
The Construction of Multi-agent Systems as an

Engineering Discipline

Jorge J. Gomez-Sanz

Universidad Complutense de Madrid,
Avda. Complutense s/n, 28040 Madrid, Spain

jjgomez@sip.ucm.es

http://grasia.fdi.ucm.es

Abstract. The construction of multi-agent systems is starting to be-
come a main issue in agent research. Using the Computer Science point
of view, the development of agent systems has been considered mainly
a problem of elaborating theories, constructing programming languages
implementing them, or formally defining agent architectures. This effort
has allowed important advances, including a growing independence of
Artificial Intelligence. The results have the potential to become a new
paradigm, the agent paradigm. However, the acceptance of this paradigm
requires its application in real industrial developments. This paper uses
this need of addressing real developments to justify the use of software
engineering as driving force in agent research. The paper argues that
only by means of software engineering, a complex development can be
completed successfully.

Keywords: agent oriented software engineering, multi-agent systems,
development.

1 Introduction

Software agents have been considered as part of Artificial Intelligence (AI) for a
long time. However, looking at the current literature, it seems agent researchers
are focusing more on development aspects, such as debugging or modularity,
paying AI issues less attention. This tendency is giving agent research an identity
as a software system construction alternative, i.e., as a new paradigm. This
paradigm will be named in this paper as the agent paradigm, whose existence
was already pointed out by Jennings [1]. Informally, the agent paradigm is a
development philosophy where main building blocks are agents.

In the elaboration of the agent paradigm, Computer Science has played a main
role so far. With its aid, several agent oriented programming languages have
been constructed and models of agency have been formalised. Nevertheless, it
cannot be said the agent paradigm is mature, yet. Since agents are software, it is
necessary proving the agent paradigm can be an alternative to known software
development paradigms in a real, industrial, developments. This implies that
the cost of developing a system using agents should be better than the cost of

G. O’Hare et al. (Eds.): ESAW 2006, LNAI 4457, pp. 25–37, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://grasia.fdi.ucm.es

26 J.J. Gomez-Sanz

using other technologies, at least for some problems. Proving this goes beyond
the scope of Computer Science and enters the domain of software engineering
(it is assumed the readers accept Computer Science and Software Engineering
are different disciplines).

This need of exploring the engineering side of software agents has been known
in the agent community for some years. As part of this investigation, development
environments have been created, debugging techniques have been elaborated,
and agent oriented specification techniques have been proposed. These, together
with the improvements in agent oriented programming languages, constitute im-
portant steps towards the integration with industrial practices [2]. Nevertheless,
the growing incorporation of agents to industry demands a stronger effort.

The paper constributes with an argumentation in favour of applying engineer-
ing methods to achieve matureness in the agent paradigm. This argumentation
starts with an introduction to the origins of software engineering in section 2.
Then, section 3 introduces briefly how agents have started to focus on devel-
opments while being part of AI. These initial steps have led to results dealing
with system construction that can be considered more independent of AI. These
new results are introduced in section 4. Following, section 5 argues the need
of engineering methods using the evolution of the agent research towards the
construction of systems and drawing similitude with the origins of software en-
gineering. This argumentation is followed, in section 6, by a suggestion of lines
of work that could constribute to the acceptance of the agent paradigm. The
paper finishes with some conclusions 7.

2 The Origins of Software Engineering

The claim of the paper requires understanding what is software engineering. The
term software engineering was born in a NATO sponsored conference [3]. This
conference invited reputed experts in software development to talk about the
difficulties and challenges of building complex software systems. Many topics
were discussed, but above all there was one called the software crisis. This was
the name assigned to the increasing gap between what clients demanded and
what was built due to problems during the development. Indeed, the smaller a
development is, in the number of involved persons and in the complexity of the
system to develop, the easier it is to complete successfully. Unfortunately, the
software systems required in our societies are not small.

Dijkstra [4] had the opinion that a major source of problems in a develop-
ment was the programming part. He remarked the importance of having proofs
to ensure the correctness of the code, since much time is dedicated to debugging.
Also, better code could be produced with better programming languages, like
PL/I, and programming practices, like removing the goto statement from pro-
gramming [5]. Dijkstra was right. Good programming and better programming
languages reduce the risk of failure. Nevertheless, good code is not enough when
programming large systems. For instance, De Remer [6] declares programming
a large system with the languages at that time was an exercise in obscuration.

The Construction of Multi-agent Systems as an Engineering Discipline 27

It was needed having a separated view of the system as a whole to guide the
development, a view that was not provided by the structured programming ap-
proaches. In this line, Winograd [7] comments that systems are built by means
of combining little programs. Hence, the problem is not building the small pro-
grams, but how the integration of packages and objects with which the system
can be achieved.

Besides the programming, reasons for this gap can be found in the humans
involved in a software project. Brooks [8] gives some examples of things that can
go wrong in a development like being too optimistic about the effort a project
requires, thinking that adding manpower makes the development going faster, or
dealing with programmers wanting to exercise their creativity with the designs.

In summary, bridging the gap requires dealing with technical and human prob-
lems. Their solution implies defining a new combination of existing disciplines to
build effectively software systems. This new discipline is the software engineer-
ing and their practitioners are called software engineers. The training software
engineers receive is not the same of a a computer scientists [9]. This claim would
be realised in the computing curricula recommendations by the ACM and IEEE
for software engineering [10]. This proposal covers all aspects of a development,
including programming and project management.

2.1 Lessons Learnt

There are three lessons to learn from the experience of the software crisis that
will be applied to agent research in section 5.

The first lesson refers to the natural emergence of engineering proposals when
the foundations are well established [9]. This has occurred many times with nat-
ural sciences and their application to human societies. As a result civil engineers,
electrical engineers, and aerospace engineers, among others, exist.

The second is that some systems are inherently complex and require many
people involved and an important amount of time. Building these systems is
not a matter of sitting down in front of the computer and start working on it.
It requires organising the work, monitoring the progress, and applying specific
recipes at each step. Besides, there is a human component that cannot be fully
controlled.

The third lesson is that the progress in programming languages is not going
to eliminate all problems in a development. Three decades of progress in pro-
gramming languages have made the construction of systems easier, but it has
not eliminated the need of software engineering.

3 At the Beginning Everything Was Artificial Intelligence

The Artificial Intelligence discipline is a multi-disciplinary one dedicated to the
creation of artificial entities capable of intelligent behaviour. The roots of agents
are associated strongly to AI. Allen Newell made one of the first references to
agents pointing out their relevance to AI. He distinguished agents as programs

28 J.J. Gomez-Sanz

existing at the knowledge level that used knowledge to achieve goals [11]. Two
decades after, agents continue being relevant to AI. For instance, the Artifi-
cial Intelligence textbook from Russell and Norvig [12] presents agents as the
embodiment of Artificial Intelligence.

Despite these statements, considering software agents only as AI would be a
mistake. AI is important if certain features are to be incorporated in the agents,
like planning or reasoning. However, the role of AI is not a dominant one and
needs to be reviewed depending on the kind of system developed [2]. As a con-
sequence, it is possible having an agent paradigm that can use AI while keeping
its identity as paradigm. There have been similar cases in the past. Lisp [13] and
Prolog [14] programming languages were born under the umbrella of AI. They
are now independent and represent an important milestone in the establishment
of the functional and logic programming paradigm, respectively. Following these
precedents, one could draw the conclusion that focusing on particular approaches
to the construction of AI capable systems has led to the definition of new de-
velopment paradigms. Hence, the efforts in showing how a multi-agent system
is built would eventually take to the definition of the agent paradigm.

Looking at the agent literature, published works dealing with multi-agent
systems construction can be categorised into two groups: agent oriented pro-
gramming languages and agent architectures. In both, Computer Science has
played an important role, specially in agent oriented programming languages.
Hence, most of these steps are founded on formal descriptions and theories.

The invention of the agent oriented programming language is usually dated
in 1993 with the creation of Agent0 [15]. This language proposed using agents
as building blocks of a system, providing a vocabulary to describe what existed
inside of the agents and some semantics of how these agents operated. This
trend has been explored from a computer science perspective, mainly, trying to
establish theoretical principles of agent oriented programming. This has been
the case of Jason [16] an extended interpreter for AgentSpeak (L) language [17],
3APL [18] or Agent Factory - APL [19] a combination of logic and imperative
programming, Claim [20] which is based on ambient calculus, ConGOLOG [21]
which bases on situation calculus, or Flux [22] which is based on fluent calculus,
to cite some. For a wider review about agent oriented languages, readers can
consult the short survey [23], the survey of logic based languages [24], or the
more detailed presentation of programming languages from [25]. The diversity
of concepts and approaches evidences there is still struggle to find the best way
of dealing with agent concepts.

The definition of agent architectures is the other way identified to construct
agents. An agent architecture is a software architecture that explains how an
agent is built. A software architecture, according to IEEE, is the fundamental
organisation of a system, embodied in its components, their relationships to each
other and the environment, and the principles governing its design and evolution
[26]. This way of defining systems was applied early on AI to explain how systems
were capable of intelligent behaviour. In most cases, the agent architecture has
been a set of boxes with arrows representing the data flow. The computations

The Construction of Multi-agent Systems as an Engineering Discipline 29

performed inside the boxes were explained in natural language. Examples of
these initial architectures are the reference architecture for adaptative intelli-
gent systems [27], the Resource-bounded practical reasoning architecture [28],
or Archon [29]. This kind of architectures were not fully detailed, but they pro-
vided important hints to a developer wanting to reuse them. These architectures
provided a set of elements to look at and a way of organising them. A higher
level of detail would be given by Interrap [30] and Touring Machines [31]. In-
terrap provided formal definitions of the inputs and outputs of the different
elements of the architecture. Touring machines provided a reference architec-
ture and detailed instructions to fill in each component of the architecture with
Sicstus Prolog. Its capabilities were demonstrated in a real time traffic manage-
ment scenario with dynamic changes. Perhaps, the most complete architecture
described so far is DESIRE [32]. The semantics of DESIRE are formally speci-
fied using temporal logic [33] and allowed compositional verification [34]. Besides
formal aspects, DESIRE differs from previous ones in how it was used. Instead of
providing guidelines, it used a formal language to describe how the architecture
was instantiated to produce a system. This language was processed by ad-hoc
tools to produce the an instance of DESIRE for the current problem domain.
For a wider review of architectures, readers can consult the surveys [35] and [36].

4 Focusing on Multi-agent Systems Construction

The examples presented in previous sections demonstrate an increasing concern
about the construction of systems by means of agent architectures and agent
oriented programming languages. On one hand, agent oriented programming
languages implement theories of agency devising new ways of processing infor-
mation. On the other hand, agent architectures explore the internal components
of an agent, often letting the developer choosing how these components are im-
plemented. These precedents have given the opportunity of focusing more on de-
velopment problems and less on AI, in concrete, the experience gained allowed to
propose agent standards, agent development environments, and methodologies.

The creation of a standard, FIPA, and the availability of a platform imple-
menting it, the JADE framework [37], turned out to be an important factor that
increased the number of developments using agents. Agents no more had to be
created from scratch. By extending some classes from the framework, one could
have a simple multi-agent system. However, JADE provided very basic support
for defining the behaviour of the agent. Most of the times, developers had to build
over a JADE layer other layers dedicated to implement the control of the agent.
FIPA work continues under the scope of IEEE, so there is still much to say.

With respect development environments to produce agent software, the first
was the Zeus tool [38]. It offered a graphic front end that allowed to define
the internals of the agents (ontology, action rules, goals), communication, and
deployment of the system. The information introduced served to instantiate a
multi-agent system framework, which could be customised by the developer.
The main contribution of Zeus was the reduction of the development effort.

30 J.J. Gomez-Sanz

Little programming was required unless the generated system shown a bug in
the automatically generated part. This development environment was followed
by others like JADEX, Agent Factory or AgentTool [23]. These frameworks can
be considered the inheritors of the first efforts in the definition of agent archi-
tectures. They still define the system in terms of components and relationships
among them, but require less information from the domain problem to produce
a tentative system.

Agent oriented methodologies contributed with support tools, proposals for
the specifications of agent oriented systems, steps to follow to produce these
specifications as well as to implement them. One of the first was Vowel Engi-
neering [39]. It conceived the system as the combination of five interdependent
aspects: Agent, Environment, Interaction, and Organisation. Another important
contribution is the adaptation of BDI theory into an iterative development pro-
cess [40]. Both proposals introduced a simple idea: constructing a multi-agent
system could be less an art and more a discipline by itself. This was introduced
later on by [1] describing several distinguishing features of agent computing
that could constitute a new approach to software engineering. The next step in
methodologies was MESSAGE [41] [42]. MESSAGE provided a comprehensive
collection of agent concepts, supported by tools, and covering the complete de-
velopment process. It was the first in applying meta-modelling techniques in an
agent oriented methodology. Later on this would be incorporated to all method-
ologies. For a review of agent oriented methodologies, readers can read [43]. This
book has a chapter dedicated each one of ten agent oriented methodologies. It
include a comparison among them using an evaluation framework. This frame-
work evaluates the existence and quality of a set of features that are desirable
in a methodology.

5 The Need of Engineering Methods

The results presented in previous sections constribute to the understanding of the
agent paradigm in different ways. In general, they make a development simpler.
Nevertheless, the impact of those results has not been the one expected in industry.
Agentlink conducted a study of the impact and evolution of agent technology in
Europe during several years. The result is the AgentLink roadmap [44]. This study
shows relatively few histories of success of agent technology in real developments.
There may be reasons for this like slow penetration of new technologies in the mar-
ket or companies being reluctant to tell what kind of software they use. However, it
seems more reasonable to find answers in the way agent research has been directed.
Zambonelli and Omicini [45] tell there is little effort in generating evidences of the
savings in money and resources agents can bring. Luck, McBurney, and Priest [46]
provide other reasons: most platforms are still too immature for operational en-
vironments, lack of awareness of the potential applications of agent systems, the
cost of system development and implementation both in direct financial terms and
in terms of required skills and timescales, or the absence of a migration path from
agent research to industrial applications.

The Construction of Multi-agent Systems as an Engineering Discipline 31

Drawing a parallelism with the situation presented in section 2, there is a
particular software crisis affecting the agent community. This crisis relates to
the capability of agent research to build applications in an effective way. The
crisis can be summarised as a gap between the application a client demands and
what can be actually built with existing agent results according to the constraints
of a development project. Hence, for a greater acceptance of the agent paradigm,
this paper proposes the agent community a new goal consisting in the reduction
of this gap. The answer to the software crisis was software engineering, i.e.,
using engineering approaches to the construction of software. Therefore, the
agent community ought to focus more on engineering issues as well. The call for
more engineering is not new. Concretely, readers can find a precedent in [45].

Assuming the need of software engineering, it is relevant to review the lessons
from section 2.1 in the context of agent research.

The first lesson talked about the natural emergence of engineering methods
when sufficient foundations exist. There exist a need of developing agent ori-
ented systems, and the results (languages, architectures, tools, theories) to do
so exist. Therefore, an engineering discipline specialised in the use of these el-
ements to produce agent oriented systems makes sense. This discipline would
propose combinations of theoretical and practical agent reseach results so that
developers can solve problems effectively.

The second lesson commented on the resources needed in a development of
a complex system. Developing a complex system requires investing time and
people, even if software agents are used. Therefore, developers should know
the particularities of using agents when there is a deadline to finish the prod-
uct, a maximum available budget, and several involved workers. This covers the
requirements gathering, analysis, design, implementation, testing, and mainte-
nance stages of a development. Known development roles will have to be revisited
to look for changes due to the use of the agent paradigm. For instance, it is re-
quired to assist project managers with guidelines, cost estimation methods, risk
management, and other common project management tools customised with the
experience of successfull application of agent results.

The third lesson was about the need of complementing programming lan-
guages with other techniques. Agent research is not going to produce any magic
bullet for complex system development. The agent paradigm will provide means
comparable to other existing ones in the capability of building a system. The
difference will be in the balance between results obtained and the effort invested.
Should this balance be positive and greater than applying other paradigms, the
agent paradigm will become a valid alternative. There are many factors to con-
sider in the equation, but it will depend ultimately on the developers. So, in
order to ensure a successfull development, it is necessary to provide all kind
of support to these developers. This includes development tools, training, and
documentation, to cite some.

These lessons tell the agent paradigm has to produce many basic engineering
results, yet. Applying engineering is not only producing a methodology. It is
about, for instance, discovering patterns of recurrent configurations when using

32 J.J. Gomez-Sanz

agent oriented programming languages, designing agent architectures attending
to the non-functional requirements, evaluating the cost of a agent oriented devel-
opment, producing testing cases for agent applications, documenting properly a
development, and so on. Agent oriented methodologies, which are not so recent,
do not consider most of these elements.

6 Proposed Lines of Research

This section collects several lines of work in line with the lessons from section 5.
Some lines have been started already, but require further investigation. Others
have not been initiated, yet.

The main line consists in performing large developments. In order to bridge
the gap pointed out in section 5, agent research must experiment with large de-
velopments involving several developers and dealing with complex problems. The
benefit for agent research would be twofold. Besides gaining experience and vali-
dating development techniques, these developments would produce useful proto-
types demonstrating the benefits of the agent paradigm. There are some specific
areas where the development of multi-agent system prototypes could attract ad-
ditional attention from industry. Luck, McBurney, and Priest [46] identify the
following: ambient intelligence, bioinformatics and computational biology, grid
computing, electronic business, and simulation. Ideally, the prototypes should
be built by developers not involved directly in the research of the techniques
applied. Like in software tests [47], if the tester is the creator of the technique,
the evaluation could contain some bias.

The results of these large developments would influence in the existing agent
frameworks, agent development environments, and agent oriented programming
languages. These should be revisited in the light of the experience from large
developments. Expected improvements derived from this experience will improve
the debugging techniques (it is likely to invest an important time detecting
where the failure is), the quality of code (good programming practices for agent
oriented programming languages), and the code reuse (large developments will
force developers to find ways to save coding effort).

Also, the development of these prototypes could give opportunities to expe-
rience other aspects not documented yet in the agent literature. Project man-
agement and maintenance are two of them. Inside project management, project
planning and risk management, two key activities in project management, have
not been experienced when agents are applied. Cost estimation, which is relevant
for planning, is almost missing in agent research. Gomez-Sanz, Pavon, and Gar-
ijo [48] present some seminal work in this direction using information extracted
from European projects. With respect maintenance, the maintenability of code
written with an agent oriented programaming language, agent frameworks, or
an agent architecture is a big unknown at this moment. The cost of correcting
defects or adding new functionality once the system is deployed is unknown as
well.

The Construction of Multi-agent Systems as an Engineering Discipline 33

With respect to project deliverables, it is a matter of discussion to determine
which deliverables are needed in an agent oriented project beyond those known
of software engineering. Deliverables determines the progress the project should
have. Hence, defining a proper content of these deliverables is a priority for a
project manager. From these deliverables, the only one being studied currently
is the system specification. It is being defined with meta-models, a technique
imported from software engineering. The technique has found quickly a place
in agent research. In fact, most existing methodologies have a meta-model de-
scription for system specification. Agent researchers intend to unify the different
existing meta-models [49], though this is a work that will take time.

The particularities of agent oriented development process are starting to be
investigated. Brian Henderson-Sellers [50] [51] contributes with a metamodel
to capture development methods and represent existing agent oriented develop-
ment approaches. Cernuzzi, Cossentino, and Zambonelli [52] studies the different
development process to identify open issues.

There is concern about the importance of debugging. Development environ-
ments like JADEX and Agent Factory provide basic introspection capabilities.
Also, Botia, Hernansaez, and Skarmeta[53] study how to debug multi-agent sys-
tems using ACL messages as information source. Lam and Barber try to explain
why the agent behaved in a concrete way using information extracted from traces
of the system [54]. Testing is an activity less studied.

Code generation may turn out to be a key to the success of agents. Most of
the works are agent frameworks which has to be instantiated sometimes with a
formal language, others with a visual environment. Generating automatically the
instantiation parameters should not be a hard task. There are precedents of this
kind of tools in Zeus [38], AgentTool [55], and the INGENIAS Development Kit
[56]. The benefits are clear, since the developer invests little effort and obtains
a working system in exchange. However, there are drawbacks in the approach,
like conserving the changes made in the generated code.

To conclude, there is a line of research related with software engineering that
has not been considered yet. Besides structuring an agent oriented development,
the effort invested in the creation of methodologies can be used to start the
creation of bodies of knowledge for agent oriented software engineering. In soft-
ware engineering, there exist a body of knowledge [57] that provide an agreed
terminology for practitioners. This initiative was started in a joint effort by the
IEEE and ACM in order to develop a profession for software engineers. In this
line, readers can consult an extended review of agent research results that can
be useful in each concrete stage of a development [58].

7 Conclusions

Agent research will eventually gain more independency from Artificial Intelli-
gence. This independency will be completely realised with the establishment
of the agent paradigm, the development philosophy that uses agents as main
building blocks. According to recent studies, the adoption of agent research re-

34 J.J. Gomez-Sanz

sults by industry, which would be an evidence of the matureness of the agent
paradigm, is not progressing as it should. A reason for this delay may be the lack
of large developments that prove the benefits of choosing the agent paradigm.
Agent research has been driven mainly by Computer Science focusing in con-
crete features of the agents and the experimentation has been limited to small
developments, mainly. As a result, there is no enough experience in large devel-
opments of software systems based on agents, so the question of the capability
of agent technology to deal with a real development remains. This problem has
been presented as a kind of software crisis of the agent community.

To deal with this crisis, this paper has proposed the extensive use of software
engineering principles. This requires prioritising the research on aspects that
have not been considered before in an agent community, like project manage-
ment issues, good practices of agent oriented programming, or maintance costs
associated to a multi-agent system. To illustrate the kind of areas to address, the
paper has pointed at several lines of work, referring to some preliminary work
already done in those directions.

Acknowledgements. This work has been supported by the project Methods
and tools for agent-based modelling supported by Spanish Council for Science
and Technology with grant TIN2005-08501-C03-01, and by the grant for Re-
search Group 910494 by the Region of Madrid (Comunidad de Madrid) and the
Universidad Complutense Madrid.

References

1. Jennings, N.: On agent-based software engineering. Artificial Intelligence 117(2),
277–296 (2000)

2. Dastani, M., Gomez-Sanz, J.J.: Programming multi-agent systems. The Knowledge
Engineering Review 20(02), 151–164 (2006)

3. Naur, P., Randell, B. (eds.): Software Engineering: report on a conference sponsored
by the nato science committee, Garmisch, Germany, NATO Science Committee
(1968)

4. Dijkstra, E.: The humble programmer. Communications of the ACM 15(10), 859–
866 (1972)

5. Dijkstra, E.: Goto statement considered harmful. Communications of the
ACM 11(3), 147–148 (1968)

6. DeRemer, F., Kron, H.: Programming-in-the large versus programming-in-the-
small. In: Proceedings of the international conference on Reliable software, pp.
114–121. ACM Press, New York (1975)

7. Winograd, T.: Beyond programming languages. Communications of the
ACM 22(7), 391–401 (1979)

8. Brooks, F.: The mythical man-month: essays on software engineering. Addison-
Wesley, London, UK (1982)

9. Parnas, D.: Software engineering programmes are not computer science pro-
grammes. Annals of Software Engineering 6(1), 19–37 (1998)

The Construction of Multi-agent Systems as an Engineering Discipline 35

10. Diaz-Herrera, J.L., Hilburn, T.B.: SE 2004 - Curriculum Guidelines for Under-
graduate Degree Programs in Software Engineering. In: The Joint Task Force on
Computing Curricula IEEE Computer Society Association for Computing Machin-
ery. IEEE Computer Society Press, Los Alamitos (2004)

11. Newell, A.: The knowledge level. Artificial Intelligence 18, 87–127 (1982)

12. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs (2003)

13. MacCarthy, J.: Lisp 1.5 Programmer’s Manual. MIT Press, Cambridge (1965)

14. Roussel, P.: PROLOG: Manuel de reference et d’utilisation. Université d’Aix-
Marseille II (1975)

15. Shoham, Y.: Agent-Oriented Programming. Artificial Intelligence 60(1), 51–92
(1993)

16. Bordini, R., Hübner, J., Vieira, R.: Jason and the Golden Fleece of Agent-Oriented
Programming. In: Multi-Agent Programming. Multiagent Systems, Artificial Soci-
eties, and Simulated Organizations, vol. 15, pp. 3–37. Springer, Heidelberg (2005)

17. Rao, A.S.: AgentSpeak (L): BDI agents speak out in a logical computational lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

18. Hindriks, K., Boer, F.D., der Hoek, W.V., Meyer, J.: Agent Programming in 3APL.
Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

19. Ross, R.J., Collier, R.W., O’Hare, G.M.P.: Af-apl - bridging principles and practice
in agent oriented languages. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni,
A.E.F. (eds.) Programming Multi-Agent Systems. LNCS (LNAI), vol. 3346, pp.
66–88. Springer, Heidelberg (2005)

20. Fallah-Seghrouchni, A.E., Suna, A.: CLAIM: A Computational Language for Au-
tonomous, Intelligent and Mobile Agents. In: Dastani, M., Dix, J., El Fallah-
Seghrouchni, A. (eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 90–110.
Springer, Heidelberg (2004)

21. Shapiro, S., Lesperance, Y., Levesque, H.: Specifying communicative multi-agent
systems with ConGolog. In: Working Notes of the AAAI Fall 1997 Symposium on
Communicative Action in Humans and Machines, vol. 1037, pp. 72–82 (1997)

22. Thielscher, M.: FLUX: A logic programming method for reasoning agents. Theory
and Practice of Logic Programming 5(4-5), 533–565 (2005)

23. Bordini, R., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J.,
Leite, J., O’Hare, G., Pokahr, A., Ricci, A.: A Survey of Programming Languages
and Platforms for Multi-Agent Systems. Informatica 30(1), 33–44 (2006)

24. Mascardi, V., Martelli, M., Sterling, L.: Logic-based specification languages for
intelligent software agents. Theory and Practice of Logic Programming Jour-
nal (2004)

25. Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.): Multi-Agent Pro-
gramming. Multiagent Systems, Artificial Societies, and Simulated Organizations,
vol. 15. Springer, Heidelberg (2005)

26. Hillard, R.: Recommended practice for architectural description of software-
intensive systems. Technical report, IEEE (2000)

27. Hayes-Roth, B., Pfleger, K., Lalanda, P., Morignot, P., Balabanovic, M.: A domain-
specific software architecture for adaptive intelligent systems. IEEE Transactions
on Software Engineering 21(4), 288–301 (1995)

28. Bratman, M.E., Israel, D.J., Pollack, M.: Plans and resource-bounded practical
reasoning. Computational Intelligence Journal 4(4), 349–355 (1988)

36 J.J. Gomez-Sanz

29. Jennings, N.R., Wittig, T.: ARCHON: Theory and Practice. In: Distributed Ar-
tificial Intelligence: Theory and Praxis. Eurocourses: Computer and Information
Science, vol. 5. Springer, Heidelberg (1992)

30. Müller, J., Pischel, M.: The Agent Architecture InteRRaP: Concept and Applica-
tion. PhD thesis, Deutsches Forschungszentrum für Künstliche Intelligenz (1993)

31. Ferguson, I.: Touring Machines: An architecture for Dynamic, Rational Agents.
PhD thesis, Ph. D. Dissertation, University of Cambridge, UK (1992)

32. Brazier, F., Dunin-Keplicz, B., Jennings, N., Treur, J.: DESIRE: Modelling Multi-
Agent Systems in a Compositional Formal Framework. International Journal of
Cooperative Information Systems 6(1), 67–94 (1997)

33. Brazier, F., Treur, J., Wijngaards, N., Willems, M.: Temporal semantics of com-
plex reasoning tasks. In: Proceedings of the 10th Banff Knowledge Acquisition for
Knowledge-based Systems workshop, vol. 96, pp. 1–15 (1996)

34. Cornelissen, F., Jonker, C., Treur, J.: Compositional Verification of Knowledge-
based Systems: a Case Study for Diagnostic Reasoning. In: Plaza, E. (ed.) EKAW
1997. LNCS, vol. 1319, pp. 65–80. Springer, Heidelberg (1997)

35. Wooldridge, M., Jennings, N.: Agent Theories, Architectures, and Languages: A
Survey. Intelligent Agents 22 (1995)

36. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowl-
edge Engineering Review 10(2), 115–152 (1995)

37. Bellifemine, F., Poggi, A., Rimassa, G.: Jade: a fipa2000 compliant agent develop-
ment environment. In: AGENTS ’01: Proceedings of the fifth international confer-
ence on Autonomous agents, pp. 216–217. ACM Press, New York (2001)

38. Nwana, H.: Zeus: A Toolkit for Building Distributed Multi-agent Systems. Applied
Artificial Intelligence 13(1), 129–185 (1999)

39. Demazeau, Y.: From interactions to collective behaviour in agent-based systems.
In: Proceedings of the 1st. European Conference on Cognitive Science.

40. Kinny, D., Georgeff, M., Rao, A.: A methodology and modelling technique for
systems of BDI agents. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996.
LNCS, vol. 1038, pp. 56–71. Springer, Heidelberg (1996)

41. Caire, G., Coulier, W., Garijo, F.J., Gomez, J., Pavón, J., Leal, F., Chainho, P.,
Kearney, P.E., Stark, J., Evans, R., Massonet, P.: Agent oriented analysis using
message/uml. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001.
LNCS, vol. 2222, pp. 119–135. Springer, Heidelberg (2002)

42. Evans, R., Kearney, P., Caire, G., Garijo, F., Gomez-Sanz, J.J., Pavon, J., Leal, F.,
Chainho, P., Massonet, P.: Message: Methodology for engineering systems of soft-
ware agents (September 2001), http://www.eurescom.de/~pub-deliverables/

p900-series/P907/TI1/p907ti1.pdf

43. Henderson-Sellers, B., Giorgini, P.: Agent-oriented methodologies. Idea Group Pub.
USA (2005)

44. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing
as Interaction (A Roadmap for Agent Based Computing). AgentLink (2005)

45. Zambonelli, F., Omicini, A.: Challenges and Research Directions in Agent-Oriented
Software Engineering. Autonomous Agents and Multi-Agent Systems 9(3), 253–283
(2004)

46. Luck, M., McBurney, P., Preist, C.: A Manifesto for Agent Technology: Towards
Next Generation Computing. Autonomous Agents and Multi-Agent Systems 9(3),
203–252 (2004)

47. Myers, G., Sandler, C., Thomas, T.M., Badgett, T.: The Art of Software Testing.
John Wiley and Sons, West Sussex, England (2004)

http://www.eurescom.de/~pub-deliverables/p900-series/P907/TI1/p907ti1.pdf
http://www.eurescom.de/~pub-deliverables/p900-series/P907/TI1/p907ti1.pdf

The Construction of Multi-agent Systems as an Engineering Discipline 37

48. Gomez-Sanz, J., Pavon, J., Garijo, F.: Estimating Costs for Agent Oriented Soft-
ware. In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp.
218–230. Springer, Heidelberg (2006)

49. Bernon, C., Cossentino, M., Pavon, J.: Agent-oriented software engineering. The
Knowledge Engineering Review 20(02), 99–116 (2006)

50. Gonzalez-Perez, C., McBride, T., Henderson-Sellers, B.: A Metamodel for Assess-
able Software Development Methodologies. Software Quality Journal 13(2), 195–
214 (2005)

51. Henderson-Sellers, B.: Creating a Comprehensive Agent-Oriented Methodology:
Using Method Engineering and the OPEN Metamodel. In: Agent-Oriented
Methodologies, pp. 368–397. Idea Group, USA (2005)

52. Cernuzzi, L., Cossentino, M., Zambonelli, F.: Process models for agent-based devel-
opment. Engineering Applications of Artificial Intelligence 18(2), 205–222 (2005)

53. Bot́ıa, J.A., Hernansaez, J.M., Skarmeta, F.G.: Towards an approach for debug-
ging mas through the analysis of acl messages. In: Lindemann, G., Denzinger, J.,
Timm, I.J., Unland, R. (eds.) MATES 2004. LNCS (LNAI), vol. 3187, pp. 301–312.
Springer, Heidelberg (2004)

54. Lam, D.N., Barber, K.S.: Comprehending agent software. In: Proceedings of the
fourth international joint conference on Autonomous agents and multiagent sys-
tems, pp. 586–593. ACM Press, New York (2005)

55. DeLoach, S., Wood, M.F.: Developing multiagent systems with agenttool. In:
Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol. 1986,
pp. 46–60. Springer, Heidelberg (2001)

56. Pavon, J., Gomez-Sanz, J.J., Fuentes, R.: The INGENIAS Methodology and Tools.
In: Agent-Oriented Methodologies, pp. 236–276. Idea Group Publishing, USA
(2005)

57. Bourque, P., Dupuis, R., Abran, A., Moore, J., Tripp, L.: The guide to the Software
Engineering Body of Knowledge. Software 16(6), 35–44 (1999)

58. Gomez-Sanz, J.J., Gervais, M.P., Weiss, G.: A Survey on Agent-Oriented Soft-
ware Engineering Research. In: Methodologies and Software Engineering for Agent
Systems, pp. 33–62. Kluwer Academic Publishers, Dordrecht (2004)

	The Construction of Multi-agent Systems as an Engineering Discipline
	Introduction
	The Origins of Software Engineering
	Lessons Learnt

	At the Beginning Everything Was Artificial Intelligence
	Focusing on Multi-agent Systems Construction
	The Need of Engineering Methods
	Proposed Lines of Research
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

