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1 CNRS, LIX UMR 7161, Ecole Polytechnique 91128 Palaiseau, France
2 Department of Computer Science, University of California,

Riverside, CA 92521, USA

Abstract. The aim of power management policies is to reduce the
amount of energy consumed by computer systems while maintaining
satisfactory level of performance. One common method for saving en-
ergy is to simply suspend the system during the idle times. No energy
is consumed in the suspend mode. However, the process of waking up
the system itself requires a certain fixed amount of energy, and thus sus-
pending the system is beneficial only if the idle time is long enough to
compensate for this additional energy expenditure. In the specific prob-
lem studied in the paper, we have a set of jobs with release times and
deadlines that need to be executed on a single processor. Preemptions
are allowed. The processor requires energy L to be woken up and, when
it is on, it uses the energy at a rate of R units per unit of time. It has
been an open problem whether a schedule minimizing the overall en-
ergy consumption can be computed in polynomial time. We solve this
problem in positive, by providing an O(n5)-time algorithm. In addition
we provide an O(n4)-time algorithm for computing the minimum energy
schedule when all jobs have unit length.

1 Introduction

Power Management Strategies. The aim of power management policies is to
reduce the amount of energy consumed by computer systems while maintaining
satisfactory level of performance. One common method for saving energy is a
power-down mechanism, which is to simply suspend the system during the idle
times. The amount of energy used in the suspend mode is negligible. However,
during the wake-up process the system requires a certain fixed amount of start-
up energy, and thus suspending the system is beneficial only if the idle time is
long enough to compensate for this extra energy expenditure. The intuition is
that we can reduce energy consumption if we schedule the work to performed
so that we reduce the weighted sum of two quantities: the total number of busy
periods and the total length of “short” idle periods, when the system is left on.

Scheduling to Minimize Energy Consumption. The scheduling problem we
study in this paper is quite fundamental. We are given a set of jobs with release
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times and deadlines that need to be executed on a single processor. Preemptions
are allowed. The processor requires energy L to be woken up and, when it is
on, it uses the energy at a rate of R units per unit of time. The objective is
to compute a feasible schedule that minimizes the overall energy consumption.
Denoting by E the energy consumption function, this problem can be classified
using Graham’s notation as 1|rj ; pmtn|E.

The question whether this problem can be solved in polynomial time was
posed by Irani and Pruhs [8], who write that “. . . Many seemingly more com-
plicated problems in this area can be essentially reduced to this problem, so
a polynomial time algorithm for this problem would have wide application.”
Some progress towards resolving this question has already been reported. Chre-
tienne [3] proved that it is possible to decide in polynomial time whether there is
a schedule with no idle time. More recently, Baptiste [2] showed that the problem
can be solved in time O(n7) for unit-length jobs.

Our Results. We solve the open problem posed by Irani and Pruhs [8], by
providing a polynomial-time algorithm for 1|rj ; pmtn|E. Our algorithm is based
on dynamic programming and it runs in time O(n5). Thus not only our algorithm
solves a more general version of the problem, but is also faster than the algorithm
for unit jobs in [2]. For the case of unit jobs (that is, 1|rj ; pj = 1|E), we improve
the running time to O(n4).

The paper is organized as follows. First, in Section 2, we introduce the nec-
essary terminology and establish some basic properties. Our algorithms are de-
veloped gradually in the sections that follow. We start with the special case of
minimizing the number of gaps for unit jobs, that is 1|rj ; pj = 1; L = 1|E, for
which we describe an O(n4)-time algorithm in Section 3. Next, in Section 4, we
extend this algorithm to jobs of arbitrary length (1|rj ; pmtn; L = 1|E), increas-
ing the running time to O(n5). Finally, in Section 5, we show how to extend
these algorithms to arbitrary L without increasing their running times.

We remark that our algorithms are sensitive to the structure of the input
instance and on typical instances they are likely to run significantly faster than
their worst-case bounds.

Other Relevant Work. The non-preemptive version of our problem, that is
1|rj |E, can be easily shown to be NP-hard in the strong sense, even for L = 1
(when the objective is to only minimize the number of gaps), by reduction from
3-Partition [4, problem SS1].

More sophisticated power management systems may involve several sleep
states with decreasing rates of energy consumption and increasing wake-up over-
heads. In addition, they may also employ a method called speed scaling that relies
on the fact that the speed (or frequency) of processors can be changed on-line.
As the energy required to perform the job increases quickly with the speed of
the processor, speed scaling policies tend to slow down the processor while en-
suring that all jobs meet their deadlines (see [8], for example). This problem
is a generalization of 1|rj |E and its status remains open. A polynomial-time
2-approximation algorithm for this problem (with two power states) appeared
in [6].
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As jobs to be executed are often not known in advance, the on-line version
of energy minimization is of significant interest. Online algorithms for power-
down strategies with multiple power states were considered in [5,7,1]. In these
works, however, jobs are critical, that is, they must be executed as soon as they
are released, and the online algorithm only needs to determine the appropri-
ate power-down state when the machine is idle. The work of Gupta, Irani and
Shukla [6] on power-down with speed scaling is more relevant to ours, as it in-
volves aspects of job scheduling. For the specific problem studied in our paper,
1|rj |E, it is easy to show that no online algorithm can have a constant compet-
itive ratio (independent of L), even for unit jobs. We refer the reader to [8] for
a detailed survey on algorithmic problems in power management.

2 Preliminaries

Minimum-Energy Scheduling. Formally, an instance of the scheduling prob-
lem 1|rj ; pmtn|E consists of n jobs, where each job j is specified by its processing
time pj , release time rj and deadline dj . We have one processor that, at each
step, can be on or off. When it is on, it consumes energy at the rate of R units
per time step. When it is off, it does not consume any energy. Changing the
state from off to on (waking up) requires additional L units of energy. Without
loss of generality, we assume that R = 1.

The time is discrete, and is divided into unit-length intervals [t, t + 1), where
t is an integer, called time slots or steps. For brevity, we often refer to time step
[t, t + 1) as time step t. A preemptive schedule S specifies, for each time slot,
whether some job is executed at this time slot and if so, which one. Each job
j must be executed for pj time slots, and all its time slots must be within the
time interval [rj , dj).

A block of a schedule S is a maximal interval where S is busy that is, executes
a job. The union of all blocks of S is called its support. A gap of S is a maximal
interval where S is idle (does not execute a job). By Cj(S) (or simply Cj , if S is
understood from context) we denote the completion time of a job j in a schedule
S. By Cmax(S) = maxj Cj(S) we denote the maximum completion time of any
job in S. We refer to Cmax(S) as the completion time of schedule S.

Since the energy used on the support of all schedules is the same, it can
be subtracted from the energy function for the purpose of minimization. The
resulting function E(S) is the “wasted energy” (when the processor is on but
idle) plus L times the number of wake-ups. Formally, this can be calculated as
follows. Let [u1, t1], . . . , [uq, tq] be the set of all blocks of S, where u1 < t1 <
u2 < . . . < tq. Then

E(S) =
q∑

i=2

min {ui − ti−1, L}.

(We do not charge for the first wake-up at time u1, since this term is independent
of the schedule.) Intuitively, this formula reflects the fact that once the support



Polynomial Time Algorithms for Minimum Energy Scheduling 139

of a schedule is given, the optimal suspension and wake-up times are easy to
determine: we suspend the machine during a gap if and only if its length is more
than L, for otherwise it would be cheaper to keep the processor on during the
gap.

Our objective is to find a schedule S that meets all job deadlines and minimizes
E(S). (If there is no feasible schedule, we assume that the energy value is +∞.)
Note that the special case L = 1 corresponds to simply minimizing the number
of gaps.

Simplifying Assumptions. Throughout the paper we assume that jobs are
ordered according to deadlines, that is d1 ≤ . . . ≤ dn. Without loss of generality,
we also assume that all release times are distinct and that all deadlines are
distinct. Indeed, if ri = rj for some jobs i < j, since the jobs cannot start both
at the same time ri, we might as well increase by 1 the release time of j. A
similar argument applies to deadlines.

To simplify the presentation, we assume that the job indexed 1 is a special job
with p1 = 1 and d1 = r1 +1, that is job 1 has unit length and must be scheduled
at its release time. (Otherwise we can always add such an extra job, released
L + 1 time slots before r1. This increases each schedule’s energy by exactly L
and does not affect the asymptotic running time of our algorithms).

Without loss of generality, we can also assume that the input instance is
feasible. A feasible schedule corresponds to a matching between units of jobs
and time slots, so Hall’s theorem gives us the following necessary and sufficient
condition for feasibility: for all times u < v,

∑

u≤rj ,dj≤v

pj ≤ v − u. (1)

We can also restrict our attention to schedules S that satisfy the following
earliest-deadline property: at any time t, either S is idle at t or it schedules a
pending job with the earliest deadline. In other words, once the support of S is
fixed, the jobs in the support are scheduled according to the earliest deadline
policy. Using the standard exchange argument, any schedule can be converted
into one that satisfies the earliest-deadline property and has the same support.

(k, s)-Schedules. We will consider certain partial schedules, that is schedules
that execute only some jobs from the instance. For jobs k and s, a partial schedule
S is called a (k, s)-schedule if it schedules all jobs j ≤ k with rs ≤ rj < Cmax(S)
(recall that Cmax(S) denotes the completion time of schedule S). From now on,
unless ambiguity arises, we will omit the term “partial” and refer to partial
schedules simply as schedules. When we say that that a (k, s)-schedule S has g
gaps, in addition to the gaps between the blocks we also count the gap (if any)
between rs and the first block of S. For any k, s, the empty schedule is also con-
sidered to be a (k, s)-schedule. The completion time of an empty (k, s)-schedule
is artificially set to rs. (Note that, in this convention, empty (k, s)-schedules, for
difference choices of k, s, are considered to be different schedules.)
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The following “compression lemma” will be useful in some proofs.

Lemma 1. Let Q be a (k, s)-schedule with Cmax(Q) = u, and let R be a (k, s)
schedule with Cmax(R) = v > u and at most g gaps. Suppose that there is a
time t, u < t ≤ v, such that there are no jobs i ≤ k with u ≤ ri < t, and that
R executes some job m < k with rm ≤ u at or after time t. Then there is a
(k, s)-schedule R′ with completion time t and at most g gaps.

Proof. We can assume that R has the earliest-deadline property. We convert
R into R′ by gradually reducing the completion time, without increasing the
number of gaps.

Call a time slot z of R fixed if R executes some job j at time z and either
z = rj or all times rj , rj+1, ..., z − 1 are fixed as well. Let [w, v] be the last block
of R and let j be the job executed at time v − 1. If v = t, we are done. For v > t
we show that we can reduce Cmax(R) while preserving the assumptions of the
lemma.

Suppose first that the slot v−1 is not fixed. In this case, execute the following
operation Shift: for each non-fixed slot in [w, v] move the job unit in this slot to
the previous non-fixed slot in R. Shift reduces Cmax(R) by 1 without increasing
the number of gaps. We still need to justify that R is a feasible (k, s)-schedule.
To this end, it is sufficient only to show that no job will be scheduled before its
release time. Indeed, if a job i is executed at a non-fixed time z, where w ≤ z < v,
then, by definition, z > ri and there is a non-fixed slot in [ri, z−1], and therefore
after Shift z will be schedule at or after ri.

The other case is when the slot v−1 is fixed. In this case, we claim that there
is a job l such that w ≤ rl < v and each job i executed in [rl, v] satisfies ri ≥ rl.
This l can be found as follows. If v − 1 = rj , let l = j. Otherwise, from all jobs
executed in [rj , v−1] pick the job j′ with minimum rj′ . Suppose that j′ executes
at v′, rj ≤ v′ ≤ v − 1. Since, by definition, the slot v′ is fixed, we can apply this
argument recursively, eventually obtaining the desired job l. We then perform
the following operaiton Truncate: replace R by the segment of R in [rs, rl]. This
decreases Cmax(R) to rl, and the new R is a feasible (k, s)-schedule, by the choice
of l.

We repeat the process described above as long as v > t. Since the schedule at
each step is a (k, s)-schedule, we end up with a (k, s)-schedule R′. Let Cmax(R′) =
t′ ≤ t. It is thus sufficient to prove that t′ = t. Indeed, consider the last step, when
Cmax(R) decreases to t′. Operation Truncate reduces Cmax(R) to a completion
time of a job released after t, so it cannot reduce it to t′. Therefore the last
operation applied must have been Shift that reduces Cmax(R) by 1. Consequently,
t′ = t, as claimed.

The Uk,s,g Function. For any k = 0, ..., n, s = 1, ..., n, and g = 0, ..., n, define
Uk,s,g as the maximum completion time of a (k, s)-schedule with at most g
gaps. Our algorithms will compute the function Uk,s,g and use it to determine a
minimum energy schedule.

Clearly, Uk,s,g ≤ dk and, for any fixed s and g, the function k �→ Uk,s,g is
increasing (not necessarily strictly). For all k and s, the function g �→ Uk,s,g
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increases as well. We claim that in fact it increases strictly as long as Uk,s,g < dk.
Indeed, suppose that Uk,s,g = u < dk and that Uk,s,g is realized by a (k, s)-
schedule S with at most g gaps. We show that we can extend S to a schedule S′

with g +1 gaps and Cmax(S′) > Cmax(S). If there is a job j ≤ k with rj ≥ u, take
j to be such a job with minimum rj . We must have rj > u, since otherwise we
could add j to S scheduling it at u without increasing the number of gaps, and
thus contradicting the maximality of Cmax(S). We thus obtain S′ by scheduling
j at rj . The second case is when rj ≤ u for all jobs j ≤ k. In particular, rk < u.
We obtain S′ by rescheduling k at u. (This creates an additional gap at the time
slot where k was scheduled, for otherwise we would get a contradiction with the
maximality of Cmax(S)).

An Outline of the Algorithms. Our algorithms are based on dynamic pro-
gramming, and they can be thought of as consisting of two stages. First, we
compute the table Uk,s,g, using dynamic programming. From this table we can
determine the minimum number of gaps in the (complete) schedule (it is equal to
the smallest g for which Un,1,g > maxj rj .) The algorithm computing Uk,s,g for
unit jobs is called AlgA and the one for arbitrary length jobs is called AlgB.

In the second stage, described in Section 5 and called AlgC, we use the ta-
ble Uk,s,g to compute the minimum energy schedule. In other words, we show
that the problem of computing the minimum energy reduces to computing the
minimum number of gaps. This reduction, itself, involves again dynamic pro-
gramming.

When presenting our algorithms, we will only show how to compute the min-
imum energy value. The algorithms can be modified in a straightforward way to
compute the actual optimum schedule, without increasing the running time. (In
fact, we explain how to construct such schedules in the correctness proofs).

3 Minimizing the Number of Gaps for Unit Jobs

In this section we give an O(n4)-time algorithm for minimizing the number of
gaps for unit jobs, that is for 1|rj ; pj = 1; L = 1|E. Recall that we assumed all
release times to be different and all deadlines to be different, which implies that
there is always a feasible schedule (providing that dj > rj for all j).

As explained in the previous section, the algorithm computes the table Uk,s,g.
The crucial idea here is this: Let S be a (k, s)-schedule that realizes Uk,s,g, that is
S has g gaps and Cmax(S) = u is maximized. Suppose that in S job k is scheduled
at some time t < u − 1. We show that then, without loss of generality, there is
a job l released and scheduled at time t + 1. Further, the segment of S in [rs, t]
is a (k − 1, s)-schedule with completion time t, the segment of S in [t + 1, u] is a
(k−1, l)-schedule with completion time u, and the total number of gaps in these
two schedules equals g. This naturally leads to a recurrence relation for Uk,s,g.

Algorithm AlgA. The algorithm computes all values Uk,s,g, for k = 0, ..., n,
s = 1, ..., n and g = 0, ..., n, using dynamic programming. The minimum number
of gaps for the input instance is equal to the smallest g for which Un,1,g >
maxj rj .
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To explain how to compute all values Uk,s,g, we give the recurrence relation.
For the base case k = 0 we let U0,s,g ← rs for all s and g. For k ≥ 1, Uk,s,g is
defined recursively as follows:

Uk,s,g ← max
l<k,h≤g

⎧
⎪⎪⎨

⎪⎪⎩

Uk−1,s,g

Uk−1,s,g + 1 if rs ≤ rk ≤ Uk−1,s,g & ∀j < k rj �= Uk−1,s,g

dk if g > 0 & ∀j < k rj < Uk−1,s,g−1

Uk−1,l,g−h if rk < rl = Uk−1,s,h + 1

(2)

Note that only the last choice in the maximum depends on h and l. Also, as a
careful reader might have noticed, the condition “∀j < k rj 	= Uk−1,s,g” in the
second option is not necessary (the optimal solution will satisfy it automatically),
but we include it to simplify the correctness proof.

In the remainder of this section we justify the correctness of the algorithm
and analyze its running time. The first two lemmas establish the feasibility and
the optimality of the values Uk,s,g computed by Algorithm AlgA.

Lemma 2. For any choice of indices k, s, g, there is a (k, s)-schedule Sk,s,g with
Cmax(Sk,s,g) = Uk,s,g and at most g gaps.

Proof. The proof is by induction on k. For k = 0, we take S0,s,g to be the empty
(k, s)-schedule, which is trivially feasible and (by our convention) has completion
time rs = U0,s,g.

Now fix some k ≥ 1 and assume that the lemma holds for k − 1 and any s′

and g′, that is, for any s′ and g′ we have a schedule Sk−1,s′,g′ with completion
time Uk−1,s′,g′ . The construction of Sk,s,g depends on which expression realizes
the maximum (2).

If Uk,s,g = Uk−1,s,g, we simply take Sk,s,g = Sk−1,s,g. Since we did not choose
the second option in the maximum, either rk < rs or rk > Uk−1,s,g. Therefore,
directly from the inductive assumption, we get that Sk,s,g is a (k, s)-schedule
with completion time Uk,s,g.

If Uk,s,g = Uk−1,s,g + 1, rs ≤ rk ≤ Uk−1,s,g, and there is no job j < k with
rj = Uk−1,s,g, let Sk,s,g be the schedule obtained from Sk−1,s,g by adding to it
job k scheduled at time u = Uk−1,s,g. (Note that we must have u < dk.) Then
Sk,s,g is a (k, s)-schedule with completion time u + 1 = Uk,s,g.

Next, suppose that Uk,s,g = dk, g > 0, and maxj<k rj < Uk−1,s,g−1. Let Sk,s,g

be the schedule obtained from Sk−1,s,g−1 by adding to it job k scheduled at
dk − 1. The condition maxj<k rj < Uk−1,s,g−1 implies that no jobs j < k are
released between Uk−1,s,g−1 and dk −1. Therefore Sk,s,g is a (k, s)-schedule with
completion time dk = Uk,s,g and it has at most g gaps, since adding k can only
add one gap to Sk−1,s,g−1.

Finally, suppose that Uk,s,g = Uk−1,l,g−h, for some 1 ≤ l < k, 0 ≤ h ≤ g, that
satisfy rk < rl = Uk−1,s,h + 1. The schedule Sk,s,g is obtained by scheduling all
jobs j < k released between rs and rl −1 using Sk−1,s,h, scheduling all jobs j < k
released between rl and Uk−1,l,g−h − 1 using Sk−1,l,g−h, and scheduling job k at
rl − 1. By induction, Sk,s,g is a (k, s)-schedule with completion time Uk,s,g and
at most g gaps.
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Lemma 3. For any choice of indices k, s, g, if Q is a (k, s)-schedule with at
most g gaps then Cmax(Q) ≤ Uk,s,g.

Proof. The proof is by induction on k. For k = 0, any (0, s)-schedule is empty
and thus has completion time rs. For a given k ≥ 1 assume that the lemma holds
for k − 1 and any s′ and g′, that is the values of Uk−1,s′,g′ are indeed optimal.
Let Q be a (k, s)-schedule with at most g gaps and maximum completion time
u. Withouth loss of generality, we can assume that Q has the earliest-deadline
property. The maximality of u implies that no job j ≤ k is released at time u,
for otherwise we could add j to Q by scheduling it at u and thus increasing the
completion time. (This property will be useful in the proof below.) We prove
that u ≤ Uk,s,g by analyzing several cases.

Case 1: Q does not schedule job k. In this case Q is a (k − 1, s)-schedule with
completion time u, so, by induction, we have u ≤ Uk−1,s,g ≤ Uk,s,g. In all the
remaining cases, we assume that Q schedules k. Obviously, this implies that
rs ≤ rk < u.

Case 2: Q schedules k as the last job and k is not the only job in its block. Let
u′ = u − 1, and define Q′ to be Q restricted to the interval [rs, u

′]. Then Q′ is a
(k −1, s)-schedule with completion time u′ and at most g gaps, so u′ ≤ Uk−1,s,g,
by induction. If u′ < Uk−1,s,g then, trivially, u ≤ Uk−1,s,g ≤ Uk,s,g. Otherwise,
assume u′ = Uk−1,s,g. Then, by the earliest deadline property, there is no job
j < k with rk = u′. Thus the second condition in the maximum (2) is satisfied,
so we have u = u′ + 1 = Uk−1,s,g + 1 ≤ Uk,s,g.

Case 3: Q schedules k as the last job and k is the only job in its block. If u = rs+1
then k = s and the condition in the second option of (2) is satisfied, so we have
u = rs +1 = Us−1,s,g +1 = Us,s,g. Therefore we can assume now that u > rs +1,
which, together with the case condition, implies that g > 0.

If u < dk, we can modify Q by rescheduling k at time u, obtaining a (k, s, u+1)
schedule (by the assumption about Q, no job j < k is released at u) with at
most g gaps – contradicting the maximality of u.

By the above paragraph, we can assume that u = dk. Let u′ be the smallest
time u′ ≥ rs such that Q is idle in [u′, dk − 1]. Then maxj<k rj < u′ and the
segment of Q in [rs, u

′] is a (k − 1, s)-schedule with at most g − 1 gaps, so, by
induction, we get u′ ≤ Uk−1,s,g−1. Thus the third option in (2) applies and we
get u = dk = Uk,s,g.

Uk,s,g = Uk−1,l,g−h

h gaps

k

Uk−1,s,h

rs rl

l

Fig. 1. Case 4 in the proof of Lemma 3
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Case 4: Q schedules k and k is not the last job. Suppose that k is scheduled at
time t. Note that Q is not idle at times t− 1 and t+1, since otherwise we would
have u < dk and we could reschedule k at u, obtaining a (k, s)-schedule with at
most g gaps and completion time u + 1, which contradicts the maximality of u.
Since Q satisfies the earliest-deadline property, no job j < k is pending at time
t, and thus Q schedules at time t + 1 the job l < k with release time rl = t + 1.

Let Q1 be the segment of Q in the interval [rs, t]. Clearly, Q1 is a (k − 1, s)-
schedule with completion time t. Denote by h the number of gaps in Q1. We
claim that Q1 is in fact optimal, that is:

Claim 1: t = Uk−1,s,g.
Suppose for now that Claim 1 is true (see the proof below). Then the conditions
of the last option in (2) are met: l < k, h ≤ g, and rk < rl = Uk−1,s,h +1. Let Q2
be the segment of Q in [rl, u]. Then Q2 is a (k − 1, l)-schedule with completion
time u and at most g−h gaps, so by induction we get u ≤ Uk−1,l,g−h, completing
the argument for Case 4.

To complete the proof it only remains now to prove Claim 1. Denote v =
Uk−1,s,g. By induction, v is the maximum completion time of a (k−1, s)-schedule
with at most g gaps. Clearly, as Q1 is a (k − 1, s)-schedule with g gaps, we have
v ≥ t, and thus it suffices to show that v ≤ t. Towards contradiction, suppose
that v > t and let R be a (k −1, s)-schedule with completion time v and at most
h gaps. We consider two cases.

Case (a): R schedules all jobs j < k with rs ≤ rj ≤ t in the interval [rs, t]. The
earliest deadline property of Q implies that there is no job j < k released at
time t. So R must be idle at t. We can modify Q as follows: Reschedule k at
time u and replace the segment [rs, t + 1] of Q by the same segment of R. Let
Q′ be the resulting schedule. Q′ is a (k, s)-schedule. Since R has at most h gaps,
there are at most h gaps in Q′ in the segment [rs, t + 1], so Q′ has the total of
at most g gaps. We thus obtain a contradiction with the choice of Q, because
Cmax(Q′) = u + 1 > Cmax(Q).

Case (b): R schedules some job j < k with rs ≤ rj ≤ t at or after t. In this case,
Lemma 1 implies that there is a (k − 1, s)-schedule R′ with at most h gaps and
completion time t+1. Replace the segment [rs, t+1] of Q by the same segment of
R′ and reschedule k at u. The resulting schedule Q′ is a (k, s)-schedule and, since
Q executes job l at time t+1 = rl, Q′ has at most g gaps. We thus again obtain
a contradiction with the choice of Q, because Cmax(Q′) = u + 1 > Cmax(Q).

Theorem 1. Algorithm AlgA correctly computes the optimum solution for
1|rj ; pj = 1; L = 1|E, and it can be implemented in time O(n4).

Proof. The correctness of Algorithm AlgA follows from Lemma 2 and Lemma 3,
so it is sufficient to give the running time analysis. There are O(n3) values Uk,s,g

to be computed. For fixed k, s, g, the first two choices in the maximum (2) can
be computed in time O(1) and the third choice in time O(n). In the last choice
we maximize over pairs (l, h) that satisfy the condition rl = Uk−1,s,h + 1, and



Polynomial Time Algorithms for Minimum Energy Scheduling 145

thus we only have O(n) such pairs. Since the values of Uk−1,s,h increase with h,
we can determine all these pairs in time O(n) by searching for common elements
in two sorted lists: the list of release times, and the list of times Uk−1,s,h +1, for
h = 0, 1, ..., n. Thus each value Uk,s,g can be computed in time O(n), and the
overall running time is O(n4).

4 Minimizing the Number of Gaps for Arbitrary Jobs

In this section we give an O(n5)-time algorithm for minimizing the number
of gaps for instances with jobs of arbitrary lengths, that is for the scheduling
problem 1|rj ; pmtn; L = 1|E.

We first extend the definition of Uk,s,g as follows. Let 0 ≤ k ≤ n, 1 ≤ s ≤ n,
and 0 ≤ g ≤ n − 1. For any p = 0, . . . , pk, define Uk,s,g(p) as the value of Uk,s,g

— the maximum completion time of a (k, s)-schedule with at most g gaps — for
the modified instance where pk ← p.

The following “expansion lemma” will be useful in the correctness proof. The
proof of the lemma will appear in the final version.

Lemma 4. Fix any k, s, g and p. Then

(a) If Uk,s,g(p) < dk, then in the schedule realizing Uk,s,g(p) the last block has
at least one job other than k.

(b) If p < pk and Uk,s,g(p) < dk, then Uk,s,g(p + 1) > Uk,s,g(p).
(c) If p < pk and Uk,s,g(p) = dk then Uk,s,g(p + 1) = dk as well.

We now define another table Pk,s,l,g. For any k, s, l = 1, . . . , n, g = 0, . . . , n − 1,
if l = s, then Pk,s,l,g = 0, otherwise

Pk,s,l,g = min
p

{p + rl − Uk,s,g(p)},

where the minimum is taken over 0 ≤ p ≤ pk such that l is the next job to
be released after Uk,s,g(p), that is rl = minj<k {rj : rj > Uk,s,g(p)}. If there is
no such p, we let Pk,s,l,g = +∞. The intuition is that Pk,s,l,g is the minimum
amount of job k such that there is a (k, s)-schedule S with completion time rl

and at most g gaps. To be more precise, we also require that (for Pk,s,l,g > 0)
S executes k at time rl − 1 and that has maximal completion time among all
schedules over the same set of jobs than S.

Our algorithm computes both tables Uk,s,g and Pk,s,l,g. The intuition is this.
Let S be a (k, s)-schedule with g gaps and maximum possible completion time
u for the given values of k, s, g. Assume that S schedules job k and u < dk.
Moreover assume that k is scheduled in more than one interval, and let t be the
end of the second last interval of k. Then S schedules at t some job l < k, for
otherwise we could move some portion of k to the end, contradicting maximality
of u. Furthermore, rl = t by the earliest deadline policy. Now the part of S up
to rl has some number of gaps, say h. The key idea is that the amount of job k
in this part is minimal among all (k, s)-schedules with completion time rk and
at most h gaps, so this amount is equal to Pk,s,l,h.
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Algorithm AlgB. For any k = 0, ..., n, s = 1, ..., n and g = 0, ..., n − 1, the
algorithm computes Uk,s,g, and Pk,s,l,g for all l = 1, ..., n. These values are com-
puted in order of increasing values of k, with all Pk,s,l,g computed before all
Uk,s,g, using the following recurrence relations.

Computing Uk,s,g. For the base case k = 0 we let U0,s,g ← rs for all s and g. For
k ≥ 1, Uk,s,g is defined recursively as follows:

Uk,s,g ← max
l<k,h≤g

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Uk−1,s,g if rk < rs or rk ≥ Uk−1,s,g

dk if Pk,s,l,h < pk, maxj<k rj < Uk−1,l,g−h−1

and dk − Uk−1,l,g−h−1 > pk − Pk,s,l,h

dk if Pk,s,l,h < pk, maxj<k rj < Uk−1,l,g−h

and dk − Uk−1,l,g−h ≤ pk − Pk,s,l,h

Uk−1,l,g−h + pk − Pk,s,l,h if Pk,s,l,h ≤ pk and
� ∃j < k : 0 ≤ rj − Uk−1,l,g−h < pk − Pk,s,l,g−h

(3)

Computing Pk,s,l,g . If rs = rl, let Pk,s,s,g ← 0 for rk ≤ rs < dk and Pk,s,s,g = +∞
otherwise. Suppose now that rs < rl. If rk < rs or rk ≥ rl, let Pk,s,l,g = +∞.
For rs ≤ rk < rl, we compute Pk,s,l,g recursively as follows:

Pk,s,l,g ← min
0≤h≤k,j<k

{
rj − Uk−1,s,h + Pk,j,l,g−h if rk ≤ Uk−1,s,h, Uk−1,s,h < rj ≤ rl, and

� ∃i < k : Uk−1,s,h ≤ ri < rj

(4)

k k

k k k

rj

h gaps

h gaps

Uk−1,s,h

k k k

dk

h gaps

k

k k k

dk

h gaps
Computing Uk,s,g :

rs

rs

rs

rl

rl

rl

rlrs

Uk−1,l,g−h

Uk−1,l,g−h

Uk−1,l,g−h−1

Computing Pk,s,l,g :

pk − Pk,s,l,g−h

≤ pk − Pk,s,l,g−h

pk − Pk,s,l,g−h−1

Fig. 2. Illustration of the cases in Algorithm AlgB
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As usual, if the conditions in the minimum are not satisfied by any h, j, then
Pk,s,l,g is assumed to be +∞. The cases considered in the algorithm are illus-
trated in Figure 2.

Theorem 2. Algorithm AlgB correctly computes the optimum solution for
1|rj ; pmtn; L = 1|E, and it can be implemented in time O(n5).

The proof of this theorem will appear in the full version of the paper.

5 Minimizing the Energy

We now show how minimize the energy for an arbitrary L. This new algorithm
consists of computing the table Uk,s,g (using either Algorithm AlgA or AlgB)
and an O(n2)-time post-processing. Thus we can solve the problem for unit jobs
in time O(n4) and for arbitrary-length jobs in time O(n5).

Recall that for this general cost model, the cost (energy) is defined as the
sum over all gaps, of the minimum between L and the gap length. Call a gap
small if its length is at most L. The idea of the algorithm is this: We show first
that there is an optimal schedule where the short gaps divide the instance into
disjoint sub-instances. For those sub-instances, the cost is simply the number of
gaps times L. To compute the overall cost, we add to this quantity the total size
of short gaps.

Given two schedules S, S′ of the input instance, we say that S dominates
S′ if there is a time point t such that the supports of S and S′ in the interval
(−∞, t] are identical and at time t S schedules a job while S′ is idle. This relation
defines a total order on all schedules. The correctness of the algorithm relies on
the following separation lemma.

Lemma 5. There is an optimal schedule S with the following property: For any
small gap [u, v] of S, if a job j is scheduled at or after v then rj ≥ v.

Proof. Among all optimal schedules, choose S to be the one not dominated by
another optimal schedule, and let [u, v] be a small gap in S. If there is a job
j with rj < v and scheduled at some time unit t ≥ v, then we can move this
execution unit to the time unit v − 1. This will not increase the overall cost,
since the cost in the small gap decreases by one, and the idle time unit created
at t increases the cost at most by 1. The resulting schedule, however, dominates
S – contradiction.

For any job s, define an s-schedule to be a (partial) schedule that schedules all
jobs j with rj ≥ rs. We use notation Es to represent the minimum cost (energy)
of an s-schedule, including the cost of the possible gap between rs and its first
block.

Algorithm AlgC. The algorithm first computes the table Uk,s,g, for all k =
0, ..., n, s = 1, ..., n, and g = 0, 1, ..., n, using either Algorithm AlgA or AlgB,
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whichever applies. Then we use dynamic programming to compute all values Es,
in order of decreasing release times rs:

Es ← min
0≤g≤n

{
Lg if Un,s,g > maxj rj

Lg + rl − u + El otherwise, where u = Un,s,g , rl = min {rj : rj > u}(5)

The minimum energy of the whole instance is then E1, where r1 is the first release
time. (Recall that the job 1 is assumed to be tight, so the schedule realizing E1
will not have a gap at the beginning).

We now prove the correctness of Algorithm AlgC and analyze its running
time.

Lemma 6. For each job s = 1, 2, ..., n there is an s-schedule Ss of cost at
most Es.

Proof. The proof is by backward induction on rs. In the base case, when s is
the job with maximum release time, then we take Ss to be the schedule Ss that
executes s at rs. The cost of Ss is 0. Also, since Un,s,0 > rs we have Es = 0, so
the lemma holds.

Suppose now that for any s′ > s we have already constructed an s′-schedule
Ss′ of cost at most Es′ . Let g be the value that realizes the minimum in (5).

If Un,s,g > maxj rj then, by Theorem 2, there is a schedule of all jobs released
at or after rs with at most g gaps. Let Ss be this schedule. Since each gap’s cost
is at most L, the total cost of Ss is at most Lg.

So now we can assume that Un,s,g ≤ maxj rj . By the maximality of Un,s,g, this
inequality is strict. As in the algorithm, let l be the first job released after Un,s,g.
Choose a schedule S′ realizing Un,s,g. By induction, there exists an l-schedule
Sl of cost at most El. We then define Ss as the disjoint union of S′ and Sl. The
cost of S′ is at most Lg. Denote u = Un,s,g. If v ≥ rl is the first start time of
a job in Sl, write El as El = max {v − rl, L} + E′. In other words, E′ is the
cost of the gaps in El excluding the gap before v (if any). Then the cost of Ss

is at most Lg + max {v − u, L} + E′ ≤ Lg + (rl − u) + max {v − rl, L} + E′ =
Lg + rl − u + El = Es.

Lemma 7. For each job s = 1, 2, ..., n there is an s-schedule Ss of cost at
most Es.

Proof. For any job s, we now prove that any s-schedule Q has cost at least Es.
The proof is by backward induction on rs. In the base case, when s is the job
that is released last then Es = 0, so the claim is true.

Suppose now that s is not the last job and let Q be an optimal s-schedule.
By Lemma 5, we can assume that Q is not dominated by any other s-schedule
with optimal cost. If Q does not have any small gaps then, denoting by g the
number of gaps in Q, the cost of Q is Lg ≥ Es.

Otherwise, let [u, v] be the first small gap in Q. Denote by Q′ the segment
of Q in [rs, u] and by Q′′ the segment of Q in [v, Cmax(S)]. By Lemma 5, Q′′

contains only jobs j with rj ≥ v. In particular the job l to be scheduled at v is
released at rl = v. By induction, the cost of Q′′ is at least El.
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Let g be the number of gaps in Q′ and let R be the schedule realizing Un,s,g.
By the optimality of Un,s,g, we have Cmax(R) ≥ u. If Cmax(R) = u, then, by (5),
the cost of Q is Lg + rl − u + El ≥ Es, and we are done.

The remaining case is when Cmax(R) > u. By Lemma 1, this implies that
there is a (n, s)-schedule R′ with at most g gaps and Cmax(R′) ≤ v. But then we
could replace Q′ in Q by R′, getting a schedule of cost strictly smaller than that
of Q, contradicting the optimality of Q.

Theorem 3. Algorithm AlgC correctly computes the optimum solution for
1|rj |E, and it can be implemented in time O(n5). Further, in the special case
1|rj ; pj = 1|E, it can be implemented in time O(n4).

Proof. The correctness of Algorithm AlgC follows from Lemma 6 and Lemma 7,
so it is sufficient to justify the time bound. By Theorem 1 and Theorem 2, we
can compute the table Uk,s,g in time O(n4) and O(n5) for unit jobs and arbitrary
jobs, respectively. The post-processing, that is computing all values Es, can be
easily done in time O(n2 log n), since we have n values Es to compute, for each
s we minimize over n values of g, and for fixed s and g we can find the index
l in time O(log n) with binary search. (Finding this l can be in fact reduced to
amortized time O(1) if we process g in increasing order, for then the values of
Un,s,g, and thus also of l, increase monotonically as well).

6 Final Comments

We presented an O(n5)-time algorithm for the minimum energy scheduling prob-
lem 1|rj ; pmtn|E, and an O(n4) algorithm for 1|rj ; pj = 1|E.

Many open problems remain. Can the running times be improved further? In
fact, fast — say, O(n log n)-time — algorithms with low approximation ratios
may be of interest as well.

To our knowledge, no work has been done on the multiprocessor case. Can
our results be extended to more processors? Another generalization is to allow
multiple power-down states [8,7]. Can this problem be solved in polynomial-
time? In fact, the SS-PD problem discussed by Irani and Pruhs [8] is even more
general as it involves speed scaling in addition to multiple power states, and its
status remains open as well.
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