent
holds two trumps, ♥J and ♦A. In some situations, it is preferable to play ♥J ,
only losing two points to the declarer. In other situations, it is better to play
♦A, losing eleven points to the declarer but keeping the higher-ranked card in
order to win a trick later. In the modified game, the best reply is obvious: swap
the point values of the ace and jack, so that the ace is worth two points and the
jack is worth eleven points, then play the ace.

We point out that swapping the point values of cards is rarely needed, because
rank ordering and point value ordering are consistent for all non-trump suits, and
in the case of grand games even for the trump suit. Thus, the second modification
does not usually have a large impact on the quality of the bounds.

144 S. Kupferschmid and M. Helmert

def search(p):

if p isa leaf position:

return p.declarer score ≥ 61

else if p isa declarer node:

if p in transposition table:

(L, U) := transposition table(p)

else:

(L, U) := adversarial heuristics(p)

if M + L ≥ 61:

return true

if M + U ≤ 60:

return false

for q in order moves(succ(p)):

if q ∼ q’ for q’ considered earlier:

(L’,U’) := transposition table(q’)

if M + U’ + δ(q,q’) ≤ 60:

continue

if search(q) = true:

return true

return false

else:

... {analogous to declarer node case}

Fig. 3. Search algorithm with all search enhancements; δ(q, q′) denotes the point dif-
ference between the two cards being played. We omit some details like updating the
transposition table, which are handled in the standard way.

An experienced Skat player will notice that computing an optimal strategy in
the modified game is almost trivial, except for situations where an opponent need
not follow suit. Indeed, the value of a game position in the modified game can be
computed in time O(N), where N is the number of remaining cards. For details
on how this can be done, we refer to the first author’s master’s thesis [10]. Similar
ideas can be applied to obtain upper bounds on the declarer score. However, this
case is slightly more complicated, so we refer to [10] again for details.

In our experiments, using adversarial heuristics reduces the average number
of search nodes by a factor of 1.80 and the average run time by a factor of 1.58.
The complete search algorithm, including all enhancements, is shown in Fig. 3.

6 Experiments

In Section 5, we described the implementation of DDS, focusing on three central
search enhancements: move ordering, quasi-symmetry reduction, and adversarial
heuristics. In this section, we provide a more detailed empirical analysis of the
performance gains offered by these features.

In practice, it is not sufficient to consider the effectiveness of a search enhance-
ment in isolation. It is quite possible that a given enhancement leads to a drastic

A Skat Player Based on Monte-Carlo Simulation 145

improvement in run time by itself, but offers no gain when implemented together
with other features. For this reason, we evaluated all possible combinations of
move ordering (MO), quasi-symmetry reduction (QR) and adversarial heuristics
(AH), including the empty set. All configurations used a transposition table.

Table 1. Mean value, standard deviation and median of node count and running time
for 100,000 randomly generated Skat games

Features Nodes × 1,000 Run time in seconds
MO QR AH Mean St.dev. Median Mean St.dev. Median

2,772 8,853 181 0.84 3.11 0.04
× 804 3,669 29 0.28 1.42 0.01

× 1,163 3,457 102 0.41 1.36 0.03
× 1,538 5,223 57 0.53 2.02 0.02

× × 317 1,499 17 0.12 0.65 0.01
× × 626 3,182 12 0.20 1.10 0.01

× × 658 2,152 34 0.25 0.87 0.01
× × × 244 1,300 7 0.11 0.60 0.01

Table 1 shows that the three enhancements work well in combination. Al-
though the speedups are not completely orthogonal, each of the three features
is a useful addition to all configurations without it. The results are based on
100,000 randomly generated suit games. Grand games are easier, null games
much easier to solve. The high standard deviations and low medians show that
the results are far from being normally distributed. Most deals are solved very
quickly, but occasional outliers heavily influence the average case performance.

None

MO QR AH

MO
QR

MO
AH

QR
AH

All

3.45

2.
38

1.80

2.
53

1.28 3.67 1.77 2.45

2.
34

1.30

2.
56 2.70

Fig. 4. Node count reductions for the various search enhancements

Fig. 4 depicts a lattice illustrating the usefulness of adding each feature to
any configuration. The arrow labels show the reduction of average node count
achieved when going from one configuration to another. The figure shows that
there are some diminishing returns, but the general picture is quite positive.

146 S. Kupferschmid and M. Helmert

7 Results and Future Directions

We have shown that by enhancing a state-of-the-art game-playing algorithm
with a number of suitable search enhancements, it is possible to build a fast
double dummy solver for the game of Skat (called DDS). Of course, in practice
we are not just interested in the performance of DDS, but also in the quality of
play of the overall system.

This is somewhat harder to quantify because such experiments are difficult to
automate. We played 18 games against human and machine opposition. Against
two human players of moderate strength, the system ended on a close second
place. Post-mortem analysis revealed flawless card play but improvable bidding
behavior. Against two computer players5 the system played very convincingly,
winning every single game when it played as a declarer and all games but one
when it played in the opposing side [10].

The first logical next step for future work is to improve the bidding engine. In
theory, the general approach of learning rules from a set of features and self-play
data seems reasonable. However, our choice of features and learning algorithm
might not be the best possible. Alternatively, hand-crafted rules could be used,
but this is tedious and requires expert domain knowledge.

A second possible direction for further study is the investigation of alterna-
tive search algorithms, such as proof number search [1] or B∗ [2]. The classical
drawback of these approaches is their high memory consumption, but in Skat
games, all visited positions can easily be kept in memory.

Third, it would be interesting to apply our search enhancements to other
games. (1) Quasi-symmetry reduction is a potentially useful technique for all
games where points are accumulated in the course of play, which includes, but
is not limited to, all trick-based card games. (2) Adversarial heuristics can be
usefully applied in a similar way to classical heuristics whenever a complete
solution of a game is feasible. (3) We see a good potential for other games
amenable to Monte-Carlo approaches, for games with a strong threat structure
such as Go-Moku and Hex, and for Amazon subgames.

References

1. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-Number Search. Arti-
ficial Intelligence 66(1), 91–124 (1994)

2. Berliner, H.: Search and Knowledge. In: Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI-77), pp. 975–979 (1977)

3. Buro, M.: ProbCut: An Effective Selective Extension of the Alpha-Beta Algorithm.
ICCA Journal 18(2), 71–76 (1995)

4. Frank, I., Basin, D.A.: Search in Games with Incomplete Information: A Case
Study using Bridge Card Play. Artificial Intelligence 100(1–2), 87–123 (1998)

5 Played by XSkat 3.4; cf. http://www.xskat.de/, a program with rule-based card
play.

A Skat Player Based on Monte-Carlo Simulation 147

5. Ginsberg, M.L.: Partition Search. In: Proceedings of the Thirteenth National Con-
ference on Artificial Intelligence and Eighth Innovative Applications of Artificial
Intelligence Conference (AAAI/IAAI-96), Portland, Oregon, pp. 228–233 (1996)

6. Ginsberg, M.L.: GIB: Steps toward an Expert-Level Bridge-Playing Program. In:
Dean, T. (ed.) Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence (IJCAI-99), Stockholm, Sweden, pp. 584–593 (1999)

7. International Skat Players Association: International skat and tournament order
1999, (2003), http://www.skatcanada.ca/canada/forms/rules-2003.pdf

8. Junghanns, A., Schaeffer, J.: Sokoban: Enhancing General Single-Agent Search
Methods using Domain Knowledge. Artificial Intelligence 129(1–2), 210–251 (2001)

9. Koller, D., Pfeffer, A.: Representations and Solutions for Game-Theoretic Prob-
lems. Artificial Intelligence 94(1–2), 167–215 (1997)

10. Kupferschmid, S.: Entwicklung eines Double Dummy Skat Solvers – mit einer An-
wendung für verdeckte Skatspiele. Master’s thesis, University of Freiburg (2003)

11. Levy, D.N.L.: The Million Pound Bridge Program. In: Levy, D.N.L., Beal, D.F.
(eds.) Heuristic Programming in Artificial Intelligence — The First Computer
Olympiad, Ellis Horwood, pp. 95–103 (1989)

12. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

13. Pearl, J.: Heuristics — Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, London, UK (1984)

14. Plaat, A., Schaeffer, J., Pijls, W., de Bruin, A.: Best-First Fixed-Depth Minimax
Algorithms. Artificial Intelligence 87(1–2), 255–293 (1996)

http://www.skatcanada.ca/canada/forms/rules-2003.pdf

A Retrograde Approximation Algorithm for

One-Player Can’t Stop

James Glenn1, Haw-ren Fang2, and Clyde P. Kruskal3

1 Department of Computer Science
Loyola College in Maryland, Baltimore, MD, USA

jglenn@cs.loyola.edu
2 Department of Computer Science and Engineering,

University of Minnesota, Minneapolis, MN, USA
hrfang@cs.umn.edu

3 Department of Computer Science
University of Maryland, College Park, MD, USA

kruskal@cs.umd.edu

Abstract. A one-player, finite, probabilistic game with perfect informa-
tion can be presented as a bipartite graph. For one-player Can’t Stop,
the graph is cyclic and the challenge is to determine the game-theoretical
values of the positions in the cycles. In this contribution we prove the
existence and uniqueness of the solution to one-player Can’t Stop, and
give an efficient approximation algorithm to solve it by incorporating
Newton’s method with retrograde analysis. We give results of applying
this method to small versions of one-player Can’t Stop.

1 Introduction

Retrograde analysis has been well developed and successfully applied to deter-
ministic, finite, two-player zero-sum games with perfect information, such as
Awari [2], checkers [3], and chess [4]. For some probabilistic games, such as
Yahtzee and Can’t Stop1, retrograde algorithms are less practical due to the
high complexity. Therefore, we studied the simplified one-player game instead.

A one-player probabilistic game can be represented as a bipartite graph, in
which one set of nodes corresponds to deterministic events while the other cor-
responds to random events. For one-player Yahtzee, the graph representation is
acyclic, which simplifies algorithm design and allows the game to be solved easily
[1] [5]. In some games, the graph representation is cyclic, which causes difficulty
in designing a bottom-up retrograde algorithm. We are particularly interested in
one-player Can’t Stop, developed an approximation algorithm to solve this game

1 Can’t Stop was designed by Sid Sackson and marketed by Parker Brothers. It
is currently out of print but will be republished by Face 2 Face Games in
2006. The rules can be found at http://en.wikipedia.org/wiki/Can’t Stop and
http://www.boardgamegeek.com/game/41. Also see Appendix for a short descrip-
tion.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 148–159, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Retrograde Approximation Algorithm for One-Player Can’t Stop 149

by incorporating Newton’s method with retrograde analysis, and give results of
applying the method to small versions of the game.

The organization of this paper is as follows. Section 2 formulates the problem.
In Section 3 we prove that one-player Can’t Stop has a unique solution, and
give an efficient retrograde algorithm to solve it. Section 4 presents the indexing
scheme. Section 5 summarizes the results of the experimental tests. A conclusion
is provided in Section 6. A short description of Can’t Stop game rules is provided
in Appendix.

2 Problem Formulation

A one-player, finite and probabilistic game with perfect information can be rep-
resented as a directed, bipartite game graph G = (U, V, E), where U and V are
two disjoint sets of vertices and E is the set of edges. (An edge (x, y) must have
either x ∈ U and y ∈ V or x ∈ V and y ∈ U .) The graph may be cyclic. A
position is a vertex w ∈ U ∪ V .

In Yahtzee a turn consists of a dice roll followed by a move. In Can’t Stop a
turn consists of a sequence of partial turns, each of which is a dice roll followed
by a move. A roll position is a vertex u ∈ U . A move position is a vertex v ∈ V .

For each non-terminal roll position u, a dice roll is a random event. The weight
0 < p((u, v)) ≤ 1 indicates the probability that the game in roll position u will
change into move position v. So,

∑

∀v with (u,v)∈E

p((u, v)) = 1 . (1)

A move (v, u) (from a move position to a roll position) is a deterministic
choice.

A partial turn (u1, u2) (from roll position u1 to roll position u2) consists of a
dice roll followed by a move. It is represented by a pair of edges ((u1, v), (v, u2))
in G. A turn is a sequence of partial turns (u0, u1), (u1, u2), . . . , (uk−1, uk). As
noted above, in Yahtzee, a turn consists of exactly one partial turn, and in Can’t
Stop a turn may consist of many partial turns.

We associate each vertex with a number, as the expected cost (or penalty)
of playing the optimal strategy starting from that vertex. The information is
stored in a cost database, which is presented as a function f : (U ∪ V) → R.

The goal of one-player Can’t Stop is to play so as to minimize the expected
number of turns to finish the game. Therefore, f(u) is the expected number of
remaining turns to finish the game starting at roll position u, in optimal play.

The cost function f satisfies that for all non-terminal roll positions u ∈ U ,

f(u) = g(u) +
∑

∀v with (u,v)∈E

p((u, v))f(v) , (2)

where g(u) is the step cost (or step penalty) at u.

150 J. Glenn, H.-r. Fang, and C.P. Kruksal

In the game of one-player Can’t Stop, g(u) indicates whether it is the first
partial turn for a turn. More precisely,

g(u) =
{

1, if u is the starting position for a turn,
0, otherwise. (3)

For the optimal playing strategy, we minimize the cost (or penalty)2. There-
fore, for all non-terminal move positions v ∈ V ,

f(v) = min
∀u with (v,u)∈E

f(u) . (4)

For all positions w ∈ U ∪ V , f(w) is also called the position value of w.
A terminal vertex indicates the end of a game. We assume all terminal vertices,

denoted by z, are roll positions (in U) with f(z) = g(z). For one-player Can’t
Stop, a terminal vertex z is reached when the player completes three columns,
and therefore no additional rolling of dice is required (i.e., f(z) = g(z) = 0).

A cost database f satisfying both conditions (2) and (4) is called a solution.
A game is solved if a solution is obtained. Unless otherwise noted, all the game
graphs in this paper stand for finite, one-player, probabilistic games with perfect
information.

v3 u2

g(u2) = 0

u3g(u3) = 0 v2 u1 g(u1) = 1

v1

1.00.5

0.5

Fig. 1. An example of game graph G = (U,V, E)

We illustrate an example in Figure 1, where g(u1) = 1, g(u2) = g(u3) = 0,
p((u1, v1)) = 1, and p((u2, v2)) = p((u2, v3)) = 0.5. This example simulates the
last stage of a game of one-player Can’t Stop. A turn begins at position u1. At
position u2, the first player has 50% probability to complete three columns, and
the other 50% probability to fall back to u1. By (2) and (4),

f(v1) = f(u2) = 1
2f(v2) + 1

2f(v3) ,
f(v2) = f(u1) = f(v1) + 1 ,
f(v3) = f(u3) = 0 .

(5)

The unique solution is f(u1) = f(v2) = 2 and f(u2) = f(v1) = 1.

2 If the goal of a game is to maximize some value, we can multiply it by −1 and
minimize.

A Retrograde Approximation Algorithm for One-Player Can’t Stop 151

The problem of solving a one-player probabilistic game is formulated as fol-
lows. Suppose we are given a game graph G = (U, V, E) of a one-player, fi-
nite, probabilistic game with perfect information, and its step cost function
g : U → R. First, we investigate the existence and uniqueness of the solution
(i.e., the cost database f : (U ∪ V) → R that satisfies both conditions (2) and
(4)). Second, we design an efficient algorithm to construct the cost database,
assuming a solution exists.

3 Retrograde Analysis for One-Player Probabilistic
Games

A retrograde algorithm typically consists of three phases: initialization phase,
propagation phase, and the final phase. In the initialization phase, the terminal
vertices are associated with their position values. In the propagation phase, the
information is propagated iteratively back to its predecessors until no propaga-
tion is possible. The final phase deals with the undetermined vertices.

Subsection 3.1 gives an algorithm to construct the cost database of an acyclic
game graph. In Subsection 3.2, we prove that one-player Can’t Stop has a unique
solution. In Subsection 3.3, we give an approximation algorithm to construct the
cost database for a game graph with cycles.

3.1 Game Graph Is Acyclic

For games with acyclic game graphs, such as one-player Yahtzee, the bottom-up
propagation procedure is clear. Algorithm 1 gives the pseudocode to construct
the cost database for an acyclic game graph.

Consider Alg. 1. Assuming all terminal vertices are in U , the set S2 is initially
empty and (†) is not required. However, it is useful for the reduced graph Ĝ in
Algs. 2 and 3. We call a vertex determined if its position value is known. By
(2) and (4), a non-terminal vertex cannot be determined until all its children
are determined. The sets S1 and S2 store all determined but not yet propagated
vertices. A vertex is removed from them after it is propagated. The acyclic
property ensures that all vertices are determined at the end of the propagation
phase. Therefore, a final phase is not required. The optimal playing strategy is
clear: given v ∈ V , always make the move (v, u) with the minimum f(u).

Note that in Alg. 1, an edge (u, v) can be visited as many times as the out-
degree of u because of (*) and (**). The efficiency can be improved as follows.
We associate each vertex with a number of undetermined children, and decrease
the value by one whenever a child is determined. A vertex is determined after
the number is decreased down to zero. As a result, each edge is visited only once
and the algorithm is linear. This is called the children counting strategy. For
games like Yahtzee, the level of each vertex (the longest distance to the terminal
vertices) is known a priori. Therefore, we can compute the position values level
by level. Each edge is visited only once without counting the children.

Lemma 1. If a game graph is acyclic, its solution exists and is unique.

152 J. Glenn, H.-r. Fang, and C.P. Kruksal

Require: G = (U,V, E) is acyclic.
Ensure: Program terminates with (2) and (4) satisfied. � Lemma 1

∀u ∈ U , f(u) ← g(u), the step cost. � Initialization Phase
∀v ∈ V , f(v) ← ∞.
S1 ← {terminal positions in U}
S2 ← {terminal positions in V }
∀u ∈ S1 ∪ S2, set f(u) to be its value. � (†)
repeat � Propagation Phase

for all u ∈ S1 do
for all (v, u) ∈ E do

f(v) ← min{f(v), f(u)}
if all children of v are determined then � (*)

S2 ← S2 ∪ {v}
end if

end for
end for
S1 ← ∅
for all v ∈ S2 do

for all (u, v) ∈ E do
f(u) ← f(u) + p((u, v))f(v)
if all children of u are determined then � (**)

S1 ← S1 ∪ {u}
end if

end for
end for
S2 ← ∅

until S1 ∪ S2 = ∅

Algorithm 1. Construct cost database f for acyclic game graph G = (U, V, E)

Proof. In an acyclic graph, the level for each vertex is well-defined. In Alg. 1,
the position values are uniquely determined level by level. Hence, the solution
exists and is unique. �

3.2 Game Graph Is Cyclic

If a game graph is cyclic, a solution may not exist. Even if it exists, it may
not be unique. We give a condition under which a solution exists and is unique
in Lemma 2. The proof uses the Fixed Point Theorem3. With Lemma 2, we
prove that the game graph of one-player Can’t Stop has a unique solution in
Theorem 2.

Theorem 1 (Fixed Point Theorem). If a continuous function f : R −→ R
satisfies f(x) ∈ [a, b] for all x ∈ [a, b], then f has a fixed point in [a, b] (i.e.,
f(c) = c for some c ∈ [a, b]).

3 See, for example, http://mathworld.wolfram.com/FixedPointTheorem.html

A Retrograde Approximation Algorithm for One-Player Can’t Stop 153

Lemma 2. A cyclic game graph G = (U, V, E) has a solution if,

1. For all u ∈ U , g(u) ≥ 0.
2. For each non-terminal vertex u, there is a path from u to a terminal vertex.
3. There exists some w ∈ U such that the graph is acyclic after removing the

outgoing edges of w.

In addition, if the vertex w in condition 3 satisfies g(w) > 0, then the solution
is unique with all position values non-negative.

Proof. Let Ĝ = (U, V, Ê) be the graph obtained by removing all of the outgoing
edges from w in G (i.e., Ê = {(u, v) : (u ∈ U−{w})∧(v ∈ U∪V)∧((u, v) ∈ E)}).
By condition 3, Ĝ = (U, V, Ê) is acyclic. All the terminal vertices other than w
in Ĝ are also terminal in G. Let x be the estimated position value of w. We can
construct a database for Ĝ by Alg. 1. However, we propagate in terms of x (i.e.,
treat x as a variable during the propagation), though we know the value of x.
For example, assuming x = 6, we write min{ 1

2x, 1
3x + 2} = 1

2x instead of 3. We
use f̂(x, y) to denote the position value of y ∈ U ∪ V of Ĝ in terms of x. At
the end of Alg. 1, we compute f̂(x, w) with edges in E − Ê in terms of x by
(2). The values of f̂(x, y) for all y ∈ U ∪ V constitute a solution to G, if and
only if f̂(x, w) equals x in value. The main theme of this proof is to discuss the
existence and uniqueness of x satisfying f̂(x, w) = x.

Iteratively applying (2) and (4), all f̂(x, y) for y ∈ U∪V are in the form ax+b,
where 0 ≤ a ≤ 1. We are particularly concerned with f̂(x, w). Let f̂(x, w) =
a(x)x + b(x), where a(x) and b(x) are real functions of x. By (2) and (4), it is
not hard to see that a(x) is non-increasing, b(x) is non-decreasing, and both a(x)
and b(x) are piecewise constant. Hence f̂(x, w) is piecewise linear, continuous
and non-decreasing in terms of x. By condition 1, f̂(0, w) = b(0) ≥ g(w) ≥ 0.
By condition 2, a(x) < 1 for x large enough. Since a(x) is non-increasing and
a(x) < 1 for x large enough, f(x) < x for x large enough. By Theorem 1, there
exists x ≥ 0 such that f̂(x, w) = x.

By condition 1, f̂(0, w) ≥ g(w). Assuming g(w) > 0, then f̂(w, 0) > 0. More-
over, f̂(x, w) = a(x)x+ b(x) is piecewise linear and continuous with 0 ≤ a(x) ≤ 1
for x ∈ R. Therefore, x ≤ 0 implies f̂(x, w) > x. Let x0 > 0 be the smallest solu-
tion to f̂(x, w) = x. Since f̂(0, w) > 0 and a(x) is non-increasing, a(x0) < 1 and
therefore f̂(x, w) < x for x > x0. We may conclude that the additional condition
g(w) > 0 guarantees the solution x0 > 0 to f̂(x, w) = x is unique. Hence the game
graph G has a unique solution with all position values non-negative. �

Consider the strongly connected components of the game graph of one-player
Can’t Stop. Each strongly connected component consists of all the positions
with a certain placement of the squares and various placements of the at most
three markers. The roll position with no marker is the anchor of the component.
When left without a legal move, the game goes back to the anchor, and results in
a cycle. The outgoing edges of each non-terminal component lead to the anchors
in the supporting components. The terminal components are those in which the

154 J. Glenn, H.-r. Fang, and C.P. Kruksal

player has won three columns. Each terminal component has only one vertex
with position value 0.

Theorem 2. The game graph of one-player Can’t Stop has a unique solution.

Proof. The proof is by finite induction. We split the graph into strongly con-
nected components, and consider the components in bottom-up order.

Given a non-terminal component with the anchors in its supporting compo-
nents having position values non-negative and uniquely determined, we consider
the subgraph induced by the component and the anchors in its supporting com-
ponents. This subgraph satisfies all the conditions in Lemma 2, where the termi-
nal positions are the anchors in the supporting components. Therefore, it has a
unique solution with all position values non-negative. By induction, the solution
to the game graph of one-player Can’t Stop exists and is unique. �

3.3 Retrograde Approximation Algorithms

If we apply Alg. 1 to a game graph with cycles, then the vertices in the cycles
cannot be determined. A naive algorithm to solve the game is described as
follows. Given a cyclic game graph G = (U, V, E), we prune some edges so the
resulting Ĝ = (U, V, Ê) is acyclic, and then solve Ĝ by Alg. 1. The solution to
Ĝ is treated as the initial estimation for G, denoted by a cost function f̂ . We
approximate the solution to G by recursively updating f̂ using (2) and (4). If f̂
converges, it converges to a solution to G. The pseudocode is given in Alg. 2.

An example is illustrated by solving G = (U, V, E) in Figure 1. We remove
(u1, v1) to obtain the acyclic graph Ĝ. The newly terminal vertex is u1. Let
f̂(u1) = 1, which is a reasonable initial guess since f(u1) ≥ g(u1) = 1 in G.
The solution for Ĝ is f̂(u1) = f̂(v2) = 1 and f̂(u2) = f̂(v1) = 1

2 . The update
is repeated with f̂(u1) = 3

2 , 7
4 , . . . , 2n+1−1

2n , . . . , which converges to 2. Hence f̂

converges to the solution to G. Let en be the difference between f̂(u1) at the
nth step and the converged value; then en+1

en
= 1

2 . In other words, it converges
linearly.

Consider Alg. 2. For one-player Can’t Stop, it is natural to prune the outgoing
edges of the anchors and obtain the acyclic Ĝ. In (†), we assign an estimated
value to each vertex terminal in Ĝ but not terminal in G (i.e., the newly terminal
positions). For efficiency, we do not have to recompute the whole (*) and (**).
Updating with the recent cost changes of the children is sufficient.

If the conditions in Lemma 2 are satisfied (e.g., a strongly connected com-
ponent of one-player Can’t Stop), Ĝ can be obtained by pruning the outgoing
edges of the anchor w. In this case, Alg. 2 corresponds to the steepest descent
method without line search in numerical optimization, so linear convergence is
expected.

The proof of Lemma 2 reveals that if we solve f(x, w) = x using Newton’s
method4, then quadratic convergence can be expected. In other words, if we use
4 See, for example, http://mathworld.wolfram.com/NewtonsMethod.html

A Retrograde Approximation Algorithm for One-Player Can’t Stop 155

Ensure: If f̂ converges, it converges to a solution to G = (U, V, E).
Obtain an acyclic graph Ĝ = (U, V, Ê), where Ê ⊂ E. � Estimation Phase
Compute the solution f̂ to Ĝ by Algorithm 1. � (†)
Use f̂ as the initial guess for G.
S1 ← {terminal positions of Ĝ in U}
S2 ← {terminal positions of Ĝ in V }
repeat � Approximation Phase

for all u ∈ S1 do
for all (v, u) ∈ E do

f̂(v) ← min∀w with (v,w)∈E
f̂(w) � (*)

S2 ← S2 ∪ {v}
end for

end for
S1 ← ∅
for all v ∈ S2 do

for all (u, v) ∈ E do
f̂(u) ← g(u) +

∑
∀w with (u,w)∈E

p((u, w))f̂(w) � (**)

S1 ← S1 ∪ {u}
end for

end for
S2 ← ∅

until f̂ converges.

Algorithm 2. A naive algorithm to solve a cyclic game graph G = (U, V, E)

en to denote the difference between the estimation and the solution at the nth
step, en+1

e2
n

≈ c for some constant c when the estimate is close enough to the
solution5. An example is illustrated with the game graph in Figure 1 as follows.
We treat u1 as w in Lemma 2, and let x be the initial estimate of the position
value of u1. Then f̂(x, v2) = x, f̂(x, v1) = f̂(x, u2) = 1

2x, and f̂(x, u1) = 1
2x + 1.

Solving 1
2x + 1 = x, we obtain x = 2, which is the exact position value of u2. In

this small example we obtain the solution by one iteration. In practice, multiple
iterations are expected to reach the solution. The pseudocode is given in Alg. 3.

Consider Alg. 3. In the estimation phase, the better the initial estimate of
position value of w (denoted by x), the fewer steps are needed to reach the
solution.

4 Indexing Scheme

In practice, a game graph G = (U, V, E) can be too big to fit in physical mem-
ory. For one-player Can’t Stop, we partition the graph into strongly connected
components. Before constructing a cost database for a component, we have all

5 In our case f̂(x,w) is piecewise linear. Hence Newton’s method can reach the solution
in a finite number of steps. In practice, however, rounding errors may create minor
inaccuracy.

156 J. Glenn, H.-r. Fang, and C.P. Kruksal

Require: G = (U,V, E) satisfies the conditions in Lemma 2.
Ensure: f̂ converges to a solution to G in the rate of Newton’s method.

Let x denote the estimate for position value of w in Lemma 2. � Estimation Phase
Obtain the acyclic graph Ĝ = (U,V, Ê) by removing the outgoing edges of w.
repeat � Approximation Phase

Solve Ĝ (in terms of x) with the current estimate x for w by Algorithm 1.
Compute f̂(x, w) with E − Ê by (2) in terms of x. Denote the result by ax + b.
x ← b

1−a
. � (The solution to ax + b = x is x = b

1−a
.)

until f̂(x,w) = x in value.

Algorithm 3. An efficient algorithm to solve a game graph with one anchor

its supporting databases constructed. The construction is in bottom-up order,
until the game is solved.

4.1 Indexing Scheme for Can’t Stop

Consider one-player Can’t Stop. Let xi denote the number of steps from the
square to the top at column ‘i’. Each strongly connected component of the game
graph consists of all the positions with some particular (x2, x3, . . . , x12), where
0 ≤ xi ≤ 2i − 1 for i = 2, 3, . . . , 7 and 0 ≤ xi ≤ 27 − 2i for i = 7, 8, . . . , 12 and
at most three of the xi are zero. (x′

2, x
′
3, . . . , x

′
12) is a supporting component of

(x2, x3, . . . , x12) if and only if x′
i ≤ xi for i = 2, 3, . . . , 12 and (x′

2, x
′
3, . . . , x

′
12) 	=

(x2, x3, . . . , x12).
A terminal component has three zero squares, and contains only one position

in the game graph G (win three columns, the end of a game). Each position in a
non-terminal component (x2, x3, . . . , x12) is (y2, y3, . . . , y12) where each yi ≤ xi

and for at most three i, yi < xi. All positions are indexed using

12∑

c=2

yc

c−1∏

d=2

l(d) (6)

as a hash value, where l(d) denotes the length of column d. When the cost
database cannot fit in main memory, it is possible to reorder the columns (e.g.,
consider a position to be (x2, x12, x3, x11, . . .) if that provides for better access
patterns). The cost databases for the anchor positions and the non-anchor po-
sitions are maintained separately, since the position values of the non-anchor
positions in a component are used only when computing the position value for
the anchor in that component.

In practice, we discard the cost database for the non-anchor positions and
reconstruct them using the cost database for the anchor positions as necessary (as
when simulating perfect play). If storage is abundant and speed is important, it
would also be possible to use a file named x2x3 . . . x12.ijk to store all the position
values, where i < j < k are the columns where xi 	= yi, xj 	= yj , and xk 	= yk.
The offset of a position would be yi + yjxi + ykxixj in the file. The naming and

A Retrograde Approximation Algorithm for One-Player Can’t Stop 157

indexing convention is the same for positions with two markers or fewer. The cost
database for component (x2, x3, . . . , x12) consists of all files x2x3 . . . x12∗. The
largest component is (3, 5, 7, 9, 11, 13, 11, 9, 7, 5, 3), which contains the position
of the beginning of the game.

4.2 Algorithms

When the game graph is split, we can construct the cost databases component-
by-component in the bottom-up order. Algorithm 2 is applied to the subgraph
consisting of the component, its outgoing edges, and the positions that the outgo-
ing edges connect to. For each supporting component, there is only one position
the parent component connects to, the anchor (i.e., the position with no mark-
ers). In Alg. 2, we may propagate the information from the supporting databases
to the component, so the supporting databases are not required in the propaga-
tion phase.

5 Experiments

As proof of concept, we have solved simple versions of one-player Can’t Stop.
These simpler versions use 3-, 4-, and 5-sided dice instead of 6-sided dice and
may have shorter columns than the official version. Let (n, k) Can’t Stop denote
the one-player game played with four n-sided dice with the shortest column k
spaces long. Columns 2 and 2n are the shortest columns and column n + 1 is
the longest. Adjacent columns always differ in length by 2 spaces. The official
version is then (6, 3) Can’t Stop.

For n = 2, 3, 4 and k = 1, 2, 3 (and also n = 5, k = 1) we have implemented
Alg. 3 in Java and solved (n, k) Can’t Stop. We used an initial estimate of 1.0 for
the position value of each vertex. Table 1 shows, for each version of the game,
the size of the game graph, the time it took the computer to solve the game, and
the average number of turns needed to win the game when using the optimal
strategy. The size of the game graph is given as the number of anchor vertices
(i.e., vertices representing the beginning of a turn with no markers placed), and
the total number of vertices in all of the anchor vertices’ strongly connected
components (which includes vertices representing the middle of a turn when the
markers have been placed on the board). Symmetry allows us to ignore about
half of the anchor vertices in our implementation since the position represented
by (x2, x3, . . . , x12) is equivalent to (x12, x11, . . . , x2).

Note that for fixed n, the time to solve the game is roughly proportional to
the number of vertices. When n increases there is also an additional cost due to
the increased number of outgoing edges from each vertex in U . For n = 3 there
are 15 neighbors of each vertex (representing the 15 different outcomes of rolling
four 3-sided dice); for n = 4 there are 35 neighbors.

The average position value also affects the running time. For larger values of
k or n, the average position value is higher; higher position values will require
more iterations in Alg. 3 to converge. Table 2 shows the number of iterations
required for convergence when solving (4, 3) Can’t Stop.

158 J. Glenn, H.-r. Fang, and C.P. Kruksal

Table 1. Results of solving simple versions of Can’t Stop

(n, k) Anchor vertices Total vertices Time Optimal Turns

(2, 1) 15 225 0.166s 1.298
(2, 2) 44 1,936 0.405s 1.347
(2, 3) 95 9,025 0.601s 1.400
(3, 1) 308 64,372 1.70s 1.480
(3, 2) 1,432 787,600 5.05s 1.722
(3, 3) 4,378 4,934,006 23.3s 1.890
(4, 1) 12,913 20,802,843 4m50s 2.187
(4, 2) 83,456 289,091,584 58m50s 2.454
(4, 3) 333,069 2,104,663,011 6h7m 2.700
(5, 1) 921,174 7,105,015,062 2d20h 2.791

Table 2. For Can’t Stop (4, 3), # of iterations required for ranges of position values

Position value States Mean iter. Position value States Mean iter.

1.0 - 1.1 50,044 3.31 1.9 - 2.0 6,326 8.27
1.1 - 1.2 21,147 3.41 2.0 - 2.1 8,096 8.32
1.2 - 1.3 8,842 3.73 2.1 - 2.2 8,797 8.61
1.3 - 1.4 13,535 4.32 2.2 - 2.3 7,598 8.90
1.4 - 1.5 9,617 5.00 2.3 - 2.4 5,210 9.18
1.5 - 1.6 5,829 5.88 2.4 - 2.5 2,574 9.43
1.6 - 1.7 3,524 6.70 2.5 - 2.6 684 9.61
1.7 - 1.8 3,157 7.51 2.6 - 2.7 75 9.76
1.8 - 1.9 4,321 8.10 Total 159,376 5.13

6 Conclusion

We used a bipartite graph to abstract a one-player probabilistic game with the
goal to maximize some expected game value or to minimize the expected cost.
We investigated the game of one-player Can’t Stop, and proved that its opti-
mal solution exists and is unique. To obtain the optimal solution, we developed
a new approximation algorithm that converges quadratically, by incorporating
Newton’s method with retrograde analysis.

We successfully constructed the databases of the simplified models with 3-
sided and 4-sided dice. The optimal solution of one-player Can’t Stop can be
used as the approximate solution of two-player Can’t Stop. Two-player Can’t
Stop can be presented as a four-partite graph. Given a position, a function f
is defined as the probability that the first player wins the game. The goal is to
build a database representing f . In addition to building the optimal databases
of one-player Can’t Stop, we plan to tackle two-player Can’t Stop in the future.

Acknowledgments

The authors thank David Slater for pointing out that the algorithm can be
improved by taking advantage of symmetry.

A Retrograde Approximation Algorithm for One-Player Can’t Stop 159

References

1. Glenn, J.: An Optimal Strategy for Yahtzee. Technical Report CS-TR-0002, Loyola
College in Maryland, 4501 N. Charles St, Baltimore MD 21210, USA (May 2006)

2. Romein, J.W., Bal, H.E.: Solving the Game of Awari using Parallel Retrograde
Analysis. IEEE Computer 36(10), 26–33 (2003)

3. Schaeffer, J., Björnsson, Y., Burch, N., Lake, R., Lu, P., Sutphen, S.: Building
the Checkers 10-Piece Endgame Databases. In: van den Herik, H.J., Iida, H., Heinz,
E.A. (eds.) 10th Advances in Computer Games (ACG10), Many Games, Many Chal-
lenges, pp. 193–210. Kluwer Academic Publishers, Boston, USA (2004)

4. Thompson, K.: 6-Piece Endgames. ICCA Journal 19(4), 215–226 (1996)
5. Woodward, P.: Yahtzee: The Solution. Chance 16(1), 18–22 (2003)

Appendix: Can’t Stop Rules

We summarize the game rules of Can’t Stop, largely taken from Wikipedia6:
The game equipment consists of four dice, a board, a set of eleven markers for
each player, and three neutral markers. The board consists of eleven columns
of spaces, one column for each of the numbers 2 through 12. The columns (re-
spectively) have 3, 5, 7, 9, 11, 13, 11, 9, 7, 5 and 3 spaces each. The object of
the game is to move your markers up the columns, and be the first player to
complete three columns.

On a player’s turn he7 rolls all four dice. He then divides the four dice into
two pairs, each of which has an associated total. (For example, if he rolled 1 - 3 -
3 - 4 he could make a 4 and a 7, or a 5 and a 6.) If the neutral markers are off of
the board then they are brought on to the board on the columns that correspond
to these totals. If the neutral markers are already on the board in one or both of
these columns then they are advanced one space upward. If the neutral markers
are on the board, but only in columns that cannot be made with any pair of the
current four dice, then the turn is over and the player gains nothing.

After moving the markers the player chooses whether or not to roll again. If
he stops, then he puts markers of his color in the locations of the current neutral
markers. If on a later turn he restarts this column, he starts building from the
place he previously claimed. If he does not stop then he must be able to advance
at least one of the neutral markers on his next roll, or all progress on this turn
is lost.

When a player reaches the top space of a column, that column is won, and
no further play in that column is allowed. The first player to complete three
columns wins the game.

6 http://en.wikipedia.org/wiki/Can’t Stop
7 We use ‘he’ when both ‘she’ and ‘he’ are possible.

Improving Depth-First PN-Search: 1 + ε Trick

Jakub Pawlewicz and �Lukasz Lew

Institute of Informatics,
Warsaw University, Warsaw, Poland

{pan,lew}@mimuw.edu.pl

Abstract. Various efficient game problem solvers are based on PN-
Search. Especially depth-first versions of PN-Search like DF-PN or PDS
– contrary to other known techniques – are able to solve really hard
problems. However, the performance of DF-PN and PDS decreases dras-
tically when the search space significantly exceeds the available memory.
A straightforward enhancement trick to overcome this problem is pre-
sented. Experiments on Atari Go and Lines of Action show great practical
value of the proposed enhancement.

1 Introduction

In many two-person zero-sum games with perfect information we frequently en-
counter game positions there often with a non-trivial but forced win for one of
the players. To compute such a winning strategy a large tree search is performed.
The most profitable algorithms that successfully perform the task of finding a
solution are the Proof-number search algorithms [1]. They may search as deep
as 20 plies and even more deeply. However, the usage of the basic PN-Search
is limited to rather short runs because of the high memory requirements. A
straightforward improvement is the PN2 algorithm which was thoroughly inves-
tigated in [3]. Yet, it is still a best-first algorithm and therefore needs memory
to work with. So, the length of a single run is still limited. As a further im-
provement, several depth-first versions of PN-Search have appeared to overcome
the memory requirements problem. They were successful in many fields. Seo
[7] successfully applied it to many difficult problems in his Tsume-Shogi solver
using PN∗. The PDS algorithm – an extension of PN∗ was developed by Na-
gai [5]. Another successful algorithm is DF-PN [6] which is a straightforward
transformation of PN-Search to a depth-first algorithm.

Yet even, all these methods lose their effectiveness on very hard problems
when the search lasts so long that the number of positions to explore significantly
exceeds the available memory. The methods spend most of the time repeatedly
re-producing trees stored in the transposition table but overwritten by a search
in other branches of a game tree. So, we must admit that this kind of performance
leak does not only occur in alpha-beta search.

From these results, there is room for improvement of these methods. For
instance, Winands et al. [9] presented a method called PDS-PN used in the
LOA program MiA. This variation was created by taking the best of PN2 and

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 160–171, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improving Depth-First PN-Search: 1 + ε Trick 161

PDS. Kishimoto and Müller [4] successfully applied DF-PN in their tsume-Go
problems solver. They enhanced DF-PN by additional threshold increments.

This paper presents a more general approach of threshold increments, which
reduces the number of tree reproductions during the search and results in a quite
efficient practical enhancement. The enhancement is applicable both to DF-PN
and PDS and possibly to other variants of tree-traversing algorithms.

A deeper understanding of DF-PN is needed to understand the merits of
the enhancement. Section 2 precisely describes the transformation of the PN-
Search algorithm to a depth-first search algorithm. Section 3 provides a further
insight into DF-PN search and shows its weak point along with a remedy. The
same section presents also an application of our enhancement to PDS. Section 4
presents results of experiments. The last section concludes.

2 A Depth-First Transformation of PN-Search

Section 2.1 briefly describes PN-Search. Section 2.2 describes DF-PN as a depth-
first transformation of PN-Search.

2.1 PN-Search

For detailed description of PN-Search we refer to [1]. We recall only a few selected
properties essential for an analysis in the later sections.

The algorithm maintains a tree in which each node represents a game posi-
tion. With each node we associate two numbers: the proof-number (PN) and the
disproof-number (DN).

The PN(DN) of a node v is the minimum number of leaves in the subtree
rooted at v valued unknown such that if they change theirs value to true(false)
then the value of v would also change to true(false).

In other words, the PN(DN) is a lower bound on the number of leaves to
expand in order to prove(disprove) v.

PN and DN for a proved node are set to 0 and +∞ and for a disproved node
are set to +∞ and 0. In an unsolved leaf node we set both PN and DN to 1. In
an unsolved internal node PN and DN can be calculated recursively as shown in
Fig. 1. A square denotes an OR node and a circle denotes an AND node.

The algorithm iteratively selects a leaf and expands it. To minimize the total
number of expanded nodes in the search it chooses a leaf to expand in a such
way that proving(disproving) it decreases the root’s PN(DN) by 1. Such a leaf
is called the most proving node (MPN).

It can be easily shown that an MPN always exists. This leaf may be found by
traversing downwards through the tree and choosing a child only on the basis of
the PNs and DNs of the node’s children. In a node of type OR(AND) we choose
a child with the minimum PN(DN). That is the child with the same PN(DN) as
its parent.

After expanding the MPN, PNs and DNs are updated by going back on the
path up to the root. The algorithm stops when it determines a game value of

162 J. Pawlewicz and �L. Lew

OR node AND node

· · ·

p = min pi d =
∑

di

p1 d1 p2 d2 pn dn

· · ·

p =
∑

pi d = min di

p1 d1 p2 d2 pn dn

Fig. 1. In an OR node PN is a minimum of children’s PNs while DN is a sum of
children’s DNs. In an AND node PN is a sum of children’s PNs while DN is a minimum
of children’s DNs.

4 3

5 1
4 2

3 2

3 1

1 4 1 3 1 1

3 1

1 2

4 3

5 1
4 2

3 4

3 3

1 4 1 3 1 3

3 1

1 2

1 1 1 1 1 1

selecting MPN updating PNs and DNs

Fig. 2. Selecting MPN and updating PNs and DNs

the root, i.e., if one of the root’s numbers will be infinity while the other will
drop to zero. An example of selecting an MPN and updating PNs and DNs is
shown in Fig. 2.

2.2 DF-PN

As in Fig. 2 we see that updating PNs and DNs can be stopped before we reach
the root. It happens for instance when updating a node does change neither PN
nor DN. In that case we may begin the search of the next MPN from the last
updated node instead of from the root.

In fact we can shorten the way up even more. If the next MPN is in a subtree
rooted in the node currently visited we can suspend update of the parent and
further ancestors. Observe that we need valid values of PNs and DNs of the
ancestors only while traversing downwards and selecting the MPN. Then, in
general, we can suspend updating the ancestors as long as the MPN resides in
the subtree of the node.

Improving Depth-First PN-Search: 1 + ε Trick 163

To take advantage of the above observation we introduce PN and DN thresh-
olds. The thresholds are stored only for nodes along the path from the root to
the current node. Let p and d be the PN and DN of node v. We want to define
the thresholds pt and dt for node v in such a way that if p < pt and d < dt then
there exists an MPN in the subtree rooted at v and conversely if there exists an
MPN in the subtree rooted at v then p < pt and d < dt.

We will now determine the rules for setting the thresholds. For the root we
set the thresholds to +∞. Clearly, the condition p < +∞ and d < +∞ holds
only if the tree is not solved.

Now we take a closer look on what happens in an internal OR node
(Fig. 3). Let p and d be the node’s PN and DN respectively. Let pt and dt be

· · ·

p = min pi d =
∑

di

pt dt

pt1 dt1

p1 d1 p2 d2 pn dn

Fig. 3. Visiting the first child in an OR node and setting the thresholds

its thresholds. Assume the node has n children. Assume the i-th child’s PN and
DN equal pi and di. Without loss of generality we assume p1 ≤ p2 ≤ . . . ≤ pn.

The subtree where the MPN resides is rooted at the child with the minimum
PN. Since p1 is the smallest value, MPN lies in the leftmost subtree, so we are
going to visit the first child. We have to set the thresholds pt1 and dt1 for this
child such that if the PN or DN reaches its threshold (i.e., if p1 ≥ pt1 or d1 ≥ dt1)
then MPN must lie outside this child’s subtree.

Now, we set constraints for pt1 to deduce the actual value. When p1 exceeds
p2, then the second child will have the minimum PN, and MPN will no longer
lie in the first child’s subtree. Hence pt1 ≤ p2 + 1. When p1 reaches pt, but does
not exceed p2, then the PN p in the parent will also reach its threshold pt, and
by pt threshold definition, MPN will no longer be a descendant of the parent
and thus it will not lie in the child’s subtree. Hence, the second constraint is
pt1 ≤ pt. These two constraints give us the formula pt1 = min(pt, p2 + 1).

Consequently, when d1 increases such that d reaches dt, then again MPN will
be outside the current subtree. Now we calculate how d changes when d1 changes
to d′1. Let d′ denote DN of the parent, after DN of the first child has changed
from d1 to d′1. Then we have d′ = d + (d′1 − d1). We are interested whether
d′ ≥ dt. Replacing d′ and rewriting the inequality we may obtain the answer.
That is: if d′1 ≥ dt − d + d1 then d′ ≥ dt. Therefore we have a formula for the
DN threshold dt1 = dt − d + d1.

164 J. Pawlewicz and �L. Lew

In summary, we arrive at the following formulas for an OR node for the first
child’s thresholds:

pt1 = min(pt, p2 + 1) , (1)
dt1 = dt − d + d1 . (2)

It remains to show that for the above thresholds the inequalities p1 < pt1 and
d1 < dt1 hold if and only if MPN is in the first child’s subtree. We have already
seen that if p1 ≥ pt1 or d1 ≥ dt1 then MPN is not in the child’s subtree. So
assume p1 < pt1 and d1 < dt1. Then p < pt and d < dt, thus MPN lies in the
parent’s subtree. Moreover p1 < p2 + 1. This is the same as p1 ≤ p2. Thus the
first child has the smallest PN among all children. Therefore MPN lies in the
first child’s subtree.

Similarly, we arrive at the formulas for an AND node for the first child’s
thresholds (assuming d1 ≤ d2 ≤ . . . ≤ dn):

pt1 = pt − p + p1 , (3)
dt1 = min(dt, d2 + 1) . (4)

A main advantage is that using thresholds we can suspend updates as long as it
is possible.

A second important advantage of this approach is the possibility of switching
from (1) maintaining a whole search tree to (2) using a transposition table to
store positions’ (nodes’) PN and DN.

If in such implementation the algorithm visits a node, we may try to retrieve
its PN and DN from the transposition table searching for an early cut. In case
of failure we initialize the node’s PN and DN the same way as we do it for a leaf
allowing the further search to reevaluate them. The resulting algorithm called
DF-PN [6] is a depth-first algorithm, and it can be implemented in a recursive
fashion.

The main property of DF-PN is the following. If all nodes can be stored in
a transposition table, then the nodes are expanded in the same order as in the
standard PN-Search. Of course, in DF-PN, we are not forced to store all nodes,
and usually we store only a fraction of them, with a slight loss of efficiency.

3 Enhancement

Section 3.1 shows a usual scenario for which DF-PN has a poor performance.
Section 3.2 shows our enhancement (i.e., the 1 + ε trick) applied to DF-PN.
Section 3.3 describes an analogous improvement of PDS.

3.1 Weak Point of DF-PN

We remind that in case of a failure in retrieving the children’s values from a
transposition table, DF-PN initializes the children’s PNs and DNs to 1 and re-
search their values. Usually in an OR(AND) node with a large subtree all the

Improving Depth-First PN-Search: 1 + ε Trick 165

children’s PNs (DNs) are very similar, because DF-PN searches the child with
the smallest PN (DN) and returns as soon as it exceeds the second smallest
number.

Let us consider the following typical situation during a run of DF-PN. Assume
we are in an OR node with at least two children. Assume further that the
threshold is big and search lasts so long that most of the investigated nodes do
not fit in the transposition table.

After some time, the searched tree will be so large, that the algorithm will not
be able to store most of the searched nodes. Now DF-PN will make a recursive
tree search for the first child with a PN threshold fixed to the second child’s PN
plus one. Eventually, search will return but due to the weak threshold the new
PN will be only slightly greater than before the recursion. For an example see
Fig. 4.

tt

rebuilt
nodes

expanded
nodes

tt

3010 1734 3012 1741

3010 3475

3013 7259

7500 9000

tt tt
3014 1740 3012 1741

3012 3481

7500 9000

visiting the first child state after the recursive call

Fig. 4. Example of a single recursive call in an OR node during a run of DF-PN. The
numbers are potential values during the search. Gray part of a tree marked as tt denotes
nodes stored in a transposition table. The left picture shows what happens during the
recursive call for the first child. The state after the call is shown in the right picture.

Then the control goes back to the parent level and we call DF-PN for its second
child, again setting the PN threshold to its sibling’s PN plus one. After expensive
reconstruction of the second child’s tree, its PN increases insignificantly and we
will have to switch again to its sibling. However, most information from the
previous search in the first child has been lost due to insufficient memory.

We see that for each successive recursive call, we have to rebuild almost the
whole child’s tree. Usually the number of recursive calls in the parent node is
linear to the parent’s PN threshold.

3.2 The 1 + ε Trick

The above example shows that when we are in an OR node, setting the PN
threshold to the number one larger than p2 can lead to quite a large number of
visits in a single child, causing multiple reconstructions of a tree rooted in that

166 J. Pawlewicz and �L. Lew

child. To be more effective we should spend more time in a single node, doing
some search in advance.

We have a constraint pt1 ≤ p2 +1 for the child’s PN threshold in an OR node.
We can relax that constraint somewhat to a small multiplicity of p2, for example
to 1 + ε, where ε is a small real number greater than zero. Thus we change the
constraint to pt1 ≤ �p2(1 + ε)� and the old formula (1) transforms into the new
formula (5) for the child’s PN threshold in an OR node

pt1 = min(pt, �p2(1 + ε)�) . (5)

So, after each recursive call the child’s PN increases by a constant factor rather by
a constant addend. More precisely after the call either the parent’s DN threshold
is reached or the child’s PN increases by at least 1 + ε times. Therefore, a
single child can be called at most log1+ε pt = O(log pt) times before reaching the
parent’s PN threshold. As a consequence the described trick has a nice property
of reducing the number of recursive calls from linear to logarithmic in the parent’s
PN threshold.

This enhancement not only improves the way a transposition table is used,
but also reduces the overhead of multiple replaying the same sequences of moves.
Here we may observe that using the presented trick we lose the property of
visiting nodes in the same order as in PN-Search.

3.3 Application to PDS

The 1+ε trick is also applicable to PDS. In PDS we use two thresholds pt and dt
like in DF-PN. The main difference is their meaning. The algorithm remains in
a node until both thresholds are reached or the node is solved. PDS introduces
the notion of proof-like and disproof-like nodes. When making a recursive call at
a child with PN p1 and DN d1, it sets the thresholds pt1 = p1 +1 and dt1 = d1 if
the node is proof-like, and pt1 = p1 and dt1 = d1 + 1 if the node is disproof-like.
PDS uses a straightforward heuristic to decide whether the node is proof-like or
disproof-like. We refer the reader to [5] for the details.

The similar weakness as in DF-PN, described in 3.1, harms PDS. Here we
apply our technique by setting the thresholds: pt1 = �p1(1 + ε)�, dt1 = d1 for a
proof-like child, and pt1 = p1, dt1 = �d1(1 + ε)� for a disproof-like child.

4 Experiments

Below we examine the practical efficiency of DF-PN and PDS with and without
the presented enhancement. We focus on the solving times for various set-ups.
First, Subsection 4.1 describes the background for the performed experiments.
Then the results of these experiments are described. In Subsection 4.2 we test
the influence of the size of a transposition table. In Subsection 4.3 we com-
pare the algorithms under tournament conditions. In Subsection 4.4 we explore
capabilities to solve hard problems.

Improving Depth-First PN-Search: 1 + ε Trick 167

4.1 Experimental Environment

We choose two games for our experiments. The first one is Atari Go, the capture
game of Go. In Subsection 4.2 we take as a starting position a 6 × 6 board
with a crosscut in the centre. The second game is Lines of Action. For more
information we refer to Winands’ web page [8]. The rules and testing positions,
used in Subsection 4.3 and 4.4, were taken from that web page.

Our implementations of four search methods in the Atari Go and LOA games
do not have any game-specific enhancements. For a transposition table, TwoBig
scheme [2] is used.

For the accelerated version of DF-PN with the 1+ε trick, ε was set empirically
to 1/4. With larger values of ε, enhanced DF-PN tends to over-explore signifi-
cantly some nodes. With smaller values, enhanced DF-PN is usually slower.

In PDS, spending more time in one child is a common behavior because the
ending condition requires to exceed both thresholds simultaneously. Usage of 1+ε
trick in PDS makes this deep exploring behavior even more exhaustive, which
often leads to over-exploring. Therefore ε should be much smaller in enhanced
version of PDS. We found 1/16 as the best ε value.

All experiments were performed on 3GHz Pentium 4 with 1GB RAM under
Linux.

4.2 The Size of a Transposition Table, Tested on Atari Go

We run all four methods with different transposition table sizes. The results are
shown in Fig. 5 and exact times for the sizes between 212 and 222 nodes are
shown in Table 1.

Table 1. Solving times in seconds of Atari Go 6 × 6 with a crosscut

TT size in nodes
Algorithm 212 213 214 215 216 217 218 219 220 221 222

DF-PN with 1 + ε trick 672 236 95 98 55 70 32 77 38 54 68
DF-PN − − 3403 279 189 187 104 168 111 113 106
PDS with 1 + ε trick − 4895 3246 1017 468 440 527 350 400 235 269
PDS − − − 4057 1448 1124 776 494 353 261 195

Obviously enhanced DF-PN is the fastest method and plain DF-PN is the
second fastest.

Setting the size greater than 220 does not noticeably affect the times. In that
range there is no remarkable difference between plain and enhanced PDS. For
sizes smaller than 220, enhanced PDS becomes faster than plain PDS.

A noticeable drop of performance can be observed when the size is below 216.
Within a 2 hour time limit the following results are te be reported: (1) PDS is
unable to solve the problem for transposition table with a size of 214 nodes, (2)
DF-PN with a size of 213 nodes and (3) the enhanced PDS with a size of 212

nodes.

168 J. Pawlewicz and �L. Lew

2h
1.5h

1h

30m
20m

10m

5m

3m
2m

1m
40s

26 28 210 212 214 216 218 220 222 224

ru
nn

in
g

ti
m

e

transposition table size in number of nodes

DF–PN with 1 + ε trick
DF–PN

PDS with 1 + ε trick
PDS

Fig. 5. Solving times of Atari Go 6 × 6 with a crosscut

The enhanced versions are much better for really small transposition tables.
For sizes 214 and smaller, enhanced DF-PN is far better than any other method.
Enhanced DF-PN is able to solve the problem almost not using a transposition
table at all. With a memory of 256 nodes it needed 1535 seconds and with a
memory of 32 nodes it needed 5905 seconds. Of course there is a substantial
information stored in the local variables in each recursive call.

4.3 Efficiency Under Tournament Conditions, Tested on a Set of
Easy LOA Positions

We have already seen that DF-PN with the 1 + ε trick performs excellently when
the search space significantly exceeds the size of a transposition table. In this Sub-
section we check the practical value of the methods on the set of 488 LOA posi-
tions. The purpose of this test is to evaluate the efficiency of solving the positions
with tournament time constraints, as it is desired in the best computer programs.

The size of a transposition table is set to 220 nodes and should fit into the
memory of most computers. The results are shown in Fig. 6. The figure was
created by measuring solving time for each method for every position from the
set. Then for every time limit we can easily find the number of solved positions
with time not exceeding the limit. Exact numbers of solved positions for selected
time limits are shown in Table 2.

Here enhanced DF-PN is clearly the most efficient method, plain DF-PN is
the second best and both PDS versions are the least efficient. The difference
between enhanced PDS and plain PDS is unnoticeable.

Improving Depth-First PN-Search: 1 + ε Trick 169

Table 2. Numbers of solved positions from the set tscg2002a.zip [8] for selected time
limits

Time limit
Algorithm 0.5s 1s 2s 5s 10s 20s 30s 1m 2m 5m

DF-PN with 1 + ε trick 214 278 343 410 438 457 468 478 482 486
DF-PN 184 246 304 379 419 449 457 471 479 486
PDS with 1 + ε trick 100 154 217 299 358 414 430 450 471 481
PDS 102 144 214 300 365 409 425 451 466 480

488

450

400

350

300

250

200

150

100

2m1m30s20s10s5s2s1s500ms

po
si

ti
on

s
so

lv
ed

ou
t

of
48

8

time limit

DF–PN with 1 + ε trick
DF–PN

PDS with 1 + ε trick
PDS

Fig. 6. Numbers of solved easy LOA positions from the set tscg2002a.zip [8] for given
time limit

4.4 Efficiency of Solving Hard Problems, Tested on a Set of Hard
LOA Positions

This experiment is aimed at checking our ability of solving harder problems in rea-
sonable time. The 286 test positions were taken from [8]. Again we define the size
of a transposition table to be 220 nodes. The results are shown in Fig. 7 and the
exact numbers of solved positions for selected time limits are shown in Table 3.

Again, as in the previous test, the enhanced DF-PN is the most efficient method,
plain DF-PN is the second best, and both PDS versions are the least efficient. The
difference between enhanced PDS and plain PDS is now noticeable. For each time
limit greater than 90 seconds enhanced PDS solves more positions than plain PDS.
It shows the advantage of enhanced PDS over plain PDS for harder positions.

To illustrate the speed differences in numbers for each two methods we calcu-
lated a geometric mean of the ratios of solving times (see Table 4). The geometric

170 J. Pawlewicz and �L. Lew

Table 3. Numbers of solved positions from the set tscg2002b.zip [8] for selected time
limits.

Time limit
Algorithm 5s 10s 20s 30s 1m 2m 3m 5m 10m 20m 30m

DF-PN with 1 + ε trick 44 107 158 182 228 258 272 280 285 286 286
DF-PN 25 64 123 154 198 241 258 273 282 284 285
PDS with 1 + ε trick 1 18 52 80 138 186 212 228 257 272 278
PDS 3 22 56 83 134 179 206 224 252 265 274

286

250

200

150

100

50

30m20m10m5m3m2m1m30s20s10s5s

po
si

ti
on

s
so

lv
ed

ou
t

of
28

6

time limit

DF–PN with 1 + ε trick
DF–PN

PDS with 1 + ε trick
PDS

Fig. 7. Numbers of solved hard LOA positions from the hard set tscg2002b.zip [8]
for given time limit

Table 4. Overall comparison for positions from the set tscg2002b.zip. The number
r in the row A and the column B says A is r times faster than B in average.

DF-PN enhanced DF-PN PDS enhanced PDS

DF-PN 1.00 0.63 2.83 2.64
enhanced DF-PN 1.58 1.00 4.46 4.17
PDS 0.35 0.22 1.00 0.93
enhanced PDS 0.38 0.24 1.07 1.00

mean is more appropriate for averaging ratios than the arithmetic mean because
of the following property: if A is r1 times faster than B, B is r2 times faster than
C, and A is r3 times faster than C then r3 = r1r2.

Improving Depth-First PN-Search: 1 + ε Trick 171

5 Conclusions and Future Work

The 1+ε trick has been introduced to enhance DF-PN. We have shown that the
trick can also be used in PDS. The experiments showed a noticeable speedup
when the search space significantly exceeds the size of a transposition table.

The trick is particularly well-suited to DF-PN, since the experiments have
shown a large advantage of enhanced DF-PN over the other methods. The
AtariGo experiment has shown that this method performs extremely well in
low memory conditions. Moreover, DF-PN with the 1 + ε trick was the most
efficient method in the “real-life” experiment on the LOA positions so it should
be valuable in practice. The 1 + ε trick is possibly applicable to other threshold-
based depth-first versions of PN-Search.

The nice property of the enhancement is that it can be added to existing
implementations with little effort. Its value has to be confirmed in other games
different from Atari Go and LOA. We notice that in other games and in other
depth-first variants of PN-Search, the value of ε can be different, and it should
be further investigated.

We hope that the presented enhancement becomes attractive for a brute-force
search for solving games. However, there are still some weak points in PN-based
methods and more work for improvements is required to make depth-first PN-
Search even more useful.

References

1. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-Number Search. Artificial
Intelligence 66, 91–124 (1994)

2. Breuker, D.M., Uiterwijk, J.W.H.M., van der Herik, H.J.: Replacement Schemes and
Two-Level Tables. ICCA J. 19(3), 175–180 (1996)

3. Breuker, D.M., Uiterwijk, J.W.H.M., van der Herik, H.J.: The PN2-Search Algo-
rithm. In: van den Herik, H.J., Monien, B. (eds.) 9th Advances in Computer Games
(ACG9), pp. 115–132. Department of Computer Science, Universiteit Maastricht,
Maastricht, The Netherlands (2001)

4. Kishimoto, A., Müller, M.: Search Versus Knowledge for Solving Life and Death
Problems in Go. In: Twentieth National Conference on Artificial Intelligence (AAAI-
05), pp. 1374–1379 (2005)

5. Nagai, A.: A New AND/OR Tree Search Algorithm using Proof Number and
Disproof Number. In: Proceeding of Complex Games Lab Workshop, pp. 40–45,
Tsukuba, ETL (November 1998)

6. Nagai, A.: Df–pn Algorithm for Searching AND/OR Trees and its Applications.
Ph.d. thesis, The University of Tokyo, Tokyo, Japan (2002)

7. Seo, M., Iida, H., Uiterwijk, J.W.H.M.: The PN∗–Search Algorithm: Application to
Tsume-Shogi. Artificial Intelligence 129(1–2), 253–277 (2001)

8. Winands, M.H.M.: Mark’s LOA Homepage (2007),
http://www.cs.unimaas.nl/m.winands/loa/

9. Winands, M.H.M., Uiterwijk, J.W.H.M., van den Herik, H.J.: An Effective Two-
Level Proof-Number Search Algorithm. Theoretical Computer Science 313(3), 511–
525 (2004)

http://www.cs.unimaas.nl/m.winands/loa/

Search Versus Knowledge Revisited Again

Aleksander Sadikov and Ivan Bratko

Faculty of Computer and Information Science,
University of Ljubljana, Ljubljana, Slovenia

{aleksander.sadikov,bratko}@fri.uni-lj.si

Abstract. The questions focusing on diminishing returns for additional
search effort have been a burning issue in computer chess. Despite a
lot of research in this field, there are still some open questions, e.g.,
what happens at search depths beyond 12 plies, and what is the effect
of the program’s knowledge on diminishing returns? The paper presents
an experiment that attempts to answer these questions. The results (a)
confirm that diminishing returns in chess exist, and more importantly
(b) show that the amount of knowledge a program has influences when
diminishing returns will start to manifest themselves.

1 Introduction

The phenomenon of diminishing returns for additional search effort in chess has
been a burning issue in the game-playing scientific community. The consensus
was that diminishing returns, as in all the other games observed, do exist in chess
as well. However, for a very long time the experimental results did not back up
this opinion convincingly. This even drove research in another direction, namely,
to find reasons what it is that masks the manifestation of diminishing returns in
chess [7,8]. Finally, Heinz [5,6] introduced rigorous statistical methods to self-play
experiments, and with that (a) pointed out that all previous experiments lacked
statistical significance, and (b) with his new self-play experiment that featured
much longer matches between successive versions of Fritz 6 statistically proved
the existence of diminishing returns in chess [3,4]. Later, Haworth [2] confirmed
and slightly improved Heinz’s statistical analysis.

There are, however, still a few questions that in our opinion should be asked.
What happens at search depths beyond 12 plies? And what is the effect of
knowledge the program has, on diminishing returns? Thus, our goal was to in-
vestigate the effect of search depth on the quality of play, and not be limited in
search depth. We studied this effect for evaluation functions with various levels
of knowledge. In this context, we were especially interested in the phenomena of
diminishing returns for additional search effort.

How is it possible not to be limited in search depth when doing such experi-
ments? After all, as Heinz pointed out, one has to play a huge number of games
to obtain statistically significant results. We had to come up with a completely
different strategy. We made very deep searches (unlimited for all practical pur-
poses) possible by concentrating on chess endgames with a limited number of

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 172–180, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Search Versus Knowledge Revisited Again 173

pieces. The number of pieces defines the space of all possible legal positions —
and for four-piece endgames it is no problem to store all legal positions in an
array in computer memory. Searching then simply involves performing repetitive
2-ply (or even 1-ply) minimax calls on the fields in this array. The other idea we
came up with was to simulate heuristic functions of various quality (knowledge
contents) by corrupting the perfect evaluation function in the form of endgame
tablebase in a controlled manner. This enables us to have at our disposal pro-
grams of comparable knowledge. As a bonus, with this approach we sidestep
a problem that Junghanns et al. [7,8] complained about, namely the problem
of not having an oracle for chess to compare the decisions of their programs
with. Actually, that is exactly how we arrived at the idea to simulate heuristic
functions in the first place.

We do sacrifice something in return, though: (a) we limit ourselves only to
chess endgames and (b) the heuristics we use, while real-valued, are somewhat
different from the usual ones used in chess-playing programs.

The paper is organized as follows. Section 2 explains in detail our experi-
mental design, while Sect. 3 presents the results and comments on them. Some
conclusions are given in the last section.

2 Experimental Design

This section describes the experimental setup. First, the evaluation function is
characterized in Section 2.1. Second, the heuristic used is explained in greater
detail by Section 2.2. Finally, Section 2.4 describes the variables measured in the
experiment.

2.1 The Evaluation Function

As already mentioned in the introduction, we have at our disposal an absolutely
correct evaluation function for an endgame — we chose the King-Bishop-Bishop-
King (KBBK) endgame. The tablebase tells us how many moves are needed to
reach mate in the case that both players play optimally, and is measured in
moves. It is in the form of a database that consists of all possible legal positions
and their evaluations, and can be generated with a tablebase construction al-
gorithm based on retrograde analysis [13,14]. There are two special cases: value
0 means Black is mated and value 255 means that Blackhas a draw (either the
position is a stalemate or Black can capture one of the Bishops).

It should be noted that length-to-mate as an evaluation function requires
slight modification when used with minimax. The reason is that length-to-mate
decreases along the best-play line, whereas minimax backed-up values preserve
the value along the best-play line. To account for this peculiarity of length-
to-mate, in the experiments we used the rule 1 + max(vi) instead of max(vi).1

1 A constant 1 is added to reflect an additional ply when going one layer deeper in
the minimax tree.

174 A. Sadikov and I. Bratko

As in our experiments all the lines in the game tree search were of equal length,
this modification merely amounts to adding a constant to all the position values
at the same level.

It may be argued that distance-to-mate is a rather artificial evaluation func-
tion from the usual point of view in chess where the task is to win, and not
necessarily to win in the quickest way. Therefore, in chess, an evaluation func-
tion is usually interpreted as an indicator of the probability to win. However,
distance-to-mate can in fact also be interpreted as such an indicator. Although
virtually all the positions in KBBK are won for White, an imperfect player may
have difficulties in actually mating in 50 moves.2 Such an imperfect player will
have much better chances to win in a position where mate is possible in two
moves, than in a position that requires 10 or more moves to mate — this reason-
ing corresponds with our notion that positions that take more moves to reach
mate are harder. Realistic evaluation functions for chess- playing programs also
typically prefer shorter paths to mate (win) and should thus also have some
correlation with our distance to mate.

2.2 Simulation of Heuristic Errors

For the purpose of simulating the imperfection of heuristic evaluation functions,
we corrupted the ideal evaluation function in a controlled manner. Our method
of doing this is as follows. We take a position value and add to it a certain
amount of Gaussian noise, described with the formula:

P(x) =
1

σ
√

2π
e−(x−μ)2/(2σ2) . (1)

The formula gives the probability P(x)dx that given the correct evaluation μ
and standard deviation σ, the random errors, x ∈ R, will take on a value in
the range [x, x + dx]. The error of the new evaluation is μ − x. We do this
for all positions in the database, including the positions where Black is al-
ready mated (special value 0). The corruption is symmetrical, meaning that
there is practically equal chance that the new evaluation will be optimistic
or pessimistic. We allow x to take on a negative value — in this way we are
able to preserve symmetry for positions that have true values close or equal
to 0.

The level of corruption is regulated by the parameter σ, the standard de-
viation, which controls the dispersion of the corrupted values x around the
correct values μ. The standard deviation is measured in moves. For example,
if σ equals 1.0, this means that approximately two thirds of corrupted evalua-
tions are within 1.0 move around the true evaluation and over 95% of corrupted
evaluations are within 2.0 moves (two standard deviations) around the true
evaluation.

2 The number of moves to mate allowed by the rules of chess is 50 for the KBBK
endgame.

Search Versus Knowledge Revisited Again 175

depth i

depth i + 2

depth 32

depth 0

.

.

.

. . .

. . .

2-ply minimax for every position (cell)

. . .

. . .

.

.

.
load heuristic evaluations

Fig. 1. An efficient way of computing backed-up values

2.3 Search Engine

The search engine we used is the standard fixed-depth minimax search. The
only built-in knowledge it has is the ability to detect fatal errors for White
(stalemates and losing a piece). The true value for stalemate or for losing a piece
would correspond to a distance to mate larger than 50 because of the draw by 50-
move rule. Such a high value is virtually impossible to corrupt with noise to the
extent when it becomes comparable to other values. Therefore, the search engine
was assumed reliably to detect stalemates and losses of a piece. In contrast, the
ability to detect mate is not given.3 If mate is encountered during the search, it is
evaluated using the corrupted evaluation function just like every other position.
This evaluation does not necessarily match the true value for mate, which is
zero.

We can quickly search to high search depths of 32 plies, and beyond if de-
sired, by exploiting the fact that the KBBK endgame only has a comparatively
small number of positions (approximately 4 million under some symmetries)
which we can all store in a sort of transposition table. Each unique position
is given its own unique index. This index specifies its place in the transposi-
tion table, which is big enough to hold all the positions. The table thus holds
only position evaluations: the actual position is uniquely determined by its
location (index) in the table. We start at depth 0 by loading the values from a

3 Even if the ability to detect mate is given, the observations are qualitatively the
same as in the paper.

176 A. Sadikov and I. Bratko

(corrupted) database, then move on to depth 2, perform a 2-ply minimax search
and use the results of the previous depth as evaluations of the leaves, store
results of depth 2 search, move on to depth 4 and so forth. The procedure is
demonstrated in Figure 1. This back-up procedure, similar to endgame tablebase
construction algorithm, is much more efficient than forward search. For exam-
ple, a classic search engine would require 4 million 32-ply minimax searches to
calculate the evaluations of all positions of depth 32. Instead, our method re-
quires sixteen times 4 million 2-ply minimax searches to accomplish the very
same task.

2.4 Variables Observed

Our goal is to vary the search depth and the quality of heuristic function and
observe how well a program would play under these conditions. Therefore White
was guided by a corrupted evaluation function. Additionally, White was allowed
to use a simple mechanism to avoid repeating the same position over and over
again. The mechanism kept a list of all positions that already occurred in the
game and if the position was to be repeated a different move was selected —
the next best move according to the evaluation function. In contrast, Black was
always playing optimally.

We measured the quality of play as the average number of moves above what
an optimal white player (playing with a non-corrupted database) would need.
This statistic is computed as White’s average performance loss (APL), that is,
the difference between the number of moves needed by White for all sample
positions and the number of moves needed for all sample positions using optimal
play, divided by the number of positions in the sample (10,000):

APL =

∑
pos∈S h(pos) − ∑

pos∈S o(pos)
|S| . (2)

S is a sample of 10,000 legal KBBK positions4 of difficulty greater than 10
(moves-to-mate), h(pos) returns the number of plies that a computer player
using a heuristic evaluation function (with some initial corruption level σ) needs
to mate the ideal opponent starting from position pos, and o(pos) is the number
of plies a perfect player needs to mate the ideal opponent from the starting
position pos. APL is measured in plies. The better the quality of play, the lower
the value of APL, and vice versa.

The results so obtained vary somewhat because of the random process of sim-
ulating heuristic errors. To obtain a more stable result we repeated the experi-
ments several (ten) times for every combination of search depth and magnitude
of heuristic errors and averaged the results. The sample S was the same for all
settings.

4 It would be completely possible to increase the sample to 100,000 positions or even
to all legal KBBK positions, but we deem that a waste of resources as this would
have only a miniscule effect on the results.

Search Versus Knowledge Revisited Again 177

3 Experimental Results and Discussion

The experimental results are presented in Figs. 2 and 3. The latter is a zoomed
in detail of the first one to show more precisely what happens at higher search
depths. The x-axis represents search depth in plies and the y-axis the APL
statistic also measured in plies. The curves in the figures represent evaluation
functions of different heuristic quality. They are marked in the legend by their
corresponding level of noise σ. Each curve is in fact an averaged curve of ten
evaluation functions with the same σ.

0 4 8 12 16 20 24 28 32

10

20

30

40

50

60

70

80

APL

Fig. 2. Quality of play using corrupted evaluation functions

3.1 Knowledge Versus Search

The experimental results show, as expected, that the quality of play gradually
increases (decreasing APL) with deeper searches for all levels of heuristic er-
rors. The interesting part, though, is the shape of the curves. It represents the
relationship between search effort and the quality of knowledge.

Figures 2 and 3 show that better knowledge is much more useful with shallower
search, and that at very high search depths it almost loses its meaning. There
is very little difference in quality of play between a program with evaluation
function with σ of 4.0 and an almost perfect-knowledge program with σ of 0.5
at search depths of about 30 plies. However, the results also indicate that if we
would like to improve the play at extreme search depths it could only be done
by increasing knowledge.

It is interesting that this result seems to clash with the model proposed by
Junghanns and Schaeffer [7]. They write: “. . . as one moves to higher performance

178 A. Sadikov and I. Bratko

0 4 8 12 16 20 24 28 32

1

2

3

4

5

6

7

8

APL

Fig. 3. The turning point for diminishing returns

levels, the slope of the isocurves increase. This implies that for shallow search
depths, more knowledge is required to move to a higher isocurve than for deeper
search depths.” The latter statement is not confirmed by our experiments.

3.2 Diminishing Returns

What do our results have to tell about the diminishing returns? First of all, they
confirm their existence in the game of chess. True, the results were obtained only
for a subset of chess, yet we see no reason for not believing that by adding more
pieces on the board our results would still hold. Perhaps, some time in the future
this can also be proven with better computers and larger tablebases.

A more interesting observation stemming from Fig. 3 is, however, that the
point at which diminishing returns start to manifest themselves is dependant on
the quality of the heuristic function. All of the curves in the figure exhibit a sort
of turning point, yet, as indicated by the dashed line in the figure, this turning
point comes later for worse evaluation functions. The dashed line shows how this
turning point is dependant on the level of knowledge — while it intersects with
the σ = 1.0 curve already at about ply 4, it intersects with the σ = 4.0 curve
only somewhere around ply 14. The worse the quality of heuristic function, the
later diminishing returns start to manifest themselves.

Interestingly, this speaks in favor of the argument that it is the quality of
knowledge that is to fault that it took so long for diminishing returns to be
proven as argued by Junghanns et al. [7,8]. The programs used for experiments,
with the current level of knowledge, most likely simply did not reach the search
depth at which the curve relating knowledge and search would turn.

Search Versus Knowledge Revisited Again 179

If the hypothesized relation between the quality of knowledge and search
effort as given first by Michie [10] and then by Berliner et al. [1] holds, then our
result comes as no surprise. To attain equal quality of play the program with
less knowledge must search deeper than a more knowledgeable one. Therefore
diminishing returns for additional search effort come later for programs with less
knowledge. This result thus in turn backs up the validity of the hypothesized
relation.

4 Conclusions

The most interesting results gained by our alternative approach at investigating
the effect of search depth and heuristic quality on the level of play are: (a)
confirming the existence of diminishing returns for additional search effort in
chess, and especially (b) showing that the point at which diminishing returns
start to show themselves depends on the amount of knowledge the program has.

Perhaps leaving aside statistical considerations raised by Heinz [5], though we
do agree with them, we should point out another issue that surely had an effect
on the results of previous self-play experiments. The quality of knowledge the
programs had has to be taken into account — and those programs were far less
knowledgeable than the programs nowadays.

Here, an interesting question arises. The contemporary programs have reached
or even surpassed the level of human world champion. Yet, one wonders, how
good their knowledge actually is? How do they compare to the so-called God’s
algorithm, the tablebase-guided optimal play that requires no search beyond ply
one? One only has to take one look at Marc Bourzutschky’s and Yakov Konoval’s
recently constructed 7-man tablebases and one particular KQBNKQB position
that is a win in 330 moves and it all becomes perfectly clear to him or her.
As Tim Krabbé put it in his online diary, item 311 [9]: “As usual, the play is
weird, incomprehensible, and beautiful.” Neither humans nor today’s strongest
computers (without tablebases, relying only on their evaluation function) have
any idea how to win such a position (against a perfect opponent). The point we
are trying to make is that even the best contemporary programs are far from
perfection in their knowledge. So why would we expect them to show diminishing
returns?

We would also like to add that similar results (though at the moment only
preliminary — just one or two runs instead of ten as for the KBBK endgame)
were obtained for King-Rook-King and King-Queen-King-Rook chess endgames.
Some of these results, although for the purpose of other research, can be seen in
[11,12].

The generalization of our results on the complete chess game, as opposed to
just the endgames analyzed, is an interesting question. As we see it, it all boils
down to two issues: (a) the distance to mate as an evaluation function, and (b)
what is the qualitative difference between a chess endgame and chess itself; in
other words what, if anything, changes by putting more pieces on the board?

180 A. Sadikov and I. Bratko

References

1. Berliner, H., Goetsch, G., Campbell, M., Ebeling, C.: Measuring the Performance
Potential of Chess Programs. Artificial Intelligence 43(1), 7–21 (1990)

2. Haworth, G.: Self Play: Statistical Significance. ICGA Journal 26(2), 115–118
(2003)

3. Heinz, E.A.: A New Self-Play Experiment in Computer Chess. Technical Report
No. 608 (MIT-LCS-TM-608), Laboratory for Computer Science, Massachussetts
Institute of Technology, USA (2000)

4. Heinz, E.A.: New Self-Play Results in Computer Chess. In: Marsland, T., Frank,
I. (eds.) CG 2001. LNCS, vol. 2063, pp. 267–282. Springer, Heidelberg (2002)

5. Heinz, E.A.: Self-Play Experiments in Computer Chess Revisited. In: van den
Herik, H.J., Monien, B. (eds.) 9th Advances in Computer Games (ACG9), pp.
73–91. Department of Computer Science, Universiteit Maastricht, Maastricht, The
Netherlands (2001)

6. Heinz, E.A.: Follow-up on Self-play, Deep Search, and Diminishing Returns. ICGA
Journal 26(2), 75–80 (2003)

7. Junghanns, A., Schaeffer, J.: Search Versus Knowledge in Game-Playing Programs
Revisited. In: Proceedings of the 15th International Joint Conference on Artificial
Intelligence, pp. 692–697. Morgan Kaufmann, San Francisco (1997)

8. Junghanns, A., Schaeffer, J., Brockington, M., Björnsson, Y., Marsland, T.A.: Di-
minishing Returns for Additional Search in Chess. In: van den Herik, H.J., Uiter-
wijk, J.W.H.M. (eds.) 8th Advances in Computer Chess (ACC8), pp. 53–67. De-
partment of Computer Science, University of Maastricht, Maastricht, The Nether-
lands (1997)

9. Krabbé, T.: Open Chess Diary (2006), http://www.xs4all.nl/~timkr/chess2/

diary.htm

10. Michie, D.: A Theory of Advice. Machine Intelligence 8, 151–170 (1977)
11. Sadikov, A.: Propagation of Heuristic Evaluation Errors in Game Graphs. PhD the-

sis, University of Ljubljana, Faculty of Computer and Information Science (2005)
12. Sadikov, A., Bratko, I., Kononenko, I.: Bias and Pathology in Minimax Search.

Theoretical Computer Science 349(2), 268–281 (2005)
13. Thompson, K.: Retrograde Analysis of Certain Endgames. ICCA Journal 9(3),

131–139 (1986)
14. Thompson, K.: 6-Piece Endgames. ICCA Journal 19(4), 215–226 (1996)

http://www.xs4all.nl/~timkr/chess2/diary.htm
http://www.xs4all.nl/~timkr/chess2/diary.htm

Counting the Number of Three-Player Partizan

Cold Games

Alessandro Cincotti

Research Unit for Computers and Games, School of Information Science,
Japan Advanced Institute of Science and Technology, Ishikawa, Japan

cincotti@jaist.ac.jp

Abstract. We give upper and lower bounds on S3[n] equal to the num-
ber of three-player partizan cold games born by day n. In particular, we
give an upper bound of O(S2[n]3) and a lower bound of Ω(S2[n]) where
S2[n] is the number of surreal numbers born by day n.

1 Introduction

Games represent a conflict of interests between two or more parties and, as
a consequence, they are a good framework to study complex problem-solving
strategies. Typically, a real-world economical, social or political conflict involves
more than two parties and a winning strategy is often the result of coalitions.
For this reason, it is important to determine the winning strategy of a player in
the worst scenario, i.e., assuming that all his/her opponents are allied against
him/her.

It is therefore, a challenging and fascinating problem to extend the field of
combinatorial game theory [1,3] so as to allow more than two players. Past ef-
fort to classify impartial three-player combinatorial games (the theories of Li [5]
and Straffin [8]) have made various restrictive assumptions about the rational-
ity of one’s opponents and the formation and behavior of coalitions. Loeb [6]
introduces the notion of a stable winning coalition in a multi-player game as a
new system of classification of games. Differently, Propp [7] adopts in his work
an agnostic attitude toward such issues, and seeks only to understand in what
circumstances one player has a winning strategy against the combined forces of
the other two.

Cincotti [2] presents a theory to classify three-player partizan games adopting
the same attitude. Such a theory represents a possible extension of Conway’s
theory of partizan games [3,4] and it is therefore both a theory of games and a
theory of numbers.

In order to understand the mathematical structure of three-player partizan
games, counting the number of cold games born by day n is a crucial point. We
recall that the number of surreal numbers born by day n is S2[n] = 2n+1 − 1.
Moreover, a lower and upper bound of two-player games is given by Wolfe and
Fraser in [9].

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 181–189, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

182 A. Cincotti

2 Three-Player Partizan Games

For the sake of self-containment we recall in this section the main results con-
cerning three-player partizan games obtained in the previous work [2].

2.1 Basic Definitions

Definition 1. If L, C, R are any three sets of numbers previously defined and

1. no element of L is ≥L any element of C ∪ R, and
2. no element of C is ≥C any element of L ∪ R, and
3. no element of R is ≥R any element of L ∪ C,

then {L|C|R} is a number. All numbers are constructed in this way.

This definition for numbers is based on the definition and comparison operators
for games given in the following two definitions.

Definition 2. If L, C, R are any three sets of games previously defined then
{L|C|R} is a game. All games are constructed in this way.

We introduce three different relations (≥L,≥C ,≥R) that represent the subjective
point of view of every player which is independent from the point of view of the
other players.

Definition 3. We say that

1. x ≥L y iff (y ≥L no xC and y ≥L no xR and no yL ≥L x),
2. x ≥C y iff (y ≥C no xL and y ≥C no xR and no yC ≥C x),
3. x ≥R y iff (y ≥R no xL and y ≥R no xC and no yR ≥R x).

Numbers are totally ordered with respect to ≥L, ≥C , and ≥R but games are
just partially-ordered, e.g., there exist games x and y for which we have neither
x ≥L y nor y ≥L x.

Definition 4. We say that

1. x =L y if and only if (x ≥L y and x ≤L y),
2. x =C y if and only if (x ≥C y and x ≤C y),
3. x =R y if and only if (x ≥R y and x ≤R y),
4. x = y if and only if (x =L y, x =C y, and x =R y),
5. x + y = {xL + y, x + yL|xC + y, x + yC |xR + y, x + yR}.

Moreover, it is possible to classify numbers in 11 classes as shown in Table 1. The
entries ‘?’ are unrestricted and indicate that we can have different outcomes. For
further details, see [2].

Counting the Number of Three-Player Partizan Cold Games 183

Table 1. Classification of numbers

Short notation Class Left starts Center starts Right starts

= 0 =L 0,=C 0,=R 0 Right wins Left wins Center wins
>L 0 >L 0,<C 0,<R 0 Left wins Left wins Left wins
>C 0 <L 0,>C 0,<R 0 Center wins Center wins Center wins
>R 0 <L 0,<C 0,>R 0 Right wins Right wins Right wins
=LC 0 =L 0,=C 0,<R 0 Center wins Left wins Center wins
=LR 0 =L 0,<C 0,=R 0 Right wins Left wins Left wins
=CR 0 <L 0,=C 0,=R 0 Right wins Right wins Center wins
<CR 0 =L 0,<C 0,<R 0 ? Left wins Left wins
<LR 0 <L 0,=C 0,<R 0 Center wins ? Center wins
<LC 0 <L 0,<C 0,=R 0 Right wins Right wins ?
< 0 <L 0,<C 0,<R 0 ? ? ?

2.2 Examples of Numbers

According to the construction procedure, every number has the form {L|C|R},
where L, C, and R are three sets of earlier constructed numbers. At day zero,
we have only the empty set ∅ therefore the earliest constructed number could
only be {L|C|R} with L = C = R = ∅, or in the simplified notation { | | }. We
denote it by 0.

The first day we have only three new numbers which we call 1L = {0| | },
1C = { |0| }, and 1R = { | |0}. We observe that {0|0| }, {0| |0}, { |0|0}, and
{0|0|0} are not numbers. Table 2 shows the numbers created the second day.

Note 1. In [2] the list of numbers created the second day was incomplete because
we can create 24 (not 18) different numbers.

Table 2. Numbers created the second day

{1L| | } { |1C | } { | |1R} {1C |1L| }
{0, 1C , 1R| | } { |0, 1L, 1R| } { | |0, 1L, 1C} {1R| |1L}
{0, 1C | | } { |0, 1L| } { | |0, 1L} { |1R|1C}
{0, 1R| | } { |0, 1R| } { | |0, 1C} {1C , 1R| | }
{0|1L| } {1C |0| } {1R| |0} { |1L, 1R| }
{0| |1L} { |0|1C} { |1R|0} { | |1L, 1C}

3 Counting the Numbers

How many numbers will be created by day n?

Definition 5. Let S2 and S3 be respectively Conway’s surreal numbers and the
new set of numbers previously defined. We define three different maps π : S3 →
S2 as follows:

184 A. Cincotti

1. πL({xL|xC |xR}) = {πL(xL)|πL(xC), πL(xR)}
2. πC({xL|xC |xR}) = {πC(xC)|πC(xL), πC(xR)}
3. πR({xL|xC |xR}) = {πR(xR)|πR(xL), πR(xC)}

Theorem 1. For any x, y ∈ S3

1. x ≤L y ⇐⇒ πL(x) ≤ πL(y)
2. x ≤C y ⇐⇒ πC(x) ≤ πC(y)
3. x ≤R y ⇐⇒ πR(x) ≤ πR(y)

Proof. 1. If x ≤L y then �xL ≥L y and, by the inductive hypothesis

�πL(xL) ≥ πL(y) ⇒ �πL(x)L ≥ πL(y). (1)

Moreover, �yC ≤L x, �yR ≤L x, and by the inductive hypothesis

�πL(yC) ≤ πL(x)
�πL(yR) ≤ πL(x)

}

⇒ �πL(y)R ≤ πL(x). (2)

Conversely, if πL(x) ≤ πL(y) then

�πL(x)L ≥ πL(y) ⇒ �πL(xL) ≥ πL(y) (3)

and by the inductive hypothesis �xL ≥L y.
Also,

�πL(y)R ≤ πL(x) ⇒
{

�πL(yC) ≤ πL(x)
�πL(yR) ≤ πL(x) (4)

and by the inductive hypothesis �yC ≤L x and �yR ≤L x.
2. Analogous to 1.
3. Analogous to 1.
�

We have two corollaries of the above theorem.

Corollary 1. If x ∈ S3 is a number then πL(x), πC(x), and πR(x) are numbers.

Corollary 2. Let x, y ∈ S3 be two numbers. Then x = y if and only if πL(x) =
πL(y), πC(x) = πC(y), and πR(x) = πR(y).

It follows that to every number x ∈ S3 there corresponds a unique triple (πL(x),
πC(x), πR(x)) of surreal numbers. Table 3 shows all numbers born by day 2 and
their corresponding triples of surreal numbers.

Theorem 2. Let x = {xL|xC |xR} ∈ S3[n] be a number born by day n. Then
πL(x), πC(x), and πR(x) ∈ S2[n].

Proof. By the hypothesis xL, xC , and xR ∈ S3[n − 1] and by the inductive
hypothesis πL(xL), πL(xC), and πL(xR) ∈ S2[n − 1] therefore πL(x) ∈ S2[n].
Analogously, πC(x) and πR(x) are numbers born by day n.
�
Unfortunately, the above theorem is not reversible.

Counting the Number of Three-Player Partizan Cold Games 185

Table 3. Numbers born by day 2 and their corresponding triples of surreal numbers

Day 0 Day 1 Day 2

= { | | } (0,0,0)
>L {0| | } (1,-1,-1) {1L| | } (2,-2,-2)
>L {0, 1C , 1R| | } (1,-2,-2)
>L {0, 1C | | } (1,-1,-2)
>L {0, 1R| | } (1,-2,-1)
>L {0|1L| } (1/2,-1/2,-2)
>L {0| |1L} (1/2,-2,-1/2)
>C { |0| } (-1,1,-1) { |1C | } (-2,2,-2)
>C { |0, 1L, 1R| } (-2,1,-2)
>C { |0, 1L| } (-1,1,-2)
>C { |0, 1R| } (-2,1,-1)
>C {1C |0| } (-1/2,1/2,-2)
>C { |0|1C} (-2,1/2,-1/2)
>R { | |0} (-1,-1,1) { | |1R} (-2,-2,2)
>R { | |0, 1L, 1C} (-2,-2,1)
>R { | |0, 1L} (-1,-2,1)
>R { | |0, 1C} (-2,-1,1)
>R {1R| |0} (-1/2,-2,1/2)
>R { |1R|0} (-2,-1/2,1/2)
=LC {1C |1L| } (0,0,-2)
=LR {1R| |1L} (0,-2,0)
=CR { |1R|1C} (-2,0,0)
<CR {1C , 1R| | } (0,-2,-2)
<LR { |1L, 1R| } (-2,0,-2)
<LC { | |1L, 1C} (-2,-2,0)

Example 1. Let’s consider 1L + 1C + 1R = {{ |1R|1C}|{1R| |1L}|{1C|1L| }}. We
observe that πL(x) = πC(x) = πR(x) = −1 therefore they all belong to S2[1]
but 1L + 1C + 1R �∈ S3[1] because it will be created only the third day.

It follows that a rough upper bound on S3[n] is given by the number of distinct
triples of surreal numbers born by day n, i.e., (S2[n])3. Moreover, a simple lower
bound is given by S2[n].

Theorem 3. For any x, y ∈ S3

1. πL(x + y) = πL(x) + πL(y)
2. πC(x + y) = πC(x) + πC(y)
3. πR(x + y) = πR(x) + πR(y)

Proof. 1.

πL(x + y) = πL({xL + y, x + yL|xC + y, x + yC |xR + y, x + yR}) (5)
= {πL(xL + y), πL(x + yL)|

πL(xC + y), πL(x + yC), πL(xR + y), πL(x + yR)}

186 A. Cincotti

= {πL(xL) + πL(y), πL(x) + πL(yL)|
πL(xC) + πL(y), πL(x) + πL(yC),
πL(xR) + πL(y), πL(x) + πL(yR)}

= πL(x) + πL(y)

2. Analogous to 1.
3. Analogous to 1.
�

Theorem 4. Let x ∈ S3 be a number. Then

1. πL(x) + πC(x) ≤ 0,
2. πL(x) + πR(x) ≤ 0,
3. πC(x) + πR(x) ≤ 0.

Proof. 1. We observe that

πL(xL) + πC(x) < πL(xL) + πC(xL) (6)

and by the inductive hypothesis

πL(xL) + πC(xL) ≤ 0. (7)

Analogously,
πL(x) + πC(xC) < πL(xC) + πC(xC) ≤ 0 (8)

therefore no left option of πL(x) + πC(x) is ≥ 0.
2. Analogous to 1.
3. Analogous to 1.
�

Theorem 5. Let x ∈ S3[n] and y ∈ S3[m] be two numbers. Then x + y ∈
S3[n + m].

Proof. We recall that x + y = {xL + y, x + yL|xC + y, x + yC |xR + y, x + yR}.
By the hypothesis, xL, xC , and xR belong to S3[n−1] and yL, yC , yR belong to
S3[m− 1]. By the inductive hypothesis, xL + y, x + yL, xC + y, x + yC , xR + y,
x + yR belong to S3[n + m − 1] therefore x + y ∈ S3[n + m].
�

3.1 Lower and Upper Bound

Below we give a more accurate upper and lower bound for each class. We start
recalling four statements.

1. The number of surreal numbers born by day n is

S2[n] = 2n+1 − 1 (9)

2. The number of positive (negative) surreal numbers born by day n is

1
2

(S2[n] − 1) (10)

Counting the Number of Three-Player Partizan Cold Games 187

3. The number of positive (negative) dyadic fraction born by day n is

1
2

(S2[n] − 2n − 1) (11)

4. The following equality holds

12 + 22 + . . . + n2 =
n(n + 1)(2n + 1)

6
(12)

Definition 6. We define

(i + 1)L = {iL| | } (13)
(j + 1)C = { |jC | } (14)
(k + 1)R = { | |kR} (15)

where i, j, k ∈ N and 0L = 0C = 0R = 0.

Definition 7. We define
(

2p + 1
2q+1

)

LC

=
{(

p

2q

)

LC

∣
∣
∣
∣

(
p + 1

2q

)

LC

∣
∣
∣
∣

}

(16)
(

2p + 1
2q+1

)

LR

=
{(

p

2q

)

LR

∣
∣
∣
∣

∣
∣
∣
∣

(
p + 1

2q

)

LR

}

(17)

where p, q ∈ N.

Note 2. If
(

p
2q

)
∈ N then

(
p
2q

)

LC
=

(
p
2q

)

LR
=

(
p
2q

)

L
. Analogously, if

(
p+1
2q

)
∈

N then
(

p+1
2q

)

LC
=

(
p+1
2q

)

LR
=

(
p+1
2q

)

L
.

Theorem 6. If x =
(

2p+1
2q+1

)

LC
is born the bth day then πR(x) = −b.

Proof. By definition

πR

((
2p + 1
2q+1

)

LC

)

=
{ ∣

∣
∣
∣πR

((
p

2q

)

LC

)

, πR

((
p + 1

2q

)

LC

)}

(18)

We observe that either
(

p
2q

)

LC
or

(
p+1
2q

)

LC
must be born the (b − 1)th day

therefore by the inductive hypothesis we have πR(x) = { | − (b − 1)} = −b.
�
Below we make eight observations

1. The first class contains only the number 0.
2. In the class >L 0, πL(x) is positive, πC(x) and πR(x) are negative therefore

we have an upper bound of 1
8 (S2[n]−1)3. Using Theorem 4 and the equality

12 we can refine this value obtaining 1
24 (S2[n]2 − 1)S2[n].

188 A. Cincotti

In contrast, we can express every triple (i,−j,−k) by the number
{(i−1)L, (k−1)C , (j−1)R| | } where i−j ≤ 0, i−k ≤ 0 and i,j,k ∈ Z+. More-
over, for every positive dyadic fraction we can create two different numbers(

2p+1
2q+1

)

LC
and

(
2p+1
2q+1

)

LR
corresponding respectively to

(
2p+1
2q+1 ,− 2p+1

2q+1 ,−b
)

and
(

2p+1
2q+1 ,−b,− 2p+1

2q+1 ,
)

where b is the day
(

2p+1
2q+1

)
was born. Summing up,

we have a lower bound of 1
6n(n + 1)(2n + 1) + S2[n] − 2n− 1.

3. The classes >C 0 and >R 0 are analogous to the class >L 0.
4. If x =LC 0 then xR = ∅ therefore πR(x) = { |πR(xL), πR(xC)} ∈ Z−. If

x ∈ S3[n] then by Theorem 2, −n ≤ πR(x) therefore n is an upper bound.
Moreover, we observe that the number {{ |0|1C}|{0| |1L}| } corresponding
to (0, 0,−1) belongs to S3[3] therefore the lower bound is n with n > 2.

5. The classes =LR 0 and =CR 0 are analogous to the class =LC 0.
6. In the class <CR 0, πL(x) = 0, πC(x) and πR(x) are negative therefore we

have an upper bound of 1
4 (S2[n] − 1)2.

In contrast, we can express every triple (0,−j,−k) by the number {(k −
1)C , (j − 1)R| | } where j,k ∈ Z+ with j, k ≥ 2. Moreover, for every positive
dyadic fraction we can create the number

(
2p+1
2q+1

)

LC
+

(
2p+1
2q+1

)

RL
corre-

sponding to
(

0,−b− 2p+1
2q+1 ,−b + 2p+1

2q+1

)
where b is the day

(
2p+1
2q+1

)
was born.

Summing up, we have a lower bound of (n−1)2 + 1
2 (S2[n/2�]−2n/2�−1).

7. The classes <LR 0 and <LC 0 are analogous to the class <LR 0.
8. In the last class, we have an upper bound of 1

8 (S2[n] − 1)3 because πL(x),
πC(x), and πR(x) are all negative.
We recall that
(a) If x <CR 0 ∈ S3[n−2] and y = { |1R|1C} ∈ S3[2] then x+y < 0 ∈ S3[n].
(b) If x <LR 0 ∈ S3[n−2] and y = {1R| |1L} ∈ S3[2] then x+ y < 0 ∈ S3[n].
(c) If x <LC 0 ∈ S3[n−2] and y = {1C|1L| } ∈ S3[2] then x+y < 0 ∈ S3[n].
To be sure that the sets of numbers given by (a), (b), and (c) are disjoint,
we do not consider the numbers x <CR 0 ∈ S3[n − 2] corresponding to
(0,−j,−k) where either j = 2 or k = 2. Analogously, we do not consider
the numbers x <LR 0 ∈ S3[n − 2] corresponding to (−j, 0,−k) where either
j = 2 or k = 2 and the numbers x <LC 0 ∈ S3[n − 2] corresponding to
(−j,−k, 0) where either j = 2 or k = 2. Therefore, we have a lower bound
of 3

2S2[n/2� − 1] + 3n2 − 24n− 3n/2� + 99
2 .

Summarizing, we have an upper bound of

1
4
S2[n]3 +

3
8
S2[n]2 − 5

4
S2[n] + 3n +

13
8

= O(S2[n]3) (19)

and a lower bound of

3S2[n] +
3
2
S2[n/2�] +

3
2
S2[n/2� − 1]+ (20)

n3 +
15
2

n2 − 65
2

n −6n/2� + 49 = Ω(S2[n])

Table 4 shows the results so far obtained but to establish the exact value of S3[n]
as well as the canonical form of a three-player game is still an open problem.

Counting the Number of Three-Player Partizan Cold Games 189

Table 4. Results obtained so far

x Lower bound Upper bound

= 0 1 1
>L 0 S2[n] + 1

3
n3 + 1

2
n2 − 11

6
n − 1 1

24
(S2[n]2 − 1)S2[n]

>C 0 S2[n] + 1
3
n3 + 1

2
n2 − 11

6
n − 1 1

24
(S2[n]2 − 1)S2[n]

>R 0 S2[n] + 1
3
n3 + 1

2
n2 − 11

6
n − 1 1

24
(S2[n]2 − 1)S2[n]

=LC 0 n, n > 2 n
=LR 0 n, n > 2 n
=CR 0 n, n > 2 n
<CR 0 1

2
S2[�n/2�] + n2 − 2n − �n/2� + 1

2
, n > 1 1

4
(S2[n] − 1)2

<LR 0 1
2
S2[�n/2�] + n2 − 2n − �n/2� + 1

2
, n > 1 1

4
(S2[n] − 1)2

<LC 0 1
2
S2[�n/2�] + n2 − 2n − �n/2� + 1

2
, n > 1 1

4
(S2[n] − 1)2

< 0 3
2
S2[�n/2� − 1] + 3n2 − 24n − 3�n/2� + 99

2
, n > 3 1

8
(S2[n] − 1)3

Acknowledgments

I would like to thank the anonymous referees for their useful comments.

References

1. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways For Your Mathematical
Plays. Academic Press, San Diego (1982)

2. Cincotti, A.: Three-Player Partizan Games. Theoretical Computer Science 332, 367–
389 (2005)

3. Conway, J.H.: On Numbers and Games. Academic Press, San Diego (1976)
4. Knuth, D.: Surreal Numbers. Addison-Wesley, London, UK (1974)
5. Li, S.Y.R.: N-Person Nim and N-Person Moore’s Games. Game Theory 7, 31–36

(1978)
6. Loeb, D.E.: Stable Winning Coalitions. In: Nowakowski, R.J. (ed.) Games of No

Chance, vol. 29, pp. 451–471. MSRI Publ. Cambridge University Press (1994)
7. Propp, J.: Three-player Impartial games. Theoretical Computer Science 233, 263–

278 (2000)
8. Straffin Jr., P.D.: Three-Person Winner-Take-All Games with Mc-Carthy’s Revenge

Rule. College Journal of Mathetmatics 16, 386–394 (1985)
9. Wolfe, D., Fraser, W.: Counting the Number of Games. Theoretical Computer Sci-

ence 313, 527–532 (2004)

LUMINES Strategies

Greg Aloupis, Jean Cardinal, Sébastien Collette�, and Stefan Langerman��

Département d’Informatique,
Université Libre de Bruxelles, Brussels, Belgium

{greg.aloupis,jcardin,secollet,stefan.langerman}@ulb.ac.be

Abstract. We analyze a new popular video-game called Lumines, which
was developed by Sony for the PSP platform. It involves a sequence of
bichromatic 2×2 blocks that fall in a grid and must be shifted or rotated
by the player before they land. Patterns of monochromatic 2 × 2 blocks
in the terrain are regularly deleted. The primary goal is to contain the
terrain within a fixed height and, if possible, clear the grid.

We deal with questions such as: (1) Can the game be played indefi-
nitely? and (2) Can all terrains be eliminated? We examine how answers
to these questions depend on the size of the grid and the rate at which
blocks are deleted.

1 Introduction

Lumines1 is a popular puzzle video game for the PSP2 platform, originally
released in December 2004 in Japan. The original concept was proposed by
Tetsuya Mizuguchi and half a million units of this game have been sold within
the first year of its release. In this paper, we consider a model that follows the
properties of the game as closely as possible. The game is described below.

In a two-dimensional grid game, a sequence of 2 × 2 blocks falls and the user
may rotate and shift each block before it reaches the existing terrain. From this
instant, the user may no longer shift or rotate that block, and if only one of the
two columns of the block is supported by the terrain just below it, the other 2x1
column continues to fall without intervention until it is also supported. Once a
new terrain has been formed, the next block falls.

Each of the four square cells that form a block is colored either black or
white, and any cell that belongs to a 2× 2 monochromatic square in the terrain
is marked. Note that some of those 2× 2 monochromatic squares could overlap.
At regular intervals, a vertical line sweeps across the terrain and deletes marked
cells. If other cells existed above the deleted ones in the terrain, then they collapse
so that a new terrain is formed. An example is illustrated in Figure 1.

The main goal of the game is to manipulate the falling blocks so that the
terrain remains within the grid. A secondary goal is to clear the terrain entirely
� Aspirant du F.N.R.S.

�� Chercheur qualifié du F.N.R.S.
1 Lumines is a trademark of Bandai.
2 PSP is a trademark of Sony Computer Entertainment Inc.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 190–199, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

LUMINES Strategies 191

Fig. 1. Example of a block falling: both 2 × 1 columns fall until supported, the two
overlapping squares are deleted, and the the remainder of the terrain collapses

as much as possible, as this is worth many points. Variations that the game offers
include trying to build a target terrain from a given one.

The actual game is played on a grid with 16 columns and 10 rows. While one
block is falling, the player can see what the next three blocks will be. The rates
at which the sweep-line appears and moves depend on the level of the game.

There are four kinds of blocks (see Figure 2), and six shapes overall:

– (1-2) monochromatic (black and white),
– (3) H-blocks, consisting of two black cells above two white cells,
– (4-5) L-blocks, with 3 black and one white cell (and vice versa),
– (6) X-blocks, no two cells of the same color in the same row or column.

Fig. 2. The four block types in Lumines: monochromatic, L-block, H-block, X-block

In this work we analyze the game and discuss how to play as best as pos-
sible. Related works include analyses of similar board games, where blocks fall
and must be arranged by the player. Tetris, the best known falling-block game
invented by Alexey Pajitnov in 1985, has been extensively studied. Burgiel [4]
proved that there exists a sequence of tetrominoes that will fill up the board
no matter how the player places them. This improves a previous result of Brzu-
towski [3] who showed that there is no winning strategy if the computer uses
the information of how the previous tetrominoes are placed. Similar results have

192 G. Aloupis et al.

also been proposed by Tucker [8]. Brzutowski however proved that there exist
winning strategies for restricted versions of Tetris, in which for instance only
one type of tetrominoes appear.

We are not aware of any previous scientific analysis of Lumines. However,
even though the game was released recently, many documents available on the
Internet discuss tips and strategies. References and links to previous analyses
of the game can be found in [11]. For instance, it is known that the game can
be played continuously by compartmentalizing the board into different sections
corresponding to each type of block [9,10].

Other types of results involve the application of complexity theory to puzzles
and games. A survey of algorithmic and complexity results for two-player games
and puzzles was published recently by Demaine [5]. He also provided a complexity
analysis of Tetris [2,6], showing that for a given sequence of blocks it is NP-
hard to find a corresponding sequence of moves that minimizes the final height
of the stack or maximizes the number of cleared rows. Further complexity and
decidability results for Tetris are given in the recent paper by Hoogeboom and
Kosters [7]. Tetris also served as a model for packing problems (see, e.g., [1]).

The known results on strategies for Tetris are to be compared with our
result for Lumines in Section 2. There we propose an optimal winning strategy
for Lumines, that uses as few steps, rows, and columns as possible for each
section of the board. We analyze the interferences which can occur between
sections, and also the impact of the speed of the sweep-line on our strategy. We
try to clear the board completely as often as possible.

Section 3 is dedicated question of whether any given terrain, made of previ-
ously fallen blocks, can be cleared, provided it does not contain any obviously
indestructible structure. Although at first sight a positive answer seems within
reach, we show that one must take care of traps.

2 Playing Forever

Unless mentioned otherwise, we assume that the sweepline moves quickly across
the grid, with respect to the rate at which blocks fall. In effect, we assume that
all marked blocks are deleted simultaneously when the sweepline appears.

Lemma 1. On the original Lumines grid, starting from the empty terrain, it is
possible to continue playing indefinitely as long as the sweep-line appears after
every block.

Proof. We provide a simple repetitive strategy that can be used to play forever,
and in which every type of block is placed in predefined columns.

First we examine the situation where the sweep-line appears at least four
times after every block.

We allocate columns 1 and 2 for monochromatic and H-blocks, and maintain
that the terrain will be identical in these two columns. Clearly in such conditions
a monochromatic block is deleted as soon as it becomes part of the landscape.
H-blocks are always rotated so that they form monochromatic rows, and so that

LUMINES Strategies 193

the bottom row matches the top row in the terrain (which, by construction, is
monochromatic). The two matching rows will be deleted immediately.

Since the top row of columns 1 and 2, as well as the bottom row of the falling
monochromatic or H-block will always be ”instantly” deleted, the height of the
terrain in these two columns will be at most 2, in the case that an H-block falls
on an empty terrain. Of course, the height can temporarily be 4, just before
deletion.

Columns 4-6 are allocated for L-blocks that contain three white cells. We
provide a sequence of operations so that every four of these blocks combine to
yield an empty terrain. To avoid possible interference between monochromatic
blocks and L-blocks, we always keep column 3 clear. Columns 8-10 are reserved
for the alternate type of L-block, and column 7 is kept clear. Our sequence of
operations for L-blocks is shown in Figure 3. This sequence produces a maximum
height of 6, and when the last L-block has been added the triplet of columns is
cleared in three sweeps.

Fig. 3. Sequence of operations for L-blocks. Between the second and third frames, four
white cells are deleted and part of the terrain collapses. After the last frame, three
sweeps will clear the terrain.

Column 11 is kept clear and we allocate columns 12-14 for X-blocks. We
demonstrate how to clear the terrain within these three columns after every four
such blocks, in Figure 4. The maximum height in these columns is 8. The three
columns are cleared in four sweeps after the last X-block falls.

A closer examination of these separate groups shows that we can place
monochromatic and H-blocks in columns 1-2, one type of L-blocks in columns
3-5, X-blocks in columns 6-8, and the alternate L-blocks in columns 9-11. No
interference occurs.

194 G. Aloupis et al.

Fig. 4. Sequence of operations for X-blocks. No cells are deleted until after all four
blocks have formed a terrain. Then four sweeps clear the terrain.

For a sweepline that appears only once after each block, we do not modify
our method of dealing with each block type. We continue dropping blocks in
the same patterns, but now within each triplet of columns the terrain does not
follow one simple cycle. Depending on the sequence of blocks and sweep-line
appearances, a triplet of columns may go through several other cycles. Each
cycle has been verified and stay within a height of 8. For example, in Figure 3, if
only one sweep-line appears after the last illustrated step, then just four white
cells will be deleted instead of all three columns. Adding an L-block in the first
two columns will just stack four cells onto the terrain, but then the four existing
black cells will be deleted. In this way, proceeding with our normal pattern of
dropped blocks, the sequence of deletions is not affected.

However, the new patterns that occur do cause interference between separate
block-type regions. So if we wish to handle a slower sweep-line rate, we do need
buffers and 14 columns overall. We have not yet examined whether this interfer-
ence can be handled otherwise. Finally, we just mention a similar strategy which
allows indefinite play within 16 columns and 4 rows. However, the cycle of each
block type does not include the empty state. ��
The fact that one can play Lumines forever is in sharp contrast with the opposite
result known for Tetris. This can be interpreted as Lumines being ”easier”
than Tetris. Yet it seems, based on recent reviews, that the game is no less
addictive.

3 Clearing Terrains

A terrain is defined to be a stable configuration of cells, in the sense that no
cells would collapse if a sweep-line were to scan through. In other words, no four

LUMINES Strategies 195

cells of the same color forming a square exist in a terrain. We say that a terrain
is flat if all columns have the same height. We make the observation that some
terrains cannot be cleared, on a board of finite width. It suffices to construct
a flat terrain where the top row consists of alternating colors. No cell in this
top row can ever be part of a monochromatic square, so the row will never be
deleted. A terrain with no alternating row is called a legal terrain.

The goal of this section is to determine whether all legal terrains can be cleared
and how to clear them. In the algorithms that follow we assume that enough
sweeps occur to delete the terrain. The following Lemma is useful for clearing
terrains.

Lemma 2. Let (A, B, C) be three consecutive columns with heights (0, 0, k) re-
spectively, where k ≥ 2. The height of all three columns can be reduced to zero
using an appropriate sequence of blocks, whether adjacent columns exist or not.

Proof. To simplify the main proof assume that no adjacent columns exist, so
that no interference occurs with the blocks that we will use within (A, B, C).
This will be dealt with at the end of the proof.

Our general strategy is to add two new cells to B so that they duplicate those
opposite to them in C. At the same time we add two white cells to A. The
idea is to create duplicate columns in B and C, which can be easily eliminated
using monochromatic or H-blocks. Following this, the white cells in A can be
eliminated using white blocks.

Some deletions may occur as we add blocks in (A, B), and in fact it is clear
that the rows in (B, C) will end up having alternating colors. When deletions
occur, B and C both lose the same number of cells. Any deletion that happens
in A also happens in (B, C), so A will always be at least as high as the other
two columns.

We have no method of eliminating a single cell or single row within three
columns, and suspect that it is not possible. Therefore it is important to avoid
constructing these patterns during our procedure. There are several end-configu-
rations which can lead to the two forbidden patterns if care is not taken. These
are not included here due to space constraints. We just mention that we avoid
being left with a single row by maintaining A higher than the other two columns.

Interference due to a column adjacent to A can cause its height to decrease.
However we can always re-fill it in this case. Interference with C is not really an
issue. ��
It is easy to take care of the two exceptional height sets (0,0,1) and (1,1,1) if a
fourth column is used. It suffices to drop a block so that two cells land in C and
the other two in its adjacent column.

Lemma 3. Given four consecutive columns, including one column C of height
zero, the height of a column adjacent to C can also be reduced to zero, with an
appropriate sequence of blocks.

Proof. Examine the case where C is the first column in the set (C, D, E, F):

196 G. Aloupis et al.

It is easy to drop blocks in (E, F) so that the height of E reaches far above
D, and the excess cells are all white. If E is initially higher than D, then we
drop blocks in (D, E) to achieve the same effect. Thereafter we can drop blocks
in (C, D), so that cells in C match the original ones of D, while the new cells
in D are white and instantly eliminated along with part of E. Thus D does not
grow in height as we add cells to C. We can even add one cell to D with the aid
of (E, F), to ensure that there is no parity difference between C and D. Thus
the alternating rows in (C, D) can be eliminated with monochromatic blocks.

If C is the second column, in the set (B, C, D, E), we do the following. Simply
drop blocks in (C, D) so that the cells in C match those in B and then eliminate
the alternating rows in (B, C) as mentioned above. We omit the details of dealing
with a parity difference. ��
Theorem 1. Any terrain of width at least four and containing a column of zero
height can be cleared with an appropriate sequence of blocks.

Proof. We use Lemma 3 to create two adjacent empty columns, and then repeat
the uses of Lemma 2 to clear the remaining columns. ��
Corollary 1. If a terrain has minimum height h, with an appropriate sequence
of blocks the entire terrain can be flattened to height h, or the minimum height
can be reduced.

Proof. If the height cannot immediately be reduced, then use the column C
which has height h to apply the technique of Lemma 3. ��
The preceding result almost leads one to conclude that all legal terrains can be
cleared with an appropriate sequence of blocks. However, in Figure 5 we illustrate
a legal terrain that cannot be cleared.

The top row is indestructible, unless some cell is dropped into the “well”.
If it is white, it will complete an alternating row instantly. If it is black, it will
trigger a series of deletions which result in the bottom row becoming alternating.
This does not contradict Corollary 1, since the terrain can be reduced for a few
steps, but when the minimum height is one it can only be flattened, not reduced
further. Corollary 1 does not specify that once the terrain is reduced to height
h, it will also be legal.

We have an example of an indestructible terrain with a well of width two,
shown in Figure 6. Again the top row is indestructible, and either of the two
positions at the bottom awaits a cell which will trigger disaster or help to com-
plete an alternating row at that level. For lack of space, an illustration of the
triggered deletions is omitted. We just mention the interesting construction in
which two separate triggers form different cascading deletions which ultimately
affect the exact same position at lower height.

Let a feasible terrain be one which has at least one column of height 0. We
have already proved that feasible terrains can be cleared with an appropriate
sequence of blocks. Let a fast sweep-line be one which appears at least four
times after every block falls.

LUMINES Strategies 197

Fig. 5. Left: an indestructible terrain and a cell that triggers a series of deletions.
Blocks with dashed sides have irrelevant color; Middle: after the first deletion; Right:
after the second deletion. The two blocks with a diagonal may or may not be present.
The final deletion which causes the lowest row to become alternating is not shown.

Theorem 2. Any feasible terrain with at least 15 columns and arbitrary height
can be cleared, assuming that all block types appear eventually after any given
instant, and that the sweep-line is fast. If the sweep-line is not fast, then 3 more
columns are needed.

Proof. Since we allow arbitrary height, we can use two consecutive columns that
are furthest from the column of height 0, in order to place blocks that are not
useful to us at the moment that they appear. This allows us to assume that we
have at our disposal exactly the sequence of blocks that we need. Since the two
storage columns are at one extreme of the grid, there are 13 consecutive columns
in which to apply the strategy of Theorem 1.

After clearing 13 columns, we can begin using the first 11 as a storage for
useless blocks, according to Lemma 1. This allows us to clear the two initial
storage columns, with the aid of the two columns nearest to them.

Of course, we will have to wait until a moment when each of our block types
has “self-eliminated” within its allocated column space, for the terrain actually
to be cleared. If blocks fall randomly, this will happen with probability one.
There is simply no deterministic method of achieving this goal, due to adversarial
arguments. ��
To conclude, we claim that any feasible terrain with height h can be cleared
without ever reaching a height greater than 2h (at least if the width of the grid
is greater than 30), and we conjecture that this bound is tight. Terrains requiring
3h
2 exist.

As we have seen, in Lumines not all terrains can be cleared. In comparison,
any Tetris terrain can be cleared if an appropriate sequence of tetrominoes is
given. In this sense, Lumines is harder.

Future work may involve giving a complete characterization of clearable legal
terrains.

198 G. Aloupis et al.

Fig. 6. An indestructible terrain. The black marked cell ultimately takes the place of
the white cell below it in the lowest row. Depending on which side is triggered, one of
the two marked white cells will also fall into the lowest row. The left trigger involves 9
deletions, and the right one involves 12.

Acknowledgments

This project was initiated during the algorithmic meetings at the ULB Com-
puter Science department. The authors thank all participants, in particular Guy
Louchard and Barry Balof, for helpful discussions.

References

1. Azar, Y., Epstein, L.: On Two-Dimensional Packing. Journal of Algorithms 25(2),
290–310 (1997)

2. Breukelaar, R., Demaine, E.D., Hohenberger, S., Hoogeboom, H.J., Kosters, W.A.,
Liben-Nowell, D.: Tetris is Hard, Even to Approximate. International Journal of
Computational Geometry and Applications 14, 41–68 (2004)

3. Brzutowski, J.: Can You Win at Tetris? Master’s thesis, The University of British
Columbia (1992)

LUMINES Strategies 199

4. Burgiel, H.: How to Lose at Tetris. Mathematical Gazette 81, 194–200 (1997)
5. Demaine, E.D.: Playing Games with Algorithms: Algorithmic Combinatorial Game

Theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136,
pp. 18–32. Springer, Heidelberg (2001)

6. Demaine, E.D., Hohenberger, S., Liben-Nowell, D.: Tetris is Hard, Even to Ap-
proximate. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp.
351–363. Springer, Heidelberg (2003)

7. Hoogeboom, H.J., Kosters, W.A.: The Theory of Tetris. Nieuwsbrief van de Ned-
erlandse Vereniging voor Theoretische Informatica 9, 14–21 (2005)

8. Tucker, R.: Tetris. Eureka Magazine 51, 34–35 (1992)
9. Whitelaw, C.: Lumines: Killing the Fun (2005),

http://caseyporn.com/blog/archives/000818.html

10. Whitelaw, C.: Lumines: Killing the Fun, Part Two (2005),
http://caseyporn.com/blog/archives/000819.html

11. Wikipedia contributors: Lumines. Wikipedia, The Free Encyclopedia (2006)

http://caseyporn.com/blog/archives/000818.html
http://caseyporn.com/blog/archives/ 000819.html

Computing Proper Equilibria

of Zero-Sum Games

Peter Bro Miltersen and Troels Bjerre Sørensen

Department of Computer Science – Daimi,
University of Aarhus, Denmark
{bromille,trold}@daimi.au.dk

Abstract. We show that a proper equilibrium of a matrix game can
be found in polynomial time by solving a linear (in the number of pure
strategies of the two players) number of linear programs of roughly the
same dimensions as the standard linear programs describing the Nash
equilibria of the game.

1 Introduction

It has been known for more than fifty years that Nash equilibria of matrix games
(i.e., two-player zero-sum games in normal form) coincide with pairs of maximin
and minimax mixed strategies and can be found efficiently using linear program-
ming. However, as is also well-established in game theory, the notion of a Nash
equilibrium is too permissive to prescribe consistently any sensible behavior. For
instance, consider the classical example of penny matching: Alice has to guess
whether Bob hides a penny heads or tails up. If she guesses correctly, she gets
the penny. The payoff matrix for this game, with Alice being the row player
trying to maximize payoff and Bob being the column player trying to minimize
it, is as follows.

hide penny heads up hide penny tails up
guess “heads up” 1 0

guess “tails up” 0 1

It is well known and easy to see that the unique pair of maximin, minimax
strategies and therefore the unique Nash equilibrium in penny matching is for
both players to mix up their two pure strategies uniformly, i.e., Alice guesses
“heads up” with probability exactly 1

2 and Bob hides the penny heads up with
probability exactly 1

2 . Thus, the value of the game is 1
2 . There is not much

more to say about this positively valued game, except that Bob clearly does not
want to play it at all. Let us consider a modified version, parsimonious penny
matching, where we give Bob the option of teasing Alice, by only pretending to
hide a penny, but never really putting a penny at risk. This game is described
by the following payoff matrix.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 200–211, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computing Proper Equilibria of Zero-Sum Games 201

hide penny heads up hide penny tails up tease
guess “heads up” 1 0 0

guess “tails up” 0 1 0

It is clear that the value of parsimonious penny matching is 0 and that Bob’s
unique minimax strategy is to “tease” with probability 1. It is more interesting
to consider the situation for Alice. Any mix of her two pure strategies is a
maximin strategy (for instance, guessing “heads up” with probability 1 is a
maximin strategy). The reason is that to be a maximin strategy, it is sufficient
to guarantee that Alice achieves the value of the game. This value is 0 and Alice
will achieve this no matter what she does. Thus, any strategy profile in which
Bob chooses “tease” with probability 1 is a Nash equilibrium. But only one
of these prescribes sensible (in an intuitive sense) behavior for Alice. The one
where she uniformly mixes her two pure strategies as she did in the unmodified
penny matching game. Indeed, it seems that Alice ought to hope that Bob (non-
sensibly) chooses to hide a penny after all. Just in case he does, she should
opportunistically try to get as much as she can out of such a situation and play
as she would in the unmodified game.

To formalize considerations such as the above (and similar considerations
for much more intricate games, including general-sum ones), refinements of the
Nash equilibrium concept have been considered. A particularly appealing one is
Myerson’s notion of a proper equilibrium [15]. An equilibrium is said to be proper
if it is a limit point of a sequence of ε-proper completely mixed strategy profiles
for ε → 0+. Here, a strategy profile (i.e., a strategy for each player) is said to
be completely mixed if it prescribes strictly positive probability to every pure
strategy. It is said to be ε-proper if the following property is satisfied. If pure
strategy xi is a better reply than pure strategy xj against the mixed strategy
the profile prescribes to the other player, we have p(xj) ≤ εp(xi) where p(xk)
is the probability prescribed to pure strategy xk. We refer to Myerson’s paper
for an intuitive justification of this refinement, but note for now that the unique
proper equilibrium for parsimonious penny matching is the “sensible” strategy
profile where Bob chooses “tease” with probability 1 and Alice uniformly mixes
her two pure strategies.

In his seminal monograph on equilibrium refinements, van Damme [5], based
on earlier work by Dresher [6], outlined a procedure for computing a proper
equilibrium of a given matrix game. As he and Dresher describe the procedure,
it is inherently exponential time. The main technical result of the present paper is
a modification of the procedure so that it becomes a polynomial time algorithm.
Thus, our main result is the following.

Theorem 1. A proper equilibrium for a matrix game can be found in polynomial
time in the size of the given payoff matrix.

In addition, the algorithm we describe is also practical. We show that a proper
equilibrium in a matrix game may be found by solving a linear (in the number
of pure strategies of the two players) number of linear programs of roughly the

202 P.B. Miltersen and T.B. Sørensen

same dimensions as the usual linear program describing the maximin/minimax
strategies. Additional motivation for our result comes from Fiestras-Janeiro et
al. [7] who define a notion of properness for solutions of general linear programs
(not necessarily describing optimal strategies for matrix games) by a reduction
to the matrix-game case and argue that this notion is relevant as a solution
concept for general linear programs. They restate the exponential procedure of
Dresher [4] and van Damme [16] as a way of finding the proper solutions. By
the algorithm we present, we also get a polynomial time algorithm for finding a
proper solution in the sense of their paper for general linear programs.

In the rest of the paper, we present our efficient algorithm for finding proper
equilibria of matrix games. In Section 2, we present the original Dresher proce-
dure which was shown by van Damme to find a proper equilibrium for a matrix
game. Even though the philosophical motivation of Myerson’s notion of a proper
equilibrium [13] is beyond the scope of this paper, the reader unfamiliar with
Myerson’s notion should be able to intuitively see why the equilibrium Dresher’s
procedure finds is “sensible”. In Section 3, we present our efficient modification
and give an example of its execution. In Section 4, we conclude with a discussion
on the relevance of our algorithm for AI applications and in particular, we ask
if it can be extended to solving games in extensive form (i.e., game trees).

2 Background

We review some notation from van Damme [5]. A matrix game is a 3-tuple
Γ = (Φ1, Φ2, R), where Φi is a finite nonempty set and R is a mapping R :
Φ1 × Φ2 → R. The set Φi is the set of pure strategies of Player i and R is the
payoff function for Player 1. We assume that the elements of Φi are numbered
and, consequently, we will speak about the kth pure strategy of Player i. A
mixed strategy si of Player i is a probability distribution on Φi. We denote the
probability which si assigns to pure strategy k of Player i by sk

i and we write Si

for the set of all mixed strategies of this player. If si ∈ Si, then C(si) denotes the
carrier of si, i.e., C(si) := {k ∈ Φi; sk

i > 0.} We denote the set of pure strategies
which are in the carrier of some equilibrium strategy of Player i in Γ by Ci(Γ).
Note that Φi\Ci(Γ) are those pure strategies for Player i that have probability 0
of being played in all equilibria. Thus, we can think of the strategies in Φi\Ci(Γ)
as the superfluous strategies. An alternative characterization is given below.

The payoff function R extends to mixed strategies by letting it denote the
expected payoff when the mixed strategies are played. All equilibria of a matrix
game Γ yield the same payoff to Player 1, and we denote this value v(Γ) and call
it the value of the game. We define O1(Γ) = {s1 ∈ S1; R(s1, l) � v(Γ)∀l ∈ Φ2},
and O2(Γ) = {s2 ∈ S2; R(k, s2) � v(Γ)∀k ∈ Φ1}. The set Oi(Γ) is a convex
polyhedron, the elements of which are called the optimal strategies of Player i
in Γ . O1(Γ) and v(Γ) can be determined by solving the linear programming
problem (1):

maximizev,s1∈S1 v s.t. R(s1, l) � v for all l ∈ Φ2 . (1)

Computing Proper Equilibria of Zero-Sum Games 203

It was shown by Bohnenblust, Karlin and Shapley [3], and by Gale and Sher-
man [8] that Φ2\C2(Γ) consists of exactly those pure strategies k so that for
some mixed strategy s1 ∈ O1 we have that R(s1, k) > v(Γ). Thus, we can also
think of Φ2\C2(Γ) as the exploitable pure strategies for Player 2. The strategies
for Player 2 against which it is possible for Player 1 to play optimally, yet get
more than his “fair share” of the game. Both characterizations of Φ2\C2(Γ) will
be useful below.

We have now introduced the relevant notation to understand van Damme’s
reformulation [5, page 59] of the original procedure due to Dresher[4]

For a matrix game Γ = (Φ1, Φ2, R) Dresher’s procedure for selecting a
particular optimal strategy of player 1 is described as follows.
(i) Set t := 0, write Φt

1 := Φ1, Φt
2 := Φ2 and Γ t := (Φt

1, Φ
t
2, R). Compute

O1(Γ t), i.e., the set of optimal strategies of player 1 in the game Γ t.
(ii) If all elements of O1(Γ t) are equivalent in Γ t, then go to (v), other-

wise go to (iii).
(iii) Assume that player 2 makes a mistake in Γ t, i.e., that he assigns a

positive probability only to the pure strategies which yield player 1
a payoff greater than v(Γ t). Hence, restrict player 2’s pure strategies
set to Φt

2\C2(Γ t).
(iv) Determine the optimal strategies of player 1 which maximize the

minimum gain resulting from mistakes of player 2. Hence, compute
the optimal strategies of player 1 in the game Γ t+1 :=(Φt+1

1 , Φt+1
2 , R),

where Φt+1
1 := ext O1(Γ t) is the (finite) set of extreme optimal

strategies of player 1 in Γ t and Φt+1
2 := Φt

2\C2(Γ t). Replace t by
t + 1 and repeat step (ii).

(v) The set of Dresher-optimal (or shortly D-optimal strategies) of player
1 in Γ is the set D1(Γ) := O1(Γ t).

It was shown by van Damme that if the above procedure is used to find a
D-optimal strategy for Player 1 and the analogous procedure is used to find a D-
optimal strategy for Player 2, then the strategy profile resulting from combining
them is a proper equilibrium in the sense of Myerson.

We now discuss how to interpret the algorithm and analyze the implications
for its complexity. First, strictly speaking, O1(Γ t) is a set of mixed strategies
for Player 1 in the game Γ t, not the game Γ , so we need to understand how to
interpret line (v). However, as is clear from the procedure, each pure strategy
for Player 1 in Γ i corresponds to a mixed strategy for Player 1 in Γ i−1. Thus,
each mixed strategy in Γ i also corresponds to a mixed strategy in Γ i−1 and by
iterating this interpretation, each mixed strategy in Γ t can also be interpreted
as a mixed strategy in Γ . In the following section, it will be convenient to have
some notation for this interpretation. If s is a mixed strategy for Player 1 in Γ i

for some i, we let ŝ be the corresponding mixed strategy in Γ and also extend
this notation to sets of strategies. Second, it is not quite clear what is meant by
“Compute O1(Γ t)” in line (i), i.e., what representation is intended at this point
in the procedure for this infinite object. However, in line (iv) we are going to

204 P.B. Miltersen and T.B. Sørensen

need ext O1(Γ t), i.e., the set of all corners of O1(Γ t), so we can assume that this
is the finite representation we use. Indeed, van Damme is very explicit that the
set of corners of the polytope O1(Γ t) will be explicitly computed. He refers in
the text following the procedure to an algorithm by Balinski [1] for performing
such an enumeration and he notes that there are a finite number of extreme
points. Also in Dresher’s original formulation is it very clear that an enumera-
tion is to be performed, and Dresher even carries out such an enumeration for
a small example. This explicit enumeration is the main source of inefficiency of
the algorithm. Indeed, it is well known and easy to see that in the worst case, the
number of extremal points of a polytope defined by a linear program is exponen-
tial in the size of the linear program. Thus, the Dresher procedure as stated is
an exponential procedure in the worst case sense. Also, in practice, enumerating
all extremal optimal solutions to a linear program (even when this set is small)
is a much more elaborate process than just finding an optimal solution. Finally,
it is not explicitly stated by van Damme how to compute Φt+1

2 := Φt
2\C2(Γ t) in

line (iv) of the algorithm. In the original version by Dresher, it is done by let-
ting C2(Γ t) be the subset of Φt

2 which yield the value of the game against every
optimal strategy of Player 1, i.e., by using the characterization of Φt

2\C2(Γ t) as
the exploitable strategies for Player 2. As we have an explicit representation of
ext O1(Γ t), and it is enough to check for optimality against this finite set, this is
one possibility. A second way to do compute C2(Γ t), which is not very practical
but at least polynomial, is to check each of k ∈ Φt

2 for membership of C2(Γ t).
This could be done by solving |Φt

2| linear programs of the following form:

max
x,p

p

s.t. A′�x ≥ ekp

x�1m = 1
x ≥ 0m

where ek is the kth standard basis vector, and 0i and 1i are constant column
vectors of height i, filled with 0s and 1s respectively, and A′ is the m × |Φt

2|
payoff matrix of the game Γ t with the value of the game Γ t subtracted from
each entry (i.e., the game matrix is “normalized” so that it has value zero). An
optimal solution to the linear program with a positive value of p corresponds to
an optimal strategy for Player 1 obtaining payoff strictly larger than v against
the k’th pure strategy of Player 2, i.e, we have that k is exploitable by the
characterization of Gale and Sherman mentioned above. This is the case if and
only if k is not in C2(Γ t). Alternatively, we could write a linear program whose
set of feasible solutions is the optimal mixed strategies for Player 2 and with
the objective function to maximize being the probability of choosing k. This
formulation directly expresses whether k is superfluous or not. In both cases, we
should solve |Φt

2| linear programs in the t’th iteration of the procedure, leading
to a worst case quadratic number of programs being solved in total during the
execution of Dresher’s procedure.

Computing Proper Equilibria of Zero-Sum Games 205

3 Algorithm

To improve on the efficiency of Dresher’s procedure, we have to change the way
O1(Γ t) is represented, since we cannot afford to enumerate the extreme points of
this polyhedron. Since O1(Γ t) is the set of optimal solutions to a linear program,
it can be represented as a set of linear constraints. Our approach is to include
the linear constraints of O1(Γ t−1) in the linear program used to obtain O1(Γ t),
or actually Ô1(Γ t), i.e., the corresponding set of mixed strategies in the original
game.

Lemma 1. For all t, the set Ô1(Γ t) is the set of x∗-parts and the value of the
game Γ t is the z∗-part of optimal solutions (x∗, z∗) to the LP:

Pt : max
x∈Rm, z∈R

z

s.t. A′
i
�

x ≥ 0n′
i
, ∀i : 0 ≤ i < t

At
�x ≥ 1ntz

x�1m = 1
x ≥ 0m

where m is |Φ1|, ni is |Φi
2| and n′

i is |C2(Γ i)|, A′
i is the m × n′

i payoff matrix
of the game Υ ′

i = (Φ1, C2(Γ i), R) with the value of Γ i (computed in a previous
round) subtracted from each entry, and At is the m × nt payoff matrix of the
game Υt = (Φ1, Φ

t
2, R).

The above lemma gives us an alternative way of computing O1(Γ t). We next
present an alternative way of computing C2(Γ t).

Lemma 2. Player 2’s superfluous strategies in Γ t, i.e., Φt
2\C2(Γ t), are those k

such that pk = 1 in any (and all) optimal solutions to the LP:

Qt : max
x∈Rm, p∈Rnt

p�1nt

s.t. A′
i
�

x ≥ 0n′
i
, ∀i : 0 ≤ i < t

A′′
t
�

x ≥ p

p ≤ 1nt

p ≥ 0nt

x ≥ 0m

with the same definitions as in Lemma 1 and with A′′
t being At with the value of

Γ t (found when solving Pt), subtracted from each entry.

Due to the space constraints, we omit the proofs of the lemmas. We are now
ready to state our modification of Dresher’s procedure.

206 P.B. Miltersen and T.B. Sørensen

Modified Dresher Procedure

(i) Set t := 0, and let Φ0
2 := Φ2.

(ii) Find an optimal solution to Pt.
(iii) Find an optimal solution to Qt. Let Φt+1

2 be those k ∈ Φt
2 where

pk = 1 in the optimal solution found.
(iv) If Φt+1

2 = ∅ then go to (v) else replace t by t + 1 and go to (ii).
(v) The set of D-optimal strategies of Player 1 in Γ is the set of optimal

solutions to Pt. Output any one of these optimal solutions.

Lemma 1 and 2 give us that the optimal solutions to Pt for the terminal value
of t are indeed the D-optimal strategies for Player 1. By computing a D-optimal
strategy for Player 1 and afterwards a D-optimal strategy for Player 2 by apply-
ing the procedure a second time, we have computed a proper equilibrium.

That the above given procedure runs in polynomial time, can be seen by
observing that |Φt

2| decreases by at least 1 in each iteration. This means that
we solve at most |Φ2| linear programs of the form of Pt and just as many of
the form of Qt. The number of variables in Pt is |Φ1| + 1, and the number of
constraints is |∑t−1

i=0 C2(Γ i)|+ |Φt
2|+1 = |∑t−1

i=0 C2(Γ i)|+ |Φ2\
⋃t−1

i=0 C2(Γ i)|+1
= |∑t−1

i=0 C2(Γ i)| − |∑t−1
i=0 C2(Γ i)| + |Φ2| + 1 = |Φ2| + 1. This is independent

of t, and it is also the same number of constraints used to find just a Nash
equilibrium in the standard way, i.e., the number of constraints in the linear
program (1). The number of variables in Qt is |Φ1| + |Φt

2|, which is less than
|Φ1|+ |Φ2| for all t. The number of constraints is the same as in Pt, not counting
simple bounds on variables. We thus solve at most a linear number of linear
programs of sizes comparable to the size of the linear program (1). Since linear
programs are polynomial time solvable, the entire procedure is polynomial time.
Also, from a more practical point of view, We notice that an optimal solution
to Pi is a feasible solution to Pi+1, allowing us to “warm start” an LP-solver on
Pi+1. We notice as well that the x-part of an optimal solution to Pi is a feasible
solution to Qi when the remaining variables are set to 0, again allowing for a
“warm start”.

3.1 Example

As an example of an execution of the algorithm, we will now find the proper
strategy for Alice in the game of parsimonious penny matching from the intro-
duction. The first linear program we need to solve, P0 is the usual linear program
for finding the Nash equilibria of the game.

P0 : max
x,z

z

s.t. 1x1 + 0x2 ≥ z

0x1 + 1x2 ≥ z

0x1 + 0x2 ≥ z

x1 + x2 = 1
x1, x2 ≥ 0

Computing Proper Equilibria of Zero-Sum Games 207

Solving this, we find that the value of the game is z∗ = 0. The next step is
to decide which of Bob’s strategies are superfluous. This is done by solving Q0.
Since z∗ was 0, A′′

0 is equal to A.

Q0 : max
x,p

p1 + p2 + p3

s.t. 1x1 + 0x2 ≥ p1

0x1 + 1x2 ≥ p2

0x1 + 0x2 ≥ p3

p1, p2, p3 ≤ 1
p1, p2, p3 ≥ 0

x1, x2 ≥ 0

Solving this, we find an optimal solution x∗ = [1, 1]�, p∗ = [1, 1, 0]�, and there-
fore we may conclude that Bob’s two first strategies are superfluous, i.e., that he
would not willingly hide a penny. In the next iteration, Alice refines her strat-
egy, trying to gain as much as possible from a mistake of Bob, while maintaining
optimality in case no such mistake is made. Thus, we solve P1:

P1 : max
x,z

z

s.t. 0x1 + 0x2 ≥ 0
1x1 + 0x2 ≥ z

0x1 + 1x2 ≥ z

x1 + x2 = 1
x1, x2 ≥ 0

The unique solution is x∗ = [12 , 1
2]�, z∗ = 1

2 . Thus, Alice can expect to gain half
a penny if Bob makes the mistake of not teasing. We then check whether we can
refine the strategy even further by solving Q1:

Q1 : max
x,p

p1 + p2

s.t. 0x1 + 0x2 ≥ 0
1
2x1 − 1

2x2 ≥ p1

− 1
2x1 + 1

2x2 ≥ p2

p1, p2 ≤ 1
p1, p2 ≥ 0
x1, x2 ≥ 0

The optimal solution has p∗ = [0, 0]�, and thus there are no further mistakes
that can be exploited.

4 Discussion

Our main result deals with finding proper equilibria in zero-sum normal
form games, i.e., games given by a payoff matrix. However, in many realistic

208 P.B. Miltersen and T.B. Sørensen

situations where it is desired to compute prescriptive strategies for games with
hidden information, in particular, the kinds of strategic games considered by the
AI community, the game is given in extensive form. That is, the game is given as
a game tree with a partition of the nodes into information sets, each information
set describing a set of nodes mutually indistinguishable for the player to move.
One may analyze an extensive form game by converting it into normal form
and then analyzing the resulting matrix game. However, the conversion from
extensive to normal form incurs an exponential blowup in the size of the repre-
sentation. Koller, Megiddo, and von Stengel [10] showed how to use sequence
form representation to compute efficiently minimax strategies for two-player
extensive-form zero-sum games with imperfect information but perfect recall.
The minimax strategies can be found from the sequence form by solving a linear
program of size linear in the size of the game tree, avoiding the conversion to
normal form altogether.

The Koller-Megiddo-von Stengel algorithm has been used by the AI commu-
nity for solving many games, in particular variants of poker, some of them very
large [16,2,9]. However, as was first pointed out by Koller and Pfeffer [11], the
equilibria computed by the Koller-Megiddo-von Stengel procedure may in gen-
eral be “non-sensible” in a similar sense as discussed above for matrix games.
Alex Selby [16], computing a strategy for a variant of Hold’Em poker found
similar problems. In a recent paper [14], we suggested that the notion of equi-
librium refinements from game theory would be a natural vehicle for sorting
out the insensible equilibria from the sensible ones, also for the application of
computing prescriptive strategies for extensive-form zero-sum games, to be used
by game-playing software. We showed how to modify the Koller-Megiddo-von
Stengel algorithm so that a quasi-perfect equilibrium (an equilibrium refinement
due to van Damme [4]) is computed, and we showed how computing such an
equilibrium would eliminate the insensible behavior in the computed strategy
alluded to in Selby’s poker example and in many other examples as well.

An equilibrium for a zero-sum extensive form game is said to be normal-
form proper if the corresponding equilibrium for the corresponding matrix game
is proper. It was shown by van Damme that normal-form properness is a fur-
ther refinement of quasi-perfection. Here, we show an example of an equilibrium
for a fairly natural extensive-form game we call Penny matching on Christmas
morning. The equilibrium arguably prescribes insensible play. However, it is
quasi-perfect, and in fact, the algorithm of [14] gives the insensible equilibrium
as output. However, the equilibrium is not normal-form proper, thus suggest-
ing that this further refinement is also relevant for prescribing proper play in
extensive-form zero-sum games. The game of Penny matching on Christmas
morning is as follows. Recall from the introduction that in the standard penny
matching game, Bob (Player 2) hides a penny and Alice (Player 1) has to guess
if it is heads or tails up. If she guesses correctly, she gets the penny. If played on
Christmas morning, we add a gift option. After Player 2 has hidden his penny
but before Player 1 guesses, Player 2 may choose publicly to give Player 1 a gift
of one penny, in addition to the one Player 1 will get if she guesses correctly. The

Computing Proper Equilibria of Zero-Sum Games 209

II

heads

1/2

II

gift

0

I
heads

1
(2,−2)

tails

0
(1,−1)

no gift

1

I
heads

1/2
(1,−1)

tails

1/2
(0,0)

tails

1/2

II

gift

0

I
heads

1
(1,−1)

tails

0
(2,−2)

no gift

1

I
heads

1/2
(0,0)

tails

1/2
(1,−1)

Fig. 1. Penny matching on Christmas morning - “bad” equilibrium

extensive form of this game as well as the pair of maximin/minimax behavioral
strategies computed by the game-theory software tool textscGambit [13] using
the Koller-Megiddo-von Stengel algorithm is given in Figure 1. We see that if
Player 1 does not receive a gift, the strategy computed suggests that she random-
izes her guess and guesses heads with probability 1

2 and tails with probability 1
2 .

This is indeed the strategy we expect to see. In contrast, if Player 1 does receive
a gift, the strategy computed suggests that she guesses heads with probability
1. This does not seem sensible. Indeed, if she had randomized her guess, as in
the “no-gift” scenario, her conditional expected payoff, conditioned by the fact
that she receives the gift, would be guaranteed to be at least a penny and a
half. Moreover, with the strategy suggested, this conditional expected payoff is
only a penny in the case where the strategy of Player 2 happens to be the pure
strategy of hiding the penny tails up and giving the gift. Thus, it seems that the
unique sensible equilibrium for the game is the one where Player 1 randomizes
her guess uniformly, even after having received a gift.

The “bad” equilibrium is quasi-perfect and a possible output of the algorithm
for computing quasi-perfect equilibria of [14]. However, it is not normal-form
proper and in fact the unique normal-form proper equilibrium for the game is
the “good” equilibrium where player 1 randomizes her guess uniformly, even
after having received a gift. This can be seen by converting the game to normal
form and applying either the original Dresher’s procedure or the version from this
paper. We are not aware of any other equilibrium refinement notion that handles
this and similar examples “correctly”. It thus seems quite motivated to study
methods for computing a normal-form proper equilibrium for a given extensive-
form zero-sum game. We may do this by converting the game into normal form
(incurring an exponential blowup in the size of the representation) and running
Dresher’s procedure. If the original version of Dresher’s procedure were used,
we would have a doubly-exponential time procedure. If the version of Dresher’s
procedure suggested in this paper is used, we have a singly-exponential time
procedure. Ideally, we would like some way of combining the Koller-Megiddo-
von Stengel algorithm with Dresher’s procedure and obtain a polynomial time
procedure, but we do not see an obvious way of doing this. We thus leave the
following as a major open problem.

210 P.B. Miltersen and T.B. Sørensen

Open Problem 1. Can a normal-form proper equilibrium of an extensive-form
two-player zero-sum game with perfect recall be found in time polynomial in the
size of the given extensive form?

1

2

2

U

D

0

1

0

2

Fig. 2. Up or Down?

It is interesting to note that insisting on
normal-form properness provides an intrigu-
ing and non-trivial solution to the problem of
choosing between different minimax strate-
gies even in perfect information games, a
problem recently studied by Lorenz [12] us-
ing an approach very different from the equi-
librium refinement approach. As an example,
consider the game given in Figure 2 (payoffs
are paid by Player 2 to Player 1).

The value of the game for Player 1 is 0 and he1 is guaranteed to obtain this
value no matter what he does. However, if he chooses U and his opponent makes a
mistake, he will receive a payoff of 1. In contrast, if he chooses D and his opponent
makes a mistake, he will receive a payoff of 2. In the unique normal-form proper
equilibrium for this game, Player I chooses U with probability 2/3 and D with
probability 1/3 as can be seen by converting the program to normal form and
applying Dresher’s procedure. An intuitive justification for this strategy is as
follows. Player 1 should imagine being up against a Player 2 that cannot avoid
sometimes making mistakes, as otherwise the choice of Player 1 is irrelevant.
Moreover, Player 1 should assume that Player 2 is still a rational player who can
make an effort to avoid making mistakes, and in particular train himself to avoid
making mistakes in certain (but not all) situations. Thus, Player 1’s strategy
should not be pure. In particular, if he chooses D with probability 1 (as is surely
tempting), Player 2 may respond by concentrating his efforts to avoid making
mistakes in his bottom node. Then, Player 1 will not get his “fair share” out of
Player 2’s mistakes. In conclusion, computing normal-form proper equilibria for
zero-sum extensive-form games seems very interesting, even in the special case
of perfect information games. Doing this special case efficiently might be easier
than solving the general open problem above. It would also be interesting to
compare this approach of selecting between different minimax solutions for such
games with the very different approach by Lorenz.

References

1. Balinski, M.: An Algorithm for Finding All Vertices of Convex Polyhedral Sets.
Journal of the Society for Industrial and Applied Mathematics 9(1), 72–88 (1961)

2. Billings, D., Burch, N., Davidson, A., Holte, R., Schaeffer, J., Schauenberg, T.,
Szafron, D.: Approximating Game-Theoretic Optimal Strategies for Full-Scale
Poker. In: International Joint Conference on Artificial Intelligence (2003)

1 For brevity and readability we use ‘he’ and ‘his’ whenever ‘he’ or ‘she’ and ‘his’ or
‘her’ are meant.

Computing Proper Equilibria of Zero-Sum Games 211

3. Bohnenblust, H.F., Karlin, S., Shapley, L.S.: Solutions of Discrete, Two-Person
Games. Annals of Mathematical Studies, 37–49 (1950)

4. van Damme, E.: A Relation Between Perfect Equilibria in Extensive Form Games
and Proper Equilibria in Normal Form Games. International Journal of Game
Theory 13, 1–13 (1984)

5. van Damme, E.: Stability and Perfection of Nash Equlibria, 2nd edn. Springer,
Germany (1991)

6. Dresher, M.: The Mathematics of Games of Strategy: Theory and Applications.
Prentice-Hall, Englewood Cliffs (1961)

7. Fiestra-Janeiro, M.G., Garcia-Jurado, I., Puerto, J.: The Concept of Proper So-
lution in Linear Programming. Journal of Optimization Theory and Applica-
tions 106(3), 511–525 (2000)

8. Gale, D., Sherman, S.: Solutions of Finite Two-Person Games. Annals of Mathe-
matical Studies, 37–49 (1950)

9. Gilpin, A., Sandholm, T.: Finding Equilibria in Large Sequential Games of Incom-
plete Information. Technical Report CMU-CS-05-158, Carnegie Mellon University
(2005)

10. Koller, D., Megiddo, N., von Stengel, B.: Fast Algorithms for Finding Randomized
Strategies in Game Trees. In: Proceedings of the 26th Annual ACM Symposium
on the Theory of Computing, pp. 750–759. ACM Press, New York (1994)

11. Koller, D., Pfeffer, A.: Representations and Solutions for Game-Theoretic prob-
lems. Artificial Intelligence 94(1–2), 167–215 (1997)

12. Lorenz, U.: Beyond Optimal Play in Two-Person-Zerosum Games. In: Albers, S.,
Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 749–759. Springer, Heidelberg
(2004)

13. McKelvey, R.D., McLennan, A.M., Turocy, Th.L.: Gambit: Software Tools for
Game Theory, Version 0.97.0.7 (2004), http://econweb.tamu.edu/gambit

14. Miltersen, P.B., Sørensen, T.B.: Computing Sequential Equilibria for Two-Player
Games. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms, Miami, Florida. ACM-SIAM (January 2006)

15. Myerson, R.B.: Refinements of the Nash Equilibrium Concept. International Jour-
nal of Game Theory 15, 133–154 (1978)

16. Selby, A.: Optimal Heads-Up Preflop Holdem (1999),
http://www.archduke.demon.co.uk/simplex/index.html

http://econweb.tamu.edu/gambit
http://www.archduke.demon.co.uk/simplex/index.html

Comparative Study of Approximate Strategies

for Playing Sum Games Based
on Subgame Types

Cherif R.S. Andraos, Manal M. Zaky, and Salma A. Ghoneim

Computer and Systems Engineering Department,
Faculty of Engineering, Ain Shams University, Cairo, Egypt

cherif.andraos@ieee.org, manalmourad@yahoo.com, salma ghoneim@hotmail.com

Abstract. Combinatorial games of the form {{A|B}|{C|D}} can be
classified as either left excitable, right excitable, or equitable [2]. Sev-
eral approximate strategies for playing sums of games of this form have
been proposed in the literature [2,3,4]. In this work we propose a new
approach for evaluating the different strategies based on the types of the
subgames participating in a sum game. While previous comparisons [3,4]
were only able to rank the strategies according to their average perfor-
mance in a large number of randomly generated games, our evaluation
is able to pinpoint the strengths and weaknesses of each strategy. We
show that none of the strategies can be considered the best in an ab-
solute sense. Therefore we recommend the development of type-based
approximate strategies with enhanced performance.

1 Introduction

In [3], several strategies for playing sum games based on combinatorial game
theory (cgt) were suggested, namely BMove, MaxMove, Sente, and SenteQ. Each
of these strategies was compared to the others and to HotStrat, ThermoStrat [2]
and MiniMax by allowing them to play against each other a large number of
games where each game consisted of a sum of five randomly generated subgames
of the form {{A|B}| {C|D}} with D = rnd(50), C = D + rnd(50), B = C +
rnd(50) and A = B + rnd(50), where rnd(N) is a function generating a random
integer uniformly distributed in the interval [0,N]. The score of each strategy
was calculated as the sum of its scores in the different tournaments.

HotStrat was shown to give the best performance [3] according to the evalu-
ation method suggested by the author. Its score even surpassed that of optimal
MiniMax search. This is due to the fact that the score used for comparing the
strategies had been obtained by playing against other strategies, most of which
are not optimal. This is not consistent with the assumption of a perfect opponent
used in most game-playing algorithms. From our point of view a more objective
test should be used to provide more reliable results.

In [4] another strategy, HotStrat+, was proposed for a more generalized game
model. As the name implies, this strategy is an enhanced version of HotStrat.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 212–219, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Comparative Study of Approximate Strategies 213

The authors used a more objective criterion for evaluating the new strategy
based on the total number of points lost against a perfect opponent in a large
number of randomly generated games of varying complexity. It was shown that
HotStrat+ performs slightly but consistently better than HotStrat.

We have the following two reservations against the above results.

1. Combinatorial games of the form {{A|B}| {C|D}} can be classified [2] as left
excitable (sente for left), right excitable (sente for right) or equitable (double
sente or gote according to ambient temperature [5]):

– Left excitable (type 1) if S > 4B,
– Equitable (type 2) if 4B ≥ S ≥ 4C,
– Right excitable (type 3) if S < 4C,

where S = A+B+C+D. Skilful human players take into account the types of
subgames in selecting the best move in a sum game. For example, in a Go
endgame, double sente subgames are played immediately while one-sided sente
allows a player to control the course of the game so as to execute a plan of
several moves to his1 advantage. HotStrat+ takes sente games into account
in selecting the next move. SenteStrat and SenteQ give special consideration
also to double sente games. Thermostrat implicitly takes subgame types into
consideration in the process of decision making because of the more complete
information available to it, while HotStrat, BStrat, and MaxMove are inde-
pendent of subgame types. Consequently, the performance of these strategies
must depend upon the types of the subgames participating in the sum.

2. In a given sum game, the number of subgames belonging to each type varies.
The game model used in the comparison process should be able to produce
sum games consisting of the most probable subgames types in real games.
We computed the probability density function for sum games of all different
type combinations of five subgames by generating a large number of sum
games. We found that the game model proposed in [3] yields a sum game
with subgames that are all equitable in 43% of the cases, four equitable and
one excitable in about 40%, three equitable and two excitable in about 11%
with the remaining 5% to cover all the remaining cases. In view of these
results, it is obvious that the model used cannot objectively evaluate the
performance of the approximate strategies.

No one, as far as we know, has ever considered the effect of subgame types
on the performance of different strategies. In this work we investigate how the
behavior of the proposed strategies varies when playing sums of games with
imposed type patterns.

2 Subgame Types Effect

Experiments were conducted to investigate the effect of the types of subgames
upon the performance of HotStrat+, HotStrat, ThermoStrat, MaxMove, Sente,
1 For brevity and readability, we use ‘he’ and ‘his’ wherever ‘he or she’ and ‘his’ or ‘her’

are meant.

214 C.R.S. Andraos, M.M. Zaky, and S.A. Ghoneim

SenteQ, and BMove. All the experiments were conducted on sums composed
of 4 subgames. The game generator was modified to produce subgames with
specified type patterns as follows. Given a list of the required types of the sub-
games, for each type a random game is generated according to the model de-
scribed above and has its type checked. If the type matches the desired value,
the game is accepted; otherwise the process is repeated until the condition is
satisfied.

We also used an alternate method for strategy evaluation. It consists of com-
paring the move selected by each strategy with the move(s) selected by Mini-
Max search for a large number of random sums. The performance measure for
the strategy is then calculated as the percentage of sums in which it selects the
same move (or one of the moves) selected by the optimal strategy. We call this
the percentage coincidence. Besides being an objective measure for comparing
the strategies, this approach is consistent with the assumption of a perfect oppo-
nent used by all game-playing programs. Both this approach and the approach
used in [4] are complementary in the sense that the former provides a measure
of the number of errors of a certain strategy when compared to the optimal,
while the latter provides a measure of the error magnitude. Table 1(a) lists the
results for the strategies discussed in [3] using the proposed evaluation method.
To arrive at these results we generated 1000 random sums (without forcing any
type patterns) and computed the percentage coincidence for each strategy. The
results obtained in [3] are shown in Table 1(b) for easy reference.

Table 1. Strategies Performance

(a) Percentage Coincidence

Strategy % of Optimal

BMove 58.70
SenteQ 64.70
MaxMove 66.80
Sente 72.30
MaxThreat 87.70
ThermoStrat 89.70
HotStrat 91.50
HotStrat+ 91.60
Optimal 100.00

(b) Results from [3]

Strategy % of Optimal

BMove 88.39
MaxMove 95.40
SenteQ 97.63
Sente 97.71
MaxThreat 99.17
ThermoStrat 99.60
Optimal 100.00
HotStrat 100.33

3 Experimental Results

3.1 Objective

Below we study the performance of HotStrat+, HotStrat, ThermoStrat, Max-
Move, Sente, SenteQ, and BMove relative to MiniMax for all possible subgames
type patterns and players.

Comparative Study of Approximate Strategies 215

3.2 Experimental Setup

The test was performed using sums of 4 random subgames. Since the type of each
subgame can take one of the three values 1, 2 or 3, there are exactly 15 possible
type combinations. A number of 10,000 sum games of each type combination
were generated and the moves selected by the different strategies were compared
with the optimal move(s) for the case when it was left’s turn to play. The whole
process was then repeated for the case when it was right’s turn to play. The
percentage coincidence of the selected move by each strategy with the one(s)
selected by MiniMax was recorded for each type combination, for each player.

3.3 Observations

Table 2 summarizes the obtained results when it is left’s turn to start. In these
results each type is represented by a number from 1 to 3 where 1 denotes left
excitable, 2 equitable, and 3 right excitable games. For example, the pattern
“1,1,2,3” represents a sum containing two left excitable games, one equitable,
and one right excitable. The same notation is used in the remaining part of this
document whenever we want to describe the subgame pattern of a certain sum.
Almost equal results were obtained for right and are shown in Table 3.

Table 2. Percentage coincidence of different strategies for 10,000 sums of each type
combination when left starts

Max- Hot- Hot- Thermo-
Pattern BMove Sente SenteQ Move Strat Strat+ Strat Optimal

1,1,1,1 92.77 92.92 94.76 89.70 100 100 99.29 100
2,2,3,3 54.93 83.29 62.96 79.91 91.74 91.74 89.36 100
1,2,2,3 60.39 82.52 64.74 77.96 91.72 92.14 90.60 100
1,1,1,2 80.48 84.27 72.90 79.68 91.01 94.25 89.20 100
1,1,2,2 71.27 81.76 66.66 77.22 90.67 91.60 90.34 100
1,1,2,3 61.79 84.33 68.90 81.08 90.36 92.12 88.39 100
2,3,3,3 47.96 87.95 59.91 91.14 90.28 90.28 92.65 100
1,2,3,3 52.26 85.78 64.17 85.05 90.13 90.64 88.69 100
2,2,2,3 57.03 76.88 65.43 70.70 90.13 90.13 88.80 100
1,2,2,2 63.88 76.19 65.76 69.37 89.94 90.06 89.06 100
2,2,2,2 57.41 70.72 65.93 63.66 89.25 89.25 88.69 100
1,1,1,3 57.97 77.96 74.40 72.89 86.89 77.20 88.40 100
1,1,3,3 46.66 73.65 64.30 67.48 80.23 65.52 82.33 100
1,3,3,3 45.03 74.08 55.62 72.90 72.54 61.94 80.55 100
3,3,3,3 48.60 79.21 48.76 93.72 60.59 60.59 93.72 100

Average 59.90 80.77 66.35 78.16 87.03 85.16 89.34 100
Std. dev. 13.15 5.99 10.04 8.94 9.45 12.53 4.32 0

Results were sorted in descending order of HotStrat performance. For each
type combination, the best and second best strategies are marked with bold.

216 C.R.S. Andraos, M.M. Zaky, and S.A. Ghoneim

Table 3. Percentage coincidence of different strategies for 10,000 sums of each type
combination when right starts

Max- Hot- Hot- Thermo-
Pattern BMove Sente SenteQ Move Strat Strat+ Strat Optimal

3,3,3,3 63.69 93.09 94.92 90.21 100 100 99.47 100
2,3,3,3 39.19 85.02 72.90 80.15 91.36 94.55 89.62 100
1,1,2,2 12.67 82.41 63.46 78.35 91.32 91.32 88.27 100
1,2,2,3 17.75 82.69 65.14 77.88 90.98 91.72 90.45 100
2,2,3,3 30.26 82.17 66.25 78.25 90.63 91.66 91.01 100
1,2,2,2 14.33 76.47 64.61 70.06 90.47 90.47 88.91 100
2,2,2,3 23.16 76.66 66.48 70.88 90.44 90.54 89.73 100
1,2,3,3 22.70 84.55 67.44 82.13 90.37 92.29 88.76 100
1,1,1,2 14.23 87.31 59.75 91.23 89.71 89.71 92.41 100
1,1,2,3 16.53 85.32 63.75 84.65 89.42 90.04 89.09 100
2,2,2,2 16.67 71.02 66.44 63.43 89.13 89.13 88.59 100
1,3,3,3 30.13 77.27 74.24 71.73 87.80 78.98 86.65 100
1,1,3,3 24.64 73.89 63.76 66.95 81.09 67.80 82.04 100
1,1,1,3 27.18 74.24 54.97 73.36 71.92 63.01 79.33 100
1,1,1,1 30.52 78.91 49.24 93.54 61.55 61.55 93.54 100

Average 25.58 80.73 66.22 78.19 87.08 85.52 89.19 100
Std. dev. 13.00 5.93 10.05 9.02 9.26 11.91 4.60 0

Figures 1 and 2 illustrate the results of Tables 2 and 3 respectively. To make
visualization easier, the points in the figures are connected by line segments.
Below we formulate eight observations.

1. As expected, the subgame types as well as the player affect the performance
of the different strategies.

2. The high performance achieved by all the strategies for the combination
“1,1,1,1” when it is left’s turn to move and the symmetric case of “3,3,3,3” for
right should not be understood as an improvement in their performance. The
reason behind the high scores is that when all subgames are of type 1 (left
excitable) and it is left’s turn to move, left can select any subgame since the
best choice for right will most probably be to respond in the same subgame
(since it is left excitable) leaving the B value of that game with left free to
choose the next subgame. This will be repeated for all subgames ending in
a final value which is the sum of the Bs of all subgames regardless of which
game was selected first by left. In fact, in these specific cases MiniMax returns
a set of optimal moves instead of a single one. This causes the probability
that a move selected by any strategy will coincide with optimal play to be
very high, resulting in a high coincidence number for all strategies.

3. ThermoStrat achieves results that are consistently very close to best. It also
has the highest average performance. Note however that this is not a true av-
erage since the probability of occurrence of each type combination is not the
same. A more realistic measure of average performance would be a weighted
average of the values listed.

Comparative Study of Approximate Strategies 217

Fig. 1. Percentage coincidence of different strategies for 10,000 sums of each type
combination when left starts

4. ThermoStrat’s reliability is evident from the standard deviation of its re-
sults. It has the smallest standard deviation among all strategies. However,
the higher standard deviation associated with the results of HotStrat and
HotStrat+ show that they are less reliable than ThermoStrat. This was ex-
pected since ThermoStrat implicitly makes use of the complete information
about the types of the subgames in the process of move selection.

5. HotStrat and HotStrat+ are sensitive to subgame type patterns. As seen
from Tables 2 and 3 their performance varies for from 60.59% to 100%.
They achieve the lowest performance for patterns that consist of only type-1
and type-3 subgames or type 3 only.

6. Tables 2 and 3 show that contrary to the results given in [4] the performance
of HotStrat+ is not always better than HotStrat. We notice the following.
– Their results are identical for patterns that do not contain type 1 sub-

games when it is left’s turn to play and for those that do not contain
type 3 subgames when it is right’s turn.

– HotStrat performance is much better than HotStrat+ for patterns that
contain only type-1 and type-3 subgames where the difference varies
between 8.8% & 14.7%.

– For the rest of the patterns HotStrat+ performs slightly better than
HotStrat.

– Notice that there is no conflict between these results and the result in [4].
As mentioned above, the game generator used in both [3] and [4] is almost
incapable of producing the patterns in which HotStrat’s performance is
better than that of HotStrat+, namely “1,3,3,3”, “1,1,3,3”, and “1,1,1,3”.
The total probability of producing these patterns has been computed and
found to be equal to 0.05%.

218 C.R.S. Andraos, M.M. Zaky, and S.A. Ghoneim

– It is interesting to compare the average percentage coincidence for both
HotStrat and HotStrat+ using our results and the result in [4], using the
following formula:

(Ca)s =
∑

i

Pi.(Ci)s (1)

where i ∈ [1,15] is the pattern number, (Ci)s is the percentage coincidence
for strategy s and pattern i as given in Table 2. Pi is the probability of the
occurrence of pattern i and (Ca)s is the average percentage coincidence
for Strategy s. Using (1) we get (Ca)HotStrat = 89.8% and (Ca)HotStrat+

= 89.9%, which is consistent with the results in [4] that shows that on
the average HotStrat+ is slightly better than HotStrat.

7. An unexpected and very interesting result is that MaxMove, which is a very
simple strategy, achieves best performance in the two oppositely symmetric
cases: the case where it is left’s turn to move in a sum game containing only
right excitable (type 3) subgames (93.72%) and the case where it is right’s
turn to move in a sum of only left excitable (type 1) subgames (93.54%).
Its results for these cases are equal to ThermoStrat’s. We have developed a
mathematical justification of this behavior [1].

8. For the same two cases in 7, HotStrat and HotStrat+ show a considerable
degradation in performance.

Fig. 2. Percentage coincidence of different strategies for 10,000 sums of each type
combination when right starts

4 Conclusions and Future Work

We have shown that the game generator proposed in [3] and generalized in [4] is
unable to produce sum games with games of different type patterns with equal
probability. In fact, it is almost unable to produce certain patterns, resulting in

Comparative Study of Approximate Strategies 219

a biased experimental setup and unreliable results. We proposed a modified ver-
sion of the game generator that produces subgames with imposed type patterns.
The results from our model and those reported in [3,4] agree if we compare the
average performance computed as a probabilistic weighted average of the coinci-
dence to previous ones. It would be very interesting to investigate the behavior
of the strategies considered using our type-based game generator with different
parameters such as the number of games or the interval used for the generation
of random games. It would also be very interesting to test these strategies on
values extracted from real games or on generators capable of producing realistic
sum games with higher probability to sum games that are most likely to occur
in real games. More experiments could be executed to compute the error mag-
nitude of each strategy on typed subgames instead of calculating the percentage
coincidence only.

We were able to prove for the first time that the performance of approximate
strategies for playing sums of combinatorial games is highly dependent on the
types of subgames. This dependence is minimumal in the case of ThermoStrat
because of its awareness of the game types. This was proved experimentally
by the low standard deviation in the percentage coincidence for all patterns
in case of ThermoStrat. We have also shown the weakness of HotStrat and
HotStrat+ in dealing with patterns that contain reverse sente subgames alone or
when combined with only sente games. Our experiments were able to determine
the patterns where HotStrat+ is better than HotStrat and vice versa. A very
significant result is that the MaxMove strategy whose average performance is
very low was shown to give the same result as ThermoStrat for the pattern with
only reverse sente games. This work could be the basis for the development of
type-based approximate strategies with enhanced performance.

References

1. Andraos, C.R.S.: Development of an Integrated Game Strategy Based on Classical
AI Game Analysis Techniques and Combinatorial Game Theory. M.Sc. Thesis, Ain
Shams University, Cairo, Egypt (2006)

2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways. Academic Press, Lon-
don, 1982. Revised version published by A.K. Peters, Natlick, MA, USA (2001–2004)

3. Cazenave, T.: Comparative evaluation of strategies based on the values of direct
threats. Board Games in Academia V, Barcelona (2002),
http://www.ai.univ-paris8.fr/∼cazenave/ts.ps

4. Müller, M., Li, Z.: Locally Informed Global Search for Sums of Combinatorial
Games. In: van den Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004.
LNCS, vol. 3846, pp. 273–284. Springer, Heidelberg (2006)

5. Spight, W.: Go Thermography - the 4/21/98 Jiang-Rui Endgame. In: Nowakowski,
R. (ed.) More Games of No Chance, pp. 89–105. Cambridge University Press, Cam-
bridge (2002)

http://www.ai.univ-paris8.fr/~cazenave/ts.ps

On the Symbolic Computation of the Hardest

Configurations of the RUSH HOUR Game�

Sébastien Collette1,��, Jean-François Raskin1, and Frédéric Servais2

1 Département d’Informatique,
2 Department of Computer & Decision Engineering, CoDE,

Université Libre de Bruxelles, Brussels, Belgium
{sebastian.collette,jraskin,frederic.servais}@ulb.ac.be

Abstract. Rush Hour is a sliding blocks game where blocks represent
cars stuck in a traffic jam on a 6 × 6 board. The goal of the game is to
allow one of the cars (the target car) to exit this traffic jam by mov-
ing the other cars out of its way. In this paper, we study the problem
of finding difficult initial configurations for this game. An initial con-
figuration is difficult if the number of car moves necessary to exit the
target car is high. To solve the problem, we model the game in proposi-
tional logic and we apply symbolic model-checking techniques to study
the huge graph of configurations that underlies the game. On the pos-
itive side, we show that this huge graph (containing 3.6 · 1010 vertices)
can be completely analyzed using symbolic model-checking techniques
with reasonable computing resources. We have classified every possible
initial configuration of the game according to the length of its shortest
solution. On the negative side, we prove a general theorem that shows
some limits of symbolic model-checking methods for board games. The
result explains why some natural modeling of board games leads to the
explosion of the size of symbolic data-structures.

1 Introduction

Rush Hour is a commercial sliding blocks puzzle. Pieces representing cars and
trucks are placed on a 6 × 6 square board. The game starts by placing the
vehicles according to an initial configuration as shown in Fig.1(a). The goal of
the game is to get the red car to the board exit square, as shown in Fig.1(b), by
moving the other vehicles out of its way. Cars and trucks take up two and three
board squares, respectively. In an initial configuration, each car is positioned
either vertically or horizontally and cannot steer from that direction during the
game, i.e., each vehicle stays on its initial row or column, respectively. As a
consequence, the target car must be facing the exit from the beginning. The
commercial game provides 40 cards describing initial board configurations, with
various number of cars. They are ranked in four levels: beginner, intermediate,
advanced, and expert.
� Supported by the FRFC project “Centre Fédéré en Vérification” funded by the

Belgian National Science Fundation (FNRS) under grant nr 2.4530.02.
�� Aspirant du F.N.R.S.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 220–233, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Symbolic Computation of the Hardest Configurations 221

Fig. 1. Rush Hour

The motivation of this paper is to find the hardest initial board configurations
of the game. We consider that a configuration is hard if the minimal number
of moves necessary to exit the red car is high. This problem is challenging for
two reasons. First, the number of possible initial configurations of the game
is huge: around 3.6 · 1010 configurations for 6 × 6 board. Second, finding the
minimal length of a solution to a single initial configuration is already a hard
problem. The Rush Hour algorithmic complexity was first studied by G. W.
Flake and E. B. Baum in [6]. Their work inspired a more general sliding blocks
complexity proof technique by R. A. Hearn and E. D. Demaine in [7]. These
works show that the problem of deciding if an initial configuration is solvable
for a generalized version of Rush Hour with arbitrary board size, is PSpace-
Complete. This implies that there is no polynomial time algorithm to find a
solution (unless P=PSpace) and the length of the shortest solution of hard
initial configurations grows exponentially with the board size n (provided that
P �= NP and NP �= PSpace).

In this paper, we present an elegant solution to compute the hardest con-
figurations of the game Rush Hour. The solution relies on the propositional
modeling of the (huge) graph of configurations that underlies the game and on
the implicit exploration of this graph using symbolic model-checking techniques.

Symbolic model-checking techniques have been developed since the early
1990’s by the computer aided verification research community and have shown
successful in verifying logical properties of complex hardware circuits. Symbolic
model-checking techniques are useful to explore very large graphs (with 1020

states for example, see [4]) and to compute properties of the paths in those
graphs. The graphs are represented implicitely using symbolic data-structure
such as Binary Decision Diagrams (BDDs) [3].

The three contributions of this paper are the following. First, we show that
symbolic model-checking techniques can be used successfully to analyze the en-
tire configuration space of 6 × 6 Rush Hour with reasonable computational
resources. Symbolic model-checking techniques allow computing the hardest con-
figurations of the game. Second, we show that, unfortunately, the most natural
way of modeling the game into propositional logic leads to the construction of
symbolic data-structures of which the size explodes. We prove that this phe-
nomenon is not limited to the symbolic analysis of Rush Hour but will occur

222 S. Collette, J.-F. Raskin, and F. Servais

for any board game. Indeed, we show that the symbolic representation of simple
constraints like “A position of the board can only hold one piece” requires BDDs
of which size is exponential in the problem size. To avoid this phenomenon,
we propose a dual modeling of Rush Hour which leads to more manageable
symbolic data-structures. This modeling can be straigthforwardly translated into
the input language of NuSMV [5], a state of the art symbolic model-checking
tool. This second modeling allows to apply successfully symbolic model checking
methods and to classify the entire set of configurations of the game according
to the length of its minimal solution. This shows that the choice of modeling is
crucial for the successful application of symbolic model checking techniques. The
application of these techniques to other games, like chess or checkers, should be
studied. Third, we show that the techniques proposed here cannot only be used
to compute hard initial configurations but are also useful to analyze interesting
structural properties of the game.

The rest of this paper is organized as follows. In Section 2, we formalize the
problem, present a general breadth-first search algorithm and an estimation of the
computing resources (time and memory) a classic explicit implementation would
require. In Section 3, we recall the notion of Binary Decision Diagram and present
a symbolic implementation of the algorithm. In Section 4, we propose a first mod-
eling of the game into propositional logic, report on the explosion of the BDD
for this modeling, and we develop a theoretical argument which explains why our
first modeling leads to explosion in BDD size. In Section 5, we come up with a dual
modeling of the game that takes into account the theoretical result of the previous
section. In Section 6, we report on the success of the second modeling and present
some interesting results on the hardest initial configurations of the game.

2 Formalization of the Problem

In this section, we show how the Rush Hour hardest configurations problem can
be solved by a simple backward graph exploration equivalent to a (one-player)
retrograde analysis. The possible configurations of the cars on the board define
the vertices of the graph, and valid moves between configurations define the edges
of the graph. After presenting this conceptually simple solution, we evaluate the
cost of traversing the graph of configurations with an explicit algorithm that
operates at the level of vertices of the graph (treats each vertex individually).

2.1 The Hardest Configurations

Let G = (V, E) be a finite directed graph: V is the set of vertices and E ⊆ V ×V
is the set of edges. Let v ∈ V and U ⊆ V . A path from v to U is a sequence of
vertices ρ = v1v2 . . . vn such that v1 = v, vn ∈ U and ∀i·1 ≤ i < n·(vi, vi+1) ∈ E.
The length of the path ρ = v1v2 . . . vn, noted |ρ|, is n − 1. The set of paths
from v to U in G is noted PathG(v, U). The distance from v to U is equal
to Min{|ρ| | ρ ∈ PathG(v, U)} if PathG(v, U) is non empty and equal to +∞
otherwise, this value is noted DistG(v, U).

On the Symbolic Computation of the Hardest Configurations 223

Let us now consider a graph, GRH = (VRH , ERH), of which the vertices
represent the valid configurations of Rush Hour (board configurations without
collision) and the edges the valid transitions between those configurations. Let
us denote the set of winning configurations as W . A configuration v ∈ VRH

is of index n ∈ N if DistGRH (v,W) = n. Our goal is to compute the set of
configurations of the largest index n.

A classical breadth-first search algorithm can be applied. Starting from the
set of the winning configurations, we successively compute the set of configura-
tions of index n until reaching an empty set. The last non-empty set contains
the hardest configurations of the game. In the sequel we name this algorithm
retrograde analysis in analogy with the two-player game analysis method.

We are now equipped to compute in GRH all the configurations that can reach
a winning configurations and their index. The set of configurations of index k is
noted Ck and it is computed inductively as:

C0 = W ; R = W ;
for each v ∈ (Ci−1) do for i > 0

for each w with (w, v) ∈ ERH and w /∈ R do
add v into Ci and into R

Note that if Ci = ∅ then Cj = ∅ for all j ≥ i. So our algorithm will start from
C0 and compute the sets Ci’s until we get an empty set.

2.2 Explicit Implementation

Solving this problem with classical retrograde analysis is theoretically feasible.
The challenge is to deal with the huge state space: 3.6 ·1010 valid configurations.

The breath first search algorithm requires in this case a mapping between each
configuration and a bit telling wether or not it has been visited before. A clever
indexing scheme is not enough to make the map fit into the computer’s limited
memory, since it requires at least 4.5 GB (3.6 · 1010 bits). However, partitioning
the problem to make it fit is straightforward. Since the vertical cars cannot leave
their respective column and horizontal cars cannot steer from their respective
line, the number of cars and trucks for each line is an invariant of transitions.
Fixing these numbers defines a partition of our problem. We can solve each of
these partitions independently of each other.

These partitions do fit easily into memory. Indeed, for a line with 1 car there
are 5 possible positions, with 1 truck there are 4 possible positions, for 2 cars
there are 6 possible positions, for a line with 1 car followed by a truck there
are 4 positions. Let consider one of these partitions and let ni be the number of
possible positions for the i-th line and mi the number of possible positions for the
i-th column. We have 1 ≤ ni, mi ≤ 6, thus there are at most 612 = 2 ·109 possible
configurations in a partition. We need only one bit telling if the configuration
has been visited or not, so we need about 2 · 109 bits of memory which is about
270 MB. A closer look at the possible configurations of a partition would show
a smaller memory requirement. For example, we do not need to include in the

224 S. Collette, J.-F. Raskin, and F. Servais

map the winning configurations nor configurations with more than 17 cars (since
the board has 36 squares).

This takes care of the first obstacle: fitting the problem into the limited phys-
ical memory of a standard computer. However this is only half the solution. We
broke down the problem into 612 = 2 ·109 subproblems since there are 6 possible
configurations of a line or column (no car, 1 car, 2 cars, 1 truck, 1 car followed
by a truck, 1 truck followed by a car) and there are 6 lines and 6 columns. We
now must solve these subproblems.

For each of these partitions we must generate the set of winning configura-
tions. Then, for each of these winning configurations, we compute the configu-
rations we can reach in one step, update the map accordingly and keep track
of the newly reached configurations. Once all winning configurations have been
treated, we apply the same operations to the set of newly reached configurations
iteratively, until reaching an empty set. The tricky part that we do not tackle
here is generating in an efficient manner the set of winning configurations of a
partition.

This method has to treat the 3.6·1010 configurations. According to preliminary
experiments, this can be achieved in about 20 hours.

This section showed that we can use a classical retrograde analysis algorithm,
but it needs a significant amount of computing resources. This also gives us a
rough idea of expected performance to compare our results with.

3 Symbolic Implementation

In this section, we turn the explicit algorithm of previous section, whose basic
operations treat vertices individually, into a symbolic algorithm whose basic
operations treat set of vertices instead. To implement such an algorithm, we
need a data structure to manipulates set of configurations efficiently. We present
such a data structure and then we give our symbolic algorithm.

3.1 Symbolic Data Structure

Reduced Ordered Binary Decision Diagrams (ROBDD), introduced by R. Bryant
[3] in 1986, are data-structures that canonically represent boolean functions as
direct acyclic graphs. Equivalently they are a canonical representation of sets
of valuations that can be exponentially smaller than the sets it represents. This
data-structure has found tremendous success in verification of the logic of hard-
ware circuits. So ROBDDs are natural candidates to represent symbolically the
sets that we have to handle in the algorithm of next section.

As an illustration, the set of valid configurations containing 3.6 · 1010 config-
urations is represented with a BDD containing 10 Million nodes in our second
modeling (see Section 5). This is 3600 configurations per node. Furthermore,
as we will see, the operations are performed on the compressed representation
without decompression.

ROBDDs are essentially binary decision trees where the sequence of variables
associated with the nodes of any path follows a given global order and where

On the Symbolic Computation of the Hardest Configurations 225

common subtrees have been shared across the tree. They provide computation
of operations with interesting complexity.

More precisely, a binary decision diagram, or BDD, is a rooted acyclic graph
with two terminal nodes of out-degree zero labeled 0 or 1 and a set of variable
nodes of out-degree two. This is illustrated in Figure 2 where the dotted lines
represent the low branches, i.e., variable is 0, while the solid lines represent
the high branches. A BDD is ordered, OBDD, if for any path the sequence of
variables associated with the nodes of this path follows a given global order.
A BDD node is not unique if another of its nodes has the same variable name
and low and high successors. Moreover, we say that a BDD node is a redundant
test if it has identical low and high successors. Finally, an OBDD is said to be
reduced, ROBDD, if all its nodes are unique and are not redundant tests.

Fig. 2. BDD for the formula z∧(x∨y). Removal of non-unique node followed by removal
of redundant test. The rightmost BDD is the canonical ROBDD for the ordering x <
y < z, both leftmost are OBDDs.

Low complexities of important operations is what makes ROBDDs attractive
for verification methods and our problem. The central property of ROBDDs is
that, given a variable ordering, they canonically represent Boolean functions.
As a consequence, tautology, satisfiability, and equivalence are done in constant
time. Let A and B be two BDDs, |A| and |B| are their respective size, i.e., their
number of nodes. Reduction algorithms run in O(|A|). Exhibiting a value that
satisfies the function can be done in O(n), where n is the number of variables.
The SAT-count algorithm must output the number of assignments that satisfy
the function, it has a running time of O(|A|). Union and intersection (conjunction
and disjunction) algorithms have running time of O(|A| · |B|). The complement
implemented with a tree traversal has a running time of O(|A|). Universal and
existential quantification are done in O(|A|2). Finally the Pre operator, exten-
sively used in verification techniques, consists of n existential quantification and
thus has a running time of O(|A|2n), diverse methods have been developed to
make it as efficient as possible [9].

The complexity of the operations described above depends on the size of the
BDD which may be exponentially smaller than the set it represents, but it may
also vary between a linear and an exponential range depending on the ordering of
the variables. It is therefore crucial to find a good ordering. However, finding the
optimal ordering or even improving it has been proved to be a NP-Complete
problem. Thus efficient heuristics have been studied to tackle this problem.

226 S. Collette, J.-F. Raskin, and F. Servais

While BDD have been introduced for Boolean formulas, this structure can
easily be extended to finite integer domains through a Boolean encoding of the
bounded integer variables. For efficiency reasons, the Boolean variables that
encode an integer variable will be gathered in the variables ordering of the BDD.
In the following, we will use BDD over a finite integer domain, since it is the
structure used in NuSMVand other verification tools, and when considering x
we will directly refer to that variable in the BDD and not to the binary variables
that encode it.

3.2 Symbolic Algorithm

Let GRH = (VRH , ERH) be the graph of the game defined above, and let X =
{x1, . . . , xk} be a set of bounded integer variables representing the system (e.g.,
the position and direction of each car). To each vertex of GRH corresponds a
valuation of these variables. To a valuation may correspond a vertex of GRH ,
provided the valuation defines a valid configuration.

Given a propositional formula φ, we note [[φ]] the set of valuations that satisfy
φ. For example, if φ ≡ x1 ⇒ x2, then [[φ]] is the set of valuations that maps the
pair (x1, x2) to a pair in {(0, 0), (0, 1), (1, 1)}.

A propositional formula φ over the variables x1, . . . , xk defines (via the set
[[φ]]) a set of vertices or, equivalently, a set of configurations of the game. For
any set of configurations, U ⊆ VRH , considered as a set of valuations, there is
a propositional formula φU such that U =[[φU]]. We note φW the proposition
defining the winning configurations. In the same way if X ′ = {x′

1, . . . , x
′
k} is a

set of variables representing the game configuration after one transition, there is
a propositional formula, φE over {x1, . . . , xk, x′

1, . . . , x
′
k} such that ERH =[[φE]].

Given a set U of vertices in GRH , we define the set of one-step predecessors
of U as

Pre(U) = {v ∈ VRH |∃u ∈ U : (v, u) ∈ ERH} (1)

If U is defined by propositional formula φ over X ′, i.e. U =[[φ(X ′)]], then Pre(U)
is represented by the following propositional formula1 over X :

∃X ′ : φE(X, X ′) ∧ φ(X ′) (2)

So we have:

Pre([[φ(X ′)]]) =[[∃X ′ : φE(X, X ′) ∧ φ(X ′)]] (3)

We can now symbolically apply the following algorithm:

C0 =[[φW]]

Ci = Pre(Ci−1) \
⋃

0≤j≤i−1

Cj for i > 0 (4)

All these sets can be represented by BDDs and all these operations can be
directly applied on these BDDs.
1 The existential quantification is a shorthand for the disjunction over all variables

over all their finite set of possible values.

On the Symbolic Computation of the Hardest Configurations 227

4 First Propositional Model

We present in this section a first modeling of Rush Hour in propositional logic:
we define φW and φE . We show that this first solution is not satisfactory and
we give a mathematical argument that explains the phenomenon. This mathe-
matical argument is general and has applications in the study of the symbolic
analysis of other board games.

4.1 Formalization

Let n and m be two fixed parameters of the specification, n being the size of
the board and m the number of cars. For the sake of readability, we make here
the hypothesis that all vehicles have a length of 2, the modeling for vehicles
of length 2 and 3 can be obtained from this one in straigthforward manner.
Let the pair of variables (xi, yi) denote the cartesian coordinates of the upper-
left square occupied by the i-th car, (1, 1) being the lower-left corner of the
board. Let the variable hi indicate the orientation of the vehicle, i.e., hi is 1
if the i-th car is horizontal and 0 if it is vertical. The target car uses index
1. We note X = {x1, y1, h1, ..., xm, ym, hm} the set of the system variables and
X ′ = {x′

1, y
′
1, h

′
1, ..., x

′
m, y′

m, h′
m} the set of variables describing the configuration

after one transition, this will be useful to specify the evolution of the system.
The set of all possible configurations is S = ({1, . . . , n}2×{0, 1})m. We specify

3 relations on S: the invariant of the system Invar ⊆ S, which denotes the legal
configurations, the transition relation between configurations Trans ⊆ S × S,
which does not check collision, and Win ⊆ S the set of configurations with the
target car on the exit square. We have: φW (X) = Win(X) ∧ Invar(X) and
φE(X, X ′) = Trans(X, X ′) ∧ Invar(X ′)

To specify those relations we use propositional formulas over finite integer
domains.

Invariant. Proposition (5) states that cars are fully on the board, (6) states
that cars do not overlap. The Invar relation is the conjunction of (5) and (6).
[[Invar]] is the set of all valid states.

∧

1≤i≤m

(hi < xi + hi ≤ n) ∧ ((1 − hi) < yi ≤ n) (5)

∧

1≤i,j≤m
i�=j

(xi >xj +hj) ∨ (xj >xi+hi) ∨ (yi >yj +(1−hj)) ∨ (yj >yi+(1−hi)) (6)

In the same manner, we have propositional formulas for the set of winning
configurations and for the transition relation. We omit them here, but we will
give another complete formalization of Rush Hour in Section 5.

Having formalized the Rush-Hour rules in such a way that for any couple
(m, n) we obtain a Boolean propositional specification that describes the game,
we can apply our algorithm.

228 S. Collette, J.-F. Raskin, and F. Servais

Table 1. Number of nodes in the Invar BDD relatively to board sizes and number of
cars

Cars 4 × 4 5 × 5 6 × 6

2 123 233 368
3 1,237 3,918 9,490
4 7,334 44,209 172,583
5 24,227 321,114 2,153,132
6 44,209 1,520,760 —
7 50,081 — —
8 30,762 — —
9 1 — —

4.2 Results of the First Implementation

We ran our specification for board sizes n ranging from 4 to 6. For each board
size the number of cars m ranged from 2 to the maximum our system memory
could handle. As the number of cars increases the Invar BDD size explodes.
This can be observed in Table 1. We only report on the Invar BDD, since the
Win and Trans BDD sizes do not explode and are thus not relevant here.

The explosion in the memory consumption limited us to the exploration of
boards of sizes 5 and 6, with a number of cars smaller than 6 and 5 respectively.
More complex systems cannot be handled with this approach.

It is a fundamental BDD property that its size increases with the number of
inter-variable dependencies. This is the reason why the Invar BDD size explodes.
As mentioned above, the purpose of this BDD is to validate car positions against
collisions. This puts in interdependency all car positions, since each car position
must be checked against all others.

These first negative experiments motivate the next section where we show
that board games are intrinsically difficult to model with ROBDDs.

4.3 Limitation of ROBDD-Based Methods for Board Games

In this Subsection, we abstract the collision problem to linear boards filled with
tokens. We exhibit a lower bound on the size of the ROBDD that detects a
collision on this linear board. We obtain a two-dimension result as a direct
corollary.

An assignment of a set of tokens modeled by variables in X = {x1, . . . , xm} on
the board of size n is a function v : {x1, . . . , xm} → {1, . . . , n}. There is no colli-
sion iff this function is injective. This is formalized by the following propositional
formula over a finite integer domain:

φcoll =
∧

1≤i,j≤m

i �= j → (xi �= xj) (7)

On the Symbolic Computation of the Hardest Configurations 229

Lower-bound results for ROBDDs are generally based on the concept of a
fooling set. Fooling sets were introduced by Sedgewick for VLSI and then applied
by Bryant to ROBDD [2]. We adapt this notion here for finite integer domains.

Let X = {x1, . . . , xm} be the set of variables of which the domain of values is
{1, . . . , n}.

Definition 1. An input assignment is a function v : X → {1, . . . , n}. Given
(L, R) a partition of X. We call a left (right) input assignment any function
l : L → {1, . . . , n} (r : R → {1, . . . , n}). We denote by l · r the input assignment
defined by l and r on X. We say that an OBDD is compatible with a partition
(L, R) iff all variables of L precede all variables of R in this OBDD variable
ordering.

Before defining the notion of fooling set, we need an additional notion. Let V =
{v | v : X → {1, . . . , n}} be the set of valuations for variables in X . A function
f : V → {0, 1} partitions the valuations as making the function true or false. We
compactly note the type of such a function by f : [X → {1, . . . , n}] → {0, 1}.

Definition 2. Let (L, R) be a partition of X and f be a function such that
f : [X → {1, . . . , n}] → {0, 1}. A fooling set F for f over L is a set of left
assignments such that: for any l, l′ ∈ F, l �= l′, there exists a right assignment r
with f(l · r) �= f(l′ · r). Such a right assignment is said to distinguish between l
and l′.

Lemma 1. Given a partition (L, R) over X, a function f : [X → {1, . . . , n}] →
{0, 1} and a fooling set F for f over L, then any OBDD compatible with (L,R)
has more than #F nodes.

Proof. For any two distinct left assignments, l and l′, of F there exists, by
definition of F , a right assignment r that distinguish them, i.e., such that f(l·r) =
0 and f(l′·r) = 1. It follows that l and l′ must lead to two different “intermediate”
nodes in the OBDD and thus that there is at least as many nodes as there are
elements in F .

We now prove a lower bound on the size of any OBDD that detects the collision
of tokens on a linear board.

Theorem 1. Let f : [X → {1, . . . , n}] → {0, 1} such that f(v) = 1 iff v |= φcoll,
where φcoll is defined in (7). Let A be an ROBDD over the set of variables
X = {x1, x2, . . . , xm} representing f . A has at least Cm−1

n nodes.

Proof. Let N be the set of subsets of m − 1 values from {1, . . . , n} and let
X1 = {x1, . . . , xm−1} and X2 = {xm}. To each N ∈ N we associate one bijection
fN : X1 → N . We note F to be this set of functions. F is a fooling set for
f over X1: let l1, l2 ∈ F with l1 �= l2. By construction of F , we know that
codom(l1) �= codom(l2), and let n1 be a value such that n1 ∈ codom(l1) and
n1 /∈ codom(l2). Let r : X2 → {1, . . . , n} be an injective function such that
codom(r)∩ codom(l1) = n1 and codom(r)∩ codom(l2) = φ. We have f(l1 · r) = 0
and f(l2·r) = 1. Applying lemma 1 finishes the proof since N has Cm−1

n elements.

230 S. Collette, J.-F. Raskin, and F. Servais

Table 2. Lower bounds on the size of the ROBDDs detecting pieces collisions for chess,
draughts and american checkers board

American Rush Hour Invar
of Pieces Chess Draughts checkers BDD size (observed)

2 64 49 32 368
3 2,016 1,176 496 9,490
4 41,664 18,424 4,960 172,583
5 635,380 211,876 35,960 2,100,000
6 7,600,000 1.900,000 201,376 —
7 75,000,000 14,000,000 906.192 —
8 620,000,000 86,000,000 3,400,000 —

Since a two-dimension board is equivalent to a linear board with n2 squares, we
have the following corollary.

Corollary 1. Let A be a BDD over the position variables X = {x1, y1, x2, y2,
..., xm, ym} for a two-dimension board of size n with m tokens. If, for every
1 ≤ i ≤ m the variables {xi, yi} are gathered in the BDD variable ordering, then
A has at least Cm−1

n2 nodes.

Note that this result is fundamentally connected to the chosen encoding of the
problem. The token positions are encoded in a cartesian-like board coordinates
style. Applying this result to board games we obtain a lower bound on any
ROBDD representing the collision of pieces on a chess board or on draughts
board with the afore mentioned encoding. The lower bounds in Table 2 suggests
that this technique is not suitable to explore chess and draughts with more than
5 to 6 pieces (additional complexity will be brought in with the complex rules
of these games).

A dual encoding is to use a boolean variable for every square of the board that
indicates if the square is occupied or not. For board games with more complex
tokens, like american checkers or chess, an integer, that indicates which kind of
pieces occupied the board if one, is required.

Using this dual encoding, Baldamus et al., explored the possibility to solve
American checkers with ROBDD[1]. They observed an explosion in the size of
ROBDD preventing them to solve American checkers for boards with size greater
than 4 × 4. American checkers is the simplest game considered here. However,
the number of legal positions is estimated to be 1018.

5 Dual Propositional Model

In the light of the previous section, we propose now a dual encoding of the Rush
Hour board which limits the explosion of the size of the symbolic structure.
Because vehicles take more than one square, we work on a line and column level,
instead of on a square level as in [1].

On the Symbolic Computation of the Hardest Configurations 231

We have shown that interdependencies between the variables lead to huge
ROBDDs. Here, we try to limit these interdependencies using a specific prop-
erty of Rush Hour: two horizontal cars on different lines can never collide.
Similarly, vertical cars cannot collide with other vertical cars that are not on
the same column. This is the basic idea behind our second model. Again, for the
sake of readability, the model below is limited to vehicle of size 2. Our actual
implementation is general, it takes into account vehicles of size 2 and 3.

Let n be the size of the board. On each column and each line we have at most
k = �n/2� cars. Let hi,j = (oh

i,j , p
h
i,j), 1 ≤ i ≤ n and 1 ≤ j ≤ k represents the

j-th horizontal car of the i-th row, such that this car is on the board if oh
i,j = 1

and out of the board if oh
i,j = 0. If on the board, its leftmost square is on the ph

i,j

square (from the left) of the i-th row. Similarly, let vi,j = (ov
i,j , p

v
i,j) , 1 ≤ i ≤ n

and 1 ≤ j ≤ k represents the j-th vertical car of the i-th column, such that this
car is on the board if ov

i,j = 1 and out of the board if ov
i,j = 0 and its upper

square is on the pv
i,j square (starting from the bottom) of the i-th column. We

have 0 ≤ pv
i,j , p

v
i,j < n. Let (o′hi,j , p

′h
i,j) and (ov

i,j , p
v
i,j), for 1 ≤ i ≤ n and 1 ≤ j ≤ k,

describe the configuration after a transition.

Invariant. Proposition (8) states that cars on the same line, column, do not
overlap and (9) that any horizontal car does not collide with any vertical car.
The Invar relation is the conjunction of (8) and (9).

∧

d∈{h,v}
1≤i≤n,1≤j,j′≤k

(od
i,j = 1 ∧ od

i,j′ = 1 ∧ j < j′) → pd
i,j < pd

i,j′ − 1 (8)

∧

1≤i,i′≤n
1≤j,j′≤k

⎛

⎝
(oh

i,j = 1 ∧ ov
i′,j′ = 1)

→(
(ph

i,j ≤ i′ − 2) ∨ (ph
i,j > i′) ∨ (pv

i′,j′ ≤ i − 2) ∨ (pv
i′,j′ > i)

)

⎞

⎠ (9)

Transition. Proposition (10) states that only one car is moving during one tran-
sition. Proposition (11) states that vehicles on the board stay on the board, and
vehicles out of the board stay out of the board. Finally, proposition (12) states
that cars move one square at a time. The transition relation is the conjunction
of these propositions.

∧

d,d′∈{h,v}
1≤i,i′≤n,1≤j,j′≤k

pd
i,j �= p′di,j → pd′

i′,j′ = p′d
′

i′,j′ (10)

∧

d∈{h,v}
1≤i≤n,1≤j≤k

od
i,j = o′di,j (11)

∧

d∈{h,v}
1≤i≤n,1≤j≤k

|pd
i,j − p′di,j | ≤ 1 (12)

232 S. Collette, J.-F. Raskin, and F. Servais

Table 3. Number of configurations in the furthest frontiers

Index
93 92 91 90 89 88 87 86 85

Configurations 1 6 14 26 47 80 123 172 223
Dominating Configurations 1 0 0 2 2 2 1 3 6

Winning Configuration. One of the cars of the exit square row is on the board
and positioned on the exit square. Let e be the number of the exit square row,
we have:

∨

1≤j≤k

[(pd
e,j = n − 1) ∧ (od

e,j = 1)] (13)

6 Results: RUSH HOUR Hardest Configuration

Contrary to the first encoding, the second encoding gives rise to manageable
symbolic data-structures. Using NuSMV, we were able to analyze the entire
configuration space of Rush Hour. Here are some representative results of our
analysis.

Hardest Configuration. The hardest configuration of Rush Hour is given in
Figure 1c and it requires 93 steps to reach a winning configuration. From that
initial configuration 24132 configurations can be reached. This gives a good idea
of the difficulty of this configuration: please give it a try.

Besides finding the hardest configuration, our analysis has classified every
solvable configuration according to the length of its minimal solution. Table 3
presents the number of configurations for the greatest indexes. We learn that
there are 1010 winning configurations and 2.98 · 1010 solvable configurations,
thus, about 7 billions of valid configurations have no solution, while about 19
billion non-winning configurations have one. The vast majority of the latter are
very easy (shortest solution is very short).

Our symbolic solution can also be used to isolate, what we think are, the most
interesting configurations of the game. We say that one configuration dominates
another if the latter is reachable from the former and the index of the former is
greater than the index of the latter. We present in Table 3 for each index the
number of configurations that are not dominated.

Performance. The results were obtained on an Intel(R) Xeon(TM) CPU
3.06GHz and our symbolic algorithm used up to 1.5GB. It took about 10 hours
to complete the total exploration of Rush Hour. Since there are about 3.6 ·1010

valid configurations this is about 106 configurations each second. While the run-
ning time is comparable to the explicit implementation shown in Subsection 2.2,
we stress that the symbolic method is more generic (standard data-structure,
generic algorithms), while the explicit implementation had to be conceived for

On the Symbolic Computation of the Hardest Configurations 233

Rush Hour. Moreover, at the end of the computation, we keep the whole struc-
ture in memory. This allows us to perform various kinds of queries easily. For
instance, we can retrieve all hard configurations without trucks, with exactly 3
cars, etc.

These results should encourage to study more deeply the application of sym-
bolic methods to other games such as chess or checkers.

References

1. Baldamus, M., Schneider, K., Wenz, M., Ziller, R.: Can American Checkers be Solved
by Means of Symbolic Model Checking? In: Workshop on Formal Methods Else-
where, Technical Report 00-11, pp. 3–17. University of Kent at Cantebury, UK
(2000)

2. Bryant, R.E.: On the Complexity of VLSI Implementations and Graph Representa-
tions of Boolean Functions with Application to Integer Multiplication. IEEE Trans-
actions on Computers 40(2), 205–213 (1991)

3. Bryant, R.E.: Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers 35(8), 677–691 (1986)

4. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L.: Symbolic Model Checking:
1020 States and Beyond. In: Proceedings of the Fifth Annual IEEE Symposium on
Logic in Computer Science, pp. 1–33. IEEE Computer Society Press, Los Alamitos
(1990)

5. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In:
Proceedings of the International Conference on Computer-Aided Verification (2002)

6. Flake, G.W., Baum, E.B.: Rush Hour is PSPACE-complete, or Why You Should
Generously Tip Parking Lot Attendants. Theoretical Computer Science 270(1-2),
895–911 (2002)

7. Hearn, R.A., Demaine, E.D.: PSPACE-Completeness of Sliding-Block Puzzles and
Other Problems through the Nondeterministic Constraint Logic Model of Compu-
tation. Theoretical Computer Science 343(1–2), 72–96 (2005)

8. Holzmann, G.J.: SPIN Model Checker, The: Primer and Reference Manual. Addison-
Wesley, Boston (2004)

9. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design: OBDD
- Foundations and Applications. Springer, Heidelberg (1998)

Cheat-Proof Serverless Network Games

Shunsaku Kato1,�, Shuichi Miyazaki2, Yusuke Nishimura1, and Yasuo Okabe2

1 Graduate School of Informatics,
2 Academic Center for Computing and Media Studies,

Kyoto University, Kyoto, Japan
{shunsaku,yusuke}@net.ist.i.kyoto-u.ac.jp

{shuichi,okabe}@media.kyoto-u.ac.jp

Abstract. We consider playing online games on peer-to-peer networks,
without assuming servers that control the execution of a game. In such an
environment, players may cheat the opponent by, for example, illegally
replacing the cards in their hands. The aim of this paper is to examine
a possibility of excluding such cheatings. We show that by employing
cryptographic techniques, we can exclude some types of cheating at some
level. Finally, based on our discussion, we implement the cheat-proof
network “Gunjin-Shogi”, which is a variant of Japanese Chess.

1 Introduction

Because of recent progress of technology in computer networks, the number of
Internet users has rapidly increased, which made it popular to play games on the
Internet. However, it is difficult to prove that players act honestly since we cannot
see the opponents’ actions physically. So, there may arise a risk of being cheated.
In fact, it is reported that in some survey, the rate of online game players who
have never cheated nor encountered other players’ cheating is only 10% [6, 10].
One natural and simple solution to resolve this problem is to instal a server that
controls the whole execution of the game. Actually, there are a plenty of client-
server type network games in which servers play the role of a judge. However,
there are several inconveniences in this server-client model. First, we have to
believe that the servers work perfectly. Whatever the case, there still remains
room for being cheated by the server. This pessimistic assumption is somehow
realistic when we recall recently prevailing crimes on the Internet. Second, using
servers may restrict the number of players because of the capability of servers.
For example, there is a Japanese Chess site that allows up to about 3,000 users
to login1 simultaneously. This motivates us to consider cheat-proof serverless
network games.

There is a fair amount of research work on cheating in online games [1,2,7,9,
10, 11, 12]. Yan and Choi [10] consider cheatings actually happening or possible
to happen in online games. They classify cheatings into 11 categories, which
includes disconnecting PCs from the Internet when players are to lose, cracking
� Currently at Nintendo Co., Ltd. Entertainment Analysis & Development Division.
1 Internet Shogi Dojo (in Japanese) http://www.shogidojo.com/dojo/dojoindex.htm

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 234–243, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Cheat-Proof Serverless Network Games 235

passwords of game sites, beating opponents by DoS(Denial of Service) attacks,
and so on, and also propose methods to resolve them. Later, Yan [11] focuses on
Contract Bridge and enumerate cheatings possible in online play. Furthermore,
Yan and Randell [12] extend categories described in [10] into 15 categories, and
also gives a systematic taxonomy of cheatings in online games. Baughman and
Levine [1] deal with real-time online games, such as fighting games and shooting
games. They focus on the way of mitigating a cheating caused by the difficulty of
distinguishing packet delays by network congestion from one by cheating. From
the theoretical point of view, several cryptographic protocols have been proposed
to perform communication securely on peer-to-peer networks, which includes
Poker [8, 14], and comparing the amount of money [13]. In 1987, Goldreich,
Micali, and Wigderson [5] generalized above protocols and proposed a multi-
party protocol that can perform any task one may reasonably consider. However,
their protocol is too general and it includes computational overhead, so research
on developing or sophisticating protocols for specific applications has followed,
e.g., electronic election [4], and electronic bidding [3].

In this research, we consider applying such protocols to network games, in-
spired by the following idea. Note that, although cheating in an electronic elec-
tion or electronic money is a serious problem, its effect in case of games is smaller
in some cases, or only players feel uncomfortable. Hence, we may relax the con-
dition for preventing cheatings in our case, by which we may be able to obtain an
advantage such as simplifying protocols, or reducing computational complexity.

In this paper, we start by formalizing games. Here, we focus on static games,
which means that each player makes a decision in turn, or, more precisely, each
player’s action is synchronous to discrete time steps, such as Poker, Chess, and
Go. We define games by using sequential machines.

Based on this model, we will propose a method of executing games. We first
consider an easier case where players act honestly by obeying protocols. Even in
this case, however, execution is not trivial in peer-to-peer assumption; there are
two major problems. First, states of a sequential machine must be maintained
only by the players since there is no server. However, no player is allowed to
know the states since a state contains information that must be kept secret from
the players. Second, to proceed a game, the next state of the machine must be
computed only by the players. Again, however, the current state, actions (inputs)
of other players, and the next state must be hidden from the players. To resolve
these problems, we exploit cryptographic tools. For the first problem, we use a
secret sharing scheme, and for the second, we use a multi-party protocol.

Next, we impose a stronger assumption that players may cheat for their ben-
efit. We first enumerate the cheatings possible in our game model. We consider
cheatings only by exploiting game rules; hence, cheatings like DoS attacking are
out of our scope. We then define three levels of protection, and examine which
type of cheating can be protected at which level.

Finally, based on the above observation, we implement Gunjin-Shogi using
Java 1.4. Gunjin-Shogi is a variant of Japanese Chess, but a player is not allowed
to know the type of opponent’s pieces, namely, each player has information secret

236 S. Kato et al.

to the opponent. Our program equips a verification phase at the end of the
game, by which the players can detect a cheating if it is committed during the
game.

2 Definition of the Game

In this section, we define games using sequential machines. A game is a nine-tuple
G = (n, I, O, S, s0, F, R, δ, Λ). Here, n is a positive integer, which represents the
number of players. I= {I1, I2, · · · , In} is a class of input sets, where each Ii is a
set of player Pi’s inputs. Similarly, O= {O1, O2, · · · , On} is a class of output sets.
S = {s0, s1, · · · , s�} is a set of states. s0 ∈ S is the initial state, and F ⊆ S is a
set of final states. R is a set of random strings. δ : S× I1× I2 ×· · ·× In ×R → S
is a state transition function. Finally, Λ = {λ1, λ2, · · · , λn} is a set of output
functions, where each λi : S → Oi is a function for player Pi.

Formally, a state is nothing more than an element in a set, which could be
the set of natural numbers, or the set of strings on {0, 1}. Intuitively, a state
is an encoding of all information at each time-step of the game. For example,
in Chess, a state is an encoding of the player’s turn and the position of pieces
on the board, or in Poker, it consists of information on the player’s turn, each
player’s hand, talon cards, and discarded cards.

The game proceeds as follows. The state of the machine is initially s0. Assume
that in the current step, the machine is in the state s. At this step, each player
Pj (1 ≤ j ≤ n) selects an input ij ∈ Ij according to his2 strategy. Also, the
machine selects a random string r from R. The machine computes its next state
s′ = δ(s, i1, i2, · · · , in, r), and then, λj(s′) for each j, and informs it to player Pj .
The game ends if the machine reaches a state in F .

The above formalization is general enough in the following sense.

– By employing output functions, we can deal with different types of secret in-
formation. Consider Poker, for example. The state s of the machine contains
information on all players’ hands and the talon cards. However, no player is
allowed to see the other players’ hands and talon cards. The output λi(s)
extracts partial information from the state corresponding to the information
that player Pi is allowed to know.

– In games such as Cards and Chess, only one player acts at each step. To
represent this type of games, we simply have to restrict a transition func-
tion as follows. If, in the state s, P1 is the player to make an action, then
δ(s, i1, i2, · · · , in, r) = δ(s, i1, i′2, · · · , i′n, r′) for any i1, i2, · · · , in, r, i′2, · · · , i′n
and r′. This means that δ depends only on the second argument if the first
argument is s.

– For games that have no randomness, we may simply restrict the transition
function so that it does not depend on r as before. Namely, δ(s, i1, i2, · · · , in,
r1) = δ(s, i1, i2, · · · , in, r2) for any s, i1, i2, · · · , in, r1, and r2.

2 For brevity and readability, we use ‘he’ and ‘his’ wherever ‘he or she’ and ‘his or her’
are meant.

Cheat-Proof Serverless Network Games 237

– For perfect information games, where there is no need to hide game infor-
mation, such as Chess, we may set λi(s) = s for every i. If states have to
be secret but all players may share the same information, such as in the
Nervous breakdown game, we may set λi = λj for all i and j.

One may check that most of the popular static games, such as Chess, HIT
& BLOW, Backgammon, etc., can be formalized in our model by appropriately
choosing δ, λ, and so on.

3 Playing Games on Peer-to-Peer Environment

Now, we propose a protocol to simulate sequential machines only by players. In
this section, we assume that each player acts honestly, obeying protocols. Even
assuming this, it is non-trivial to execute games because some information must
be kept secret from every player, while information itself must be maintained
only by players since there is no server playing a role of a game manager. In the
following, we show how to resolve such problems. Without loss of generality, we
assume that states, inputs, and outputs are strings in {0, 1}∗.

Maintaining states. To simulate computation of a sequential machine, it is nec-
essary to maintain its states. However, for games in which players are not allowed
to know the game states, there arises a difficulty; players must maintain game
states without knowing the actual value. We will use a simple secret sharing algo-
rithm. Recall that a state s is a string in {0, 1}∗. Determine strings si (1 ≤ i ≤ n)
so that they satisfy s = s1 ⊕ s2 ⊕ · · · ⊕ sn. Each player Pi keeps si secret. Here,
each si has the same length with s, and XOR is a bitwise operation. This secret
sharing method is convenient in using multi-party protocols for computing the
next state, which we will see later.

Secrecy of inputs. At each step, players have to give an input to the machine. If
there is a server that simulates the machine, each player has only to send an input
to the server. However, in our case, all players must simulate the computation
of a machine, which means that each player has to reveal a part of one’s input
to other players. To keep the input secret, we use the same technique as above.
If an input of the player Pj is ij , then Pj determines ijk

(1 ≤ k ≤ n) that
satisfy ij = ij1 ⊕ ij2 ⊕ · · · ⊕ ijn , and sends ijk

to player Pk (1 ≤ k ≤ j − 1,
j + 1 ≤ k ≤ n). It is easy to see that as long as Pj keeps ijj secret, no player can
obtain information on ij .

Generating random strings. For a game that involves randomness, a string r
must be chosen at random, and in some cases, it must be kept secret from all
players. To perform it without servers, each player generates a random string ri,
and keeps it secret. The real random string is defined as r = r1 ⊕ r2 ⊕ · · · ⊕ rn.

Computing δ. Recall that inputs for δ are s, ij(1 ≤ j ≤ n), and r, which are not
known to players. However, players must compute the function δ by cooperating
in order to proceed the game. Furthermore, the output of the function must be

238 S. Kato et al.

kept secret again. To compute δ, we use a multi-party protocol [5]. Let us briefly
explain the multi-party protocol. Let f(x1, x2, · · · , xn) be a function from {0, 1}n

to {0, 1}. There are n players Pi (1 ≤ i ≤ n), and each Pi possesses an input bit
xi. Using the multi-party protocol, every player can know the correct value of
f(x1, x2, · · · , xn), while the player Pi cannot know the value of any xj (j �= i). To
perform the multi-party protocol, each player Pi computes xij (1 ≤ j ≤ n) such
that xi = xi1 ⊕ xi2 ⊕ · · · ⊕ xin , and sends xij to Pj . So, Pi has xji for 1 ≤ j ≤ n
at the beginning of the protocol. Computation is performed step by step by
following the protocol, and finally, each player obtains a bit yi. If every player
follows the protocol, it is guaranteed that f(x1, x2, · · · , xn) = y1 ⊕ y2 ⊕ · · · ⊕ yn.
At the final step, each player Pi broadcasts yi to all other players, so that all
players can compute the output by themselves.

Recall that all inputs for δ are shared by the secret sharing method described
before. So, this protocol can be easily adopted to compute δ. In our case, however,
each player does not broadcast the output yi, in order to keep the next state
secret again.

Computing λ. This can be done by a protocol similar to the case of computing
δ. After the completion of the multi-party protocol for computing λi, each player
Pj knows secret information oj . In the case of δ, Pj keeps it secret, but this time,
Pj sends oj only to Pi, so that only Pi can compute the output of λi.

4 Excluding Cheating

In the previous section, we assumed that all players follow the protocol. In this
section, we assume the existence of malicious players who try to get unfair advan-
tage by cheating. Under this assumption, we examine which type of cheating can
be excluded to what extent. We first enumerate the types of cheating possible
in our game model.

Cheating 1: A player Pj gives an illegal input x /∈ Ij .
Cheating 2: A player leaks his input to other players.
Cheating 3: A player eavesdrops other players’ input.
Cheating 4: A player modifies other players’ input.
Cheating 5: A player eavesdrops a random string.
Cheating 6: A player modifies a random string.
Cheating 7: A player leaks output (his secret information) to other players.
Cheating 8: A player eavesdrops outputs for other players.
Cheating 9: A player modifies outputs for other players.
Cheating 10: A player eavesdrops the state of the game.
Cheating 11: A player modifies the state of the game.
Cheating 12: Two or more players collude (e.g., share secret information).

Next, we define the levels of excluding cheatings. A cheating c is eventually
detectable if the fact that cheating c is committed, and the player who committed
it, can be detected after the game is over. A cheating c is instantly detectable if

Cheat-Proof Serverless Network Games 239

the fact that cheating c is committed, and the player who committed it, can be
detected right after c is committed. Cheating c is called preventable if c cannot
be committed, or even if c is committed, other players can continue the game
without being affected by c.

We examine which cheating among 1 through 12 listed above can be excluded
at which level by the game execution protocol proposed in Sec. 3. Before doing
so, we clarify assumptions on networks. We assume that for each pair of players,
there is a secure communication channel between them. This may easily be
realized by using standard cryptographic protocols. Also, we assume that when
a player sends information to other players, he attaches a digital signature.

Consider Cheating 1. After the game is over, we verify all computations per-
formed during the game execution. If someone sends an illegal value to some
player, he cannot deny this fact since the message is accompanied by his sig-
nature. So, this is eventually detectable. Cheating 2 cannot be excluded at any
level since any player can send an input via a channel independent of the game
system, e.g., e-mail, fax, and telephone. Cheatings 7 and 12 can be considered
similarly. Note that these cheatings cannot be excluded even if we use servers.
Cheating 3 is preventable by the assumption of secure communication channels.
This is the same for Cheatings 5, 8, and 10.

There are two possibilities in Cheating 4. The first case is the following: when
Pi sends a string x to Pj , Pk modifies it to a different string x′. This is preventable
under the assumption on the network. The other case is that after Pj has received
a string x from Pi, Pj modifies it to x′, and uses it instead of x for future
computation. This is eventually detectable by the same manner as described in
the case of Cheating 1. Cheatings 6, 9, and 11 can be considered similarly.

There is one non-trivial case in Cheating 6. When creating a random string r,
each player Pi is expected to generate a random string ri. Yet, it can happen that
Pi selects ri not at random but with some intention. However, by the definition
of r, if at least one player selects it at random, then r is also random. Hence,
this is preventable.

5 Implementing Gunjin-Shogi

Based on the discussions so far, we implemented Gunjin-Shogi, which is a variant
of Japanese Chess, but each player has secret information.

5.1 Rules of Gunjin-Shogi

Gunjin-Shogi is a two-player game. It needs a judge. A game board consists of
8 × 9 cells as shown in Fig. 1. Each player uses 31 pieces, each of which has a
“type”. There are 15 types and thus there are pieces that have the same type.
On one face of a piece, its type is drawn, and the other face is null. For any pair
of types, there is a strength relation between them, as shown in Fig. 2. A “©”
sign in row a and column b means that a is stronger than b. A “×” in row a and
column b means that a is weaker than b. “	” means a draw, which occurs only
when comparing the same type of pieces.

240 S. Kato et al.

Fig. 1. A board of Gunjin-Shogi

Fig. 2. A relation on strength of type of pieces

Initially, each player places 31 pieces on one’s side. Pieces are placed with null
face top, so that the opponent cannot see which piece is of which type. After the
game has started, each player alternately moves one of his pieces. Positions in
which each piece can be moved are determined by its type, but a piece cannot be
moved to the cell which is already occupied by an own piece. If two pieces (each
of each player) meet at the same cell, a “battle” begins. The judge looks at their

Cheat-Proof Serverless Network Games 241

types, and removes the weaker piece from the board. If both pieces are of the
same type, both will be removed. A cell of size 2 × 1 is called a “base”. When a
player p proceeds a piece into the opponent’s base, then p wins the game (only
six types are allowed to proceed to the base). The challenge of the game is to
guess which piece is of which type, by observing the movement of pieces and the
result of battles.

5.2 Implementation

We implemented Gunjin-Shogi using Java 1.4. A game window is shown in Fig. 3.
For the cheat-proof issue, we realized only eventual detection, namely, if a cheat-
ing is committed during the game execution, it can be detected at the verification
phase after the game is over. To perform this, the program records all messages
exchanged during the play. At the beginning of the verification phase, the players
exchange their secret keys, and each player replays the whole game execution.
Fig. 4 shows a window after the verification phase has been completed. The
verification program informs a player that the opponent has cheated. In this

Fig. 3. A game window of Gunjin-Shogi

Fig. 4. An example of the verification phase

242 S. Kato et al.

example, the opponent replaced weaker pieces by stronger ones, and placed many
strong pieces against the game rule.

6 Conclusion

In this paper, we considered a possibility of playing cheat-proof serverless net-
work games. We formally defined games, and proposed a general protocol by
which we can execute games in a serverless environment. Then, we listed cheat-
ings possible in our game model, and examined a possibility of excluding those
cheatings. We finally developed a program of cheat-proof network Gunjin-Shogi.

As we have shown in Sec. 3, every game in our scope can be implemented by
combining several basic protocols. Our possible next step is to develop a library
of fundamental tools, so that games can be implemented easily by combining
them. A second future direction is to employ deeper cryptographic tools, such
as zero-knowledge proofs to guarantee higher security levels.

Acknowledgments

This research is supported in part by Scientific Research Grant, Ministry of
Education, Japan, 17650016. The authors would like to thank the referees for
their valuable comments, and the editors for their help in improving this paper.

References

1. Baughman, N.E., Levine, B.N.: Cheat-Proof Playout for Centralized and Dis-
tributed Online Games. In: Proc. of the 20th IEEE INFOCOM, pp. 104–113. IEEE
Computer Society Press, Los Alamitos (2001)

2. Davis, S.B.: Why Cheating Matters: Cheating, Game Security, and the Future of
Global On-line Gaming Business. In: Proc. of the Game Developer Conference 2001
(2001)

3. Franklin, M.K., Reiter, M.K.: The Design and Implementation of a Secure Auction
Service. In: Proc. of the IEEE Symposium on Security and Privacy, pp. 2–14. IEEE
Computer Society Press, Los Alamitos (1995)

4. Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large
Scale Elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718,
pp. 244–251. Springer, Heidelberg (1993)

5. Goldreich, P., Micali, S., Wigderson, W.: How to Play Any Mental Game, or a
Completeness Theorem for Protocols with Honest Majority. In: Proc. of the 19th
ACM Symposium on the Theory of Computing, pp. 218–229. ACM Press, New
York (1987)

6. Greenhill, R.: Diablo, and Online Multiplayer Game’s Future. Games Domain Re-
view(1997), http://www.gamesdomain.com/gdreview/depart/jun97/diablo.html

7. Kirmse, A., Kirmse, C.: Security in Online Games. Game Developer 4(4), 20–28
(1997)

8. Shamir, A., Rivest, R.L., Adleman, L.M.: Mental Poker. In: Klarner, D.E. (ed.)
Mathematical Gardner, pp. 37–41 (1981)

http://www.gamesdomain.com/gdreview/depart/jun97/diablo.html

Cheat-Proof Serverless Network Games 243

9. Smed, J., Kaukoranta, T., Hakonen, H.: Aspects of Networking in Multiplayer
Computer Games. In: Proc. of the International Conference on Application and
Development of Computer Games in the 21st Century, pp. 74–81 (2003)

10. Yan, J., Choi, H.J.: Security Issues in Online Games. The Electronic Library
international journal for the application of technology in information environ-
ments 20(2), 125–133 (2002)

11. Yan, J.: Security Design in Online Games. In: ACSAC 2003, pp. 286–297. IEEE
Computer Society, Los Alamitos (2003)

12. Yan, J., Randell, B.: A Systematic Classification of Cheating in Online Games.
In: Proc. of the 4th Workshop on Network & System Support for Games
(NetGames’05). ACM Press, New York (2005)

13. Yao, A.C.: Protocols for Secure Computation. In: Proc. of the 23rd IEEE Sym-
posium on the Foundation of Computer Science, pp. 160–164. IEEE Computer
Society Press, Los Alamitos (1982)

14. Zhao, W., Varadharajan, V., Mu., Y.: A Secure Mental Poker Protocol Over The
Internet. In: Proc. of the Australasian Information Security Workshop, pp. 105–109
(2003)

Monte-Carlo Methods in Pool Strategy

Game Trees

Will Leckie1 and Michael Greenspan2

1 Department of Electrical and Computer Engineering,
2 Department of Electrical and Computer Engineering, School of Computing,

Queen’s University, Kingston, Canada
will.leckie@ece.queensu.ca, michael.greenspan@queensu.ca

Abstract. An Eight Ball pool strategy algorithm with look-ahead is
presented. The strategy uses a probabilistically evaluated game search
tree to discover the best shot to attempt at each turn. Performance
results of the strategy algorithm from a simulated tournament are pre-
sented. Players looking further ahead in the search tree performed better
against their shallower-searching competitors, at the expense of larger ex-
ecution time. The advantage of a deeper search tree was magnified for
players with greater shooting precision.

1 Introduction

Pool and billiards are cue sports that have recently enjoyed a resurgence of inter-
est worldwide. Pool was recognized as a demonstration sport by the International
Olympic Committee at the 1998 Nagano Olympics, and it is estimated that in
2004 over 30 million people picked up a cue in the U.S. alone. Computational
and robotic billiards have also enjoyed increased interest and research attention
in recent years. There are currently a number of robotic pool systems under de-
velopment worldwide, including Deep Green [15], Pool Sharc [4], and others
[5,7,14]. The 10th Computer Olympiad in Taipei, Taiwan, 2005, featured a com-
putational Eight Ball tournament which pitted pool strategy algorithms against
one another in matches hosted by a game server running a simulated game en-
vironment [11]. The computational Eight Ball tournament was again a feature
of the 11th Computer Olympiad in Turin, Italy, 2006.

Pool is a game of physical technique and strategy. Placement of the cue ball
following a shot is considered one of the key elements to successful play, and
even moderately accomplished human players tend to plan several shots ahead.
In this way pool bears a similarity to other games of strategy, such as chess
and checkers. One significant difference is that chess and checkers are played on
a board with discrete positions so that the number of possible board states is
finite, although huge. In contrast, a pool table is a continuous domain with a
truly infinite number of possible table states; no two pool games will ever be the
same.

Another significant difference between chess or checkers and pool is that there
is no element of chance or randomness in chess or checkers; the game state re-
sulting from a given move is always certain. Human pool players are capable

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 244–255, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Monte-Carlo Methods in Pool Strategy Game Trees 245

of learning advanced strategies and can hone their technique through hours of
practice, but will never achieve perfectly repeatable shot making because of the
inherent minute errors in human perception and muscle control when attempt-
ing to strike precisely the cue ball with the cue. Similarly, in a robotic pool
system, a non-negligible amount of systemic noise imposes a physical limitation
on the repeatability of the robot’s shot making. Pixelation/quantization noise
in image processing and positioning error in robot actuation can be minimized
through careful calibration [15], but can never be eliminated completely. In the
computational Eight Ball tournaments played at the Computer Olympiad, the
simulated game environment adds Gaussian noise to the parameters that a pool
strategy algorithm uses to specify its shots, in order to simulate the small but
non-negligible amounts of uncertainty faced by human and robotic players. The
addition of this noise not only makes the simulated tournament more realistic,
but also makes the computational pool strategy problem more interesting and
challenging. The strategy algorithm for a computational or robotic pool player
must therefore consider the effects of additive noise in its decision-making in
order to play competitively.

A pool strategy algorithm can be characterized by three main features; (1)
method of shot selection, (2) learning ability, and (3) use of look-ahead. Shot
selection is the task of choosing which ball to sink in which pocket given a
current table state (i.e., the positions of all balls on the table). Shot selection
methods fall into the two categories of shot specification and shot discovery.
Shot specification involves identifying a desired final position for the cue ball
following a shot, and employs numerical optimization methods to determine the
shot parameters required to achieve this objective [9]. Shot discovery involves
applying geometric rules to a current table state to enumerate potential shots.
An evaluation function, such as a quantitative estimate of the difficulty of each
shot, is then applied to select a shot from the options available. Evaluation of
shot difficulty has been implemented using methods such as fuzzy logic [2,3,6,8],
neural networks [5], and grey decision making [14]. Alian also explored the use
of reinforcement learning [3] and genetic optimization [2] to train a fuzzy-based
shot selection system.

Look-ahead is a key component of any two player turn-based game and is
widely implemented using game-tree methods for games, such as chess, checkers
and Backgammon. Look-ahead is also an important feature in a pool strategy
program because a player continues shooting after successfully sinking a ball.
Even moderately accomplished human players choose a shot by considering the
positions of the other balls and potential future shots, usually to a depth of two or
three shots ahead. Skilled human players strike the cue ball with the appropriate
velocity and English (spin) in order not only to pocket one of their object balls,
but also to leave the cue ball in a desired region on the table from which they
will subsequently have an advantageous shot. Professional-calibre human Eight
Ball players try to visualize the entire run of eight balls, at the start of a rack
after the break. These players place great importance on identifying the key ball,
the last ball of the player’s color group to be pocketed, to plan their desired cue

246 W. Leckie and M. Greenspan

ball position for shooting the Eight ball [1]. Strong human pool players therefore
use a combination of shot specification and look-ahead to select their shots.

A second strategic consideration in the game of Eight Ball and other pool
game variations is a tactical play called the safety, which can be utilized by a
player on any shot. When a player declares a safety shot, the turn will be passed
to the opponent after the current shot, even if a ball was legally pocketed on the
shot. The safety play can be used both as a defensive and an offensive tactic.
From a defensive standpoint, a player declares a safety when there is no shot that
results in an advantageous table state for the next shot. After successfully potting
the ball, the turn is passed to the opponent, preventing the player from facing a
difficult shot on a disadvantageous table state. From an offensive standpoint, a
player declares a safety and makes a legal shot, possibly pocketing one of his own
balls, but is careful to leave the cue ball in a location making the opponent’s
next shot especially difficult. If the opponent then makes an illegal shot, for
example by failing to cause the cue ball to strike a ball of his own color group
first, then the player is awarded ball-in-hand and is entitled to place the cue ball
anywhere on the table and begin a turn, which is very advantageous. By looking
ahead in the game and examining potential future table states resulting from a
given shot, a pool strategy algorithm can therefore identify situations in which
its own player will be left with a difficult shot warranting a defensive safety call,
and can also examine the options available to an opponent to identify potential
ball-in-hand opportunities resulting from an offensive safety.

Despite its important role in human play, none of the pool strategy algorithms
reported in the literature contain the look-ahead feature [2,3,5,6,8,14]. Rather,
all of these methods strive to identify the easiest shot given the current table
state. However, the easiest shot on the table may not be (and often is not) the
best shot to choose strategically. Pocketing the easiest shot may leave the cue
ball in such a position that the player has no subsequent shots with acceptable
difficulty, or worse yet no legal shots at all, which is advantageous to the oppo-
nent because of the potential for fouling and surrendering ball in hand to the
opponent. Considering the additive noise in the simulated tournament environ-
ment and the systemic noise in robotic play, it is also important to note that the
easiest shot determined from purely geometric considerations may not be the
most likely shot to succeed.

In this paper, we present a pool strategy algorithm that uses shot discov-
ery and look-ahead to choose the best shot given the current table state. The
algorithm accounts for the additive noise using Monte-Carlo methods when sim-
ulating shot outcomes, and expands a game tree to look ahead and choose the
best shot option on each turn. *-Expectimax game trees have been used for the
game of Backgammon [12], in which the element of chance involved in the roll
of the dice necessitates statistical sampling in the game tree. We have adapted
the *-Expectimax approach to obtain a suitably efficient and compact tree rep-
resentation and search algorithm for pool strategy.

This paper continues in Section 2 with a brief review of *-Expectimax and
details of its adaptation for use in our pool strategy algorithm. Section 3 presents

Monte-Carlo Methods in Pool Strategy Game Trees 247

test results demonstrating the performance improvements and execution times
for various degrees of look-ahead. The paper concludes in Section 4 with a de-
scription of future work.

2 Pool Strategy Based on *-Expectimax Game Trees

2.1 Modeling Shot Outcomes

To generate a game tree for pool, the outcome of each shot must be determined,
which in turn requires a simulation of the physics of a shot. There are five shot
parameters that describe the impact between the cue and the cue ball at the
start of a shot. These five parameters uniquely specify the resulting trajectory of
the cue ball and therefore the outcome of the shot, once the cue ball and object
balls collide. The parameter a is the horizontal offset of the cue tip from the
center of the cue ball, b is the vertical offset of the cue tip from the center of the
cue ball, θ is the elevation of the cue stick above the horizontal, φ is the aiming
direction of the cue stick in the table plane, and v is the speed of the cue stick
immediately before impact with the cue ball. In addition to linear velocity, the
collision with the cue also imparts an angular velocity, or spin to the cue ball
whenever a, b, or θ are nonzero. By varying the spin (the values of a, b, and θ),
the aiming direction φ, and the speed of the cue strike v, a player controls the
trajectory of the cue ball and the final position of the ball after the shot.

The Poolfiz library has been developed to simulate the outcome of a pool
shot given the five shot parameters and the current table state (i.e., the positions
of all the balls on the table) [13].

2.2 Additive Random Noise Model

In the simulated pool environment for the computational Eight Ball tournaments
at the Computer Olympiad, a noise model is used to simulate the uncertainty
involved in executing a shot. When a pool strategy algorithm specifies its chosen
shot in the form of the five shot parameters, the game server then adds random
noise to each of the five parameters, simulates the shot using Poolfiz, and
analyzes the resulting table state to referee the match. The noise model is a
zero-mean Gaussian distribution with a standard deviation specific to each of
the five parameters. The standard deviations for each of the shot parameters
were empirically determined and are published to all tournament participants
in advance, allowing the details of the noise model to be coded directly into a
competitor’s pool strategy algorithm.

2.3 *-Expectimax Modified for Pool Strategy

To search a game tree and determine the best move from the current game state,
each node in the tree is assigned a numerical utility value. The utility of a game
state is a measure of how advantageous that game state is for the player, or
how disadvantageous it is for the opponent. In a chess program, for example,

248 W. Leckie and M. Greenspan

the utility might be calculated based on the positional advantage, the material
advantage, and the safety of the King. The game tree is a minimax tree and the
Alpha-Beta Search algorithm is commonly used to search the tree to a certain
depth and identify the best move [16].

Games such as chess and checkers are completely deterministic; the outcome
of a given move is certain. The minimax approach has been adapted to the
game of Backgammon using the *-Expectimax game tree [12]. Since Backgam-
mon involves randomness in the rolling of the dice, the *-Expectimax game tree
inserts a layer of chance nodes between each layer of Min and Max nodes in the
tree. Statistical sampling is performed at the Chance nodes to examine possi-
ble outcomes of a given move based on the sampled outcomes of dice rolls. In
*-Expectimax trees, the utility of a Chance node in the tree is the sum of the
utilities of each of the child nodes, weighted by the probability of each particular
outcome occurring.

The *-Expectimax game tree, with a few modifications, is well suited for use in
pool strategy because of the element of uncertainty imposed by the noise model,
and because the table is a continuous domain. Due to the additive random
noise, a set of shot parameters {a, b, θ, φ, v} could result in a range of possible
final table states, and the weighted-sum approach of *-Expectimax is very useful
for analyzing and “averaging” these possible final table states numerically.

The game tree structure for pool is illustrated in Fig.1. A given table state
is represented by a State node, denoted by Sti. Each table state Sti has a set
of Ni possible shots, with each shot represented by a child Shot node, denoted
by Shi

j , j = 1 . . .Ni. A pool shot is the arc of the tree between a State node
Sti and a Shot node Shi

j and is represented by its set of five shot parameters:
{a, b, θ, φ, v}i

j .
A player’s turn begins at the root State node St0. The player has a set of N0

shots available, each of which arcs to a child Shot node {Sh0
j}N0

j=1. A child State
node of a Shot node results in a player either continuing the turn and shooting
again after successfully pocketing an object ball, losing the turn after failing
to pocket an object ball, fouling and surrendering ball-in-hand, or winning the
game by pocketing the Eight ball.

One difference between *-Expectimax for Backgammon and its adaptation
for pool follows from the difference in turn ordering between the two games.
In Backgammon players strictly alternate turns at each dice role, so the *-
Expectimax tree contains alternating layers of Min and Max nodes, with the
Min nodes representing the opponent’s turn. In contrast, in pool the player’s
turn continues and they keep shooting so long as an object ball is legally pock-
eted at each shot.

To accommodate this difference, we have modified the *-Expectimax tree
and the search method accordingly. The tree is recursively expanded by pre-
order traversal as long as a player’s shot is legal and successful. The traversal is
terminated either when the specified search depth is reached, or at a leaf node.
A leaf is reached either when a player loses his turn (by failing to pocket an
object ball or by fouling), or when a player pockets the Eight ball to win the

Monte-Carlo Methods in Pool Strategy Game Trees 249

Fig. 1. Example game tree for pool

game. No forward modeling of an opponent’s possible shots is performed, and
the advantage given to an opponent at the loss of a player’s turn is estimated
by calculating the utility of that leaf State node for the opponent.

The Main Difference. The main difference of the scheme described above and
*-Expectimax for turn-based games is that, in the case of pool, the opponent’s
State nodes are not expanded and explored further. In Backgammon, enumerat-
ing all of a player’s possible moves is trivial because the game space is discrete.
In pool, however, an opponent’s shot is specified by five continuous parameters,
which makes enumerating all of an opponent’s possible shots impossible. Even
if the strategy algorithm used its own “common sense” rules to explore a few
of an opponent’s expected shots, there is no guarantee that the opponent will
select any of those shots because the opponent’s shot selection algorithm is a
different program. For example, a shot-discovery-style shot-selection algorithm
would almost certainly fail to predict the shot chosen by an opponent’s shot
specification-based selection algorithm. Therefore, no time is spent modeling an
opponent’s potential shots by expanding a leaf State node, because it is fairly
likely to be an inaccurate projection and therefore a waste of time. This adapta-
tion of *-Expectimax also simplifies the search algorithm and results in a more
compact tree and a faster shot-selection time, because far fewer nodes are added
to the tree.

Let the utility measure of a State node Sti be denoted by V (Sti). The state
utility V (Sti) is a static measure of how advantageous a given table state is,
and could be calculated many different ways. One approach is to estimate the
difficulty of a shot based on purely geometric considerations, and then sum the
inverses of the shot-difficulty measures for all shots available to the player to
obtain a static utility measure for the table state based on the number and

250 W. Leckie and M. Greenspan

difficulty of shots available. Our pool strategy uses a more complicated function
to calculate V (Sti) based on positional (cue ball location and number of available
shots) and material (number of balls sunk) advantage of the table state Sti.

Since there is some uncertainty in executing the shot parameters due to the
additive random noise, the utility of a Shot node should account for this uncer-
tainty and the range of possible table states that could result, which motivates
the use of the weighted sum method from *-Expectimax. The utility U(Shi) of
Shot node Shi could also be calculated many different ways. In our strategy,
U(Shi) depends on the utility of the resulting table states following the shot,
since this affects the number and quality of shots subsequently available.

The utility of a given shot Shj is estimated at each Shot node by performing
a Monte-Carlo simulation of Nδ shots, each of which is randomly perturbed from
the nominal shot parameters: {a+δa, b+δb, θ+δθ, φ+δφ, v+δv}.

The Monte-Carlo simulation is performed by repeated calls to the Poolfiz
library. To obtain a reasonably accurate estimation of the utility of the shot, Nδ

should be as large as possible given the constraints on the total time allowed to
evaluate the tree.

The utility U(Shj) of the Shot node is calculated as:

U(Shj) =
Nδ∑

k=1

PkV (Stjk) (1)

where Pk is the joint probability of occurrence of the noisy parameter set
{a+δa, b+δb, θ+δθ, φ+δφ, v+δv}, and V (Stjk) is the utility of the kth child table
state Stjk of Shj. In the additive noise model the probability density function for
the noise added to each shot parameter is a continuous Gaussian distribution, so
the joint probability distribution of the noisy shot parameters is itself a Gaussian
distribution. The probability of occurrence of a given set of noisy shot parameters
can therefore be estimated by taking the product of the values of each of the
probability densities for a given noisy parameter set.

A Second Difference. A second difference between *-Expectimax for Backgam-
mon and our adaptation for pool strategy lies in the statistical sampling. In
*-Expectimax for Backgammon, the statistical sampling is of the roll of two
dice so it is possible to enumerate all possible outcomes of the dice roll. The
roll of each die follows a discrete uniform probability density function, and the
joint probability distribution of the sum of both dice rolls is a discrete triangu-
lar function. All possible game states resulting from the statistical sampling are
enumerated and added to the tree, and the utility measure of a Chance node ac-
counts for the fact that different states have different probabilities of occurrence
by taking the weighted sum of their utilities. In pool strategy, the joint prob-
ability distribution for a set of noisy shot parameters is a continuous Gaussian
distribution. In the discrete triangular distribution for dice rolls in Backgammon,
even the least likely occurrences have a non-negligible probability of occurrence
(3%), whereas in the continuous Gaussian distribution for pool the least likely
occurrences have a vanishingly small probability of occurrence and can safely

Monte-Carlo Methods in Pool Strategy Game Trees 251

be discounted from the tree search. For reasons of memory compactness and
search efficiency, rather than adding a child State node Stjk to the tree for all Nδ

Monte-Carlo samples performed at a Shot node, the Shot node utility U(Shj) is
estimated by treating each of the Nδ resulting table states as leaves of the tree,
and calculating their utilities V (Stjk) appropriately. Then, the shot is simulated
once with no additive noise and the resulting table state Stjk is added to the tree
as the child State node Stjk of the Shot node Shj . This single child State node is
then recursively visited until the true leaves of the tree are encountered. Adding
only the noiseless child table state is a necessary simplification to minimize the
branching of the tree, but necessitates the approximation of calculating the Shot
node utility from the static utility of the“leaf” table states resulting from the
Monte-Carlo simulation.

Similarities and Differences. To summarize, there are several similarities and
differences between *-Expectimax for Backgammon and its adapted form for
pool. State nodes in the pool strategy are analogous to the Min or Max nodes
of *-Expectimax, and Shot nodes are analogous to the Chance nodes. The tree
search is terminated at the desired depth or at the leaves of the tree, which
in the pool strategy occur when a player loses his turn or the game ends. No
forward modeling of an opponent’s shots is done to save time and memory, since
the continuous five-dimensional shot parameter space makes it very difficult to
predict an opponent’s probable shot selection. Finally, results of the Monte-Carlo
simulation are used to estimate the score of a Shot node, and only the State node
resulting from the noiseless shot parameter set is added as a child of each Shot
node.

This adapted *-Expectimax approach integrates the shot selection task with
look-ahead in the game, so that the focus at the start of each turn is on choosing
the best shot, not necessarily the easiest shot. Identification of the best shot
results from an examination of potential shot outcomes and the resulting table
states, and upon a loss of turn at the leaf of the tree, the advantage given to
the opponent is estimated by calculating the utility of the game state for the
opponent.

3 Experimental Results

The performance improvement of a strategy algorithm using look-ahead was
quantified by playing a computational Eight Ball tournament. There were three
competitors in the tournament, all with identical shot selection and strategy al-
gorithms. The only difference between the competitors was the maximum search
depth of the game tree used by each player. Player 1 used a search depth of 1,
meaning that it looked one shot ahead in the game by examining the table states
resulting from its potential shots. Similarly, Player 2 used a search depth of 2.
Player 0 had a search depth of 0, and chose its shots based solely on the proba-
bility of success of the shot. A shot was deemed successful if it resulted in a con-
tinuation of the player’s turn due to a correctly pocketed ball, or of it resulted in

252 W. Leckie and M. Greenspan

the game being won by pocketing the Eight ball. In the case of Player 0, the score
returned from a Shot node was simply the probability of success of the shot, and
the player selected the shot with the highest probability of success with no regard
for the resulting table state.

Each of Players 1 and 2 played a 100-game match versus Player 0, to examine
the improvement in play against a reference player as the search depth was in-
creased. Games were scored as follows: the winning player was awarded awarded
a total of 10 points, and the losing player was awarded 1 point for each ball of their
color group that was pocketed at the end of the game (i.e., a player pocketing all of
their balls but losing at the Eight ball would score 7 points). The match score was
simply the sum of all a player’s points from the games in the match. Each player
was allowed a total of 1200 seconds (20 minutes) per game for shot selection. The
number of Monte-Carlo samples at a Shot node, Nδ, was set to 25 for all players.

Two tournaments were played in this format, with different noise models (val-
ues of the standard deviations σ) in each tournament. The Gaussian random num-
ber generator in the GNU Scientific Library [10] was used to generate additive
noise. The two different noise models used reflect the technical skill (precision in
making shots) of the players involved; tournament 1 had higher sigma values and
modeled human players with less technical skill who missed more shots, while tour-
nament 2 had lower sigma values and modeled human players with higher techni-
cal skill who missed relatively fewer shots. Since all players involved in each tour-
nament used the same noise model, the results of a given tournament show the
performance versus search depth. Comparing the results of the two tournaments
illustrates how beneficial a given search depth is for a player of a certain technical
skill level.

The situation is similar to comparing two human players by categorizing their
play in two areas: technical skill (precision in making shots) and level of strategic
play (how far ahead in the game the player looks). A human player with relatively
low technical skill (or, a strategy algorithm in a computational tournament with
relatively high σ values for the noise model) will not play well against any player,
no matter how strategically they play (or, how deep the strategy searches in the
game tree). Similarly, a human player with very high technical skill (or, an algo-
rithm in a tournament with low σ values for the noise model) will probably not
play as well as a player with equally high technical skill who has a greater strategic
sense for the game (or, an algorithm that searches more deeply in the game tree).
In analyzing a player’s performance, it is important to understand which factor
limits their overall competitiveness, technical skill or search depth.

The results of the tournaments are summarized in Tables 1 and 2. The results
for each player shown are the games won, points scored, total number of shots
attempted during the match, number and percentage of shots missed during the
match, and the average time taken by the player to select its shot. A missed shot
was defined as a shot that resulted in the loss of a player’s turn. The number of
points scored by each player in a match is noted because the point differential in
a match is a good indication of the overall competitiveness of the players.

Monte-Carlo Methods in Pool Strategy Game Trees 253

Table 1. Results of Tournament 1 (noise model: σa=0.6, σb=0.6, σθ=0.1, σφ=0.15,
σV =0.1)

Player Wins Points Shots taken Shots missed (%) Avg. time/shot (sec.)

0 vs. 37 678 778 154 (19.8%) 0.45
1 63 830 858 159 (18.5%) 3.27

0 vs. 44 709 752 122 (16.2%) 0.38
2 56 733 742 146 (19.7%) 27.8

Table 2. Results of Tournament 2 (noise model: σa=0.1, σb=0.1, σθ=0.02, σφ=0.025,
σV =0.02)

Player Wins Points Shots taken Shots missed (%) Avg. time/shot (sec.)

0 vs. 33 602 591 55 (9.3%) 0.52
1 67 821 749 52 (6.9%) 4.4

0 vs. 27 477 474 46 (9.7%) 0.55
2 73 829 717 32 (4.5%) 34.1

In tournament 1, which modeled a decent amateur player, Player 1 beat Player
0 and missed fewer shots than Player 0. Player 2 also beat Player 0, but not by
as high a score. Interestingly, Player 2 missed a higher proportion of shots than
Player 0, the opposite of the result from the match between Players 0 and 1. This
could be due to a combination of Player 2 starting some games with a more difficult
table state, and the performance of the Gaussian random number generator used
for the noise model. It could also simply reflect the effect of the relatively high
noise; with high enough uncertainty in predicting shot outcomes, a player choosing
shots based on cue ball positioning and future game states may be hampered by
the effects of the noise and play poorer than a player placing more importance on
the present shot at hand.

In tournament 2, which modeled a skilled player, both Player 1 and Player 2
defeated Player 0 convincingly. Furthermore, Player 2 missed fewer shots than
both Players 0 and 1, and scored more wins and a higher point differential against
Player 0 than did Player 1. This illustrates the advantage of a deeper search for a
more skilled player. Player 2 missed fewer shots than both Players 0 and 1 presum-
ably because Player 2 was leaving itself easier shots in general by looking further
ahead in the game and having good control of the cue ball positioning from shot
to shot.

Overall, it is clear that players looking further ahead in the game performed
better, but were limited by both the time taken up by their search algorithm, and
more importantly, by the technical skill level of the player. Players in tournament
1, who had relatively weak shot-making skill, enjoyed limited benefit from search-
ing further ahead in the game. Meanwhile, the advantage of a deeper search tree
was magnified in tournament 2 by a more forgiving noise model, which modeled
human players with greater technical skill.

254 W. Leckie and M. Greenspan

4 Conclusion

There are several unique challenges in the study of computational and robotic bil-
liards that differentiate these games from other games of strategy like chess and
checkers. Uncertainty in shot outcomes and a five-dimensional continuous domain
for shot-selection parameters motivate the use of statistical simulation methods
to examine potential shot outcomes. Past work in the area of pool strategy has fo-
cused on the development of algorithms for selecting the easiest shot available to a
player. We have presented a new strategy involving shot discovery by Monte-Carlo
simulation that looks ahead in the game in order to select the most strategically
advantageous shot from the current table state.

In a computational tournament, players looking further ahead in the game
scored more wins with a higher point differential, illustrating the advantage of
looking ahead in the game. The trade-off between search depth and the shot preci-
sion afforded by the noise model was also highlighted. Higher technical skill in the
players motivates more strategic play through deeper tree searches. In contrast,
the performance of very strategic players with deeper search trees was limited by
the technical skill of the player, which in this work was simulated by the additive
noise model. It is a very interesting result of this work, no less so because it applies
to both humans and computers alike.

In future work, the Monte-Carlo shot simulation will be parallelized on a cluster
of workstations in order to speed up the shot selection task. In addition, shot speci-
fication using genetic optimization will be explored and will be integrated with the
look-ahead game tree presented here. The shot specification method is expected to
be especially effective for executing offensive safety shots. Various optimizations
of the tree formulation will be explored, including an adaptive Monte-Carlo sam-
ple size based on tree depth, and the development of a pruning method to reduce
the time required to evaluate the tree. Finally, there is potential for learning in
this strategy algorithm, either by reinforcement learning or a genetic optimization
of the various parameters of the strategy algorithm, including the search depth,
number of Monte-Carlo samples used, and scoring function for the State utility.

Acknowledgments

The authors would like to thank the Natural Sciences and Engineering Research
Council of Canada (NSERC) for their support, and Jonathan Schaeffer for sug-
gesting the application of *-Expectimax to the pool strategy problem.

References

1. Alciatore, D.: Personal communication (2006)
2. Alian, M.E., Lucas, C., Shouraki, S.B.: Evolving Game Strategies for Pool Player

Robot. In: 4th WSEAS Intl. Conf. on Sim. Mod. and Opt. (2004)
3. Alian, M.E., Shouraki, S.B.: A Fuzzy Pool Player Robot with Learning Ability.

WSEAS Trans. on Electronics 2(1), 422–425 (2004)

Monte-Carlo Methods in Pool Strategy Game Trees 255

4. Alian, M.E., Shouraki, S.B., Manzuri, M.T.: Robotshark: A Gantry Pool Player
Robot. In: ISR 2004: 35th Intl. Sym. Rob. (2004)

5. Cheng, B.R., Li, J.T., Yang, J.S.: Design of the Neural-Fuzzy Compensator for a
Billiard Robot. In: IEEE Intl. Conf. Networking, Sensing & Control, pp. 909–913.
IEEE Computer Society Press, Los Alamitos (2004)

6. Chua, S.C., Wong, E.K., Tan, A.W.C., Koo, V.C.: Decision Algorithm for Pool Us-
ing Fuzzy System. In: iCAiET 2002: Intl. Conf. AI in Eng. & Tech., pp. 370–375
(2002)

7. Chua, S.C., Wong, E.K., Koo, V.C.: Pool Balls Identification and Calibration for a
Pool Robot. In: ROVISP 2003: Proc. Intl. Conf. Robotics, Vision, Information and
Signal Processing, pp. 312–315 (2003)

8. Chua, S.C., Wong, E.K., Koo, V.C.: Performance Evaluation of Fuzzy-based Deci-
sion System for Pool. Applied Soft Computing 7(1), 411–424 (2005)

9. Dussault, J.-P., Landry, J.-F.: Optimization of a Billiard Player – Position Play.
In: van den Herik, H.J., Hsu, S.-C., Hsu, T.-s., Donkers, H.H.L.M. (eds.) CG 2005.
LNCS, vol. 4250, pp. 263–272. Springer, Heidelberg (2006)

10. GNU Scientific Library (2007), http://www.gnu.org/software/gsl/
11. Greenspan, M.: Pool at the 10th computer olympiad (2005),

http://www.ece.queensu.ca/hpages/faculty/greenspan/papers/8ball.pdf

12. Hauk, T., Buro, M., Schaeffer, J.: *-Minimax Performance in Backgammon. In: van
den Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846,
pp. 51–66. Springer, Heidelberg (2006)

13. Leckie, W., Greenspan, M.: An Event-Based Pool Physics Simulator. In: van den
Herik, H.J., Hsu, S.-C., Hsu, T.-s., Donkers, H.H.L.M. (eds.) CG 2005. LNCS,
vol. 4250, pp. 247–262. Springer, Heidelberg (2006)

14. Lin, Z.M., Yang, J.S., Yang, C.Y.: Grey Decision-Making for a Billiard Robot. In:
IEEE Intl. Conf. Systems, Man and Cybernetics, pp. 5350–5355. IEEE Computer
Society Press, Los Alamitos (2004)

15. Long, F., Herland, J., Tessier, M.-Ch., Naulls, D., Roth, A., Roth, G., Greenspan,
M.: Robotic Pool: An Experiment in Automatic Potting. In: IROS 2004: IEEE/RSJ
Intl. Conf. Intell. Rob. Sys., pp. 361–366 (2004)

16. Schaeffer, J., Plaat, A.: New Advances in Alpha-Beta Searching. In: ACM Confer-
ence on Computer Science, pp. 124–130 (1996)

http://www.gnu.org/software/gsl/
http://www.ece.queensu.ca/hpages/faculty/greenspan/papers/8ball.pdf

Optimization of a Billiard Player – Tactical Play�

Jean-Pierre Dussault and Jean-François Landry

Département d’Informatique,
Université de Sherbrooke, Sherbrooke (Québec), Canada

{Jean-Pierre.Dussault,Jean-Francois.Landry}@USherbrooke.CA

Abstract. In this paper we explore the tactical aspects needed for the
creation of an intelligent computer-pool player. The research results in
three modifications to our previous model. An optimization procedure
computes the shot parameters and repositions the cue ball on a given
target. Moreover, we take a look at possible heuristics to generate a
sound selection of targets repositioning. We thus obtain a greedy but
rather good billiard player.

1 Introduction

Our work concerns the development and improvement of an automated billiard
player modestly named PoolMaster. The billiard game presents mechanical con-
tinuous issues (how the balls roll, bounce, etc.), and planning issues (strategic
play). Most classical games (chess, checker, go, etc.) deal only with a planning
difficulty, monthly addressed by some form of tree search. Billiard requires plan-
ning, but also accuracy. Following the main line of our research, we concentrate
on the physical accuracy of our player. We identify the point where planning
will be unavoidable in order to improve the player, but as we show, the accu-
racy improvement to be presented yields a much stronger PoolMaster than
its predecessor, that was runner up in the first Computer Pool tournament [7].

In [6], we presented a key computation to develop an optimal billiard player:
the skill to sink a ball while achieving good position for the next shot. This is a
very basic skill. We then developed an optimization model to compute the actual
shot parameters required to sink the ball, and to reach a precise target without
addressing the non trivial aspect related to how we choose the target point.

In this paper, we do not discuss the basic optimization methodology developed
in [6]. We focus on building some tactical behavior within a player exploiting the
aforementioned optimization model. Of course, we will refine the optimization
model now and then to represent new items of the positional play unveiled by
tactical issues that are investigated.

To begin with, we delineate precisely the context in which the player evolves.
We state the basic assumptions on which we rely to construct the player.

Next, we present a model (similar to [4]) to compute the actual difficulty
of sinking a given ball, based on the maximum allowable error in the shots’

� This research was partially supported by NSERC grant OGP0005491.

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 256–270, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimization of a Billiard Player – Tactical Play 257

parameters still ensuring the ball is sunk; we consider direct shots as well as kick
and bank shots. This basic model allows us to rank the remaining balls from the
easiest one to the most difficult one (other approaches have also been developed
in [2,3,5,10]).

By identifying the best spot we choose where to put the cue ball on. This will
be used as a target, or as the spot on which we put the cue ball when having
ball in hand. Actually, we develop an optimization heuristic to build an ordered
list of a few good spots. We discuss variants of the evaluation function.

Finally, we develop a generalization of the basic optimization model [6] to take
into account three related deficiencies of the original proposition. Sometimes, the
cue ball scratches (gets sunk), other times, the object ball does not reach the
pocket, and finally, in some situations, it is not required to pin the cue ball at
a given target, but to hit some cluster (to break it) with a minimum speed.
Those three situations call for incorporating terms in the optimization model
that reflect non vanishing speeds of either the cue or the object ball.

Before concluding, we present some limited statistical observations confirming
that PoolMaster is indeed a quite strong billiard player.

2 Context of Computer Pool

In order to produce an automated billiard player, the physics of the game must
be understood, modeled, and simulated. For physical modeling we refer to [1,7].
We take as a black box a simulator [9] which “executes” the proposed shots.
If the game is played using the same simulator, the computed shots and their
outcome will match. If the game is played on a real table, the behavior of the
shots will certainly differ as no simulator can ever be perfect. The simulator’s
input consists of the following five parameters:

– a and b represent the horizontal and vertical offset of the cue tip from the
center of the cue ball;

– θ the elevation of the cue stick;
– φ the aiming direction;
– V , the speed of the cue stick.

Our player specifies legal values for those five parameters. Given the values,
the simulator provides information called the table state, indicating every ball
position, or flagging pocketed ones.

The first computer pool tournament was held during the 10th computer
Olympiad, a parallel event with ACG 11 in Taipei [7]. The simulator was used
by the “computer referee”, and acted as the table as well. In the tournament,
some Gaussian noise is added (with [8]) to the prescribed shot parameters to
represent the unavoidable inaccuracies of any player, human or robot; this also
allows, albeit indirectly, to acknowledge the limitations of the simulator which
neglects uneven cloth thickness, imperfect cue stick tip, and so many other real-
life details.

Our actual implementation uses the simulator as a black box. Therefore, any
improved version of the simulator is likely to improve the realism of our player.

258 J.-P. Dussault and J.-F. Landry

We plan to develop our own simulation engine in order to allow some cooperation
between the simulator and the optimizer. In particular, the simulator could be
enriched to yield some additional information useful for sensitivity analysis. The
optimizer ([11]), which handles non linear constrained least-squares models, relies
on some derivative information. Since we now use the simulator as a black box,
derivatives are obtained via finite differences.

3 Shot Difficulty

This section provides functions to compute the difficulty of a shot. We are given
the cue ball’s position, the object ball position, and the aimed pocket. It is based
on the margins of the error concept described in [1,4], and the related techni-
cal proofs available from the book’s WWW page. We also provide extensions
to estimate the difficulty of bank and kick shots. We use the estimate of shot
difficulty to obtain a priority order, since we consider not only the easiest shot
to pocket, but also the repositioning. Therefore, works like [2,3,5,10] are not
directly applicable for us. Below, we present a straightforward model to perform
the ranking we require.

3.1 Direct Shots

The difficulty of pocketing a given object ball is proportional to the error margin
the player has, compared to the perfect shot. The object ball need not reach the
center of the pocket. The possible angle θ depends on the distance of the object
ball to the pocket and the pocket width. Once this angle is known, we may
compute a target window that the cue ball must reach so that the object ball’s
trajectory remains within the angle θp. The maximum angle θc allowing the cue
ball to reach the target window is a measure of the shot difficulty. So we have

cos θc = ĉ1 · ĉ2 (1)
with

c1 = pc1 − pc (2)
c2 = pc2 − pc (3)

where pc1, pc2 are the two positions where the cue will have to hit the object ball
to pocket it at the two extremities of the pocket. As in [6], vectors like c1 and
c2 are denoted in bold, their norm is in math italics c1 and their normalization
inherits a hat: ĉ1 = c1

c1
. c1 and c2 are the two vectors going from the cue ball

position (pc) to the cue ball hit points, as seen in Fig. 2.
However, as can be seen in Fig. 3, this approach may give undesired results in

situations where we have a very big cut angle. Further calculations would need
to be added to take this into account and that is why we choose to use another
method instead, to estimate this difficulty which will require fewer operations
and still give a good approximation.

Optimization of a Billiard Player – Tactical Play 259

We can easily compute the cosine of the cut angle cos α = v̂op · v̂co where vop

represents the object ball-pocket vector, and vco the cue ball-object ball vector.
For a corner shot, we have our shot difficulty coefficient κc:

κc =
cos α

vopvco
(4)

For a side shot, we still use a similar method but this time, we add a new
parameter γ which will represent the angle between the object ball and the
x-axis of the pocket. This may make sure that we account for the fact that a
shot in a direct line with the pocket is much easier than one having an angle.
The parameter γ is defined as: cos γ = v̂op.x̂ with x̂ = x = [1, 0, 0] .

We now arrive at the side shot difficulty with:

κs =
cos α cos γ

vopvco
(5)

Here we will explicitly notice the fact that a side shot often needs more precision
than a corner shot.

It is also important to note that a cut-off is used for γ to make sure that in the
case of a very small angle, which would result in an impossible shot, we ignore
that shot. We remark that in ideal cases this should never happen since a good
detection of possible shots is to foreseen in the future. In our case, with the help
of empirical results, we defined the cut-off value at 0.25.

Our κ is an intuitive measure of the shot difficulty. We present some statistical
observations in Subsect. 7.1.

v op

co

α

v

Fig. 1. Difficulty coefficient estimated
with cut angle and distance

Pc1

Pc2

Pc

θ

θ

c

p

Fig. 2. Difficulty coefficient repre-
sented by α

3.2 Kick/Bank Shots

In some cases, often when there is a very big cut angle, it is possible that the
easiest of the direct shots is still harder to perform than a bank or kick shot.
To assess the difficulty of these indirect shots, we create a mirror image of the

260 J.-P. Dussault and J.-F. Landry

Fig. 3. Problems with the exact difficulty coefficient

current table on the corresponding side. In the case of a kick shot, we mirror the
position of every ball on the table except the cue ball. For a bank shot we do the
same except for the object ball. This enables us to calculate the difficulty of the
shot as if it was a direct shot. We do so by taking the coordinates and aiming
for the pockets of the mirror table. Of course, the coefficient calculated are only
valid if we do a standard shot with no spin added. However, this still gives us a
good idea of how hard the shot is. The mirror approach is incorporated in our
optimization model and can be very helpful when there are no possible direct
shots. Fig. 4 shows an example of a kick shot.

Fig. 4. Since in this case there is no direct shot possible (stripes), we will do a kick
shot using the north rail by computing a mirror image of the table

We use the mirror table to estimate the shot’s difficulty. When actually com-
puting the shot, the optimization process benefits from an initial guess obtained
by the mirror paradigm; moreover, the actual optimized shot will take into ac-
count the rebound properties of the rail. Since the rebound properties of the rail
certainly affect the shot difficulty, we do not use it in our estimate.

Optimization of a Billiard Player – Tactical Play 261

3.3 Combinations

At times, it may be possible that even a hard shot like a combination is the best
shot to perform. To determine correctly how hard this shot will be, we may use
the same approach as for direct shots, but we need to add two more parameters
since we now have two cut angles and three distances. The formula (5) now
becomes (for a corner shot):

κ =
cos α1 cos α2

vo2pvco1vo1o2

(6)

where the notation vp1p2 stands for the vector joining the positions p1 and p2,
and vp1p2 is its norm; o1 is the position of the first object ball, o2 the second,
c the cue ball, and p the pocket; α1,α2 are the two cut angles. Of course, for a
side shot, we must scale κ by cos γ.

4 Global Table Difficulty

Below, we present variants of a global table difficulty coefficient. We are given
the balls’ positions, and we provide a way to combine the individual object balls’
difficulties into a global measure. This ability is quite important, especially at
the beginning of the game if the table is still open as it will let the player choose
the best balls to aim for (low or high) based on how each ball is positioned. It
will also be quite favorable when the player has a ball-in-hand as we will see in
Section 5.

Since we already have a coefficient of difficulty for any particular shot from
Sect. 3, we can use this as part of our calculations. We consider two strategies
and combine individual shot difficulty coefficients into a global table difficulty.

A naive approach would be to list and sum up all the shot difficulty coefficients,
but as we were able to find out, this would seem an approach that is too general
and will not lead to the appropriate positioning of one particular ball.

Instead, we suggest to use the average and the maximum of the shot difficulty
coefficients, which will provide a more appropriate value if the positioning is
closer to one ball. We can see the best cue ball positions as outlined by the
contours in Fig. 6. The main difference between the sum formula and the average
lies in the fact that the number of considered balls increases the sum, but not
the average. Therefore, the average focuses slightly more on the best candidates.
This can be seen in the Figs. 6 and 5. The same comparison can be made with
the maximum formula, but to a higher degree since we now only reposition for
one ball and forget the other possible ones, thus we have a more aggressive
repositioning. Those represent the level sets of the function. In Fig. 5, the sum
clearly shows a preferred position while in Fig. 6, the average measure shows
two other rather good spots. If we look at the max in Fig. 7, its also very
straightforward to see how we reposition for one ball only, which would definitely
of use if we want to look a few shots in advance.

262 J.-P. Dussault and J.-F. Landry

Fig. 5. Outline of the best regions for the cue ball positioning (aiming for the stripes)
using the sum measure. In this case, it is obvious that the best area is close to the 9
ball as it will be an easy direct shot and also has all of the other stripes in direct view.
Other good spot where fewer balls are in direct view are simply not competitive.

Fig. 6. Outline of the best regions for the cue ball positioning (aiming for the stripes)
using the average measure. In this case, the number of relatively easy balls increases
the measure. Apart from the spot close to the 9, two other rather good spot appear:
close to the 11, where the average considers only the 11 since all other balls are hidden,
and close to the 13. Observe that the spot close to the 11 ball is small, since positions
where another ball becomes visible but more difficult because of the distance affect the
average.

Optimization of a Billiard Player – Tactical Play 263

Fig. 7. Outline of the best regions for the cue ball positioning (aiming for the stripes)
using the maximum measure. In this case, we immediately see each zone is focused on
one ball for one pocket and nothing else. It is a much more aggressive play but one
that a more talented player will probably use since he will rarely miss his shots.

In the event of the cue ball not having a clear path to the object ball, we still
have to take it into account by adding a small value to our coefficient, since the
path might clear out after the first shot is made. When that happens we will
evaluate the shot difficulty as if the path was clear, but we add only half of that
value to our computation.

5 Best and Worst Spots on the Table

In this section, we provide an heuristic optimization procedure to identify the
best spots to aim for on the table. Moreover, we discuss the simplifying assump-
tions on which our optimization relies.

Spacially (seen on the table) the table difficulty is a non-linear complex func-
tion. We are interested in approximating good spots, corresponding to good local
maxima. There might be several good spots. Clearly, we are not only interested
in the global maximum of this function. Therefore, we propose to search (using
an ascent method) local maxima starting from points on a grid. Several starting
points usually lead to the same local maximum, and we are left with a short list
of good spots. The relevant function reads

max
x,y

f(x, y). (7)

with f(x, y) representing our evaluation function.
We use this technique to find the best spot on the table: in case it is not

possible to reach one of these spots, we can use the inverse of the function to
find the worst spot and put the opponent in a tough position with a safe shot.

264 J.-P. Dussault and J.-F. Landry

There are many other ways to explore a 2D function over a space described
by a rectangle. We may evaluate f on a coarse grid, and perform a similar search
on refined promising sub-grids (displayed by the square zones on Figures 6, 5,
7). However, even a 100×50 grid yields an accuracy of only 2cm. We prefer the
technique described above, since it takes advantage of the continuous nature of
the function. Further enhancements will include heuristics to restrict the search
and to facilitate attaining preferred regions.

6 Optimization with Ball Speed Considerations

Having solved the problem of finding a good target to reach with the cue ball after
sinking an object ball, we may concentrate on assembling a much more complete
objective function. We will use this section to refine our previous optimization
model and solve some important issues to create a really solid player.

6.1 Sinking Object Ball with Minimum Speed

We start by addressing one of the most important matters, which consists in
making sure that the object ball is actually sunk in a pocket during the opti-
mization of the cue ball spin and velocity. Since our optimization method will
try to do everything in its power to get the cue ball at the designed target, it is
possible that in doing so it will reduce its velocity which in turn might cause the
object ball not to be sunk. In our previous model, we had the objective function:

min
v0,ω0,c,t̄,t̃

(‖p(t̄) − c‖2 − 4R2)2 + ‖p̄(τ̄f) − s‖2 + ‖p̃(t̃) − b‖2 (8)

which we will simplify (for the sake of this article) to :

min
v0,ω0

1
2

(‖pc(τf) − c‖2 + ‖po(τf) − p‖2). (9)

pc, po are the positions of the cue and object balls at their final resting time, c
the cue ball target, and p the pocket aimed.

By adding a new component to this objective function to penalize the object
ball speed, we are able to ensure it will reach the aimed pocket with the desired
minimum speed. Let vo(τf) be the speed of the object ball at its final time τf

and vmin the minimum speed. We can rewrite equation (9)into

min
v0,ω0

1
2

(‖pc(τf) − c‖2 + ‖po(τf) − p‖2 + max(vmin − vo(τf), 0)2). (10)

6.2 Cue Ball Scratching

A second problem is the cue ball scratching. More often than not, if the cue
ball is pocketed after sinking the object ball, it will stay that way because the
objective function will then hit a stationary area while minimising its position

Optimization of a Billiard Player – Tactical Play 265

and will consider it as a local minimum. To help the function get out of this
bad situation, we introduce a new term vc(τf) − v0 which represents the ve-
locity of the cue ball at its final resting time (v0 representing a null speed). If
the cue ball is immobilised on the table at its final time, then this component
will not affect the rest of the function. However, if the cue ball is pocketed, its
final velocity will not be null and the optimization will continue to find a bet-
ter minimum and climb out of the pocket. We slightly complicate our previous
equation (10) to

min
v0,ω0

1
2

(‖pc(τf)−c‖2 +‖po(τf)−p‖2 + max(vmin − vo(τf), 0)2 + (vc(τf)− v0)2).

(11)

6.3 Breaking Clusters

A small trick will help us to solve a third problem, i.e., breaking clusters of balls.
Sometimes in a game it may happen that there is simply no way to reposition
the cue ball correctly. When that problem arises, it may be beneficial to try and
break a cluster containing one or more of our balls to plan ahead for future shots.
We have most of the necessary components available, and all we need to add is
a time of impact τi to our minimization:

min
v0,ω0,τi

1
2

(‖pc(τi)−c‖2+‖po(τf)−p‖2+max(vmin−vo(τf), 0)2+(vc(τi)−vcmin)2).

(12)

We can now easily define a minimum speed at which the cue ball should hit
the aimed cluster with vcmin.

Actually, PoolMaster does not wait until being without a good position
shot to attempt breaking the clusters; we use a straightforward heuristic to trig-
ger the choice of breaking the annoying cluster instead of aiming for a reposition.
This strategic issue is one that will benefit from a planification approach, perhaps
using a game tree.

7 Improved PoolMaster

Now it is the time to look at the actual benefits obtained by incorporating the
features described above into our player. We will formulate observations to assess
the gain in strength, and also will document some of our choices by comparisons.
We present in Subsect. 7.1 empirical qualitative comparisons between the actual
success rate and our κ difficulty coefficient. Thereafter, all our results will be
assessed by mini-tournaments between competing variants. The results were ob-
tained on a local server with a referee created to the exact image of the one used
for the official tournaments (exact same rules and noise). As mentioned before,

266 J.-P. Dussault and J.-F. Landry

the server adds some additive noise to the shot parameters. The higher the noise
level, the closer the different competitors. This makes sense, since a very high
noise level makes the probability to miss a shot important, and so buries the
expected reward of the refined player. We thus present two classes of results.
Small noise to simulate a professional player, and higher noise to simulate a
good amateur player.

Adding noise evaluates the robustness of the strategy used. We believe that no
line of play will have a significant success under sufficiently high noise levels, but
some form of stochastic optimization will certainly improve under small noise
levels.

7.1 Shot Difficulty

As discussed in Sect. 3, the difficulty of a given shot depends on the error margin
of the player when executing the shot. This is a complex function of all the shot
parameters. Moreover, given a noise specification on the shot’s parameters,we
focus on the probability of success.

At the time to select a shot, we wish to rank the different options. In order
to do so, let us illustrate that the measure we propose, cos α

poppco
is qualitatively

reasonable. In Figs. 8 and 9, we compare the actual success rate of several cases
labeled (d1—d2), with d1 the distance between the object ball and the pocked,
and d2 from the object ball to the cue ball. We may conclude that our formula
is a very good predictor for ranking purposes. As seen on the graphs,

√
cos α

would seems to fit slightly better to the observations, but we still prefer the
plain cos, having an intuitive physical interpretation (reduction of a window
with increasing angle). We remark that the fit cannot be perfect: for sufficiently
small values of the noise, the success may well be 100% for all but the most
severe cut angles. This does not mean that the difficulty is constant, but that
the difficulty lies within the player’s accuracy.

To fine tune defensive play, i.e., to decide when to attempt a shot, and when
to use rather a defensive line, we need a refined estimate. A greedy approach
is simulating the shot N times, recording the successes, and using this as an
estimate.

7.2 Choice of the Global Table Coefficient

In Tables 1 and 2, we compare the three table coefficients introduced in Sect. 4,
using both the optimisation method and a 2d grid zone scan method. Our sim-
ulated tournaments indicate that all target solution variants are more or less
equivalent for the moment being. We also tested one match of Optim vs Zones
to see which would be the real winner but the results weren’t enough descriptives
to do every matchup which would’ve taken 36 tournaments of 100 games. It is
quite possible that the differences are so slight that they are covered by other
flaws of the player or simply by the noise added to the shots.

Optimization of a Billiard Player – Tactical Play 267

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cut Angle (radians)

S
ho

t S
uc

ce
ss

 %

40cm−40cm

60cm−40cm

40cm−60cm

sqrt(cos())

cos()

Fig. 8. Shot percentage for (40–40), (40–60) and (60–40). We compare the actual per-
centage of success for the tournament noise level. The qualitative fit with

√
cos(α) is

good. In abscissa, we sample a quarter of a circle.

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cut Angle (radians)

S
ho

t S
uc

ce
ss

 %

70cm−30cm

30cm−70cm

20cm−50cm

50cm−20cm

sqrt(cos())

Fig. 9. Shot percentage for (20–50) and (30–70). Here, we consider easier shots involv-
ing situations where the distance of the object ball to the pocket differs significantly
from the distance of the object ball to the cue ball. Again, the fit with

√
cos(α) is still

plausible, and the equivalence between (20—50) and (50—20), as well as (30—70) and
(70—30) is observed.

268 J.-P. Dussault and J.-F. Landry

Table 1. Optim vs 2d zone scan

Small noise Higher noise
Player Zones Optim Zones Optim

Average vs Sum 50 vs 50 50 vs 50 46 vs 54 57 vs 43
Average vs Max 50 vs 50 45 vs 55 50 vs 50 44 vs 56
Max vs Sum 60 vs 40 46 vs 54 50 vs 50 51 vs 49

Table 2. Zones Max vs Optim Max (small noise)

Player Wins

Zones Max 56
Optim Max 44

7.3 PoolMaster Old vs. PoolMaster New

PoolMaster Old vs. PoolMaster New. The original PoolMaster used a
straightforward global table coefficient, and only a back-top spin. No ball speed
was incorporated in the optimization model. Therefore, it might happen that
sometimes the object ball was going in the right direction, but did not reach the
pocket.

PoolMaster—improved uses the refined global table coefficient, any possible
spin, bank and kick shots, and is able to break clusters. Under the higher noise
model, though, the differences are quite a deception. The noise destroys the
positioning computed by both players; since the differences lie in the refined
positioning capabilities, the results are very close. This is not a surprise: a re-
fined player relies on precision, destroyed by too much noise. And this is also
why a realistic virtual pool tournament would probably benefit from a much
better/advanced noise model instead of just approximate values.

In Tables 3 and 4, by small noise level, we mean Gaussian noise with mean
zero and standard deviation a : 0.08, b : 0.08, θ : 0.003, φ : 0.0185, v : 0.0085
while higher level is a : 0.8, b : 0.8, θ : 0.03, φ : 0.185, v : 0.085.

Table 3. PoolMaster vs. PoolMaster New

Small noise Higher noise
Player Wins Points Wins Points

PoolMaster 37 699 52 740
PoolMaster New 63 800 48 767

Simple Player vs PoolMaster New. Here we compare PoolMaster New
to a simple greedy player, one which always chooses the easiest ball on the table,
and does not deal with indirect or safety shots. The results are quite obvious,
the simple player rarely manages to win a game since he never tries to correctly

Optimization of a Billiard Player – Tactical Play 269

Table 4. Simple Player vs. PoolMaster New

Small noise Higher noise
Player Wins Points Wins Points

Simple Player 3 321 12 443
PoolMaster New 97 970 88 880

reposition for the next shot. We can also see he won a few more games playing
on a higher noise table, which probably indicates the other player also missed a
few more shots due to noise.

8 Conclusion

In this paper we pursued the development of an optimized billiard player. Build-
ing on the strength provided by accurate position play, as described in [6], we
studied choices of target and aimed at repositioning. We use new optimization
ideas to set up a short list of good targets based on estimating shot difficulties,
and on a global evaluation function.

We further refined the positioning model in several items. First, we took into
account non vanishing final velocities, allowing to include mini breaks of clusters
of balls as a position target; in this case, the cue ball must hit the cluster with
some velocity in order actually to break it. Also, we considered kick, bank, and
combination shots.

The resulting player is rather strong, but we did not take into account any
look ahead strategy yet. Without noise in the execution of the optimized shot,
the player never misses but sometimes gets stuck with nothing to play. With
kick, bank, combinations shot added to the possibilities, it is very rare that the
player finds itself without play, but it happens, most often when he fails to break
a cluster.

Of course, a realistic simulation will incorporate some random noise, what-
ever small, which may dictate, in some circumstances, to opt for defensive play
instead of taking the risk of the easiest shot, still too difficult. The use of a
look ahead strategy will allow to avoid to recourse to a defensive shot most
of the time. This is the next step toward an optimal player, namely the plan-
ning part of the game, which will probably be addressed by stochastic dynamic
programming.

Acknowledgments

We wish to warmly thank the referees, whose comments were so helpful in im-
proving the original version of this paper.

270 J.-P. Dussault and J.-F. Landry

References

1. Alciatore, D.G.: The Illustrated Principles of Pool and Billiards. Sterling Publishing
(2004)

2. Alian, M.E., Lucas, C., Shouraki, S.B.: Evolving Game Strategies for Pool Player
Robot. In: 4th WSEAS Intl. Conf. on Sim., Mod. and Opt. (2004)

3. Alian, M.E., Shouraki, S.B.: A Fuzzy Pool Player Robot with Learning Ability.
WSEAS Trans. on Electronic 1, 422–425 (2004)

4. Chua, S., Wong, E., Tan, A.W., Koo, V.: Decision Algorithm for Pool using Fuzzy
System. In: iCAiET 2002: Intl. Conf. AI in Eng. & Tech. (2002)

5. Chua, S.C., Wong, E.K., Koo, V.C.: Performance Evaluation of Fuzzy-Based De-
cision System for Pool. Applied Soft Computing 7(1), 411–424 (2005)

6. Dussault, J.-P., Landry, J.-F.: Optimization of a Billiard Player – Position Play.
In: van den Herik, H.J., Hsu, S.-C., Hsu, T.-s., Donkers, H.H.L.M. (eds.) CG 2005.
LNCS, vol. 4250, pp. 263–272. Springer, Heidelberg (2006)

7. Greenspan, M.: Pool at the 10th Computer Olympiad (2005),
http://www.ece.queensu.ca/hpages/faculty/greenspan/papers/8ball.pdf

8. GSL - GNU Scientific Library (2007), http://www.gnu.org/software/gsl/
9. Leckie, W., Greenspan, M.: An Event-Based Pool Physics Simulator. In: van den

Herik, H.J., Hsu, S.-C., Hsu, T.-s., Donkers, H.H.L.M. (eds.) CG 2005. LNCS,
vol. 4250, pp. 247–262. Springer, Heidelberg (2006)

10. Lin, Z.M., Yang, J.S., Yang, C.Y.: Grey Decision-Making for a Billiard Robot. In:
IEEE Intl. Conf. Systems, Man and Cybernetics. IEEE Computer Society Press,
Los Alamitos (2004)

11. Nash, S.: A Truncated-Newton Optimization Package (2006),
http://iris.gmu.edu/%7Esnash/nash/software/software.html

http://www.ece.queensu.ca/hpages/faculty/greenspan/papers/8ball.pdf
http://www.gnu.org/software/gsl/
http://iris.gmu.edu/%7Esnash/nash/software/software.html

H.J. van den Herik et al. (Eds.): CG 2006, LNCS 4630, pp. 271–282, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Gender and Cultural Differences (If Any!): South African
School Children and Computer Games

Lizette de Wet and Theo McDonald

University of the Free State, Bloemfontein, South Africa
{Lizette,Theo}SCI@mail.uovs.ac.za

Abstract. When studying computer games several factors come into play. The
issue of gender inequality has been a topic of many research projects in the past.
The issue of culture is still in its infancy. Previous research regarding game-
playing and gender issues seem to indicate that boys play more computer games
than girls, that boys prefer more violent, action-oriented games in comparison
to girls and that girls would prefer to play games with a feminine appeal.
Intuitively it can be assumed that different cultures play different existing
games at different frequencies. In this study grade ten school children (ages
sixteen to seventeen) from one city in South Africa were questioned in order to
establish if the same results hold true. The results indicate that there are no
major differences in game playing between genders and cultures for this group.
The conclusion is reached that especially with regard to gender the situation
changed quite a bit over the past few years in comparison to research results
found in the literature.

1 Introduction

Since Mr. Nelson Mandela became head of state in 1994 (which indicated the end of
the “Apartheid” era), South Africans have been known as the “Rainbow Nation”. One
of the characteristics of this Rainbow Nation is eleven official languages. Therefore,
the South African society can be described as truly multi-cultural. Another very
important point to make, especially considering technology and the adaptation (or
lack) thereof, is that South Africa is considered to be a third world country. This
obviously results in different circumstances when compared to first world countries in
general – also with regard to computer game playing.

Different factors come into play with computer games, namely the game genre,
game content, age of the gamer, motivation, gender, culture, and gaming venue
(private/public/online spaces) [3]. Gaming should therefore be investigated from a
broad perspective.

The issue of gender inequality has been a topic of many a research project. This is
not surprising when realizing that men and women’s social, cultural, physical, and
chemical make-up are quite different. In some cases different cultures have also been
brought into the equation in game-playing research. Bearing South Africa’s multi-
culturalism in mind, very little, however, has been done to determine differences in
the frequency and manner of computer game playing among different genders within

272 L. de Wet and T. McDonald

different cultural groups. In this research project a group of grade 10 school children
(ages varying between 8 and 11) participated in order to attempt to address the issues
of gender and culture in computer games. In particular, the study focused on the
current differences in terms of gender and culture in the playing of computer games.

2 Background

One of the requirements for the utilization of gaming technology to its full potential is
that it should be suited to cognitive and psychological needs of all the major user
groups. This can only be done effectively if the views of all user groups are given
adequate consideration [1]. These views would include both genders, as well as all the
cultural groups (in this case in South Africa). However, in scrutinizing literature in
this regard, this does not seem to be the case. Especially as far as gender inequality is
concerned, much has been reported. In the following sub-sections the gender and the
cultural issues in existing literature will be highlighted.

2.1 Gender Issues in Computer Games

According to Meunier [16] males in general tend to be more interested in computers
than females and males use computers more than females at a younger age. While
girls do play computer games, girls of all ages play less than boys. Hardcore gaming
(over 15 hours a week) is largely a male preoccupation. Girls like and play different
games than boys, and girls spend less on games [9,12]. Many psychologists state that
girls are disadvantaged in the long run by playing far less games. They continue by
saying that regardless of violence, games have been envisioned as potentially
effective tools for learning and that gaming opens a door to computer literacy leading
to potential technology careers [4].

Possible Reasons for gender inequality in computer games
When investigating the reasons for gender inequality in computer games, many
possible reasons or explanations can be found in existing literature. According to the
well-known study sponsored by the American Association of University Women [2],
“…most computer games today are designed by men for men. They often have
subject matter of interest to boys, or feature styles of interaction known to be
comfortable to boys.” Computer games are therefore rarely generated with females in
mind. It also seems that girls shy away from computers because they are
underrepresented in games. Females are either totally excluded from games, or
depicted as passive weak individuals.

When considering game-playing styles Chu et al. [7] refer to differences in
masculine and feminine styles in the following aspects: risk-taking, beating the game,
non-linear flow, genre preferences, exercising reflexes, action content, role-playing
games (social interaction, story, characters, adventure), creation, and destruction as
themes and the platform. They also refer to biological differences in spatial skills
between the sexes.

The literature also suggests that current marketing efforts can be held responsible
for the observable segregation between genders in computer games. Marketing
efforts are primarily done through print and TV. Approximately ninety-five percent of

 Gender and Cultural Differences (if any!): South African School Children 273

gaming magazine subscribers are male. This means that a girl might not even see a
game ad that might potentially appeal to her. Most girls seem to find out about new or
good games from friends, brothers, or male friends who are keen gamers. TV gaming
ads generally also depict only boys as gamers – a situation that reinforces the
stereotyping [6].

Different Game Preferences
According to Swanson [6] many young girls use their computers primarily for
communication with friends and for the gathering of information. In gaming they
follow the same patterns and are able to name character relationships and describe
storylines more often than their male counterparts. Results of focus groups conducted
with female school children indicated that they preferred qualities like racing,
challenge, mystery, adventure, and winning cooperatively. They look for games that
offer decision-making control and require strategy [17]. They have a greater desire to
solve puzzles and use their creative skills through drawing and problem-solving.

Generally girls tend to be uncomfortable with violence in games [12]. However, in
a study involving small single-gender focus groups [10], the girls reported that they
preferred games with fantasy (cartoon) violence and an adventure theme, as well as
abstract violence (e.g., crashing cars, hence their preference for racing as mentioned
above). In contrast, the boys on the other hand, preferred the more concrete, realistic
human violence, especially “first person shooters” which emphasized direct
competition that often lead to death.

Martin [15] divides the primary game genres available to girls into two categories,
namely traditional games and girls’ games. In the traditional games females (íf they
are present) typically require rescue (the “princess” role), assist the male protagonist
in his quest, or are themselves the reward upon completion of the mission. If one
looks at the majority of the traditional games that are devoid of stereotypical
representation of women, they are often games without concrete characters, such as
abstract pattern games (e.g., TETRIS and BAKU BAKU), puzzle games (e.g., MYST),
and exploration games (e.g., NIGHTS INTO DREAMS) [5]. In girls’ games girls seem to
be associated with the “Sugar and Spice” in the world of gaming. Games tend to focus
on physical appearance or fashion style (e.g., BARBIE® REIGNS). Studies also show
that girls receive strong messages emphasizing an unrealistic and unattainable
standard of beauty from the images they see in the media.

Another trend regarding topics of computer games directed toward girls are tough,
powerful, and independent woman characters as protagonists, like Lara Croft (in
appearance an exaggerated Barbie-doll) in TOMB RAIDER and Joanna Dark in
PERFECT DARK. These characters attempt to appeal to teenage girls but they fall short
because of the violent nature of the games themselves. Another example, but this time
as a non-violent character, is Ulala, heroine of SPACE. She is offered as a strong,
independent role model with her strengths being her body and dance movements. Her
body, however, also resembles Barbie’s and is worlds apart from that of most teenage
girls (or what is possible for them to achieve) [6]. The goal of girl’s games is reported
to offer girls an alternative to the technological environment traditionally believed to
be a boys’ domain. Unfortunately, the portrayal of females in these games does not
seem to challenge traditional beliefs, but rather provide additional stereotyping.
Categories relating to fashion, body types, food calories, friends, and love mirror the
traditional stereotyping of teenage girl magazines.

274 L. de Wet and T. McDonald

Briefly comparing boys’ preferences to girls’, games perceived to be popular with
boys include first person shooters and martial arts or other forms of fighting. These
games generally end with one character (or a group of characters) either incapacitated
or dead. Boys favor games with repetitive sequences, characters that have varying
physical skills (as opposed to personalities), and fiercely competitive objectives [14].

A concept mentioned in research that “women prefer games that are less demanding
than those that men prefer” and that “women prefer more whimsical, less aggressive”
games than men, seems to be a misinterpretation of the true situation. Role playing
games (a game genre that women seem to enjoy) are no less demanding than the more
masculine fighting games. They are simply demanding in a different way [13].

2.2 Cultural Issues in Computer Games

In 1994 over 70% of digital games (especially video games) released in America were
originally designed in Japan. The majority of characters in the video game universe
are male. It is also obvious that the majority of human characters (excluding non-
human characters such as robots, beasts, vegetables, and worms) are primarily white.
It is therefore easy to leap to the conclusions that such video games were programmed
by white males with politically incorrect values. This conclusion, however, quickly
becomes invalid when one finds a string of Asian names in the credits [13].

The immediate answer to why Asian programs programmed primarily by Asian
programmers would contain mainly Caucasian people is that they are trying to appeal
to the Caucasian market. However, as almost 60% of the world gaming market is
dominated by the Japanese gamer, it comes to light that Caucasian people, especially
Caucasian Americans, are almost seen as fictitious characters in the popular Japanese
culture. They apparently have the potential to help sell products in Japan [13]. In this
context the gender inequalities in the gaming industry should be addressed from a
clearer understanding of gender differences in e.g., Japan (and not from a Western
point of view). To elaborate, the term feminism was imported into Japanese culture,
but altered to fit more of traditional Japanese beliefs, thus loosing its original meaning.
Examples of female portrayal that might seem blatantly chauvinistic to Westerners
might be a true example of Japanese feminism to Japanese consumers [13]. Therefore
it is obvious that Western-centric beliefs and morals cannot simply be applied to
computer games across the board. It can also not simply be applied to South Africa’s
multi-cultural circumstances – hence part of the motivation for this paper.

When considering the literature regarding game-playing and the gender issues
related to it, one cannot help to be left with the following assumptions: boys use
computers more than girls; boys play more computer games than girls; computers are
more accessible to boys than to girls; boys prefer more violent, action-oriented games
in comparison to girls; girls play (or would prefer to play) more feminine games.

Intuitively the following pre-assumptions were made by the researchers regarding
cultural issues: there is a difference in the frequency of playing games among
different cultures; different cultures play different existing games; different cultures
prefer different games / aspects of games.

This study attempts to determine if the above-mentioned assumptions are also valid
for the South African youth (or at least for a section of them).

 Gender and Cultural Differences (if any!): South African School Children 275

3 Methodology

Grade 10 pupils (ages varying between 8 and 11) from five schools in the
Bloemfontein region (a city in the center of South Africa) were brought to the
computer laboratories of the University of the Free State in order to be tested on
various aspects of computer usage. Two schools from the traditionally white
(Euro-centric culture) population and three from the traditionally black population
(Afro-centric culture)1 were selected for the study. All the participants were brought
to the university in groups of 50 to 80 to be tested. In total 652 pupils were tested.

On arrival at the computer laboratory, the purpose of the research was explained to
the participants. A questionnaire was administered to each to determine how they
differed in their experiences in playing computer games. The basic demographic
information obtained from the pupils included age, gender, and home language.
Because of the sensitivity of the race-issue in South Africa, race was not included in
the demographic information, but by using the home language it could be deduced.
There were not enough cases in the different language groups to use them separately
in the statistical analysis and therefore they were grouped. Those pupils that had
Afrikaans and English as their home language were categorized as European. Those
that had Sotho, Tswana and Xhosa as home language were categorized as African.
There were a couple of languages that could not be classified in the above two
groupings and they were omitted in the culture analysis.

The questionnaire started off with a question on the frequency of playing computer
games. Those participants that played more than a few times per month (experienced

Table 1. Categories of different games (in order of popularity)

Category Examples
Adventure SACRED, HIDE-AND-SEEK, DINO CRISIS 2, CSI, DEUS EX, TOMB-

RAIDER, SEPTERRA CORE, DIABLO, etc.
Sports FIFA 2000-2005, EURO 2004, BASKETBALL, NFL 2004, SOCCER,

NETBALL, SKATEBOARDING, RUGBY, CRICKET, WRESTLING, etc.
Family WHINNY THE POOH, FINDING NEMO, LION KING, ALADDIN,

POKÉMON, JIMMY NEUTRON, HARRY POTTER, etc.
Action TEKKEN, DRAGON BALL Z & BUDOKAI, QUAKE 3, BATTLE REALMS,

ROAD FIGHTER, HIT MAN 2, STREET FIGHTER X, etc.
Classics PAC MAN, HANGMAN, HANGAROO, TIC-TAC-TOE, GOB MAN AND

BLOCKS, TETRIS, MEMORY, MIND MAP, SNAKE, etc.
Educational EDUMATH, ABC, etc.
Strategy STAR KINGDOMS, CAESAR, THE EMPEROR, PHARAOH, ZOO

TYCOON, AGE OF EMPIRES, ROME, CALL OF DUTY, etc.
Windows HEARTS, SOLITAIRE, SPIDER SOLITAIRE, FREECELL, PINBALL,

MINESWEEPER.
Racing NEED FOR SPEED UNDERGROUND 1 & 2, NEED FOR SPEED PORCH

2000, F1 RACER, GRAND PRIX F1, MOTO GP, ETC.
Simulation SIMCITY, BUILD YOUR OWN TOWN, FLIGHT SIMULATORS,

LIGHTNING 3.

1 For simplicity reasons there will be referred to “European” and “African” in this paper.

276 L. de Wet and T. McDonald

gamers) then had to complete a section on the types of games (educational, sport,
action, etc.) that they played and how often (often, occasionally, or almost never) they
played those games. They also had to indicate how different reasons (fun and
relaxation, proficiency, stimulation, etc.) for playing computer games applied to them
and had to state their opinions on the importance of several gaming characteristics
(action, proficiency, strategy, etc.). There was also an open-ended section where they
could list their favorite games and propose a new idea for a computer game. Those
participants that never played computer games (inexperienced gamers) had to
complete a section where they had to provide their reasons (no time, not interested, no
access, etc.) for not playing.

One of the questions requested the participants to list their favorite computer
games. A very long list was provided. To make the analysis more meaningful, the
games were classified into eleven different categories as shown in Table 1.

Because of the categorical nature of the data, Chi-square analysis was done to
determine if there were any differences between gender and culture and several
variables related to the playing of computer games. Gender and culture were the
independent variables, while the variables that corresponded to the different questions
of the questionnaire were considered as the dependent variables. The null hypotheses
in all cases were that the dependent variable was not related to the independent
variable. The level of significance was 0.05 in all cases. Gender and culture were
analyzed separately.

4 Results

4.1 Influence of Gender and Culture on the Frequency of Game Playing

Table 2 shows how often the different genders played computer games. A Chi-square
analysis showed that (χ² = 7.07, df = 4, p = .1322) gender does not account for how
often pupils play computer games. Table 3 shows how often the different cultures
play computer games. A Chi-square analysis showed that (χ² = 40.22, df = 4, p = .00)
culture can be associated with how often pupils play computer games.

Table 2. How often different genders played computer games

 Daily Weekly Weekends Monthly Never Total
Male 25 54 22 169 51 321
Female 27 54 13 200 37 331
Total 52 108 35 369 88 652

Table 3. How often different cultures played computer games

 Daily Weekly Weekends Monthly Never Total
European 21 41 19 231 32 344
African 29 63 16 123 55 286
Total 50 104 35 354 87 630

 Gender and Cultural Differences (if any!): South African School Children 277

4.2 Influence of Gender and Culture on the Type of Games Played

Table 4 shows the results of the statistical analysis of the influence of gender and
culture on the playing of different types of computer games. No significant statistical
differences between gender and culture could be found for any of the types tested.

Table 4. The influence of gender and culture on the playing of different computer games

Dependent Independent N χ² DF p
Play educational games Gender 232 0.78 2 .68
Play educational games Culture 227 0.91 2 .63
Play sport games Gender 237 2.14 2 .34
Play sport games Culture 232 2.62 2 .27
Play action games Gender 244 0.29 2 .87
Play action games Culture 238 0.13 2 .94
Play strategic games Gender 225 0.26 2 .88
Play strategic games Culture 220 1.67 2 .43
Play adventure games Gender 237 0.35 2 .84
Play adventure games Culture 230 1.44 2 .49
Play puzzle games Gender 239 1.80 2 .41
Play puzzle games Culture 232 0.07 2 .97
Play simulator games Gender 215 0.06 2 .97
Play simulator games Culture 210 2.59 2 .27

4.3 Influence of Gender and Culture on the Reasons for Playing Games

Table 5 shows the results of the influence of gender and culture on the reasons for
playing computer games. Both gender and culture were significant in the case of
“playing for proficiency”. No significant statistical differences between gender and
culture could be found for any of the other reasons.

Table 5. The influence of gender and culture on the reasons for playing computer games

Dependent Independent N χ² DF p
Play for fun and relaxation Gender 273 1.59 2 .45
Play for fun and relaxation Culture 265 1.49 2 .48
Play for proficiency Gender 222 14.27 2 .00
Play for proficiency Culture 216 7.16 2 .03
Play for stimulation Gender 210 1.02 2 .60
Play for stimulation Culture 205 0.87 2 .65

4.4 Influence of Gender and Culture on the Reasons for not Playing Games

Table 6 shows the results of the influence of gender and culture on the reasons for not
playing computer games. Only in one case, “the violence puts me off” was a
significant association established for the independent variable culture. All the other
reasons were insignificant for both gender and culture.

278 L. de Wet and T. McDonald

Table 6. The influence of gender and culture on the reasons for not playing computer games

Dependent Independent N χ² DF p
I do not have time Gender 49 2.91 2 .23
I do not have time Culture 48 4.18 2 .12
I am not interested Gender 47 2.17 2 .34
I am not interested Culture 46 5.22 2 .07
I do not have access Gender 49 0.08 2 .96
I do not have access Culture 48 0.47 2 .97
I do not like type of games Gender 46 .11 2 .95
I do not like type of games Culture 45 1.80 2 .41
The violence puts me off Gender 44 2.25 2 .32
The violence puts me off Culture 43 6.08 2 .05
My friends do not play games Gender 44 .25 2 .88
My friends do not play games Culture 43 0.99 2 .61
Would you like to play games Gender 60 2.41 1 .12
Would you like to play games Culture 59 2.43 1 .12

4.5 Influence of Gender and Culture on Different Characteristics of Games

Table 7 shows the results of the influence of gender and culture on the importance of
different characteristics of computer games. The “Strategy” characteristic was
significant for gender. No significant statistical differences between gender and
culture could be found for any of the other characteristics.

Table 7. The influence of gender and culture on the importance of different characteristics of
computer games

Dependent Independent N χ² DF p
Action Gender 322 3.62 2 .16
Action Culture 313 0.99 2 .61
Proficiency Gender 300 3.73 2 .15
Proficiency Culture 291 1.72 2 .42
Strategy Gender 313 6.41 2 .04
Strategy Culture 303 .60 2 .74
Realism Gender 308 .85 2 .65
Realism Culture 299 5.75 2 .06
Color Gender 311 .19 2 .91
Color Culture 303 2.09 2 .35
Movement Gender 311 2.84 2 .24
Movement Culture 302 1.59 2 .45
Sound Gender 314 3.32 2 .19
Sound Culture 305 1.23 2 .54
Score Gender 309 .13 2 .93
Score Culture 302 .94 2 .63
Fun Gender 297 1.32 2 .52
Fun Culture 291 2.53 2 .28

 Gender and Cultural Differences (if any!): South African School Children 279

4.6 Influence of Gender and Culture on “boys play more games than girls”

Table 8 shows the results of the influence of gender and culture on the statement
“boys play more computer games than girls”. No significant statistical differences
between gender and culture could be found.

Table 8. The influence of gender and culture on the statement “boys play more computer
games than girls”

Dependent Independent N χ² DF p
Boys play more than girls Gender 360 2.13 2 .35
Boys play more than girls Culture 350 5.22 2 .07

Table 9. Top 5 favorite games for Males and Female pupils

Males % (N = 224) Females % (N = 206)

Family games 17.41 Racing games 20.87
Racing games 14.29 Sports games 13.59
Action games 12.95 Windows games 11.65
Sports games 11.61 Family games 10.68
Adventure & Classic games 10.27 Action games 10.68

Table 10. Top 5 favorite games for European and African pupils

European % (N = 167) African % (N = 249)

Family games 14.97 Racing games 20.48
Simulation 13.77 Sports games 14.46
Racing games 13.17 Family games 12.85
Action games 11.98 Action games 11.65
Classic & Windows games 10.18 Adventure games 10.84

The top 5 favorite games for males and females are shown in Table 9. The top 5
favorite games for European and African pupils are shown in Table 10.

5 Discussion

The results were rather surprising. Initially the expectations were, in terms of gender,
that boys would play more computer games than girls and that they would prefer
more violent, action-oriented games in comparison to girls (who would prefer more
“girlish” kind of games). In terms of culture, the initial expectations were that the
European pupils would play more computer games than the African pupils and that
the two groups would prefer different types of games.

The first initial expectation was not supported; no differences were found in how
often male and female pupils played computer games. This was somewhat
contradicted by the statement “boys play more computer games than girls” where
differences in opinions between the genders could be found. Most of the boys (69%)

280 L. de Wet and T. McDonald

and girls (65%) agreed that boys played more than girls. Only 31% of the boys and
28% of the girls felt that boys and girls played games in an equal amount. It seems
that even among the pupils themselves the perception still holds that boys play more
than girls — even though no differences between the genders were found in how
often they played computer games. This result is somewhat in accordance with
Creative Industries Faculty QUT [8] which found that although fewer girls than boys
play computer games, the number of female players is increasing drastically.

The second expectation was also not supported: no differences were found in the
game type preferences (including action games) between boys and girls. This could be
explained by: “it is perceived to be somewhat more sociable for girls to assume male
roles than the other way around; therefore, it has been proposed to encourage girls to
play violent and gender-stereotyped games” [11].

The fact that the results of this study are not in accordance with previous
theoretical and empirical studies (especially about gender and gaming) can be
explained by the technological innovations in both hardware and software in
computer gaming that changed the contemporary gaming experience. Technical
innovations in hardware, graphics, processor power, as well as the increasing
interactivity of games, have changed the dynamics of play and context in which
gaming takes place [3].

The similarity found in the types of games that boys and girls played, is supported
to a certain extent by the rating of the top 5 categories of games played by males and
females; the categories are basically the same, but in different order. It was
unexpected that family games came first for boys and action games only came in third
place. The fact that racing games was the top scorer for girls was also a surprise, but it
corresponds to the results of the Software Games for Girls Workshop [17].

Only in the case of “play for proficiency” and “strategy is an important
characteristic of computer games” were significant differences found between male
and female. A closer inspection of the data showed that proficiency and strategy were
more important for girls than for boys. The strategy characteristic was also found to
be important by the Software Games for Girls Workshop [17]. The reason why girls
prefer to play for proficiency is more difficult to explain, but based purely on the
authors’ opinions, it could be because they see that as a way to catch up on the boys.

The initial expectation that the European pupils play more computer games than
the African pupils proved to be correct. The difference between the cultures can be
attributed to the fact that the European pupils tend to play more on weekends, whereas
the African pupils tend to play during the week or do not play at all. This can be
explained by the fact that more European pupils will have computers at home than
their African counterparts. The African pupils will most probably use the computers
at school to play games.

In the case of culture only a few significant differences were found. This is supported
to a certain extent by the top 5 choices of games by the two groups. The major
difference was “simulation” games that came second for Europeans and did not feature
at all for African pupils, and “sports” games that came second for Africans and didn’t
feature at all for European pupils. The only significant differences in terms of culture
were “proficiency” as a reason for playing games and “violence in games puts me off”.
For “proficiency” it seemed that it was more important for Africans than for Europeans
and the reason can be the same as that of girls. The fact that “violence” was significant
can be attributed to a small sample size and low numbers in some of the cells.

 Gender and Cultural Differences (if any!): South African School Children 281

It is interesting to note that though action and adventure games did not feature in
the top two favorites, most pupils suggested those kinds of games as new computer
games. One gets the impression that because violence is so prominent in the media, it
is the “in” thing. When the pupils are alone in front of the computer they, however,
prefer more “tamer” games.

6 Conclusion

Other than expected, our research results indicated that there are no major differences
in computer game playing between genders and cultures for grade 10 pupils in this
particular city in South Africa. Especially with regard to gender, these results
indicated that the situation changed quite a bit over the past few years in comparison
to research results found in the literature. Where the literature indicated a major
gender inequality in computer game playing, our results indicate that girls (in this
case grade 10 scholars) bridged the gender gap as far as frequency, as well as type of
computer games, that they played. This is in line with what Funk [11] suggested:
Children (including girls) will continue to play computers games as long as it is
enjoyable. They are quite likely to ignore offensive content, although perhaps they
will still be affected by it, and will focus on action and the challenge. As Funk [11]
puts it: “… sometimes girls (and boys) just want to have fun”.

The same can be said of cultural inequalities in computer games in South Africa.
Much effort has already been channeled into cultural inequalities since 1994, and
although many things still need to be done, our research results are indicative of the
fact that the “digital-divide” among the different cultural groups in the country seems
to be gradually diminishing.

However, this research effort has only touched the proverbial “tip of the ice berg”
with regard to the question of cultural differences in computer game playing.
Although the results indicate that there are no major differences between cultures in
playing computer games, this was tested on grade 10 pupils in one city in South
Africa only. One is always careful of generalizing, and it would be wrong to fall into
the pitfall of blunt generalization. However, we view the purpose of scientific
research studies as the reaching of “generalizable” conclusions when trends seem
significant. The fact that the pupils were representative (as far as gender, as well as
Euro-centric and Afro-centric culture is concerned) gave us the confidence to extend
the conclusions to grade 10 pupils in South Africa as a whole. As more research in
this area is still necessary, the research findings should be viewed as indicative rather
than authoritive.

References

1. Ahuja, M.K.: Information Technology and the Gender Factor. In: Proceedings of the
SIGCPR, Nashville, TN, USA, p. 156 (1995)

2. American Association of University Women: Educating girls in the New Computer Age.
American Association of University Women Educational Foundation Press (2000)

282 L. de Wet and T. McDonald

3. Bryce, J., Rutter, J.: The Gendering of Computer Gaming: Experience and Space. In:
Fleming, S., Jones, I. (eds.) Leisure Cultures: Investigations in Sport, Media and
Technology, pp. 3–22. Leisure Studies Association (2003)

4. Cassell, J., Jenkins, H.: Chess for Girls? Feminism and Computer Games. In: Cassell, J.,
Jenkins, H. (eds.) From Barbie to Mortal Kombat: Gender and Computer Games, pp. 2–45.
MIT Press, Cambridge, MA (1998)

5. Cassell, J.: Storytelling as a Nexus of Change in the Relationship between Gender and
Technology: A Feminist Approach to Software Design. In: Cassell, J., Jenkins, H. (eds.)
From Barbie to Mortal Kombat: Gender and computer games, pp. 298–327. MIT Press,
Cambridge, MA (1998)

6. Children NOW. Girls and Gaming: Gender and Video Game Marketing (2000), http://
www.childrennow.org/

7. Chu, K.C., Heeter, C., Egidio, R., Mishra, P.; Girls and Games Literature Review (2004),
http://spacepioneers.msu.edu/girls_and_games_lit_review.htm.

8. Creative Industries Faculty QUT: Computer Games – Female Users: Increasing Numbers
of Women Playing Video Games (2004), http://wiki.media-culture.org.au/index.php/
Computer_Games_-_Female_Users

9. ELSPA: GameVision Report (Autumn 2003)
10. Funk, J.B., Jenks, J., Bechtoldt, H.: Children’s Experience of Video Games. Unpublished

data (2001)
11. Funk, J.B.: Girls Just Want To Have Fun (2001), http://culturalpolicy.uchicago.edu/

conf2001/papers/funk2.html
12. Haines, L.: Why Are There So Few Women in Games? Research for Media Training

NorthWest (September 2004)
13. Hart, S.N.: Gender and Racial Inequality in Video Games (1997),

 http://www.geekcomix.com/vgh/genracinequal.shtml
14. Kafai, Y.: Gender Differences in Children’s Constructions of Video Games. In:

Greenfield, P.M., Cocking, R.R. (eds.) Interacting with video games, Erlbaum, Norwood,
NJ (1996)

15. Martin, C.K.: Girls, Video Games, and the Traditional Stereotype of Female Characters
(1999), http://ldt.stanford.edu/ldt1999/Students/ckmartin/pdf/videoGames.pdf

16. Meunier, L.: Gender Differences in Computer Use (1996), http://bureau.philo.at/mii/gpmc.
dir9606/msg00014.html

17. In: Software Games for Girls Workshop. Focus groups conducted by Electronic Arts and
Mattel (2005), http://www.Castilleja.org (Last visited 31/10/2005)

Author Index

Aloupis, Greg 190
Andraos, Cherif R.S. 212
Arneson, Broderick 112

Bratko, Ivan 1, 13, 172

Cardinal, Jean 190
Cazenave, Tristan 62
Chaslot, Guillaume 50
Chen, Bo-Nian 100
Chen, Keh-Hsun 26
Cincotti, Alessandro 181
Collette, Sébastien 190, 220
Coulom, Rémi 72

de Wet, Lizette 271
Dussault, Jean-Pierre 256

Fang, Haw-ren 148
Farnebäck, Gunnar 84

Ghoneim, Salma A. 212
Glenn, James 148
Greenspan, Michael 244
Guid, Matej 1, 13

Hayward, Ryan B. 112
Helmert, Malte 135
Henderson, Philip 112
Hsu, Shun-Chin 100
Hsu, Tsan-sheng 100

Kato, Shunsaku 234
Krivec, Jana 13
Kruskal, Clyde P. 148
Kupferschmid, Sebastian 135

Landry, Jean-François 256
Langerman, Stefan 190
Leckie, Will 244
Lew, �Lukasz 160
Liu, Pangfang 100

McDonald, Theo 271
Miltersen, Peter Bro 200
Miyazaki, Shuichi 234
Možina, Martin 13
Müller, Martin 37

Nishimura, Yusuke 234
Niu, Xiaozhen 37

Okabe, Yasuo 234

Pawlewicz, Jakub 160

Raskin, Jean-François 220

Sadikov, Aleksander 13, 172
Saito, Jahn-Takeshi 50
Servais, Frédéric 220
Sørensen, Troels Bjerre 200
Sturtevant, Nathan R. 122

Tromp, John 84

Uiterwijk, Jos W.H.M. 50

van den Herik, H. Jaap 50

White, Adam M. 122

Zaky, Manal M. 212
Zhang, Peigang 26

	Title Page
	Preface
	Organization
	Table of Contents
	Computer Analysis of Chess Champions
	Introduction
	Method
	Average Difference Between Moves Made and Best Evaluated Moves
	Blunders
	Complexity of a Position
	Percentage of Best Moves Played and the Difference in Best Move Evaluations
	Material
	Credibility of Crafty as an Analysis Tool

	Results
	The Basic Criterion
	The Blunder-Rate Measurement
	The Complexity Measurement
	The Player's Style
	The Expected Number of Best Moves Played
	The Tendency to Exchange Pieces

	Conclusion and Future Work
	References

	Automated Chess Tutor
	Introduction
	Related Work
	The Tutoring System
	The Commenting Module
	The Expert System for Commentary Refinement

	Some Tutoring Examples
	Conclusions and Future Work
	References

	A New Heuristic Search Algorithm for Capturing Problems in Go
	Introduction
	Ladder
	Crucial Block and Crucial Chain
	Position Evaluation
	Candidate Move Generation
	Iterative Deepening with Hash Table
	Try Opponent's Best Refute Move
	Seki and Ko
	Experimental Results
	Future Work
	References

	An Open Boundary Safety-of-Territory Solver for the Game of Go
	Introduction
	Safety of an Open Boundary Area
	Related Work
	Contributions

	Open Boundary Safety-of-Territory Solver
	Safety Solver
	Input Parameters for the Search
	Integration with Explorer: First Steps

	Board Partitioning for Identifying Open Boundary Problems
	Multiple Searches for Related Goals
	Forward Pruning Techniques
	External Moves
	Inner Eyes

	Experimental Results
	Experiment One: Correctness Test
	Experiment Two: Game Play Test
	Experiment Three: Comparison of Solvers

	Conclusions and Future Work
	References

	Monte-Carlo Proof-Number Search for Computer Go
	Introduction
	Proof-Number Search
	Monte-Carlo Evaluation
	Integrating MC and PNS

	MC-PNS
	Algorithm
	Controlling Parameters

	Experimental Application of MC-PNS to Go
	Application to the Go Domain
	Research Questions
	Setup

	Results
	Discussion
	Conclusion and Outlook
	References

	Virtual Global Search: Application to 9×9 Go
	Introduction
	Related Work
	Monte Carlo and Games
	Standard Monte-Carlo Go
	Monte-Carlo Go Enhancements
	Global Search in Go

	Standard Global Search
	Selection of Moves
	Standard Global Search

	Virtual Global Search
	Permutation of Moves
	Random Games with Evaluation of the Sequences at the End
	Search After All the Random Games Are Completed

	Estimated Complexities
	Complexity of Standard Global Search
	Complexity of Virtual Global Search
	Comparison of Sibling Leaves

	Experimental Results
	Future Work
	Conclusion
	References

	Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search
	Introduction
	Algorithm Structure
	Selectivity
	Background
	Crazy Stone's Algorithm

	Backup Method
	Value Backup
	Uncertainty Backup

	Game Results
	Conclusion
	References

	Combinatorics of Go
	Introduction
	Previous Work
	Preliminaries
	Counting Legal Positions
	Partial Boards
	Border States
	The Border State Graph
	Recurrences
	1 X n Boards
	2 X n Up to 9 X n Boards
	The Dynamic Programming Algorithm
	Complexity
	Results
	Asymptotic Bounds
	The Base of Liberties
	An Asymptotic Formula

	Counting Games
	Exact Values
	Upper Bounds
	Lower Bounds

	Open Problems
	References

	Abstracting Knowledge from Annotated Chinese-Chess Game Records
	Introduction
	Preliminaries
	Expert Knowledge in Computer Chinese Chess
	The Importance of Automatic Expert Knowledge Retrieval

	Automatic Expert Knowledge Retrieval
	Expert Knowledge and Position Value
	Novel Pattern Matching Algorithm
	Chinese-Chess Annotation Abstraction Algorithm
	Automatic Procedure

	Experimental Results
	Experimental Design
	Some Detailed Results

	Concluding Remarks
	References

	Automatic Strategy Verification for Hex
	Introduction
	Excised Trees and Autotrees
	And/or Autotrees with Leaf Patterns
	Verifying Yang's Proof
	Conclusions
	References

	Feature Construction for Reinforcement Learning in Hearts
	Introduction and Background
	Hearts
	Hearts-Related Research
	Reinforcement Learning
	Function Approximation

	Learning to Play Hearts
	Feature Generation
	Learning Parameters
	Learning to Avoid the Q♠�
	Learning to Avoid Hearts
	Learning Both Hearts and the Q♠�
	Imperfect Information Play

	Conclusions and Future Work
	References

	A Skat Player Based on Monte-Carlo Simulation
	Introduction
	Skat
	Monte-Carlo Simulation
	General Architecture
	Bidding Engine
	Card Play Engine

	Double Dummy Solver
	Transposition Table
	Move Ordering
	Quasi-symmetry Reduction
	Adversarial Heuristics

	Experiments
	Results and Future Directions
	References

	A Retrograde Approximation Algorithm for One-Player Can’t Stop
	Introduction
	Problem Formulation
	Retrograde Analysis for One-Player Probabilistic Games
	Game Graph Is Acyclic
	Game Graph Is Cyclic
	Retrograde Approximation Algorithms

	Indexing Scheme
	Indexing Scheme for Can't Stop
	Algorithms

	Experiments
	Conclusion
	References

	Improving Depth-First PN-Search: 1 + ε Trick�
	Introduction
	A Depth-First Transformation of PN-Search
	PN-Search
	DF-PN

	Enhancement
	Weak Point of DF-PN
	The 1+ ε Trick�
	Application to PDS

	Experiments
	Experimental Environment
	The Size of a Transposition Table, Tested on Atari Go
	Efficiency Under Tournament Conditions, Tested on a Set of Easy LOA Positions
	Efficiency of Solving Hard Problems, Tested on a Set of Hard LOA Positions

	Conclusions and Future Work
	References

	Search Versus Knowledge Revisited Again
	Introduction
	Experimental Design
	The Evaluation Function
	Simulation of Heuristic Errors
	Search Engine
	Variables Observed

	Experimental Results and Discussion
	Knowledge Versus Search
	Diminishing Returns

	Conclusions
	References

	Counting the Number of Three-Player Partizan Cold Games
	Introduction
	Three-Player Partizan Games
	Basic Definitions
	Examples of Numbers

	Counting the Numbers
	Lower and Upper Bound

	References

	$LUMINES$ Strategies
	Introduction
	Playing Forever
	Clearing Terrains
	References

	Computing Proper Equilibria of Zero-Sum Games
	Introduction
	Background
	Algorithm
	Example

	Discussion
	References

	Comparative Study of Approximate Strategies for Playing Sum Games Based on Subgame Types
	Introduction
	Subgame Types Effect
	Experimental Results
	Objective
	Experimental Setup
	Observations

	Conclusions and Future Work
	References

	On the Symbolic Computation of the Hardest Configurations of the RUSH HOUR Game
	Introduction
	Formalization of the Problem
	The Hardest Configurations
	Explicit Implementation

	Symbolic Implementation
	Symbolic Data Structure
	Symbolic Algorithm

	First Propositional Model
	Formalization
	Results of the First Implementation
	Limitation of ROBDD-Based Methods for Board Games

	Dual Propositional Model
	Results: RUSH HOUR Hardest Configuration
	References

	Cheat-Proof Serverless Network Games
	Introduction
	Definition of the Game
	Playing Games on Peer-to-Peer Environment
	Excluding Cheating
	Implementing Gunjin-Shogi
	Rules of Gunjin-Shogi
	Implementation

	Conclusion
	References

	Monte-Carlo Methods in Pool Strategy Game Trees
	Introduction
	Pool Strategy Based on *-Expectimax Game Trees
	Modeling Shot Outcomes
	Additive Random Noise Model
	*-Expectimax Modified for Pool Strategy

	Experimental Results
	Conclusion
	References

	Optimization of a Billiard Player – Tactical Play
	Introduction
	Context of Computer Pool
	Shot Difficulty
	Direct Shots
	Kick/Bank Shots
	Combinations

	Global Table Difficulty
	Best and Worst Spots on the Table
	Optimization with Ball Speed Considerations
	Sinking Object Ball with Minimum Speed
	Cue Ball Scratching
	Breaking Clusters

	Improved PoolMaster
	Shot Difficulty
	Choice of the Global Table Coefficient
	PoolMaster Old vs. PoolMaster New

	Conclusion
	References

	Gender and Cultural Differences (If Any!): South African School Children and Computer Games
	Introduction
	Background
	Gender Issues in Computer Games
	Cultural Issues in Computer Games

	Methodology
	Results
	Influence of Gender and Culture on the Frequency of Game Playing
	Influence of Gender and Culture on the Type of Games Played
	Influence of Gender and Culture on the Reasons for Playing Games
	Influence of Gender and Culture on the Reasons for not Playing Games
	Influence of Gender and Culture on Different Characteristics of Games
	Influence of Gender and Culture on “boys play more games than girls”

	Discussion
	Conclusion

	Author Index

