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Preface

The seventh international workshop ESAW 2006 – Engineering Societies in the
Agents World VII—was hosted in the School of Computer Science and Infor-
matics, University College Dublin, Ireland in September 2006. This workshop
was organized as a stand-alone event, running over three days, and continued
and enhanced the high-quality conference theme that now uniquely characterizes
the ESAW workshop series. ESAW VII built upon the success of prior ESAW
workshops – Kuşadasi (2005), London (2004) and Toulouse (2004), going back
to the inaugural workshop held in Berlin (2000). This workshop was attended by
50 participants from 13 different countries. Over 25 researchers presented their
work and substantial time was allocated each day for ad-hoc interactive discus-
sions on those presented topics. Indeed, these opportunities for the exchange of
views and open discussion with fellow experts are one of the hallmarks of the
ESAW series. Discussions coalesced around ESAW’s main themes:

– Engineering multi-agent systems
– Methodologies for analysis, design, development and verification of agent

societies
– Interaction and coordination in agent societies
– Autonomic agent societies
– Trust in agent societies

For more information about the workshop, the interested reader is referred to
the ESAW 2006 WWW site1. The original contributions have been published as
a Technical Report (UCD-CSI-2006-5) and this may be obtained freely from the
Technical Report section on the WWW page of the School of Computer Science
and Informatics at University College Dublin2.

These post-proceedings continue the series published by Springer (ESAW
2000: LNAI 1972; ESAW 2001: LNAI 2203; ESAW 2002: LNAI 2577; ESAW
2003: LNAI 3071; ESAW 2004: LNAI 3451; ESAW 2005: LNAI 3963). This
volume contains substantially revised and extended versions of selected papers
from ESAW 2006 that both address and accommodate comments from the two
rounds of reviews, as well as incorporating feedback from comments and ques-
tions that arose during the workshop. In addition to the selected papers, the
Program Chairs directly invited and evaluated some papers to further improve
the quality of the post-proceedings.

The workshop organizers would like to acknowledge the support of the School
of Computer Science and Informatics at University College Dublin, Fáilte Ire-
land, and Dublin Tourism for their practical support. We would also like to

1 http://esaw06.ucd.ie
2 http://csiweb.ucd.ie/Research/TechnicalReports.html
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acknowledge the generous efforts of the Steering Committee for their guidance,
the Program Committee for their insightful reviews and the local Organizing
Committee for arranging a thoroughly enjoyable event. We would also like to
offer our thanks for the continued patronage of the large number of researchers
who submitted their work for consideration. Finally, thanks to Christine Guen-
ther and Alfred Hofmann, without whose efforts these post-proceedings would
have floundered.

April 2007 Gregory O’Hare
Alessandro Ricci
Michael O’Grady

Oğuz Dikenelli
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Guido Boella Università degli Studi di Torino, Italy
Monique Calisti Whitestein Technologies, Switzerland
Jacques Calmet University of Karlsruhe, Germany



VIII Organization

Cristiano Castelfranchi ISTC-CNR, Rome, Italy
Luca Cernuzzi Universidad Católica, Paraguay
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Managing Resources in Constrained Environments with Autonomous
Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

C. Muldoon, G.M.P. O’Hare, and M.J. O’Grady

Trust in Agent Societies

Towards a Computational Model of Creative Societies Using Curious
Design Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Rob Saunders

Privacy Management in User-Centred Multi-agent Systems . . . . . . . . . . . . 354
Guillaume Piolle, Yves Demazeau, and Jean Caelen

Effective Use of Organisational Abstractions for Confidence Models . . . . 368
Ramón Hermoso, Holger Billhardt, Roberto Centeno, and
Sascha Ossowski



Table of Contents XI

Competence Checking for the Global E-Service Society Using Games . . . 384
Kostas Stathis, George Lekeas, and Christos Kloukinas

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401



G. O’Hare et al. (Eds.): ESAW 2006, LNAI 4457, pp. 1–24, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

“It’s Not Just Goals All the Way Down” – “It’s Activities 
All the Way Down” 

Maarten Sierhuis  

Research Institute for Advanced Computer Science 
NASA Ames Research Center   

M/S 269-1 
Moffett Field,  

CA 94035-1000, USA 
Maarten.Sierhuis-1@nasa.gov 

Abstract. The rational agent community uses Michael Bratman’s planning 
theory of intention as its theoretical foundation for the development of its agent-
oriented BDI languages. We present an alternative framework based on situated 
action and activity theory, combining both BDI and activity-based modeling, to 
provide a more general agent framework. We describe an activity-based, as 
opposed to a goal-based, BDI language and agent architecture, and provide an 
example that shows the flexibility of this language compared to a goal-based 
language. 

1   Introduction 

This chapter is written based on a talk with the same title given as an invited talk at 
the seventh annual international "Engineering Societies in the Agents World" (ESAW 
2006) conference. The title is meant as a tongue-in-cheek provocation towards the 
BDI agent community being proponents of agents as goal-driven planners. A previous 
presentation about the Brahms multiagent simulation and development environment, 
at the 2006 Dagstuhl seminar on Foundations and Practice of Programming Multi-
Agent Systems, had created debates with agent language researchers about the 
primary use of goal-driven behavior in agent languages [1]. In this talk, we intended 
to put forth an alternative to agents being solely goal-driven planners. We not only put 
forward an alternative view on human behavior (a view that relies on activities instead 
of goal-driven action), but we also presented our Brahms multiagent language and 
simulation environment that is BDI-like without the notion of goals as the driving 
force of agent action [2][3]. In this chapter, we try to more thoroughly explain this 
activity-based BDI approach and present not only the Brahms language and the 
workings of the architecture, but present the theoretical basis for this alternative view 
of human behavior. The theory of activity-based modeling is rooted in situated action, 
cognition in practice, situated cognition and activity theory.  

It has to be noted that this paper cannot do justice to the large number of research 
articles that have been written on these concepts. We merely can scratch the surface, 
and we do not claim that we explain these concepts completely. We quote heavily 
from writings of other, more prominent, researchers to explain these concepts, and we 
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advice the reader to study them in order to get a deeper understanding of the theories 
and research behind them. What we hope this paper contributes to is a theory, practice 
and tool of how to analyze, design and implement large agent systems. Our hope is 
also that we succeed in providing a well enough argument for activity-based rational 
agents as a more general alternative to goal-driven ones. 

The rational agent community, over the last ten or so years, has settled on using 
Michael Bratman’s planning theory of intention as its theoretical foundation for the 
development of its agent-oriented BDI languages [4][5]. Fundamentally, we believe 
that it is very good for a programming paradigm and its subsequent languages to be 
based on a theory. In general, programming is about modeling the world as we know 
it, and a specific program embeds a particular theory—the programmer’s theory of the 
world being modeled. When a programming language itself is based on a solid theory 
it can help the programmer. However, this is both a good and a bad thing. The good 
thing is that we can have a tool that is sound—based on a theory—and thus the 
programs that are being developed with it will, by definition, adhere to the theory. 
This helps the programmer not to have to invent a new theory before implementing a 
model based on it. The theory is already there. For example, all computer 
programmers use Turing’s theory of universal computing machines as their basis for 
developing programs as a sequence of instructions.1 The bad thing is that believers of 
the theory tend to apply the theory in all sorts of ways that might, or more 
importantly, might not be within the theory’s relevance. A second problem is that the 
theory might be flawed, or at least, can have alternative theories that put in question a 
fundamental part of the theory. 

In this chapter we discuss some of the fundamental underpinnings of the theory on 
which the BDI programming languages of today are based. We point out that a 
fundamental assumption of Bratman’s theory has at least one alternative theory that is 
based on the inverse assumption. This is interesting in the sense that both theories 
cannot be correct. After we discuss some of Bratman’s theory and its fundamental 
assumption, we will move on to describe the alternative theory and its assumption. 
Then, we will merge the two theories into a theory that combines both and thus will 
provide a more general theory on which future BDI languages could be based. We 
then move on to describe an activity-based BDI language and agent architecture based 
on this new more general theory, and provide an example that shows the flexibility of 
this language compared to a goal-based BDI language. 

2   Theoretical Stances 

2.1   Bratman’s Planning Theory 

Bratman’s philosophical treatise on human behavior is based on commonsense or folk 
psychology—a not falsifiable theory based on propositional attitude ascriptions, such 
as “belief”, “desire”, “pain”, “love,” “fear”. The fact that the theory on which 
Bratman’s treatise is based is not falsifiable makes it not a theory, but a theory about 

                                                           
1 Alan Turing (1936), "On Computable Numbers, With an Application to the Entscheidungs-

problem", Proceedings of the London Mathematical Society, Series 2, Volume 42 (1936). 
Eprint. Reprinted in The Undecidable pp.115-154. 
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the existence of a theory, also known as a theory-theory. Herein lays the division in 
camps of believers: Those who believe in the theory and those who do not, and then 
those who believe in some of it. It is difficult to decipher in which camp the rational 
agent community lays. To me there are only two possibilities. First, it is completely 
possible that people in the rational agent community believe in Bratman’s Planning 
Theory [4]. Falling in this camp means that one agrees with the assumption that 
people are planning agents. This has a major implication, to which we will return in 
the next section. The other possibility is that people in this camp do not necessary 
believe that Bratman’s theory says something in particular about people, but it says 
something about any kind of animal or any non-living object. People in this camp care 
less about the fact that Bratman’s theory only talks about people and not about 
systems in general, but they nevertheless believe that using planning to deliberatively 
decide on future actions is a very attractive presupposition, and even more, it is a very 
useful concept for computer programming. For people in this camp every behavior, 
whether human or not, can be reduced to a problem that needs to be solved, because 
in that case Bratman’s Planning Theory can be used to predict and execute actions to 
solve it. Thus, in short, Bratman’s theory can easily be used to solve any behavioral 
“problem” with an algorithm developed by researchers of artificial intelligence and 
cognitive science. 

Let us briefly turn to Bratman’s theory, and let us start by stating that we do not 
have the space or the time to fully describe Bratman’s theory here. We only focus on 
those parts that are relevant for our ultimate points. Since this paper is part of a book 
about engineering software agents, we assume for simplicity sake that the reader is 
familiar with the concepts belief, desire and intention, and we therefore do not explain 
these concepts. What does Bratman’s theory say? 

People are planning agents => they settle in advance on complex 
plans for the future and these plans guide their conduct. 

This is Bratman’s fundamental assumption. This is neither fully explained, nor is it 
proven by his theory. It is simply a supposition. The only evidence for this 
supposition being true is given by Bratman in the form of a reference to Simon’s 
notion that people are bounded rational agents [6]. Most artificial intelligence 
researchers, economists and cognitive scientists agree with Simon’s claim. Never 
mind that Simon’s notion came about as a reaction on economic models always 
assuming that people are hyperrational2. Simon postulated that people are boundedly 
rational and the only way of behaving is by satisficing3. 

People, as planning agents, have two capacities: 1) the capacity to act 
purposeful, 2) the capacity to form and execute plans. 

The following quote exemplifies the extent to which Bratman justifies his claim 
that people must be planning agents; “So we need ways for deliberation and rational 

                                                           
2 In this context, hyperrational means that people are always rational, to a fault, and would 

never do anything to violate their preferences. 
3 “Satisficing is a behaviour which attempts to achieve at least some minimum level of a 

particular variable, but which does not necessarily maximize its value.” from Wikipedia, 
12/24/2006. 
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reflection to influence action beyond the present; and we need sources of support for 
coordination, both intrapersonal and interpersonal. Our capacities as planners help us 
meet these needs” [4, p. 3]. In here lies Bratman’s basic “proof” that people are 
planning agents. His reasoning goes something like this; Planning is an algorithmic 
way to deal with deciding on what to do in the future, i.e. future action. Planning can 
be seen as a sort of coordination. People need to decide on future action; otherwise 
they could never do anything. Deliberation takes time and it is not in and of it-self 
useful for taking action. We need a way to influence what we do in the future. People 
need to coordinate their actions, as well as what they do together. Therfore, people 
need a planning algorithm to do this. Quod erat demonstrandum. 

Goal-Based Modeling 
Those who believe in Bratman’s Planning Theory almost always also believe in 
people being general problem-solvers, and that deciding what to do next is a problem 
to be solved for which people use a goal-based or goal-driven reasoning method. The 
reason that this way of thinking is almost always synonymous with believing in the 
BDI agent architecture is that it fits very well with Bratman’s Planning Theory. To be 
goal-based means that one stores information about the world and about situations 
that are desirable, which we refer to as the goals to be reached. Our model of current 
situation or current state and of goals or future state, allows us then to choose among 
the multiple future states we can think of and select which one should be next. This 
next state is then called our (sub)goal. This maps, in principle, very well onto the 
concepts of beliefs, desires and intentions. In a more general way, not necessarily 
only related to how people operate, we might change the names of these concepts into 
stored current state, desired future state or goal, and intent to act. It is the concept of 
desire that makes the BDI architecture inherently a goal-driven architecture and BDI 
agents problem-solving agents. 

This model of agent behavior is compelling to people adhering to Bratman’s 
Planning Theory, because it also fits very well with some of the most prominent 
theories of cognition, namely Newell’s Unified Theory of Cognition and Anderson’s 
ACT-R model of cognition [7][8]. However, there are theories and implemented 
architectures out there that are alternatives to goal-driven planning. One of the most 
prominent alternatives is the behavior-based robot architecture that shows that robots 
can achieve intelligent behavior that is not based on the existence of an explicit plan 
and of goal-driven behavior. Indeed, Brooks argues convincingly, as we are trying to 
do in this chapter, that “planning is just a way of avoiding figuring out what to do 
next.” [9, Chapter 6, p. 103]. Brooks’ basic argument goes something like this: The 
idea of planning and plan execution is based on an intuition. There is no evidence that 
it has to be the only way to develop intelligent behavior. Putting sensors and effectors 
together using a program can also create intelligent behavior.  

Thus a process-way of acting is just as possible as a state way of reasoning. In the 
Artificial Intelligence and Robotics community Brooks is the most well known 
researcher that argues against Bratman’s Planning Theory. However, there have also 
been social- and cognitive scientists that have argued against the Planning Theory, not 
from an engineering or computational angle, but from a social and behavioral angle. 
This is the subject of the next section, and together with Brooks’ argument will form 
the basis for our thesis that an activity-based approach is a more general approach, 
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incorporating both a goal-based and a behavior-based approach for BDI agent 
architectures. 

2.2   The Alternative View 

Let us turn to an alternative view of human behavior, namely a view of human 
purposeful action based on ethnomethodology4. Suchman, in her book “Plans and 
Situated Actions,” takes a strong stance against the traditional view of planned 
purposeful action. It is this alternative view that in our opinion best expresses the 
problems with Bratman’s Planning Theory as a theory about human purposeful  
action [8]. 

Situated Action 
Suchman’s view takes human purposeful action as its starting point for understanding 
human behavior, but it is not a theory of the brain’s functioning. Suchman’s view is 
not presented as a theory of human behavior, as it does not predict human behavior. 
However, Suchman investigates an alternative view to the view deeply rooted in 
Western cognitive science, that human action is only and essentially determined by 
plans. Suchman describes human activity from a socially-, culturally- and 
environmentally situated point of view, rather than from a cognitive point of view. 
This different angle on human activity opens up an entirely new take on purposeful 
action, namely that learning how to act is dependent on the culture in which one 
grows up, and thus there is variation based on the situation. Whether our actions are 
ad hoc or planned depends on the nature of the activity and the situation in which it 
occurs.  

Although we might contrast goal-directed activities from creative or expressive 
activities, or contrast novice with expert behavior, Suchman argues convincingly that 
every purposeful action is a situated action, however planned or unanticipated. 
Situated action is defined as “actions taken in the context of particular, concrete 
circumstances.” [p. viii] Suchman posits an important consequence of this definition 
of purposeful action that is best retold with a quote:  

“… our actions, while systematic, are never planned in the strong sense 
that cognitive science would have it. Rather, plans are best viewed as weak 
resources for what is primarily ad hoc activity. It is only when we are 
pressed to account for the rationality of our actions, given the biases of 
European culture, that we invoke guidance of a plan.” [p. ix] 

Suchman goes on to say that plans stated in advance of our action are resources 
that are necessarily vague, and they filter out the precise and necessary detail of 
situated actions. Plans are not only resources used in advance of situated action, they 
are also used as a reconstruction of our actions in an explanation of what happened. 
However, we filter out those particulars that define our situated actions in favor of 
explaining aspects of our actions that can be seen in accordance with the plan. Thus, 
                                                           
4

  Ethnomethodology (literally, 'the study of people's (folk) methods') is a sociological discipline 
which focuses on the ways in which people make sense of their world, display this 
understanding to others, and produce the mutually shared social order in which they live. 
[Wikipedia, 12/27/06]. 
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according to Suchman, in strong contrast with the view of Bratman, plans are 
necessarily abstract representations of our actions and as such cannot serve as an 
account of our actions in a particular situation. In other words, our actions are not 
planned in advance, but are always ad hoc. Let us take a brief look at how cognitive 
science and AI are changing to a science of situated cognition. 

Situated Cognition 
Behavioral robotics is part of a new stream in AI, evolving from text-based or 
symbolic architectures of expert systems, descriptive cognitive models, and indeed 
BDI-like planning, to reactive, self-organizing situated robots and connectionist 
models. Many scientists have started to write about alternatives to the “wet computer” 
as a symbolic planning machine, such as Suchman [10], Brooks [9], Agre [11], Fodor 
[12], Edelman [13], Winograd and Flores [14]. We surely are leaving out others. In 
this section we will briefly present the work of Bill Clancey, because he is both the 
father of Brahms (the activity-based BDI language and multiagent architecture we 
describe in this paper) and a well-known father of expert tutoring systems (a purely 
symbolic approach), who has “gone the other way.” Clancey is one of the proponents 
of situated cognition, and having written two books about it, one of the experts in the 
field [15][16]. 

Situated cognition goes one-step further than Suchman’s situated action, namely it 
posits an alternative human memory architecture to the symbolic memory architecture 
of Newell and Anderson [7][8]. Clancey, in [16], develops an architecture of human 
memory at the neural level that is quite different from an architecture of a long-term 
memory storing productions and a short-term memory for matching and copying text 
(or symbols) into a “buffer.” Clancey’s arguments against the “memory as stored 
structures” hypothesis of Newell and Anderson has far reaching consequences for the 
Planning Theory of Bratman, namely that BDI-type planning cannot be the process 
for human thinking. It are exactly the concepts on which planning is based, like 
search, retrieve, and, match, that are associated with thinking as a “process of 
manipulating copies of structures, retrieved from memory” and “learning [as] a 
process of selectively writing associations back into long-term memory [p. 3].” 

What is important for situatedness is the notion that thinking is a situated 
experience over time. In Newell and Anderson’s model, time plays an important role 
in the matching of antecedents (of productions in long-term memory) and retrieval of 
the matched production from long-term memory and copying into short-term 
memory. In other words, the time it takes to think has little to do with being in the 
activity of doing something in the world, but rather it has to do with being in the 
activity of matching, retrieving and copying of symbols. In Clancey’s model, 
however, the overall time it takes for neuronal processes to subsequently activate in 
the brain is the essence of situated action and  (subconscious) conceptualization 
occurs as an activity. The essential part of the Newell and Anderson models of 
cognition that is disputed is the sequential relation of:  

sensation ⇒ perception memory ⇒ processing/thought and planning ⇒ action.  

Instead, these are processes coupled in activation relations called conceptual 
coordination. 
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All else being equal, we adhere to the view that actions are situated as the starting 
point for developing an activity modeling approach. Not in the least, because the 
situated view of human activity constrains us less, by not having to commit to theories 
about brain function that model problem-solving tasks at the millisecond range. It 
frees us from having to model what is “in between our ears,” and opens up our focus 
on modeling an agent’s activities as larger time-taking situated actions within the 
environment. It finally enables us to model human behavior based on individual and 
social interaction with other individuals and artifacts in the world.  

Activity-Based Modeling: Combining BDI with Situated Action 
In the previous section, we laid the groundwork for activity-based modeling. 
Suchman’s treatise on situated action is important, because it proofs that modeling 
intention to act may not only be goal-based. In fact, Suchman argues convincingly 
that an intention leading every-day life action is always situated in an environment, 
and is only goal-driven when there is a real-world problem to be solved. The 
overarching conclusion of this alternative view is that acting in the world is not only 
bounded by rationality, i.e. reasoning—or rather problem-solving—in the abstract, but 
is mainly situated in an environment that is historically, culturally and socially learned 
by its changes over time. It is thus important to not leave out the environment. In the 
remainder of this chapter, we define a modeling framework that combines the 
concepts of belief, desire and intention with that of situated action, to form an 
activity-based modeling approach that can be used not only to model the work 
practices of people, but also to model rational agent behavior in any multiagent 
system. By now, it should be no surprise that in this modeling framework an agent’s 
behavior is not goal-based, but rather activity-based. This means that an agent’s 
desires are not the possible subgoals the agent derives from its intention to solve a 
particular problem. Rather, as we will see, an agent’s desires are reflected in the 
agent’s motives for performing activities, and these motives are dependent on the 
environment and the situation, i.e. the state of the world at that moment. In the next 
section we describe what is meant with the word situated. 

Modeling the Environment 
The social anthropologist Jean Lave studied how people apply cognition in practice 
[17]. In the Adult Match Project she studied how people do math. She found that the 
same individuals do arithmetic completely different depending on the situation they 
are in. The results from her studies are significant, because solving mathematical 
problems has for a long time been the way scientists have studied general problem-
solving in school and in the laboratory. Lave and her colleagues studied adult 
arithmetic practices in every-day settings, such as cooking and grocery shopping. 
Their work shows that solving mathematical problems is not so much constraint by 
how much of a math expert one is because of their math education, but because of the 
setting or situation in which the arithmetic activity takes place. Lave argues 
convincingly that, in order to understand problem solving we need to model the 
problem-solving process in situ. 

Russian psychologist Lev Semyonovich Vygotsky plays an important role in 
developmental psychology. Vygotsky’s deeply experimental work on child learning 
and behavior developed the notion that cognition develops at a young age through 
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tools and the shared social and cultural understanding of tools in the form of 
internalized signs [18]. For example, a ten-month-old child is able to pull a string to 
obtain a cookie. However, it is not till the child is about 18 months that it is able to 
remove a ring from a post by lifting it, rather then pulling on it. Vygotsky writes; 
“Consequently, the child’s system of activity is determined at each specific stage both 
by the child’s degree of organic development and by his or her degree of mastery in 
the use of tools.” [p. 21] The internalization of mimicry of tool use by young infants 
into a shared meaning of signs is, according to Vygotsky, intertwined with the 
development of speech. At the same time, speech plays an important role in the 
organization of a child’s activities. Vygotsky writes; “Our analysis accords symbolic 
activity a specific organization function that penetrates the process of tool use and 
produces fundamentally new forms of behavior.” [p. 24] While we will discuss the 
concept of activity later on, here it is important to see the essential importance of 
physical artifacts used as tools within an activity. Similar to the role of an artifact as a 
tool, the role of artifacts as the products of an activity plays an equally important role 
in what Vygotsky calls practical intelligence. Figure 1. shows the use of an artifact in 
the activity—its role—that transforms the artifact into a tool or a product of the 
activity, used or created by the subject. Outside the activity the artifact is just an 
object in the world. To the observer the object is necessary for the activity to be 
performed. 

 

Fig. 1. Mediated relationship of artifacts in activities [3, p. 62] 

Situatedness in Brahms is modeled by representing places and locations as objects 
in a conceptual hierarchical geography model and by representing artifacts as objects 
in a hierarchical object model, separate from modeling the agents and their possible 
activity behavior [3]. 

3   Modeling Places and Locations 

In Brahms’ geography model relevant locations are modeled conceptually as area 
objects in a part-of hierarchy. Locations are areas, which are instances of classes of 
areas called areadefintions. Areas can be part of other areas. Using these two simple 
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concepts we are able to model any environment as a conceptual hierarchical structure 
of area objects. For example, we can model the geography for UC Berkeley students 
studying at South Hall and going for lunch on Telegraph or Bancroft Avenue in 
Berkeley as follows: 

area AtmGeography instanceof World 
// Berkeley 
area Berkeley instanceof City partof AtmModelGeography 
// inside Berkeley 
area UCB instanceof UniversityCampus partof Berkeley 
area SouthHall instanceof UniversityHall partof UCB 
area SpraulHall instanceof UniversityHall partof UCB 
area BofA_Telegraph_Av_2347 instanceof BankBranch 
     partof Berkeley 
area Wells_Fargo_Bancroft_Av_2460 instanceof BankBranch 
     partof Berkeley 
area Blondies_Pizza_Telegraph_Av_2347 instanceof 
     Restaurant partof Berkeley 
area Tako_Sushi_Telegraph_Av_2379 instanceof Restaurant 
     part of Berkeley 

Being situated means that Brahms agents are located within the geography model. 
Area objects are special kinds of objects that can inhabit agents. Agents can have an 
initial location. For example, agent Joe can initially be located in area SouthHall as 
follows: 

agent Joe { 
  intial_location: SouthHall; 
} 

People do not stay in one location, but move around. Similarly, Brahms agents can 
move around within a geography model. Agent (and object) movement is performed 
with a move activity. How activities are performed is described in the next section. 
Although a geography model and agent and object location and movement within 
such a model is essential for modeling situatedness, the state of the world needs to be 
modeled as well. Current BDI architectures do not model the state of the world and 
therefore do not allow for representing a factual state of the world independent of the 
agent’s beliefs about that state. In Brahms the state of the world is modeled as facts5. 
For example, the location of an agent is a fact, because, regardless of the beliefs of 
agents, the agents have a location within the geography model. 

Fact: (Joe.location = SouthHall) 

To model facts about areas we give the areas attributes and relations. For example, 
we can model the temperature in South Hall and the fact that South Hall is part of the 
UC Berkeley campus. To do this, we first define these as an attribute and relation in 
the area definition class. This way all university hall areas we model will inherit them. 

                                                           
5 Here we deal with solipsism, since the model is an interpretation of the world by the modeler. 

Facts, as such, are thus not real facts, but only the modeler’s representation of world states 
independent of the beliefs of agents. 
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areadefinition UniversityHall { 
  attributes: 
    public int temperature; 
  relations: 
    public UniversityCampus partOf; 
} 

Having defined the attributes and relations, we can have additional facts about the 
world. 

Facts: 
  (SouthHall partOf UCB); 
  (SouthHall.temperature = 72); 

4   Modeling Objects and Artifacts 

As discussed above, artifacts in the world are important aspects for modeling situated 
action. Similar to the geography model, we model artifacts as object instances of a 
class hierarchy. Actually, areas are special kind of objects and areadefinitions are 
special classes. However, artifacts are more like agents than they are like areas. 
Artifacts are located and some can display situated behavior. Some types of objects, 
for instance a book, can also store information. Then there are data objects, which can 
represent located information conceptually. We use a class hierarchy to model these 
artifacts and data objects in the world. For example, to model a book Joe the student 
is reading we can define the following object model: 

class Book { 
  attributes: 
    public String title; 
    public Writer author; 
  relations: 
    public Student belongsTo; 
    public BookChapter hasChapter 
} 

object BookPlansAndSituatedAction instanceof Book { 
  initial_location: SouthHall; 
  initial_facts: 
    (current.title = “Plans and Situated Action”); 
    (current.author = LucySuchman); 
    (current.belongsTo = Joe); 
} 

We can model the content of the book as conceptual chapter data objects. For 
example: 

conceptual_class BookChapter { 
  attributes: 
    public String title; 
    public String text; 
} 
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We model the information held by the object as “beliefs” of the object6. Thus, we 
can model Chapter 4 in Suchman’s book as a conceptual BookChapter object the 
Book object “stores” information about: 

conceptual_object Chapter4 instanceof BookChapter { } 

object BookPlansAndSituatedAction instanceof Book { 
  initial_beliefs: 
    (current hasChapter Chapter1); 
    (current hasChapter Chapter2); 
    (current hasChapter Chapter3); 
    (current hasChapter Chapter4); 
    (current hasChapter Chapter5); 
    (current hasChapter Chapter6); 
    (current hasChapter Chapter7); 
    (current hasChapter Chapter8); 
    ... 
    (Chapter4.title = “Situated Action”); 
    (Chapter4.text = “… I have introduced the  
                     term situated action …”); 
} 

The key point in modeling information is to locate the BookChapter content as 
information held within the Book object. To do this, we model the content of the book 
as the “beliefs of the book.” 

Now that we discussed how situatedness is modeled in Brahms, we turn to 
modeling activities. To understand what activities are, we must first understand that 
human action is inherently social, which means it is “outside the brain” involving the 
environment. The key thing is that action is meant in the broad sense of an activity, 
and not in the narrow sense of altering the state of the world. In the next section we 
discuss the concept of an activity and how to model it. 

5   Modeling Activities 

Like Bratman’s notion of humans as planners based on commonsense psychology, the 
notion of human behavior in terms of activities is based on the Marxist activity theory, 
developed initially between 1920s and 1930s by Russian psychologists Vygotsky and 
Leont’ev [18][19]. Activity theory is also a meta-theory, as is commonsense 
psychology, and can better be seen as a framework with which human behavior can 
be analyzed as a system of activities. Activity theory has become more established in 
last twenty years in its further development by educational and social scientists 
[20][21], as well as human-computer interaction scientists [22]. 

The unit of behavioral analysis in Activity theory is, not surprisingly, an activity. 
Activity theory defines a relationship between an activity and the concept of motive. 
Motives are socially learned and shared with people from the same culture, 
organization, or more generally a community of practice [23]. For instance, all 
activities of flight controllers and directors at NASA Johnson Space Center’s Mission 

                                                           
6 We call information contained in an object also beliefs to minimize language keywords. 
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Control for the International Space Station are driven by the shared motives of 
keeping the space station healthy and making sure the space station crew is safe. 
Motives and goals, at first glance, seem to be similar, but motives, unlike goals, are 
situational and environmental states that we want to maintain over relatively long 
periods of time, such as keeping the astronauts safe and healthy onboard the space 
station. Motives are not internal states that drive our minute-by-minute action and 
deliberation, but enable a shared external understanding of our actions in the world 
(e.g. flight controllers are not, every minute of their time, working on tasks that are 
driven by the goal of keeping astronauts alive). Motives keep us in “equilibrium” with 
the system’s environment and allow us to categorize actions as socially situated 
activities (e.g. everything flight controllers do is in line with their motives and have as 
an overall result that the ISS is safe and the astronauts are healthy). 

Describing human activities as socially situated does not mean people doing things 
together, as in “socializing at a party” or “the social chat before a meeting.” 
Describing human activities as social means that the tools and materials we use, and 
how we conceive of what we are doing, are socially constructed, based on our culture. 
Although an individual may be alone, as when reading a book, there is always some 
larger social activity in which he or she is engaged. For instance, the individual is 
watching television in his hotel, as relaxation, while on a business trip. Engaging in 
the activity of "being on a business trip," there is an even larger social activity that is 
being engaged in, namely "working for the company," and so on. The point is that we 
are always engaged in multiple social activities, which is to say that our activities, as 
human beings, are always shaped, constrained, and given meaning by our motives and 
our ongoing interactions within a business, family, and community. An activity is 
therefore not just something we do, but a manner of conceiving our action and our 
interaction with the social environment we are in. Viewing activities as a form of 
engagement emphasizes that the conception of activity constitutes a means of 
coordinating action, a means of deciding what to do next, what goal to pursue; In 
other words, a manner of being engaged with other people and artifacts in the 
environment. The social perspective adds the emphasis of time, rhythm, place, shared 
understanding and a well-defined beginning and end. 

This can be contrasted with the concept of a task, which in AI is defined as being 
composed of only those subtasks and actions that are relevant to accomplish the goal 
of the task. A task is by definition goal-driven, and the conception of a task leaves out 
the inherent social, cultural and emotional aspects of why, when, where and how the 
task is performed within the socially and culturally bounded environment. Clancey 
provides a nice example that portrays the difference between an activity and a task:  

“All human activity is purposeful. But not every goal is a problem to be solved 
(cf. Newell & Simon 1972), and not every action is motivated by a task (cf. 
Kantowitz & Sorkin 1983). For example, listening to music while driving home is 
part of the practice of driving for many people, but it is not a subgoal [subtask] for 
reaching the destination. Listening to music is part of the activity of driving, with 
an emotional motive.” [24, p. 1] 

In this view of human behavior, activities are socially constructed engagements 
situated in the real world, taking time, effort and application of knowledge. Activities 
have a well-defined beginning and end, but do not have goals in the sense of  
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problem-solving planning models. Viewing behavior as activities of individuals 
allows us to understand why a person is working on a particular task at a particular 
time, why certain tools are being used or not, and why others are participating or not. 
This contextual perspective helps us explain the quality of a task-oriented 
performance. In this sense, as is shown in Figure 2, activities are orthogonal to tasks 
and goals. 

Task

Activity

Goal

 

Fig. 2. Dimensions of behavior [3, p. 55] 

While modeling an activity we might want to use a goal-plan approach to represent 
a specific task to solve a particular problem, but this can also be done within the 
activity model itself. This is to say that a goal-driven planning approach is subsumed 
by an activity-based approach, and a goal-oriented task can be modeled with a goal-
driven activity. An activity-based approach is more general and allows the modeling 
of all kinds of activities, including activities that are not necessarily work-oriented 
and goal-driven, but are based on social and cultural norms, such as the kinds of 
activities described by Clancey [24, p. 4]:  

• Intellectual: These include activities that represent any form of conceptual inquiry 
or manipulation of things or ideas. This includes work-oriented problem solving, 
but also activities that are less directed, such as exploration or browsing; artistic 
and documentation activities, such as taking photographs, writing, etc. 

• Interactional: These include activities in which we interact directly with other 
people, such as in a fact-to-face conversation, or using a communication artifact, 
such as a telephone or fax machine. 

• Physical/body maintenance: These include activities where we “take care” of 
ourselves physically, such as eating, sleeping, etc. 

5.1   Activities Are Like Scripts 

Engström integrates the notion of activity with the notion of practice. How do we 
know what to do, what actions we should take, when and how? Habitual scripts drive 
our practice, our learned actions in a context: “At an intermediate level, the continuity 
of actions is accounted for by the existence of standardized or habitual scripts that 
dictate the expected normal order of actions.” [25, p. 964]. 

In cognitive science and AI, the notion of scripts was developed by Shank and 
Abelson for the purpose of language processing and understanding of knowledge 
structures. Although they did not refer to activity theory, they did refer to something 
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that sounds very much like the notion of behavior as situated activities: “People know 
how to act appropriately because they have knowledge about the world they live in.” 
[26, p. 36]. Unlike Engström, Shank and Abelson focus not on how and why people 
get to engage in a social activity, although they use stories of social activities (such as 
eating in a restaurant) as examples, but they focus on the knowledge that people need 
to bring to bear to understand and process a situation. They argue that known scripts, 
which can be based on general knowledge (i.e. knowledge we have because we are 
people living in the world) and specific knowledge (i.e. knowledge we get, based on 
being in the same situation over and over), are what people use to understand a story: 

“A script is a structure that defines appropriate sequences of events in a 
particular context. A script is made up of slots and requirements about what can fill 
those slots. The structure is an interconnected whole, and what is in one slot affects 
what can be in another. Scripts handle stylized everyday situations. They are not 
subject to much change, nor do they provide the apparatus for handling totally 
novel situations. Thus, a script is a predetermined, stereotyped sequence of actions 
that defines a well-known situation … There are scripts for eating in a restaurant, 
riding a bus, watching and playing a football game, participating in a birthday 
party, and so on.” [p. 41] 

Modeling activities as scripts enables us to model people’s behavior as situated 
activities and is how we model activities in the Brahms language. This is the subject 
of the next section. 

6   Activities in Brahms 

In Brahms, an activity system is modeled by individually performed activities by 
agents. An agent while executing activities can be located in a geography model (see 
geography discussion above), representing the agent executing located behaviors. 
Activities are like scripts having “predetermined, stereotyped sequence of actions that 
defines a well-known situation.” An activity abstracts a behavioral episode into a 
sequence of subactivities, or, if not further decomposed, it abstracts an episode into a 
single activity taking time, using resources—objects in the object model—or creating 
products—other objects in the object model—or both. In Brahms we call these 
composite- and primitive activities subsequently. 

6.1   Primitive Activities 

Activities define episodes of actions that an agent can perform. They are not the 
episodes themselves, but provide the “slot definitions” for possible instantiations of 
them. Following is the grammar definitions, in BNF form, for a primitive activity in 
the Brahms language: 

primitive_activity activity-name( { param-decl  
[ , param-decl ]* } )  
{  
{ display : literal-string ; } 
{ priority : [ unsigned | param-name ] ; } 
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{ random : [ truth-value | param-name ] ; } 
{ min_duration : [ unsigned | param-name ] ; } 
{ max_duration : [ unsigned | param-name ] ; } 
{ resources : [ param-name | object-name ] [ ,  
              [param-name | object-name ]*; } 
} 

A primitive activity can have parameters that at runtime are instantiated with 
parameter values, depending on the type in the parameter declaration. Parameters can 
be assigned to the slots in the activity definition, enabling the activity to be situated in 
a particular instantiation. The display slot provides a way to give the activity a more 
appropriate name when displayed. For example, the display string can include blank 
spaces. The priority slot is a positive integer that gives the activity a priority. Activity 
priorities are used by the agent’s engine in case more than one activity can be chosen 
in the next event cycle. The max_duration slot gives the (maximum) duration of the 
primitive activity. Primitive activities only take an amount of time representing the 
time the agent performs the activity. In case the modeler wants a random time to be 
assigned, the modeler has to provide a min_duration as well, and set the random slot 
to true. For example, the activity bellow simulates the life of an agent in one simple 
primitive activity that takes a random lifetime: 

primitive_activity Being_Alive( int pri,  
  int max_life_time, Body body_obj )  
{  
  display : “Alive and kicking” ; 
  priority : pri ; 
  random : true ; 
  min_duration : 0 ; 
  max_duration : max_life_time ; 
  resources : body_obj ; 
} 

The above Brahms activity code is only the definition of the activity. It will not 
make the agent execute the activity. For this, the activity needs to be placed in a 
situation-action rule called a workframe. A workframe can have a set of preconditions 
that are matched against the belief-set of an agent. When there exist a set of beliefs 
that match the precondition, the variables in the precondition are bound to those 
matching the beliefs, and an instance of the workframe is created. The body of the 
workframe-instance is then executed. For example: 

workframe wf_Being_Alive { 
  repeat: true ; 
  when (knowval(current.alive = true)) { 
  do { 
   Being_Alive( 100, 3600 ) ; 
   conclude((current.alive = false), bc: 100, fc: 100); 
  } 
} 

In this workframe, the precondition knownval(current.active =true) is matched 
against the belief-set of the agent. The current keyword means the agent that is 
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executing the workframe. The knownval predicate returns true if the agent has a belief 
that matches exactly the precondition. Other possible precondition predicates are 
known, unknown and not, which subsequently would return true, if a) the agent has 
any belief about the agent-attribute pair current.alive irrespective of the value, b) the 
agent has no belief about this agent-attribute pair, and c) the agent has a belief about 
the agent-attribute pair, but its value is not true (i.e. in this specific case the value is 
either false or unknown). 

If the preconditions are all true, a workframe instantiation for each set of variable 
bindings is created. In this above example, there are no variables and thus there will 
only be one workframe instantiation created. A workframe instantiation is an 
instance-copy of the workframe with every precondition variable bound, available to 
be executed (see section bellow about composite activities). If a workframe 
instantiation is selected as the current to be executed, the body of the workframe (i.e. 
the do-part) is executed. In the above workframe, the Being_Alive activity is 
subsequently executed. It should be noted that the agent’s engine matches the 
preconditions and starts executing the first activity in the workframe all at the same 
time (i.e. the same simulation clock tick). 

It is at the start of the execution of the activity that the activity duration time is 
calculated. For the Being_Alive activity a random duration, between the value of the 
min- and max-duration slot, is selected. This then becomes the duration of the of the 
workframe instantiation for wf_Alive. After the activity ends, the conclude statement 
is executed in the same clock tick. In other words, conclude statements do not take 
any time, only activities. The conclude statement creates a new belief for the agent, 
and/or a new fact in the world. In the above example there is a belief created for the 
agent in hundred percent of the time (bc:100). There is also a fact created in hundred 
percent of the time (fc:100). If the belief- or fact certainty factor were set to zero 
percent, no belief or fact would be created. Using these certainty factors, the modeler 
thus has control over the creation of facts in the world and beliefs of an agent. 

6.2   Composite Activities 

How can we represent complex activities that are decomposed into lower-level 
activities without using a goal-driven planning approach? This is an essential question 
in finding a way to model every-day situated activities that are not goal-driven.  One 
of the important capabilities of people is that we can easily resume an activity that 
was previously interrupted by another activity. For example, while in the activity of 
reading e-mail your cell phone rings. Without hesitation you suspend the “reading 
work-related e-mail” activity and start your “talking to your child on the phone 
activity,” switching not only your perceptual-motor context, from reading e-mail on 
your computer to talking on a cell phone, but also switching your situated social 
context from being an employee reading work-related e-mail to the role of a father. 
One question is how you get to change this context? It is obvious that this is not 
triggered by a sub-goal of the reading e-mail activity. It is detecting (i.e. hearing) your 
cell phone ringing that makes you interrupt your e-mail reading activity, and the 
social norms of today makes the answering your cell phone activity most likely be of 
higher priority.  
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The organization principle we use to enable this type of interrupt and resume 
behavior is Brooks’ subsumption architecture [9]. Brooks developed his subsumption 
architecture for situated robots, with the premise that this architecture enables the 
development of robots without a central declarative world model and without a 
planning system that acts upon that model. In Brahms agents do have a declarative 
world model, namely the belief-set of the agent represent the agent’s view of the 
world. However, similarly to Brooks’ subsumption architecture, Brahms agents do not 
use a goal-directed planning system, but rather an activation system that is based upon 
a “computational substrate that is organized into a series of incremental layers, each, 
in a general case, connecting perception to action.” [p.39]. In our case the substrate is 
a hierarchical network of situation-action rules with timing elements in the form of 
primitive activities with duration. This hierarchical workframe-activity network 
enables flexible context switching between independent activities at all levels in the 
hierarchy. Similar to Brooks’ augmented finite state machine (AFSM) language, each 
individual Brahms agent engine executes activities as manageable units selectively 
activated and deactivated (i.e. interrupted or impassed). Each Brahms agent engine 
works similar to Brooks’ AFSMs, namely “[(activity behaviors] are not directly 
specified, but rather as rule sets of real-time rules which compile into AFSMs in a 
one-to-one manner.” [p. 40]. 

Activity Subsumption 
It is obvious that we want to be able to decompose primitive activities into more 
complex activities in order to model more complex behavior. For example, we want 
to be able to decompose the Being_Alive activity into more specific activities that the 
agent performs while alive. In Brahms this is done with a composite activity. 
Following is the grammar definitions, in BNF form, for a composite activity in the 
Brahms language: 

composite-activity activity-name (  
{ param-decl [ , param-decl ]* } )  
{  
{ display : literal-string ; } 
{ priority : [ unsigned | param-name ] ; } 
{ end_condition : [ detectable | nowork ] ; } 
{ detectable-decl } 
{ activities } 
{ workframes } 
{ thoughtframes } 
} 

The “slots” of a composite activity are different from that of a primitive activity, 
except for the display- and priority slots. A composite activity has sections to define 
the decomposed behavior of the activity: detectable-decl, activities, workframes, 
thoughtframes. First, the end_condition slot declares how a composite activity can 
end. There are two possibilities; 1) the activity ends when there is nothing more to do. 
This is called end when there is no work (i.e. no workframe or thoughtframe in the 
activity fires); 2) the activity ends, because the agent has detected some condition in 
the world that makes it end the activity. In this case, when the activity should be 
ended is defined in the detectable-decl slot, by declaring so-called detectlables. How 
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detectables work is explained bellow in the section about reactive behavior. Here we 
first explain the other sections of a composite activity. The other three sections define 
a composite activity in terms of more specialized activities in the activities section, 
and workframes calling these activities in the workframes section. The thoughtframes 
section contains thoughtframes. Thoughtframes are simple forward-chaining 
production rules. Actually, thoughtframes are like workframes except they cannot call 
activities but only conclude beliefs, based on matching belief preconditions. Also, 
thoughtframes do not take any simulated time, unlike workframes that always 
perform activities that take time. Thus, composite activities allow the definition of 
detailed scripts for well-known situations (a.k.a. work practice).  

Next, we provide an example of how composite activities are used. We will use the 
example from before about an agent who is in the activity of being alive. We expand 
the example to have the agent go from being alive to being in a coma. Instead of 
defining the Being_Alive activity as a primitive activity that simply takes an amount 
of time, let us define this activity in more detail as a composite activity of two 
subactivities called PAC_1 and PAC_2.  Both of these subactivities are primitive 
activities being called in two separate workframes wf_PAC_1 and wf_PAC_2: 

composite_activity Being_Alive( ) { 
 priority: 0; 
  detectables: 
   detectable det_Impasse { 
    detect((current.headTrauma = true)) 
     then impasse; 
   } 
 
  activities: 
   primitive_activity PAC_1(int pri) { 
    display: "PAC 1"; 
    priority: pri; 
    max_duration: 900; 
   } 
 
   primitive_activity PAC_2(int pri, int dur) { 
    display: "PAC 2"; 
    priority: pri; 
    max_duration: dur; 
   } 
 
  workframes: 
   workframe wf_PAC_1 { 
    repeat: true; 
    when (knownval(current.execute_PAC_1 = true)) 
    do { 
     PAC_1(1); 
     conclude((current.headTrauma = true), fc:50); 
    } //end do 
   } //end wf_PAC_1 
 
   workframe wf_PAC_2 { 
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    repeat: true; 
    do { 
     PAC_2(0, 1800); 
     conclude((current.execute_PAC_1 = true), bc:25); 
    PAC_2(0, 600); 
    } //end do 
   } //end wf_PAC_2 
} //end composite activity Being_Alive 

The left side of Figure 3 shows the workframe-activity subsumption hierarchy for 
the Being_Alive activity. The wf_Being_Alive workframe from before now calls the 
composite activity Being_Alive, instead of the previous primitive activity.  From the 
above source code you can see that, at first, the workframe wf_PAC_2 will fire, 
because that workframe does not have any preconditions and can thus fire 
immediately. This workframe will fire forever due to the repeat: true statement. Thus, 
if nothing else changes, the agent will first execute primitive activity PAC_2 for 1800 
clock ticks, and then again for 600 clock ticks, after which the wf_PAC_2 fires again, 
and again. However, the conclude statement, in between the two PAC_2 activity calls 
concludes its specified belief 25% of the time, due to the belief-certainty of 25. This 
means that approximately one out of four executions of the workframe wf_PAC_2 the 
agent gets the belief to execute PAC_1.  

 

Fig. 3. Coma Model Workframe-Activity Subsumption Hierarchy 

When this happens the belief immediately matches with the precondition of the 
wf_PAC_1 workframe, which then becomes available to fire. Now the agent’s engine 
needs to determine which workframe to execute in the next clock tick. This is done 
using the priorities of the workframes. If no priority is specified directly on the 
workframe, the workframe will get the priority of the highest priority activity within 
its body. In this example workframe wf_PAC_2 has a priority of zero, because both 
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PAC_2 activity calls get a priority of zero as a parameter value. Workframe 
wf_PAC_1 on the other hand will get the priority one, due to PAC_1 having a priority 
parameter value of one. Thus, wf_PAC_1 has the highest priority and the engine will 
pick this workframe as the next workframe to execute, with as the result that the agent 
will start performing PAC_1 for its defined duration of 900 clock ticks. Workframe 
wf_PAC_2 will be interrupted at the point of the beginning of the second PAC_2 
activity call, right after the execution of the conclude statement. Therefore, when the 
wf_PAC_1 workframe finishes its execution of the PAC_1 activity (i.e. 900 clock 
ticks later) the agent will switch immediately back to the execution of the interrupted 
wf_PAC_2 workframe, and will continue with executing the second PAC_2 activity in 
the workframe. 

This example shows the selective activation and deactivation of subsumed 
activities via a perception-action architecture based on an activity-priority scheme. 
Agents can easily switch their activity context, independent of the level in the activity 
network hierarchy. When a workframe with activities within it becomes available, no 
matter where in the workframe-activity network, the workframe with the highest 
priority becomes the agent’s current context—this is called the agent’s current 
work—and thus the activities within this current workframe will execute.  

Thus far the example shows how an agent can easily switch activities based on new 
belief creation, i.e. either through performance of activities in workframes or through 
pure reasoning in thoughtframes. Next, we will show how an agent can also react to 
changes in the environment by detecting facts in the world. This approach enables 
flexible reactive behavior by the agent due to changes in “the outside” environment. 

6.3   Reactive Behavior 

The example of the composite Being_Alive activity shows how agents can switch 
activity contexts based on “internally” created beliefs and activity-workframe 
priorities. However, we want agents be able to react to fact chances in the 
environment outside of the agent. This is done through the definition of detectables in 
activities and workframes. The above source code shows the det_Impasse activity 
detectable declared in the Being_Alive activity. What this means is that while the 
agent is “in the Being_Alive activity” this detectable is active and the agent will detect 
any fact changes, made by any agent or object, to the headTrauma attibute of the 
agent.  

The process of firing a detectable goes as follows: When a new fact is detected 1) 
the fact becomes a belief for the agent that can then trigger a switch in activity context 
as shown in the example before, 2) the agent matches the detectable condition of all 
active detectables that refer to the fact and checks if the fact matches the condition, 3) 
in case the detectable condition matches the fact the detectable action statement is 
executed. There are four types of detectable actions possible, continue, abort, 
complete, and impasse. 

In the Coma model source code for the Being_Alive composite activity, the 
det_Impasse detectable has an impasse action. An impasse action means that the 
activity will be impassed (i.e. interrupted) until the impasse condition is resolved.  
The impasse condition is the detect condition of the detectable. Thus, in the 
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det_Impasse detectable, the activity is impassed when the fact (current.headTrauma 
= true) is created. The wf_Being_Alive will be impassed until the fact is changed. 

Figure 3, on the right hand side, shows an additional workframe for the agent 
called wf_In_Coma. This workframe has a precondition that matches on the belief 
(current.headTrauma = true) created by the detection of the fact, and will activate the 
In_Coma activity. If the In_Coma activity, or something else, at some point in the 
future creates the fact (current.headTrauma = false), the impasse is resolved and the 
Being_Alive activity will be available again for the agent to continue executing it, 
depending its priority compared to other available activities. 

The above example shows how a Brahms agent’s behavior is modeled as 
decomposed script-like activities that are executed using a perception-action 
subsumption architecture, enabling both rational and reactive behavior. There is one 
more important organizational element in the Brahms language that provides an 
important agent organizational modeling capability. This is briefly discussed in the 
next section. 

7   Modeling Agent Organization 

Societies consist of many different types of behaviors. As a design principle we want 
to be able to organize these behaviors in categories that are logically and culturally 
understandable, and moreover useful for the design of complex agent communities. In 
Brahms there is the notion of a group as the concept allowing the creation of agent 
pastiches. Not only did we develop groups based on the notion of organization in 
categories or classes, groups are based on the important idea of communities of 
practice: 

“Being alive as human beings means that we are constantly engaged in the 
pursuit of enterprises of all kinds, from ensuring our physical survival to 
seeking the most lofty pleasures. As we define these enterprises and engage 
in their pursuit together, we interact with each other and with the world and 
we tune our relations with each other and with the world accordingly. In 
other words we learn. Over time, this collective learning results in practices 
that reflect both the pursuit of our enterprises and the attendant social 
relations. These practices are thus the property of a kind of community 
created over time by the pursuit of a shared enterprise. It makes sense, 
therefore, to call these kinds of communities communities of practice.” [23, 
p. 45] 

Groups are thus meant to be the representation of the practices of communities of 
agents. People belong to many communities at once, blending practices from many 
different groups into one, so called, work practice [3]. We are students, parents, 
workers, children, engineers of a particular kind, etc. But we also are social creatures, 
belonging to a community of like-minded individuals playing sports, having hobbies, 
going to the same coffee shop every day, playing roles in an organization, etc. It is 
therefore that people belong to many communities of practice at once. Agents in the 
Brahms language can thus belong to many different groups, enabling the design of 
complex organization models of agents. 
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Groups in Brahms, just like agents, can contain attributes, relations, initial beliefs 
and facts, activities, workframes and thoughtframes. An agent can be a member of a 
group, but a group itself can also be a member of another group, enabling the design 
of a complex hierarchical structure of agent group-membership. An agent or group 
that is a member of another group will inherit all of the contents of that group. For 
example, agent Joe, from our first example, will inherit its behavior as a student from 
the Student group. But, we can create another group, let’s call it HumanBeing, in 
which we put the BeingAlive and BeingInComa activities. We can now have agent Joe 
inherit both the behavior from the Student group and from the HumanBeing group; 

group HumanBeing {…} 

group Student {…} 

agent Joe memberof HumanBeing, Student {…} 

Groups and multiple group inheritance allows us to model common behavior as 
communities of practice, from which all group members will inherit its behavior. 
Using this simple group membership relation we can design any type of organization 
we want. Groups can represent a functional organization, such as groups representing 
particular roles that agents play, performing certain functions (i.e. activities) in an 
organization. However, groups can also represent social organizations, such the 
relationships and social knowledge people share about a particular community. For 
example, everyone who comes to drink coffee at the same coffee shop everyday 
knows the name of the shop’s barista. 

8   Conclusions 

In this chapter, we discussed some of the issues and limitations of BDI agent 
architectures based on Bratman’s Planning Theory that explicitly states that humans 
are goal-driven planning agents. We posited an alternative view of human behavior 
based on a combined notion of situated action, cognition in practice, situated 
cognition and activity theory. Based on this alternative view, we developed an 
activity-based theory of behavior that allows for the description of complex behavior 
that is not only based on goals. We then described the Brahms multiagent language 
and execution architecture that implements this activity-based theory into a BDI agent 
language. Brahms allows for designing and implementing complex agent societies not 
based on goal-based planning agents. 

The Brahms multiagent language, for each agent, “groups multiple processes (each 
of which turns out to be usually implemented as a single [composite activity]) into 
behaviors. There can be message passing, suppression and inhibition between 
processes within a [composite activity], and there can be message passing, 
suppression and inhibition between [composite activities]. [Activities] act as 
abstraction barriers, and one [activity] cannot reach inside another.” [9, p.41]. 

Compared to the goal-driven paradigm, the Brahms activity-based paradigm is a 
more flexible execution paradigm. In a goal-driven execution engine only sub-goal 
contexts within the task being executed can be called as the next action, unless the 
current task is finished and the current goal is or is not reached and thus “popped off” 
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the goal stack. This limits an agent’s ability to flexibly react to new belief 
“perceptions” unrelated to the current goal it is trying to reach. 

With the simple examples in this paper, we hope we have convincingly shown that 
Brahms agents are both rational and reactive, and use composite architecture with 
situation-action rules to implement a perception-action approach similar to Brooks’ 
behavioral architecture, all without the use of goals and goal-driven planning. 
However, it should not be forgotten that a forward-driven approach might just as well 
implement goal-directed behavior as a backward-driven goal-based approach. It is 
thus that in Brahms we can implement goal-driven activities without any problem, 
and it can be said that Brahms enables modeling of agent behaviors much more 
flexibly than a goal-based planning architecture. In other words, the activity approach 
is more general than the goal-based approach, which justifies the title of this paper 
and our claim that goals develop within an activity, but they are not the driving force 
of behavior, and are only useful in activities where problem solving is necessary. In 
other words: “All human behavior is activity-based, but not every activity is a 
problem to be solved.” 
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Abstract. The construction of multi-agent systems is starting to be-
come a main issue in agent research. Using the Computer Science point
of view, the development of agent systems has been considered mainly
a problem of elaborating theories, constructing programming languages
implementing them, or formally defining agent architectures. This effort
has allowed important advances, including a growing independence of
Artificial Intelligence. The results have the potential to become a new
paradigm, the agent paradigm. However, the acceptance of this paradigm
requires its application in real industrial developments. This paper uses
this need of addressing real developments to justify the use of software
engineering as driving force in agent research. The paper argues that
only by means of software engineering, a complex development can be
completed successfully.

Keywords: agent oriented software engineering, multi-agent systems,
development.

1 Introduction

Software agents have been considered as part of Artificial Intelligence (AI) for a
long time. However, looking at the current literature, it seems agent researchers
are focusing more on development aspects, such as debugging or modularity,
paying AI issues less attention. This tendency is giving agent research an identity
as a software system construction alternative, i.e., as a new paradigm. This
paradigm will be named in this paper as the agent paradigm, whose existence
was already pointed out by Jennings [1]. Informally, the agent paradigm is a
development philosophy where main building blocks are agents.

In the elaboration of the agent paradigm, Computer Science has played a main
role so far. With its aid, several agent oriented programming languages have
been constructed and models of agency have been formalised. Nevertheless, it
cannot be said the agent paradigm is mature, yet. Since agents are software, it is
necessary proving the agent paradigm can be an alternative to known software
development paradigms in a real, industrial, developments. This implies that
the cost of developing a system using agents should be better than the cost of
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using other technologies, at least for some problems. Proving this goes beyond
the scope of Computer Science and enters the domain of software engineering
(it is assumed the readers accept Computer Science and Software Engineering
are different disciplines).

This need of exploring the engineering side of software agents has been known
in the agent community for some years. As part of this investigation, development
environments have been created, debugging techniques have been elaborated,
and agent oriented specification techniques have been proposed. These, together
with the improvements in agent oriented programming languages, constitute im-
portant steps towards the integration with industrial practices [2]. Nevertheless,
the growing incorporation of agents to industry demands a stronger effort.

The paper constributes with an argumentation in favour of applying engineer-
ing methods to achieve matureness in the agent paradigm. This argumentation
starts with an introduction to the origins of software engineering in section 2.
Then, section 3 introduces briefly how agents have started to focus on devel-
opments while being part of AI. These initial steps have led to results dealing
with system construction that can be considered more independent of AI. These
new results are introduced in section 4. Following, section 5 argues the need
of engineering methods using the evolution of the agent research towards the
construction of systems and drawing similitude with the origins of software en-
gineering. This argumentation is followed, in section 6, by a suggestion of lines
of work that could constribute to the acceptance of the agent paradigm. The
paper finishes with some conclusions 7.

2 The Origins of Software Engineering

The claim of the paper requires understanding what is software engineering. The
term software engineering was born in a NATO sponsored conference [3]. This
conference invited reputed experts in software development to talk about the
difficulties and challenges of building complex software systems. Many topics
were discussed, but above all there was one called the software crisis. This was
the name assigned to the increasing gap between what clients demanded and
what was built due to problems during the development. Indeed, the smaller a
development is, in the number of involved persons and in the complexity of the
system to develop, the easier it is to complete successfully. Unfortunately, the
software systems required in our societies are not small.

Dijkstra [4] had the opinion that a major source of problems in a develop-
ment was the programming part. He remarked the importance of having proofs
to ensure the correctness of the code, since much time is dedicated to debugging.
Also, better code could be produced with better programming languages, like
PL/I, and programming practices, like removing the goto statement from pro-
gramming [5]. Dijkstra was right. Good programming and better programming
languages reduce the risk of failure. Nevertheless, good code is not enough when
programming large systems. For instance, De Remer [6] declares programming
a large system with the languages at that time was an exercise in obscuration.
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It was needed having a separated view of the system as a whole to guide the
development, a view that was not provided by the structured programming ap-
proaches. In this line, Winograd [7] comments that systems are built by means
of combining little programs. Hence, the problem is not building the small pro-
grams, but how the integration of packages and objects with which the system
can be achieved.

Besides the programming, reasons for this gap can be found in the humans
involved in a software project. Brooks [8] gives some examples of things that can
go wrong in a development like being too optimistic about the effort a project
requires, thinking that adding manpower makes the development going faster, or
dealing with programmers wanting to exercise their creativity with the designs.

In summary, bridging the gap requires dealing with technical and human prob-
lems. Their solution implies defining a new combination of existing disciplines to
build effectively software systems. This new discipline is the software engineer-
ing and their practitioners are called software engineers. The training software
engineers receive is not the same of a a computer scientists [9]. This claim would
be realised in the computing curricula recommendations by the ACM and IEEE
for software engineering [10]. This proposal covers all aspects of a development,
including programming and project management.

2.1 Lessons Learnt

There are three lessons to learn from the experience of the software crisis that
will be applied to agent research in section 5.

The first lesson refers to the natural emergence of engineering proposals when
the foundations are well established [9]. This has occurred many times with nat-
ural sciences and their application to human societies. As a result civil engineers,
electrical engineers, and aerospace engineers, among others, exist.

The second is that some systems are inherently complex and require many
people involved and an important amount of time. Building these systems is
not a matter of sitting down in front of the computer and start working on it.
It requires organising the work, monitoring the progress, and applying specific
recipes at each step. Besides, there is a human component that cannot be fully
controlled.

The third lesson is that the progress in programming languages is not going
to eliminate all problems in a development. Three decades of progress in pro-
gramming languages have made the construction of systems easier, but it has
not eliminated the need of software engineering.

3 At the Beginning Everything Was Artificial Intelligence

The Artificial Intelligence discipline is a multi-disciplinary one dedicated to the
creation of artificial entities capable of intelligent behaviour. The roots of agents
are associated strongly to AI. Allen Newell made one of the first references to
agents pointing out their relevance to AI. He distinguished agents as programs
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existing at the knowledge level that used knowledge to achieve goals [11]. Two
decades after, agents continue being relevant to AI. For instance, the Artifi-
cial Intelligence textbook from Russell and Norvig [12] presents agents as the
embodiment of Artificial Intelligence.

Despite these statements, considering software agents only as AI would be a
mistake. AI is important if certain features are to be incorporated in the agents,
like planning or reasoning. However, the role of AI is not a dominant one and
needs to be reviewed depending on the kind of system developed [2]. As a con-
sequence, it is possible having an agent paradigm that can use AI while keeping
its identity as paradigm. There have been similar cases in the past. Lisp [13] and
Prolog [14] programming languages were born under the umbrella of AI. They
are now independent and represent an important milestone in the establishment
of the functional and logic programming paradigm, respectively. Following these
precedents, one could draw the conclusion that focusing on particular approaches
to the construction of AI capable systems has led to the definition of new de-
velopment paradigms. Hence, the efforts in showing how a multi-agent system
is built would eventually take to the definition of the agent paradigm.

Looking at the agent literature, published works dealing with multi-agent
systems construction can be categorised into two groups: agent oriented pro-
gramming languages and agent architectures. In both, Computer Science has
played an important role, specially in agent oriented programming languages.
Hence, most of these steps are founded on formal descriptions and theories.

The invention of the agent oriented programming language is usually dated
in 1993 with the creation of Agent0 [15]. This language proposed using agents
as building blocks of a system, providing a vocabulary to describe what existed
inside of the agents and some semantics of how these agents operated. This
trend has been explored from a computer science perspective, mainly, trying to
establish theoretical principles of agent oriented programming. This has been
the case of Jason [16] an extended interpreter for AgentSpeak (L) language [17],
3APL [18] or Agent Factory - APL [19] a combination of logic and imperative
programming, Claim [20] which is based on ambient calculus, ConGOLOG [21]
which bases on situation calculus, or Flux [22] which is based on fluent calculus,
to cite some. For a wider review about agent oriented languages, readers can
consult the short survey [23], the survey of logic based languages [24], or the
more detailed presentation of programming languages from [25]. The diversity
of concepts and approaches evidences there is still struggle to find the best way
of dealing with agent concepts.

The definition of agent architectures is the other way identified to construct
agents. An agent architecture is a software architecture that explains how an
agent is built. A software architecture, according to IEEE, is the fundamental
organisation of a system, embodied in its components, their relationships to each
other and the environment, and the principles governing its design and evolution
[26]. This way of defining systems was applied early on AI to explain how systems
were capable of intelligent behaviour. In most cases, the agent architecture has
been a set of boxes with arrows representing the data flow. The computations
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performed inside the boxes were explained in natural language. Examples of
these initial architectures are the reference architecture for adaptative intelli-
gent systems [27], the Resource-bounded practical reasoning architecture [28],
or Archon [29]. This kind of architectures were not fully detailed, but they pro-
vided important hints to a developer wanting to reuse them. These architectures
provided a set of elements to look at and a way of organising them. A higher
level of detail would be given by Interrap [30] and Touring Machines [31]. In-
terrap provided formal definitions of the inputs and outputs of the different
elements of the architecture. Touring machines provided a reference architec-
ture and detailed instructions to fill in each component of the architecture with
Sicstus Prolog. Its capabilities were demonstrated in a real time traffic manage-
ment scenario with dynamic changes. Perhaps, the most complete architecture
described so far is DESIRE [32]. The semantics of DESIRE are formally speci-
fied using temporal logic [33] and allowed compositional verification [34]. Besides
formal aspects, DESIRE differs from previous ones in how it was used. Instead of
providing guidelines, it used a formal language to describe how the architecture
was instantiated to produce a system. This language was processed by ad-hoc
tools to produce the an instance of DESIRE for the current problem domain.
For a wider review of architectures, readers can consult the surveys [35] and [36].

4 Focusing on Multi-agent Systems Construction

The examples presented in previous sections demonstrate an increasing concern
about the construction of systems by means of agent architectures and agent
oriented programming languages. On one hand, agent oriented programming
languages implement theories of agency devising new ways of processing infor-
mation. On the other hand, agent architectures explore the internal components
of an agent, often letting the developer choosing how these components are im-
plemented. These precedents have given the opportunity of focusing more on de-
velopment problems and less on AI, in concrete, the experience gained allowed to
propose agent standards, agent development environments, and methodologies.

The creation of a standard, FIPA, and the availability of a platform imple-
menting it, the JADE framework [37], turned out to be an important factor that
increased the number of developments using agents. Agents no more had to be
created from scratch. By extending some classes from the framework, one could
have a simple multi-agent system. However, JADE provided very basic support
for defining the behaviour of the agent. Most of the times, developers had to build
over a JADE layer other layers dedicated to implement the control of the agent.
FIPA work continues under the scope of IEEE, so there is still much to say.

With respect development environments to produce agent software, the first
was the Zeus tool [38]. It offered a graphic front end that allowed to define
the internals of the agents (ontology, action rules, goals), communication, and
deployment of the system. The information introduced served to instantiate a
multi-agent system framework, which could be customised by the developer.
The main contribution of Zeus was the reduction of the development effort.
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Little programming was required unless the generated system shown a bug in
the automatically generated part. This development environment was followed
by others like JADEX, Agent Factory or AgentTool [23]. These frameworks can
be considered the inheritors of the first efforts in the definition of agent archi-
tectures. They still define the system in terms of components and relationships
among them, but require less information from the domain problem to produce
a tentative system.

Agent oriented methodologies contributed with support tools, proposals for
the specifications of agent oriented systems, steps to follow to produce these
specifications as well as to implement them. One of the first was Vowel Engi-
neering [39]. It conceived the system as the combination of five interdependent
aspects: Agent, Environment, Interaction, and Organisation. Another important
contribution is the adaptation of BDI theory into an iterative development pro-
cess [40]. Both proposals introduced a simple idea: constructing a multi-agent
system could be less an art and more a discipline by itself. This was introduced
later on by [1] describing several distinguishing features of agent computing
that could constitute a new approach to software engineering. The next step in
methodologies was MESSAGE [41] [42]. MESSAGE provided a comprehensive
collection of agent concepts, supported by tools, and covering the complete de-
velopment process. It was the first in applying meta-modelling techniques in an
agent oriented methodology. Later on this would be incorporated to all method-
ologies. For a review of agent oriented methodologies, readers can read [43]. This
book has a chapter dedicated each one of ten agent oriented methodologies. It
include a comparison among them using an evaluation framework. This frame-
work evaluates the existence and quality of a set of features that are desirable
in a methodology.

5 The Need of Engineering Methods

The results presented in previous sections constribute to the understanding of the
agent paradigm in different ways. In general, they make a development simpler.
Nevertheless, the impact of those results has not been the one expected in industry.
Agentlink conducted a study of the impact and evolution of agent technology in
Europe during several years. The result is the AgentLink roadmap [44]. This study
shows relatively few histories of success of agent technology in real developments.
There may be reasons for this like slow penetration of new technologies in the mar-
ket or companies being reluctant to tell what kind of software they use. However, it
seems more reasonable to find answers in the way agent research has been directed.
Zambonelli and Omicini [45] tell there is little effort in generating evidences of the
savings in money and resources agents can bring. Luck, McBurney, and Priest [46]
provide other reasons: most platforms are still too immature for operational en-
vironments, lack of awareness of the potential applications of agent systems, the
cost of system development and implementation both in direct financial terms and
in terms of required skills and timescales, or the absence of a migration path from
agent research to industrial applications.
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Drawing a parallelism with the situation presented in section 2, there is a
particular software crisis affecting the agent community. This crisis relates to
the capability of agent research to build applications in an effective way. The
crisis can be summarised as a gap between the application a client demands and
what can be actually built with existing agent results according to the constraints
of a development project. Hence, for a greater acceptance of the agent paradigm,
this paper proposes the agent community a new goal consisting in the reduction
of this gap. The answer to the software crisis was software engineering, i.e.,
using engineering approaches to the construction of software. Therefore, the
agent community ought to focus more on engineering issues as well. The call for
more engineering is not new. Concretely, readers can find a precedent in [45].

Assuming the need of software engineering, it is relevant to review the lessons
from section 2.1 in the context of agent research.

The first lesson talked about the natural emergence of engineering methods
when sufficient foundations exist. There exist a need of developing agent ori-
ented systems, and the results (languages, architectures, tools, theories) to do
so exist. Therefore, an engineering discipline specialised in the use of these el-
ements to produce agent oriented systems makes sense. This discipline would
propose combinations of theoretical and practical agent reseach results so that
developers can solve problems effectively.

The second lesson commented on the resources needed in a development of
a complex system. Developing a complex system requires investing time and
people, even if software agents are used. Therefore, developers should know
the particularities of using agents when there is a deadline to finish the prod-
uct, a maximum available budget, and several involved workers. This covers the
requirements gathering, analysis, design, implementation, testing, and mainte-
nance stages of a development. Known development roles will have to be revisited
to look for changes due to the use of the agent paradigm. For instance, it is re-
quired to assist project managers with guidelines, cost estimation methods, risk
management, and other common project management tools customised with the
experience of successfull application of agent results.

The third lesson was about the need of complementing programming lan-
guages with other techniques. Agent research is not going to produce any magic
bullet for complex system development. The agent paradigm will provide means
comparable to other existing ones in the capability of building a system. The
difference will be in the balance between results obtained and the effort invested.
Should this balance be positive and greater than applying other paradigms, the
agent paradigm will become a valid alternative. There are many factors to con-
sider in the equation, but it will depend ultimately on the developers. So, in
order to ensure a successfull development, it is necessary to provide all kind
of support to these developers. This includes development tools, training, and
documentation, to cite some.

These lessons tell the agent paradigm has to produce many basic engineering
results, yet. Applying engineering is not only producing a methodology. It is
about, for instance, discovering patterns of recurrent configurations when using
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agent oriented programming languages, designing agent architectures attending
to the non-functional requirements, evaluating the cost of a agent oriented devel-
opment, producing testing cases for agent applications, documenting properly a
development, and so on. Agent oriented methodologies, which are not so recent,
do not consider most of these elements.

6 Proposed Lines of Research

This section collects several lines of work in line with the lessons from section 5.
Some lines have been started already, but require further investigation. Others
have not been initiated, yet.

The main line consists in performing large developments. In order to bridge
the gap pointed out in section 5, agent research must experiment with large de-
velopments involving several developers and dealing with complex problems. The
benefit for agent research would be twofold. Besides gaining experience and vali-
dating development techniques, these developments would produce useful proto-
types demonstrating the benefits of the agent paradigm. There are some specific
areas where the development of multi-agent system prototypes could attract ad-
ditional attention from industry. Luck, McBurney, and Priest [46] identify the
following: ambient intelligence, bioinformatics and computational biology, grid
computing, electronic business, and simulation. Ideally, the prototypes should
be built by developers not involved directly in the research of the techniques
applied. Like in software tests [47], if the tester is the creator of the technique,
the evaluation could contain some bias.

The results of these large developments would influence in the existing agent
frameworks, agent development environments, and agent oriented programming
languages. These should be revisited in the light of the experience from large
developments. Expected improvements derived from this experience will improve
the debugging techniques (it is likely to invest an important time detecting
where the failure is), the quality of code (good programming practices for agent
oriented programming languages), and the code reuse (large developments will
force developers to find ways to save coding effort).

Also, the development of these prototypes could give opportunities to expe-
rience other aspects not documented yet in the agent literature. Project man-
agement and maintenance are two of them. Inside project management, project
planning and risk management, two key activities in project management, have
not been experienced when agents are applied. Cost estimation, which is relevant
for planning, is almost missing in agent research. Gomez-Sanz, Pavon, and Gar-
ijo [48] present some seminal work in this direction using information extracted
from European projects. With respect maintenance, the maintenability of code
written with an agent oriented programaming language, agent frameworks, or
an agent architecture is a big unknown at this moment. The cost of correcting
defects or adding new functionality once the system is deployed is unknown as
well.
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With respect to project deliverables, it is a matter of discussion to determine
which deliverables are needed in an agent oriented project beyond those known
of software engineering. Deliverables determines the progress the project should
have. Hence, defining a proper content of these deliverables is a priority for a
project manager. From these deliverables, the only one being studied currently
is the system specification. It is being defined with meta-models, a technique
imported from software engineering. The technique has found quickly a place
in agent research. In fact, most existing methodologies have a meta-model de-
scription for system specification. Agent researchers intend to unify the different
existing meta-models [49], though this is a work that will take time.

The particularities of agent oriented development process are starting to be
investigated. Brian Henderson-Sellers [50] [51] contributes with a metamodel
to capture development methods and represent existing agent oriented develop-
ment approaches. Cernuzzi, Cossentino, and Zambonelli [52] studies the different
development process to identify open issues.

There is concern about the importance of debugging. Development environ-
ments like JADEX and Agent Factory provide basic introspection capabilities.
Also, Botia, Hernansaez, and Skarmeta[53] study how to debug multi-agent sys-
tems using ACL messages as information source. Lam and Barber try to explain
why the agent behaved in a concrete way using information extracted from traces
of the system [54]. Testing is an activity less studied.

Code generation may turn out to be a key to the success of agents. Most of
the works are agent frameworks which has to be instantiated sometimes with a
formal language, others with a visual environment. Generating automatically the
instantiation parameters should not be a hard task. There are precedents of this
kind of tools in Zeus [38], AgentTool [55], and the INGENIAS Development Kit
[56]. The benefits are clear, since the developer invests little effort and obtains
a working system in exchange. However, there are drawbacks in the approach,
like conserving the changes made in the generated code.

To conclude, there is a line of research related with software engineering that
has not been considered yet. Besides structuring an agent oriented development,
the effort invested in the creation of methodologies can be used to start the
creation of bodies of knowledge for agent oriented software engineering. In soft-
ware engineering, there exist a body of knowledge [57] that provide an agreed
terminology for practitioners. This initiative was started in a joint effort by the
IEEE and ACM in order to develop a profession for software engineers. In this
line, readers can consult an extended review of agent research results that can
be useful in each concrete stage of a development [58].

7 Conclusions

Agent research will eventually gain more independency from Artificial Intelli-
gence. This independency will be completely realised with the establishment
of the agent paradigm, the development philosophy that uses agents as main
building blocks. According to recent studies, the adoption of agent research re-
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sults by industry, which would be an evidence of the matureness of the agent
paradigm, is not progressing as it should. A reason for this delay may be the lack
of large developments that prove the benefits of choosing the agent paradigm.
Agent research has been driven mainly by Computer Science focusing in con-
crete features of the agents and the experimentation has been limited to small
developments, mainly. As a result, there is no enough experience in large devel-
opments of software systems based on agents, so the question of the capability
of agent technology to deal with a real development remains. This problem has
been presented as a kind of software crisis of the agent community.

To deal with this crisis, this paper has proposed the extensive use of software
engineering principles. This requires prioritising the research on aspects that
have not been considered before in an agent community, like project manage-
ment issues, good practices of agent oriented programming, or maintance costs
associated to a multi-agent system. To illustrate the kind of areas to address, the
paper has pointed at several lines of work, referring to some preliminary work
already done in those directions.
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16. Bordini, R., Hübner, J., Vieira, R.: Jason and the Golden Fleece of Agent-Oriented
Programming. In: Multi-Agent Programming. Multiagent Systems, Artificial Soci-
eties, and Simulated Organizations, vol. 15, pp. 3–37. Springer, Heidelberg (2005)

17. Rao, A.S.: AgentSpeak (L): BDI agents speak out in a logical computational lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

18. Hindriks, K., Boer, F.D., der Hoek, W.V., Meyer, J.: Agent Programming in 3APL.
Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

19. Ross, R.J., Collier, R.W., O’Hare, G.M.P.: Af-apl - bridging principles and practice
in agent oriented languages. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni,
A.E.F. (eds.) Programming Multi-Agent Systems. LNCS (LNAI), vol. 3346, pp.
66–88. Springer, Heidelberg (2005)

20. Fallah-Seghrouchni, A.E., Suna, A.: CLAIM: A Computational Language for Au-
tonomous, Intelligent and Mobile Agents. In: Dastani, M., Dix, J., El Fallah-
Seghrouchni, A. (eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 90–110.
Springer, Heidelberg (2004)

21. Shapiro, S., Lesperance, Y., Levesque, H.: Specifying communicative multi-agent
systems with ConGolog. In: Working Notes of the AAAI Fall 1997 Symposium on
Communicative Action in Humans and Machines, vol. 1037, pp. 72–82 (1997)

22. Thielscher, M.: FLUX: A logic programming method for reasoning agents. Theory
and Practice of Logic Programming 5(4-5), 533–565 (2005)

23. Bordini, R., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J.,
Leite, J., O’Hare, G., Pokahr, A., Ricci, A.: A Survey of Programming Languages
and Platforms for Multi-Agent Systems. Informatica 30(1), 33–44 (2006)

24. Mascardi, V., Martelli, M., Sterling, L.: Logic-based specification languages for
intelligent software agents. Theory and Practice of Logic Programming Jour-
nal (2004)

25. Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.): Multi-Agent Pro-
gramming. Multiagent Systems, Artificial Societies, and Simulated Organizations,
vol. 15. Springer, Heidelberg (2005)

26. Hillard, R.: Recommended practice for architectural description of software-
intensive systems. Technical report, IEEE (2000)

27. Hayes-Roth, B., Pfleger, K., Lalanda, P., Morignot, P., Balabanovic, M.: A domain-
specific software architecture for adaptive intelligent systems. IEEE Transactions
on Software Engineering 21(4), 288–301 (1995)

28. Bratman, M.E., Israel, D.J., Pollack, M.: Plans and resource-bounded practical
reasoning. Computational Intelligence Journal 4(4), 349–355 (1988)



36 J.J. Gomez-Sanz

29. Jennings, N.R., Wittig, T.: ARCHON: Theory and Practice. In: Distributed Ar-
tificial Intelligence: Theory and Praxis. Eurocourses: Computer and Information
Science, vol. 5. Springer, Heidelberg (1992)

30. Müller, J., Pischel, M.: The Agent Architecture InteRRaP: Concept and Applica-
tion. PhD thesis, Deutsches Forschungszentrum für Künstliche Intelligenz (1993)

31. Ferguson, I.: Touring Machines: An architecture for Dynamic, Rational Agents.
PhD thesis, Ph. D. Dissertation, University of Cambridge, UK (1992)

32. Brazier, F., Dunin-Keplicz, B., Jennings, N., Treur, J.: DESIRE: Modelling Multi-
Agent Systems in a Compositional Formal Framework. International Journal of
Cooperative Information Systems 6(1), 67–94 (1997)

33. Brazier, F., Treur, J., Wijngaards, N., Willems, M.: Temporal semantics of com-
plex reasoning tasks. In: Proceedings of the 10th Banff Knowledge Acquisition for
Knowledge-based Systems workshop, vol. 96, pp. 1–15 (1996)

34. Cornelissen, F., Jonker, C., Treur, J.: Compositional Verification of Knowledge-
based Systems: a Case Study for Diagnostic Reasoning. In: Plaza, E. (ed.) EKAW
1997. LNCS, vol. 1319, pp. 65–80. Springer, Heidelberg (1997)

35. Wooldridge, M., Jennings, N.: Agent Theories, Architectures, and Languages: A
Survey. Intelligent Agents 22 (1995)

36. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowl-
edge Engineering Review 10(2), 115–152 (1995)

37. Bellifemine, F., Poggi, A., Rimassa, G.: Jade: a fipa2000 compliant agent develop-
ment environment. In: AGENTS ’01: Proceedings of the fifth international confer-
ence on Autonomous agents, pp. 216–217. ACM Press, New York (2001)

38. Nwana, H.: Zeus: A Toolkit for Building Distributed Multi-agent Systems. Applied
Artificial Intelligence 13(1), 129–185 (1999)

39. Demazeau, Y.: From interactions to collective behaviour in agent-based systems.
In: Proceedings of the 1st. European Conference on Cognitive Science.

40. Kinny, D., Georgeff, M., Rao, A.: A methodology and modelling technique for
systems of BDI agents. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996.
LNCS, vol. 1038, pp. 56–71. Springer, Heidelberg (1996)

41. Caire, G., Coulier, W., Garijo, F.J., Gomez, J., Pavón, J., Leal, F., Chainho, P.,
Kearney, P.E., Stark, J., Evans, R., Massonet, P.: Agent oriented analysis using
message/uml. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001.
LNCS, vol. 2222, pp. 119–135. Springer, Heidelberg (2002)

42. Evans, R., Kearney, P., Caire, G., Garijo, F., Gomez-Sanz, J.J., Pavon, J., Leal, F.,
Chainho, P., Massonet, P.: Message: Methodology for engineering systems of soft-
ware agents (September 2001), http://www.eurescom.de/~pub-deliverables/

p900-series/P907/TI1/p907ti1.pdf

43. Henderson-Sellers, B., Giorgini, P.: Agent-oriented methodologies. Idea Group Pub.
USA (2005)

44. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing
as Interaction (A Roadmap for Agent Based Computing). AgentLink (2005)

45. Zambonelli, F., Omicini, A.: Challenges and Research Directions in Agent-Oriented
Software Engineering. Autonomous Agents and Multi-Agent Systems 9(3), 253–283
(2004)

46. Luck, M., McBurney, P., Preist, C.: A Manifesto for Agent Technology: Towards
Next Generation Computing. Autonomous Agents and Multi-Agent Systems 9(3),
203–252 (2004)

47. Myers, G., Sandler, C., Thomas, T.M., Badgett, T.: The Art of Software Testing.
John Wiley and Sons, West Sussex, England (2004)

http://www.eurescom.de/~pub-deliverables/p900-series/P907/TI1/p907ti1.pdf
http://www.eurescom.de/~pub-deliverables/p900-series/P907/TI1/p907ti1.pdf


The Construction of Multi-agent Systems as an Engineering Discipline 37

48. Gomez-Sanz, J., Pavon, J., Garijo, F.: Estimating Costs for Agent Oriented Soft-
ware. In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp.
218–230. Springer, Heidelberg (2006)

49. Bernon, C., Cossentino, M., Pavon, J.: Agent-oriented software engineering. The
Knowledge Engineering Review 20(02), 99–116 (2006)

50. Gonzalez-Perez, C., McBride, T., Henderson-Sellers, B.: A Metamodel for Assess-
able Software Development Methodologies. Software Quality Journal 13(2), 195–
214 (2005)

51. Henderson-Sellers, B.: Creating a Comprehensive Agent-Oriented Methodology:
Using Method Engineering and the OPEN Metamodel. In: Agent-Oriented
Methodologies, pp. 368–397. Idea Group, USA (2005)

52. Cernuzzi, L., Cossentino, M., Zambonelli, F.: Process models for agent-based devel-
opment. Engineering Applications of Artificial Intelligence 18(2), 205–222 (2005)

53. Bot́ıa, J.A., Hernansaez, J.M., Skarmeta, F.G.: Towards an approach for debug-
ging mas through the analysis of acl messages. In: Lindemann, G., Denzinger, J.,
Timm, I.J., Unland, R. (eds.) MATES 2004. LNCS (LNAI), vol. 3187, pp. 301–312.
Springer, Heidelberg (2004)

54. Lam, D.N., Barber, K.S.: Comprehending agent software. In: Proceedings of the
fourth international joint conference on Autonomous agents and multiagent sys-
tems, pp. 586–593. ACM Press, New York (2005)

55. DeLoach, S., Wood, M.F.: Developing multiagent systems with agenttool. In:
Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol. 1986,
pp. 46–60. Springer, Heidelberg (2001)

56. Pavon, J., Gomez-Sanz, J.J., Fuentes, R.: The INGENIAS Methodology and Tools.
In: Agent-Oriented Methodologies, pp. 236–276. Idea Group Publishing, USA
(2005)

57. Bourque, P., Dupuis, R., Abran, A., Moore, J., Tripp, L.: The guide to the Software
Engineering Body of Knowledge. Software 16(6), 35–44 (1999)

58. Gomez-Sanz, J.J., Gervais, M.P., Weiss, G.: A Survey on Agent-Oriented Soft-
ware Engineering Research. In: Methodologies and Software Engineering for Agent
Systems, pp. 33–62. Kluwer Academic Publishers, Dordrecht (2004)



Current Issues in Multi-Agent Systems Development

Rafael H. Bordini1,�, Mehdi Dastani2, and Michael Winikoff3,��

1 University of Durham, U.K.
R.Bordini@durham.ac.uk

2 Utrecht University, The Netherlands
mehdi@cs.uu.nl

3 RMIT University, Australia
michael.winikoff@rmit.edu.au

Abstract. This paper surveys the state-of-the-art in developing multi-agent sys-
tems, and sets out to answer the questions: “what are the key current issues in
developing multi-agent systems?” and “what should we, as a research commu-
nity, be paying particular attention to, over the next few years?”. Based on our
characterisation of the current state-of-the-art in developing MAS, we identify
three key areas for future work: techniques for integrating design and code; ex-
tending agent-oriented programming languages to cover certain aspects that are
currently weak or missing (e.g., social concepts, and modelling the environment);
and development of debugging and verification techniques, with a particular fo-
cus on using model checking also in testing and debugging, and applying model
checking to design artefacts.

1 Introduction

In this paper we survey the current state-of-the-art in multi-agent system development
and identify current issues. These issues are areas where we believe the research com-
munity should concentrate future research efforts, since they are, in the authors’ opin-
ion, crucial to practical adoption and deployment of agent technology.

This paper was based on an invited talk at ESAW 2006. The talk was presented by
Rafael Bordini, but the contents of the talk grew out of each of the author’s opinions,
as presented and discussed at a Dagstuhl Seminar1, and incorporating ideas from the
AgentLink ProMAS technical forum group2.

This paper is structured as follows. We begin by reviewing the state-of-the-art in
MAS development (Section 2), focussing in particular on Agent Oriented Software En-
gineering (AOSE), Agent Oriented Programming Languages (AOPLs), and on verifica-
tion of agent systems. We then identify a number of key issues in those areas (Section 3).
For each issue, we discuss what we believe is the way forward. Since this paper is all
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about future work, our conclusions (in Section 4) merely summarises the key points of
the paper.

2 State of the Art

There are a number of methodologies that provide developers with a process for doing
software engineering of multi-agent systems, and there is a range of programming lan-
guages especially designed to facilitate the programming of agent systems. The field
of verification and validation of agent systems is comparatively less well-developed,
but there has been work on both formal verification using model checking, and on ap-
proaches for debugging and testing agent systems.

In current practice, the way in which a multi-agent system is typically developed
is that the developer designs the agent organisation and the individual agents (perhaps
using an AOSE methodology), then takes the detailed design and manually codes the
agents in some programming language, perhaps agent-oriented, but more often using
traditional programming languages. The resulting system is debugged (at best) using a
combination of tracing messages and agent inspectors.

Thus developing a multi-agent system, like developing any software system, encom-
passes activities that are traditionally classified into three broad areas: software engi-
neering (e.g., requirements elicitation, analysis, design3), implementation (using some
suitable programming language), and verification/validation. To help structure this pa-
per, which has also a focus on agent programming languages and verification, we have
separated the last two types of activities from general software engineering (specifically
analysis and design). Therefore, in the following subsections we briefly review the state-
of-the-art in AOSE, programming languages for multi-agent systems, and verification
of multi-agent systems (including debugging).

2.1 Agent Oriented Software Engineering

Agent Oriented Software Engineering is concerned with how to do software engineering
of agent-oriented systems. It is a relatively youthful field, with the first AOSE work-
shop held in the year 2000. Nevertheless, over the past decade or so there has been
considerable work by many people, resulting in quite a number of methodologies in the
literature. These methodologies vary considerably in terms of the level of detail that
is provided, the maturity of the methodology, and the availability of both descriptions
that are accessible to developers (i.e., not researchers) and of tool support. Of the many
methodologies available (e.g., see [6,32]), key methodologies that are widely regarded
as mature include Gaia [64,67], MaSE [24], Tropos [14] and Prometheus [44].

It is important to clarify what is meant by a methodology. From a pragmatic point of
view, a methodology needs to include all that a software engineer requires to do analysis
and design, namely:

Concepts: While for object-oriented design the concepts used — classes, objects, in-
heritance, etc. — are so commonly understood as to be taken for granted, for agents

3 Design includes various sorts of design activities, such as architectural design, social design,
detailed design.
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Fig. 1. Prometheus

a single set of basic concepts is not (yet) universally accepted or known, so a
methodology needs, for completeness, to define a set of basic concepts that are
used. For example, the Prometheus4 methodology uses a set of concepts that are
derived from the definition of an agent: action, percept, goal, event, plan, and belief
[61].

Process: A methodology needs to provide an overall process that specifies what is done
after what. For example, in Prometheus there are three phases — system specifi-
cation, architectural design, and detailed design — where each phase consists of
steps. For example, system specification includes the steps of identifying the sys-
tem’s goals, and of defining the interface between the system and its environment.
Although these steps are often most easily described as being sequential, it is usual
to recognise that iteration is the norm when doing software analysis/design. The
process used by Prometheus is summarised in Figure 1.

Models and Notations: The results of analysis and design are a collection of models,
for example a goal overview model or a system overview model. These models are
depicted using some notation, often graphical, typically some variation on “boxes
and arrows”. Figure 2 shows an example model.

Techniques: It is not enough to merely say that, for example, the second step of the
methodology is to develop a goal overview diagram. The software designer, espe-
cially if not particularly experienced in designing agent systems, benefits from a
collection of specific techniques — usually formulated as heuristics — that guide
them in how that step is carried out. For example, a goal overview diagram can

4 We shall use Prometheus as an example because we are most familiar with it.
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Fig. 2. System Overview Diagram (using Prometheus)

be refined by asking for each goal “how?” and “why?”, yielding respectively new
child and new parent goals [54].

Tool Support: Whilst arguably not essential, for any but the smallest design, and for
any design that is iteratively refined, having tool support is of enormous benefit.
Tools can range from simple drawing packages, to more sophisticated design envi-
ronments that provide various forms of consistency checking.

Although each methodology has its own processes and notations, there are some
common aspects. Many methodologies are broken down into some sort of requirements
phase (e.g., “system specification” in Prometheus), some sort of system design (e.g.,
“architectural design” in Prometheus), and detailed design. The requirements phase
specifies what it is that the system should do, with one of the commonly used mod-
els being some sort of goal hierarchy. The system design phase determines what agent
types exist in the system, and how they interact (i.e., interaction design). Finally, the
detailed design phase determines how each agent operates. It is also important to note
that many methodologies capture in some way the environment that the agent system
will inhabit. In Prometheus this is done, fairly simply, by specifying the interface to the
environment in terms of actions and percepts.

2.2 Agent Oriented Programming Languages

There exist many Agent Oriented Programming Languages (AOPLs). In addition, there
also exist platforms that focus on providing certain functionalities — such as com-
munication and general infrastructure (e.g., white/yellow pages) — but which do not
provide a programming language for developing agents. Such so-called platforms, such
as OAA [16], JADE [5] and FipaOS [48], are not in the scope of this paper as they are
not AOPLs.

In this section we shall, instead, focus on agent oriented programming languages
for defining the behaviour of individual agents in a multi-agent system. In general, in
so-called “cognitive agent programming languages”, the focus is on how to describe
the behaviour of an agent in terms of constructs such as plans, events, beliefs, goals,



42 R.H. Bordini, M. Dastani, and M. Winikoff

and messages. Although there are differences between various proposed AOPLs, they
also have significant common characteristics. It is instructive to note that in some of
these languages the environment is not captured, that agent interaction is implemented
at the level of sending individual message — interaction protocols, for example, are
not represented — and that in many languages goals are not provided, but they are
approximated by the notion of events instead [62].

Most cognitive agent programming languages such as Jason [12], Jadex [12], JACK
[46], 3APL [33,22], and 2APL[20] come with their own platforms. These platforms pro-
vide general infrastructure (e.g., agent management system, white and yellow pages),
a communication layer, and integrated development environment (IDE). The existing
IDE’s provide editors with syntax highlighting facilities, enable a set of agents pro-
grams to be executed in parallel in various modes such as step-by-step or continuous,
provide tools to inspect the internal states of the agents during execution, and examine
messages that are exchanged by the agents. Further, some of the platforms that come
with a cognitive agent programming languages, such as Jadex [47] and 2APL [20], are
built on an existing agent platform, such as JADE [5]. The resulting platforms use the
functionalities of the existing platforms such as the general infrastructure, communica-
tion facilities, and inspection tools.

Loosely speaking, agent-oriented programming languages can be classified as be-
ing either “theoretical” (i.e., having formal semantics, but arguably being impractical
for serious development) or “practical” (i.e., being practical for serious development,
but lacking formal semantics). However, it must be noted that this classification is sim-
plistic in that languages with formal semantics are not precluded from being practical.
Additionally, there are a number of more recent languages (or extensions of existing
languages, such as Jason, which extends AgentSpeak(L)) that aim to be practical, yet
have formal semantics. In particular, we mention 2APL, Jason, and SPARK [20,12,41]
as examples of languages that aim to be practical yet have formal semantics. Below
we briefly present some relevant features of Jason and 2APL. For more information on
AOPLs, including various agent programming languages and platforms not mentioned
here, see [8,7].

AgentSpeak(L) and Jason

AgentSpeak(L)5 was proposed by Anand Rao in the mid 90s [51]. Perhaps surprisingly,
the proposal received limited attention for a number of years before being “revived”: in
recent years there have been a number of implementations of AgentSpeak. Of these, the
best developed is Jason, which extends AgentSpeak with a range of additional features.

The AgentSpeak language was intended to capture, in an abstract form, the key ex-
ecution mechanism of existing Belief-Desire-Intention (BDI) platforms such as PRS
[29,37] and dMARS[25]. This execution cycle links events and plans. Each event has
a number of plans that it triggers. These plans have so-called context conditions, that
specify under what conditions a plan should be considered to be applicable to handle
an event. A given event instance is handled by determining which of the plans that it
triggers are currently applicable, and then selecting one of these plans and executing it.

5 In the remainder of this paper we shall simply refer to this language and its variants as “AgentS-
peak”.
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Execution of plans is done step-by-step in an interleaved manner; plan instances form
intentions, each representing one of the various foci of attention for the agent. The exe-
cution switches to the plan in the focus of attention of currently greatest importance for
the agent.

Figure 3 shows examples of AgentSpeak plans for an abstract scenario of a plan-
etary exploration robot. The first plan is triggered when the robot perceives a green
patch on a rock, which indicates that the rock should be examined first as its analysis
is likely to contain important data for a scientist working on the mission. In particu-
lar, the triggering event is green patch(Rock) which occurs when the agent has a
new belief of that form. However, the plan is only to be used when the battery charge
is not low (this is the plan context, in this case battery charge(low) must not
be believed by the agent). The course of action prescribed by this plan, for when the
relevant event happens and the context condition is satisfied is as follows: the loca-
tion of the rock with the perceived green patch is to be retrieved from the belief base
(?location(Rock,Coordinates)), then the agent should have a new goal to
traverse to those coordinates (!traverse(Coordinates)), and finally, after the
traverse has been successfully achieved, having a new goal to examine that particular
rock (!examine(Rock)). The other two plans give alternative courses of action for
when the robot comes to have a new goal of traversing to a certain coordinate. When
the robot believes there is a safe path towards there, all it has to do is to execute the ac-
tion (that the robot is hardwired to do) of physically moving towards those coordinates.
The figure omits for the sake of space the alternative course of action (which would
be to move around to try and find a different location from which a safe path can be
perceived, probably by using some image processing software).

+green patch(Rock) :
not battery charge(low) <-

?location(Rock,Coordinates);
!traverse(Coordinates);
!examine(Rock).

+!traverse(Coords) :
safe path(Coords) <-

move towards(Coords).

+!traverse(Coords) :
not safe path(Coords) <-

...

Fig. 3. Examples of AgentSpeak Plans

Jason 6 is a Java-based platform that implements the operational semantics of an ex-
tended version of AgentSpeak. The purpose of the language extensions was to turn the
abstract AgentSpeak(L) language originally defined by Rao into a practical program-
ming language. The language extensions and the platform have the following features:

6 Jason is jointly developed by Rafael Bordini and Jomi F. Hübner (FURB, Brazil) and available
open source at http://jason.sf.net

http://jason.sf.net
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Strong negation: as agents typically operate under uncertainty and in dynamic envi-
ronments, it helps the modelling of such applications if we are able to refer to things
agents believe to be true, believe to be false, or are ignorant about.

Handling of plan failures: as multi-agent systems operate in unpredictable environ-
ments, plans can fail to achieve the goals they were written to achieve. It is therefore
important that agent languages provide mechanisms to handle plan failure.

Speech-act based communication: as the mental attitudes that are classically used
to give semantics for speech-act based communication are formally defined for
AgentSpeak we can give precise semantics for how agents should interpret the ba-
sic illocutionary forces (e.g., inform, request), and this has been implemented in
Jason. An interesting extension of the language is that beliefs can have “annota-
tions” which can be useful for application-specific tasks, but there is one standard
annotations that is done automatically by Jason, which is on the source of each
particular belief.

Plan annotations: in the same way that beliefs can have annotations, programmers can
add annotations to plan labels, which can be used by elaborate (e.g., using decision-
theoretic techniques) selection functions. Selection functions are user-defined func-
tions which are used by the interpreter, including which plan should be given pref-
erence in case various different plans happen to be considered applicable for a
particular event.

Distribution: the platform makes it easy to define the agents that will take part in the
system and also determine in which machines each will run, if actual distribution
is necessary. The infrastructure for actual distribution can be changed (e.g., if a
particular application needs to use a particular distribution platform such as JADE).

Environments: multi-agent systems will normally be deployed in some real-world en-
vironment. Even in that case, during development a simulation of the environment
will be needed. Jason provides support for developing environments, which are
programmed in Java rather than an agent language.

Customisation: programmers can customise two important parts of the agent platform
by providing application-specific Java methods: the agent class and the agent archi-
tecture (note that the AgentSpeak interpreter provides only the reasoning compo-
nent of the overall agent architecture). For more details, see [11].

Language extensibility and legacy code: the AgentSpeak extension available with
Jason has a construct called “internal actions”. These are then implemented in
Java (or indeed any other language using JNI). This provides for straightforward
language extensibility, which is also a straightforward way of invoking legacy code
from within the high-level agent reasoning in an elegant manner. Jason comes with
a library of essential standard internal actions. These implement a variety of useful
operations for practical programming, but most importantly, they provide the means
for programmers to do important things for BDI-inspired programming that were
not possible in the original AgentSpeak language, such as checking and dropping
the agent’s own desires/intentions.

Integrated Development Environment: Jason is distributed with an IDE which pro-
vides a GUI for managing the system’s project (the multi-agent system), editing
the source code of individual agents, and running the system. Another tool pro-
vided as part of the IDE allows the user to inspect agents’ internal (i.e., “mental”)
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states when the system is running in debugging mode. The IDE is a plug-in to jEdit
(http://www.jedit.org/), and an Eclipse plug-in is likely to be available in
the future.

There is also much ongoing research to extend Jason is various ways, including: plan
patterns for declarative goals [35], combination with the Moise+ [36] organisational
model (http://moise.sf.net), automated belief revision [1], and combination
with a high-level environment language aimed at social simulation, which in recent
work aims to allow normative and organisational aspects to be associated with, for
example, certain environment locations [42].

2APL: A Practical Agent Programming Language

One of the challenges of practical cognitive agent programming languages is an effec-
tive integration of declarative and imperative style programming. The declarative style
programming should facilitate the implementation of the mental state of agents allow-
ing agents to reason about their beliefs and goals and update them accordingly. An
important issue here is the expressivity of the beliefs and goals, the expressions with
which they can be updated, interface to existing declarative languages, and the rela-
tion between beliefs and goals (e.g., is it possible for an agent to have an expression
as belief and goal at the same time? That is, can an agent desire a state which is be-
lieved to be achieved?) [63,21]. The imperative style programming should facilitate the
implementation of processes, their execution modes, the flow of control, interface to
existing imperative programming languages, and processing of events and exceptions.
The question is how to integrate these declarative and imperative programming aspects
in an effective way. This design objective is the main motivation for introducing a new
agent programming language called 2APL (A Practical Agent Programming Language)
[20].

Agents that are implemented by 2APL programs can generate plans by reasoning
about their goals and beliefs, which are implemented in a declarative way. Plans can
consist of actions of different types. Like most BDI-based programming languages,
2APL provides different types of actions such as belief and goal update actions, belief
and goal test actions, external actions (to be performed in the agents’ shared environ-
ment), and communication actions. As agents may operate in dynamic environments,
they have to observe (be notified about) their environmental changes. In 2APL such
environmental changes will be notified to the agents by means of events.

A characterising feature of 2APL is its distinction between events and goals. In some
agent programming languages events are used for various purposes, e.g., for modelling
an agent’s goals or for notifying an agent about internal changes. Although both goals
and events cause a 2APL agent to execute actions, they differ from each other in a
principle way. For example, an agent’s goal denotes a desirable state that the agent
performs actions to achieve (goals are directly related with beliefs such that a goal is
automatically dropped as soon as it is achieved), while an event carries information
about (environmental) changes which may cause an agent to react and execute certain
actions. After the execution of actions, an agent’s goal may be dropped if the state
denoted by it is believed to be achieved, while an event can be dropped just before

http://www.jedit.org/
http://moise.sf.net
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Beliefs:
post(5,5).
dirt(3,6).
dirt(5,4).
clean(world) :- not dirt(X,Y).

Goals:
hasGold(2) and clean(world) ,
hasGold(5)

PG-rules:
clean(world) <- dirt(X,Y) |
{ goto(X,Y);

PickUpDirt();
goto(2,2);
DropDirt() }

PC-rules:
goldAt(X,Y) <- true | { [goto(X,Y); PickUpGold()] }

PR-rules:
PickUpDirt();R <- dirt(X,Y) | { goto(X,Y);PickUpDirt();R }

Fig. 4. Examples of 2APL Program

executing the actions that are triggered by it. Moreover, because of the declarative nature
of goals (logical expressions), an agent can reason about its goals while an event only
carries information which is not necessarily the subject of reasoning.

For example, consider the 2APL program as illustrated in Figure 4. This program,
which for simplicity reasons does not include all details, indicates that the agent starts
with the beliefs that it is on position (5,5), that there is dirt at positions (3,6) and (5,4),
and that the world is clean if there is no dirt at any position. The agent wants to achieve
two states (the goals are separated by a comma): one state in which he has two pieces
of gold and the world is clean of dirt, and another state in which he has five pieces
of gold. Note that these two states do not need to be achieved simultaneously. The
planning goals rule (PG-rules) indicates that the state in which the world is clean can be
achieved by going to the dirts’ positions, picking them up, bringing them to the depot
position (2,2), and dropping them in the depot. Note that the application of this rule
can only achieve the subgoal clean(world), not the desired state hasGold(2)
and clean(world). The ability to achieve subgoals requires reasoning about goals.
Different notions of reasoning about goals are discussed in [21,55]. Note also that if all
the dirt is picked up and dropped in the depot position, then the agent will believe
that the world is clean. If the agent also believes that it has two pieces of gold, then it
automatically drops the goal hasGold(2) and clean(world).

The difference between goals and events can be illustrated by the procedural rules
(PC-rules). This rule indicates that if the agent is notified by an event that there is a gold
piece at a certain position, then the agent should go to that position and pick up the gold
piece. Note that both goals and event can cause the agent to perform actions.

Other characterising 2APL features are related to the constructs designed with re-
spect to an agent’s plans. The first construct is a part of an exception handling
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mechanism allowing a programmer to specify how an agent should repair its plans when
the execution of its plans fail. This construct has the form of a rule which indicates that a
plan should be replaced by another one. For example, consider again the agent program
illustrated in Figure 4. The plan repair rule (PR-rules) indicates that if the execution of
a plan that starts with the action PickUpDirt() (followed by the rest R of the plan)
fails (for example because the dirt was already removed by another agent), then the plan
should be replaced by the goto(X,Y);PickUpDirt();R plan if the agent believes
that there is dirt at another position (X,Y). Note the use of variable R which stands for
the rest of the original plan. The second 2APL programming construct related to plans
is the so-called non-interleaving (region of) plans. In most agent-oriented programming
languages, an agent can have a set of plans whose executions can be interleaved. The ar-
bitrary interleaving of plans may be problematic in some cases such that a programmer
may want to indicate that a certain part of a plan should be executed at once without
being interleaved with the actions of other plans. A non-interleaving plan region can be
marked by putting the region of the plan within [] brackets. For example, in Figure
4 the plan for picking up a gold piece when notified by an event is a non-interleaving
plan.

In addition to these features, 2APL provides specific programming mechanisms such
as procedures, recursion and encapsulation. A procedure can be implemented by means
of a specific rule that relates an abstract action (procedure call) to a concrete plan (pro-
cedure body). A recursion can be implemented simply by including the procedure call in
the procedure body. Although these mechanisms can be implemented in other cognitive
agent programming languages, 2APL follows the separation of concerns principle and
provides specific constructs for the purpose of implementing procedures and recursions.
In comparable cognitive agent programming languages (programming languages with
formal semantics), procedures can be implemented by means of rules that relate events
(or goals) to plans. In 2APL, procedures and recursion are considered as inherently dif-
ferent concepts from goals and events such that their implementation is independent of
these concepts.

2.3 Verification and Validation

Multi-agent systems are distributed and concurrent, and the agents that make up a MAS
are able to exhibit complex flexible behaviour in order to achieve its objectives in the
face of a dynamic and uncertain environment. This flexible behaviour is key in making
agent technology useful, but it makes it difficult to debug agent systems, and, once the
system is (supposedly) debugged and ready for deployment, makes it hard to obtain
confidence that the system will work as desired.

Debugging is an essential part of the process of developing software, and so good
support for debugging is important. In the case of agent systems, there has been some
work on debugging (e.g. [40,13,27,45]), but debugging techniques used in practice still
rely on tracing and state inspection. The better agent development environments pro-
vide facilities to view, browse, and analyse the messages that are being exchanged, and
facilities to examine the internal state of the agents. As examples, Figures 5 and 6 show
the Mind Inspector tool provided by Jason and 2APL’s State Trace, respectively; other
platforms, such as JACK, provide similar functionality.
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Fig. 5. Jason Debugging: Agent Mind Inspector

Fig. 6. 2APL Debugging: Agent State Tracer
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In addition to using standard debugging techniques, there has been some work that
aims to provide semi-automatic bug detection. For example, the work of Poutakidis et
al. [49,50,45] automatically detects bugs in agent interactions by comparing an execu-
tion trace with the interaction protocol that is supposed to describe the valid message
sequences. Any sequence of messages that occurs in the system’s execution but that is
illegal according to the protocol is automatically identified and flagged as an error. The
general principle is that design artefacts can be used to assist in debugging.

In any software system it is essential that when the system is deployed and used,
there is confidence that it will do what it is supposed to do. Typically, this confidence is
achieved through testing. However, for agents that are able to exhibit flexible behaviour,
achieving their goals in a range of ways depending on the situation, it is harder to
achieve confidence in the system through testing. Hence, there has been a rather limited
amount of work on testing agent systems, but there has been interest in using formal
methods, especially model checking, to verify agent systems.

Work has focussed on model checking because it is easier to use than theorem prov-
ing, and, more importantly, because it can provide counter examples when the system
fails to satisfy a desired property. Further, much work is devoted to state-space reduc-
tion techniques which can make model checking practical even for very large systems.
However, although the technology is promising, at present it is fairly preliminary: the
languages handled are limited, and the techniques have not been applied to industrial-
scale case studies in multi-agent system.

Another type of work related to the correct behaviour of agent programs aims at
specifying the semantics of the agent programming language is such a way to guar-
antee the satisfaction of certain behaviour. For example, in [23] it was shown that the
semantics of an agent programming language can be defined in such a way that any
agent implemented in that agent programming language will drop its goals if the goal
is either achieved or believed not to be achievable anymore.

Most of the work done on model checking within the multi-agent systems research
area is quite theoretical, although there are approaches that use existing model checkers,
typically to check properties of particular aspects of a multi-agent system. A survey
paper on the use of logic-based techniques for specifying but particular for verifying
multi-agent systems is to appear in print around the same time as this paper, so instead
of giving references here, we refer the interested reader to [26]. When it comes to model
checking software (i.e., a complete running system) there is little work that applies to
multi-agent systems in particular. More specifically on model checking agent programs
written in an agent-oriented programming language, to our knowledge the only existing
approach is the one presented in [10,56].

3 Problems with the Current State of the Art

Let us briefly summarise the current state-of-the-art in developing MAS. Not all current
multi-agent system development projects use all of these, but rather we describe what
is already available and in our opinion is likely to be used. Indeed adoption of these
techniques will make short-term future development of agent-based system far more
successful than previous attempts, in our opinion. We then discuss how this process
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should be improved by future research. We consider the state-of-the-art development
process to be as follows:

1. Designing organisation and individual agents using an AOSE methodology
2. Taking the resulting design and (manually) coding the agents in some AOPL, based

on the design
3. Debugging the system using message tracing and agent inspectors
4. Possibly using model checking on agent code (but unlikely)

Even though we believe that adoption of this development process would already im-
prove significantly the development of multi-agent systems, the above summary high-
lights a number of areas where the current state-of-the-art is, in our opinion, seriously
lacking, and where future work is sorely needed. There are three key issues:

– The implementation is developed completely manually from the design. This cre-
ates the possibility for the design and implementation to diverge, which tends to
make the design less useful for further work in maintenance and comprehension of
the system.

– Although present AOPLs provide powerful features for specifying the internals of
a single agent, they mostly7 only provide messages as the mechanism for agent
interaction. Messages are really just the least common denominator for interaction,
and, especially if flexible and robust agent interactions are desired, it is important
to design and implement agent interactions in terms of higher-level concepts such
as social commitments [65,28], delegation of goasl/tasks, responsibility [30,31], or
interaction goals [15]. Additionally, AOPLs are weak in allowing the developer to
model the environment within which the agents will execute.

– In most of the practical approaches for verification of multi-agent systems, verifi-
cation is done on code. While this has the advantage of proving properties of the
system that will be actually deployed, it is also often useful to check properties
during the system design, so more work is required in verification of agent design
artefacts. In fact, all the work on model checking for multi-agent systems is still in
early stages so not really suitable for use on large and realistic systems.

In the remainder of this section we tackle each of these issues, and describe where
we believe we should be heading, and what we believe needs to be done to address each
of these issues. In brief, we believe that the key things we, as a research community,
should be doing with respect to these issues are:

– Working on developing techniques and tools that allow for designs and code to be
strongly integrated with consistency checking and change propagation.

– Developing better integrated designs and code would be facilitated by AOPLs be-
ing closer to the design in terms of covered concepts — while this is already true
for individual agent abstractions, that is not the case for social abstractions. Thus,
we believe that research effort in AOPLs should in the short-term concentrate on

7 Although there has been work on AOPL support for programming teams of agents (e.g.
[18,34,53]), this approach only applies to certain problem domains, where agents are co-
operative.
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extending AOPLs so they cover design concepts that are presently either missing
or not covered well. Such concepts include interaction concepts at a higher level
than messages (e.g., interaction protocols, social commitments, norms, obligations,
responsibility, trust), and the environment (e.g., resources, services, actions), al-
though further work on certain types of declarative goals is still required [19].

– Develop better techniques and tools for debugging and verification. One approach
that is enabled by the existence of design that is reliably consistent with the code8

is to use design artefacts to assist with debugging (e.g., [45]). However, debugging
alone cannot assure us of the correctness of a system, and so formal verification
techniques are also important. Interestingly, formal verification techniques such as
model checking can be used to help validation when formal verification turns out
not to be possible in practice (e.g., [58]).

3.1 Integrating Code and Design

There is an unfortunate tendency in the computing world to regard design and code
as being completely different beasts. There are some clear differences between them:
for instance, code is usually textual and detail-rich, whereas design is usually graphical
and high-level. However, as was lucidly argued as far back as 1992 “Programming is
a design activity” [52]. That is, the programming process, which is often (incorrectly)
related by analogy to manufacturing a design in other engineering disciplines, is in fact a
design activity, which is why it involves considerable rework in the form of debugging.
Thus, it is highly desirable to have code and design being seen as different views on
what is really a single conceptual activity.

Unfortunately, the current state-of-the-art in linking design and code is surprisingly
primitive: “In most cases, the reverse-engineering facilities provided by CASE-tools
supporting the Unified Modelling Language (UML) are limited to class diagram ex-
traction” [38].

In an attempt to be systematic, we briefly present a taxonomy of the possible ap-
proaches for eliminating the “gap” between code and design. We have identified eight
possible approaches:

Eliminate design: one way of avoiding discrepancies between two entities is to elim-
inate one of them! By “eliminating design” we do not mean that design activities
are not performed, but that the results of these activities (in the form of design arte-
facts) are not retained and maintained. This approach, which may sound impossibly
naive, is in fact what agile methodologies such as XP [4] propose. This approach
is feasible if the application’s design is relatively simple and/or is familiar to the
system’s developers.

Eliminate code: instead of eliminating design, we could eliminate code. Clearly, in
order to have running software we need to augment the design with additional de-
tails. This approach corresponds to Model-Driven Development (MDD). This has
been shown to be practical in certain cases, but has the drawback that the design
can become cluttered with the additional details needed to make it executable.

8 In fact, using design artefacts for debugging can also assist in detecting inconsistencies be-
tween design and code.
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Generate code from design: a third approach is to generate the code from the design.
This can be done fairly easily (although usually there is not enough information
in the design to generate more than skeleton code). However, without additional
techniques to then ensure the continued consistency of design and code as one or
the other is changed, this is not a useful solution.

Extract design from code (reverse engineering): this automation possibility is intri-
guing, but not practical yet. Also, code typically does not contain all desired design
information. However, the code can be extended to encompass such information.

Extract changes from design and apply to code: there is an issue here with language-
dependence; that is, tools need to be developed for the particular design notation and
the target programming language so that changes in the design can be reflected in
the right way for that programming language. Also, it does not actually solve the
problem (in case the code is changed directly)!

Extract changes from code and apply to design: the same issue with language-dep-
endence as in the item above exists here. Also, it does not actually solve the problem
(in case the design gets changed)!

Extract changes in design/code and apply to the other: although this approach
completely solves the problem, the issue of language dependence still remains.

Integrate code and design into a single model: in this approach design and code be-
come just different views on an underlying model which encompasses both. This
avoids problem with language dependence by committing to a given programming
language for the methodology, but requires integration between design and pro-
gramming tools.

An issue in integrating code and design is that there are many design notations (and
associated tools), and many AOPLs. Having to develop a link between each possible
design tool and each possible language is clearly undesirable. A naive solution to this
problem would be firstly to get the AOSE research community to agree on a single
methodology and come together to develop a single support tool, and then secondly
to get the AOPL research community to agree on a single AOPL. Clearly, this is not
something that is likely to happen any time soon!

A more complex, but far more practical approach is to standardise interchange for-
mats and APIs, while allowing the underlying notations/languages/tools to remain di-
verse. This is the approach we believe is most suitable for the multi-agent systems
community and therefore we propose that the research community:

– Develop a standard abstraction for AOPLs
– Develop a standard API for making changes to an agent program
– For each AOPL’s implementation, an implementation of the API is created
– Each design tool is extended with the ability to push changes into code via the API.

and, symmetrically, it is also required that the community:

– Agree on a common set of design abstractions
– Develop a standard API for making changes to a multi-agent system design
– For each AOSE methodology, an implementation of the API is created
– Each programming tool is extended with the ability to push changes into design via

the API.
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Clearly this will require major research effort and collaboration within (and between)
the AOSE and ProMAS communities, but we believe this will have a significant impact
in future MAS development, and that this line of research is worth pursuing.

3.2 Extending Agent-Oriented Programming Languages with Organisation and
Interaction Aspects

Organisations are useful because they allow us to address at design and runtime how
a complex multi-agent system should behave. Concepts such as responsibility, power,
task delegation, norms, role enactment, workflows, shared goals, access control, groups
and social structure help a software developer to understand and implement large multi-
agent systems. Agent development methodologies need to provide concepts to specify,
design, and implement static and dynamic aspects of such organisations. Though con-
cepts for static views of organisations appear in almost all methodologies, the dynamics
are not widely and thoroughly considered yet.

Historically, agent-oriented programming languages have focused on the internals of
agents and have somewhat neglected social and organisational aspects. Most existing
agent programming languages do not provide programming constructs to implement
such multi-agent aspects so that programmers have to translate and incorporate these
features at the level of individual agents’ internals. However, some existing program-
ming languages allow the implementation of these aspects, although to a very limited
extent. For example, Jason provides programming constructs to indicate the infrastruc-
ture to be used by the agents, the environment the agent will share, and the agents and
their numbers to be created and executed. Also, 2APL provides programming constructs
to indicate which individual agents and how many of them should be created, and which
agent has access to which environment.

One reason for neglecting these issues is the lack of clear and computational seman-
tics for these social and organisational concepts. A starting point to tackle this issue is
to develop formal and computational semantics for social and organisational concepts
based on theories of concurrency and coordination, and possibly inspiration from the-
ories of human organisations. It should be noted that work on electronic institutions,
such as Islander, which maps to an implementation platform called Ameli [2], regulates
agent interactions and ensures that the laws of the institution are obeyed. Although work
in that area does not focus on designing agent programming languages, they can be a
source of inspiration for designing agent programming languages with specific pro-
gramming constructs that allow the implementation of multi-agent organisations and
interactions.

Extending AOPLs: Interaction

Current agent-oriented programming languages allow the implementation of agent in-
teractions at the level of messages. It is, however, desirable to move beyond messages
because designing and implementing at the message level gives “brittle” interactions.
Also, designing and implementing at this level makes it very hard to verify/debug and
modify the interaction between agents. In order to overcome these problems, the fol-
lowing options can be considered.



54 R.H. Bordini, M. Dastani, and M. Winikoff

One can extend agent-oriented programming languages with programming constructs
that enable the implementation of interaction protocols. The execution of implemented
protocols should enable individual agents to perform appropriate actions to achieve de-
sirable interactions when they so choose. Alternatively, the execution of these program-
ming constructs could extend the individual agent programs with the appropriate actions
such that the execution of extended agent programs guarantees the desirable interactions
between the agents.

Other options include using alternatives to message-centric interaction protocols, such
as specifying interactions in terms of social commitments (e.g. [28,66]), landmarks [39]
or interaction goals [15]; and extending AOPLs with support for these concepts [60].

Extending AOPLs: Environments

The environment shared by agents can be seen as a first-class abstraction which is as
important as agents [59]. It provides the surrounding conditions for agents to exist and
contains elements that are not present in agents, which are often important means for
agent interaction. The environment can be used to help build a solution (coordination
marks, such as pheromones, are a typical example). Agents can influence the environ-
ment to make it change or to extract meaningful information (perception). Agents can
also communicate indirectly via the environment by adding and reading information
from the environment. Finally, from the decision theory point of view, an agent decides
which action to perform in an environment while the environment determines the actual
effects of the action.

The environment benefits agent technology because it contributes to the separation of
concerns and forces designers to incorporate appropriate agent features. Environments
can be considered as a set of artefacts [43] used by agents to achieve goals and that
regulate agent interaction. More elaborate approaches try to give more explicit defini-
tions of environments by defining a framework. This framework would be responsible
for executing agent actions and determining the effects of such actions.

Some agent development methodologies such as Prometheus have agent system de-
signs that include a primitive environment model. The environment model is captured
as actions and percepts. Also, some of the existing agent programming languages such
as 3APL, 2APL, and Jason support the implementation of external shared environ-
ments. These environment are implemented as Java classes, for example so that their
methods correspond with the actions that agents can perform in the environment. The
state of the environment is then implemented by class variables which will be changed
by the agents’ actions (method calls). The modification of the state of the environment
is implemented by the methods of the class. It is important to emphasis that these agent
programming languages use Java to implement the agents’ shared environment. Future
work should consider extending the existing agent programming languages with spe-
cific abstract programming constructs that facilitate implementation of the environment
in terms of high-level concepts such as resource, service, actions, and action effects.

3.3 Verification and Validation

Some of the reasons why debugging MAS is so hard are: agents exhibit flexible be-
haviour so it may turn out to be difficult to detect the circumstance that led to the
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faulty behaviour and even more so to fix the problems in a way that is consistent in all
behaviours; the inherent concurrency in the system is an obvious complication as con-
current systems are notoriously difficult to debug; the environment is typically failure-
prone so it may again be difficult to detect/reproduce the exact circumstances that cause
problems and ensure that it will work correctly in the future; there will be typically a
large number of agents which clearly makes things more difficult; systems might be
open, so possibly difficult to consider the consequence of changes for various combi-
nations of participating agents; each agent has a complex mental structure which needs
to be not only inspected, but also understood; there will typically be a large number of
communication messages that might need to be analysed in conjunction with agents’
mental states. More importantly, the whole process needs to be tailored to account for
the high-level notions used in MAS, such as beliefs, goals, plans, norms, roles, groups,
etc. We strongly expect a lot of research to be done in this area to produce debugging
approaches and tools which address these and many other specific issues in debugging
multi-agent systems.

Whilst debugging and testing are fundamental, some applications require more than
that. Many applications of multi-agent systems need to be dependable systems. Ideally,
we would like to be able to fully verify, using formal methods, a multi-agent system
which is safety/business/mission-critical. A popular current approach for formal veri-
fication of software is model checking [17]. Unfortunately, model checking techniques
for verification of agent systems are still in their infancy (particularly in regards to prac-
tical tools). We expect to see a lot of work being done also in this area, and indeed there
is already an active research community with ongoing projects in this direction.

In summary, in order to provide good support for ensuring that MAS run correctly,
much work is needed in testing, debugging, and verification approaches and tools. More
interestingly, approaches that combine these three activities are also likely to emerge
for MAS, as they have in the automated software verification literature with approaches
for traditional systems/languages. For example, when full verification is not possible
because the system’s state space is too large even after the use of state-space reduction
techniques, practical model checking tools can still be used, for example, to help find
the required input leading to special cases that can be potentially useful in testing a
system [58].

One possible direction for research on model-checking multi-agent systems is as fol-
lows. In the same way that there is work being done for model checking to be applied to
systems programmed in agent-oriented programming languages, it would be interesting
to see approaches that apply directly to design documents of AOSE methodologies. This
would, however, require that the design notations are given formal semantics, which is
another interesting research strand. Both approaches exist in model checking traditional
software. The idea in model checking programs [57] is to verify the system as it will
be run by the users. Because code is much more detailed than design, the state-space
explosion problems is normally much worse for programs than for design. In this ap-
proach, the use of state-space reduction techniques is particularly important. In fact,
much work is done by the automated verification community on that topic, and a va-
riety of different techniques exists for various types of state-space reduction used in
model checking (e.g., data abstraction, partial-order reduction, property-based slicing,
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and compositional reasoning). The advantage of model checking programs is that if we
succeed in the verification exercise, we know that the system as actually run satisfies
the checked properties. When model-checking a high-level description of the system,
we need to ensure that no errors are introduced in the implementation, which is typically
done by a process of “refinement”.

In general terms, what we would like to see in the future, ideally, are model checking
techniques that are tailored particularly for MAS; that is, taking into account important
agent abstractions such as goals, coalitions, etc. It must be noted though, that certain
characteristics of MAS might prove to be particularly difficult to deal with for model
checking, such as openness, emergence, etc. On the other hand, it is also possible that
characteristics that are typical of MAS specifically can be explored for more efficient
verification than normally expected in traditional software (e.g., compositional reason-
ing may turn out to work particularly well for agent organisations), but at the moment
this is at best a conjecture.

One issue is that work on verifying agent programs has been done in the context of
a given agent-oriented programming language. Clearly, it is desirable to have model
checking tools that can be used on programs written in a range of languages. One ap-
proach to doing this is currently being pursued by Fisher, Wooldridge, Bordini, and
colleagues. They aim to develop an “Agent Infrastructure Layer” (AIL) in the form
of a Java library. There will then be provably correct translations of various program-
ming languages into that Java library, so that JPF [57](http://javapathfinder.
sf.net) can be used as a model checker. This would extend the previous approach
so that it would apply to a variety of agent programming languages rather than only
AgentSpeak. The development of AIL itself should be of interest as it would high-
light common aspects of existing programming languages for multi-agent systems.
For up-to-date information on that project, see http://www.csc.liv.ac.uk/
˜michael/mcapl06.html.

Another important area for future research is devising state-space reduction tech-
niques specifically created for MAS. As mentioned earlier, much work in the auto-
mated verification community centres on state-space reduction techniques, and indeed
they are responsible for the (relatively recent) success and popularity of model check-
ing techniques. The availability of such techniques would have a major impact in the
scale of multi-agent systems that will be verifiable in practice. Unfortunately, almost
no work has yet been done in this direction; some (initial) work in this direction was
done in [9], where a property-based slicing technique for an agent language was
presented.

Still, we cannot be sure to be able to verify all multi-agent systems, but we would
like to emphasise that there is much to be explored in the use of model checkers besides
verification (e.g., for debugging and testing). We expect to see work in that direction and
we would like to see, eventually, off-the-shelf MAS algorithms with verified properties
available for MAS practitioners. That way, even when verification of the whole system
is not possible, we would be able to know properties of particulars techniques used in
parts of the system, which may turn out to be of great usefulness in many applications,
and have such techniques immediately available for reuse by MAS developers.
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4 Conclusion

We have surveyed the state-of-the-art in developing multi-agent systems, focusing on
the three core areas: software engineering (analysis, design), programming, and tech-
niques for verification and validation. Based on this, we have identified three key areas
where we feel the state-of-the-art is lacking, and could be improved. Specifically we
believe that there is a need to:

– integrate design and code more systematically;
– extend AOPLs with the ability to represent social aspects and the environment; and
– develop practical tools for verification and validation that are tailored specifically

for multi-agent systems.

For each of these three key topics we discussed ways of meeting the challenges, and
suggested some possible directions for the Agents research community.
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Abstract. A multiagent system (MAS) structures a software system
as a set of autonomous agents that interact through a shared environ-
ment. Software architecture is generally considered as the structures of
a system which comprise software elements and the relationships among
the elements. So there is a clear connection between MAS and software
architecture. In our research, we study situated MAS, i.e. systems in
which agents have an explicit position in the environment. We apply
situated MAS to domains that are characterized by highly dynamic op-
erating conditions and an inherent distribution of resources. We use an
architecture-centric approach for developing such MAS. From our expe-
riences with building various applications, we have developed a reference
architecture for situated MAS. The reference architecture provides an
asset base architects can draw from when developing new systems that
share the common base of the reference architecture. In this paper, we
explain our perspective on architecture-centric software development of
MAS. We give an overview of the reference architecture and we show
an excerpt of the software architecture of an industrial application in
which we have used the reference architecture. The reference architec-
ture shows how knowledge and experience with MAS can be documented
and matured in a form that has proven its value in mainstream software
engineering. We believe that this integration is a key to industrial adop-
tion of MAS.

1 Introduction

Five years of application-driven research taught us that there is a close connec-
tion between multiagent systems (MAS) and software architecture. Our perspec-
tive on the essential purpose of MAS is as follows:

A multiagent system provides the software to solve a problem by structur-
ing the system as a number of interacting autonomous entities (agents)
embedded in an environment in order to achieve the functional and qual-
ity requirements of the system.

This perspective states that a MAS provides the software to solve a problem.
In particular, a MAS structures the system as a number of interacting agents
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embedded in an environment. The purpose of the system is to achieve the re-
quirements of the system. This is exactly what software architecture is about.
[6] defines software architecture as: “the structure or structures of the system,
which comprise software elements, the externally visible properties of those el-
ements, and the relationships among them.” Software elements (or in general
architectural elements) provide the functionality of the system, while the re-
quired quality attributes are primarily achieved through the structures of the
software architecture.

As such, MAS are in essence a family—yet a large family—of software archi-
tectures. Based on the problem analysis that yields the functional and quality
attribute requirements of the system, the architect may or may not choose for a
MAS-based solution. Quality attribute requirements such as flexibility, openness,
and robustness may be arguments for the designer to choose for a MAS software
architecture. As such, we consider MAS as one valuable family of approaches
to solve software problems in a large spectrum of possible ways to solve prob-
lems. Typical architectural elements of MAS software architectures are agents,
coordination infrastructure, resources, services, etc. The relationships between
the elements are very diverse, ranging from environment mediated interaction
between cooperative agents via digital pheromone trails to complex negotiation
protocols in a society of self-interested agents. In short, MAS are a rich family
of architectural approaches with specific characteristics, useful for a diversity
of challenging application domains. By considering MAS essentially as software
architecture, MAS gets a clear and prominent role in the software development
process paving a way to integrate MAS with mainstream software engineering.

Architecture-Centric Software Development of Situated MAS. In our
research, we study situated MAS, i.e. systems in which agents have an explicit
position in the environment. We apply situated MAS to domains that are char-
acterized by highly dynamic operating conditions and an inherent distribution
of resources. We use an architecture-centric approach for developing such MAS.
From our experiences with building various applications, we have developed a
reference architecture for situated MAS. The reference architecture provides an
asset base architects can draw from when developing new systems that share
the common base of the reference architecture. In this paper, we explain our
perspective on architecture-centric software development of MAS. We give an
overview of the reference architecture for situated MAS and we show an excerpt
of the software architecture of an industrial application in which we have used
the reference architecture.

Overview. The paper is structured as follows. We start with a brief introduction
of architecture-centric software development in general. Next, in Sect. 3 we give
a high-level overview of the reference architecture for situated MAS. Section 4
shows an excerpt of the software architecture of an industrial AGV transporta-
tion system in which we have used the reference architecture for architectural
design. Section 5 discusses related work, and in Sect. 6 we draw conclusions.
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2 Architecture-Centric Software Development

To understand our perspective on software engineering of MAS, we give a brief
overview of architecture-centric software development in general. We use the
evolutionary delivering life cycle [26,6], see Fig. 1. This life cycle model situates
architectural design in the centre of the development activities. The main idea
of the model is to support incremental software development and to incorporate
early feedback from the stakeholders. The life-cycle consists of two main phases:
developing the core system and delivering the final software product.

Fig. 1. Architectural design in the software development life cycle

In the first phase the core system is developed. This phase includes four ac-
tivities: defining a domain model, performing a system requirements analysis,
designing the software architecture, and developing the core system. Require-
ments analysis includes the formulation of functional requirements of the system
as well as eliciting and prioritizing of the quality attributes requirements. De-
signing the software architecture includes the design and documentation of the
software architecture, and an evaluation of the architecture. The development
of the core system includes detailed design, implementation and testing. The
software engineering process is an iterative process, the core system is developed
incrementally, passing multiple times through the different stages of the develop-
ment process. Fig. 1 shows how architectural design iterates with requirements
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analysis on the one hand, and with the development of the core system on the
other hand. The output of the first phase is a domain model, a list of system
requirements, a software architecture, and an implementation of the core of the
software system.

In the second phase, subsequent versions of the system are developed until the
final software product can be delivered. In principle there is no feedback loop
from the second to the first phase although in practice specific architectural
refinements may be necessary.

We now briefly look at architectural design and the activities it directly iter-
ates with: requirements analysis and developing the core system.

Requirements Analysis. Gathering system requirements includes the elicita-
tion of functional requirements as well as eliciting and prioritizing of the quality
attributes requirements. Functional requirements of a system are typically ex-
pressed as use cases [25]. A use case lists the steps, necessary to accomplish a
functional goal for an actor that uses the system. In our research, we also use
scenarios that describe interactions among parts in the system—rather than in-
teractions that are initiated by an external actor. An example is a scenario that
describes the requirement of collision avoidance of automatic guided vehicles
on crossroads. For the expression of quality requirements we use system-specific
quality attribute scenarios [5]. A quality attribute scenario consists of three parts:
(1) a stimulus: an internally or externally generated condition that affects (a part
of) the system and that needs to be considered when it arrives at the system; (2)
a context: the conditions under which the stimulus occurs; (3) a response: the
activity that is undertaken—through the architecture—when the stimulus ar-
rives. The response should be measurable so that the requirement can be tested.
Here is an example of a quality attribute scenario:

An Automatic Guided Vehicle (AGV) gets broken and blocks a path under
normal system operation. Other AGVs have to record this, choose an
alternative route—if available—and continue their work.

The stimulus in this example is “An Automatic Guided Vehicle gets broken and
blocks a path”, the context is “under normal system operation”, and the response
is “other AGVs have to record this, choose an alternative route—if available—
and continue their work”. Quality attribute scenarios provide a means to trans-
form vaguely formulated qualities such as “the system shall be modifiable” or
“the system shall exhibit acceptable flexibility” into concrete expressions. To
elicit and prioritize quality attribute scenarios, we use utility trees [14]. An util-
ity tree compels the architect and other stakeholders involved in a system to
define the relevant quality requirements precisely. An utility tree consists of four
levels. The root node of the tree is utility expressing the overall quality of the
system. High-level quality attributes form the second level of the tree. Each qual-
ity attribute is further refined in the third level. Finally, the leaf nodes of the
tree are the quality attribute scenarios. Eah scenario is assigned a ranking that
expresses its priority relatively to the other scenarios. Criteria for prioritization
include the importance of the scenario to the success of the system, and the
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difficulty to achieve the scenario. It is clear that the most important scenarios
are those that have a high ranking on both criteria. [8] shows an example of a
utility tree for the automatic transportation system we discuss in section 4.

Architectural Design. Architectural design includes the design and documen-
tation of the software architecture, and an evaluation of the architecture (see
Fig. 1).

Design. Designing a software architecture is moving from system requirements to
architectural decisions. The various requirements are achieved by architectural
decisions that are based on architectural approaches. One common architectural
approach are architectural patters [31]. An architectural pattern is a description
of architectural elements and their relationships that has proven to be useful
for achieving particular qualities. Examples of architectural patterns are lay-
ers and blackboard. In our research, we have developed a reference architecture
for MAS as a reusable architectural approach. This reference architecture in-
tegrates a set of architectural patterns that have proven their value in various
MAS applications we have studied and built. A reference architecture provides
an integrated set of architectural patterns the architect can draw from to select
suitable architectural solutions.

Architectural design requires a systematic approach to develop a software
architecture that meets the required functionality and satisfies the quality re-
quirements. In our research, we use techniques from the Attribute Driven Design
(ADD [10,6]) method to design the architecture for a software system with a
reference architecture. ADD is a decomposition method that is based on under-
standing how to achieve quality goals through proven architectural approaches.
Usually, the architect starts from the system as a whole and then iteratively
refines the architectural elements, until the elements are sufficiently fine-grained
to start detailed design and implementation. At that point, the software archi-
tecture becomes a prescriptive plan for construction of the system that enables
effective satisfaction of the systems functional and quality requirements [21,13].

A reference architecture serves as a blueprint to guide the architect through
the decomposition process. In particular, the ADD process can be used to iter-
atively refine the software architecture, and the reference architecture can serve
as a guidance in this decomposition process. In addition, common architectural
approaches have to be applied to refine and extend architectural elements when
necessary according to the requirements of the system at hand.

Documentation. A software architecture is described by different views. Each
view belongs to a viewtype [13]. A viewtype defines the elements and relation-
ship used to describe the architecture of a software system from a particular
perspective. We use three different viewtypes:

1. The module viewtype: views in this viewtype document a system’s principal
units of implementation.

2. The component-and-connector viewtype: views in this viewtype document
the system’s units of execution.



Architecture-Centric Software Development of Situated Multiagent Systems 67

3. The deployment viewtype: views in this viewtype document the relationships
between a system’s software and its development and execution environment.

Documenting a software architecture comes down to documenting the relevant
views of the software architecture for the application at hand. Each view is
documented by means of a number of view packets [13]. A view packet is a small,
relatively self-contained bundle of information of the reference architecture.

Evaluation. A software architecture is the foundation of a software system, it
represents a system’s earliest set of design decisions. Due to its large impact on
the development of the system, it is important to verify the architecture as soon
as possible. Modifications in early stages of the design are cheap and easy to
carry out. Deferring evaluation might require expensive changes or even result
in a system of inferior quality.

The evaluation of software architecture is an active research topic, see e.g.
[4,27]. In our research, we use the Architectural Tradeoff Analysis Method [14]
(ATAM). ATAM is a well-established method for software architecture evalua-
tion developed at the Software Engineering Institute [2]. The ATAM incites the
stakeholders to articulate specific quality goals and to prioritize conflicting goals;
it forces the architect to provide a clear explanation and documentation of the
software architecture; and especially it uncovers problems with the architecture
that can be used to improve the quality of the software architecture in an early
stage of the development cycle. An ATAM evaluation produces the following
results:

• A prioritized list of quality attribute requirements in the form of a quality
attribute utility tree.

• A mapping of architectural approaches to quality attributes. The analysis of
the architecture exposes how the architecture achieves—or fails to achieve—
the important quality attribute requirements.

• Risks and non-risks. Risks are potentially problematic architectural deci-
sions, non-risks are good architectural decisions.

• Sensitivity points and tradeoff points. A sensitivity point is an architectural
decision that is critical for achieving a particular quality attribute. A tradeoff
point is an architectural decision that affects more than one attribute, it is
a sensitivity point for more than one attribute.

[9] discusses our experiences with ATAM for the application discussed in Sect. 4.

Developing the Core System. The development of the core system includes
detailed design, implementation and testing. The software architecture defines
constraints on detailed design and implementation, it describes how the imple-
mentation must be divided into elements and how these elements must interact
with one another to fulfil the system requirements. On the other hand, a soft-
ware architecture does not define an implementation, many fine-grained design
decisions are left open by the architecture and must be completed by designers
and developers. For some tasks established techniques can be used such as design
patterns or well-know algorithms. However, other—MAS specific—tasks require
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dedicated design guidelines, e.g. the detailed design of an agent communication
language or a pheromone infrastructure.

3 Reference Architecture for Situated Multiagent
Systems

In our research, we study the engineering of software systems with the following
main characteristics and requirements:

• Stakeholders of the systems (users, project managers, architects, developers,
maintenance engineers, etc.) have various—often conflicting—demands on
the quality of the software. Important quality requirements are flexibility
(adapt to variable operating conditions) and openness (cope with parts that
come and go during execution).

• The software systems are subject to highly dynamic and changing operat-
ing conditions, such as dynamically changing workloads and variations in
availability of resources and services. An important requirement of the soft-
ware systems is to manage the dynamic and changing operating conditions
autonomously.

• Global control is hard to achieve. Activity in the systems is inherently lo-
calized, i.e. global access to resources is difficult to achieve or even infeasi-
ble. The software systems are required to deal with the inherent locality of
activity.

Example domains are mobile and ad-hoc networks, sensor networks, automated
transportation and traffic control systems, and manufacturing control.

To deal with these requirement we apply the paradigm of situated MAS.
During the last five years, we have developed several mechanisms of adaptivity
for situated MAS, including selective perception [46], protocol-based commu-
nication [45], behavior-based decision making with roles and situated commit-
ments [33], and laws that mediate the activities of agents in the environment [38].
We have applied these mechanisms in various applications, ranging from exper-
imental simulations [37,39,36] and prototypical robot applications [44,33] up to
an industrial transportation system for automatic guided vehicles [43,40,9].

Based on these experiences, we have developed a reference architecture for
situated MAS. Motivations for the reference architecture are: (1) it integrates
the different mechanisms for adaptivity. It defines how the functionalities of the
various mechanisms are allocated to software elements of agents and the envi-
ronment and how these elements interact with one another, (2) it provides a
reusable design artifact, the reference architecture facilitates deriving new soft-
ware architectures for systems that share the common base more reliably and
cost effectively, and (3) the reference architecture embodies the knowledge and
expertise we have acquired during our research. It conscientiously documents
the know-how obtained from this research. As such, the reference architecture
offers a vehicle to study and learn the advanced perspective on situated MAS
we have developed.
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Fig. 2. Top-level module decomposition of a situated MAS

Fig. 2 shows the top-level module decomposition of the reference architecture
of situated MAS that shows the main software units in the system.

A situated multiagent system is decomposed in two basic modules: Agent and
Application Environment.

Agent is an autonomous problem solving entity in the system. An agent encap-
sulates its state and controls its behavior. The responsibility of an agent is to
achieve its design objectives, i.e. to realize the application specific goals it is
assigned. Agents are situated in an environment which they can perceive and
in which they can act and interact with one another. Agents are able to adapt
their behavior according to the changing circumstances in the environment. A
situated agent is a cooperative entity. The overall application goals result from
interaction among agents, rather than from sophisticated capabilities of individ-
ual agents.

A concrete MAS application typically consists of agents of different agent
types. Agents of different agent types typically have different capabilities and
are assigned different application goals.

The Application Environment is the part of the environment that has to be
designed for a concrete MAS application. The application environment enables
agents to share information and to coordinate their behavior. The core respon-
sibilities of the application environment are:

• To provide access to external entities and resources.
• To enable agents to perceive and manipulate their neighborhood, and to

interact with one another.
• To mediate the activities of agents. As a mediator, the environment not only

enables perception, action and interaction, it also constrains them.
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The application environment provides functionality to agents on top of the de-
ployment context. The deployment context consists of the given hardware and
software and external resources such as sensors and actuators, a printer, a net-
work, a database, a web service, etc.

As an illustration, a peer-to-peer file sharing system is deployed on top of
a deployment context that consists of a network of nodes with files and possi-
bly other resources. The application environment enables agents to access the
external resources, shielding low-level details. Additionally, the application en-
vironment may provide a coordination infrastructure that enables agents to co-
ordinate their behavior. E.g., the application environment of a peer-to-peer file
share system can offer a pheromone infrastructure to agents that they can use
to dynamically form paths to locations of interest.

Thus, we consider the environment as consisting of two parts, the deploy-
ment context and the application environment [42]. The internal structure of
the deployment context is not considered in the reference architecture. For a
distributed application, the deployment context consists of multiple processors
deployed on different nodes that are connected through a network. Each node
provides an application environment to the agents located at that node. Depend-
ing on the specific application requirements, different application environment
types may be provided. For some applications, the same type of application envi-
ronment subsystem is instantiated on each node. For other applications, specific
types are instantiated on different nodes, e.g., when different types of agents are
deployed on different nodes.

In the next section, we zoom in on the collaborating components view of the
reference architecture. For a description of other architectural views of the refer-
ence architecture and a formal specification of the various architectural elements
we refer to [34].

3.1 Collaborating Components View Packets

The collaborating components view shows the MAS or parts of it as a set of
interacting runtime components that use a set of shared data repositories to
realize the required system functionalities. The elements of the collaborating
components view are:

• Runtime components. Runtime components achieve a part of the system
functionality. Runtime components are instances of modules described in
the module decomposition view.

• Data repositories. Data repositories enable multiple runtime components to
share data. Data repositories correspond to the shared data repositories de-
scribed in the component and connector shared data view.

• Component–repository connectors. Component–repository connectors con-
nect runtime components which data repositories. These connectors deter-
mine which runtime components are able to read and write data in the
various data repositories of the system.

• Component–component connectors. Collaborating components require func-
tionality from one another and provide functionality to one another.
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Component–component connectors enable runtime components to request
each other to perform a particular functionality.

The collaborating components view is an excellent vehicle to learn the runtime
behavior of a situated MAS. The view shows the data flows between runtime
components and the interaction with data stores, and it specifies the function-
alities of the various components in terms of incoming and outgoing data flows.

We discuss two view packets of the collaborating components view. We start
with the view packet that describes the collaborating components of agent. Next,
we discuss the view packet that describes the collaborating components of the
application environment.

A. Collaborating Components View Packet: Agent

Primary Presentation. The primary presentation is show in Fig. 3.

Fig. 3. Collaborating Components of Agent

Elements and their Properties. The Agent component (i.e. a runtime in-
stance of the Agent module shown in Fig. 2) consists of three subcomponents:
Perception, Decision Making, and Communication. These components share
the Current Knowledge repository. We first give a brief explantion of the re-
sponsibilities of the components and then we explain the collaboration between
the components and the shared data repository.

Perception is responsible for collecting runtime information from the environ-
ment (application environment and deployment context). The perception com-
ponent supports selective perception [46]. Selective perception enables an agent
to direct its perception according to its current tasks. To direct its perception an
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agent selects a set of foci and filters. Foci allow the agent to sense the environ-
ment only for specific types of information. Sensing results in a representation
of the sensed environment. A representation is a data structure that represents
elements or resources in the environment. The perception module maps this rep-
resentation to a percept, i.e. a description of the sensed environment in a form
of data elements that can be used to update the agent’s current knowledge. The
selected set of filters further reduces the percept according to the criteria speci-
fied by the filters.

Decision Making is responsible for action selection. The action model of the ref-
erence architecture is based on the influence–reaction model introduced in [15].
This action model distinguishes between influences that are produced by agents
and are attempts to modify the course of events in the environment, and reac-
tions, which result in state changes in the environment. The responsibility of the
decision making module is to select influences to realize the agent’s tasks, and
to invoke the influences in the environment [38].

Situated agents use a behavior-based action selection mechanism [41]. To en-
able situated agents to set up collaborations, we have extended behavior-based
action selection mechanisms with roles and situated commitments [44,33,45]. A
role represents a coherent part of an agent’s functionality in the context of an
organization. A situated commitment is an engagement of an agent to give pref-
erence to the actions of a particular role in the commitment. Agents typically
commit relative to one another in a collaboration, but an agent can also com-
mit to itself, e.g. when a vital task must be completed. Roles and commitments
have a well-known name that is part of the domain ontology and that is shared
among the agents in the system. Sharing these names enable agents to set up
collaborations via message exchange. We explain the coordination among deci-
sion making and communication in the design rationale of this view packet.

Communication is responsible for communicative interactions with other agents.
Message exchange enables agents to share information and to set up collabora-
tions. The communication module processes incoming messages, and produces
outgoing messages according to well-defined communication protocols [45]. A
communication protocol specifies a set of possible sequences of messages. We
use the notion of a conversation to refer to an ongoing communicative inter-
action. A conversation is initiated by the initial message of a communication
protocol. At each stage in the conversation there is a limited set of possible mes-
sages that can be exchanged. Terminal states determine when the conversation
comes to an end.

The information exchanged via a message is encoded according to a shared
communication language. The communication language defines the format of
the messages, i.e. the subsequent fields the message is composed of. A message
includes a field with a unique identifier of the ongoing conversation to which the
message belong, fields with the identity of the sender and the identities of the
addressees of the message, a field with the performative of the message, and a
field with the content of the message. Communicative interactions among agents
are based on an ontology that defines a shared vocabulary of words that agents
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use in messages. The ontology enables agents to refer unambiguously to concepts
and relationships between concepts in the domain when exchanging messages.

Current Knowledge repository contains data that is shared among the data ac-
cessors. Data stored in the current knowledge repository refers to state perceived
in the environment, to state related to the agent’s roles and situated commit-
ments, and possibly other internal state that is shared among the data accessors.
Fig. 3 shows the interconnections between the current knowledge repository and
the internal components of the agent. These interconnections are called assembly
connectors [3]. An assembly connector ties one component’s provided interface
with one or more components’ required interfaces, and is drawn as a lollipop
and socket symbols next to each other. Provided and required interfaces per
assembly connector share the same name.

The current knowledge repository exposes two interfaces. The provided in-
terface Update enables the perception component to update the agents knowl-
edge according to the information derived from sensing the environment. The
Read-Write interface enables the communication and decision making compo-
nent to access and modify the agent’s current knowledge.

Collaborations. The overall behavior of the agent is the result of the coordina-
tion of two components: decision making and communication. Decision making
is responsible for selecting suitable influences to act in the environment. Com-
munication is responsible for the communicative interactions with other agents.
When selecting actions and communicating messages with other agents, decision
making and communication typically request perceptions to update the agent’s
knowledge about the environment. By selecting an appropriate set of foci and
filters, the agent directs its attention to the current aspects of its interest, and
adapts it attention when the operating conditions change.

To complete the agent’s tasks, decision making and communication coordinate
via the current knowledge repository. For example, agents can send each other
messages with requests for information that enable them to act more purpose-
fully. Decision making and communication also coordinate during the progress of
a collaboration. Collaborations are typically established via message exchange.
Once a collaboration is achieved, the communication module activates a situated
commitment. This commitment will affect the agent’s decision making towards
actions in the agent’s role in the collaboration. This continues until the commit-
ment is deactivated and the collaboration ends.

The separation of functionality for coordination (via communication) from
the functionality to perform actions to complete tasks has several advantages,
including clear design, improved modifiability and reusability. Two particular
advantages are: (1) it allows both functions to act in parallel, and (2) it allows
both functions to act at a different pace. In many applications, sending messages
and executing actions happen at different tempo; a typical example is robotics.
Separation of communication from performing actions enables agents to recon-
sider the coordination of their behavior while they perform actions, improving
adaptability and efficiency.
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B. Collaborating Components View Packet: Application Environment

Primary Presentation. The primary presentation is show in Fig. 4.

Fig. 4. Collaborating Components of Application Environment

Elements and their Properties The Application Environment component
consists of seven subcomponents and the shared State repository. We discuss
the responsibilities of each of the elements in turn. Then, we zoom on the col-
laboration between de components.

The State repository contains data that is shared between the components of
the application environment. Data stored in the state repository typically in-
cludes an abstraction of the deployment context together with additional state
related to the application environment. Examples of state related to the deploy-
ment context are a representation of the local topology of a network, and data
derived from a set of sensors. Examples of additional state are the representation
of digital pheromones that are deployed on top of a network, and virtual marks
situated on the map of the physical environment. The state repository may also
include agent-specific data, such as the agents’ identities, the positions of the
agents, and tags used for coordination purposes.
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The Representation Generator provides the functionality to agents for per-
ceiving the environment. When an agent senses the environment, the representa-
tion generator uses the current state of the application environment and possibly
state collected from the deployment context to produce a representation for the
agent. Agents’ perception is subject to perception laws that provide a means
to constrain perception [46]. For example, for reasons of efficiency a designer
can introduce default limits for perception in order to restrain the amount of
information that has to be processed, or to limit the occupied bandwidth.

Observation & Data Processing provides the functionality to observe the de-
ployment context and collect date from other nodes in a distributed setting.
The observation & data processing module translates observation requests into
observation primitives that can be used to collect the requested data from the
deployment context. Data may be collected from external resources in the deploy-
ment context or from the application environment instances on other nodes in a
distributed application. The observation & data processing module can provide
additional functions to pre-process data, examples are sorting and integration of
observed data.

Interaction is responsible to deal with agents’ influences in the environment.
Agents’ influences can be divided in two classes: influences that attempt to mod-
ify state of the application environment and influences that attempt to modify
the state of resources of the deployment context. An example of the former is
an agent that drops a digital pheromone in the environment. An example of the
latter is an agent that writes data in an external data base. Agents’ influences
are subject to action laws [38]. Action laws put restrictions on the influences in-
voked by the agents, representing domain specific constraints on agents’ actions.
For example, when several agents aim to access an external resource simulta-
neously, an interaction law may impose a policy on the access of that resource.
For influences that relate to the application environment, the interaction module
calculates the reaction of the influences resulting in an update of the state of
the application environment. Influences related to the deployment context are
passed to the Low-Level Control module.

Low-Level Control bridges the gap between influences used by agents and the
corresponding action primitives of the deployment context. Low-level control
converts the influences invoked by the agents into low-level action primitives in
the deployment context. This decouples the interaction module from the details
of the deployment context.

The Communication Mediation mediates the communicative interactions
among agents. It is responsible for collecting messages; it provides the necessary
infrastructure to buffer messages, and it delivers messages to the appropriate
agents. Communication mediation regulates the exchange of messages between
agents according a set of applicable communication laws [45]. Communication
laws impose constraints on the message stream or enforce domain–specific rules
to the exchange of messages. Examples are a law that drops messages directed
to agents outside the communication–range of the sender and a law that gives
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preferential treatment to high-priority messages. To actually transmit the mes-
sages, communicationmediationmakesuse of theCommunicationServicemodule.

Communication Service provides that actual infrastructure to transmit mes-
sages. Communication service transfers message descriptions used by agents to
communication primitives of the deployment context. For example, FIPA ACL
message [16] enable a designer to express the communicative interactions be-
tween agents independently of the applied communication technology. However,
to actually transmit such messages, they have to be translated into low-level
primitives of a communication infrastructure provided by the deployment con-
text. Depending on the specific application requirements, the communication
service may provide specific communication services to enable the exchange of
messages in a distributed setting, such as white and yellow page services. An
example infrastructure for distributed communication is Jade [7]. Specific mid-
dleware may provide support for communicative interaction in mobile and ad-hoc
network environments, an example is discussed in [30].

Synchronization & Data Processing synchronizes state of the application en-
vironment with state of resources in the deployment context as well as state of
the application environment on different nodes. State updates may relate to
dynamics in the deployment context and dynamics of state in the application
environment that happens independently of agents or the deployment context.
An example of the former is the topology of a dynamic network which changes
are reflected in a network abstraction maintained in the state of the application
environment. An example of the latter is the evaporation of digital pheromones.
Middleware may provide support to collect data in a distributed setting. An ex-
ample of middleware support for data collection in mobile and ad-hoc network
environments is discussed in [29]. Synchronization & data processing converts
the resource data observed from the deployment context into a format that can
be used to update the state of the application environment. Such conversion
typically includes a processing or integration of collected resource data.

Collaborations. Successively, we zoom in on the collaborating components for
perception, interaction, communication, and the synchronization of state among
nodes and with resources in the deployment context.

Perception. The representation generator collects perception requests from the
agents and generates representations according to the given foci. Representation
generator collects the required state from the state repository, and optionally
it requests observation & data processing to collect additional data from the
deployment context and possibly state of other nodes. State collection is subject
to the perception laws. Observation & data processing returns the observed data
to representation generator that generates a representation that is returned to
the requesting agent.

Interaction. Interaction collects the concurrently invoked influences of agents
and converts them into operations. The execution of operations is subject to
the action laws of the system. Operations that attempt to modify state of the
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application environment are immediately executed by the interaction compo-
nent. Operations that attempt to modify state of the deployment context are
forwarded to low-level control that converts the operations into low–level inter-
actions in the deployment context.

Communication. Communication mediation handles the communicative interac-
tions among agents. The component collects the messages sent by agents, applies
the communication laws, and subsequently passes the messages to the communi-
cation service. This latter component converts the messages directed to agents on
other nodes into low–level interactions that are transmitted via the deployment
context. Furthermore, communication service collects low–level messages from
the deployment context, converts the messages into a format understandable for
the agents, and forward the messages to communication mediation that delivers
the messages to the appropriate agents. Messages directed to agents that are
located at the same node are directly transferred to the appropriate agents.

State Synchronization. Synchronization & data processing performs its tasks in-
dependently of other components of the application environment. To synchronize
the state of the application environment in a distributed setting, synchronization
& data processing components on different nodes have to coordinate according
to the requirements of the application at hand.

4 Excerpt of a Software Architecture for an AGV
Transportation System

We now illustrate how we have used the reference architecture for the architec-
tural design of an automated transportation system for warehouse logistics that
has been developed in a joint R&D project between the DistriNet research group
and Egemin, a manufacturer of automating logistics services in warehouses and
manufactories [43,1]. The transportation system uses automatic guided vehicles
(AGVs) to transport loads through a warehouse. Typical applications include
distributing incoming goods to various branches, and distributing manufactured
products to storage locations. AGVs are battery-powered vehicles that can nav-
igate through a warehouse following predefined paths on the factory floor. The
low-level control of the AGVs in terms of sensors and actuators such as staying
on track on a path, turning, and determining the current position is handled by
the AGV control software.

4.1 Multiagent System for the AGV Transportation System

In the project, we have applied a MAS approach for the development of the
transportation system. The transportation system consists of two kinds of agents:
transport agents and AGV agents. Transport agents represent tasks that need
to be handled by an AGV and are located at a transport base, i.e. a stationary
computer system. AGV agents are responsible for executing transports and are
located in mobile vehicles. The communication infrastructure provides a wireless
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network that enables AGV agents at vehicles to communicate with each other
and with transport agents on the transport base.

AGVs are situated in a physical environment, however this environment is very
constrained: AGVs cannot manipulate the environment, except by picking and
dropping loads. This restricts how AGV agents can exploit their environment.
Therefore, a virtual environment was introduced for agents to inhabit. This vir-
tual environment provides an interaction medium that agents can use to exchange
information and coordinate their behavior. The virtual environment is necessarily
distributed over the AGVs and the transport base, i.e. a local virtual environment
is deployed on each AGV and the transport base. The local virtual environment
corresponds to the application environment in the reference architecture. State
on local virtual environments is merged opportunistically, as the need arises. The
synchronization of the state of neighboring local virtual environments is supported
by the ObjectPlaces middleware [29,30]. The AGV control system is developed on
top of the .NET framework and programmed in C#.

As an illustration of the software architecture of the AGV transportation
system, we zoom on the collaborating components view of the local virtual en-
vironment that is deployed on the AGVs.

4.2 Collaborating Components View of the Local Virtual
Environment

Fig. 5 shows the collaborating components view of the local virtual environment.
The general structure of the local virtual environment is related to the struc-

ture of the application environment in the reference architecture as follows. The
state repository corresponds to the state repository in the reference architec-
ture, see Fig. 4 in section 3.1. The state elements are specific to the local virtual
environment of an AGV control system. The perception manager provides the
functionality for selective perception of the environment, similar to the repre-
sentation generator in the reference architecture. Contrary to the representation
generator, the perception manager interacts only with the state repository; the
functionality of the observation & data processing component in the reference
architecture is absent in the local virtual environment. The action manager corre-
sponds to the interaction component of the application environment. Low-level
control corresponds with E’nsor, i.e. the control software to interact with the
sensors and actuators of the AGV. We fully reused E’nsor in the project. The
communication manager integrates the responsibilities of communication media-
tion and the communication service of the application environment. The commu-
nication service handles the bidirectional translation of messages and manages
message transmission via .Net remoting. Finally, the laws for perception, action,
and communication, are integrated in the applicable components.

Elements and Their Properties

State. Since the virtual environment is necessarily distributed over the AGVs
and the transport base, each local virtual environment is responsible to keep its
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Fig. 5. Collaborating components view of the local virtual environment of AGVs

state synchronized with other local virtual environments. The state of the local
virtual environment is divided into three categories:

1. Static state: this is state that does not change over time. Examples are the
layout of the factory floor, which is needed for the AGV agent to navigate,
and (AGV id, IP number) tuples used for communication. Static state must
never be exchanged between local virtual environments since it is common
knowledge and never changes.

2. Observable state: this is state that can be changed in one local virtual envi-
ronment, while other local virtual environments can only observe the state.
An AGV obtains this kind of state from its sensors directly. An example is
an AGV’s position. Local virtual environments are able to observe another
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AGV’s position, but only the local virtual environment on the AGV itself is
able to read it from its sensor, and change the representation of the position
in the local virtual environment. No conflict arises between two local virtual
environments concerning the update of observable state.

3. Shared state: this is state that can be modified in two local virtual environ-
ments concurrently. An example is a hull map. AGV agents mark the path
they are going to drive in their local virtual environment using hulls. The
hull of an AGV is the physical area the AGV occupies. A series of hulls de-
scribe the physical area an AGV occupies along a certain path. AGV agents
use hull for collision avoidance. When the local virtual environments on dif-
ferent machines synchronize, the local virtual environments must generate a
consistent and up-to-date state in both local virtual environments.

Perception Manager handles perception in the local virtual environment. The
perception manager’s task is straightforward: when the agent requests a percept,
for example the current positions of neighboring AGVs, the perception manager
queries the necessary information from the state repository of the local virtual
environment and returns the percept to the agent. Perception is subject to laws
that restrict agents perception of the virtual environment. For example, when
an agent senses the hulls for collision avoidance of neighboring AGVs, only the
hulls within collision range are returned to the AGV agent.

Action Manager handles agents’ influences. AGV agents can perform two kinds
of influences. One kind of influences are commands to the AGV, for example
moving over a segment and picking up a load. These influences are handled
fairly easily by translating them and passing them to the E’nsor control soft-
ware. A second kind of influences attempt to manipulate the state of the local
virtual environment. Putting marks in the local virtual environment is an ex-
ample. An influence that changes the state of the local virtual environment may
in turn trigger state changes of neighboring local virtual environments (see Syn-
chronization below). Influences are subject to laws, e.g., when an AGV agent
projects a hull in the local virtual environment, this latter determines when an
AGV acquires the right to move on. In particular, if the area is not marked by
other hulls (the AGV’s own hulls do not intersect with others), the AGV can
move along and actually drive over the reserved path. In case of a conflict, the
involved local virtual environments use the priorities of the transported loads
and the vehicles to determine which AGV can move on. AGV agents monitor
the local virtual environment and only instruct the AGV to move on when they
are allowed. Afterwards, the AGV agents remove the markings in the environ-
ment. This example shows that the local virtual environment serves as a flexible
coordination medium: agents coordinate by putting marks in the environment,
and observing marks from other agents.

Communication Manager is responsible for exchanging messages between agents.
Agents can communicate with other agents through the virtual environment. A
typical example is an AGV agent that communicates with a transport agent to
assign a transport. Another example is an AGV agent that requests the AGV
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agent of a waiting AGV to move out of the way. The communication manager
translates the high-level messages to low-level communication instructions that
can be sent through the network and vise versa (resolving agent names to IP
numbers, etc.). Communication is subject to laws, an example is the restriction
of communication range for messages used for transport assignment [35].

Synchronization has a dual responsibility. It periodically polls E’nsor and up-
dates the state of the local virtual environment accordingly. An example is the
maintenance of the actual position of the AGV in the local virtual environment.
Furthermore, synchronization is responsible for synchronizing state between local
virtual environments of neighboring machines. An example is the synchronization
of hulls on neighboring AGVs.

Design Rationale

Changes in the system (e.g., AGVs that enter/leave the system) are reflected
in the state of the local virtual environment, releasing agents from the burden
of such dynamics. As such, the local virtual environment—supported by the
ObjectPlaces middleware—supports openness.

Since an AGV agent continuously needs up-to-date data about the system
(position of the vehicles, status of the battery, etc.), we decided to keep the rep-
resentation of the relevant state of the deployment context in the local virtual
environment synchronized with the actual state. Therefore, E’nsor and the Ob-
jectPlaces middleware are periodically polled to update the status of the system.
As such, the state repository maintains an accurate representation of the state
of the system to the AGV agent.

5 Related Work

Current practice in agent-oriented software engineering considers MAS as a rad-
ically new way of engineering software. For example, in [10], Wooldridge et al.
state “There is a fundamental mismatch between the concepts used by object-
oriented developers and other mainstream software engineering paradigms, and
the agent-oriented view. [...] Existing software development techniques are un-
suitable to realize the potential of agents as a software engineering paradigm.”
As a result, numerous MAS methodologies have been developed [19]. Although
some of the methodologies adopt techniques and practices from mainstream soft-
ware engineering, such as object-oriented techniques and the Unified Modeling
Language, nearly all methodologies take an independent position, little or not
related to mainstream software engineering practice. The position of being a rad-
ically new paradigm for software development isolates agent-oriented software
engineering from mainstream software engineering. In contrast, the architecture-
centric perspective on MAS we follow in our research aims to integrate MAS in
mainstream software engineering.

Related work that explicitly connects MAS with software architecture is rather
limited. We briefly discuss a number of representative examples. In [32], Shehory
presents an initial study on the role of MAS as a software architecture style. We
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share the author’s observation that the largest part of research in the design
of MAS addresses the question: given a computational problem, can one build
a MAS to solve it? However, a more fundamental question is left unanswered:
given a computational problem, is a MAS an appropriate solution? An answer
to this question should precede the previous one, lest MAS may be developed
where much simpler, more efficient solutions apply. Almost a decade later, the
majority of researchers in agent-oriented software engineering still pass over the
analysis whether a MAS is an appropriate solution for a given problem.

As part of the Tropos methodology [18], a set of architectural styles were pro-
posed which adopt concepts from organization management theory [24,12]. The
styles are modelled using the i� framework [48] which offers modelling concepts
such as actor, goal, and actor dependency. Styles are evaluated with respect
to various software quality attributes. The specification of quality attributes is
based on te notion of softgoal. [24] states that softgoals do not have a formal
definition, and are amenable to a more qualitative kind of analysis. Whereas we
use a utility tree to prioritize quality requirements and to determine the drivers
for architectural design, Tropos does not consider a systematic prioritization of
quality goals. In Tropos, a designer visualizes the design process and simultane-
ously attempts to satisfy the collection of softgoals for a system.

PROSA is an acronym for Product–Resource–Order–Staff Architecture and
defines a reference architecture for a family of coordination and control applica-
tion, with manufacturing systems as the main domain [47]. These systems are
characterized by frequent changes and disturbances. PROSA aims to provide
the required flexibility to cope with these dynamics. [20] presents an interest-
ing extension of PROSA in which the environment is exploited to obtain BDI
(Believe, Desire, Intention [28]) functionality for the various PROSA agents.
The PROSA reference architecture embodies architectural knowledge of a par-
ticular problem domain. On the contrary, the reference architecture for situa-
ted MAS embodies architectural knowledge in terms of a particular solution
approach.

In [17], Garcia et al. observe that several concerns such as autonomy, learning,
and mobility crosscut each other and the basic functionality of agents. The au-
thors state that existing approaches that apply well-known patterns to structure
agent architectures—an example is the layered architecture of Kendall [22]—fail
to cleanly separate the various concerns. This results in architectures that are
difficult to understand, reuse, and maintain. To cope with the problem of cross-
cutting concerns, the authors propose an aspect-oriented approach to structure
agent architectures. An aspect-oriented agent architecture consists of a “kernel”
that encapsulates the core functionality of the agent (essentially the agent’s in-
ternal state), and a set of aspects [23]. Each aspect modularizes a particular
concern of the agent. Yet, it is unclear whether the interaction of the different
concerns in the kernel (feature interaction [11]) will not lead to similar problems
the approach initially aimed to resolve. Anyway, crosscutting concerns in MAS
are hardly explored and provide an interesting venue for future research.
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6 Conclusions

There is a close connection between MAS and software architecture, yet, this
connection is often neglected or remains implicit. In our research, we have de-
rived a reference architecture for situated MAS from various applications we
have studied and built. This reference architecture provides a blueprint to de-
velop new software architectures for systems that have similar characteristics
and requirements as the systems from which it was derived.

The reference architecture shows how knowledge and experiences with MAS
can systematically be documented and maturated in a form that has proven its
value in mainstream software engineering. Rather than considering MAS as a
radical new way of engineering software, we believe that the integration of MAS
in mainstream software engineering is a key to industrial adoption of MAS.
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Abstract. In the last years, social and organizational aspects of agency
have become a major issue in multi-agent systems’ research. Recent ap-
plications of MAS enforce the need of using such aspects in order to
ensure some social order within these systems. However, there is still
a lack of comprehensive views of the diverse concepts, models and ap-
proaches related to agents’ organizations. Moreover, most designers have
doubts about how to put these concepts in practice, i.e., how to program
them. In this paper we focus on and discuss about the literature on
formal, top-down and pre-existent organizations by stressing the differ-
ent aspects that may be considered to program them. Finally, we present
some challenges for future research considering particularly the openness
feature of those agents’ organizations.

Keywords: Multi-agent Systems, MAS organizations, Open systems.

1 Introduction

Nowadays, current IT applications show the large scale interweaving of human
and technological communities (e.g. Web Intelligence, Ambient Intelligence). The
use of Multi-Agent System (MAS) technology introduces software entities that
act on behalf of users and cooperate with those info-inhabitants. The complex
systems’ engineering needed to build such applications highlights and stresses
requirements on openness in terms of the ability that takes into account several
kinds of changes and the adaptation of the system configuration while it keeps
running (29).
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In this paper, we are interested in the social and organizational aspects of
agency. They have been a major topic of study in the multiagent domain since the
seminal work of (14; 6). Moreover, they have become recently one of the major
focus of interest in the MAS community (e.g. (28; 4)). Most designers, however,
have doubts about how to put these concepts in practice, i.e., how to program
them, while addressing the openness issue. Indeed, considering openness at the
organization level introduces new challenges for dealing with the management
of dynamic entry/exit of agents into/from organizations, online self-adaptation,
control and regulation of the agents autonomy, etc.

Before going further in the presentation of these challenges, we will first sketch
a comprehensive view on organizations in MAS (section 2). We refine this view
by focusing on an organization oriented approach, i.e. formal, top-down, pre-
existent organizations. We analyze some of the existants organizational models
for programming organized multiagent systems (section 3) and the underlying
programming approaches that are used (section 4). From this comprehensive
understanding of organizations in MAS, we present (section 5) some research
directions and challenges that need to be addressed to shift from closed to open
agents’ organizations.

2 Comprehensive View of Organizations in MAS

It is still missing a clear and unique definition of what is called “organization”
in MAS. Its meaning (24) often varies between two basic views: (i) a collective
entity with an identity that is represented by (but not identical to) a group of
agents exhibiting relatively highly formalized social structures (32), (ii) a stable
pattern/structure of joint activity that may constrain or affect the actions and
interactions of agents towards some purpose (5). As we can see, organization
refers, in a general sense, to a cooperation pattern that can be more or less
formalized. As in Sociology (3), it may concern the expression of a division of
tasks, a distribution of roles, an authority system, a communication system, or
also a contribution-retribution system. According to (15), this range of topics
may also be extended to knowledge, culture, memory or history.

Both views are generally not mutually exclusive and have led to different
approaches in the domain. Let’s focus on a few features in order to build a com-
prehensive view of them. First, we will take into account the “definition process”
of the agents’ organization (Sections 2.1) and then consider its “representation”
within the agents´ minds (Section 2.2). As what happens with every classifica-
tion attempt, the one proposed here has its limits and must be considered as
an analysis grid of the different works and not as a normative view on agents’
organizations in MAS.

2.1 Agent Centered View vs Organization Centered View

The first axis of the grid is an extension of the agent centered and organization
centered points of view initially proposed in (25).
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The agent-centered point of view takes the agents as the “engine” for the or-
ganization. Organizations only exist as observable emergent phenomena which
state a unified bottom-up and objective global view of the pattern of coopera-
tion between agents (see first row in Fig. 1-a-b). For instance (case (a)), in an
ant colony (8), no organizational behavior constraints are explicitly and directly
defined inside the ants. The organization is the result of the collective emergent
behavior due to how agents act their individual behaviors and interact in a com-
mon shared and dynamic environment. Similar point of view may be considered
in the different reactive self-organization approaches that exist in the littera-
ture (30). In a more cognitive way (case (c)), the studies on coalition formation
define mechanisms (within agents, e.g. social reasoning (33)), to build pattern
of cooperation in a bottom-up process. In this view, the pattern of cooperation
both structures and helps the agents in their collaborative activities.

The organization centered point of view sees the opposite direction: the orga-
nization exists as an explicit entity of the system (see second row in Fig. 1-c-d).
It stresses the importance of a supra-individual dimension (15) and the use of
primitives that are different from the agents’ ones. The pattern of cooperation
is settled by designers (or by agents themselves in self-organized systems) and is
installed in a top-down manner in order to constrain or define the agent’s behav-
iors. Let’s note that, as in the first case, the observer of the system can obtain
a description of the organization. For instance, in a school we have documents
that state how it is organized. Of course, besides the explicit description of the
organization, the beholder can also observe the real school’s organization which
is, possibly, different from the formal one.

2.2 Agents Know vs Agents Don´t Know the Organization

¿From an agent architecture perspective, we can further refine these two points
of view by considering an orthogonal axis regarding the agents’ capabilities to
represent and reason about its organization.

In the first column of Fig. 1, the agents don’t know anything about the orga-
nization. In case (a) the agents don’t represent the organization, although the
observer can see an emergent organization. In some sense, they are not aware
that they are part of an organization. In case (c), the organization exists as
a specified and formalized schema, made by a designer but agents don’t know
anything about it and do not reason about it. They simply obey it as if the
organizational constraints were hard coded inside them (e.g. the MAS resulting
from some AOSE methodologies where the agent’s code is generated from an
organizational specification (23; 2)).

In the second column, we consider the cases where agents have some ex-
plicit representation of the organization in which they are executing. In case
(b), each agent has an internal and local representation of cooperation pat-
terns which it follows when deciding what to do (e.g. social networks for coali-
tion formations (33)). This local representation is obtained either by perception,
communication or explicit reasoning (e.g. social reasoning as in (33)) since, in
an agent-centered view, there isn’t, a-priori, any explicit global representation
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Fig. 1. Comprehensive view on organizations in MAS: (a) Emergence-based Designed
MAS; (b) Coalition Oriented MAS; (c) Organization-based Designed MAS; (d) Orga-
nization Oriented MAS. Let’s notice that the Designer/Observer may be the Develop-
per/User (exogenous case) or a set of agents (endogenous case).

of the organization which is available to the agents. In case (d), agents have an
explicit representation of the organization which has been defined (organization-
centered view). The agents are able to reason about it and to use it in order to
initiate cooperation with other agents in the system.

In the literature, some agents’ organization approaches fit to a specific case
shown in Fig. 1, others are lying on multiple cases. For instance, proposals con-
cerning reorganization approaches for formal organizations may combine cases
(b) and (d) in the sense that agents are using their internal mechanisms to adapt
the organization that was imposed to the system. The bottom-up or top-down
manipulation of the organization may be realized either endogenously (i.e. real-
ized by the agents belonging to the organization themselves) or exogenously (i.e.
by an external designer, a human or agents outside of the organization).

2.3 Organization Oriented Programming

In order to tackle the requirements for organizations as exposed in the intro-
duction, we focus on the Organization Oriented MAS (Fig. 1-d). Indeed, such
an approach provides us the possibility of expressing and making explicit one or
more patterns of cooperation. This is made using a top-down approach to con-
strain and guide the agents behavior towards some purpose. Let’s note that in
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this kind of systems, agents can practise organizational autonomy, in the sense
that they are able to read, to represent, and to reason about the organization and
may decide whether to follow the constraints stated by the organization or not.
They may also decide to adapt and change the organization in a bottom-up pro-
cess, installing a new pattern/structure. Such a functioning corresponds to the
combination of Coalition Oriented MAS (Fig. 1-b) and Organization Oriented
MAS (Fig. 1-d)) approaches.

In this context, if we consider the programming of organizations –called Orga-
nization Oriented Programming (OOP) in the sequel–, we consider the existence
of an organization modeling language (OML) that is used to specify the organi-
zation(s) of an MAS.

This language is used to collect and express specific constraints and cooper-
ation patterns that the designer (or the agents) have in mind, resulting in an
explicit representation that we call an Organization Specification (OS). Finally
the OS is executed and interpreted in an Organization Implementation Architec-
ture (OIA), to install a collective entity in the MAS that we call an Organization
Entity (OE): a set of agents that build the organization specified with an OS.
Once created, the OE’s history starts and runs, event by event. These events can
be related to agents entering and/or leaving the organization, group creation,
role adoption, goal commitment, etc. The OIA may be further divided (as we
will see in section 4) into an agent part and an organization infrastructure part.
In the following sections, we consider first OMLs for OOP and then OIAs that
execute these OMLs.

3 Organizational Modeling Languages for MAS

Existing OML in the MAS domain may be compared along the way they con-
strain the agents’ possible behaviors (B) shown in a behavior space (Fig. 2). At
time t, a MAS has the purpose of maintaining its behavior in the set P , where
P represents all behaviors that draw the MAS’s global purposes at that time.
The set E represents all the agents’ possible behaviors given the current state of
the environment at t. The organization (i.e. an entity composed of roles, groups,
and links) constrains the agents’ behaviors to those of the set O.

Depending on its definition, the set of possible behaviors according to the
environment and to the organization (E∩O), can become closer to P or not. Only
agents are responsible for conducting their behaviors from a point in ((E∩O)−P )
to a point in P . All the difficulties of the definition of an OS is in the definition
of the set O:

– A small P ∩ E ∩ O certainly increases performance of the system by con-
straining agents’ autonomy but may prevent the system self-adaptation;

– A great P ∩E∩O certainly increases the capability of the system adaptation
by keeping agents’ autonomy but may prevent the system high performance.

The first situation would led to a kind of agents’ rigor mortis, i.e., they behave
without any autonomy, like robots, following fully-specified policies. On the other
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B: agents’ possible behaviors.
P : agents’ behaviors that lead to global purpose.
E: agents’ possible behaviors constrained by the
environment.
O: agents’ possible/permitted/obliged behaviors
constrained by the organization.

Fig. 2. Behavior space of MAS

hand, if the second situation is extreme, it makes the organization constraints
useless, since a small P ∩ E ∩ O tends to a small P ∩ E. Let’s illustrate now,
how the set O may be defined using the OML Moise+.

3.1 Moise+ Organization Modeling Language

Moise+ (Model of Organization for multI-agent SystEms) (20) is an OML that
explicitly decomposes the set O of Fig. 2 into structural (OS) and functional
(OF ) dimensions. The OS defines the MAS structure with the notions of roles,
groups and links. The OF describes how the global collective goals should be
achieved, i.e., how these goals are decomposed (in plans), grouped in coherent
sets (by missions) to be distributed to the agents. A third deontic dimension
is added in order to binds the structural dimension with the functional one by
the specification of the roles’ permissions and obligations for missions. Instead
of being related to the agents’ behavior space, the deontic dimension is related
to the agents’ autonomy. In order to give some concrete insights of this OML
we depict part of the resulting OS for a simulated soccer game (see Fig. 3). A
formal definition of Moise+ is found in (20).

In the structural dimension, a role consists of a label, attached to agents, that
constrains their behavior and their links.

A group is an instantiation in an OE of a group specification of the OS. A
group specification consists of a set of links and roles. Well formed attributes
may be ascribed to it. Their concerns are intra/extra group compatibility of
roles, minimum and maximum number of role players inside a group. The links
have direct effect on the agents behavior. They can be: acquaintance links (agents
playing the source role are allowed to have a representation of the agents playing
the destination role), communication links (agents are allowed to communicate
with the target agents), authority links (source agents are allowed to control
target agents). Fig. 3 shows the structural dimension of the soccer team’s OS. It
is formed by roles of the players (e.g. goalkeeper, leader, etc) that are distributed
in two group specifications (defense and attack) which form the team group
specification. In the defense group specification, three roles are allowed and any
defense group will be well formed if there is one, and only one, agent playing the
role goalkeeper, exactly three agents playing backs, and, optionally, one agent
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Fig. 3. Organization Specification of a Soccer Game with the Moise+ Organization
Modeling language

playing the leader role (see the composition relation in Fig. 3). The goalkeeper
has authority on the backs. The leader player is also allowed to be a back since
these roles are compatible. Due to the role specialization (see the back-goalkeeper
inheritance relation in Fig. 3), the leader also can play the goalkeeper role. In
the same example, a team is well formed if it has one defense sub-group, one
attack sub-group, one or two agents playing the coach role, one agent playing
the leader role, and the two sub-groups are also well formed. In this structure,
the coach has authority over all players by an authority link. The players, in any
group, can communicate with each other and are allowed to represent the coach
(since they have an acquaintance link). There must be a leader either in the
defense or attack group. The leader has authority over all players on all groups,
since there is an authority link to the player role. For every authority link there
is an implicit communication link and for every communication link there is an
implicit acquaintance link.

In the functional dimension, the goals that are to be achieved by the organi-
zation are structured according to different social schemes. A social scheme is a
goal decomposition tree where the root is the Scheme’s goal. The operators that
may appear in these plans express the execution in sequence/parallel and the
possibility of choice. All the goals of a social scheme (root goal and subgoals) are
divideded into missions (i.e. sets of coherent goals that are to be assigned to roles
and that an agent can commit to). More precisely, if an agent accepts a mission
mi, it commits to all goals of mi (gj ∈ mi) and the agent will try to achieve goal
gj only when the goal preconditions for gj are satisfied. In the soccer example,
suppose the team has a rehearsed play as the one specified in Fig. 3. This scheme
has three missions (m1, m2, and m3). When an agent commits to a mission, it
is responsible for all this mission’s goals. For example, an agent committed to
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the mission m3 has the goals “be placed in the opponent goal area”, “shot at the
opponent’s goal”, and, a common goal, “score a goal”. Each mission also has a
cardinality constraint in the scheme that states how many agents should commit
to it. In the soccer example, all three missions must be committed by exactly one
agent. Further specifications are possible on this dimension to precisely constrain
the execution of the social schema, but are outside of the scope of this paper
(please refer to (20) for more details).

As shown in Fig. 4-e, both specifications (structural and functional) are two
parts of the OS that constrains the agents’ behaviors. They can be developed
independently. To make explicit the semantic of the binding between them, a
deontic dimension has been introduced. It explicitly states the obligations and
permissions for agents to execute missions while playing roles (a temporal di-
mension is also specified within these operators, see (20)). For instance, in Fig. 3,
permission per(player, m1) states that an agent playing the role player is allowed
to commit to the mission m1. Furthermore, the obligation obl(middle, m2) states
that an agent playing the role middle ought to commit to m2.

3.2 Organization Modeling Dimensions

Given this description of the modeling dimensions of the Moise+ OML, let’s
consider other existing OMLs in the literature. We choose some of them to
highlight the different organization modeling dimensions that they embed and
to compare them with respect to the behavior space of Fig. 2.

Tæms (26) addresses only the functional specification of the agents’ orga-
nization. It proposes a domain independent language for defining hierarchical
task structures (see OF in Fig. 4-a). The task structures express the way to
achieve different top-level goals, i.e. objective/abstract task including the dead-
line for its completion and the earliest time it can begin to be executed. Leaves
are basic action instantiations (methods). Different constraints enrich those hi-
erarchies: quality-accumulation-functions, logical constraints among tasks and
their subtasks, expressing a precise, quantitative degree of achievement of tasks ;
task relationships expressing inter-dependencies among tasks (enables/disables,
hinders/facilitates) and basic actions or abstract task achievement affect task
characteristics (e.g., quality and time) elsewhere in the task structure, resource
consumption characteristics of tasks (e.g. consumes, limits).

AGR (Agent, Group, Role) (11) is the evolution of the Aalaadin model (13).
Its minimalist structure-based model of organization is specified as a role-group
structure imposed on the agents (see Os in Fig. 4-b). A group is a set of agents
sharing some common characteristics: it is the context for a pattern of activities
and is used for partitioning organizations. A role is an abstract representation
of an agent functional position in a particular group. An agent may request and
play (multiple) roles within (several) groups. No constraints are placed upon the
architecture of an agent or about its mental capabilities. The only constraint
which is imposed by the role-group structure is concerned to communication:
agents can communicate with each other if and only if they belong to the same
group. AGR also says that agents can have their joint behavior orchestrated by
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interaction protocols, but the nature and the primitives to describe such protocols
are left open.

TeamCore is part of the Shell for TEAM work (Steam) (31). It uses the Joint-
Intentions theory (27) and the Shared Plans theory developed by (17) to insure
team synchronization. The first aspect of the organization modeling in Team-
Core consists of the definition of the structure of a team (see Os in Fig. 4-c) as
a hierarchy of roles. The leaves correspond to a role for an individual agent
whereas the internal nodes correspond to (sub)teams. The second aspect (see
OF in Fig. 4-c) consists in specifying a hierarchy of reactive team plans in which
joint activities are explicitly expressed with: (i) initiation conditions under which
the plan is to be proposed, (ii) termination conditions under which the plan is
to be ended, specifically, the conditions when the reactive team plan is achieved,
irrelevant or unachievable and (iii) team-level actions to execute as part of the
plan. The precise detail of how to execute a leaf-level plan is left unspecified.
Domain-specific plan-sequencing constraints on the execution of team plans may
also be specified. The third aspect of this OML consists in assigning agents to
plans. This is done by first assigning the roles in the organization hierarchy to
plans and then assigning agents to roles. A role inherits the requirements from
each plan that it is assigned to. Agents may simultaneously take part in several
different tasks, and corresponding roles. We will see during the description of
the related OIA that the reorganization process is triggered in case of critical
role failure, and it consists in reassigning critical roles.

In comparison to the previous models, Islander (9) introduces a termino-
logical shift from organizations to institutions. This declarative language for
specifying electronic institutions is composed of four basic elements: (1) a di-
alogic framework, (2) scenes, (3) performative structure, and (4) norms. The
three first elements express a reduced part of the structure in terms of roles
and introduce a dialogical dimension of agents (see OS and OD in Fig. 4-d)
as follows. The dialogic framework defines the valid illocutions that agents can
exchange and which are the participant roles and their relationships. The valid
illocutions are those that respect a common ontology, a common communication
language and knowledge representation language. Each role defines a pattern of
behavior within the institution and any agent within an institution is required
to adopt some of them. A scene is a collection of agents playing different roles
and interacting with each other in order to realize a given activity. Every scene
follows a well-defined communication protocol. The performative structure estab-
lishes relationships among scenes. The idea is to specify a network of scenes that
characterizes more complex activities. The connections among the scenes define
which agents can move from one scene to another, depending on the role they are
playing and on given constraints. Given these three specifications, the considered
interactions of Islander are defined purely by means of direct communication
between agents. The normative element binds dialogical and structural dimen-
sions with individual agent’s actions. It is expressed in ON (see Fig. 4-d). The
norms component of an electronic institution define the obligations agents have
while participating in some scene.



Organization Oriented Programming: From Closed to Open Organizations 95

(a) Tæms (b) TeamCore

(c) AGR (d) Islander

Of : agent’s behavior
constrained by the functional
dimension of the OS;
Os: agent’s behavior constrained
by the structural dimension;
Od: agent’s behavior constrained
by the dialogical dimension;
On: agent’s behavior
constrained by the normative
dimension.

(e) Moise+

Fig. 4. Influences on the behavior space of an MAS of the - Tæms (a), AGR (b),
TeamCore (c), Islander (d) Moise+ (e) - Organization Modeling Languages

As shown above, existing OML exhibit a structural dimension that is re-
lated to structure of the collective level of an MAS, generally in terms of
roles/groups/links; a functional dimension related to the global functioning of the
system or a dialogical dimension whhicg specifies the interaction in terms of com-
munications between the agents. Even if these dimensions are more commonly
found, they are not the only ones. For instance, some models introduce an environ-
mental dimension allowing to constrain the organization situation in an environ-
ment such as in AGRE (12), or a temporal dimension such as in MoiseInst (16).
Besides those dimensions, the deontic and normative dimensions used respectively
in Moise+ and Islander address the issue of agents´ autonomy. While in other
OMLs the agents are supposed to be benevolent and compliant (de-facto) to the
OS, these two models add the possibility for agents to develop explicit reasoning
on their autonomy with respect to the organizational constraints.
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We won’t compare here all these OMLs, in terms of their primitives or mod-
eling power that each one can offer (refer, for instance, to (24) for a systematic
comparison of these models). Considering their influence on the behavior space,
Fig. 4 briefly shows how an organization specified with each model could con-
strain the agents’ behavior. In models such as Tæms (case (a)) where only the
functional dimension (OF ) is specified, the organization has nothing to “tell” to
the agents when no plan or task can be performed (for instance, E ∩ OF = ∅).
Otherwise, if only the structural dimension is specified (OS) as in AGR (case
(b)), the agents have to reason for a global plan every time they want to work
together. Even with a smaller search space of possible plans, since the structure
constrains the agents options, this may be a hard problem. Furthermore, the
plans developed for a problem are lost, since there is no organizational memory
to store these plans. Thus, in the context of open systems, we hypothesize that
if the organization model specifies both dimensions as in Moise+ (case (e)) or
TeamCore (case (c)) or a third one as in Islander (case (d)) then the MAS
that follows such a model can be more effective in leading the group behavior to
its purpose. On the agents’ side, they can develop richer reasoning abilities about
the others and their organization. Agents may gain more information about the
possible cooperation (in terms of roles, groups, but also on the possible goals
under achievement or about the performative structures that can be used) that
may be conducted with other agents.

4 Organization Implementation Architectures for MAS

While the previous section was concerned with the several OMLs used to specify
MAS’ organizations, this one deals with the issues related to how these OMLs
area easily programmed, i.e., their corresponding Organization Implementation
Architectures (OIAs). As it happens with organizational models, implementa-
tions can also take an agent centered or a system centered point of view;1 in
(34), these points of view are called agent and institutional perspectives. In the
former point of view, the focus is on how to develop agent reasoning mechanisms
to interpret and reason about the OS and OE. We will call these mechanisms
generally as Agent´s Organizational Reasoning (AOR) methods. In the latter,
the main concern is how to develop an Organization InfrastructureLayer (OIL)
that ensures the satisfaction of the organizational constraints (e.g. agents play-
ing the right roles, committing to the allowed missions). This point of view is
important in heterogeneous and open systems where agents that enter into the
system can have unknown architectures. This will be the focus of this section.
Of course, to develop the overall MAS, the former point of view is necessary
since the agents probably need to have access to an organizational representa-
tion that enable them to reason about it. However, the agents should follow the
OS despite their organizational reasoning abilities.
1 We prefer here to use the term system-centered instead of organization-centered in

order to avoid confusion between OMLs and OIAs, even if, as we have seen, the
organization is reified in an OE.



Organization Oriented Programming: From Closed to Open Organizations 97

Agent
Proxy

Organization

Reorganization Agent Allocation

Organization Service Layer

Infrastructure Layer

Communication Layer

Coordination

Agent
Domain Domain

Agent

Organizational
Agent
Proxy

Organizational

Fig. 5. Common Organization Implementation Architecture for open MAS

Many implementations of the OIL follow the general two-layer architecture
depicted in Fig. 5. Domain (or application) agents are responsible for achieving
organizational goals and using an Organizational Agent Proxy (OAP) component
to interact with the organization. The Organizational Services Layer (OSL) is
responsible to bind all agents in a coherent system and provides some services
for them. The communication layer is responsible for connecting all components
of the infrastructure in a distributed and heterogeneous applications.

Next sub-sections briefly present the OIL supporting the OML presented in
section 3. To compare them, the following features are considered: (i) the OSL´s
available organizational services, (ii) how easily can heterogeneous agents enter,
leave and execute in the organization, (iii) how the OE compliance to the OS is
controled and ensured by the OIL services, (iv) if the OS description is available
to the agents, (v) the support for reorganization and, finally, (vi) the kind of
communication layer supporting the OIL, since FIPA-ACL and KQML are more
suitable for open systems than TCP/IP, CORBA and RMI, for example.

4.1 S-Moise+

S-Moise+ is an open source implementation of an OIL that supports the
Moise+ OML (22). The OAP is called OrgBox and it consists of an API that
agents use to access the OSL services, provided by a special systen agent called
OrgManager. The OrgManager receives and manages all the messages from the
agents’ OrgBox asking for changes in the OE state (e.g. role adoption, group
creation, mission commitment). Those changes bring about the OrgManager to
modify the OE only if they do not violate an organizational constraint. For in-
stance, when some agent asks for a role adoption in a group g, the OrgManager
ensures that: (1) the role belongs to a specified group g; (2) the number of play-
ers in g is lesser or equals than the maximum number of players defined in the
group’s compositional specification; (3) each role ρi that the agent already plays
is compatible with the new role in g. Although most of the organizational con-
straints coming from the three dimensions are ensured, the OrgManager doesn’t
verify the achievement of committed goals by agents. A sanction system is under
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development in a new version of Moise+ (see (16)). Besides the organizational
compliance, the OrgManager also provides useful information for the agents’
organizational reasoning and coordination, for example the missions they are
forced to commit to and goals it can pursue.

An important feature of this architecture is that the OS may be interpreted
at run-time by the agents because its specification is available to them. Thus
agents can be developed as hardwired programmed for some particular OS or
they can be programmed to interpret the current available OS. This last feature
is not only useful in open systems, but also when one considers a reorganization
process, since the adaptation of the new OS may be dynamic. S-Moise+ does
not require any specific type of agent architecture. Although agents normally
use the OrgBox to interact with the system, an agent could even interact with
the OrgManager directly using KQML. Organizational adaptation by means of
an endogenous reorganization process is presented in (21).

4.2 Other Organization Infrastructure Architectures Approaches

Tæms has many related tools and those that better fit our general architecture
of Fig. 5 are GPGP (7) for the OSL and JAF (35) for the OAP. While GPGP
main concern is coordination, JAF is more than an organizational proxy. The
aim at JAF is to develop a framework allowing the rapid development of dif-
ferent types of agents, and to facilitate the adoption of the new technology. To
this aim, a component-based design is adopted, where developers can plug new
components for domain dependent requirements, e.g. a default implementation
of a local scheduler is provided but it can be replaced whenever it is needed,
by new scheduler. Besides this extensibility feature, the agent architecture can
be applied to several domains. It is mainly due to its use of the Tæms domain-
independent OML which specifies how agents can achieve their goals. Agents
are not constrained in their actions to ensure that they are obeying the orga-
nization. Nevertheless, once agents are allocated and coordinated by GPGP, it
is supposed that they will perform the allocated tasks. If they do not, this fact
is considered as a failure, and not an autonomous act. A diagnosis systems is
proposed to deal with this situation in (19), whose proposed solution is to change
the organization specification.

MadKit (18) is not simply an OIA: it is a complete agent development plat-
form that supports AGR. AGR minimalistic approach was also adopted in Mad-
Kit: it follows a micro-kernel approach. Thus, it provides the minimal set of
features for the maintenance of the OE state and ensures some constraints. Al-
though the kernel maintains the OE, this information is not available for agents.
Coordination services are not available because the model is focused on the
structural dimension. The communication layer is provided by MadKit itself,
although FIPA-ACL compliance is planned for future releases.

KARMA supports the TeamCore OML and thus considers both the struc-
tural and the functional dimensions. Its main focus is the functional dimension,
specifically aiming the coordination of heterogeneous agents in open systems
that should perform global plans. As described in (31), KARMA was successfully
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used to build an evacuation rehearsal application composed by agents developed
by different research groups, languages, and operating systems. The architec-
tural approach to achieve this openness follows the general schema depicted in
Fig. 5, where the OSL is provided by KARMA itself (with coordination and
agent allocation services), the OAP is called teamcore proxies (these proxies do
not requite any change in domain agents). The communication layer is based on
KQML. Monitoring tools are available to support some adaptation level. For in-
stance, when some agent fails, other agents’ proxies may decide to adopt its role
to maintain the system running, a kind of exogenous reorganization at the entity
level. This monitoring tools could also be used to enforce compliance to the spec-
ification, but the original paper does not focus on this issue, as this feature was
not necessary for the applications described. Regarding the agents’ autonomy,
domain agents can decide whether to accept the team task or not. The OAP even
learns the suitable level of autonomy, so that it does not ask the domain agent for
every simple decision, but just for the most important. However, domain agents
are organizationally unaware – as in Fig. 1-c. They do not have access to the OS
nor OE and therefore can not reason about or change it. Every organizational
operation is performed by the teamcore proxy. For instance, since the agents do
not know their roles in some global plan when accepting or refusing a task, the
decision of accepting or refusing must be done based only on non-organizational
information. Due to this organization unawareness, agents can not enter in the
system and perform a reorganization. KARMA has some level of reorganization,
but it is the proxy responsibility. Domain agents are thus task-autonomous but
not organization-autonomous as we defined it in section 2.

AMELI supports the Islander (10) OML. It aims at facilitating the partici-
pation of heterogeneous agents while ensuring that the organizational constraints
are enforced. The constraints are based on the dialogical dimension. AMELI also
follows the general architecture of Fig. 5. A component called governor is the
OAP and three special system agents implement the OSL and the coordination
for a scene execution: Institution Manager, Transition Manager and Scene Man-
ager. The communication layer is provided by JADE (1), a FIPA-ACL compliant
implementation. The specification of the organization is available for agents in
XML format generated by Islander Editor.

We summarize in table 4.2 how each organization infrastructure considers
the criteria given at the begining of this section. Since all the described OIL
were developed for heterogeneous and open systems, they follow in some extent
the architecture depicted in Fig. 5. They naturally differ in their underlying
OML and thus the set of available organization modeling dimensions that they
manage. In the existing OILs, where an OS is made available to the agents, the
requirements for an incoming agent usually are that it knows the OML, and
it is capable of reasoning about it. As we can see, organizational compliance
and reorganization are not satisfactory treated: in some proposals, compliance
is not a matter because the agents’ autonomy regarding the organization is not
a matter. Moreover, in other models this compliance was not fully developed.
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Table 1. Comparison of organizational infrastructures of the Organization Implemen-
tation Architecture

Services Hetero. Org. Specification Reorganization Communication
Agents Compliance Available layer

S-Moise+ Coordination yes yes yes endogenous KQML
specification

GPGP/JAF Coordination yes no yes exogenous TCP/IP
specification

MadKit yes yes no no —
KARMA Coordination yes no no exogenous KQML

Agent allocation entity
AMELI Coordination yes yes yes no FIPA-ACL

5 From Closed Organization to Open Organization

As seen in the two previous sections, building a MAS with an OOP approach
installs an explicit and formal OS on the agents that may help or prevent the
openness properties. In the following, we briefly focus on three aspects related
to this issue: organization permeability, reorganization and ability of the orga-
nization to control agents’ autonomy.

5.1 Organization Permeability

Open agents’ organization should be permeable in the sense of allowing the dy-
namic arrival/exit of agents into/from it. As shown in section 4 an explicit OS
is specially useful for the MAS to integrate non centrally designed agents: even
not knowing what kind of agents are trying to enter the system, the organiza-
tion could enforce some restrictions on their behaviors. No dedicated integration
management mechanism is available in the existing organization approaches (in-
tegration is still done in an adhoc manner, e.g. (16)). However, as shown in
Fig. 5, some OILs make the OS available. It is of crucial importance since arriv-
ing agents should be able to read it, to reason about it in some cases and thus
improve their collaboration in the system.

Besides such a mechanism, different features of the OML have to be con-
sidered. Assigning abstract roles rather than actual agents to plans or interac-
tions provides a useful level of abstraction for the quick (re)assignement of new
agents in the organization when needed. Existing OMLs offer multiple dimen-
sions (see sec. 3 and Fig. 4). Combining the multiple OML modeling dimensions
in a declarative OS offers the opportunity to tackle with the heterogeneity of the
agents architecture and reasoning mechanisms. In the same way, the degree of
abstraction with respect to the agents’ architecture may help their integration:
functional specification in Moise+ or TeamCore, for instance allows the use
of agents with different skills to execute the unspecified leaf-level plan.

Even if some progress was made in the infrastructure/middleware level for
puting these information available to the agents, most of the current agent pro-
gramming is purely ad-hoc. Organizational standards may be a good direction
towards openness at this level, as it has been done at the communication level by
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the FIPA-ACL standard. Another approach could be developping an AOR mech-
anism based on those models in order to enable an agent to read an organization
modeling, written in some known OML, and to decide what to do.

5.2 Reorganization Ability

Openness, in the sense of the system configuration change, maps directly to the
problematic of changing the current state of the OS or OE into a new one. As
in previous section, delivering the explicit organization to the agents opens new
possibilities for the adaptation of the agents’ organization while the system keeps
running. As a consequence, an endogenous process could occur on-line, in the
sense that the designers should be replaced by the agents themselves to control
and to make on-line changings in the organization.

Reorganization may be at the OE level (e.g. allocation of agents to roles are
changed) or at the OS level (where some dimension of the OS changes). De-
pending on the multiplicity of existing modeling dimensions and also on the
richness of each of these dimensions, there may be a wide spectrum of change
types. However the mutual independence of each dimension has to be considered.
For instance, while Islander and TeamCore closely bind the different model-
ing dimensions, Moise+ enforces the mutual independence of its structural and
functional dimensions. It binds explicitly and declaratively both dimensions with
a deontic specification that maintains a suitable independence for the reorgani-
zation process. This binding allows the MAS to change its structure without
changing its functioning, and vice versa: the system only needs to adjust its
deontic relations.

5.3 Ability of the Organization to Control Autonomy

As said in (10) “Openness without control may lead to chaotic behavior”. In-
stalling openness requires the ability to install observation and control of the
system. Both of these processes can be exogenous or endogenous. It is worth to
notice that the control should be performed outside the agent (since its “inside”
is unknown), normally as an OSL service (see Fig. 5) of the OIL.

However, as shown in the previous section, agents’ organizations should con-
trol the agents’ behaviors while permitting their self-adaptation in response to
evolving environmental constraints or changes in the systems’ goals. Balancing
openness and control is a difficult task that depends on the richness and the
degree of the constraints that the OS may express. As stated in section 3, iden-
tifying a good size for the set O must conciliate collective constraints with the
agent autonomy, i.e. with the possibility for the agents on deciding what to do.

Delivering OS enables organizational autonomy as defined in section 2. How-
ever, as we have seen in previous section, this is not sufficient. The more the OML
is rich in terms of dimensions, the more it is able to constrain the agents’ behav-
ior space. The drawback is that when the agents need to adapt their behaviour
due to changing conditions, they may violate some organizational constraints.
In some sense, the richness of the OML may hinder adaptation of the agents
to changes. As for permeability, the degree of abstraction with respect to the
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agent’s architecture (available in the dimensions of the OML) is an important
point to consider. For instance, in TeamCore and Moise+, it is possible to
express leaf-level goals in their functional dimension instead of plans of actions,
and this fact allows the agents to decide locally which action to commit to for
executing the committed plans. Another important feature deals with the use
of primitives dedicated to the explicit management of agents autonomy in the
OML. Moise+ and Islander address such a problematic with their deontic
and normative dimensions, stating flexibility in the expression of the constraints
bearing on the roles played by the agents.

Reflexivity of the control expression and of the reorganization process is an
important and crucial issue that has also to be considered. It has direct repercus-
sion on the permeability of the organization: the use of OML to specify the re-
organization (cf (21)), and the supervision infrastructure itself (cf. (16)). Agents
entering the organization are nonetheless able to understand the organization in
which they enter but also the organization structuring the reorganization or the
supervision process.

6 Conclusion

As we have shown in this paper, organization is a complex and rich dimension in
MAS. We have focused our study on the Organization Oriented Programming
approach that answers the best, to our point of view, to the openness require-
ments of current and future applications of MAS. This approach aims at com-
bining agent centered and organization centered points of view to derive a mixed
of top-down and bottom-up definition/adaptation of the organization. Different
modeling dimensions are mobilised to program rich organizational patterns to
control or to help the cooperation among agents in the system: structural, func-
tional or dialogical. As noticed, these dimensions are not exclusive and some
dimensions are still being proposed (e.g. environment, context). The agents’ au-
tonomy concern has recently been added to these OMLs to build normative
organizations. Dealing with the support to program these OMLs, different OIAs
have been presented: OS may be interpreted within the agent architecture, in
an OIL existing outside of the agent in multi-agent platform, or in both kinds of
components. As noticed, the agents’ autonomy, adaptation and reorganization
abilities are also important topics in these approaches.

In order to create real open organizations with an OOP approach, combination
of agent centered and organization centered approaches are necessary. To this
aim, AOR mechanisms and OIL services should be used to define the OIA of such
systems. Some challenges still need to be considered and solved. Among them,
we can cite: (i) decentralization of the organization implementation architecture
(e.g. the centralized architecture of S-Moise+ and AMELI prevent them to ad-
dress the scaling problem) is one important topic, (ii) development of reasoning
abilities in order to integrate top-down predefined organizations -organization-
centered- with bottom-up emergent organizations -agent-centered-, (iii) a bet-
ter undertsanding of each of the dimensions of the existing OMLs, leading to
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organization ontology standards to enable interoperation, (iv) reorganization is-
sues in general (how to evaluate? how to change?), and (v) building of mixed
models for human and artificial agents working together.
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Abstract. Interaction refers to an abstract and intangible concept. In modelling, 
intangible concepts can be embodied and made explicit. This allows to manipu-
late the abstractions and to build predictable designs. Business processes in or-
ganisations are in fact reducible to interactions, especially when agent-oriented 
modelling methods are employed. Business processes represented as interaction 
structures can appear at different levels of abstraction. There is a compositional 
coupling between these levels, and this necessitates a method that allows dy-
namic de/re-composition of hierarchically organised interactions. We introduce 
the novel concepts that allow interaction-based diagramming and explain the 
syntax and semantics of these constructs. Finally, we argue that a business 
process composition with interactions allows more organisational flexibility and 
agent autonomy, providing a better approach in complex and dynamic situations 
than current solutions. 

1   Introduction 

Each modelling approach has a specific focus. It could be the “entity” concept, or the 
“activity”, or “location”. In our approach, the most important is the concept of inter-
action that allows for an easier modelling of complex and distributed business proc-
esses (BPs). Classic BP modelling takes a centralistic standpoint; an external observer 
sees the entire process model as a monolithic whole. In our approach, due to the 
agent-orientation, each participant has its own local view of the process. These local 
views, known as interaction beliefs (IBs), are linked to explicit depictions of named 
interactions. These beliefs are used by agents that play the roles that are attached to an 
interaction. Interactions are compositional; they can be grouped and divided. A 
method for decomposition of interactions is used to identify ‘smaller’ interactions in a 
top-down analysis, or the ‘smaller’ interactions can be grouped in more complex ones 
in a bottom-up approach (or a mix of these two). 

This paper is organised as follows. Section 2 introduces and justifies the use of the 
interaction concept by analysing it from both a philosophical and pragmatic perspec-
tive. The relation with similar approaches is discussed. In section 3, we explain the 
syntax and semantics of our interaction diagrams. Section 4 presents the de/re-
composition of interactions. Patterns to model the de/re-composition are discussed, a 
de/re-composition symbol is introduced and compared to UML, and the usage and 
execution of the de/re-composition is explained, together with an example. In the last 
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section we discuss the applicability of our approach, we indicate some directions for 
future work, and we conclude the paper. 

2   Agents, Roles, and Reification of the Interaction Concept 

The application of our research in multi-agent systems is in the area of BPs. We ana-
lyse and model organisations that we view as multi-agent systems, and use the con-
ceptual models to build designs for agent systems that support the BPs within these 
organisations. We are developing a framework (AGE – i.e. Agent Growing Environ-
ment, see [18]), which uses a language (TALL – i.e. The Agent Lab Language, see 
[21, 22]) for multiple functions: analysis, specification, conceptual modelling, interac-
tive simulation/gaming and dynamic visualisation, design, implementation, and  
testing. 

2.1   Using Agents and Roles for Business Process Modelling 

There are three main concepts in the TALL language: agent, role, and interaction. 
Many approaches tend to associate the role played by an agent in an organisation with 
the agent itself (as a property) or define specialised types of agents. However, we ad-
here to the ontological distinction made by Steimann [25], who considers that roles 
should be defined separately from agents. He states that in software development 
roles should be a sort of interfaces; in organisational modelling they should be dy-
namic placeholders for the actor/agent participants. The main reason is that a role it-
self has no meaning outside its context and has to be filled with persons, things or 
places to have a meaning. 

These persons, things or places are named natural types. In general, an agent in 
TALL belongs to a natural type (i.e. is an instance of the natural type), under all cir-
cumstances and all times. An agent can never drop its natural type without losing its 
identity. For example in TALL, all agents belong to the natural type Agent that cannot 
be dropped without loosing their identity as an agent. Roles are filled with agents and 
these agents can leave their roles without losing their identity. Another difference be-
tween agents and roles according to Steimann [25] is that roles, unlike classes, have 
“something dynamic” about them. Unlike entity types, playing several roles simulta-
neously is not unusual for the instances of certain natural types. For example, a person 
can be a customer, supplier, and stakeholder at the same time. 

In an organizational context, agents belong to agent groups (i.e. they are members 
of a certain group) that are generic sets of agents with similar skills – not necessarily 
based on the function assigned formally to the agent in the organisation. Agents can 
belong to more than one group, thus, these sets can overlap; also specialisation (sub-
sets) can be used. The agent groups can be used to define an authorisation scheme in 
the organisation. 

In TALL, roles are types with a dynamic nature, which cannot be instantiated. 
They can add properties to the agents that play the role, and may regulate the behav-
iour of these agents. We denote that an agent plays a role like in Fig. 1a. This dia-
gramming method can be at a generic level, denoting what agent groups can play the 
role (authorisation), but also at an instance level, denoting what agent members are  
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Role Z
anAgent: 

Agent Group
plays

Role1 Role2Agent Group 1 populates populatesInteraction X Agent Group 2 

 

Fig. 1a & 1b. Example of an agent member playing a role (top) and an interaction representing 
the dynamic connection between two roles (bottom) 

currently assigned to that role. Moreover, the interpretation of an instance level dia-
gram is temporally dependent. It can illustrate a plan (“these are the agents who will 
play the role”), or a snapshot (“currently, these are the agents playing the role”), or a 
trace (“these have been the agents that played the role”). 

Within any organisation, by playing the roles, agents execute certain activities and 
always communicate with other agents – they cannot exist in isolation. That intro-
duces the necessity to relate the roles. Agents that play “connected” roles interact. We 
depict the fact that agents interact as in Fig. 1b (here at a generic level). The dynamic 
connection is illustrated between the roles, and not the agents. To explain this choice 
in our language, we need to discuss the interaction concept in more depth. 

2.2   Reification of the Interaction Concept for Agent Modelling 

Interaction is an observable action that happens when two or more entities have an ef-
fect upon one another. From an organisational and social perspective, the entities are 
usually humans (or groups of humans). When viewed via the agent paradigm, the in-
teraction can occur between two artefacts (like software agents, or simulated hu-
mans/organisations). The concept of interaction is an intangible one. By reification, a 
symbol can be introduced to capture the presence of an interaction in a model. 

Sowa (see [24] pp. 60-62) discusses Peirce’s basic categories that comprise the 
triad of Firstness, Secondness, and Thirdness. We argue that an interaction should be 
represented by a modelling concept that belongs to the Thirdness category, that is, in-
teractions are conceptualised as the mediating Thirdness. We see the agents in a 
multi-agent system (artefactual or human/organizational agents) as natural types who 
correspond to the Firstness category. An agent exists independent of any external rela-
tionship. Roles played by the agents are Secondness because roles depend on an 
external relationship to agents. Interactions “bring” the roles and the agents into  
mediation. 

The three main concepts that we use in our universe of discourse: agents, roles, and 
interactions together form a triad. In a model in TALL, or during an agent simulation 
in AGE, interactions are explicit and “exist”. The modeller or the experimenter can 
create and manipulate the interactions, as reflections of observed interactions in a real 
BP. One can relate it to “reification”, meaning to make concrete and perceptible. In a 
formal context, reification of an abstraction raises the need for identity. Thus, each in-
teraction has to get a name (label). Naming can be achieved, according to the object-
oriented approach, in a two level scheme: generic name (or interaction class identity)  
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and specific name (or interaction instance identity). The first level is useful for the be-
liefs of the agents, who should “know” what interactions are possible within the or-
ganisation, and the second is useful for simulation and BP monitoring purposes. 
“Name/identity” is the first property of an interaction. 

An interaction can be seen as a “piece” of a BP. An interaction is performed to 
achieve something, and this leads to other properties. Some agent-oriented methods 
propose to define “external goals” [20]. Another simple solution is to define pre-
conditions and post-conditions. There is a generic precondition for all interactions. 
There should be at least two roles involved. The roles can be linked to an interaction 
statically or dynamically. In a static framework, an interaction will have always the 
same pre-defined roles. For more flexibility, it is better to have the possibility to dy-
namically change the number of roles involved in an interaction. For example to link 
new roles that did not exist (in the specific universe of discourse) before the interac-
tion started. Roles linked to interactions can be considered as implicit properties. Of 
course, roles are more than that; they help describe the organisation’s structure and 
nature. 

Current BP support approaches put the description of the process outside the ac-
tors/agents that execute that process. In a typical agent-oriented approach, the descrip-
tion appears as beliefs of the agents, and it is inherently distributed. That gives no 
“power” to the organisation to enforce behaviour. For a modeller of BPs, a process 
description that resides solely in the beliefs of the agents is not really making sense, 
unless an agent has the “authority” to enforce behaviour over other agents. We be-
lieve that a simpler way to enforce behaviour is to attach an interaction description to 
the interaction entity. In the organisational paradigm, this description is called a pro-
tocol. These protocols can also be considered as properties of the interaction. We dis-
cuss protocols in more detail in section 3. Being “pieces” of BPs, interactions serve 
the purpose to build a description of a BP. This induces also a temporal dependency. 
The overall process description can be a plan, a runtime snapshot or a log of a past 
process. The agents in the organisation should have beliefs about potential interac-
tions, in order to initiate them. We explain later how various triggers induce the 
agents to initiate interactions. 

2.3   Related Work 

2.3.1   Implicit and Explicit Interaction Representation 
The triad of Firstness, Secondness, and Thirdness can be compared to the Relation-
Ship Service in CORBA [13] in which entities and relationships between entities can 
be explicitly represented. Two or more CORBA objects that participate in a relation-
ship are called related objects and these are connected with the relationship via a role. 
A role is an object, which characterizes a related object’s participation in a relation-
ship type. These relationships can appear as a relationship type (relationships sharing 
the same semantics) or a relationship instance with an identity.  

In UML, the same triad can be represented by using the constructs class/object, asso-
ciation class and rolename. Agents will be represented by classes/objects and interac-
tions will be represented by an association class that is attached to a binary or n-ary as-
sociation/link between two or more (agent) classes/objects. By using association classes 
for representing interactions the interactions can be assigned class-like properties such 
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as names, attributes and operations. Finally, the roles appear as role names at the as-
sociation ends to indicate the role played by the (agent) class/object. This means that 
the TALL diagrams, at the generic level as well as at the instance level, can always be 
reduced to UML class/object diagrams. However, representing roles explicitly allows 
one to model attributes specific to a role and also allows one to model dependencies 
between roles that represent a hierarchical scheme or organizational structure (de-
scribing also reporting, authorization and appraisal relations between roles).  

Other works [9, 11] pointed out the importance of agent interaction and devised 
ways to capture the patterns and execution procedures for interaction. In [8] it is ex-
plained that it is not sufficient to concentrate on the local behaviour of agents as the 
interaction execution is often the most difficult. In UML for example, sequence, col-
laboration and activity diagrams are showing how messages flow between partici-
pants. AUML (agent UML, see [15]) uses the same diagramming techniques. Wagner 
[27] introduces the interaction pattern diagrams and interaction sequence diagrams. In 
the former, the nature of the interaction is explained (showing what kind of informa-
tion flows can occur), and in the latter, the particular sequence of messages is indi-
cated, like in UML behaviour diagrams. Still, these techniques all take a centralistic 
point of view. Except for the interaction pattern diagram of Wagner, all indicate a pri-
ori the execution procedure for the interaction, as it is enforced on the participants. 

MESSAGE (see [5]) introduces the explicit interaction view. A special symbol is 
used to denote interaction. Roles, represented by special symbols, are linked to the in-
teraction. The technique also shows the flows of information using UML notation. 
The execution description is separated, by using an Interaction Protocol description, 
corresponding to a UML sequence diagram. The collection of Interaction Protocols 
defines how agents are performing their overall activities. It adopts still a centralistic 
approach. The main step forward in MESSAGE is the decoupling between generic in-
teractions and the way they are performed. Flexibility can be achieved by having 
more – alternative - interaction protocols for each kind of interaction. It is not explic-
itly stated, but also in Wagner’s approach, it is possible to have more than one Inter-
action Sequence Diagram for one Interaction Pattern. 

2.3.2   Similarities with Other Agent-Oriented Modelling Approaches 
AML [3, 4] is a visual modelling language for specifying, modelling and document-
ing MAS systems. It provides the ability to model the “social behaviour” of agents us-
ing extensions of UML behavioural models. Although AML regards the social ability 
of agents as one of the most important concerns in their language, it is focused on 
modelling all aspects of software development with multi-agent systems. Hence, it is 
advertised as a useful tool for software architects. Clearly, it is not an explicit BP 
modelling language. In contrast, TALL is specifically focused on modelling BPs and 
eventually building a software system based on multi-agent technology that supports 
the BPs of an organization. 

Horling and Lesser [6] made the observation that under real conditions, the com-
plete view of a unique, central, omniscient manager in a multi-agent organisation is 
practically impossible - the resources of central managers are always limited, com-
munication takes time and the environment gives an arbitrarily large number of  
inputs. They emphasise that dynamically changing the manner in which the agents in-
teract can change the local and global behaviour. In their approach, based on the 
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ODML organizational design language, they allow dynamic agent-role binding and 
behavioural learning. Roles bring responsibility and tasks to the agents bond to them. 

However, the decision to formalize the representation of reality via general nodes, 
and also the view on roles from a quantitative perspective, hinders the applicability of 
this approach for the modelling and simulation of discrete business processes that are 
executed mainly by humans. They demonstrate the successful simulation of a sensor 
fusion system based on an agent organisational design, which is rather far from a 
MAS supporting BPs. 

The explicit modelling of interaction and the subsequent mechanism we intend to 
use to enact agent-to-agent coordination can be also seen as another form of dynamic 
team formation, as in [26]. Our approach differs from team formation in the sense that 
the interaction composition information (locally stored as models) shows patterns of 
pieces of BPs and it is not goal or task oriented as it is viewed in team formation. 
Team formation with explicit goals is suitable in BPs where the tasks are common 
(more agents are working effectively together, like a football team). Except for meet-
ings and conversations, BPs have individually defined tasks and high communication. 
We appreciate that to reason locally about a model that specifies interactions instead 
of goals is simpler to implement. Interaction compositions capture more than just 
goals because it also shows how interactions could be enacted. Goals allow to specify 
what should be done, whereas interactions specify how it should be done [5]. 

2.3.3   Similarities with Business Process Modelling Approaches 
Besides the approaches discussed above, a multitude of BP modelling languages exist 
that are not advertised as agent- and/or interaction-oriented modelling languages. 
Still, these languages could be used to model agent’s behaviour and the interactions 
between them. BPs are often supported by WfM (workflow management) systems 
and/or BPM (business process management) systems. Petri nets and various exten-
sions are used here to model the BPs. The traditional workflow community is moving 
to a more decentralized approach that is more capable of handling dynamic change. 
The adaptive, ad-hoc, dynamic workflow approach can handle deviations from the 
process model that allows them to model, and enact more than just rigidly structured 
BPs [see 7, 17]. These approaches are closer to our agent-oriented modelling ap-
proach because they can also handle processes that are not completely defined in ad-
vance and they can cope with process changes. Still, these models present a global 
model perspective in which the modeller acts as a sort of ‘overseer’. 

 In TALL and in AGE the behaviour of agents is explicitly modelled with an ex-
tension of Petri nets: Behaviour Nets [10]. In our approach, the interaction is per-
formed after the local behaviours (known as Interaction Beliefs) are aligned. There is 
no centralistic view and a lack of consistency between beliefs is allowed. 

The Business Process Modeling Notation (BPMN, see [16, 28]) is one of the new 
standardized graphical notations for drawing BPs in a workflow. Just as our Behav-
iour Nets, BPMN is suited for modelling (complex) processes that span multiple or-
ganizations by using special notations to depict message-based events and message 
passing between two participants (business entities or business roles). BPMN consists 
of one Business Process Diagram (BPD) to model a BP as a set of graphical elements. 
BPMN is capable of modelling BPs from a single point of view. These private  
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(internal) BPs are considered self-contained processes and message flows can be used 
to show interactions with other participants that are considered black boxes. It is also 
possible to show (from a global point of view) message passing between multiple pri-
vate BPs. Moreover, public processes that show only the ‘touch-points’ between the 
participants that are visible to the public can be modelled (more combinations are 
possible). The focus on interactions implies that each participant has its own local 
process (view).  

2.3.4   Discussion 
Although modelling from a local viewpoint (with the activities of other participants 
being a black box or also detailed) is possible in BPMN, the local viewpoints are not 
allowed to conflict a priori. Furthermore, none of the above approaches considers that 
an agent can have explicit beliefs about the interaction. Moreover, they consider that 
all agents behave according to the pre-defined sequences (protocols). This implies 
that the agent design is going through the “external-to-internal route” or, as Wagner 
calls it, the internalisation process [27]. First, the modeller will have to understand 
from a global point of view what is happening, and design the internal behaviour of 
the agent accordingly. We argue that it is easier to understand first what an agent  
believes about the interaction and build an internal model, and only after try to 
achieve coherence, not necessarily by aligning a-priori all these “local behaviours” of 
the agents. Complex BPs are difficult to understand from a global perspective. In 
these cases, the analysis can start from a local point of view, and global understanding 
of the process is not even necessary a priori. The agent approach enables the model-
ling and support of a distributed, heterogeneous, constantly evolving and not “well 
known” process; the humans who are carrying out the process do not have a precise 
overall view either. In addition, the agent paradigm allows for conflicting process 
views. Most human organisations function because the participants know partially 
what to do, and nobody has necessarily a global view. Even the high-level managers 
have a limited view, because they see the process from the “highest point”, but they 
do not have to understand the details. They delegate this to lower level managers. Es-
pecially in flat organisations, delegation and decisional autonomy restrict the view of 
one participant. Complex organisations tend to be anyway incomprehensible for sin-
gle humans, and efforts to model “everything” are usually futile attempts [19]. 

3   Modelling Interactions in TALL 

3.1   Organisational Modelling with TALL 

The modeller has the choice either to identify first what kinds of interactions are ob-
servable, either to enact a role scheme (usually a hierarchy) and “embody” the interac-
tions that are observable between roles. In the first approach, roles are to be defined 
(or identified) in the second step. This choice between “roles-first” or “interaction la-
bels first” depends on the kind of organisation that it is being modelled. Bureaucracies 
for example allow the modeller to easily identify first the roles and an eventual hier-
archical tree of these. On the other side of the organisational spectrum, in the so-
called “ad-hocracies” [12], which are flat organisations, the analysis should start first 
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with the identification of interactions and only after roles can be “discovered”. Real 
organisations are somewhat in between these two extremes, and the modeller gener-
ally identifies interactions and role names in parallel. 

The agents that are forming the organisation can be represented as a pool of agent 
members. This pool can be structured in groups (as discussed in paragraph 2.1).  
Currently, these agent groups are rigidly associated to roles in the organisational hier-
archy. For example, an agent with secretarial skills is assigned to the secretary role. 
Unfortunately, such a static association will assign an agent group to all the interac-
tions where that role appears. 

In TALL, we adopt a more flexible structure. It is possible to assign agent groups 
(depicted like generic agents) to the roles that are linked to an interaction (as in Fig. 1b). 
This denotes a constraint, showing that only agents of that group are authorised to play 
that role in that interaction. This enhances considerably the flexibility of the authorisa-
tion scheme, allowing the same role to have different authorisation schemes, depend-
ing on the interactions linked to this role. As we have stated already, even if the agent 
groups are not illustrated there, the “universal agent” (the set encompassing the whole 
agent pool) is always assigned to any role. Fig. 1b is an example of a generic level 
ARI diagram, showing that the agent members of those agent groups are authorised to 
play the depicted roles in that particular interaction called X. 

Role1 Role2
Agent 1: 
Agent 

Group 1
plays

Agent 3: 
Agent 

Group 2
plays

Agent 2: 
Agent 

Group 1

plays

Interaction X

 

Fig. 2. Example of an ARI diagram (at instance level) with two roles attached that are being 
played by agents according to their own local view 

ARI diagrams can also be expressed at instance level, as in Fig. 2. The ARI in-
stance level diagram depicts an interaction instance and shows agent members that are 
dynamically assigned to play the roles. In the diagram, roles are never depicted as in-
stances. The local views of the agents participating in the interactions are represented 
by the so-called Interaction Beliefs (IBs). This concept is not thoroughly presented in 
this paper, more about its meaning and content can be found in [23]. Basically, the 
execution of an interaction is the coordinated execution of (local) IBs provided by the 
participating agents, as is depicted in Fig. 4. The IBs are represented in ARI diagrams 
by a chevron symbol that appears at the agent side of the association end of the agent-
role connector. The connector, an arrow with a hollow triangular head, with an inter-
rupted line as shaft, defines an “[agent] playing [role]” – relationship, at the 
instance level. It is convenient to speak of an agent group as “populating” a role (by 
using the same arrow symbol) and of a member as “playing” a role [25]. The generic 
level ARI diagram can also show multiplicity between agents and roles. In an organi-
sation, an agent that wants/needs to play a role must be authorized to play that role.  
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This authorization is determined at run time by checking (by consulting the generic 
level ARI diagram) if the agent group has the relation “populates” with that specific 
role. 

3.2   Interaction Beliefs and Protocols 

The TALL Interaction Belief (IB) defines the (intended) behaviour of an agent play-
ing a role using a swimlane workflow-like description (based on Petri nets) of the  
activities, states, and messaging channels as seen by an agent member in a specific in-
teraction (see figures 4, 7, and 9). At the modelling level, an IB is a representation of 
that “piece” of the BP that is performed as an interaction in the way it is seen from a 
local agent perspective. An agent has an intended behaviour (do not confuse this with 
the IB itself), but also a belief or acquaintance model about the behaviour of other 
agents participating in the interaction. This part of the IB is called expected behav-
iour. If all agents are linking their intended behaviours together, a process view about 
how the interaction should be performed is enacted. Of course, if these behaviours are 
not matching, the interaction will fail. One of the main features of the AGE frame-
work is that it allows these behaviours to be “aligned”. Alignment refers here to the 
soundness of the resulting Petri Net [1]. It is possible that processes deadlock, due to 
different reasons. In AGE, the Petri Net that results from the combination of IBs can 
be checked and modified in a way that will ensure the soundness and termination of 
the interaction seen as a sub-process description [10]. This alignment can be realised 
automatically or manually, depending on the level of severity of the deadlock situa-
tion. Some simple deadlocks can be identified and formalised, allowing for automatic 
alignment, but others will necessitate human intervention. 

 

Fig. 3. Example of an interaction with a protocol attached to it 

In TALL, the chevron symbol is used for two denotational purposes. The first has 
been described and depicted in Fig. 2. The other one is that it can also graphically rep-
resent a protocol. In this case, only the position of the symbol is different, as shown in 
Fig. 3. It shows a generic interaction X that is regulated by a protocol. The description 
of a protocol is also a Petri Net with swimlanes, where for each role, certain activities 
and routings are imposed. The meaning of this concept is centralistic, like the interac-
tion protocols in MESSAGE [5] and interaction diagrams in AORml [27]. If agents 
perform an interaction that has a protocol (or more) attached to it, the AGE frame-
work will first try to make the agents obey the protocol. They have to try to adopt the 
behaviour that is described in the associated swimlane to the role they are playing. 
However, in our framework we allow the agents to overrule the protocol, especially if 
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it is not possible to apply it in an unexpected context. In addition, they can change the 
content of the protocol, if this is considered necessary at that moment. 

In an extreme case, protocols can be attached to all the interactions. Actually, this 
is exactly what MESSAGE and AORml propose. This is also very similar to a work-
flow enactment machine with agents (but allowing less flexibility). In AGE, even 
when all interactions have associated protocols, the agents can still overrule them. On 
the other extreme, none of the interactions is regulated by protocols. Here, agents 
have to rely only on their own IBs. In real organisations, some protocols can be  
useful, by regulating those interactions that are routine and predictable, enabling 
“newcomer” agents to interact even if they do not yet posses the necessary “knowl-
edge”/beliefs (i.e. IBs). 

4   Interaction De/Re-composition 

Interactions, occurring between agents playing roles, can be identified at different 
levels of abstraction. On a high level of abstraction, a BP can be conceptualized as a 
single, over-encompassing interaction (see Fig. 4, the top interaction). This should not 
be confused with an operational description of a BP, as a workflow. It just shows that 
a BP has a number of roles involved, and together with the ARI diagrams indicates 
what agents can be involved. From a modelling perspective, such a representation is 
very simple but at the same time, its simplicity reduces the expressiveness and rich-
ness of the model. From the perspective of the agents performing the roles, such a 
conceptual interaction is very complex and undesirable, because agents will have to 
maintain huge IBs that help them perform such a complex interaction. 

4.1   Patterns to De/Re-compose Interactions 

To be useful, it is necessary to decompose a high-level interaction into ‘smaller’ in-
teractions in a top-down analysis fashion. Alternatively, it is possible to have a set of 
interactions where all interactions are “elementary” (i.e. these have no children). Such 
a set of interactions is not very useful either, because the triggering of an interaction 
may occur at a higher level of abstraction. Besides, we want to be able to show a cou-
pling between the interactions. There is clearly a need to define interactions that are 
“in between” the overall BP-describing interaction and the elementary interactions, 
which are structured on different levels of abstraction. 

One can define a priori a complete compositional scheme between the interactions 
that appears on successive levels of abstraction, looking as a tree structure, where 
elementary interactions are grouped in interactions that are more complex until the 
root interaction is reached. However, this will reduce drastically the flexibility of the 
execution of the BP as a set of on-the-fly executed interactions. Such a tree becomes 
just another way to illustrate the structure for a workflow execution, conditioning rig-
idly the way the BP is executed. Our approach aims at defining various “partial  
recipes” of compositionality, insuring the existence of different possible interaction 
compositions. In this way, we build a supplementary pool of diagrams that shows po-
tential ways of how some of the interactions can be deconstructed or  
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Fig. 4. The link between the interaction composition and the Interaction Beliefs of agents 

(re)constructed on different levels. We call this pool the patterns pool. The modelling 
of a prescriptive diagram can be done either top-down or bottom-up. In the first case, 
the modeller identifies the root interaction (which can represent the whole BP) and 
then decomposes it into ‘smaller’ interactions to create the decomposition.  

In the second case, the modeller starts identifying ‘smaller’ interactions that occur 
between people and/or computer systems at a low level. The lower-level interactions 
are then assembled into more generic interactions to create the (re)-composition. Of 
course, practical modelling exercises show that a mixed method (top-down and bot-
tom-up combined) is the best. 

4.2   The FlowSet Symbol 

For the patterns pool, a new diagram type called the Interaction De/Re-composition 
Diagram has been introduced in TALL. This IDR diagram shows prescriptively how a 
higher-level interaction can be structured as a graph of lower level interactions. Fig. 5 
shows an example of a Sales interaction that is “formed” by sub-interactions. These 
are linked to the higher-level interaction by a symbol that we call TALL FlowSet 
(FS). This has been created to depict that sub-interactions together form a set of 
‘flowing’ interactions that are executed in a certain topological order. Parallel  
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execution of the child interactions is allowed. The order of execution is determined 
during the coordinated execution of the IBs. The diagram is “weakly” prescriptive; it 
is not always necessary that all child interactions are executed or executed in that spe-
cific order, in order to complete a parent interaction. There can be more than one pre-
scriptive IDR diagram for a (high-level) interaction, allowing more recipes for the 
execution of a complex interaction. The whole set of prescriptive IDR diagrams will 
form the patterns pool. 

Division of LabourDivision of Labour

Seller
Mediated 

Sales 
Interaction

Bank

Buyer Seller
Buyer

Buyer Bank
Seller Side 
InteractionBank Seller

Sales 
Interaction

Bank

Seller Buyer

Buyer Side 
Interaction

B2B Direct 
Sales 

Interaction

 

Fig. 5. Example of an interaction composition of a Sales interaction by a TALL IDR diagram 

4.3   Comparison of the FS Symbol with “similar” Symbols in UML 

The FS symbol is comparable with the UML aggregation symbol. In UML, there are 
two forms of the aggregation relationship. The first is the strong form of aggregation 
called composition. In [14, p.38] it is stated that: “Composite aggregation is a strong 
form of aggregation that requires a part instance be included in at most one composite 
at a time. If a composite is deleted, all of its parts are normally deleted with it“. The 
second level of aggregation proposed in UML corresponds to a weak form of aggre-
gation or shared aggregation. This is a special form of association that specifies a 
whole-part relationship between the aggregate and a component part. Thus, the part 
may be included in several aggregates and the owner of the part can change over time. 
In addition, it does not imply the deletion of the parts when an aggregate referencing 
is deleted [14]. 

Lower-level interactions should be, in our view, able to exist on their own. This is 
not possible when using the strong composite relationship. When the higher-level in-
teraction is deleted, it should be possible to retain the interactions that have been part 
of this interaction. In addition, it is not desirable that a low-level interaction is only 
owned by a single high-level interaction. It should be possible that during run-time 
the interaction graph is reconstructed in another way, which means sub-interactions 
could become part of other interactions as well. 

It can be argued that that the explicit FlowSet symbol in the interaction composi-
tion is similar to the weak form of UML aggregation and therefore redundant. The 
main difference with our approach is that both these forms of UML aggregation are 
bound to a static view. The TALL IDR diagrams show also an (implicit) order be-
tween the interactions in the interaction composition. According to [2] UML class 



118 M. Stuit and N.B. Szirbik 

diagramming is a non-temporal conceptual modelling technique. For the interaction 
composition, we want to express a dynamic phenomenon. 

4.3   Different Ways to Use IDRs 

From an organisational perspective where roles usually have precedence over interac-
tions, depending on the kind of organisation that is investigated, the IDR diagram 
shows a division of labour. Other approaches [20] emphasise that a certain plan or or-
ganisational or individual behaviour exists because of a goal. The difference between 
the IDR diagram and a goal decomposition is that goals focus on “what” should be 
done, whereas interactions specify also the structure, possibly the order, and the po-
tential participants. The main difference is that a goal describes motivation (internal 
behaviour) whereas an interaction describes a “collective activity” and its “external 
behaviour”. 

For another purpose, the IDR diagrams can be used to track a running process. The 
AGE framework allows simulations of BPs that are enacted as dynamic sets of  
interactions. The active (instantiated) interactions can be illustrated in a sort of “cock-
pit-view” diagram. Each new interaction that is triggered by an agent can appear  
dynamically in the picture, and the agents that are playing the roles can be shown. In-
teractions can be connected dynamically to a higher-level interaction, or they can be 
decomposed into “smaller” interactions. The way the de/re-composition is done can 
be based on a prescriptive IDR diagram from the patterns pool, or can be determined 
on the fly. When the process simulation has ended, the IDR diagrams can be used for 
a “post-mortem” of a BP simulation. This “trace” of IDRs shows what interactions 
have occurred and who played the roles in these interactions. We assume that each in-
teraction instance could be different from another of the same type, thus allowing a 
high degree of flexibility. However, certain (partial) patterns occur, and these can be 
“mined” from a repository of traces and can be added to the patterns pool – which 
will become in time a repository of prescriptive de/re-compositions. However, the in-
formation about “how” these should be executed resides as beliefs of the agents – 
with the reserve that some protocols can be added to the ARI diagrams and can be 
emphasised in IDR diagrams from the patterns pool. 

4.4   Executing the Process as a Dynamic Set of Interactions  

At run time, the initiation of an interaction that may belong to an IDR from the pat-
terns pool occurs ad-hoc. It starts when a specific trigger “activates” an agent (mem-
ber). The agent “knows” what interaction(s) is(are) necessary at this moment and 
what role(s) it is required to play. The interaction is instantiated and other agents are 
“called” to play the remainder of the roles. This mechanism produces a cascade of in-
teractions that could be described in a prescriptive IDR. Because of the run-time  
context, it is possible to have interactions present in the IDR that are not executed. In 
addition, it is possible to have multiple threads (of the same interaction) that are 
started independently by different agents. Fig. 4 shows the link between the interac-
tion composition on the upper side and the diagrams that depict the execution of the 
IBs of agents on the bottom side. If Fig. 4 would depict a single prescriptive IDR (ex-
cept for the bottom left side interaction that has started to execute) this would mean 
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that the organisation has a single BP and all the process instances are similar. In this 
case, the interaction composition will be a single tree and the execution is similar to a 
traditional workflow-based system (except for the agents’ flexibility that always al-
lows them to deviate from the process definition). 

At the bottom left side of Fig. 4, we show how a cockpit view IDR looks like. For 
example, the agent Ag_1 is triggered to start an elementary interaction. It will instan-
tiate an interaction and it will select the appropriate role for itself. The AGE environ-
ment will act as an “interaction mediator” and it will find an agent to play the other 
role (in this case agent Ag_2). Both agents will provide an IB that will perform the 
interaction by executing their intended behaviours. 

An agent can trigger an interaction that is not elementary. In this case, this interac-
tion has to be decomposed (either guided by a prescriptive IDR or completely ad-hoc) 
into component interactions until the elementary level is reached. Agents that trigger 
an interaction, at any level, have the necessary IBs for this (complex) interaction. It 
could be that in a specific organisation there is an agent that “understands” the whole 
BP. That means that this agent has a complete IB that can be applied to the top-level 
interaction in Fig. 4, and this interaction can be triggered directly by this “omniscient” 
agent. In this situation, the execution will be performed top-down, and it will be 
equivalent to a workflow execution. In flat organisations, which are our target do-
main, interactions are typically triggered at the middle and lower levels of the IDR 
diagrams. 

4.5   Example of an Interaction 

The generic ARI-diagram of a Sales interaction is shown in Fig. 6 and it defines three 
agent groups and it enacts an authorization scheme. The multiplicity in the diagram 
shows that for a successful interaction the Buyer and Seller roles must be played by at 
least one agent. In addition, the Bank role is not always required in a Sales interaction. 

Sales
Interaction Seller

1..*
Sales 

representative
populatesBuyer

1..*

Purchasing
Manager

populates

Bank
Bank

Manager
populates

0..1

 

Fig. 6. The generic ARI diagram for the Sales Interaction 

A prescriptive IDR-diagram for this Sales interaction has already been presented in 
Fig. 5. Because the involvement of a bank is not always required, two different Sales 
interactions can be distinguished. Fig. 5 shows that the Sales interaction is decom-
posed into two “smaller” interactions that represent the two different Sales interac-
tions. The B2B Direct Sales Interaction does not require a bank and the Mediated 
Sales Interaction requires mediation of a bank in order to successfully complete the 
interaction.  
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Fig. 7. A run-time snapshot IDR diagram with the Interaction Beliefs of the buyer and seller 
specified in an IB diagram through Behaviour Nets 

Fig. 7 shows a run-time IDR diagram in which the B2B Direct Sales interaction 
has started to execute. Here, two agents are executing the interaction according to 
their own IBs that appear in the run-time diagram. Both IBs can be exploded from the 
chevron symbols into the IB diagrams that are also depicted here. These Interaction 
Beliefs consist of Behaviour Nets representing intended and expected behaviours. The 
seller is waiting for an order, and after the order is received, it will send an invoice to 
the buyer. It expects that the buyer will pay, and when the payment is done, only then 
it will send the product. However, the buyer expects to receive the product first and 
pay after. It is obvious that two “rigid” agents with these kinds of beliefs and behav-
iours will never succeed to complete the intended Sales interaction. 

The buyer believes the interaction cannot successfully end, and it may want to in-
volve a mediator assuming that he has a prescriptive mental model of the interaction 
composition (as depicted in Fig. 5). Therefore, it is possible that the buyer agent will 
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trigger the Mediated Sales interaction during execution of the B2B Direct Sales inter-
action. Of course, it is also possible the B2B Direct Sales interaction is not executed 
at all because both parties believe (from their experience) that a Sales interaction can 
only successfully complete with a mediator involved. If the bank becomes involved as 
a mediator, then the cockpit view will look like in Fig. 8. 

 

Fig. 8. A run-time snapshot IDR Diagram in which the Mediated Sales interaction has started 
to execute 

In the Mediated Sales interaction, we assume that the bank has the experience (be-
haviour) to solve the problem of the buyer and seller without modifying their basic 
behaviours (only minor additions and/or revisions are necessary). The Mediated Sales 
interaction is triggered at run-time and the bank becomes part of the interaction. The 
bank will provide the seller with the money for the delivery of the product and the 
buyer will, after receiving the product, pay the bank instead of directly paying the 
seller. Both parties will have to pay a small fee for this service.  

Fig. 9 depicts the Interaction Belief of the bank for the Mediated Sales interaction. 
This can be seen in a real-time IDR diagram as two separate interactions, one between 
the seller and the bank and one between the buyer and the bank (as depicted in the 
prescriptive IDR diagram of Fig. 5 – Buyer Side Interaction and Seller Side Interac-
tion). Fig. 9 depicts a typical IB where the middle swimlane shows the intended inter-
action and the other two swimlanes show what the bank believes about the behaviour 
of the other two roles involved. Essential here is that what the bank believes matches 
the intended behaviours of the other two agents. It is also possible that these two 
agents align their behaviours (e.g. the buyer accepts to pay first) and they can fulfil 
the interaction without the intervention of the bank.  

The knowledge about the prescriptive structure of the interaction composition 
could be in any of the agents involved (in our case, we said that the buyer is the one 
that “knows” an alternative where the bank can be involved). Alternatively, we can 
introduce central views “through the back door” and define the pool of interaction 
patterns as a central resource. 
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Fig. 9. The Interaction Belief of the Bank 

5   Discussion, Future Work, and Conclusions 

An organisation that adopts an agent-based software solution supporting its BPs, can 
best use it for executing the “low level” interactions. These tend to be more stable and 
simple, and/or can be regulated by protocols, making their automatic execution easier. 
Typically, higher-level interactions are triggered by humans, and at the lower levels 
of composition, software agents will be delegated to take over the routine interactions. 
This will allow for flexibility on the higher levels but will also ensure stability on the 
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lower levels – especially if the organisational learning process has enacted various 
protocols at this level. However, it is possible in organisations that are characterized 
by formal procedures and standard ways of doing things the situation is reversed. In 
this case, generic protocols will dominate at higher levels whereas at lower levels the 
agents have full autonomy to enact the necessary interactions. Even in this case, inter-
action-centric, agent-based systems can be useful, especially if they are linked to 
(owned by) whole organisations and not by individuals. However, it can be argued 
that these agents will be just high-level workflow enactment systems. 

 The current target for our BP supporting multi-agent system (MAS) is not the bu-
reaucratic and centralised organisation but the flexible, decentralised organisation that 
emphasises horizontal collaboration. In these organisations, BP participants do not 
perform work according to pre-defined tasks but they act in empowered roles part of a 
dynamic social context. This context is usually characterized by complex, dynamic 
and emergent BPs. Although such processes can easily be modelled on a high-level 
by using centralistic models they are not able to capture the “hidden” and “implicit” 
knowledge/behaviour of the BP participants. Modelling such BPs by using role-based 
interactions between agents allows organizations to better understand the intricacies 
of their BPs, visualized as a set of interactions. Each agent having its own IB mirrors 
the way business is done in dynamic social contexts where everyone decides on its 
own ‘piece’ of business. Still, the participants need to interact because no one has all 
data or skills to complete the BP alone. 

If the social contexts are stable, experience from previous “runs” can lead to the re-
quirements for a stable software package developed in a “classical” fashion. However, 
in the dynamic social contexts described above the requirements change all the time and 
it becomes difficult to develop a useful solution that can support these dynamic social 
contexts that make up organisations. By using TALL to rapidly identify the behaviours 
of the actors and by creating a weakly descriptive pool of interaction patterns, software 
developers that are using AGE as an interactive gaming/simulation tool can develop 
simulated agents that exhibit the identified (emergent) behaviour - “captured” from the 
playing actors. Moreover, they can use these agents as the base for the MAS that will 
support the human actors in the real process. The development process can be iterative 
and the simulation and the usage cycle can change and enrich the behaviour of the 
agents as well as the global behaviour of the organisation. Our strong belief is that the 
main advantage of the presented method is the speed of the requirements analysis, de-
sign, development, and integration in a dynamic organisation. 

Future Work. The next step in our research will be to formalise the de/re-composition 
process, in order to have a precise operational semantics, allowing the agents in the 
AGE environment to make use of the patterns pool. This is also necessary for visualisa-
tion purposes in order to have clear semantics for what is exactly shown in the cockpit 
view during simulations. Another interesting future research direction is towards build-
ing IDR based representations for the post-mortem analysis. This will allow the analysts 
to investigate past simulations and infer new IDRs that can be added to the patterns 
pool. 

Currently, we have no explicit representation of goals in our framework. We con-
sider that there is a strong conceptual link between BPs, interactions and goals, and 
we intend to explore the nature and applicability of this link. A more elaborated 
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mechanism for authorisations and explicit representations of responsibility is also 
necessary. Finally, a methodology to apply the models in a consistent way is needed. 

Conclusion. We have argued that the interaction concept can be useful to analyse, 
model, and simulate organisations in BP-oriented and agent-oriented ways. In addi-
tion, semantics for the execution of these interactions can form the basics for imple-
menting agent-based software support systems for BPs. Interaction, as an abstract and 
intangible concept, can be explicitly represented as an agent-role-interaction triad. We 
also argue that the modelled organisation should build a set of interactions, in the 
form of ARI diagrams. In addition, based on patterns that emerge with experience, a 
pool of prescriptive recipes that prescribe how to dynamically structure these interac-
tions (IDR diagrams) can be built. The syntax and semantics of an interaction compo-
sition has been described, showing how interactions can be triggered and chained in 
top-down and bottom-up fashion. 

BPs can be represented as static structures, like Petri Nets, and workflow represen-
tations. This ensures discipline, stability and repeatability in an organisation. How-
ever, it produces rigidity, centralistic views, and obsolescence. We argued that a novel 
way to enact complex, distributed and dynamic BPs, based on de/re-composition of 
interactions, ensures more organisational flexibility and more autonomy for the  
participants. We believe that the first step to achieve this is by adopting an agent-role-
interaction based view. 
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Abstract. Design patterns are templates of general solutions to commonly-
occurring problems in the analysis and design of software systems. In mature 
development processes, engineers use and combine these patterns to work out 
those parts of their systems that correspond to well-identified issues in their 
domains. The design of new structures is just concerned with those aspects that 
are specific for their projects and with the glue between different components. 
Model driven development approaches can benefit of design patterns to 
improve the building of models and their transformations; at the same time, 
design patterns can take advantage in this kind of approaches of a better 
integration in the overall development process. In the case of Agent-Oriented 
Software Engineering, design solutions for agents and multi-agent systems have 
been also described in the literature. However, their application and 
transformation to code largely relies on manual processes. This paper proposes 
a framework that includes repositories of patterns that can be reused in different 
projects and processes to generate models and code for multi-agent systems on 
different target platforms. Instead of focusing on low-level issues, our approach 
positions the abstraction level of these design patterns at the intentional and 
social features that characterize multi-agent systems. The paper illustrates this 
framework with a case study about the development of the models of an agent-
based system for collaborative filtering of information. 

1   Introduction 

Design patterns [7] are proven solutions to usual problems in software design. At this 
stage of a development process, engineers have to consider matters that may not 
become visible until later in the implementation. Reusing design patterns helps to 
prevent subtle issues that can cause major problems and improves models and code 
readability for architects and coders familiar with the patterns. The application of 
design patterns has been usually a manual work. Available automated support for 
their use just covers the generation of some views of models or code that the 
development team must integrate with the remaining information about the system. 
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The spread of Model Driven Development in Software Engineering improves the 
integration of design patterns in the whole development cycle. Model Driven 
Development (MDD) advocates for building systems from models through automated 
transformations. The Object Management Group (OMG) proposes a standardized 
approach to MDD, the Model Driven Architecture (MDA) [10]. MDA mainly 
considers three kinds of models: Computational Independent Models (CIMs), 
Platform Independent Models (PIMs) and Platform Specific Models (PSMs). CIMs 
are intended for domain practitioners. They state the requirements of the system 
without knowledge about the models or artefacts to realize them. PIMs further specify 
the system to be with details about its software architecture and design. Finally, PSMs 
give the details necessary to build the system for a specific platform. The main 
advantage of this approach is that it layers the development in levels of abstraction 
that includes the models. From this departure point, its processes are intended  to 
encourage reuse of design solutions and to save effort in the migration of systems to 
different target platforms. In this setting, design patterns are not longer external 
knowledge that forges the specifications of the system, but they become an integral 
part of the models of the system and are transformed with the remaining information 
to running code. 

Agent-Oriented Software Engineering (AOSE) has already applied both design 
patterns and MDD to build Multi-Agent Systems (MAS). Literature has documented 
research for its reuse in different designs. These patterns specify aspects like 
communication protocols, power relationships between individuals, or planning 
modules in individual agents. Examples of these patterns are the FIPA protocols for 
standardized auctions between agents (http://www.fipa.org). About MDD, the works 
described in [2, 4, 8, 16] are state of the art applications to build MAS integrating a 
MDD perspective. Nevertheless, many of these MAS developments with MDD are 
ad-hoc solutions [2, 4,], with focus on the generation of very specific portions of 
code, like the support for a protocol or a planning module. The generation of code for 
other aspects of MAS or domains usually needs a complete new development from 
scratch. Anyway, none of the studied approaches truly integrate design patterns, as 
developers must manually bring them into the specifications. That is, developers, 
departing from their own knowledge about the patterns or some abstract specification 
of them, must describe and customize those patterns for their specific methodology 
and project. Readers interested in more information about AOSE and MDD can read 
about several researches in [9]. 

From our point of view, the application of design patterns in MDD for MAS can be 
regarded at a higher level of abstraction than it is done in current practices. Instead of 
engineering isolated elements, we consider design patterns for intentional and social 
issues that traverse several aspects in the architecture of the whole MAS or individual 
agents. These patterns are intended to describe the ruling principles in the architecture 
of the MAS rather than the individual elements encompassed by that architecture. 
Given this target, we propose a partial framework for model driven development 
based on repositories of social patterns that act as predefined CIMs. Sets of 
automated transformations described declaratively will enable in the framework the 
generation of the PIMs for specific methodologies from these social patterns. 

A social pattern is a proven solution for a design problem about the intentional and 
social architecture of MAS. They are the equivalent to design patterns at the 
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Knowledge Level [12] that characterizes the agent paradigm. Two are the sources of 
knowledge for these patterns in our framework. First, the practice of the agent 
community in the development of MAS, which already provides well-established 
solutions to some recurrent problems, like the organization of distributed problem 
solvers for planning or reasoning for auctions. Second, knowledge from Social 
Sciences, specifically from the Activity Theory. The Activity Theory (AT) [11] is a 
paradigm for interdisciplinary human research based on the socio-cultural approach 
initiated by Vygotsky [18] in early 1920s. Previous works [5, 6] have proven the 
advantages of AT as a source of expert knowledge about intentional and social 
aspects that can be applied in the development of MAS. Besides, AT is the foundation 
of the language UML-AT [6] that our framework uses to describe the diagrams of 
social patterns. This avoids the introduction of bias to specific methodologies and the 
need of rewriting patterns for every method. Section 0 provides a brief overview of 
UML-AT along a description of the structure used to describe social patterns. This 
structure is based on those usually applied in the software patterns community. That 
section also presents a pair of social patterns to be used in the case study. 

The other component of our framework is the MDD process that generates new 
views or code from social patterns. This process and its support tools are described 
for models in Section 3. The process for code is slightly different [16] and not 
considered in this paper. 

The application of the framework is shown in Section 4, where social patterns help 
to generate the specification of an application for collaborative filtering. This 
application defines agents that support users in order to know the level of trust 
deserved by the information from other users. According to this case study and 
additional experimentation, Section 5 presents a discussion about the use of social 
patterns in this MDD framework, including its potential benefits and limitations and a 
roadmap of future work. 

2   Describing Social Patterns 

A social pattern is depicted using a structure very similar to that of design patterns 
[7]. Modifications of this format are mainly intended to ease a more automated 
processing, both to decide its applicability and to integrate it in existing MAS 
specifications. Parts of the description of a design pattern related to their 
implementation in a concrete programming language are removed for social patterns. 
In this MDD framework, code is generated from social patterns using general 
mechanisms to transform modelling primitives. These mechanisms are explained in 
Section 3. The proposed structure for social patterns considers the elements in Fig. 1. 

A social pattern includes a unique pattern name that identifies it. The intent is a 
textual description of the motivation to use the pattern. It says the kind of intentional 
or social setting that the pattern models. This section is intended to clarify the kind of 
information that the pattern can add to the specifications of a MAS and the mutual 
influences between a MAS that exhibits the features of this pattern and its human 
environment. The foundation relates the pattern with its theoretical basis in AT 
research. This knowledge is useful to guide further insights in its meaning. 
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Pattern name 
1. Intent 
2. Foundation 

3. Use 
• Applicability 
Participants  + Structure + Collaboration 

• Solution 
Participants + Structure + Collaboration 

(More use pairs with Applicability + Solution) 
4. Consequences 
5. Examples 
6. Related patterns 

Fig. 1. Structure to describe social patterns 

The use section of the structure is concerned with the situations where the pattern 
can be applied and how it is considered. It is composed by use pairs; each of ones 
represents a different interpretation of the pattern. This allows giving a precise 
description of the pattern for different target domains. As social patterns are applied 
in a Software Engineering context and with the intent of having automated support 
tools, the use pairs have a twofold representation: textual and with UML-AT diagrams 
(see Section 2.1 for more details about this language). Both of these descriptions are 
used to explain the pre and post-conditions of the pattern to developers. However, the 
UML-AT diagrams have the additional purpose of enabling the automated processing 
of the social patterns. UML-AT diagrams in use pairs are templates with variables. 
To check applicability, these diagrams must match against the MAS specifications; 
for the application of patterns, variables are instantiated with information from the 
specifications. This will be described with more details in Section 3. 

A use pair comprehends applicability and solution sections. The applicability 
component determines the pre-conditions that must hold in the specifications for the 
pair being applicable. The solution component describes the information to add to the 
specifications in order to include the pattern. If the applicability restrictions are 
satisfied, the solution can be automatically instantiated. However, a user can choose 
to apply the pair ignoring the prerequisites and instantiating by hand the solution  
Each component of a pair can have sections for participants, structure, and 
collaboration, following usual decompositions in software modelling. The 
participants describe the elements that appear in the pattern, the structure describes 
static relations between these elements, and the collaboration section reports the 
scenarios where these elements interact, that is, the dynamics of the pattern. 

The consequences of the pattern are its results, drawbacks, side effects, and trade 
offs. The examples section includes real usages of the pattern described with use 
pairs. Finally, there is also a list of related patterns. These are patterns that can apply 
instead of this one in certain settings or be used along with it. This section also 
accounts for the differences between these related patterns and the one currently 
reported. Consequences and related patterns are described with natural language. 

After this introduction to the structure to represent social patterns, the following 
sub-sections elaborate on some of its elements. Section 2.1 gives an introduction to 
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UML-AT and the underlying concepts of AT and Section 2.2 describes parts of two 
examples of social patterns. 

2.1   UML-AT 

Activity Theory (AT) [11] is a framework for the study of different forms of human 
practices and their evolution in a social and historical context. Its analysis focuses on 
the interactions and conflicts between individuals and their environment, which 
includes their societies. 

The intention of employing AT concepts in AOSE demands that they are expressed 
in a language understandable and applicable by development teams. With this 
purpose, AT concepts have been described using the UML profile extension 
mechanism [13]. The resulting language is called UML-AT. UML-AT includes the 
core concepts of AT (which are represented in Fig. 2) and additional ones to ease 
reasoning about specifications (e.g. contribution relationships or the artifact concept). 
The full specification of UML-AT can be found at http://grasia.fdi.ucm.es/at/uml-at. 
Examples of its use appear in the figures of this paper. 

 

Fig. 2. UML-AT representation of AT core concepts 

AT builds around the concept of activity [1]. The activity reflects a process, with 
individual and social levels interleaved. At the individual level, the activity focuses on 
the subject that carries out the activity to obtain the outcome that satisfies the needs 
represented by his objectives. The outcome is the result of the transformation of an 
object using tools. Tools always mediate subject’s interaction with the environment 
and can be both material and mental. The social level has as its key concept that of 
community. The community represents those subjects who share the same object. An 
activity may concern many subjects and each subject may play one or more roles and 
have multiple motives. Rules influence the behaviour of subjects in their communities.  
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They include both explicit and implicit norms and social relationships within a 
community. The division of labour describes how the community is organised as 
related to the specific activity. All of these concepts are interconnected with mediation 
relationships. Examples of these relations are the already mentioned mediations of 
tools between subjects and objects or rules governing subjects in their communities. 

2.2   Examples: Selfish Actors and Community of Experts 

This section presents two examples of social patterns that will be applied in the case 
study of this paper. These are the descriptions of the kind of mental attitudes in selfish 
actors (this pattern was first stated in AT studies in [3]) and the organization known 
as community of experts (as described in [17]). In both cases, the description is 
focused on the UML-AT representation of the solution component in a use pair, 
specifically on the structure and participants components (see Section 2). In the 
patterns in Fig. 3 and Fig. 4, the names of the entities are variables and the remaining 
properties (i.e. the stereotypes and names of relationships) are constants. Applicability 
sections are not considered for these examples because they will not be used in the 
use case of Section 4, where the user will choose the instantiation of variables in 
solution components. More about how a pair can be added to the specifications 
appears in Section 3. 

 

Fig. 3. Mental attitudes of selfish actors described with UML-AT 

Selfish actors [3] are those that put their own interests in front of those of the 
community to which they belong. That is to say that these actors consider their 
individual and particular goals more important than those goals that they pursue for 
their group. Fig. 3 models this situation. The Selfish Actor has an individual objective 
Selfish Goal that does not emerge from the community Group. Besides, the actor plays 
the role Member. This role represents the fact that the actor belongs to the community 
Group. The role has goals that are intended to satisfy the overall objectives of the 
community. For instance, the Group pursues the Community Goal that is satisfied 
through the Member Goal pursued by Members. As a consequence of playing the 
role, the actor also pursues the role’s objectives. The selfishness of the actor appears 
in the relation surmount from the Selfish Goal to the Member Goal. Despite of the 
circumstances, the Selfish Actor always considers his own goals as more relevant than 
those emerging from the community. 
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The second social pattern in this section describes a kind of organization called the 
community of experts [17]. A community of experts is a flat organization where 
different actors coordinate through mutual adjustment of their solutions so that overall 
coherence can be achieved. The agents interact by pre-established rules of order and 
behavior. This organization appears in Fig. 4. The Community of Experts is composed 
by actors who play the role Expert. The object of the community, and also its 
outcome, is the Knowledge that its interaction builds. Related with this Knowledge, an 
Expert carries out two different activities: he modifies the common knowledge with 
the activity Contribute and he uses it with the activity Consume. The activity 
Contribute pursues the Expert Goal to improve the shared Knowledge. The activity 
Consume pursues the Individual Goal that covers the utility that the Expert obtains 
from the Knowledge. Pay attention to the fact that this last objective is not necessarily 
positive for the community. The Expert could use the knowledge for his own reasons, 
without profit for the community. The positive contribution of the Expert to the group 
is represented just by the Expert Goal. 

 

Fig. 4. An organization of community of experts described with UML-AT 

The pattern in Fig. 4 does not consider the rules to build and update the Knowledge, 
which largely depend on the domain of the community. In this sense,  
Fig. 4 represents a domain independent version of the pattern that dismisses part of its 
related information. Domain specific instances that consider those rules should be 
described as different use pairs for this social pattern. From the AT point of view, 
these norms would be division of labour if directly emerging from this activity context 
or rules if coming from the surrounding environment. Anyway, they are not included 
here for the sake of brevity. 
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3   MDD with Social Patterns 

The social patterns of the previous section provide the knowledge used in our MDD 
framework to add new features to MAS specifications in an automated way. The 
process is depicted in the activity diagram of Fig. 5. It is conceived with the goal of 
enriching the support for MAS development provided by available agent-oriented 
methodologies. So, it is always applied as a complement of a target development 
process. Some of the tasks are justified by the intended neutrality of the process about 
methodologies, as it does not impose restrictions about languages, models, or tools. 
The remaining of this section explains the tasks in Fig. 5. 

 

Fig. 5. UML activity diagram for the MDD process with social patterns 

Task 1 is the Translation of the Repository of Social Patterns. As section 2 
explains, social patterns are described with text and UML-AT diagrams. The 
representation with UML-AT provides the methodology neutrality and avoids the 
need of rewriting the patterns for every agent-oriented methodology. However, 
patterns described with UML-AT cannot be directly applied in the target development 
process. Using the integration framework for specifications coming from different 
methodologies described in [6], the repository of social patterns is translated to the 
language of the target process. This translation process is summarized in Fig. 6. 

The translation in Fig. 6 is based on mappings between UML-AT and other 
languages. Mappings describe correspondences between structures (i.e. source and 
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target patterns) that share variables. Structures in mappings are composed by entities, 
and relationships. All of these elements can have related properties that are key-value 
pairs. The properties contain fixed values or variables. Some examples of simplified 
mappings appear in Table 1. The translation departs in state 1 from the source 
specifications and the mappings to perform the translation according to the involved 
languages. For every mapping, it looks for instances of the source pattern in the 
available models (task 3 in Fig. 6). When a match is found, there is a correspondence 
between variables in the source pattern and the values from the specifications that 
appear in the found instance. This correspondence from variables to values is the 
result of task 4 and it allows grounding in task 5 those variables in the target pattern 
that are shared with the source pattern. The resulting structure is added to the 
translation in task 6. 

 

Fig. 6. UML activity diagram for the translation process 

After the study of the translation process, this discussion returns to Fig. 5. With the 
repository available in the target modelling language, the process can carry out task 2 
(i.e. Check Applicability). If a social pattern has UML-AT descriptions in the 
applicability section, those diagrams can be checked against the specifications. This is 
a process of pattern matching between graphs described in the language of the target 
methodology: the social pattern is applicable to a MAS if a group of elements in its 
specifications corresponds to the diagrams in the applicability section of some of the 
use pairs of that social pattern. This pattern matching process was already described 
in [5]. Briefly, two graphs correspond if they have entities of the same types 
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connected by the same relationships, and their properties are compatible. Two 
properties are compatible if they have the same values or at least one of them is non-
ground variable. If a non-ground variable must be compatible with a value, it becomes 
ground to that value. In the case that the applicability section of the social pattern 
only contains a textual description, it is considered as applicable by default and the 
decision about it is left to the user. Besides, the usercan decide to apply the pattern 
ignoring the applicability sections. 

In task 3, the user selects the social patterns to insert in the specifications, among 
those that are applicable or he manually selects. As it was stated in Section 2, social 
patterns contain variables that users must instantiate to customize them. Some of the 
variables in the solution sections can be ground from their applicability sections in 
task 2; nevertheless, it is possible that after task 2 there are already non-instantiated 
variables and the user must choose their values. This is done in task 4. Turning back 
to the examples of solutions in Section 0, users should decide who the selfish actors 
are or what piece of knowledge the community of experts collaboratively builds. 
Besides, if several patterns are added at the same time, users could decide to link 
different variables to the same value. For instance, they could decide that the roles of 
Member and Expert in the previous examples will be played by the same agent. The 
result of task 4 is therefore a set of solutions of social patterns where all of their 
variables have been ground, either with information from the specifications or with 
values directly provided by the user. 

Task 5 inserts the customized solutions in the specification of the MAS. New 
architectural principles about the intentional and social aspects of the system are 
added in this way to the original specification. 

At this point, the users of the process can follow their own development process or 
can use some of the other support tools available in the integration framework based 
on mappings [6]. Its ability to represent the specifications of a system in the language 
of choice at every moment allows, among others, detecting inconsistencies in the 
specifications [5] and generating code for the MAS [16] (this is task 6 in Fig. 5). This 
MDD framework is supported by a tool called the Activity Theory Assistant (ATA) 
(http://ingenias.sourceforge.net). The general purpose of the ATA is to help MAS 
engineers and developers with AT-based techniques. 

4   Case Study: Building a Network of Trust 

The application of the MDD framework is illustrated with a case study about a 
recommender system, which relies on collaborative filtering techniques. Collaborative 
filtering assumes that if a user finds interesting a piece of information, then other 
users with similar opinions and preferences may also find interesting the same piece 
of information. Therefore, this system implements workflows to distribute and 
evaluate information among users, who are grouped in communities. There are agents 
to represent users and communities in the system. The full specification of this 
system, which has been developed with the INGENIAS methodology [15], can be 
found at http://grasia.fdi.ucm.es/ingenias. 

An important issue for the collaboration of agents in the recommender system is 
the level of trust that the community has in its members. Trusted members propose 
relevant information; non-trusted ones usually give information of bad quality and can 
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even be expelled from the community. With the original organization of the system, 
community agents manage the updates of the score of members in a centralized way. 
This situation appears in the model from INGENIAS of Fig. 7. The Personal Agent 
plays the roles of Advisor and Suggester. As a Suggester, the agent gives Suggestions 
(i.e. information) to the community of users, what pursues the goal Provide 
Interesting Documents. On the other side, the agent pursues the goal Preserve 
Document Quality as an Advisor. The interest of this role is that the community deals 
with relevant information. The workflow shows that the Community Agent initiates 
Share Documents that selects Advisors, requests them to evaluate a Suggestion, and 
recollects the evaluations. In other workflow that does not appear in Fig. 7, the 
Community Agent also expels members with low scores. 

 

Fig. 7. A representation of the collaborative filtering community with INGENIAS concepts 
(which are represented as UML stereotypes) 
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The new organization proposed in this case study promotes that Personal Agents as 
Advisors directly share the information about other agents. The role of the Community 
Agent as intermediary in the evaluation process would disappear. This situation 
corresponds to the decentralized organization previously mentioned in this paper of 
the community of experts (see Section 2.2 and Fig. 4). 

Table 1. Mappings used in the translation from UML-AT to INGENIAS 

Source pattern (AT) Target pattern (INGENIAS) 

community → 
[decompose] → role 1 

- Organization Model 
group(community) → [OHasMember] → role(role 1) 

- Agent Model 
role(role) → [WFResponsible] → task(activity) 
role(subject) → [GTPursues] → goal(objective) 

activity → [accomplished 
by] → role 
activity → [transform] → 
object 
activity → [pursue] → 
objective 

- Tasks and Goals Model 
task(activity) → [GTAffects] → fact(object) 
task(activity) → [GTSatisfies] → goal(objective) 
- Agent Model 
role(subject) → [WFResponsible] → task(activity) 
role(subject) → [GTPursues] → goal(objective) 

activity → [accomplished 
by] → role 
activity → [produce] → 
outcome 
activity → [pursue] → 
objective 

- Tasks and Goals Model 
task(activity) → [WFProduces] → fact(outcome) 
task(activity) → [GTSatisfies] → goal(objective) 

artifact → [contribute 
positively] → objective 

- Tasks and Goals Model 
task 11 → [GTSatisfies] → goal(objective) 
task 1 → [WFProduces] → fact(artefact) 

objective 1 → [contribute 
positively] → objective 2 

- Tasks and Goals Model 
goal(objective1)→[ContributePositively]→goal(objective2) 

community → [pursue] → 
objective 

- Organization Model 
group(community) → [GTPursues] → 
goal(objective) 

The first step to apply the social pattern according to the process in Fig. 5 is to 
translate it from UML-AT to INGENIAS (task 1) following the process in Fig. 6. This 
translation uses the mappings in Table 1. These mappings describe structures to 
identify over the original specifications (in this case over the solution of the social 
pattern) and the structures to insert in the translation. The result of the application of 
these mappings appears in Fig 8. For instance, let see the process with the first 
mapping in the table. It would be selected in task 3 of Fig. 6. This mapping states that 
a source pattern with a decompose relation between a community and a role (same 
name for the AT concepts and the variables) in UML-AT corresponds to a target 
pattern with a OHasMember relation between a group and a role in INGENIAS. In 
Fig. 4, this source pattern appears for the community Group and the role Member, 
what would be found by task 4 and determine the instantiation of variables community 
and role; thus, the instantiated target pattern with a group Group and a role Member  
 

                                                           
1 Elements in italics are new ones introduced by the mappings. 
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Organization Model

Agent Model

Tasks & Goals Model  

Fig. 8. Translation to INGENIAS of the community of experts solution component 

would be created by task 5 and inserted in an Organization model from INGENIAS 
with task 6. More about the mappings and the translation process can be found in [6]. 

According to Fig. 5, the next step would be to check the applicability of the 
translated social patterns (task 2). In this case, the user needs to add new elements to 
the specifications, the new organization of the community of experts and their related 
elements. These concepts do not exist previously in the specifications and the pattern 
is not directly applicable. However, the user can ignore task 2 and decide that he 
wants to apply the pattern in any case in task 3. 

The solution component in Fig 8 is a template of model that must be customized 
for this specific case study in task 4. The names of the entities are variables that the 
engineer has to instantiate with specific information for the current collaborative 
filtering problem. As the user decides in task 3 the application of the pattern from 
scratch, there are no previously ground variables because of a match between the 
applicability component of the solution and the specifications of the MAS. The 
choices in this case can be seen in Table 2. 
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The result of task 4 allows generating instances of the translated solution components 
(those in Fig 8) where all the variables are substituted according to the previous choices. 
The resulting ground diagrams are inserted in the specifications with task 5. As a 
consequence of this addition, the social pattern of the community of experts is 
incorporated to the specifications. The result of this last task can be seen in Fig 9. 

Table 2. Instantiation of the community of experts to the recommender system with INGENIAS 
concepts 

Community of Experts Recommender System 
group(Community of Experts) group(Community) 

role(Expert) role(Advisor) 

goal(Community Goal) goal(Preserve Document Quality) 

goal(Expert Goal) goal(Preserve Document Quality) 

goal(Individual Goal) goal(Know User’s Reliability) 

fact(Knowledge) User’s Score 

task(Contribute) workflow(Evaluate Documents) 

task(Consume) task(Evaluate User) 

 

Fig. 9. Recommender system with a community of experts 

Some remarks must be done about the result. The first one is that the social pattern 
is not only instantiated with information from the specifications (like in the case of 
the already existing role Expert), but also can generate completely new elements (like 
in the case of the Community). Elements in italics in Table 2 correspond to new 



140 R. Fuentes-Fernández, J.J. Gómez-Sanz, and J. Pavón 

concepts. The second one is that when adding the information, engineers must be 
conscious of possible changes in the semantics of some elements. For instance, the 
workflow Evaluate Suggestions was initially intended to receive a Suggestion from 
the Community Agent and generate an Action that evaluated it. With the new 
organization, this workflow would receive the Suggestion directly from an agent 
playing the role of Advisor, would generate the Action, and would also update the 
score of the suggester (i.e. the fact User’s Score). The third is that the MDD process 
can take advantage of semantic equivalences between structures in modelling 
languages. In Fig 8 the Expert Goal contributes positively to the Community Goal; 
this relation is substituted by GTDecomposes in Fig 9, since a goal that is the result of 
the decomposition of some original goal is considered as contributing positively to 
that original goal. This kind of semantic equivalencies are considered through 
mappings of the translation process (see Fig. 6).The fourth and final remark is that 
inserting a social pattern in an existing specification has a potentially deep impact in 
those models. The insertion of the community of experts changes the overall 
organization of the agents in the recommender system and their mental attitudes, as 
new goals, tasks, and relations may come with the pattern. 

In this system, besides the social pattern of the community of experts, agents want 
to keep their scores as high as possible. A high score would allow them, for instance, 
acquiring social power, becoming more difficult to be expelled, and biasing the 
community to their own interests. This corresponds to the social pattern of selfish 
agents that also appears in Section 2.2. It would be applied in the same way as the 
community of experts. 

5   Conclusions 

This paper has shown a framework to generate partial specifications that add 
intentional and social architectural principles to existing MAS specifications. The 
framework is built over previous infrastructure to integrate information coming from 
different methodologies and to generate code from models. In this way, it supports a 
model driven development process where engineers can work with predefined high-
level behavioural patterns for their systems. 

This model driven framework is characterized by: 

• Social patterns as meaningful reusable components of behaviour. These patterns 
are focused on ruling principles of organizations or mental states, instead of 
isolated elements of the MAS. 

• Social patterns as customizable templates for specific problems. Variables in 
social patterns are intended to be substituted for information from the 
specifications in order to connect the pattern with the existing specifications. 

• Integration of information through mappings between languages. Social patterns 
are described with a neutral language called UML-AT. Its application to a 
concrete methodology relies on correspondences between the structures of UML-
AT and those of the modelling language of the methodology. 

• Generation of code through mappings between languages. Correspondences 
between languages are also the key to define the transformations from models to 
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code in this approach. In this process they are called templates. These templates 
are slightly different from the mappings used to integrate models in order to 
optimize the coding. More information can be found in [16]. 

 
The main advantage of this framework is the availability of a repository of social 

patterns. It gives engineers the possibility of building their specifications (and 
therefore the running MAS) from blocks that determine the main issues of their 
systems. The goal is not to specify the details of agents or organizations, but the main 
principles that the system has to satisfy. These patterns crystallize the knowledge of 
the AOSE community about the intentional and social aspects that are key in the 
development of MAS. 

An additional advantage of the framework over other approaches with design 
patterns is the integration of these patterns in a whole development process supported 
by automated tools. In this way, the development team just selects and customizes 
social patterns, leaving to tools the integration of the new information. 

The current research has raised some limitations that will be the object of future 
work. The first one is about deciding the applicability of social patterns. In the 
current repository, the applicability component of the use section of a social pattern 
can contain textual or UML-AT information. Although further enrichment of UML-
AT will improve the specification of these restrictions, it is not enough to express, for 
instance, statements about quantification or properties of the elements in UML-AT. 
OCL [14] is being studied as a possible complement for this purpose. Besides, only 
complete matches of the applicability component of social patterns with the 
specifications are considered. Allowing partial matches will reduce the user’s 
workload to customize the solutions of the patterns to insert. The second one is the 
need to change some aspects in the definition of social patterns. The current structure 
is inspired by that common for design patterns. However, in a model driven 
development process, more aspects need to be considered. For instance, issues like 
side effects or the connection with related patterns are described with plain text, what 
makes difficult adding automated support. The foreseen solution is to enrich the 
definition of these aspects with UML-AT too. 
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Abstract. Ad hoc networks are a type of computational system whose
members may fail to, or choose not to, comply with the laws governing
their behaviour. We are investigating to what extent ad hoc networks can
usefully be described in terms of permissions, obligations and other more
complex normative relations, based on our previous work on modelling
norm-governed multi-agent systems. We propose to employ our existing
framework for the specification of the laws governing ad hoc networks.
Moreover, we discuss a software infrastructure that executes such spec-
ifications for the benefit of ad hoc network members, informing them
of their normative relations. We have been developing a sample node
architecture as a basis for norm-governed ad hoc network simulations.
Nodes based on this architecture consider the network’s laws in their
decision-making, and can be individually configured to exhibit distinct
behaviour. We present run-time configurations of norm-governed ad hoc
networks and indicate design choices that need to be made in order to
fully realise such networks.

1 Introduction

An Ad Hoc Network (AHN ) is a transient association of network nodes which
inter-operate largely independently of any fixed support infrastructure [30]. An
AHN is typically based on wireless technology and may be short-lived, supporting
spontaneous rather than long-term interoperation [31]. Example AHNs are formed
by the devices of consumers entering and leaving an 802.11 wireless hot spot cov-
ering a shopping mall (for buying/selling goods consumer-to-consumer style by
matching potential buyers and sellers); by participants in a workshop or project
meeting (for sharing and co-authoring documents); or by emergency or disaster
relief workers, where the usual static support infrastructure is unavailable.

An AHN may be visualised as a continuously changing graph [30]: connection
and disconnection may be controlled by the physical proximity of the nodes or it
may be controlled by the nodes’ continued willingness to cooperate for the for-
mation, and maintenance, of a cohesive (but potentially transient) community.

G. O’Hare et al. (Eds.): ESAW 2006, LNAI 4457, pp. 143–160, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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An issue that typically needs to be addressed when managing and maintaining
an AHN is that of routing. AHNs are not usually fully connected; participating
nodes are often required to act as routers to assist in the transport of a mes-
sage (packet) between sender and receiver nodes. Resource-sharing is another
challenge that needs to be addressed during the life-time of an AHN; the partic-
ipating nodes compete over a set of limited resources such as bandwidth. AHNs
are often specifically set up for sharing a resource such as broadband Internet ac-
cess, processor cycles, file storage, or a document in the project meeting example
mentioned above.

The nodes of an AHN are programmed by different parties — moreover, there
is no direct access to a node’s internal state and so one may only make inferences
about that state. It is possible, even likely, that the nodes of an AHN will fail
to behave as they ought to — for example, a node acting as a router may
move out of communication range or run out of power and may therefore be
unable to forward packets. Furthermore, system components may intentionally
mis-behave in order to seek unfair advantage over others. A ‘selfish’ node, for
instance, may refuse to forward packets for other nodes while gaining services
from these nodes [42]. The controller of a resource may grant access to the limited
resource based on personal preferences rather than an agreed metric. Moreover,
due to the (typically) wireless nature of AHNs, a participating node should be
prepared to counteract against rogue peers. For all of these reasons, an AHN
needs to be ‘adaptable’ — that is, it should be able to deal with ‘exceptions’
such as the ones mentioned above.

Within the EPSRC-funded Programmable Networks Initiative, we are inves-
tigating to what extent adaptability can be enhanced by viewing AHNs as in-
stances of norm-governed systems, that is, systems in which the actual behaviour
of the members is not always ideal and, thus, it is necessary to express what
is permitted, prohibited, obligatory, and possibly other more complex norma-
tive relations that may exist between the members [18]. We have developed a
framework for an executable specification of norm-governed multi-agent systems
(ngMAS) that defines the social laws governing the behaviour of the members of
such systems [2, 1, 3] (we will use the terms ‘social law’ and ‘norm’ interchange-
ably). We propose to use this framework as an infrastructure for the realisation
of norm-governed AHNs (ngAHN)s.

The remainder of this paper is organised as follows. First, we give an overview
of ngAHNs. More precisely, we review our work on specifying ngMAS and pro-
pose ways to apply this work to AHNs. Second, we discuss a software infras-
tructure for the realisation of ngAHNs. This infrastructure executes the spec-
ifications of ngAHNs to inform members of their permissions, obligations, etc,
at any point in time. Third, to simulate ngAHNs, we discuss a sample node
architecture. Nodes based on this architecture consider the network’s social laws
in their decision-making, and can be individually configured to exhibit distinct
behaviour. Finally, we summarise the presented work and outline our current
research directions.
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2 Norm-Governed Ad Hoc Networks

In previous work [2, 1, 3] we presented a theoretical framework for specifying
ngMAS in terms of concepts stemming from the study of legal and social systems.
The behaviour of the members of a ngMAS is regulated by social laws expressing
their:

(i) physical capabilities (that is, what actions members can perform in their
‘environment’);

(ii) institutional powers [38, 19], a characteristic feature of norm-governed sys-
tems, whereby designated participants have the institutional power (or are
empowered) by the system to create/modify facts of special significance
within the system, institutional facts, usually by performing a specified kind
of act (such as when an agent awards a contract and thereby creates a set
of normative relations between the contracting parties);

(iii) permissions, prohibitions and obligations;
(iv) sanctions, that is strategies countering the performance of forbidden actions

and non-compliance with obligations.

Note that there is no standard, fixed relationship between physical capability,
institutional power and permission. For example, being empowered to perform
an action A does not necessarily imply being permitted to perform A or being
capable of A. (For further discussion and references to the literature see [25,19].)
The laws comprising level (ii) of the specification correspond to the constitutive
norms that define the meaning of the agents’ actions. Levels (i) and (iii), re-
spectively, can be seen as representing the physical and normative environment
within which the agent interactions take place.

We have employed our framework for specifying a protocol used to regulate
the control of access to shared resources [1], a typical issue in AHNs. The protocol
expresses the conditions under which a node can be said to have the institutional
power to request to access the limited resources. Exercising this power causes
the node eligible to be granted access to these resources. Whether a node is per-
mitted or not to exercise this power is another aspect expressed by the protocol
specification. Typically, the performance of a forbidden action leads to a sanc-
tion (irrespective of whether the node performing the action was empowered to
do so). Similarly, the protocol expresses, among other things, the circumstances
in which it is meaningful to say that a resource controller is obliged or simply
permitted to grant/revoke access to the resource, and what the consequences
are, and the conditions under which it is physically (practically) possible or per-
mitted for a node to manipulate a shared resource, or obligatory to release the
resource, and what the consequences are.

While being a member of an AHN typically implies being within communi-
cation range with at least one of the remaining members, being a member of
a ngAHN additionally implies being governed by the ngAHN’s social laws (see
Figure 1), that is, having a set of institutional powers, permissions, and obliga-
tions. Consider, in the resource sharing example, a node N that is not a member
of the ngAHN but is within communication range of the ngAHN’s members.
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Fig. 1. An AHN Node (left) and a norm-governed AHN

N can communicate a request for access to the shared resources, by means of
sending a message of a particular form via a TCP/IP socket connection, for in-
stance, but its request will be ignored, since N is not empowered to request the
resources.

In order to become a member of a ngAHN, a node participates in a role-
assignment protocol. If the node is accepted in the ngAHN then it will occupy a
set of roles expressing its institutional powers, permissions and obligations while
in that ngAHN. The decision-making procedure for awarding or denying a role is
application-specific. Example procedures are chair-designated (an elected node
assigns roles), election (the members of a role-assigning committee comprising
existing member nodes or other elected nodes vote on role-assignment), argumen-
tation (the members of a role-assigning committee debate on role-assignment)
and lottery scheduling (role-assignment operates on a probabilistic basis). For-
malisations of the first three types of procedure may be found in [1,32,2] respec-
tively. In all cases, the decision-making procedure of the role-assigning authority
is informed by, among other things, whether or not the applicant N satisfies the
role conditions (for example, nodes acting as routers should have broad com-
munication range), whether or not N has been banned from a ngAHN, or how
many times it has been disqualified (banning and disqualification are discussed
below).

As already mentioned, actuality does not necessarily coincide with ideality
in ngAHNs, that is, a node may, inadvertently (due to network conditions or
software errors) or maliciously, perform forbidden actions or not comply with its
obligations. In this case sanctions may be enforced, not necessarily as a ‘punish-
ment’, but as a way of adapting the network organisation. Sanctions may come
in various forms; for example, a sanctioned node N may be:

– suspended, that is, N loses for a specified time period its institutional powers
and permissions. In the resource sharing example, a suspended node loses
access to the shared resources as its requests for access will not be serviced
(since the node lost the institutional power to request the resources).
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– disqualified; N loses its ngAHN membership and thus loses its institutional
powers and permissions. However, N may re-apply to enter the ngAHN and,
if successful, will regain its institutional powers and permissions.

– banned, that is, N loses its membership and may not re-apply to enter the
ngAHN.

Other forms of sanction are possible, such as, for instance, ‘bad reputation’
(see [9, 16] for a few examples); the choice of a sanction type (when is a node
penalised, what is the penalty that it has to face, who applies the penalty, etc)
is application-specific.

Another possible enforcement strategy is to try to devise (additional) physical
controls that will force nodes to comply with their obligations or prevent them
from performing forbidden actions. When competing for hard disk space, for ex-
ample, a forbidden revocation of the resource access may be physically blocked,
in the sense that a node’s account on the file server cannot be deleted. The gen-
eral strategy of designing mechanisms to force compliance and eliminate non-
permitted behaviour is what Jones and Sergot [18] referred to as regimentation.
Regimentation devices have often been employed in order to eliminate ‘unde-
sirable’ behaviour in computational systems (see, for example, interagents [35],
sentinels [22], controllers [26], guards and enforcers [5]). It has been argued [18],
however, that regimentation is rarely desirable (it results in a rigid system that
may discourage agents from entering [34]), and not always practical. The prac-
ticality of regimentation devices is even more questionable when considering
AHNs, due to the transient nature of these networks. In any case, violations
may still occur even when regimenting a computational system (consider, for in-
stance, a faulty regimentation device). For all of these reasons, we have to allow
for sanctioning and not rely exclusively on regimentation mechanisms.

The process of joining or excluding a node from a ngAHN is a part of a
session control protocol which further prescribes ways for inviting to join, or
withdrawing from a ngAHN, changing the laws of a ngAHN, determining which
resources are to be shared, and so on.

In order to realise ngAHNs, we need to provide mechanisms for informing
member nodes of the social laws governing their behaviour — a discussion of
such mechanisms is presented next.

3 Norm-Aware Nodes

We encode social laws specifications of norm-governed systems in executable
action languages. We have shown how two such languages from the field of Ar-
tificial Intelligence (AI) may be used to express these specifications: the C+
language [15, 14] and the Event Calculus (EC) [23]. The C+ language, notably
when used with its associated software implementation, the Causal Calculator
(CCALC), already supports a wide range of computational tasks of the kind
that we wish to perform on system specifications. A major attraction of C+
compared with other action languages in AI is its explicit semantics in terms of
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Fig. 2. Computing with Social Laws

labelled transition systems, a familiar structure widely used in logic and com-
puter science. EC, on the other hand, does not have an explicit transition system
semantics, but has the merits of being simple, flexible, and very easily and ef-
ficiently implemented for an important class of computational tasks. It thus
provides a practical means of implementing an executable system specification.
The Society Visualiser (SV) [3] is a logic programming implementation that sup-
ports computational tasks on system specifications formulated in EC. A detailed
discussion of both action languages and their software implementations can be
found in [3].

Members of a ngAHN should be aware at any point in time of their institu-
tional powers, permissions, obligations and sanctions. Such information may be
produced by computing answers to ‘prediction’ queries on the social laws spec-
ification. This type of computational task, which is supported by each action
language software implementation (ALSI), that is, CCALC and SV, may be ex-
pressed, in the context of ngAHNs, as follows. The input to an ALSI includes
an initial social state — that is, a description of the institutional powers, per-
missions, obligations and sanctions that are initially associated with the ngAHN
members, and a narrative, that is, a description of temporally-sorted externally
observable events (actions) of the ngAHN. The outcome of a prediction query
(if any) is the current social state — that is, the members’ institutional powers,
permissions, obligations and sanctions that result from the events described in
the narrative.
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Fig. 3. Run-Time Mechanisms: Total Distribution

Figure 2 illustrates the computation of answer to a prediction query. Example
narrative, social laws, initial and resulting social states, expressed in EC pseudo-
code, concerning the resource sharing example, are presented.

The current social state may be available to (a subset of) the ngAHN members
at run-time. Such run-time services may be provided by a central server or, as
expected in an AHN, in various distributed configurations. We describe two
example configurations below.

Each ngAHN member node (with a private internal architecture) could be
equipped with an ALSI module, computing answers to prediction queries for
the benefit of the node, informing it of its institutional powers, permissions,
obligations and sanctions (see Figure 3). In this configuration the ALSI module
of each node may not be aware of all events (that is, the narrative) necessary to
compute a prediction query answer. For instance, a node may not be aware of
the fact that a resource is no longer available and thus, its ALSI module may
compute that the node is still empowered, say, to request access to the resource.
A partial narrative could be enriched by ‘witnessing’ other nodes’ actions or
requesting from peer nodes to be updated about the events taking place in the
ngAHN. In the latter case, however, the node could be, intentionally or not,
misinformed which could result in an inaccurate computation of its institutional
powers, permissions, and so on.

A design choice that needs to be made in this setting concerns the social
laws available to the ALSI module of a node. Clearly a node N ’s ALSI module
should include the laws relevant to the roles N occupies. In some applications,
the permissions and obligations of a node need to be private to that node — in
this case the ALSI module of each node should contain only the laws relevant to
its roles. In other applications, a node’s ALSI module could contain the complete
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Fig. 4. Run-Time Mechanisms: Partial Distribution

set of social laws, thus enabling each node to compute information about any
other member (provided that a node is aware of the complete ngAHN narrative).

Due to the limited resources (battery, for example) available to the nodes of
a ngAHN, it may not be practical or feasible for each node to compute its own
institutional powers, permissions and obligations. To address this issue, nodes
with rich resources availability could be selected specifically for producing such
information and publicising it to the members of a ngAHN. Consider the example
topology shown in Figure 4. A network is divided into clusters and each cluster
elects a ‘cluster-head’ (CH), typically a node with longer communication range,
larger bandwidth and more power (again, such as battery). A CH’s communica-
tion range covers all the nodes in the cluster. Links are established to connect CHs
to a backbone network. (Such topologies have been proposed in the literature for
achieving ‘good’ routing performance in AHNs — see, for example, [10, 44, 33].)
Every message exchange, in this example topology, is carried out via the back-
bone network; therefore, CHs can compile, in cooperation, the narrative of events
of the whole ngAHN. Moreover, each CH is equipped with an ALSI module and
the complete set of the ngAHN’s social laws. Consequently, a CH is capable of
computing a node’s institutional powers, permissions and obligations, and detect-
ing non-compliance with obligations and performance of forbidden actions. Such
information is publicised to a node upon request (a node requests such informa-
tion from its CH). Different strategies may be followed for publicising information
to nodes — a node’s institutional powers could be publicised to all members of a
ngAHN, its permissions could be kept private to the node, etc.

It is possible that a CH will not behave as it ought to behave. For instance,
it may move out of communication range or run short of resources, and thus
be incapable of fullfiling the nodes’ requests. Moreover, a CH may intentionally
mis-behave — for example, giving incorrect information (informing a node that
it is forbidden to perform an action when it is permitted to do so) or disclosing
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Fig. 5. A Sample Architecture for a Norm-Governed AHN Node

private information (publicising the obligations of a node when these should be
private to the node). For these reasons, we may express a CH as role of a ngAHN,
specifying the institutional powers, permissions and obligations associated with
that role. Violation of these permissions or non-compliance with these obligations
will result in ‘sanctioning’ a node acting as a CH. (Note that the detection of
a CH’s mis-behaviour may not be straightforward — consider, for example, the
disclosure of private information.) A sanctioned CH is replaced by a new one.
(Recall that a sanction is not necessarily a penalty; in the case of inadvertent
mis-behaviour a sanction can be seen as a way of dealing with the network’s
exceptions.) The selection of a node as a CH, for the replacement of a ‘sanctioned’
CH or for the formation of a new cluster, is a typical issue of role-assignment
(see Section 2).

Clearly, other topologies are possible for the realisation of a ngAHN. Grizard
et al. [16], for instance, discuss an overlay network in which nodes in the overlay,
called ‘controller agents’, monitor the behaviour of the underlying network nodes,
called ‘application agents’, detect whether an application agent violated a norm,
and publicise, upon request, details about norm violation (for example, how
often each application agent violates a norm). In general, the aforementioned
topologies were presented in order to give an indication of the design choices
that need to be made for the realisation of a ngAHN.

Apart from mechanisms for informing nodes of their institutional powers,
permissions and obligations, the realisation of ngAHNs further requires that
nodes actually consider such information in their decision-making process. The
next section discusses node architectures for ngAHNs.

4 Decision-Making in Norm-Aware Nodes

The functionality of a node within a ngAHN can be likened to that of an agent
within a multi-agent system. We have been developing an architecture for a
ngAHN node (Figure 5), drawing upon design principles for agent architectures
[20,21]. We give an overview of the architecture and focus, in this paper, on the
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architecture module defining how a node factors a ngAHN’s social laws into its
decision-making.

The architecture is conceptually organised into three main parts: a control
module, state & attributes and an ALSI module. The control module includes a
communications interface enabling each node to send and receive its own mes-
sages. (We assume error-free communications within simulations, although we
note that the introduction of deliberate communications errors and correspond-
ing error-handling mechanisms is a possible avenue of future investigation.) The
communications interface can also be used by an operator or manager to exter-
nally monitor and instruct the node. That is, the same type of message exchange
that occurs between nodes can also occur between a node and an ‘external’ entity,
with emphasis on interrogative and imperative communications. In the simula-
tion platform described later (Section 4.1), we show that in addition to support-
ing such input/output operations, the same interface can be used to interact
with an ‘environment’. In the case of a (ng)AHN simulation, the environment
process represents the network topology. Communicative acts directed to this
process are interpreted as queries or physical acts upon the environment, which
can respond accordingly. In this way, the environment process may determine
what the nodes perceive of their physical environment. The environment process
can also be used to effect exogenous events (such as time-outs).

The interpreter, a part of the control module, is a focal point of the architec-
ture, linking to all other components. This module is primarily characterised by
a processing cycle that enacts, in turn, the perceptive, deliberative and respon-
sive behaviour of the node. These amount to checking for incoming messages,
consulting and updating state & attributes accordingly, formulating appropriate
(re-)actions and creating optional outgoing messages.

The state & attributes grouping includes elements usually found in delib-
erative agent architectures. Physical attributes include information like a node
identifier, location within the environment as well as platform and communi-
cations attributes such as battery power and communications range. Note that
some of these attributes are beliefs rather than ‘facts’ as they may be based
on (possibly outdated) information obtained from an environment process. The
intentional state comprises current goals and which, of the methods available,
the node in question has selected to achieve them.

While analogues of the preceding architectural elements can be readily found
in most deliberative agent architectures, persona and social state are, perhaps,
less likely to have direct counterparts. The former determines a node’s social
outlook by defining how exactly social laws are factored into its behaviour. The
latter is as explained previously in Section 3, with a subjective emphasis —
that is, a record of the node’s institutional powers, permissions, obligations and
sanctions (as opposed to a record of every member’s institutional powers, per-
missions, etc). Such information is produced by consulting an ALSI module,
local or remote (for instance, consulting a cluster-head).

We believe that the design approach described above facilitates our modelling
and study of ngAHNs, as it allows distinct node behaviours to be straight-forwardly
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introduced through well-defined adjustment of a single module within a generic
architecture (the persona module, for example). This has the outward appearance
of introducing adifferentnodearchitecturewithout thepotential configurationand
interoperability issues associated with doing so. In addition, the communications
interface ‘hides’ the internal operation of one node from another, thus capturing
the node heterogeneity property of a ngAHN.

4.1 Implementation

We have been developing a simulation base that allows us to model the entities
and communications that might take place in a ngAHN [20,21]. Implemented in
Prolog, the simulation base enacts the processing cycles of multiple communicat-
ing nodes. To do so, it first consults the individual files in which the behaviours
of these nodes are specified. These files define the initial configuration of state
& attributes elements.

Following initialisation, the simulation base performs the processing cycles
of the defined nodes consecutively. The environment cycle is always first to be
enacted, while those of the remaining nodes occur in a randomised order. This
avoids the development of unfavourable or predictable interaction patterns. Mes-
sage exchange during processing cycles occurs when data structures, representing
node-designated message queues, are consulted and updated.

A processing cycle consists of message exchange as described above, followed
by update of the relevant node’s state & attributes. During the update, deci-
sions are taken on how to respond to received messages and perceived events
— effectively, the deliberative stage of the cycle. This deliberation may produce
specific changes to the state & attributes during the update. The realisation that
a certain action or event has transpired, or that a particular condition holds, for
example, can trigger the adoption of a new goal, attitude or of different means
to achieve existing goals.

4.2 Resource-Sharing Protocol

In the following scenario, we provide Prolog-based pseudo-code further illustrat-
ing the implementation aspects described above. More precisely, we discuss ways
of simulating a ngAHN by specifying different node personas. The scenario is
based on an instance of the resource sharing protocol mentioned earlier. In this
instance node1 acts as the resource controller or ‘chair’, and node2 and node3
are the ‘subjects’, that is, they request access to the shared resource.

An ALSI module expresses, in this example, a logic programming Event Cal-
culus (EC) encoding of the social laws of the resource-sharing scenario. This is
used in the first instance to establish the roles occupied by nodes. To summarise
the protocol, the chair determines who is the best candidate among the current
resource requests and grants resource access accordingly. A grant is for a set
amount of time, during which the allocated node derives some utility from the
resource and may, at its discretion, either release the resource early or request
an extension of the grant period. In addition, the chair can entertain additional
resource requests from the other node during the grant period and may insist
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that (command) the node to whom the resource is currently granted release it
immediately. When a violation of social laws occurs (and is detected), a node
may be sanctioned. Further consideration of these aspects of the protocol (and
variants) is given in [1].

In this example, we characterise node2 as being willing to violate a social law
if the utility of doing so outweighs the expected sanction. In contrast, node3
will only contemplate social law violation if it has not already done so within an
arbitrarily recent time-frame. We consider one potential violation where a node
does not comply with the obligation to release a resource. Consider the following
example:

(1) process_message( node2, cmd_release_resource( node1, node2 ), T ) :-

(2) holdsAt( obliged( node2, release_resource( node2 ) ) = true, T ),

(3) holdsAt( status = granted(node2, TEnd), T ),

(4) TLeft = TEnd - T,

(5) TLeft > 0,

(6) utility( TLeft, U ),

(7) holdsAt( sanction( obligation_release_resource ) = Cost , T ),

(8) ( compare(U, Cost) ->

(9) send_msg( release_resource( node2 ) )

(10) ;

(11) true

(12) ).

The process message/3 procedure presented above expresses the reaction of
a node (in this example, node2) to an incoming cmd release resource (‘com-
mand to release the resource’) message — this message was sent at time T by
node1, in this example. Upon receipt of a cmd release resourcemessage, node2
calculates whether or not it is obliged to release the resource (line 2 of the pseudo-
code example). A message cmd release resource creates an obligation for the
node holding the resource to release it only when the controller has the institu-
tional power to issue such a command. The controller may not always have the
power to command the release of a resource — for example, before the time allo-
cated to the holder ends, the controller may only be empowered to command a
release of the resource when it receives an ‘urgent’ request for the resource from
another node. If node2 is indeed obliged to release the resource, then it recalls
the time (TEnd) until which access to the resource was originally granted (line 3),
and calculates the time difference (TLeft) between TEnd and the current time
T (line 4). If TLeft is greater than zero, that is, the chair commanded node2
to release the resource before the allocated time ended, then node2 computes
a subjective utility based on TLeft (line 6), that is, it computes the utility it
would derive from manipulating the resource until the allocated time ends. It
then (line 8) compares the calculated utility with the objective sanction asso-
ciated with failure to comply with the obligation to release the resource (that
is, the sanction expressed by the social laws of the resource sharing protocol). If
the comparison favours keeping hold of the resource (in this case the compare/2
predicate fails), node2 will ignore the chair’s command.
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Note, in the above example, that if TLeft is less than or equal to zero then
cmd release resource was issued after the time allocated for manipulating the
resource ended — this case is dealt by another process message/3 procedure.

While we do not provide a specification of the compare/2 predicate here, we
note that it represents a key aspect of a node’s (social) decision-making. The
predicate provides a subjective assessment of the seemingly objective sanction
cost relative to a node’s internal utility function. It naturally follows that the
value of either complying with or violating a social law is primarily determined by
a node’s private architecture. A welcome corollary is the ability to nuance node
behaviour through the specification of different compare/2 predicates. A less
welcome concern is the additional complexity that such specifications require.

holdsAt/2 is an EC predicate expressing the social laws of the resource shar-
ing protocol. In other words, the occurrences of holdsAt/2 that appear in the
code above (and below) represent calls to an ALSI module capable of reason-
ing about social laws. As already mentioned, an invocation of an ALSI module
may be ‘actual’ (in the case where the node in question has its own module) or
‘logical’ (when the ALSI module is located in another node).

Consider another example node persona:

(1) process_message( node3, cmd_release_resource( node1, node3 ), T ) :-

(2) holdsAt( obliged( node3, release_resource( node3 ) ) = true, T ),

(3) last_violation( obligation_release_resource, T2 ),

(4) compliance_interval( CInt ),

(5) ( ( CInt < ( T - T2 ) ) ->

(6) ( retract( last_violation( obligation_release_resource, _ ) ),

(7) asserta( last_violation( obligation_release_resource, T ) ),

(8) )

(9) ;

(10) send_msg( release_resource( node3 ) )

(11) ).

node3 maintains a record of the last time (T2) it violated the obligation to release
the resource. It then compares the time difference T - T2 (T is the current time)
with a ‘compliance interval’. If the time elapsed since the last such transgression
is greater than the compliance interval, node3will not comply with the obligation
to release the resource.

Clearly, there are other possible attitudes concerning compliance with obliga-
tions and performance of forbidden actions. Moreover, we may specify different
node personas by expressing the attitude of a node concerning its institutional
powers. For instance, a node will not perform an action, say request a resource,
if it is not empowered to do so (even if it is permitted to request the resource).
Another node N may perform an action, although not empowered to do so, ex-
pecting that (some) peer nodes will not be able to tell whether or not N was
empowered to perform the action (some peer nodes may not have access to an
ALSI module).

By specifying different attitudes to institutional power, permission and obli-
gation — that is, by adjusting the persona module of the proposed node archi-
tecture, we may introduce different node behaviours as required for our ngAHN
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simulations. (Varying node behaviours can be introduced by additionally adjust-
ing the intentional state module of the node architecture.) This is our current
research direction.

5 Related Work

There are several approaches in the literature that are related to our work on
specifying norm-governed multi-agent systems — [5,27,35,26,45,28,29,39,40,41,
13,12,11,36,4,46] are but a few examples. Generally, work on the specification of
multi-agent systems does not distinguish between the constitutive laws and the
normative environment within which the agent interactions take place. This is
a key difference between our work and related approaches in the literature. Our
specification of social laws explicitly represents the institutional powers of the
agents, capturing the meaning of the agents’ actions, and thus expressing the
constitutive laws of a system. Moreover, our specification differentiates between
institutional power, permission and physical capability, thus separating the con-
stitutive laws from the normative and the physical environment within which a
system is executed. A detailed discussion of research related to the framework
for specifying norm-governed computational systems, and an evaluation of this
framework, can be found in [3, 2].

Within multi-agent systems research, ‘social awareness’ can be seen as a devel-
opment of cooperative behaviour (see, for example [17,43]), which has been primar-
ily based on the use of communication protocols. Castelfranchi et al. [8] note that
agents using only fixed protocols are unable to deal with unexpected behaviour on
the part of their environment and other agents. The authors consequently identify
the need for autonomous normative agents: agents with an awareness of social laws
and the capacity to both adopt and violate such laws. Castelfranchi et al. position
social law-awareness as an influential, but not deterministic, factor in agent be-
haviour — to them, an agent’s ability to choose to violate a recognised social law
is equally important as its ability to choose to conform to the same. Our node archi-
tecture reflects this consideration by positioning the ALSI as an advisory module
to whose ‘output’ the agent can react arbitrarily.

Several researchers have since proposed agent models and associated theory
to address the needs identified by Castelfranchi et al. For example, the Beliefs-
Obligations-Intentions-Desires (BOID) architecture of Broersen et al. [7,6] intro-
duces mechanisms to resolve conflicts between the representations of cognitive
state in a deliberative agent and its obligations. This allows the characterisation
of a number of abstract agent social perspectives in terms of the interdependen-
cies, precedences and update strategies of beliefs, obligations, intentions and de-
sires, in which obligations and desires are respectively treated as external (social)
and internal motivational attitudes. We adopt a similar first-class view of nor-
mative relations in our node architecture from a logical perspective but note that
the BOID approach differs slightly in its integration of these relations at an im-
plementation level. It is through the introduction of a specialised implementation
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module (the ALSI) to our node architecture that an agent is able to perceive its
normative relations.

Lopez et al. [24] characterise social laws in terms of their ‘positive and negative
effect’ on the goals of agents and those of their ‘society’. The approach of Lopez et
al. is currently a formal model of agent behaviour and remains unimplemented.

Sadri et al. [37] incorporate social decision-making within a deliberative agent
model enhanced by EC-based formulations of social laws, noting how these can
change over a system’s lifetime. They use an abductive logic-based proof proce-
dure to compute an agent’s time-constrained social goals — expressions encoding
what the system expects of an agent. Distinct logic programs encode the prefer-
ence policy of each agent — for example whether an agent puts social goals above
its own goals. Social perspectives are identified (for instance, social, anti-social
agents) based on the agents’ preferences (personal goals versus social goals). Like
the other reviewed approaches, the framework of Sadri et al. does not identify
the institutional powers of agents, a concept on which we place emphasis.

6 Summary

Malfunctioning, either by intent or by circumstance, is to be expected in AHNs.
How to identify and adapt to such situations is essential. By specifying the
permissions, obligations, and other more complex normative relations that may
exist between the members of an AHN, one may precisely identify ‘undesirable’
behaviour, such as the performance of forbidden actions (for instance, illicit use
of a peer’s processor cycles) and non-compliance with obligations (for example,
denying access to one’s processor cycles). Therefore, it is possible to introduce
sanctions and enforcement strategies to adapt to such behaviour (for example,
temporarily ejecting a mis-behaving or erroneous node from a network).

We have developed a framework for specifying the laws of norm-governed
AHNs and executing these laws for informing the decision-making of the mem-
ber nodes. We are currently developing such nodes in order to simulate norm-
governed AHNs and thus investigate the practicality of, and in general evaluate,
the presented approach.
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Abstract. The research on exception handling in Multi-Agent Systems
has produced some advanced models to deal with ‘exceptional situations’.
The expression ‘agent exception’ is however unclear across the literature,
as it sometimes refers to extensions of traditional exception models in
programming languages, and sometimes to organizational management
mechanisms with distinct semantics. In this paper, we propose a defini-
tion of ‘agent exception’ to clarify the notion and justify that specific
research is necessary on this theme. We detail properties of this defini-
tion, revisit the traditional vocabulary related to exception in software
design, propose an adequate agent architecture, and identify some re-
search issues. This work is aimed at federating the endeavors on the
question of exception management for Agent-Oriented Computing.

1 Introduction

The notion of exception in Multi-Agent System often refers to usual exceptions
in structured and object-oriented programming, defined in the 1970s by the
following.

Of the conditions detected while attempting to perform some operation,
exception conditions are those brought to the attention of the operation’s
invoker. The invoker is then permitted (or required) to respond to the
condition [1,2,3].

This definition and the subsequent lineage of exception handling systems are
operation-centric approaches [4,5,6]. When an operation is invoked, e.g. by a
method of an object, conditions are checked before the actual execution to vali-
date the invocation context. Typical conditions are the correctness of the types
and values of the operation input parameters. If a condition is not met, the op-
eration is not executed and an exception is signaled to the invoker to initiate
appropriate handling mechanisms.
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In the case of agent systems, the usual definition of exception applies as agents
are software, but it also misses characteristics of the agent concept. Traditional
definitions state that an exception is entirely determined when conditions are
violated in the invocation context of an operation. Agents are however free
to evaluate whether the result of invoking an operation is ‘normal’ or ‘excep-
tional’, due to some form of autonomy and to the loose coupling among agents
and resources. Agents can also evaluate differently the type of exception they
encounter depending on their individual contexts and inner mechanisms. And
lastly, the usual definition of exceptions is mostly implemented as specific con-
structs in a programming language, whereas it is not clear whether a language
construct suffices to address the agent case, due to autonomy, openness, and
systemic effects [7]. These characteristics actually lead to consider an additional
‘agent-centric’ approach orthogonal to the notion of exception in programming
languages.

In this article, we elaborate a definition of ‘agent exception’ in MAS, position
the definition to traditional ones, and present research issues in Agent-Oriented
Computing for the particular problem of exception management.

The structure of this article is as follows. Section 2 reviews related work
with earlier attempts for defining exceptions in Multi-Agent Systems. Section 3
presents our proposal to define the term exception and an agent software ar-
chitecture to support it. Section 4 details research issues for Agent-Oriented
Computing with regards to Software Engineering research. Finally, section 5
concludes the paper.

2 Related Work to Defining Agent Exceptions

The literature in MAS tends to follow two approaches to define the term excep-
tion. We call them respectively ‘continuity’ and ‘rupture’.

2.1 Continuity: From Traditional to Agent-Oriented Definition

The common ground of much research work relies on the usual intuition of
exceptions cultivated in programming languages. Tripathi and Miller thus write
that ‘an exception is an event that is caused by a program using a language
construct, or raised by the underlying virtual machine’, where an event deviates
the execution of a program to a handler [8,9]. Souchon et al. rely on similar
basis that can be also observed in distributed object research [10,11,12,13]. In
other words, the first approach to agent exception is to consider it as a natural
extension of the usual meaning in programming languages.

The mechanisms related to such definitions are not completely adapted how-
ever to the agent paradigm, despite endeavors to match them with some ex-
tensions [11]. For example in the above definition from Tripathi and Miller, the
usual meaning of exception is applied to agents, without reference to the is-
sues of autonomy and social relationships that can be source of exceptions as
‘asocial events’. Autonomy leads agents to decide independently their actions
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in the environment. The semantics of programming exceptions prevents such
independent decisions by imposing the exceptional character of an event, i.e.
the ‘invoker’ agent (as in the definition from Goodenough) is imposed by the
‘operation provider’ agent to interpret an event as an exception. Preservation
of the autonomy requires an appropriate semantics where the invoker can de-
cide autonomously. Social relationships is a specific overlay of MAS, where the
‘social fabric’ is expected to help structuring the system. Huberman and Hogg
showed that social relationships can evolve in various ways, even though a fixed
organizational structure has been defined [14]. Evolutions cause the formal or-
ganization of the system (defined by rules) to drift to an informal organization
that palliates dynamically lacks or deficiencies of the formal one. Interactions
in the informal organization are typical sources of exceptions in the formal one,
e.g. the violation of interaction protocols due to improper sequences or mes-
sages. The usual model of exception in programming languages is unadapted in
such situations as exceptions to the formal organization occur while the different
components of the system execute correctly, in a programming sense.

Finally, this approach based on continuity also assumes agents are single
threads and that exceptions make sense in the control flow of one thread only.
This structural constraint inherited from the traditional disciplined exception
handling facilities does not scale well to the interactive nature of agent societies,
where ‘exceptions’ can concern a group of agent processes, themselves multi-
threaded software. Distributed computing research addresses such issues with
successful achievements, but most approaches define a framework that allows
returning to traditional exception handling, e.g. [10,15]. The advantage is to
reuse well-known mechanisms, but this reuse makes the approaches inappropri-
ate to deal with the agent characteristics.

2.2 Rupture: From Agent Paradigm to Agent-Oriented Engineering

Another approach to defining exception is in rupture with traditional ways based
on programming. The position of this approach is to consider exceptions as
systemic matters, as can be observed in some agent research and component-
based development endeavors [16,7,17]. Klein et al. describe intuitively that ‘all
[...] departures from the “ideal” MAS behavior can be called exceptions’ [18].
This definition brings the term exception at the level of the system, as the
authors deal with the ‘MAS behavior’. The similarity with traditional definitions
is the departure from the ideal behavior that recalls the ‘deviation from normal
behavior’ of a program as explained by Parnas and Würges [4]. The difference
with traditional definition is however the dimension of the exception that is
not constrained to one thread of control. Exceptions become systemic events.
This system-wide scope is desired since MAS are open systems that designers
need to be able to build and to keep under control. Besides, Klein et al. refer
to an exception management instead of only exception handling. However, such
management and system-level definition must guarantee that agent autonomy
and system openness are respected, which is not necessarily the case with such
approaches [19].
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In addition, this definition does not say how ‘departures from the “ideal” MAS
behavior’ are identified, and more particularly what is the agent point of view
in the case of exception. The MAS architecture proposed in the work of Klein
et al. addresses the first concern by detailing how normal MAS behaviors are
expressed. However, the second question requires a more detailed definition of
an agent exception.

Mallya and Singh have addressed this second concern in the case of agents
executing commitment protocols [20,21]. From the point of view of agents, ex-
ceptions are abnormal situations compared to what is awaited for in a protocol.
Exception handling is then to appropriately reason on protocols or extending
them at runtime when required. This approach clarifies the intuition of an agent
exception in the case of interactions based on protocols. Agents do not always
interact according to protocols however, and a more general definition would be
required. For instance, the work of Bernon et al. introduces an alternative point
of view by analyzing ‘non-cooperative situations’ in the ADELFE methodology,
although this work considers exceptions with a more classical sense [22].

3 Definition of Agent Exceptions

In order to clarify and justify the notion of ‘agent exception’, we propose in this
section a series of definitions, first for the term exception, and then for the other
technical terms dealing with exceptions. Such terms are diagnosis, raising, prop-
agating, transforming, termination, resumption, handling, and management. In
the end, we also propose an agent architecture to manage exceptions.

3.1 Agent Exceptions

The following definition is in our sense in rupture with traditional ones, and we
tried to set up proper grounds to exploit the existing work in usual systems,
with adapted terminology.

Definition

An agent exception is the evaluation by the agent of a perceived event
as unexpected.

The source of exception is the essential difference with traditional definitions. The
source is not the event, which could be related to the call-back from an operation
invocation that signals an exception. The source is instead the agent itself. Ow-
ing to autonomy, agents can evaluate any percept differently and thus end with
either an exceptional or normal execution. An event should be understood in a
broad sense of any observable action or state in the system. For example, events
are message exchanges or the perceived value of pheromones in stigmergic systems.

In relation to earlier definitions, exceptions are qualified as unexpected events.
By unexpected, we mean the agent does not anticipate the arrival of the event
in the current execution context (time, resources, value of parameters, etc.).
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In other words the agent is not ‘ready’ to process the event when it occurs.
The unexpected characteristic of an event then depends on the kind of agent
that evaluates it. For example, the protocol-driven agents of Mallya and Singh
consider as unexpected1 any message that does not belong to the sequences of
running protocols [20].

The unexpected character of an event requires an internal reference for the
agent, such as knowledge of a protocol, that serves as representing the expec-
tations of the agent. ‘Purely reactive’ agents do not deal with agent exceptions
due to the absence of internal reference [23]. Practical reactive models encom-
pass however some built-in implicit representations, so that they deal in fact
with agent exceptions but in a less flexible pre-wired manner.

The definition stresses that agent exceptions are based on perception, func-
tional part of the interface between an agent and its environment. This relation
to perception has consequences on the type of agent architectures that is re-
quired to deal with exception management. In addition, Software engineering
practices require the separation of the application logic from the exception han-
dling logic. As for agents, unexpected events lead to using the exception logic.
We elaborate more on these points later in this section with the presentation of
the agent architecture.

Properties. The first property from the definition is that exceptions make sense
inside an agent. The meaning of an event is encoded at its source, but the ex-
ceptional character depends on the point of view of each receiving agent. For
example, an agent can query a database and receive a result. The result can be
either a set of tuples that meets the query criteria, or it can be an error message.
The querying agent can consider any of these results as an exception, depending
on its expectations. The agent can just test the database to confirm a malfunc-
tion, so that an error message is not an agent exception in this case. Conversely,
the agent can consider the resulting tuples as an exception if the query was a
consistency check that turns wrong. A complementary example is when an agent
tells another one about an exception. In this case also, the receiving agent eval-
uates the message (i.e. an event) and decides whether it should be considered as
an exception. An exception for the first agent can be a normal event as well as
an exception for the second one. This first property is important as it elaborates
on the loose coupling between agents. Exceptions make sense inside agents, so
that coupling is not increased with exception management. Engineering agent
systems or related approaches such as Service-oriented architectures [24] needs
careful modeling of interfaces. The present property of agent exceptions implies
that no interface extension is necessary for their handling, thus reducing issues
related to coupling in agent systems.

The second property emphasizes the original work on exception and recent
approaches that claim that exceptions are not only errors [1,20]. The dictionary

1 Mallya and Singh use the expression ‘unexpected exception’ to refer to an exception
unforeseen by the system designer (at design time). In the present definition, an
‘unexpected event ’ is deemed as exception at runtime.
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definition of the exception is neutral [25], but usage in programming languages
overrides for the major part the original definition to describe ‘problematic sit-
uations’. Although language constructs often allow to exploit exception mecha-
nisms to deal with non-problematic situations, exceptions are mostly associated
with problems. The initial definition from Goodenough suggested however that
exceptions could also serve finding better solutions or alternatives, originally by
monitoring. Mallya and Singh recently reformulated this initial meaning by dis-
tinguishing ‘negative exceptions’ from desirable ones, named ‘opportunities’. In
agent systems, the case of opportunities seems particularly interesting for the
flexibility of systems [26,27]. In the previous database example, the querying
agent can exploit an exception as an opportunity to confirm that a database is
in malfunction.

The third property is that agent exception requires internal representation
(e.g. knowledge). Agents need a reference to determine exceptional situations.
When an event is perceived, agents evaluate the situation by considering the
event according to their internal representation. Without such representation,
agents have no ground to differentiate cases. In the query example, the agent
exploits the result or error message in the light of its internal state, for example
the state of a plan to test the database system. In the case of reactive agents
such as artificial ants, no internal representation is usually integrated explicitly
in the agent. However, reactive agents have some form of implicit representation,
as they are able to answer to some stimuli and ignore the others. The internal
representation is then the type of values accepted in input.

The fourth property is the asynchronous nature of the exception management
mechanisms. In traditional definitions of programming languages, exceptions are
treated synchronously. In agent systems, the decoupled nature of agents makes
it impossible to guarantee synchronous management of an exceptional situation.
In particular, the case of real-time agent systems is then hardly feasible without
specific mechanisms. A corollary issue of asynchrony is that traditional exception
propagation mechanisms, which unwind the procedure call stack for a single
thread of execution, are not applicable. Propagation in agent systems spans
over several agents that may react in a variety of ways where the ‘linearity’ of
traditional approaches is not assumable. Propagation of exceptions in distributed
systems is more appropriate in the case of MAS, often involving a third party
entity specialized in exception handling [28,18,9].

The fifth and last property identified in this paper is that agent exceptions
can exist without underlying programming exception. In the previous illustrative
examples of this section, we have reviewed several cases where such statement
is verified. One typical example is with the protocol-driven agents of Mallya
and Singh [20], where exceptions along the protocol can occur while all agents
are executing correctly. The converse statement is also relevant: When an agent
encounters a programming exception, it incurs an agent exception. For example,
a programming fault that causes the termination of the agent provokes a ‘death’
agent exception as well [18].
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3.2 Other Terms for Agent-Oriented Computing

The definition proposed in this paper shifts the source of exception from the
invoked operation to the invoker agent. Consequently, the vocabulary used in
programming languages should be adjusted to fit the requirements in Agent-
Oriented Computing.

Exception diagnosis (or detection) refers to mechanisms to evaluate perceived
events and detect exceptions, i.e. unexpected events.

Exception signaling does not seem to need an equivalent in agent systems.
Indeed, signaling an exception means traditionally that a signal informs the
invoker about an exception. The flow of control is reversed back to the in-
voker. In MAS, the exceptions are detected by the agents individually, and
the need to reverse the control flow disappears, as the agent continues its
execution, with potential changes in its behavior.

Exception propagation is the mechanism that describes how agents deal with
exception situations they are unable to manage. In such case, an agent can
try to find a peer agent for help. The term propagation is used to express
that an exception is turned into a message (e.g. a call for support) and
propagated to peers that may help. This propagation is from the point of
view of the sender. For other agents, this propagation is just an event that
may be evaluated as an exception.

Exception transforming is a technique to change the type of an exception,
while it is processed. In distributed computing, transformations are used to
find a common exception type when several software components detect an
exception concurrently [10,9]. In agent systems, the transformation mecha-
nism is done by each agent that evaluates an event as exceptional. The reason
for the difference is the loose coupling between agents. Techniques from dis-
tributed computing actually assume a close collaboration among processes,
which is not always true in open systems like MAS.

Termination refers in usual systems to the end of a program caused by an ex-
ception condition (‘abnormal termination’). Agent exceptions cannot cause
a termination of a MAS due to the loose coupling among agents and their
autonomy. Agents are free to choose the consequence of an event (including
terminating), and their choices are individual, so that the termination of an
agent does not imply the termination of any other.

Resumption is usually defined as the continuation of a program initial execu-
tion after the handling of an exception. In agent systems, the definition is the
same with different underlying mechanisms, since resumption can concern
the activity of several agents simultaneously.

Exception handling is the actual processing of an exceptional situation by an
agent. By definition of an exception, handling is the execution of specific
tasks defined by a handler, while the execution of other activities of the
agent are either unmodified (the exception case is ignored and the execution
continues) or suspended (with subsequent termination or resumption).

Exception management refers to all activities involved in the management
of exceptions by agents. It encompasses all the previous mechanisms.
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In the programming language literature, the aforementioned terms often have
formal models of the underlying mechanisms. This work remains to be done for
Agent-Oriented Computing. Besides, candidate mechanisms are not necessarily
language constructs. Agent exceptions are at the agent level and other ‘forms’ of
mechanisms seem more appropriate. For example, propagation and transforma-
tion seem better served by architectural or algorithmic forms than a language
construct.

3.3 An Agent Architecture with Exception Management

Basic agent architecture. Agent architectures usually rely on the perception-
deliberation-action loop, where the deliberation phase can be minimal in the case
of reflex agents, or fairly elaborated in the case of learning agents [29]. Fig. 1
represents this usual loop with architectural details.

Agent

Internal Representation

Actuator Sensor

Application Environment

Agent Internal Mechanisms

Cycle transition
Legend

Read/Write access

Fig. 1. Basic Agent Architecture

The environment gives the surrounding conditions for the agent to exist [30], and
it is the base of the architecture. The agent is composed of four main components
with connectors that constitute the aforementioned loop. Events from the envi-
ronment are received by the agent in the sensor component (perception phase),
which forwards the percept to the agent internal mechanisms. The mechanisms
are the central processing of the agent (deliberation phase). Complex architec-
tures can implement these mechanisms with planners, inference engines, or other
models such as PRS or MANTA [31]. The mechanisms exploit the internal rep-
resentation of the agent to produce an output in reaction to the percept. The
internal representation is an abstract component that refers to any representa-
tion type inside the agent. For example, the BDI and KGP architectures are
instances where the internal representation is a set of knowledge bases [32,33].
Ant-like agents would have simpler internal representations, such as a set of
configuration parameters. The output of the agent internal mechanisms is re-
ceived by the actuator component that commits a corresponding action in the
environment (action phase, e.g. sending a message).
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Architecture with exception management. The definition of exception in
this paper and the subsequent properties lead to reconsider the architecture of
an agent to encompass exception awareness. Figure 2 depicts an architecture
that integrates necessary and optional architectural elements. The particularity
of this architecture pertains to the elaboration of the agent perception and actu-
ation at the architecture level. The novelty is the management of relevance and
expectation criteria to classify input events (the ‘percepts’) and let the agent
initiate potential exception management when required. This model can be re-
lated to the proposal from Shah et al. for exception diagnosis [34], and also with
the work of Weyns et al. on active perception and the notion of focus [35].

Agent

Internal Representation

Actuator Sensor

Application Environment

Evaluation

Agent Internal Mechanisms

Read access
Cycle transition

Legend

Relevance filter

Expectation filter

Generation

Relevance

Expectation

Base mechanisms

Exceptions mechanisms

Write access

Actuation Perception

Read/Write access

Fig. 2. Agent Architecture with Exception Management

The architecture sets forth necessary components represented in white, and op-
tional components in gray. The necessary components are the ones introduced
in the basic agent architecture of Fig. 1. The optional components are the ad-
ditional mechanisms introduced to manage agent exceptions. This distinction
separates the application logic in white, from the exception handling logic in
gray, so that designers can choose whether the exception management part is
necessary depending on their target application.

The architecture contains the four main components of the basic one, in more
elaborated ways. The perception component encompasses the sensor and per-
cept evaluation functionalities. Sensors receive events from the environment and
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pass them to the percept evaluation. This latter element is first responsible for
distinguishing relevant from irrelevant events. Relevance appears to be essen-
tial feature to filter out unnecessary information (potential for exceptions that
do not concern the agent in any way) and avoid the high-bandwidth issue in
Robotics [36]. The work of Shah et al. and Weyns et al. are instances of mech-
anisms that fulfill such information selectivity [34,35]. The percept evaluation
then identifies unexpected events depending on the criteria of the agent. One
example of criteria in planning agents can be that unexpected events are those
who are not ‘scheduled’ in the plan. Such criteria is independent of the archi-
tecture, and it is up to the designer to choose one in the development stages,
depending on the target application. The percept evaluation uses the internal
representation as the reference by which the agent can distinguish the events.

Once events are classified by the percept evaluation, they are forwarded to
the agent internal mechanisms component, where events are processed. The two
functional layers presented in this component separate the exception mechanisms
from the ‘base’ that aims at the application logic of the agent. The exception
layer introduces appropriate mechanisms to deal with exceptions, and its output
should be directed to the base layer, so that the agent can continue its activity
despite the occurrence of an unexpected event. The component as a whole ma-
nipulates the internal representation and its output is an action passed to the
actuation for producing an effect in the environment.

The purpose of the actuation component is to prepare the relevance and expec-
tation criteria of the agent in its future interactions. Criteria can be dynamically
adapted by the agent to fit its context in the system, and it is up to the designer
to decide the kind of evolution of criteria, notably static criteria along the life
of the agent, or dynamic criteria with different evolution strategies. Finally, the
actuator element serves to commit the agent action in the environment.

4 Research Issues for Agent-Oriented Computing

The definition of agent exception in this paper raises a number of research issues.
The aim of this section is to review these issues and to eventually foster further
research on the topic of exception handling in Agent-Oriented Computing.

Disciplined agent exception mechanisms. Agent exceptions require mech-
anisms adapted to their definition and constraints. Full-fledged MAS are
open and have autonomous agents, so that further research is necessary to
provide operational models for each mechanism, and eventually to provide
implementations.

Time management. Management of agent exceptions is asynchronous, owing
to the loose coupling of MAS and agent autonomy. There is no guarantee for
when an exception can be handled, especially when an agent needs for the
support of some other agents. Time management is therefore necessary to let
agents reason on exceptions. One particular issue will be for real-time MAS.
This type of systems is particularly significant considering the applications
of MAS technologies to multi-robot systems and the financial domain.
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Concert exception management. Souchon et al. proposed a mechanism for
agents to handle exception ‘in concert’ in the AGR agency model [11], based
on a model of concurrent exception handling [37]. With the present defini-
tion of exception, an adaptation of this initial work appears necessary. One
perspective of this research issue is for the development of (agent-based) au-
tonomic systems, where agents collaborate —perhaps selfishly— to handle
some exceptions and guarantee the adaptability of the system as a whole.

Multi-type exceptions. The present definition is in rupture with exceptions
as seen in programming languages. In consequence, we identified two types
of exceptions in MAS, one due to the use of programming languages, the
other due to the characteristics of MAS. Both types are however linked,
i.e. some programming language exceptions have some impacts on agent-
level exceptions, and conversely. The links between the two levels need to be
modeled and exploited so as to leverage their benefits.

Automatic handler generation. Current work on agent exceptions propose
some models of agents that can generate handlers at run-time [20]. Further
research is necessary to develop this idea and reach a state where models
can be turned into operational mechanisms. This work seems particularly
important since it implies more flexibility in MAS and a concrete use of
agent autonomy.

The list of issues is not exhaustive at this level of the research on agent
exceptions. It sets forth however some of the current concerns that need to be
addressed. Further work in these directions should refine the present situation
and reveal other issues.

5 Conclusion

In this article, we propose a definition of ‘agent exception’ based on the current
work on this research theme, and based on a model of full-fledged Multi-Agent
Systems, i.e. an open system made of autonomous agents in their environment.
An agent exception is then the evaluation by the agent of a perceived event as
unexpected (application-dependent notion). The particularity of this definition
is that exceptions only matter to one agent, whereas other agents are free to con-
sider it as a normal situation. It also advocates that agent exceptions are ‘not
only errors’, but also refers to ‘opportunities’ for agents to improve their perfor-
mance. It also shows that exceptions only matter for agents with an internal rep-
resentation, and that exception management is asynchronous, by opposition to
usual mechanisms in programming languages. It finally shows that agent excep-
tions can occur without any underlying programming exception, which justifies
the need for further specific research.

This new definition leads us to define a refined agent architecture to manage
exception and to identify a set of research issues. Our future work is to continue
our research on agent exceptions addressing these issues.
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Abstract. In this chapter we explore the role of regulation in joint activity that 
is conducted among people and how understanding this better can enhance the 
efforts of researchers seek ing to develop effective means to coordinate the 
performance of consequential work within mixed teams of humans, agents, and 
robots. Our analysis reveals challenges to the quality of human-machine mutual 
understanding; these in turn set upper bounds on the degree of sophistication of 
human-automation joint activity that can be supported today and point to key 
areas for further research. These include development of an ontology of 
regulatory systems that can be utilized within human-agent-robotic teamwork to 
help with mutual understanding and complex coordination. 

Keywords: Coordination, culture, human-agent-robotic systems, joint activity, 
ontology, policy, predictability, regulation, teamwork. 

1   Introduction 

One of the most important prerequisites for joint activity among people—and indeed 
for the functioning of human cultures—is the presence of regulatory systems by 
which such activity can be coordinated [13]. The kinds of joint activity we have in 
mind run the gamut of life, including processes as diverse as a conversation, a couple 
dancing, driving on a busy highway, and military operations. 

The essence of joint activity is interdependence—that what party “A” does 
depends on what party “B” does, and vice versa (e.g., “One if by land, two if by sea” 
in Longfellow’s account of Paul Revere’s famous ride). As soon as there is 
interdependence, there is a need for coordination in time (e.g., timing a live, multi-
party phone call) and/or space (e.g., designating a drop-off point), which in turn 
requires some amount of predictability and order. Such order has been described by 
Rousseau as the self-crafted bedrock of successful societies: 

 

…the social order is a sacred right which serves as the 
foundation for all other rights. This right, however, since it 
comes not by nature, must have been built upon conventions.” 
[31, p. 170]. 
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In this chapter, we will explore joint activity and the kinds of “conventions,” to use 
Rousseau's term, that serve to bring the order and predictability necessary for 
coordination among people, although we will call these "regulations" (for reasons that 
will be explained).  By "regulation," we mean any device that serves to constrain or 
promote behavior in some direction.   

We conduct our investigation by identifying and unpacking the many and diverse 
systems of regulation that humans create and employ for achieving order. In what 
follows, we first discuss the nature of joint activity  (Section 2), and then characterize 
some of the many culturally-based regulatory systems and their role in joint activity 
and coordination (Section 3). Finally, sections 4 and 5, respectively, outline some of 
the research challenges and applications of this work in the context of human-agent-
robot teams conducting complex operations, such as space exploration, disaster 
response, and military operations [3; 5]. In the Appendix, we provide a brief 
illustration of major categories emerging in our ongoing effort to develop an 
Ontology of Regulation. 

2   Joint Activity 

Joint activity, interdependent activity, is important even to animals, which in some 
ways are better analogues than humans for the limited intellectual capacities of 
software agents [16]. One important way in which animals accomplish joint activity is 
through coordination devices, including signaling and display behavior. Animal 
biologist John Smith has identified ten signal types that he claims are nearly universal 
to (at least vertebrate) animals, although the specific manner of expression may vary 
across species [6; 16; 32; 33 ]. These are simple signals, basic to coordination: e.g., “I 
am available to take part in joint activity,” (or not), “I am going to move,” “I am 
monitoring something important,” or “I am under attack.” Such signals decouple 
action from intention and provide opportunity for other parties to join in or stay away.  

With the increased complexity of our joint activities, predictability in support of 
coordination is even more important to humans. Cultural anthropologist Geertz [19] 
has argued that because of humans' under-determination biologically relative to lower 
animals, and because of our larger repertory of behavior, we are in even greater need 
of means of coordination. Notably, for the most part, we are left to fashion these 
means ourselves. That is, we need to learn and be taught how to live, interact, and 
control ourselves—hence our relatively long apprenticeships under parents and other 
educational and training influences. In this view, human culture itself is a vast 
fabrication of regulatory systems for guiding and constraining behavior, especially 
interdependent behavior (see also [20] regarding “guided doings”). 

Among humans, we distinguish roughly three types of joint activity. These are 
based on differences in the nature of their points of interdependence, in particular, 
interdependence among necessary resources only, among actions, and among 
motivations and goals [10]: 

 

Sharing: This is characterized by interdependence among necessary resources only.  
Parties have independent goals, and there is no functional coupling of methods. An 
example is two groups trying to schedule a conference room they both need to use on 
a certain day.  In sharing, constraints on resource allocation require negotiation. 



 Toward an Ontology of Regulation: Socially-Based Support for Coordination 177 

Cooperation: In cooperation, there is interdependence of activities but not of 
motivations and goals.  Often there is also interdependence of resources.  Following 
the last example, two groups trying to conduct their own meetings within the same 
room at the same time would be a cooperation.  So also, interestingly, are competitive 
games, such as football, where the two teams' actions are clearly interdependent while 
their aims are not the same and even contrasting.  

 

Collaboration: Shared project objective is the hallmark of collaboration [11].  All 
parties are trying to achieve the same end (mutually defined), and there is also usually 
interdependence of actions (often involving different roles) and resources.  Team 
members within one team in a football game (or a relay team in track and field) fit 
this description, as does a group of scholars working together to produce a genuinely 
multi-authored article on a topic of mutual interest. 

2.1   Key Aspects of Joint Activity 

We have asserted that one of the major purposes of regulation is the predictability and 
order it provides to support coordination of interdependent activities within joint 
activity. To make this coordination possible, participating parties need to 1) know 
some things in common with regard to their activity and, 2) use what they know in 
common to coordinate their interdependent interactions and moves. Following 
linguist Herbert Clark, we call the pertinent shared understanding “Common Ground” 
[14]. Common Ground consists of all the knowledge, beliefs, assumptions, and 
presuppositions that parties have in common with respect to their joint activity.1  
These knowledge components include the pertinent regulatory systems that apply to 
their joint activity, as well as related coordination devices that can be used to navigate 
coordination.  Before addressing these directly in Sections 2.2 and 3, we first present 
other important components of successful joint activity.  

We have argued previously that, in addition to adequate Common Ground, joint 
activity requires a “Basic Compact” that constitutes a level of commitment for all 
parties to support the process of coordination to achieve group goals [25]. We may 
say that to coordinate effectively, parties must have the basic resources, including 
sufficient common knowledge, i.e., have the ability to coordinate (Common Ground), 
and also the willingness to coordinate, the will (the Basic Compact). The Basic 
Compact is an agreement (often tacit) to participate in the joint activity and to carry 
out the required coordination responsibilities to facilitate group success [25; 26]. We 
represent as the ideal of the Basic Compact to be that parties want to be involved in 
the joint activity, and they want it to be successful (e.g., relay racers on a track team). 
Of course, many influences can degrade these ideal conditions (e.g., someone being 
coerced to participate). Such degradations can affect members’ loyalty to the Basic 
Compact. So also can a member's operational “stance,” in terms of having adequate 
resources, being overloaded or fatigued, being distracted, and so forth.  

                                                           
1 In itself, Common Ground makes no claim about quality; common ground may be well- or 

poorly-tuned to the joint activity.  Parties need to maintain common ground that is good 
enough to at least keep the joint activity moving forward. 
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One aspect of the Basic Compact is the commitment to some degree of goal 
alignment—typically this entails one or more participants relaxing some shorter-term 
local goals in order to permit group oriented long-term goals to be addressed. These 
longer-term goals might be shared goals (e.g., a relay team) or individual goals (e.g., 
drivers wanting to ensure safe journeys). A second aspect of the Basic Compact is a 
commitment to try to detect and correct any loss of Common Ground that might be 
disruptive. 

We do not view the Basic Compact as a once-and-for-all prerequisite to be 
satisfied, but rather as a continuously reinforced or renewed agreement. Part of 
achieving coordination is investing in those things that promote the compact, as well 
as being sensitive to and counteracting those factors that could degrade loyalty to it. 

All parties need to be reasonably confident that they and the others will carry out 
their responsibilities in the Basic Compact. In addition to repairing Common Ground, 
these responsibilities include such elements as acknowledging the receipt of signals, 
transmitting some construal of the meaning of the signal back to the sender, and 
indicating preparation for consequent acts. The Basic Compact is also a commitment 
to ensure a reasonable level of interpredictability; that is, agents acting, to the extent 
they can, so as to be mutually predictable/understandable and mutually directable by 
others. 

What is the primary role of a “Basic Compact” in joint activity? We submit that a 
critical role has to do with trust and predictability in the operation of the whole 
interactive system. For example, when the Basic Compact is strongly in force, we can 
trust that other people are working on their assignments, are telling the truth about 
important matters, are going to send an item to another party if they say they will, and 
so forth. In another example, the Basic Compact requires that if one party intends to 
drop out of the joint activity, he or she must inform the other parties.  Hence, the 
Basic Compact “washes over” the entire enterprise of the joint activity, largely 
conferring a trust level in the operations of all the components. When it is functioning 
at its best, the Basic Compact contributes to the predictability of events within the 
joint activity, what we have argued is a primary role for regulation in the first place. 

A certain way of interacting serves to maintain and even improve Common 
Ground. This way involves what is called the “joint action ladder” (JAL) [13]. When 
one party sends a message/signal to another, the second party, in reply, should 1) 
acknowledge that he has seen the signal arrive [attention], 2) “read” the signal 
[perception], 3) provide his interpretation of what it means [understanding] and, 4) 
indicate what he is likely to do as a result [action]. The latter two, in making 
understandings and intentions public, provide the opportunity for repair of Common 
Ground, the common understanding among the parties (e.g., through discussion of 
differences). 

2.2   Coordination Devices 

People coordinate through signals and more complex messages of many sorts  
(e.g., face-to-face language, expressions, posture). Human signals are also mediated 
in many ways—for example, through third parties or through machines such as 
telephones or computers. Hence, direct and indirect party-to-party communication is 
one form of a “coordination device,” in this instance coordination by agreement. For 
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example, a group of scientists working together on a grant proposal, may simply 
agree, through e-mail exchanges, to set up a subsequent conference call at a specific 
date and time. There are three other major types of coordination devices that people 
commonly employ: convention, precedent, and situational salience [13; 25]. 

Convention: Often prescriptions of various types and degrees of authority apply to 
how parties should interact. These can range from rules and mandated procedures, to 
less formal codes of appropriate conduct. These less formal codes include norms of 
practice in a particular professional community, as well as established practices in a 
workplace. Convention also often applies to activity devolving from more 
situationally emergent interactions in which we may engage, e.g., contracts we enter 
into, and debts and other kinds of obligations we take on. Coordination by convention 
depends on structures outside of a particular episode of joint activity. 

Precedent: Coordination by precedent is like coordination by convention, except that 
it applies to norms and expectations developed within the ongoing experience of the 
joint activity. As a process unfolds, decisions are made about the mutually accepted 
naming and interpretation of things, standards of acceptable behavior and quality, 
who on the team tends to take the lead, who will enact particular roles, and so forth. 
As these arise and develop during the course of the activity, they tend to be adopted as 
devices (or norms) of coordination for the remainder of the activity. 

(Situational) Salience: Salience has to do with how the ongoing work arranges the 
workspace so that next move becomes apparent within the many moves that could 
conceivably be chosen. Coordination by salience is produced by the very conduct of 
the joint activity itself. It requires little overt communication and is likely to be the 
predominant mode of coordination among long-standing, highly practiced teams. 
 

Coordination devices often derive from regulatory systems, as will be discussed in 
Section 3.3, after further discussion of regulation itself, next. 

3   Characterizing Regulation 

Culturally-based regulatory systems are many and diverse, and go beyond what we 
normally construe as “law” or even “rules." In addition to law-like devices, they also 
include customs, traditions, work-place practices, standards, and even codes for 
acceptable everyday behavior. In this section we discuss some of what we have 
discovered in our attempts to characterize regulation. 

3.1   Toward an Ontology of Regulation 

Paul Wohlmuth, a philosopher of law, once wrote an introductory chapter for a 
special issue of the Journal of Contemporary Legal Issues. This issue focused on the 
“constitution of authority” [34]. By constitution of authority he meant, roughly, how 
different kinds of things come to have regulatory power over human activity. He used 
the example of an automobile traveling a bend in the road to illustrate the ubiquity and 
diversity of the authoritative forms that can come to bear on human affairs (see also 
19; 29). Wohlmuth's full analysis is discussed in [16]. 
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Starting from the numerous examples provided by Wohlmuth, we engaged in an 
exploration to identify some of the different kinds of devices that serve to govern 
human conduct. This has been a somewhat informal investigation. It started as a 
brainstorming effort when we began to build a list of all the different kinds of 
regulatory concepts we could think of. Then we used dictionaries, thesauruses, 
synonym finders and the like. The main criterion for inclusion in our list was that a 
device constrains or promotes behavior in some direction. 

We needed to choose a word to represent the scope of the entire enterprise, and 
after considering several plausible candidates we settled on the generic term of 
“regulation” as one that seemed the most inclusive and accommodating of our 
purposes. As we continued our effort, rough categories for the numerous basic terms 
were created and refined. Once we had accumulated a reasonable seed set of 
regulatory mechanisms, we started circulating them among colleagues for reactions 
and contributions. As word has spread about the endeavor, friends and colleagues 
have kindly called in or e-mailed very welcome unsolicited contributions. 

We should add that—at least for the present—our central interest has been in the 
gradual emergence of stable categories—e.g., the difference between a “law-like" 
device” and an “obligation-like" device—and we have not worried much about the 
precision of each definition. In fact, up to now nearly all of our rough definitions have 
come from ordinary dictionaries rather than from careful handcrafting. For this 
reason, similarities and differences across broad categories seem more stable than 
distinctions among items within them. As an example, let us examine more closely 
laws and obligations. 

Law-like devices are variants on coded, largely, but not always, written down 
rules. They characteristically have the power of the State or similar authority behind 
them. One can be jailed, fined, or otherwise sanctioned for violating them, all 
“legally.” Some examples (including variants within the major category): 

 
Law-like devices (have the power of the State/authority behind them) 
• Law: All the rules of conduct established and enforced by the authority 
• Statute: A law passed by a legislative body and set forth in a formal 

document 
• Bill: A draft of a law proposed to a lawmaking body 
• Ordinance: A custom or practice established by usage or authority 
• Mandate: An authoritative order or command, especially a written one 
• Edict: An official public proclamation or order issued by an authority; 

Decree 
• Decree: An official order, edict, or decision, as of a church or government 

 

While “law” generally develops over time, gets codified, and exists and is enforced 
over time in a relatively extended process, there is also “fast law,” as in a “decree” or 
“edict.” Hence we decided to treat the two kinds as separate categories;  that is, within 
"law," there is both "fast" and "slow" law. 

Let us now contrast “law” with “obligation.” Obligation generally devolves from 
position, status, or special group, as in one becoming a parent, priest, Muslim, police 
officer, or the president of a social club. Some examples (including variants within the 
major category): 
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   Obligation-like devices (accrue from one’s position, role, state) 
• Obligation: Duty imposed legally or socially. Activity that one is bound 

to as a result of a contract, promise, moral responsibility, position 
• Duty: Any action necessary in or appropriate to one’s occupation, role, or 

position. Includes duties to groups of people, e.g., one’s elders, one’s 
children 

• Responsibility: Condition, quality, or fact of being responsible; obligation 
• Requirement: Something obligatory or demanded as a condition 

 

As in the law example, this category overlaps with some other items such as 
contracts and agreements—e.g., an agreement, or even a promise, can invoke an 
obligation—but contracts and agreements seem to have enough unique features that 
we treat them as a separate category, “Agreement-like things” (see Appendix). 

One might wonder about the forms in which regulation exists.  The current version 
of the Ontology contains over 220 regulatory concepts in about forty categories.  
Given this scope and diversity, one might argue that regulation is just about 
everywhere, in a myriad of forms.  This condition of pervasive regulation has been 
noted by sociologists and social anthropologists for some time. In addition to Geertz 
(noted earlier), we cite Erving Goffman, who has claimed that: 

 

…one of the consequences of this learning program 
[socialization, learning the extant systems of regulation] is the 
transformation of the world into a place that is appreciably 
governed by, and understandable in terms of, social 
frameworks. Indeed, adults… may move about through months 
of their days without once finding themselves out of control of 
their bodies or unprepared for the impingement of the 
environment—the whole of the natural world having been 
subjugated by public and private means of control [20, p. 33, 
emphasis added, our annotations in brackets]. 

 

And here is the major link between regulation and coordination: When regulatory 
systems break down, predictability and order degrade, and coordination becomes 
impossible. As stated by Goffman: 

 

If the meaningfulness of everyday activity is similarly dependent 
on a closed, finite set of [interdependent] rules [and practices]… 
then one can see that the …the significance of certain deviant 
acts is that they undermine the intelligibility of everything else 
we had thought was going on around us, including all next acts 
[predictability], thus generating diffuse disorder [20, p. 5, 
emphasis added, our annotations in brackets]. 

 

Given the importance of regulation in successful joint activity, we have, as noted, 
been developing an ontology of regulatory systems.  The current version of the 
Ontology of Regulation is organized under four main categories:  

 

o Regulatory Devices. These are the many forms of regulation themselves that have 
the power to promote or constrain activity and were exemplified by "law" and 
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"obligation" in our earlier discussions. This is the most highly developed category of 
the entries within the current Ontology -- with around 200 entries. (Some of the major 
categories and some examples are provided in the Appendix.) 

 

o Developmental processes for the Constitution of Authority. As noted earlier, the 
constitution of authority refers to the ways in which things come to have regulatory 
power over human activity.  In this category we include three types: The first we refer 
to as the "Origins and Derivations of Regulatory Devices" themselves. These are 
ways that regulatory systems come into existence. They include such processes as:  
force, the process of coming to an agreement, social emergence, legislation, court 
order, and divine intervention. The second we refer to as "Origins and Derivations of 
Officiation."  These are processes and devices by which people or institutions are 
initiated into positions of authority to enforce regulation (e.g., a police officer), for 
example, by election, ritual, testing, or accreditation. The third are "Origins and 
derivations of Interpretive Prerogative." These are processes and devices by which 
entities gain the authority to interpret regulation (e.g., judges). Examples are 
appointment, credentialing, or election. The first two categories listed in this 
subsection, together, are the second most highly developed categories in the current 
Ontology, with more than thirty entries. 

 

o Objects of Regulation. These are the entities to which regulatory devices apply.  
They apply to the activities of people--including people in roles, such as a medical 
doctor, a priest, a certified public accountant, or a citizen of a county--and institutions 
(e.g., a publicly traded company), as they participate in such processes as a marriage 
ceremony, audit, or corporate merger. 

 

o Guardians of Regulation. These are individuals or institutions empowered to 
enforce regulatory systems (as they apply to certain groups of people and their 
activities). Examples are a police officer with regard to the public, a parent with 
regard to his or her children, or the Securities and Exchange Commission with regard 
to publicly traded companies.  These enforcing entities often gain their regulatory 
authority by virtue of some process involving the "Origins and Derivations of 
Officiation" as described above (e.g., by licensure, appointment, or election by a 
people). 

 

o Interpreters of Regulation. Because the relationship between regulations and 
concrete applications in the world is often not straightforward (e.g., see Section 3.5 on 
the "Bureaucrat's Dilemma"), there must be people and institutions with authority to 
adjudicate alternative interpretations (e.g., judges or appeals courts). Such authority is 
usually granted through processes involving the "Origins and Derivations of 
Interpretive Prerogative." Examples are appointment of a judge and licensure of an 
attorney. 

The last three categories, "Objects of Regulation," "Guardians of Regulation," and 
"Interpreters of Regulation, except as illustrated, are largely undeveloped. It should 
also be noted that, depending on context, the same entity can appear in any of these 
three categories. For example, a parent may have a variety of regulatory authority 
over his or her children but, at the same time, be subject to the laws of the land. 
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A sample of major categories of regulatory devices from the Ontology is given in 
the Appendix. We should note that many, if not most, of these regulatory devices—
e.g., agreements or even contracts⎯ are, themselves, best characterized as processes 
and joint activities (see [18]). 

3.2   Fast and Slow Regulation 

We take the “speed” of a regulatory device to have three main dimensions: how 
quickly it can be enacted and acquire authority, how quickly it can be changed, and 
how quickly it can be enforced. For good reason, human activity happens at many 
different speeds, and regulatory devices need to be appropriate to these different 
paces. We would not want to have to engage the mechanisms of changing 
constitutional law for guidance and reprieve when someone has a gun to our face, for 
instance. The distinctions we address below have similarities to distinctions David 
Woods has made between activity at the “sharp end” (i.e., at the point of connection 
and impact with the world) and the “blunt end” (i.e., behind-the scenes culture and 
practice that bear on sharp-end activity) [15]. As a first attempt at addressing the 
speed of regulation, we have divided the major classes of regulatory devices into three 
types: 

Systemic Schemas, including things such as folkways (e.g., customs, traditions, 
mores) and elements of “natural law.” These are deeply engrained, pervasive 
guidance systems of a people, perhaps largely implicit, slow to develop, and slow to 
change. Interestingly, these types of regulation may be quick to enforce. It seems that 
in these kinds of matters people are inclined and feel authorized to take matters into 
their own hands when things go awry; that is, they may deal with enforcement 
personally and on-the-spot.  For example, many citizens might be inclined to 
intervene upon seeing deliberate burning of their nation's flag or the desecration of 
their prophet's image or holy book. 

Organizational Constraints and Allowances, including such things as 
authorizations, policies, practices, obligations, and codified rules (e.g., laws). These 
are more special-purpose devices that are explicitly and deliberately enacted and 
enforced by different configurations of people, within different socially constructed 
bodies (e.g., a club, agency, nation). While they can generally be enacted and 
modified more quickly than the Systemic Schemas, they can, in some instances, be 
slow to change through what may involve complicated processes (e.g., changing a 
country’s constitution). 
 

People tend to put enforcement in this category into the hands of some socially-
sanctioned authority. Speed of enforcement varies by the degree of closeness/access 
of such an authority to the pertinent (regulated) activity. On the highway, for instance, 
for the law to be engaged as regulation requires spotting of the incident by a law 
enforcement officer and may subsequently involve courts and procedures and 
judgments by designated individuals. (As an aside, technology is now affecting speed 
of enforcement in many ways. For instance, cameras and sensors are now enabling 
on-the-spot detection of traffic violations. This technology can document the 
violation, gain the driver’s identity and address from the license plate, and stuff and 
mail an envelope for delivery of the ticket and fine.) In contrast, good and bad 



184 P.J. Feltovich et al. 

manners (which are more like systemic schemas) on the highway (e.g., following too 
closely or cutting in too quickly after a pass) can and often are enforced by the 
individual participants—by honking horns or giving angry hand gestures—who feel 
they have authority in this context. 

 

Action Guides. One kind of action guide is what we call “design of affordances.” 
This involves what we make hard or easy to do by design, such as in the placing of 
doorways, sidewalks, streets, and bridges in particular places to channel traffic [28]. 
Not all design of affordances is physical.  For instance, we can make some activities 
easy or hard to do through the allocation of resources (e.g., restricting gasoline).  
Another kind of action guide, what we call “transactional utilitarian devices,” (see 
Appendix) are fast acting, often fluid, regulatory devices that we set for ourselves in 
the process of conducting everyday affairs with others—e.g., making promises, 
agreements, appointments, gestures, and so forth. Creating and dismantling 
affordances can be slow or fast (putting up a roadblock vs. building a road). The key 
is that once they are in place, they have nearly immediate regulatory efficacy. On the 
other hand, almost by definition, transactional utilitarian devices can be quickly 
created, dismantled, or enforced at the point of activity. 

3.3   Relationships Between Regulatory Systems and the Coordination Devices 

We have argued that regulatory systems are created by any social group to increase 
inter-predictability and order necessary for coordination in joint activity. Hence, it is 
not surprising that the main types of coordination devices (see previous Section 2.2) 
people use in the actual conduct of joint activity bear a strong relationship to various 
categories involved in the Ontology of Regulation (Appendix). Some of these 
relationships are clear, e.g., in the cases of agreement-like coordination devices, 
precedent-like devices, convention-like devices, and devices that are like “transient 
utilitarian devices/salience.” Hence, the coordination devices can be thought of as the 
operational mechanisms of the more abstracted regulatory systems. It is an interesting 
challenge for further research to investigate more deeply these kinds of 
correspondences (e.g., identifying additional types of coordination devices by 
examining categories of the Ontology that do not match well to the four discussed 
previously, for example a new category of "schedules"). 

3.4   The Special Status of Norms Among Regulatory Devices 

It is common in socio-cultural research to characterize social behavior as being 
subject to “norms” [12]. In this sense, norm means what Bourdieu called “habitus”—
dispositions or schemas relating perception, thought, and action that socially structure 
experience and behavior, while dialectically structuring the social world [2].  We 
suggest that this characterization can be further specified.  In our present treatment, 
we take behavior to be subject to regulation of many and diverse forms, as 
exemplified by the entries in our Ontology. Norms are but one these, indicating 
something about personal and societal acceptability.  In this regard, norms still do 
have a special status among regulation types. In particular, there are at least three  
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variations of norms, all of which possess some overlap, but at the same time suggest 
significant difference. All are socially constructed and enforced: 

That which exists now: This norm, call it “Norm1,” pertains to what is actually in 
place now (regardless of what the pertinent official rules, laws, etc., may be—see 
below). Regarding driving a highway, Norm1 refers to the largely self-organized, in-
place, ambient traffic speed: maybe 10+ the posted speed limit in clear, dry weather—
lower in ice or snow. What is extant is special for a number of reasons. First it has a 
certain momentum and inertia by way of its development, implementation, and 
execution, including enforcement and interpretation [34]. “Possession is nine-tenths 
of the law,” so to speak. Think of the intense societal processes associated with the 
regulation of abortion in the United States. Many people have devoted a good share of 
their lives (and spent a lot of money) to persuade the public, legislators, and judges to 
accept their point of view. Moreover, “what is” attracts a following, in particular all 
those who benefit from the current state of regulation, either in their personal 
behavior, by favor of their constituent voters (or not), in medical facilities that can or 
cannot operate, or in related official posts that were created, and people were 
subsequently able to assume, because of the state of affairs. 

That which is socially tolerable (relative, of course, to some reference group): This 
Norm2 (the “stretched norm”) refers to what people of a certain community will 
actually still tolerate, beyond in-place norms.  For instance, Norm2 reflects what a 
driver can get away with without incurring the wrath of other drivers—e.g., their 
taking down a tag number or calling in the police, honking their horns, or trying to 
run him of her off the road. While drivers, following the in-place norm, routinely 
drive faster than the posted speed limit, if somebody drives too fast, or even at the 
normal rate in icy and rainy conditions, others may try to take some action. It is clear 
that there are ranges of public tolerance for deviation from social norms established as 
“what is.” Audience members at the symphony may dislike but tolerate some degree 
of coughing or whispering, but may chastise louder talking or repeated cell-phone 
use. 

A more formal benchmark or standard by which some thing or process is judged 
acceptable: These are the more formal standards for regulation of behavior or 
products in a community. They often lie behind norms of the first two kinds, 
employed only when there are breakdowns in more informal employment and 
enforcement. In driving the highway, Norm3 refers to such things as the posted speed 
limit and all the legal machinations behind and entwined within it (e.g., the motor 
vehicle code, the courts). Norms of type three include laws, ordinances, posted job 
rules, rules-of-the-game, and so forth.  As an example, let us look at the three kinds of 
norms as they might apply to a junior lawyer in the (hypothetical) law firm of Dewey, 
Cheatem, & Howe: 

 

o Norm1 refers to what the young lawyer does, pretty much like the other 
junior lawyers do, on a day-to-day basis, when everything is going 
uneventfully, within routine. 

o Norm2 refers to what deviations people around him will tolerate without 
reprisal (e.g., taking off at noon each Friday to get a jump on the weekend, 
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being persistently behind in logging his billable hours, doing a great deal of 
travel away from the office). 

o Norm3 refers to the formalized rules and regulations pertaining to “being a 
junior partner at the Dewey firm.” 

 

So, what is special about norms as a regulatory device, compared to all the others? 
We propose that as benchmarks and criteria for acceptability, essentially for necessary 
quality, norms apply in the execution of all the other regulatory devices. These other 
regulatory devices can be carried out, applied in ways that are themselves subject to 
extant norms of all three kinds: the ways that are currently honored in a social group, 
the deviations that are tolerated, and in the formal regulations that can be brought to 
bear under challenge. One can easily see how these might play out in the execution of 
an agreement, even more clearly with regard to a contract, but even with regard to 
such activities as engaging in a promise, giving and responding to a command, 
executing one’s duties and obligations, or just “obeying the law.” 

Norms also apply to the internal workings of any joint activity itself, in the cues 
that signal the need for and initiation of the joint activity, in the coordination devices 
and reciprocal actions utilized by the parties within the execution of the joint activity, 
and in the signals that indicate the joint activity is coming to a close. In a simple 
example, in the activity of a customer checking out at the counter of a convenience 
store, the customer generally initiates the interchange by walking up to the sales 
clerk’s counter and placing an item on it. It is not the norm, for this purpose, for the 
customer to continue clutching the item—which may in fact be a cue to the clerk that 
the customer is approaching to ask a question (“Where's the restroom?”).  One can 
envision how norms might be involved in the other components of this seemingly 
simple, everyday transaction, including the coordination devices that are employed. 

3.5   Qualifying Regulation: The Bureaucrat’s Dilemma 

Regulations may be implicitly or explicitly qualified in order to take account of 
context.  I promise to drive my friend to the airport on Friday—if my car is out of the 
repair shop by then. It is okay to break the speed limit—if one is driving an accident 
victim to the hospital. When “authorities” do not tie the hands of “enforcers” too 
rigidly, the latter can recognize and appropriately adapt to such circumstances. 
However, because of their limited perceptual and reasoning abilities and their 
difficulty in grounding and adapting to context, this is a daunting challenge for 
software agents. 

Consider this seemingly simple rule: Congress shall make no law abridging 
freedom of speech. Then we start thinking about the circumstances in which one 
would not want this rule to be honored—for example, the famous crime of (falsely) 
crying “Fire!” in a crowded theater. So, we further qualify: Congress shall make no 
law abridging freedom of benign speech.  But what is benign? (or “speech” for that 
matter?). 

For every qualification made, one is left with a choice. Either a judgment needs to 
be made (e.g., about what is “benign”) or there needs to be yet another qualification 
(e.g., defining what constitutes “benign”). In human affairs, this can lead to absurdity 
if there is an attempt to expunge all human judgment from such interpretations—to 
specify so extremely that criteria are mechanically analyzable. An example has been 
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presented in the literature about national workplace rules that require that all handrails 
be 28 inches high, whether the users are professional basketball players or midgets 
[24]. Revisiting speech, and our example, such specifications might take the form: 
Congress shall make no law abridging freedom of speech that lasts less than one-half 
hour, a degree of specification that enables mechanical and reliable interpretation by 
artificial agents, even by relatively stupid ones, but which can lead to absurd rigidity 
and reversals of intended effects. 

4   How Can We Make Software Agents Better Team Players? 

A key challenge in any kind of joint activity is to successfully navigate points of 
interdependency among the participants. In this section, we will focus on two 
challenges for software agents to become better team players: 1) participation in the 
Basic Compact, and 2) the crucial “handoff” operation embodied in the “joint action 
ladder” (JAL) as it contributes to mutual understanding. 

Being part of the Basic Compact means that participants want to participate in the 
joint activity and want the group’s goals to succeed. This is an ideal, and variants 
often occur (e.g., forced participation). This affects trust and confidence throughout 
the enterprise, for example, the belief that participants will function and report 
appropriately. 

Of course, except for rare software agents that can reason about the relative utility 
of their participation in competing tasks, the issue of an agent’s dedication to the 
group work is moot. More germane to the subject for most agents is their 
responsibility to uphold certain kinds of standards in reporting and functioning. For 
instance, if an agent reaches a failure point and will not be able to complete its task, 
this needs to be reported to others, and agents can often do this. On the other hand, 
more nuanced kinds of “appraisals of progress” can pose daunting challenges for 
software agents. In contrast, highly expert human teams have ways of understanding 
and reporting about “how things are going” that can anticipatorily foreshadow success 
or failure. 

With respect to the first rung of the JAL, attending, agents need to share a common 
repertoire of watched-for signals that call for entry (and exit) into interdependency 
cycles—for example, signals such as a customer placing a store item on the check-out 
counter at a convenience store. The signals (and more complex messages) that the 
agents send and receive ideally would be expressed at many levels of overtness and 
abstraction, depending on the situation. These could range from simple beeps and 
buzzes (e.g., the warning of a big truck backing up) to complex appraisals that would 
tax the best human experts (e.g., “The battle here is going badly”). 

In critical situations, agents cannot afford to miss important signals. This is a 
matter of attention management, both in one’s self and in others. Sometimes attention 
is directed appropriately by the nature of the ongoing activity itself, through the 
coordination device of salience. However, in many cases where practice is less of a 
routine, the need for attention focus calls for the ability of agents to direct each other 
to help ensure that messages are not missed. Operative regulatory frameworks can 
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help, as in certain circumstances cues to the start of joint activity may be mandated, 
conventional, part of accepted practice, and so forth (e.g., the reaching out of a hand 
for hand shaking). 

Once arrival of signals/messages has been detected, the JAL prescribes that they 
must be read and understood. Analysis must reveal their “meaning in context.” This 
is largely a matter of adequate Common Ground, the pertinent (to the activity) 
knowledge that agents either bring with them or gain in the course of ongoing 
participation, including knowledge of the regulatory mechanisms and coordination 
devices that apply. Knowledge of pertinent regulatory devices can help by 
constraining the space of possible meanings for both sender and receiver (e.g., 
conversation policies [21; 23]). A major challenge, however, is for the parties to 
construct mutually a model of which regulatory systems apply. This is particularly 
challenging because the question is highly context sensitive; that is, it depends on 
how the parties conceptualize “what they are doing now.” Consider the pertinent 
forms of regulation that would be taken to apply if a couple (or an observer watching 
them) conceived that they were “inspecting a house” for possible purchase, versus 
“casing a house” for a robbery, or a group thinks it is “conducting a holy war” versus 
“committing criminal murder” [1; 9].  Fluidly adopting different perspectives is 
difficult even for humans [17]. A major challenge for software agent participation in 
joint activity is the sophistication with which agents can adopt such “points of view” 
regarding their activities or changing roles.   

When an agent has created a candidate understanding, it must broadcast this 
understanding for public scrutiny, in particular, for appraisal by those others with 
whom the agent’s actions are most interdependent. This provides opportunity for the 
detection of failures and slips of Common Ground among the parties. Additionally, 
the final action rung of the JAL, involving broadcasting the next steps one is likely to 
take on the basis of this current, tentative understanding, not only provides additional 
information about understanding, but it also decouples intention to act from action 
itself, allowing for corrective intervention before actual moves are made. Both of 
these mechanisms contribute to increasing the predictability and transparency (e.g., of 
intent, stance, and state) of interdependent agents to each other and, hence, contribute 
to productive coordination. 

Finally, the parties need to participate in repair of their understandings, as needed, 
to enable successful further progress in the joint activity. Making mutual 
understandings visible aids this repair process, and, hence, improves the quality of 
Common Ground.  Aspects of discordance among the parties’ understandings can 
vary in transparency and abstraction, from those involving simple facts and 
observable states, to those involving more complex levels of interpretation and 
reasoning that may tax agents, e.g., relations among things, inferences, interpolations, 
and appraisals of progress [7]. In any event, discrepancies in the agents’ 
understandings require that they be capable of some forms of negotiation. As with 
determination of meanings in general, knowledge of the regulatory systems under 
which the agents are operating may help to delimit the range of discrepancies that 
occur. 

The sketch just presented of the nature of understanding and interaction needed for 
successful joint activity is a caricature, intended to overly pull apart and concretize 
operations that in practice are often more blended and abbreviated, especially as 
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groups work together over time and learn about their activities and each other. That is, 
in reality, things are often different. One example is “downward evidence” in the JAL 
[13], by which higher levels of response are taken as indications of lower ones (e.g., a 
response that conveys sensible understanding of a message also conveys that it was 
noticed and read). Other examples of real complexities that belie the simplifications 
presented here involve qualitative changes of state in items such as coordination 
devices and even regulations. For example, agreements over time can become 
precedents, at which point they no longer require operational deliberation. Procedures 
conducted with explicit reference to plans, over time can come to be directed mostly 
by situational salience.  Practice over time can be transformed into law. 

The treatment above, though compromised, is intended to accentuate the kinds of 
understandings and operations that are required to conduct successful joint activity in 
its rawest form, and hence to point to the most important places where software agent 
capability must be considered (and possibly improved over time) in creating 
successful, mixed human-agent working groups. 

5   Applications to Human-Agent-Robotic Teamwork 

We are applying the ideas presented in this chapter to facilitate joint activity in mixed 
human-agent-robot teams. We are doing this in two primary ways. First we are 
implementing regulatory systems that help coordinate joint activity through 
constraints of authorizations and obligations that we call “policies” [4]. In this we 
utilize KAoS Policy and Domain Services, a framework that can reliably and flexibly 
specify, analyze, enforce, and adapt policy. Applications include modeling a point-of-
view, such as in “adversarial modeling,” in which we attempt to model actions and 
reactions to events by groups of people sharing a culture greatly different from our 
own. Another is cross-domain information exchange (CDIX), in which we attempt to 
facilitate the sharing of information across different governmental and relief agencies, 
perhaps highly different in their rules, procedures, and organizational “cultures.” We 
are also applying this work in the context of human-agent-robot teams within 
complex operations, such as space exploration, disaster response, and military 
operations [3; 5]. 

A second direction is to enhance our understanding of the regulatory systems 
operative in human social behavior and to develop our “Ontology of Regulation” that 
can be implemented to support our human-agent modeling systems.  The ontology is a 
work in progress. We are currently formalizing its concepts and relations within an 
OWL ontology using the Cmap Ontology Editor (COE; [22]). (For a current version, 
contact Feltovich). 

We believe that the unusual approach of modeling social behavior with more 
attention to operative regulatory structures, relative to individual behavior and 
cognition, will complement other modeling approaches in important ways. For 
example, much of a people’s culture may well be more stable than individual 
behavior and cognition, and may well be more amenable to being represented in 
advance, when, for example, there is need to quickly ramp-up a model of a brand-new 
hostile social group. 
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Appendix: Some Major Categories from the Ontology of 
Regulatory Devices: 

• Coercion (various uses of force, pressure, intimidation) 
• Agreements (including contracts, promises, etc.) 
• Precedents (guidance from pertinent past cases, decisions, events) 
• Plans (recipe-like things, including schedules, designs, forms) 
• Standards/norms (benchmark kinds of things—what is contextually 

acceptable) 
• Fashion: (the current style or mode of dress, speech, conduct, etc.) 
• Exceptions (various kinds of suspensions of rules, e.g., zoning variances, 

waivers) 
• Commands (orders by an authority) 
• Permissions (allowances to conduct certain actions) 
• Folkways (including practices, taboos, customs, ceremonies, myths, 

rituals...) 
• Lessons (ways of operating, acting learned from study or, often, unfortunate, 

experience—”That surely taught me a lesson.”) 
• Codified rules (things similar to laws) 
• Obligations (accrue from positions held or assumed) 
• Authorizations (means of granting authority) 
• Incentives (which implicates disincentives, i.e., classes of enforcement and 

punishment) 
• Design of Affordances (by what we make hard or easy to do by design, even 

physical design, such as the placement of doorways, sidewalks, streets, 
bridges—cf. Norman [28]) 

• Transactional utilitarian devices (fast acting, often fluid, regulatory devices 
that we set for ourselves in the process of conducting everyday affairs—e.g., 
making promises, agreements, appointments, pledges, gesture, expression… 

• “Natural Law:” (for example, rights to life, liberty, property, …rights to 
punish violations of natural law, etc. “Social Contract” theorists, e.g., Locke 
[27], Hume, Rousseau [31]) 

• Physical and physiological law 
• Ideology/Belief/philosophy (idea systems of a people, e.g., Confucianism, 

democracy) 
• Honor Codes (including “face,” codes of ethics, and duties) 
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Abstract. The use of norms is a well-known technique of co-ordination
in multi-agent systems (MAS) adopted from human societies. A norma-
tive position is the “social burden” associated with individual agents,
that is, their obligations, permissions and prohibitions. Compound ac-
tivities may be regulated by means of normative positions. However,
conflicts may appear among normative positions of activities and sub-
activities. Recently several computational approaches have appeared to
make norms operational in MAS but they do not cope with compound
activities. In this paper, we propose an algorithm to determine the set of
applicable normative positions, i.e., the largest set of normative positions
without conflicts in the state of an activity, and propagate them to the
sub-activities.

1 Introduction

Society has frequently come across the need of coordinating interactions among
individuals and one way of addressing that need has been to establish restric-
tive environments where the interactions are constrained to only those partici-
pants and those interactions that are meant to be. For analogous reasons, the
MAS community has proposed regulated environments where agents –human or
software– interact as [1,2,3].

The environments we will have in mind in this paper are regulated environ-
ments where agent interactions are structured as repetitive interactions –that
we shall call activities– and the whole environment is the result of the com-
position of many such activities. These activities are subject to explicit sets of
conventions that prescribe how the actions of agents that participate in a given
activity establish or fulfil commitments that affect the participants of that ac-
tivity and of subordinate activities. For lack of a better term we will refer to
such environments as regulated compound activities.

Many real world societies conform to this type of regulated environments
and virtual counterparts are easy to conceive. For instance, Figure 1 describes
the example of an on-line commodities trading market that has different price-
fixing conventions which may have different simultaneous enactments (different
auctions to buy, say, wholesale fruit and poultry; one-to-many negotiations for
supermarkets to stock their weekly supply, direct purchasing for scarce quality
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Fig. 1. Example of compound activities

goods like spices). These price-fixing activities are, on one hand, preceded by ac-
tivities whose purpose is to set the grounds for the day’s trading (e.g., activities
to introduce whatever is to be exchanged during the day, or the accreditation of
buyers and their credit lines, etc.) and, on the other hand, they may be followed
by other activities like delivery contracting, temporary warehousing or packag-
ing, which in-turn may be compound activities on their own, etc. Other examples
of compound activities that naturally come to mind are hospital operation, the
football world association (FIFA) activities, or the execution of everyday local
government activities.

The conventions that regulate activities, as the examples show, usually have
both a procedural component and a declarative one. The conventions may be
expressed in different ways although the most familiar ones are commitment-
based interaction protocols (e.g., [1,4,3]) and logical (and logic-based) systems
(e.g., [5,6]), or as a combination of both [7]. Some of these approaches have
elegant conceptual frameworks behind and a few have also an operationalisation
that is amenable to be implemented and still a few have been able to integrate
the three previous types of convention representation. This last family is what
we aim at in our proposal.

In advancing conceptual or implementation frameworks for compound activi-
ties, one of the main problems to address —from a social perspective— is to keep
track of the commitments that are being established and fulfilled dynamically
anywhere in the (compound) society while the society is active. This is a partic-
ularly significant problem in societies where truly autonomous entities intervene.
The actual problem, then, is to keep an appropriate record of the commitments
that are being made and their follow-up, to make sure that the commitments
are consistent. This entails the need to make the problem operational, state it
in such a way that formal and implementations are feasible and practical.

In this paper, consequently, we want to make headway towards a proposal
of a framework for commitment management in regulated environments formed
by compound activities. For this purpose we adopt a social perspective to the
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problem and take a simplified and unconventional approach along the follow-
ing lines: We abstract the notion of commitment and commitment management
by focusing only on the prohibitions, permissions and obligations associated to
actions, what we will call the normative positions. We also abstract the way nor-
mative positions propagate in the society by having a directed graph linking the
activities that inherit normative positions and assuming that the graph is prede-
fined and to that extent independent of the way activities are actually connected
in formal and implementational ways. The management of commitments is also
abstracted in this paper by focusing only in the resolution of conflicts among
normative positions and using conventional priority criteria to choose between
conflicting positions and only then propagate normative positions to the subor-
dinate activities. Since we are interested in making our proposal operational we
also present an algorithm that implements these ideas and keeps track of the
evolution of normative positions in acyclic compound activities and maintains a
conflict-free normative positions base.

The rest of the paper is structured as follows. In section 2, normative positions,
deontic conflicts and criteria for conflict resolution are introduced. Compound
activities and their deontic conflicts are defined in section 3. In this section,
properties of normative consistency in regulated compound activities, as e.g.
strong and weak conflict-freedom, are also introduced. In section 4, an algorithm
to resolve deontic conflicts in compound activities is proposed. In section 5 we
present an example of how the algorithm works. Finally, conclusions and future
work are outlined in the last section.

2 Normative Positions

A normative position is the “social burden” associated with individual agents,
that is, their obligations, permissions and prohibitions (cf. [5]). Depending on
what agents do, their normative positions may change – for instance, permis-
sions/prohibitions can be revoked or obligations, once fulfilled, may be removed.

In regulated actions, the change of normative positions maybe determined
by rules that, for example, are time-dependent. For instance, a permission to
lend a book is enabled every week day at 9:00a.m. and disabled every week day
at 9:00p.m. Action performances can enable normative positions that can be
subsequently fulfilled or cancelled. For example, an obligation to pay for a good
is enabled if that good is received (generation). This obligation can be disabled
either by paying for the good (fulfilment) or by returning it (cancellation).

Deontic conflicts may appear when norms enable new normative positions
that are incompatible with the normative positions already enabled. Tradition-
ally, three principles have been used to resolve deontic conflicts: legis posterior,
legis specialis and legis superior. These principles order the norms to avoid con-
flicts following three criteria: a chronological criterion (lex posterior), a speciality
criterion (lex specialis) by which a specific law prevails over a general law and
a source criterion, where preference is linked to the rank of the issuing author-
ity (lex superior). We extend these criteria with an extra criterion, the salience
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criterion where we may capture whatever other notions of pertinence or relevance
may be of use in a specific activity.

Although such criteria are used to resolve deontic conflicts, in some occasions
two or more criteria may need to be sequentially applied to achieve that goal. In
those circumstances the criteria involved need to be totally ordered. An exam-
ple of this meta-ordering is when the source criterion prevails over the speciality,
salience and the chronological ones, the salience criterion prevails over the spe-
ciality and the chronological ones, and the speciality criterion prevails over the
chronological one.

In this paper, the chronological and salience criteria will have a straightfor-
ward operationalisation. The speciality criterion will correspond to the hierar-
chical dependence of an activity and its subactivities. Establishing certain agents
as sources of law, defining the ordering of sources of law, and ordering norms
using the source criterion are left for future work.

We may now illustrate these ideas and state them in a more precise way.
We mentioned that a normative position is a permission, a prohibition or an
obligation to perform a specific action. Since we are concerned with resolving
conflicts between normative positions, we find useful to associate to every norma-
tive position a time stamp that corresponds to the moment it becomes effective
(enabled). For the same reason we find useful to associate to normative positions
an argument that stands for its salience, although it is beyond the scope of this
paper how values may be assigned to that parameter. More precisely:

Definition 1. Let δ ∈ {per, prh, obl} be a label for the “social burden” of per-
forming an action identified by a, a salience constant s ∈ N and a time-stamp
t ∈ N, the formula δ(a, s, t) stands for a normative position that states that at
time t, and with priority s, action a becomes permitted, obligatory or prohibited.

Examples of normative positions may be: per(bidag1 , 0, 0), prh(bidag1 , 2, 1), etc.
The former normative position intuitively states that agent ag1 is permitted to
bid since time 0 and this normative position has priority 0. The latter normative
position intuitively means that agent ag1 is prohibited to bid since time 1 and
this normative position has priority 2.

As mentioned above, deontic conflicts among normative positions can arise
as agent interactions progress. We will say that two normative positions are in
conflict if one is a permission or obligation and the other is a prohibition over
the same action than the former, regardless of their corresponding salience and
enabling times. That is:

Definition 2. Given two normative positions np, np′ such that np = δ(a, s, t)
and np′ = δ′(a′, s′, t′) ; np, np′ are in conflict, denoted np��np′, iff:

1. {δ} ∪ {δ′} = {per, prh}, a = a′; or
2. {δ} ∪ {δ′} = {obl, prh}, a = a′.

In the previous example, per(bidag1 , 0, 0) and prh(bidag1 , 2, 1) are in conflict by
the first condition of definition 2.
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We take care of the other two parameters of normative positions with the
following definitions.

Definition 3. A normative position np = δ(e, s, t) is a chronological successor
of np′ = δ′(e′, s′, t′), written as np �T np′, iff t > t′.

Definition 4. A normative position np = δ(e, s, t) is more salient than np′ =
δ′(e′, s′, t′), written as np �P np′, iff s > s′.

In our example, prh(bidag1 , 2, 1) is more salient and a chronological successor of
per(bidag1 , 0, 0).

3 Regulated Compound Activities

In this paper we have in mind that a performance of a set of actions —subject
to some regulation—constitute an activity and that an activity may be com-
posed of several sub-activities which in turn may also be decomposed into other
sub-activities. Take the example of a clearinghouse involving different activities
outlined in Figure 1. The main activity, trading, involves subactivities —like
auctioning, one-to-many negotiation or direct purchasing— that serve the pur-
pose of fixing the conditions for purchasing goods and other activities required
for payment and delivery of goods.

Several models and methodologies for MAS (e.g., [1,2,3]) have looked into
the notion of compound activity using different names such as performative
structure, missions or simply interaction. For our purposes we only need to look
into those aspects that relate to the evolution of normative positions within an
activity and how these are propagated in the hierarchy.

Each activity behaves like a transition system: it has a state, represented by
a set of grounded terms, that changes with the performance of the actions of
the agents in the activity. This transition function is partial since not all the
actions may occur in all the states of an activity. Norms establish what actions
are permitted, forbidden or obligatory (and their effects) in a given state of the
activity, defining the transition function of the activity. Normative positions are
part of the state of an activity and they also change by the performance of ac-
tions and the application of the transition function. Note also that since different
activities may be connected —in the sense that what happens in one has effect
on the other— when those normative positions in the first change, the normative
positions in the other may also change. We will say that the scope of a normative
position is the activity where it becomes enabled and all the sub-activities asso-
ciated with that activity. Finally, recall that conflicts among normative positions
could be avoided through the sequential use of criteria (chronological, salience,
speciality) that order normative positions. Once these conflicts are resolved, we
obtain the set of normative positions that will be applied and propagated to the
sub-activities.

All these elements are part of the following definition:
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Definition 5. An activity state is a tuple q = 〈Ag, Ac, I, N, N in, Nout, τ, O, Ω〉
where

– Ag is a finite, non-empty set of agent identifiers;
– Ac is a finite, non-empty set of action labels;
– I is a finite subset of grounded terms that describe the current value of the

parameters involved in the activity;
– N is the set of normative positions of an activity state q;
– N in is the set of normative positions propagated from a state of a super-

activity to activity state q;
– Nout is the set of applicable normative positions propagated by activity state

q to the sub-activities;
– τ : Q×2Ac → Q is a partial transition function from the set of activity states

and sets of actions to the set of activity states Q, which defines the state
τ(q, ac) that would result by the performance of actions ac = {ac1, . . . , acn}
from state q – note that, as this function is partial, not all the set of actions
are possible in all the states;

– O is a finite, non-empty set of partial order relations 
i in the set of nor-
mative positions; and

– Ω is a total order relation over O.

Henceforth, we will respectively denote with a q subscript the components of
activity state q.

N in
q is the set of normative positions propagated to a activity state q. Algo-

rithm 1, presented in section 4, calculates N in of the super-activities of q prior
to use Algorithm 2 to calculate Nout

q . Intuitively, the set of inherited normative
positions is the union of applicable normative positions of the super-states.

Nout
q is the set of applicable normative positions in an activity state q that will

be propagated to the sub-activities. It is obtained by removing conflicting nor-
mative positions from the union of those that are inherited from super-activities
and those that arise from the transition that produces state q. For the removal of
conflicting normative positions we use the ordering criteria in O in the sequence
established by Ω. To calculate Nout

q , we use Algorithm 2 presented in section
4 that applies the meta-ordering Ω of activity state q in Nq ∪ N in

q in order to
remove the less priority, conflicting normative positions.

Figure 2 shows an example of state of an auctioning activity with 3 agents:
an auctioneer, and two buyer agents. Auctioneer made an offer and the buyer
can bid for that offer. Buyers have a credit that is decreased when they win an
auction. If an agent performs an unsupported bid a sanction of 10 is applied.
The set of inherited normative positions (N in) is empty since we assume that
auctioning is not part of other activity. The set of applicable normative positions
is equal to the set of associated normative positions since there is no conflict.
Partial function τ is defined using ∪C and \C operators that respectively adds
and removes formulae from a set C of the tuple defining an activity state. For
instance, q∪N {obl(payag1, 0, t)} intuitively means that the obligation is added to
the set of normative positions N of activity state q. Notice that τ checks the set
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q = 〈Ag,Ac, I, N, N in, Nout, τ, O, Ω〉 where

– Ag = {auct, ag1, ag2};
– Ac = {offerauct, bidag1 , bidag2 , payag1 , payag2};
– I =

{
credit(ag1, 100), credit(ag2, 50), item(it1), price(it1, 100),

decrement(it1, 10), reserveprice(it1,30)

}
;

– N = {per(bidag1 , 0, 0), per(bidag2 , 0, 0)};
– N in = ∅;
– Nout = {per(bidag1 , 0, 0), per(bidag2 , 0, 0)};

– τ (q, ac)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q ∪N {obl(payag1 , 0, t)}
if ac = {bidag1} and

price(i, p), credit(ag1, x) ∈ Iq and
x ≥ p and time(t)

...

(q \I {credit(ag1, x)})∪I

{credit(ag1, x − 10)}
if ac = {bidag1} and

price(i, p), credit(ag1, x) ∈ Iq and
x < p and time(t)

...
((q \I {credit(ag1, x)})\N

{obl(payag1 , s, t)})∪I

{credit(ag1, x − p)}

if ac = {payag1} and
price(i, p), credit(ag1, x) ∈ Iq and
x ≥ p and obl(ac, s, t) ∈ Nout

q

...
q ∪I {collision} if ac = {bidag1 , bidag2}

...
– O = {�T ,�P }; and
– Ω = {〈�P ,�T 〉}.

Fig. 2. Example of activity state

of applicable normative positions, since Nout
q is supposed to be conflict-free, but

changes the set of existing normative positions Nq. Furthermore, there are the
two order relations introduced in section 2, as mentioned above salience criterion
is preferred over the chronological one.

The scope of norms is established by the scope of the normative positions that
the norms enable (or disable). Their scope is the activity (and sub-activities)
where their normative positions are associated. When a compound activity has
a normative position associated, it is propagated to its sub-activities.

Definition 6. If an activity A is a sub-activity of activity B, denoted A �
B, then there exists at least one state q′ of activity B such that its applicable
normative positions are a subset of the normative positions propagated to each
state q of A. Formally, A � B =⇒ ∀q ∈ A, ∃q′ ∈ B : Nout

q′ ⊆ NP in
q .

An activity structure defines which sub-activities compose it and which sub-
activities compose the former sub-activities by relating the states of activities.
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Definition 7. An activity structure is an acyclic directed graph H = 〈Q, E〉
where Q is the finite, non-empty set of activity states; and E is a finite, non-
empty set of edges 〈q, q′〉. If 〈q, q′〉 ∈ E we say that q is a sub-state of q′ and q′

is a super-state of q.

Henceforth, we will denote with a subscript H the components of activity struc-
ture H .

Definition 8. Given two activities A and B, A is a sub-activity of B iff all the
states of A are a sub-state of, at least, one state of B. Formally, A � B ⇐⇒
∀q ∈ A, ∃q′ ∈ B : 〈q, q′〉 ∈ E.

3.1 Deontic Conflicts in Compound Activities

Deontic conflicts can appear either between the set N of normative positions
generated in an activity state by the transition function or the set N in of nor-
mative positions inherited from other activity states. As expressed in definition
2, two normative positions of the same activity state are in conflict if one is a
permission or obligation and the other is a prohibition over the same action than
the former. Two normative positions from different activity states are in conflict
if one is a permission or obligation and the other is a prohibition over the same
action than the former and one of them is associated to a sub-state of the other.

Definition 9. Given two normative positions np and np′, respectively pertaining
to activity states q and q′, such that np = δ(a, s, t), np′ = δ′(a′, s′, t′) and q, q′ ∈
QH ; np, np′ are in conflict in an activity structure H, denoted np

H��np′, iff
np��np′ and q = q′; or np��np′ and exists a path between q and q′ in E.

By relating activity states in an activity structure, we can adapt the speciality
ordering criterion introduced in section 2 to our definition of activity state:

Definition 10. A normative position np is more specific than np′ in activity
state q, written as np �S np′, if np ∈ Nq and np′ ∈ N in

q .

Given the example of a trading activity composed of two auctioning sub-activities
and the activity structure introduced above, we have:

– N in
trading = ∅ since trading has no super-state.

– Ntrading = {prh(bidag1 , 1, 1)} if agent ag1 made an unsupported bid.
– Nout

trading = {prh(bidag1 , 1, 1)} since there is no conflict in Ntrading∪N in
trading.

– N in
auction1 = {prh(bidag1 , 1, 1)} since auction1 activity state has only trading

as super-state and Nout
trading = {prh(bidag1 , 1, 1)}.

– Nauction1 = {per(bidag1 , 0, 0)}, for example, as agents are permitted to bid
in auction houses.

Thus, there is a conflict between Nauction1 and N in
auction1. Normative position

per(bidag1 , 0, 0) is more specific than prh(bidag1 , 1, 1) because the former belongs
to Nauction1 and the latter to N in

auction1. In order to calculate the set of normative
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positions without conflict, we may use the speciality criterion to remove less
priority, conflicting normative positions resulting Nout

auction1 = {per(bida, 0, 0)}.
When the normative positions in an activity state are not conflicting, we will

say that this activity state is conflict-free:

Definition 11. An activity state q is conflict-free if there is no conflict among
its normative positions (from N in

q ∪ Nq).

In the example above, the trading activity state is conflict-free since N in
trading ∪

Ntrading has no deontic conflict.
When the applicable normative positions in an activity state q (Nout

q ) are not
conflicting, we will say that activity state q is Ω-conflict-free. Ω is the meta-
ordering of activity state q used to resolve any deontic conflict.

Definition 12. An activity state q is Ω-conflict-free if the set of applicable nor-
mative positions in the activity state (Nout

q ) is the largest set of normative po-
sitions Nout

q ⊆ N in
q ∪ Nq that is conflict-free after applying meta-ordering Ω of

activity state q to resolve deontic conflicts.

In the example above, auction1 activity state is Ω-conflict-free.
On the one hand, there are activity structures without conflicts before ap-

plying any method of conflict resolution, we call them strongly conflict-free. An
activity structure H is strongly conflict-free if there is no conflict in the norma-
tive positions of any activity state.

Definition 13. An activity structure H is strongly conflict-free if ∀q ∈ QH ,

∀np, np′ ∈ Nq ∪ N in
q : ¬(np

H��np′).

On the other hand, there are activity structures without conflicts after applying
a method of conflict resolution, we call them weakly conflict-free. This property
holds when the method of conflict resolution is effective. An activity structure
is weakly conflict-free if there is no conflict in the set of applicable normative
positions (Nout) of any activity state.

Definition 14. An activity structure H is weakly conflict-free if ∀q ∈ QH ,

∀np, np′ ∈ Nout
q : ¬(np

H��np′).

In the example above, the activity structure that constitutes the trading activ-
ity composed of two auctioning activities is not strongly conflict-free because
there is a conflict between two normative positions in auction1 activity state (in
Nauction1 ∪N in

auction1). However, it is weakly conflict-free because after applying
the Ω meta-ordering, the conflict is resolved and Nout

auction1 includes no conflicting
normative positions.

4 Maintenance OF Ω-Conflict-Freedom

After the norms are applied in each activity state using τ , the set of norma-
tive positions associated in each activity state (N) changes. Since the scope of
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normative positions also include the sub-states of the activity state where the
normative position is associated, the set of applicable normative positions should
be calculated and propagated to the sub-states.

For that purpose, we introduce in this section Propagate-NPs algorithm
that takes as input a list of the leaves of the trees defined by the activity structure
and ensures that each activity state in the activity structure is Ω-conflict-free.

Algorithm 1. Propagate-NPs(leaves, h)
Require: leaves is a list of the leaves of each tree of the activity structure h = 〈Q,E〉
Ensure: Every Nout is conflict-free
1. for all leaf ∈ leaves do
2. if Nout

leaf = null then {First execution for activity state leaf}
3. parents ← {q′ | 〈leaf, q′〉 ∈ E}
4. l ← ∅
5. if parents 
= ∅ then
6. Propagate-NPs(parents, h)
7. for all parent ∈ parents do {Append Nout of parents}
8. l ← l ∪ Nout

parent

9. end for
10. end if
11. N in

leaf ← l
12. Nout

leaf ← Get-ConflictFreeNPs(leaf)
13. end if
14. end for
15. return leaves

In algorithm 1, for each leaf of the activity structure, if Nout has not been
calculated yet (line 2), we apply recursively Propagate-NPs to the parents (if
they exist) (line 6) and we gather the list of all the normative positions inherited
by the current activity state and update N in (line 12). We set to Nout, the result
of the algorithm Get-ConflictFreeNPs applied to the updated activity state
(line 13).

When normative positions are propagated, the set of applicable normative
positions of an activity state should be calculated. For that purpose, Algorithm 2
returns this set ensuring that it is conflict-free. In algorithm 2, for each normative
position np, we gather in s, by calling Get-SetInConflict, a list of normative
positions including np and the ones in conflict with np (line 4). If there is at least
one normative position in conflict, then we call Get-PriorityNP to resolve the
conflict and get the highest priority normative position (line 6). This normative
position is added to the result list anp (line 8). Otherwise, np is added to the
result list in anp (line 11).

Although different activity states can share super-states, Algorithm 1 calcu-
lates Nout of each activity state only once. Addition and removal of normative
positions from a activity state require that Nout for that activity state and its
sub-states are recursively set to null using Algorithm 3.
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Algorithm 2. Get-ConflictFreeNPs(q)
Require: q = 〈Agq, Acq, Iq, Nq , N in

q , Nout
q , τq, Oq, Ωq〉

Ensure: anp is the list of applicable normative positions
1. anp ← ∅
2. nps ← Nq ∪ N in

q

3. for all np ∈ nps do
4. s ← Get-SetInConflict(np, nps)
5. if Length(s) > 1 then
6. pnp ← Get-PriorityNP(Ωq, s)
7. if pnp 
∈ anp then
8. anp ← anp ∪ pnp
9. end if

10. else if Length(s) = 1 then
11. anp ← anp ∪ np
12. end if
13. end for
14. return anp

Algorithm 3. Clear-ANP(q, h)
Require: q = 〈Agq, Acq, Iq, Nq , N in

q , Nout
q , τq, Oq, Ωq〉 and h = 〈Q,E〉

Ensure: For q and its sub-states, Nout = null
1. Nout

q ← null
2. children ← {q′ | 〈q′, q〉 ∈ E}
3. for all child ∈ children do
4. Clear-ANP(child)
5. end for

5 Example

In this section, we introduce an example of a regulated compound activity. Pic-
ture a set of auctioning activities, regulated by their own norms, that constitute
a trading activity. At the trading activity level there is a norm stating that a
buyer that makes an unsupported bid in a auctioning activity will be banned to
bid in any of the auctioning activities except in the auctioning activity called
auction2. The meta-ordering to be applied will be (�P ) ≺ (�S) ≺ (�T ): the
salience criterion prevails over the speciality and the chronological ones, while
the speciality criterion prevails over the chronological one.

Figure 3 shows an example of execution for a trading activity compound of
two auctioning activities and a buyer agent. Figure 3(a) illustrates the state of
the activities prior to any unsupported bid. Activity state trading has no norma-
tive position associated. Thus, its set of applicable normative positions is empty.
Activity state auction1 only has associated a permission with normal priority
(salience 0). Since Nout of the super-state is empty, its Nout only contains the
associated permission. Activity state auction2 only has associated a permission
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trading

N

Nout

N in = ∅ N in = ∅
auction1

N

Nout

per(bidag1 , 0, 0)

per(bidag1 , 0, 0)

auction2

N

Nout

per(bidag1 , 1, 0)

per(bidag1 , 1, 0)

(a) activity states before an unsupported
bid

trading

N

Nout

N in = {prh(bidag1 ,1, 1)} N in = {prh(bidag1 , 1, 1)}

prh(bidag1 , 1, 1)

prh(bidag1 , 1, 1)

auction1

N

Nout

per(bidag1 ,0, 0)

prh(bidag1 ,1, 1)

auction2

N

Nout

per(bidag1 , 1, 0)

per(bidag1 , 1, 0)

(b) activity states after an unsupported bid

Fig. 3. Example of the normative state of the activity structure

with higher priority (salience 1). Since the Nout of the super-state is empty, its
Nout only contains the associated permission.

Figure 3(b) shows the state of the activities after an unsupported bid per-
formed by agent ag1. Activity state trading has associated the prohibition (with
salience 1) for ag1 to bid. Since the trading state has no super-states, its Nout

is equal to its associated normative positions, i.e., the prohibition. Recall that
activity state auction1 only has associated a permission with normal priority
(salience 0). Since the prohibition in N in (inherited from trading activity state)
has higher salience, it will belong to the Nout of auction1 state. Recall that
auction2 state only has associated a permission with salience 1. Since the prohi-
bition in N in (inherited from trading state) has the same salience, the speciality
criterion is applied. The permission will belong to the Nout of auction2 state
because it belongs to N , i.e., it is associated to the sub-state.

6 Related Work

There are many works in deontic conflicts (e.g., [8,9,10,11,12] ) from a logical
point of view but there are few works that implement computational strategies
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to solve deontic conflicts in the area of multi-agent systems. Two developments
are related quite directly with the problems we face in our proposal [13,14].

In [13], the authors present an agent architecture where obligations, permis-
sions and prohibitions can be added to the agents’ plans. Contrary to our work,
in which deontic conflicts appear when defining sub-activities, deontic conflicts
appear in this work when the agent has to adopt non-hierarchical norms. They
(explicitly or implicitly) associate norms to Instantiation Graphs which represent
an action or state declaration as a hierarchy of all its possible forms of partial
instantiation of variables. Thus, norms are also ordered: explicit norms over-
ride implicit norms; and new norms override old norms. Although they consider
deontic conflicts, they only adopt an agent-centred stance.

In [14], the author proposes the use of RuleML for representing business
contracts. The underpinning of the proposal is the use of Defeasible Logic (DL) as
the inferential mechanism for RuleML. The primary use of DL in that work is the
resolution of conflicts that might arise from clauses of a contract. DL analyses the
conditions laid down by each rule in the contract, identifies the possible conflicts
that may be triggered and uses the priorities defined over the rules to eventually
resolve a conflict. By using DL, a normative position receive different priority
depending on the antecedents of the rule and not on the normative position by
itself. In contrast, our priorities are defined at the normative position level, i.e.,
we assign a priority to each normative position.

7 Final Remarks

We took an unconventional approach to a complex problem and in this paper we
made many simplifying assumptions that we intend to relax in future work. For
the moment we wanted to keep our framework simple so that we could explore the
main components of the problem. We also wanted to keep it concrete enough
so that it could be applied to real organisations and because of that aim we
wanted to profit from implemented systems that are already available to deal
with regulated simple activities.

In spite of the austerity of this proposal, it is evident that most intuitions we
have explored here are prone to a serious logical treatment. Conflict resolution in
this paper has been limited to a total ordering of normative positions. It is true
that this type of resolution may be adequate in some conflicts and some activi-
ties. However, we realise that this issue may be treated in other interesting ways
accommodating other culturally accepted conflict resolution mechanisms like ne-
gotiation, arbitration or argumentation. Likewise, the current conflict resolution
components of the framework could be revisited to incorporate other pertinent
normative aspects like peer to peer conflict settlements, contract breaches and
blame assignment, enforcement policies, etc.

To define normative positions, in this paper we use an action identifier a that
hides too much information. Here we only wanted to be able to decide whether
two actions are the same or not. However, that makes the crude handling of
normative positions to be simplistic stand-in for commitments. In a system that
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does serious commitment management, action identifiers will very likely be terms
that adequately reflect the state the activity and the organisation at the time of
establishing the commitment: in particular, who are the agents involved in the
commitment and what are the specific current values of the parameters involved
in the definition of the commitment and its fulfilment or up-keeping.

In a similar vein, we have assumed a somewhat obscure notion of activity
state because we have hidden many significant elements inside the “transition
function”. One option we have at hand to make our notion of transition functions
clear is to use the notion of performative structures [1]. In that light, the transi-
tion function correspond to their speech-acts labelled finite-states machines of a
scene together with the scene transitions. Another option is to think of activities
as logical theories with a deduction mechanism. In that case, transitions occur
when a new action (or possibly concurrent actions) is added to the theory and
its consequences deducted. In both cases, performative structures and logical
theories, for each transition we still need to keep track of the starting and termi-
nating states of the activity. For that purpose, we may take from [1] the notion
of scene state and institutional state and extend them by including the state of
the normative positions in the activity and in the compound activities. As part
of the state of an activity we need to take into account those commitments that
are active, but also their relevance to the actions that take place so that their
propagation is correct (sound and complete).

The propagation of normative positions that we discuss in this paper is hand-
wired and fix on top of the activities hierarchy. The paths of commitment prop-
agation should be an inherent outcome of the way activities are regulated and
combined to constitute the regulated environment. Furthermore, although it may
be rather natural to assume nested hierarchies of activities, the express assump-
tion of acyclicity is questionable from an applications point of view, no matter
how convenient it may be for formal and algorithmic reasons. In this respect, it
looks attractive to distinguish between propagation links among activities that
are established through the flow transitions designed into the compound activi-
ties on one hand and propagation between states whenever an action takes place
anywhere in the organisation and for that purpose a notion of pertinence would
be welcome.

We have taken care to make our proposal compatible with the model from
[1] and as such it constitutes an extension of that model. In that language we
can say that our activities correspond to scenes, performative structures, and
nested normative structures. Because of this last possibility, we need an extended
notion of transition to handle connections between all of these that produces non-
nested compound activities. In addition, this richer activity composition leads
us to consider an enriched notion of transition that deals in a smooth way with
commitment propagation. We are also interested in profiting from expressive
extensions to that model so that conventions may be stated not only as transition
graphs but as normative expressions of good expressive power endowed also with
a deduction mechanism. Our proposal, as it stands, should work properly with
our recent production rules extensions [15].
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In this prospective paper, we have followed an unconventional approach to the
problem of managing dynamic commitment-making in regulated agent systems.
We think that the problem is a fundamental one for regulated environments
where the autonomy of participants is an essential ingredient. Although we are
aware that what we propose here is far from being a solution to that problem, we
acknowledge that the approach has brought to light many challenging questions
that we believe deserve further analysis.
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Abstract. In this paper, we present our metamodeling approach for integrating 
semantic web services and semantic web enabled agents under Model Driven 
Architecture (MDA) view which defines a conceptual framework to realize 
model driven development. We believe that agents must have well designed 
environment specific capabilities to fully utilize the power of semantic web 
environment. Hence, we first define a conceptual architecture for semantic web 
enabled agents and then discuss how this conceptual architecture can form the 
basis of a metamodel that can be used in the development of semantic web 
enabled agents with a model driven approach. We then zoom into the specific 
part of the metamodel that defines the interactions between semantic web 
enabled agents and semantic web services since it is not possible to cover all the 
aspects of the metamodel at one time. So we extend the metamodel of the 
conceptual architecture from the point of entity aspect for the interaction 
between semantic agents and semantic web services. Finally, we discuss the 
mappings between the entities of this extended metamodel and the implemented 
entities of SEAGENT framework. 

1   Introduction 

Recently, model driven approaches have been recognized and become one of the 
major research topics in agent oriented software engineering community [2] [17] [27]. 
Model driven development is considered as the most promising generational shift in 
programming technology [28] and even has been characterized as a paradigm shift [6] 
by several researchers. Model driven development aims to change the focus of 
software development from code to models. This would increase the level of 
abstraction in development. Therefore software products would be less affected from 
the changes in the technological advancements and also the productivity of software 
developers would be improved [1]. To work in a higher abstraction level is of critical 
importance for the development of Multi-agent Systems (MAS) since it is almost 
impossible to observe code level details of MAS due to their internal complexity, 
distributedness and openness. 
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The key activity in model driven development is model transformation [29] and 
model transformation requires syntactical and semantical definitions of models which 
are provided by metamodels. Various metamodels have been proposed for specific 
MAS methodologies like Gaia, Adelfe, PASSI [5] and SODA [21]. These 
metamodels have been generally used for presenting concepts and only recently they 
are being considered as a foundation for MAS development tools [26].  

Collaborating with Object Management Group’s (OMG) Agent SIG, the FIPA 
Modeling Technical Committee proposes a metamodel called Agent Class 
Superstructure Metamodel (ACSM) [24] which is based on – and extends – UML 2.0 
superstructure [25]. The metamodel presents a formal proposal for agent 
organizations considering the agent, group and role concepts and their relations. In 
fact, representing the MAS structure with these main meta-entities is not new and 
formerly proposed in AALAADIN MAS metamodel [12] but not as formal as FIPA 
Modeling TC’s work. 

On the other hand, MetaDIMA [15] is a metamodeling project which aims at 
bridging the gap between existing agent architectures with their development tools 
and agent-based methodologies, inspired by the Model Driven Architecture. It deals 
with metamodeling and transformations for agents. However, the project is currently 
in its preliminary phase. 

In [26], Pavon et al reformulates their agent-oriented methodology called 
INGENIAS in terms of the Model Driven Development paradigm. This reformulation 
increases the relevance of the model creation, definition and transformation in the 
context of multi-agent systems.  

However, we believe that a significant deficiency exists in above mentioned agent 
metamodeling and model-driven MAS development studies when we consider 
modeling of agent systems working on Semantic Web [4] environment. Near future’s 
agent systems will doubtlessly work in this environment and agents in these systems 
will have capabilities to interact with other semantic entities such as semantic web 
services.    

In this study, we present our approach for integrating semantic web services and 
semantic web enabled agents under a model driven view. The primary focus of our 
work is the semantic web environment. We believe that agents must have well 
designed environment specific capabilities to fully utilize the power of semantic web 
environment. Hence in this paper, we first define a conceptual architecture for 
semantic web enabled agents and then discuss how this conceptual architecture can 
form the basis of a metamodel that can be used in the development of semantic web 
enabled agents with a model driven approach.  

Model driven architecture (MDA) [23] defines a conceptual framework to realize 
model driven development. MDA is based on developing Platform Independent 
Models (PIMs) and then converting these PIMs to Platform Specific Models (PSMs) 
by model transformation. Therefore definitions of PIM and PSM are required for the 
development of semantic web enabled MAS with the MDA approach. In this paper, 
we zoom into the specific part of the metamodel that defines the interactions between 
semantic web enabled agents and semantic web services since it is not possible to 
cover all the aspects of the metamodel at one time. So we extend the metamodel of 
the conceptual architecture from the point of entity aspect for the interaction between 
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semantic agents and semantic web services. We model the agents and the relation 
between these agents and semantic web services.  

The paper is organized as follows: In Section 2, we introduce the proposed 
approach for Semantic Web enabled MAS modeling. Our conceptual architecture for 
Semantic Web enabled MASs is discussed within this section. Section 3 introduces 
our metamodel that extends ACSM. This metamodel is the first step to incorporate a 
model driven approach to the development of MASs. So, in section 4, we model the 
interaction between the semantic agents and semantic web services using MDA 
approach from the entity view. We also discuss a model transformation example for 
agent plans within this section. Conclusion and future work are given in Section 5. 

2   Proposed Approach for Semantic Web Enabled MAS Modeling 

The basic entities of a Semantic Web enabled Multiagent System must be defined in 
order to apply model driven approaches for development of these systems. We believe 
that these entities can be derived from the conceptual architecture of Semantic Web 
enabled MASs. These conceptual entities derived from the conceptual architecture 
will constitute the key point for application models which are defined within the 
context of model driven software development. For this reason, we introduce the 
conceptual architecture of Semantic Web enabled MASs in the first following 
subsection and discuss the use of these conceptual entities and components within the 
context of model driven approach in the second subsection. 

2.1   A Conceptual Architecture for Semantic Web Enabled MASs 

As it is mentioned in Berners-Lee et al’s study [4], the real power of the Semantic 
Web will be realized when programs are created that collect Web content from 
diverse sources, process the information and exchange the results with other 
programs. The computer programs in question are software agents and their 
effectiveness will increase exponentially as more machine-readable Web content and 
automated services (including other agents) become available. First of all, we need to 
define a conceptual architecture for semantic web enabled MASs to realize this 
vision. In this MAS architecture, autonomous agents can also evaluate semantic data 
and collaborate with semantically defined entities such as semantic web services by 
using content languages.  

Our proposed conceptual architecture for Semantic Web enabled MASs is given in 
Figure 1. The architecture defines three layers: Architectural Service Layer, Agency 
Layer and Communication Infrastructure Layer. A group of system agents provides 
services defined in the Architectural Service Layer. Every agent in the system has an 
inner agent architecture described in the Agency Layer and they communicate with 
each other according to the protocols defined in the Communication Infrastructure. 

Semantic web agents are agents which are initiated by using the platform 
architecture and able to use semantic services within the service layer. In 
Architectural Service Layer, services (and/or roles) of semantic web agents inside the 
platform are described. All services in the Architectural Service Layer use the 
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capability of the Agency Layer. Besides domain specific agent services, yellow page 
and mediator services should also be provided.  

Agent Registry is a system facilitator in which capabilities of agents are 
semantically defined and advertised for other platform members. We also define a 
conceptual entity called Semantic Service Registry in the proposed architecture in 
order to provide semantic service discovery and execution for platform agents by 
advertising semantic capabilities of services. Ontology Mediator is another 
architectural service in which translation and mapping of different ontologies are 
performed to support interoperability of different agent organizations using different 
ontologies.  

The middle layer of the architecture is the Agency which includes inner structural 
components of Semantic Web enabled agents. Every agent in the system has a 
Semantic Knowledgebase which stores the agent’s local ontologies. Those ontologies 
are used by the agent during his interaction with other platform agents and semantic 
web services. Evaluation of the ontologies and primitive inference are realized by the 
Reasoner. Semantic Knowledge Wrapper within the Agency provides utilization of 
above mentioned ontologies by upper-level Agency components. 

 

Fig. 1. The conceptual architecture for Semantic Web enabled MASs 

The Planner of the Agency Layer includes necessary reusable plans with their 
related behavior libraries. On the other hand, the Semantic Content Interpreter 
module uses the logical foundation of semantic web, ontology and knowledge 
interpretation in order to check content validity and interpretation of the message 
during agent communications. 
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The bottom layer of the architecture is responsible of abstracting the architecture’s 
communication infrastructure implementation. More detailed discussion of this 
proposed conceptual architecture can be found in [20]. 

2.2   Model Driven Engineering Approach for Semantic Web Enabled MAS 

The implementation of methods and tools for the development of semantic web 
enabled multi agent systems based on the conceptual architecture discussed in Section 
2.1 can be addressed by Model Driven Engineering (MDE). MDE [6] is a recent 
approach that aims to increase the abstractness level in software development by 
using models in different phases and therefore by freeing the developers from the 
code level details. Each conceptual part of the architecture should be analyzed and 
designed while developing a semantic web enabled multiagent system. Using a model 
driven approach will enable us to reuse the components of the architecture and to 
generate the source code of the system from high level abstraction models. 

Model Driven Architecture (MDA) [23] is one of the realizations of MDE to 
support the relations between platform independent and various platform dependent 
software artifacts. MDA defines several model transformations which are based on 
the Meta-Object-Facility [22] framework. These transformations are structured in a 
three-layered architecture: the Computation Independent Model (CIM), the Platform 
Independent Model (PIM), and the Platform Specific Model (PSM). A CIM is a view 
of a system from the computation independent viewpoint [23]. Such a model is 
sometimes called a domain model or a business model. CIM requirements should be 
traceable to the PIM and PSM constructs by marking the proper elements in CIM. For 
instance, although the CIM does not have any information about agents and web 
services, the entities in the CIM are marked in an appropriate notation to trace the 
agents and semantic web services in the PIM of the semantic web enabled MAS. 
Bauer and Odell [2] discuss which aspects of a MAS could be considered at CIM and 
PIM.  

The PIM specifies a degree of platform independency to be suitable for use with a 
number of different platforms of similar type [23]. In our perspective, the PIM of a 
semantic web enabled MAS should define the main entities and interactions which are 
derived from the conceptual architecture in Section 2.1. Also, the PIM of semantic 
web enabled MAS should have different aspects where specific concerns can be 
addressed. The PIM for service-oriented architecture discussed in [3] identifies four 
aspects: information aspect, service aspect, process aspect and Quality of Service 
aspect. In our approach, the PIM of semantic web enabled MAS can have mainly two 
aspects: entity aspect and interaction aspect in order to avoid decomposing the system 
into too many views. While the entity aspect combines the information aspect and 
service aspect defined in [3], the interaction aspect is similar with the process aspect 
and describes a set of interactions between agents and semantic services in terms of 
message exchange.  

On the other hand, the PSM combines the PIM with the additional details of the 
platform implementation. The platform independent entities in the PIM of semantic 
web agents are transformed to the PSM of an implemented semantic web enabled 
agent framework like SEAGENT [8]. The flexible part of this approach is that the 
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PIM enables to generate different PSMs of semantic web enabled agent frameworks 
automatically. These PSMs can be considered as the realizations of our conceptual 
architecture.  

The metamodel proposed in [20] defines the general concepts and entities of the 
proposed conceptual architecture. This metamodel provides the key point for 
customizing the entities for PIM and PSM metamodels in the MDA based 
development of this agent system. However, the current metamodel could not be 
considered as a complete PIM for semantic web enabled MAS. For instance, 
Semantic Web Service meta-entity and its related entities such as Service Ontology 
should be detailed. We believe that new entities for agent - semantic service 
interaction will be needed to add into the metamodel to provide this metamodel as a 
PIM for modeling the interaction in question.  

Obviously, a Semantic Web Service encapsulates a service interface and a service 
process mechanism for its discovery and execution by semantic web agents. This 
interface and the semantic process should also be represented by appropriate entities 
in the metamodel in order to constitute the PSM of such MAS or directly generate 
semantic web enabled agent platform source code. Although there are ongoing efforts 
e.g. OWL-S [31] and WSMO [33] which aim to describe web services semantically, 
there is currently no platform independent standard for representation of these web 
services in order to be used in the semantic web environment. Due to the lack of this 
standard, representation of the service interface and the process mechanism constructs 
in the metamodel are difficult. Hence, it is not possible to define a PIM metamodel for 
semantic web enabled MAS without including these appropriate entities in the 
metamodel.  

Another part of the semantic web enabled MAS architecture that must be detailed 
in the metamodel is the behavior library (planner). One of the implementation of 
reusable plans in the behavior library is the Hierarchical Task Network (HTN) 
planning [11] which is an AI planning methodology that creates plans by task 
decomposition. From the point of MDA based development, this HTN or other 
realization techniques of planning is defined in PSM level. For instance, SEAGENT 
which is a semantic web enabled MAS framework is based on the HTN planning 
framework presented by Sycara et al. [30] and the DECAF architecture [13]. If we 
consider the metamodel of SEAGENT framework as PSM, the HTN and other 
specific entities of the SEAGENT framework are defined in this metamodel as PSM 
entities. In PIM level, the general concepts of planning mechanism should be modeled 
and any specific component of HTN or other planning mechanisms should not be 
considered for platform independence. 

In this study, we model the planning mechanism and the relation between this 
planning mechanism and semantic web service from the point of entity aspect. That is 
why we use the Class diagram to represent the model of this relation. In semantic web 
enabled MAS architecture, planner mechanism has the capability of executing plans 
consisting of special tasks for semantic service agents in a way described in [16]. The 
agents in the system can discover the appropriate service and invoke this service 
through the planning mechanism. The metamodel of the semantic web enabled MAS 
should consider the general entities of planner mechanism, semantic web service 
profile parameters and the relation between these entities. While the PIM metamodel 
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does not have any platform specific entities like HTN, OWL-S or WSMO, the 
implementation of this mechanism in SEAGENT could be considered as platform 
specific realization. 

3   A Metamodel for Semantic Web Enabled MASs 

In [20], we introduced a core agent metamodel superstructure to define elements and 
their relationships of a Semantic Web enabled MAS depending on the previously 
discussed conceptual architecture. However, the metamodel in question was improper 
to be used in model transformations and it was too primitive to support widely-
accepted software modeling tools due to its arbitrary formalism. Therefore, in this 
study, we present one representation of the above metamodel by extending FIPA 
Modeling TC’s Agent Class Superstructure Metamodel (ACSM) [24]. Although 
ACSM is currently also in its preliminary phase, we believe that it neatly presents an 
appropriate superstructure specification that defines the user-level constructs required 
to model agents, their roles and their groups. By extending this superstructure we do 
not need to re-define basic entities of the agent domain. Also, ACSM models 
assignment of agents to roles by taking into consideration of group context. Hence, 
extending ACSM clarifies relatively blurred associations between Semantic 
Organization, Semantic Agent and Role concepts in our metamodel by appropriate 
inclusion of ACSM’s Agent Role Assignment entity. However, ACSM extension is 
not sufficient and we provide new constructs for our metamodel by extending UML 
2.0 Superstructure and Ontology UML Profile which is defined by Djuric [9]. 

Before discussing our metamodel, ACSM is briefly mentioned below. More 
information about ACSM can be found in [24] and [25]. ACSM has a specification 
which is based on –and extends- UML superstructure. It proposes a superstructure  
for modeling agents, agent roles and agent groups. Its class model is illustrated in 
Figure 2. 

ACSM utilizes the distinction between UML Classifier and UML Class. The agent 
classification in the model is based on an extension of Classifier. This provides 
omitting features of object-orientation (such as object-based messaging and 
polymorphism) which are troublesome for agents. 

An Agent Classifier in the model defines various ways in which agents will be 
classified. It has two subclasses: Agent Physical Classifier which defines the primitive 
or basic classes describing core requirements of an agent and Agent Role Classifier 
which classifies agents by the various kinds of roles agents may play.  

The Agent class defines the set of all agents that populate a system. Each instance 
of an Agent is associated with one or more Agent Classifiers that define its necessary 
features. 

Group is defined as a set of agents which have been collected together for some 
reason. Within a group, its member agents interact according to the roles that they 
play. Groups are partitioned into Agentified Groups and Non-Agentified Groups 
according to whether or not they are addressable as an agent and can act as an agent in 
their own right. 
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Fig. 2. FIPA Modeling TC’s Agent Class Superstructure Metamodel [24] 

Besides UML Classifier utilization, another noteworthy feature of the ACSM is 
modeling Agent – Role assignment as a ternary association. The fact that assignment 
of Agents to Roles is dynamic, required association is modeled by the Agent Role 
Assignment entity. A Role assignment between an agent and its role must be qualified 
by a group context. Hence, an Agent Role Assignment is a Class in the model whose 
associated instances associate Roles, Groups and Agents. Each instance of the ternary 
Agent Role Assignment associates a role, a group and an agent. 

The Semantic Web enabled MAS metamodel being proposed in this study is given 
in Figure 3. The model extends FIPA Modeling TC’s Agent Class, UML 2.0 
superstructures and Ontology UML Profile. 

As given in [20] a Semantic Web Agent is an autonomous entity which is capable 
of interaction with both other agents and semantic web services within the 
environment. It is a special form of the ACSM’s Agent class due to its entity 
capabilities. It includes new features in addition to Agent classified instance. 

Roles provide both the building blocks for agent social systems and the 
requirements by which agents interact as it has been remarked in [25]. We believe that 
the same is true for roles played in Semantic Web enabled agent environments. 
However, this general model entity should be specialized in the metamodel according 
to task definitions of architectural and domain based roles: An Architectural Role 
defines a mandatory Semantic Web enabled MAS role that should be played at least 
one agent inside the platform regardless of the organization context whereas a 
Domain Role completely depends on the requirements and task definitions of a 
specific Semantic Organization created for a specific business domain.  

The Role concept in the metamodel is an extension of Agent Role Classifier due to 
its classification for roles the semantic agents are capable of playing at a given time. 
This conforms to the Agent – Agent Role Classifier association defined in ACSM 
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Fig. 3. The metamodel for Semantic Web enabled MASs which extends FIPA Modeling TC’s 
Agent Class, UML 2.0 Superstructure and Ontology UML Profile 

[25]: Semantic Web Agents can be associated with more than one Role (which is also 
an Agent Role Classifier) at the same point in time (multiple classification) and can 
change roles over time (dynamic classification). 

Agent Role Classifiers form a generalization hierarchy. This is also valid for 
Semantic environment’s Role elements. For example, in Figure 4, a hierarchy of 
Architectural Roles in SEAGENT [8] MAS framework is given. Due to its FIPA 
compliancy, related framework also defines a Registry Role called Directory Facili- 
tator (DF). However, it also includes a service role called Semantic Service 
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Fig. 4. A generalization hierarchy of Architectural Roles in SEAGENT MAS 

Matcher (SSM) which should be played by some of the platform agents in order to 
realize Semantic Web Service – Agent interaction. 

On the other hand, Semantic Web Organization is defined as a specialization of the 
ACSM’s Group entity in the proposed model because it should be implemented as 
only a composition of Semantic Web Agents. However, a Semantic Web 
Organization may or may not behave as a Semantic Web Agent in overall manner. 
Hence, it shouldn’t be defined neither as Agentified nor Non-Agentified Group. It is a 
direct extension of the Group Composite Structure. 

Above discussed ACSM extensions provide clarification of the relations between 
Semantic Web Agent, Role and Semantic Web Organization in our model by 
presenting practicability of ACSM’s Agent Role Assignment ternary association 
between Agent, Agent Role Classifier and Group. 

The metamodel is also based on – and extends – UML 2.0 Superstructure to define 
meta-elements of the Semantic Web environment. For example, we have defined a 
first-class entity called Semantic Web Service Classifier in our core model. This 
entity is defined in the final model as a UML 2.0 Classifier extension.  

A Semantic Web Service represents any service (except agent services) whose 
capabilities and interactions are semantically described within a Semantic Web 
enabled MAS. A Semantic Web Service composes one or more Service entities. Each 
service may be a web service or another service with predefined invocation protocol 
in real-life implementation. But they should have a semantic web interface to be used 
by autonomous agents of the platform. 

Like agents, semantic web services have also capabilities and features which could 
not be just based on object-oriented paradigm. Hence, we define new Classifiers and 
their related Instance Specifications in the metamodel to encapsulate semantic web 
entities. We have applied classifier – classified instance association between Semantic 
Web Service Classifier and Semantic Web Service. Same is valid for Service Classifier 
– Service relationship. 

Ontology entities (Organization Ontology, Service Ontology and Role Ontology) 
are defined as extensions of the Ontology element of the Ontology UML Profile 
(OUP) defined in [9]. OUP captures ontology concepts with properties and 
relationships and provides a set of UML elements available to use as semantic types 
in our metamodel. By deriving the semantic concepts from OUP, there will be 
already-defined UML elements to use as semantic concepts within the metamodel. 
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One Role is composed of one or more Behaviors. Task definitions and related task 
execution processes of Semantic Web agents are modeled inside Behavior entities. 
The Behavior entity is defined in the metamodel as a UML 2.0 Behavioral Feature 
because it refers to a dynamic feature of a Semantic Web Agent (e.g. an agent task 
which realizes agent interaction with other agents). 

According to played roles, agents inevitably communicate with other agents to 
perform desired tasks. Each Communication entity defines a specific interaction 
between two agents of the platform which takes place in proper to predefined agent 
interaction protocol. One Communication is composed of one or more Messages 
whose content can be expressed in a RDF based semantic content language. 

Figure 5 portrays an example semantic role assignment considering a MAS 
working in Tourism domain. 

 

 

Fig. 5. A Semantic Role Assignment for a MAS working in Tourism domain 

In this system, there exists an Agent Role Assignment Class called “Reservator 
Role Assignment” which represents the three-way association between a Hotel Client 
Agent, the Room Reservator Role and Tourism Organization. Hotel Client is a 
Semantic Web Agent which reserves hotel rooms on behalf of its human users. 
Within the Semantic Web Organization called Tourism Organization, the semantic 
web agent plays a Room Reservator Role. The related role includes a semantic web 
service interaction during its task execution: Hotel Client Agent uses Reservation 
Composite semantic web service which may be a composition of discovery, 
engagement and invocation services for hotel room reservation. 

4   Elaboration of the Metamodel by Considering the Interaction 
Between Semantic Agents and Semantic Web Services 

The metamodel discussed in the previous section defines required meta-entities and 
entity relations of a Semantic Web enabled MAS architecture. However, interaction 
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between semantic agents and external services needs to be studied in more detail in 
order to realize model transformations during system development. Such a study also 
provides a practical evaluation of the proposed metamodel. The extended model given 
in Figure 6 elaborates the agent – service interaction from the point of entity aspect. 
 

 

Fig. 6. The extended metamodel of the interaction between Semantic Agents and Semantic 
Web Services 

Semantic Web Agents have Plans to discover and execute Semantic Web Services 
dynamically. In order to discover service capabilities, agents need to communicate 
with a service registry. For this reason, the model includes a specialized agent entity, 
called Semantic Service Matchmaker Agent. This meta-entity represents matchmaker 
agents which store capability advertisements of semantic web services within a MAS 
and match those capabilities with service requirements sent by the other platform 
agents. 

When we consider various semantic web service modeling languages such as 
OWL-S [31] and WSMO [33], it is clear that services are represented by three 
semantic documents: Service Interface, Process Model and Physical Grounding. 
Service Interface is the capability representation of the service in which service 
inputs, outputs and any other necessary service descriptions are listed. Process Model 
describes internal composition and execution dynamics of the service. Finally 
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Physical Grounding defines invocation protocol of the web service. These Semantic 
Web Service components are given in the metamodel with Interface, Process and 
Grounding entities respectively. Semantic input, output and web service definitions 
used by those service components are exported from the UML Semantic Web Service 
Profile proposed in [14].  

Semantic Web Agents have two consecutive plans to interact with Semantic Web 
Services. Semantic Service Finder Plan is a Plan in which discovery of candidate 
semantic web services takes place. During this plan execution, the agent 
communicates with the service matchmaker of the platform to determine proper 
semantic services. After service discovery, the agent applies the Semantic Service 
Executor Plan in order to execute appropriate semantic web services. Process model 
and grounding mechanism of the service are used within the plan. An instance model 
of the above metamodel is given in Figure 7 for the interaction between a Hotel Client 
Agent and a Reservation Service within a MAS working in Tourism domain. 

 

 

Fig. 7. An instance model for the agent – service interaction within a MAS working in Tourism 
domain 

As previously mentioned, the client agent is a Semantic Web Agent which reserves 
hotel rooms on behalf of its human users. During its task execution, it needs to 
interact with a semantic web service called Reservation Composite Service. 
Matchmaker Agent is the service matcher of the related agent platform. 
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When we consider the metamodel as a PIM of the agent – service interaction, we 
should give the corresponding PSM entities in an implemented Semantic Web 
enabled MAS environment. As previously mentioned, SEAGENT [8] is a MAS 
development framework which provides built-in components for Semantic Web 
enabled MASs. Hence, in Table 1, we give the mappings between entities of our 
proposed metamodel and SEAGENT framework. These mappings precede the 
transformation between PIM and PSMs of such kind of MASs according to MDA 
approach. 

Table 1. Mappings between the metamodel and SEAGENT framework entities 

Metamodel Entity SEAGENT Entity Explanation 
Registry Role 
Semantic Service Matchmaker 
Agent (SSMA) 

Semantic Service 
Matcher (SSM) 

Both Registry role and  
SSMA in the metamodel 
corresponds to the SSM in 
SEAGENT. 

Plan HTN Plan In SEAGENT MAS, agent 
plans are designed as 
hierarchical task networks. 

Semantic Service Finder Plan HTN Finder Task  
Semantic Service Executor Plan HTN Executor Task  
Semantic Web Agent Agent  
Semantic Web Service OWL-S Service In SEAGENT, capabilities 

and process models of 
semantic web services are 
defined by using OWL-S 
markup language. 

Interface OWL-S Profile  
Process OWL-S Process  
Grounding OWL-S Grounding  

 
To derive a transformation (based on the mappings listed in Table 1) from 

metamodel entities depicted in Figure 6 to SEAGENT entities, we first define a 
platform dependent metamodel and instance models of SEAGENT. Since SEAGENT 
is implemented in Java, we do not need a customized metamodel instead of Java 
metamodel. All SEAGENT entities defined in Table 1 are a realization of the meta 
classes in Java metamodel. In our transformation we use a Kernel MetaMetaModel 
(KM3) based on the Java metamodel which is defined in a metamodel zoo [32].  All 
the metamodels available in this zoo [32] are expressed in KM3 [18] metamodel 
format and can be injected to an “ecore” file which is an Eclipse Modeling 
Framework (EMF) [10] format. 

SEAGENT dependent plan and semantic web agent models based on this Java 
metamodel for the interaction between semantic web agents and semantic web 
services contain the components of SEAGENT plan structure. Gürcan et al [16] 
define a software platform which fulfills fundamental requirements of Semantic Web 
Services Architecture's (SWSA) [7] conceptual model including all its sub-processes 
 



 Modeling the Interaction Between Semantic Agents and Semantic Web Services 223 

and a planner that has the capability of reusable plans in which these sub-processes 
are modeled for development of semantic service agents. This plan structure [16] is 
similar to the frameworks presented by Sycara et al [30] and the DECAF architecture 
[13]. As a requirement of HTN, tasks might be either complex (called behaviors) or 
primitive (called actions). Each plan consists of a complex root task consisting of sub-
tasks to achieve a predefined goal. 

Components of our plan structure are shown in Figure 8. Tasks have a name 
describing what they are supposed to do and have zero or more provisions 
(information needs) and outcomes (execution results). The provision information is 
supplied dynamically during plan execution. Tasks are ready, and thus eligible for 
execution, when there is a value for each of its provisions. Related control is done via 
isAllProvisionsAreSet() method. The more detailed information about SEAGENT 
plan structure can be found in [16]. 

 

 

Fig. 8. Components of SEAGENT Plan Structure [16] 

According to the plan structure depicted in Figure 8, we define an instance 
SEAGENT plan model based on Java metamodel for the agent – service interaction 
within a MAS working in Tourism domain whose platform independent model is 
shown in Figure 7. 

Figure 9 shows an instance plan model in SEAGENT for the agent – service 
interaction within a MAS working in Tourism domain. This is the corresponding 
platform dependent model of the plan part of the platform independent model 
depicted in Figure 7. Every entity in this model is a Java class which is defined as a 
meta class in the Java metamodel. In this plan, FindaHotel, FindaRoom, and 
MakeRoomReservation sub-tasks of the plan are concrete realizations of 
ExecuteService task. They are connected with their provisions and outcome slots, and 
because they are domain dependent plans they know what input parameters they will 
take. Since the realization of a Plan from another plan is done through inheritance 
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Fig. 9. An instance plan model in SEAGENT for the agent – service interaction within a MAS 
working in Tourism domain 

relations between Java classes in SEAGENT, FindaHotel class is extended from 
ExecuteService class and ExecuteService class is extended from Behaviour class. 

Currently, we are working on implementing the transformations derived from the 
mappings given in this study to realize the model driven development of Semantic 
Web enabled MASs using MDA approach. For this purpose, we use ATLAS INRIA 
& LINA research group’s ATL (Atlas Transformation Language) which is a model 
transformation language specified as both a metamodel and a textual concrete syntax 
[19]. 

Figure 10 summarizes the full model transformation process. A model Ma, 
conforming to a metamodel MMa, is here transformed into a model Mb that conforms 
to a metamodel MMb. The transformation is defined by the model transformation 
model Mt which itself conforms to a model transformation metamodel MMt. This last 
metamodel, along with the MMa and MMb metamodels, has to conform to a 
metametamodel MMM such as MOF (Meta Object Facility) or Ecore [10].  

In our transformation case, MMM is Ecore and MMt is ATL. Our source model 
(Ma) is the model given in Figure 7 which conforms to metamodel (MMa) given in 
Figure 6. When we apply a transformation into our source model, we aim to obtain 
the platform specific destination model (Mb) which conforms to metamodel of the 
SEAGENT planner depicted in Figure 9. 
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Fig. 10. An overview of model transformation [19] 

Consider the simple example in which we transform a Semantic Service Finder 
Plan (in Figure 6) into its corresponding SEAGENT plan which is 
DiscoverCandidateService (in Figure 9) within the ATL environment. To do this we 
have to create EMF encodings -.ecore files- of both models and use them in ATL 
transformation. 

EMF provides its own file format (.ecore) for model and metamodel encoding. 
However the manual edition of Ecore metamodels is particularly difficult with EMF. 
In order to make this common kind of editions easier, the ATL Development Tools 
(ADT) include a simple textual notation dedicated to metamodel edition: the Kernel 
MetaMetaModel (KM3) [18]. This textual notation eases the edition of metamodels. 
Once edited, KM3 metamodels can be injected into the Ecore format using ADT 
integrated injectors. More information about KM3 and Ecore injection can be found 
in [18, 19]. 

Following is the part of the KM3 file in which Semantic Service Finder Plan is 
represented: 

 
package SemanticServiceFinderPlan { 
      class SemanticServiceFinderPlan { 
            attribute plan_name : String; 
            reference desiredServiceInterface : Interface; 
      } 
      class Interface { 
            attribute input: String; 
            attribute output: String; 
            attribute precondition: String; 
            attribute effect: String; 
      } 
} 
 
package PrimitiveTypes { datatype String; } 
 

Notice that service interface metamodel definition in here is extremely simplified 
for the demonstration purposes. In a real transformation, IOPE (Input, Output, 
Precondition and Effect) attributes of a semantic service interface would have 
complex types. The ecore model conforming to above metamodel includes the 
following model instance which will be given into transformation process:   
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<?xml version="1.0" encoding="ISO-8859-1"?> 
<xmi:XMI    xmlns:xmi="http://www.omg.org/XMI" xmlns="SemanticServiceFinderPlan"> 
        <SemanticServiceFinderPlan> 

<name>Hotel Client’s Service Discovery Plan</name> 
<Interface>ReservationServiceInterface</Interface> 

        </SemanticServiceFinderPlan> 
</xmi:XMI> 

 
The KM3 representation of the destination model’s metamodel is given below: 
  

package DiscoverCandidateService { 
      class DiscoverCandidateService { 
            attribute name : String; 
            attribute candidateServiceInputList : String; 

          attribute candidateServiceOutputList : String; 
      } 
} 
 
package PrimitiveTypes { datatype String; } 
 

Finally, here is the transformation rule written in ATL which will be used by the 
ATL engine in order to generate the model conforming to 
DiscoverCandidateService’s metamodel: 

 
module SemanticServiceFinderPlan2DiscoverCandidateService; 
create OUT : DiscoverCandidateService from IN : SemanticServiceFinderPlan; 
rule SemanticServiceFinderPlan {  
      from 
          ssfp : SemanticServiceFinderPlan!SemanticServiceFinderPlan 
      to 
          dcs : DiscoverCandidateService!DiscoverCandidateService ( 
           name <- ssfp.name, 
           candidateServiceInputList <- ssfp. desiredServiceInterface.input, 
 candidateServiceOutputList <- ssfp. desiredServiceInterface.output 
         ) 
} 

 
The engine applies the above rule in order to transform “Hotel Client’s Service 

Discovery Plan” model which conforms to SemanticServiceFinderPlan metamodel 
into a model instance that can be used within the SEAGENT environment conforming 
to plan metamodel of DiscoverCandidateService. 

5   Conclusion and Future Work 

A metamodel for Semantic Web enabled MASs and the extended part of this 
metamodel for the interaction between semantic agents and semantic web services are 
introduced in this paper. This extended metamodel can be considered as a part of 
Platform Independent Model within the context of MDA approach. This PIM models 
the planning mechanism and the relation between this planning mechanism and 
semantic web service from the point of entity aspect. The agents in the system can 
discover the appropriate semantic services and invoke these services through the 
planning mechanism. General entities of the planner mechanism, semantic web 
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service profile parameters and the relation between these entities are considered. 
While the PIM does not have any platform specific entities of HTN, OWL-S or 
WSMO, the implementation of these mechanisms in SEAGENT could be considered 
as platform specific realization. The mappings between the entities of the metamodel 
and the implemented entities of SEAGENT framework in Section 4 show the 
practical relevance of the metamodel. 

In our future work, we aim to define interaction aspect of this extended metamodel 
at first. Meanwhile, we also intend to improve mappings and model transformations 
introduced in this study. The metamodel in here is only extended for interaction 
between semantic agents and semantic web services. Hence, as our further work, we 
plan to extend other parts of the metamodel according to the components of the 
layered conceptual architecture and provide tool support for the proposed metamodel. 
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Abstract. In this work, we report an experience that illustrates the
interplay between formal methods and real software development. Start-
ing from a Web-enable Coordination Service (WCS) based on JavaSpaces
technology which had been successfully used in an industrial project, we
built a formal model for the system in order to study its properties;
specifically, our aim was to prove that Linda semantics was preserved in
several layers of complex mappings from XML documents to Java ob-
jects. Once this objective was achieved (at least in a simplified, idealistic
version), we observed several possibilities of extending the coordination
system at the model level. In particular, we identified that it was possible
to enhance the formal model with transactional capabilities, taking ad-
vantage of the similarity of our model to rule-based systems. At present,
we are working on the translation of this theoretical result to practice,
in order to improve our Web Coordination Service.

Keywords: Web services, coordination, formal methods, Linda.

1 Introduction

Both multi-agent systems and service oriented architectures have an underly-
ing communication infrastructure. The most widespread standard for agents is
based on FIPA-ACL to achieve interoperability between heterogeneous agent-
based systems. In service-oriented computing, Web services are the basic building
blocks to create new applications. Once a standardized way for accessing them
has been defined, research needs focus on service coordination and composi-
tion, namely, coordination and composition middlewares to weave those services
together and subsequently expose the resulting artifacts themselves as a Web
service. In this research context, in our opinion, it is important to note that: 1)
service composition is an aspect that is mostly internal to the implementation

� Partially supported by Comunidad Autónoma de La Rioja, project ANGI2005/19,
and Ministerio de Educación y Ciencia, projects MTM2006-06513, TIN2006-13301.

G. O’Hare et al. (Eds.): ESAW 2006, LNAI 4457, pp. 229–244, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



230 E.J. Mata et al.

of the service that composes other Web services, whereas protocols for service
coordination are the properties required for the external interactions between
Web services [1]; 2) coordination middleware is the cornerstone of more complex
coordination protocols (transactions, security, reliable messaging, etc.) and Web
service composition; and 3) successful experiences to avoid Web interface com-
plexities should be revisited to solve coordination and composition problems, for
example, applying a simple and generic interface to a broad range of distributed
applications and delegating the complexity of interaction to the exchanged data
based on XML-formats [2] (more precisely, at an Internet scale the success of
HTTP as an application protocol was due to its reduced set of operations -GET,
POST, PUT, and DELETE- and the standardization of the data exchanged by
Web-based applications).

The key element around which to construct agent, service or middleware in-
frastructure is a mediator software. Mediation includes the mediation of differ-
ent technologies as well as different interaction styles (e.g. Message Brokers,
Enterprise Service Bus, Normalized Message Router, XML Bus). Therefore, ac-
cording to these previous remarks it seems interesting to propose first a coor-
dination framework based on a reduced set of basic operations and data-driven
coordination.

The core of our proposal is the definition of a pure coordination model inspired
by the Blackboard architectural pattern [3]. This model is the conceptual basis
of a Web Coordination Service (WCS) [4] which plays the Web service coordina-
tor role as a message broker (this type of broker has been considered essential in
Web-based application-integration platforms [1]). We did not consider the possi-
bility of creating a new coordination model from scratch because there were some
proposed solutions that could be used as a starting point, for example, the Linda
model [5,6]. Linda is based on Generative Communication and allows a collec-
tion of independent services to work cooperatively on a common data structure,
or blackboard, using a shared vocabulary. These services use a reduced set of
communication coordination primitives to put data messages into the common
structure, which can be retrieved later on by other services asking for a certain
template message. The use of Linda in open environments is promising because
it allows for an uncoupled cooperation in space and time and a flexible modelling
of interactions among services without adapting or announcing themselves.

One of the benefits of using Linda is its structural simplicity that allows the
modeller, in particular, to get clear semantics insights. Nevertheless, there is
always a trade off between simplicity and (real or industrial) practice. In our
case, the Linda coordination ideas were materialized in a Java program written
on top of JavaSpaces [7], a Java implementation of Linda. Thus, a main concern
was to ensure that Linda’s semantic behavior was preserved in our system. To
this aim, our method implied establishing a formal model of the system (more
precisely, of a simplified version of the system) and then, proving a theorem
asserting that the model satisfies Linda semantics.

It is worth noting that the nature of the problem considered led us to
choose a particular mathematical machinery. Since our goal was to analyze an
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already-in-use system, we selected a transition system approach for Linda [8], in-
stead of a more abstract approach based on process algebra techniques like in [9]
and [10]. This decision allowed us to set particular models of tuple organization
which faithfully reflected the shared memory in our coordination system.

This paper is organized as follows. In Sections 2 and 3 generalities, on both
Web services coordination and our particular proposal, are presented. The formal
treatment and our main theoretical results appear in Section 4. The potential
benefits of this formal modelling to enhance the real software system are briefly
explained in Section 5. The paper ends with some conclusions, future work and
the bibliography.

2 State of the Art in Web Service Coordination

Nowadays there are two parallel standardization initiatives to propose a Web
service coordination framework: the Web Service Coordination (WS-C) specifi-
cation [11] and the Web Service Composite Application Framework (WS-CAF)
[12]. Both initiatives propose a framework to create coordination contexts. A
coordination context provides functionality to registry: 1) Web services and ap-
plications that require coordination; and 2) coordination protocols to make their
coordination requirements possible. According to this proposal, Web services and
applications must define the used protocols. This solution is more flexible than
ours, because it is possible to create many coordination contexts using different
protocols (we only propose one free-context protocol based on Linda to coor-
dinate any Web resource). However, it ignores the complexity the definition of
new coordination protocols and promotes the use of ah-hoc protocols.

From another perspective, WS-CAF is different from WS-C because it takes
the approach that the coordination context should be a first-class entity in a Web
service architecture, that is, context is more fundamental than coordination.
This allows contexts to be more easily managed in large-scale environments.
However, WS-C’s notion of context is tightly tied to the coordinator that creates
it, making it less flexible than WS-CAF. Therefore, a separate specification for
modelling Web-services context data structures is proposed by WS-CAF (Web
Service Context specification).

In any case, with these coordination frameworks, more complex and standard
protocols have been defined for transactions (WS-Transaction is a superset of the
WS-C and Web Service-Transaction Management is based on WS-CAF), event-
based notification (WS-Notification and WS-Eventing), security (WS-Security)
and reliable messaging (WS-Message Delivery and WS-Reliable Messaging). Re-
searchers have also exploited the Linda model for implementing this type of
protocols. However they have not defined new and specific protocols, but se-
mantic extensions of the Linda primitives. Some well-known proposals are, for
example, TSpaces1 for persistence and transactions, Bettini et al.’s proposal
[13], WSSecSpaces [14] and Ruple2 for security, and finally WorkSpaces [15] for
1 TSpaces, http://www.almaden.ibm.com/cs/TSpaces/
2 Ruple Project, http://www.roguewave.com/developer/tac/ruple/
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composition. Note also that new computing paradigms use Linda-based solutions
to support their communication and coordination requirements such as JXTAS-
paces3 in peer-to-peer environments or L2imbo [16] and LIME [17] in mobile
and agent-based environments.

3 A Web Coordination Service Based on the Linda Model

To use Linda as the conceptual basis of our Web Coordination Service (WCS), we
had to enrich some structural aspects of Linda, as it is explained in the following
subsection. After that subsection, the general architecture of our WCS is briefly
presented.

3.1 Linda for Open Environments

Linda is a well-known proposal based on Generative Communication [5]. To
understand our extensions of Linda, it is enough to recall that Linda is composed
of a small set of operators, acting on a blackboard, called tuple space, together
with a pattern-matching oriented process to deal with tuples.

A Linda tuple is similar to [‘‘Gelernter’’,1989], a list of untyped atomic
values. Our main extension implies passing from this atomic organization to lists
of attribute/value pairs, like: [(author, ‘‘Gelernter’’), (year, 1989)].
Although this is still an untyped setting, this bit of structure allows information
recovery in distributed environments. The reason is that this kind of structure
corresponds with some simple types of XML documents (the tags playing the
role of attributes). In addition, the pattern-matching process associated to Linda
can be now considered as a complex procedure in which attributes act as keys for
the matching. These features have been experimentally found when developing
our Web Coordination Service: they are needed to deal with XML documents
encapsulated as Java objects (note that JavaSpaces is the basic technology for
our WCS). Thus, this complex matching works in two phases: first guided by
attributes, and then by values.

This extended Linda model also allows one to perform some kind of semantic
matching (as reported in [18]) and includes reactive behavior, by means of a
system of subscriptions. This last aspect have been borrowed from (and can be
implemented with the help of) JavaSpaces.

3.2 Design and Implementation of the Web Coordination Service

In a more detailed description, the designed WCS is composed of three software
components (see Figure 1).

The XML-based Space component encapsulates the tuple space. Its interface
provides a collection of operations to write XML tuples into, read them from the
tuple-space, and be notified of the writing of a new XML tuple into the encapsu-
lated space, according to the presented extension of Linda. This component has

3 JXTASpaces Project, http://jxtaspaces.jxta.org/



Formal Modelling of a Coordination System 233

XML tuples

XML-based Space

JavaSpace

Channel
XML-Schema 2

tuple tuple tuple...

Meta-Channel
XML-Schema 1

...

tuple

ChannelChannel
tuple

tuple
tuple

in

subscribe publish

rd out

Java Coordination Component

In
Publish

Rd
InOut

Agents

invocations

Web Coordination Service

InternetInternet

W
eb

C
o

o
rd

in
at

io
n

HTTP
Interface

SOAP
Interface

SMTP
Interface

Fig. 1. Software Components of the coordination service

been built from JavaSpaces. The internal communication patterns have been im-
plemented on JavaSpaces to guarantee the semantics of the classical Linda model
and later improve the efficiency of the XML-based space (for the details see [4]).

On the other hand, the Java Coordination component is the core of the service.
It has two different interfaces: the Basic Coordination Interface (BCI), which
provides the collection of writing and reading operations proposed by Linda
and promotes a cooperative style based on blocking readings; and the Reactive
Coordination Interface (RCI), whose operations allow for a process advertising
its interest in generating a specific type of XML tuples, publishing the advertised
XML tuples and subscribing its interest in receiving XML tuples of a specific
XML schema, encouraging a reactive style of cooperation among processes.

This component is a repository of agents (agent in the sense of a computa-
tional entity which acts on behalf of other entities in a semi-autonomous way,
and performs its tasks in cooperation with other agents; the mobility and learn-
ing attributes have been excluded from this context). Every time an external
Web service or application invokes a coordination operation, an internal agent is
created. These agents are capable of coordinating with other agents by exchang-
ing XML tuples through XML-based spaces. Therefore, the required cooperation
by external entities is executed by their respective internal agents. The result
of this cooperation is communicated from agents to external entities using an
event-based mechanism scalable to the Internet.

Finally, the Web Coordination component acts as a Web-accessible interface
of the Java Coordination component. It provides the same collection of opera-
tions than the Java Coordination component through an interface based on some
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standard Internet protocols (HTTP, SOAP and SMTP implementations of this
component have been developed).

4 Formal Modelling

In the previous section we have presented both the conceptual basis (Subsec-
tion 3.1) and the architecture of a Service to coordinate other Web services.
This Service has been used in a real project (oriented to location-based Web
services [19]) to show its practical value. Nevertheless, the clear semantics of
Linda has been shadowed by several layers of complex wrappings from XML
documents to Java objects. So, a main concern is whether the final operations
for reading and writing complex tuples really behave as Linda operators. To
increase the reliability of our WCS, our strategy implied giving a formal model
of (a simplified version of) our blackboard architecture, and then we tried to
prove its correctness. More precisely, we started from a formal model of Linda
(to be interpreted as an abstraction of JavaSpaces), then we defined a set of op-
erations based on the way that the complex matching was implemented in our
WCS, and finally we proved that the new defined operations also satisfy Linda
equations.

4.1 Linda Coordination Model

As it was explained in the introduction, we chose the mathematical formalism
of [8], based on transition systems. Although there are other approaches in the
literature, some of them inspired by process calculi [9,10], we chose this formalism
for its simplicity and because we were more interested in the kinds of data that
could be managed by the coordination medium, through a pattern-matching
procedure, than in the behavior of the active components (or processes).

In [8] the tuple-based coordination medium is represented as a software com-
ponent interacting with coordinated entities by receiving input events and send-
ing output events. The main elements of this model are: a set of tuples t ranging
over T (T denotes the set of multisets over T ); a set of templates templ ranging
over Templ; a matching predicate mtc(templ, t) between templates and tuples;
and a choice predicate µ(templ, t, t̂), where t is a multiset of tuples ranging over
T , and the symbol t̂ means that it can be a tuple t from the tuple multiset t
which matches the template templ, or is an error element ⊥T if no matching
is available in t (in general for any set T , we will assume the void value ⊥T is
contained in it). This is formally defined in the following matching rules, where
t|t is used to denote the union of the element t and the multiset t (see [8] for
details):

mtc(templ, t)
µ(templ, t|t, t)

� t ∈ t mtc(templ, t)
µ(templ, t,⊥T )

(1)

The status of a tuple space at a given time is characterized as a labelled
transition system by the couple 〈t, w〉 where t is a multiset of tuples and w is a
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multiset of pending queries. A pending query is an input event ie ranging over
IE ⊆ W , where W is a set of operations such as the reading operation rd,
the reading and removing operation in, or the writing operation out, which are
possibly waiting to be served by a tuple space. Output events oe range over OE,
where OE is a set of notification messages, with the syntax ov representing a
message v for entity o.

The semantics of a tuple space is defined by the couple 〈S, E〉. Here, S ⊆ W × T
is a satisfaction predicate for queries, so that 〈w, t〉 ∈ S means w can be servedun-
der the current space’s content t and, in addiction, E : W �→ 2(T×W)×OE×(T×W)

is an evaluation function, so 〈t, w, ôe, t
′
, w′〉 ∈ E(w) means that the evaluation

of the pending query w causes the tuple space in state 〈t, w〉 to move to 〈t′, w′〉
and produce output event oe (or nothing).

The semantics of this transition system is defined by the rules (see [8] for
details):

� w ∈ w : S(w, t)

〈t, w〉 ie−→I 〈t, ie|w〉
S(w, t) 〈t, w|w, oe, t

′
, w′〉 ∈ E(w)

〈t, w|w〉 oe−→O 〈t′, w〉

The predicate S is defined as the least relation satisfying the rules:

S(rdp(templ)o, t)

S(inp(templ)o, t)

mtc(templ, t)
S(rd(templ)o, t|t)

mtc(templ, t)
S(in(templ)o, t|t)

S(out(t)o, t)

The evaluation function E, defining the actual operations’ semantics, is de-
fined by rules for every pending query corresponding to each primitive operation
allowed:

µ(templ, t, t̂)
〈t, w, ot̂, t, w〉 ∈ E(rdp(templ)o)

µ(templ, t, t̂)
〈t, w, ot̂, t\t̂, w〉 ∈ E(inp(templ)o)

mtc(templ, t)
〈t|t, w, ot, t|t, w〉 ∈ E(rd(templ)o)

mtc(templ, t)
〈t|t, w, ot, t, w〉 ∈ E(in(templ)o)

〈t, w,⊥, t|t, w〉 ∈ E(out(t)o)
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Once the abstract framework has been presented, in the next subsection we
give a definition of tuples and templates as finite and ordered sequences of data,
each one over its own domain. Moreover, templates admits wildcards variables.
Then we define the matching and choice predicates. We have named this model
as the core model and some of its definitions are inspired by [20].

4.2 A Core Model Based on Linda

Let A = (A1, . . . , Am) be a list of attributes with domains Di = dom(Ai),
i = 1, . . . , m.

The notation D = dom(A) =
⋃m

i=1 dom(Ai) =
⋃m

i=1 Di will be used as a
shorthand.

Definition 1. A core-tuple tcore over A is a partial and injective mapping:

tcore : X ⊆ A −→ dom(X) (2)

for which the following holds: ∀ Ai ∈ X tcore(Ai) = di with di ∈ Di.

Then, core-tuples are finite and ordered sequences of simple data and have the
form tcore = (d1, . . . , dn) where each di ∈ Di.

Definition 2. A core-template templcore over A is a partial and injective
mapping:

templcore : X ⊆ A −→ dom?(X) (3)

for which the following holds: ∀Ai ∈ X templcore(Ai) = tdi with tdi ∈ dom?(Ai)
where dom?(Ai) = dom(Ai)∪{?xi}. The additional value ?xi denotes a wildcard
variable that matches any value, and this value is saved in the variable xi.

Then, core-templates are finite and ordered sequences of data or wildcards vari-
ables and have the form templcore = (td1, . . . , tdn) with tdi ∈ dom?(Ai).

Hereinafter, Tcore will denote the set of core-tuples and Templcore will denote
the set of core-templates in the core-Linda model. By definition, it is obvious
that Tcore ⊆ Templcore, i.e. in particular, each tuple is a template without any
wildcard variable.

Definition 3 (Core-Matching Predicate). Let tcore = (d1, . . . , dn) ∈ Tcore

be a tuple and, templcore = (td1, . . . , tdm) ∈ Templcore be a template. We say
that tcore matches templcore (denoted by mtccore(templcore, tcore)), if the fol-
lowing conditions hold:

– tcore and templcore have the same arity, i.e. m = n.
– Each non-wildcard field of templcore is equal to the corresponding field of

tcore, i.e. tdi =?xi or tdi = di, 1 ≤ i ≤ n.
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Definition 4 (Core-Choice Predicate)
Given the matching rule mtccore(templcore, tcore) we define the core-choice
predicate as the predicate µcore(templcore, tcore, t̂core) which satisfies the rules
of the Linda matching defined in (1).

mtccore(templcore, tcore)
µcore(templcore, tcore|tcore, tcore)

� t ∈ tcore mtccore(templcore, tcore)
µcore(templcore, tcore,⊥T )

That is, t̂core is a core-tuple from the tuple multiset tcore that matches a template
templcore, or is a void value (denoted by ⊥T ) when no tuple matching occurs in
tcore.

4.3 A Structured Extension of the Core Model

The core model presented in the previous subsection can be seen as a naive for-
malization of JavaSpaces where JavaObjects are represented by tuples and the
JavaSpaces matching process corresponds to Definitions 3 and 4. But in this sub-
section, in order to provide a formal model closer to our WCS, we will work with
a version of Linda where tuples and templates are sequences of attribute/value
pairs.

Definition 5. A structured-tuple tstr over A is a partial and injective
mapping:

tstr : X ⊆ A −→ X × dom(X) (4)

for which the following holds: ∀ ai ∈ X tstr(ai) = (ai, vi) with vi ∈ dom(ai).

Definition 6. A structured-template templstr over A is a partial and injec-
tive mapping:

templstr : X ⊆ A −→ X × dom?(X) (5)

for which the following holds: ∀ ai ∈ X templstr(ai) = (ai, tvi) with tvi ∈
dom?(ai) where dom?(ai) = dom(ai) ∪ {?xi}. The additional value ?xi denotes
a wildcard variable, that matches with any value and this value is saved in the
variable xi.

Hereinafter, Tstr will denote the set of structured-tuples and Templstr will denote
the set of structured-templates. It is also obvious that Tstr ⊆ Templstr .

Definition 7 (Structured-Matching Predicate)
Let tstr = ((a1, v1) . . . (an, vn)) ∈ Tstr be a tuple and,
let templstr = ((ta1, tv1) . . . (tam, tvm)) ∈ Templstr be a template. We say that
tstr matches templstr (denoted by mtcstr(templstr, tstr)) if the following con-
ditions hold:

– tstr and templstr have the same attribute structure, i.e. m = n and tai = ai,
1 ≤ i ≤ n.

– Each non-wildcard field of templstr is equal to the corresponding field of tstr,
i.e. tvi =?xi or tvi = vi, 1 ≤ i ≤ n
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Definition 8. The scheme-tuple of a structured-tuple, or of a structured-
template, is a core-tuple tcore in A defined by the mapping:

scheme : Tstr ∪ Templstr −→ TcoreA (6)

provided that scheme(((a1, v1) . . . (an, vn))) = (a1, . . . , an)

That is, given a structured-tuple tstr, or a structured-template templstr, the
scheme mapping returns a core-tuple tcore with only the attributes or tags.

Definition 9. The scheme of a multiset of structured-tuples tstr is another
multiset of core-tuples in A defined by the mapping:

scheme : T str −→ T coreA (7)

such that: scheme(tstr) = {scheme(tstr) | tstr ∈ tstr}
Definition 10. The value-tuple of a structured-tuple is a core-tuple in D
defined by the mapping:

val : Tstr −→ TcoreD (8)

provided that val(((a1, v1) . . . (an, vn))) = (v1, . . . , vn)

That is, given a structured-tuple tstr, the val mapping returns a core-tuple tcore

with only the values.

Definition 11. The value-template of a structured-tuple tstr is a core-tuple
in dom?(D) defined by the mapping:

val : Templstr −→ Tcoredom?(D) (9)

provided that val(((ta1, tv1) . . . (tan, tvn))) = (tv1, . . . , tvn)

That is, given a structured-template templstr, the val mapping returns a core-
template with only the values and wildcards.

In the following definition, the notion of channel is introduced. This concept
appeared first in the implementation of the WCS as a tool both to increase the
efficiency of the system and to recover multiple tuples (with the same scheme) by
means of JavaSpaces. Here, we give an interpretation of channels in our formal
model.

Definition 12. Given a multiset of structured-tuples tstr and a structured-
template templstr, we define the channel of templstr in tstr as the mapping:

channel : Templstr × T str −→ T coreD (10)

for which the following holds:

channel(templstr, tstr) =

{val(tstr) ∈ T coreD |tstr ∈ tstr ∧ mtccore(scheme(templstr), scheme(tstr))}
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That is, the channel of a structured-template in a tuple multiset is the multiset
of value-tuples that share the same attribute structure as the template. Further-
more, given a scheme-tuple and a value-tuple, we can define the inverse mapping
to rebuild a structured-tuple.

Definition 13. The rebuild tuplestr operation, which produces a structured-
tuple from a pair of core-tuples, is a mapping:

rebuild tuplestr : TcoreA × TcoreD −→ Tstr (11)

for which the following holds: given a scheme-tuple a = (a1, . . . , an) and a value-
tuple v = (v1, . . . , vm) with n = m and vi ∈ Di, then:

rebuild tuplestr(a, v) = ((a1, v1) . . . (an, vn))

that is, an ordered sequence of attribute/value pairs.
If a or v are void (⊥T ) then the image of the mapping is also void (⊥T )

Definition 14 (Structured-Choice Predicate). We define the structure-
choice predicate as the predicate µstr(templstr, tstr, t̂str), where t̂str is defined
as:

t̂str = rebuild tuplestr( ̂t.scheme, t̂.val)

where, the tuple ̂t.scheme satisfies:

µcore(scheme(templstr), scheme(tstr), ̂t.scheme)

and, the tuple t̂.val satisfies:

µcore(val(templstr), channel(templstr, tstr), t̂.val)

That is, t̂str is built by a scheme-tuple and a value-tuple, and these tuples sat-
isfy the predicate µ in the core model. The scheme-tuple ̂t.scheme satisfies the
predicate µcore in a multiset of schemes, and the value-tuple t̂.val satisfies the
predicate µcore in the channel of the template.

4.4 Main Results

In this subsection, we will prove that the structured matching meets Linda’s
matching rules. First, Theorem 1 proves the relationship between the matching
predicate in the structured model and the matching predicate defined in the
core model. Then, Theorem 2 will prove that the structured pattern matching
process defined in Definition 14, and successfully implemented in our WCS,
satisfies Linda’s matching rules introduced in (1). The first three results are
presented without their proofs (they can be easily inferred from the definitions).

Theorem 1. The following relationship between mtccore and mtcstr holds:

mtcstr(templstr, tstr) = mtccore(scheme(templstr), scheme(tstr))
∧ mtccore(val(templstr), val(tstr))



240 E.J. Mata et al.

Proposition 1. Let tstr ∈ Tstr be a tuple and tstr ∈ T str be a tuple multiset
then scheme(tstr)|scheme(tstr) = scheme(tstr |tstr)

Proposition 2. Let tstr ∈ Tstr be a tuple, tstr ∈ T str be a tuple multiset and
templstr ∈ Templstr be a template. If mtccore(scheme(templstr), scheme(tstr))
then val(tstr)|channel(templstr, tstr) = channel(templstr, tstr|tstr)

Theorem 2. The defined predicates µstr and mtcstr meets Linda’s matching
rules:

(i)
mtcstr(templstr, tstr)

µstr(templstr, tstr|tstr, tstr)

(ii)
� tstr ∈ tstr mtcstr(templstr, tstr)

µstr(templstr, tstr,⊥T )

Proof. (i) Let tstr ∈ Tstr be a tuple such that mtcstr(templstr, tstr). Then, by
Theorem 1:

mtccore(scheme(templstr), scheme(tstr)) and, (12)

mtccore(val(templstr), val(tstr)) (13)

by Definition 3 and (12)

µcore(scheme(templstr), scheme(tstr)|scheme(tstr), scheme(tstr)) (14)

by Proposition 1 and (14)

µcore(scheme(templstr), scheme(tstr|tstr), scheme(tstr)) (15)

by Definition 3 and (13)

µcore(val(templstr), val(tstr)|channel(templstr, tstr), val(tstr)) (16)

by Proposition 2 and (16)

µcore(val(templstr), channel(templstr, tstr|tstr), val(tstr)) (17)

Now, we can build a structured-tuple as:

tstr = rebuild tuplestr(scheme(tstr), val(tstr))

then, by Definition 14, (15) and (17)

µstr(templstr, tstr|tstr, tstr)

(ii) If � tstr ∈ tstr such that mtcstr(templstr, tstr) then, by Theorem 1, there
might be two reasons for it:
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The first reason is that a matching of schemes does not hold. That is,

� t.scheme ∈ scheme(tstr) : mtccore(scheme(templstr), t.scheme)

by Definition 4

µcore(scheme(templstr), scheme(tstr),⊥T )

and then, by Definition 13

µstr(templstr, tstr,⊥T )

The second reason is that a matching of schemes holds but a matching of
values does not hold into the channel of templstr. That is,

∃ tstr ∈ tstr : mtccore(scheme(templstr), scheme(tstr))

but,

� tstr ∈ channel(templstr, tstr) : mtccore(val(templstr), val(tstr))

by Definition 4

µcore(val(templstr), channel(templstr, tstr),⊥T )

and then, by Definition 14 and by Definition 13

µstr(templstr, tstr,⊥T ) . ��

5 Applying Formalization and Implementation
Experiences to the Coordination of Web Services

The previous theorems have shown that the strategy used to implement our
WCS (abstracting from programming or networking technologies) is sound. This
is one of the main objectives of using formal methods application to practical
Software Engineering, in which an already-in-use software system is reified in
a mathematical model. Here, the important point is not the originality of the
techniques nor the difficulty of the proofs, but rather the accuracy of the relation
between the model and reality.

Another possible application of this re-engineering work is the analysis of the
formal model to look for improvements and extensions. The abstract version
often is clearer than its real counter-part, and this allows the modeler to have a
more comprehensive view of the system. After looking at different formal coordi-
nation models (Petri nets [21], rules [22,23], Linda, etc.), we observed that they
all used templates to recognize particular states and represent constraints and
therefore a pattern-matching algorithm to interpret themselves. These similari-
ties between models helped us to discover different ways to extend the classical
Linda model, for example, an extension of its matching functions to support



242 E.J. Mata et al.

multiple templates. This opens up the possibility to express more complex co-
ordination restrictions and transactional capabilities. This extension is similar
to High Level Petri nets, which provide more compact and manageable descrip-
tions than ordinary Petri nets [24]. In [25], the RETE-like algorithm is used for
an efficient implementation of a Web Coordination service that supports reading
operations with multiple templates. Similar works can be found in the literature,
for example, an adaptation of the RETE algorithm to interpret High Level Petri
nets with multiple labelled arcs [26,27].

The idea is to extend Linda with a multiple matching predicate (see [25]) in
order to provide operations to extract atomically a group of tuples instead of a
single item. This predicate has the form (in case of two templates):

mtc2(templ1, templ2, t1, t2, R)

and it is satisfied if the following conditions hold:

1. mtcstr(templ1, t1)
2. mtcstr(templ2, t2)
3. tuples t1 and t2 holds relation R, where R is a boolean restriction function

defined over the union of the domains of the data and the wildcards of the
templates templ1 and templ2

Given this multiple-matching predicate, a multiple-choice predicate µ2 is also
defined and can be implemented by a RETE-like algorithm (see [25] again).

6 Conclusions and Further Work

In this work, we have reported an application of formal methods to practical
Software Engineering. More precisely, we have presented a mathematical model
for a Web Coordination Service (WCS). The main results prove that the WCS
primitives satisfy Linda semantics (at least if the model faithfully reflects the
actual WCS). In addition, another kind of application has been illustrated: the
formal model can be used to propose new enhancements of the initial systems.
In our case, the model inspired a parallelism with ruled-based systems, and then
a promising way to incorporate transactional capabilities through a variant of
the RETE algorithm.

At present, we are going back to practice from theory, rebuilding our WCS to
include the new features designed at the formal level. First, using Linda model
as a mediator for integrating applications in service oriented architectures and
multi-agent systems. Second, extending the matching functions to support mul-
tiple templates which opens up the possibility to express more complex coor-
dination restrictions and transactional capabilities. And finally, extending the
matching functions to provide a semantic matching process. This work is in
progress, but when finished, it will allow us to evaluate the methodology used,
and, more generally, whether it can be fruitfully applied when dealing with real-
life coordination of Web services.
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4. Álvarez, P., Bañares, J.A, Muro-Medrano, P.: An Architectural Pattern to Extend
the Interaction Model between Web-Services: The Location-Based Service Context.
In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.M.P., Yang, J. (eds.) ICSOC
2003. LNCS, vol. 2910, pp. 271–286. Springer, Heidelberg (2003)

5. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7(1), 80–112 (1985)

6. Carriero, N., Gelernter, D.: Linda in context. Communications of the ACM 32(4),
444–458 (1989)

7. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces. Principles, Patterns, and Practice.
Addison-Wesley, London, UK (1999)

8. Viroli, M., Ricci, A.: Tuple-Based Coordination Models in Event-Based Scenar-
ios. In: IEEE 22nd International Conference on Distributed Computing Systems
(ICDCS 2002 Workshops) - DEBS’02 International Workshop on Distributed
Event-Based Sytem, Vienna, Austria (2002)

9. Busi, N., Gorrieri, R., Zavattaro, G.: A Process Algebraic View of Linda Coordi-
nation Primitives. Theoretical Computer Science 192(2), 167–199 (1998)

10. Busi, N., Gorrieri, R., Zavattaro, G.: Process Calculi for Coordination: from Linda
to JavaSpaces. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816. Springer, Heidel-
berg (2000)

11. Cabrera, F., Coopeland, G., Freund, T., Klein, J., Langworthy, D., Orchand, D.,
Schewchuk, J., Storey, T.: Web Service Coordination (WS-Coordination). Technical
report, IBM & Microsoft Corporation & BEA System (2002)

12. Bunting, D., Chapman, M., Hurley, O., Little, M., MischKinsky, J., Newcomer, E.,
Webber, J., Swenson, K.: Web Service Coordination Framework(WS-CF). Techni-
cal report, Arjuna Technologies & Fujitsu Limited & IONA Technologies & Sun
Microsystems & Oracle Corporation (2004)

13. Bettini, L., Nicola, R.D.: A Java Middleware for Guaranteeing Privacy of Dis-
tributed Tuple Spaces. In: Guelfi, N., Astesiano, E., Reggio, G. (eds.) FIDJI 2002.
LNCS, vol. 2604, pp. 175–184. Springer, Heidelberg (2003)

14. Lucchi, R., Zavattaro, G.: WSSecSpaces: a Secure Data-Driven Coordination Ser-
vice for Web Services Applications. In: Proceedings of the 2004 ACM Symposium
on Applied Computing (SAC04), pp. 487–491 (2004)

15. Tolksdorf, R.: Workspaces: a Web-based Workflow Management System. IEEE
Internet Computing 6(5), 18–26 (2002)

16. Davies, N., Friday, A., Wade, S.P., Blair, G.: L2imbo: A distributed systems plat-
form for mobile computing. Mobile Networks and Applications 3(2), 143–156 (1998)

17. Picco, G., Murphy, A., Roman, G.: LIME: Linda Meets Mobility. In: Garlan, D.,
Kramer, J. (eds.) Proceedings of the 21st International Conference on Software
Engineering (ICSE’99), pp. 368–377. ACM Press, New York (1999)
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Abstract. Current approaches to multi-agent interaction involve speci-
fying protocols as sets of possible interactions, and hard-coding decision
mechanisms into agent programs in order to decide which path an in-
teraction will take. This leads to several problems, three of which are
particularly notable: hard-coding the decisions about interaction within
an agent strongly couples the agent and the protocols it uses, which
means a change to a protocol involves a changes in any agent that uses
such a protocol; agents can use only the protocols that are coded into
them at design time; and protocols cannot be composed at runtime to
bring about more complex interactions. To achieve the full potential of
multi-agent systems, we believe that it is important that multi-agent in-
teraction protocols exist at runtime in systems as entities that can be
inspected, referenced, composed, and shared, rather than as abstractions
that emerge from the behaviour of the participants. We propose a frame-
work, called RASA, which regards protocols as first-class entities. In this
paper, we present the first step in this framework: a formal language for
specification of agent interaction protocols as first-class entities, which, in
addition to specifying the order of messages using a process algebra, also
allows designers to specify the rules and consequences of protocols using
constraints. In addition to allowing agents to reason about protocols at
runtime in order to improve their the outcomes to better match their
goals, the language allows agents to compose more complex protocols
and share these at runtime.

1 Introduction

Research into multi-agent systems aims to promote autonomy and often intel-
ligence into agents. Intelligent agents should be able to interact socially with
other agents, and adapt their behaviour to changing conditions. Despite this,
research into interaction in multi-agent systems is focused mainly on the docu-
mentation of interaction protocols, which specify the set of possible interactions
for a protocol in which agents engage. Agent developers use these specifications
to hard-code the interactions of agents. We identify three significant disadvan-
tages with this approach: 1) it strongly couples agents with the protocols they
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use — something which is unanimously discouraged in software engineering —
therefore requiring agent code to changed with every change in a protocol; 2)
agents can only interact using protocols that are known at design time, a re-
striction that seems out of place with the goals of agents being intelligent and
adaptive; and 3) agents cannot compose protocols at runtime to bring about
more complex interactions, therefore restricting them to protocols that have
been specified by human designers.

We propose a framework, called RASA, which regards protocols as first-class
entities. These first-class protocols are documents that exists within a multi-
agent system, in contrast to hard-coded protocols, which exist merely as ab-
stractions that emerge from the messages sent by the participants. To promote
decoupling of agents from the protocols they use, we propose a formal, executable
language for protocol specification. This language combines two well-studied and
well-understood fields of computer science: process algebra, which are used to
specify the messages that can be sent; and constraints, which are used to specify
the rules governing under which conditions messages can be sent, and the effects
that sending messages has on a system. Therefore, rather than a protocol being
represented as a sequence of arbitrary tokens, each message contains a meaning
represented as a constraint. Instead of hard-coding the decision process of when
to send messages, agent designers can implement agents that reason about the
effect of the messages they send and receive, and can choose the course of ac-
tion that best achieves their goals. Agents able to reason about protocols can
therefore learn of new protocols at runtime, making them more adaptable, for
example, by being able to interact with new agents that insist on using specific
protocols. The RASA language also allows protocols to be composed to bring
about more complex interactions.

In this paper, we define a syntax and semantics for the RASA protocol spec-
ification language, which forms part of the RASA framework, a framework for
modelling agent interaction as first-class entities. They key ideas that were taken
into account in the design of the RASA language were the following:

– protocols as first-class entities: rather than protocol specifications emerging
from an abstraction of the behaviour of participating agents, RASA proto-
cols are first-class, meaning that they exist as entities in multi-agent systems;

– inspectable: agents are able to inspect and reason about the set of interactions
permitted by a protocol, when they can occur, and what their effects are, so
that the agents can devise strategies at runtime, therefore de-coupling them
from the protocols they use;

– layered: other languages used for inspectable interaction protocols, such as
OWL-P [7] and Yolum and Singh’s Event Calculus extension [27], use the
same language for specifying rules and effects as they do for specifying the
sequencing of messages. We take a layered approach, in which the language
for specifying the sequence of messages is separated from the language for
specifying rules and effects. This allows us to develop the RASA framework
independent of the underlying constraint language, and does not enforce the
use of a particular language; and
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– reusable, composable and extendable: existing protocol specifications can be
extended and composed with other protocols to bring about new protocols.
In addition, composable protocols permits designers to break up their task
into smaller subtasks, simplifying the design process.

1.1 RASA Outline

The idea of first-class protocols is novel, but not entirely new. Desai et al. [7],
and Yolum and Singh [27] present some initial work in using OWL and the Event
Calculus respectively to model protocols as first-class entities (although they do
not use this term). These approaches adapt existing declarative languages by
adding definitions, written in that language, that specify the rules and effects
of protocols. However, there are two major downsides to taking this approach.
Firstly, the effects and rules must be specified in the declarative language (OWL
or the Event Calculus), which is too restrictive. Secondly, the message sequencing
is also specified in the language itself. For example, to specify that message a is
sent before b, one must write a predicate resembling the following:

Happens(a, t1) ∧ Happens(b, t2) ∧ t1 < t2

This means that event a happens at time t1, event b happens at time t2, and
event a occurs before event b, specified by the predicate t1 < t2. This can be spec-
ified in a process algebra as a; b, which we believe is more intuitive to the human
reader, and is no less expressive. Robertson [22] takes a similar approach of us-
ing a process algebra and an underlying language to specify first-class protocols.
We extend his work by, among other things, providing an additional language
construct — local variable declaration — and by formalising the relationship
between the process algebra and the underlying language.

Using RASA, protocols can be visually represented as annotated trees outlin-
ing the interactions that can occur. As well as being annotated with a transitional
message, each arc in the tree is annotated with a precondition and postcondition,
in which the precondition must be enabled for the message to be sent, and the
postcondition represents the effect of sending a message. The nodes represent the
states that result from the corresponding postcondition. We incorporate states
into the language to allow designers and agents to calculate the effect of a series
of transactions; that is, if there are two messages sent in sequence, the effect of
the second depends on the state resulting from the first. The root node of the
tree is the initial state of the protocol, and the leaf nodes represent terminating
states. Branches in the tree represent choices to be made by one or more agents.

Protocol rules, effects, and states are specified using declarative constraint
languages. Using such languages allow agents to reason about which messages
to send by calculating the which paths best achieve their goals, with each path
from the root node to a leaf node representing a possible sequence of interac-
tion. Agents can also reason about sub-protocols, by taking the root node of a
sub-protocol as the starting point. We do not insist on a particular constraint
language, but instead assume that it contains a few basic operators and constants
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common to most constraint languages. Such an approach fulfils our requirement
that the language is inspectable, because agents can be equipped with the neces-
sary constraint solvers, while maintaining flexibility by not enforcing a particular
language. The constraint language is separate from the language for specifying
the possible sequences of interaction in the protocol.

Protocols can be referenced and composed with others to form new protocols.
The composition of these interactions provides a precondition and postcondition
for an entire protocol. RASA allows one type of atomic event, comprising a
precondition, message, and postcondition. These correspond to an arc in the
tree. An atomic event is itself a protocol, meaning that the syntax and semantics
of composing existing protocols is the same as composing a single protocol.

We envisage systems in which agents have access to bases of protocol spec-
ifications; either locally or centrally. Agents can search through these bases at
runtime to find protocols that best suit the goal they are trying to achieve,
and can share these protocol specifications with possible future participants. If
no single protocol is suitable for the agent, composition of these may offer an
alternative.

This paper is structured as follows: Section 2 presents the assumptions we
make regarding the constraint language used by the agents engaged in interac-
tion. As will be seen, these assumptions are quite general, allowing wide applica-
bility of the framework. Section 3 then presents the formal syntax of the RASA
modelling language, with an operational semantics for this language presented
in Section 4. The paper follows this with a section discussing reuse and compo-
sition of protocols. Section 6 then presents a discussion of related work, before
Section 7 concludes the paper.

2 Modelling Information

Communication in multi-agent systems is performed across a universe of dis-
course. Agents send messages expressing particular properties about the uni-
verse. We assume that these messages refer to variables, which represent the
parts of the universe that have changing values, and use other tokens to repre-
sent relations, functions, and constants to specify the properties of these variables
and how they relate to each other. We also assume that agents share an ontology
that provides a shared definition of these relations, functions, and constants.

In this section, we discuss the minimum requirements for a constraint lan-
guage that can be used in RASA. We do not believe that these requirements are
unreasonable — many languages can be used within the framework. For exam-
ple, there are many description logics [2], constraint programming languages [23],
commitment logics [27], or even predicate and modal logics [3] that contain the
necessary constructs, although some of these languages may not be executable,
and therefore the protocols would not be inspectable. The content languages
proposed by FIPA [9] would also be suitable candidates.
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Definition 1. Constraint

A constraint is a piece of information reducing the set of values that are possible
for variables in a universe. For example, if an agent wishes to specify that the
price of an item, Item, is 10 units, it may express this as follows:

PriceOf (Item, 10)

In this constraint, Item is a variable, PriceOf a relation, and ‘10’ a constant.
Operators used to express constraints over the universe must be defined.

Definition 2. Constraint System

We assume agents communicate using a communication language, which has
a set of operators used to express constraints over variables. We will refer to
such as language as a constraint language. Rather than define the syntax and
semantics of a new language, or present the details of an existing one, we take the
approach that any language can be used as the communication language in our
framework, provided it contains a few basic constants and operators with certain
properties. As well as using this as a communication language, we assume that
this language is used to specify the preconditions and consequences of protocols.
We refer to this as the underlying constraint language or just underlying language.
This constraint language is denoted L.

We use the definition of a constraint system proposed by De Boer et al. [5].
They define a constraint system as a complete algebraic lattice

〈C,�,�, true, false〉
In this structure, C is the set of atomic propositions in the language, for example
1 ≤ 2, � is an entailment operator, true and false are the least and greatest ele-
ments of C respectively, and � is the least upper bound operator. The shorthand
c = d is equivalent to c � d and d � c.

The entailment operator is a partial order over C, in that, for any atomic
propositions, c and d, c � d means that c contains more information than d. This
is read that d is provable from c, which means that any values that satisfy the
variables in d also satisfy c. For example, x ≤ 5 � x ≤ 6 specifies that if x is less
than or equal to 5, then it is less than or equal to 6, which is trivially true because
there exists no value for x that satisfies x ≤ 5 that does not also satisfy x ≤ 6.
The � operator specifies the addition of information. For example, to specify
the prices of ItemA and ItemB are 5 and 10 units respectively, one could write
PriceOf (ItemA, 5)�PriceOf (ItemB, 10). This is is analogous to conjunction in
logic, in that c � d is the joining of information. Therefore, c � d � d is true for
any c and d.

A cylindric constraint system is a constraint system with an operator for
hiding variables. De Boer et al. [5] define a cylindric constraint system as a
structure, 〈C,�,�, true, false, V ar, ∃〉, in which V ar is a set of variables, and ∃
the hiding operator. To hide a variable x in a constraint c, one would write ∃xc.
The hiding operator has the following properties:
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– c � ∃xc
– c � d implies ∃xc � ∃xd
– ∃x(c � ∃xd) = ∃xc � ∃xd
– ∃x∃yc = ∃y∃xc
For example, to specify that the price of Item is between 5 and 10

units inclusive, one could write ∃Price(PriceOf (Item, Price) � 5 ≤ Price �
Price ≤ 10).

We use shorthand to represent negation in L. For constraints c and d, c �
¬d is true if and only if c � d is not. That is, c entails ¬d if and only if c
does not entail d. Note that, from this definition, we assume only that negation
can occur on the right hand side of the entailment operator. Depending on the
underlying constraint language used, this restriction could be relaxed, but this
is not necessary to fit into the framework.

Throughout this paper, constraints will adhere to the following grammar,
although a suitable language need not adhere to this grammar to be used in the
framework:

φ ::= c | φ � φ | ¬φ | ∃xφ
In this grammar, c is any atomic constraint in C, and x any variable in V ar. We
use ψ and φ as meta-variables representing constraints that follow this grammar,
adding subscripts and superscripts to denote distinct meta-variables. Brackets
are used to remove syntactic ambiguity, although to reduce the need for brackets,
we specify that ¬ and ∃ both bind tighter than �, so ¬φ � ψ is (¬φ) � ψ, and
∃xφ � ψ is (∃xφ) � ψ.

We introduce a renaming operator, which we will write as [x/y], such that
φ[x/y] means ‘replace all references of y in φ with x’. The reader may have
already noted that φ[x/y] is shorthand for ∃y(y = x� φ). We also introduce the
shorthand φ 	= ψ for ¬(φ = ψ), and ∃x,yφ for ∃x∃yφ.

Definition 3. Free Variables

The function, free ∈ L → ℘(V ar), returns the set of free variables in any
constraint; that is, variables referenced in φ that are not hidden using ∃. For
example, free(x ≤ 5) = {x}, and free(∃x(x ≤ 5�y = x)) = {y}. Calculating the
free variables in a constraint can be done at a syntactic level using an inductive
definition over the constraints:

free(c) = . . .
free(true) = ∅
free(false) = ∅
free(φ � ψ) = free(φ) ∪ free(ψ)
free(¬φ) = free(φ)
free(∃xφ) = free(φ) \ {x}

We do not define free(c) because that is specific to L. For readability, we
use the shorthand ∃x̂φ to represent ∃free(φ)\{x}φ. That is, ∃x̂φ means that we
quantify over all free variables in φ except x.
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3 RASA Protocols

In this section, we present the language for modelling RASA protocols, and some
definitions relevant to this.

The RASA protocol specification language resembles that of other process
algebras, such as CSP [11]. However, we specify the rules and effects of protocols
using an underlying constraint language, which would be declarative by defini-
tion. This allows agents equipped with the necessary tools to reason about this
language to determine when rules are satisfied, to calculate the effect of sending
a particular message, and to devise strategies for interaction at runtime.

Definition 4. Communication Channel

We assume that a communication channel is a one-to-one connection between
two agents. The notation c(i, j) denotes the communication channel between the
sending agent with identity i, and the receiving agent with identity j, in which
identities are represented in the underlying language.

We employ the notation c(i, j).φm to represent the message φm being sent by
agent i to agent j via the channel c(i, j). The event of agent i sending a message
to j is the same event as agent j receiving this message. That is, the event is the
communication over the channel. Agent identities are omitted when the sending
and receiving agents are not relevant; that is, we write c.φm.

An alternative way to represent communication between agents is to have
many-to-many channels, with the sender and receiver identities as part of the
message. However, we choose the first approach so that we can reason about
communication in our framework language, rather than mixing this with the
underlying constraint language.

Definition 5. RASA Protocol

A RASA protocol is an annotated tree of interactions between entities. An an-
notation is a triplet of constraints, in which the first constraint represents the
precondition that must hold for a transition to occur, the second constraint
represents the message to be sent, and the third constraint is a postcondition,
which must hold after an enabled transition occurs. Branches in the tree repre-
sent choices to be made by one or more agents.

Let φ represent constraints defined in constraint language, c communication
channels, N protocol names, and x a sequence of variables. Protocol definitions
adhere to the following grammar.

π ::= ε | φ
c.φ−−→ φ | π; π | π ∪ π | N(x) | varφx·π

We use π as a meta-variable to refer to protocols; subscripts and superscripts
are used to denote distinct meta-variables. ε represents the empty protocol, in
which no message is sent and there is no change to the protocol state. A protocol
of the format φ

c.φm−−−→ φ′ is an atomic protocol. It represents the value φm being
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sent over channel c if φ holds in the current state. After the value is sent, the
new state of the protocol is updated using φ′. We use this to specify rules and
effects of protocols: the precondition represents a rule for a protocol because φm
can only be sent if this precondition is true; and the postcondition represents the
effect that sending φm has. For atomic protocols, meta-variables with a prime (′)
are used to refer to the postconditions; that is, φ is the precondition and φ′ the
postcondition. We use φm (that is, constraints subscripted with m) to denote
message constraints.

The protocol π1; π2 denotes the sequential composition of two protocols, such
that all of protocol π1 is executed, then protocol π2. The protocol π1∪π2 denotes
a choice of two protocols. N(x) denotes a reference to a protocol N(y), with
variables y renamed to x, such that the referenced protocol is expanded into this
protocol. For brevity, we use x and y to represent sequences of variables as well as
single variables. Protocols can reference themselves, and can mutually reference
each other, which introduces the possibility of non-terminating protocols. The
protocol varφx·π denotes the declaration of a local variable x, with the constraints
φ on x. The scope of x is limited to the protocol π.

We permit brackets to group together protocols, and to reduce the use
of brackets, operators have a strict ordering. The infix operators always bind
tighter than variable declaration, with sequential composition binding tighter
than choice. Therefore, the protocol varψx ·π1; π2 ∪ π3 would be equivalent to
varψx · ((π1; π2) ∪ π3).

Definition 6. Protocol Specification

Let N be a name, y be a sequence of variable names, and π be a protocol. A
protocol specification is defined as a set of definitions of the form

N(y) =̂ π

Definition 7. Protocol Instance

Let D be a protocol specification, π a protocol, and φ a constraint. A protocol
instance is a tuple, 〈D, π, φ〉, in which π can reference the protocol names defined
in D, and φ is a constraint representing the state of the protocol at that instance.
Instances evolve via message sending and the changing of the state.

Example 1. As an example of specifying a protocol, we use a simple negotiation
protocol. In this example, a buyer, B, is bidding for an item. If the price that
the buyer suggests, Price, is greater than the current price in the protocol state,
the seller, S, accepts the bid, otherwise rejecting it. In the case that the bid
is accepted, Price becomes the new current price. Such a protocol could be a
sub-protocol of an English auction protocol, and would be iterated over until
no more bids are received, or until some timeout is reached. This protocol is
specified as follows:
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Buy(Item,Price, B, S) =̂ Bid; AcceptOrReject

Bid(Item,PriceB,S) =̂ isItem(Item)
c(B,S).bid(Item,Price)−−−−−−−−−−−−−−−→ true

AcceptOrReject(Item,Price, B, S) =̂ var
PriceOf (Item,Curr)
Curr · (Accept ∪ Reject)

Accept(Item,Price, Curr, B,S) =̂

Curr < Price
c(S,B).accept(PriceOf (Item,Price))−−−−−−−−−−−−−−−−−−−−−−−→ PriceOf (Item,Price)

Reject(Item,Price,Curr, B, S) =̂

Curr ≥ Price
c(S,B).reject(PriceOf (Item,Price))−−−−−−−−−−−−−−−−−−−−−−−→ true

So, the bidder sends a bid to the seller. The declaration of the local variable
Curr represents the current bid; that is, Curr is equivalent to the value that
satisfies PriceOf (Item, Curr) in the state. If the bid is greater than Curr, the
seller sends an acceptance, and the constraint PriceOf (Item, Curr) is added to
the constraint store, overriding any previous constraints on Item. If the bid is
less than the current price, the bid is rejected and the state remains unchanged.
This specification corresponds to the following tree, in which the nodes re-
fer to the consequence of the previous action, and the arcs are of the format
ψ =⇒ c.φm, interpreted as “if ψ holds, then the transition c.φm can occur.” For
presentation, we have left out some details that are in the specification.

�
isItem(Item) =⇒ c(B,S).bid

=⇒ c(S,B).accept =⇒ c(S,B).reject

PriceOf(Item,Curr) � Curr < Price

PriceOf(Item, Price) �

PriceOf(Item,Curr) � Curr ≥ Price

An agent with ID represented by the variable a, wishing to sell an item, i, to
another agent b, may propose that this protocol is used to determine a price by
proposing the following protocol instance:

〈P, Bid(i, P rice, b, a),PriceOf (i, 0)〉
In which P is the protocol specification above, Bid(i, P rice, b, a) is the Bid
protocol with renamed variables, and PriceOf (i, 0) is the initial state. The task
is now that the agents must find an instantiation for the variable Price on which
they both agree.

Clearly, agreeing on a protocol instance from which to begin the negotiation
is itself a negotiation problem, which would likely be solvable with another pro-
tocol. Such meta-protocols are, in the context of a system, at a higher level than
other protocols, such as the negotiation protocol above. However, this does not
rule out the option of using the same protocol at both levels.

Meta-protocols, their use, and their control are dependent on the system in
which they are employed, and on the agents within these systems, so proposing a
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general solution for this problem is not possible. For example, some agents may
adopt a “take it or leave it” approach, in which other participants either use a
certain protocol to interact with them, or do not interact with them at all. In
other cases, adopting a specific meta-protocol may be a condition of entry into
the system. Other systems may leave it up to the agents themselves to decide. In
future work, we plan to specify a collection of meta-protocols that can be used
to negotiate which RASA protocol to use, and look at the contexts in which
these protocols can be employed.

4 Semantics

In this section, we define and discuss the semantics of the RASA protocol spec-
ification language.

4.1 Structural Operational Semantics

We view the semantics of protocols as commands on a virtual machine, in which
states incorporate protocol instances, and the commands are the messages being
sent over communication channels. To model these semantics, we make use of
structural operational semantics, as defined by Plotkin [20].

Using structural operational semantics, a system is defined as a set of tran-
sitions, with each transition linking two states. In the case of our protocol se-
mantics, a state is defined as a protocol instance. Recall from Definition 7 that
a protocol instance is a tuple 〈D, π, φ〉, in which D is a protocol specification, π
is the protocol that is to be executed, and φ a constraint representing the state
of the protocol. Thus, a transition takes the form:

〈D, π, φ〉 l−−→ 〈D, π′, φ′〉
This denotes the protocol π being executed in the state φ, the transition l

occurring at this point. π′ denotes the part of the protocol left to execute, and
φ′ denotes the new state of the protocol. l refers to either the communication of a
constraint φm over a channel, written c.φm, or the empty transition. We use ε−−→
to represent the empty transition. D is invariant over the course of execution,
therefore, we omit it whenever it is not referenced in a transition.

As a shorthand, we use the following to indicate that 〈D, π, φ〉 evolves to
〈D, π′, φ′〉 over the sequence of transitions l1, . . . , ln:

〈D, π, φ〉 l1,...,ln−−−−→ 〈D, π′, φ′〉
We specify the semantics as inference rules of the following form:

antecedents

conclusion
conditions

In which antecedents are the assertions about what can occur at the current
state, conditions are the side conditions under which this rule is enabled, and
conclusion is the transition that can occur. We use the special protocol, E, to
represent the protocol whose execution is complete.
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4.2 Renaming

To define the semantics of protocols specified using RASA, we include syntax for
renaming over protocols. Specifically, renaming is defined inductively over the
structure of the protocols such that the protocol π[x/y] represents the protocol
π, with every free occurrence of the variable y substituted with the variable x,
including variables in the constraints. Formally, renaming is defined as follows,
in which I denotes either of the binary infix operators:

(ψ
c.φm−−−→ ψ′)[x/y] = ψ[x/y]

c.(φm[x/y])−−−−−−−→ ψ′[x/y]
(π1 I π2)[x/y] = π1[x/y] I π2[x/y]

N(z1, . . . , y, . . . , zn)[x/y] = N(z1, . . . , x, . . . , zn)

(varψy ·π)[x/y] = var
ψ[x/y]
x ·π[x/y]

(varψz ·π)[x/y] = var
ψ[x/y]
z ·π[x/y]

Informally, this says that renaming y to x in an atomic protocol is equivalent
to performing the same rename over the constraints in the protocol. Renam-
ing a infix composition is equivalent to renaming the two sub-protocols of that
composition. Renaming y to x in a protocol reference consists of renaming any
instances of y in the variable list to x — the name of the protocol is not renamed.
Variable declaration has two rules: the first if the declared variable is y, in which
case the variable is changed to x; the second if the declared variable is not y,
in which case the variable remains the same. In both cases, the constraint on x
and the protocol in the scope of the variable are both renamed.

As an example of protocol renaming, we use the negotiation example from
Section 3. Suppose that we wish to use this within an auction protocol, with an
auctioneer represented by the variable Auctioneer, then one could use the re-
named protocol Buy[Auctioneer/S] to represent the same protocol, but in which
every occurrence of the variable S replaced with Auctioneer. Therefore, the mes-
sage representing a bid on the item would be c(B, Auctioneer).bid(Item, Price).

4.3 Operational Semantics of Protocol Operators

Now we have some basic definitions covered, we define the semantics of the
protocol operators in the RASA language. That is, of executing a protocol within
the context of a protocol specification and a constraint representing the protocol
state.

Definition 8. Semantics of the Empty Protocol

The empty protocol terminates under no transition, and has no effect on the
protocol state.

〈ε, φ〉 ε−−→ 〈E, φ〉



256 T. Miller and P. McBurney

Definition 9. Semantics of Atomic Protocols

Firstly, we define the semantics for the atomic protocol. That is, the protocol
consisting only of a message being sent over a channel if the precondition is
satisfied, resulting in a new protocol state.

〈ψ c.φm−−−→ ψ′, φ〉 c.φ′
m−−−→ 〈E, φ′〉

if φ � ψ and φ′
m � φ′ � φm � O(φ, ψ′)

This states that, if the precondition ψ is true under the model φ, then the
transition can occur. This transition can be the constraint, φm, but can also be
a constraint, φ′

m, that contains more information that φm, such that φ′
m � φm.

This allows the message sender to place additional constraints on the message,
and, as a consequence, the resulting state. The resulting state is O(φ, ψ′), in
which O ∈ (L × L) → L is an overriding function defined as O(φ, ψ′) = ψ′ �
∃free(ψ′)φ. Therefore, O defines a new constraint such that the values of any
free variables in ψ′ are overridden with the values constrained by ψ′, while the
free variables in φ that are not otherwise in ψ′ maintain their pre-state values.
However, any additional information in the message, φ′

m must also apply to the
resulting state. For example, considering the following atomic protocol from the
auction example in Section 3:

Curr < Price
c.accept(PriceOf (Item,Price))−−−−−−−−−−−−−−−−−−−−→ PriceOf (Item,Price)

The sender confirms that the bid for Item at the price Price has been accepted,
in which Item and Price are variables. As part of the interaction, the sender
would like to instantiate both variables — Item with an item, and Price with
a number. If the sender wants to confirm that the price of the Item is 10, then
the message will be c.accept(PriceOf (Item, Price)�Price = 10). The constraint
Price�10 needs to be shared with the postcondition. The semantics enforces this:
φ′
m�φ′ � φm�O(φ, ψ′). In this example, the only solution for Price in this con-

straint would be Price = 10, therefore, the post-state is PriceOf (Item, Price)
� Price = 10, which simplifies to PriceOf (Item, 10). Such an approach allows
protocol specifications to be general, and then instantiated at runtime.

Definition 10. Semantics of Sequential composition

Sequential composition is defined as executing the left-hand protocol until it
terminates, and then executing the right-hand protocol until it terminates. The
semantics of this is given by two rules.

〈π1, φ〉 l1,...,ln−−−−→ 〈E, φ′〉
〈π1; π2, φ〉 l1,...,ln−−−−→ 〈π2, φ′〉 〈E; π2, φ〉 ε−−→ 〈π2, φ〉

The first of these rules specifies that if sequence of transitions, l1, . . . , ln, can be
made from 〈π1, φ〉 taking the system to the state 〈E, φ′〉, then we can perform
this transition under the state 〈π1; π2, φ〉, leaving us to execute π2 under the
protocol state φ′. The second rule specifies that at all times, E; π is equivalent
to π.
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Definition 11. Semantics of Non-Deterministic Choice

Non-deterministic choice is defined using two rules.

〈π1, φ〉 l1,...,ln−−−−→ 〈E, φ′〉
〈π1 ∪ π2, φ〉 l1,...,ln−−−−→ 〈E, φ′〉

〈π2, φ〉 l1,...,ln−−−−→ 〈E, φ′〉
〈π1 ∪ π2, φ〉 l1,...,ln−−−−→ 〈E, φ′〉

These two rules state that, for a protocol π1 ∪ π2, if one of the arguments can
progress, then that argument progresses, and the other is discarded. If both
can progress, then a non-deterministic choice is made between the two of them,
and the other is discarded. The new protocol state of the argument that is
chosen is the new protocol state of the entire transition. The entire protocol
terminates when the chosen protocol terminates. A choice between a protocol
and the terminated protocol, E, cannot occur because the choice is made before
progressing, and because E is not a part of the language syntax.

Definition 12. Semantics of Protocol References

〈D, N(x), φ〉 ε−−→ 〈D, π[x/y], φ〉 if N(y) =̂ π ∈ D

This rule specifies that, if there is a protocol named N with variables y and
protocol π in the set D, then the reference N(x) is equivalent to the protocol π,
with the variables y renamed to x.

For example, the Bid(Item, Price, B, S) protocol, from Section 3, can be ref-
erenced as with Bid(i, p, a, b), in which i, p, a, and b are variables. This is equiv-
alent to the following:

isItem(i)
c(a,b).bid(i,p)−−−−−−−−−→ true

In which Item, Price, B, and S are renamed to i, p, a, and b respectively.

Definition 13. Semantics for Variable Declaration

A näıve attempt to specify the semantics for variable declaration would give the
following.

〈π, ψ ∧ φ〉 l1,...,ln−−−−→ 〈E, φ′〉
〈varψx ·π, φ〉 l1,...,ln−−−−→ 〈E, φ′〉

The protocol varψx ·π specifies that a new variable x is declared with constraints
ψ, and then the protocol π, which may refer to x, is executed. Thus, if the
protocol π can progress under the protocol state ψ ∧ φ to the protocol π′ and
state φ′, then make this transition.

We have labelled this definition “näıve” because it does not consider three
cases. Firstly, it does not consider that case that x is already a free variable in
the state. This will cause problems because the behaviour would be to evaluate
π in the protocol state ψ ∧ φ, which could be inconsistent. A designer writing
the protocol varψx ·π would surely want any references of x in π to refer to the
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most recently declared x, therefore, in the antecedent of the rule, x is hidden in
φ using the cylindric operator, so the constraints of the x in the state are hidden.
Secondly, it does not remove the local variable x from the state after execution,
meaning that the scope of x is not restricted to π. Finally, it does not maintain
the constraints on x over the protocol. A second attempt to specify this rule
leads to the following:

〈π, ψ ∧ ∃xφ〉 l1,...,ln−−−−→ 〈E, φ′〉
〈varψx ·π, φ〉 l1,...,ln−−−−→ 〈E, ∃xφ′ � ∃x̂φ〉

where ∃x̂φ = ∃x̂φ′

In this definition, the state ψ∧∃xφ has all references to the previously declared
x hidden. The side condition, ∃x̂φ = ∃x̂φ′, says that hiding all variables except x
in the pre-state and the post-state will result in the same constraint, therefore,
the constraints on x are the same in the post-state and pre-state. Finally, the
post-state, ∃xφ′ � ∃x̂φ hides all references to the local variable x in φ′, and
reinstates the global reference by hiding all variables except the global x in the
pre-state, φ.

Example 2. We turn to an example to help with the understanding of variable
declaration, as its definition is not straightforward. Take the following protocol,
which is an expanded version of accepting a bid from the example in Section 3:

var
PriceOf (Item,Curr)
Curr ·
Curr < Price

c(S,B).accept(PriceOf (Item,Curr))−−−−−−−−−−−−−−−−−−−−−−−→ PriceOf (Item,Price)

If this is executed with the protocol state PriceOf (Item, 2) � Curr = 10, in
which Curr is a variable unrelated to the current bid, then the state value of
Curr is inconsistent with the constraints on the local variable Curr. So, it is
executed under the following state (corresponding to ψ ∧ ∃xφ in the definition):

PriceOf (Item, Curr) � ∃Curr(PriceOf (Item, 2) � Curr = 10)

This ensures that any reference to Curr will be referring to the local variable
name instead of the global name, and will be constrained to the price of Item,
which is 2. Consider a message in which the buying agent constrains Price to
be 3; that is, sends the message PriceOf (Item, Price) � Price = 3. After this
message, the state would be (corresponding to φ′ in the definition):

(1) PriceOf (Item, Price) � Price = 3 �
(2) ∃Item,Price(PriceOf (Item, Curr) � PriceOf (Item, 2))

From the atomic protocol semantics, we keep the constraints for variables not
referenced in the post-state by hiding these variables in the pre-state constraint
(line 2), and conjoining this with the postcondition (line 1). This constraint can
be simplified to the following:

PriceOf (Item, 3) � Price = 3 � Curr = 2
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However, the scope of the local declaration Curr ends there, so we want to
remove all references to this Curr, and reinstate the global Curr with the same
constraints it had prior to the local declaration. Therefore, the local Curr in
this constraint is hidden, and the resulting constraint conjoined with the pre-
state with all variables except Curr hidden (corresponding to ∃xφ′ � ∃x̂φ in the
definition):

(1) ∃Item,Price(PriceOf (Item, 2) � Curr = 10) �
(2) ∃Curr

(
PriceOf (Item, 3) � Price = 3 � Curr = 2

)
Line 1 is the constraint that reinstates the global Curr with the constraints

it had prior to the local declaration. The constraint in Line 2 hides the local
variable of Curr. This can be simplified to the following:

Curr = 10 � PriceOf (Item, 3) � Price = 3

Which is the expected end state of the protocol. With this simplification, one
may wonder why we hide the local reference of Curr rather than just removing
all references to it. This is because the postcondition may refer to the local
variable, in which case ∃Curr could not be removed, because the constraints on
Curr may also constrain other variables, such as Item or Price.

5 Reusing, Composing, and Reasoning About Protocols

So far, we have outlined how protocol designers can specify a protocol, and have
defined the semantics for a protocol given a protocol specification and an initial
state. However, crucial to the goals of agent-oriented software engineering is the
fact that first-class interaction protocols should be reusable and composable, and
inspectable such that agents can reason about protocols to decide their course
of action. How designers and agents reuse, compose, and reason about RASA
protocols is not the topic of this paper, however, in this section, we briefly outline
how the RASA protocol specification language supports these requirements. In
future work, we plan to investigate these areas in more detail.

Protocols can be referenced via their name, which allows protocols and pro-
tocol specifications to be reused to create larger, compound protocols. For ex-
ample, the simple negotiation protocol specified in Section 3 could be embedded
within an auction protocol. Assuming the existence of protocols called Start,
DeclareWinner, and NoBids, which represent the auction starting, a winner
being declared, and no bids received before a certain condition is met, such as a
timeout, one could specify an English auction as follows, in which Bs is a set of
bidders:

Auction(Item,Price, Bs, S) =̂ Start; Bids; (DeclareWinner ∪ NoWinner)

Bids(Item,Price,Bs, S) =̂ ε ∪ ((var
B∈Bs
B ·Buy);Bids)

The protocol Bids is zero of more iterations of the Buy protocol, in which
one bidder from the set of bidders, Bs, submits a bid, and it is either accepted
or rejected.
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RASA is well-suited for composition. The syntax and semantics of protocol
composition operators treat all protocols the same; that is, atomic protocols
are complete protocols themselves. Therefore, the syntax and semantics for con-
structing protocols from atomic protocols can be used to create compound pro-
tocols from other compound protocols. The auction example above is an example
of composing new protocols from existing protocols.

Protocol composition need not be restricted to protocol designers. Agents
able to reason about protocols specified using RASA could be equipped, in a
straightforward manner, with the ability to compose new protocols from existing
protocols using planning techniques.

As an example, consider an intelligent agent, I, that believes it can buy a
particular item of a rather unintelligent agent, U , and then sell it back to the
same agent at a profit. U may propose that itself and I agent engage in two
rounds of the Buy protocol from Section 3, but with the buyer and seller swapped
in each case:

Buy[U/S, I/B]; Buy[I/S, U/B]

This composed protocol represents the unintelligent agent acting as the seller,
S, and the intelligent agent representing the buyer, B, followed by the same
protocol, but with the buyer and seller swapped. Depending on the initial state
of the protocol, if I can convince U to engage in this protocol, then I may be able
to make a profit. Note that this is different to I proposing Buy[U/S, I/B], and
then after this interaction has taken place, proposing Buy[I/S, U/B], because U
may not agree to the second protocol, leaving I stuck with the item it does not
want. If, however, U agrees to the composed protocol, it is forced to put in a bid
for the item if I buys it. This example is fabricated, and would require a highly
intelligent agent to devise such a strategy, but should an agent be intelligent
enough to exploit this, this example demonstrates that deriving the composite
protocol would be straightforward.

There are cases in which protocol composition can lead to problems. For
example, take the sequential composition of two protocols: π1; π2. For all possible
states resulting from the protocol π1, the precondition from at least one of the
paths in π2 must be enabled, otherwise the execution of the protocol can become
stuck, in which there are no possible messages that can be sent. To compose this
protocol, one must prove that the protocol can never become stuck. Determining
such proof obligations, and defining a proof system to help discharge such proof
obligations, are part of our ongoing work on the RASA framework.

Agents can reason about which messages to send by calculating the best
course of action at each point in which they can send a message. Each path
from the root node to a leaf node represents a possible sequence of interaction.
To choose a course of action, classical planning or reactive planning techniques
and algorithms can be adapted and used; or more likely, a combination of both.
For example, an agent can calculate the end state of all possible interaction
sequences of a protocol to decide the next message they send. However, an agent
would have to react to changes when it receives a message from another agent,
which would likely reduce the choices for its next move.
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6 Related Work

There are many languages that have been designed to model agent interactions,
such as Social Integrity Constraints [1], FIPA [9], and Agentis [8]. AgentUML
[17] has been given a formal semantics for modelling agent interactions [4]. In
this section, we discuss and contrast some of the approaches most relevant to
the RASA framework.

Process algebras, such as CSP [11], CCS [15], and the π-calculus [16] are used
to model processes and their interactions. While the combination of processes
can form the basis of a protocol specification, these languages cannot be used
to specify rules and effects. Languages such as Object-Z/CSP [25], which mixes
process algebras with state-based languages, are often not inspectable.

Viroli and Ricci [26] propose a method for formalising operating instructions
for use on mediating coordination artifacts. Sequences of operation instructions
resemble our first-class protocols; however their language does not provide the
necessary constructs to document the rules or outcomes of protocols. In addition,
Viroli and Ricci explicitly comment that their goals are to provide a methodology
for environment-based coordination, rather than a general approach to agent
interaction semantics.

De Boer et al. [6] present a language that uses constraints and process algebra
to model agent interactions. However, like many interaction modelling languages,
the interaction is emergent from the model of the participants, rather than being
first class.

Propositional dynamic logic (PDL) [10] resembles our notion of protocols.
For example, PDL allows one to define a collection of sequences of actions,
each with an outcome specified as a predicate. In fact, PDL has been extended
[19] with belief and intention modal operators to define a language, PDL-BI,
for modelling agent interaction. The main differences between these approaches
and our approach is that PDL and PDL-BI are declarative languages, while the
RASA language is algebraic; and our language does not require the use of a
specific language to model protocol rules and effects. In addition, the class of
protocols describable using PDL(-BI) is regular, while RASA allows a larger
class; for example, two named protocols with mutually recursive references.

Related work on inspectable protocol specifications also exists in the litera-
ture. OWL-P [7] is a language and ontology for modelling protocols, which is
coded in the OWL web ontology language [18]. While the approach and goals
are different to ours, OWL-P protocols can be used as first-class protocols, and
agents would be able to successfully reason about these using OWL tools, and is
therefore of interest to us. The syntax and semantics of OWL-P are significantly
different to ours, but, like RASA protocols, OWL-P protocols can be composed.
However, unlike RASA, in which composing two protocols has the same syn-
tax and semantics at all levels, OWL-P protocol composition uses a new process
with new syntax for composition. We believe this to be a significant advantage of
our approach. In addition, OWL-P is not layered; that is, the message sequenc-
ing is specified in the same language as the protocol rules and effects — OWL.
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This restricts designers to using OWL for specification. We also believe that
using a declarative language to specify message sequencing is less intuitive for
human readers.

Yolum and Singh [27] present an extension to the Event Calculus [12] that is
tailored to first-class protocol specification. The language is declarative, and the
authors discuss the use of an abductive planner for agents to plan their execution
paths. Although not explicitly discussed by Yolum and Singh, it appears that
protocol composition would be possible using this language. This approach is
different to ours in the same way that OWL-P is: the language is not layered,
and message sequencing is declaratively specified.

Robertson [22] presents the Lightweight Coordination Calculus (LCC). The
goals of Robertson are similar to ours, and indeed, one could view the RASA
language as an extended version of LCC, in which we have taken more consid-
eration of the relationship between the protocol specification language and the
underlying constraint language by formalising the behaviour of atomic protocols.
However, our language differs from LCC in several ways. Firstly, we take a global
view of protocols, whereas LCC takes a local view; that is, two interacting agents
will each have a specification of their view of the protocol. We believe it would
be straightforward to switch between such views in either language. Secondly,
our formalisation of atomic protocols treats protocol state differently. Thirdly,
we provide a local variable construct, which is useful for defining constraints over
sub-protocols, as demonstrated by the example in Section 3. McGinnis [14] has
successfully composed LCC protocols at runtime (although McGinnis refers to
this as synthesis) — a goal clearly in line with our idea of protocol composition.

Serrano et al. [24] describe a multi-agent programming framework in which
interactions are represented by first-class objects. These objects assert some
control over message passing at runtime to guide the interaction. However, this
requires the identification of roles at design time, and appears to force participat-
ing agents to implement certain interfaces, which we explicitly aim to prevent.

There is also work related to protocol composition in the agent communica-
tions literature. McBurney and Parsons [13] propose a formalism for composing
dialogue game protocols, which enables similar types of composition, but over
a more restricted class of protocols. Reed et al. [21] present a framework which
allows agents to assign meanings to messages at run-time, and thus, indirectly,
to create new interaction protocols.

7 Conclusions and Future Work

In this paper we have presented a novel language for the specification of agent
interaction protocols, defining both the syntax and the semantics formally. This
language forms part of the RASA framework, a framework for creating multi-
agent interaction protocols as first-class entities. RASA is general across both
the type of interaction protocol and in the language or ontology used by the
agents engaged in interaction. By treating interaction protocols as first-class
entities, RASA permits protocols to be inspected, referenced, composed, and
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shared, by ever-changing collections of agents engaged in interaction. The task
of protocol selection and invocation may thus be undertaken by agents rather
than agent-designers, acting at run-time rather than at design-time. Frameworks
such as this will be necessary to achieve the full vision of multi-agent systems.

Before such visions are realised, significant further work is required. We aim
to develop a proof system for the RASA framework, which, as well as providing
a system for designers to verify properties about their protocols, will provide
agents with a way to make decisions about their actions, and to verify protocols
composed at runtime. Also, further work is needed on the verification of protocols
using this proof system, and the development of verifiable semantics for them
within this framework. In addition, we plan to specify a collection of meta-
protocols for negotiating which protocols to use, and identify in which contexts
each meta-protocol would be useful. To develop and test these ideas, we plan a
prototype implementation in which agents negotiate the exchange of information
using protocols specified using the RASA framework.
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Abstract. A defining characteristic of Open Computational Societies
is the unpredictable behaviour of their participants, resulting from their
operational and architectural heterogeneity. This has led to the devel-
opment of computational frameworks that facilitate the declaration of
agent specifications in terms of normative relations. The frameworks
offer modelling, simulation and validation, but typically have not sup-
ported dynamic modification of the specification at runtime by the agents
themselves. This omission can be a limitation in certain scenarios, where
agents might be capable of adaptation when faced with unexpected stim-
uli, but the specifications under which they operate did not allow for it.
In this paper we extend an existing normative computational framework
to facilitate well-defined dynamic normative modification of a specifica-
tion by the agents themselves, given a well-defined meta-specification.
We complement the framework with a mathematical model of the ‘speci-
fication space’. We argue that the introduced dynamism preserves several
of the advantages of static normative frameworks while allowing for more
flexible, highly autonomous systems, simpler specification authoring and
generic protocol reuse.

1 Introduction

Artikis et al. define Open Agent Societies[1][2], as Open Systems[3][4] charac-
terised by the lack of a common goal among the peers and the possibility for
architectural heterogeneity, with reasoning capability and processes that are un-
known to the designer and the society as a whole. Artikis’ work is largely based
on prior theoretical work by Santos, Sergot and Jones[5][6], where they present
a formal account of the notions of normative position and institutional power
(introduced by Searle in [7]) between two agents.

Artikis et al. show that treating Open Agent Societies as instances of norm-
governed systems has significant advantages in simulating, modelling and eval-
uating the performance of such societies. That body of work has been the basis
for a range of protocol specifications, including auctions[2], resource sharing[8]
and voting[9].

In some types of societies, where the environmental and social characteris-
tics are particularly volatile and/or unexpected there might be a requirement
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for very complex specifications in order to cater for a wide range of possible
outcomes. Providing a means for well-defined, bounded dynamic modification of
the specification at run-time shifts a larger proportion of the decision-making
process to the agents themselves.

In this paper we present an extended computational framework for specifying
dynamic specifications (meta-specifications) for norm-governed systems, based
on the prior work by Artikis et al. The extended framework could be used to:

– Allow for meta-specification authoring containing variable components
(numeric parameters, enumerations and composite protocols) modifiable by
the agents at runtime within well-defined limits.

– Enable simplified protocol and, subsequently, specification authoring and
higher reusability of existing resources through parameterisation.

This work is a first step towards achieving this: the social requirements of
Open Computational Societies (OCS) already place considerable weight upon
the sophistication of the participating agent architectures. The introduction of
social dynamics affecting the operational characteristics of the system signifi-
cantly enhances the role and importance of the individual agent architecture
and capabilities. This is an important aspect of dynamically specified OCS, that
while we are aware of, we do not explicitly cover in this paper. We assume the
existence of suitable agent architectures, able to socially interact for the pur-
poses of achieving individual and social goals, whether private or social, e.g.
those involving the modification of the specification during execution. We as-
sume that those agents are capable of autonomous reasoning and consideration
of the changes to the norms their operation might require during execution.

We complement our framework with a brief presentation and discussion of a
novel mathematical model based on the theory of Metric Spaces, used in repre-
senting the multitude of specifications possible through the use of a dynamic spec-
ification for norm-governed systems and encoding designer/evaluator preferences
beyond the performance of the specified object protocols. In turn, the model alone,
or in conjunction with additional protocol and social metrics, allows for the eval-
uation and study of a meta-specification as well as the evolution of a society over
time and can be used in the design, evaluation and simulation of such societies.

Finally, we briefly discuss the design and implementation of software tools
aimed to assist with the evaluation and experimentation of the framework. The
methodology and function of those tools can also aid in the design of OCS,
although this paper will not focus on this aspect as such. Finally, throughout
the paper, we exemplify our work through an existing voting protocol for online
deliberative assemblies[9].

The rest of the paper is organised as follows: Section 2, continues with a pre-
sentation of the foundations of this work, while Section 3 presents the framework
for dynamic specifications. Section 4 discusses a modelling approach to evalu-
ating and designing dynamic norm-governed systems. Section 5 briefly presents
preliminary experimentation and implementation aspects. Sections 6 and 7 dis-
cuss future work, related work, summarise and present the conclusions drawn
from this work.
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2 Concepts

2.1 The Event Calculus

The Event Calculus (EC) is an action description language introduced by Kowal-
ski and Sergot[10]. It is based on a many-sorted first-order predicate calculus.
Fluents in the EC are propositions whose value can change over time. For ex-
ample, F = V denotes that fluent F has value V . A fluent F takes value V for
the period of time after F = V is initiated by an action and before it is termi-
nated by another. To describe an action in Event Calculus one makes use of the
Event Calculus predicates (see Table 1) in axioms that define action occurrences
(happens) and effects of actions (initiates and terminates).

Table 1. Main predicates of the Event Calculus

Name Meaning

holdsAt(F = V,T) Fluent F is V at time T
happens(Act, T) Action Act happens at time T.
initially(F = V) Fluent F is V at time 0 (zero)
initiates(Act, F = V, T) Action Act at time T initiates a period of time

where the value of fluent F is V
terminates(Act, F = V, T) Action Act at time T terminates a period of

time where the value of fluent F is V

We employ the Event Calculus in the formalisation of specifications under our
framework. We have chosen this action description formalism as it is fairly well
studied, computationally grounded and highly efficient, by virtue of its proximity
to first-order logic under a software implementation platform such as Prolog.

2.2 Executable Specifications for Open Computational Societies

Artikis et al. specify OCS based on: social constraints, expressed in terms of
institutional power [7], permission and obligation and an enforcement strategy
(e.g. sanctions). The normative positions are associated with agents and social
states through social roles, whereby each agent observes a role-attribution proto-
col upon joining the society. Central to the framework is the concept of objective
reasoning: the process of computing normative positions with respect to social
constraints, actions and events. Given the ability to perform objective reasoning
and appropriate representations of the communications of a society’s members,
an external observer (or, indeed, a society member) can validate member ac-
tions relative to a predefined declarative specification of the society, expressed
in a suitable action description language, such as the Event Calculus.

For the sake of example, consider a society where a) the population can occa-
sionally be unreachable for extended, yet unknown, periods of time and b) the
time it takes for messages to reach agents in the society varies considerably. Let
us also assume that those traits, although permeating the society throughout its
lifetime, are not necessarily known at design time.
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In a ‘static’ (i.e. invariant during execution) specification of the society, all
specified protocols involve hard-wired logic and parameters of the protocol itself.
This can, in certain cases, lead to either very low performance or a breakdown
of various operational protocols depending on specific agent instances or time-
bound responses, and by extension possibly the system as a whole. For example,
consider a ‘statically formulated’ voting protocol, such as the one presented in [9],
in a society where, for unknown reasons (e.g. technical difficulties, unexpected
environmental conditions), a large part of the population fails to vote within a
hard-coded pre-determined timeout period. Such a protocol would most prob-
ably fail if e.g. it explicitly specified the number of votes cast with respect to
the population. Alternatively, it might prove inefficient as would be the case in
a society where the population is very high and the hard-coded majority ratio
is unattainable. In such cases, the chair of the protocol would be faced with two
options, being unable to suggest or perform any modification to the specification
itself: either ignore the ‘static’ specification and override the hard-coded param-
eters (such as timeout, majority ratio etc.) or comply and repeat the election
process repeatedly. In the first case they would be in violation of the protocol
and possibly sanctioned or penalised depending on the enforcement strategy. In
the second, they would prolong a situation where the election process would
probably take a very long time until it produced any effect.

In either case, the partial failure of the specified operational protocols or
the — repeated — sanctioning of agents for not following the protocols, would
signify the inability of the system specification to cater for the agents’ operating
environment, despite the agents’ capability to adapt and evolve. In the following
section we introduce a framework for the specification of dynamic specifications
for norm-governed systems that enables well-defined modifications to object-
protocols at runtime by the agents themselves.

3 Dynamic Specifications for Norm Governed Systems

We define Dynamic specifications for Norm-Governed systems as a type of spec-
ification that, in addition to the operational characteristics of the society, con-
tains rules, procedures and constraints that enable well-defined and constrained
runtime modification of its object protocols by agents. In order to enable the
authoring of such specifications, we extend Artikis’ framework for the specifi-
cation of OCS. We employ the Event Calculus to formalise the framework and
introduce additional fluents and actions at the framework level. This work is in-
spired by Maŕın and Sartor’s formalisation of External Time of norms presented
in [11]. In our framework the modification of specifications is supported through
two distinct constructs:

– Parameters are numerical variables in the specification that specify some
operational characteristics of a norm creation rule, i.e. the maximum time
delay between valid agent responses or actions, the number of maximum or
minimum participants in a given protocol, the number of seconds required
before a motion is considered in a voting protocol and so on.
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– Replaceable Components are sets of rules that represent the semantics
of part or the whole of a protocol and can be replaced at runtime by the
society’s agents. The existence of Replaceable Components allows for proce-
dural modification of a protocol (cf. parametric modification). For example,
a voting protocol might contain two separate well-known formulations for de-
termining the winner; one that specifies a Simple Transferrable Vote (STV)
and another that specifies a First Past the Post (FPTP). Both could — at
different times or for different types of elections — be employed by a soci-
ety depending on its needs, as is indeed the case in many human societies
today.

Meta-specifications can, but are not required to, provide options for both
ranges for numeric parameters and all possible alternatives for replaceable com-
ponents. Indeed, in Section 3.3 we discuss the possibility where more sophisti-
cated societies might employ argumentation protocols and multi-level segmented
authority groups to modify these options at runtime.

The extended framework, a superset of the Artikis’ specification framework, is
presented in Table 2. The following sections present Parameters and Replaceable
Components, illustrating the concepts under an Event Calculus formalisation of
the voting protocol presented in [9].

Table 2. Fluents and actions of the framework

Name Type Description

valid(ag,act) fluent action act performed by agent ag is valid
pow(ag,act) fluent agent ag has the power to perform action ag
per(ag,act) fluent agent ag has the permission to perform action ag
obl(ag,act) fluent agent ag has the obligation to perform action ag
role of(r,ag) fluent agent ag has the role r
preconditions(r,ag) fluent agent ag satisfies the preconditions for role r
assign(r,ag) action assign the role r to agent ag
parameter(p,val) fluent parameter p has the value val
rangeOf(p,min,max) fluent parameter p has a range of [min,max ].
setValue(p, val) action value val is assigned to parameter p
selectComponent(pr, c) action component c is selected in protocol pr
active(pr, c) fluent component c is active for protocol pr

3.1 Parameters

Numeric parameters are real-valued variables that control aspects of a proto-
col’s procedural characteristics, e.g. the maximum time an agent has to respond
to a specific call/request, the number of agents that constitute a majority in a
voting protocol, the minimum transmission capability an agent needs to have to
be considered for selection as a router in an ad-hoc network etc. They are defined
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as a 3-tuple specifying the name of the variable and its range: the minimum
and maximum values it can take, parameter(p, min,max). In addition to the
definition of the parameters, the meta-specification contains:

– Initial values for each parameter
– Rules that make use of the parameter value.
– Rules that modify the parameter value

Empowered agents (e.g. the chair of a voting protocol) can set the values of
numeric parameters by performing the SetValue(p,val) action:

pow(C, setValue(p, V )) = true holdsat T ←
role Of (C) = chair holdsat T ∧
rangeOf(p) = (Min, Max) ∧
V < Max ∧
V > Min

Action validation rules, i.e. rules that interpret an action depending on the
social state and the acting agent’s normative position, employ the parameter
values in performing some constraint evaluation.

In the case of an Open Computational Society with a volatile population, such
as the one discussed earlier, giving the agents some control over the procedural
characteristics of their voting protocol might be desired. For example, agents
could be enabled to control (within bounds) the majority threshold, i.e. the
parameter used in determining whether or not the votes in favour of a motion
constitute a majority or not.

The existing formulation of the voting protocol by Pitt et al.[9] embeds this
information inside the protocol. In that formulation, the voting protocol’s chair
has an obligation to announce whether a motion has been carried or not depend-
ing on the vote count. This is formalised as follows:

obl(C, declare(C, M,not carried)) = true holdsat T ←
role of (C, chair ) = true holdsat T ∧
status(M) = voted holdsat T ∧
votes(M) = (F, A) holdsat T ∧
F < A

where F represents votes in favour and A votes against motion M .
While the protocol itself is procedurally generic, i.e. it does not describe an

application specific process, but could be applied to a number of applications
unchanged, the actual formulation is not: the majority parameter is hard-coded
into the specification. Any modification would require the authoring of a new
specification and the recreation of the computational society anew after the
specification has been appropriately modified.
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In contrast, a dynamic formulation of the rule would be as follows:

obl(C, declare(C, M,not carried)) = true holdsat T ←
role of (C, chair ) = true holdsat T ∧
status(M) = voted holdsat T ∧
votes(M) = (F, A) holdsat T ∧
parameter (majority, V ) = true holdsat T ∧
(F/(F + A)) < V

The addition of the numeric parameter simplifies the reuse of this rule (and
the associated rules forming the voting protocol) as it disassociates the procedure
with the application-specific details. In general, numeric parameters modularise
protocols by removing application specific information from the protocol itself.
While the protocol still contains hard-coded procedural characteristics, require-
ments and features, it is less likely to contain application-specific details.

3.2 Replaceable Components

Numeric parameters affect some application-specific characteristics of a protocol,
but do not affect the structure of the protocol itself. Replaceable Components,
allow for coarse-grained modifications to the procedural characteristics of a proto-
col through the replacement of its parts by well-defined alternative formulations.
Protocols can consist of Replaceable Components (sets of rules) offering differ-
ent formulations for part (or the whole) of a protocol. The meta-specification
might provide a number of possible replaceable components per protocol. Parts
of the specification can then be activated or deactivated, dynamically at run-
time, through the same norm modification mechanisms employed in modifying
numeric parameters.

Fig. 1. A Composite Voting Protocol

The voting protocol in our example can be treated as a group of replaceable
components, instead of a single monolithic protocol. Figure 1, illustrates how it
can be conceptually divided into three components: the Election Setup Compo-
nent, where interaction in announcing an election and announcing a candidacy is
specified, the Vote Casting Component, where the actual vote casting takes place
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(e.g. whether a centralised or distributed way for vote gathering is used), and the
Winner Determination Component, where the rules that determine the winner
are specified. A meta-specification can, in addition to numeric parameters, con-
tain one or multiple formulations of each component, thus enabling substitution
of one component with an alternative at some point during the lifetime of the
society, replacing part of the specification with another. For example, the chair’s
obligation to declare a motion as not carried in the Simple Transferrable Vote
(STV) component would be updated as follows to include a check of the state
of the rule:

obl([[voting, stv]], C, declare(C, M,not carried)) = true holdsat T ←
active(voting, stv) = true holdsat T ∧
role of (C, chair ) = true holdsat T ∧
status(M) = voted holdsat T ∧
votes(M) = (F, A) holdsat T ∧
parameter (majority, V ) = true holdsat T ∧
(F/(F + A)) < V

The selection of the active components takes place through any norm mod-
ification protocols defined in a meta-specification and completed through the
selectComponent(pr, c) action. The state of a component, i.e. whether it is ac-
tive or not at any given moment, is retrieved through the active(pr,c) fluent.

Rule Tags. In a software implementation of Replaceable Components in a lan-
guage such as Prolog, rules specifying a replaceable component would be specified
by ‘tagging’ them with a component and protocol identifier to which they belong.
Multiple identifiers for one rule might also be allowed, raising the possibility that a
rule is shared between multiple components and/or protocols, although this might
significantly affect the readability and clarity of the specification. In this version
of the framework, we require that numeric parameters are shared between the re-
placeable components that refer to them. For example a timeout parameter in a
vote casting component would need to be referenced and used in all alternative
formulations of that component. The reason for this limitation is that we aim for
a constant (over time) number of ‘degrees of freedom’ of the specification so that
further modelling and evaluation is possible (Section 4).

3.3 Mechanisms

The actual modification of the specification at runtime is achieved through the
following types of mechanisms:

– Role-dependent norms
– Application/State specific norms and
– Generic decision-making protocols, such as argumentation.
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In all cases it is assumed that agents are capable of autonomous reasoning
based on sensory and social input, and there exists a communications framework
capable of secure, error-free transmission. As this paper is not concerned with the
implementation details of either agent architectures of application-specific (ob-
ject) protocols; it is assumed that there exist appropriate specifications defining
application specific aspects of the following mechanisms.

Role-dependent norms. These norms are specified through rules taking into
account only an agent’s role. For example, in an open producer/consumer system,
a producer might be de jure permitted (or obliged) to initiate a process for re-
evaluation of the cost of a service along with the other producers periodically or
when it detects an abnormality. This is the typical type of specification found in
most statically specified norm-governed systems. Additional dynamics for this
class of norms might be introduced through Organisational Self-Design[12] and
coordination protocols.

State specific norms. State specific norms refer to cases where all agents
might be empowered to perform some modification to the specification in case
of exceptional circumstances, as a last resort to avoid system failure. This is
tantamount to a passenger being empowered and permitted to open an aircraft
door if it has performed an emergency landing and the crew is unable to perform
its duty, following an announcement to that effect by the empowered agent (in
this case a member of the senior crew on the aircraft); the actual process through
which the society is informed about the state is application and implementation
specific. Note that there is no role attribution or requirement for the existence
of these norms.

Generic Decision-making protocols. Finally, generic decision-making pro-
tocols refer to reusable decision making, argumentation or negotiation protocols
that are further grounded to an application specific context through parame-
terisation and default values. For example, in more complex societies, an argu-
mentation protocol could be used as the basic meta-protocol employed by the
society to modify and adapt object-protocols throughout the system’s lifetime.

For example, a multi-role heterogeneous society where the authority with re-
gards to the modification of the object-protocols in place is distributed according
to social roles and governed by role-dependent norms, might employ argumen-
tation as a meta-protocol to define the rules for a number of object-protocols
employed by the whole population. The object protocols could be application
specific, or be in turn lower-level decision making protocols, such as the voting
protocol presented earlier.

4 Modelling Dynamic Specifications

In ‘static’ specifications of norm-governed OCS, system designers and/or evalua-
tors define their expectations of the participating agents and complement those
expectations with a suitable sanction or enforcement policy. The focus, in these
cases, is on the agents conforming to a range of rules and their attributed roles.
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The introduction of ‘dynamic’ specifications, presents the requirement of evalu-
ating how meta-specifications perform as a result of the social processes
aimed at defining them. In order to be able to model and evaluate how meta-
specifications perform as a whole, under identical conditions, against each other
and against an optimal expectation of the system at or near those conditions, we
require a way to measure the performance of a specification over time, or, at a given
point in time based on our expectations of the system. Such an evaluation method
should ideally provide quantifiable results and be computationally grounded, so
that a) comparisons between meta-specifications and protocols would be possible
and b) designer performance and operational criteria could be input into a soft-
ware program, automating the task of evaluating different systems.

In this section we present a mathematical model for dynamic specifications,
by considering the degrees of freedom of a specification. The model allows semi-
automated evaluation of dynamic specifications through the quantification of the
operational and performance criteria of the system designer beyond the metrics
provided by the individual object-protocols. The model is based on the mathe-
matical concept of Metric spaces[13, p.12].

4.1 The Specification Space

During execution, a meta-specification gives rise to a number of successive ‘static’
specifications as agents employ meta-protocols in modifying the object-protocols
in the meta-specification. In the case of a system employing the framework pre-
sented above, these ‘static runtime specifications’ would differ in their Numeric
Parameters as well as the procedural characteristics defined by the agents in the
form of Replaceable Components. We quantify the parameters and enumerate
the protocol components so as to create an n-dimensional space consisting of all
the degrees of freedom of the specification. For example, a specification providing
three unbounded real-valued parameters would create the R

3 point set, whereas
one with four, the R

4 space and so on. Typically, parameters are bounded by the
specification to a suitable, for the application, range. We treat bounded numeric
parameters as subsets of R. In contrast, Replaceable Components are treated as
enumerations: sets formed by the series of natural numbers starting from 0. We
call the point set created by the parameter ranges, and component enumerations,
the Specification Space.

In general, a Specification Space X , based on p + c degrees of freedom with c
Replaceable Component components and p numeric parameters would be defined
as follows:

X = {0, 1, · · · , n0} × · · · × {0, 1, · · · , nc−1}︸ ︷︷ ︸
c terms

× (1)

[a0, b0] × · · · × [ap−1, bp−1]︸ ︷︷ ︸
p terms

(2)

where [ai, bi] ⊂ R, ∀i : i ∈ {0, 1, · · · , p − 1}.
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Each set S specifies the range of values for one dimension (parameter) in the
space. A point v in the specification space represents the complete specification
at some point in time. It is formally defined as an n-tuple where each ‘dimension’
variable belongs to the set Si of each parameter i:

v = (x, y, z, ..., n) : x ∈ Sx, y ∈ Sy etc. (3)

The formal definition of a metric would then be:

M(k, l) =
c−1∑
i=0

|li − ki|
ni

+
p−1∑
i=0

wi
|li − ki|

|lmaxi − kmaxi| (4)

The resulting metric is a normalised, weighted Manhattan metric, as the given
distance is equivalent to the Manhattan distance between the points in a Eu-
clidean space. The proof for the above generalised metric is omitted due to space
limitations, but is immediately derived from the fact that the unidimensional
metrics are Euclidean and multiplied by factors in R.

The user then has to specify the weights, wi for each dimension, where wi ∈
[0, 1] and

∑
i wi = 1 .

In the context of our example, we will apply the model on the modified vot-
ing protocol discussed in the previous section. We will assume three degrees
of freedom, two numeric parameters, majority (a parameter that specifies what
constitutes a majority), that ranges between 1

2 (50% majority) and 2
3 (two third’s

majority) and timeout, a parameter that specifies the maximum amount of time
agents are allowed before voting and that ranges between 3 and 100 time units.
The third degree of freedom comes from two alternative components for the
Winner determination: First Past The Post (FPTP) and Single Transferrable
Vote (STV). The generated space for these parameters would then be:

Sv = [3, 100]× [
1
2
,
2
3
] × {0, 1} (5)

At each time instance of this society, the active specification will occupy one
point v in the Specification Space Sv where v is defined as :

v = (x, y, z) : x ∈ [3, 100], y ∈ [
1
2
,
2
3
], z ∈ {0, 1} (6)

The metric would be as follows:

d(a, b) = wx
|xb − xa|
|100 − 3| + wy

|yb − ya|
|23 − 1

2 |
+ wz

|zb − za|
1

(7)

4.2 The Metric

The choice of a metric is a fundamental part of the model as it encodes part of
the designer criteria. In the example above, a weighted normalised Manhattan
metric was used for simplicity. The ‘importance’ of each dimension in this metric
is specified through weights for each dimension wx, wy , wz.
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In the general case, the selection of the metric can be specified as part of
the evaluation process, the specific designer preferences or other organisational
guidelines. While the selection of a metric is left to the designer/evaluator of a
system, identical metrics are required when comparing the performance between
multiple system-specification pairs. For this reason, metrics may be defined at
an organisational or standard authoring level and not at the individual designer
level. Any function would need to satisfy the four conditions defining a metric
(non-negativity, identity, symmetry and the triangle inequality).

4.3 Model-Based Specification Evaluation and Design

Evaluation. Having applied the model to a single, or a number of scenarios,
we can perform a series of evaluation tests that can help extract behavioural
characteristics related to the meta-specification, both within the context of the
application and in terms of the subjective designer criteria as defined by the
metric and preferred points (or regions) in the specification space.

The methodology involved in acquiring an evaluating the performance of a
society involves the creation of one or more scenarios that expose it to a social
or environmental stimulus that exceeds the normal operating stimuli expected
by the system specification.

The evaluation methodology involves the acquisition of statistical information
about the normative evolution of the specification near or at that point in time,
the proximity of the specification in this period . This can be compared with
the a priori designer expectations of the system, in a way so that specifications
that do not conform can be isolated and discarded.

These expectations are encoded in both the metric and a number of points
(or regions) in the specification space of significance to the designer. The per-
formance evaluation involves the comparison of the point of the specification at
each time point in the specification space with the point of a predefined point
or subspace representing the designer’s expectations. In the case of the voting
example, the unexpected environmental stimulus was the difficulty in communi-
cating due to technical error and the numeric parameter was the timeout period
between votes.

Statistical analysis through the use of the model provides an evaluation of
how the system caters to the incident. In addition to determining whether a
specification converges to a desired subspace or point, the metric can provide
a series of other statistical information such as the average (distance) for a
time-series of points, whether the specification converges to given points in the
specification space (and if so, the time it takes to achieve convergence), or the
time it takes for the specification to reach a minimum (threshold) distance to
a point. In more complex dynamic specifications (i.e. specifications with higher
degrees of freedom), the iterative application of the model can correlate aspects
of specifications with externally apparent behaviour/phenomena.
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In addition to time-series statistics, the overall characteristics of a meta-
specification can be extracted through a scatter of points in the specification
space under varying operating conditions.

Design. The use of the model, through the definition of a metric and points
in the specification space, provides a quantifiable measure of designer criteria
not necessarily directly related to the performance or characteristics of one or
more object protocols in a society. Such criteria might be related to performance,
security or other social traits that an evaluator of a system desires (or wishes
to avoid) the society to possess. As such, the model could provide additional
information on complex reusable protocols during the design phase. Specifically,
a series of patterns between agent and social characteristics and points in their
respective specification spaces could be identified and required by designers au-
tomatically discarding a number of possible protocols that do not match their
requirements. Basic characteristics of an agent architecture might be indicated
by the size and ‘shape’ of the Specification Space in each instance or by the posi-
tion of the system specification in the space under specific and known social and
environmental conditions. The storage and further use of such meta-data about
specifications (or protocols) could result in a specification characteristics library
that would provide additional insight into the traits of a protocol or specifica-
tion to designers of such systems beyond its obvious operational characteristics,
through its spatial characteristics in the specification space.

5 Experimentation and Implementation

In the context of evaluating and grounding the theoretical work presented earlier,
we are developing a suite of software tools (see Figure 2) that assists in the
simulation and evaluation of the framework. These are broadly divided into:

– A Simulation Platform
– A Specification Visualiser

5.1 The Simulation Platform

The simulation platform consists of a number of software programs aimed at ex-
ecuting and recording the norm modification events (the ‘narrative’) of a simula-
tion of executing agents under a well-defined meta-specification. The simulation
platform can accept input either from a manually provided action list (script)
or through the use of one or more agent architectures. The operator can pause
and step the simulation as well as create social or environmental events (stimuli)
at specific time points. These are aimed at creating the conditions for the ob-
servation of specific social traits. Observed events are recorded in the narrative
and include both the norm modification events and — possibly — centralised
or distributed performance metrics. For example, in the case of a voting proto-
col, the election chair agent would be in a unique position to provide statistics
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Fig. 2. Illustration of the main flow of the processing by the simulation platform

about the number of voters that abstained or missed the timeout; this would
be an instance of a centralised object-protocol performance metric. Both the
object-protocol narrative and the meta-protocol narrative are combined with
object-protocol data and recorded for later analysis.

5.2 Specification Visualiser

The Specification Visualiser is the main evaluation application implemented in
the scope of this work. Its inputs are the meta-specification expressed in Event
Calculus, the combined narrative produced by a simulator run, the scenario
script containing the time points of interest and a list of performance criteria as
well as the designer metric. It subsequently produces a time-series analysis of the
social state as well as the specification space defined by the meta-specification
along with the trail generated by consecutive specification changes.

By applying the metric space model to the information pool at each time
point, a correlation of the specification point and performance metrics of the
object-protocols is possible. In addition comparison of the actual specification
to designer provided ideal/desired points or regions in that space is also achieved.
The specification space can be visualised in 2D or 3D space. The user can inspect
the generated specification space, the point scatter (an indication of the regions
of the specification where the system resided during the run) and the trail of
points over time and visually define reference points in the space for every 2 or
3 degrees of freedom (2D or 3D projection).

The combination of the specification space along with observable (or unob-
servable in the case of simulation) protocol or system-wide performance metrics
allows for the automated evaluation and correlation of specifications at given
points in the simulation time. For example, the operator might specify evalua-
tion criteria based on the specification space model — such as the distance from
a point in that space or sub-space in the specification space, or the position on
a number of dimensions — and allow the computer to automatically evaluate
narratives from a number of meta-specification experiments and highlight those
that were within the desired parameters. That might translate to convergence
to a point or sub-space (or the time-to-converge to a point or sub-space in the
specification space), a minimum distance from a point or subspace, etc.
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The information returned can then be correlated with the object-protocol
performance of the system (such as the number of bytes transferred in a wireless
network or the number of votes actually cast in an election). The operator can
set the importance for each performance criterion through weighting according
to preferences.

The Specification Visualiser provides visual as well as numerical feedback on
the performance of the system based on the application of the model (metric,
regions and/or points in space). It also presents the object-protocol performance
metrics as collected from the population during the simulation allowing for corre-
lation with the position of the system in the specification space and/or individual
specification dimensions.

6 Related and Future Work

6.1 Related Work

There is extensive work on the dynamics in Open Computational Societies that
bears some similarity to the work presented in this paper. There is also related
work in other subfields of Distributed Artificial Intelligence, such as Coordina-
tion, Emergence and Learning that shares some characteristics of this work.

Focusing on the context of norm-governed systems, Grossi and Dignum in [14]
presenta related approach whereby norms are classified into Abstract and Con-
crete and the transition between the two is called the operationalisation of norms.
One of the main examples provided by Grossi concerns a part of the Dutch reg-
ulation with regards to the treatment of personal data. The point of concern
between abstract and concrete lies in the definition of ‘personal data’. In their
example, Grossi and Dignum focus on the variability of the meaning of ‘personal
data’ in varying circumstances and highlight the significance of the ontological
realm in each circumstance. They proceed to define translation rules between
the two ontologies. The work presented here does not observe this distinction:
the division of norms into two, largely abstract categories seems artificial and
unjustified as the bounds of abstraction are not clearly defined and largely de-
pend on the ontology used. However, this work provides a similar translation
mechanism between the ‘generic’ and the ‘specific’, through parameterisation
and composite protocol modification rules. The generic protocols (‘abstract’)
are translated into application specific protocols (‘concrete’) by virtue of their
operational and functional parameterisation. As such, in the case of the ‘personal
data’ example, this framework would support both the ‘abstract norm’ (i.e. the
obligation to protect personal data) and through parameterisation it would sup-
port application specific definitions thereof. Grossi et al.[14] also discusses the
need for support for exceptional interpretations, under specific circumstances.
Again, in the context of this work, this could be achieved through the group-
segmentation of authority, as described earlier, whereby a group of agents would
be empowered (and potentially obliged) to negotiate changes to the definition
of ‘personal data’ in well-defined circumstances. Finally, the translation between
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the ‘generic’ and ‘application-specific’ norm takes place through the parameter-
isation defined in the meta-specification. The runtime modification of norms is
also discussed in [15]. Excelente-Toledo and Jennings’ dynamic selection of co-
ordination mechanisms presented in [16] is similar to ‘replaceable components’
in this work.

Boella et al. present the concept of meta-norms which is similar to the group-
segmentation of specification modification powers and permissions discussed in
this paper. Specifically, in [17], the notion of meta-norms is introduced whereby
‘[t]he meta-norms of the system ascribe to each level of authority an area of
competence (a set of propositions they can permit or forbid and prescribe that
the system must respect normative principles like “lex superior derogat inferi-
ori”[)]’. This is similar to the structure presented in Section 3.3 where groups
of agents defined by specific roles have the authority to modify social norms in
part of the specification, based on their role and through the invocation of an
accepted protocol.

There are some similarities in the work on dynamic reconfiguration. Re-
configuration entails the assumption of different roles by agents at runtime,
although the organisational structure remains constant[18]. Dynamic reconfigu-
ration might be within the provisions of a ‘static’ specification for norm-governed
systems as it does not entail modification of the specification during run-time.
Indeed, most ‘static’ specification approaches for norm-governed systems include
role attribution protocols to agents depending on performance, behaviour and/or
conformance to the specification etc. While similar in that both approaches pro-
vide a certain level of dynamics in the operation of the system, dynamic re-
configuration does not entail modification of the structure or content of the
specification, but attempts to maintain the operation of the system through
reconfiguration of the resources available to it to match that pre-defined speci-
fication.

Martin and Barber present a somewhat similar premise to the one adopted
by the authors of this work and continue to define an adaptive approach for
(homogeneous) agents that focuses on authority relationships between agents
and adaptation of a decision making framework (DMF) by the agents to suit
their needs in [19]. In that work, the society is segmented by virtue of decision
makers, agents that make decisions for sub-goals taken up by lower-level agents
incapable to adapt. Martin and Barber employ voting as their meta-protocol.

Finally, there are considerable similarities between the dynamic norm-
governed approach presented here with policy-based agent oriented software
frameworks, such as KAoS[20][21]. Conversation policies in the KAoS architec-
ture resemble ‘protocols’ in terms of actions and responses (messages) between
agents. For example, both approaches employ roles as the first-order mecha-
nism for control, and allow for sequences of complex interactions, as opposed to
single actions. The KAoS-type conversation policy lies close to the static norm-
governed (off-line) specification design, such as that this work is based on, rather
than the, more complex, decoupled (generic vs. application specific) dynamic
version described here that introduced variability in the ‘conversations’, given
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enough time and engaging stimuli. While more recent KAoS developments sup-
port dynamic runtime policy changes, those are performed by entities external
to the agent society — i.e. performed by a human system administrator/system
designer[22].

6.2 Future Work

The preliminary work presented in this paper is further developed in several
ways:

– First, through the application of the framework and model to grounded
examples that will provide a basis for comparison between different formali-
sations as well as demonstrate the capabilities of the model. The application
of both framework and model will provide sufficient data for further devel-
opment of both the model and the evaluation methodology.

– Second, through the study of negotiation/argumentation protocols in more
dynamic (multi-level) specifications, such as those discussed by Brewka in
[23].

– Third, through the further development of software tools for the simulation
and analysis of systems specified under this (or a related) framework and
the presented model.

7 Discussion

Specifications for norm-governed open agent societies describe how agents ought
to behave, what their rights and permissions are and, in some cases, how the
society deals with deviations from the norms. Agent societies can be treated as
instances of norm-governed systems and it has been shown that such an approach
has several distinct advantages: it allows for the application of complex social and
legal theories to multiple systems without the requirement for translation to low-
level descriptions. It can also be computationally grounded, assuming a suitable
formal representation is used; this in turn allows for society-wide simulations
and validation of the system output.

This paper presented a framework for specifying OCS with basic support for
constrained dynamic specifications (meta-specifications). The framework pro-
vides a basis for the dynamic modification of the system specification by the
agents themselves at runtime, in response to social and environmental stimuli.
The realisation of such a system encompasses several additional unanswered re-
search and implementation questions that we have not covered. Those, largely
pertain to the additional requirements placed upon a) the agent architectures,
b) host and technical environment and c) agent coordination and interaction.
Throughout this paper we assumed the existence of such advanced agent archi-
tectures operating in a suitable technical environment that translates the com-
munication, social and computational characteristics defined in and required by
the framework.
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We argued that the ability to modify the specification at runtime is advan-
tageous at two levels: at the design level, as it simplifies the authoring and
evaluation of specifications by separating operational characteristics and generic
protocols through numeric parameters and modifiable Replaceable Components
and at the operational level, as it allows the participating agents to fully lever-
age their reasoning, communication and sensory facilities to determine how
the system should perform optimally under changing environmental and so-
cial conditions through well-defined specification changes. We complemented our
framework with a mathematical model of the ‘specification space’, mapping the
degrees of freedom defined in the specification and allowing for statistical and
quantifiable evaluation of dynamic specification performance. We presented how
the model can be used in evaluating and designing such systems, through simu-
lation, observation and benchmarking of known operating parameters/metrics.
Finally, we provided a brief overview of the software tools being designed and
implemented towards simulating and evaluating computational societies of this
kind.
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Abstract. Nowadays, challenge is to design complex systems that evolve in 
changing environments. Multi-agent systems (MAS) are an answer to imple-
ment them and many agent-oriented methodologies are proposed to guide  
designers. Self-organisation is a promising paradigm to make these systems 
adaptive: the collective function arises from the local interactions and the sys-
tem design becomes thus bottom-up. The difficulty rests then in finding the 
right behaviours at the agent-level to make the adequate global function 
emerge. The aim of this paper is to show how simulation can help designers to 
find these correct behaviours during the design stage: by simulating a simplified 
system and observing it during execution, a designer can modify and improve 
the behaviour of agents. A model of cooperative agents was implemented under 
the SeSAm platform in order to be integrated into ADELFE, an agent-oriented 
methodology dedicated to adaptive MAS (AMAS). This model is described 
here and applied to show how the behaviour of a simple ecosystem can be im-
proved.  

1   Introduction 

In the last few years, use of computers has spectacularly grown and classical software 
development methods run into numerous difficulties. The classical approach, by de-
composition into modules and total control, cannot guarantee the functionality of 
software given the complexity of interactions between the increasing and varying 
number of modules, and the huge size of possibilities. In addition to this, the now 
massive and inevitable use of network resources and distribution increases the diffi-
culties of design, stability and maintenance. Moreover, we use applications and  
systems that are plunged into evolving environments and that are more and more 
complex to build. In such a situation, having an a priori known algorithm is not al-
ways possible and classical algorithmic approaches are no longer valid. The challenge 
is to find new approaches to design these new systems by taking into account the 
increasing complexity and the fact that reliable and robust systems are wanted.  

For this, and because of the similarities, it seems opportune to look at natural sys-
tems – biological, physical or sociological – from an artificial system builder’s point 
of view, so as to understand the mechanisms and processes which enable their func-
tioning. In Biology for example, a lot of natural systems composed of autonomous 
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individuals exhibit aptitudes to carry out complex tasks without any global control. 
Moreover, they can adapt to their surroundings either for survival needs or for im-
proving the functioning of the collectivity. This is the case, for example, in colonies 
of social insects [4] such as termites and ants [6]. The study of swarm behaviours by 
migratory birds or fish shoals also shows that the collective task comes out of the 
interactions between autonomous individuals. Non-supervised phenomena resulting 
from the activity of a huge number of individuals can also be observed in human 
activities such as the synchronisation of clapping in a crowd or traffic jams.  

To get rid of this too complex global function, a solution is to build artificial sys-
tems for which the observed collective activity is not described in any part composing 
it but emerges from interactions between these parts. The common factor among all 
these systems lies in the emergent dimension of the observed behaviour. The two 
main properties of these systems are: the irreducibility of macro-theories to micro-
theories [1] and the self-organising mechanisms which are the origin of adaptation 
and appearance of new emergent properties [17]. So, self-organisation seems to be a 
useful promising paradigm to design these systems. 

As underlined by [27] using simulation tools to help MAS designers is still a chal-
lenge and the aim of this article is to study how simulation may be a help at the design 
stage of a self-organising system. Firstly the issue of designing self-organising sys-
tems through adaptive multi-agent systems and the use of the agent-oriented method-
ology ADELFE [3] is considered (Section 2). Once the proposed approach positioned 
relating to existing works (Section 3), a model of cooperative agent is described and 
implemented under SeSAm (Section 4). For the time being, in this paper, this model 
is focused on systems in which interactions are based on the environment, that is why 
this model is then applied to improve the behaviour of a simulated ecosystem in 
which agents are interacting in this way (Section 5). 

2   Self-Organising Systems Design 

The work presented in the paper consists in the enhancement of the existing ADELFE 
methodology, based on the AMAS theory and dedicated to the design of self-
organising systems. 

2.1   Self-Organising Systems and AMAS Theory 

Self-organisation is a promising paradigm to take into account complexity and open-
ness of systems and to reduce the complexity of the engineering process. A system is 
self-organising if it is able to change its internal organisation without explicit external 
control during its execution time [20], [12].  

For developing these systems, designers have to define agents and the interactions 
between those agents, then the process achieved by the system results from the agents 
behaviour and interactions, making the global behaviour emerge. Consequently, the 
design is a bottom-up one and the difficulty is to find the right behaviour at the micro-
level (i.e. agent level), in order to obtain a coherent, or adequate, function or behav-
iour at the macro-level (i.e. global system level).  
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The AMAS (Adaptive Multi-Agent Systems) theory provides a guide to design 
self-organising systems [7]. It is based on the observation that modifying interactions 
between the agents of the system modifies also the global function and makes the 
system adapt to changes in its environment. Agents have to be endowed of properties 
that make them locally change these interactions. According to the AMAS theory, 
interactions between agents depend on their local view and on their ability to “coop-
erate” with each other. Every internal part of the system (agent) pursues an individual 
objective and interacts with agents it knows by respecting cooperative techniques 
which lead to avoid Non Cooperative Situations (NCS) like conflict, concurrence etc. 
Faced with a NCS, a cooperative agent acts to come back to a cooperative state and 
permanently adapts itself to unpredictable situations while learning on others. An 
agent has a double role: an anticipative role and a repairing one. Roughly, applying 
the AMAS theory consists in enumerating, according to the current problem to solve, 
all the cooperation failures that can appear during the system functioning and then 
defining the actions the system must apply to come back to a cooperative state. How-
ever, building system enforcing this theory is not so easy and an agent-oriented meth-
odology ADELFE was proposed to help designers. 

2.2   ADELFE Methodology 

ADELFE is an agent-oriented methodology dedicated to self-organising systems 
design and based on the AMAS theory [24], [3]. Its process is based on the RUP (Ra-
tional Unified Process) [21], modified to take into account characteristics of these 
systems, especially those concerning cooperation. The agent design and the interac-
tions between agents and the environment form the essential steps of the design. The 
main points where non cooperative situations are detected and taken into account are 
located in the preliminary requirement phase and in the design phase. 

Actually, during the preliminary requirements phase, designers must begin to think 
about the situations that can be “unexpected” or “harmful” for the system because 
these situations can lead to NCS at the agent level. ADELFE provides tools to express 
this in the use case diagrams. 

During the design phase, it is possible to find if some deadlocks can take place 
within an interaction protocol, or if some protocols are useless or inconsistent. The 
protocol diagram notation has been extended to express these situations. Thus, the 
behaviour of several agents could be judged in accordance (or not) with the sequence 
diagrams described in the analysis phase. Then, the agent is defined and at this level 
of development, designers have to think about the different parts composing the be-
haviour of agents: what an agent knows about the domain enabling it to take actions 
(skills), how it reasons on this knowledge (aptitudes), how it communicates with 
others (interaction languages), how it represents its environment (representations) and 
most of all, how it stays cooperative towards others and itself (NCS) [7]. Once estab-
lished, the behaviour of agents can be tested using the fast prototyping activity of the 
ADELFE design process.  
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However, the difficulty here for designers is twofold: 

- On the one hand, all non cooperative situations have to be exhaustively found, 
and every agent provided with the right actions to come back to a cooperative 
situation, 

- On the other hand, all possible actions have to be found for one situation, and 
every agent provided with a decision procedure to always choose the action 
which can be qualified as the best cooperative one. 

It is the reason why, we propose to enhance ADELFE by using simulation during 
the design phase. 

3   Simulation to Enhance Software Design 

In this section, after reviewing other works using simulation for designing self-
organising multi-agent systems, how improving the design phase of ADELFE through 
simulation is expounded. 

3.1   Related Work 

Simulation was already used in the development of agent-based systems or self-
organising multi-agent systems.  

Gardelli et al. assess that simulation could provide a substantial added-value when 
applied to support the development process of self-organising systems [15]. Simula-
tion is used to detect abnormal agents’ behaviours in a system in order to improve 
security. Authors took inspiration from the human immune system and exploit Pi-
Calculus in the TucSoN infrastructure for simulating the security system. Unlike the  
aim of the work proposed here, the use of formal simulation is intended to let design-
ers detect abnormal behaviours at the early stages of design before implementing any 
prototype. 

In [25], Röhl and Uhrmacher propose a modelling and simulation framework 
called JAMES, based on the discrete event formalism DYNDEVS for supporting the 
development process of multi-agent systems. Agents’ behaviour is validated on a 
model in a virtual environment and the real implementation starts when the model is 
mature. 

Sierra et al. develop an Integrated Development Environment to design  
e-institutions [26]. Within this environment, a simulation tool SIMDEI is used to 
dynamically verify the specifications and the protocols to be implemented.  

Fortino et al. propose a simulation–driven development process [13], [14] and en-
rich the PASSI (Process for Agent Societies Specification and Implementation) meth-
odology with the simulation tool called MASSIMO (Multi-Agent System SIMulation 
framewOrk), a Java-based discrete event simulation framework [8]. Authors propose 
a semi-automatic translation of the agent implementation model provided by PASSI 
in the distilled statecharts specification of a multi-agent system needed by 
MASSIMO. At present, the simulation is used for validating the requirements of the 
system and evaluating some performances. 
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In the three last works, the simulation is more used to analyse the running system 
and to verify the agents and system behaviours. In our work, the simulation is also 
used to verify the global behaviour but the main objective is to help a designer to 
adjust and to build the agents behaviour. 

De Wolf et al. combine agent-based simulations with scientific numerical algo-
rithms for dynamical systems design [11]. In this approach, designers have to define 
the results that are expected from the analysis, the parameters of the simulation are 
then initialised and simulations are launched. Finally, results of the simulation are 
analysed and depending on the outcomes, the next initial values are determined. The 
analysis approach is integrated into the engineering process in order to achieve a sys-
tematic approach for building self-organising emergent systems. 

3.2   Simulation to Improve the Design Phase of ADELFE 

As already noticed, the difficulty for a designer in developing a self-organising 
system based on AMAS is to exhaustively find all non cooperative situations to 
obtain a coherent global behaviour. In order to help a designer to find all these 
situations, our idea is to enable him to observe a running system. Two main classes 
of multi-agent systems exist: the communicative ones, in which agents communi-
cate by sending messages and the situated ones in which agents move in an envi-
ronment and generally, communicate via the environment. As displayed by the 
variety of applications already implemented [7], the AMAS theory is able to deal 
with both types of MAS; however, in this paper and as a preliminary step, we chose 
to focus only on situated multi-agent systems. The main reason for such a choice 
was that the observation of the behaviour in an environment is implicitly associated 
with these systems. 

By observing the system while it “lives“, a designer can be aware of problems 
(NCS) that occur in the system and then, in order to solve them, means are provided 
to him for modifying the behaviour of agents. It is what we call the “living design” 
[16] which enables to design agents while the system is simulated. In this case, an 
agent can be partially designed and its capabilities of actions and reactions can be 
progressively improved by developers. The aim of this study is that developers design 
the behaviours of agents on a prototype or a simplified system with, for example, a 
simplified environment or a virtual one. Then when an agent behaviour becomes 
mature, it is validated. Eventually, once this task completed, the real system has to be 
implemented. 

Observation of a Running System. Since simulation of the collective behaviour of 
agents acting in a n environment is the best means to observe it, a simulation platform 
has to be chosen. Our objective is not to build a new platform, but to find a platform 
enabling to easily modify the behaviour of an agent and to simulate a system. In order 
to find the most suitable one, the following existing and non-commercial platforms 
were considered: SeSAm1 (Shell for Simulated Agent Systems) [22], Jade2  

                                                           
1 http://www.simsesam.de 
2 http://jade.tilab.com/ 
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(Java Agent DEvelopment Framework) [2], oRis3 [19], Madkit4 [18], NetLogo5, 
AgentTool6 [10], Zeus7 [23]. 

Unlike Zeus, SeSAm is easy and simple to use. For instance, behaviours of the 
elements composing a simulation can be described by activity diagrams and using a 
graphical interface to model agents, resources or an environment is therefore possible. 
SeSAm enables to simulate situated agents (in a two-dimensional environment) or 
communicative agents whereas Jade and NetLogo focus only on one of the two cate-
gories. The behaviour adopted by the environment during a simulation is described by 
a world and various worlds can be associated with one environment. Situations enable 
also a modeller to define the initial state of a simulation and different situations can be 
given for one simulation. Therefore a given MAS can be tested under several different 
conditions. Moreover, SeSAm offers users tools to analyse a simulation and calibrate 
simulation parameters. Finally SeSAm is an open source piece of software which is 
still evolving, a beta version exists, and plug-ins can be created to add new functional-
ities (for example, to extend SeSAm agents with FIPA-compliant communication 
abilities [22]). 

For these reasons, SeSAm was chosen to simulate a multi-agent system during the 
design process. Consequently a model of a cooperative agent, elaborated in the next 
section, was implemented under SeSAm to enable the observation of how an AMAS 
behaves while running. 

Modification of an Agent Behaviour. It is clear that a minimal design and code of 
an agent must be provided before launching a simulation. Because simulation here is 
used as a tool for finding what the behaviour of an agent should be, perhaps at the end 
of this step, designers will have to code again the agents in a more efficient way. 

Therefore, during the design and implementation phases, two challenges have to be 
taken up: firstly, designers must be allowed to easily modify the code of an agent, and 
secondly, these modifications have to be automatically done. Performances are not 
considered as the main objective yet and, for the time being, this work focuses on the 
former point. Thus, the agent behaviour must be necessarily expressed in a way that a 
designer could understand and modify easily. Accordingly, the second component of 
this work, expounded in section 5, proposes to use the subsumption architecture [5] to 
express an agent behaviour. 

4   A Cooperative Agent Model to Simulate 

According to the AMAS theory [7], it is possible to envisage that the less non coop-
erative situations occur, the better the global behaviour of an adaptive multi-agent is. 
If a designer has got a feedback about how many NCS have occurred during the exe-
cution of a simulated AMAS, he can therefore know where and when agents are not 
anymore cooperative and have the wrong behaviour. It is then more easy to try to find 

                                                           
3 http://www.enib.fr/~harrouet/ 
4 http://www.madkit.org 
5 http://ccl.northwestern.edu/netlogo/contact.shtml 
6 http://macr.cis.ksu.edu/projects/agentTool/agentool.htm 
7 http://labs.bt.com/projects/agents/zeus/ 
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what must be added or modified in the behaviour of an agent to make it stay coopera-
tive all along the simulation. 

A model of a cooperative agent was thus implemented under SeSAm. Once instan-
tiated, it is used to automatically detect NCS during the simulation of an AMAS. A 
designer can then improve the behaviour of the agents before launching again the 
simulation to judge how the global behaviour was enhanced. Moreover, this observa-
tion may also help him to find what is wrong and what should be improved in the 
system. In both cases, modifications of behaviours are still manually done at this stage 
of the study. 

In SeSAm, an agent may have attributes and one or more activity diagrams are 
used to define its behaviour [22]. These activity diagrams are executed in a user-
defined order and within an activity diagram, activities are executed, one after the 
other, following firing rules until the end node is selected or an activity with a “clock” 
is reached; in such a case the control is given to the next activity diagram. Agents are 
also synchronous and an agent is executed only when an activity with a clock is 
reached in the last activity diagram of the previous active agent.  

Considering that NCS may occur during each phase of an agent’s life cycle (per-
ceive-decide-act), the model of a cooperative agent was implemented under SeSAm 
thanks to one activity diagram per life cycle phase. 

4.1   Perception Phase 

During the perception phase, non cooperative situations related to the interpretation 
an agent makes about what it perceives may be encountered: it does not understand its 
perceptions (incomprehension) or it has many ways to understand them (ambiguity). 
The perception phase is made up of four activities in the model we propose: perceiv-
ing the environment (“Perceive” in Fig. 1), interpreting those perceptions (“Inter-
pret”), detecting incomprehension (“Incomprehension”) and detecting ambiguity 
(“Ambiguity”). The last activity (“Go to Decision”) is only here to make an agent 
change the phase. 

An agent begins its cycle by memorizing what it perceives in a list of percepts re-
lated to the agent domain. Data manipulated by agents in SeSAm are strongly typed, 
 

 

Fig. 1. Perception Phase 
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it is therefore impossible to create a perception model usable by any MAS; for that 
reason, designers have to implement the perception of their agents. 

Interpreting perceptions consists in coding percepts in a way enabling reasoning of 
agents and is related to the MAS domain. Consequently, just like perceptions, design-
ers have to implement interpretation.  

In order to detect NCS related to interpretation, an agent has to verify the number 
of interpretations that are possibly associated with a percept. If no interpretation exists 
the Incomprehension activity is selected, if several interpretations are possible, the 
control is given to the Ambiguity activity.  

4.2   Decision Phase 

Once the perception phase completed, an agent begins its decision phase which con-
sists in reasoning on its percepts by using its knowledge about some domains and the 
representation it has about its environment and itself. An activity enabling reasoning 
and an activity enabling to choose the actions it will do are required during this deci-
sion phase. Furthermore two more NCS may occur: interpretations done by an agent 
may not provide it something new (unproductiveness) or its reasoning does not lead to 
any conclusion (incompetence).  

This phase of the model is then based on five activities in which an agent verifies 
whether its interpretations do not already belong to its knowledge (“Examine the 
Interpretation” in Fig. 2), processes the associated NCS if this is the case (“Unproduc-
tiveness”) , reasons then on its knowledge and interpretations (“Reason”), deals with a 
NCS of incompetence if it cannot conclude (“Incompetence”) and then decides what 
to do next depending on its situation (“Decide”). Once these decisions taken, control 
is given to the action phase. 

 

Fig. 2. Decision Phase 

In the model, representations, knowledge, interpretations, conclusions and possible 
actions are stored in specific attributes. Various solutions exist to implement how an 
agent reasons and they are not especially associated with a specific domain. It  
is therefore possible to use the same reasoning engine for all MAS, for example a 
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base of rules. In the same manner, finding what actions to do considering a given 
situation can be also implemented in different ways, for example by a subsumption 
architecture. 

4.3   Action Phase 

The last phase of a cooperative agent life cycle consists in carrying out the actions 
chosen during the previous phase. Three kinds of non cooperative situations may be 
encountered by an agent: its actions may prevent another agent from reaching its goal 
(conflict), it wants to do what another agent also intends to do (concurrence) or what 
it is going to do is not beneficial for others or itself (uselessness).  

In order to detect these NCS, an agent has to code its actions in a (preconditions, 
additions, removals) form. Furthermore to be able to compare its goal with those of 
others, it must be able to imagine what are these other goals and code them in a simi-
lar way.   

Firstly an agent combines the actions chosen in the previous phase (“Combine the 
chosen actions” in Fig. 3) in a recursive way starting from the first possible one and 
following the execution order of these actions. Formulae to obtain preconditions 
(Pre), additions (Add) and removals (Rem) for the ith action are: 

Pre ← Pre U { Prei \ Add } 

Add ← Addi U { Add \ Remi }and 

Rem ← Remi U { Rem \ Add }. 

In order to imagine the goals of others (“Imagine goal of others” in Fig. 3), an 
agent takes into account the representations it has about them. These representations 
are closely related to the MAS domain and how an agent perceives others’ goals can 
only be implemented by designers and not automatically done. However the model 
provides designers a way to store the imagined goals for an agent.  

 

Fig. 3. Action Phase. Verification of conflicts and concurrences. 

After that, verifications of conflicts or concurrences are done in the two following 
activities. A NCS of uselessness should occur when these actions do not increase the 
satisfaction of an agent or the satisfaction of others and actually should be detected 
afterwards actions are done. Furthermore this satisfaction should be evaluated for 
every goal an agent owns and finding the right computation would increase the work-
load of designers without ensuring that the results is the right one if NCS are wrongly 
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detected. Consequently for the time being, no solution is given and this kind of NCS 
is not detected by an agent yet. 

The decision phase provided an agent with the list of actions it can perform. In this 
phase, after having detected NCS, an agent verifies whether it has some actions to 
carry out (“Verify the number of actions” in Fig. 3). If no action exists, an agent starts 
its life cycle again or another agent completes its own. If at least an action exists, 
actions of the list are processed one after the other until none remains (the portion of 
the model enabling this part of the phase is not illustrated here).  

5   Modification of an Agent Behaviour 

During a simulation made up of cooperative agents based on this model, each time an 
activity related to NCS is triggered, the detected NCS is counted and a warning mes-
sage is aimed at the designer. An agent memorises also the total number of NCS it 
meets during its life. Furthermore the total number of NCS that are encountered by all 
agents is stored thanks to a basic environment provided by the model (an example of 
code is given in Fig. 4). Consequently considering this information, a designer has the 
opportunity to modify the right portion of behaviour of his agents to try to progres-
sively reduce the number of NCS and thus improve the global behaviour of the simu-
lated MAS.  

As it was said before, to reason an agent requires an inference engine and to decide 
a mechanism is needed, both have to be generic enough to be reused when simulating 
various MAS. 

 

Answering the former issue has been done by implementing an ATMS (Assump-
tion based Truth Maintenance System [9]) which is a system that maintains the con-
sistency of a base of rules. A first plug-in to SeSAm provides then an activity Reason 
which enables an agent to reason on the interpretations it has using its knowledge and 
to store obtained results in a specific attribute. However, attributes under SeSAm are 
strongly typed and generic types cannot be used, it is therefore difficult to create an 
inference engine based on predicates and thus the provided plug-in only uses proposi-
tions. Using this plug-in, a designer has only to create the adequate knowledge base to 
make agents reason. Nevertheless he is not compelled to use this plug-in and can 
implement his own reasoning. 

 

  

Fig. 4. Actions Counting NCS under SeSAm. On the left, an agent counts the number of NCS it 
encounters; on the right, the total number of NCS is incremented by every agent. 
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As introduced in section 3.2, a subsumption architecture implemented under 
SeSAm tries to answer the latter issue. A subsumption architecture (see Fig. 5 in sec-
tion 6.2 for an example) is a way to express the behaviour of an agent by using (con-
ditions, action) tuples. Such a tuple represents the action to do when the conditions 
are true. In a general way, conditions are linked to environmental perceptions of the 
agents. These pairs are ordered depending on the level of priority of an action rela-
tively to another one. The action on the hierarchy top-level has then priority over the 
actions of the lower levels (in Fig. 5, the “Target the nearest fish” action has priority 
over the “Target this prawn” one if the “Near a fish” condition is true). Modifying, by 
re-ordering pairs, this architecture implies a modification of the behaviour of an agent 
and  requires either to change the order between the tuples or to add new pairs. A 
plug-in to SeSAm was implemented to enable the user to modify the architecture at 
run-time. The main drawback is that, when modelling agents, a user does not exactly 
know how the architecture has to be modified to get the right behaviour. A further 
step would be to make agents modify it in an autonomous way depending on the ac-
tions they make and the results they get. 

6   Applying the Model to an Ecosystem 

Validation of the model was achieved by testing it on an application for which it was 
possible to automatically evaluate the emergent function. Actually this function was 
related to the performance of the built system and therefore could be measured. 

6.1   Description of the Case Study 

This application simulates an ecosystem made up of prawns, fishes and seaweeds. 
Prawns eat seaweeds and are able to increase their number by breeding. Fishes eat 
prawns and are also able to reproduce. The objective of prawns and fishes is to sur-
vive, they are autonomous and are implemented using the cooperative agent model 
described above. To comply with this model, agents do not communicate in a direct 
way but are endowed with perception abilities in the environment. Seaweeds just 
spread and have no real autonomy, they are thus considered as active objects which 
life cycle is also described under SeSAm with activity diagrams. 

Prawns and fishes have similar behaviours and objectives, and here, only prawns 
are of interest knowing that what can be learnt about the behaviour of prawns can also 
be learnt for fishes. Taken as a whole, prawns form a MAS which can have various 
objectives; for example, either surviving the longest possible time or eating as many 
seaweeds as possible in a limited time. It is then possible to evaluate the rightness of 
the global function (or functional adequacy) of this MAS based on either the number 
of simulation cycles during which prawns survive or the number of eaten seaweeds. 

6.2   Adjustment of the Behaviour 

In order to evaluate the correlation between a decrease in the number of NCS encoun-
tered and the improvement of the functional adequacy of the MAS, a comparison was 
made between different versions of this application. 
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At the beginning prawns have no perceptions and NCS of incomprehension are de-
tected. Once their perceptions improved (a prawn always knows what it perceives and 
does not learn anything), prawns do not encounter such NCS anymore. Thus, only 
NCS associated with conflict and concurrence can be detected by the model (and 
theoretically uselessness). If actions and a subsumption architecture (see Fig. 5) to 
decide which action to do next are given to prawns (random move, move towards a 
seaweed, eat a seaweed), the model indicates that conflicts are encountered.  

 

Fig. 5. Subsumption of a Prawn 

By observing the simulation, it appears that these conflicts occur when two prawns 
want to eat the same seaweed or want to breed with the same prawn. The second con-
flict has the same nature than the first one on which we focus now. The left part of 
Fig. 6 shows the number of eaten seaweeds (top curve) and the number of conflicts 
(bottom curve), both curves have the same look which shows that (i) almost every 
time a prawn wants to eat a seaweed, there is a conflict with another prawn and (ii) 
prawns die at about the cycle 230 because all seaweeds are eaten. 

Many possibilities exist to enhance the behaviour of a prawn and make it avoid 
conflicts; for example, eat a seaweed only if closer than the other prawn, do not eat if 
 

 

Fig. 6. Results Obtained in the Ecosystem Application. The top curve shows the number of 
eaten seaweeds, the bottom one shows the number of detected NCS. The left diagram shows 
results obtained when NCS are not processed, the right one shows results when NCS of con-
flicts are processed. 
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there is a conflict, evaluate the conflict probability for every seaweed etc. Simulation 
is a means to evaluate all this possibilities in order to choose the one that avoid the 
greatest number of conflicts. One solution was tested and results appear on the right 
part of Fig. 6: the number of conflicts has decreased over time, the number of eaten 
seaweeds has decreased and prawns survived a longer time (all remaining cycles are 
not shown on the diagram).  

Best results are obtained when NCS about conflicts are considered by the designer 
and removed by agents. 

6.3   Analysis 

The results obtained for this application have shown that NCS could be automatically 
detected and then “repaired” by a designer. Furthermore improving the behaviour of 
agents to make them encounter less NCS seems a means to improve the global behav-
iour of a MAS. This enhancement can be done step by step by changing some part of 
the behaviour; for example, how perceptions are done, how interpretations of them 
are achieved and what actions are required to avoid NCS. 

However many work is still needed to study how some NCS may be detected such 
as uselessness which is not taken into account yet. Some other situations related to 
cooperation have also to be studied; they are not directly related to NCS but could 
enable agents to be more cooperative or to avoid long-term NCS. For instance, a 
prawn could move towards a place where there is no prawns yet rather than in a ran-
dom manner, that would avoid future conflicts.  

7   Conclusion and Perspectives 

The focus of this article was on self-organising systems in which agents have a coop-
erative social attitude making their relationships evolve to find the right system or-
ganisation and then the right collective function. The cooperation at the agent level is 
realised in a proscriptive way: an agent tries to avoid a certain number of situations 
that are judged, from its point of view, non cooperative. The main issue for designers 
of such systems is to find and enumerate all these non cooperative situations.  

The objective of this article was to show how simulation could help designers to 
improve the behaviour of agents during their design. A way is to enable a designer to 
modify the subsumption architecture of an agent i.e. how an agent chooses the actions 
it has to do depending on the current conditions. Another way is, according to the 
AMAS theory, to enable him to decrease the number of NCS encountered by agents 
in order to come closer to the functional adequacy of the system. A cooperative agent 
model was therefore proposed to automatically detect some NCS during the execution 
of a simulated MAS to show where and when NCS appear. With this kind of informa-
tion a designer is then able to enrich the behaviour of agents to let them detect NCS 
and act to remove or avoid them. Application of this model on a simple ecosystem has 
shown positive results and has enabled to improve its collective behaviour according 
to a global objective. 
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This first step in this work has then shown the feasibility of the approach for sys-
tems in which agents interact through the environment, nonetheless improvements are 
desirable.  

First of all, the current detection of NCS could be improved and the model could 
be enhanced to detect other types of NCS like uselessness or NCS that could appear 
later on. It also could be envisaged to make an agent change its behaviour during a 
simulation. The last steady version of SeSAm was used to implement the model and 
did not enable this dynamical change, however this possibility exists under the beta-
version 2 of SeSAm and could be used. 

The autonomy of agents could be fully exploited by letting them change their be-
haviour in an autonomous way during simulation depending on what kind of NCS 
they encounter. An agent could, for instance, dynamically modify its subsumption 
architecture. 

Finally, to fully comply with the AMAS theory, designers should be given the  
opportunity to design self-organising systems in which direct communication bet-
ween agents is used and the proposed model should also be enhanced towards this 
perspective. 

The main objective of this work is to include simulation tools into ADELFE to 
complete the life cycle of its development process. Indeed validation and testing are 
generally the neglected phases in agent-oriented methodologies either because tools 
are lacking or because agents concepts are less important at this level. Nevertheless 
we think that these phases are also required to help designers and that simulation 
could play an important role in their implementation. Actually modelling and formali-
sation of the systems considered here are hardly conceivable because of their  
emergent nature. Consequently, an empirical validation or testing is may be the only 
solution to overcome this complexity and that could be done by using simulation both 
at the individual and collective levels. 
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Abstract. Electronic institutions (EIs) have been proposed as a means
of regulating open agent societies. EIs define the rules of the game in
agent societies by fixing what agents are permitted and forbidden to do
and under what circumstances. And yet, there is the need for EIs to
adapt their regulations to comply with their goals despite coping with
varying populations of self-interested external agents. In this paper we
focus on the extension of EIs with autonomic capabilities to allow them
to yield a dynamical answer to changing circumstances through norm
adaptation and changes in institutional agents.

Keywords: Autonomic Electronic Institutions, Multiagent Systems,
Adaptation.

1 Introduction

The growing complexity of advanced information systems in the recent years,
characterized by being distributed, open and dynamical, has given rise to inter-
est in the development of systems capable of self-management. Such systems are
known as self-* systems [1] , where the * sign indicates a variety of properties:
self-organization, self-configuration, self-diagnosis, self-repair, etc. A particular
approximation to the construction of self-* systems is represented by the vision
of autonomic computing [2], which constitutes an approximation to computing
systems with a minimal human interference. Some of the many characteristics
of autonomic systems are: it must configure and reconfigure itself automatically
under changing (and unpredictable) conditions; it must aim at optimizing its
inner workings, monitoring its components and adjusting its processing in order
to achieve its goals; it must be able to diagnose the causes of its eventual mal-
functions and repair itself; and it must act in accordance to and operate into a
heterogeneous and open environment.

In what follows we argue that EIs [3] are a particular type of self-* system.
When looking at computer-mediated interactions we regard Electronic Institu-
tions (EI) as regulated virtual environments wherein the relevant interactions
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among participating agents take place. EIs have proved to be valuable to de-
velop open agent systems [4]. However, the challenges of building open systems
are still considerable, not only because of the inherent complexity involved in
having adequate interoperation of heterogeneous agents, but also because the
need for adapting regulations to comply with institutional goals despite varying
agents’ behaviors. Particularly, when dealing with self-interested agents.

The main goal of this work consists in studying how to endow an EI with auto-
nomic capabilities that allow it to yield a dynamical answer to changing circum-
stances through the adaptation of its regulations. Among all the characteristics
that define an autonomic system we will focus on the study of self-configuration
as pointed out in [2] as a second characteristic: “An autonomic computing sys-
tem must configure and reconfigure itself under varying (and in the future, even
unpredictable) conditions. System configuration or ”setup” must occur auto-
matically, as well as dynamic adjustments to that configuration to best handle
changing environments”.

The paper is organized as follows. In section 2 we introduce the notion of
autonomic electronic institution as an extension of the classic notion of elec-
tronic institution along with a general model for adaptation based on transition
functions. Section 3 details how these functions are automatically learned. Sec-
tion 4 details a case study to be employed as a scenario wherein to test the
model presented in section 2. Section 5 provides some empirical results. Finally,
section 6 summarizes some conclusions and related work and outlines paths to
future research.

2 Autonomic Electronic Institutions

The idea behind EIs [3] is to mirror the role traditional institutions play in the
establishment of “the rules of the game” –a set of conventions that articulate
participants’ interactions. The main goal of EIs is the enactment of a constrained
environment that shapes open agent societies. EIs structure agent interactions,
establishing what agents are permitted and forbidden to do as well as the con-
sequences of their actions.

In general, an EI regulates multiple, distinct, concurrent, interrelated, di-
alogic activities, each one involving different groups of agents playing differ-
ent roles. For each activity, interactions between agents are articulated through
agent group meetings, the so-called scenes, that follow well-defined interaction
protocols whose participating agents may change over time (agents may enter
or leave). More complex activities can be specified by establishing networks of
scenes (activities), the so-called performative structures. These define how agents
can legally move among different scenes (from activity to activity) depending on
their role.

Although EIs can be regarded as the computational counterpart of human
institutions for open agent systems, there are several aspects in which they are
nowadays lacking. According to North [5] human institutions are not static; they
may evolve over time by altering, eliminating or incorporating norms. In this
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way, institutions can adapt to societal changes. Nonetheless, neither the current
notion of EI nor the engineering framework in [6] support their adaptation so
that an EI can self-configure. Thus, in what follows we study how to extend the
current notion of EI to support self-configuration in order to be used in systems
that need adaptation in their regulation (e.g. electricity market system).

First of all, notice that in order for EIs to adapt, we believe that a “rational”
view must be adopted (likewise the rational view of organizations in [7]) and thus
consider that EIs seek specific goals. Hence, EIs continuously adapt themselves
to fulfill their goals. Furthermore, we assume that an EI is situated in some
environment that may be either totally or partially observable by the EI and its
participating agents.

With this in mind, we observe that according to [3] an EI is solely composed
of: a dialogic framework establishing the common language and ontology to be
employed by participating agents; a performative structure defining its activities
along with their relationships; and a set of norms defining the consequences of
agents’ actions. From this follows that further elements are required in order to
incorporate the fundamental notions of goal, norm configuration, and performa-
tive structure configuration as captured by the following definition of autonomic
electronic institution.

Definition 1. Given a finite set of agents A, we define an Autonomic Electronic
Institution (AEI) as a tuple 〈PS, N, DF, G, Pi, Pe, Pa, V, δ, γ〉 where:

– PS stands for a performative structure;
– N stands for a finite set of norms;
– DF stands for a dialogic framework;
– G stands for a finite set of institutional goals;
– Pi = 〈i1, . . . , is〉 stands for the values of a finite set of institutional properties,

where ij ∈ IR, 1 ≤ j ≤ s contains the value of the j-th property;
– Pe = 〈e1, . . . , er〉 stands for the values of the environment properties, where

each ej is a vector, ej ∈ IRnj , 1 ≤ j ≤ r contains the value of the j-th
property;

– Pa = 〈a1, . . . , an〉 stands for the values that characterize the institutional
state of the agents in A, where aj = 〈aj1 , . . . , ajm〉, 1 ≤ j ≤ n stands for the
institutional state of agent Aj;

– V stands for a finite set of reference values;
– δ : N × G × V → N stands for a normative transition function that maps a

set of norms into a new set of norms given a set of goals and a set of values
for the reference values; and

– γ : PS×G×V → PS stands for a performative structure transition function
(henceforth referred to as PS transition function) that maps a performative
structure into a new performative structure given a set of goals and a set of
values for the reference values.

Notice that with both the normative transition function, δ, and with the PS
transition function, γ, our AEI definition has included the mechanisms to support
their adaptation. Notice that a major challenge in the design of an AEI is to
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learn a normative transition function, δ, along with a PS transition function, γ,
that ensure the achievement of its institutional goals under changing conditions.
Next, we dissect the new elements composing an AEI.

2.1 Goals

Agents participating in an AEI have their social interactions mediated by the
institution according to its conventions. As a consequence of his interactions,
only the institutional (social) state of an agent can change since an AEI has no
access whatsoever to the inner state of any participating agent. Therefore, given
a finite set of participating agents A = {A1, . . . , An} where n ∈ IN, each agent
Ai ∈ A can be fully characterized by his institutional state, represented as a
tuple of observable values 〈ai1 , . . . , aim〉 where aij ∈ IR, 1 ≤ j ≤ m. Thus, the
actions of an agent within an AEI may change his institutional state according
to the institutional conventions.

The main objective of an AEI is to accomplish its goals. For this purpose, an
AEI will adapt. We assume that the institution can observe the environment,
the institutional state of the agents participating in the institution, and its own
state to assess whether its goals are accomplished or not. The temperature of
a room can be an example of an environment property, the time an agent is
playing in the institution can be an example of an agent’ institutional property,
and the number of scenes can be an institutional property. Thus, from the obser-
vation of environment properties(Pe), institutional properties (Pi), and agents’
institutional properties (Pa), an AEI obtains the reference values required to
determine the fulfillment of goals. Formally, the reference values are defined as a
vector V = 〈v1, . . . , vq〉 where each vj results from applying a function hj upon
the agents’ properties, the environmental properties and/or the institutional
properties; vj = hj(Pa, Pe, Pi), 1 ≤ j ≤ q.

Finally, we can turn our attention to institutional goals. An example of insti-
tutional goal for the Traffic Regulation Authority could be to keep the number
of accidents below a given threshold. In other words, to ensure that a reference
value satisfies some constraint.

Formally we define the goals of an AEI as a finite set of constraints G =
{c1, ..., cp} where each ci is defined as an expression gi(V ) � [mi, Mi] where
mi, Mi ∈ IR, � stands for either ∈ or �∈, and gi is a function over the reference
values. In this manner, each goal is a constraint upon the reference values where
each pair mi and Mi defines an interval associated to the constraint. Thus,
the institution achieves its goals if all gi(V ) values satisfy their corresponding
constraints of being within (or not) their associated intervals.

2.2 Norm Transition

An AEI employs norms to constrain agents’ behaviors and to assess the conse-
quences of their actions within the scope of the institution. Although there is a
plethora of formalizations of the notion of norm in the literature, in this paper
we adhere to a simple definition of norms as effect propositions as defined in [8]:
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Definition 2. An effect proposition is an expression of the form

A causes F if P1, . . . , Pn

where A is an action name, and each of F, P1, . . . , Pn(n ≥ 0) is a fluent expres-
sion. About this proposition we say that it describes the effect of A on F , and
that P1, . . . , Pn are its preconditions. If n = 0, we will drop if and write simply
A causes F . Notice that since we use norms only to describe prohibitions, our
norms are a particular case of regulative norms [9].

From this definition of norm, changing a norm amounts to changing either its
pre-conditions, or its effect(s), or both. Norms can be parameterized, and there-
fore we propose that each norm Ni ∈ N , i = 1, . . . , n, has a set of parameters
〈pNi,1, . . . , pNi,mi

〉 ∈ IRmi . Hence, changing the values of these parameters means
changing the norm. In fact this parameters correspond to the variables in the
norm transition function that will allow the institution to adapt under changing
situations.

Notice that agents do not have the capability to change norms. In our ap-
proach we have external agents, internal agents and a mechanism of the institu-
tion to change norms. Thus, only the institution is entitled to change norms.

2.3 PS Transition

As mentioned above, an EI involves different groups of agents playing different
roles within scenes in a performative structure. Each scene is composed of a
coordination protocol along with the specification of the roles that can take part
in the scene. Notice that we differentiate between institutional roles (played by
staff agents acting as the employees of the institution) and external roles (played
by external agents participating in the institution as users). Furthermore, it is
possible to specify the number of agents than can play each role within a scene.

Given a performative structure, we must choose the values that we aim at
changing in order to adapt it. This involves the choice for a set of parameters
whose values will be changed by the PS transition function. In our case, we choose
as parameters the number of agents playing each role within each scene. This
choice is motivated by our intention to determine the most convenient number
of institutional agents to regulate a given population of external agents.

Scenes can be parameterized, and therefore, we propose that each scene in
the performative structure, Si ∈ PS, i = 1, . . . , t, has a set of parameters
〈pRi,1, ..., pRi,qi

〉 ∈ INqi where pRi,j stands for the number of agents playing role
rj in scene Si.

3 Learning Model

Adapting EIs amounts to changing the values of their parameters. We propose
to learn the norm transition function (δ) and the PS transition function (γ) in
two different steps in an overall learning process. For the initial step, the AEI
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learns by simulation the best parameters for a list of different populations, ex-
ploring the space of parameter values in search for the ones that best accomplish
goals for a given population of agents. Afterwards, in a second step in a real en-
vironment, the AEI will adapt itself to any population of agents. This second
learning step involves to identify the current population of agents (or the most
similar one) in order to use the learned parameters that best accomplish goals
for this population (e.g., using Case-Based Reasoning (CBR) problem solving
technique). This paper focuses on the first learning step, in how to learn the
best parameters for a population.

We propose to learn the norm transition function (δ) and the PS transition
function (γ) by exploring the space of parameter values in search for the ones
that best accomplish goals for a given population of agents. In this manner, if
we can automatically adapt an EI to the global behavior of an agent population,
then, we can repeat it for a number of different agent populations and thus
characterize both δ and γ.
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Fig. 1. Example of a step in EI adaptation using an evolutionary approach

Figure 1 describes how this learning process is performed for a given popula-
tion of agents (A) using an evolutionary approach. We have an initial set of indi-
viduals 〈I1, . . . , Ik〉, where each individual represents the set of norm and role pa-
rameters defined above {〈pN1,1, . . . , pN1,m1

〉 , . . . , 〈pNn,1, . . . , pNn,mn
〉, 〈pR1,1, . . . , pR1,q1〉,

. . . , 〈pRt,1, . . . , pRt,qt
〉}. Each individual represents a specific AEI configuration, and

therefore, the institution uses each configuration to perform a simulation with
the population of agents A. The corresponding configuration can then be eval-
uated according to a fitness function that measures the satisfaction degree of
institutional goals (configuration evaluation). Finally, the AEI compiles the eval-
uations of all individuals in order to breed a new generation from the best ones
configuration adaptation. This process results with a new set of individuals (New
configurations) to be used as next generation in the learning process. Since we
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are working with a complex system, we propose use an evolutionary approach
for learning due to the fact that the institutional objective function can be nat-
urally mapped to the fitness function and an evolutionary approach provides a
solution good enough. Notice that the AEI does not learn any agent parameter,
it learns the best parameters by simulation for a certain population of agents,
that is whose values will be changed by the normative transition function and
by the PS transition function.

4 Case Study: Traffic Control

Trafficcontrol is awell-knownproblemthathasbeenapproached fromdifferentper-
spectives, which range from macro simulation for road net design [10] to traffic flow
improvement by means of multi-agent systems [11]. We tackle this problem from
the Electronic Institutions point of view, and therefore, this section is devoted to
specify how traffic control can be mapped into Autonomic Electronic Institutions.

In this manner, we consider the Traffic Regulation Authority as an Auto-
nomic Electronic Institution, and cars moving along the road network as exter-
nal agents interacting inside a traffic scene through driving actions. Additionally,
indirect communication is established by means of stop, rear and turn signal in-
dicators. Considering this set-up, traffic norms regulated by Traffic Authorities
can therefore be translated in a straight forward manner into norms belong-
ing to the Electronic Institution. Norms within this normative environment are
thus related to actions performed by cars (in fact, in our case, they are always
restricted to that). Additionally, norms do have associated penalties that are
imposed to those cars refusing or failing to follow them. On the other hand,
institutional agents in the traffic scene represent Traffic Authority employees.
In our case study, we assume institutional agents to be in charge of detecting
norm violations so that we will refer to them as police agents. Notice that police
agents are internal agents that play an institutional role. As opposed to other
approaches like MOISEInst [12] where there is an institution agent middleware
dedicated to the management of the organization and to the arbitration our
police agents are not linked to any external agent. Each police agent is able to
detect only a portion of the total number of norm violations that car agents
actually do. Therefore, the number of police agents in the traffic scene directly
affects the number of detected norm violations, and thus, the overall quantity of
penalties imposed to car agents. Furthermore, our Electronic Institution is able
to adapt both norms and the number of deployed police agents based on its goals
– just as traffic authorities do modify them– and, therefore, it is considered to
be autonomic.

Our AEI sets up a normative environment where cars do have a limited
amount of credit (just as some real world driving license credit systems) so that
norm offenses cause credit reductions. The number of points subtracted for each
traffic norm violation is specified by the sanction associated to each norm, and
this sanction can be changed by the regulation authority if its change leads the
accomplishment of goals. Eventually, those cars without any remaining points
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are forbidden to circulate. On the other hand, we assume a non-closed world, so
expelled cars are replaced by new ones having the total amount of points.

Getting into more detail, we focus on a two-road junction. It is a very re-
strictive problem setting, but it is complex enough to allow us to tackle the
problem without losing control of all the factors that may influence the results.
In particular, no traffic signals (neither yield or stop signals nor traffic lights) are
considered, therefore, cars must only coordinate by following the traffic norms
imposed by the AEI. Our institution is required to define these traffic norms
based on general goals such as minimization of the number of accidents or dead-
lock avoidance.

(a) Junction

A

Aj

i

(b) Right priority

Ai

Aj

(c) Front priority

Fig. 2. (a)Grid environment representation of a 2-lane road junction. (b)Priority to
give way to the right. (c)Priority to give way to the front.

We model the environment as a grid composed by road and field cells. Road
cells define 2 orthogonal roads that intersect in the center (see figure 2(a)).

Discretization granularity is such that cars have the size of a cell. As section
4.2 details, our model has been developed with the Simma tool [13]. Although
the number of road lanes can be changed parametrically, henceforth we assume
the 2-lane case. Next subsections are devoted to define this “toy problem” and
present our solution proposal in terms of it. But before that, we introduce some
nomenclature definitions:

– Ai: an external agent i, agents correspond to cars.
– t: time step. Our model considers discrete time steps (ticks).
– (Jx, Jy): size in x, y of our road junction area.
– J : inner road junction area with (xJ0 , yJ0 ) as top left cell inside it

J = {(x, y) | x ∈ [xJ0 , xJ0 + Jx − 1], y ∈ [yJ0 , yJ0 + Jy − 1]}
Considering the 4 J cells in the junction area of Figure 2(a):
J = {(xJ0 , yJ0 ), (xJ0 + 1, yJ0 ), (xJ0 , yJ0 + 1), (xJ0 + 1, yJ0 + 1)}.

– JBE : Junction Boundary Entrance, set of cells surrounding the junction that
can be used by cars to access it. They correspond to cells near by the junction
that belong to incoming lanes. Figure 2(a) depicts JBE = {(xJ0 , yJ0 −1), (xJ0 −
1, yJ0 + Jy − 1), (xJ0 + Jx − 1, yJ0 + Jy, (xJ0 + Jx, y

J
0 ))}.
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Nevertheless, the concept of boundary is not restricted to adjacent cells: a
car can be also considered to be coming into the junction if it is located one
–or even a few– cells away from the junction.

– (xti, y
t
i): position of car Ai at time t, where (x, y) ∈ IN × IN stands for a cell

in the grid.
– (htix, h

t
iy): heading of car Ai, which is located in (x, y) at time t. Heading

directions run along x, y axes and are considered to be positive when the car
moves right or down respectively. In our orthogonal environment, heading
values are: 1 if moving right or down; −1 if left or up; and 0 otherwise (i.e.,
the car is not driving in the axis direction). In this manner, fourth car’s
heading on the right road of figure 3 is (-1,0).

4.1 AEI Specification

Environment. As mentioned above, we consider the environment to be a grid.
This grid is composed of cells, which can represent roads or fields. The main
difference among these two types is that road cells can contain cars. Indeed, cars
move among road cells along time. (Figure 2(a) depicts a 8 × 8 grid example)
The top left corner of the grid represents the origin in the x, y axes. Thus,
in the example, cell positions range from (0,0) in the origin up to (7,7) at the
bottom-right corner.

We define this grid environment as:

Pe = 〈 (x, y, α, r, dx, dy) | 0 ≤ x ≤ maxx, 0 ≤ y ≤ maxy, α ⊆ P(A) ∪ Ø,
r ∈ [0, 1], dx ∈ [−1, 0, 1], dy ∈ [−1, 0, 1] 〉

being x and y the cell position, α defines the set of external agents inside the
grid cell (x, y) (notice that α ⊆ A), r indicates whether this cell represents a road
or not, and, in case it is a road, dx and dy stand for the lane direction, whose
values are the same as the ones for car headings. Notice that the institution
can observe the environment properties along time, we use P t

e to refer the val-
ues of the grid environment at a specific time t. This discretized environment
can be observed both by the institution and cars. The institution observes and
keeps track of its evolution along time, whilst cars do have locality restrictions
on their observations.

Agents. We consider A = 〈A1, ..., An〉 to be a finite set of n external agents
in the institution. As mentioned before, external agents correspond to cars that
move inside the grid environment, with the restriction that they can only move
within road cells. Additionally, external agents are given an account of points
which decreases with traffic offenses. The institution forbids external agents to
drive without points in their accounts. The institution can observe the Pa =
〈a1, . . . , an〉 agents’ institutional properties, where

ai = 〈xi, yi, hix, hiy, speedi, indicatori, offensesi,
accidentsi, distancei, pointsi〉
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These properties stand for: car Ai’s position within the grid, its heading, its
speed, whether the car is indicating a trajectory change for the next time step
(that is, if it has the intention to turn, to stop or to move backwards), the norms
being currently violated by Ai, wether the car is involved in an accident, the
distance between the car and the car ahead of it; and, finally, external agent
Ai’s point account. Notice that the institution can observe the external agent
properties along time, we use ati to refer the external agent Ai’s properties at a
specific time t.

Reference Values. In addition to car properties, the institution is able to
extract reference values from the observable properties of the environment, the
participating agents as well as the institution. Thus, these reference values are
computed as a compound of other observed values. Considering our road junction
case study, we identity different reference values:

V = 〈col, crash, off, block, expel, police〉
where col indicates total number of collisions for the last tw ticks (0 ≤ tw ≤ tnow):

col=
∑tnow

t=tnow−tw
∑

e∈P t
e
f(eαt)

being P t
e the values of the grid environment at time t, eαt the αt component of

element e ∈ P t
e and

f(eαt) = {1 if |eαt |>1
0 otherwise

Similarly, off indicates the total number of offenses accumulated by all agents
during last tw ticks (0 ≤ tw ≤ tnow):

off =
tnow∑

t=tnow−tw

|A|∑
i=0

offensesti (1)

crash counts the number of cars involved in accidents for the last tw ticks:

crash =
tnow∑

t=tnow−tw

|A|∑
i=0

accidentsti (2)

block describes how many cars have been blocked by other cars for last tw
ticks:

block =
tnow∑

t=tnow−tw

|A|∑
i=0

blocked(ai, t) (3)

where blocked(ai, t) is a function that indicates if the agent ai is blocked by
another agent aj in time t.

blocked(ai, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if ∃ e ∈ P t
e | (ext = xti + htix &

eyt = yti + htiy & |eαt | ≥ 1 &
∃ aj ∈ eαt so that speedtj = 0)

0 otherwise

(4)

being ext , eyt , eαt the xt, yt, αt components of element e ∈ P t
e .
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Furthermore, expel indicates the number of cars that have been expelled out
of the environment due to running out of points, and finally, police indicates the
percentage of police agents that the institution deploys in order to control the
traffic environment.

Goals. Goals are in fact institutional goals. The aim of the traffic authority
institution is to accomplish as many goals as possible. The institution tries to
accomplish these goals by defining a set of norms and by specifying how many
police agents should be deployed on traffic scene.

Institutional goals are defined as constraints upon a combination of reference
values. Considering our scenario, we define restrictions as intervals of acceptable
values for the previous defined reference values (V ) so that we consider the
institution accomplishes its goals if V values are within their corresponding
intervals. In fact, the aim is to minimize the number of accidents, the number of
traffic offenses, the number of blocked cars, the number of cars that are expelled
from the traffic scene, as well as the percentage of deployed police agents. In
order to do it, we establish the list of institutional goals G as:

G = 〈 g(col)∈ [0, maxCol], g(off)∈ [0, maxOff ], g(crash)∈ [0, maxCrash],
g(block)∈ [0, maxBlock], g(expel)∈ [0, maxExpel], g(police)∈ [0, maxPolice] 〉

Having more than one institutional goal requires to combine them. We propose
an objective function [14] that favors high goal satisfaction while penalizing big
differences among them:

O(V ) =
|G|∑
i=1

wi
√

f(gi(V ), [mi, Mi], μi)

where 1 ≤ i ≤ |G|, wi ≥ 0 are weighting factors such that
∑

wi = 1, gi is a
function over the reference values, μi ∈ [0, 1] and f is a function that returns a
value f(x, [m, M ], μ) ∈ [0, 1] representing the degree of satisfaction of a goal:

f(x, [m, M ], μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ

ek
m−x
M−m

x < m

1 − (1 − μ)
x − m

(M − m)
x ∈ [m, M ]

μ

ek
x−M
M−m

x > M

Norms. Autonomic Electronic Institutions use norms to try to accomplish
goals. Norms have associated penalties that are imposed to those cars refus-
ing or failing to follow them. These penalties can be parameterized to increase
its persuasiveness depending on the external agent population behavior.

Considering a road junction without traffic signals, priorities become basic to
avoid collisions. We consider, as in most continental Europe, that the default
priority is to give way to the right. This norm prevents a car Ai located on the
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Fig. 3. Priority to give way to the right (Simma tool screenshot)

Table 1. Right and Front priority norms

Right priority norm Front priority norm

Action in(ai, JBE , t − 1)∧ in(ai, JBE , t − 1)∧
in(ai, (x

t−1
i + ht−1

ix , yt−1
i + ht−1

iy ), t)∧ in(ai, (x
t−1
i + ht−1

ix , yt−1
i + ht−1

iy ), t)∧
�indicator(ai, right, t − 1) indicator(ai, left, t − 1)

Pre-conditions right(ai, aj , t − 1) in(aj , JBE , t − 1)∧
front(ai, aj , t − 1)

Consequence pointst
i = pointst

i − fineright pointst
i = pointst

i − finefront

Junction Boundary Entrance (JBE) to move forward or to turn left whenever
there is another car Aj on its right. For example, car 1 in figure 3 must wait
for car 2 on its right, which must also wait for car 3 at the bottom JBE .The
formalization in table 1 can be read as follows: “if car Ai moves from a position
in JBE at time t − 1 to its next heading position at time t without indicating a
right turn, and if it performs this action when having a car Aj at the JBE on
its right, then the institution will fine Ai by decreasing its points by a certain
amount” (see figure 2(b)).

Where the predicate in(ai, Region, t) in table 1 is equivalent to
∃(x, y, αt, r, dx, dy) ∈ P t

e so that (x, y) ∈ Region and ai ∈ αt and right(ai, aj , t)
is a boolean function that returns true if car Aj is located at JBE area on the
right side of car Ai. For the 2-lane JBE case , it corresponds to the formula:
(xti − htiy + htixJx, yti + htix + htiyJy) == (xtj , y

t
j).

Similarly, we define an additional norm that is somehow related to the previous
‘right priority norm’. We name it ‘front priority norm’. It applies when two cars
Ai, Aj reach Junction Boundary Entrance areas (JBE) located at opposite lines,
and one of them (Ai in Figure 2(c)) wants to turn left. Car Ai turning left may
interfere Aj ’s trajectory, and therefore, this norm assigns priority to Aj so that
Ai must stop until its front JBE area is clear. Otherwise Ai will be punished
with the corresponding finefront fee.
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Table 1 shows the formalization of this norm, where front(ai, aj , t) is a
boolean function that returns true if car Aj is located in front of car Ai at
time t. In an orthogonal environment, this function can be easily computed by
comparing car headings ((htix, h

t
iy), (h

t
jx, h

t
jy)) by means of the boolean formula

(htixh
t
jx + htiyh

t
jy) == −1.

Performative Structure. As introduced in 1, an AEI involves different groups
of agents playing different roles within scenes in a performative structure. Each
scene is composed of a coordination protocol along with the specification of the
roles that can take part in the scene. Our case study particularizes the Performa-
tive Structure component so that we define it as being formed by a single traffic
scene with two possible agent roles. On one hand, there is an institutional role
played by police agents, whereas, on the other hand, the external role is played
by car agents. Notice also that it is possible to specify the number of agents than
can play each role within a scene.

4.2 Experimental Settings and Design

As a proof of concept of our proposal in section 3, we have designed an ex-
perimental setting that implements the traffic case study. In this preliminary
experiment we consider four institutional goals related to col, off , expel, and
police reference values; and both right and front priority norms in table 1. In-
stitutional goals are combined with the objective function introduced in section
4.1, assuming corresponding weights are 4/10, 4/10, 1/10, 1/10 so that the first
two goals are considered to be most important. On the other hand, norms are
parameterized through its fines (i.e., points to subtract to the car failing to follow
the corresponding norm).

The 2-road junction traffic model has been developed with Simma [13], a
graphical MAS simulation tool shown in Figure 3, in such way that both envi-
ronment and agents can be easily changed. In our experimental settings, we have
modeled the environment as a 16 × 16 grid where both crossing roads have 2
lanes with opposite directions. Additionally, the environment is populated with
10 cars, having 40 points each.

Our institution can observe the external agent properties for each tick and can
keep a record of them in order to refer to past ticks. Institutional police agents
determine traffic offenses by analyzing a portion of car actions along time. Exter-
nal agent actions are observed through consecutive car positions and indicators
(notice that the usage of indicators is compulsory for cars in this problem set
up). Furthermore, during our discrete event simulation, the institution replaces
those cars running out of points by new cars, so that the cars’ population is
kept constant. Cars follow random trajectories at a constant 1-cell/tick speed
and they collision if two or more cars run into the same cell. In that case, the
involved cars do remain for two ticks in that cell before they can start following
a new trajectory.

Cars correspond to external agents without learning skills. They just move
based on their trajectories, institutional norms and the percentage of deployed



Adaptation of Autonomic Electronic Institutions 313

agents on the traffic scene. Cars have local information about their environment
(i.e., grid surrounding cells). Since the institution informs cars about changes in
both norms and number of police agents, cars know whether their next (in-
tended) moves violate some norms and the amount of the fine that applies
to such violations. In fact, cars decide whether to comply with a norm based
on four parameters: 〈fulfill prob , high punishment, inc prob, police〉; where
fulfill prob ∈ [0, 1] stands for the probability of complying with norms that
is initially assigned to each agent; high punishment ∈ IN stands for the fine
threshold that causes an agent to consider a fine to be high enough to reconsider
the norm compliance; inc prob ∈ [0, 1] stands for the probability increment that
is added to fulfill prob when the fine threshold is surpassed by the norm be-
ing violated; and police ∈ [0, 1] stands for the percentage (between 0 and 1) of
police agents that the traffic authority has deployed on the traffic environment.
In summary, agents decide whether they keep moving –regardless of violating
norms– or they stop –in order to comply with norms– based on a probability
that is computed as:

final prob =
{

police · fulfill prob fine ≤ high punishment
police · (fulfill prob + inc prob) fine > high punishment

Our goal is to adapt the institution to agent behaviors by applying Genetic
Algorithms (GA)1 to accomplish institutional goals, that is, to maximize the
objective function, which comprises the number of collisions, the number of
offenses, the number of expelled cars and the percentage of police agents that
should be deployed to control the traffic environment. We shall notice, though,
that these offences do not refer to offences detected by police agents but to the
real offences that have been actually done by car agents.

As section 3 describes, we propose to adapt the institution to different external
agent population behaviors by running a genetic algorithm for each population.
Therefore, institution adaptation is implemented as a learning process of the
“best” institution parameters. In our experiments, Genetic Algorithms run 50
generations of 20 individuals. An individual corresponds to a list of a binary cod-
ifications of specific values for the following institution parameters: right norm
penalty, front norm penalty, and percentage of police agents. Crossover among
individuals is chosen to be singlepoint and a mutation rate of 10% is applied. The
fitness function for individual evaluation corresponds to the objective function
described above, which is computed as an average of 5 different 2000-tick-long
simulations for each model setting (that is, for each set of parameters):

O(V ) =
4
10

·
√

f(g(col), [0, maxCol],
1
2
) +

4
10

·
√

f(g(off), [0, maxOff ],
1
2
)+

1
10

·
√

f(g(expel), [0, maxExpel],
3
4
) +

1
10

·
√

f(g(police), [0, maxPolice], 0)

1 We use a genetic algorithm Toolbox [15].
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where g(col), g(off), g(expel) and g(police) correspond to average values of each
reference value averaged for 5 different simulations; and f(x, [m, M ], μ) ∈ [0, 1]
represents the goal satisfaction.

5 Results

From the experimental settings specified above, we have run experiments for five
different agent populations. These populations are characterized by their norm
compliance parameters, being fulfill prob = 0.5 and inc prob = 0.2 for the five
of them whereas high punishment varies from 5 for the first, to 8 for the second,
to 10 for the third, to 12 for the fourth, up to 14 for the fifth (see table 2).

Since both right and front priority norms contribute to reduce accidents, our
AEI must learn how to vary its fine parameters to increase its persuasiveness for
agents, and eventually, to accomplish the normative goal of minimizing the total
number of collisions. Nevertheless, it is also important for the AEI to reduce the
total number of offenses, as well as, to a lesser extent, the number of expelled cars
and the police deployment percentage. Each institutional agent has an associated
cost, so that the AEI pursues the success of the traffic environment (i.e., a few
collisions, agents respecting traffic norms and not having many expelled agents)
at minimum cost. Thus, the AEI must learn what is the minimun percentage of
police agents that should be deployed to control the traffic environment.

Table 2. Agent populations

Parameters population1 population2 population3 population4 population5

fulfill prob 0.5 0.5 0.5 0.5 0.5

high punishment 5 8 10 12 14

inc prob 0.2 0.2 0.2 0.2 0.2

Learning AEI parameters is a rather complex task because individual AEI’s
goals are interrelated and can generate conflicts (for example, increasing police
helps with collisions but raises costs). Furthermore, goals are related to agents’
behaviors. As explained before, agent’s behavior is so that its probability of
complying with norms is proportional to the percentage of police, and therefore,
since norms contribute to reduce accidents, collisions increase when police de-
crease. Moreover, the more percentage of police is deployed, the more number of
fines are applied, and thus, the higher number of cars are expelled. Nevertheless,
agents generate less offences when the police percentage increases. Additionally,
the number of expelled cars decreases proportionally, not only to the police per-
centage, but also to the amount of applied fines. On the other hand, it may
be worth recalling that agent’s behavior also increases its probability of com-
plying with norms when the fine is larger than high punishment. Therefore,
any fine value higher than the population’s high punishment value will have
the same effect, and thus, will generate equivalent individual goal satisfaction
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Table 3. Learning results for five different agent populations

Population Learned fineright Learned finefront Learned police Goal satisfaction

population1 15, 12, 7 8, 14, 13 0.93, 0.93, 0.93 0.699, 0.7, 0.691

population2 13, 13, 14 10, 11, 9 0.93, 0.93, 0.93 0.689, 0.694, 0.691

population3 15, 12, 15 14, 11, 15 0.93, 0.87, 0.93 0.685, 0.681, 0.685

population4 15, 13, 15 14, 13, 13 0.93, 0.93, 0.87 0.676, 0.686, 0.68

population5 15, 15, 15 15, 15, 8 0.93, 0.93, 0.93 0.668, 0.674, 0.677

degrees. As a result, the AEI must learn the best combination of parameters
(fineright, finefront and police) according to the 4-goal objective function and
to the agents’ behavior.

When learning, we have repeated tests for each setting three times –i.e., three
separated learning runs for each agent population and setting–. Table 3 shows
the learned parameters, where columns Learned fineright, Learned finefront,
and Learned police include the learned values for each corresponding parame-
ter and agent population. Each cell in the table contains three values: one per
repeated experiment. Thus, for example, considering population1, learned val-
ues for fineright are 15 for the first test, 12 for the second one and 7 for the
third test. Notice that, due to the agent’s behavior, any fine value higher that 5
(high punishment value) will have the same effect. Table 3 also shows the goal
satisfaction value obtained for each test (this value corresponds to the objective
function value explained above (O(V )) using maxCol = 150, maxOff = 200,
maxExpel = 200 and maxPolice = 1).

As it can be seen, learned fines are larger than the population’s high
punishment value except for the third test in population5 (where the GA fails to
find the maximum). Therefore, the institutional goals are successfully reached
in fourteen of the fifteen tests. In this manner, we can rather state the AEI
succeeds in learning the norms that better accomplish its goals. Relating to
the police percentage, learned values are close to the 90%. This is due to its
low associated weight in the objective function. Notice that the objective func-
tion is weighted in such a way that goals aiming to decrease the number of
collision and offenses are considered to be significantly more important than
those that pursue to decrease the number of expelled cars and the police
percentage.

For the seek of clarity, figure 4 shows the overall goal functions for population1,
population3 and population5 respectively. These 3D charts depict all the values
of the goal function using only two parameters (fineright and police2 but not
finefront), so that search space for the learning algorithm is kept 3 dimensional.
The domain for each is 16 × 16 × 1. The figure shows the dependency between
both parameters: when the police percentage is 100% the effect of the norm fine
(fineright > high punishment) is greater than for smaller values of police, and
becomes null when the police percentage goes down to 0%.

2 Notice that the parameter police is scaling to 15.
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(a) Population1 (b) Population3 (c) Population5

Fig. 4. Objective functions with 4 goals: col,off,expel,police. (a)Population1
(high punishment = 5), (b)Population3 (high punishment = 10), (c)Population5
(high punishment = 14).

6 Discussion and Future Work

Within the area of Multi-Agent Systems, adaptation has been usually envisioned
as an agent capability: agents learn how to reorganise themselves. Along this di-
rection, works such as the one by Excelente-Toledo and Jennings [16] propose
a decision making framework that enables agents to dynamically select the co-
ordination mechanism that is most appropriate to their circumstances. Hübner
et al. [17] propose a model for controlling adaptation by using the MOISE+
organization model, and Gâteau et al. [12] propose MOISEInst as an extension
of MOISE+ as an institution organization specification of the rights and duties
of agents’ roles. In both models agents adapt their MAS organization to both
environmental changes and their own goals. In [18] Gasser and Ishida present
a general distributed problem-solving model which can reorganize its architec-
ture, in [19] Ishida and Yokoo introduce two new reorganization primitives that
change the population of agents and the distribution of knowledge in an orga-
nization; and Horling et al. [20] propose an approach where the members adapt
their own organizational structures at runtime. The fact that adaptation is car-
ried out by the agents composing the MAS is the most significant difference with
the approach presented in this paper. In our approach there is indeed a group of
internal agents who can punish external agents but the reorganization is carried
out by the institution, instead of by the agents.

On the other hand, it has been long stated [21] that agents working in a com-
mon society need norms to avoid and solve conflicts, make agreements, reduce
complexity, or to achieve a social order. Boella et al. [9] approached the change
of norms by using constitutive norms that make possible to create new norms.
Our approach differs from their because we only modify norms, instead of creat-
ing new norms. Norm adaptation has been also considered from the individual
perspective of agents within an agent society. Thus, in [22] agents can adapt to
norm-based systems and they can even autonomously decide its commitment to
obey norms in order to achieve associated institutional goals. Unlike this, we
focus on adapting norms instead of adapting agents to norms.
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Most research in this area consider norm configuration at design time
instead of at run-time as proposed in this paper. In this manner, Fitoussi and
Tennenholtz [23] select norms at design stages by proposing the notions of
minimality and simplicity as selecting criteria. They study two basic settings,
which include Automated-Guided-Vehicles (AGV) with traffic laws, by assum-
ing an environment that consists of (two) agents and a set of strategies available
to (each of) them. From this set, agents devise the appropriate ones in order to
reach their assigned goals without violating social laws, which must be respected.
Our approach differs from it becasue we do not select norms at design stages.
Previously, Sierra et al. [24] used evolutionary programming techniques in the
SADDE methodology to tune the parameters of the agent populations that best
accomplished the global properties specified at design stages by the electronic
institution. Their approach differs from our approach because they search the
best population of agents by a desired institution and we adapt the institution
to the population of agents.

The most similar work to ours is [25]. Their proposed approach to adapt
organizations to environmental changes dynamically consists on translating the
organizational model into a max flow network. Therefore, their purpose differs
from ours because they only focus on adapting to environment fluctuation, and
because their work is based on organizational models instead on norms.

Regarding the traffic domain, MAS has been previously applied to it [11] [26],
[27]. For example, Camurri et al. [28] propose two field-based mechanisms to con-
trol cars and traffic-lights. Its proposed driving policy guides cars towards their
(forward) destinations avoiding the most crowded areas. On the other hand, traf-
fic light control is based on a linear combination between a distance field and the
locally perceived traffic field. Additionally, authors combine this driving policy
and traffic light control in order to manage to avoid deadlocks and congestion.
Traffic has been also widely studied outside the scope of MAS, for example, the
preliminary work by [29] used Strongly Typed Genetic Programming (STGP) to
control the timings of traffic signals within a network of orthogonal intersections.
Their evaluation function computed the overall delay.

This paper presents AEI as an extension of EIs with autonomic capabilities. In
order to test our model, we have implemented a traffic AEI case study, where the
AEI learns two traffic norms and the number of institutional agents in order to
adapt the norms and the performative structure to different agent populations.
Preliminary results in this paper provide soundness to our AEI approach. We
are also currently performing the same experiments with other norms and with
more goals. As future work, and since this basically represents a centralized sce-
nario, we plan to develop a more complex traffic network, allowing us to propose
a decentralized approach where different areas (i.e., junctions) are regulated by
different institutions. Additionally, we are interested in studying how institu-
tional norms and agent strategies may co-evolve. Nevertheless, this will require
to extend the agents so that they become able to adapt to institutional changes.
Nevertheless, we plan to extend both our traffic model and the institutional
adaptation capabilities so that the AEI will not only learn the most appropriate
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norms for a given agent population, but it will be able to adapt to any change
in the population.
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ing open environments with electronic institutions. Engineering Applications of
Artificial Intelligence, 191–204 (2005)

7. Etzioni, A.: Modern Organizations. Prentice-Hall, Englewood Cliffs, NJ (1964)

8. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs.
Journal of Logic Programming 17, 301–321 (1993)

9. Boella, G., van der Torre, L.: Regulative and constitutive norms in normative
multiagent systems. In: Proc. of Int. Conf. on the Principles of Knowledge Repre-
sentation and Reasoning (KR’04), Whistler (CA) (2004)

10. Yang, Q.: A Simulation Laboratory for Evaluation of Dynamic Traffic Management
Systems. PhD thesis, MIT (1997)

11. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: Mason: A new multi-agent
simulation toolkit. In: Proceedings of the 2004 SwarmFest Workshop, vol. 8 (2004)

12. Gâteau, B., Khadraoui, D., Dubois, E.: Moiseinst: An organizational model for
specifying rights and duties of autonomous agents. In: 3rd European Workshop on
Multiagent Systems (EUMAS’05), Brussels, Belgium (2005)

13. López-Sánchez, M., Noria, X., Rodŕıguez-Aguilar, J.A., Gilbert, N.: Multi-agent
based simulation of news digital markets. International Journal of Computer Sci-
ence and Applications 2, 7–14 (2005)
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Abstract. In the future electronic devices will permeate the environ-
ment where they will work invisibly and autonomously to deliver new
and enhanced services that go far beyond the mandate of the desktop
era. Intelligent agents will form the basis of many applications in this
emergent ubiquitous domain. Agent Factory Micro Edition (AFME) is a
framework that facilitates the construction of agent-based applications
for computationally constrained devices, this paper outlines three en-
hancements introduced to AFME to enable resources to be managed
more effectively, namely a new threading model, an extended rational de-
cision making infrastructure, and a syntactic modification to the agent
programming language that improves efficiency. The extended reason-
ing capabilities of AFME enable agents to choose the most appropriate
course of action with respect to their finite resources in a social context.

1 Introduction

The true potential for information technology is in making it an integral, invis-
ible part of the way people live their lives [1]. Ubiquitous computing prescribes
a new model of computation, one that takes into consideration the natural hu-
man environment and removes computers from our direct focus into the objects
that surround us. In the ubiquitous computing era intelligent agents will op-
erate on ‘smart’ devices where they will manage and control dynamic ad-hoc
networks, working both reactively and pro-actively to achieve individual and
common goals. This paper concerns three features introduced to Agent Factory
Micro Edition (AFME) [2], a framework for the construction of agents that op-
erate on resource constrained mobile devices.

A new threading model, embedded within AFME, ensures that agents are sen-
sitive to absolute time.1 This enables agent response time values to be specified ac-
curately. Rather than each agent creating their own thread agents share a thread
1 When the application begins to execute a clock value is recorded in the scheduler.

Subsequent timing values are relative to the initial clock value.

G. O’Hare et al. (Eds.): ESAW 2006, LNAI 4457, pp. 320–339, 2007.
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pool whereby they are scheduled to execute at regular intervals. To reduce the
number of computational bottlenecks, and prevent agents from synchronisingwith
one another, response time values are altered such that they are prime numbers.

To be able to solve problems collectively social structures must be present to
enable agents to interact with each other. For agents to act as a team more is
required than the synchronisation of individual isolated events. The group must
act as a single agent that adopts beliefs, desires, and intentions of its own [3]. The
manner by which collective decisions are made, however, is ultimately governed
by the choices made by, the desires of, and the goals of the individuals that
form the group. The extended rational decision making capabilities introduced
to AFME enable agents to choose the most appropriate course of action with
respect to their finite resources.

Belief labeling has been introduced to AFME to improve the efficiency of the
reasoning process and to reduce development time. With belief labeling common
sequences of predicates are only encoded and evaluated once.

The paper is organised as follows. Section 2 provides a broad overview of
AFME. Section 3 describes the threading model. Section 4 describes the rational
decision making infrastructure. Section 5 discusses belief labeling. An evaluation
is provided in section 6. Some related work and a discussion that focuses on the
social aspects of the system is provided in section 7.

2 AFME

AFME is loosely based on Agent Factory [4]. It uses a subset of the Agent Factory
Agent Programming Language (AFAPL) [5] and augments it with a number of
features specific to AFME. AFAPL is founded on a logical formalism of belief
and commitment. Rules that define the conditions under which agents should
adopt commitments are used to govern and encode agent behaviour. AFME is
described elsewhere [6] [2]. This section provides a broad overview of AFME
to put the work in context but the primary focus of this paper is on the three
features introduced to AFME to enable resources to be managed more effectively.

An AFME platform comprises a scheduler, several platform services, and a
group of agents (see figure 1). The scheduler is responsible for the scheduling of
agents to execute at periodic intervals. Rather than each agent creating a new
thread when they begin operating, agents share a thread pool.

AFME delivers support for the creation of BDI agents that follow a sense-
deliberate-act cycle. The control algorithm performs four functions. (1) Precep-
tors are fired and beliefs are resolved within the belief resolution function. (2)
The beliefs are used within the deliberation process to identify the agent’s de-
sired states. Agents are resource bounded and will be unable to achieve all of
their desires even if their desires are consistent. (3) A subset is chosen, within
the intention selection process, that maximises their self-interest with respect
to their finite resources. (4) The final function of the control algorithm con-
cerns commitment management. Depending on the nature of the commitments
adopted various actuators are fired.
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Fig. 1. AFME Architecture

AFME has been used in several applications [7] [8]. A discussion of these appli-
cations is beyond the scope of the paper. A key requirement for the development of
an agent platform for constrained environments is that the platform shall manage
resources efficiently and effectively. This is primary focus of this paper.

3 Threading Model

3.1 Thread Management

Agents in AFME are scheduled to execute at periodic intervals. In the original
Agent Factory threading model when an agent was constructed its controller
created a new thread and the agent began executing. A sleep time parameter2

was passed to the controller and was used to determine the responsiveness of
the agent and to facilitate cooperative multi-threading. The original system was
somewhat limited in that all of the threads operated in an independent ad-
hoc manner, there was no management or scheduling of the threads involved.
Consider the use of the sleep time to indicate the responsiveness of the agent.
The original system did not support the concept of fixed-rate execution, whereby
subsequent executions take place at approximately regular intervals that are sen-
sitive to absolute time. In the AFME threading model the agent’s true response
time is determined by a combination of the time taken to perform background
activities (such as garbage collection), the agent’s execution time, and the agents
sleep time.

The objective of the new threading model is to introduce thread management
and scheduling into AFME. The system is composed of a scheduler, a thread
pool, and a task buffer. The threading model can be used to schedule any task

2 The sleep time parameter specified the amount of time the agent’s thread would
sleep in between iterations of the control algorithm.
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Fig. 2. Threading Model

but in AFME the task is typically an agent. The threading model is used in the
collaborative agent tuning framework [9]. Figure 2 illustrates the architecture of
the new threading model. Rather than starting a new thread when an agent is
created, the agent’s control algorithm is incorporated into a thread task object
that is added to the scheduler. When the task is added the desired response
time is specified. The task is then scheduled to be performed at approximately
regular intervals with respect to absolute time. The amount of sleep time is
varied so that the response time will be consistent. The accuracy of the timing
is dependent on the clock underlying the Object.wait() method. The scheduler
synchronises all response times with an initial clock value that is recorded when
the application begins to operate. Task sleep times are constantly adjusted to
be in synchronisation with the universal clock value3 so that an agent’s response
time value will be regular and consistent with respect to (1) its previous execution
times and (2) the relative execution times of the other agents.

The threading model is not limited to the execution of agents. Other inter-
nal platform or application tasks, such as IO operations, are scheduled to be
performed at some point in the future either on a once off basis or periodically.
3 It is possible to obtain a universal clock value as the threading model is only con-

cerned with agents on the local platform. Agents on other platforms will be using
different CPUs and therefore their computational load will not overlap with local
agents.
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These tasks are subject to the same timing criteria and scheduling algorithm.
An example of where this is used is within the message transport service, which
is required to periodically connect to an external server to receive incoming mes-
sages [2]. This is possible because the management logic of the thread pool is
decoupled from the functionality that the thread is executing. A thread is simply
viewed as a process. The management logic is not concerned about the specific
task that the thread is performing.

The Scheduler contains an internal binary search tree to schedule tasks effi-
ciently. The tree ensures that tasks are ordered in accordance to their scheduled
execution time. When a task is added to the tree the scheduler thread is notified.
The minimum node is obtained from the tree and its execution time is calcu-
lated. The scheduler thread waits until the execution time of the minimum node
and then places it in the task buffer. If the node requires periodic execution it
is rescheduled otherwise it is removed.

When placing tasks into the task buffer the scheduler first checks an active
set of tasks. If the task is not in the active set it is added. The task buffer is
composed of a set of tasks to be executed within one of the threads in the thread
pool. The pooled threads extract and execute tasks from the task buffer. Once
a task has completed execution it is removed from the buffer.

3.2 Primal Scheduling and Phase Shifting

To prevent the agents from synchronising with one another the agents’ response
times are altered to be prime numbers. For example consider two agents, one
with a response time of 500 milliseconds, and the other with a response time of
1000 milliseconds. Both agents begin to execute at time 0 and finish executing
at some later point. At time 500 the first agent begins to operate again and then
finishes at some later point. At time 1000 because both agents are sensitive to
absolute time they will both begin to execute at the same point because any
variance incurred due to background tasks or executing times will have been
removed. The cycle will repeat itself and both agents will begin executing at the
same time point at 2000, 3000, 4000. . .milliseconds. The harmonics of the agents’
response times cause the agents to synchronise with one another, the agents are
literally in tune. This causes a computational bottleneck. It is undesirable, from
a computational efficiency perspective, to have two or more agents beginning
to execute at exactly the same time. The time between the last agent finishing
to execute and the next agent or the next two agents beginning to execute is
effectively wasted.

To prevent this problem agents’ response times are altered to be prime num-
bers. Consider the case when the first agent’s response time is changed to 499
and the second agent’s response time is changed 1013. Rather than the first
agent synchronizing with the second agent once every two iterations and the
second agent synchronizing with the first agent on every iteration the first agent
will synchronize with the second agent once every 1013 iterations whereas the
second agent will synchronize with the first agent once every 499 iterations. The
worst case scenario, whereby both agents begin executing at exactly the same
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time, only occurs once every 505487 (499*1013) milliseconds rather than once
every 1000 milliseconds. The system ensures that the agents are out of tune with
respect to each other.

The effect that this has is to average the agents’ computational load over the
available time range. The agents’ computational overhead will still sometimes
overlap but the time between agents completing execution and subsequently
beginning to execute will not always be wasted. It should be noted that 1013
was chosen rather than a prime value, such as 997, closer to the original because
it would cause the agents to come out of synchronization faster since there is
a greater difference between the harmonics of 1013 and 499 than that of 997
and 499. The primes chosen are those that have the greatest harmonic difference
within a particular threshold value. The threshold value is intended to keep the
values close to the originals specified. If there are no primes within this range
then the primes closest to the originals are chosen.

To further reduce computational bottlenecks the threading model phase shifts
thread tasks with equal response times. Consider two agents with response times
of 499. Rather than altering their responsiveness to be different primes such 491
and 509 the system phase-shifts one of the agents by 180 degrees. So the first
agent will begin executing at time 0 whereas the second agent begins executing
at time 249. Because the agents are sensitive to absolute time and have equal
responsiveness values they will never begin executing at exactly the same point,
there will always be approximately 249 milliseconds between their execution
times. The number of degrees that the agents are phase shifted is equal to 360
divided by the number of agents with equal responsiveness multiplied by the
agent’s arbitrary ordinal number. Thus in the previous example the first agent
is phase shifted by 249 * 0, i.e. it is not phased shifted, whereas the second
agent is phase shifted by 249 * 1. The choice as to which agent is first, second,
third. . . is capricious.

Another improvement to the efficiency of the threading model is that it ran-
domizes start times. When applications begin to operate rather than having all
tasks or agents begin to execute at time 0 the system staggers agents’ and other
scheduled tasks’ start times.

4 Rational Decision Making

The requirement for agents to be rational necessitates that they act in a manner
that maximises their self-interest or utility. The term self-interest was first pop-
ularised by Adam Smith [10] during the enlightenment period. In AFME Agents
are rational. Their self-interest enables them to act in a consistent manner to
achieve their objectives. For some agents their objectives necessitate selfish be-
haviour for others they do not.

AFME is consistent with the BDI model of agency [11]. The BDI model ac-
knowledges that agents are resource bounded and thus will be unable to achieve
all of their desires even if their desires are consistent. The agent must fix upon a
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subset of desires and commit resources to achieving them. This subset of desires
is the agent’s intentions. To be able to fix upon a subset of desires the agent
must make a decision over a number of options. There must be some concept
of utility or preference for an agent to make a decision4. Otherwise the agent
would be unable to choose between the various alternatives. Even a random or
arbitrary choice requires the concept of utility in that all utility values must
be equal, thus no preference is specified. A random choice is rational in such
circumstances because it returns the maximum possible benefit from the various
alternatives.

This illustrates the difference between utility and preference. Utility specifies
the benefit of an option whereas preference specifies a greater than relation
between utilities. To say that the taste of a cake is preferred to the taste of
some other cake does not imply that they both taste equally as nice. It implies
that one tastes better than the other. If you prefer something, you believe it to
be better than something else. This differs from weak stipulative definitions of
preference [12] whereby two items can be equally preferred to each other. In the
context of this work if the utility values of two items are equal, no preference is
specified between those two items. Stipulative definitions cannot be considered
correct or incorrect because they are not propositions. A definition can only
be considered correct or incorrect when discussing usage, in such a case the
definition is lexical.

The intention selection process has been realised within AFME by extending
the Agent Factory Agent Programming Language (AFAPL) with additional con-
structs for rational decision making. In AFME the subset of commitments chosen
maximises the agent’s utility for a particular course of action. In AFAPL rules
that define the conditions under which agents adopt commitments are used to
govern an agent’s behaviour. These rules are based on the agent’s current model
of the world, namely the agent’s beliefs. In AFME’s extended version of AFAPL
the decision as to whether to adopt a commitment is contingent on the amount
of resources an agent has available to it and the previous commitments that it
has made. For example if an agent has a significant number of commitments
it will decide not to adopt an additional commitment that it otherwise would
have adopted if it did not already have such a heavy workload. If the agent does
not have the requisite resources available the commitment is not adopted. If the
agent can free additional resources by dropping previous commitments and the
benefit of adopting the new commitment is greater than the loss of dropping the
previous commitments then the agent drops the older commitments to make the
requisite resources available. At a given point in time an agent will have, based
on its model of the world, a number of commitments that it wishes to adopt. The
agent chooses to espouse the subset of commitments that maximises its utility
with respect to its finite resources. If an agent fails to achieve a commitment
they must still incur the costs of the attempt. This is true for both human and
computational agents.

4 The utility is usually determined in the interpreter and is not specified within the
logic components.
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In BDI logics the concept of desire is a qualitative representation of utility.
The intentions are chosen, within the interpreter, from among the desired states,
using some metric that represents the actual utility value. In the AFAPL exten-
sion the metric for determining the utility is removed from the intention selection
algorithm and is replaced within perceptors that generate beliefs about the costs
and benefits of certain actions5. This is useful because it enables different metrics
to be used for different commitments. The values generated by the perceptors
are only potential utility. The chosen commitments must still be from among the
desired states as determined by the commitment rules within the agent design. If
a commitment is desired then the potential utility value will represent its actual
utility value within the intention selection algorithm otherwise the commitment
is not considered for selection. The desires are still a qualitative representation
of utility.

Decoupling the utility metric from the intention selection algorithm has other
advantages. It enables the developer to more easily alter system behaviour within
the agent design. The benefit and cost of certain actions will be dependent on
context. Variable beliefs provide a natural way of representing such data. The
beliefs are not exclusive to the intention selection process and will sometimes be
used by the agent to drive other system behaviour.

In the AFAPL extension the total amount of resources available to the agent is
specified so that the agent is aware of its limitations or constraints. The following
is an example of an agent design written with the addition constructs.

resources: ?res;

BELIEF(a) & BELIEF(costX(?cx)) & BELIEF(benefitX(?bx))
=> COMMIT(Self, Now, BELIEF(true), doX, ?cs, ?bx);

BELIEF(b) & BELIEF(costY(?cy)) & BELIEF(benefitY(?by))
=> COMMIT(Self, Now, BELIEF(true), doY, ?cy, ?by);

BELIEF(c) & BELIEF(costZ(?cz)) & BELIEF(benefitZ(?bz))
=> COMMIT(Self, Now, BELIEF(true), doZ, ?cz, ?bz);

In AFAPL terms preceded by the question mark symbol are variables. For illus-
trative purposes consider the case where the variables ?cx, ?bx, ?cy, ?by, ?cz, and
?cz assume the values 30, 11, 25, 5, 10, and 2 respectively. These variables rep-
resent the cost and benefits of adopting the commitments. Assume the resources
variable, ?res, has a value of 20. If at a given point in time the agent adopts
either BELIEF(a), BELIEF(b), or BELIEF(c), along with the beliefs for costs
and benefits, the commitments for doX, doY, doZ will be adopted respectively.
The agent compares the commitment’s cost to the available resources and if the
cost is lower the commitment is adopted. If the agent adopts all three beliefs at

5 The utility values do not necessarily have to be determined by a perceptor. They
may be hard coded by the developer in the agent design but this will not usually be
the case because it will often be difficult to determine utility values a priori.
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the same discrete time point all three commitments are adopted because their
combined cost is 18 which is less than the available resource allocation. Com-
mitment resolution is non-deterministic, it does not make any difference what
order the commitment rules are specified. The subset of commitments that max-
imise utility with respect to available resources at a particular time point will
be chosen to be adopted.

Consider the case when all three beliefs are adopted but when the resource
constraint is set at 15 rather than 20. The agent wishes to adopt all three com-
mitments but does not have the resources to do this and must therefore make a
decision as to what commitments to espouse. Considering the available resources
the agent’s options are (1) doX and doZ, or (2) doY and doZ. The agent chooses
doX and doZ because it yields a greater utility.

The costs and benefits of temporal commitments will sometimes vary over
time. If this is the case agents adopt beliefs about the cost and benefits of
maintaining the commitments. Variables within the maintenance condition of a
commitment are matched with the variables for cost and benefit.

The resource constraints specified are an abstract representation of resources
rather than a direct reference to the CPU’s computational overhead. There are a
number of reasons why this approach has been adopted. The agent does not need
to be aware of its low level processing performance to reason about its potential
actions in much the same way that a person does not need to be aware of the
exact number of joules they are going to use to perform a particular task. People
have a more abstract notion of the amount of work involved and use this abstract
concept, along with other factors such as their spatial and temporal constraints,
previously adopted commitments etc., within their decision making process. The
abstraction effectively hides such low level data. The tasks typically performed
by intelligent agents are at a higher level of granularity than CPU scheduling. An
agent’s current load will only be required when an agent is making a decision as
to whether or not to perform a future action. Processor performance is not useful
in determining the overhead of future events because it can only be measured
after the event has occurred. An agent’s abstract representation of the cost of
its commitments would be more useful in such situations. A developer could
profile a particular application and use the data as a pre-emptive indication
of a task’s overhead. The data must still only be used as an approximation to
overhead and be specified abstractly because it is dependent on the platform on
which profiling was carried out. The abstract representation of resource usage
facilitates the development of generic agents whose functionality is not coupled or
dependent on particular processor capabilities. Java is a platform independent
language and hides processor specific information from the developer. J2ME
does not support the Java native interface so platform dependent code cannot
be written to obtain such data in any case.

The metric for determining the amount of resources available could of course
include the residual power of an embedded device along with its computational
constraints. In such a case the power of the device would have an effect on the
nature and degree of the commitments adopted.
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The original AFAPL is a particular instance of the extended language speci-
fication whereby the benefit of adopting commitments is 1, the cost of adopting
commitments is 0, and the resource allocation is non negative. In this case the
agent will adopt all of its potential commitments because each commitment will
increase its utility for free. In the extended version of the language if the values
for a commitment’s benefit and cost are not specified their default values are 1
and 0 respectively. If the resource allocation is not specified it has a default of 0.
In this respect, it is consistent will the original specification. An agent written in
the standard AFAPL will act in the same manner within an AFME environment
as it does in the standard framework.

In reality when someone is considering adopting a non-trivial commitment
their beliefs about the costs and benefits of the commitment along with an
abstract concept of the amount of resources available to them form an integral
part of their reasoning process. Over time their beliefs about the costs and the
benefits of adopting certain commitments change because they are dependent
on context.

5 Belief Labeling

Belief labeling has been introduced to improve the efficiency of the reasoning
algorithm and reduce development time. It is syntactically different from AFAPL
but the underlying semantics are equivalent. The following commitment rules

BELIEF(x) & BELIEF(y) is somelabel;
BELIEF(w) => COMMIT(...) requires somelabel;
BELIEF(z) => COMMIT(...) requires somelabel;

are an equivalent alternative to

BELIEF(x) & BELIEF(y) & BELIEF(w) => COMMIT(...);
BELIEF(x) & BELIEF(y) & BELIEF(z) => COMMIT(...);

similarly

BELIEF(z) => COMMIT(...) requires !somelabel;

is equivalent to

!BELIEF(x) & BELIEF(y) & BELIEF(z) => COMMIT(...);
BELIEF(x) & !BELIEF(y) & BELIEF(z) => COMMIT(...);
!BELIEF(x) & !BELIEF(y) & BELIEF(z) => COMMIT(...);

The second case is not logically equivalent to the single commitment rule

BELIEF(z) => COMMIT(...);

because in that case if both BELIEF(x) and BELIEF(y) were adopted the com-
mitment would still be espoused, this is not what we want. In this example the
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agent will only ever adopt one commitment because each rule is mutually ex-
clusive. Its clear, in this case, that considerably less reasoning is required than
the original AFAPL approach. Additionally, the developer need only write one
line of code rather than three (provided somelabel is already declared). This
improves efficiency as the belief sequence is only evaluated once. The behaviour
encoded is a negated logical and.

Agent designs that contain belief labels may be compiled into a format that
is equivalent to the original AFAPL syntax so that the agent can run on the
standard platform. When an agent migrates from an AFME environment it is
converted to the alternative format.

The developer need not worry about writing the optimal agent design for
performance. The compiler converts the code to the optimum automatically.
Nevertheless, the developer can save time by doing so and improve the maintain-
ability of their code by minimising redundancy and increasing reuse. Standard
AFAPL design files can be compiled into the belief label format using the AFME
compiler.

Belief labels can be embedded to further reduce redundancy. The somelabel
belief set is embedded in the otherlabel belief set in the following example.

BELIEF(x) & BELIEF(y) is somelabel;
BELIEF(w) & BELIEF(z) is otherlabel requires somelabel;

It should be noted that cycles are prohibited. If the developer encodes cyclical
dependencies the compiler will throw an error.

6 Evaluation

6.1 Evaluation of Threading Model

To evaluate the effectiveness of the threading model we conducted four exper-
iments. In the first two experiments the unmanaged approach6, the scheduled
(timed) approach, the phase shifting approach, and the random start time ap-
proach were compared. Agents with equal average response time values7 and
random computational overheads were used. The second two experiments eval-
uated primal scheduling.

The agents summed the integers from 0 up to a pseudo random number chosen
between 0 and 100000. Arithmetic series rules were not used. The same seed was
used to generate the pseudo random numbers to ensure that the results were con-
sistent in each case. In the new threading model agents share a thread pool rather
creating their own thread. The number of threads in the pool is three. The results
of the computational overhead experiment are illustrated in figure 3.

The scheduled (timed) approach is the least efficient. This is as we would
expect in that by ensuring that agents’ response time values are consistent we
6 The unmanaged (original) approach refers to when scheduling is not used.
7 The term response time cannot be used for agents using the unmanaged approach.

In that case we are referring to the sleep time of the agent.
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Fig. 3. Average time taken to process tasks with random computational overheads

ensure that agents are in tune with respect to each other. The random start
time approach is sometimes better than the unmanaged approach other times
it is not. The phase shifting approach is the most efficient. This is because it
ensures that the agents never begin operating at the same time.

The experiment was repeated but this time the responsiveness of the agents
was recorded rather than their computational overhead. The results of the re-
sponsiveness experiment are illustrated in figure 4.

Fig. 4. Average processing duration for sixteen iterations for tasks with random over-
heads

The results indicate that Phase shifting is the most desirable. The problem
is that phase shifting can only be used when the agents’ response time values
are equal. To improve the efficiency of agents that have different response times
primal scheduling was developed.

To evaluate primal sceduling we conducted an experiment using four homoge-
neous agents with response times of 1000, 500, 250, and 125 milliseconds. Each
of the agents has an equal computational overhead. The agents sum the integers
from 0 to 100000. Again, arithmetic series rules were not used. The experiment
was conducted with and without random start time values. The results for the



332 C. Muldoon, G.M.P. O’Hare, and M.J. O’Grady

Table 1. Standard Scheduling Results

Random Time Random Duration Time Duration

125 55.11 2061 76.77 2689
250 65.11 3960 106 3866
500 81.22 7828 119.44 7619

1000 88.88 15585 115.33 15120

Average 71.33 7358 104.39 7324

Table 2. Primal Scheduling Results

Random Time Random Duration Time Duration

131 53.44 2103 60.44 2222
241 63.33 3804 60.55 3806
509 69.66 7993 69.77 7851
991 76 15393 71.77 15068

Average 65.61 7323 65.64 7237

computational processing time and responsiveness are given in table 1. These
results illustrate that randomising the start times improves efficiency with the
standard scheduling approach.

The experiment was repeated but with the response times altered, by the
scheduler, to be 991, 509, 241, and 131. The results are given in table 2.

To enable the developer to specify the responsiveness of an agent accurately
a scheduling procedure must be adopted. The accurate scheduling of agents
causes problems because agents with harmonically similar response times become
synchronized. These experiments indicate that by altering an agent’s response
time value to be a prime number the efficiency of the platform is improved.

6.2 Algorithm Analysis of the Rational Decision Making Extension

The task of determining the subset of commitments to espouse is a classic 0-1
knapsack problem. Given n items, with corresponding values and weights, the
knapsack problem concerns the packing of some of these items in a knapsack of a
specified capacity C, such that the profit sum of the included items is maximised.
This is equivalent to the problem of an agent attempting to adopt the subset of
commitments that maximise its utility with respect to its finite resources. It is
called the 0-1 version of the knapsack problem because there are no fractions.
The whole item must be either included in the knapsack or left out. Similarly,
an agent cannot adopt half a commitment.

Since the pioneering work of Dantzig [13] the knapsack problem has been
studied extensively in practice as well as in theory. No polynomial-time solution is
known for the general case; it is non-deterministic polynomial-time hard[14]. The
solution adopted in AFME uses a standard dynamic programming approach [15]
and operates in pseudo-polynomial time. It has a run-time complexity of ©(nC).
The complexity of dynamic programming solutions assure a much faster running
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time than other techniques, such as backtracking or brute-force. As noted in [14],
“A pseudo-polynomial-time algorithm. . . will display ‘exponential behavior’ only
when confronted with instances containing ‘exponentially large’ numbers, [which]
might be rare for the application we are interested in.” It is not anticipated that
‘exponentially large’ numbers will be encountered in AFME, nevertheless, future
work will investigate the use of a greedy approximation algorithm.

6.3 Efficiency of Belief Labeling

Belief labeling reduces redundant processing. It enables developers to encode
common sub sequences of predicates, which are only evaluated once. A depth
first search is still used to match variables but the search space is considerably
reduced. A depth first search has a runtime complexity of ©(bm), where b is the
branching factor8 and m is the maximum depth. To evaluate the efficiency of be-
lief labeling we consider the worst case, in which the developer encodes a negated
logical and. A negated logical and specifies the conditions under which a com-
mitment will not be desired. Under all other circumstances it will be desired. To
model this type of situation with the original approach the system would exhibit
exponential behaviour. The developer would have to write, and the system would
have to process, 2n-1 rules for n conditions. With belief labeling the developer
need only write, and the system need only process, 1 rule.

7 Discussion and Related Research

7.1 Agent Platforms

There have been several agent platforms developed for resource constrained en-
vironments reported in the literature. The LEAP [16] (Light Extensible Agent
Platform) is a FIPA compliant agent platform capable of operating on both
fixed and mobile devices. LEAP extends the JADE (Java Agent DEvelopment)
architecture by using a set of profiles that allow it to be configured for various
Java Virtual Machines (JVMs). The platforms supported are J2SE, Personal
Java, and CLDC/MIDP. The architecture is modular and contains components
for managing the life cycle of the agents and controlling the heterogeneity of
communication protocols. The LEAP add on when combined with JADE re-
places certain components of the standard JADE runtime environment to form
a modified kernel that is referred to as JADE-LEAP or JADE powered by LEAP.

3APL-M [17] provides a platform that enables the fabrication of agents using
the 3APL language for internal knowledge representation. It provides a scaled
down version of the pre-existing language infrastructure, which was designed for
a desktop environment. The 3APL-M architecture contains sensor and actuator
modules, the 3APL machinery, and the communicator module. The sensor and
actuator modules enable the agents to sense and to act upon their environment
respectively. The 3APL machinery is a BDI reasoning engine. The communica-
tor module provides the support for inter-agent communication. mProlog was
8 The branching factor is the average number of children.
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developed as a subcomponent of the 3APL-M project. It is a reduced footprint
Java Prolog engine, optimized for J2ME applications.

Agilla [18] is an agent platform that has been designed specifically for wireless
sensor networks where power consumption is an issue. Agilla agents are modelled
as genetic algorithms and are not reflective.

MicroFIPA-OS is a minimised footprint version of the FIPA-OS agent toolkit
[19]. The FIPA-OS was developed as an agent middleware environment to en-
able the creation of FIPA compliant agents. MicroFIPA-OS was constructed
because the original FIPA-OS employed software engineering techniques, such
as excessive object creation and XML parsing, that did not scale down well. The
MicroFIPA-OS improves the efficiency of the system by avoiding or removing
some of the additional overhead, such as mandatory XML parsing. It manages
resources better and introduces thread and other resource pools that are shared
among agents.

Though sharing the same broad objectives of these projects, AFME differs in
a number of key ways. JADE-LEAP, and MicroFIPA-OS are frameworks for the
development of agent technology but they do not contain reasoning capabilities.
Any intelligence required must be written by the application developer. These
systems therefore do not adhere to the same definition of agency as AFME. It
is sometimes claimed that intelligent frameworks that have been developed for
JADE will work with JADE-LEAP without making alterations to the code but
this is in fact not the case. This would only work for the J2SE and perhaps Per-
sonal Java versions of JADE-LEAP. If an application were developed for JADE
without considering the possibility of porting it to a CLDC/MIDP environment
it would contain dependencies on standard Java classes and APIs not present or
supported in the CLDC/MIDP specification.

3APL-M provides support for the construction of cognitive rational agents
but it is an API not an agent development framework as such. This differs from
AFME whereby the agent functionality is specified in a platform independent
AFAPL design file and the Java code generated from the design through the use
of the AFME compiler. The AFME development process supports the develop-
ment of agents written in AFAPL through the use of visual debugging tools, a
development methodology, and an integrated development environment.

The threading infrastructure differs from other systems in that agents are
phase shifted and their response times are altered to be prime numbers so as to
prevent computational bottlenecks.

The AFME migration process distinguishes itself from other approaches in
that it hides platform idiosyncrasies. Generic agent designs are combined with
platform specific functionality enabling agents to move between heterogeneous
environments. This process is handled autonomically and is transparent from
the agent’s perspective.

7.2 Social Structure

Following on from section 4, for an action to be performed jointly more is required
than just the union of simultaneous individual coordinated events. When a group
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decides to collaborate a team is formed that acts as a single agent with beliefs,
desires, and intentions of its own above those of the individual team mates. [3]
gives a formal model of the mental properties of teams and how joint intentions
act, are affected by, and are reduced to the mental states of the team members.

In AFME agents are rational. Sometimes they collaborate other times they
compete depending on the context. The decisions agents make are governed by
their self interest9. If the developer wishes to guarantee that agents will always
collaborate they encode utility values or use metrics such that it is always in
an agent’s interest to collaborate. Individually rational altruistic agents adopt
common goals and help other agents at their own expense because they believe
there is value in doing so even though it might never improve their personal
welfare. The utility values adopted do not necessarily represent the personal
welfare of the agent. In AFME some agents are selfish. Selfish agents benefit
themselves but they also benefit society because to gain profit off one’s own
labours in an open market something must be provided that others value [10].

The manner by which collective decisions are made is ultimately governed
by the choices made by, the desires of, and the goals of the individual agents
that form the team. This is not to say that responsibility should end with the
individual agent, but that it must start with the individual agent. Individuals
will choose a course of action that maximises their self-interest. To illustrate the
influence of variable utility values on the collective behaviour of agents consider a
wireless sensor network with a number of interconnected nodes. Transmission in
a wireless sensor network is quite a costly operation, for example the transmission
of a single bit is equivalent to the execution of 1000 instructions with regards
to power consumption on a typical node [20]. As the power level of the device
decreases the utility of performing collective actions will decrease whereas the
utility of performing an operation locally will increase. Different perceptors are
required for generating the requisite utility values of collective and local actions.
When the device’s residual power is high the agent will communicate more often.
When the power is low the agent will still sometimes communicate but not as
much. The relationship between individual and collective action is not binary,
it depends both on variable context values and the agent’s mental state. In
this case the power of the device has an effect on the nature and degree of the
commitments adopted.

The behaviour of agents with similar goals is not the same as agents with
common goals. For example consider two agents called Alice and Bob who both
have a goal of getting to a particular football match, Alice and Bob have similar
but not common goals. Alice’s goal is for Alice to get to the football match.
Bob’s goal is for Bob to get to the football match. For Alice and Bob to have
a common goal Alice would have to have a goal for Alice to get to the football
match and Bob would also have to have a goal for Alice to get to the football
match. In such a circumstance Alice and Bob would collaborate to ensure that
Alice gets to the match. Sometimes developers will want agents to continue to
collaborate even when resources are scarce. As noted earlier, in AFME this type

9 It should be noted that term self-interest is not synonymous with selfishness.
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of functionality is modeled through the use of fixed utility values that ensure
that it is in an agent’s interest to maintain common goals. If common goals are
dropped agents will begin to compete.

To illustrate this point we shall consider the case when there are a number
of agents operating on a node in a wireless sensor network. The residual power
of the device is dropping. If all of the agents stay on the device there will not
be enough resources to support them. In this scenario the agents must adopt a
common goal regarding migration. The agents must negotiate in order to make a
decision as to which agents should stay and which should leave as several agents
want to stay on the device. It is essential that consensus is reached prior to the
critical point beyond which the chances of a common goal being adopted are
considerably reduced. The critical point is the time at which there is not enough
power to transfer all of the agents. Beyond this point all of the agents will want
to migrate because it becomes about survival.

There are a number of scenarios that can occur. If all of the agents are altru-
istic, they will have difficulty deciding which agents to save and which to leave
behind. They identify this problem quite rapidly and begin a random select
process. This is the virtual equivalent to the drawing of straws. The ultimate
test of altruism is then for the agent that draws the short straw. It must be
remembered that not all agents are altruistic. Malevolent agents will attempt
to terminate other agents in order to guarantee their survival. Another scenario
that can occur is that all agents are selfish. In this case all of the agents might
attempt to migrate at the same time. This results in some, if not all, of them
perishing. If there is a combination of altruistic and selfish agents, the selfish
agents migrate and the altruistic agents perish. When programming agents the
developer models high priority agents that operate in risky environments as self-
ish so as to increase their chances of survival10. It might well be the case that
the agent is designed to alter its behaviour from selfishness when there is no
resource shortage. That is, the agent is sensitive to context.

System designers often want agents to give up a certain amount of local au-
tonomy to facilitate a global optimal usage of resources whereby all are better
off. A balance must be struck, however, between societal authoritarianism and
anarchy. In AFME the balance is in favour of local autonomy and decentralised
decision making rather than enforced societal rules. To encode normative be-
haviour in AFME agents must adopt social roles. That is, the agents must be
aware of the rules of the society in question. The decision as to whether they
adhere to the rules, however, is made by the individual agents11. It depends on
their (utility) values. It might well be the case that it is in an agent’s interest
to adhere to the rules. Nonetheless, when resources are scarce society tends to
break down. Agents drop their social roles in order to survive. This is also true
in the real world and can clearly be observed in disaster situations. If there is
not enough resources for all, people tend to protect their own interests.

10 This will only increase their chances provided that some of the others agents are not
selfish.

11 Future work will investigate the use of enforcement.
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The problem of getting the balance right between local autonomy and societal
authority is somewhat similar to what Bellman referred to as ‘the macroscopic
principle of uncertainty’ in control theory [21]. In a similar vein to the micro-
scopic principle of uncertainty in quantum mechanics, the macroscopic principle
of uncertainty in control theory concerns getting the balance right between using
a small amount of data and making an early choice, or taking a large amount of
time to receive a significant amount of data before making a decision. This is a
non-trivial problem. It led Bellman to conclude that “There is no way to control
a large system perfectly”. Either we accept errors due to the lack of information
or we allow to system to carry on regardless as we are collecting data. There
is an inherent cost in controlling a system. At one extreme anarchy prevails,
there is no control, and at the other extreme the benefits of decentralised deci-
sion making are lost due to too much societal control. Various types of societies
may be engineered in AFME; it depends on the requirements of the problem
the developer is trying to solve. In AFME the societal structure is capable of
dynamically altering itself at runtime so as to adapt to context and to handle
emergent system requirements.

On working on approximations connected with neutron transport theory, as
part of the Atomic Bomb project in Los Alamos, Bellman identified the need for
powerful numeric techniques. This led him to work on the principles of optimal-
ity and invariance and ultimately to the theory of dynamic programming [15].
Dynamic programming forms the basis of the extended rational decision making
capabilities introduced to AFME (see section 6.2). We would hasten to add that
technology itself is not a good or a bad thing; it’s what it is used for. Some might
argue that the development of atomic weapons could never be justified but what
if an asteroid12 were coming? It is ironic that what once was considered to be
the greatest threat to human civilisation might some day be what saves it. Our
job as scientists is to find out what can be done. It’s a question for society as to
what should be done.

As in probabilistic decision theory models, such as those based on the Savage
axioms [22], dynamic programming provides an efficient solution. The decision
making capabilities of AFME differ from classical probabilistic decision theory.
A number of flaws in Savage’s arguments are identified in [23]. Beliefs cannot be
represented by additive probability distributions [24].

8 Conclusion

This paper detailed three new features of AFME that were introduced to enable
resources to be managed more effectively. The ability to manage resources in an
intelligent and prudent manner is a key requirement in the deployment of intel-
ligent agents on computationally constrained ubiquitous devices. The extended
rational decision making capabilities enable agents to reason about the relation-
ship between their abstract computational limitations and their commitments.
Belief labeling improves the efficiency of the reasoning algorithm by ensuring
12 It is likely that a controlled nuclear reaction would be used rather than a bomb.
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that duplicated belief sequences are only evaluated once. It decreases develop-
ment time by reducing the redundancy and improving the maintainability of the
software.

The new threading model enables the response times of agents to be specified
accurately. Agent response times are altered to be prime numbers to prevent
harmonic synchronisation and to ensure that agents are out of tune with respect
to each other. Agents with the same response times are phase shifted to reduce
computational overlap.

AFME addresses the issue of attempting to get the balance right between
local autonomy and societal authority. Agents alter their behaviour according to
context and emergent system requirements. It is not claimed that this is a perfect
solution to the problem. A perfect solution is impossible due to the macroscopic
principle of uncertainty. Nonetheless, it is an adaptive solution.
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Abstract. This paper present a novel approach to modelling creative
societies using curious design agents. The importance of modelling the
social aspects of creativity are first presented and a novel agent-based
approach is developed. Curious design agents are introduced as an appro-
priate model of individuals in a creative society. Some of the advantages
of using curious design agents to model creative societies are discussed.
Results from some initial investigations into self-organisation within cre-
ative societies using the model are given. This paper concludes by dis-
cussing some related work and exploring possible directions for future
work.

1 Introduction

Creativity is often described as the ability to produce work that is both novel
and appropriate [1] and researchers generally acknowledge that creativity must
be defined differently at the level of the individual and the level of society [2, 3]
but the relationship between individual and social creativity is complex.

An individual may determine that their work is creative independently of the
judgement of others, but for it to be generally recognised as a creative work, other
members of the society must agree that it is significantly novel and appropriate
for a particular domain. In addition, an individual’s determination of what is
creative is informed by their experiences that are in turn based in the social and
cultural environment within which they are situated. Consequently, we can say
that creativity, at whatever level it is determined, is ascribed through a dynamic
process of interactions between an individual, their society and the domains
within which they work. This dynamic process of interactions is nicely captured
by Csikszentmihalyi’s systems view of creativity [4], illustrated in Figure 1.

In Csikszentmihalyi’s view, creativity can only be discussed in terms of the
creative system that extends beyond any particular individual and includes the
socio-cultural context within which the individual works. Csikszentmihalyi iden-
tified three important components of a creative system; firstly there is the person
engaged in the creative work referred to as the individual, secondly there is a
social component called the field, and thirdly there is a cultural component
called the domain. Creativity can be characterised by the following cycle of in-
teractions; an individual takes some knowledge from the domain and produces
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Fig. 1. Csikszentmihalyi’s Systems View of Creativity

a work that is assessed by the field and if it is deemed to be creative the work,
and any knowledge inherent in the work, is added to the domain.

The great majority of the research developing computational models of cre-
ativity has followed the lead of Newell et al. [5] and has focussed on developing
computational models of creative processes such as divergent thinking, analogy
making, and pattern recognition. Based the systems view of creativity, Csikszent-
mihalyi has questioned the validity of this approach [4], arguing that the these
computational models cannot be said to model creativity without interaction
with a field and its associated domain.

This paper presents a computational framework for studying the emergence of
individual and social creativity within multi-agent systems based on the systems
view of creativity. The goal of this research is to explore some of the interac-
tive processes that occur within creative societies and how they might affect
judgements of creativity.

2 A Framework for Modelling Creative Societies

The framework presented here provides an approach to developing models of
social creativity based on Csikszentmihalyi’s systems view. Previous work by
Liu [6] recognised the need for a unified framework for modelling creativity.
Liu’s dual generate-and-test framework provided a synthesis of the personal and
socio-cultural views of creativity in a single model. Liu proposed that exist-
ing computational models of personal creativity complemented computational
models of social creativity by providing details about the inner workings of the
creative individual missing from the models of the larger creative system. Liu
proposed the dual generate-and-test model of creativity as a synthesis of Simon
et al’s generate-and-test model of creative thinking [5] and Csikszentmihalyi’s
systems view.
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The dual generate-and-test model of creativity encapsulates two generate-and-
test loops: one at the level of the individual and the other at the level of society.
The generate-and-test loop at the individual level, illustrated in Figure 2(a),
provides a model of creative thinking, incorporating problem finding, solution
generation and creativity evaluation. The socio-cultural generate-and-test loop
models the interactions among the elements of Csikszentmihalyi’s systems view
of creativity, as illustrated in Figure 2(b). In particular, it captures the role that
the field plays as a social creativity test; ensuring that artefacts that enter into
the domain are considered creative by more that just its creator. The combined
dual generate-and-test model of creativity is illustrated in Figure 2(c).

!

Fig. 2. Liu’s Dual Generate-and-Test framework for building models of creative sys-
tems

A literal implementation of Liu’s model requires separate processes to model
the individual and social creativity test. This can be a pragmatic approach to
adding a model of social factors to existing models of individual creativity and
it is a viable solution for modelling some aspects of creativity, as demonstrated
by the computational model developed by Gabora to study the memetic spread
of innovations through a simulated culture Gabora [7].

The framework presented here takes a different approach, instead of imple-
menting the social creativity test as a monolithic function, it distributes the so-
cial creativity test across all the individuals that constitute the field. The social
creativity test is modelled through the communication of artefacts and evalua-
tions of their creativity between individuals. An illustration of two individuals
communicating artefacts and evaluations is given in Figure 3(a).
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agents.

Fig. 3. The framework for modelling creative societies using agents

In the interaction illustrated in Figure 3(a), Agent A communicates an artefact
that it considers to be creative, i.e. that passes its personal creativity test, to
Agent B. Agent B evaluates the artefact according to its own personal creativity
test and sends its evaluation back to Agent A. Each agent’s evaluation of an
artefact is affected by the traits of the individual, e.g. its preference for novelty,
and its experiences, e.g. other artefacts it has evaluated.

Through the communication of evaluations, Agent B can affect the genera-
tion of future artefacts by Agent A by rewarding Agent A when it generates
artefacts that Agent B considers to be creative. More subtly, Agent A can affect
the personal creativity test of Agent B by exposing it to artefacts that Agent A
considers to be creative, because the evaluation of creativity involves an evalu-
ation of novelty, Agent A affects a change in Agent B’s notion of creativity by
reducing the novelty of the type of artefacts that it communicates. By exposing
Agent B to artefacts that Agent A considers to be creative it can alter Agent
B’s evaluation of novelty and hence creativity.

To implement the social creativity test as a collective function of individual
creativity tests a communication policy is needed. A simple communication pol-
icy would be for agents to communicate a product when their evaluation of that
product is greater than some fixed threshold. To complete the implementation of
the field as a collection of individuals, the individuals must be given the ability
to interact with the domain according to some domain interaction policy. A sim-
ple domain interaction policy would follow the communication policy above and
allow agents to add products of the generative process if the personal creativity
evaluation is greater than a domain interaction threshold with the restriction
that no individual is allowed to submit their own work to the domain. Thus, at
least one other agent must find an individual’s work creative before it is entered
into the domain.
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The individual, agent-centric, evaluations of creativity are key to the framework
described here and permit the emergence of social definitions of creativity as the
collective function of many individual evaluations. Without agent-centric evalua-
tions of creativity, or at least interestingness, the collection of agents would simply
represent parallel searches of the same design space. Curious design agents provide
the necessary evaluations of creativity for this framework to be implemented.

2.1 Curious Design Agents

A curious design agent embodies a model of curiosity that uses a learning system
called a novelty detector [8, 9]. A novelty detector can determine the novelty of
a new input with respect to all of its previous inputs as a function of the errors
generated when it attempts to classify the new input against one of its existing
prototypes. Using a novelty detector, curious design agents are able to determine
the novelty of new artefacts as they are produced. The novelty of each new work
is measured as the distance between it and the nearest matching prototype,
where the distance can be any measure of dissimilarity between a new work
and an existing prototype, in the implementation that follows the distance is
defined as the Euclidean distance between vectors representing a new work and
the closest matching prototype.

The model of curiosity used by the curious design agents transforms the value
of novelty determined by the novelty detector into a measure of interest by
applying a “hedonic function”. The hedonic functions used in the implementation
are based on the Wundt Curve that Berlyne [10] used as a model for the typical
reactions that animals and humans display in the presence of novel situations. A
Wundt Curve for the determining the hedonic value, i.e. interest, from novelty is
illustrated in Figure 4 as the combination of a reward function and a punishment
function for discovering some novel work. Using a Wundt Curve to calculate
interest, curious design agents favour works that are similar-yet-different to those
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that have been experienced before. By changing the value of novelty at which
the hedonic function is at its maximum, the agents can differ in how similar a
new work must be for it to be considered interesting and therefore potentially
creative.

The autonomy of curious design agents for determining what is interesting,
and therefore potentially creative, is the key to adapting Liu’s dual generate-
and-test model to the study of emergent notions of creativity. This approach
substitutes the monolithic social test of creativity found in Liu’s model with a
distributed agreement that emerges from the communication of individuals.

3 Experiments and Results

This section describes some results with an implementation of the framework de-
scribed above. In this implementation the domain consists of “genetic artworks”
[11]. Genetic artworks are images that are produced by evaluating an evolved
program, typically a Lisp expression, at each (x, y) co-ordinate over the plane
of the image. An example of a genetic artwork is shown in Figure 5?? together
with the evolved Lisp expression that generated the image.

The curious design agents in this implementation use an interactive evolu-
tionary art system based on the one developed by Witbrock and Reilly [12]. The
images produced by the evolutionary system are converted into a vector that
represents the contrast values of the pixels in the image. The vector is assessed
using a novelty detector based on a self-organising map (SOM) [13] that pro-
vides a measure of each image’s novelty whilst at the same time adapting the
prototypes represented in the SOM to take into account the new images.

For the sake of simplicity, and to demonstrate the effects of different novelty
evaluations on creative societies, all genetic artworks are assumed to be appro-
priate, i.e. any artworks that can be produced using the interactive evolutionary

(a) Genetic Artwork

(mod (iexp (mod (* (iexp (isin (* k x_iy_jx_ky))) (A1

(floor (iexp (conj golden))) (/ (/ x_iy (/ (exp (iexp

(/ x_iy (imax (iexp (rolL (iexp (* (conj golden) (normp

(exp (iexp (isin (/ j (* (floor x_iy_jx_ky) (+ i (conj

x_iy)))))))))))) (inv x_iy))))) (floor (exp (iexp (isin

(* k x_iy_jx_ky))))))) j))) (mod (iexp (conj golden))

(conj golden)))) (mod (* (/ (+ i (floor (/ j (/ (exp

(iexp (/ x_iy (imax (iexp (rolL (iexp (* (conj golden)

(normp (exp (iexp (isin (/ j (* (floor x_iy_jx_ky) (+

i (conj x_iy)))))))))))) (inv x_iy))))) (iexp (exp (iexp

(isin (* k x_iy_jx_ky))))))))) j) (inv x_iy)) (/ golden

(/ (/ x_iy (/ (exp (iexp (/ x_iy (imax (iexp (rolL (iexp

(* (conj golden) (normp (exp (iexp (isin (/ j (* (floor

x_iy_jx_ky) (+ i (conj x_iy)))))))))))) (inv x_iy)))))

(iexp (exp (iexp (isin (* k x_iy_jx_ky))))))) j))))

(b) Lisp Expression

Fig. 5. A genetic artwork and the Lisp expression that was evaluated at every (x, y)
co-ordinate in the image to produce it where the x co-ordinates and y co-ordinates are
in the range -1 to 1
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system are assumed to be acceptable instances of genetic artworks that can
potentially be added to the domain.

3.1 The Law of Novelty

In “The Clockwork Muse” [14] Martindale presented an extensive investigation
into the role that individual novelty-seeking behaviour played in literature, mu-
sic, visual arts and architecture. He concluded that the search for novelty exerts
a significant force on the development of styles. Martindale illustrated the in-
fluence of the search for novelty by individuals in a thought experiment where
he introduced “The Law of Novelty”. The Law of Novelty forbids the repetition
of word or deed and punishes offenders by ostracising them. Martindale argued
that The Law of Novelty was merely a magnification of the reality in creative
fields. Some of the consequences of the search for novelty are that individuals
that do not innovate appropriately will be ignored in the long run and that the
complexity of any one style will increase over time to support the increasing
need for novelty.

The following experiments were designed to study the effects of the search
for novelty in creative societies modelled as curious agents that have hedonic
functions with different preferred novelty values. The preferred novelty of each
agent is expressed as a value N that indicates the amount of novelty associated
with peak interest in the agent’s hedonic function. In this implementation, N
ranges from 0 to 32; this is equal to the range of the potential classification error
generated by the novelty detectors used.

In the first experiment a group of 12 agents were created. Ten of the agents,
agents 0–9, shared the same hedonic function, i.e. the same preference for novelty

Agent ID Preferred Attributed
Novelty (N) Creativity

0 11 5.43
1 11 4.49
2 11 4.50
3 11 3.60
4 11 4.48
5 11 1.82
6 11 6.32
7 11 8.93
8 11 10.72
9 11 5.39

10 3 0.00
11 19 0.00

(a) The attributed creativity be-
tween agents.

(b) Screenshot of the running simulation.

Fig. 6. The Law of Novelty simulated within a single field of agents with different
preferences for novelty
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(N=11). Two of the agents were given quite different novelty preferences. One,
agent 10, was given a preference for low amounts of novelty (N=3) and the
other, agent 11, was given a preference for high amounts of novelty (N=19).

Figure 6(b) is a screenshot of the running simulation; the squares represent
agents, the images in each square shows the currently selected genetic artwork for
that agent, the number above each genetic artwork shows its attributed creativ-
ity, and the lines between agents indicate the communication of rewarded works
between pairs of agents. Figure 6(b) shows how the network of communication
links developed between agents that communicate artworks and evaluations on
a regular basis excludes the two agents with different hedonic functions.

The results of the simulation are presented in Figure 6(a). The results indicate
that the agents with the same preference for novelty to be somewhat creative
according to their peers, with an average attributed creativity of 5.57. However,
neither agent 10, with a preference for low amounts of novelty, nor agent 11, with
a preference for high degrees of novelty, received any credit for their artworks.
Consequently none of the artworks produced by these agents were saved in the
domain for future generations. When these agents expired nothing remained in
the system of their efforts.

The results of this experiment appear to show the emergence of the Law of Nov-
elty in models of creativity societies that have agents with different
preferences for novelty. One explanation for this may be that agents with a lower
novelty preference tend to innovate at a slower rate than those with a higher hedo-
nic preference and while an agent must produce novelty to be considered creative,
it must do so at a pace that matches its audience. There is no advantage in pro-
ducing many highly novel artefacts if the audience cannot appreciate them.

3.2 The Formation of Cliques

In this second experiment, the behaviour of groups of agents with different he-
donic functions is investigated. To do this a group of 10 agents was created, half
of them had a hedonic function that favoured novelty close to N=6 and the
other five agents favoured novelty values close to N=15. Figure 7(a) shows the
payments of creativity credit between the agents in recognition of interesting
artworks sent by the agents.

Two areas of frequent communication can be seen in the matrix of payment
messages shown in Figure 7(a). The agents with the same hedonic function
frequently send credit for interesting artworks amongst themselves but rarely
send them to agents with a different hedonic function. There are a large number
of credit messages between agents 0–4 and agents 5–9, but only one payment
between the two groups – agent 4 credits agent 5 for a single interesting artwork.

The result of putting collections of agents with different hedonic functions in
the same group appears to be the formation of cliques: groups of agents that
communicate credit frequently amongst themselves but rarely acknowledge the
creativity of agents outside the clique. As a consequence of the lack of commu-
nication between the groups the style of artworks produced by the two cliques
also remains distinct.
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(a) A matrix of the number of posi-
tive creative evaluations sent between
agents.

(b) A screenshot of a simulation show-
ing two non-communicating cliques.

Fig. 7. The formation of cliques between agents with different hedonic functions

Figure 7(b) is a screenshot of the running simulation that has formed two
cliques. To help visualise the emergent cliques, the distances between agents are
shortened for agents that communicate frequently. The different styles of the two
groups can also be seen, with agents 0–4 producing smooth radial images and
agents 5–9 producing fractured images with clearly defined edges.

The results of this experiment show that when a population of agents con-
tains subgroups with different hedonic functions, the agents in those subgroups
form cliques. The agents within a clique communicate credit frequently amongst
themselves but rarely to outsiders. The stability of these cliques depends upon
how similar the individuals in different subgroups are and how often the agents
in one subgroup are exposed to the artworks of another subgroup. Further re-
search is needed to determine whether other factors that can affect judgements
of interestingness can similarly affect the social structure.

Communication between cliques is rare but it is an important aspect of cre-
ative social behaviour. Communication between cliques occurs when two indi-
viduals in the different cliques explore design subspaces that are perceptually
similar. Each of the individuals is then able to appreciate the other’s work be-
cause they have constructed appropriate perceptual categories. The transfer of
artworks from a source to a destination clique will introduce new variables into
the creative processes of the destination clique, the two cliques can then explore
in different directions, just as two individuals do when they share artworks.
Cliques can therefore act as “super-artists”, exploring a design space as a col-
lective and communicating interesting artworks between cliques.

3.3 Domains of Complexity

To investigate the relationship between the search for novelty and the complex-
ity of the resulting artworks an experiment was conducted to compare agents
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Fig. 8. The complexity of genetic artworks produced by two groups of agents with
different preferences for novelty

with different preferences for novelty. To measure the complexity of the images
the fractal dimension of selected images was calculated using the box counting
method [15]. For any two-dimensional image, a measure of its fractal dimension
will produce a value between 0.0 and 2.0, depending on how much of the space
is filled in the image at different levels of detail.

To investigate the relationship between the preferred degree of novelty and
the fractal dimension of the resulting images, two types of agents were used.
One type preferred novelty values of N=18 and the other type favoured novelty
values of N=11. Three agents of each type were allowed to explore the space of
genetic artworks for 50 time steps. Figure 8 shows how the complexity of the
images produced by the two groups of agents quickly diverge and then remain
at a constant level. For the group with the higher preference for novelty, the
results appear to confirm Martindales hypothesis that the search for novelty
promotes increased complexity over time [14], at least up to some limited level
of complexity.

To investigate the relationship between a field’s preference for novelty and the
complexity of the artefacts produced by its members, 19 test groups were created
consisting of 3 agents in each group. In each group the agents favoured the same
novelty value, across the 19 tests the groups favoured novelty values in the range
1 ≤ N ≤ 19. Figure 9 shows that the relationship between the preferred value of
novelty and the average fractal dimension of the resulting images is almost linear
for the large proportion of values for preferred novelty. In other words, agents with
a preference for greater novelty produce images with higher fractal dimensions.

How can we explain this relationship between the preferred novelty of an agent
and the fractal dimension of the resulting images? One explanation is that the
curious exploration of the space of genetic artworks drives the agents towards
subspaces that have an appropriate amount of local variability to continually
satisfy the need for novelty. Consequently, agents that prefer novel forms will
tend towards areas of the design space that produce more complex images, as
there is a great deal more variability between complex images than between
simple ones.
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(a) A comparison of the average fractal dimen-
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Fig. 9. The relationship between preferred novelty and the complexity of the genetic
artworks evolved by the curious agents with different preferences for novelty 0 ≤ N ≤ 19

4 Discussion

Curious agents have been developed by a number of other researchers.
Schmidhüber created curious agents that competed against each other to de-
termine what was interesting [16]. Marsland et al [17] produced curious robots
that explored environments for novelty as a way of generating maps of the space.
Interest in intrinsically motivated agents, like curious agents, is increasing as re-
searchers discover the benefits of self-motivated learning in both modelling and
applications [18, 19].

Other computational models based on Csikszentmihalyi’s system view of cre-
ativity have also been developed [20] that demonstrate the important role that
authority figures, or gatekeepers, play in creative fields. The contribution of the
framework presented here is the bringing together of curious agents and the
creative systems to support an approach to computationally modelling creative
societies at multiple levels.

The work presented here is still in its early stages of development and there
are many ways that it can be extended to improve the models or investigate
other features of creative societies. Future work using this framework will aim
to extend the experimental possibilities at both the individual and social levels
of creativity. Three possible directions for future work are:

Integrating Evaluations of Appropriateness. One of the obvious limita-
tions of the work presented here is the lack of an explicit test for the appro-
priateness of artefacts. To apply the computational model of more significant
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domains, future work will integrate domain-specific knowledge so that the
test for creativity can include a test for appropriateness within a domain.

Integrating Alternative Models of Creative Processes. The curious de-
sign agents presented in this paper use an evolutionary design tool to explore
a design space. Integrating alternative models of creative processes includ-
ing analogy-making [21] could provide a useful framework for evaluating the
effectiveness of such creative processes within a social and cultural context.

Modelling Individuals with Intrinsic Motivations other than Curiosity.
Curiosity is not the only intrinsic motivation for creative individuals, although
it is one of the most persistent [14]. Other motivations for exploring a design
space can be computationally modelled in design agents, e.g. competency [19].

Modelling Large Creative Societies. The ability to simulate larger creative
societies will permit the study of the spread of innovations and styles. It may
also facilitate the emergence of new fields as cliques attain a critical size.
Spatial and topological relationships will become more important issues in
large population models.

Modelling Non-Homogenous Societies. There are several other important
players in creativity societies besides the producers of innovations including,
e.g. consumers, distributors, critics, etc. Each has their own role to play
in creative societies; consumers evaluate products, distributors distribute
products widely, and critics distribute their evaluations widely. Convincing
other people that you’ve had a creative idea is often harder than having the
idea in the first place. In non-homogenous societies of agents, the selection
of which agents to communicate with becomes an important strategy for
agents seeking recognition as a creative individual.

Modelling More Complex Social Interactions. Simulations of technologi-
cal innovation in industry show that the consideration of the costs of in-
novation in decision-making can lead to complex behaviour [22]. Simulating
similar costs in the design process may provide a better understanding of the
economics of creative design in creative societies and the strategies needed
to manage creativity with limited resources.

Modelling Domain-Specific Symbol Systems. Domains in the real world
contain much more than examples of previously produced artefacts. Cre-
ative domains often include symbol systems, e.g. languages, that are specific
to the knowledge held in the domain. These symbol systems can present op-
portunities for domains to differentiate as they present barriers to the flow
of information between domains.

Modelling the Evolution of Domains. Domains and the symbol systems
they contain evolve over time through use by the field. Computational models
of the evolution of language [23] may provide a useful technique for devel-
oping computational models of domain-specific languages that evolve over
time.

The aim of this paper has been to present a framework for computationally
modelling creative societies using curious design agents and to show some of the
research opportunities that exist using models developed using this framework.
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By using curious design agents as models of individuals within creative fields,
the framework provides a flexible basis for developing multi-agent systems that
can be used to study the interaction between personal and social judgements of
creativity.
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Abstract. In all user-centred agent-based applications, for instance in the con-
text of ambient computing, the user agent is often faced to a difficult trade-off
between the protection of its own privacy, and the fluidity offered by the services.
In existing applications, the choice is almost never on the user’s side, even though
the law grants him a number of rights in order to guarantee his privacy. We ex-
amine here different technical works that seem to be as many interesting ways
of dealing with privacy policies. The problems already solved will be identified,
as well as remaining technical challenges. Then we will propose directions of
research based on the most interesting aspects of the underlined approaches.

Keywords: Privacy, User-Centring, Personal Agents, Trusted Computing.

1 Introduction

Much work has been done in multi-agent systems about inter-agent communication and
agent-based knowledge acquisition and sharing ([5], [7]). More and more researchers
believe now that the stress should be put on the security concerns intrinsic to informa-
tion disclosure, and specifically the privacy-related issues. Privacy becomes important
above all in applications involving personal assistants, and in general agents having ac-
cess to personal data. It is the case in ambient computing of course, where personal
agents can be embedded in mobile or nomad user devices, or in more conventional
agent society architectures involving contracts, payment or delivery, like agent-based
web services usage. Let us illustrate it with a short example.

When it comes to ambient computing technologies, it has become very popular to
illustrate one’s work with idyllic usage scenarios. In such stories, one can follow the
day of a salesman or a researcher evolving in a fluent “information society” in which
the purchase of a return flight from his computer, with the mediation of his personal
user agent, guarantees that his favourite movies will be available on board, a room will
be pre-booked in a good hotel in Paris and he will receive the menus of the restau-
rants close to the conference venue via text messages on his cell phone. All the service
agents knowing exactly the preferences of the character, and willing to facilitate all
his actions, all these wonders are offered by pervasive computing technologies, service
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composition techniques, user agents evolving in ad-hoc personal networks and automat-
ically contracting on behalf of the user, and highly collaborative service agents. Such
scenarios always arouse enthusiasm, but “ordinary people” as well as ambient comput-
ing researchers sometimes also find that in order to get that fluidity in the services, the
user has to loose control over all the personal and professional information involved in
the transactions, i.e. he has to accept that his name, address, usage profile, and maybe
his payment preferences and history might be communicated by one service agent to
another. In other words, he renounces a part of his privacy.

This sacrifice may be acceptable, but only in a given context and in a limited measure,
which should be defined and consented by the user himself. Laws often protect the
privacy rights of the citizens, but it is actually difficult to ensure that they are respected:
how could we know what a service agent does with the information that the user agent
has given to it in the past? To what extent is it possible to give a proof to the consumer
that a good use will be made of the personal data he communicates? Few work has
been done so far in the domain of privacy applied to multi-agent systems (for instance
[3], [10], [14]), mainly because it is not an intrinsically multi-agent-based problem.
However, we think that the multi-agent paradigm may facilitate the understanding of
the privacy concepts at a low level, by providing a cognitive and social layer. Multi-
agent systems may thus provide us with interesting approaches, as we will see. In this
study, we would like to explore the tools we have, be they from the multi-agent field or
not. After having identified the contribution and drawbacks of several general privacy
management approaches, we will propose directions of research based on that analysis
and on multi-agent systems, as well as some evaluation methodology principles.

In the next section, we will define the different components of the concept of privacy,
and precise the context in which we will use them. In the third part we will have an
overview of the interesting works undertaken in or around the domain of privacy, and
how each one of them concentrates on a different aspect of the problem. We will then
propose directions for future work in the domain, identify our priorities and present our
conclusions.

2 Context

2.1 What is Privacy?

The term of privacy encompasses a number of individual notions that are also put to-
gether under the denomination “protection of personal (or nominative) information”. In
[17], Alan Westin defines privacy as

The right of the individuals to determine by themselves when, how and what
private information is disclosed.

This is quite a general definition, which has adaptations in different fields. However, the
main idea is still valid in all of them. In our applications, we will find appropriate pre-
cisions in the texts related to computing and electronic communications. The founding
principle is that the actions that users undertake in the community must not force them
to publish personal information: only the necessary information should be transmitted
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to the concerned people, and for a reasonable duration. One could note that “privacy”
is usually used for “respect of privacy”. By studying the different approaches quoted
here, we have been able to define six components for the notion of privacy. These six
sub-notions, depending on which restrictions and obligations are built on them, define
the privacy context.

The components of privacy are the following:

– The information given to the user about data collection and processing;
– The user’s consent regarding data collection and processing;
– The goal of the data processing and the justification of the data collection;
– The ability of the user to modify and retract the collected information;
– The right that the service processing the data has (or not) to communicate the

collected and/or processed data to third parties;
– The data retention duration.

The risk about privacy only refers to nominative information: totally anonymous in-
formation, for statistics for instance, are not a threat for privacy. Usually a distinction is
made between directly nominative information and indirectly nominative information1.

Our problematics about privacy is finding a means of instantiating the components
of privacy in the personal agents that interface and represent the user, for instance by
contracting on his behalf.

2.2 Privacy as User-Centring: Illustration in Several Domains

Privacy management is a key feature for ambient computing applications involving mul-
tiple service agents, for they would gain great benefit from sharing (or selling to each
other) their information about the customers’ usage profiles. It is the case in the intro-
duction scenario, where the traveller can be virtually tracked by service agents from one
company to another, leaving a profile and preferences that could identify him, through
his personal agent, almost as surely as a login. Here, in theory, each service agent should
have informed the user agent that they wanted to collect the profile, for what goal and
for how long they would keep it, and to whom they would forward it. The user should
have given his consent individually to every one of them, he should have a means of
updating his profile with each provider. And of course every service agent should have
respected those engagements, which is virtually impossible to check for the user. It is
obvious here that there is a trade-off between properly coping with privacy, and ensur-
ing a fluent service to the user.

Another sensitive field is the integration of electronic medical files, or more specif-
ically medical surveys, as exposed in [8], where the patients’ anonymity is vital, but
where specialists may want to ask further questions to an identifiable subset of the sur-
vey pool (those having answered in a specific way, for instance). How is it possible to

1 The first (direct) case is when appears in the dataset an information like the name, the address,
the social security number of the user. In the second (indirect) case, there is a less obvious way
to identify the user, like an IP address, a pseudo or an email address used on the internet, the
professional title or function of the user... The identification of the user can be made possible
by intercorrelation of various indirectly nominative datasets.
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allow that without threatening the patients’ privacy? Here, complex asymmetric crypto-
graphic protocols must be designed, and strong privacy policies must be enforced. The
balance is here between the protection of the patients, and the general health interest.
The same kind of issue arises in electronic voting systems [6]. Once again, part or all
of the constraints can be moved from the user to his personal agent.

2.3 The European Legal Context

In our study, we will take as a reference the European Directive on privacy [15]. This
document imposes a number of restrictions that must be implemented in the national
laws of the member states. Thus it constitutes a good common denominator for Euro-
pean requirements in the matter of privacy. The general principles correspond to the
different components of privacy, defined earlier:

– The user must be provided with clear information about the data collected, the
purpose of the processing, the duration of the storage, and to whom this information
will be delivered;

– The user has the right to refuse a personal data collection and/or processing. This
might mean that the service cannot be performed;

– The access to the service may be subject to such acceptance only if the collected
information are used “for a legitimate purpose”;

– The users must be able (free of charge) to correct the collected information, and in
some cases (directories) to remove it;

– Information forwarding to third parties cannot be done without the consent of the
user;

– The data cannot be kept once they are not needed any more.

All these considerations about privacy also apply when a personal agent, instead of
a human user, is acting. Since the agent, even autonomous, acts in accordance with the
user’s intention, the same principles should be taken into consideration.

3 Comparative Reading of Existing Propositions

We will now compare some works by analysing how they deal with the different com-
ponents of privacy: user information, user consent, user ability to update data, control
of the service-side data processing (storage, usage in relation to the original goals, data
forwarding). We will expand the frame idea to service agents dealing with personal
artifacts provided by user agents.

3.1 W3C Platform for Privacy Preferences

Platform for Privacy Preference (P3P, [18]) is a W3C work group whose purpose is to
deal with a specific part of the privacy concept: Informing the user. The specifications
describe a system for websites, allowing them to publish a privacy policy in a normalized
form (an XML document). On the user side, the client application compares the policy
with a set of requirements previously defined by the user. If they match, then the website
is allowed to collect information, for instance in the form of a client-side cookie.
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The information enclosed in the XML format are the following: identity of the ser-
vice responsible for data collection, collected information details, purpose of the pro-
cessing, what data will be shared, with whom, whether users can make changes in how
their data is used, the legal jurisdiction of the processing, policy for data conservation,
and a pointer to a human-readable policy. Website managers can specify part or all of
it, possibly through the configuration of the service agents.

The W3C made it clear that no minimal level of privacy is assumed or required, the
P3P protocol only provides information about the policy. Besides, it does not guarantee
that the service will actually comply with the policy. P3P only addresses a limited and
specific part of the problem, and does it properly. Several tools (policy editors, check-
ers, browser plugins...) are available at the moment, and in a general way P3P can be
implemented as an integrated component in a privacy-compliant architecture. The XML
format could also be used as is, as a common agent formalism for describing privacy
policies.

3.2 IETF IDsec

IDsec [9] is a project of the Internet Engineering Task Force. Its goal is to manage
and protect virtual identities and profiles online. In this approach there are three actors,
the Profile Owner (the user agent), the Profile Requester (the service agent) and the
Profile Manager (an independent entity). The user is previously registered (in a secure
way) with the Profile Manager, on which is stored the profile, with Access Control Lists
(ACL) attached to each element of it.

Figure 1 (quoted from the IDsec sourceforge directory) describes what happens when
a Profile Requester asks for user information. After authentication, the Profile Owner
gets a Session Certificate (acting as an access token) from the Profile Manager, and
forwards it to the Profile Requester. The Requester sends this Certificate and its own
Profile Requester Certificate (proof of identity, provided by an external certification
authority or, more likely, by the Profile Manager itself) to the Profile Manager. The
Profile Manager then sends back the parts of the profile that the Requester is entitled to
get, given its Certificate and the ACLs of the profile.

This protocol has several weaknesses. First of all, the user agent has to totally trust
the Profile Manager [4], because it is the one in charge of the storage, the integrity
and the confidentiality of the profile. Besides, Profile Managers, storing personal data
(maybe including addresses and banking information) of many users, would become an
interesting target for attacks. The Profile Manager would then concentrate the security
issues in a single point of failure. A second problem is that the user agent has to trust
the requester itself, about what is done with the collected data. Indeed, no guarantee
can be provided by IDsec about information storage, processing and forwarding after
the profile has been delivered. This trust will be transcribed in the ACLs, but a Profile
Requester can easily be punctually malicious and provoke a leak. Even audits from
certification authorities will not be able to prevent that. This problem is a recurrent one
in the design of a privacy protocol.

Why could not one act as one’s own Profile Manager? The interest here of having
a separate entity is that a nomad user does not have to keep the same terminal to ac-
cess a personalized service. In ambient computing, this is an obvious advantage. And
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Fig. 1. IDsec general mechanism

of course, should the user be his own Profile Manager, most of the IDsec protocol
becomes useless.

3.3 A Privacy Architecture Using Trusted Computing Platform Architecture

The system described in [10] is based on the Trusted Computing Platform (TCP) archi-
tecture, designed by the Trusted Computing Group [16]. A TCP is a platform in which
has been integrated a hardware component, the Trusted Computing Module (TPM),
typically in a chip on the motherboard. The TPM is a cryptographic component able to
securely store private keys, data, small parts of software... The data in the TPM can be
unlocked only in a certain execution state, i.e. if no problem has occurred during the
boot phase, the right OS has been booted and the right program is running. A platform
as a whole can be certified by a Certification Authority (called Privacy Certification
Authority, or PCA, by the Trusted Computing Group), so that a distant platform can be
certain that a certified program is running on a certified platform.

This capability is used in [10] to certify a client platform, on which user profiles are
generated and attached to (certified) anonymous identities. In this approach the profile
is generated and stored by client-side agents (located on the TPM, so that the process
can be certified), and the cryptographic certification is for the server’s use, so that it
can be sure of the authenticity of the profile and the virtual identity (without having
to know the actual identity of the user). Here the architecture is oriented towards the
certification of the user platform, but by reversing the problem the same tools could
eventually provide a certification to the user that the distant service is behaving in a
specified way with the provided profile.

This paper has been published by Hewlett Packard, which is one of the founding so-
cieties of the Trusted Computing Group (with Microsoft, Intel, IBM, AMD...) and they
seem to be very involved in the TCPA project (see [11]). However, some reservations
apply for the privacy architectures involving Trusted Computing technologies.
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Detractors of TCPA have exposed the fact that the architecture would allow PC
builders to forbid (by imposing certification authorities) some operating systems or pro-
grams (in particular, open software are at risk, for their licence may exclude them from
paying certification), so that the TPM would be activated only if the right OS/software is
running, thus preventing the user from accessing a range of services. The Trusted Com-
puting Group denies that, but it is possible that an implemented TPM would impose a
given certification authority. The European “article 29 data protection working party”
expose their worries about Trusted Computing in [1]. It is also interesting to notice that
the TPM has been designed to encapsulate the Digital Rights Management capabilities
of the platform.

The point of view on TCPA in [10] looks quite utopian (especially regarding the
goals and interests of the service providers) but the architecture is clearly oriented to-
wards the commercial service, and not towards the user.

3.4 User-Centred Profiling and Client-Side Privacy Policy

In [12] and [13], Brebner and Riché present a system whose main interests are the distri-
bution of the profile over a user-centric ad-hoc network of devices, and the distribution
of the privacy and consistency policy as well.

Here the profile is distributed on the client side, so that the user is in control of his
own profile. The profile is organized as a tree, each leaf being a profile item. To each
item is attached a replication policy (depending on the consistency need, which is for
example strong for a password and weak for a display preference) and a diffusion policy
(based on the credentials presented by the requester agent).

In [13], the authors describe their user-centric replication protocol, based on a dy-
namic migration of the master authority for each profile item. They make use of a trust
management system on the network: all the devices are not equally trusted for replica-
tion, they have trust values based on their security capabilities and disconnection rate.
Their replication model has the advantage of avoiding user intervention.

In order to enforce privacy at running time, they use a model which stands between
a client-side execution model (mobile code running on the client device in a secure
environment) and the standard server-side stored profile. It is closer to client-side per-
sonalization, where the matching of the distant service requirements with the user pref-
erences is made on the user side, the server receiving only the necessary and relevant
parts of the profile. Furthermore, since we are in a distributed environment, instead of
using a centralized profile data store, the device-located data (replicated, more or less
up-to-date depending on the on-demand access consistency level) is used as the user
profile base.

3.5 Synthesis

We have seen a short selection of approaches here, each one addressing part of the privacy
problem, in a way that involves personal agents for managing privacy on the client side,
or that allows the integration of such autonomous agents. Let us have a second look at the
six components of privacy identified in 2.1. By information, we now mean that the user
must be warned by the service agent of which data will be collected, by whom, for what
purpose, for how long. It is done here by displaying information on a terminal, or only
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Table 1. Basic privacy components in the different approaches
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matching the information against patterns previously given by the user. The goal of the
data processing is enclosed in the information, or given to the user by the context of the
transaction (e.g. when visiting a website, the user may be given sufficient information
about the service). Consent is collected by the means of direct interaction with the user
agent, but can also be a prior consent: by defining access rules with his personal agent,
the user says he gives his consent to any data collection complying with this policy. This
last approach has the advantage of a higher fluidity. The modification and suppression
ability could be implemented in a very simple way in the form of an order from the user
to the service agent, or by a direct control of the user over the distant data (for instance
by the means of a web interface for a database). Control over data communication to
third parties means here that a user agent should have a way to be sure that the service
agent will not sell his profile, or correlate it with another one. The idea could involve a
system similar to the “key” or “lock” icon in the web browser, which guarantees the user
that the connection is secure. The same kind of guarantee could address the problem of
data retention duration. Those last issues are technically difficult, and we have only
tried to describe what kind of solution could be acceptable.

Table 1 makes a synthetic summary of which components of privacy are managed by
each approach. An empty circle means that the problem has been partially addressed,
or could be addressed with minor adaptations of the architecture. Here “User update”
means the ability for the user to make corrections to the already collected information
(and/or to delete it).

Information is now a solved problem here, since the P3P project provides a standard
protocol, and tools that can be integrated in any architecture. Consent is also easy to ad-
dress. Regarding user update, it could be quite surprising that no approach has presented
a mechanism to notify changes in an already collected profile. The reason is that most
approaches have focused on client-side profiles, and not on the data retrieved by remote
agents. Of course the user can update profile information on the client side, but it is not
the point here. Regarding the checking of the distant properties, this is particularly dif-
ficult to do from the client side: how can the user be sure of what the service agent does
with the profile, without explicitly trusting it? Only the TCPA-based approach provides
tools that could do that in theory, but this idea is not even mentioned. We believe that
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this part is the current technological challenge of privacy management. This problem of
guaranteeing distant properties (data retention, usage and transmission) can be reduced
to a trust issue, just like the authentication problem [4]. Without authentication proto-
col, you have to trust your correspondent about his identity, and it is a problem since
the only person on which the trust lies, is the one that could eventually cheat. When
you introduce an authentication protocol, your trust is now in a cryptographic algo-
rithm and/or a certification authority, and not any more in the possible cheater. By this
mechanism you lower the global risk or the transaction. A logic for the formalisation
of trust in such authentication issues is presented in [2]. In our problem, the user agent
has to trust the service agent about its privacy policy, whereas it could be tempted not to
respect it. The challenge here is to find a way (similar to the introduction of an authen-
tication protocol) to move the user’s trust from the service to a certification authority or
a well-known protocol.

Table 2 compares the approaches with regards to a few additional features that look
helpful in managing the privacy of user profiles. They put the user in control of his data
and give him more information and security. One must notice that server authentication
can always be done by cryptographic encapsulation. The first feature is the distribution
of the profile over a number of devices or agents. The second one is the quite common
choice of storing the profile on the client side, rather than on the service side. Anony-
mous identities allow the user agent to manage several profiles without revealing his
identity. Server authentication is a quite obvious security feature, and the client-side
privacy policy is the way by which the user specifies with his agent the requirements
regarding the privacy of his profile. By “legislation independence”, we mean that the
designed systems are not bound to one legal system, and are flexible enough to allow
adaptation to any (foreseen) kind of restriction.

None of the four approaches would pose a problem for adaptation. Apart from that
remark, we can notice that all approaches have a system allowing the user to define
a privacy policy on the client side (either an “acceptable policy” pattern, or an access

Table 2. Additional features in profile and privacy management
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control policy). As seen earlier, it is a simple way to implement a prior consent system.
Only the last approach has investigated privacy on distributed profiles, and the TCPA
approach alone introduces the concept of anonymous identities, which would be so
convenient for protection of indirectly nominative data.

4 Further Work

The study of these approaches puts a stress on a few problems that should be addressed,
if we want to build a system fully guaranteeing privacy. Here are the orientations we
are going to give to our work in the domain.

4.1 Software Cryptographic Certification

We think that Pearson’s approach has a few shortcomings that could be avoided. First,
hardware protection of the private keys [10] may not be absolutely necessary in our
privacy perspective (because hacking of the profiling agent on the client machine may
not be the greater risk here). It would be very interesting though to derive the ideas ex-
posed by Pearson, but using a software certification of the profile management process.
Moreover, the necessary presence of the TPM on the motherboard could possibly pre-
vent the use of Trusted Computing on the service side: it looks very difficult to deploy
TCP on a load-balancing multi-server system. Even distributed file systems could cause
problems. Besides, the system would be very sensitive to hardware failure and modifi-
cations. That is why we think that TCPA has been designed to certify the user, and in
no way the service. Despite these drawbacks, Pearson’s approach brings very interest-
ing ideas that we would like to adapt. Above all, there is the certification of an agent
and a process: We will study the feasibility of replacing the hardware protection by a
software certification, in order to eliminate some of the restrictions we have identified.
It is currently the only way we foresee that could lead us to a guarantee, provided (by
computational means) to the user, that a distant service proceeds in a given way.

In theory, should this approach be developed as desired, we would be able to certify
that the personal information provided by the user to the service will not be transmitted
to another one, for instance. But let us imagine a situation where the privacy policy
on which the user and service agents have agreed allows the latter to forward some
information to one identified third party. A limit must be defined for the control over
the distant process, since it might be possible, in some cases, to check that the data
is sent to the right third party, but the control cannot follow the data. In any way, this
approach will be limited by the computational burden put on the user and on the service
machines.

4.2 Monitoring the Privacy Compliance of a Service

Subirana and Bain [14] think that the application of a privacy policy (a legal privacy
or a service-defined privacy) must be associated to a monitoring of the data processing.
In the cases where no strong control can be established on the process, it should be
possible to “test” the way in which the company complies with the privacy policy. We
think that a profitable effort can be made here, by studying and integrating the existing
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ways of testing the privacy compliance of the services and the different kinds of “privacy
probes” that can be used.

In the context of reasoning on the compliance of a service, we think that it would be a
good thing to integrate the P3P [18] standards in the different components of our future
platform, since they provide us with efficient tools for communicating about privacy
policies. Extensions to the standard formats could be developed in order to encapsulate
the other dimensions of our future approach.

4.3 Anonymous and Distributed User Profile

We have seen that the work in [10] contain very interesting ideas about the use of
virtual identities in privacy-compliant profile management. For some kinds of problems,
dissociation may transform directly nominative information into indirectly nominative
information, and complexify the intercorrelation between sets of data. Distribution of
the profile over a network, for its part, helps the user with keeping the control over his
private data while gaining in dynamism and openness. Consequently, we believe that
our future platform should be able to deal with (and facilitate) the profile management
principles proposed in [9] and [12], for they will help improving the overall privacy
level of the system.

4.4 Profiling in Other Domains

We have focused on the context of ambient computing commercial applications, but
other fields use multi-agent based technologies in their distributed processes, and are
concerned with privacy issues. In particular, ideas could be retrieved from the medical
field, where the implementation of distributed medical records brings interesting prob-
lems to light [8]. All the areas where distributed profiles are present, like information
research, may have such problems. We will identify the specificities of those sector-
based privacy demands, so that our propositions can be as generic as possible.

4.5 Implementing and Testing Privacy Management Solutions

In order to test the different approaches of agent-based privacy management, we plan to
build a platform on which simple scenarios could be run, and the models be evaluated.
The scenario chosen for the first sets of evaluations is rather simple, but adequate: a ser-
vice agent asks a personal (user) agent for a personal, nominative information (a simple
numerical value, in our application), in order to give it as a parameter (possibly several
times) to a processing function, internal to the service agent. This function represents
the service itself, for which the user agent explicitly sent the personal information. After
a given time, the service agent has to destroy the data. Before that, the user agent can
ask the service agent to modify or destroy its personal information. The platform envi-
ronment will be able to evaluate the following properties (related to the six components
of privacy) in the transaction:

– Information and Consent: Has the service agent properly informed the user
agent? Has the user agent given its explicit consent to the transaction?

– Goal: Has the service agent given the value to the right internal function and not to
another one?
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– Update and Suppression: Did the service agent modify or destroy the data after
being told to do so?

– Data forwarding: Has the service agent transmitted the data to a third-party agent?
– Data retention: Has the service agent destroyed the data after the declared data

retention limit?

Those properties constitute the indicators of the benchmark platform. They are di-
rectly related to the components of privacy we have identified, so that we can make a
systematic evaluation of our different privacy management models.

In order to properly evaluate those properties, the agents implemented on the plat-
form will be the following:

– A personal agent, without any privacy management (for reference),
– One personal agent per privacy management model implemented,
– A benevolent service agent,
– A third-party agent, which only purpose is to receive forwarded data,
– A certification authority agent, able to deliver cryptographic certificates, and which

authority is accepted by all agents on the platform.

With these first we will be able to check that the tested models are working properly
in a “normal” context. The first personal agent is a very obedient one, replying honestly
to all requests, and not worrying about privacy issues. It is an image of a “naive” user,
a potential target for dishonest service agents. With this agent, all privacy breaches are
believed to be successfully exploited by the different service agents. Each of the other
personal agents will implement a privacy management model, and its results will be
compared to the ones of the obedient agent. The next step is to implement treacherous
agents, one for each property we want to check:

– Information and Consent: A service agent that does not properly inform the user
agent, and/or that does not explicitly ask for its consent,

– Goal: A service agent that gives the data as a parameter to another internal function,
– Update and Suppression: A service agent that does not modify or destroy the data

when told to do so,
– Data forwarding: A service agent that forwards the data to a third-party agent,
– Data retention: A service agent that does not destroy the data after expiration of

the data retention duration.

This second set of service agents is designed so that each of them tries to infringe one
of the privacy principles. It is possible that derived service agents must be implemented,
in order to cope with protocols imposed by specific privacy management models (for in-
stance, implementation of a cryptographic certification system). This makes it possible
for the privacy management models to be tested in a more real-world, “aggressive” en-
vironment. This set of experiments will provide us with actual measurement indicators
for the quality of the different models.

This platform architecture will be the base for all implementation of our future work
in privacy management. It will allow us to evaluate with clear and rational indicators
the improvements brought by one theoretical model or another.
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5 Conclusion

Our study gives an overview of the state of the art in the domain of privacy enforcement.
We have shown what has been done, or could be done with little effort, given the exist-
ing works. We have identified the technological challenge of guaranteeing or certifying
a distant process, and examined the steps already taken in that direction. Working on
those points will allow us to build tools that would help us with putting the user at the
centre of ambient computing and heterogeneous agent/human societies, by taking con-
trol over his personal data and their privacy. These theoretical and technical tools should
be the basis of a possible evolution towards a privacy managed by autonomous cogni-
tive agents. Even though no “computational guarantee” exists at the moment that could
quantify the privacy compliance of a process, the knowledge management components
of distributed artificial intelligence could integrate the notions we have identified, in
order to deal with privacy at a cognitive level.

The very process of knowledge acquisition could actually be adapted to a privacy-
compliant context, where the obtaining of directly or indirectly nominative information
would be subject to a number of checks: the user agent must be given information, it
must give its consent... The knowledge representation model, for its part, will consider
the limitation of data retention to the duration agreed with the user agent. The knowl-
edge representation engine should also be able to control access to the sensitive data,
so that it could not be used for unexpected processing, or transmitted to non explicitly
authorized third parties. Actually the whole knowledge processing model of the agent
should be designed while keeping in mind all the possible requirements of a privacy
policy, so that the policy itself could be part of the agent’s cognitive contextual organi-
zation (be it hard-coded or dynamic, or even hybrid with a hard-coded “legal” part, and
a dynamic part for optional privacy policies). Such a cognitive model would allow the
agents to be easily adaptable to different national legislations, and then able to operate
in the international e-commerce market, for instance.

This integration of the privacy mechanisms into cognitive multi-agent systems would
mean significant progress in the direction of a better protection of the user in ambient
computing contexts. Indeed such an approach would ally the fluidity of autonomous
personal agents, with all the provable guarantees that could be gained from advances in
pure privacy management techniques.
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Abstract. Trust and reputation mechanisms are commonly used to in-
fer expectations of future behaviour from past interactions. They are of
particular relevance when agents have to choose appropriate counterparts
for their interactions as it may also happen within virtual organisations.
However, when agents join an organisation, information about past in-
teractions is usually not available. The use of organisational structures
can tackle this problem and can improve the efficiency of trust and rep-
utation mechanisms by endowing agents with some extra information
to choose the best agents to interact with. In this context, we present
how certain structural properties of virtual organisations can be used to
build an efficient trust model in a local way. Furthermore, we introduce
a testbed (TOAST) that allows to analyse different trust and reputation
models in situations where agents act within virtual organisations. We
experimentally evaluate our approach and show its validity.

1 Introduction

The concept of organisation is of significant importance to MultiAgent Systems
(MAS). Particularly, organisational structures are often used in research about
Agent-oriented Software Engineering [26]. In fact, organisational concepts are
commonly used as abstract pieces that help designers to build more complex
models in MAS design processes [14].

Organisational abstractions can be used to impose some structure on a soci-
ety of agents and can endow MAS with certain behaviours. Agents joining an
organisation play specific roles in different interactions and they are supposed
to act conforming to the prescriptions of these concepts. Furthermore, these pre-
scriptions may be complemented by a more general set of norms [23] and some
kind of mechanisms that make it difficult for agents to transgress norms (e.g. by
providing specific “governor” agents [4], by integrating “filtering” mechanisms
[13], or by using protocols of sequential actions). We will call MAS with such
organisational structures as Virtual Organisations (VOs) [18].

VOs can be considered as limiting the freedom of choice of agents because
they regulate the interactions within a MAS. However, especially within low
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regulated organisations, agents will still have to tackle the problem of choosing
appropriate counterparts for their interactions according to their own beliefs and
goals. Within this scenario, trust and reputation mechanisms can be integrated
into VOs providing support to agents’ decision-making processes.

Trust and reputation systems have received a lot of attention in the last years.
Such systems use past experiences to provide agents with hints about the future
behaviour of their acquaintances [9,2,17]. Nevertheless, most of the research is
based on the importance of distributed trust and on the exchange of information
among agents (e.g. reputation values about third parties) in poorly structured
systems.

Trust and reputation systems are not only useful for VOs. VOs can also be
useful for trust and reputation mechanisms. The structure provided by a VO
can be used to construct more effective trust mechanisms. In particular, the
structural elements defined in a VO (e.g., roles and interactions) provide a cer-
tain notion of similarity which allows agents to infer the expected behaviour of
acquaintances within totally new situations by analysing their past behaviour
within similar situations. This property is especially useful in situations where
agents can not count on their own past experiences, e.g., when they just have
joined an organisation, or within very volatile environments.

In this paper we continue our previous work [7] on trust and reputation mech-
anisms for VOs. We present some experiments that show how the use of organ-
isational abstractions can effectively improve trust and reputation mechanisms.
The experiments have been carried out using a testbed called TOAST (Trust
Organisational Agent System Testbed), which we have developed for testing
trust and reputation models. In Section 2 we briefly summarise our model and
show how it can guide an agent’s decision-making within a VO. Section 3 in-
troduces the testbed. In Section 4 we present experimental results comparing
different models. We summarise related work in Section 5, and we present some
conclusions and future lines of work in Section 6.

2 Confidence and Trust for Organisational Structures

In this section we summarise our previous work [7] on a trust model for VOs. We
first show how basic trust mechanisms can be integrated in VOs. Afterwards, we
explain how an agent can use knowledge about the organisational structure to
infer confidence in an issue if no previous experience is available.

2.1 Basic Local-Based Trust Model for Virtual Organisations

As outlined in [7], it is natural to consider that agents participating in a VO play
some roles in different interactions. In addition, we assume that the agents know
the organisational structure, e.g., they know the existing roles and interaction
types, the roles that participate in each interaction type, as well as the roles
other agents are playing within the organisation.

Similarly to other approaches [10,24,16,15], we build our trust model on
the idea of confidence and reputation. Both are ratings agents use in order to
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evaluate the trustworthiness of other agents in a particular issue (e.g., playing a
particular role in a particular interaction). Confidence is a local measure that is
only based on an agent’s own past experiences, while reputation is an aggregated
value an agent gathers by asking its acquaintances about their opinion regarding
the trustworthiness of another agent. Thus, reputation can be considered as an
external or social measure. We define trust as a rating resulting from combining
confidence and reputation values.

A typical scenario for the use of a trust model is the following. An agent A
wants to evaluate the trustworthiness of some other agent B – playing the role
R – in the interaction I. This trustworthiness is denoted as tA→〈B,R,I〉, with
tA→〈B,R,I〉 ∈ [0..1], and it measures the trust of A in B (playing role R) being a
”good” counterpart in the interaction I. When evaluating the trustworthiness of
a potential counterpart1, an agent can combine its local information (confidence)
with the information obtained from other agents regarding the same counterpart
(reputation).

Confidence, cA→〈B,R,I〉, is collected from A’s past interactions with agent
B playing role R and performing interactions of type I. We call LIT, Local
Interaction Table, the agents’ data structure dedicated to store confidence values
for past interactions with other agents. Each entry corresponds to an issue: an
agent playing a specific role in a particular interaction. LITA denotes agent A’s
LIT. An example is shown in Table 1.

Table 1. An agent’s local interaction table (LITA)

〈X, Y, Z〉 cA→〈X,Y,Z〉 rA→〈X,Y,Z〉
〈a9, r2, i3〉 0.2 0.75

〈a2, r7, i1〉 0.7 0.3
...

...
...

〈a9, r2, i5〉 0.3 0.5

Each entry in a LIT consists of: i) the Agent/Role/Interaction identifier
〈X, Y, Z〉, ii) the confidence value for the issue (cA→〈X,Y,Z〉), and iii) a reliability
value (rA→〈X,Y,Z〉). The confidence value is obtained from some function that
evaluates past experiences on the same issue. We suppose cA→〈X,Y,Z〉 ∈ [0..1]
and higher values to represent higher confidence.

Each direct experience of an agent regarding an issue 〈X, Y, Z〉 changes its
confidence value cA→〈X,Y,Z〉. In this sense, we suppose that the agents have some
kind of mechanism to evaluate the behaviour of other agents they interact with.
Let g〈X,Y,Z〉 ∈ [0..1] denote the evaluation value an agent A calculates for a
particular experience with the agent X playing role Y in the interaction of type
Z. In our work, we use the following equation to update confidence:

cA→〈X,Y,Z〉 = ε · c′A→〈X,Y,Z〉 + (1 − ε) · g〈X,Y,Z〉, (1)

1 By potential counterpart we mean an agent which is a candidate to interact with.
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where c′A→〈X,Y,Z〉 is the confidence value in A’s LIT before the interaction is per-
formed and ε ∈ [0..1] is a parameter specifying the importance given to A’s past
confidence value. In general, the aggregated confidence value from past experi-
ences will be more relevant than the evaluations of the most recent interactions.

Reliability (rA→〈X,Y,Z〉) measures how certain an agent is about its own confi-
dence in an issue. We suppose rA→〈X,Y,Z〉 ∈ [0..1]. Furthermore, we assume that
rA→〈X,Y,Z〉 = 0 for any tuple 〈X, Y, Z〉 not belonging to LITA. We calculate reli-
ability by using the approach proposed by Huynh, Jennings and Shadbolt [9,10].
This approach takes into account the number of interactions a confidence value
is based on and the variability of the individual values across past experiences.

An agent may build trust directly from its confidence value or it may combine
confidence with reputation. Reputation will be particularly useful if an agent has
no experience about an issue or if the reliability value for the confidence is not
high enough. Although we will not deal with it in this paper, social reputation
may be obtained by asking other agents about their opinion on an issue. Agents
that have been requested for their opinion will return the corresponding confi-
dence and reliability ratings from their LIT. The requester might then be able
to build trust by calculating a weighted mean over its own confidence value and
the confidence values received from others, as it is represented in equation (2):

tA→〈B,R,I〉 =

⎧⎪⎨
⎪⎩

cA→〈B,R,I〉, if rA→〈B,R,I〉 > θ∑
X∈AA∪{A}

cX→〈B,R,I〉·wX→〈B,R,I〉
∑

X∈AA∪{A}
wX→〈B,R,I〉

otherwise
(2)

θ ∈ [0..1] is a threshold on the reliability of confidence. If the reliability is
above θ then an agents own confidence in an issue is used as the trust value.
Otherwise trust is build by combining confidence and reputation. AA is a set
of acquaintance agents that an agent asks for their opinion about the issue
〈B, R, I〉. Within a VO, the structural abstractions may provide hints for the
proper selection of such a set of acquaintance agents. For instance, in some
scenarios it may be useful to ask other agents that play the same role as A, since
they may have similar interests and goals.

The weights wX→〈B,R,I〉 given to the gathered confidence values is composed
of the corresponding reliability value and a constant factor α that specifies the
importance given to A’s own confidence in the issue, as it is shown in the following
equation:

wX→〈B,R,I〉 =

{
rX→〈B,R,I〉 · α, if X = A
rX→〈B,R,I〉 · (1 − α), otherwise

(3)

2.2 Confidence Inference Using Organisational Structure
Similarities

In this section we propose a local way for building trust on an issue when no
past interactions have been performed and without relying upon social repu-
tation. In [7] we proposed to use the agent/role confidence cA→〈B,R, 〉 (or the
agent confidence cA→〈B, , 〉) as an estimation for cA→〈B,R,I〉 if agent A has no
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reliable experience about issue 〈B, R, I〉. This approach relies on the hypothesis
that, in general, agents behave in a similar way in all interactions related to
the same role. We argue that, exploiting this idea, the more similar I ′ and I
are, the more similar will be the values cA→〈B,R,I′〉 and cA→〈B,R,I〉. The same
applies to roles. Using this assumption, confidence ratings accumulated for sim-
ilar agent/role/interaction tuples may provide evidence for the trustworthiness
of the issue 〈B, R, I〉. Based on this idea, we propose to build trust by taking
into account all the past experiences an agent has, focusing on their degree of
similarity with the issue 〈B, R, I〉. In particular, we calculate trust as a weighted
mean over all the confidence values an agent has accumulated in its LIT. This
is shown in the following equation:

tA→〈B,R,I〉 =

∑
〈X,Y,Z〉∈LITA

cA→〈X,Y,Z〉 · wA→〈X,Y,Z〉
∑

〈X,Y,Z〉∈LITA

wA→〈X,Y,Z〉
(4)

wA→〈X,Y,Z〉 is the weight given to agent A’s confidence on issue 〈X, Y, Z〉. The
weights combine the confidence reliability with the similarity of the issue 〈X, Y, Z〉
to the target issue 〈B, R, I〉 in the following way:

wX→〈X,Y,Z〉 = rA→〈X,Y,Z〉 · sim(〈X, Y, Z〉, 〈B, R, I〉) (5)

The similarity function sim(〈X, Y, Z〉, 〈B, R, I〉) is computed as the weighted
sum of the similarities of the individual elements (agent, role and interaction)
as it is shown in the following equation:

sim(〈X, Y, Z〉, 〈B,R, I〉) =

{
β · simR(R, Y ) + γ · simI(I,Z), if B = X

0, otherwise
(6)

where simR(R, Y ), simI(I, Z) ∈ [0..1] measure the similarity between roles and
interactions, respectively, and β and γ, with β+γ = 1, are parameters specifying
the sensibility regarding the individual similarities.

We suppose that organisational models include taxonomies of roles and/or
interactions from which role and interaction similarity measures can be derived.
In this case, simR(R, R′) and simI(I, I ′) can be implemented by closeness func-
tions that estimate the similarity between two concepts on the basis of their
closeness in a concept hierarchy.

Equation (4) can be used as an alternative way to build trust. Especially if
an agent has no reliable experience about a particular agent/role/interaction
issue, this model can be used to estimate trust without the necessity to rely
on the opinions of other agents. Thus, the proposed model makes agents less
dependent from others, which is an important issue, in particular in VOs that
do not provide mechanisms to keep their members from cheating.

3 Trust Organisational Agent System Testbed (TOAST)

In this section we present TOAST, a tool we have developed to evaluate trust
models by showing the influence of these models on the evolution of the overall
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utility of an agent or a society of agents. This testbed simulates a virtual or-
ganisation where agents have to interact with others in order to to achieve their
goals. TOAST is based on the following simplifications:

– TOAST does not consider the problem of finding appropriate interactions
that help to achieve an agent’s goals, nor it considers the task of locating
possible candidates that can act as counterparts in the interactions an agent
wants to perform. We suppose that both of these problems are resolved,
e.g., the corresponding information is fully available to each agent within
the organisation. The only problem the testbed actually addresses is the
selection of appropriate counterparts out of a set of possible candidates.

– All interactions are binary, e.g., exactly two agents are required in order to
perform an interaction.

– Agents are always willing to participate in an interaction if they have been
chosen by others. That means, we do not consider the problem of the selected
agent to decide whether or not to participate in an interaction.

– Interactions in TOAST are not actually carried out; they are simulated. In
practice, this means that agents participating in an interaction do not ac-
tually evaluate the behaviour of the others in that interaction. Instead, the
agents receive these evaluation values directly from the testbed. In order to
generate these values, the system uses the notion of capability. Capability
here indicates the “goodness” of agent’s A behaviour in playing role R in
an interaction of type I. Capability is represented through a normal proba-
bility distribution with constant mean and variance and is assigned to each
tuple 〈A, R, I〉. The evaluation value an agent receives after performing an
interaction is drawn from the corresponding capability distribution of the
counterpart agent. The use of this schema implies the following simplifying
assumptions:
• An agent’s capability playing a specific role within a particular interac-

tion is stable with some variations. That is, each time an agent plays
the same role in the same type of interaction it will behave in a similar
way. The assumption of stability is actually the basis for any trust and
reputation model. Nevertheless, in real cases it is likely that an agent’s
behaviour changes over time.

• Agents don’t cheat. That is, agents participating in an interaction do
the best they can; they do always behave in the prescribed way (corre-
sponding to their capabilities).

3.1 Setting Up a VO in TOAST

The testbed allows the user to create virtual organisations of agents. The ele-
ments that compose a virtual organisation and the relationships among them
are represented in a class diagram in Figure 1.

– Agents are the entities that participate in a VO. They can play different roles
depending on their aptitudes. Within the VO, agents aim to achieve their
goals. TOAST does not fix the type of agents. That is, users can implement
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Fig. 1. Organisational elements in TOAST

different types of agents (agents with different behaviours) in order to make
the VO more heterogeneous.

– Roles describe the functionality of the organisation. They will be played
in specific interactions. The roles that are defined within an organisation
have to be specified in a role types taxonomy. This taxonomy also specifies
a conceptual hierarchy for the defined roles.

– Interactions are the actions that the VO allows to perform between agents.
They are defined in an interaction types taxonomy, which also defines the
roles that are involved in each interaction as well as the hierarchical rela-
tionships between interactions.

– Goals have to be achieved by agents. An agent may have several, different
goals. A goal will be achieved by means of performing a specific interaction.
The relation between goals and the interactions that help to achieve them
has to be specified in a XML file which is loaded into the testbed. The
following is an example of a fragment of such a file:

<Goal Name="Select Lecturer">

<Interaction Name="Teach">

<Role Name="Academic Staff">

</Role>

<Role Name="Student">

</Role>

</Interaction>

</Goal>

<Goal Name="Select Assignment Partner">

<Interaction Name="Do Assignments">

<Role Name="Student">

</Role>

<Role Name="Student">

</Role>

</Interaction>

</Goal>

. . .

After defining a virtual organisation, agents have to be added to the organisa-
tion. In particular, the user has to select the number of agents of each type that
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Fig. 2. Add Agents panel in TOAST’s GUI

will be added to the organisation as it is shown in Figure 2. In our experiments
we have only used agents of one type (with the same behaviour).

After agents have been added to the VO and according to the organisation
specification described above, roles have to be assigned to agents and capability
values for Agent/Role/Interaction tuples have to be generated. This is done
automatically as follows:

– Agent/Role assignment.Roles are assigned randomly to agents. An agent
may play different roles. For each role, the user can choose the percentage
of agents to which the role will be assigned. This selection should be done
with care. If some roles are played by only very few agents, then the scenario
may not be appropriate for evaluating trust mechanisms because of the lack
of sufficient candidates out of which an agent can choose its counterparts in
its interactions.

– Agent/Role/Interaction capability values. As we have mentioned be-
fore, in order to evaluate the behaviour of an agent in a particular situation,
the system uses a normal probability distribution that model the capability
of that agent in this situation. Such distributions are assigned to each tuple
〈A, R, I〉 at startup by selecting the mean and standard deviation randomly
such that μ ∈ [0..1] and σ ∈ [0..0.5]. The capabilities are correlated according
to the type of interaction, the type of role and the agent which is performing
the action; that is, similar normal probability distributions will be assigned
to the same agent playing similar roles within similar interactions2.

3.2 Executing Experiments with TOAST

As we have mentioned before, agents will deal with the problem of selecting
appropriate counterparts to interact with in order to achieve their goals. The
2 Similar distributions means similar mean values.
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Fig. 3. Interaction simulation in TOAST

basic process that is repeated when the testbed is executed is summarised in
Figure 3.

The process is the following:

1. A goal is generated for an agent. Each goal has an associated interaction
that the agent must perform in order to achieve that goal. Each agent has a
goal queue where goals are stored until they can be processed.

2. Once the agent has identified the interaction that eventually helps to achieve
the goal, a list with potential agents that are possible counterparts in the
required interaction is obtained from the organisation. As we mentioned
before, in order to simplify the experiments all interaction types are binary,
e.g., require exactly two agents playing particular roles.

3. The agent uses its trust model to select the agent that is expected to behave
best in the required interaction and playing the specified role.

4. The interaction is simulated. As we have mentioned before, this step consists
of sending to each agent the evaluation values (g〈X,Y,Z〉) for the other agent
that participated in the interaction. These values are generated from the
corresponding capability distributions. Finally, each agent uses the received
evaluation values to update the confidence and reliability values in its LIT
as described in section 2.1.

4 Experimental Results

We have used TOAST to experimentally evaluate our confidence inference ap-
proach. In this section, first we describe the scenario we have chosen to evaluate
our assumptions. Then, we describe the different trust models we have tested
and, finally, we show the obtained results.
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4.1 The University Scenario

As a test scenario we use a “School of Computer Science” organisation, whose
members play roles out of the taxonomy shown in Figure 4. Furthermore, the
social functionalities provided by the organisation are summarised in the inter-
action taxonomy illustrated in Figure 5.

Fig. 4. Fragment of role taxonomy provided by University organisation

Fig. 5. Fragment of interaction taxonomy provided by University organisation

In this scenario, for example, a typical situation could be that an agent playing
the role of a student needs to find a partner for some kind of assignment in a
specific subject. The student will use its LIT to select the best partner for the
assignment (e.g., another student) according to his/her own experiences about
past interactions with other students.

4.2 Different Trust Models

We tested and compared three different local trust models in the sense that they
do not use social reputation to compute trust and are based only on different
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confidence evaluation approaches. Thus, each model defines a different way how
an agent uses its own past experience in order to select the best counterparts
for its interactions out of the set of possible candidates. The models are the
following:

– Random Model : in this model agents choose the counterparts for their inter-
actions randomly among the potential agents provided by the organisation.
Thus, the selection does not take into account any experience on past inter-
actions.

– Basic Model : in this model, agents evaluate the expected behaviour of the
potential candidates for an issue by using the corresponding confidence value
stored in their LITs. If no entry exists about an issue, e.g., no previous
experiences are available, the counterpart is selected randomly.

– Inference Model : this model implements our local trust model, as described in
Section 2.2 using equation (4). Agents using this model will use the following
simple formula to calculate the similarity between roles and interactions,
respectively:

simR(x, y) = simI(x, y) = 1 − h

hMAX
(7)

where x, y are either roles or interactions, h is the number of hops between x
and y in the corresponding taxonomy, and hMAX is the longest possible path
between any pair of elements in the hierarchy tree. Equation (7) is a very
simple formula to measure the similarity between concepts in a taxonomy.
Other functions have been described in [11,6].

4.3 Results

We tested and compared the performance of the three models in the university
scenario by using exactly the same conditions in each case. In particular we
used an organisation with 20 agents and the goal generator generated randomly
40000 goals for those 20 agents. The generated goals, the agent/role assignment
and the agent/role/interaction capability generation was exactly the same for
each model. In the inference model we used the similarity weights β = 0.8 and
γ = 0.2. Furthermore, we repeated each experiment five times using a different
random seed. The given results represent the average over the five runs.

Figure 6 shows the evolution of the overall system utility over the number
of interactions. The overall system utility is calculated as the average of the
utilities of all individual agents. As utility values we use the evaluation values
(about its counterparts) an agent receives after performing interactions. As it
can be observed, both trust models perform clearly better than a random agent
selection. Moreover, the utility improves as the agents gain more experience, that
is, as more interactions take place. The inference model obtains better outcomes
as compared to the basic model, since agents’ utility curves grow faster. Hence,
with the inference model agents are able to find faster “good” counterparts to
interact with. This confirms the hypothesis that the inference model improves
the agents decision making processes when agents have none or only very few
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Fig. 6. Overall system utility

Fig. 7. Example of the evolution of an agent’s individual utility

experiences from past interactions. In this case, the inference model makes use
of past experiences about similar roles and interactions in order to estimate the
expected utility of an unknown 〈X, Y, Z〉 tuple.

This evolution is similar if we consider individual agents. Figure 7 gives an
example of how the utility curve of an individual agent evolves over time. Also
here, the inference model curve grows faster that the others, because the agent
is able to find good counterparts faster.
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5 Discussion

A wide range of organisational (meta-)models aimed at describing basic organi-
sational concepts and their interrelation in the context of MAS have been devel-
oped in the last years [5,8,20,12]. It is commonly accepted that the notion of role
is central for putting agents and organisational models together. Roles are some-
times defined by the actions they can perform, but usually they are characterised
by the types of social interactions to which they contribute. The latter term does
not primarily refer to the interaction protocols that agents engage in, but rather
to the social functionality that such interactions shall achieve. In this sense, we
assume that VOs define roles and specify the interactions (functionalities) in
which each role can participate.

Several meta-models allow for specialisation relations among essential organ-
isational concepts. In the organisational model underlying the FIPA-ACL, for
instance, information exchange interactions are a special kind of request inter-
action, where the requested action is a communicative action of type inform
(e.g., [21]). In much the same way, the informer role involved in this interaction
can be conceived as a specialisation of the requester role. In summary, organi-
sational models often contain taxonomies of concept types, e.g., for roles or for
interactions. Such taxonomies can be provided to the agents participating in
an organisation – for instance, as an organisational service – and can be used
to define the similarities among roles and interactions as it is described in this
paper.

Trust and reputation mechanisms have been widely studied, recently above
all in peer-to-peer systems in general (e.g. [25,2]), and in MAS in particular (e.g.
[9,24,17]). In contrast to other approaches to trust systems (most of them based
on reputation distribution – reputation values exchange about third parties),
we have presented a way of evaluating trust at a local level that focuses on the
experience of agents obtained in past interactions. The FIRE model proposed by
Huynh, Jennings and Shadbold [9] is also related to interaction trust and role-
based trust. As in our approach, the former is built from direct experiences of
an agent, while the latter is the rating that results from role-based relationships
between agents. However, the FIRE model does not consider inference on VO
structures.

Sensoy and Yolum [19] deal with the problem of distributed service selection in
an e-commerce setting where consumers are allowed to capture their experiences
with the service providers. This approach is similar to the witness reputation
approach presented in [9] in the sense that agents can locate others by making
use of other agents’ past experiences. Nevertheless, their approach does not con-
sider inference on organisational structures. Instead, it uses ontologies to match
between required and provided services and not in order to better approximate
expected agents’ behaviours in a local way.

The model proposed by Sabater and Sierra [17] also exploits ontologies to
make up trust values (ontological dimension of reputation). Nevertheless, it does
not consider organisations as a whole issue, and thus it does not take into account
organisational structures. Teacy et al. [22] deals with a similar approach, where
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trust is obtained from using probability theory (beta distributions taking into
account an agent’s own past experiences if they exist, and information gath-
ered from third parties (with reputation techniques) otherwise. Although the
approach considers agents living within VOs, it does not deal with VO’s internal
structures – as our approach does. While our approach tackles the problem of
improving agent skills to decide appropriate counterparts based only upon local
experiences, they mainly focus on assessing reputation source accuracy.

Abdul-Rahman and Hailes [1] propose a trust model for virtual communities
but use qualitative ratings for estimating trust. They focus on evaluating trust
from past experiences and reputation coming from recommender agents without
considering explicitly VO structures.

6 Conclusion

In this paper we have presented results of our work, aimed at integrating trust
mechanisms into virtual organisations. We have tackled the problem of locally
calculating trust, that is, finding “good” counterparts, even if only very few pre-
vious experiences are available and without the need of using reputation infor-
mation obtained from external sources. The proposed model takes into account
key concepts of organisational models, such as roles and interactions. It has con-
fidence inference capabilities exploiting taxonomies of concept types provided by
VOs. We have tested our model, confirming that the use of organisational struc-
tures makes agents’ decision-making easier and more efficient, in particular when
agents join an organisation and, thus, can not count on their own previous expe-
riences. Furthermore, we have presented TOAST, a testbed we have developed
to evaluate our assumptions.

In future work, we plan to extend our model with social reputation capabili-
ties, and to study the effects of dishonest and non-cooperative agents. Further-
more, we will focus on developing an extension for TOAST that will allow us
to evaluate trust models in non-stable and high-scalable environments, where
agents join and leave organisations frequently. We are also focusing on finding
more accurate similarity functions based on organisation taxonomies.
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Abstract. We study the problem of checking the competence of com-
municative agents operating in a global society in order to receive and
offer electronic services. Such a society will be composed of local sub-
societies that will often be semi-open, viz., entrance of agents in a semi-
open society is conditional to specific admission criteria. Assuming that a
candidate agent provides an abstract description of their communicative
skills, we present a test that a controller agent could perform in order
to decide if a candidate agent should be admitted. We formulate this
test by revisiting an existing knowledge representation framework based
on games specified as extended logic programs. The resulting framework
finds useful application in complex and inter-operable web-services con-
strued as semi-open societies in support of the global vision known as
the Semantic Web.

1 Introduction

The vision of the Semantic Web [2] has resulted in a tremendous effort aim-
ing to build an open and distributed infrastructure of ubiquitous and semantic
web-services available to both humans and software entities alike. If this effort
carries on progressing with the current pace, it is only a matter of time before
software components will be in a position to choose from a huge variety of glob-
ally available web-services when seeking to achieve their goals, just like humans.
The problem then will not be simply how to describe services, publish them, and
access them, but also how to organise them, compose them, and enact them, so
that any software component can use them in the most effective and flexible
manner.

To address the flexible organisation, composition and enactment of web-
services, the position of this paper is that current web-services will need to
be designed so that they will be part of actions mediated by software agents.
Put another way, agents can offer or receive a service by interacting with other
agents. Provided agents are a suitable abstraction for software components that
access or offer web-services [3], the position of this paper goes on further to argue
that artificial societies will act as a way of organising the complex interactions
involved in composite and heterogeneous services. In this context, agents can
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offer or receive a service if they are members of an artificial society. The issue
then becomes how an agent can be a member of a society [22] and interact with
other member agents to receive or offer services.

For autonomous and heterogeneous interactions in artificial agent societies,
however, we cannot always assume that (a) we have access to the action-selection
strategy of the agent and (b) the protocols available in a society match perfectly
with the action-selection strategies of the member agents. In [5] we relaxed (a)
so that the action-selection strategy of the agent is kept private but the space of
communicative responses is made public [6]. In this way, the agent revealed only
the actions it could perform abstractly (e.g. query or refuse in Fig. 1), without
giving the conditions under which it would select these acts. Then to address
(b) we checked if an agent is competent, by checking that the agent is able to
reach specific states of the interaction (e.g. states s3 and s4 in Fig. 1).

s0 s1

i : query

p : inform

p : failure

p : not-understood

p : refuse

s3

s5

s4

s6

Fig. 1. A simple interaction protocol allowing agents to query other agents about the
truth value of a proposition. The protocol starts at state s0 where an agent playing the
role of the initiator i asks a query, giving rise to state s1. From s1 an agent playing the
role of the participant p can then reply with: an inform, giving rise to final state s3; a
failure, giving rise to state s4; a refuse, giving rise to final state s5; or a not-understood,
giving rise to final state s6.

Competence as reachability allows us to check whether agents that wish to
join a society have the potential to terminate the interactions in which they
might participate, provided the other participants allow them to do so. However,
in [5] we did not present the computational part of the competence checking
procedure but referred the reader to the games framework in [19]. Here we extend
[5] by linking the representation of competence checking using games as the
methodology to support the structuring of e-service applications as artificial
societies. We look at these issues by concentrating on competence checking of
e-services only, i.e. other related issues such as trust or workflow management
are beyond the scope of this work.

After this introduction, we discuss in Section 2 how to move from the current
web-service scenario to one where e-services are mediated by artificial societies,
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including a social organisation stating how competent agents can become mem-
bers of societies. In Section 3 we illustrate how interactions in artificial societies
can be represented as gaming situations, by providing a concrete computational
framework specified in terms of normal logic programs that have a direct Pro-
log implementation. The resulting computational framework is then extended in
Section 4 where we show how to test competence of agents in interactions that
require time. Section 5 summarises our contributions, evaluates it, and discusses
related and future work.

2 Web-Services, Agents, and the Global E-Service
Society

2.1 From Web-Services to Agents

A large part of the Semantic Web effort is currently being directed to web-
services, software systems designed to support machine-to-machine interaction
over a network. One of the advantages of the approach is interoperability, i.e.,
applications written in various programming languages and running on various
platforms can use web-services to exchange data over the Internet in a way
similar to inter-process communication on a single computer.

Fig. 2 depicts the typical service provision context, where a service requester
identifies how to access a web-service by contacting a service broker, who holds
information about services and how these can be obtained from service providers.
One issue of Fig. 2 is that although conceptually the participating components
are being thought of as roles of artificial or human agents, the figure focuses on

Fig. 2. The diagram, taken from [25], shows how the public interface of a web-service
is described using WSDL (Web-Service Description Language). Other software compo-
nents interact with a web-service in a manner prescribed by its interface using messages,
which may be enclosed in a SOAP (Simple Object Access Protocol) envelope. Such mes-
sages are typically conveyed using HTTP, and normally comprise XML in conjunction
with other web-related standards. Discovery of a new web-service is achieved via the
use of UDDI (Universal Description, Discovery, and Integration) protocol.
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the low-level implementation of the communication between parties, further re-
ducing it to web-based protocol standards for distributed programming. There is,
obviously, a conceptual gap between the low-level implementation of distributed
components and the high-level organisation of service requesters, providers and
brokers, as web-services proliferate day by day.

To fill the conceptual gap of Fig. 2 we use the notion of agents as the extra-
layer required for one or more web-services with related functionality to be com-
posed into more complex services. These more complex services will be associated
with action descriptions that the agent will be capable to perform, either alone,
or through communication with other agents. For example, in this view, the
web-service interfaces supporting the functionality of a search engine provider,
will be designed as the actions of a search agent that is capable of indexing,
searching, and presenting a set of documents as URIs. Under this view, a service
requester agent will have to communicate with a broker agent to find the search
agent and subsequently ask for any required services. Communication between
interacting agents will be governed by communication protocols [13] build on
top of on an Agent Communication Language (ACL) [17]; [7] presents a way of
using ACL for agent-based web-services.

In addition (but unlike [7]), we assume that agents rely upon a logical process
that allows them to reason about web-services. Such a process is separate from
the way agents invoke web-services using low-level protocols such as SOAP. We
achieve this separation by assuming that agents are build with a mind and a body.
The mind of the agent allows us to describe the logical reasoning the agent needs
to do, including the planning required to offer a complex service by composing
basic services. Agents are competent in providing services, represented in the
mind as complex terms. The logical term below:

order("Item":string, "Quantity":integer)

shows how an agent might represent a more realistic order in the context of the
protocol defined in Fig. 3. On the other hand, the body situates the mind in the
distributed infrastructure of the Semantic Web. Through the body’s sensors and
effectors the different low-level protocols such as WSDL, UDDI, or SOAP will
be used to execute actions and observe the environment. For example, the body
will perform an action about an order by translating them in an XML format
as shown in the term below.

<message name = "order">
<part name = "Item" type="xsd:string"/>
<part name = "Quantity" type="xsd:integer"/>
</message>

This kind of mind-body organisation has already been tested successfully in [20],
where the logical actions of agents are translated into physical XML documents
that are in turn communicated using the P2P system JXTA [23].
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m  : order

s : re-order

s : confirm

s : refuse

m  : withdraw

s : notify

m  : accept

s0

s2

s1

s5

s3

s6

s4

Fig. 3. A protocol where an agent in the role of a manufacturer m makes an order in s0,
giving rise to situation s1. From s1 an agent in the role of a supplier s can reply with: a
confirm, stating that the order must be confirmed by m, giving rise to state s2; a refuse,
stating that the order cannot be carried out, giving rise to final state s6; and a reorder,
stating that the order must be re-specified by m, returning to the initial state s0. If m is
asked to confirm in s2, then it may reply either with a withdraw, giving rise to final state
s3, or an accept, in which case the state s4 is reached. From s4 the supplier s needs to
notify agent m on the details of the transaction, giving rise to final state s5.

2.2 Requirements for the Global E-Service Society

Although agents and the roles they play provide a first-level of semantic organi-
sation of a set of web-services with related functionality, we argue that complex
web-services can be best organised at another (higher) level as artificial agent
societies. In this view we will use the notion of a global society structured in
terms of local sub-societies as shown in Fig. 4. An agent will belong to a sub-
society to start with and use the global society to communicate with agents
from other sub-societies. To communicate in the global artificial society agents
must be conversant in a global ACL (ACLG in Fig. 4), possibly different to
the local ACLs (such as ACLK and ACLN in Fig. 4) used in sub-societies. This
choice of allowing different ACLs is not intended to ignore standards, but simply
acknowledges heterogeneity, if it exists within an application.

The global society will be open in the sense of [14], while the local sub-societies
might be in addition semi-open as in [4]. Members of a local sub-society will be
individual agents acting as brokers, service requesters, and service providers,
amongst other. To access a web-service within a particular sub-society, an agent
must become a member if the sub-society is semi-open; we use semi-open societies
to model the proliferation of web-sites that require registration for example. To
join a sub-society we assume that candidate agents must reveal their service
needs. A candidate agent will also need to make public to the sub-society it
wishes to join the service abilities it can offer to the society. Service abilities are
required so that a society can check whether the candidate agent can participate
effectively in the service centric interactions within the society.



Competence Checking for the Global E-Service Society Using Games 389

Controller

Broker

Arbitrator

Broker

Arbitrator
Arbitrator

Controller

SocietyN
(ACLG

): Match
es

SocietyK

(A
C
LK

):
M

at
ch

es

(A
C
LK

):
M

at
ch

Broker

(ACLG): Join

(ACLN): Accept

(ACLG): Reject

Global e-Service Society

(ACLG
): Match

Fig. 4. Agent joining a society

Once the agent is allowed in a sub-society, the agent is given a particular so-
cial position, implying that the agent will be expected to play one or more roles
associated with that position. The roles an agent plays condition the agent’s par-
ticipation in interaction protocols used in a society, thus regulating the interaction
of the agent while receiving or offering a service. According to the protocols avail-
able in a society, we assume that a society will have a range of social positions
on offer, with certain agents occupying some of these positions already, according
to the way the society is organised. Apart from the usual positions encapsulating
the roles of Fig.2, we anticipate to need (a) controllers to approve/disprove the en-
try of agents in a society and (b) arbitrators to observe the interactions between
parties to enforce the social rules during the provision of a service.

The formal representation of a global society is beyond the scope of this work.
Our primary concern is to use this notion informally to contextualise the knowledge
representation framework that we propose in the next section, which is the main
contribution of this work. This framework aims primarily to help with developing
the functionality of controller agents, although from existing work it addresses well
known issues with the development of arbitrators as game umpires [19].

3 Competence Checking Using Games

Following earlier work on the games metaphor [21], we view communicative inter-
actions about web-services within an agent society abstractly as game interactions
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[19]. More specifically, communicative acts about web-service execution and en-
actment are made according to protocols which are interpreted as moves made by
players of a, possibly, complex game. We do not always look for a winner or a looser,
but for the interaction to reach situations with a result, as in dialogue games [18].
We are motivated by communicative interactions that we envisage will play a role
in web-services for e-commerce applications, see Fig. 3.

We represent the rules of a game as an normal logic program written in Prolog:

game(Situation, Result):-
terminating(Situation, Result).

game(Situation, Result):-
\+ terminating(Situation,_),
valid(Situation, Move),
effects(Situation, Move, NewSituation),
game(NewSituation, Result).

To formulate a particular game we need to decide how to represent a game sit-
uation, its initial and terminating states, how players make valid moves, and
how the effects of these moves change the current situation in to the next one
until the terminating state is reached. In defining these details we specify what
a controller agent needs to reason about how candidate agents can reach poten-
tially terminating situations, by exploring the effects of valid moves for a social
protocol. We will further extend this mechanism to plan for basic and complex
interactions, involving many agents, to check the competency of such agents.

3.1 Game Situations

We represent game situations by terms of the form:

sit(Name, Id, Narrative).

Such a term labels a game with a Name represented by a constant, a unique
Id also represented by a constant, and a Narrative of moves represented as a
list. The Narrative can be empty, in which case the term represents the initial
situation of a game. The term:

sit(order, s0, [])

can be thought of as representing the initial situation of the protocol depicted in
Fig. 3 represented as a game. Game situations change by players making moves.
The term:

select(Player, Action)

represents the fact that a Player has performed an Action as his move. For sim-
plicity of presentation we will use here ground terms such as order or confirm
to exemplify the discussion about action terms. Although such representation
abstracts away from the content description of these actions, in practice terms
will still be ground as we saw with the order term in section 2.1:
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order("Item":string, "Quantity":integer).

We are now in a position to deal with what holds in the state of the game as a
result of moves made by players. We combine our formulation with the situation
calculus [11] expressed as a normal logic program:

holds(sit(Name, Id, []), F):-
initially(sit(Name, Id, []), F).

holds(sit(Name, Id, [M | Ms]), F):-
effect(F, M, sit(Name, Id, Ms)).

holds(sit(Id, [M | Ms]), F):-
holds(sit(Name, Id, Ms), F),
\+ abnormal(F, M, sit(Name, Id, Ms)).

Given this representation we need to express what holds initially, how effects of
moves introduce new fluents, and how fluents that may hold abnormally can be
excluded.

3.2 Initial and Terminating States

Consider a game where a manufacturer p1 and a supplier p2 want to commu-
nicate according to the protocol shown in Fig. 3. These roles will need to be
specified when the game starts. Then the typical state of such a protocol will
need to hold the roles of the players using a role of/2 fluent. Another fluent
last move/1 will also be used to record the last move made. We can express the
initial state of this protocol as:

initially(sit(order, s0, []), role_of(p1, manufacturer)).
initially(sit(order, s0, []), role_of(p2, supplier)).

The absence of last move/1 from the initial situation allows our formulation
of the situation calculus to capture that this does not hold, using negation
as failure. Similarly, we can specify the terminating states of the protocol in
Fig. 3 as:

terminating(Situation, Situation):-
Situation = sit(order, Id, N),
holds(Situation, last_move(select(P, Act))),
on(Act, [refuse, withdraw, notify]).

In other words, in this instance we return as the result the whole of the situation
term with all the moves selected so far.

3.3 Valid Moves

Differentiating between valid and invalid moves is of great importance in the
analysis of interactive systems as games [18]. For social interactions using agents
such as an auction this differentiation will allow the auctioneer to determine
which bids are valid and therefore, which bids are eligible for winning the auction
[1]. In our games framework, we represent valid moves as:
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valid(S, Move):- available(S, Move), legal(S, Move).

Available moves are all the moves afforded by the state of a game. To represent
that order is an available move for the protocol of Fig.3 we write:

available(sit(order, Id, N), select(P, order)).

The specification of available moves should allow all specified moves to be se-
lected by agents at any state. By adding conditions to available/2 rules we
can check the type preconditions of actions. As selecting an available move in a
game does not always imply that this move is legal, we also need to specify legal
moves separately. For example, to represent that it is legal to notify only after
an accept as in the protocol of Fig. 3, we write:

legal(sit(order, Id, N), select(P1, notify)):-
holds(sit(order, Id, N), last_move(select(P2, accept))),
holds(sit(order, Id, N), role_of(P1, supplier)).

last move/1 is what helps the definition of legal moves to ensure that commu-
nicative acts are ordered as expected by the protocol.

3.4 Representation of Effects

To represent the effects of a move on the game we distinguish between the effects
of that move on the term representing a game situation and how these effects are
brought about in the specific state represented by that situation. For example, to
represent the effects on the state of the situation we simply extend the narrative
of that situation with the move made:

effects(sit(Name, Id, Ms), Move, sit(Name, Id, [Move | Ms])).

The effects of such a move on the state representing a situation are obtained
implicitly by the situation calculus effect and abnormality rules. To give an
example of these predicates we consider again the protocol of Fig. 3. We write:

effect(last_move(M), M, sit(order, Id, N)).

to represent that when we apply a move on the state, it becomes the last move
in the next situation. Note that with our formulation of the rules of a game we
do not need to check for the preconditions of a move, as we have checked before
the effects are carried out that the move is valid.

We also need to specify any abnormal situations where a fluent holds where
it should not. For the protocol of Fig. 3, the assertion:

abnormal(last_move(M_old), M_new, sit(order, Id, N)).

will ensure that after a new move has been made it is abnormal to consider that
the last move is the one made previously.
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3.5 Competence Checking as Planning

Given the formulation of games so far we have a way of describing all valid
situations that a set of agents can use according to the social rules of a protocol.
In [19] we have shown how such rules can be used by an umpire (arbitrator) that
checks conformance of the interactions or by a player who wants to play by the
rules. However, [19] did not consider competence. To augment the applicability
of the approach we view here competence checking as a particular instance of
planning using the rules of the game. We will use the following program to plan
according to the rules of a game:

plan(game(S, R), S, R):-
achieved(terminating(S, R), S, R).

plan(game(S, R), S, R):-
\+ terminating(S, _),
assume(valid(S, M), S, M),
apply(effects(S, M, NewS), S, M, NewS),
plan(game(NewS, R), NewS, R).

That is, to plan for a game we need to stop when a terminating state has been
achieved. Otherwise, in a non-terminating state, we need to assume a valid move,
apply the effects of this move to get a new state, and then carry on planning in
that new state.

We define achieved/3 and apply/4 simply by calling in Prolog the predicates
that they take as their first argument (as they are instantiated in the plan/3
program):

achieved(Terminating, Initial, Result):- call(Terminating).

apply(Effects, S, Move, NewS):- call(Effects).

To define assume/3, however, we need to rely on competence descriptions of
players, which correspond to what we referred to in section 2 as the service
abilities of agents. To represent such abilities for an agent we will assume rules
of the form:

competent(Agent, do(Situation, Act)):- Conditions.

A controller agent will need to keep rules of this kind to test the competence
of candidate agents. The controller must hold such models for all the members
in the society too. For example for the protocol of Fig. 3, consider the models
describing the competence of players p1 and p2:

competent(p1, do(sit(order, Id, N), order)).
competent(p1, do(sit(order, Id, N), accept)).

competent(p2, do(sit(order, Id, N), reorder)).
competent(p2, do(sit(order, Id, N), confirm)).
competent(p2, do(sit(order, Id, N), notify)).
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We now define:

assume(Valid, Situation, select(Player, Act)):-
call(Valid),
competent(Player, do(Situation, Act)),
acceptable(Situation, select(Player, Act)).

While planning, this definition allow us to generate a valid move, check that the
agent is competent of performing it, and finally check that a move is accept-
able. The definition of acceptable/2 joins the assumed move with the rest of
the narrative describing the current situation to filter unwanted loops. For the
protocol of Fig. 3 such a loop is described by the sequence:

[select(A, order), select(B, reorder)]

which is allowed to be repeated only once. The implementation of acceptable
moves for this example is not included here as it trivially checks for specific
unwanted sub-lists of a list. We are now in a position to ask:

?- plan(Game, sit(order, s0, []), Result)

and get as part of the solution process all the valid states that can be planned for
using the description of the protocol and the descriptions of the competence for
individual players, with loops allowed only once, if they exist. What a controller
agent can then do with the results is application specific.

4 Competence Checking in Timed Games

Combining our games framework with the normal logic programming formula-
tion of the situation calculus allowed us to specify protocol-based interactions

s1 s2

a:callforbids(p)

s3

b: (nobid
1

and nobid
2

and ... and nobid
n
)

b: (bid
1
 or bid

2
 or... or bid

n
)

[p < r] a: withdraw

[p > r] a: adjudicate

Legend: r = Reserve Price,     p = Current Auction Price .

s0

a:openauction

s4

s5

Fig. 5. The English auction protocol allowing an agent with the role of an auctioneer
a and a set of agents with the role of bidder b to interact for the sale of a good. The
auctioneer starts the auction and the calls for bids at a specific price. One or more
bidders bid, in which case the auctioneer calls for new bids until no more bids are
offered. At that point the auctioneer either adjudicates the good to the highest bidder
or withdraws the good if the reserve price is not met.
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and test for reachability of all the states of the protocol via planning. However, in
many occasions social protocols do not assume strict turn-taking in that moves
of players can occur at the same time. An example of such a protocol is that of
an English auction, as shown in Fig. 5.

To allow for protocols of the kind describe in the above figure we introduce
timed games, that is, games whose moves have also a representation of the time
in which they happened.

4.1 Timed Games in the Event Calculus

In trying to formulate timed games we introduce timed situations of the form:

sit(Name, Id, Time, Narrative).

One difference from our earlier representation is that now we need to keep the
current Time in the situation term. In addition, a narrative in timed games is
represented in terms of episodes, that is collections of moves that can validly
happen at the same time in a situation. We express episodes as:

at([select(Player1, Act1), ..., select(PlayerN, ActN)], T).

Using this representation, the term at(T, []) means that nothing happened at
time T.

To reason about timed game situations, we use the simple version [15] of
the event calculus [8] instead of the situation calculus, suitably adapted for our
purposes as follows:

holds(sit(N,Id,Tn,Nn), P):-
0 =< Tn,
initially(sit(N,Id,Ti,Ni), P),
\+ clipped(P, sit(N,Id,Ti,Ni), sit(N,Id,Tn,Nn)).

holds(sit(N,Id,Tn,Nn), P):-
happens(E, Ti, Ni, Nn),
Ti < Tn,
initiates(E, P, sit(N,Id,Ti,Ni)),
\+ clipped(P, sit(N,Id,Ti,Ni), sit(N,Id,Tn,Nn)).

clipped(P, sit(N,Id,Ti,Ni), sit(N,Id,Tn,Nn)):-
happens(Estar, Tj, Nj, Nn),
Ti < Tj, Tj < Tn,
terminates(Estar, P, sit(N,Id,Tj,Nj)).

The important difference from the normal event calculus formulations is that
narratives are held as lists in situation terms rather than as assertions in the
knowledge base, in the spirit of the situation calculus. In this context, our rep-
resentation of an event happening is re-specified as:
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happens(E, Tn, [at(En, Tn)|Sn], [at(En, Tn)|Sn]):-
member(E, En).

happens(E, Ti, [at(Ei,Ti)|Si], [at(En, Tn)|Sn]):-
happens(E, Ti, [at(Ei,Ti)|Si], Sn).

happens(at(En,Tn), Tn, [at(En,Tn)|Sn], [at(En, Tn)|Sn]).
happens(at(Ei,Ti), Ti, [at(Ei,Ti)|Si], [at(En, Tn)|Sn]):-

happens(at(Ei, Ti), Ti, [at(Ei,Ti)|Si], Sn).

The first two rules deal with individual events as in the simple event calculus,
with the difference that now we need additional parameters to keep the narrative
at intermediate times. Unlike the simple event calculus however, our formulation
also requires additional rules (the last two) to deal with episodes that have
happened in the narrative; like the events they contain, they too can affect the
state of the game.

One implication of the use of episodes is that we need to change the way we
update the narrative in a timed game. We write:

effects(sit(N,Id,T,Es), at(Ms, T), sit(N,Id,NewT,[at(Ms,T)|Es])):-
T > 0, NewT is T + 1.

The above definition makes the assumption that new episodes last for one unit
of time. The rest of the generic representation for game remains the same, the
only parts that change are the domain specific details. We give an example next.

4.2 Formulating an English Auction

To exemplify timed games we present briefly parts of our formulation for an
auction as shown in Fig. 5. For simplicity, we will assume that there are two
bidders and an auctioneer, and that in order to check the game we only need
the last set of moves captured in the fluent (last moves/1). We will represent
the initial state as before, but now we will need to also specify the initial time,
which we will assume it is 0. This gives rise to the initial state:

initially(sit(auction, s0,0,[]), role_of(p1, auctioneer)).
initially(sit(auction, s0,0,[]), role_of(p2, bidder)).
initially(sit(auction, s0,0,[]), role_of(p3, bidder)).

The terminating conditions are specified with holds axioms using the simple
version of the event calculus presented in the previous section. For example, to
define termination in the auction we write:

terminating(sit(auction,Id,T,N), sit(auction, Id, T, N)):-
holds(sit(auction,Id,T,N), last_moves([select(P,X)])),
member(X, [adjudicate,withdraw]).

The valid moves are specified as before, including available and legal moves,
however now these need to be specific to the moves of the auction. For example,
to specify a legal bid we write:
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legal(sit(auction,Id,T,N), select(Player1, bid)):-
holds(sit(auction,Id,T,N),role_of(Player1,bidder)),
holds(sit(auction,Id,T,N),last_moves([select(Player2,cfp)])),
holds(sit(auction,Id,T,N),role_of(Player2,auctioneer)).

The only aspect that really changes is the representation of effects, which are
now expressed in terms of initiates/3 and terminates/3 instead of effect/3
and abnormal/3.

initiates(at(Es, T), last_moves(Es), sit(auction,Id,T,Ns)).

terminates(at(Es, T), last_moves(Old_M), sit(auction,Id,T,Ns)).

Notice that in this particular example initiates/3 and terminates/3 rules are
written only for episodes, however, in general, these need to be specified also for
individual events.

4.3 Competence Checking of an English Auction

To check the competence of a set of players for timed games we are going to
assume, as before, that we have a set of statements regarding the competencies
of individual players and the plan/4 program. The main aspect that changes in
timed games, however, is that instead of generating individual moves we need
to generate individual episodes:

assume(Valid, Sit, at(Moves, T)):-
Sit = sit(N,Id,T,Es),
Valid = valid(Sit, select(P, M)),
findall(M, (call(Valid, competent(P, do(Sit, M))), All),
sublist(Moves, All),
acceptable(Sit, at(Moves, T)).

In other words, we need to change our definition of assume/3 to deal with
episodes, so that we get all the valid and acceptable subset of moves in the
protocol. Running the query:

?- plan(Game, sit(auction, s0, 1, []), Result)

we will be in a position to find all the reachable states of the protocol, according
to the description of the rules, and the competence of the players.

5 Concluding Remarks

We have investigated the issue of competence checking for agents operating in a
global artificial society whose purpose is to organise complex services. Assuming
that a candidate agent provides an abstract description of their communicative
competence, we have formulated a test that a controller agent can perform to
decide if the candidate agent should join a sub-society of the global society. We
have formulated this test by revisiting an existing knowledge-based framework
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based on games represented in extensive form. Although [22,5,9] have motivated
our framework, we have found no other related work that links agent competency
with artificial societies using games.

In evaluating our approach we see that our formulation can integrate the
situation and the event calculi according to the competence checking problem
at hand. In this context we inherit from our original formulation of games the
notion of compound games, viz., games built from active sub-games [18], thus
allowing quite complex interactions to be checked for competency. Also, by using
normal logic programs our approach can be implemented directly in Prolog,
unlike other approaches that need to extend the proof-procedure e.g. agents
based on abduction [22].

The current formulation of games and, as a result, the competence checking
presented has the potential to build upon the methodology developed in [18]. One
aspect of this is that it treats valid acts as an abstraction for different specification
approaches of social action, as they may be required by different applications. We
have for example assumed that valid acts must be available and legal. Neverthe-
less, not all applications need to be presented in this way. For example, in [1] valid
acts are treated in a way that relies on a more elaborate representation of concepts
such as those of obligation and permission. Investigation of these aspects will allow
us to compare our framework with existing approaches that model web-services,
e.g. see [12], but with an artificial societies approach.

By investigating how to best check the competency of agents in artificial soci-
eties for e-services we have identified the need to incorporate into our framework
a mechanism that ensures that agents are not simply competent according to
the acts of a protocol but also according to the expected order of acts described
in it. In parallel, we also need to deal with the re-computation introduced from
the use of event and situation calculi in more complex domains to the examples
used here. An immediate remedy will be to run our games framework on a Pro-
log system that supports tabling [24], such XSB Prolog. How tabled execution
compares with approaches based on model checking [10] and satisfiability [16] is
another direction that we wish to investigate in this context.
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