

Lecture Notes in Computer Science 4698
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

LarsArge Michael Hoffmann EmoWelzl (Eds.)

Algorithms –
ESA 2007

15th Annual European Symposium
Eilat, Israel, October 8-10, 2007
Proceedings

13

Volume Editors

Lars Arge
University of Aarhus, Department of Computer Science
IT-Parken, Aabogade 34, 8200 Aarhus N, Denmark
E-mail: large@daimi.au.dk

Michael Hoffmann
Emo Welzl
ETH Zurich, Institute for Theoretical Computer Science
Universitätsstr. 6, 8092 Zurich, Switzerland
E-mail: {hoffmann, welzl}@inf.ethz.ch

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.2, G.1-2, E.1, F.1.3, I.3.5, C.2.4, E.5

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-75519-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75519-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12170708 06/3180 5 4 3 2 1 0

Preface

This volume contains the 63 contributed papers and abstracts of invited talks
presented at the 15th Annual European Symposium on Algorithms (ESA 2007),
held in Eilat, Israel during October 8–10, 2007. The three distinguished invited
speakers were Pierre Fraigniaud, Christos Papadimitriou and Micha Sharir.

Since 2002, ESA has consisted of two tracks, with Separate Program Com-
mittees, which deal with design and mathematical analysis of algorithms, the
Design and Analysis track, and real-world applications, engineering, and experi-
mental analysis of algorithms, the Engineering and Applications track. Previous
ESAs in the current two-track format were held in Rome, Italy (2002); Budapest,
Hungary (2003); Bergen, Norway (2004); Palma de Mallorca, Spain (2005); and
Zurich, Switzerland (2006). The proceedings of these symposia were published
as Springer’s LNCS volumes 2461, 2832, 3221, 3669 and 4168, respectively.

Papers were solicited in all areas of algorithmic research, including Algorithmic
Aspects of Networks, Approximation and On-line Algorithms, Computational Bi-
ology, Computational Finance and Algorithmic Game Theory, Computational Ge-
ometry, Data Structures, Databases and Information Retrieval, External-Memory
Algorithms, Streaming Algorithms, Graph and Networks Algorithms, Graph
Drawing, Machine Learning, Mobile and Distributed Computing, Pattern Match-
ing and Data Compression, Quantum Computing, Randomized Algorithms, and
Algorithm Libraries. The algorithms could be sequential, distributed or parallel.
Submissions were especially encouraged in mathematical programming and op-
erations research, including Combinatorial Optimization, Integer Programming,
Polyhedral Combinatorics and Network Optimization.

Each extended abstract was submitted to one of the two tracks. The extended
abstracts were read by three to four referees each, and evaluated on their quality,
originality, and relevance to the symposium. The Program Committees of both
tracks met at ETH Zurich during June 1–2, 2007. The Design and Analysis
track selected 50 papers out of 165 submissions (one of the accepted papers was
a merged version of two submitted papers). The Engineering and Applications
track selected 13 out of 44 submissions.

ESA 2007 was sponsored by EATCS (the European Association for Theo-
retical Computer Science). We appreciate the critical financial support of the
ALGO 2007 industrial sponsors Checkpoint, Carmel Ventures, and Google. The
EATCS sponsorship included an award for the authors of the best paper “Online
Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue,” by Niv Buch-
binder, Kamal Jain, and Joseph (Seffi) Naor, and the best student paper “Order
Statistics in the Farey Sequences in Sublinear Time,” by Jakub Pawlewicz, as
selected by the Program Committees.

July 2007 Lars Arge
Michael Hoffmann

Emo Welzl

Organization

Program Committees

The Program Committees of the two tracks of ESA 2007 consisted of:

Design and Analysis Track

Luca Becchetti University of Rome “La Sapienza”
Harry Buhrman CWI and University of Amsterdam
Bruno Codenotti IIT-CNR Pisa
Gérard P. Cornuéjols CMU, Pittsburgh and

University d’Aix-Marseille
Artur Czumaj University of Warwick
Leslie Ann Goldberg University of Liverpool
Edward A. Hirsch Steklov Inst. of Math., St. Petersburg
Nicole Immorlica Microsoft Research, Redmond
Satoru Iwata Kyoto University
Piotr Krysta University of Liverpool
Zvi Lotker Ben Gurion University, Beer Sheva
Dániel Marx Humboldt-University, Berlin
Jǐŕı Matoušek Charles University, Prague
Seth Pettie University of Michigan, Ann Arbor
Eric Torng Michigan State University
Emo Welzl (Chair) ETH Zurich

Engineering and Applications Track

Lars Arge (Chair) University of Aarhus
Mark de Berg TU Eindhoven
Irene Finocchi University of Rome “La Sapienza”
Mike Goodrich UC Irvine
Kamesh Munagala Duke University
Kirk Pruhs University of Pittsburgh
Rajeev Raman University of Leicester
Peter Sanders University of Karlsruhe
Jan Vahrenhold University of Dortmund
Ke Yi AT&T Labs Research and HKUST
Christos Zaroliagis CTI and University of Patras

VIII Organization

ESA 2007 was held along with the Fifth Workshop on Approximation and Online
Algorithms (WAOA) in the context of the combined conference ALGO 2007. The
Organizing Committee of ALGO 2007 consisted of (with special thanks to Nurit
Shomrat-Aner):

Yossi Azar Tel-Aviv University and Microsoft Research
Guy Even Tel-Aviv University
Amos Fiat (Chair) Tel-Aviv University
Seffi Naor Technion and Microsoft Research

Referees

David Abraham
Dimitris Achlioptas
Tatsuya Akutsu
Hesham al-Ammal
Susanne Albers
Noga Alon
Helmut Alt
Ernst Althaus
Christoph Ambühl
Alexandr Andoni
Spyros Angelopoulos
Aaron Archer
Sunil Arya
Nikolaus Augsten
Vincenzo Auletta
Franz Aurenhammer
Giorgio Ausiello
Igor Averbach
Chen Avin
Yossi Azar
Moshe Babaioff
Lars Backstrom
Brenda Baker
Maria-Florina Balcan
Nikhil Bansal
Holger Bast
Michael Bender
Petra Berenbrink
Eric Berberich
Robert Berke
Vincenzo Bonifaci
Allan Borodin
Patrick Briest

Andre Brinkmann
Yves Brise
Gerth Stølting Brodal
Adam Buchsbaum
Andrei Bulatov
Jakub Černý
Ning Chen
Ke Chen
Siu-Wing Cheng
Flavio Chierichetti
Markus Chimani
Marek Chrobak
Andrea Clementi
Amin Coja-Oghlan
Graham Cormode
Jose Correa
Lenore Cowen
Valentino Crespi
Maxime Crochemore
Varsha Dani
Constantinos Daskalakis
Samir Datta
Brian Dean
Xiaotie Deng
Amit Deshpande
Tamal Dey
Martin Dietzfelbinger
Yong Ding
Yefim Dinitz
Benjamin Doerr
Amit Dvir
Khaled Elbassioni
Michael Elkin

Edith Elkind
Leah Epstein
Thomas Erlebach
Tim van Erven
Omid Etesami
Rolf Fagerberg
Martin Farach-Colton
Antonio Faripa
Mohammad Farshi
Márk Félegyházi
Henning Fernau
Jǐŕı Fiala
Matteo Fischetti
Abraham Flaxman
Tamás Fleiner
Lisa Fleischer
Fedor Fomin
Pierre Fraigniaud
Tom Friedetzky
Alan Frieze
Daniele Frigioni
Stefan Funke
Anna Gál
Efstratios Gallopoulos
Julia Gamzova
Sorabh Gandhi
Naveen Garg
Bernd Gärtner
Leszek Gasieniec
Serge Gaspers
Subir Ghosh
Panos Giannopoulos
Fabian Gieseke

Organization IX

Joachim Giesen
Anna Gilbert
Aristides Gionis
Paul Goldberg
Michael Goldwasser
Mordecai Golin
Petr Golovach
Lee-Ad Gottlieb
Vineet Goyal
Fabrizio Grandoni
Tracy Grauman
Martin Grohe
Roberto Grossi
Sudipto Guha
Peter Hachenberger
Mohammad Taghi

Hajiaghayi
Dan Halperin
Peter Harremoes
Nick Harvey
Jan van den Heuvel
Michael Hoffmann
Jan Holub
Piotr Indyk
Sandy Irani
Robert Irving
Saitam Issoy
Dmitry Itsykson
Klaus Jansen
Mark Jerrum
Marcin Jurdziński
Crystal Kahn
Lutz Kettner
Philip Klein
Juha Karkkainen
Mark Keil
Steven Kelk
Moshe Lewenstein
David Kempe
Iordanis Kerenidis
Zoltán Király
Itzik Kitroser
Rolf Klein
Adam Klivans
Ton Kloks

Christian Knauer
David B. Knoester
Ina Koch
Arist Kojevnikov
Stavros Kolliopoulos
Roman Kolpakov
Jochen Konemann
Boris Konev
Wouter Koolen-Wijkstra
Guy Kortsarz
Michal Koucký
Darek Kowalski
Daniel Král’
Jan Kratochv́ıl
Dieter Kratsch
Bhaskar Krishnamachari
Luděk Kučera
Herbert Kuchen
Alexander Kulikov
Abhinav Kumar
Lap Chi Lau
Luigi Laura
Emmanuelle Lebhar
Stefano Leonardi
Nissan Lev-Tov
Meital Levy
Moshe Lewenstein
Ran Libeskind-Hadas
Mathieu Liedloff
Yury Lifshits
Katrina Ligett
Andrzej Lingas
Alex Lopez-Ortiz
Vadim Lozin
Marco Lübbecke
Meena Mahajan
Mohammad Mahdian
Azarakhsh Malekian
Yishay Mansour
Giovanni Manzini
Alberto

Marchetti-Spaccamela
Martin Mares
Andrew McGregor
Frank McSherry

Aranyak Mehta
Chad Meiners
Manor Mendel
Julian Mestre
Adam Meyerson
Dezső Miklós
István Miklós
Kevin Milans
Vahab Mirrokni
Cristopher Moore
Dmitriy Morozov
Marcin Mucha
Boris Naujoks
Gonzalo Navarro
Hamid Nazerzadeh
Rolf Niedermeier
Sergey Nikolenko
Evdokia Nikolova
Yoshio Okamoto
Martin Pál
Panagiota Panagopoulou
Alessandro Panconesi
Mihai Patrascu
Boaz Patt-Shamir
Wolfgang Paul
David Pearce
Mark Pedigo
Marco Pellegrini
Sriram Pemmaraju
Paolo Penna
Giuseppe Persiano
Attila Pethő
Andrea Pietracaprina
Sylvain Pion
Greg Plaxton
Laura Pozzi
Grigorios Prasinos
Yuri Pritykin
Kirk Pruhs
Harald Räcke
Luis Rademacher
Tomasz Radzik
Mathieu Raffinot
Daniel Raible
Dror Rawitz

X Organization

Andreas Razen
Igor Razgon
Liam Roditty
Amir Ronen
Adi Rosen
Gianluca Rossi
Tim Roughgarden
Frank Ruskey
Daniel Russel
Wojciech Rytter
Mohammad Reza

Salavatipour
Piotr Sankowski
Paolo Santi
Srinivasa Rao Satti
Saket Saurabh
Rahul Savani
Joe Sawada
Nitin Saxena
Gabriel Scalosub
Thomas Schank
Dominik Scheder
Stefan Schirra
Alex Scott
Michael Segal
Danny Segev
Hadas Shachnai
Moni Shahar
Asaf Shapira
Igor Shparlinski
Arseny Shur
Anastasios Sidiropoulos

Alain Sigayret
Johannes Singler
Amitabh Sinha
Carsten Sinz
Rene Sitters
Michiel Smid
Shakhar Smorodinsky
Jack Snoeyink
Christian Sohler
Alexander Souza
Robert Spalek
Frits Spieksma
Aravind Srinivasan
Matthias Stallmann
Rob van Stee
Daniel Štefankovič
Bernhard von Stengel
Miloš Stojaković
Martin Strauss
Dirk Sudholt
Marek Sulovský
Ozgur Sumer
Xiaoming Sun
Ravi Sundaram
Mukund Sundararajan
Eric Tannier
Sachio Teramoto
Thorsten Theobald
Shripad Thite
Mikkel Thorup
Alexander Tiskin
Isaac To

Ben Toner
Mark R. Tuttle
Ryuhei Uehara
Falk Unger
Takeaki Uno
Kasturi Varadarajan
Sergei Vassilvitskii
Santosh Vempela
Rossano Venturini
Florian Verhein
Adrian Vetta
Stéphane Vialette
Berthold Vöcking
Jan Vondrák
Tjark Vredeveld
Uli Wagner
Xin Wang
Bo Wang
Ryan Williams
Paul Wollan
Nicola Wolpert
Prudence Wong
David Wood
Ke Yi
Raphael Yuster
Mohammed Zaki
Hairong Zhao
Florian Zickfeld
Michele Zito
Afra Zomorodian
Philipp Zumstein

Table of Contents

Invited Lectures

Nash Equilibria: Where We Stand . 1
Christos H. Papadimitriou

Small Worlds as Navigable Augmented Networks: Model, Analysis, and
Validation . 2

Pierre Fraigniaud

Arrangements in Geometry: Recent Advances and Challenges 12
Micha Sharir

Contributed Papers: Design and Analysis Track

Nash Equilibria in Voronoi Games on Graphs . 17
Christoph Dürr and Nguyen Kim Thang

Evolutionary Equilibrium in Bayesian Routing Games: Specialization
and Niche Formation . 29

Petra Berenbrink and Oliver Schulte

Convergence to Equilibria in Distributed, Selfish Reallocation Processes
with Weighted Tasks . 41

Petra Berenbrink, Tom Friedetzky, Iman Hajirasouliha, and
Zengjian Hu

Finding Frequent Elements in Non-bursty Streams 53
Rina Panigrahy and Dilys Thomas

Tradeoffs and Average-Case Equilibria in Selfish Routing 63
Martin Hoefer and Alexander Souza

On the Variance of Subset Sum Estimation . 75
Mario Szegedy and Mikkel Thorup

On Minimum Power Connectivity Problems . 87
Yuval Lando and Zeev Nutov

On the Cost of Interchange Rearrangement in Strings 99
Amihood Amir, Tzvika Hartman, Oren Kapah, Avivit Levy, and
Ely Porat

Finding Mobile Data: Efficiency vs. Location Inaccuracy 111
Amotz Bar-Noy and Joanna Klukowska

XII Table of Contents

A Faster Query Algorithm for the Text Fingerprinting Problem 123
Chi-Yuan Chan, Hung-I Yu, Wing-Kai Hon, and Biing-Feng Wang

Polynomial Time Algorithms for Minimum Energy Scheduling 136
Philippe Baptiste, Marek Chrobak, and Christoph Dürr

k-Mismatch with Don’t Cares . 151
Raphaël Clifford, Klim Efremenko, Ely Porat, and Amir Rothschild

Finding Branch-Decompositions and Rank-Decompositions 163
Petr Hliněný and Sang-il Oum

Fast Algorithms for Maximum Subset Matching and All-Pairs Shortest
Paths in Graphs with a (Not So) Small Vertex Cover 175

Noga Alon and Raphael Yuster

Linear-Time Ranking of Permutations . 187
Martin Mareš and Milan Straka

Radix Sorting with No Extra Space . 194
Gianni Franceschini, S. Muthukrishnan, and Mihai Pǎtraşcu

Fast Low Degree Connectivity of Ad-Hoc Networks Via Percolation 206
Emilio De Santis, Fabrizio Grandoni, and Alessandro Panconesi

Order Statistics in the Farey Sequences in Sublinear Time 218
Jakub Pawlewicz

New Results on Minimax Regret Single Facility Ordered Median
Location Problems on Networks . 230

Justo Puerto, Antonio M. Rodriguez-Chia, and Arie Tamir

Dial a Ride from k-Forest . 241
Anupam Gupta, MohammadTaghi Hajiaghayi,
Viswanath Nagarajan, and R. Ravi

Online Primal-Dual Algorithms for Maximizing Ad-Auctions
Revenue . 253

Niv Buchbinder, Kamal Jain, and Joseph (Seffi) Naor

Unique Lowest Common Ancestors in Dags Are Almost as Easy as
Matrix Multiplication . 265

Miros�law Kowaluk and Andrzej Lingas

Optimal Algorithms for k-Search with Application in Option Pricing . . . 275
Julian Lorenz, Konstantinos Panagiotou, and Angelika Steger

Linear Data Structures for Fast Ray-Shooting Amidst Convex
Polyhedra . 287

Haim Kaplan, Natan Rubin, and Micha Sharir

Table of Contents XIII

Stackelberg Strategies for Atomic Congestion Games 299
Dimitris Fotakis

Good Quality Virtual Realization of Unit Ball Graphs 311
Sriram V. Pemmaraju and Imran A. Pirwani

Algorithms for Playing Games with Limited Randomness 323
Shankar Kalyanaraman and Christopher Umans

Approximation of Partial Capacitated Vertex Cover 335
Reuven Bar-Yehuda, Guy Flysher, Julián Mestre, and Dror Rawitz

Optimal Resilient Dynamic Dictionaries . 347
Gerth Stølting Brodal, Rolf Fagerberg, Irene Finocchi,
Fabrizio Grandoni, Giuseppe F. Italiano, Allan Grønlund Jørgensen,
Gabriel Moruz, and Thomas Mølhave

Determining the Smallest k Such That G Is k-Outerplanar 359
Frank Kammer

On the Size of Succinct Indices . 371
Alexander Golynski, Roberto Grossi, Ankur Gupta,
Rajeev Raman, and Satti Srinivasa Rao

Compact Oracles for Approximate Distances Around Obstacles in the
Plane . 383

Mikkel Thorup

Convex Combinations of Single Source Unsplittable Flows 395
Maren Martens, Fernanda Salazar, and Martin Skutella

Farthest-Polygon Voronoi Diagrams . 407
Otfried Cheong, Hazel Everett, Marc Glisse, Joachim Gudmundsson,
Samuel Hornus, Sylvain Lazard, Mira Lee, and Hyeon-Suk Na

Equitable Revisited . 419
Wolfgang Bein, Lawrence L. Larmore, and John Noga

Online Scheduling of Equal-Length Jobs on Parallel Machines 427
Jihuan Ding, Tomáš Ebenlendr, Jǐŕı Sgall, and Guochuan Zhang

k-Anonymization with Minimal Loss of Information 439
Aristides Gionis and Tamir Tassa

A Quasi-PTAS for Profit-Maximizing Pricing on Line Graphs 451
Khaled Elbassioni, René Sitters, and Yan Zhang

Improved Upper Bounds on the Competitive Ratio for Online Realtime
Scheduling . 463

Koji Kobayashi and Kazuya Okamoto

XIV Table of Contents

Bundle Pricing with Comparable Items . 475
Alexander Grigoriev, Joyce van Loon, Maxim Sviridenko,
Marc Uetz, and Tjark Vredeveld

Approximating Interval Scheduling Problems with Bounded Profits 487
Israel Beniaminy, Zeev Nutov, and Meir Ovadia

Pricing Tree Access Networks with Connected Backbones 498
Vineet Goyal, Anupam Gupta, Stefano Leonardi, and R. Ravi

Distance Coloring . 510
Alexa Sharp

An O(log2 k)-Competitive Algorithm for Metric Bipartite Matching 522
Nikhil Bansal, Niv Buchbinder, Anupam Gupta, and
Joseph (Seffi) Naor

To Fill or Not to Fill: The Gas Station Problem . 534
Samir Khuller, Azarakhsh Malekian, and Julián Mestre

Online Bandwidth Allocation . 546
Michal Forǐsek, Branislav Katreniak, Jana Katreniaková,
Rastislav Královič, Richard Královič, Vladimı́r Koutný,
Dana Pardubská, Tomáš Plachetka, and Branislav Rovan

Two’s Company, Three’s a Crowd: Stable Family and Threesome
Roommates Problems . 558

Chien-Chung Huang

On the Complexity of Sequential Rectangle Placement in IEEE
802.16/WiMAX Systems . 570

Amos Israeli, Dror Rawitz, and Oran Sharon

Shorter Implicit Representation for Planar Graphs and Bounded
Treewidth Graphs . 582

Cyril Gavoille and Arnaud Labourel

Dynamic Plane Transitive Closure . 594
Krzysztof Diks and Piotr Sankowski

Contributed Papers: Engineering and Applications
Track

Small Stretch Spanners in the Streaming Model: New Algorithms and
Experiments . 605

Giorgio Ausiello, Camil Demetrescu, Paolo G. Franciosa,
Giuseppe F. Italiano, and Andrea Ribichini

Table of Contents XV

Estimating Clustering Indexes in Data Streams . 618
Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, and
Christian Sohler

Complete, Exact and Efficient Implementation for Computing the
Adjacency Graph of an Arrangement of Quadrics . 633

Laurent Dupont, Michael Hemmer, Sylvain Petitjean, and
Elmar Schömer

Sweeping and Maintaining Two-Dimensional Arrangements on Surfaces:
A First Step . 645

Eric Berberich, Efi Fogel, Dan Halperin, Kurt Mehlhorn, and
Ron Wein

Fast and Compact Oracles for Approximate Distances in Planar
Graphs . 657

Laurent Flindt Muller and Martin Zachariasen

Exact Minkowksi Sums of Polyhedra and Exact and Efficient
Decomposition of Polyhedra in Convex Pieces . 669

Peter Hachenberger

A New ILP Formulation for 2-Root-Connected Prize-Collecting Steiner
Networks . 681

Markus Chimani, Maria Kandyba, and Petra Mutzel

Algorithms to Separate {0, 1
2}-Chvátal-Gomory Cuts 693

Arie M.C.A. Koster, Adrian Zymolka, and Manuel Kutschka

Fast Lowest Common Ancestor Computations in Dags 705
Stefan Eckhardt, Andreas Michael Mühling, and Johannes Nowak

A Practical Efficient Fptas for the 0-1 Multi-objective Knapsack
Problem . 717

Cristina Bazgan, Hadrien Hugot, and Daniel Vanderpooten

Solutions to Real-World Instances of PSPACE-Complete Stacking 729
Felix G. König, Macro Lübbecke, Rolf Möhring, Guido Schäfer, and
Ines Spenke

Non-clairvoyant Batch Sets Scheduling: Fairness Is Fair Enough 741
Julien Robert and Nicolas Schabanel

An Experimental Study of New and Known Online Packet Buffering
Algorithms . 754

Susanne Albers and Tobias Jacobs

Author Index . 767

Nash Equilibria: Where We Stand

Christos H. Papadimitriou�

Computer Science Division, UC Berkeley

Abstract. In the Fall of 2005 it was shown that finding an
ε-approximate mixed Nash equilibrium in a normal-form game, even
with two players, is PPAD-complete for small enough (additive) ε — and
hence, presumably, an intractable problem. This solved a long-standing
open problem in Algorithmic Game Theory, but created many open ques-
tions. For example, it is known that inverse polynomial ε is enough to
make the problem intractable, while, for two player games, relatively
simple polynomial algorithms are known to achieve ε near 1

3 ; bridging
this gap is an important open problem.

When the number of strategies per player is small, a different set of
algorithmic techniques comes into play; it had been known, for example,
that symmetric games of this sort can be solved in polynomial time, via
a reduction to the existential theory of the reals. In on-going joint work
with Costis Daskalakis we have shown that a simple exhaustive approach
works in a broader, and more useful in practice, class of games known
as anonymous games, in which the payoff of each player and strategy is
a symmetric function of the strategies chosen by the other players; that
is, a player’s utility depends on how many other players have chosen
each of the strategies, and not on precisely which players have. In fact, a
variant of the same algorithmic technique gives a pseudopolynomial-time
approximation scheme for general n-player games, as long as the number
of strategies is kept a constant. Improving this to polynomial seems a
challenging problem.

A third important front in this research project is exploring equilib-
rium concepts that are more attractive computationally than the mixed
Nash equilibrium, and possibly more natural, yet no less universal (guar-
anteed to exist under quite general assumptions). A number of such alter-
natives have been explored recently, some of them in joint work with Alex
Fabrikant. For example, we show that two-player games with random en-
tries of the utility matrices are likely to have a natural generalization of
a pure Nash equilibrium called unit recall equilibrium.

Finally, it had long been believed that Nash equilibria of repeated
games are much easier to find, due to a cluster of results known in Game
Theory as the Folk Theorem. We shall discuss how recent algorithmic
insights cast doubt even to this reassuring fact.

� Research partially supported by NSF grant CCF-0635319, a MICRO grant, and a
research gift from Yahoo! Research.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Small Worlds as Navigable Augmented

Networks: Model, Analysis, and Validation

Pierre Fraigniaud�

CNRS and University of Paris 7

Abstract. The small world phenomenon, a.k.a. the six degree of sepa-
ration between individuals, was identified by Stanley Milgram at the end
of the 60s. Milgram experiment demonstrated that letters from arbitrary
sources and bound to an arbitrary target can be transmitted along short
chains of closely related individuals, based solely on some characteristics
of the target (professional occupation, state of leaving, etc.). In his paper
on small world navigability, Jon Kleinberg modeled this phenomenon in
the framework of augmented networks, and analyzed the performances of
greedy routing in augmented multi-dimensional meshes. This paper ob-
jective is to survey the results that followed up Kleinberg seminal work,
including results about:
– extensions of the augmented network model, and variants of greedy

routing,
– designs of polylog-navigable graph classes,
– the quest for universal augmentation schemes, and
– discussions on the validation of the model in the framework of dou-

bling metrics.

1 Greedy Routing in Augmented Meshes

1.1 Modeling Milgram Experiment

Augmented graphs were introduced in [25,26] for the purpose of understanding
the small world phenomenon. Precisely, augmented graphs give a framework for
modeling and analyzing the “six degrees of separation” between individuals ob-
served from Milgram experiment [37], stating that short chains of acquaintances
between any pair of individuals can be discovered in a distributed manner. Note
that the augmented graph model addresses navigability in small worlds, and
therefore it goes further than just structural considerations (e.g., scale free prop-
erties, clustering properties, etc.).

We define an augmented graph model [15] as a pair (G, ϕ) where G is a graph,
called base graph, and ϕ is a probability distribution, referred to as an augmenting
distribution for G. This augmenting distribution is defined as a collection of
probability distributions {ϕu, u ∈ V (G)}. Every node u ∈ V (G) is given few
(typically one) extra links, called long range links, pointing to some nodes, called
the long range contacts of u. Any long range contact v is chosen at random
� Additional supports from COST Action 295 “DYNAMO”.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 2–11, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Small Worlds as Navigable Augmented Networks 3

according to Pr{u → v} = ϕu(v). (If v = u or v is a neighbor of u in G, then
no link is added). In this paper, a graph in (G, ϕ) will sometime be denoted by
G + L where G is the base graph, and L is the set of long rang links resulting
from the trial of ϕ yielding that set of links added to G.

A important feature of this model is that it enables to define simple but
efficient decentralized routing protocols modeling the search procedure applied
by social entities in Milgram [37] and Dodd et al [9] experiments. In particular,
greedy routing in a graph in (G, ϕ) is the oblivious routing process in which every
intermediate node along a route from a source s ∈ V (G) to a target t ∈ V (G)
chooses among all its neighbors (including its long range contacts) the one that
is the closest to t according to the distance measured in G, and forwards to it.
For this process to apply, the only “knowledge” that is supposed to be available
at every node is its distances to the other nodes in the base graph G. This
assumption is motivated by the fact that, if the base graph offers some nice
properties (e.g., embeddable in a low dimensional metric with small distorsion)
then the distance function dist in G is expected to be easy to compute, or at
least to approximate, locally. In Milgram experiment, one may think about G
as representing the geography of the earth.

The greedy diameter of (G, ϕ) is defined as

diam(G, ϕ) = max
s,t∈V (G)

E(ϕ, s, t)

where E(ϕ, s, t) is the expected number of steps for traveling from s to t using
greedy routing in (G, ϕ). For each pair s, t, the expectation is computed over all
trials of ϕ, i.e., over all graphs in (G, ϕ).

In [25], Kleinberg considered the n-node d-dimensional square meshes with
wraparound links, that we denote by M(d)

n , augmented using the d-harmonic
distribution h(d) defined as follows:

h(d)
u (v) =

1
Zu

1
dist(u, v)d

where Zu =
∑

v �=u

1
dist(u, v)d

.

For d = 2 this setting expresses the fact that two individuals are more likely to
be connected if they leave nearby, and that their probability of being connected
decreases inversely proportional to their geographical distance square. For d >
2, the extra dimensions could be interpreted as as many criteria (professional
occupation, hobbies, etc.). [25] proved that the greedy diameter of (M(d)

n , h(d)) is
O(log2 n). Hence, greedy routing performs in a polylogarithmic expected number
of steps by just adding one extra link per node. [25] also established an interesting
threshold phenomenon: if d′ �= d, then the greedy diameter of (M(d)

n , h(d′)) is
Ω(nε) for some ε > 0 depending on d/d′. Hence for d′ = d the greedy diameter
is polylogarithmic whereas it is polynomial for d �= d′. The model is therefore
very sensitive to the distance scaling for the choices of the long range contacts.

It is worth mentioning that the augmented mesh model was used in [32] for
the design of an overlay network supporting the DHT facilities for P2P systems.
See also [36] for an application to network design. More generally, we refer to [28]

4 P. Fraigniaud

for a survey of Jon Kleinberg contributions to the analysis of complex networks,
including the contribution [27] describing a hierarchical model for the small world
phenomenon.

1.2 Extension of the Model

Numerous contributions immediately followed up Kleinberg seminal work, all
aiming at generalizing the routing strategy in augmented multidimensional
meshes. In particular, [7,33] proved that if every node knows not only its long
range contacts but also the long range contacts of its neighbors, then greedy
routing in (M(d)

n , h(d)) with log n long range links per node performs in O(log n/
log log n) expected number of steps, i.e., the greedy diameter becomes as small
as the expected diameter of the augmented mesh with logn long range links per
node. See [35] for more information on the (standard) diameter of (M(d)

n , h(d)).
[34] somehow generalized this approach by assuming that every node knows

the long range links of its log n closest neighbors in the mesh, and proposed a non
oblivious routing protocol performing in O(log1+1/d n) expected number of steps
in this context. The same model was simultaneously proposed in [16,17] where
an oblivious greedy routing protocol is proposed, performing in O(1

k log1+1/d n)
expected number of steps with k long range contacts per node. [16] summarized
their result as “eclecticism shrinks even small worlds” because their result can
be interpreted as demonstrating the impact of the dimension d of the world on
the efficiency of routing. If this dimension merely reflects the number of criteria
used for routing, then it is better having few acquaintances (i.e., few long range
contacts) of many different nature (i.e., routing in a high dimensional world) than
having many acquaintances (i.e., many long range contacts) of similar profile
(i.e., routing in a low dimensional world). See [24] for experimental results about
how individuals are impacted by the number of criteria for the search.

[31] investigated a sophisticated decentralized algorithm that visits O(log2 n)
nodes, and distributively discovers routes of expected length O(log n (log log n)2)
links using headers of size O(log2 n) bits. This algorithm could be used in, e.g.,
a P2P system in which resources would be sent along the reverse path used by
the request to reach its target: reaching the target requires O(log2 n) expected
number of steps but the resource would follow a much shorter route, of length
O(log n (log log n)2) links.

1.3 Lower Bounds

[5] proved that the analysis in [25] is tight in the sense that greedy routing in di-
rected cycles augmented with the 1-harmonic distribution performs in Ω(log2 n)
expected number of steps. This result is generalized in [16] for any d ≥ 1. There
are augmenting distributions ϕ(d) that do better than the d-harmonic distri-
bution h(d) in d-dimensional meshes. For instance, [13] designed augmenting
distributions ϕ(d) for M(d)

n for any d ≥ 1, such that the greedy diameter of
(M(d)

n , ϕ(d)) is O(log n). (See also [2] for the case of the ring). However, if the

Small Worlds as Navigable Augmented Networks 5

probability distribution is bounded to decrease with the distance (a natural as-
sumption as far as social networks are concerned), then it is still open whether
one can do better than the harmonic distribution. Several papers [4,13,21] actu-
ally tackled the problem of proving that, for any non-increasing distribution ϕ(d),
greedy routing in (M(d)

n , ϕ(d)) performs in Ω(log2 n) expected number of steps.
Essentially, they proved that Ω(log2 n) is indeed a lower bound for greedy rout-
ing in rings, but only up to log log n factors. With log n long range links per node,
[33] proved a lower bound Ω(log n) for any 1-local algorithm, in contrast to the 2-
local Neighbor-of-Neighbor algorithm [7,33] that performs in O(log n/ log log n)
expected number of steps.

2 Graphs with Polylogarithmic Greedy Diameter

Another trend of researches aimed at considering the augmented graph model
for base graphs different from meshes. Given a graph class G, the objective is to
design augmenting distributions satisfying that, for any G ∈ G, there exists ϕ
such that (G, ϕ) has small greedy diameter, typically polylog(n). The number of
long range contacts per node is preferably 1, but any polylog(n) number is fine.
Actually, the ability to add k links instead of 1 generally leads to a speed up of
Θ(k) in greedy routing, and thus does not modify the essence of the problem
whenever k ≤ polylog(n).

In M(d)
n , the d-harmonic distribution satisfies that for any two nodes u and v

at distance r, the probability that u has v as long rang contact is proportional
to 1/rd, that is inversely proportional to the size of the ball centered at u and
of radius r. This leads several groups to investigate graph classes for which
the augmenting distribution satisfies ϕu(v) ∝ 1/|Bu(r)|, where r = dist(u, v)
and Bu(r) is the ball centered at u of radius r. A graph G has ball growth
α if, for any r > 0, the size of any ball of radius r in G is at most α times
the size of the ball of radius r/2 centered at the same node. [10] proved that
graphs of bounded ball growth can be augmented such that their greedy diameter
becomes polylogarithmic. ([11] even proves that the augmenting process can be
performed efficiently in a distributed manner). [41] extended this result to graphs
of bounded doubling dimension. In fact, this latter paper even considered general
metrics, not only graph metrics. A metric space is of doubling dimension α if any
ball of radius r in S can be covered by 2α balls of radius r/2. [41] proved that
metrics of bounded doubling dimension can be augmented such that their greedy
diameter becomes polylogarithmic (see also [22]). Actually, the result holds even
for metrics with doubling dimension Θ(log log n).

In a somewhat orthogonal direction, [13] considered trees, and proved that any
tree can be augmented so that the resulting greedy diameter becomes O(log n).
This result was extended to graphs of bounded treewidth. A tree-decomposition
of a graph G is a pair (T, X) where T is a tree of vertex set I, and X = {Xi, i ∈ I}
is a collection of “bags” Xi ⊆ V (G). This pair must satisfy the following:

6 P. Fraigniaud

– ∪i∈IXi = V (G);
– for any edge {u, v} ∈ E(G) there exists i ∈ I such that {u, v} ⊆ Xi; and
– for any node u ∈ V (G), the set {i ∈ I, u ∈ Xi} is a subtree of T .

The width of (T, X) is maxi |Xi| − 1, and the treewidth of G is the minimum
width of any tree-decomposition of G. Treewidth is an important concept in the
core of the Graph Minor theory [40], and with many applications to the design of
fixed parameter algorithms. On graphs of treewidth at most k, where k is fixed,
every decision or optimization problem expressible in monadic second-order logic
has a linear algorithm [8]. As far as navigability in small worlds is concerned,
this notion is also appealing since a tree-decomposition of the base graph G
representing the predictable acquaintances between the individuals determines
a hierarchy between these individuals that is inherited from these acquaintances,
and not specified a priori as in [27]. [14] proved that graphs of bounded treewidth
can be augmented such that their greedy diameter becomes polylogarithmic.
This result was in turn generalized to graphs excluding a fixed minor. A graph
H is a minor of a graph G if H can be obtained from G by a sequence of
operations edge contraction, edge deletion, or node deletion. [1] proved that for
any fixed H , all H-minor free graphs can be augmented such that their greedy
diameter becomes polylogarithmic. This result is actually one among the many
consequences of a more general result on path separability by [1], using the
characterization of H-minor free graphs by Robertson and Seymour.

Polylog-navigability also holds for many graph classes that are not included
in the aforementioned classes. This is the case of interval graphs and AT-free
graphs [15].

Finally, it is worth mentioning [29] which developed a variant of the model
with population density varying across the nodes of a network G with bounded
doubling dimension (every node contains a certain number of people, like a
village, a town, or a city). It proposed a rank-based augmenting distribution ϕ
where ϕu(v) is inversely proportional to the number of people who are closer to
u than v is. ([30] indeed showed that in some social networks, two-third of the
friendships are actually geographically distributed this way: the probability of
befriending a particular person is inversely proportional to the number of closer
people). [29] proved that the greedy diameter of (G, ϕ) is polylogarithmic. Note
however that routing must not reach a target, but simply the population cluster
in which the target is located.

3 Universal Augmentation Schemes

[13] proved that deciding whether, given a base graph G as input, there exists
an augmenting distribution ϕ such that the greedy diameter of (G, ϕ) is at
most 2 is NP-complete. Still, the previous section surveyed a large number of
graph classes, of different nature, that can be all augmented so that their greedy
diameter becomes polylogarithmic. It is however not true that all graphs can be
augmented to get polylogarithmic greedy diameter.

Small Worlds as Navigable Augmented Networks 7

Let f : IN → IR be a function. An n-node graph G is f -navigable if there
exists a collection of probability distributions ϕ such that diam(G, ϕ) ≤ f(n).
[18] proved that a function f such that every n-node graph is f -navigable sat-
isfies f(n) = Ω(n1/

√
log n). Surprisingly, the graphs Gn used to prove this re-

sult are very regular. Gn is the graph of n nodes consisting of pk nodes la-
beled (x1, . . . , xk), xi ∈ Zp. Node (x1, . . . , xk) is connected to all nodes (x1 +
a1, . . . , xk + ak) where ai ∈ {−1, 0, 1}, i = 1, . . . , k, and all operations are
taken modulo p. By construction of Gn, the distance between two nodes y =
(y1, . . . , yk) and z = (z1, . . . , zk) is max1≤i≤k min(|yi−zi|, p−|yi−zi|). Hence, the
diameter of Gn is
p/2�. Its doubling dimension is k. Thus, intuitively, a graph
Gn has too many “directions”, precisely 2k directions, and it takes at least 2k

expected number of steps to go in the right direction. Therefore, if k � log log n,
then the expected number of steps of greedy routing is not polylogarithmic. The
result in [41] is therefore essentially the best that can be achieved by considering
only the doubling dimension of graphs. Solving 2k = p = n1/k yields k =

√
log n,

and the expected diameter of (Gn, ϕ) is Ω(n1/
√

log n) for this setting of k, for
any ϕ.

On the other hand, Peleg [38] noticed that any n-node graph is O(
√

n)-
navigable by adding long-range links whose extremities are chosen uniformly
at random among all the nodes in the graph. To see why, consider the ball B
of radius

√
n centered at the target. The expected number of nodes visited un-

til the long range contact of the current node belongs to B is n/|B|, and thus
at most

√
n. Once in B, the distance to the target is at most

√
n. Hence the

O(
√

n)-navigability of the graph. The best upper bound known so far is actu-
ally n1/3 · polylog(n), due to [15]. The augmentation consists for every node in
choosing a “level” i ∈ {1, . . . , log n}, and then selecting the long range contact
uniformly at random in the ball centered at the node and of radius 2i.

4 Validating the Augmented Graph Model

The augmented graph framework is now well understood, and it is probably time
to consider the validation of the model, for instance by performing experiments
on social networks. This however requires the design of algorithms that, given a
graph G = H + L as input, would be able to separate the base graph H from
the long range links L. An attempt in this direction has been proposed in [3,6].
In these two papers the authors introduce an hybrid model that resembles the
augmented graph model, defined by a base graph H and a global graph L, over
the same set of vertices. In both papers, L is a random power law graph. In [6],
the base graph H has a local connectivity characterized by a certain number
of edge-disjoint paths of bounded length connecting the two extremities of any
edge. In [3], the local connectivity is characterized by an amount of flow that can
be pushed from one extremity of an edge to the other extremity, along routes
of bounded length. In both cases, in addition to presenting a set of informative
results about their models, the authors give an algorithm that can recover the
base graph almost perfectly. Nevertheless, navigability is not considered in [3,6].

8 P. Fraigniaud

In [19], it is proved that if G has a clustering coefficient Ω(log n/ log log n),
and bounded doubling dimension, then a simple algorithm enables to partition
the edges of G = H +L into two sets H ′ and L′ if L is obtained by the augment-
ing distributions in [10] or [41]. The set H ′ satisfies E(H) ⊆ H ′ and the edges
in H ′ \ E(H) are of small stretch, i.e., the map H is not perturbed too greatly
by undetected long range links remaining in H ′. The perturbation is actually
so small that it is proved that the expected performances of greedy routing in
G using the distances in H ′ are close to the expected performances of greedy
routing in H + L. Although this latter result may appear intuitively straight-
forward, since H ′ ⊇ E(H), it is not, as it is also shown that routing with a
map more precise than H may actually damage greedy routing significantly. It
is also shown that in absence of a hypothesis regarding the clustering coefficient,
any structural attempt to extract the long range links will miss the detection
of at least Ω(n5ε/ logn) long range links of stretch at least Ω(n1/5−ε) for any
0 < ε < 1/5, and thus the base graph H cannot be recovered with good accuracy.

The extraction algorithm in [19] applies to graphs with bounding ball growth,
or with even just bounded doubling dimension. The bounded ball growth as-
sumption can be well motivated intuitively [39] and is consistent with the transit-
stub model [42]. The formal verification of the bounded ball growth assumption
has been statistically established by [12,43], but only in average. Recently, [20],
analyzes the distance defined in the Internet by the round-trip delay (RTT).
Based on skitter data collected by CAIDA, it is noted that the ball growth
of the Internet, as well as its doubling dimension, can actually be quite large.
Nevertheless, it is observed that the doubling dimension is much smaller when
restricting the measures to balls of large enough radius (like in, e.g., [23]). Also,
by computing the number of balls of radius r required to cover balls of ra-
dius R > r, it is observed that this number grows with R much slower than
what is predicted by a large doubling dimension. However, based on data col-
lected on the PlanetLab platform, it is confirmed that the triangle inequal-
ity does not hold for a significant fraction of the nodes. Nevertheless, it is
demonstrated that RTT measures satisfy a weak version of the triangle inequal-
ity: there exists a small constant ρ such that for any triple u, v, w, we have
RTT (u, v) ≤ ρ · max{RTT (u, w), RTT (w, v)}. (Smaller bounds on ρ can even
be obtained when the triple u, v, w is skewed). Based on these observations, [20]
proposes an analytical model for Internet latencies. This model is tuned by a
small set of parameters concerning the violation of the triangle inequality and
the geometrical dimension of the network, and is proved tractable by design-
ing a simple and efficient compact routing scheme with low stretch. The same
techniques as the one used for designing this scheme could be used for graph
augmentation.

5 Further Works

We identify three directions for further research in the field of small world navi-
gability (see [28] for a more general vision of the problem). One crucial problem

Small Worlds as Navigable Augmented Networks 9

is to close the gap between the upper bound n1/3 · polylog(n) and the lower
bound Ω(n1/

√
log n) for navigability in arbitrary graphs. Reaching the lower

bound seems to be challenging if not relaxing the routing strategy. Greedy rout-
ing is indeed actually a very strong constraint. In particular, it does not permit
any detour via hubs that could enable discovering shorter routes.

Hierarchical models such as the ones in [27] and [14] suggest that it may
be possible to extend the theory of navigability to matroids. In the matroid
context, many tools were recently developed, including branch-decomposition,
that could enable generalizing the theory for graphs to matroids. For instance,
the potential function guiding greedy routing could be defined as the height of
the lowest common ancestor in an optimal branch decomposition.

Finally, one is still very far from a complete validation of the augmented
graph model for social networks. The results in [3,6,19] tell us that the design
of algorithms extracting the long-range links is doable, at least for some large
classes of augmented graphs. However, the design of a practical algorithm that
could be run on real samples of social networks remains to be done. This is a
challenging and rewarding task.

Acknowledgments. The author wants to express his gratefulness to his colleagues
and friends Cyril Gavoille, Emmanuelle Lebhar, and Zvi Lotker for all the fun
and great time he has while working with them, especially on the topic of this
paper.

References

1. Abraham, I., Gavoille, C.: Object Location Using Path Separators. In: 25th ACM
Symp. on Principles of Distributed Computing (PODC), pp. 188–197. ACM Press,
New York (2006)

2. Abraham, I., Malkhi, D., Manku, G.: Brief Announcement: Papillon: Greedy Rout-
ing in Rings. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 514–515.
Springer, Heidelberg (2005)

3. Andersen, R., Chung, F., Lu, L.: Modeling the small-world phenomenon with local
network flow. Internet Mathematics 2(3), 359–385 (2006)

4. Aspnes, J., Diamadi, Z., Shah, G.: Fault-tolerant routing in peer-to-peer systems.
In: 21st ACM Symp. on Principles of Distributed Computing (PODC), pp. 223–
232. ACM Press, New York (2002)

5. Barrière, L., Fraigniaud, P., Kranakis, E., Krizanc, D.: Efficient Routing in Net-
works with Long Range Contacts. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180,
pp. 270–284. Springer, Heidelberg (2001)

6. Chung, F., Lu, L.: The small world phenomenon in hybrid power law graphs. Lect.
Notes Phys. 650, 89–104 (2004)

7. Coppersmith, D., Gamarnik, D., Sviridenko, M.: The Diameter of a Long-Range
Percolation Graph. Random Structures and Algorithms 21(1), 1–13 (2002)

8. Courcelle, B., Makowsky, J., Rotics, U.: Linear-time solvable optimization problems
on graphs of bounded cliquewidth. In: Hromkovič, J., Sýkora, O. (eds.) Graph-
Theoretic Concepts in Computer Science. LNCS, vol. 1517, pp. 1–16. Springer,
Heidelberg (1998)

10 P. Fraigniaud

9. Dodds, P., Muhamad, R., Watts, D.: An experimental study of search in global
social networks. Science 301(5634), 827–829 (2003)

10. Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Could any graph be turned
into a small-world? Theoretical Computer Science 355(1), 96–103 (2006)

11. Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Towards small world emer-
gence. In: 18th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pp. 225–232. ACM Press, New York (2006)

12. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the
Internet Topology. In: ACM SIGCOMM Conference, pp. 251–262. ACM Press,
New York (1999)

13. Flammini, M., Moscardelli, L., Navarra, A., Perennes, S.: Asymptotically opti-
mal solutions for small world graphs. In: Fraigniaud, P. (ed.) DISC 2005. LNCS,
vol. 3724, pp. 414–428. Springer, Heidelberg (2005)

14. Fraigniaud, P.: Greedy routing in tree-decomposed graphs: a new perspective on the
small-world phenomenon. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS,
vol. 3669, pp. 791–802. Springer, Heidelberg (2005)

15. Fraigniaud, P., Gavoille, C., Kosowski, A., Lebhar, E., Lotker, Z.: Universal Aug-
mentation Schemes for Network Navigability: Overcoming the

√
n-Barrier. In: 19th

ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), ACM Press,
New York (2007)

16. Fraigniaud, P., Gavoille, C., Paul, C.: Eclecticism shrinks even small worlds. In:
23rd ACM Symposium on Principles of Distributed Computing (PODC), pp. 169–
178. ACM Press, New York (2004)

17. Fraigniaud, P., Gavoille, C., Paul, C.: Eclecticism shrinks even small worlds. Dis-
tributed Computing 18(4) (2006)

18. Fraigniaud, P., Lebhar, E., Lotker, Z.: A doubling dimension threshold Θ(log log n)
for augmented graph navigability. In: Azar, Y., Erlebach, T. (eds.) ESA 2006.
LNCS, vol. 4168, pp. 376–386. Springer, Heidelberg (2006)

19. Fraigniaud, P., Lebhar, E., Lotker, Z.: Recovering the Long Range Links in Aug-
mented Graphs. Technical Report 6197, INRIA Paris-Rocquencourt (May 2007)

20. Fraigniaud, P., Lebhar, E., Viennot, L.: The Inframetric Model for the Internet.
Technical Report, INRIA Paris-Rocquencourt (July 2007)

21. Giakkoupis, G., Hadzilacos, V.: On the complexity of greedy routing in ring-based
peer-to-peer networks. In: 26th ACM Symposium on Principles of Distributed
Computing (PODC), ACM Press, New York (2007)

22. Har-Peled, S., Mendel, M.: Fast Construction of Nets in Low Dimensional Metrics,
and Their Applications. SIAM J. on Computing 35(5), 1148–1184 (2006)

23. Karger, D., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics. In:
34th ACM Symp. on the Theory of Computing (STOC), pp. 63–66. ACM Press,
New York (2002)

24. Killworth, P., Bernard, H.: Reverse Small-World Experiment. Social Networks 1(2),
159–192 (1978)

25. Kleinberg, J.: The Small-World Phenomenon: An Algorithmic Perspective. In: 32nd
ACM Symp. on Theory of Computing (STOC), pp. 163–170. ACM Press, New York
(2000)

26. Kleinberg, J.: Navigation in a Small-World. Nature 406, 845 (2000)
27. Kleinberg, J.: Small-World Phenomena and the Dynamics of Information. In: 15th

Neural Information Processing Systems (NIPS) (2001)
28. Kleinberg, J.: Complex networks and decentralized search algorithm. Nevan-

linna prize presentation at the International Congress of Mathematicians (ICM),
Madrid (2006)

Small Worlds as Navigable Augmented Networks 11

29. Kumar, R., Liben-Nowell, D., Tomkins, A.: Navigating Low-Dimensional and Hier-
archical Population Networks. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, Springer, Heidelberg (2006)

30. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic
routing in social networks. In: Proc. of the Natl. Academy of Sciences of the USA,
vol. 102/3, pp. 11623–11628 (2005)

31. Lebhar, E., Schabanel, N.: Searching for Optimal paths in long-range contact net-
works. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 894–905. Springer, Heidelberg (2004)

32. Manku, G., Bawa, M., Raghavan, P.: Symphony: distributed hashing in a small
world. In: 4th USENIX Symp. on Internet Technologies and Systems, pp. 127–140
(2003)

33. Manku, G., Naor, M., Wieder, U.: Know Thy Neighbor’s Neighbor: The Power
of Lookahead in Randomized P2P Networks. In: 36th ACM Symp. on Theory of
Computing (STOC), pp. 54–63. ACM Press, New York (2004)

34. Martel, C., Nguyen, V.: Analyzing Kleinberg’s (and other) Small-world Models. In:
23rd ACM Symp. on Principles of Distributed Computing (PODC), pp. 179–188.
ACM Press, New York (2004)

35. Martel, C., Nguyen, V.: Analyzing and characterizing small-world graphs. In: 16th
ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 311–320. ACM Press,
New York (2005)

36. Martel, C., Nguyen, V.: Designing networks for low weight, small routing diameter
and low congestion. In: 25th Conference of the IEEE Communications Society
(INFOCOM), IEEE Computer Society Press, Los Alamitos (2006)

37. Milgram, S.: The Small-World Problem. Psychology Today, 60–67 (1967)
38. Peleg, D.: Private communication. Workshop of COST Action 295 ”DYNAMO”,

Les Ménuires (January 2006)
39. Plaxton, G., Rajaraman, R., Richa, A.: Accessing Nearby Copies of Replicated

Objects in a Distributed Environment. Theory of Computing Systems 32(3), 241–
280 (1999)

40. Robertson, N., Seymour, P.D.: Graph minors II, Algorithmic Aspects of Tree-
Width. Journal of Algorithms 7, 309–322 (1986)

41. Slivkins, A.: Distance estimation and object location via rings of neighbors. In:
24th Annual ACM Symposium on Principles of Distributed Computing (PODC),
pp. 41–50. ACM Press, New York (2005)

42. Zegura, E., Calvert, K., Bhattacharjee, S.: How to Model an Internetwork. In: 14th
Conference of the IEEE Computer and Communications Societies (INFOCOM),
pp. 594–602. IEEE Computer Society Press, Los Alamitos (1996)

43. Zhang, B., Ng, T., Nandi, A., Riedi, R., Druschel, P., Wang, G.: Measurement
based analysis, modeling, and synthesis of the internet delay space. In: 6th Internet
Measurement Conference (IMC), pp. 85–98 (2006)

Arrangements in Geometry:

Recent Advances and Challenges�

Micha Sharir

School of Computer Science, Tel Aviv University, Tel Aviv, Israel
michas@post.tau.ac.il

Abstract. We review recent progress in the study of arrangements in
computational and combinatorial geometry, and discuss several open
problems and areas for further research.

In this talk I will survey several recent advances in the study of arrangements of
curves and surfaces in the plane and in higher dimensions. This is one of the most
basic structures in computational and combinatorial geometry. Arrangements
appear in a variety of application areas, such as geometric optimization, robotics,
graphics and modelling, and molecular biology, just to name a few. Arrangements
also possess their own rich structure, which has fueled extensive research for the
past 25 years (although, if one wishes, one can find the first trace of them in a
study by Steiner in 1826 [37]). While considerable progress has been made, it
has left many “hard nuts” that still defy a solution. The aim of this talk is to
present these difficult problems, describe what has been done, and what are the
future challenges.

An arrangement of a collection S of n surfaces in R
d is simply the decom-

position of d-space obtained by “drawing” the surfaces. More formally, it is the
decomposition of d-space into maximal relatively open connected sets, of dimen-
sion 0, 1, . . . , d, where each set (“face”) is contained in the intersection of a fixed
subset of the surfaces, and avoids all other surfaces. In many applications, one
is interested only in certain substructure of the arrangement, such as lower en-
velopes, single cells, union of regions, levels, and so on. Other applications study
certain constructs related to arrangements, such as incidences between points
and curves or surfaces, or cuttings and decompositions of arrangements.

The topics that the talk will aim to address (and, most likely, only partially
succeed) include:

(a) Union of geometric objects: In general, the maximum combinatorial
complexity of the union of n simply shaped objects in R

d is Θ(nd). However,
in many favorable instances better bounds can be established, include unions
of fat objects and unions of Minkowski sums of certain kinds; in most cases,

� Work on this paper was partially supported by NSF Grant CCF-05-14079, by a
grant from the U.S.-Israeli Binational Science Foundation, by grant 155/05 from the
Israel Science Fund, Israeli Academy of Sciences, and by the Hermann Minkowski–
MINERVA Center for Geometry at Tel Aviv University.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 12–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Arrangements in Geometry: Recent Advances and Challenges 13

these bounds are close to O(nd−1), which is asymptotically tight. I will briefly
review the significant recent progress made on these problems, and list the main
challenges that still lie ahead. The main open problems involve unions in three
and higher dimensions. For more details, see a recent survey by Agarwal et al. [3].

(b) Decomposition of arrangements: In many algorithmic and combina-
torial applications of arrangements, one uses divide-and-conquer techniques, in
which the space is decomposed into a small number of regions, each of which is
crossed by only a small number of the n given curves or surfaces. Ideally, for a
specified parameter r, one seeks a decomposition (also known as a (1/r)-cutting)
into O(rd) regions, each crossed by at most n/r of the curves or surfaces. This
goal has been achieved for planar arrangements, and for arrangements of hy-
perplanes in any dimesnion. For general simply-shaped surfaces in dimensions
three and four, there exist (1/r)-cuttings of size close to O(rd). The problem is
wide open in five and higher dimensions. Several (hard) related problems, such
as complexity of the overlay of minimization diagrams, or of the sandwich region
between two envelopes, will also be mentioned. There is in fact only one method
for decomposing arrangements of semi-algebraic surfaces, which is the vertical
decomposition (see [13] and the many references given below), and the challenge
is to understand its maximum combinatorial complexity. For more details, see
the book [35], and several surveys on arrangements [5, 6, 34].

(c) Incidences between points and curves and related problems: Bound-
ing the number of incidences between m distinct points and n distinct curves or
surfaces has been a major area of research, which traces back to questions raised
by Erdős more than 60 years ago [19]. The major milestone in this area is the
1983 paper of Szemerédi and Trotter [39], proving that the maximum number of
incidences between m points and n lines in the plane is Θ(m2/3n2/3 + m + n).
Since then, significant progress has been made, involving bounds on incidences
with other kinds of curves or surfaces, new techniques that have simplified and
extended the analysis, and related topics, such as repeated and distinct distances,
and other repeated patterns. I will review the state of the art, and mention many
open problems. An excellent source of many open problems in this area is the
recent monograph of Brass et al. [11]. See also the monographs of Pach and
Agarwal [32] and of Matoušek [28], and the survey by Pach and Sharir [33].

(d) k-Sets and levels: What is the maximum possible number of vertices in an
arrangement of n lines in the plane, each having exactly k lines passing below it?
This simple question is representative of many related problems, for which, in
spite of almost 40 years of research, tight answers are still elusive. For example,
for the question just asked, the best known upper bound is O(nk1/3) [16], and
the best known lower bound is Ω(n · 2c

√
log k) [30, 41]. Beyond the challenge of

tightening these bounds, the same question can be asked for arrangements of
hyperplanes in any dimension d ≥ 3, where the known upper and lower bounds
are even wider apart [28, 29, 36], and for arrangements of curves in the plane,
where several weaker (but subquadratic) bounds have recetly been established
(see, e.g., [12]). I will mention a few of the known results and the implied chal-

14 M. Sharir

lenges. Good sources on these problems are Matoušek [28] and a recent survey
by Wagner [42].

(e) Generalized Voronoi diagrams: Given a collection S of n sites in R
d,

and a metric ρ, the Voronoi diagram V orρ(S) is a decomposition of R
d into cells,

one per site, so that the cell of site s consists of all the points for which s is their
ρ-nearest neighbor in S. This is one of the most basic constructs in computational
geometry, and yet, already in three dimensions, very few sharp bounds are known
for the combinatorial complexity of Voronoi diagrams. In three dimensions, the
main conjecture is that, under reasonable assumptions concerning the shape of
the sites and the metric ρ, the diagram has nearly quadratic complexity. This
is a classical result (with tight worst-case quadratic bound) for point sites and
the Euclidean metric, but proving nearly quadratic bounds in any more general
scenario becomes an extremely hard task, and only very few results are known;
see [10, 14, 24, 26]. I will mention the known results and the main challenges.
One of my favorites concerns dynamic Voronoi diagrams in the plane: If S is a
set of n points, each moving at some fixed speed along some line, what is the
maximum number of topological changes in the dynamically varying Voronoi
diagram of S? The goal is to tighten the gap between the known nearly-cubic
upper bound and nearly-quadratic lower bound. See [9, 35] for more details.

(f) Applications to range searching, optimization, and visibility: Ar-
rangements are a fascinating structure to explore for its own sake, but they
do have a myriad of applications in diverse areas. As a matter of fact, much
of the study of the basic theory of arrangements has been motivated by ques-
tions arising in specific applications. I will (attempt to) highlight a few of those
applications, and discuss some of the open problems that they still raise.

References

[1] Agarwal, P.K., Gao, J., Guibas, L., Koltun, V., Sharir, M.: Stable Delaunay
graphs(unpublished manuscript 2007)

[2] Agarwal, P.K., Nevo, E., Pach, J., Pinchasi, R., Sharir, M., Smorodinsky, S.:
Lenses in arrangements of pseudocircles and their applications. J. ACM 51, 13–
186 (2004)

[3] Agarwal, P.K., Pach, J., Sharir, M.: State of the union, of geometric objects: A
review. In: Proc. Joint Summer Research Conference on Discrete and Computa-
tional Geometry—Twenty Years later, Contemp. Math, AMS, Providence, RI (to
appear)

[4] Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM
Computing Surveys 30, 412–458 (1998)

[5] Agarwal, P.K., Sharir, M.: Davenport-Schinzel sequences and their geometric ap-
plications. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geome-
try, pp. 1–47, North-Holland, (2000)

[6] Agarwal, P.K., Sharir, M.: Arrangements of surfaces in higher dimensions. In:
Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 49–119,
North-Holland, (2000)

Arrangements in Geometry: Recent Advances and Challenges 15

[7] Agarwal, P.K., Sharir, M.: Pseudoline arrangements: Duality, algorithms and ap-
plications. SIAM J. Comput. 34, 526–552 (2005)

[8] Aronov, B., Sharir, M.: Cutting circles into pseudo-segments and improved bounds
for incidences. Discrete Comput. Geom. 28, 475–490 (2002)

[9] Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J. (eds.)
Handbook of Computational Geometry, pp. 201–290. Elsevier Science, Amsterdam
(2000)

[10] Boissonnat, J.-D., Sharir, M., Tagansky, B., Yvinec, M.: Voronoi diagrams in
higher dimensions under certain polyhedral distance functions. Discrete Comput.
Geom. 19, 485–519 (1998)

[11] Braß, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer,
New York (2005)

[12] Chan, T.M.: On levels in arrangements of curves. Discrete Comput. Geom. 29,
375–393 (2003)

[13] Chazelle, B., Edelsbrunner, H., Guibas, L., Sharir, M.: A singly exponential strat-
ification scheme for real semi–algebraic varieties and its applications. Theoretical
Computer Science 84, 77–105 (1991) (Also in Proc. 16th Int. Colloq. on Automata,
Languages and Programming, pp. 179–193 (1989))

[14] Chew, L.P., Kedem, K., Sharir, M., Tagansky, B., Welzl, E.: Voronoi diagrams
of lines in three dimensions under polyhedral convex distance functions. J. Algo-
rithms 29, 238–255 (1998)

[15] Clarkson, K., Edelsbrunner, H., Guibas, L., Sharir, M., Welzl, E.: Combinatorial
complexity bounds for arrangements of curves and spheres. Discrete Comput.
Geom. 5, 99–160 (1990)

[16] Dey, T.K.: Improved bounds for planar k-sets and related problems. Discrete
Comput. Geom. 19, 373–382 (1998)

[17] Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Berlin (1987)
[18] Edelsbrunner, H., Seidel, R.: Voronoi diagrams and arrangements. Discrete Com-

put. Geom. 1, 25–44 (1986)
[19] Erdös, P.: On sets of distances of n points. American Mathematical Monthly 53,

248–250 (1946)
[20] Erdös, P., Lovász, L., Simmons, A., Straus, E.G.: Dissection graphs of planar

point sets. In: Srivastava, J.N., et al. (eds.) A Survey of Combinatorial Theory,
pp. 139–149. North-Holland, Amsterdam (1973)

[21] Ezra, E., Sharir, M.: Almost tight bound for the union of fat tetrahedra in three
dimensions. In: Proc. 48th Annu. IEEE Sympos. Foundat. Vomput. Sci (to appear,
2007)

[22] Kedem, K., Livne, R., Pach, J., Sharir, M.: On the union of Jordan regions and
collision-free translational motion amidst polygonal obstacles. Discrete Comput.
Geom. 1, 59–71 (1986)

[23] Koltun, V.: Almost tight upper bounds for vertical decomposition in four dimen-
sions. J. ACM 51, 699–730 (2004)

[24] Koltun, V., Sharir, M.: Three-dimensional Euclidean Voronoi diagrams of lines
with a fixed number of orientations. SIAM J. Comput. 32, 616–642 (2003)

[25] Koltun, V., Sharir, M.: The partition technique for the overlay of envelopes. SIAM
J. Comput. 32, 841–863 (2003)

[26] Koltun, V., Sharir, M.: Polyhedral Voronoi diagrams of polyhedra in three dimen-
sions. Discrete Comput. Geom. 31, 83–124 (2004)

[27] Lovász, L.: On the number of halving lines. Ann. Univ. Sci. Budapest, Eötvös,
Sec. Math. 14, 107–108 (1971)

16 M. Sharir

[28] Matoušek, J.: Lectures on Discrete Geometry. Springer, Heidelberg (2002)
[29] Matoušek, J., Sharir, M., Smorodinsky, S., Wagner, U.: On k-sets in four dimen-

sions. Discrete Comput. Geom. 35, 177–191 (2006)
[30] Nivasch, G.: An improved, simple construction of many halving edges. In: Proc.

Joint Summer Research Conference on Discrete and Computational Geometry—
Twenty Years later, Contemp. Math, AMS, Providence, RI (to appear)

[31] Pach, J.: Finite point configurations. In: O’Rourke, J., Goodman, J. (eds.) Hand-
book of Discrete and Computational Geometry, pp. 3–18. CRC Press, Boca Raton,
FL (1997)

[32] Pach, J., Agarwal, P.K.: Combinatorial Geometry. Wiley, New York (1995)
[33] Pach, J., Sharir, M.: Geometric incidences. In: Pach, J. (ed.) Towards a Theory of

Geometric Graphs Contemporary Mathematics, Amer. Math. Soc., Providence,
RI, vol. 342, pp. 185–223 (2004)

[34] Sharir, M.: Arrangements of surfaces in higher dimensions, in Advances in Dis-
crete and Computational Geometry. In: Chazelle, B., Goodman, J.E., Pollack, R.
(eds.) Proc. 1996 AMS Mt. Holyoke Summer Research Conference, Contemporary
Mathematics No. 223, American Mathematical Society, pp. 335–353 (1999)

[35] Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric
Applications. Cambridge University Press, Cambridge (1995)

[36] Sharir, M., Smorodinsky, S., Tardos, G.: An improved bound for k-sets in three
dimensions. Discrete Comput. Geom. 26, 195–204 (2001)

[37] Steiner, J.: Einige Gesetze über die Theilung der Ebene und des Raumes, J. Reine
Angew. Math. 1, 349–364 (1826)

[38] Székely, L.: Crossing numbers and hard Erdös problems in discrete geometry.
Combinatorics, Probability and Computing 6, 353–358 (1997)

[39] Szemerédi, E., Trotter, W.T.: Extremal problems in discrete geometry. Combina-
torica 3, 381–392 (1983)

[40] Tamaki, H., Tokuyama, T.: How to cut pseudo-parabolas into segments. Discrete
Comput. Geom. 19, 265–290 (1998)

[41] Tóth, G.: Point sets with many k-sets. Discrete Comput. Geom. 26, 187–194
(2001)

[42] Wagner, U.: k-Sets and k-facets, manuscript (2006)

Nash Equilibria in Voronoi Games on Graphs�

Christoph Dürr and Nguyen Kim Thang

LIX, CNRS UMR 7161, Ecole Polytechnique 91128 Palaiseau, France
{durr,thang}@lix.polytechnique.fr

Abstract. In this paper we study a game where every player is to choose
a vertex (facility) in a given undirected graph. All vertices (customers)
are then assigned to closest facilities and a player’s payoff is the number
of customers assigned to it. We show that deciding the existence of a
Nash equilibrium for a given graph is NP-hard. We also introduce a
new measure, the social cost discrepancy, defined as the ratio of the
costs between the worst and the best Nash equilibria. We show that the
social cost discrepancy in our game is Ω(

√
n/k) and O(

√
kn), where n

is the number of vertices and k the number of players.

1 Introduction

Voronoi game is a widely studied game which plays on a continuous space, typ-
ically a 2-dimensional rectangle. Players alternatively place points in the space.
Then the Voronoi diagram is considered. Every player gains the total surface of
the Voronoi cells of his points [1]. This game is related to the facility location
problem, where the goal is to choose a set of k facilities in a bipartite graph, so
to minimize the sum of serving cost and facility opening cost [8].

We consider the discrete version of the Voronoi game which plays on a given
graph instead on a continuous space. Whereas most papers about these games
[3,5] study the existence of a winning strategy, or computing the best strategy
for a player, we study in this paper the Nash equilibria.

Formally the discrete Voronoi game plays on a given undirected graph G(V, E)
with n = |V | and k players. Every player has to choose a vertex (facility) from
V , and every vertex (customer) is assigned to the closest facilities. A player’s
payoff is the number of vertices assigned to his facility. We define the social cost
as the sum of the distances to the closest facility over all vertices.

We consider a few typical questions about Nash Equilibria:

– Do Nash equilibria exist?
– What is the computational complexity for finding one?
– If they exist, can one be found from an arbitrary intital strategy profile with

the best-response dynamic?
– It they exist, how different are their social costs?

� Supported by ANR Alpage.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 17–28, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 C. Dürr and N.K. Thang

The existence of Nash equilibria is a graph property for a fixed number of play-
ers, and we give examples of graphs for which there exist Nash equilibria and
examples for which there are none. We show that deciding this graph property
is an NP-hard problem.

For particular graphs, namely the cycles, we characterize all Nash equilibria.
We show that the best-response dynamic does not converge to a Nash equilibria
on these graphs, but does for a modified version of this game.

Finally we introduce a new measure. Assume that there are Nash equilibria
for k players on graph G. Let A be the largest social cost of a Nash equilibrium,
B the smallest social cost of a Nash equilibrium, and C the smallest social cost
of any strategy profile, which is not necessarily an equilibrium. Then the ratio
A/C is called the price of anarchy [7], B/C is called the price of stability [2]. We
study a different ratio A/B, which we call the social cost discrepancy of G. The
social cost discrepancy of the game is defined as the worst discrepancy over all
instances of the game. The idea is that a small social cost discrepancy guarantees
that the social costs of Nash equilibria do not differ too much, and measures a
degree of choice in the game. Moreover, in some settings it may be unfair to
compare the cost of a Nash equilibrium with the optimal cost, which may not
be attained by selfish agents. Note that this ratio is upper-bounded by the price
of anarchy. We show that the social cost discrepancy in our game is Ω(

√
n/k)

and O(
√

kn). Hence for a constant number of players we have tight bounds.

2 The Game

For this game we need to generalize the notion of vertex partition of a graph: A
generalized partition of a graph G(V, E) is a set of n-dimensional non-negative
vectors, which sum up to the vector with 1 in every component, for n = |V |.

The Voronoi game on graphs consists of:

– A graph G(V, E) and k players. We assume k < n for n = |V |, otherwise the
game has a trivial structure. The graph induces a distance between vertices
d : V × V → N ∪ {∞}, which is defined as the minimal number of edges of
any connecting path, or infinite if the vertices are disconnected.

– The strategy set of each player is V . A strategy profile of k players is a vector
f = (f1, . . . , fk) associating each player to a vertex.

– For every vertex v ∈ V — called customer — the distance to the closest fa-
cility is denoted as d(v, f) := minfi d(v, fi). Customers are assigned in equal
fractions to the closest facilities as follows. The strategy profile f defines the
generalized partition {F1, . . . , Fk}, where for every player 1 ≤ i ≤ k and
every vertex v ∈ V ,

Fi,v =

{
1

|arg minjd(v,fj)| if d(v, fi) = d(v, f)
0 otherwise.

We call Fi the Voronoi cell of player i. Now the payoff of player i is the
(fractional) amount of customers assigned to it (see figure 1), that is pi :=∑

v∈V Fi,v.

Nash Equilibria in Voronoi Games on Graphs 19

2 5
6 1 5

6 2 1
3

Fig. 1. A strategy profile of a graph (players are dots) and the corresponding payoffs

The best response for player i in the strategy profile f is a vertex v ∈ V
maximizing the player i’s payoff in the strategy profile which equals f except
that the strategy of player i is v. If player i can strictly improve his payoff by
choosing another strategy, we say that player i is unhappy in f , otherwise he
is happy. The best response dynamic is the process of repeatedly choosing an
arbitrary unhappy player, and change it to an arbitrary best response. A pure
Nash equilibrium is defined as a fixed point to the best response dynamic, or
equivalently as a strategy profile where all players are happy. In this paper we
consider only pure Nash equilibria, so we omit from now on the adjective “pure”.

We defined players’ payoffs in such a way, that there is a subtle difference
between the Voronoi game played on graphs and the Voronoi game played on
a continuous surface. Consider a situation where a player i moves to a location
already occupied by a single player j, then in the continuous case player i gains
exactly a half of the previous payoff of player j (since it is now shared with i).
However, in our setting (the discrete case), player i can sometimes gain more
than a half of the previous payoff of player j (see figure 2).

Also note that the best responses for a player in our game are computable in
polynomial time, whereas for the Voronoi game in continuous space, the problem
seems hard [4].

A simple observation leads to the following bound on the players payoff.
Lemma 1. In a Nash equilibrium the payoff pi of every player i is bounded by
n/2k < pi < 2n/k.
Proof: If a player gains p and some other player moves to the same location then
both payoffs are at least p/2. Therefore the ratio between the largest and the
smallest payoffs among all players can be at most 2. If all players have the same
payoff, it must be exactly n/k, since the payoffs sum up to n. Otherwise there
is at least one player who gains strictly less than n/k, and another player who
gains strictly more than n/k. This concludes the proof. �

3 Example: The Cycle Graph

Let G(V, E) be the cycle on n vertices with V = {vi : i ∈ Zn} and E =
{(vi, vi+1) : i ∈ Zn}, where addition is modulo n. The game plays on the

20 C. Dürr and N.K. Thang

undirected cycle, but it will be convenient to fix an orientation. Let u0, . . . , u�−1

be the distinct facilities chosen by k players in a strategy profile f with � ≤ k,
numbered according to the orientation of the cycle. For every j ∈ Z�, let cj ≥ 1
be the number of players who choose the facility uj and let dj ≥ 1 be the length
of the directed path from uj to uj+1 following the orientation of G. Now the
strategy profile is defined by these 2� numbers, up to permutation of the play-
ers. We decompose the distance into dj = 1 + 2aj + bj, for 0 ≤ bj ≤ 1, where
2aj + bj is the number of vertices between facilities uj and uj+1. So if bj = 1,
then there is a vertex in midway at equal distance from uj and uj+1.

With these notations the payoff of player i located on facility uj is

pi :=
bj−1

cj−1 + cj
+

aj−1 + 1 + aj

cj
+

bj

cj + cj+1
.

All Nash equilibria are explicitly characterized by the following lemma. The
intuition is that the cycle is divided by the players into segments of different
length, which roughly differ at most by a factor 2. The exact statement is more
subtle because several players can be located at a same facility and the payoff is
computed differently depending on the parity of the distances between facilities.

Lemma 2. For a given strategy profile, let γ be the minimal payoff among all
players, i.e., γ := min{pi|1 ≤ i ≤ k}. Then this strategy profile is a Nash
equilibrium if and only if, for all j ∈ Z�:

(i) cj ≤ 2
(ii) dj ≤ 2γ
(iii) If cj = 1 and dj−1 = dj = 2γ then cj−1 = cj+1 = 2.
(iv) If cj−1 = 2, cj = 1, cj+1 = 1 then dj−1 is odd.

If cj−1 = 1, cj = 1, cj+1 = 2 then dj is odd.

The proof is purely technical and omitted.
A method to find Nash equilibrium in some games is to apply the best-response

mechanism from an initial strategy profile. However, in our game, even in the
simple cycle graph in which all Nash equilibria can be exactly characterized,
there is no hope to use the best-response mechanism to find Nash equilibrium.

Lemma 3. On the cycle graph, the best response dynamic does not converge.

Proof: Figure 2 shows an example of a graph, where the best response dynamic
can iterate forever. �

Nevertheless there is a slightly different Voronoi game in which the best response
dynamic converges : The Voronoi game with disjoint facilities is identical with
the previous game, except that players who are located on the same facility now
gain zero.

Lemma 4. On the cycle graph, for the Voronoi game with disjoint facilities, the
best response dynamic does converge on a strategy profile in which players are
located on distinct facilities.

Nash Equilibria in Voronoi Games on Graphs 21

1 5
6 → 2 etc.1 → 1 1

6
1
2 → 2

old → new payoff

2 1
3 → 2 1

2

Fig. 2. The best response dynamic does not converge on this graph

Proof: To show convergence we use a potential function. For this purpose we
define the dominance order : Let A, B be two multisets. If |A| < |B| then A 	 B.
If |A| = |B| ≥ 1, and maxA > maxB then A 	 B. If |A| = |B| ≥ 1, maxA =
maxB and A\{maxA} 	 B\{maxB} then A 	 B. This is a total order.

The potential function is the multiset {d0, d1, . . . , dk−1}, that is all distances
between successive occupied facilities. Player i’s payoff — renumbered conve-
niently — is simply (di + di+1)/2. Now consider a best response for player i
moving to a vertex not yet chosen by another player, say between player j and
j + 1. Therefore in the multiset {d0, d1, . . . , dk−1}, the values di, di+1, dj are re-
placed by di + di+1, d

′, d′′ for some values d′, d′′ ≥ 1 such that dj = d′ + d′′. The
new potential value is dominated by the previous one. This proves that after
a finite number of iterations, the best response dynamic converges to a Nash
equilibrium. �

4 Existence of a Nash Equilibrium is NP-Hard

In this section we show that it is NP-hard to decide whether for a given graph
G(V, E) there is a Nash equilibrium for k players. For this purpose we define a
more general but equivalent game, which simplifies the reduction.

In the generalized Voronoi game 〈G(V, E), U, w, k〉 we are given a graph G, a
set of facilities U ⊆ V , a positive weight function w on vertices and a number of
players k. Here the set of strategies of each player is only U instead of V . Also
the payoff of a player is the weighted sum of fractions of customers assigned to
it, i.e., the payoff of player i is pi :=

∑
v∈V w(v)Fi,v .

Lemma 5. For every generalized Voronoi game 〈G(V, E), U, w, k〉 there is a
standard Voronoi game 〈G′(V ′, E′), k〉 with V ⊆ V ′, which has the same set of
Nash equilibria and which is such that |V ′| is polynomial in |V | and

∑
v∈V w(v).

Proof: To construct G′ we will augment G in two steps. Start with V ′ = V .
First, for every vertex u ∈ V such that w(u) > 1, let Hu be a set of w(u) − 1

new vertices. Set V ′ = V ′ ∪ Hu and connect u with every vertex from Hu.
Second, let H be a set of k(a + 1) new vertices where a = |V ′| =

∑
v∈V w(v).

Set V ′ = V ′ ∪ H and connect every vertex of U with every vertex of H .

22 C. Dürr and N.K. Thang

Now in G′(V ′, E′) every player’s payoff can be decomposed in the part gained
from V ′\H and the part gained from H . We claim that in a Nash equilibrium
every player chooses a vertex from U . If there is at least one player located in
U , then the gain from H of any other player is 0 if located in V ′\(U ∪ H), is 1
if located in H and is at least a + 1 if located in U . Since the total payoff from
V ′\H over all players is a, this forces all players to be located in U .

Clearly by construction, for any strategy profile f ∈ Uk, the payoffs are
the same for the generalized Voronoi game in G as for the standard Voronoi
game in G′. Therefore we have equivalence of the set of Nash equilibria in both
games. �

Our NP-hardness proof will need the following gadget.

Lemma 6. For the graph G shown in figure 3 and k = 2 players, there is no
Nash equilibrium.

Proof: We will simply show that given an arbitrary location of one player, the
other player can move to a location where he gains at least 5. Since the total
payoff over both players is 9, this will prove that there is no Nash equilibrium,
since the best response dynamic does not converge.

By symmetry without loss of generality the first player is located at
the vertices u1 or u2. Now if the second player is located at u6, his payoff is
at least 5. �

u1 u2 u3 u4

u5 u6

u7 u8

u9

Fig. 3. Example of a graph with no Nash equilibrium for 2 players

Theorem 1. Given a graph G(V, E) and a set of k players, deciding the exis-
tence of Nash equilibrium for k players on G is NP-complete for arbitrary k,
and polynomial for constant k.

Proof: The problem is clearly in NP , since best responses can be computed in
polynomial time, therefore it can be verified efficiently if a strategy profile is a
Nash equilibrium. Since there are nk different strategy profiles, for n = |V |, the
problem is polynomial when k is constant.

For the proof of NP-hardness, we will reduce 3-Partition — which is unary
NP-complete [6] — to the generalized Voronoi game, which by Lemma 5 is
itself reduced to the original Voronoi game. In the 3-Partition problem we
are given integers a1, . . . , a3m and B such that B/4 < ai < B/2 for every

Nash Equilibria in Voronoi Games on Graphs 23

1 ≤ i ≤ 3m,
∑3m

i=1 = mB and have to partition them into disjoint sets P1, . . . , Pm

⊆ {1, . . . , 3m} such that for every 1 ≤ j ≤ m we have
∑

i∈Pj
ai = B.

We construct a weighted graph G(V, E) with the weight function w : V → N

and a set U ⊆ V such that for k = m + 1 players (m ≥ 2) there is a Nash
equilibrium to the generalized Voronoi game 〈G, U, w, k〉 if and only if there is a
solution to the 3-Partition instance. We define the constants c =

(
3m
3

)
+1 and

d =
⌊

Bc−c+c/m
5

⌋
+ 1. The graph G consists of 3 parts. In the first part V1, there

is for every 1 ≤ i ≤ 3m a vertex vi of weight aic. There is also an additional
vertex v0 of weight 1. In the second part V2, there is for every triplet (i, j, k)
with 1 ≤ i < j < k ≤ 3m a vertex uijk of unit weight. — Ideally we would
like to give it weight zero, but there seems to be no simple generalization of the
game which allows zero weights, while preserving the set of Nash equilibria. —
Every vertex uijk is connected to v0, vi, vj and vk. The third part V3, consists of
the 9 vertex graph of figure 3 where each of the vertices u1, . . . , u9 has weight
d. To complete our construction, we define the facility set U := V2 ∪ V3. Note
that although the graph for the generalized Voronoi game is disconnected, the
reduction of Lemma 5 to the original Voronoi game will connect V2 with V3.

U

w(u1,2,4) = 1

w(u1,2,3) = 1

w(u3n−2,3n−1,3n) = 1

w(v1) = a1c

w(v2) = a2c

w(v3) = a3c

w(v3n) = a3nc

w(v0) = 1

w(u1,2,5) = 1

w(u1) = d w(u3) = d

w(u4) = d

w(u6) = d

w(u2) = d

w(u5) = d

w(u7) = d

w(u8) = d

w(u9) = d

Fig. 4. Reduction from 3-Partition

First we show that if there is a solution P1, . . . , Pm to the 3-Partition

instance then there is a Nash equilibrium for this graph. Simply for every
1 ≤ q ≤ m if Pq = {i, j, k} then player q is assigned to the vertex uijk. Player
m+1 is assigned to u2. Now player (m+1)’s payoff is 9d, and the payoff of each
other player q is Bc + c/m. To show that this is a Nash equilibrium we need to
show that no player can increase his payoff. There are different cases. If player
m + 1 moves to a vertex uijk, his payoff will be at most 3

4Bc + c/(m + 1) < 9d,
no matter if that vertex was already chosen by another player or not. If player
1 ≤ q ≤ m moves from vertex uijk to a vertex u� then his gain can be at most
5d < Bc + c/m. But what can be his gain, if he moves to another vertex ui′j′k′?
In case where i = i′, j = j′, k = k′, aic + ajc is smaller than 3

4Bc because
ai +aj +ak = B and ak > B/4. Since ak′ < B/2, and player q gains only half of

24 C. Dürr and N.K. Thang

it, his payoff is at most aic + ajc + ak′c/2 + c/m < Bc + c/m so he again cannot
improve his payoff. The other cases are similar.

Now we show that if there is a Nash equilibrium, then it corresponds to a
solution of the 3-Partition instance. So let there be a Nash equilibrium. First
we claim that there is exactly one player in V3. Clearly if there are 2 players,
this contradicts equilibrium by Lemma 6. If there are 3 players or more, then
by a counting argument there are vertices vi, vj , vk which are at distance more
than one from any player. One of the players located at V3 gains at most 3d and
if he moves to uijk, his payoff would be at least 3

4Bc+ c/m > 3d. Now if there is
no player in V3, then any player moving to u2 will gain 9d > 3

2Bc + c/m which
is an upper bound for the payoff of players located in V2. So we know that there
is a single player in V3 and the m players in V2 must form a partition, since
otherwise there is a vertex vi ∈ V1 at distance at least 2 to any player. So, by
the previous argument, there would be a player in V2 who can increase his payoff
by moving to the other vertex in V2 as well. (He moves in such a way that his
new facility is at distance 1 to vi.) Moreover, in this partition, each player gains
exactly Bc + c/m because if one gains less, given all weights in V1 are multiple
of c, he gains at most Bc − c + c/m and he can always augment his payoff by
moving to V3 (5d > Bc − c + c/m). �

5 Social Cost Discrepancy

In this section, we study how much the social cost of Nash equilibria can differ
for a given graph, assuming Nash equilibria exist. We define the social cost of a
strategy profile f as cost(f) :=

∑
v∈V d(v, f). Since we assumed k < n the cost is

always non-zero. The social cost discrepancy of the game is the maximal fraction
cost(f)/cost(f ′) over all Nash equilibria f, f ′. For unconnected graphs, the social
cost can be infinite, and so can be the social cost discrepancy. Therefore in this
section we consider only connected graphs.

Lemma 7. There are connected graphs for which the social cost discrepancy is
Ω(

√
n/k), where n is the number of vertices and k the number of players.

Proof: We construct a graph G as shown in figure 5. The total number of vertices
in the graph is n = k(2a + b + 2). We distinguish two strategy profiles f and f ′:
the vertices occupied by f are marked with round dots, and the vertices of f ′

are marked with triangular dots.
By straightforward verification, it can be checked that both f and f ′ are Nash

equilibria. However the social cost of f is Θ(kb + ka2) while the social cost of f ′

is Θ(kab + ka2). The ratio between both costs is Θ(a) = Θ(
√

n/k) when b = a2

and thus the cost discrepancy is lower bounded by this quantity. �

The radius of the Voronoi cell of player i is defined as maxv d(v, fi) where the
maximum is taken over all vertices v such that Fi,v > 0. The Delaunay trian-
gulation is a graph Hf on the k players. There is an edge (i, j) in Hf either if
there is a vertex v in G with Fi,v > 0 and Fj,v > 0 or if there is an edge (v, v′)
in G with Fi,v > 0 and Fj,v′ > 0.

Nash Equilibria in Voronoi Games on Graphs 25

a

b

Fig. 5. Example of a graph with high social cost discrepancy

We will need to partition the Delaunay triangulation into small sets, which
are 1-dominated and contain more than one vertex. We call these sets stars : For
a given graph G(V, E) a vertex set A ⊆ V is a star if |A| ≥ 2, and there is
a center vertex v0 ∈ A such that for every v ∈ A, v = v0 we have (v0, v) ∈ E.
Note that our definition allows the existence of additional edges between vertices
from A.

Lemma 8. For any connected graph G(V, E), V can be partitioned into stars.

Proof: We define an algorithm to partition V into stars.
As long as the graph contains edges, we do the following. We start choosing

an edge: If there is a vertex u with a unique neighbor v, then we choose the
edge (u, v); otherwise we choose an arbitrary edge (u, v). Consider the vertex
set consisting of u, v as well as of any vertex w that would be isolated when
removing edge (u, v). Add this set to the partition, remove it as well as adjacent
edges from G and continue.

Clearly the set produced in every iteration is a star. Also when removing this
set from G, the resulting graph does not contain an isolated vertex. This property
is an invariant of this algorithm, and proves that it ends with a partition of G
into stars. �

Note that, when a graph is partitioned into stars, the centers of these stars form
a dominating set of this graph. Nevertheless, vertices in a dominating set are
not necessarily centers of any star-partition of a given graph.

The following lemma states that given two different Nash equilibria f and
f ′, every player in f is not too far from some player in f ′. For this purpose we
partition the Delaunay triangulation Hf into stars, and bound the distance from
any player of a star to f ′ by some value depending on the star.

Lemma 9. Let f be an equilibrium and A be a star of a star partition of the
Delaunay triangulation Hf . Let r be the maximal radius of the Voronoi cells over
all players i ∈ A. Then, for any equilibrium f ′, there exists a player f ′j such that
d(fi, f

′
j) ≤ 6r for every i ∈ A.

26 C. Dürr and N.K. Thang

= r

U

≤ 2r
≤ 4r

W

q

Fig. 6. Illustration of lemma 9

Proof: Let U = {v ∈ V : mini∈A d(v, fi) ≤ 4r}. If we can show that there is a
facility f ′j ∈ U we would be done, since by definition of U there would be a player
i ∈ A such that d(fi, f

′
j) ≤ 4r and the distance between any pair of facilities of

A is at most 2r. This would conclude the lemma.
So for a proof by contradiction, assume that in the strategy profile f ′ there is

no player located in U . Now consider the player with smallest payoff in f ′. His
payoff is not more than n/k. However if this player would choose as a facility
the center of the star A, then he would gain strictly more: By the choice of r,
any vertex in W is at distance at most 3r to the center of the star. However,
by assumption and definition of U , any other facility of f ′ would be at distance
strictly greater than 3r to any vertex in W . So the player would gain at least all
vertices around it at distance at most 3r, which includes W . Since any player’s
payoff is strictly more than n/2k by Lemma 1, and since a star contains at
least two facilities by definition, this player would gain strictly more than n/k,
contradicting that f ′ is an equilibrium. This concludes the proof. �

Theorem 2. For any connected graph G(V, E) and any number of players k the
social cost discrepancy is O(

√
kn), where n = |V |.

Proof: Let f, f ′ be arbitrary equilibria on G(V, E). We will consider a generalized
partition of V and for each part bound the cost of f ′ by c

√
kn times the cost of

f for some constant c.
For a non-negative n-dimensional vector W we define the cost restricted to

W as costW (f) =
∑

v∈V Wv · d(v, f). Now the cost of f would write as the sum
of costW (f) over the vectors W from some fixed generalized partition.

Fix a star partition of the Delaunay triangulation Hf . Let A be an arbitrary
star from this partition, a = |A|, and let W be the sum of the corresponding
Voronoi cells, i.e., W =

∑
i∈A Fi. We will show that costW (f ′) = O(

√
kn ·

costW (f)), which would conclude the proof. There will be two cases k ≤ n/4
and k > n/4.

Nash Equilibria in Voronoi Games on Graphs 27

By the previous lemma there is a vertex f ′j such that d(fi, f
′
j) ≤ 6r for all

i ∈ A, where r is the largest radius of all Voronoi cells corresponding to the star
A. So the cost of f ′ restricted to the vector W is

costW (f ′) =
∑

v∈V

Wv · d(v, f ′) ≤
∑

v∈V

Wv · d(v, f ′j)

=
∑

v∈V

∑

i∈A

Fi,v · d(v, f ′j)

≤
∑

v∈V

∑

i∈A

Fi,v · (
d(v, fi) + d(fi, f

′
j)

)

≤ costW (f) + 6r · |W |, (1)

where |W | :=
∑

v∈V Wv.
Moreover by definition of the radius, there is a vertex v with Wv > 0 such

that the shortest path to the closest facility in A has length r. So the cost of f
restricted to W is bigger than the cost restricted to this shortest path:

costW (f) ≥ (
1
k

· 1 +
1
k

· 2 + . . . +
1
k

· r) ≥ 1
k

· r(r − 1)/2.

(The fraction 1
k appears because a vertex can be assigned to at most k players.)

First we consider the case k ≤ n/4. We have

costW (f) ≥ |W | − |A| ≥ a(n/2k − 1) ≥ an/4k.

The first inequality is because the distance of all customers which are not facilites
to a facility is at least one. The second inequality is due to Lemma 1 and |W | is
the sum of payoffs of all players in A.

Note that |W | ≤ n and 2 ≤ a ≤ k . Now if r ≤ √
an, then

costW (f ′)
costW (f)

≤ 1 +
6r|W |

costW (f)
≤ 1 +

6r · a · 2n/k

an/4k
= O(r) = O(

√
kn).

And if r ≥ √
an, then

costW (f ′)
costW (f)

≤ 1 +
6r|W |

costW (f)
) ≤ 1 +

6r · a · 2n/k

r(r − 1)/2k
= O(an/r) = O(

√
kn).

Now we consider case k > n/4. In any equilibrium, the maximum payoff is
at most 2n/k. Moreover the radius r of any Voronoi cell is upper bounded by
n/k + 1, otherwise the player with minimum gain (which is at most n/k) could
increase his gain by moving to a vertex which is at distance at least r from every
other facility. Therefore r = O(1). Summing (1) over all stars with associated
partition W , we obtain cost(f ′) ≤ cost(f)+cn, for some constant c. Remark that
the social cost of any equilibrium is at least n − k. Hence, cost(f ′)

cost(f) = O(n). �

28 C. Dürr and N.K. Thang

6 Open Problems

It would be interesting to close the gap between the lower and upper bounds for
the social cost discrepancy. The price of anarchy is still to be studied. Just notice
that it can be as large as Ω(n), as for the star graph and k = n − 1 players:
The unique Nash equilibria locates all players in the center, while the optimum
is to place every player on a distinct leaf. Furthermore, it is expected that the
social cost discrepancy would be considered in other games in order to better
understand Nash equilibria in these games.

References

1. Ahn, H.-K., Cheng, S.-W., Cheong, O., Golin, M., van Oostrum, R.: Competitive
facility location: the Voronoi game. Theoretical Computer Science 310, 457–467
(2004)

2. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden,
T.: The price of stability for network design with fair cost allocation. In: FOCS ’04,
pp. 295–304 (2004)

3. Cheong, O., Har-Peled, S., Linial, N., Matousek, J.: The One-Round Voronoi Game.
Discrete Comput. Geom. 31(1), 125–138 (2004)

4. Dehne, F., Klein, R., Seidel, R.: Maximizing a Voronoi region: the convex case.
International Journal of Computational Geometry 15(5), 463–475 (2005)

5. Fekete, S.P., Meijer, H.: The one-round Voronoi game replayed. Computational
Geometry: Theory and Applications 30, 81–94 (2005)

6. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling under
resource constraints. SIAM Journal on Computing 4, 397–411 (1975)

7. Koutsoupias, E., Papadimitriou, C.: Worst-Case Equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 99. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

8. Vetta, A.: Nash equilibria in competitive societies with applications to facility loca-
tion. In: Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 416–425. IEEE Computer Society Press, Los Alamitos (2002)

Evolutionary Equilibrium in Bayesian Routing

Games: Specialization and Niche Formation

Petra Berenbrink� and Oliver Schulte��

School of Computing Science
Simon Fraser University

Abstract. In this paper we consider Nash Equilibria for the selfish rout-
ing model proposed in [12], where a set of n users with tasks of different
size try to access m parallel links with different speeds. In this model,
a player can use a mixed strategy (where he uses different links with
a positive probability); then he is indifferent between the different link
choices. This means that the player may well deviate to a different strat-
egy over time. We propose the concept of evolutionary stable strategies
(ESS) as a criterion for stable Nash Equilibria, i.e. Equilibria where no
player is likely to deviate from his strategy. An ESS is a steady state
that can be reached by a user community via evolutionary processes in
which more successful strategies spread over time. The concept has been
used widely in biology and economics to analyze the dynamics of strate-
gic interactions. We establish that the ESS is uniquely determined for a
symmetric Bayesian parallel links game (when it exists). Thus evolution-
ary stability places strong constraints on the assignment of tasks to links.

Keywords: Selfish Routing, Bayesian Games, Evolutionarily Stable
Strategy.

1 Introduction

We consider the selfish routing model proposed in [12], where users try to access
a set of parallel links with different speeds. This scenario gives rise to a strategic
interaction between users that combines aspects of both competition, in that
users compete for the fastest links, and coordination, in that users want to avoid
overloaded links. Koutsoupias and Papadimitriou suggest to study the model
in a game-theoretic frame work [12]. They compare the cost of the worst case
Nash equilibrium with the cost of an optimal solution; this ratio was called
price of anarchy. Depending on the cost function that is used to assess the
optimal solution, the ratio between Nash equilibria and optimal solutions can
vary greatly. For example, the cost of the worst case Nash equilibrium can be

� Partially supported by Natural Sciences and Engineering Research Council of
Canada (NSERC) discovery grant.

�� Partially supported by Natural Sciences and Engineering Research Council of
Canada (NSERC) discovery grant.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 29–40, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

30 P. Berenbrink and O. Schulte

similar to the cost of the optimal solution (min-max function considered in [2]),
or the cost for every Nash Equilibrium can be far away from that of the optimal
solution [1].

It is an elementary fact that if a player plays a mixed Nash strategy, then he
is indifferent between the choices that carry positive probability. So, it is not
easy to see what keeps the players from deviating to a different strategy with
different probabilities. A Nash Equilibrium having a sequence of single-player
strategy changes that do not alter their own payoffs but finally lead to a non-
equilibrium position, is called transient [6]. Games can have several non-stable
and transient Nash Equilibria, and it is unlikely that a system will end up in
one of these. Hence it might be interesting to answer first the question which
Nash Equilibria are stable, and then to compare the cost of stable equilibria to
the cost of the optimal solution (see [6]). Several stability models were suggested
in the literature [18]. One of the most important models is Maynard Smith’s
concept of an evolutionarily stable strategy, abbreviated ESS [14]. The criterion
proposed by Maynard Smith is as follows: An equilibrium E is evolutionarily
stable if there is a threshold ε for the size of deviations such that if the fraction
of deviating players falls below ε, then the players following the equilibrium E
do better than the deviants.

1.1 New Results

In this paper we study evolutionarily stable equilibria for selfish routing in Kout-
soupias and Papadimitriou’s parallel links model [12]. We first define a symmetric
version of a Bayesian parallel links game where every player is not assigned a
task of a fixed size but, instead, is randomly assigned a task drawn from a distri-
bution (Section 2.1). Then we argue that every ESS in this game is a symmetric
Nash Equilibrium, where every player uses the same strategy.

In Section 3 we show that the symmetric Nash Equilibrium is unique for link
groups. By link group uniqueness we mean the following. Assume that all links
with the same speed are grouped together into so-called link groups. Then, in
every symmetric Nash Equilibrium, the total probability that tasks of a certain
size are sent to a link group is unique. This implies that the only flexibility in
a symmetric Nash Equilibrium is the probability distribution over links from
the same link group, not over different link groups. Then we show that in a
symmetric equilibrium two links with different speeds cannot both be used by
two ore more tasks with different weights. In fact, we show an even stronger
result: If link � is used for task w and �′ for w′ �= w, then at least one of the
links will not be optimal for the other link’s task. We also show that tasks with
larger weight must be assigned to links with bigger speed.

In Section 4 we characterize ESS for the symmetric Bayesian parallel links
game. We show that every ESS is a Nash Equilibrium, and we show that, to
evaluate evolutionary stability, we have to consider only best replies to the cur-
rent strategy. Then we establish that in an ESS, we not only have link group
uniqueness, but also the probability distribution with which links of the same
group are chosen by tasks has to be unique. In fact, an ESS requires treating two

Evolutionary Equilibrium in Bayesian Routing Games 31

links with equal speed exactly the same. This result establishes the uniqueness
of ESS. We show that in an ESS even two links with the same speed cannot
both be used by two ore more tasks with different weights. This implies that in
an ESS links acquire niches, meaning that there is minimal overlap in the tasks
served by different links. We call this specialization in the following.

In general, the problem of calculating an ESS is very hard; it is contained
in ΣP

2 and is both NP-hard and coNP-hard [5]. We expect that our uniqueness
results and the structual properties of ESS for our game will help to develop
algorithms that compute an ESS. We also show that, unfortunately, the spe-
cialisation condition is necessary for an ESS, but not sufficient. We introduce a
sufficient condition called clustering—roughly, links must form disjoint niches—
and show that every clustered Nash equilibrium is an ESS. Unfortunately, we
also show that there exists a game that does not have a clustered ESS, but it
has an unclustered ESS, so clustering is not a necessary condition.

1.2 Known Results

The Parallel Links Game was introduced by Koutsoupias and Papadimitriou [12],
who initiated the study of coordination ratios. In the model of [12], the cost of a
collection of strategies is the (expected) maximum load of a link (maximized over
all links). The coordination ratio is defined as the ratio between the maximum
cost (maximized over all Nash equilibria) divided by the cost of the optimal
solution. Koutsoupias and Papadimitriou give bounds on the coordination ratio.
These bounds are improved by Mavronicolas and Spirakis [13], and by Czumaj
and Vöcking [3] who gave an asymptotically tight bound.

In [8] Gairing et al. introduce a Bayesian version of the selfish routing game.
Following Harsanyi’s approach [9], each user can have a set of possible types.
Their paper presents a comprehensive collection of results for the Bayesian rout-
ing game. Note that their model is more general than ours since they allow dif-
ferent types for different users, whereas our users all have the same type space
(possible task assignments). In [7] Fischer and Vöcking adopt an evolutionary
approach to a related routing problem (see [16] for a definition).

The concept of evolutionary stability is fundamental in evolutionary game
theory, which has many applications in theoretical biology and economics. The
seminal presentation of the concept of an ESS is due to Maynard Smith [14].
Since then, the concept has played a central role in evolutionary biology and has
been used in thousands of studies. Economists have also applied the concept to
analyze many economic and social interactions. Kontogiannis and Spirakis pro-
vide an introduction to and motivation for evolutionary analysis from a computer
science perspective [11, Sec.3]. Kearns and Suri examine evolutionary stability
in graphical games [10].

Sandholm proposes a pricing scheme based on evolutionary stability for min-
imizing traffic congestion; he notes the potential applicability of his models to
computer networks [17, Sec.8]. His approach does not apply the concept of evo-
lutionarily stable strategy. To our knowledge, our combination of congestion
game + Bayesian incomplete information + ESS is new in the literature. (Ely

32 P. Berenbrink and O. Schulte

and Sandholm remark that “nearly all work in evolutionary game theory has
considered games of compete information” [4, p.84].)

2 Basic Models and Concepts

We first introduce Bayesian Parallel Links Games and show some simple obser-
vations concerning link load and utilities. We then introduce population games
and define evolutionary stable strategies (ESS).

2.1 Bayesian Parallel Links Games

We examine an extension of the original routing game called Bayesian parallel
links game. Our definition below is a special symmetric case of the definition in
[8]. Harsanyi [9] introduced the notion of a Bayesian game to analyze games with
incomplete information where players are uncertain about some aspect of the
game such as what preferences or options the other players have. Bayesian games
have found many applications in economics; eventually Harsanyi’s work earned
him the Nobel Prize. In a Bayesian parallel links game, the uncertainty among
the players concerns the task size of the opponents. An agent knows the size
of her own message, but not the size of the messages being sent by other users.
The Bayesian game of [8] models this uncertainty by a distribution that specifies
the probability that w is the task of user i. In our symmetric Bayesian routing
model, this distribution is the same for all agents. A natural interpretation of this
assumption is that agents are assigned tasks drawn from a common distribution.

A game is symmetric if (1) all players have the same set of strategy options,
and (2) all that matters is what strategies are chosen, and how often they are
chosen, but not by which player. Our Bayesian version of the game is symmetric,
whereas the parallel links game is symmetric for uniform users only. The formal
definition of a symmetric Bayesian routing model is as follows.

Definition 1. A symmetric Bayesian routing model is a tuple 〈N, W, μ,
L, P 〉 where

1. N = [n] is the set of users
2. W = {w1, w2, . . . , wk} is a finite set of task weights, and μ : W → (0, 1] is

a probability distribution over the weights W . The distribution μ is used to
assign weights i.u.r. to players 1, . . . , n.

3. L = [m] is the set of links. For i ∈ [m], link i has speed ci.
4. An allocation s is a vector in [0, 1]m such that

∑m
j=1 s(j) = 1.

5. A mixed strategy p is a total function W → [0, 1]m, i.e., a strategy assigns
an allocation to every task weight in W . Then P is the set of all strategies.
A strategy profile p1, . . . , pn assigns a strategy pi ∈ P to each player i.

Now fix a routing model with strategy set P . In the following we use pi(j, w) for
the probability that, in strategy pi ∈ P , user i assigns a task with weight w to
link j. As usual, (pi, p−i) denotes a strategy profile where user i follows strategy

Evolutionary Equilibrium in Bayesian Routing Games 33

pi and the other players’ strategies are given by the vector p−i of length n − 1.
Similarly, (wi, w−i) denotes a weight vector where user i is assigned task size
wi and the other players’ weights are given by the vector w−i of length n − 1.
The concept of a mixed strategy in a symmetric Bayesian routing model may be
interpreted as follows. Each player chooses a strategy before the game is played.
Then tasks w1, w2, ..., wn are assigned i.u.r. to players 1 through n according to
the distribution μ. Each player learns their own task but not that of the others.
Next for each player i we ”execute” the strategy pi given task wi, such that
task wi is sent to link j with probability pi(j, w). Thus, strategies have a natural
interpretation as programs that take as input a task w and output a link for w
or a probability distribution over links for w.

Like Koutsoupias and Papadimitriou [12], we assume that the latency of a link
depends linearily on the load of a link. Thus we have the following definition of
the load on a link.

Definition 2. Let B = 〈N, W, μ, L, P 〉 be a symmetric Bayesian routing model.
Let p1, .., pn be a vector of mixed strategies.

1. We define

loadi(p1, .., pn, w1, ..., wn) ≡ 1
ci

n∑

j=1

wj · pj(i, wj)

to be the conditional expected load on link i for fixed w1, w2, .., wn.
2. We define

loadi(p1, .., pn) ≡
∑

w1,...,wn∈W n

loadi(p1, .., pn, w1, ..., wn) ·
n∏

j=1

μ(wj).

to be the expected load on link i.

The next observation shows that the load function is additive in the sense that
the total load on link i due to n users is just the sum of the loads due to the
individual users. The proof can be found in the full version of this paper.

Observation 1. Let B = 〈N, W, μ, L, P 〉 be a symmetric Bayesian routing
model. Let p1, .., pn be a vector of mixed strategies; Then for any user j we
have

loadi(p1, .., pn) = loadi(p−j) + loadi(pj).

Therefore loadi(p1, .., pn) =
∑n

j=1 loadi(pj).

A symmetric Bayesian routing game is a symmetric Bayesian routing model with
utility functions for the players. In a symmetric game, the payoff of each player
depends only on what strategies are chosen, and not on which players choose
particular strategies. Hence for a fixed profile of opponents strategy p yields
the same payoff no matter which player i follows strategy p. This allows us to
simplify our notation and write pj(w) or p�(w) for the probability that strategy
p uses a link j or l for a task with size w.

34 P. Berenbrink and O. Schulte

Definition 3. A symmetric Bayesian routing game B = 〈N, W, μ, L, u, P 〉
is a routing model 〈N, W, μ, L, P 〉 with a utility function u. We then write
u(p; p1, ..., pn−1) to denote the payoff of following strategy p when the other play-
ers’ strategies are given by p1, .., pn−1. Then the payoff is defined as

u(p; p1, ..., pn−1) = −
∑

w∈W

∑

�∈L

(w/c� + load�(p1, .., pn−1)) · p�(w) · μ(w).

Fix a symmetric Bayesian routing game B with n players. A strategy profile
(p1, ..., pn) is a Nash equilibrium if no player can improve their payoff unilaterally
by changing their strategy pi. To simplify notation for games in which several
players follow the same strategy, we write pk for a vector (p, p, ..., p) with p
repeated k times. Then the mixed strategy p is a best reply to pn−1 if for all
mixed strategies p′ we have u(p; pn−1) ≥ u(p′; pn−1). If all players in a symmetric
game follow the same strategy, then pn is the resulting mixed strategy profile.
The strategy profile pn is a (symmetric) Nash equilibrium if p is a best reply
to pn−1. Hence, a symmetric Nash equilibrium for a symmetric Bayesian routing
game with n players is a Nash equilibrium (p, p, , .., p) in which each player follows
the same strategy. It follows from Nash’s existence proof [15] that a symmetric
game, such as a symmetric Bayesian Routing Game, has a symmetric Nash
equilibrium.

2.2 Population Games and Evolutionary Stability for the Parallel
Links Game

We give a brief introduction to population games and evolutionary stability. A
more extended introduction from a computer science point of view is provided in
[11, Sec.3]. The standard population game model considers a very large popula-
tion A of agents [19,14]. The agents play a symmetric game like our symmetric
Bayesian routing game. Every agent in the population follows a strategy p fixed
before the game is played. A match is a particular instance of the base game that
results when we match n i.u.r. (independent and uniformly at random) chosen
agents together to play the base game. Since strategies occur with a certain fre-
quency in the population, there is a fixed probability with which a task with a
given size is assigned to a link. Hence, with a population A we can associate a
mixed strategy that we denote by pA.

Consider now the expected payoff that an agent using strategy p receives in
a match given a fixed population A. This is equivalent to playing strategy p
against n − 1 opponents whose choices are determined by the same distribution,
the population distribution pA. In other words, the expected payoff is given
by u(p; (pA)n−1), namely the payoff of using strategy p when the other n − 1
players follow mixed strategy pA. A population is in equilibrium if no agent
benefits from changing her strategy unilaterally given the state of the population.
Formally, a population A with associated mixed strategy pA is in equilibrium
if every mixed strategy p that occurs with frequency greater than zero in the
population is a best reply to (pA)n−1. It is easy to see that this is the case

Evolutionary Equilibrium in Bayesian Routing Games 35

if and only if the symmetric strategy profile (p, p, .., p) is a Nash equilibrium.
So population equilibria correspond exactly to symmetric Nash equilibria. While
restricting attention to symmetric Nash equilibria may seem like an artificial
restriction for non-population models, in large population models symmetric
Nash equilibria characterize the natural equilibrium concept for a population.

The main idea in evolutionary game theory is Maynard Smith’s concept of
stability against mutations. Intuitively, a population is evolutionarily stable if a
small group of mutants cannot invade the population. Consider a population A
that encounters a group AM of mutants. Then the mixed population is A∪AM .
Suppose that in this mixed population the proportion of mutants is ε. The dis-
tribution for the mixed population is the probabilistic mixture (1−ε)pA +εpAM .
We may view a mutation AM as successful if the average payoff for invaders in
the mixed population is at least as great as the average payoff for nonmutants in
the mixed population. The expected payoff for a strategy p in the mixed pop-
ulation A ∪ AM is given by u(p; [(1 − ε)pA + εpAM]n−1). So the average payoff
for the non-mutants is u(pA; [(1 − ε)pA + εpAM]n−1) and for the mutants it is
u(pAM ; [(1 − ε)pA + εpAM]n−1).

Definition 4 (ESS). Let B be a symmetric Bayesian routing game with n play-
ers. A mixed strategy p∗ is an evolutionarily stable strategy (ESS) ⇐⇒
there is an ε > 0 such that for all 0 < ε < ε and mixed strategies p �= p∗ we have
u(p∗; [εp + (1 − ε)p∗]n−1) > u(p; [εp + (1 − ε)p∗]n−1).

3 Link Group Uniqueness of Symmetric Nash Equilibria

This section investigates the structure of symmetric Nash equilibria and estab-
lishes that symmetric equilibria are uniquely determined up to the distribution
of tasks within link groups. A link group L in a symmetric Bayesian routing
game B is a maximal set of links with the same speed, that is, c� = c�′ for
all �, �′ ∈ L. Then, for any mixed strategy p, the probability that p sends task
w to a link in link group L is given by pL(w) ≡ ∑

�∈L p�(w). The main result
of this section is that in any symmetric Bayesian routing game the aggregate
distribution over groups of links with the same speed is uniquely determined for
symmetric Nash equilibria. In other words, the probabilities pL are uniquely de-
termined in a symmetric Nash equilibrium; if pn and (p′)n are Nash equilibria
in a routing game B, then for every link group L and every task weight w we
have pL(w) = p′L(w).

In the following we say that link � is optimal for task w given pn−1 iff �
minimizes the function w/c�+(n−1)·load�(p). In this case we write w ∈ opt�(p).
A mixed strategy p uses link � for task w if p�(w) > 0; we write w ∈ support�(p).
The next proposition asserts that a best reply p′ to a strategy profile pn−1 uses
a link for a task only if the link is optimal for the task given pn−1. This is a
variant of the standard characterization of Nash equilibrium according to which
all pure strategies in the support of an equilibrium strategy are best replies. The
proof can be done similar to the proof of the standard Nash characterization
and is omitted.

36 P. Berenbrink and O. Schulte

Proposition 1. Let B be a symmetric Bayesian routing game with n players,
and let p be a mixed strategy. A strategy p′ is a best reply to pn−1 ⇐⇒ for all
tasks w, links �, if p′�(w) > 0, then � is an optimal link for w given pn−1. That
is, support�(p

′) ⊆ opt�(p).

The next Lemma gives a clear picture of what a symmetric Nash equilibrium
looks like. Intuitively, this picture is the following. (1) Tasks with bigger weights
are placed on faster links. (2) Faster links have a bigger load. (3-5) For every link
� there is an ”interval” of task weights {wi, ..., wl} such that � is optimal for all
and only these weights. (6) Any pair of links with different speeds are optimal
for at most one common task weight.

Lemma 1. Let B be a symmetric Bayesian routing game with n players and a
symmetric Nash equilibrium pn. Fix any two links � and �′.

1. If c� > c�′ , strategy p uses � for task w, and p uses �′ for w′, then w ≥ w′.
2. If c� > c�′ , then load�(pn) > load�′(pn), or load�(pn) = load�′(pn) = 0. And

if c� = c�′ , then load�(pn) = load�′(pn).
3. If c� > c�′ , then there cannot exist tasks w > w′ with w, w′ ∈ support�(p)

and w, w′ ∈ support�′(p).
4. If w1 ≥ w2 ≥ w3 and w1 ∈ opt�(p) and w3 ∈ opt�(p), then w2 ∈ opt�(p).
5. If c�1 ≥ c�2 ≥ c�3 and w ∈ opt�1(p) and w ∈ opt�3(p), then opt�2(p) = {w}.
6. If c� > c�′ , then |opt�(p) ∩ opt�′(p)| ≤ 1.

Proof. The proof can be found in the full version.

We note that Lemma 1 holds for Nash equilibria in general, not just symmetric
ones. Specifically, let p′ be a Nash equilibrium for a symmetric Bayesian routing
game, and fix any player i such that p′ = (p′i, p

′
−i). Then Lemma 1 holds if we

replace a mixed strategy p with p′i, and pn−1 with p′−i, and pn with (p′i, p
′
−i).

We extend our notation for links to link groups L such that cL denotes the
speed of all links in group L. We also define

loadL(pn) ≡
∑

�∈L
load�(pn).

The next theorem is the main result of this section. It states that for a user
population in equilibrium (corresponding to a symmetric Nash equilibrium), the
distribution of tasks to link groups is uniquely determined. Thus the only way
in which population equilibria can differ is by how tasks are allocated within a
link group. This result is the first key step for establishing the uniqueness of an
ESS for a symmetric Bayesian routing game.

Theorem 1 (Link Group Uniqueness). Let B be a symmetric Bayesian
routing game with n players and two symmetric Nash equilibria pn and (p′)n.
Then we have pL(w) = p′L(w) and loadL(pn) = loadL((p′)

n) for all task sizes w
and link groups L of B.

The proof is in the full version. The next section investigates the structure of
evolutionarily stable equilibria and proves that an ESS is uniquely determined
when it exists.

Evolutionary Equilibrium in Bayesian Routing Games 37

4 Characterization of Evolutionary Stability

In this section we prove a necessary and sufficient condition for a mixed strategy
p∗ to be an ESS. In the following let p�(W) =

∑
w∈W p�(w) · μ(w). The next

proposition shows that for sufficiently small sizes of mutations, only best replies
to the incumbent distribution p∗ have the potential to do better than the in-
cumbent. The proposition also implies that an ESS corresponds to a symmetric
Nash equilibrium (Corollary 1).

Proposition 2. Let B be a symmetric Bayesian routing game with n players,
and let p∗ be a mixed strategy. Then there is a threshold ε such that for all ε
with 0 < ε < ε, for all mixed strategies p:

1. If u(p∗; (p∗)n−1) > u(p; (p∗)n−1), then u(p∗; [εp+(1− ε)p∗]n−1) > u(p; [εp+
(1 − ε)p∗]n−1).

2. If u(p∗; (p∗)n−1) < u(p; (p∗)n−1), then u(p∗; [εp+(1− ε)p∗]n−1) < u(p; [εp+
(1 − ε)p∗]n−1).

Proof. The proof requires only standard techniques from evolutionary game the-
ory [19] and is omitted for reasons of space. Intuitively, the result holds because
we can choose our threshold ε small enough (as a function of B and p∗) so that
any difference in the case in which the mutant and incumbent face 0 mutants
outweighs the differences in their payofffs when they face one or more mutants.

Corollary 1. Let B be a symmetric Bayesian routing game with n players, and
let p∗ be an ESS. Then (p∗)n is also a Nash Equilibrium.

Proof (sketch). If p∗ is not a best reply to (p∗)n−1, then there is a mutant p
such that u(p; (p∗)n−1) > u(p∗; (p∗)n−1). Proposition 2(2) then implies that p is
a successful mutation no matter how low we choose the positive threshold ε.

The next lemma 2 provides a necessary and sufficient condition for when a best
reply is a successful mutation, which is key for our analysis of evolutionarily
stable strategies in a given network game.

Lemma 2. Let B be a symmetric Bayesian routing game with n players. Let
(p∗)n be a Nash equilibrium, and consider any best reply p to (p∗)n−1. Define
Δ�(p, p∗) =

∑
�∈L[load�(p∗) − load�(p)] · [p∗� (W) − p�(W)]. Then for all ε with

0 < ε < 1, if

1. Δ�(p, p∗) < 0, then u(p∗; [εp + (1 − ε)p∗]n−1) < u(p; [εp + (1 − ε)p∗]n−1).
2. Δ�(p, p∗) = 0, then u(p∗; [εp + (1 − ε)p∗]n−1) = u(p; [εp + (1 − ε)p∗]n−1).
3. Δ�(p, p∗) > 0, then u(p∗; [εp + (1 − ε)p∗]n−1) > u(p; [εp + (1 − ε)p∗]n−1).

The proof of Lemma 2 can be found in the full version. It shows that a best reply
p to (p∗)n−1 that has a negative quantity

∑
�∈L[load�(p∗) − load�(p)] · [p∗� (W) −

p�(W)] is successful in the strong sense that it yields a better payoff than the
incumbent strategy p∗ no matter what its size. It will be convenient to say that
a mutation p defeats the incumbent strategy p∗ if

∑
�∈L[load�(p∗) − load�(p)] ·

38 P. Berenbrink and O. Schulte

[p∗� (W)−p�(W)] < 0 . Similarly, we say that a mutation p equals an incumbent
p∗ if

∑
�∈L[load�(p∗) − load�(p)] · [p∗� (W) − p�(W)] = 0. In this terminology our

results so far yield the following characterization of evolutionary stability. The
proof directly follows from Proposition 2 and Lemma 2.

Corollary 2. Let B be a symmetric Bayesian routing game with n players. A
mixed strategy p∗ is an ESS for B ⇐⇒ the strategy profile (p∗)n is a Nash
equilibrium, and no best reply p �= p∗ to (p∗)n−1 defeats or equals p∗.

Lemma 1 clarified the structure of user populations in equilibrium. The next
section applies the criterion from Corollary 2 to establish additional properties
of populations in an evolutionarily stable equilibrium. In fact, these properties
imply that an evolutionarily stable equilibrium is unique when it exists.

5 Uniqueness and Structure of Evolutionary Stable
Strategies

We analyze the structure of evolutionary equilibria and show the uniqueness of
ESS. For the first point, our focus is on the allocation of tasks to links that are
consistent with evolutionary stability. Such results tell us how the structure of the
network shapes evolutionary dynamics. They can be helpful for the development
of algorithms calculating an ESS for a given system. The next theorem shows
that in an evolutionary equilibrium there is minimal overlap in the tasks served
by different links, in that two distinct links (even with the same speed) may not
be used by tasks with different weights. In fact the result is stronger in that if
link � is used for task w and �′ for w′ �= w, then at least one of the links must not
be optimal for the other link’s task. This specialization result can be regarded
as a stronger version of Lemma 1(6), where � and �′ can have the same speed.
Unfortunately, the specialization condition of the Theorem is necessary but not
sufficient, as Observation 2 will show.

The idea of the proof of the next theorem is that if two distinct links � and
�′ are used with a probability > 0 by users with different tasks, it is possible
to create a “better” mutant distribution. The mutant distribution increases the
load on one of the two links, say � (by putting the task with the bigger weight
with a larger probability onto �, and, in turn, by putting the smaller task with
smaller probability onto �), but uses the link overall with a smaller probability.
Note that this strategy is only possible if we have different task weights.

Theorem 2 (Specialization). Let B be a symmetric Bayesian routing game
with mixed strategy p∗. Assume w �= w′, � �= �′ with c� ≥ c�′ , and suppose the
following conditions are fulfilled.

1. w ∈ support�(p
∗) and w′ ∈ support�′(p∗),

2. w, w′ ∈ opt�(p∗), and w, w′ ∈ opt�′(p∗).

Then there is a mutation p that defeats p∗, and hence p∗ is not evolutionarily
stable.

Evolutionary Equilibrium in Bayesian Routing Games 39

The next observation gives a counterexample showing that the specialization
condition from Theorem 2 is necessary but unfortunately not sufficient for an
ESS.

Observation 2. There exists a symmetric Bayesian routing game B with a
strategy p such that p meets the specialization condition of Theorem 2 for any
w �= w′ and � �= �′, but p is not an ESS.

Proof. Assume three resources �1, �2, �3 with speeds c�1 = 6, c�2 = 4, and c�3 = 2.
We have two users and two task sizes w = 21 and w′ = 1. We define μ(21) =
2/3 and μ(1) = 1/3. The strategy p with p�1(21) = 19/21, p�2(21) = 2/21,
p�2(1) = 1/3, and p�3(1) = 2/3 defines a symmetric Nash equilibrium fulfilling
the conditions of Theorem 2. But strategy p′ with p′�1(21) = 19/21 − 0.001,
p′�2(21) = 2/21+0.001, p′�2(1) = 1/3−0.008, and p′�3(1) = 2/3+0.008 constitutes
a successful mutation.

Theorem 2 is the last result required to establish the uniqueness of an ESS for
symmetric Bayesian routing games.

Theorem 3 (Uniqueness). Let B be a symmetric Bayesian routing game with
ESS p∗.

1. Fix any two links � �= �′ with the same speed, i.e. c� = c�′ . Then for all task
weights w we have p∗� (w) = p∗�′(w) and |support�(p∗)| ≤ 1.

2. The ESS p∗ is the unique ESS for B.

Now we give a structural condition that is sufficient for an ESS. It can be used to
construct an ESS in a wide variety of models where the ESS exists. Theorem 2
shows that an ESS requires links to ”specialize” in tasks where distinct links
do not share two distinct tasks. A stronger condition is to require that if a link
is optimal for two distinct tasks, then no other link is optimal for either of the
tasks. We call such a distribution clustered.

Definition 5. In an n-player symmetric Bayesian routing game B, a symmetric
strategy profile pn is clustered if for any two distinct tasks w, w′ and any link
�, if � is optimal for both w and w′, then no other link is optimal for w or w′.

The next theorem establishes that every clustered symmetric Nash equilibrium
is an ESS. The proof can be found in the full version.

Theorem 4 (Clustering). Every clustered Nash equilibrium is an ESS, but
not vice versa. More precisely:

1. Let B be a symmetric Bayesian routing game. If (p∗)n is a clustered Nash
equilibrium in B, then p∗ is an ESS in B.

2. There is a symmetric Bayesian routing game B that has a non-clustered ESS
and no clustered ESS.

Acknowledgements. We thank Funda Ergun for helpful discussions and Tom
Friedetzky for the example in Observation 2. We also thank the anonymous
reviewer who simplified the proof of Theorem 1.

40 P. Berenbrink and O. Schulte

References

1. Berenbrink, P., Goldberg, L.A., Goldberg, P., Martin, R.: Utilitarian Resource
Assignment. Journal of Discrete Algorithms 4(4), 567–587 (2006)

2. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion
games. In: Proc. of the 37th Annual Symposium on Theory of Computing (STOC),
pp. 67–73 (2005)

3. Czumaj, A., Vöcking, B.: Tight Bounds for Worst-Case Equilibria. In: Proc. 13th
Annual Symposium on Discrete Algorithms (SODA), pp. 413–420 (2002)

4. Ely, J.C., Sandholm, W.H.: Evolution in Bayesian games I: Theory. Games and
Economic Behavior 53(1), 83–109 (2005)

5. Etessami, K., Lochbihler, A.: The Computational Complexity of Evolutionarily
Stable Strategies. Electronic Colloquium on Computational Complexity 55 (2004)

6. Fabrikant, A., Luthra, A., Maneva, E.N., Papadimitriou, C.H., Shenker, S.: On a
network creation game. In: Proc. of 22nd Symposium on Principles of Distributed
Computing (PODC 2003), pp. 347–351 (2003)

7. Fischer, S., Vöcking, B.: On the Evolution of Selfish Routing. In: Albers, S., Radzik,
T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 323–334. Springer, Heidelberg (2004)

8. Gairing, M., Monien, B., Tiemann, K.: Selfish Routing with Incomplete Informa-
tion. In: Proceedings of the 18th Symposium on Parallelism in Algorithms and
Architectures (SPAA), pp. 1–20 (2002)

9. Harsanyi, J.C.: Games with Incomplete Information Played by ’Bayesian Players’,
Parts I, II, and III. In: Management Science, vol. 14, pp. 159–182, 320–334, 486–502
(1967)

10. Kearns, M.S., Suri, S.: Networks preserving evolutionary equilibria and the power of
randomization. In: ACM Conference on Electronic Commerce, pp. 200–207. ACM,
New York (2006)

11. Kontogiannis, S., Spirakis, P.: The Contribution of Game Theory to Complex Sys-
tems. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 101–111.
Springer, Heidelberg (2005)

12. Koutsoupias, E., Papadimitriou, C.H.: Worst-Case Equilibria. In: Meinel, C., Ti-
son, S. (eds.) STACS 99. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

13. Mavronicolas, M., Spirakis, P.: The Price of Selfish Routing. In: Proc. of the 33rd
Annual Symposium on Theory of Computing (STOC), pp. 510–519 (2001)

14. Smith, J.M.: Evolution and the Theory of Games. Cambridge University Press,
Cambridge (1982)

15. Nash, J.F.: Equilibrium Points in N-Person Games. Proc. of the National Academy
of Sciences of the United States of America, 36, 48–49

16. Roughgarden, T., Tardos, É.: How Bad is Selfish Routing? Journal of the
ACM 49(2), 236–259 (2002)

17. Sandholm, W.H.: Evolutionary Implementation and Congestion Pricing. Review of
Economic Studies 69, 667–689 (2002)

18. van Damme, E.: Stability and Perfection of Nash Equilibria, 2nd edn. Springer,
Berlin (1991)

19. Weibull, J. (ed.): Evolutionary Game Theory. The M.I.T. Press, Cambridge, MA
(1995)

Convergence to Equilibria in

Distributed, Selfish Reallocation
Processes with Weighted Tasks

Petra Berenbrink1,�, Tom Friedetzky2,��, Iman Hajirasouliha1,
and Zengjian Hu1

1 School of Computing Science, Simon Fraser University
Burnaby, B.C., V5A 1S6, Canada

2 Department of Computer Science, Durham University
Durham, DH1 3LE, United Kingdom

Abstract. We consider the problem of dynamically reallocating (or re-
routing) m weighted tasks among a set of n uniform resources (one may
think of the tasks as selfish agents). We assume an arbitrary initial place-
ment of tasks, and we study the performance of distributed, natural re-
allocation algorithms. We are interested in the time it takes the system
to converge to an equilibrium (or get close to an equilibrium).

Our main contributions are (i) a modification of the protocol in [2]
that yields faster convergence to equilibrium, together with a matching
lower bound, and (ii) a non-trivial extension to weighted tasks.

1 Introduction

We consider the problem of dynamically reallocating (or re-routing) m weighted
tasks among a set of n uniform resources (one may think of the tasks as selfish
agents). We assume an arbitrary initial placement of the tasks, and we study
the performance of distributed, natural reallocation algorithms that does not
need any global knowledge, like the number or the total weight of the tasks.
We are interested in the time it takes the system to converge to an equilibrium
(or get close to an equilibrium). The task in our model are to be considered as
individuals, and their actions are selfish. There is no coordination whatsoever
between tasks; in particular, there is no global attempt at optimising the overall
situation.

We study variants of the following natural, distributed, selfish protocol: in each
step, every task chooses one resource at random. It then compares the “load”
of its current host resource with the “load” of the randomly chosen resource,
where “load” measures not only the number of tasks on a given resource but,
where appropriate, takes also into account their weights. If the load difference is
� Partially supported by Natural Sciences and Engineering Research Council of

Canada (NSERC) discovery grant 250284-2002.
�� Partially supported by U.K. Engineering and Physical Sciences Research Council

(EPSRC) First Grant EP/E029124/1.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 41–52, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

42 P. Berenbrink et al.

sufficiently large then the task will migrate to the other resource with a certain
probability. Notice that migrations happen in parallel.

We express our results in terms of Nash equilibria or variations thereof. In
general, a Nash equilibrium among a set of selfish users is a state in which users
do not have an incentive to change their current decisions (i.e., allocation to a
particular resource in our setting). We shall also consider a notion of “closeness”
to Nash equilibria (namely ε-Nash equilibria) which describes states where users
cannot improve their “cost” by a given multiplicative factor by changing their
decisions.

1.1 Related Work

The papers [2,5,10,6] are most closely related to this work. In [5], Even-Dar et
al. introduce the idea of using a potential function to measure closeness to a
balanced allocation. They use it to show convergence for sequences of randomly-
selected “best response” moves in a more general setting in which tasks may
have variable weights and resources may have variable capacities. The notion
of best-response moves makes it necessary for them to consider only strictly
sequential protocols.

Goldberg [10] considers a protocol in which tasks select alternative resources
at random and migrate if the alternative load is lower. The protocol may be
implemented in a weakly distributed sense, requiring that migration events take
place one at a time, and costs are updated immediately.

Even-Dar and Mansour [6] allow concurrent, independent reallocation deci-
sions where tasks are allowed to migrate from resources with load above average
to resources with load below average. They show that the system reaches a Nash
equilibrium after expected O(log log m + log n) rounds. However, their protocol
requires tasks to have a certain amount of global knowledge in order to make
their decisions.

In [8], Fischer, Räcke, and Vöcking investigate convergence to Wardrop equi-
libria for both asymmetric and symmetric routing games. They prove various
upper bounds on the speed of convergence as well as some lower bounds.

The paper most relevant to this one is [2] by Berenbrink et al. They also
consider a strongly distributed system consisting of selfish users. However, they
restrict themselves to uniform tasks. For their model, they show an O(log log m+
n4) bound for the convergence time as well as a lower bound of Ω(log log m).
They furthermore derive bounds on the convergence time to an approximate
Nash equilibrium as well as an exponential lower bound for a slight modification
of their protocol – which is possibly even more natural than the one considered
for the O(log log m+n4) bound in that it results in a perfectly even distribution
in expectation after only one step whereas the “quicker” protocol does not have
this property.

Chien and Sinclair [4] study a version of the elementary step system (ESS) in
the context of approximate Nash equilibria. They show that in some cases the
ε-Nash dynamics may find an ε-Nash equilibrium where finding an exact Nash
equilibrium seems to be hard (PLS-complete). Mirrokni and Vetta [12] study the

Convergence to Equilibria in Distributed, Selfish Reallocation Processes 43

convergence behaviour of ESS as well as the distance from an equilibrium after
a given number of iterations.

1.2 Model

In this section we shall briefly describe the models we are working in. Throughout
this paper let [n] denote {1, . . . , n}. We assume discrete time, i.e., time steps
t ∈ N. We have m weighted tasks b1, . . . , bm and n uniform resources. Assume
that m ≥ n. Each task bi ∈ [m] is associated with a weight wi ≥ 1. Let Δ =
max{wi} denote the maximum weight of any task. Let M =

∑m
i=1 wi be the

total task weight. The assignment of tasks to resources is represented by a vector
(x1(t), . . . , xn(t)) in which xi(t) denotes the load of resource i at the end of step
t, i.e., the sum of weights of tasks allocated to resource i. Let x = M/n be the
average load. For any task b ∈ [m], let rb denote the current resource of task b.

Definition 1 (Nash equilibrium). An assignment is a Nash equilibrium for
task b if xrb

≤ xj + wb for all j ∈ [n], i.e., if task b cannot improve its situation
by migrating to any other resource.

Definition 2 (ε-Nash equilibrium). For 0 ≤ ε ≤ 1, we say a state is an
ε-Nash equilibrium for task b if xrb

≤ xj + (1 + ε)wb.

Notice that this last definition is somewhat different from (and stronger than),
say, Chien and Sinclair’s in [4] where they say that (translated into our model) a
state is an ε′-Nash equilibrium for ε′∈(0, 1) if (1− ε′)xrb

≤ xj +wb for all j∈ [n].
However, our definition captures theirs: for ε′∈(0, 1) let ε= 1

1−ε′ −1(> 0) and ob-
serve that xrb

≤ xj+(1+ε)wb ≤ (1+ε)(xj+wb)=(1+(1
1−ε′ −1))(xj+wb)=

xj+wb

1−ε′ .

1.3 New Results

The main contributions of this paper are as follows. In Section 2 we consider
weighted tasks. Theorem 1 shows that our protocol yields an expected time
to converge to an ε-Nash equilibrium of O(nmΔ3ε−2). Notice that this would
appear to be much worse than the O(log log m + poly(n)) bound in [2] when
only considering uniform tasks (i.e., assuming Δ = 1). We do, however, provide a
lower bound of Ω(ε−1mΔ) in Observation 3 for the case Δ ≥ 2. In Corollary 2 we
also show convergence to a Nash equilibrium in expected time O(mnΔ5) in the
case of integer weights. For a reason for the (rather substantial) factor m instead
of something smaller like log log m in [2] we refer the reader to Section 2.3. The
ideas used in our proofs are different from those in [2], the main reason being that
equilibria are no longer unique and can, in fact, have very different potentials. It
is therefore not possible (as it was in [2]) to “simply” analyze in terms of distance
from equilibrium potential, namely zero, as there is no such thing. Instead, we
show that tasks improve their induced cost when and if they can as long as the
possible improvement is not too small.

In Section 3 we re-analyze our protocol specifically for uniform tasks to allow
for a more direct comparison. In a first step, in Theorem 4 we show that for

44 P. Berenbrink et al.

uniform tasks our protocol reaches (the unique) Nash equilibrium in expected
time O(log m + n log n). This already is better than [2] for small values of m

(roughly when m/ logm < 2Θ(n4)), but still worse for m � n. The reason for
this is mainly that we have smaller migration probabilities than [2] (factor ρ in
the protocol below). These smaller probabilities have the effect that they speed
up the end game (that is, once we are close to an equilibrium) at the expense
of the early game, where the protocol in [2] is quicker. We first show a lower
bound for the expected convergence time of our protocol (and uniform tasks)
of Ω(log m + n), and then mention (Remark 1) how to combine our protocol
with that of [2] in order to obtain overall O(log log m + n log n). The idea here
is mainly to run the protocol in [2] during the early game, and then later switch
to our new protocol (which is faster for almost balanced systems), thus getting
the best from both approaches.

2 The Reallocation Model with Weighted Tasks

We define our allocation process for weighted tasks and uniform resources.
X1(0),. . ., Xn(0) is the initial assignment. The transition from state X(t) =
(X1(t), . . . , Xn(t)) to state X(t+1) is given by the protocol below. Let 0 ≤ ε ≤ 1
and ρ = ε/8. If the process converges, i.e. if X(t) = X(t + 1) for all t ≥ τ for
some τ ∈ N, then the system reached some ε-Nash equilibrium (“some” because
ε-Nash equilibria are, in general, not unique). Our goal is to bound the number
of steps it takes for the algorithm to converge, that is, to find the smallest τ
with the property from above. We prove the following convergence result.

Theorem 1. Let ε > 0 and ρ = ε/8. Let Δ ≥ 1 denote the maximum weight
of any task. Let T be the number of rounds taken by the protocol in Figure 1 to
reach an ε-Nash equilibrium for the first time. Then, E[T] = O(mnΔ3(ρε)−1).

2.1 Notation and Preliminary Results

Definition 3 (Potential function). For the analysis we use a standard po-
tential function: Φ(x) =

∑n
i=1 (xi − x)2 =

∑n
i=1 x2

i − nx (see also [2]).

In the following we assume, without loss of generality, that the assignment is
“normalized”, meaning x1 ≥ · · · ≥ xn. If it is clear from the context we will omit
the time parameter t in X(t) = (X1(t), . . . , Xn(t)) and write X = (X1, . . . , Xn)
instead. We say task b has an incentive to move to resource i if xrb

≥ xi+(1+ε)wb

(notice that this is the condition used in line 4 of Algorithm 1). Let Y b =
(Y b(rb, 1), . . . , Y b(rb, n)) be a random variable with

∑n
i=1 Y b(rb, i) = 1. Y b is

an n-dimensional unit vector with precisely one coordinate equal to 1 and all
others equal to 0. Y b(rb, i) = 1 corresponds to the event of task b moving from
resource rb to resource i (or staying at resource i if i = rb). Let the corresponding
probabilities (P b(rb, 1), . . . , P b(rb, n)) be given by

P b(rb, i) =

⎧
⎨

⎩

ρ(1−xi/xrb
)

n if rb �= i and xrb
> xi + (1 + ε)wb

0 if rb �= i and xrb
≤ xi + (1 + ε)wb

1 − ∑
k∈[n]:xi>xk

P b(i, k) if rb = i.

Convergence to Equilibria in Distributed, Selfish Reallocation Processes 45

Algorithm 1. Greedy Reallocation Protocol for Weighted Tasks
1: for each task b in parallel do
2: let rb be the current resource of task b
3: choose resource j uniformly at random
4: if Xrb(t) ≥ Xj(t) + (1 + ε)wb //violation of Def.2// then

5: move task b from resource rb to j with probability ρ
(
1 − Xj(t)

Xrb
(t)

)

The first (second) case corresponds to randomly choosing resource i and find-
ing (not finding) an incentive to migrate, and the third case corresponds to
randomly choosing the current resource.

For i ∈ [n], let Si(t) denote the set of tasks currently on resource i at step t.
In the following we will omit t in Si and write Si if it is clear from the content.
For i, j ∈ [n] with i �= j, let Ij,i be the total weight of tasks on resource j that
have an incentive to move to resource i, i.e., Ij,i =

∑
b∈Sj: xj≥xi+(1+ε)wb

wb. Let
E[Wj,i] =

∑
b∈Sj

wb · P b(j, i) ≤ xj · ρ(1 − xi/xj)/n = ρ(xj − xi)/n denote the
expected total weight of tasks migrating from resource j to resource i (the last
inequality is true because Ij,i ≤ xj ; at most all the tasks currently on j migrate
to i). Next, we show three simple observations.

Observation 2

1. Φ(x) = 1
n · ∑n

i=1

∑n
k=i+1(xi − xk)2.

2. E[Φ(X(t + 1))|X(t) = x] =
∑n

i=1

(
E[Xi(t + 1)|X(t) = x] − x

)2

+
∑n

i=1 var[Xi(t + 1)|X(t) = x].
3. Φ(x) ≤ m2Δ2.

Proof. Part (1) is similar to Lemma 10 in [3]. The proof of Part (2) is omitted
due to space limitations. For Part (3), simply check the worst case that all the
m tasks are in one resource. ��

2.2 Convergence to Nash Equilibrium

In this section we bound the number of time steps for the system to reach
some Nash equilibrium. We first bound the expected potential change during a
fixed time step t (Lemma 3). For this we shall first prove two technical lemmas
(Lemma 1 and Lemma 2): bounds for

∑n
i=1 (E[Xi(t + 1)|X(t) = x] − x)2 and∑n

i=1 var[Xi(t + 1)|X(t) = x], respectively.

Lemma 1

1.
n∑

i=1

(
E[Xi(t + 1)|X(t) = x] − x

)2

< Φ(x)−(2−4ρ)
n∑

i=1

n∑
k=i+1

E[Wi,k](xi − xk).

2.
n∑

i=1

(
E[Xi(t + 1)|X(t) = x] − x

)2

> Φ(x) − 2
n∑

i=1

n∑
k=i+1

E[Wi,k](xi − xk).

46 P. Berenbrink et al.

Proof. Since E[Wi,j] is the expected total weight migrating from resource i to
j, we have E[Xi(t + 1)|X(t) = x] = xi +

∑i−1
j=1 E[Wj,i] −

∑n
k=i+1 E[Wi,k]; recall

that we assume x1 ≥ · · · ≥ xn.
To estimate

∑n
i=1 (E[Xi(t + 1)|X(t) = x] − x)2, we use an indirect approach

by first analysing a (deterministic) load balancing process. We then use the load
balancing process to show our desired result (see [3]).

We consider the following load balancing scenario: Assume that there are n
resources and every pair of resources is connected so that we have a complete
network. Initially, every resource 1 ≤ i ≤ n has zi = xi load items on it. Assume
that z1 ≥ . . . ≥ zn. Then every pair of resources (i, k), i < k concurrently
exchanges �i,k = E[Wi,k] ≤ ρ(xi − xk)/n = ρ(zi − zk)/n load items. If i ≥ k
we assume �i,k = 0. Note that the above system is similar to one step of the
diffusion load balancing algorithm on a complete graph Kn. In both cases the
exact potential change is hard to calculate due to the concurrent load transfers.
The idea we use now is to first “sequentialize” the load transfers, measure the
potential difference after each of these sub-steps, and then to use these results
to get a bound on the total potential drop for the whole step.

In the following we assume that every edge es = (i, k), i, k ∈ [n], k > i is
labelled with weight �i,k ≥ 0. Note that �i,k = 0 if xi ≤ xk. Let N = n(n −
1)/2 and E = {e1, e2, . . . eN} be the set of edges sorted in increasing order
of their labels. We assume the edges are sequentially activated, starting with
the edge e1 with the smallest weight. Let zs = (zs

1, . . . , z
s
n) be the load vector

resulting after the activation of the first s edges. Note that z0 = (z0
1 , . . . , z0

n)
is the load vector before load balancing and zN = (zN

1 , . . . , zN
n) is the load

vector the activation of all edges. Note that Φ(z0) = Φ(x) since i ∈ [n], z0
i =

zi = xi. Moreover, by the definition of our load balancing process and since
�i,k = E[Wi,k] we have zN

i = zi +
∑i−1

j=1 �j,i −
∑n

k=i+1 �i,k = xi +
∑i−1

j=1 E[Wi,j]−∑n
k=i+1 E[Wi,k] = E[Xi(t + 1)|X(t) = x]. Hence Φ(zN) =

∑n
i=1

(
zN

i − x
)2 =

∑n
i=1

(
E[Xi(t + 1)|X(t) = x] − x

)2

. Next we bound Φ(zN). For any s ∈ [N], let

Δs(Φ) = Φ(zs−1) − Φ(zs) be the potential drop due to the activation of edge
es = (i, k). Note that Φ(z0)−Φ(zN) =

∑N
s=1

(
Φ(zs−1) − Φ(zs)

)
=

∑
es∈E Δs(Φ).

Now we bound Δs(Φ). Since all edges are activated in increasing order of
their weights we get li,j ≤ �i,k = ρ(zi − zk)/n for any node j that is considered
before the activation of es. Node i has n − 2 additional neighbours, hence the
expected load that it can send to these neighbours before the activation of edge
es = (i, k) is at most (n − 2)�i,k < ρ(zi − zk) − �i,k. This gives us zs−1

i ≥
zi − (n − 2)�i,k > zi − ρ(zi − zk) + �i,k. Similarly, the expected load that k
receives before the activation of edge es = (i, k) is at most ρ(zi−zk)−�i,k. Hence,
zs−1

k < zk + ρ(zi − zk)− �i,k. Thus, Δs(Φ) = (zs−1
i)2 + (zs−1

k)2 − (zs−1
i − �i,k)2 −

(zs−1
k + �i,k)2 = 2�i,k(zs−1

i − zs−1
k − �i,k) > (2 − 4ρ)�i,k(zi − zk). Similarly, since

zs−1
i < zi and zs−1

k > zk, we get Δs(Φ) = 2�i,k·(zs−1
i −zs−1

k −�i,k) < 2�i,k(zi−zk).
Next we bound Φ(zN). Φ(z0) − ∑n

i=1

∑n
k=i+1 2�i,k(zi − zk) < Φ(zN) = Φ(z0) −∑

es∈E Δs(Φ) < Φ(z0) − ∑n
i=1

∑n
k=i+1 (2 − 4ρ)�i,k(zi − zk). Consequently, we

Convergence to Equilibria in Distributed, Selfish Reallocation Processes 47

get Φ(x)−2
∑n

i=1

∑n
k=i+1 E[Wi,k](xi − xk) < Φ(zN) =

∑n
i=1

(
E[Xi(t+1)|Xi =

x] − x
)2

< Φ(x) − (2 − 4ρ)
∑n

i=1

∑n
k=i+1 E[Wi,k](xi − xk). ��

Now we show an upper bound for the sum of variance. The proof is omitted due
to space limitations.

Lemma 2.
n∑

i=1

var[Xi(t + 1)|X(t) = x] < (2 − ε)
n∑

i=1

n∑
k=i+1

E[Wi,k](xi − xk). ��

We show the following lemma bounding the potential change during step t. The
proof is omitted due to space limitations.

Lemma 3

1. E[Φ(X(t + 1))|X(t) = x] < Φ(x) − ε
2

∑n
i=1

∑n
k=i+1 E[Wi,k](xi − xk).

2. E[Φ(X(t + 1))|X(t) = x] > Φ(x) − ε
∑n

i=1

∑n
k=i+1 E[Wi,k](xi − xk). ��

We first show that if Φ(x) ≥ 4nΔ2, then the system potential decreases by
a multiplicative factor of at least ρε/4 per round expectedly (Lemma 4). We
then show that whenever x is not ε-Nash equilibrium, every round the system
potential decreases at least by an additive factor of ρε/(6mΔ) in expectation
(Lemma 5). With these two Lemmas, we are ready to show our main result
(Theorem 1). The proof is omitted due to space limitations.

Lemma 4. If Φ(x) ≥ 4nΔ2, Δ is the maximum task weight. We have E[Φ(X(t+
1))|X(t) = x] < (1 − ρε/4)Φ(x). ��
It is easy to derive the following corollary from Lemma 4.

Corollary 1. For t > 0, E[Φ(X(t +1))] ≤ max{8nΔ2, (1 − ρε/8) · E[Φ(X(t))]}.

Proof. Case analysis and Lemma 4. Details are omitted due to space
limitations. ��
Next we show Lemma 5, which indicates that whenever the system is not at some
ε-Nash equilibrium, the system potential decreases by an amount of ρε/(6mΔ)
in expectation during that step.

Lemma 5. Assume that at step t the system is not at some ε-Nash equilibrium.
We have E[Φ(X(t + 1))|X(t) = x] ≤ Φ(x) − ρε

6mΔ .

Proof. Case analysis and Lemma 3(1). Details are omitted due to space
limitations.

Now we are ready to prove Theorem 1.

Proof (Proof of Theorem 1). We first show that E[Φ(X(τ))] ≤ 8nΔ2. after τ =
16 logm/(ερ) steps By Observation 2(3), Φ(X(0)) ≤ m2Δ2. Repeatedly using
Corollary 1 we get E[Φ(X(τ))] ≤ max{8nΔ2, (1−ρε/8)τ ·Φ(X(0))} = 8nΔ2. By
Markov inequality, Pr[Φ(X(τ)) > 80nΔ2] ≤ 0.1.

48 P. Berenbrink et al.

The following proof is done by a standard martingale argument similar to
[2] and [11]. Let us assume that Φ(X(τ)) ≤ 80nΔ2. Let T be the number of
additional time steps for the system to reach some ε-Nash equilibrium after step τ
and let t∧T be the minimum of t and T . Let V = ρε/(6mΔ) and let Zt = Φ(X(t+
τ)) + V t. Observe that {Zt}t∧T is a supermartingale since by Lemma 5 with
X(t+τ) = x, E[Zt+1|Zt = z] = E [Φ(X(τ + t + 1) | Φ(x) = z − V t]+V (t+1) ≤
(z −V t−V)+V (t+1) = z. Hence E[Zt+1] =

∑
z E[Zt+1|Zt = z] · Pr[Zt = z] ≤∑

z z · Pr[Zt = z] = E[Zt]. We obtain V · E[T] ≤ E[Φ(X(τ + T))] + V · E[T] =
E[ZT] ≤ . . . ≤ E[Z0] ≤ 80nΔ2. Therefore E[T] ≤ 80nΔ2/V = 480mnΔ3(ρε)−1,
and by Markov’s inequality Pr[T > 4800mnΔ3(ρε)−1] < 0.1. Hence, after τ+T =
16(ρε)−1 log m+4800mnΔ3(ρε)−1 rounds, the probability that the system is not
at some ε-Nash equilibrium is at most 0.1 + 0.1 = 0.2.

Subdivide time into intervals of τ + T steps each. The probability that the
process has not reached an ε-Nash equilibrium after s intervals is at most (1/5)s.
This finishes the proof. ��
The following corollary bounds the convergence time to a (real, non-ε) Nash
equilibrium in the case of all weights being integers.

Corollary 2. Assume that every task has integer weight of at least 1, and let
ε = 1/Δ. Let T be the number of rounds taken by the protocol in Figure 1 to
reach a Nash equilibrium for the first time. Then, E[T] = O(mnΔ5).

Proof. When Algorithm 1 terminates, for any task b and resource i ∈ [n], we
have xrb

< xi + (1 + ε)wb < xi + wb + 1 ≤ xi + wb since wb ≤ Δ and wb is an in-
teger. This implies that the system is at one of the Nash equilibria. Now, setting
ε = 1/Δ in Theorem 1 and using ρ = ε/8 = (8Δ)−1, we obtain the result. ��

2.3 Lower Bound for the Convergence Time

We prove the following lower bound result for the convergence time of Algo-
rithm 1. The main reason for the slow convergence is that migration probabili-
ties (must) depend on the quotients of the involved resource loads. Intuitively,
problematic cases are those where we have two resources with (large) loads that
differ only slightly. With uniform tasks we would have that all tasks on the
higher-loaded of the two would have a (small) probability to migrate. Here, big-
ger tasks may be perfectly happy and there may be only very few (small) tasks
on the higher-loaded resource that would attempt the migration, each also with
only small probability (recall that uniform tasks implies a direct correspondence
between load and number of tasks).

The authors feel that it is an interesting open problem to design a protocol
that requires no or only a very small amount of (global) knowledge with regards
to weight distribution, average loads, and number of tasks on each resource which
circumvents this problem.

Observation 3. Let T be the first time at which X(t) is the Nash equilibrium.
There is a load configuration X(0) that requires E[T] = Ω(mΔ/ε).

Convergence to Equilibria in Distributed, Selfish Reallocation Processes 49

Proof. Consider a system with n resources, n tasks of weight 1 each, and m − n
tasks of weight Δ ≥ 2 each. Let � = m/n where m is a multiple of n. Let
X(0) = ((� − 1)Δ + 2, (� − 1)Δ + 1, . . . , (� − 1)Δ + 1, (� − 1)Δ). The perfectly
balanced state is the only Nash equilibrium. Let q be the probability for the
unit-size tasks in resource 1 to move to resource n (if exactly one of the two
unit-sized tasks moves, the system reaches the Nash equilibrium). By Algorithm
1, we have q = ρ · 2/(n((� − 1)Δ + 2)) = O(ε/mΔ) since � = m/n and ρ = ε/8.
Note that T is geometric distributed with probability 2q(1 − q). Thus E[T] =
1/(2q(1 − q)) = Ω(mΔ/ε). ��

3 Uniform Case

In this section we show convergence for Algorithm 1 for the case that all tasks are
uniform (i.e., Δ = 1). [2] shows that the perfectly balanced state is the unique
Nash equilibrium. We set ε = 1 in Algorithm 1, thus ρ = 1/(8ε) = 1/8. Note that
when Algorithm 1 terminates, we have ∀i, j ∈ [n], xi < xj + (1 + ε)Δ = xj + 2.
Hence the system is in (the) Nash equilibrium.

3.1 Convergence to Nash Equilibrium

Our main result in this section is as follows.

Theorem 4. Given any initial load configuration X(0) = x. Let T be the num-
ber of rounds taken by the protocol in Figure 1 to reach the unique Nash equi-
librium for the first time. Then, E[T] = O(log m + n log n). Furthermore, T =
O(log m + n log n) with a probability of at least 1 − 1/n.

In the following, we show (in Theorem 4) that, after O(log m + n log n) steps,
Algorithm 1 terminates with high probability. This improves the previous upper
bound of O(log log m + n4) in [2] for small values of m. In fact, we can actually
combine these two protocols to obtain a tight convergence time of O(log log m+
n log n) w.h.p.1. The tightness of this result can be shown by Theorem 4.2 in [2]
and Observation 7.

For simplicity we assume that m is a multiple of n, the proof can easily
be extended to n � m. We first prove Lemma 6, which is a similar result to
Lemma 3(1) that bounds the expected potential drop in one round. Then we
show that in each round the potential drops at least by a factor of 1/64 if the
current expected system potential is larger than 2n (Lemma 7(1)), and at least
by a factor of 1/8n otherwise (Lemma 7(2)). With these two lemmas, we are
ready to show Theorem 4.

We will use the same potential function Φ(x) as the one in Section 2. Re-
call that by Observation 2(1), for an arbitrary load configuration x, Φ(x) =∑n

i=1 (xi − x)2 = 1
n

∑n
i=1

∑n
k=i+1 (xi − xk)2. For resource i, k ∈ [n], let E[Wi,k]

1 We use w.h.p. (with high probability) to denote probability ≥ 1− 1/nα for constant
α > 0.

50 P. Berenbrink et al.

denote the expected number of tasks being transferred from resource i to k. Note
that by Algorithm 1, if xi −xk ≥ 2, E[Wi,k] = xi ·ρ(1−xk/xi)/n = ρ(xi −xk)/n,
otherwise E[Wi,k] = 0. Let Si(x) = {k : xi ≥ xk + 2} and Ei(x) = {k : xi =
xk +1}. Let Γ (x) = 1

n

∑n
i=1

∑
k∈Si(x)(xi−xk)2. Note that the bigger Γ (x) is, the

more tasks are expected to be transferred by Algorithm 1. We first show some
relations between Γ (x) and Φ(x). The proof is omitted due to space limitations.

Observation 5. For any load configuration x, we have

1. If Φ(x) ≥ n, then Γ (x) > Φ(x)/2.
2. If Γ (x) < 2, then Γ (x) = Φ(x)2/n and Φ(x) <

√
2n.

3. If Φ(x) < 2, then x is Nash equilibrium. ��
We then show the following bound for the expected potential drop in one step.

Lemma 6. E[Φ(X(t + 1))|X(t) = x] ≤ Φ(x) − Γ (x)/16.

Proof. Recall that if xi −xk ≥ 2, E[Wi,k] = ρ(xi −xk)/n, otherwise E[Wi,k] = 0.
Thus, Γ (x) = 1

n

∑n
i=1

∑
k∈Si(x)(xi −xk)2 = ρ−1

∑n
i=1

∑n
k=i+1 E[Wi,k](xi − xk).

Setting ε = 1 and ρ = 1/8 in Lemma 3(1), we get

E[Φ(X(t + 1))|X(t) = x] = Φ(x) − 1
2

n∑

i=1

n∑

k=i+1

E[Wi,k](xi − xk)

= Φ(x) − ρΓ (x)
2

= Φ(x) − Γ (x)
16

. ��

The following corollaries follow from Lemma 6.

Corollary 3

1. If Φ(x) ≥ n, E[Φ(X(t + 1))|X(t) = x] < (1 − 1/32)Φ(x).
2. If n > Φ(x) ≥ √

2n, E[Φ(X(t + 1))|X(t) = x] ≤ Φ(x) − 1/8.
3. If

√
2n > Φ(x), E[Φ(X(t + 1))|X(t) = x] ≤ Φ(x) − Φ(x)2/(16n).

Proof. Part (1) follows directly from Lemma 6 and Observation 5(1).
To prove Part (2), if Φ(x) ≥ √

2n, by Observation 5(2) Γ (x) ≥ 2. Then use
Lemma 6 we get E[Φ(X(t + 1))|X(t) = x] ≤ Φ(x) − 1/8.

For Part (3), note that E[Φ(X(t + 1))|X(t) = x] ≤ Φ(x) − Γ (x)/16 by
Lemma 6. Thus it is sufficient to show that Γ (x) ≥ Φ(x)2/n. We consider two
cases for different values of Γ (x). If Γ (x) ≥ 2, Γ (x) > Φ(x)2/n since Φ(x) <

√
2n.

If Γ (x) < 2, by Observation 5(2), Γ (x) = Φ(x)2/n. ��
Next we prove two results that bound the expected potential drop. The proofs
are omitted due to space limitations.

Lemma 7. For any t > 0,

1. E[Φ(X(t + 1))] ≤ max {2n, (1 − 1/64)E[Φ(X(t))]}.
2. E[Φ(X(t + 1))] ≤ (

1 − 1
8n

)
E[Φ(X(t))]. ��

We are now ready to prove the main result in this section.

Convergence to Equilibria in Distributed, Selfish Reallocation Processes 51

Proof (Proof of Theorem 4). We first show that E[Φ(X(τ))] ≤ 2n after τ =
128 lnm steps. By Observation 2(3), Φ(X(0)) ≤ m2Δ2 = m2. Using Lemma 7(1)
iteratively for τ times, we get E[Φ(X(τ))] ≤ max {2n, (1 − 1/64)τΦ(X(0))} ≤
max {2n, (1 − 1/64)τ · m2} = 2n. We then show that after T = 24n lnn addi-
tional steps, the system reaches Nash equilibrium w.h.p. We apply Lemma 7(2)
iteratively for T times and obtain E[Φ(X(τ + T)] ≤ E[Φ(X(τ))]

(
1 − 1

8n

)T ≤
n

(
1 − 1

8n

)24n ln n
< (2n)e−3 ln n < 1

n . By Markov’s inequality, Pr[Φ(X(τ + T)) ≥
2] < 1/n. Observation 5(3) tells us that if Φ(X(τ + T)) < 2, X(τ + T) is Nash
equilibrium. Hence, after τ + T = 128 lnm + 24n lnn steps, the probability that
the system is not at the Nash equilibrium is at most 1/n. ��
Remark 1. Note that we can combine Algorithm 1 and Algorithm 1 in [2] to ob-
tain an algorithm that converges in O(log log m+n logn) steps. To see this, first
note that by Corollary 3.9 in [2], after T1 = 2 log log m steps, E[Φ(X(T1)] ≤ 18n.
Then using a similar argument as above, we can show that after O(log log m +
n log n), the system state is at some Nash equilibrium w.h.p.

3.2 Lower Bounds

We prove the following two lower bound results which show the tightness of
Theorem 4. As discussed earlier, the “slow down” (log m as opposed to the
log log m in [2]) is the result of the introduction of the factor ρ to the migration
probabilities in our protocol.

Observation 6. Let T be the first time at which E[X(t)] ≤ c for constant c > 0.
There is an initial load configuration X(0) that requires T = Ω(log m).

Proof. Consider a system with n = 2 resources and m uniform tasks. Let
X(0) = (m, 0). We first show that E[Φ(X(t+1)] ≥ 7

8E[Φ(X(t))]. By definition,∑n
i=1

∑n
k=i+1 E[Wi,k](xi − xk) = ρ

n

(∑n
i=1

∑n
k=i+1 Ii,k(1 − xk/xi)(xi − xk)

) ≤
Φ(x)

8 . Hence, setting ε = 1 in Lemma 3(2) we obtain E[Φ(X(t + 1))|X(t) =
x] ≥ Φ(x) − ε

∑n
i=1

∑n
k=i+1 E[Wi,k](xi − xk) ≥ frac7Φ(x)8. Now similar to

Lemma 7 (1) we can show that E[Φ(X(t + 1))] ≥ 7E[Φ(X(t))]/8. Note that
Φ(X(0)) = m2/2. To make E[X(T)] ≤ c, we need T = Ω(log m). ��
Observation 7. Let T be the first time at which X(t) is a Nash equilibrium and
T ∗ be the upper bound for T . There is an initial load configuration X(0) that in
order to make Pr[T ≤ T ∗] > 1 − 1/n, we need T ∗ = Ω(n log n).

Proof. Consider a system with n resources and m = n uniform tasks. Let X(0)
be the assignment given by X(0) = (2, 1, . . . , 1, 0). Denote q be the probability
for the tasks in resource 1 to move to resource n (if exactly one of the two tasks
in resource 1 moves, the system reaches the Nash equilibrium). By Algorithm
1 (with ρ = 1/8), q = 2/(2ρn) = 1/(8n). Note that T is geometric distributed
with probability 2q(1 − q) < 1/(4n). Consequently, Pr[T > T ∗] ≤ (1/(4n))T

∗

(since steps 1, . . . , T ∗ all fail). Thus, to have Pr[T ≤ T ∗] > 1 − 1/n, we need
T ∗ = Ω(n log n). ��

52 P. Berenbrink et al.

Remark 2. Note that this lower bound also holds for the protocol in [2] (with
ρ = 1).

References

1. Ackermann, H., Röglin, H., Vöcking, B.: On the Impact of Combinatorial Structure
on Congestion Games. In: Proc. 47th IEEE Annual Symposium on Foundations
of Computing Science (FOCS), pp. 613–622. IEEE Computer Society Press, Los
Alamitos (2006)

2. Berenbrink, P., Friedetzky, T., Goldberg, L.A., Goldberg, P., Hu, Z., Martin, R.:
Distributed selfish load balancing. In: Proc. 17th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 354–363 (2006)

3. Berenbrink, P., Friedetzky, T., Hu, Z.: A new analytical method for parallel,
diffusion-type load balancing. In: Proc. 20th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pp. 1–10 (2006)

4. Chien, S., Sinclair, A.: Convergence to Approximate Nash Equilibria in Congestion
Games. In: Proc. 18th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 169–178 (2007)

5. Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence Time to Nash Equilibria.
In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 502–513. Springer, Heidelberg (2003)

6. Even-Dar, E., Mansour, Y.: Fast Convergence of Selfish Rerouting. In: Proc. 16th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 772–781 (2005)

7. Fabricant, A., Papadimitriou, C.H., Talwar, K.: The Complexity of Pure Nash
Equilibria. In: Proc. 36th Annual Symposium on Theory of Computing (STOC),
pp. 604–612 (2004)

8. Fischer, S., Räcke, H., Vöcking, B.: Fast Convergence to Wardrop Equilibria by
Adaptive Sampling Methods. In: Proc. 38th Annual Symposium on Theory of
Computing (STOC), pp. 653–662. Seattle, WA (2006)

9. Goemans, M.X., Mirrokni, V.S., Vetta, A.: Sink Equilibria and Convergence. In:
Proc. 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 152–164 (2005)

10. Goldberg, P.: Bounds for the Convergence Rate of Randomized Local Search in a
Multiplayer Load-balancing Game. In: Proc. 23rd Annual ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing (PODC), pp. 131–140 (2004)

11. Luby, M., Randall, D., Sinclair, A.J.: Markov Chain algorithms for planar lattice
structures. SIAM Journal on Computing 31, 167–192 (2001)

12. Mirrokni, V.S., Vetta, A.: Convergence Issues in Competitive Games. In: Proc. 7th
International Workshop on Approximation Algorithms for Combinatorial Opti-
mization Problems (APPROX-RANDOM), pp. 183–194 (2004)

Finding Frequent Elements in Non-bursty

Streams�

Rina Panigrahy1 and Dilys Thomas2

1 Microsoft Research, Mountain View, CA 94043, USA
rina@microsoft.com

2 Department of Computer Science, Stanford University, CA 94305, USA
dilys@cs.stanford.edu

Abstract. We present an algorithm for finding frequent elements in a
stream where the arrivals are not bursty. Depending on the amount of
burstiness in the stream our algorithm detects elements with frequency
at least t with space between Õ(F1/t2) and Õ(F2/t2) where F1 and F2 are
the first and the second frequency moments of the stream respectively.
The latter space complexity is achieved when the stream is completely
bursty; i.e., most elements arrive in contiguous groups, and the former
is attained when the arrival order is random. Our space complexity is
Õ(αF1/t2) where α is a parameter that captures the burstiness of a
stream and lies between 1 and F2/F1. A major advantage of our algo-
rithm is that even if the relative frequencies of the different elements is
fixed, the space complexity decreases with the length of the stream if the
stream is not bursty.

1 Introduction

Finding frequent elements in a stream is a problem that arises in numerous
database, networking and data stream applications. The objective is to use a
small amount of space while scanning through the stream and detect elements
whose frequency exceeds a certain threshold. This problem arises in the context
of data mining while computing Iceberg Queries [8,2,10] where the objective
is to find frequently occurring attribute values amongst database records. The
problem of finding Association Rules [1] in a dataset also looks for frequently oc-
curring combination of attribute values. This problem is also useful in web traffic
analysis for finding frequently occurring queries in web logs [4], hot list analy-
sis [9] and in network traffic measurement for finding heavy network flows [7,16].

Formally, given a stream of n elements the objective is to find all elements
with frequency at least t. Let Fi denote the ith frequency moment of the data
stream. If the frequency vector of the stream with m (=F0) distinct elements is
� Supported in part by NSF Grant ITR-0331640. This work was also supported

in part by TRUST (The Team for Research in Ubiquitous Secure Technology),
which receives support from the National Science Foundation (NSF award number
CCF-0424422) and the following organizations: Cisco, ESCHER, HP, IBM, Intel,
Microsoft, ORNL, Qualcomm, Pirelli, Sun and Symantec.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 53–62, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

54 R. Panigrahy and D. Thomas

denoted by (k1, k2, . . . , km), i.e., the jth distinct element occurs kj times, then
Fi =

∑
j ki

j .
There are several algorithms to find the frequent elements. Karp et al. [12]

and Demaine et al. [6] provide a deterministic algorithm to exactly find elements
with frequency greater than t in a stream of length n. The algorithm requires
two passes, linear time and space O(n/t). The first pass is an online algorithm
generalizing a well known algorithm to find the majority element [3,15], in a
stream. A variant of this algorithm is provided by Manku and Motwani [14]. All
these algorithms may produce false positives whose frequencies may be slightly
less than t; a second pass is used to filter these out. An algorithm for tracking
frequent elements in a dynamic set where elements are being inserted and deleted
is presented by Cormode and Muthukrishnan [5].

A randomized algorithm for this problem, called Count-Sketch, by Charikar
et al. [4] (see also [11]) based on hashing requires Õ(F2/t2) space1 where, t
gives the frequency of the frequent elements of interest and F2 is the second
frequency moment of elements in the stream (where all frequencies are capped
at t). Note that F2/t2 can be no more than n/t if all frequencies are capped
at t. In particular if the non frequent elements appear only a constant number
of times this is Õ(n/t2). This means that the space complexity depends on the
second frequency moment and is large if most elements have a high frequency
count. If the elements arrive in random order Demaine et al. [6] provide an
algorithm that uses space O(F1/t2). However this algorithm strongly depends
on the assumption that the arrival order is strictly random and does not work
in any other case.

The Count-Sketch algorithm, on the other hand works for any arrival pattern
while using space Õ(F2/t2) but fails to exploit any randomness in the arrival or-
der; its space complexity does not change whether the elements arrive in bursts
or random order. In practice however the arrival pattern in a stream is un-
predictable. Although we cannot assume that the arrival order is random, it is
unlikely to be entirely bursty; i.e., it is unlikely that the same element arrives in
contiguous bursts. In summary there is no single algorithm that adapts to the
arrival pattern of the stream.

2 Contributions

We present an algorithm that exploits any absence of burstiness in the arrival
pattern. Its space complexity decreases as the arrival pattern becomes less bursty.
If all the copies of an element appear in contiguous bursts it takes space Õ(F2/t2)
and at the other extreme if elements appear in random order its space complexity
gracefully improves to Õ(F1/t2). In general the space requirement lies between
Õ(F1/t2) and Õ(F2/t2) depending on the burstiness of the arrivals. Our results

1 Additional space proportional to the size of the output is required to store the
frequent elements once detected. We ignore this from the space complexity of all
algorithms.

Finding Frequent Elements in Non-bursty Streams 55

are especially interesting in light of a recent lower bound [13] of Ω(F2/t2) for
this problem. However, the lower bound assumes a bursty arrival pattern.

Our algorithm works by sampling certain elements from the stream and main-
taining counters for these elements. The counters are decayed over time and at
every increment of a counter all the other counters are decremented by a certain
value. The idea of decaying counters has been used in [14] and the decrementing
of all counters on an increment has been used in [6,12]. The combination of both
these steps along with the sampling gives us the improved result; dropping any of
the ingredients gives a higher space complexity of Ω(n/t). The space complexity
of our algorithm is Õ(αF1/t2), where α captures the burstiness of the stream,
and lies between 1 and F2/F1.

The key advantage of our algorithm is that the space complexity decreases as
we are allowed to look over a larger portion of the stream. This means in typical
scenarios (where there there stream is not completely bursty) for any given space
we can find the frequent elements as long as we are allowed to look at a suitably
large portion of the stream. Consider for example a stream of length n where the
frequent element occurs in θ fraction of the positions and all the other elements
occur in θ/2 fraction of the positions. In this case Õ(F2/t2) ≈ 2/θ. In comparison
if the burstiness is low enough our algorithm achieves space complexity close to
Õ(F1/t2) ≈ 1/(θt), where the count t of the frequent element is equal to nθ. Since
t increases with the length of the stream, this means that the space complexity
decreases linearly in the count of the frequent element as the length of the stream
increases. Even if the stream is not perfectly random but αF1 is comparable to
F2−ε, the space complexity grows as Õ(F2−ε

t2) = 1/(θtε). Even in this case the
space complexity decreases as we use a longer stream.

The burstiness parameter α can be described as follows. Pick an element e at
a random position i from the stream and find how many future occurrences of
that element cumulatively occur at about the density of the frequent elements.
Formally, starting from the location i find the positions of the future occurrences
of the element e. Let li1, li2, . . . lij be the distances of the first, second, . . . jth
occurrences of that element after the position i (li0 = 0). Observe that the
density of occurrence in the segments starting at location i of lengths li1, li2, . . .
lij are 1

li1
, 2

li2
, . . . j

lij
and so forth.

Definition 1. The ρ-burst count B(i, ρ) of an element e at position i in the
stream is defined as the maximum number of occurrences of e starting from posi-
tion i that cumulatively occur at rate at least ρt

n ; i.e., B(i, ρ) = 1+max{k|∀(j ≤
k) : j

lij
≥ ρt

n }.

The additive value of 1 accounts for the occurrence of element e at position i
itself.

Definition 2. F2(ρ) =
∑n

i=1 B(i, ρ)

Let us look at the contribution to F2(ρ) from a single element with frequency
k. Look at the sum of B(i, ρ) where i spans over the k occurrences. For each

56 R. Panigrahy and D. Thomas

occurrence, B(i, ρ) is at least 1 and at most k. If all the occurrences appear con-
tiguously then the individual values of B(i, ρ) for these occurrences are 1, 2 . . . k
giving a total contribution of k(k+1)/2. On the other extreme if all occurrences
are far apart with a gap of at least n/(ρt), then each B(i, ρ) for this element is
1 and the total contribution is k. So F1 ≤ F2(ρ) ≤ (F2 + F1)/2 ≤ F2.

Definition 3. α(ρ) = F2(ρ)
F1

.

In the computation of F2(ρ) we consider at most t occurrences of each element.
This ensures that an element that occurs more than t times contributes at most a
constant to F2(ρ)/t2. Observe that F2(ρ) ≥ F1; this is because B(i, ρ) is at least
1. F2(1) approaches F1 if for most positions in the stream the next occurrence
of the element at that position is farther than n/t. This tends to happen as the
arrival pattern tends to a random arrival pattern.

We present an algorithm that finds all elements with frequency more than
t with high probability using space Õ(F2(ρ)/t2). Our algorithm is allowed to
report elements with frequency slightly less than t: it may report elements with
frequency at least (1−ρ−2ε)t. An element with frequency more than t is reported
with probability at least 1−δ. The space requirement is Õ(log(1/δ)F2(ρ)

ε2t2). A second
pass may be used to filter out the elements with frequency less than t.

3 Algorithm

We will present an algorithm that finds one frequent element with frequency t

with probability at least 1 − δ using space Õ(log(1/δ)F2(ρ)
ε2t2). In this section we

assume that the value of F2(ρ) is known a-priori; we will relax this assumption
in the next section. For ease of exposition let us focus on one frequent element,
with frequency more than t (if it helps the reader may also assume there is only
one such frequent element). If there are several frequent elements all of those
can be detected by appropriately adjusting the failure probability δ. Note that
in the computation of F2(ρ) the frequency of all elements is capped at t.

Our algorithm essentially maintains counters for certain elements in the
stream that are sampled with probability about Θ(1/t). A counter is incre-
mented if its associated element is found in the stream. Whenever a counter is
incremented a fixed value is subtracted from all other counters. A counter is also
decayed at a certain rate. Whenever a counter drops below zero it is deleted.

Algorithm:

1. The algorithm maintains a set of counters where each counter is associated
with a specific element. If there is a counter associated with an element e we
denote that counter value by ce.

2. While scanning the stream, sample each position at the rate of 1/(μt), where
μ = log(1/δ)

ε . When an element e is sampled create a new counter ce unless
a counter already exists for that element. Initialize ce to 1.

Finding Frequent Elements in Non-bursty Streams 57

3. For every element in the stream if the element is associated with a counter
increment its counter by one and decrement every other counter by d. The
value of d will be specified later during our analysis.

4. Decay every counter by ρt
n every step.

5. Drop a counter if its value drops below zero.
6. Whenever the value of a counter exceeds (1 − ρ − 2ε)t output it and ignore

its future occurrences in the stream.

Remark 1. Although in our algorithm description we perform a decay and a
decrement step on each counter separately this can be implemented efficiently in
Õ(1) amortized time per stream entry by keeping a global subtraction counter
that is incremented by ρt

n at every step and by d when an element associated
with an active counter is encountered. When a new counter is created, instead
of initializing it by 1 we can initialize it by 1 plus the current value in the
subtraction counter. The actual value of a counter is its value minus the value
of the subtraction counter. When an element with an active counter is found,
instead of incrementing it by 1, we increment it by 1 + d (since the subtraction
counter has also been incremented by d). We maintain the counters in sorted
order, and at each step we drop all the counters with value less than the value
of the subtraction counter. The amortized time spent per stream element for the
drops is constant as the dropping of a counter can be charged to its creation
which happens at most once per stream entry.

The following theorem bounds the space complexity of our algorithm.

Theorem 1. The algorithm detects a frequent element, with frequency more
than t, with probability at least 1 − δ and uses at most Õ(log(1/δ)F2(ρ)

ε2t2) counters.

We are focusing on detecting one frequent element, say e. Let us look at all
the locations in the stream where the frequent element e does not occur. Let
S = {i1, i2, i3, . . . , ip} denote the sampled locations, of the non frequent elements
(elements with frequency less than t) sampled at the rate of 1/(μt). Let q1, q2,
. . . , qp denote the burst counts B(i1, ρ), B(i2, ρ), . . ., B(ip, ρ).

Lemma 1. The counter ce of an element, e, sampled at position i, can never
exceed its burst count B(i, ρ) during its incarnation. (Note that a counter for an
element can be created and deleted multiple times).

Proof: This is evident from the definition of the burst count, B(i, ρ) and the way
the counters are being decayed at rate ρt

n . Whenever the cumulative frequency
of the element drops below ρt

n the counter will drop below zero and hence will
be deleted. ��
The next lemma computes a high probability upper bound on

∑p
i=1 qi. Let Q

denote this upper bound.

Lemma 2. The expected value E[
∑p

i=1 qi] ≤ F2(ρ)
μt . With probability at least

(1 − δ) the value of
∑p

i=1 qi ≤ O(F2(ρ)
μt) + t log(1

δ) = Q.

58 R. Panigrahy and D. Thomas

Proof: Each position i is sampled with probability 1/(μt) and has burst count

B(i, ρ). So, E[
∑p

i=1 qi] = E[1/(μt)
∑n

i=1 B(i, ρ)] = 1/(μt) × F
′

2 ≤ F
′
2

μ×t . The high
probability part can be proved by an application of Chernoff bounds. Each qi

lies between 0 and t. By scaling them down by a factor of t it lies in [0, 1]. A
standard application of Chernoff bounds gives the result. ��
In the algorithm, the decrement value d will be set to μt

Q where Q is the high
probability upper bound in Lemma 2.

The proof of Theorem 1 is based on the following observations: (1) The fre-
quent element is sampled with high probability. (2) The decay and decrement
in steps 3,4 of the algorithm is small so that the counter of the frequent element
survives with high value.

Conditioning on sampled locations: We will condition on the sampled loca-
tions of all elements other than e, the frequent element of interest. Let S denote
the set of sampled elements other than e. We will also condition on the event
that

∑p
i=1 qi ≤ Q which happens with high probability by Lemma 2.

Then we will show that out of the t occurrences of the frequent element,
a large fraction of them are good in the sense that if any of them are to be
sampled its counter would survive and it would be reported as the frequent
element. Conditioned on the sampled locations of the other elements, we will
use the following process to identify good locations of the frequent element of
interest, say e.

We analyze the following slightly modified algorithm for updating the counter
ce, which differs only in the decrement step.

Modified decrement step for analysis:

1. As before whenever the element e is encountered its counter ce, if present,
is incremented.

2. It is decayed at rate of ρt
n as before in every step.

3. Whenever an element from S is found a value d is subtracted from the
counter ce if present.

Note that in the above definition the counter operations are almost the same as
in the algorithm, except that the decrement operation is allowed to happen even
if the counter of an element in S may have expired. Since we are subtracting
a larger amount a good element by this definition will always survive in the
algorithm.

All the analysis below assumes that we work with this modified algorithm.

Definition 4. Good Occurrence of a frequent element e: Conditioned on
a given set of sampled locations of elements other than e, an occurrence of e
is considered good if on initiating the counter ce at that occurrence the counter
remains positive till the end of the algorithm (with the modified decrement step).
Any other occurrence of e is called a bad occurrence of e.

Given the algorithm with the modified decrement step, we can write down with
each stream entry the subtraction value that it causes on the counter ce if present;

Finding Frequent Elements in Non-bursty Streams 59

this subtraction value is ρt
n (due to the decay) if the stream entry is not from

the set S and d + ρt
n (due to the decay and the decrement) if it is from the set

S. Instead of explicitly performing the decay and the decrement steps for each
stream entry we may simply subtract the subtraction value associated with that
stream entry from the counter ce if it is present. The following lemma shows
that the total subtraction value of all the stream entries is small.

Lemma 3. The total subtraction value associated with all the stream entries is
at most (ε + ρ)t.

Proof: The total subtraction value because of the decay is at most ρt. This
because the stream is of size n and the decay happens at rate ρt

n .
The total subtraction value from the decrements is no more that dQ. This is

because the decrement value of d is applicable every time a an element from S is
found, which happens

∑p
i=1 qi times. The total decrement value is d× (

∑p
i=1 qi)

which by Lemma 2 is at most dQ (recall that we have already conditioned on
the high probability event in Lemma 2). Since d = εt

Q it follows that the total
subtraction due to the decrement step is at most εt. ��
The following lemma shows that there are a large number of good occurrences
of the frequent element.

Lemma 4. Conditioned on S there are at least (1 − ρ − ε)t good occurrences of
element e.

Proof: Starting from the first occurrence of e, we check if that occurrence is
good or bad. If it is bad, by definition this means there must be a future point
in the stream where its counter is dropped below zero due to the subtraction
values. We skip all the occurrences of e up to that point and proceed to the next;
we will refer to the bad occurrence of e and all the skipped positions as a bad
segment (in fact all the occurrences of e in the bad segment can be shown to
be bad). This divides the stream into good occurrences and bad segments; any
occurrence outside of a bad segment is good. Now we will show that the total
number of occurrences in these bad segments is small.

Note that the number of occurrences of e in any bad segment cannot exceed
the total subtraction value of the entries in that segment as otherwise the counter
ce initiated at that start of the segment would not have become negative. Since
the total subtraction value is at most (ρ + ε)t the total number of occurrences
in the bad segments is at most the same value. So the total number of good
occurrences is at least (1 − ρ − ε)t. ��
The following lemma proves that the algorithm reports a frequent element with
high probability.

Lemma 5. With probability at least (1−δ) the frequent element e will be sampled
and survive with a counter of at least (1 − ρ − 2ε)t.

Proof: With probability (1 − δ) the frequent element e is sampled in one of its
first log(1/δ) × μt = εt good occurrences. Let s1 denote the total subtraction

60 R. Panigrahy and D. Thomas

value of entries before the sample point, and s2 denote the total subtraction
value of entries after the sample point. The number of bad occurrences before
the sample point is at most s1 (because the number of occurrence in any bad
segment is at most the total subtraction value in that bad segment). The total
number of occurrences before the sampling point is at most εt+ s1. The number
of occurrences after the sampling point is at least t − (εt + s1). Further after
the sampling point the total subtraction value is s2. So after the sampling and
all the subtractions the counter value in the end is at least t − (εt + s1) -s2 =
t − (εt + (s1 + s2). Since s1 + s2 = (ρ + ε)t the result follows. ��
We are now ready to prove, Theorem 1.

Proof: Let us order the counters by their creation time. We will refer to the
number of times a counter has been incremented as its upcount. Since every
upcount causes a decrement of all the other counters by value d, the upcount
of an active counter has to be at least d times the sum of the upcounts of
the newer counters. Let ui denote the upcount of the ith newest counter in
this order (Note that the actual counter values is going to be the upcounts
minus the amounts of subtraction due to decaying and decrementing). Since
each counter value is non-negative it follows that ui >

∑i
j=1 uj × d. Define

Pi =
∑i

j=1 uj . Hence Pi > (1 + d)Pi−1, so Pi > (1 + d)i. Also Pi cannot exceed
the total upcount, which is bounded by Q. The total upcount, which is at most
Q = O(F2(ρ)

μt) + t log(1
δ), giving (1 + d)i < Q. Approximating log(1 + d) = d for

small d, we get i < (1/d) log Q = F2(ρ)
μεt2 log Q = O(log(1/δ)F2(ρ)

ε2t2 log(log(1/δ)F2(ρ)
εt +

log(1/δ))) = Õ(F2(ρ)/t2) ��
So far we have focussed on only finding one frequent element. By adjusting the
high probability parameter δ we can find all elements with frequency more than
t. Since there are at most n/t such elements by replacing δ by δt

n all such elements

can be detected with probability 1 − δ by using space Õ(log(n
tδ)F2(ρ)

ε2t2).
So far in our analysis we have assumed that all the frequencies are bounded

by t. To eliminate this assumption we note that a counter value is never allowed
to exceed t as once this happens the element is reported by the algorithm and
all its future occurrences are ignored.

4 Algorithm Without Assuming Knowledge of F2(ρ)

We will now show how to run the algorithm without assuming the value of F2(ρ)
is known.

Maintain a global counter q, initialized to zero which is incremented whenever
an element with an active counter is encountered in the stream; q tracks the
total upcount of all the counters. Note that q < Q with high probability (see
Lemma 2). The decrement amount d, which earlier depended on F2(ρ) is now

set to ε
′
εt

q log1+ε
′
(q)

.

Finding Frequent Elements in Non-bursty Streams 61

Algorithm:

1. The algorithm maintains a set of counters, where each counter is associated
with a specific element. If there is a counter associated with an element e we
denote that counter value by ce.

2. While scanning the stream, sample each position at the rate of 1/(μt), where
μ = log(1/δ)

ε . When an element e is sampled create a new counter, ce, unless
a counter already exists for that element. Initialize ce to 1.

3. For every element in the stream if the element is associated with a counter, in-
crement its counter by one, decrement every other counter by d = ε

′
εt

q log1+ε
′
(q)

(Here, ε
′
is any small constant), and increment q.

4. Decay every counter by ρt
n in every step.

5. Drop a counter if its value drops below zero.
6. Whenever the value of a counter exceeds (1 − ρ − 2ε)t output it and ignore

its future occurrences in the stream.

The proof of correctness of the improved algorithm is very similar to the
previous one except for the following differences.

Lemma 6. The total subtraction amount due to the decrements is at most εt.

Proof: The subtraction when the upcount is q is ε
′
εt

q log1+ε
′
(q)

. The total subtrac-

tion is therefore at most
∑∞

q=2
ε

′
εt

q log1+ε
′
(q)

≤ ∫∞
2

ε
′
εt

q log1+ε
′
(q)

dq ≤ ∫∞
1

ε
′
εt

x1+ε
′ dx ≤

(ε × t) ��

Theorem 2. The total number of counters used by the improved algorithm is at
most Õ(F2(ρ)

με′ εt2
).

Proof: The decrement value d is at least ε
′
εt

Q log1+ε
′
(Q)

. Just as in the proof of

Theorem 1 the number of counters is at most (1/d) log(Q) ≤ Õ(F2(ρ)

μεε′ t2
) ��

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of
the Intl. Conf. on Very Large Data Bases, pp. 487–499 (1994)

2. Beyer, K., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cubes.
In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pp. 359–370
(1999)

3. Boyer, R., Moore, S.: MJRTY - a fast majority vote algorithm. In: U. Texas Tech
report (1982)

4. Charikar, M., Chen, K., Colton, M.F.: Finding frequent items in data streams. In:
Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R.
(eds.) ICALP 2002. LNCS, vol. 2380, pp. 693–703. Springer, Heidelberg (2002)

62 R. Panigrahy and D. Thomas

5. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: Tracking most fre-
quent items dynamically. In: Proc. of the ACM Symp. on Principles of Database
Systems (2003)

6. Demaine, E., Ortiz, A.L., Munro, J.I.: Frequency estimation of internet packet
streams with limited space. In: Proceedings of the 10th Annual European Sympo-
sium on Algorithms, pp. 348–360, Sept (2002)

7. Estan, Verghese, G.: New directions in traffic measurement and accounting. In:
ACM SIGCOMM Internet Measurement Workshop, ACM Press, New York (2001)

8. Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ullman, J.: Computing
iceberg queries efficiently. In: Proc. of 24th Intl. Conf. on Very Large Data Bases,
pp. 299–310 (1998)

9. Gibbons, P.B., Matias, Y.: Synopsis data structures for massive data sets. In: DI-
MACS: Series in Discrete Mathematics and Theoretical Computer Science: Special
Issue on Eternal Memory Algorithms and Visualization, vol. A. AMS, Providence,
R.I., 39.70 (1999)

10. Han, J., Pei, J., Dong, G., Wang, K.: Efficient computation of iceberg cubes with
complex measures. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of
Data, pp. 1–12 (2001)

11. Indyk, P., Woodruff, D.: Optimal approximations of the frequency moments of
data streams. In: Proceedings of the 37th Annual ACM Symposium on Theory of
computing, pp. 22–24. ACM Press, New York (2005)

12. Karp, R., Shenker, S., Papadimitriou, C.: A simple algorithm for finding frequent
elements in streams and bags. In: Proc. of the ACM Trans. on Database Systems,
pp. 51–55 (2003)

13. Kumar, R., Panigrahy, R.: Instance specific data stream bounds. In: Manuscript
(2007)

14. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:
Proc. of the Intl. Conf. on Very Large Data Bases (2002)

15. Misra, J., Gries, D.: Finding repeated elements. In: Science of Computer Program-
ming (1982)

16. Pan, R., Breslau, L., Prabhakar, B., Shenker, S.: Approximate fairness through
differential dropping. In: ACM SIGCOMM Computer Communication Review,
pp. 23–39. ACM Press, New York (2003)

Tradeoffs and Average-Case Equilibria in Selfish

Routing

Martin Hoefer1,� and Alexander Souza2

1 Department of Computer and Information Science,
University of Konstanz, Germany
hoefer@inf.uni-konstanz.de

2 Department of Computer Science, University of Freiburg, Germany
souza@informatik.uni-freiburg.de

Abstract. We consider the price of selfish routing in terms of tradeoffs
and from an average-case perspective. Each player in a network game
seeks to send a message with a certain length by choosing one of sev-
eral parallel links that have transmission speeds. A player desires to
minimize his own transmission time (latency). We study the quality of
Nash equilibria of the game, in which no player can decrease his latency
by unilaterally changing his link. We treat two important aspects of
network-traffic management: the influence of the total traffic upon net-
work performance and fluctuations in the lengths of the messages. We
introduce a probabilistic model where message lengths are random vari-
ables and evaluate the expected price of anarchy of the game for various
social cost functions.

For total latency social cost, which was only scarcely considered in
previous work so far, we show that the price of anarchy is Θ

(
n
t

)
, where

n is the number of players and t the total message-length. The bound
states that the relative quality of Nash equilibria in comparison with the
social optimum increase with increasing traffic. This result also transfers
to the situation when fluctuations are present, as the expected price of

anarchy is O
(

n
E[T]

)
, where E [T] is the expected traffic. For maximum

latency the expected price of anarchy is even 1 + o (1) for sufficiently
large traffic.

Our results also have algorithmic implications: Our analyses of the
expected prices can be seen average-case analyses of a local search algo-
rithm that computes Nash equilibria in polynomial time.

1 Introduction

Large-scale networks, e.g., the Internet, usually lack a central authority to co-
ordinate the network-traffic. Instead, users that seek to send messages behave
selfishly in order to maximize their own welfare. This selfish behaviour of net-
work users motivates the use of game theory for the analysis of network-traffic.
� Supported by DFG Research Training Group “Explorative Analysis and Visualiza-

tion of Large Information Spaces”.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 63–74, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

64 M. Hoefer and A. Souza

In standard non-cooperative games, each user, referred to as a player, is aware
of the behaviour of other players, and seeks to minimize his own cost. A player
is considered to be satisfied with his behaviour (also referred to as his strategy)
if he can not decrease his cost by unilaterally changing his strategy. If all players
are satisfied, then the system is said to be in a Nash equilibrium.

In order to relate selfishly obtained solutions with those of an (imaginary)
central authority, it is necessary to distinguish between the cost of the individual
players and the cost of the whole system. The latter is also referred to as social
cost. Depending on the choice of a social cost function selfish behaviour of the
players might not optimize the social cost. Consequently, the question arises
how bad the social cost of a Nash equilibrium can be in comparison to the
optimum. In a seminal work, Koutsoupias and Papadimitriou [1] formulated the
concept of the price of anarchy (originally referred to as coordination ratio) as
the maximum ratio of the social cost of a Nash equilibrium and the optimum
social cost, taken with respect to all Nash equilibria of the game. In other words,
the worst selfish solution in comparison with the optimum.

Specifically, in [1], the KP-model for selfish routing was introduced: each of
n players seeks to send a message with respective length tj across a network
consisting of m parallel links having respective transmission speed si. The cost
of a player j, called his latency �j , is the total length of messages on his chosen
link i scaled with the speed, i.e., �j = 1

si

∑
k on i tk. The latency corresponds to

the duration of the transmission when the channel is shared by a certain set
of players. The social cost of an assignment was assumed to be the maximum
duration on any channel, i.e., the social cost is �max = maxj �j . Koutsoupias
and Papadimitriou [1] proved initial bounds on the price of anarchy for special
cases of this game, but Czumaj and Vöcking [2] were the first ones to give tight
bounds for the general case: Θ

(
log m

log log log m

)
for mixed and Θ

(
log m

log log m

)
for pure

Nash equilibria.
In this paper, we mainly concentrate on total latency social cost

∑
j �j, but

also apply our techniques to maximum latency. The KP-model is usually associ-
ated with maximum latency. Other latency functions were considered in [3,4,5],
specifically total latency was included in [4], but there was no treatment of the
price of anarchy. The price of anarchy in more general atomic and non-atomic
congestion games was considered e.g. by [6, 7].

Furthermore, we consider two important aspects of network-management: the
influence of the total traffic t =

∑
j tj upon the overall system performance and

fluctuations in the length of the respective message-lengths tj . We model the first
aspect as follows: an adversary is allowed to specify the task-lengths tj subject
to the constraint that

∑
j tj = t, where t is a parameter specified in advance.

We consider the price of anarchy and stability of the game with a malicous
adversary explicitly restricted in this way. This model is closely related to the
work of Awerbuch et al. [8], which treats the KP-model with link restrictions
and unrelated machines, i.e., each task j has an arbitrary length ti,j on machine
i. They proved tight bounds on the price of anarchy in both models that depend

Tradeoffs and Average-Case Equilibria in Selfish Routing 65

on the tradeoff-ratio of the longest task with the optimum value. However, their
results are only for maximum latency.

For the second aspect, fluctuations, consider a sequence of such network games
all with the same set of players and the same network topology, but where the
message-lengths of the players might differ from game to game. This corresponds
to the natural situation that users often want to transmit messages of differing
lengths. We model this by assuming that message-lengths are random variables
Tj. The main question addressed in this respect is how the price of anarchy be-
haves in a “typical” game. To this end, we evaluate the quality of Nash equilibria
in this probabilistic KP-model with the expected value of the price of anarchy
of the game. The notion of an expected price of anarchy was, to our knowl-
edge, considered before only by Mavronicolas et al. [9] in the context of cost
mechanisms, who referred to it as diffuse price of anarchy. Different forms of
randomization in the KP-model were either subject to machine assignment in
mixed Nash equilibria [1] or subject to incomplete information [10].

We discuss our contribution in further detail below. Summarizing, we provide
a connection between algorithmic game theory and average-case analysis.

1.1 Model and Notation

We consider the following network model: m parallel links with speeds s1 ≥
· · · ≥ sm ≥ 1 connect a source s with a target t. We note that the assumption
of sm ≥ 1 is without loss of generality, as speeds can be normalized without
changing the results. There are n players in the game, and each player seeks to
send a message from s to t, where each message j has length tj .

This model can naturally be described with scheduling terminology, and we
refer to it as selfish scheduling. Each of the m links is a machine with speed si

and each message j is a task with task-length tj . The strategy of a player is to
choose of one of the machines to execute its task. The total length on machine
i is its load wi =

∑
k on i tk. We assume that each machine executes its tasks

in parallel, i.e., the resource is shared among the players that have chosen it.
Hence, the duration of a task j is proportional to the total length on the chosen
link i and its speed si, i.e., its latency is �j = 1

si

∑
k on i tk = wi

si
.

A schedule is any function s : J −→ M that maps any element of the set
J = {1, 2, . . . , n} of tasks to an element in the set of machines M = {1, 2, . . . , m}.
Each machine i executes the tasks assigned to it in parallel, which yields that
each task j is finished at time �j . The finishing time of a machine i is hence
given by fi = 1

si

∑
k on i tk = wi

si
. The disutility of each player is the latency of

its task, i.e., the selfish incentive of every player is to minimize the individual
latency.

A schedule is said to be in a (pure) Nash equilibrium if no player can decrease
his latency by unilaterally changing the machine his task is processed on. More
formally, the schedule s has the property that for each task j

fi +
tj
si

≥ fs(j) holds for every i. (1)

66 M. Hoefer and A. Souza

In this paper, we restrict our attention to pure Nash equilibria, i.e., the strategy
of each player is to choose one machine rather than a probability distribution
over machines. It is known that any selfish scheduling game admits at least one
pure Nash equilibrium, see, e.g., [11, 12].

Schedules are valued with a certain (social) cost function cost : Σ −→ R+,
where Σ denotes the set of all schedules. Notice that each Nash equilibrium is
simply a schedule that satisfies the stability criterion (1). In contrast, an optimum
schedule s∗ is one which minimizes the cost function over all schedules, regardless
if it is a Nash equilibrium or not. These differences in mind, it is natural to ask
how much worse Nash equilibria can be compared to the optimum. The price of
anarchy [1] relates the Nash equilibrium with highest social cost to the optimum,
i.e, it denotes the fraction of the of the cost of the worst Nash equilibrium over
the cost of the best possible solution. In contrast, the price of stability [13] relates
the Nash equilibrium with lowest social cost to the optimum, i.e, it denotes the
fraction of the cost of the best Nash equilibrium over the cost of the best possible
solution.

One might wonder about a reasonable choice for a social cost function. Ar-
guably, it depends on the application at hand which social cost function is ad-
visable; see below for two alternatives.

1.2 Our Contribution

We characterize two important aspects of network-traffic management in the KP-
setting: the influence of total traffic and fluctuations in message-lengths on the
performance of Nash equilibria. Throughout the paper upper-case letters denote
random variables and lower-case letters their outcomes, respectively constants.

Traffic and Fluctuations Model. We first concentrate on the influence of
the system load upon Nash equilibrium performance. In the traffic model, an
adversary is free to specify task-lengths t = (t1, . . . , tn) subject to the constraints
that tj ∈ [0, 1] and

∑
j tj = t, where 0 < t ≤ n is a parameter specified in

advance. We evaluate the quality of Nash equilibria with prices of anarchy and
stability on the induced set of possible inputs.

Then we formulate an extension to message fluctuations. In previous work, the
KP-game was always deterministic, i.e. the task-lengths were fixed in advance.
What happens if the task-lengths are subject to (random) fluctuations? What
are prices of anarchy and stability in a “typical” instance? We capture these
notions with the fluctuations model. Let the task-length Tj of a task j be a
random variable with finite expectation E [Tj] = μj . As before, a schedule is a
Nash equilibrium if (1) holds, i.e., if the concrete realisations tj of the random
variables Tj satisfy the stability criterion. Consequently, the set of schedules that
are Nash equilibria is a random variable itself.

We define the expected price of anarchy by

EPoA(Σ) = E

[
max

{
cost(S)
cost(S∗)

: S ∈ Σ is a Nash equilibrium
}]

Tradeoffs and Average-Case Equilibria in Selfish Routing 67

and the expected price of stability replacing max by min. The expected value is
taken with respect to the random task-lengths Tj.

Social Cost Functions. We consider the social cost functions total latency∑
j∈J �j and maximum latency maxj∈J �j .
Our main results for total latency

∑
j �j in Section 2 are as follows. Theorem 1

for the traffic model states that the (worst-case) prices of stability, respectively
anarchy are essentially Θ

(
n
t

)
. This means that in the worst-case, for small values

for t, a Nash equilibrium judged with total latency social cost can be up to a
factor Θ (n) larger than the optimum solution. However, as the total traffic t
grows, the performance loss of Nash equilibria becomes less severe. For highly
congested networks, i.e., for t being linear in n, Nash equilibria approximate the
optimum solution within a constant factor.

It turns out that this behavior is stable also under the presence of fluctuations
in message-lengths. Theorem 2 states an analogous result for the stochastic set-
ting: the expected price of anarchy of this game is O

(
n

E[T]

)
, where T =

∑
j Tj is

the total random traffic and E [T] = ω
(√

n logn
)
. The result holds under rela-

tively weak assumptions on the distributions of the Tj; even limited dependence
among them is allowed. The assumption E [T] = ω

(√
n logn

)
is already satis-

fied if, for example, there is a constant lower bound on the task length of every
player. Intuitively, it requires that on average there are not too many too small
tasks in the game. In our opinion, it is a reasonable assumption when analyzing
practical systems.

The results for maximum latency fall into a similar regime. For maximum
latency maxj �j, it is already known (see [2]) that the price of stability is 1 and

that the price of anarchy is Θ
(
min

{
log m

log log m , log s1
sm

})
. However, in Theorem 4,

we establish that the expected price of anarchy is 1 + m2

E[T] , i.e., Nash equilibria
are almost optimal solutions for sufficiently large traffic. This result is related
to Awerbuch et al. [8] since their bounds also depend on a tradeoff between the
largest task and the optimum solution. However, our results translate to selfish
scheduling with coordination mechanisms; see Corollary 2.

Algorithmic Perspective. Our analyses of the expected prices of anarchy
of the social cost functions provide average-case analyses of the algorithm by
Feldmann et al. [14]. This algorithm calculates for any given initial assignment a
pure Nash equilibrium – and for maximum latency this equilibrium is of smaller
or equal social cost. Hence, for maximum latency the price of stability is 1.
Using a PTAS for makespan scheduling [15], a Nash equilibrium can be found
in polynomial time, which is a (1 + ε)-approximation to the optimum schedule.
This is an interesting fact as iterative myopic best-response of players can take
Ω(2

√
n) steps to converge to a pure Nash equilibrium.

Note that this algorithm can certainly be used for solving classical scheduling
problems. Our analysis hence gives bounds on the (expected) performance of
that algorithm for these sort of problems (see Corollary 1). Remarkably, the
analysis holds for machines with (possibly) different speeds, which is a novelty

68 M. Hoefer and A. Souza

over previous average-case analyses, e.g., [16,17], where only identical machines
were considered.

Coordination Mechanisms. An interesting adjustment, which is also ana-
lyzed in terms of traffic and fluctuations here, concerns coordination mecha-
nisms [18, 19]: instead of processing all tasks in parallel each machine has a
deterministic scheduling rule to sequence the tasks assigned to it. A player tries
to minimize the completion time of his task by switching to the machine where it
is processed earliest. Bounds on the price of anarchy for a variety of sequencing
rules with makespan social cost were shown in [19]. We show that the bounds of
Theorem 4 remain valid for this coordination mechanisms setting also.

2 Total Latency Cost

In this section, we consider the social cost function total latency cost(s) =
∑

j �j .
Let pi = pi(s) be the number of players assigned to machine i and let fi =
fi(S) = 1

si

∑
k on i in s tk denote the finishing time of machine i in the schedule

s. Observe that we can rewrite the social cost to cost(s) =
∑

j �j =
∑

i pifi.

2.1 Traffic Model

In this model, an adversary is free to specify task-lengths t = (t1, . . . , tn) subject
to the constraints that tj ∈ [0, 1] and

∑
j tj = t, where 0 < t ≤ n is a parameter

specified in advance.

Theorem 1. Consider the selfish scheduling game on m machines with speeds
s1 ≥ · · · ≥ sm ≥ 1, total task length t =

∑
j tj > 0, where tj ∈ [0, 1], and

cost(s) =
∑

j �j. Then we have the bounds

n

2t
≤ PoS(Σ) ≤ PoA(Σ) ≤ n

t
+

m2 + m

t2
, for t ≥ 2 and (2)

PoA(Σ) ≤ n for general t ≥ 0. (3)

Lemma 1. Let s∗ be an optimum schedule for the instance t = (t1, t2, . . . , tn)
with speeds s1 ≥ · · · ≥ sm ≥ 1. Let t =

∑
j tj, where tj ∈ [0, 1]. Then we have

that cost(s∗) ≥ t2∑
k sk

.

Proof. First observe that tj ≤ 1 implies cost(s∗) =
∑

i p∗i f
∗
i ≥ ∑

i(f
∗
i)2. It is

standard to derive cost(s∗) ≥ ∑
i(f
∗
i)2 ≥ ∑

i

(
si∑
k sk

t
)2

= t2∑
k sk

. ��

Lemma 2. For every Nash equilibrium s for the selfish scheduling game on m
machines with speeds s1 ≥ · · · ≥ sm ≥ 1, tj ∈ [0, 1], and t =

∑
j tj we have that

cost(s) ≤ n(t+m2+m)∑
i si

.

Tradeoffs and Average-Case Equilibria in Selfish Routing 69

Proof. Recall that the cost of any schedule s can be written as cost(s) =
∑

j �j =∑
i pifi, where �j denotes the latency of task j, pi the number of players on

machine i, and fi its finishing time.
It turns out that it is useful to distinguish between fast and slow machines.

A machine is fast if si ≥ 1
m

∑
k sk; otherwise slow. Notice that this definition

implies that there is always at least one fast machine.
Recall that the load of a machine i is defined by wi =

∑
j on i tj . We rewrite

the load wi in terms of deviation from the respective ideally balanced load. Let
wi = si∑

k sk

∑
j tj = si∑

k sk
t and define the variables yi by wi = wi + yi. Observe

that fi = 1
si

(wi + yi) = t∑
k sk

+ yi

si
. We use the notation xi = yi

si
as a shorthand.

Let s be any schedule for which the conditions (1) of a Nash equilibrium hold.
Let us assume for the moment that we can prove the upper bound |xi| ≤ m

si

for those schedules. Further notice that the Nash conditions (1) imply that fi ≤
f1 + tj

s1
≤ f1 + 1

s1
, where tj is the task length of any task j on machine i. Notice

that machine 1 is fast, i.e., we have 1
s1

≤ m∑
k sk

. Now we calculate and find

cost(s) =
∑

i pifi ≤ n
(
f1 + 1

s1

)
≤ n(t+m2+m)∑

k sk
. It only remains to prove that

the upper bound |xi| ≤ m
si

holds.
A machine i is overloaded if yi > 0 (and hence also xi > 0), underloaded if

yi < 0 (and hence also xi < 0), and balanced otherwise, i.e., yi = xi = 0. Notice
that

∑
i wi =

∑
j tj = t and that

∑
i wi =

∑
i(wi + yi) =

∑
i

si∑
k sk

t +
∑

i yi =
t +

∑
i yi. This implies that

∑
i yi = 0. Hence if there is an overloaded machine,

there must also be an underloaded machine.
If all machines are balanced, then there is nothing to prove because |xi| = 0

and the claimed bound holds. So let k be an underloaded machine and let i be an
overloaded machine. Suppose that k receives an arbitrary task j from machine
i, then its resulting finishing time equals fk + tj

sk
. The Nash conditions (1) state

that fk + tj

sk
≥ fi. The simple but important observation is that moving one

task to an underloaded machine k turns it into an overloaded one. As tj

sk
≤ 1

sk

we have |xk| ≤ 1
sk

for any underloaded machine k.
Finally, to prove |xi| ≤ m

si
we show a bound on the number of tasks whose re-

moval is sufficient to turn an overloaded machine into an underloaded or balanced
one. Let i be an overloaded machine and let there be u underloaded machines.
Migrating (at most) u tasks from i to underloaded machines suffices to turn i
into an underloaded or balanced machine. Suppose that there are at least u tasks
on i, because otherwise moving the tasks on it to underloaded machines yields
that i executes no task at all, and is hence clearly underloaded. Move u arbitrary
tasks to the u underloaded machines by assigning one task to one underloaded
machine, each. Now assume that i is still overloaded. This is a contradiction to∑

i yi = 0, because there are no underloaded machines in the system any more.
Therefore i must be underloaded or balanced. As xi equals the difference of fi

and
∑

j tj∑
k sk

, we have that |xi| ≤ u
si

≤ m
si

as each task contributes at most 1
si

to
the finishing time of machine i. The proof of the upper bound therefore proves
the lemma. ��

70 M. Hoefer and A. Souza

Proof of Theorem 1. The upper bound PoA(Σ) ≤ n
t + m2+m

t2 stated in (2) follows
from Lemma 1 and Lemma 2. For the lower bound PoS(Σ) ≥ n

2t we give the
following instance. Let there be two unit-speed machines and an even number n
of tasks. Let t be an even positive integer and define the task-lengths as follows:
t1 = t2 = · · · = tt = 1 and tt+1 = · · · = tn = 0. In the (unique) optimum
schedule s∗ the t 1-tasks are scheduled on machine 1. All the other 0-tasks are
assigned to machine 2. The value of that solution is cost(s∗) = t2, but we still
have to prove that it is the unique optimum.

Assume that x 1-tasks and y 0-tasks are assigned to machine 1. The cost of
such an assignment is given by f(x, y) = (x + y)x + (n − x − y)(t − x). We
are interested in the extrema of f subject to the constraints that 0 ≤ x ≤ t and
0 ≤ y ≤ n−t. It is standard to prove that f is maximized for x = t

2 and y = n−t
2 .

Considering the gradient of the function f(t
2 +a, n−t

2 +b) = nt
2 +2a2+2ab in the

variables a and b yields that the global minimum is attained at the boundary of
the feasible region; in specific for x = t and y = 0. The value of the minimum is
cost(s∗) = f(t, 0) = t2.

For every Nash equilibrium of the game assigning t
2 1-tasks to each machine

is necessary: If there are x > t
2 1-tasks e.g. on machine 1, then there is a task

that can improve its latency by changing the machine. Hence x = t
2 for every

Nash equilibrium. It turns out that each feasible value for y gives f(t
2 , y) = nt

2 .
Thus, cost(s) = nt

2 and the lower bound PoS(Σ) ≥ n
2t .

Now we prove the upper bound PoA(Σ) ≤ n stated in (3). Consider an arbi-
trary Nash equilibrium s for an instance of the game with task-lengths t1, . . . , tn.
In the sequel we will convert s into the solution s′ in which all tasks are assigned
to machine 1 and we will prove that cost(s) ≤ cost(s′). (The solution s′ need
not be a Nash equilibrium.) Notice that cost(s′) = nt

s1
. Further we use the trivial

lower bound cost(s) ≥ t
s1

which holds because each task contributes to the total
cost possibly on the fastest machine 1. Both bounds imply PoS(Σ) ≤ n.

It remains to prove that cost(s) ≤ cost(s′). We construct a series of solutions
s = σ1, σ2, . . . , σm = s′, where σi+1 is obtained from σi by moving all tasks on
machine i + 1 to machine 1. Recall that wi =

∑
j on i tj and notice that w1 is

monotone increasing. Therefore, the Nash conditions wi

si
≤ w1

s1
+ tj

s1
for all tasks

j on machine i continue to hold until i loses all its tasks. Since tj ≤ wi, this
condition implies w1+wi

s1
− wi

si
≥ 0, which will be important for the argument

below. Now we consider the change of cost when obtaining σi from σi−1 for
i ≥ 2. For ease of notation let p1 and pi, w1 and wi denote the number of
players, respectively the load of machines 1 and i of the solution σi−1. We find
cost(σi) − cost(σi−1) = p1

wi

s1
+ pi

(
w1+wi

s1
− wi

si

)
≥ 0 since w1+wi

s1
− wi

si
≥ 0 as

shown above. This completes the proof of the theorem. ��

2.2 Fluctuations Model

Suppose that the Tj are random variables that take values in the interval [0, 1]
and that the Tj have respective expectations E [Tj]. Notice that the Tj need not
be identically distributed; even the following limited dependence is allowed.

Tradeoffs and Average-Case Equilibria in Selfish Routing 71

We say that we deal with martingale Tj if the sequence Si = T1 + · · · + Ti +
E [Ti+1] + · · · + E [Tn] satisfies E [Si | T1, . . . , Ti−1] = Si−1 for i = 1, . . . , n.

Theorem 2. Let T =
∑

j Tj and E [T] = ω
(√

n log n
)

with martingale Tj ∈
[0, 1]. Then the expected price of anarchy of the selfish scheduling game with m
machines and speeds s1 ≥ · · · ≥ sm ≥ 1 is bounded by:

EPoA(Σ) ≤
(

n

E [T]
+

m2

E [T]2

)
(1 + o (1)).

This bound does not only hold in expectation but also with probability 1 − o (1).

Proof. First notice that for every outcome t =
∑

j tj of the random variable

T =
∑

j Tj we have PoA(Σ) ≤ min
{
n, n

t + m2+m
t2

}
, by Theorem 1.

How large is the probability that T deviates “much” from its expected value?
The differences of the martingale Si are bounded by one: |Si −Si−1| ≤ 1. There-
fore we may apply the following Azuma-Hoeffding inequality (see e.g. [20] for
an introduction): Pr [|Sn − S0| ≥ λ] ≤ 2e−

λ2
2n . With the choice λ =

√
4n logn

we have Pr
[|T − E [T] | ≥ √

4n log n
] ≤ 2

n2 . Now we remember the assumption
E [T] = ω

(√
n logn

)
, and find

EPoA(Σ) ≤ E

[
min

{
n,

n

T
+

m2 + m

T 2

}]

≤ n

E [T] − √
4n logn

+
m2 + m

(E [T] − √
4n log n)2

+ n
2
n2

and the proof is complete. ��

2.3 Algorithmic Perspective

In this short section, we point out that Theorem 1 and Theorem 2 also have
algorithmic implications. In specific, by proving upper bounds on the expected
price of anarchy of selfish scheduling, we obtain an (average-case) analysis for a
generic algorithm for classical scheduling.

In the classical scheduling problem, we are given m related machines with
speeds s1 ≥ · · · ≥ sm ≥ 1 and n tasks with respective task-length tj . The
objective is to minimize the objective function

∑
j �j, regardless if it is a Nash

equilibrium or not. Let cost(s) and cost(s∗) denote the objective values of a
schedule obtained by an algorithm and by an (not necessarily polynomial time)
optimum algorithm. The quantity cost(s)

cost(s∗) (respectively E

[
cost(S)
cost(S∗)

]
) is called

the (expected) performance ratio of the schedule s. We consider a natural greedy
scheduling algorithm called Nashify due to Feldmann et al. [14] (introduced for
maximum latency social cost and related machines); Theorem 1 and Theorem 2
imply the following result.

Corollary 1. Under the respective assumptions of Theorem 1 and Theorem 2,
the bounds stated therein are upper bounds for the (expected) performance ratio
of the algorithm Nashify with the objective to minimize total latency.

72 M. Hoefer and A. Souza

3 Maximum Latency Cost

In this section, we consider the social cost function cost(s) = �max = maxj �j .
We study the traffic and the fluctuations model in Section 3.1. In Section 3.2 we
show that the results extend to the study of a KP-model with a coordination
mechanism.

3.1 Traffic and Fluctuations Model

Worst-case prices of stability and anarchy are already known [2] and only sum-
marized here; see below for a further discussion.

Theorem 3. In the selfish scheduling game on m machines with speeds s1 ≥
· · · ≥ sm ≥ 1 and cost(s) = �max we have that PoS(Σ) = 1 and PoA(Σ) =
Θ

(
min

{
log m

log log m , log s1
sm

})
.

Algorithm Nashify considered in Section 2.3 transforms any non-equilibrium
schedule into a Nash equilibrium without increasing the social cost. This proves
PoS(Σ) = 1. The tight bounds on the price of anarchy for pure Nash equilibria
are due to Czumaj and Vöcking [2]. For the special case of identical machines
different bounds for the price of anarchy hold. An upper bound PoA(Σ) ≤
2 − 2

m+1 follows from Finn and Horowitz [11] and Nashify. Vredeveld [12] gave
a schedule which is a Nash equilibrium where 2 − 2

m+1 is tight.
The following results follow with similar techniques as for Theorem 2. The

proofs are omitted due to space limitations.

Theorem 4. Consider the selfish scheduling game on m machines with speeds
s1 ≥ · · · ≥ sm ≥ 1, total task length t =

∑
j tj > 0, where tj ∈ [0, 1], and

cost(s) = maxj �j. Then we have the bound

PoA(Σ) ≤ 1 +
m(m + 1)

t
.

Let T =
∑

j Tj and E [T] = ω
(√

n log n
)

with martingale Tj ∈ [0, 1]. Then the
expected price of anarchy is bounded by

EPoA(Σ) ≤ 1 +
m2

E [T]
(1 + o (1)).

This bound not only holds in expectation but also with probability 1 − o (1). Fur-
thermore, these are bounds on the (expected) performance of algorithm Nashify.

3.2 Coordination Mechanisms

We observe that the results of Theorem 4 translate to selfish scheduling with
coordination mechanisms as considered by Immorlica et al. [19]. In this scenario,
the machines do not process the tasks in parallel, but instead, every machine i has

Tradeoffs and Average-Case Equilibria in Selfish Routing 73

a (possibly different) local sequencing policy. For instance, with the Shortest-

First policy, a machine considers the tasks in order of non-decreasing length.
Machine i uses its policy to order the tasks that have chosen i. This yields a
completion time cj , which is different for every task processed on i. The cost for
a player is now the completion time of its task on the chosen machine. Naturally,
a schedule is in a Nash equilibrium if no player can reduce his completion time
by switching machines. Immorlica et al. [19] showed the following worst-case
bounds on the price of anarchy.

Theorem 5. The price of anarchy of a deterministic policy for scheduling on
machines with speeds s1 ≥ · · · ≥ sm ≥ 1 and social cost makespan cost(s) =
cmax = maxj cj is O(log m). The price of anarchy of the Shortest-First policy
is Θ(log m).

The proof of Theorem 4 can be adjusted to deliver the following direct corollary.

Corollary 2. Under the respective assumptions of Theorem 4, the bounds stated
therein are upper bounds for the (expected) price of anarchy for selfish scheduling
with coordination mechanisms, arbitrary deterministic sequencing policies, and
social cost makespan cost(s) = cmax = maxj cj.

4 Open Problems

In this paper we provided an initial systematic study of tradeoffs and average-
case performance of Nash equilibria and naturally a lot of open problems re-
main. A direct problem concerns the generalization of the obtained results to
the average-case performance of Nash equilibria in more general (network) con-
gestion games. Furthermore, the characterization of average-case performance
for mixed or correlated equilibria – especially for total latency – represents an
interesting direction. The total latency social cost function has not been ex-
plored in a similar way as polynomial load or maximum latency, although in
our opinion it has an appealing intuitive motivation as a social cost function.
This might be due to the tight linear worst-case bounds, which can be obtained
quite directly. However, our approach to a more detailed description offers an
interesting perspective to study total latency in more general settings.

References

1. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. STACS’99, 404–413
(1999)

2. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. SODA’02, 413–
420 (2002)

3. Czumaj, A., Krysta, P., Vöcking, B.: Selfish traffic allocation for server farms.
STOC’02, 287–296 (2002)

4. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: Nash equilibria
in discrete routing games with convex latency functions. ICALPone’04, 645–657
(2004)

74 M. Hoefer and A. Souza

5. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B: The price of anarchy for
polynomial social cost. In: MFCS’04, vol. 29, pp. 574–585 (2004)

6. Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In:
STOC’05, pp. 57–66 (2005)

7. Roughgarden, T., Tardos, É.: How bad is selfish routing? Journal of the ACM 49(2),
236–259 (2002)

8. Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-case equilibria.
In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 41–52.
Springer, Heidelberg (2004)

9. Mavronicolas, M., Panagopoulou, P., Spirakis, P.: A cost mechanism for fair pricing
of resource usage. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp.
210–224. Springer, Heidelberg (2005)

10. Gairing, M., Monien, B., Tiemann, K.: Selfish routing with incomplete information.
In: SPAA’05, vol. 17, pp. 203–212 (2005)

11. Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor
scheduling. BIT 19, 312–320 (1979)

12. Vredeveld, T.: Combinatorial approximation algorithms. Guaranteed versus exper-
imental performance. PhD thesis, Technische Universiteit Eindhoven (2002)

13. Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-optimal network design
with selfish agents. In: STOC’03, pp. 511–520 (2003)

14. Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Nashification and
the coordination ratio for a selfish routing game. In: Baeten, J.C.M., Lenstra, J.K.,
Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 514–526.
Springer, Heidelberg (2003)

15. Hochbaum, D., Shmoys, D.: A polynomial approximation scheme for scheduling
on uniform processors: Using the dual approximation approach. SIAM Journal on
Computing 17(3), 539 (1988)

16. Souza, A., Steger, A.: The expected competitive ratio for weighted completion time
scheduling. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp.
620–631. Springer, Heidelberg (2004)

17. Scharbrodt, M., Schickinger, T., Steger, A.: A new average case analysis for com-
pletion time scheduling. In: STOC’02, vol. 34, pp. 170–178 (2002)

18. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. In:
Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 345–357. Springer, Heidelberg (2004)

19. Immorlica, N., Li, L., Mirrokni, V., Schulz, A.: Coordination mechanisms for selfish
scheduling. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 55–69.
Springer, Heidelberg (2005)

20. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

On the Variance of Subset Sum Estimation

Mario Szegedy1 and Mikkel Thorup2

1 Department of Computer Science, Rutgers, the State University of New Jersey,
110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

szegedy@cs.rutgers.edu
2 AT&T Labs—Research, Shannon Laboratory, 180 Park Avenue,

Florham Park, NJ 07932, USA
mthorup@research.att.com

Abstract. For high volume data streams and large data warehouses,
sampling is used for efficient approximate answers to aggregate queries
over selected subsets. We are dealing with a possibly heavy-tailed set of
weighted items. We address the question:

Which sampling scheme should we use to get the most accurate
subset sum estimates?

We present a simple theorem on the variance of subset sum estimation
and use it to prove optimality and near-optimality of different known
sampling schemes. The performance measure suggested in this paper is
the average variance over all subsets of any given size. By optimal we
mean there is no set of input weights for which any sampling scheme can
have a better average variance. For example, we show that appropriately
weighted systematic sampling is simultaneously optimal for all subset
sizes. More standard schemes such as uniform sampling and probability-
proportional-to-size sampling with replacement can be arbitrarily bad.

Knowing the variance optimality of different sampling schemes can
help deciding which sampling scheme to apply in a given context.

1 Introduction

Sampling is at the heart of many DBMSs, Data Warehouses, and Data Streaming
Systems. It is used both internally, for query optimization, enabling selectivity
estimation, and externally, for speeding up query evaluation, and for selecting a
representative subset of data for visualization [1]. Extensions to SQL to support
sampling are present in DB2 and SQLServer (the TABLESAMPLE keyword
[2]), Oracle (the SAMPLE keyword [3]), and can be simulated for other sys-
tems using syntax such as ORDER BY RANDOM() LIMIT 1. Users can also
ensure sampling is used for query optimization, for example in Oracle (using
dynamic-sampling [4]).

In our mathematical model the entire data stream or data base is represented
by a sequence of positive weights, and the goal is to support queries to arbitrary
subset sums of these weights. With unit weights, we can compute subset sizes
which together with the previous sums provide the subset averages. We note that

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 75–86, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

76 M. Szegedy and M. Thorup

there has been several previous works in the data base community focused on
sampling based subset sum estimation (see, e.g., [5,6,7]). The question addressed
here is which sampling scheme we should use to get the most accurate subset
sum estimates. More precisely, we study the variance of sampling based subset
sum estimation.

The formal set-up is as follows. We are dealing with a set of items i ∈ [n]
with positive weights wi. Here [n] = {1, ..., n}. A subset S ⊆ [n] of these are
sampled, and each sampled item i is given a weight estimate ŵi. Unsampled
items i �∈ S have a zero weight estimate ŵi = 0. We generally assume that
sampling procedures include such weight estimates. We are mostly interested in
unbiased estimation procedures such that

E[ŵi] = wi ∀i ∈ [n]. (1)

Often one is really interested in estimating the total weight wI of a subset I ⊆ [n]
of the items, that is, wI =

∑
i∈I wi. As an estimate ŵI , we then use the sum

of the sampled items from the subset, that is, ŵI =
∑

i∈I ŵI =
∑

i∈I∩S ŵi. By
linearity of expectation this is also unbiased, that is, from (1) we get

E[ŵI] = wI ∀I ⊆ [n]. (2)

We are particularly interested in cases where the subset I is unknown at the
time the sampling decisions are made. For example, in an opinion poll, the
subset corresponding to an opinion is only revealed by the persons sampled for
the poll. In the context of a huge data base, sampling is used to reduce the
data so that we can later support fast approximate aggregations over arbitrary
selected subsets [8,1,7].

Applied to Internet traffic analysis, the items could be records summarizing
the flows streaming by a router. The weight of a flow would be the number
of bytes. The stream is very high volume so we can only store samples of it
efficiently. A subset of interest could be flow records of a newly discovered worm
attack whose signature has just been determined. The sample is used to estimate
the size of the attack even though the worm was unknown at the time the samples
were chosen. This particular example is discussed in [7], which also shows how
the subset sum sampling can be integrated in a data base style infrastructure
for a streaming context. In [7] they use the threshold sampling from [9] which is
one the sampling schemes that we will analyze below.

Before continuing, we note that there is an alternative use of sampling for
subset sum estimation in data bases; namely where the whole data set is orga-
nized to generate a sample from any selected subset. Generating such samples
on-the-fly has been studied for different sampling schemes in [5,10,6]. For uni-
form sampling [6] we create a random permutation of the data. To get a sample
of size k from a subset I, we find the first k items from I in the permutation.
Based on the samples and their rank in the total permutation, we can estimate
the weight of I.

In this paper, we generate the sample first, forget the data, and use the sample
to estimate the weight of arbitrary subsets. As discussed in [7], this is how

On the Variance of Subset Sum Estimation 77

we have to do in a high volume streaming context where items arrive faster
and in larger quantities than can be saved; hence where only a sample can be
stored efficiently. Sampling first is also relevant if we want to create a reduced
approximate version of a large data ware house that can be downloaded on
smaller device.

Generally there are two things we want to minimize: (a) the number of samples
viewed as a resource, and (b) the variance as a measure for uncertainty in the
estimates.

For several sampling schemes, we already understand the optimality with
respect to the sum of the individual variances

ΣV =
∑

i∈[n]

Var[ŵi] (3)

as well as the variance of the total sum

V Σ = Var[ŵ[n]]

⎛

⎝= Var[
∑

i∈[n]

ŵi]

⎞

⎠ (4)

However, what we are really interested in is the estimation of subsets of arbitrary
sizes.

Performance Measure. The purpose of our sampling is later to be able to
estimate arbitrary subset sums. With no advance knowledge of the subsets of
interest, a natural performance measure is the expected variance for a random
subset. We consider two distributions on subsets:

Sm:n: denoting the uniform distribution on subsets of size m.
Sp: denoting the distribution on subsets where each item is included indepen-

dently with probability p.

Often we are interested in smaller subsets with p = o(1) or m = o(n). The
corresponding expected variances are denoted

Vm:n = EI←Sm:n [Var[ŵI]]
Wp = EI←Sp [Var[ŵI]]

Note that V1:n = ΣV/n and Vn:n = W1 = V Σ.
It is important to realize that we are considering two independent types of

random subsets: the subset sampled by a sampling scheme and the subset se-
lected for estimating. For a given selected subset, we consider the variance of
random sampling based estimation of the total weight of that particular subset.
We then find the expectation of this variance over a randomly selected subset.
The sampling may be biased towards heavier items, but the randomly selected
subset is unbiased in that each item has an equal chance of being selected.

We are not aware of any previous analysis of the average variance of sub-
set sum estimation. As we shall discuss later, there has been theoretical studies

78 M. Szegedy and M. Thorup

of V Σ and ΣV for different sampling schemes [11,12,13]. Also, there has been
experimental work evaluating sampling based subset sum estimation [11,7]. How-
ever, we believe that this is the first theoretical study of the accuracy of sampling
based subset sum estimation for non-trivial subsets that are neither just single-
tons, nor the full set. We believe that our average variance is an important
parameter to understand both in theory and in practice when we wish to decide
which sampling scheme to apply in a given context.

A Basic Theorem. Our basic theorem below states that our subset sum vari-
ances Vm:n and Wp are simple combinations of the previously studied quantities
ΣV and V Σ:

Theorem 1. For any sampling scheme, we have

Vm:n =
m

n

(
n − m

n − 1
ΣV +

m − 1
n − 1

V Σ

)
(5)

Wp = p ((1 − p)ΣV + pV Σ) . (6)

Theorem 1 holds for arbitrarily correlated random estimators ŵi, i ∈ [n] with
E[ŵi] = wi. That is, we have an arbitrary probability space Φ over functions
ŵ mapping indices i ∈ [n] into estimates ŵi. Expectations and variances are all
measured with respect to Φ. The only condition for our theorem to hold true
is that the estimate of a subset is obtained by summing the estimates of its
element, that is, ŵI =

∑
i∈I ŵi.

One nice consequence of (5) is that

Vm:n ≥ m
n − m

n − 1
V1:n (7)

This means that no matter how much negative covariance we have, on the aver-
age, it reduces the variance by at most a factor n−1

n−m .
A nice application of (6) is in connection with a random partition into q

subsets where each item independently is assigned a random subset. A given
subset includes each item with probability p = 1/q, so by linearity of expec-
tation, the expected total variance over all sets in the partition is q · Wp =
((1 − p)ΣV + pV Σ).

Known Sampling Schemes. We will apply Theorem 1 to study the optimality
of some known sampling schemes with respect to the average variance of subset
sum estimation. Below we first list the schemes and discuss. what is known
about ΣV and V Σ. Our findings with Theorem 1 will be summarized in the
next subsection.

Most of the known sampling schemes use Horvitz-Thompson estimators: if
item i was sampled with probability pi, it is assigned an estimate of ŵi = wi/pi.
Horvitz-Thompson estimators are trivially unbiased.

For now we assume that the weight wi is known before the sampling decision
is made. This is typically not the case in survey sampling. We shall return to
this point in Section 4.

On the Variance of Subset Sum Estimation 79

Uniform Sampling Without Replacement (U−R). In uniform sampling without
replacement, we pick a sample of k items uniformly at random. If item i is
sampled it gets weight estimate ŵi = win/k. We denote this scheme U-Rk.

Probability Proportional to Size Sampling with Replacement (P+R). In probabil-
ity proportional to size sampling with replacement, each sample Sj ∈ [n], j ∈ [k],
is independent, and equal to i with probability wi/w[n]. We say that i is sampled
if i = Sj for some j ∈ [k]. This happens with probability pi = 1− (1−wi/w[n])k.
If i is now sampled, we use the Horvitz-Thompson estimator ŵi = wi/pi. We
denote this scheme P+Rk.

We do not consider probability proportional to size sampling without replace-
ment (P−R) because we do not know of any standard estimates derived from
such samples.

Threshold Sampling (THR). The threshold sampling is a kind of Poisson sam-
pling. In Poisson sampling, each item i is picked independently for S with some
probability pi. For unbiased estimation, we use the Horvitz-Thompson estimate
ŵi = wi/pi when i is picked.

In threshold sampling we pick a fixed threshold τ . For the sample S, we include
all items with weight bigger than τ . Moreover, we include all smaller items with
probability wi/τ . Sampled items i ∈ S have the Horvitz-Thompson estimate
ŵi = wi/pi = wi/ min{1, wi/τ} = max{wi, τ}. With k =

∑
i min{1, wi/τ} the

expected number of samples, we denote this scheme THRk. Threshold sampling
is known to minimize ΣV relative to the expected number of samples.

In survey sampling, one often makes the simplifying assumption that if we
want k samples, no single weight has more than a fraction 1/k of the total weight
[12, p. 89]. In that case threshold sampling is simply Poisson sampling with
probability proportional to size as described in [12, p. 85–87]. More precisely, the
threshold becomes τ = w[n]/k, and each item is sampled with probability wi/τ .
We are, however, interested in the common case of heavy tailed distributions
where one or a few weights dominate the total [14,15]. The name “threshold
sampling” for the general case parametrized by a threshold τ is taken from [9].

Systematic Threshold Sampling (SYS). We consider the general version of sys-
tematic sampling where each item i has an individual sampling probability pi,
and if picked, a weight estimate wi/pi. In contrast with Poisson sampling, the
sampling decisions are not independent. Instead we pick a single uniformly ran-
dom number x ∈ [0, 1], and include i in S if and only if for some integer j, we
have ∑

h<i

pi ≤ j + x <
∑

h≤i

pi

It is not hard to see that Pr[i ∈ S] = pi. Let k =
∑

i∈[n] pi be the expected
number of samples. Then the actual number of samples is either �k	 or
k�. In
particular, this number is fixed if k is an integer. Below we assume that k is
integer.

80 M. Szegedy and M. Thorup

In systematic threshold sampling we perform systematic sampling with ex-
actly the same sampling probabilities as in threshold sampling, and denote this
scheme SYSk. Hence for each item i, we have identical marginal distributions ŵi

with THRk and SYSk.

Priority Sampling (PRI). In priority sampling from [16] we sample a specified
number of k < n samples. For each item, a we generate a uniformly random
number ri ∈ (0, 1), and assign it a priority qi = wi/ri. We assume these priorities
are all distinct. The k highest priority items are sampled. We call the (k + 1)th
highest priority the threshold τ . Then i is sampled if and only if qi > τ , and
then the weight estimate is ŵi = max{τ, wi}. This scheme is denoted PRIk.

Note that the weight estimate ŵi = max{τ, wi} depends on the random vari-
able τ which is defined in terms of all the priorities. This is not a Horvitz-
Thompson estimator. In [16] it is proved that this estimator is unbiased. More-
over it is proved that priority sampling with at least two samples has no covari-
ance between different item estimates.

Variance Optimality of Known Sampling Schemes. Below we compare
Vm:n and Wp for the different sampling schemes. Unless otherwise stated, we con-
sider an arbitrary fixed weight sequence w1, ...wn. Using Theorem 1 most results
are derived quite easily from existing knowledge on ΣV and V Σ. The derivation
including the relevant existing knowledge will be presented in Section 3.

When comparing different sampling schemes, we use a superscript to spec-
ify which sampling scheme is used. For example V Φ

m:n < V Ψ
m:n means that the

sampling scheme Φ obtains a smaller value of Vm:n than does Ψ on the weight
sequence considered.

For a given set of input weights w1, ...wn, we think abstractly of a sampling
scheme as a probability distribution Φ over functions ŵ mapping items i into
estimates ŵi. We require unbiasedness in the sense that Eŵ←Φ[ŵi] = wi. For a
given ŵ ∈ Φ, the number of samples is the number of non-zeroes. For any measure
over sampling schemes, we use a superscript OPTk to indicate the optimal value
over all sampling schemes using an expected number of at most k samples. For
example, V OPTk

m:n is the minimal value of V Φ
m:n for sampling schemes Φ using an

expected number of at most k samples.

Optimality of SYS, THR, and PRI. For any subset size m and sample size k,
we get

V OPTk
m:n = V SYSk

m:n =
n − m

n − 1
V THRk

m:n (8)

The input weights w1, ..., , wn were arbitrary, so we conclude that systematic
threshold sampling optimizes Vm:n for any possible input, subset size m, and
sample size, against any possible sampling scheme. In contrast, threshold sam-
pling is always off by exactly a factor n−1

n−m .
Similarly, for any subset inclusion probability p, we get that

Wp
OPTk = Wp

SYSk = (1 − p)Wp
THRk (9)

On the Variance of Subset Sum Estimation 81

From [13], we get that

V PRIk+1
m:n ≤ V THRk

m:n ≤ V PRIk
m:n (10)

WPRIk+1
p ≤ WTHRk

p ≤ WPRIk
p (11)

Hence, modulo an extra sample, priority sampling is as good as threshold sam-
pling, and hence at most a factor n−1

n−m or 1/(1 − p) worse than the optimal
systematic threshold sampling.

Anti-optimality of U−R and P+R. We argue that standard sampling schemes
such as uniform sampling and probability proportional to size sampling with re-
placements may be arbitrarily bad compared with the above sampling schemes.
The main problem is in connection with heavy tailed weight distributions where
we likely have one or a few dominant weights containing most of the total weight.
With uniform sampling, we are likely to miss the dominant weights, and with
probability proportional to size sampling with replacement, our sample gets dom-
inated by copies of the dominant weights. Dominant weights are expected in the
common case of heavy tailed weight distributions [14,15].

We will analyze a concrete example showing that these classic schemes can be
arbitrarily bad compared with the above near-optimal schemes. The input has a
large weight wn = � and n−1 unit weights wi = 1, i ∈ [n−1]. We are aiming at k
samples. We assume that � � n � k � 1 and � ≥ k2. Here x � y ⇐⇒ x = ω(y).
For this concrete example, in a later journal version, we will show that

V OPTk
m:n ≈ (n − m)m/k, V U-Rk

m
>∼ �2m/k, and V P+Rk

m:n
>∼ �m/k

Here x ≈ y ⇐⇒ x = (1± o(1))y and x>∼y ⇐⇒ x ≥ (1− o(1))y. A corresponding
set of relations can be found in terms of p, replacing n − m with n(1− p) and m
with pn. We conclude that uniform sampling with replacement is a factor �2/n
from optimality while probability proportional to size sampling with replacement
is a factor �/n from optimality. Since � � n it follows that both schemes can be
arbitrarily far from optimal.

Relating to Previous Internet Experiments. From [11] we have experi-
ments based on a stream segment of 85,680 flow records exported from a real
Internet gateway router. These items were heavy tailed with a single record rep-
resenting 80% of the total weight. Subsets considered were entries of an 8 × 8
traffic matrix, as well as a partition of traffic into traffic classes such as ftp and
dns traffic. Figure 1 shows the results for the 8 × 8 traffic matrix with all the
above mentioned sampling schemes (systematic threshold sampling was not in-
cluded in [11], but is added here for completeness). The figure shows the relative
error measured as the sum of errors over all 64 entries divided by the total traffic.
The error is a function of the number k of samples, except with THR, where k
represents the expected number of samples.

82 M. Szegedy and M. Thorup

We note that U−R is worst. It has an error close to 100% because it failed
to sample the large dominant item. The P+R is much better than U−R, yet
much worse than the near-optimal schemes PRI, THR, and SYS. To qualify the
difference, note that P+R use about 50 times more samples to get safely below
a 1% relative error.

Among the near-optimal schemes, there is no clear winner. From our theory,
we would not expect much of a difference. We would expect THR to be ahead
of PRI by at most one sample. Also, we are studying a partitioning into 64 sets,
so by Theorem 1, the average variance advantage of SYS is a factor 1 − 1/64,
which is hardly measurable.

The experiments in Figure 1 thus fit nicely with our theory even though the
subsets are not random. The strength of our mathematical results is that no one
can ever turn up with a different input or a new sampling scheme and perform
better on the average variance.

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

R
el

at
iv

e
T

ot
al

 E
rr

or
 (

%
)

samples k

8 x 8 traffic matrix

U-R
P+R
THR
SYS
PRI

Fig. 1. Estimation of 8 × 8 traffic matrix

Choosing a Sampling Scheme in a Streaming Context. One of our con-
clusions above is that systematic threshold sampling is optimal for the average
subset variances no matter the subset size m or inclusion probability p. However,
in a streaming context, we have several problems with both threshold sampling
and systematic threshold sampling. For both of these schemes we have some
problems because we do not know the threshold in advance. Moreover, thresh-
old sampling only gives an expected number of samples which is not so useful
with a hard resource limit on the number of samples. A major problem with
systematic sampling in general is that items should be shuffled in order to avoid
strong correlations in the sampling of items [12, p. 92]. This is not possible in
a streaming context. Priority sampling, however, is ideally suited for streaming.
We just need to generate priorities for the items as they arrive, and use a stan-
dard priority queue to maintain the k + 1 items of highest priority. Thus we are

On the Variance of Subset Sum Estimation 83

left with priority sampling among the known near-optimal schemes. From (9)
and (11), we get that

V PRIk+1
m:n ≤ n − 1

n − m
V OPTk

m:n (12)

Even if we don’t know what the optimal appropriate scheme is, this inequality
provides a limit to the improvement with any possible scheme. In particular,
if k is not too small, and m is not too close to n, there is only limited scope
for improvement. Priority sampling is therefore a good choice in a streaming
context.

Contribution: Theory for Sake of Practice. There are no deep technical
proofs in this paper. Theorem 1 and its proof in Section 2 could easily be in-
cluded in a text book. The significance is the formulation of the theorem and
the optimality conclusions it allows us to draw about known sampling schemes.

Having seen the formulation of Theorem 1, it is hard to argue that it wasn’t
obvious in the first place. When we started this research, our objective was to
show that negative covariance can only provide a limited advantage for smaller
sets, that is, Vm:n

>∼mV1:n for m = o(n). We did not expect the simple inequality
(7) which is tight for any set of weights. Realizing that Vm:n could be expressed
exactly in terms of the previously studied quantities ΣV and V Σ came as a
very pleasant surprise, reinforced our feeling that Vm:n is a natural measure
for comparing the performance of different sampling schemes, not only from a
practical viewpoint, but also from a mathematical one.

The significance of our simple theorem is the importance of the conclusions it
allows us to draw about concrete sampling schemes. As we saw in Section 1, this
can help us choosing a sampling scheme in a specific practical context. Here it is
important that Theorem 1 provides an exact answer rather than just asymptotic
bounds. This paper is thus not just a presentation of a simple theorem. It also
makes an effort to demonstrate potential impact on real world practice.

Contents. The rest of the paper is divided as follows: In Section 2 we prove
Theorem 1. In Section 3 we will derive the optimality results. Finally we discuss
some extensions in Section 4.

2 Proof of the Basic Theorem

In this section we prove (5) and (6), that is,

Vm:n =
m

n

(
n − m

n − 1
ΣV +

m − 1
n − 1

V Σ

)
and Wp = p ((1 − p)ΣV + pV Σ) .

By the definitions of variance and covariance, for any subset I ⊆ [n],

Var[ŵI] = AI + BI where AI =
∑

i∈I

Var[ŵi] and BI =
∑

i,j∈I,i�=j

CoV[ŵi, ŵj].

84 M. Szegedy and M. Thorup

Suppose I is chosen uniformly at random among subsets of [n] with m element.
Then for any i, Pr[i ∈ I] = m/n, so by linearity of expectation,

E[AI] =
∑

i∈[n]

Pr[i ∈ I] Var[ŵi] = m/n · A[n].

Also, for any j �= i, Pr[i, j ∈ I] = m/n · (m − 1)/(n − 1), so by linearity of
expectation,

E[BI] =
∑

i,j∈[n],i�=j

Pr[i, j ∈ I] CoV[ŵi, ŵj] = m/n · (m − 1)/(n − 1) · B[n].

Thus
E[Var[ŵI]] = m/n · A[n] + m/n · (m − 1)/(n − 1) · B[n] (13)

By definition, A[n] = ΣV . Moreover, by (13), V Σ = A[n] + B[n] so B[n] =
V Σ − ΣV. Consequently,

Vm:n = E[Var[ŵI]] =
m

n
ΣV +

m

n

m − 1
n − 1

(V Σ − ΣV)

=
m

n

(
n − m

n − 1
ΣV +

m − 1
n − 1

V Σ

)
.

This completes the proof of (5).
The proof of (6) is very similar. In this case, each i ∈ [n] is picked indepen-

dently for I ′ with probability p. By linearity of expectation, E[AI] = pA[n]. Also,
for any j �= i, Pr[i, j ∈ I] = p2, so by linearity of expectation, E[BI] = p2B[n].
Thus

Wp = E[Var[ŵI]] = pA[n]+p2B[n] = pΣV +p2(V Σ−ΣV) = p((1−p)ΣV +pV Σ).

This completes the proof of (6), hence of Theorem 1.

3 Near-Optimal Schemes

We will now use Theorem 1 to study the average variance (near) optimality of
subset sum estimation with threshold sampling, systematic threshold sampling,
and priority sampling for any possible set of input weights. The results are all
derived based on existing knowledge on ΣV and V Σ. Below we will focus on
Vm:n based on random subsets of a given size m. The calculations are very similar
for Wp based on the inclusion probability p.

It is well-known from survey sampling that [12, pp. 88,96,97] that system-
atic sampling always provides an exact estimate of the total so V ΣSYSk = 0.
Since variances cannot be negative, we have V ΣSYSk = 0 = V ΣOPTk . It
is also known from survey sampling [12, p. 86] that threshold sampling min-
imize V Σ among all Poisson sampling schemes. In [11] it is further argued
that threshold sampling minimizes ΣV over all possible sampling schemes, that

On the Variance of Subset Sum Estimation 85

is, ΣV THRk = ΣV OPTk . Since systematic threshold sampling uses the same
marginal distribution for the items, we have ΣV THRk = ΣV SYSk = ΣV OPTk .
Since SYSk optimizes both ΣV and V Σ we conclude (5) that it optimizes Vm:n

for any subset size m. More precisely, using (5), we get

V SYSk
m:n =

m

n

(
n − m

n − 1
V SYSk

1 +
m − 1
n − 1

V SYSk
n

)

=
m

n

(
n − m

n − 1
ΣV OPTk +

m − 1
n − 1

· 0
)

≤ V OPTk
m:n ≤ V SYSk

m:n .

Hence V SYSk
m:n = V OPTk

m:n .
As mentioned above we have ΣV THRk = ΣV SYSk . Moreover, thresh-

old sampling has no covariance between individual estimates, so V THRk
m:n =

m
n ΣV THRk = m

n ΣV OPTk . But in the previous calculation, we saw that
V SYSk

m:n = m
n

n−m
n−1 ΣV OPTk . Hence we conclude that V SYSk

m:n = n−m
n−1 V THRk

m:n .
This completes the proof of (8). A very similar calculation establishes (9).

In [13] it is proved that ΣV PRIk+1 ≤ ΣV THRk ≤ ΣV PRIk . Moreover, for
any scheme Φ without covariance, we have V Φ

m:n = m
n ΣV Φ. Since both threshold

and priority sampling have no covariance, we conclude V
PRIk+1
m:n ≤ V THRk

m:n ≤
V PRIk

m:n , which is the statement of (10). The proof of (11) is equivalently based
on WΦ

p = p ΣV Φ.

4 Extensions

Estimating a Different Variable. Sometimes we wish to estimate a variable ui

different from the weight wi used for the sampling decision. As an unbiased
estimator for ui, we use ûi = uiŵi/wi. We note that Theorem 1 also holds for
the variances of the ûi, but the quality of the different sampling schemes now
depend on how well the wi correlate with the ui.

The above is the typical model in survey sampling [12], e.g., with ui being
household income and wi being an approximation of ui based on known street
addresses. In survey sampling, the focus is normally on estimating the total,
which is why the parameter V Σ is commonly studied. If a sampling scheme has
a good V Σ w.r.t. ŵi, and wi is a good approximation of ui, then it is hoped that
V Σ is also good w.r.t. ûi.

The theory developed in this paper provides a corresponding understanding of
domain sampling, which is the name for subset sum sampling in survey sampling.
To the best of our knowledge, domain sampling was not understood from this
perspective.

Biased Estimators. So far we have restricted our attention to unbiased estimators
which are normally preferred. We note that Theorem 1 generalizes easily to

86 M. Szegedy and M. Thorup

biased estimators. Considering the mean square error (MSE) instead of just
variance (V), we get the following generalization of (5):

MSEm:n =
m

n

(
n − m

n − 1
ΣMSE +

m − 1
n − 1

MSEΣ

)
(14)

Our optimality results for known sampling schemes are, however, restricted
to unbiased schemes. Allowing biased estimation, the scheme that minimizes
MSEm:n just picks the k largest weights and assigns them some fixed estimates
depending on m. This minimizes errors but is totally biased.

References

1. Olken, F., Rotem, D.: Random sampling from databases: a survey. Statistics and
Computing 5(1), 25–42 (1995)

2. Haas, P.J.: Speeding up db2 udb using sampling, http://www.almaden.ibm.com/
cs/people/peterh/idugjbig.pdf

3. FAQ, O.U.C.O.: http://www.jlcomp.demon.co.uk/faq/random.html
4. Burleson, D.K.: Inside oracle10g dynamic sampling http://www.dba-oracle.com/

art dbazine oracle10g dynamic sampling hint.htm
5. Alon, N., Duffield, N.G., Lund, C., Thorup, M.: Estimating arbitrary subset sums

with few probes. In: Proc. 24th PODS, pp. 317–325 (2005)
6. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In: Proc. ACM SIG-

MOD, pp. 171–182. ACM Press, New York (1997)
7. Johnson, T., Muthukrishnan, S., Rozenbaum, I.: Sampling algorithms in a stream

operator. In: Proc. ACM SIGMOD, pp. 1–12. ACM Press, New York (2005)
8. Garofalakis, M.N., Gibbons, P.B.: Approximate query processing: Taming the ter-

abytes. In: Proc. 27th VLDB, Tutorial 4 (2001)
9. Duffield, N.G., Lund, C., Thorup, M.: Learn more, sample less: control of vol-

ume and variance in network measurements. IEEE Transactions on Information
Theory 51(5), 1756–1775 (2005)

10. Cohen, E.: Size-estimation framework with applications to transitive closure and
reachability. J. Comput. Syst. Sci. 55(3), 441–453 (1997)

11. Duffield, N.G., Lund, C., Thorup, M.: Sampling to estimate arbitrary subset sums.
Technical Report cs.DS/0509026, Computing Research Repository (CoRR), Pre-
liminary journal version of [16] (2005)

12. Särndal, C., Swensson, B., Wretman, J.: Model Assisted Survey Sampling. Springer,
Heidelberg (1992)

13. Szegedy, M.: The DLT priority sampling is essentially optimal. In: Proc. 38th ACM
Symp. Theory of Computing (STOC), pp. 150–158. ACM Press, New York (2006)

14. Adler, R., Feldman, R., Taqqu, M.: A Practical Guide to Heavy Tails. Birkhauser
(1998)

15. Park, K., Kim, G., Crovella, M.: On the relationship between file sizes, transport
protocols, and self-similar network traffic. In: Proc. 4th IEEE Int. Conf. Network
Protocols (ICNP), IEEE Computer Society Press, Los Alamitos (1996)

16. Duffield, N.G., Lund, C., Thorup, M.: Flow sampling under hard resource con-
straints. In: Proc. ACM IFIP Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS/Performance), pp. 85–96. ACM Press, New York
(2004)

http://www.almaden.ibm.com/cs/people/peterh/idugjbig.pdf
http://www.almaden.ibm.com/cs/people/peterh/idugjbig.pdf
http://www.jlcomp.demon.co.uk/faq/random.html
http://www.dba-oracle.com/art_dbazine_oracle10g_dynamic_sampling_hint.htm
http://www.dba-oracle.com/art_dbazine_oracle10g_dynamic_sampling_hint.htm

On Minimum Power Connectivity Problems�

Yuval Lando and Zeev Nutov

The Open University of Israel, Raanana, Israel
ylando@hotmail.com, nutov@openu.ac.il

Abstract. Given a (directed or undirected) graph with costs on the
edges, the power of a node is the maximum cost of an edge leaving it, and
the power of the graph is the sum of the powers of its nodes. Motivated by
applications for wireless networks, we present improved approximation
algorithms and inapproximability results for some classic network design
problems under the power minimization criteria. In particular, we give a
logarithmic approximation algorithm for the problem of finding a min-
power subgraph that contains k internally-disjoint paths from a given
node s to every other node, and show that several other problems are
unlikely to admit a polylogarithmic approximation.

1 Introduction

1.1 Preliminaries

A large research effort focused on designing “cheap” networks that satisfy pre-
scribed requirements. In wired networks, the goal is to find a subgraph of the
minimum cost. In wireless networks, a range (power) of the transmitters deter-
mines the resulting communication network. We consider finding a power assign-
ment to the nodes of a network such that the resulting communication network
satisfies prescribed connectivity properties and the total power is minimized.
Node-connectivity is more central here than edge-connectivity, as it models sta-
tions crashes. For motivation and applications to wireless networks (which is the
same as of their min-cost variant for wired networks), see, e.g., [15,1,3,16,19].

Let G = (V, E) be a (possibly directed) graph with edge costs {c(e) : e ∈ E}.
For v ∈ V , the power p(v) = pc(v) of v in G (w.r.t. c) is the maximum cost of an
edge leaving v in G (or zero, if no such edge exists). The power p(G) =

∑
v∈V p(v)

of G is the sum of powers of its nodes. Note that p(G) differs from the ordinary
cost c(G) =

∑
e∈E c(e) of G even for unit costs; for unit costs, if G is undirected

then c(G) = |E| and p(G) = |V |. For example, if E is a perfect matching on
V then p(G) = 2c(G). If G is a clique then p(G) is roughly c(G)/

√|E|/2. For
directed graphs, the ratio of cost over the power can be equal to the maximum
outdegree of a node in G, e.g., for stars with unit costs. The following statement
shows that these are the extremal cases for general costs.

� This research was supported by The Open University of Israel’s Research Fund,
grant no. 46102.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 87–98, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

88 Y. Lando and Z. Nutov

Proposition 1 ([16]). c(G)/
√|E|/2 ≤ p(G) ≤ 2c(G) for any undirected graph

G = (V, E), and c(G) ≤ p(G) ≤ 2c(G) if G is a forest. If G is directed then
c(G)/dmax ≤ p(G) ≤ c(G), dmax is the maximum outdegree of a node in G.

Simple connectivity requirements are: “st-path for a given node pair s, t”, and
“path from s to any other node”. Min-cost variants are the (directed/undirected)
Shortest Path problem and the Min-Cost Spanning Tree problem. In the min-
power case, the directed/undirected Min-Power st-Path problem is solvable in
polynomial time by a simple reduction to the min-cost case. The undirected Min-
Power Spanning Tree problem is APX-hard and admits a (5/3+ε)-approximation
algorithm [1]. The directed case is at least as hard as the Set-Cover problem,
and thus has an Ω(log n)-approximation threshold; the problem also admits
an O(ln n)-approximation algorithm [3,4]. However, the “reverse” directed min-
power spanning tree problem, when we require a path from every node to s, is
equivalent to the min-cost case, and thus is solvable in polynomial time.

1.2 Problems Considered

An important network property is fault-tolerance. An edge set E on V is a k-
(edge-)cover (of V) if the degree (the indegree, in the case of directed graphs) of
every node v ∈ V w.r.t. E is at least k. A graph G is k-outconnected from s if it
has k (pairwise) internally disjoint sv-paths for any v ∈ V ; G is k-inconnected to
s if its reverse graph is k-outconnected from s (for undirected graphs these two
concepts are the same); G is k-connected if it has k internally disjoint uv-paths
for all u, v ∈ V . When the paths are required only to be edge-disjoint, the graph
is k-edge outconnected from s, k-edge inconnected to s, and k-edge-connected,
respectively (for undirected graphs these three concepts are the same).

We consider the following classic problems in the power model, some of them
generalizations of the problems from [1,3,4], that were already studied, c.f.,
[16,19,23]. These problems are defined for both directed and undirected graphs.
Min-Power k-Edge-Cover (MP-k-EMC)
Instance: A graph G = (V, E), edge-costs {c(e) : e ∈ E}, an integer k.
Objective: Find a min-power k-edge-cover E ⊆ E .
Min-Power k Disjoint Paths (MPk-DP)
Instance: A graph G = (V, E), edge-costs {c(e) : e ∈ E}, s, t ∈ V , an integer k.
Objective: Find a min-power subgraph G of G with k internally-disjoint st-paths.
Min-Power k-Inconnected Subgraph (MPk-IS)
Instance: A graph G = (V, E), edge-costs {c(e) : e ∈ E}, s ∈ V , an integer k.
Objective: Find a min-power k-inconnected to s spanning subgraph G of G.
Min-Power k-Outconnected Subgraph (MPk-OS)
Instance: A graph G = (V, E), edge-costs {c(e) : e ∈ E}, s ∈ V , an integer k.
Objective: Find a min-power k-outconnected from s spanning subgraph G of G.
Min-Power k-Connected Subgraph (MPk-CS)
Instance: A graph G = (V, E), edge-costs {c(e) : e ∈ E}, an integer k.
Objective: Find a min-power k-connected spanning subgraph G of G.

On Minimum Power Connectivity Problems 89

When the paths are required only to be edge-disjoint we get the problems:

Min-Power k Edge-Disjoint Paths (MPk-EDP) (instead of MPk-DP);
Min-Power k-Edge-Inconnected Subgraph (MPk-EIS) (instead of MPk-IS);
Min-Power k-Edge-Outconnected Subgraph (MPk-EOS) (instead of MPk-OS);
Min-Power k-Edge-Connected Subgraph (MPk-ECS) (instead of MPk-CS).

Note that for undirected graphs, the three edge-connectivity problems
MPk-EIS, MPk-EOS, and MPk-ECS, are equivalent, but none of them is known
to be equivalent to the other for directed graphs. For node connectivity and
undirected graphs, only MPk-IS and MPk-OS are equivalent.

1.3 Previous Work

Min-cost versions of the above problems were studied extensively, see, e.g.,
[9,13,14,12], and surveys in [7,11,17,22].

Previous results on MP-k-EMC: The min-cost variant of MP-k-EMC is es-
sentially the classic b-matching problem, which is solvable in polynomial time,
c.f., [7]. The min-power variant MP-k-EMC was shown recently in [19] to ad-
mit a min{k + 1, O(ln n)}-approximation algorithm, improving the min{k +
1, O(ln4 n)}-approximation achieved in [16]. For directed graphs, MP-k-EMC ad-
mits an O(ln n)-approximation algorithm, and this is tight, see [19].

Previous results on MPk-DP: The min cost variant of directed/undirected
MPk-EDP/MPk-DP is polynomially solvable, as this is the classic (incapacitated)
Min-Cost k-Flow problem, c.f., [7]. In the min-power case, the edge-connectivity
variant is substantially harder than the node-connectivity one. In the node-
connectivity case, directed MPk-DP is solvable in polynomial time by a simple
reduction to the min-cost case, c.f., [16]; this implies a 2-approximation algorithm
for undirected MPk-DP, which is however not known to be in P nor NP-hard. In
the edge-connectivity case, directed MPk-EDP cannot be approximated within
O(2log1−ε n) for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)) [16]. The
best known approximation algorithm for directed MPk-EDP is k [23].

Previous results on MPk-IS and MPk-OS: For directed graphs the min-cost
versions of MPk-EOS and MPk-OS are polynomially solvable, see [9] and [13,12],
respectively. This implies a 2-approximation algorithm for undirected graphs.
In the min-power case, the best known approximation ratio for directed MPk-
IS/MPk-EIS is k, and the best known ratio for directed MPk-OS/MPk-EOS is
O(k ln n), see [23]. For undirected graphs, the previously best ratio was 2k−1/3
for both edge and node-connectivity versions of MPk-IS and MPk-OS, see [19].

Previous results on MPk-CS: Min-cost versions of MPk-CS/MPk-ECS were
extensively studied, see surveys in [17] and [22]. The best known approximation
ratios for the min-cost variant of MPk-CS are O(ln2 k · min{ n

n−k ,
√

k
lnk}) for both

directed and undirected graphs [21], and O(ln k) for undirected graphs with n ≥
2k2 [6]. For the edge connectivity variant, there is a simple 2-approximation for
both directed and undirected graphs [18]. For the min-power case, the best known

90 Y. Lando and Z. Nutov

ratio for undirected MPk-CS is O(α+ ln n) [19], where α is the best known ratio
for the min-cost case. This result relies on the O(ln n)-approximation for undi-
rected MP-k-EMC of [19], and the observation from [16] that an α-approximation
algorithm for the min-cost variant of MPk-CS and a β-approximation algorithm
for MP-k-EMC implies a (2α+β)-approximation algorithm for MPk-CS. For the
edge-connectivity variant, the best known ratios are: 2k − 1/3 for undirected
graphs [19], and O(k ln k) for directed graphs [23].

1.4 Results in This Paper

Our first result is for undirected node-connectivity problems. We show that MPk-
CS/MPk-OS cannot achieve a better approximation ratio than MP-(k−1)-EMC.
We also show that up to constants, MPk-OS and MP-k-EMC are equivalent w.r.t.
approximation. We use this to get the first polylogarithmic approximation for
MPk-OS, improving the ratio 2k − 1/3 by [19]. Formally:

Theorem 1
(i) If there exists a ρ-approximation algorithm for undirected MPk-OS/MPk-

CS then there exist a ρ-approximation algorithm for MP-(k − 1)-EMC.
(ii) If there exist a β-approximation algorithm for MP-(k − 1)-EMC, then there

exists a (β + 4)-approximation algorithm for undirected MPk-OS.
(iii) Undirected MPk-OS admits a min{k + 4, O(log n)}-approximation algo-

rithm.

Our second result is for undirected MPk-EDP and MPk-ECS. As was mentioned,
for k = 1 directed/undirected MPk-EDP is easily reduced to the min-cost case.
We are not aware of any nontrivial algorithms for undirected MPk-EDP for
arbitrary k. We give a strong evidence that a polylogarithmic approximation
algorithm for undirected MPk-EDP/MPk-ECS may not exist even for highly
restricted instances. For that, we show a reduction from the following extensively
studied problem to the undirected MPk-EDP/MPk-ECS. For a graph J = (V, I)
and X ⊆ V let I(X) denote the edges in I with both ends in X .

Densest �-Subgraph (D�-S)
Instance: A graph J = (V, I) and an integer �.
Objective: Find X ⊆ V with |X | ≤ � and |I(X)| maximum.

The best known approximation ratio for D�-S is roughly |V |−1/3 [10] even for
the case of bipartite graphs (which up to a factor of 2 is as hard to approximate
as the general case), and this ratio holds for 10 years.

We also consider the following “augmentation” version of undirected MPk-
EDP (the directed case is easy, c.f., [23]), which already generalizes the case
k = 1 considered in [1].

Min-Power k Edge-Disjoint Paths Augmentation (MPk-EDPA)
Instance: A graph G = (V, E), edge-costs {c(e) : e ∈ E}, s, t ∈ V , an integer k,

and a subgraph G0 = (V, E0) of G that contains k − 1 pairwise edge-
disjoint st-paths.

On Minimum Power Connectivity Problems 91

Objective: Find F ⊆ E − E0 so that G0 + F contains k pairwise edge-disjoint
st-paths and with p(G0 + F) − p(G0) minimum.

Theorem 2
(i) Undirected MPk-EDP/MPk-ECS admit no C ln n-approximation algorithm

for some universal constant C > 0, unless P = NP .
(ii) If there exists a ρ-approximation algorithm for undirected MPk-EDP or to

undirected MPk-ECS, then there exists a 1/(2ρ2)-approximation algorithm
for D�-S on bipartite graphs.

(iii) Undirected MPk-EDPA is in P; thus undirected MPk-EDP admits a k-appro-
ximation algorithm.

Our last result is for edge-connectivity directed problems. In [23] is given an
O(k ln n)-approximation algorithm for directed MPk-OS, MPk-EOS, and MPk-
ECS, and a k-approximation algorithm for directed MPk-EIS; these ratios are
tight up to constant factor if k is “small”, but may seem weak if k is large. We
prove that for each one of these four problems a polylogarithmic approximation
ratio is unlikely to exist even when the costs are symmetric.

Theorem 3. Directed MPk-EDP/MPk-EOS/MPk-EIS/MPk-ECS cannot be ap-
proximated within O(2log1−ε n) for any fixed ε > 0 even for symmetric costs,
unless NP ⊆ DTIME(npolylog(n)).

Theorems 1, 2, and 3, are proved in Sections 2, 3, and 4, respectively.
Table 1 summarizes the currently best known approximation ratios and

thresholds for the connectivity problems considered. Our results show that each
one of the directed/undirected edge-connectivity problems MPk-EDP, MPk-EOS,
MPk-EIS, MPk-ECS, is unlikely to admit a polylogarithmic approximation. Note
again that directed MPk-EOS and MPk-EIS are not equivalent.

Table 1. Currently best known approximation ratios and thresholds for min-power
connectivity problems. Results without references are proved in this paper. σ is the
best ratio for D�-S; currently σ is roughly O(n−1/3) [10]. β is the best ratio for MP-
(k − 1)-EMC; currently β = min{k, O(log n)} [19]. α is the best ratio for the Min-Cost
k-Connected Subgraph problem; currently, α = �(k + 1)/2� for 2 ≤ k ≤ 7 (see [2] for
k = 2, 3, [8] for k = 4, 5, and [20] for k = 6, 7); α = k for k = O(ln n) [20], α = 6H(k)
for n ≥ k(2k − 1) [6], and α = O(ln k · min{

√
k, n

n−k
ln k}) for n < k(2k − 1) [21].

Problem Edge-Connectivity Node-Connectivity
Undirected Directed Undirected Directed

MPk-DP k k [23] 2 [16] in P [16]

Ω(max{1/
√

σ, lnn}) Ω(2log1−ε n) [16] −−
MPk-IS 2k − 1/3 [19] k [23] min{k + 4, O(ln n)} k [23]

Ω(max{1/
√

σ, lnn}) Ω(2log1−ε n) Ω(β) −−
MPk-OS 2k − 1/3 [19] O(k ln n) [23] min{k + 4, O(ln n)} O(k lnn) [23]

Ω(max{1/
√

σ, lnn}) Ω(2log1−ε n) Ω(β) Ω(ln n) for k = 1 [3]
MPk-CS 2k − 1/3 [19] O(k ln n) [23] O(α + lnn) [19] O(k(lnn + k)) [23]

Ω(max{1/
√

σ, lnn}) Ω(2log1−ε n) Ω(β) Ω(ln n) for k = 1 [3]

92 Y. Lando and Z. Nutov

1.5 Notation

Here is some notation used in the paper. Let G = (V, E) be a (possibly directed)
graph. Let degE(v) = degG(v) denote the degree of v in G. Given edge costs
{c(e) : e ∈ E}, the power of v in G is pc(v) = p(v) = maxvu∈E c(e), and the power
of G is p(G) = p(V) =

∑
v∈V p(v). Throughout the paper, G = (V, E) denotes

the input graph with nonnegative costs on the edges. Let n = |V | and m = |E|.
Given G, our goal is to find a minimum power spanning subgraph G = (V, E)
of G that satisfies some prescribed property. We assume that a feasible solution
exists; let opt denote the optimal solution value of an instance at hand.

2 Proof of Theorem 1

In this section we consider undirected graphs only and prove Theorem 1. Part (iii)
of Theorem 1 follows from Part (ii) and the fact that MP-(k − 1)-EMC admits
a min{k, O(log n)}-approximation algorithm [19]. In the rest of this section we
prove Parts (i) and (ii) of Theorem 1.

We start by proving Part (i). The reduction for MPk-CS is a s follows. Let
G = (V, E), c be an instance of MP-(k − 1)-EMC with |V | ≥ k. Construct an
instance G′, c′ for MPk-CS as follows. Add a copy V ′ of V and the set of edges
{vv′ : v ∈ V } of cost 0 (v′ ∈ V ′ is the copy of v ∈ V), and then add a clique of
cost 0 on V ′. Let E ′ be the edges of G′−E . We claim that E ⊆ E is a (k−1)-edge
cover if, and only if, G′ = (V + V ′, E + E ′) is k-connected.

Suppose that G′ is k-connected. Then degE+E′(v) ≥ k and degE′(v) = 1 for
all v ∈ V . Hence degE(v) ≥ k−1 for all v ∈ V , and thus E is a (k−1)-edge-cover.

Suppose that E ⊆ E is a (k − 1)-edge cover. We will show that G′ has k
internally disjoint vu-paths for any u, v ∈ V + V ′. It is clear that G′ − E, and
thus also G′, has k internally disjoint vu-paths for any u, v ∈ V ′. Let v ∈ V .
Consider two cases: u ∈ V ′ and u ∈ V . Assume that u ∈ V ′. Every neighbor
vi of v in (V, E) defines the vu path (v, vi, v

′
i, u) (possibly v′i = u), which gives

degE(v) ≥ k − 1 internally disjoint vu-paths. An additional path is (v, v′, u).
Now assume that u ∈ V . Every common neighbor a of u and v defines the vu-
path (v, a, u), and suppose that there are q such common neighbors. Each of
v and u has at least k − 1 − q more neighbors in G, say {v1, . . . , vk−1−q} and
u1, . . . , uk−1−q, respectively. This gives k − 1 − q internally disjoint vu-paths
(v, vi, v

′
i, u
′
i, u), i = 1, . . . , k − 1 − q. An additional path is (v, v′, u′, u). It is easy

to see that these k vu-paths are internally disjoint. The proof for MPk-CS is
complete.

The reduction for MPk-OS is the same, except that in the construction of G′
we also add a node s and edges {sv′ : v′ ∈ V ′} of cost 0.

We now prove Part (ii); the proof is similar to the proof of Theorem 3 from
[16]. Given a graph G which is k-outconnected from s, let us say that an edge
e of G is critical if G − e is not k-outconnected from s. We need the following
fundamental statement:

Theorem 4 ([5]). In a k-outconnected from s undirected graph G, any cycle of
critical edges contains a node v �= s whose degree in G is exactly k.

On Minimum Power Connectivity Problems 93

The following corollary (e.g., see [5]) is used to get a relation between (k−1)-edge
covers and k-outconnected subgraphs.

Corollary 1. If degJ(v) ≥ k−1 for every node v of an undirected graph J , and
if F is an inclusion minimal edge set such that J ∪ F is k-outconnected from s,
then F is a forest.

Proof. If not, then F contains a critical cycle C, but every node of C is incident
to 2 edges of C and to at least k − 1 edges of J , contradicting Theorem 4. �	
We now finish the proof of Part (ii). By the assumption, we can find a subgraph
J with degJ(v) ≥ k − 1 of power at most p(J) ≤ ρopt. We reset the costs of
edges in J to zero, and apply a 2-approximation algorithm for the Min-Cost k-
Outconnected Subgraph problem (c.f., [13]) to compute an (inclusion) minimal
edge set F so that J +F is k-outconnected from s. By Corollary 1, F is a forest.
Thus p(F) ≤ 2c(F) ≤ 4opt, by Proposition 1. Combining, we get Part (ii).

3 Proof of Theorem 2

It is easy to see that MPk-EDP is “Set-Cover hard”. Indeed, the Set-Cover prob-
lem can be formulated as follows. Given a bipartite graph J = (A + B, E), find
a minimum size subset S ⊆ A such that every node in B has a neighbor in S.
Construct an instance of MPk-EDP by adding two new nodes s and t, edges
{sa : a ∈ A}∪{bt : b ∈ B}, and setting c(e) = 1 if e is incident to s and c(e) = 0
otherwise. Then replace every edge not incident to t by |B| parallel edges. For
k = |B|, it is easy to see that S is a feasible solution to the Set-Cover instance if,
and only if, the subgraph induced by S ∪B ∪{s, t} is a feasible solution of power
|S|+1 to the obtained MPk-EDP instance; each node in S ∪{t} contributes 1 to
the total power, while the contribution of any other node is 0. Combining this
with the hardness results of [25] for Set-Cover, we get Part (i).

The proof of Part (ii) is similar to the the proof of Theorem 1.2 from [24],
where the related Node-Weighted Steiner Network was considered; we provide
the details for completeness of exposition. We need the following known state-
ment (c.f., [10,24]).

Lemma 1. There exists a polynomial time algorithm that given a graph G =
(V, E) and an integer 1 ≤ � ≤ n = |V | finds a subgraph G′ = (V ′, E′) of G with
|V ′| = � and |E′| ≥ |E| · �(�−1)

n(n−1) .

Given an instance J = (A + B, I) and � of bipartite D�-S, define an instance of
(undirected) unit-cost MPk-EDP/MPk-ECS by adding new nodes {s, t}, a set of
edges E0 = {aa′ : a, a′ ∈ A + s} ∪ {bb′ : b, b′ ∈ B + t} of multiplicity |A| + |B|
and cost 0 each, and setting c(e) = 1 for all e ∈ I. It is easy to see that any
E ⊆ I determines |E| edge-disjoint st-paths, and that (A +B + {s, t}, E0 + |E|)
is k-connected if, and only if, |E| ≥ k. Thus for any integer k ∈ {1, . . . , |I|}, if
we have a ρ-approximation algorithm for undirected MPk-EDP/MPk-ECS, then

94 Y. Lando and Z. Nutov

we have a ρ-approximation algorithm for min{|X | : X ⊆ A + B, |I(X)| ≥ k}.
We show that this implies a 1/(2ρ2)-approximation algorithm for the original
instance of bipartite D�-S, which is max{|I(X)| : X ⊆ A + B, |X | ≤ �}).

For every k = 1, . . . , |I|, use the ρ-approximation algorithm for undirected
MPk-EDP/MPk-ECS to compute a subset Xk ⊆ A + B so that |I(Xk)| ≥ k, or
to determine that no such Xk exists. Set X = Xk where k is the largest integer
so that |Xk| ≤ min{
ρ · ��, |A| + |B|} and |I(Xk)| ≥ k. Let X∗ be an optimal
solution for D�-S. Note that |I(X)| ≥ |I(X∗)| and that �(�−1)

|X|(|X|−1) ≥ 1/(2ρ2). By
Lemma 1 we can find in polynomial time X ′ ⊆ X so that |X ′| = � and |I(X ′)| ≥
|I(X)| · �(�−1)

|X|(|X|−1) ≥ |I(X∗)| · 1/(2ρ2). Thus X ′ is a 1/(2ρ2)-approximation for
the original bipartite D�-S instance.

We now prove part (iii) of Theorem 2. It would be convenient to describe
the algorithm using “mixed” graphs that contain both directed and undirected
edges. Given such mixed graph with weights on the nodes, a minimum weight
path between two given nodes can be found in polynomial time using Dikjstra’s
algorithm and elementary constructions. The algorithm for undirected MPk-
EDPA is as follows.

1. Construct a graph G′ from G as follows. Let p0(v) be the power of v in G0.
For every v ∈ V do the following. Let p0(v) ≤ c1 < c2 < · · · be the costs
of the edges in E leaving v of cost at least p0(v) sorted in increasing order.
For every cj add a node vj of the weight w(vj) = cj − p0(v). Then for every
uj′ , vj′′ add an edge uj′vj′′ if w(uj′), w(vj′′) ≥ c(uv). Finally, add two nodes
s, t and an edge from s to every sj and from every tj to t.

2. Construct a mixed graph D from G′ as follows. Let I be an inclusion minimal
edge set in G0 that contains k−1 pairwise edge-disjoint st-paths. Direct those
paths from t to s, and direct accordingly every edge of G′ that corresponds
to an edge in I.

3. In D, compute a minimum weight st-path P . Return the set of edges of G
that correspond to P that are not in E0.

We now explain why the algorithm is correct. It is known that the following
“augmenting path” algorithm solves the Min-Cost k Edge-Disjoint Paths
Augmentation problem (the min-cost version of MPk-EDPA, where the edges
in G0 have cost 0) in undirected graphs (c.f., [7]).

1. Let I be an inclusion minimal edge set in G0 that contains k − 1 pairwise
edge-disjoint st-paths. Construct a mixed graph D from G by directing these
paths from t to s.

2. Find a min-cost path P in D. Return P − E0.

Our algorithm for MPk-EDPA does the same but on the graph G′. The fea-
sibility of the solution follows from standard network flow arguments. The key
point in proving optimality is that in G′ the weight of a node is the increase
of its power caused by taking an edge incident to this node. It can be shown
that for any feasible solution F corresponds a unique path P in D so that
p(G0 + F) − p(G0) = w(P), and vice versa. As we choose the minimum weight
path in D, the returned solution is optimal.

On Minimum Power Connectivity Problems 95

4 Proof of Theorem 3

4.1 Arbitrary Costs

We first prove Theorem 3 for arbitrary costs, not necessarily symmetric. For that,
we use the hardness result for MPk-EDP of [16], to show a similar hardness for the
other three problems MPk-EOS, MPk-EIS, and MPk-ECS. Loosely speaking, we
show that each of directed MPk-EOS/MPk-EIS is at least as hard as MPk-EDP,
and that MPk-ECS is at least as hard as MPk-EOS.

We start by describing how to reduce directed MPk-EDP to directed MPk-
EOS. Given an instance G = (V, E), c, (s, t), k of MPk-EDP construct an instance
of G′ = (V ′, E ′), c′, s, k of directed MPk-EOS as follows. Add to G a set U =
{u1, . . . , uk} of k new nodes, and then add an edge set E0 of cost zero: from t to
every node in U , and from every node in U to every node v ∈ V −{s, t}. That is

V ′ = V + U = V + {u1, . . . , uk},
E ′ = E + E0 = E + {tu : u ∈ U} + {uv : u ∈ U, v ∈ V ′ − {s, t}},

c′(e) = c(e) if e ∈ E and c′(e) = 0 otherwise .

Since in the construction |V ′| = |V |+k ≤ |V |+|V |2 ≤ 2|V |2, Theorem 2 together
with the following claim implies Theorem 3 for asymmetric MPk-EOS.

Claim. G = (V, E) is a solution to the MPk-EDP instance if, and only if, G′ =
(V ′, E′ = E + E0) is a solution to the constructed MPk-EOS instance.

Proof. Let E be a solution to the MPk-EDP instance and let Π = {P1, . . . , Pk}
be a set of k pairwise edge-disjoint st-paths in E. Then in G′ = (V ′, E + E0)
for every v ∈ V ′ − s there is a set Π ′ = {P ′1, . . . , P

′
k} of k pairwise edge-disjoint

sv-paths: if v = t then Π ′ = Π ; if v �= s then P ′j = Pj + tuj + ujv, j = 1, . . . , k.
Now let E′ = E + E0 be a solution to constructed MPk-EOS instance. In

particular, (V ′, E′) contains a set Π of k-edge disjoint st-paths, none of which
has t as an internal node. Consequently, no path in Π passes through U , as t is
the tail of every edge entering U . Thus Π is a set k-edge disjoint st-paths in G,
namely, G = (V, E) is a solution to the original MPk-EDP instance. �	
Asymmetric MPk-EIS: The reduction of asymmetric MPk-EIS to MPk-EDP is
similar to the one described above, except that here set E0 = {us : u ∈ U}+{vu :
v ∈ V −{s, t}, u ∈ U}; namely, connect every u ∈ U to s, and every v ∈ V −{s, t}
to every u ∈ U . Then in the obtained MPk-EIS instance, require k internally
edge-disjoint vt-paths for every v ∈ V , namely, we seek a graph that is k-edge-
inconnected to t. The other parts of the proof for MPk-EIS are identical to those
for MPk-EOS described above.

Asymmetric MPk-ECS: Reduce the directed MPk-EOS to the directed MPk-
ECS as follows. Let G = (V, E), c, s, k be an instance of MPk-EOS. Construct
an instance of G′ = (V ′, E ′), c′, s, k of MPk-EOS as follows. Add to G a set
U = {u1, . . . , uk} of k new nodes, and then add an edge set E0 = {uu′ : u, u′ ∈
U} + {vu : v ∈ V − s, u ∈ U} + {us : u ∈ U} of cost 0; namely, E0 is obtained
by taking a complete graph on U and adding all edges from V − s to U and all

96 Y. Lando and Z. Nutov

edges from U to s. It is not hard to verify that if E ⊆ E , then G = (V, E) is
k-edge-outconnected from s if, and only if, G′ = (V ′, E0+E) is k-edge-connected.

4.2 Symmetric Costs

We show that the directed problems MPk-EDP, MPk-EOS, MPk-EIS, MPk-ECS
are hard to approximate even for symmetric costs. We start with directed sym-
metric MPk-EDP. We use a refinement of a result from [16] which states that
directed MPk-EDP cannot be approximated within O(2log1−ε n) for any fixed
ε > 0, unless NP ⊆ DTIME(npolylog(n)). In [16] it is shown that this hardness
result holds for simple graphs with costs in {0, n3}, where n = |V |. If we change
the cost of every edge of cost 0 to 1, it will add no more then n2/n3 to the total
cost of any solution that uses at least one edge of cost n3. Thus we have:

Corollary 2 ([16]). Directed MPk-EDP with costs in {1, n3} cannot be approxi-
mated within O(2log1−ε n) for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

We show that a ρ-approximation algorithm for directed symmetric MPk-EDP
implies a ρ-approximation algorithm for directed MPk-EDP with costs in {1, n3},
for any ρ < n1/7. Let G = (V, E), c, (s, t), k be an instance of MPk-EDP with
costs in {1, n3}. Let opt be an optimal solution value for this instance. Note
that opt ≤ n4. Let N = n5. Define an instance G′ = (V ′, E ′), c′, (s, t), k′ = kN
for directed symmetric MPk-EDP as follows. First, obtain G+ = (V ′, E+), c+ by
replacing every edge e = uv ∈ E by N internally-disjoint uv-paths of the length
2 each, where the cost of the first edge in each paths is c(e) and the cost of the
second edge is 0. Second, to obtain a symmetric instance G′, c′, for every edge
ab ∈ E+ add the opposite edge ba of the same cost as ab.

For a path P+ in E+, let ψ(P+) denote the unique path in E corresponding
to P+. For any path P in E , the paths in the set ψ−1(P) of the paths in E+

that corresponds to P are edge-disjoint. Hence, any set Π of paths in E is
mapped by ψ−1 to a set Π+ = ψ−1(Π) of exactly N |Π | edge-disjoint paths in
E+ of the same power, namely |Π+| = N |Π | and pc(Π) = pc+(Π+). Conversely,
any set Π+ of paths in E+ is mapped by ψ to a set Π = ψ(Π+) of at least
�|Π+|/N edge-disjoint paths in E of the same power, namely, |Π | = �|Π |/N
and pc(Π) = pc+(Π+). In particular:

Corollary 3. opt′ ≤ opt ≤ n4, where opt′ is an optimal solution value for G′.
Note that |V ′| = n′ ≤ n7, hence to prove Theorem 3 for directed symmet-
ric MPk-EDP it is sufficient to prove that a ρ(n′)-approximation algorithm for
G′, c′, (s, t), k′ with ρ(n′) < n′1/7 implies a ρ(n)-approximation algorithm for
the original instance. Suppose that we have a ρ(n′)-approximation algorithm
that computes an edge set E′ ⊆ E ′ that contains a set Π ′ of kN edge-disjoint
paths in G′ of power pc′(E′) ≤ ρ · opt′, where ρ = ρ(n′) < n′1/7 ≤ n. Then
|E′ − E+| ≤ ρ · opt′ ≤ ρ · n4, since every edge in |E′ − E+| adds at least one to
pc′(E′). Consequently, there is a set Π+ ⊆ Π ′ of at least kN − ρ · n4 paths in
Π that are contained in E+ = E′ ∩ E+. Hence, since ρ = ρ(n′) > n′1/7 ≥ n, the
number of paths in Π = ψ(Π+) is at least

On Minimum Power Connectivity Problems 97

|Π | ≥
⌈

kN − ρ · n4

N

⌉
≥

⌈
k − ρ · n4

N

⌉
=

⌈
k − ρ

n

⌉
≥ k .

Consequently, the set E of edges of Π is a feasible solution for G, c, (s, t), k
of power at most pc(E) ≤ pc′(E′) ≤ ρopt′ ≤ ρopt. Since in the construction
|V ′| ≤ |V |7, Corollary 2 implies Theorem 3 for directed symmetric MPk-EDP.

The proof for the other problems MPk-EOS, MPk-EIS, and MPk-ECS, is sim-
ilar, with the help of reductions described for the asymmetric case.

5 Conclusion

In this paper we showed that MPk-OS and MP-(k−1)-EMC are equivalent w.r.t.
approximation, and used this to derive a logarithmic approximation for MPk-OS.
We also showed that the edge-connectivity problems MPk-EDP, MPk-EOS/MPk-
EIS, and MPk-ECS, are unlikely to admit a polylogarithmic approximation ratio
for both directed and undirected graphs, and for directed graphs this is so even
if the costs are symmetric. In contrast, we showed that the augmentation version
MPk-EDPA of MPk-EDP, can be reduced to the shortest path problem.

We now list some open problems, that follow from Table 1. Most of them
concern node-connectivity problems. One open problem is to determine whether
the undirected MPk-DP is in P or is NP-hard (as was mentioned, the directed
MPk-DP is in P, c.f., [16]). In fact, we do not even know whether the augmen-
tation version MPk-DPA of undirected MPk-DP is in P. A polynomial algorithm
for undirected MPk-DPA can be used to slightly improve the known ratios for
the undirected MPk-CS: from 9 (follows from [20]) to 8 2

3 for k = 4, and from 11
(follows from [8]) to 10 for k = 5. This is achieved as follows. In [8] it is shown
that if G is k-outconnected from r and degG(r) = k then G is (�k/2 + 1)-
connected; furthermore, for k = 4, 5, G contains two nodes s, t so that increasing
the connectivity between them by one results in a k-connected graph. Hence for
k = 4, 5, we can get approximation ratio γ + δ, where γ is the ratio for undi-
rected MPk-OS, and δ is the ratio for undirected MPk-DPA. As MPk-OS can be
approximated within min{2k−1/3, k+4}, then if MPk-DPA is in P, for MPk-CS
we can get approximation ratios 8 2

3 for k = 4 and 10 for k = 5.
Another question is the approximability of the directed MPk-IS. Currently,

we are not aware of any hardness result, while the best known approximation
ratio is k. Except directed MPk-DP, there is still a large gap between upper and
lower bounds of approximation for all the other min-power node connectivity
problems, for both directed and undirected graphs.

References

1. Althaus, E., Calinescu, G., Mandoiu, I., Prasad, S., Tchervenski, N., Zelikovsky,
A.: Power efficient range assignment for symmetric connectivity in static ad-hoc
wireless networks. Wireless Networks 12(3), 287–299 (2006)

2. Auletta, V., Dinitz, Y., Nutov, Z., Parente, D.: A 2-approximation algorithm
for finding an optimum 3-vertex-connected spanning subgraph. Journal of Algo-
rithms 32(1), 21–30 (1999)

98 Y. Lando and Z. Nutov

3. Calinescu, G., Kapoor, S., Olshevsky, A., Zelikovsky, A.: Network lifetime and
power assignment in ad hoc wireless networks. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 114–126. Springer, Heidelberg (2003)

4. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Energy-efficient wireless net-
work design. Theory of Computing Systems 39(5), 593–617 (2006)

5. Cheriyan, J., Jordán, T., Nutov, Z.: On rooted node-connectivity problems. Algo-
rithmica 30(3), 353–375 (2001)

6. Cheriyan, J., Vempala, S., Vetta, A.: An approximation algorithm for the
minimum-cost k-vertex connected subgraph. SIAM Journal on Computing 32(4),
1050–1055 (2003)

7. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Scrijver, A.: Combinatorial
Optimization. Wiley, Chichester (1998)

8. Dinitz, Y., Nutov, Z.: A 3-approximation algorithm for finding an optimum 4,5-
vertex-connected spanning subgraph. Journal of Algorithms 32(1), 31–40 (1999)

9. Edmonds, J.: Matroid intersection. Annals of discrete Math., 185–204 (1979)
10. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorith-

mica 29(3), 410–421 (2001)
11. Frank, A.: Connectivity and network flows. In: Graham, R., Grötschel, M., Lovász,

L. (eds.) Handbook of Combinatorics, pp. 111–177. Elsvier Science (1995)
12. Frank, A.: Rooted k-connections in digraphs, EGRES TR No 2006-07 (2006)
13. Frank, A., Tardos, E.: An application of submodular flows. Linear Algebra and its

Applications 114/115, 329–348 (1989)
14. Gabow, H.N.: A representation for crossing set families with application to sub-

modular flow problems. In: SODA, pp. 202–211 (1993)
15. Hajiaghayi, M.T., Immorlica, N., Mirrokni, V.S.: Power optimization in fault-

tolerant topology control algorithms for wireless multi-hop networks. In: Proc.
Mobile Computing and Networking (MOBICOM), pp. 300–312 (2003)

16. Hajiaghayi, M.T., Kortsarz, G., Mirrokni, V.S., Nutov, Z.: Power optimization for
connectivity problems. Math. Programming 110(1), 195–208 (2007)

17. Khuller, S.: Approximation algorithms for for finding highly connected subgraphs.
In: Hochbaum, D.S. (ed.) Approximation Algorithms FOR NP-Hard Problems, ch.
6, pp. 236–265. PWS (1995)

18. Khuller, S., Vishkin, U.: Biconnectivity approximations and graph carvings. Jour-
nal of the Association for Computing Machinery 41(2), 214–235 (1994)

19. Kortsarz, G., Mirrokni, V.S., Nutov, Z., Tsanko, E.: Approximation algorithms for
minimum power degree and connectivity problems. Manuscript (2006)

20. Kortsarz, G., Nutov, Z.: Approximating node-connectivity problems via set covers.
Algorithmica 37, 75–92 (2003)

21. Kortsarz, G., Nutov, Z.: Approximating k-node connected subgraphs via critical
graphs. SIAM J. on Computing 35(1), 247–257 (2005)

22. Kortsarz, G., Nutov, Z.: Approximating minimum cost connectivity problems. In:
Gonzalez, T.F. (ed.) Approximation Algorithms and Metaheuristics, ch. 58 (2007)

23. Nutov, Z.: Approximating minimum power covers of intersecting families and di-
rected connectivity problems. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U.
(eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, Springer, Heidelberg
(2006)

24. Nutov, Z.: Approximating Steiner networks with node weights. manuscript (2006)
25. Raz, R., Safra, S.: A sub-constant error-probability low-degree test and a sub-

constant error-probability PCP characterization of NP. In: STOC, pp. 475–484
(1997)

On the Cost of Interchange Rearrangement in

Strings

Amihood Amir1,2,�, Tzvika Hartman1, Oren Kapah1, Avivit Levy1,��,
and Ely Porat1

1 Department of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
{amir,hartmat,kapaho,levyav2,porately}@cs.biu.ac.il

2 Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218

Abstract. An underlying assumption in the classical sorting problem is
that the sorter does not know the index of every element in the sorted
array. Thus, comparisons are used to determine the order of elements,
while the sorting is done by interchanging elements. In the closely re-
lated interchange rearrangement problem, final positions of elements are
already given, and the cost of the rearrangement is the cost of the inter-
changes. This problem was studied only for the limited case of permu-
tation strings, where every element appears once. This paper studies a
generalization of the classical and well-studied problem on permutations
by considering general strings input, thus solving an open problem of
Cayley from 1849, and examining various cost models.

1 Introduction

In the classical sorting problem the input is a list of elements and a relation R,
and the goal is to efficiently rearrange the list according to R. The underlying
assumption is that the sorter does not know the location of the elements in the
sorted list. Therefore, the basic tool used to determine the order of elements is
comparisons according to R. The operation used to rearrange elements in the list
is an interchange, in which the two participating elements exchange positions.
Since the number of rearrangements is less than the number of comparisons the
cost of a sorting algorithm is usually measured by the number of comparisons it
makes. In the closely related interchange rearrangement problem the relation R
is given implicitly as a target string, representing the desired order between the
elements in the list. The goal is to rearrange the string representing the current
list to the target string by interchanges. In this problem, however, the underlying
assumption is that the sorter can ‘see’ the whole lists in one operation or get
this information for free. Therefore, the sorter does not need comparisons. The
cost of the rearrangement is now determined by the cost of the rearrangements
operations. Thus, the question is, what is the minimum rearrangement opera-
tions required in order to rearrange the input string to the target string. Some
� Partly supported by ISF grant 35/05.

�� Partly supported by a BIU President Fellowship. This work is part of A. Levy’s
Ph.D. thesis.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 99–110, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

100 A. Amir et al.

situations of objects rearrangement fit the interchange rearrangement problem
rather than the classical sorting problem. Consider, for example, a robot rear-
ranging a list of objects (on an assembly line), by interchanging two elements
in each operation, one in each ‘hand’. The interchanges sequence for the given
input is computed in advance.

Rearrangement distances are extensively studied in comparative genomics for
some rearrangement operators. Genome rearrangement distances are studied in
order to establish phylogenetic information about the evolution of species. Dur-
ing the course of evolution, whole regions of genome may evolve through re-
versals, transpositions and translocations. Considering the genome as a string
over the alphabet of genes, these cases represent a situation where the difference
between the original string and the resulting one is in the locations of the dif-
ferent elements, where changes are caused by rearrangements operators. Many
works have considered specific versions of this biological setting (sorting by re-
versals [1,2,3], transpositions [4], and translocations [5]). The biologically mean-
ingful rearrangement operators usually involve blocks in the genome sequence
and are not limited to single genes. Thus, although the problem of sorting by
block interchanges was studied [6], the interchange rearrangement operator on
single elements was neglected by genome rearrangements researchers1. Never-
theless, we believe that studying this operator, especially in general strings may
give insights into other rearrangement operators as well. Most of the work on
genome rearrangements is on permutation strings, where every symbol appears
only once. The more interesting case of general strings has indeed been dealt by
some researchers (e.g. [8,9]), however, still not studied enough.

A first step in the study of the interchange rearrangement problem was made
in 1849 by the mathematician Cayley [10], who studied the limited input of
permutation strings in which all elements are distinct. In this case strings can
be viewed as a permutation of 1, . . . , m, where m is the length of the string.
This classical setting was well studied. For example, [10,11] give a characteristic
theorem for the distance in this case. Recently, [12] defined the interchange
distance problem and described a simple linear time algorithm for computing
it on permutation strings. However, these results do not apply for the general
strings case. The general strings case was left as an open problem by Cayley.
This paper studies a generalization of this classical and well-studied problem on
permutations by considering the general strings input, and examining various
cost models.

Rearrangement Cost Models. The popular cost model used in rearrangement
distances is the unit cost model. In this model, every rearrangement operation is
given a unit cost2. However, in many situations there is no reason to assume that
all interchanges have equal cost. On the contrary, interchanging closer elements

1 Interchanges are considered in [7] in the context of genome rearrangements, and are
called there swaps. However, they only study short swaps, in which the distance
between the interchanged elements is at most two.

2 This is the model used in the definition of the interchange distance problem.

On the Cost of Interchange Rearrangement in Strings 101

would probably be cheaper than interchanging far elements. This motivated us
to study the interchange rearrangement under a variety of cost models. In the
general cost model every interchange operation has a cost determined by a cost
function. Note that every cost function on an interchange of elements in positions
i, j where i < j, can be viewed as a cost function on the segment [i, j]. We are
interested in increasing monotone cost functions on the length of the segment,
i.e. |i − j|. Such cost functions are natural in some real-world situations, where
the distance objects have been moved contributes to the cost. Cost functions w
of the form w(�) = �α for all α ≥ 0, where � = |i−j|, are specifically studied. The
study is also broadened to include various cost functions (e.g. log(�)) classified
by their characteristic behavior regarding the marginal cost. Two types of cost
functions are considered: the I-type and the D-type defined as follows3.

Definition 1. Let w : N �→ R a cost function. We say that:

• w ∈ I-type if for every a, b, c ∈ N such that a < b, w(a + c) − w(a) <
w(b + c) − w(b). We call this property the law of increasing marginal
cost.

• w ∈ D-type if for every a, b, c ∈ N such that a < b, w(a + c) − w(a) >
w(b + c) − w(b). We call this property the law of decreasing marginal
cost.

The Problem Definition. Let w : N �→ R be a cost function, x, y ∈ Σm be two
strings, and let s = s1, . . . , sk be a sequence of interchanges that converts x to
y, where sj interchanges elements in positions ij, i

′
j , then cost(s) =

∑
j w(|ij −

i′j|). The interchange distance problem in w cost model (or the w-interchange
distance problem) is to compute dWI(w)(x, y) = min{cost(s)|s converts x to y}.
If x cannot be converted to y we define dWI(w)(x, y) = ∞. The interchange
distance problem is simply the interchange distance problem in unit cost model.

Length-weighted cost models are recently claimed to be biological meaningful
in genome rearrangements (see [13]). [13] studied the reversal rearrangement
operator on permutation strings in �α cost models for different values of α. They
showed that the sorting by reversals problem, which is known to be NP-hard
even on permutations, is polynomial time computable for some length-weighted
cost models. Our results together with [13] might indicate a general phenomenon
about length-weighted distances that should be further studied. The proposed
classification of cost functions by the laws of increasing/decreasing marginal cost
gives insight to the behavior of the different cost functions and enabled to derive
results for cost functions that were not yet understood enough by [13]. To the
best of our knowledge, this is the first paper that uses such a classification. It
is the authors belief that these results are also guidelines for a better study of
rearrangements cost models.

The paper is organized as follows. In Sect. 2 the unit cost model is studied,
in which the distance is the minimum number of interchange operations needed
3 The I-type and D-type classification of cost functions is in accordance with the

traditionally called convex and concave functions. However, it is the authors opinion
that the definition of the marginal cost laws gives better intuition to the results.

102 A. Amir et al.

Table 1. A summary of results for the �α-interchange distance problem

α Value Binary Alphabet Permutations General Strings

α = 0 O(m) O(m) NP-hard
O(m) 1.5-approximation

0 < α ≤ 1
log m

O(m) � O(m) 2-approximation O(m) 3-approximation
1

log m
< α < 1 O(m) � O(m) 2-approximation O(m3) |Σ|-approximation

α = 1 O(m) O(m) O(m)

1 < α ≤ log 3 O(m) O(m) 2-approximation O(m) 2-approximation

α > log 3 O(m) O(m) O(m)

� Only for the sorting problem. For the general rearrangement problem it is O(m3).

to rearrange one string into the other. This is the �α cost function, where α = 0.
For this cost model we show that the general problem is NP-hard but fixed
parameter tractable, and remains NP-hard even if each symbol appears at most
three times. We conclude with a 1.5-approximation algorithm. In Sect. 3 the
�1-cost model is studied. A characterization of the distance is given, and it is
proven to be polynomial time computable. In Sect. 4 and Sect. 5 the problem
for I-type and D-type cost functions is studied, and optimal and approximation
algorithms for the problem under these cost models are given. The results apply
specifically to �α-interchange distance problem for every α > 1 and 0 < α < 1,
but apply to other functions as well (e.g. log(�)). Omitted proofs will be given
in the full paper.

2 Unit Cost Model

We begin by studying the problem in the unit cost model. We first show that
this problem is equivalent to the problem of finding the cardinality of the max-
imum edge-disjoint cycle decomposition of Eulerian directed graphs (denoted
by maxDCD). Then, we prove that the latter problem is NP-hard. Given two
strings, it is possible to derive two permutations of 1, . . . , m by giving different
labels to repeating symbols in both strings. The distance between the two per-
mutations can then be viewed as the distance of a permutation of 1, . . . , m from
the identity permutation, for which we already know Fact 1. Of course, a dif-
ferent labelling yields different permutations of 1, . . . , m. Observation 1 specifies
the connection between the interchange distance of the permutations and the
interchange distance of the original strings.

Fact 1. [10] The interchange distance of an m-length permutation π is m−c(π),
where c(π) is the number of permutation cycles in π.

Observation 1. There exists a labelling for which the interchange distance be-
tween the resulting permutations of 1, . . . , m is exactly the interchange distance
between the given m-length strings. Moreover, the resulting permutations from
this labelling have the minimum interchange distance over every other permuta-
tions resulting from any other labelling.

On the Cost of Interchange Rearrangement in Strings 103

Definition 2. maxDCD is the following problem: Given an Eulerian directed
graph G = (V, E), find maximum-cardinality edge-disjoint directed cycle decom-
position of G, i.e. partition of E into the maximum number of directed cycles.

Lemma 1. The interchange distance problem and the maxDCD problem can be
linearly transformed to each other.

Proof. We describe a linear transformation from the interchange distance prob-
lem to maxDCD. Let π1, π2 be two m-length strings over alphabet Σ, such that
|Σ| ≤ m, and π1 is a permutation of π2. We build the directed graph G = (V, E),
where V = Σ and E = {ei = (a, b)|1 ≤ i ≤ m, π1[i] = b, π2[i] = a}. G is an Eule-
rian directed graph, since π1 is a permutation of π2, thus for every vertex in G the
in- and out-degree are equal. The maximum edge-disjoint cycle decomposition of
G includes only cycles with distinct vertices, since, if a vertex appears twice in a
cycle, break it into two different cycles: one for each appearance of the repeating
vertex (G is Eulerian). Thus, the proof is limited to cycles with distinct vertices.
Every edge-disjoint cycle decomposition of G into cycles with distinct vertices
is equivalent to a labelling of the strings symbols, resulting in two permutations
of 1, . . . , m. For these permutations the graph cycles represent the permutations
cycles. Denote the number of permutation cycles in a decomposition DG by
c(DG). By fact 1 their interchange distance is exactly m − c(DG). Finally, de-
note by |maxDCD(G)| the cardinality of the maximum cycle decomposition of
the directed graph G. Then, by Observation 1 the interchange distance between
π1 and π2 is exactly m − |maxDCD(G)|.

The inverse transformation from maxDCD to the interchange distance prob-
lem for general strings is similar. Given an Eulerian directed graph G = (V, E),
we build π1, π2, two m-length general strings of symbols from alphabet Σ, where
m = |E| and |Σ| = |V |, such that π1 is a permutation of π2. Let e1, e2, . . . , e|E|
any order of the edges in G. For all 1 ≤ i ≤ m, define π1[i] = b, π2[i] = a if
ei = (a, b). Since this is essentially the same transformation, only inversely built,
we get as above that the interchange distance between π1 and π2 is exactly
m − |maxDCD(G)|. �	

Lemma 2. The problem of finding a decomposition into directed triangles is
polynomially reducible to maxDCD.

Thus, it is enough to show is that directed triangle decomposition is NP-hard.
Following the NP-completeness proof of edge-partition of undirected graphs into
cliques of size k [14], we reduce the known NP-complete 3SAT problem to our
problem. The proof is similar to Holyer’s [14] only we add the directions to the
graph construction.

Theorem 1. The directed triangles partition problem is NP-hard.

Corollary 1. The maxDCD problem is NP-hard.

Theorem 2. The interchange distance problem is NP-hard.

104 A. Amir et al.

The graph construction used for the NP-hardness proof gives a graph with
in- and out-degree 3. By the proof of Lemma 1, in the instance of interchange
distance problem transformed to this graph, symbols repeat 3 times. Corollary 2
follows. The hardness proof also implies Theorem 3. Lemma 3 is used to derive
Theorem 4.

Corollary 2. The interchange distance problem is NP-hard even if every letter
appears at most three times.

Theorem 3. The interchange distance problem is tractable for fixed |Σ|.
Lemma 3. Given an Eulerian directed graph G = (V, E), then for every 2-cycle
C in G there exist a partition of E into the maximum number of directed cycles,
in which C appears as a cycle in the partition.

Theorem 4. There exists an O(m) 1.5-approximation algorithm for the inter-
change distance problem.

Proof. The proof of Lemma 1 implies that it is enough to find an approxima-
tion algorithm for the maxDCD problem. Given an Eulerian directed graph, we
show how to find a cycle decomposition of Calg cycles, and denote Copt to be
the maximal number of cycles. Note that, all the 2-cycles in a maximal cycle
decomposition can be found in linear time, by inductively finding a 2-cycle and
removing it, and applying Lemma 3 until there are no more 2-cycles in the graph.
This suggest the following approximation algorithm. First find the 2-cycles as
above, then arbitrarily decompose remaining edges into cycles.

We now prove the 1.5 approximation ratio of this algorithm. Denote by m the
number of edges in the graph, and by C2 the number of 2-cycles found by the
algorithm. Clearly, Calg ≥ C2. In an optimal cycle decomposition the remaining
m − 2C2 edges may form only cycles of length at least 3, and therefore, Copt ≤
C2 + m−2C2

3 = m+C2
3 . By Fact 1, dopt ≥ m − Copt ≥ 2m−C2

3 and dalg ≤ m − C2.
Finally we get, dalg

dopt
≤ m−C2

2m−C2
3

= m−C2
2
3 (m−C2)+

C2
3

≤ 1.5. �	

3 The �1-Cost Model

In this section we describe a characterization of the �1-interchange distance (de-
noted by WI(�1)) and a polynomial algorithm for the interchange distance prob-
lem in �1-cost model.

Permutation Strings. Let x, y be two strings with the same m distinct letters.
Since the rearrangement of x to y can be viewed as sorting x by assuming y is
the permutation 1, . . . , m, while making the appropriate changes for symbols
names in x, in the sequel we assume that we sort x to the identity permutation.
Lemma 4 is a first step in the characterization of the �1-interchange distance for
permutations. We will show the connection to the �1-distance, defined below.

Definition 3. Let x and y be general strings of length m. Let π : [1..m] → [1..m]
such that for every i, x[i] = y[π(i)], and define cost(π) =

∑m
j=1 |j − π(j)|. The

�1-distance of x and y is: d�1
(x, y) = minπ cost(π).

On the Cost of Interchange Rearrangement in Strings 105

Lemma 4. Let π be a permutation of 1, . . . , m, and let I denote the identity

permutation. Then, dWI(�1)(π, I) ≥ d�1
(π, I)
2 .

Proof. Denote by πi the position of element i in π. In order to be sorted every
element i must pass the critical segment [πi, i] if πi < i or [i, πi] if i < πi.
Note that in �1-cost model the distance is not diminished if element i passes the
critical segment using more than one interchange in this segment. Thus, for every
element we must pay its critical segment in the �1-cost model. Therefore, the
best situation is where each interchange we perform sorts the two participating
elements, since in this case we pay for each interchange exactly the cost that
every element must pay. In this case, each interchange costs half the cost payed
in the �1 distance, since in the �1 distance each element is charged independently.
The lemma then follows. �	

Given a permutation π of 1, . . . , m, we give a polynomial time algorithm that
sorts the permutation by interchanges (see Fig. 1). Our algorithm performs only
interchanges that advance both elements towards their final positions. The fol-
lowing definition is a formalization of this requirement.

Definition 4. Let π be a permutation of 1, . . . , m. Let πi denote the position of
element i in π. A pair of elements i,j is a good pair if j ≤ πi < πj ≤ i.

Lemma 5. Every unsorted permutation has a good pair.

Proof. By induction on k, the length of the permutation. For k = 2 the only
unsorted permutation is 2, 1, where the elements 1 and 2 are a good pair. Let π
be a permutation of length k. We consider two cases.

Case 1: πk = k. We can ignore the element k. The rest of the permutation is
an unsorted permutation of length k − 1, which by induction hypothesis has a
good pair.

Case 2: πk < k. We can delete the element k. If the resulting permutation is
sorted then the pair k and πk is a good pair. Otherwise, the resulting permutation
of length k − 1 has a good pair by induction hypothesis. It is easy to see that
this pair is also a good pair in the original permutation of length k. �	

Since the sum of costs of good-pairs interchanges never exceeds d�1
(π, I)/2,

Lemma 6 follows.

Lemma 6. Let π be a permutation of 1, . . . , m. Then, dWI(�1)(π, I)=
d�1

(π, I)
2 .

Remark. Algorithm Sort requires O(m2) time. However, for computing the
WI(�1)-distance (not an actual rearrangement sequence) an O(m) algorithm is
enough.

106 A. Amir et al.

Sort(π)

Begin
While there are unsorted pairs in π

Find a good pair i,j.
Interchange elements i and j.

End

Fig. 1. Algorithm Sort

General Strings. The main difficulty in the case of general strings is that
repeating symbols have multiple choices for their desired destination. Let x and
y be strings of length m. Our goal is to pair the locations in x to destination
locations in y, so that repeating symbols can be labelled in x and y to get strings
with the same m distinct letters (permutation strings). Such a labelling can be
viewed as a permutation of the indices of x. Fortunately, we can characterize a
labelling permutation of indices that gives the minimum �1-distance. This will
be enough to derive a polynomial time algorithm for the �1-interchange distance
problem in the general strings case as well.

Lemma 7. [Amir et al.][12] Let x, y ∈ Σm be two strings such that d�1
(x, y) <

∞. Let πo be the permutation that for any a and k, moves the k-th a in x to the
location of the k-th a in y. Then, d�1

(x, y) = cost(πo).

Theorem 5. Let x and y be m-length strings. Then, dWI(�1)(x, y) =
d�1

(x, y)
2 .

4 I-Type Cost Models

In this section we study the interchange distance problem in w-cost model for
any w ∈ I-type (denoted by WI(w)). The results apply for every �α-cost func-
tions, α > 1, as special case of I-type. For α > log 3 we show an O(m) optimal
algorithm.

Permutation Strings. We deal with permutations (strings with distinct ele-
ments) first, and then show how to deal with general strings.

Theorem 6. There exists an O(m) 2-approximation algorithm for computing
the WI(w)-distance on permutations, where w ∈ I-type.

Proof. An interchange on the segment [i, j] can be mimicked by 2(j − i) − 1
interchanges of size 1, as follows. First move π[i] (the element at position i in π)
to position j by j − i interchanges of size 1, each advances π[i] in one position.
Now, the original π[j] is one position closer to its final position, so j − i − 1
interchanges of size 1 bring π[j] to its final position. All elements, except for the
original π[i] and π[j], are in their original locations. We use the Sort algorithm
(see Fig. 1), however, a good pair is sorted by 2(j − i) − 1 interchanges of

On the Cost of Interchange Rearrangement in Strings 107

size 1, as described above. Thus, the total cost of this algorithm is costalg =∑ m
i=1 2(|i−πi|−1)w(1)

2 ≤ ∑m
i=1 |i − πi| · w(1). We now prove a lower bound on the

cost of the optimal algorithm. Every element must pass its critical segment [πi, i]
if πi < i or [i, πi] if i < πi. The law of increasing marginal cost implies for every
a, b ∈ N, that w(a)+ w(b) ≤ w(a + b), thus, to pass the critical segment the cost
of |i−πi| interchanges of size 1 must be payed. Hence, costopt ≥

∑ m
i=1 |i−πi|·w(1)

2 .
Therefore, the approximation ratio is: costalg

costopt
≤ 2. �	

Remark. Computing an actual rearrangement sequence using algorithm Sort is
done in O(m2). Since Bubble Sort algorithm performs the minimum number of
interchanges of size 1 as will be explained, it can also be computed using Bubble
Sort.

General Strings. Again, in the case of general strings repeating symbols have
multiple choices for their desired destination. However, as in the �1-cost model,
we can use πo to transform the strings into permutations of 1, . . . , m, and use
Theorem 6. Theorem 7 follows.

Theorem 7. There exists an O(m) 2-approximation algorithm for computing
the WI(w)-distance on general strings, where w ∈ I-type.

The Case α > log 3. We now show an optimal linear algorithm for α >
log 3. The key observation here is that the optimal algorithm in this case never
performs interchanges of size greater than 1, since every interchange on a segment
[i, j] where (j−i) ≥ 2 can be mimicked by interchanges of size 1 in cost 2(j−i)−1,
which is less than (j − i)α. Compare the derivatives of f(x) = 2x + 1, which is
2, to the derivative of h(x) = xα, which is αxα−1. For α > log 3 and x > 2
it holds h′(x) > f ′(x). Therefore, an optimal algorithm performs the minimum
number of interchanges of size 1. [11] shows that this distance is characterized
using the notion of inversion of a permutation described by Knuth [15]. Let
π be a permutation of 1, . . . , m, define I(π), the inversion number of π, by
I(π) = |{(i, j) : 1 ≤ i < j ≤ m, π(i) > π(j). It is known that Bubble Sort
requires precisely I(π) interchanges of size 1 to sort any permutation π. Using
same method as in Theorem 7 we get:

Theorem 8. There exists an O(m) algorithm for the w-interchange distance
problem on general strings, where w ∈ �α, α > log 3.

Binary Strings. For binary strings, when an interchange on the segment [i, j]
is mimicked by interchanges of size 1 in the proof of Theorem 6, only j − i
interchanges of size 1 are needed (and not 2(j − i)− 1) (because all the elements
between i and j are 0’s, so after we move π[i] to position j by j − i interchanges
of size 1 there is nothing to fix). Thus the upper bound on the algorithm cost is
equal to the lower bound on the optimal algorithm cost. We get:

Theorem 9. There exists an O(m) algorithm for the w-interchange distance
problem on binary strings, where w ∈ I-type.

108 A. Amir et al.

5 D-Type Cost Models

Binary Strings. Consider a limited version of the problem, the sorting problem,
where all 0’s should appear before the 1’s. In binary string we need only pair the
1’s that are in positions of 0’s to the 0’s that are in positions of 1’s. For sorting
binary strings Lemma 8 characterized a pairing that gives a minimal cost for
every w ∈ D-type. This gives Theorem 10.

Lemma 8. Let x be an m-length binary string with b 0’s. Let k be the number of
unsorted 0’s in x. Let πr be the permutation that moves the k-th unsorted 0 in x
to the location of the first unsorted 1 in x, the k−1 unsorted 0 in x to the location
of the second unsorted 1 in x, . . . , the first unsorted 0 in x to the location of the
k-th unsorted 1 in x (i.e., πr reverses the unsorted 0’s and 1’s). Then, for every
w ∈ D-type, dWI(w)(x, 0b1m−b) = cost(πr), where cost(π) =

∑m
j=1 w(|j − π(j)|).

Proof. Let π be a minimum cost pairing permutation. Assume to the contrary
that π
= πr, and consider the left most 1 position j that is not paired as in πr.
Then, j < π−1(πr(j)) < π(j) < πr(j). We transform π into π′ where j is paired
to πr(j) and π−1(πr(j)) is paired to π(j) (every other pairing unchanged). It
holds: cost(π) − cost(π′) = w(|π(j) − j|) + w(|πr(j) − π−1(πr(j))|) − w(|πr(j) −
j|)−w(|π(j)−π−1(πr(j))|) = w(|π(j)−j|)+w(|πr(j)−π−1(πr(j))|)−w(|πr(j)−
π(j) + π(j) − j|) − w(|π(j) − π−1(πr(j))|) > 0. Since by the law of decreasing
marginal cost for every w ∈ D-type w(a + b + c) + w(b) < w(a + b) + w(b + c),
for every a, b and c. Contradiction. �	
Theorem 10. There exists an O(m) algorithm for the w-interchange sorting
distance problem on binary strings, where w ∈ D-type.

Corollary 3. There exists an O(m) algorithm for the �α-interchange sorting
distance problem on binary strings, where 0 < α < 1.

Proof. We need only show that �α-cost functions for 0 < α < 1 have the decreas-
ing marginal cost property, and get the result from Theorem 10. Note that for
every 0 < α < 1 it holds that: (a + b + c)α + bα < (a + b)α + (b + c)α, for every
a, b and c, because the derivative of f(x) = xα, f ′(x) = α · xα−1 decreases when
x increases. �	
We now describe an algorithm for the general w-interchange distance problem
on binary strings (but we only use it for w ∈ D-type). Since in the binary case
we need only pair the misplaced 0’s to the misplaced 1’s in minimum cost, we
can find a minimum perfect matching between the misplaced 0’s to misplaced
1’s, represented as points in different sides of a bipartite graph, where an edge
between a 0 and a 1 have the cost of the interchange between them according to
w. For this problem use Edmonds-Karp algorithm [16] with the fibonacci heaps
improvement of [17] to get an O(m3) algorithm. We conclude:

Theorem 11. There exists an O(m3) algorithm for the w-interchange distance
problem on binary strings, for every cost function w.

On the Cost of Interchange Rearrangement in Strings 109

Permutation Strings. We describe an O(m) 2-approximation algorithm for
permutation strings when 0 < α < 1. We first show a lower bound on the cost of
the optimal algorithm. Every element must pass its critical segment in order to
be sorted. Since 0 < α < 1 the distance is not diminished if element i passes the
critical segment using more than one interchange in this segment. Thus, every
element must pay at least its critical segment cost. Therefore, the cost where each
interchange performed sorts the two participating elements must be payed. In
this case, each interchange costs half the cost payed in the �α distance, 0 < α < 1,
since in the �α distance each element is charged independently. Lemma 9 then
follows.

Lemma 9. Let π be a permutation of 1, . . . , m, and let I denote the identity

permutation. Then, for every 0 < α < 1, dWI(�α
)(π, I) ≥ d�α(π, I)

2 .

Consider the Sort algorithm (see Fig. 1), restricted to choose only good pairs
that sort at least one element. It is easy to show that every unsorted permutation
has such a good pair by induction on the length of the permutation. By charging
the sorted element on the interchange, the unsorted elements are charged only
when they reach their final position. Since the algorithm only interchanges good
pairs, elements are charged on a segment not greater than their critical segment,
therefore, their contribution to the total cost of the algorithm is not greater
than their contribution to the numerator of the lower bound stated in Lemma 9.
Thus, we get Theorem 12.

Theorem 12. There exists an O(m) 2-approximation algorithm for the �α-
interchange distance problem on permutation strings for every 0 < α < 1.

General Strings. Let σ1, . . . , σ|Σ| be the alphabet symbols. First, use the
matching algorithm of Edmonds-Karp to get a minimum cost sequence of in-
terchanges that sorts all appearances of σ1. An optimal algorithm pays at least
this cost for sorting σ1. After all appearances of σ1 are sorted repeat the pro-
cess for σ2. There may be appearances of σ2 that sorting σ1 increased their cost
compared to an optimal algorithm, however, the total increase cannot be greater
than the total cost of the sorting of σ1. Repeating the process for all alphabet
symbols, when matching and sorting σi the total increase in the cost of the algo-
rithm cannot be greater than the total cost of the sorting of σ1, . . . , σi−1. Thus,
costalg ≤ costopt(σ1) + [costopt(σ1) + costopt(σ2)] + [costopt(σ1) + costopt(σ2) +
costopt(σ3)]+ . . .+[costopt(σ1)+ . . .+costopt(σ|Σ|)] ≤ |Σ|costopt. Also, note that
∑|Σ|

i=1 �(σi)3 ≤ ∑|Σ|
i=1 �(σi) · ∑|Σ|i=1 �(σi) · ∑|Σ|i=1 �(σi) ≤ m3, where �(σ) denotes the

the number of appearances of σ. This proves Theorem 13.

Theorem 13. There exists an O(m3) |Σ|-approximation algorithm for the �α-
interchange distance problem on general strings for every 0 < α < 1.

When α is small enough, an O(m) 3-approximation algorithm for general strings
can be designed. Let π be a permutation of 1, . . . , m. Consider the O(m) algo-
rithm for finding the unit cost distance of π described in [12]. Consider the se-
quence of interchanges in positions (i1, i′1), . . . , (ik, i′k) it performs, then,

110 A. Amir et al.

dWI(�α
)(π, I) =

∑
j∈{1..k} |ij − i′j |α ≤ ∑

j∈{1..k}m
1

log m = 2 · dWI(�0)(π, I). On
the other hand, dWI(�α

)(π, I) ≥ dWI(�0)(π, I). For general strings use the 1.5-
approximation algorithm from Sect. 2 instead to get Theorem 14.

Theorem 14. There exists an O(m) 3-approximation algorithm for the �α-
interchange distance problem on general strings for 0 < α ≤ 1

log m .

References

1. Bergeron, A.: A very elementary presentation of the Hannenhalli-Pevzner theory.
Discrete Applied Mathematics 146(2), 134–145 (2005)

2. Caprara, A.: Sorting permutations by reversals and Eulerian cycle decompositions.
SIAM journal on discrete mathematics 12(1), 91–110 (1999)

3. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: Polynomial algo-
rithm for sorting signed permutations by reversals. Journal of the ACM 46, 1–27
(1999)

4. Bafna, V., Pevzner, P.: Sorting by transpositions. SIAM J. on Disc. Math. 11,
221–240 (1998)

5. Hannenhalli, S.: Polynomial algorithm for computing translocation distance be-
tween genomes. Discrete Applied Mathematics 71, 137–151 (1996)

6. Christie, D.A.: Sorting by block-interchanges. Information Processing Letters 60,
165–169 (1996)

7. Heath, L.S., Vergara, P.C.: Sorting by short swaps. J. of Comp. Biology 10(5),
775–789 (2003)

8. Christie, D.A.: Genome Rearrangement Problems. PhD thesis, University of Glas-
gow (1999)

9. Radcliff, A.J., Scott, A.D., Wilmer, E.L.: Reversals and transpositions over finite
alphabets. SIAM journal on discrete mathematics 19, 224–244 (2005)

10. Cayley, A.: Note on the theory of permutations. Philosophical Magazine 34, 527–
529 (1849)

11. Jerrum, M.R.: The complexity of finding minimum-length generator sequences.
Theoretical Computer Science 36, 265–289 (1985)

12. Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porat, E., Skiena, S.,
Vishne, U.: Pattern matching with address errors: Rearrangement distances. In:
Proc. 17th SODA, pp. 1221–1229 (2006)

13. Bender, M.A., Ge, D., He, S., Hu, H., Pinter, R.Y., Skiena, S., Swidan, F.: Improved
bounds on sorting with length-weighted reversals. In: Proc. 15th SODA, pp. 912–
921 (2004)

14. Holyer, I.: The NP-completeness of some edge-partition problems. SIAM Journal
of Computing 10(4), 713–717 (1981)

15. Knuth, D.E: The Art of Computer Programming. In: Sorting and Searching, Read-
ing, Mass, vol. 3, Addison-Wesley, London, UK (1973)

16. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmoc efficiency for
network flow problems. Journal of The ACM (JACM) 19(2), 248–264 (1972)

17. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of The ACM (JACM) 34(3), 596–615 (1987)

Finding Mobile Data: Efficiency vs. Location

Inaccuracy�

Amotz Bar-Noy1,2 and Joanna Klukowska2

1 Computer Science Department, Brooklyn College, CUNY
2 Computer Science Department, The Graduate Center, CUNY

amotz@sci.brooklyn.cuny.edu
jklukowska@gc.cuny.edu

Abstract. A token is hidden in one out of n boxes following some known
probability distribution and then all the boxes are locked. The goal of
a searcher is to find the token in at most D ≤ n rounds by opening
as few boxes as possible, where in each round any set of boxes may be
opened. We design and analyze strategies for a searcher who does not
know the exact values of the probabilities associated with the locked
boxes. Instead, the searcher might know only the complete order or a
partial order of the probabilities, or ranges in which these probabilities
fall. We show that with limited information the searcher can find the
token without opening significantly more boxes compared to a searcher
who has full knowledge. This problem is equivalent to finding mobile
users (tokens) in cellular networks (boxes) and finding data (tokens) in
sensor networks (boxes).

Keywords: Wireless networks, sensor networks, location management,
mobile computing.

1 Introduction

Consider the following combinatorial game. A token is placed and hidden in
one out of n boxes following some probability distribution. The boxes are then
locked and the only information about the location of the token is the probability
distribution. A searcher needs to find the token as fast as possible while opening
a minimum number of boxes. The searcher is given D, 1 ≤ D ≤ n, rounds to find
the token where, in each round the searcher may open any set of locked boxes.

More formally, let C1, C2, . . . , Cn be the n boxes and let p̄ = 〈p1, p2, . . . , pn〉,∑n
i=1 pi = 1, be the vector of probabilities associated with the n boxes. We

call this vector the prediction vector or the probability vector. Without loss of
generality, assume that p1 ≥ p2 ≥ · · · ≥ pn. Let D be the number of rounds by
which the token must be found. D is the delay constraint for the searcher. In
particular, if the token is not found after D − 1 rounds, then the searcher must
open all the remaining boxes in the last round. Clearly, in order to minimize the

� This research was made possible by NSF Grant number 6531300.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 111–122, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

112 A. Bar-Noy and J. Klukowska

number of opened boxes, the searcher should open the boxes following a non-
decreasing order of their probabilities. That is, for i < j, any box opened at round
i should be associated with at least as large a probability as that associated with
a box opened at round j. Therefore, a search strategy is equivalent to partitioning
the boxes into D disjoint sets (rounds). This partitioning is defined by the vector
d̄ = 〈d0, d1, d2, . . . , dD〉 where by definition d0 = 0 and dD = n. The meaning of
this vector is that if the token was not found during the first i − 1 rounds, then
in round i the searcher opens the boxes Cdi−1+1, . . . , Cdi .

Let ALG denote a search strategy for constructing the vector d̄ based on the
vector p̄. The cost of searching for the token in D rounds using ALG is defined
as the expected number of boxes opened until the token is found. If the token
is in box Ci and that box is opened in round j + 1 (i.e., dj < i ≤ dj+1), then a
searcher that follows the strategy ALG would open in total dj+1 boxes. Thus:

CostALG =
∑D

j=1

(
dj × ∑dj

i=dj−1+1 pi

)
. (1)

The cost for any searcher is largest when D = 1 because all the boxes have to be
opened in the first and only round and therefore the cost is n. On the other hand,
the cost for an optimal searcher is minimized if it has D = n rounds. In this case,
the boxes should be opened one per round following the non-increasing order of
their probabilities yielding a

∑n
i=1 pii cost. For other values of D, the cost for

D rounds is smaller than the cost for D′ rounds for n ≥ D > D′ ≥ 1. A simple
formula for the cost does not exist for 1 < D < n rounds. Nevertheless, dynamic
programming solutions exist that find the optimal partitioning in polynomial
time for any 1 ≤ D ≤ n, [1], [2], [3], [4].

In order to achieve the optimal partitioning, one needs to have an accurate
knowledge of the prediction vector. The scope of this paper is to explore how
the cost is affected when only partial information about the values of the proba-
bilities is given. One motivation for exploring the tradeoff between such location
inaccuracies and search efficiency is the fact that there exist situations in which
there is no benefit in having the complete knowledge of the prediction vector.
For example, if the number of allowed rounds is equal to the number of boxes
(D = n), then a searcher who knows only the relative order of the probabilities
is as efficient as a searcher who has complete knowledge. We show that there
are other situations in which a searcher with a partial knowledge obtains results
very close to a searcher who has a complete knowledge of probabilities.

Applications: This general search game was introduced for the problem of
searching for a mobile user in a cellular network. In this setting, the token is a
cellphone holder (user) and the boxes are the cells in which a particular user can
be located. Opening a box is interpreted as paging the user in a cell using the
wireless communication links. Finding the token fast is equivalent to finding the
user while paging as few as possible cells.

A cellular phone system is composed of many cells and mobile users. The
system has to be able to locate a mobile when phone calls arrive. The cost of
delivering the call to a user is lower if the exact location of that user is known.

Finding Mobile Data: Efficiency vs. Location Inaccuracy 113

To that end, users can report their position whenever they cross boundaries
of cells. However, reporting consumes wireless bandwidth (uplink) and battery
power, and it is desirable for a user to report infrequently in order to save these
resources. On the other hand, if the user does not report often enough, then
when calls arrive, the system needs to perform a search that pages the user in
each cell in which the user may be located. This method consumes the wireless
bandwidth (downlink) resource. A compromise solution is a division of the cells
into location areas (zones), each composed of several cells [5], [6]. Users report
only when crossing boundaries of location areas. When a call to the user occurs,
the system needs to search only within a given zone.

The cost of searching for a user depends upon the particular search strategy
used. When a call for a user arrives, the system can either perform a blanket
search in which all cells are paged at the same time, or a sequential search in
which the cells are paged one after another. The first strategy guarantees that
the user is found after one round, but uses the most downlink bandwidth. The
second increases the number of rounds to possibly as many as the number of cells
in the zone, but uses on average the minimum downlink bandwidth. Assuming
that, at the time of the call arrival, the system knows the probabilities associated
with every cell in the zone indicating the likelihood of the user being in that cell,
the system can use a dynamic programming solution to find the user optimally
for any given number of rounds.

The scope of this paper is to design efficient search strategies for locating a user
even when the prediction vector is not accurate. The inaccuracy can be caused
by, for example, limited tracking methods used by the system, large irregularities
in users’ mobility patterns, or even intentional decreases in accuracy of location
information in an attempt to give the user more privacy. Sometimes an accurate
prediction vector reveals a lot of information about the user and may even open
up potential security risks. Some users may prefer to maintain a higher level
of privacy even at a higher price. For an individual user, the delay in delivery
of a call that occurs when the system needs to page all possible locations is
not noticeable and not important as long as the call is received. On the other
hand, keeping one’s whereabouts private may be valued a lot. We show that the
system can offer more privacy to its users by storing only an approximation to
the location probability vector without paying significantly more for delivering
each call.

Another application is in wireless sensor networks. The sensors are not mo-
bile, however the system does not always know where to find specific data that
is gathered by the sensors. Hence, one can view this data as mobile data. Nev-
ertheless, the system might know the probability (or an estimate probability) of
finding the answer at each sensor. One can view the sensors as the boxes and
the answer to the query as the token. Opening few boxes is translated into com-
municating with few sensors which is a paramount objective in sensor networks
due to battery limitations for the sensors. Using only a few rounds is equivalent
to finding an answer to a query quickly.

114 A. Bar-Noy and J. Klukowska

Our Contributions: We analyze and evaluate the performance of strategies
for a searcher that has limited information about the probability vector. We
compute the worst case ratio, ρ, between algorithms that are based on some
limited information and the optimal solution that relies on complete knowledge
of the prediction vector. We also compare the solutions via a simulation assuming
the Zipf distribution for the prediction vector. Let Opt(D) be the cost of the
algorithm that has complete knowledge of the probability vector and has D
rounds to find the token.

Our first contribution is the analysis of the case where the searcher knows
only the relative order of the values in the prediction vector. Following [7], we
propose algorithm DRoot whose performance in the worst case is Θ(D

√
n)Opt(n)

and we prove that no other algorithm can perform better. According to the per-
formance analysis results, the cost computed by this algorithm is much closer to
the optimal solution. The performance of the algorithm depends on the allowed
delay in finding the token. When that delay is equal to the number of boxes,
DRoot finds a solution with optimal cost.

Our second contribution is the analysis of various scenarios with only partial
knowledge of the prediction vector. In general the probabilities are assigned to
B bins, where the relative order of the probabilities between the bins is known
but within a bin the relative order of the probabilities is unknown. We ana-
lyze the performance of only sequential search given that limited information.
We discuss several rules for bin assignment. Assignments based on size consid-
erations guarantee a cost that is n

B Opt(n) in the case of bins with the same
size, and Θ(n1/B)Opt(n) when the sizes of bins vary exponentially. Using as-
signments based on threshold considerations, the computed worst case costs are
similar: Θ(n

B)Opt(n) for linear threshold bins, and Θ(n1/B)Opt(n) for exponen-
tial threshold bins. For assignments based on optimal solution for 2 rounds, the
worst case cost for a searcher is O(

√
n)Opt(n). Our simulation results demon-

strate that the theoretical bounds are truly limited to the worst case and on
average the cost computed with the limited knowledge offered by different types
of bins is close to optimal.

Related Work: Modeling uncertainty of location of mobiles as a probability
distribution vector was studied in [8], which also presented a framework for
measuring uncertainty. Location management schemes were discussed in [5], [6].
The optimal solution for the partitioning of n cells into 1 ≤ D ≤ n rounds was
proposed by [1], [2], [3]. Recently the running time of the dynamic programming
method has been improved by the authors of [4]. In [9] the authors presented
a suboptimal solution which is computationally more efficient than dynamic
programming. Other variations of the problem have been proposed. One of them
is paging multiple users for a conference call, [10]. Another is the added effect of
queuing requests to search for single users and performing a search for several
mobiles at once, [2], [11], [12].

Privacy issues have been raised in recent years regarding the tradeoff between
privacy and the benefits of location based applications [13], [14], [15]. Most of
the research is based on assuming that the wireless carrier is a trusted party

Finding Mobile Data: Efficiency vs. Location Inaccuracy 115

and developing algorithms to limit access of third parties to the location data of
mobiles, [14], [15]. In [13] the author provides a survey of the technology, issues,
and regulations related to location-aware mobile devices.

2 Relative Order

One of the motivations for this research was the fact that knowing only the rel-
ative order of probabilities associated with the boxes is enough to enable the
sequential search strategy (i.e., D = n) to achieve optimal cost. In this case,
the searcher can find a token with the same cost as if he/she knew the exact
value of the prediction vector. In this section, we decrease the allowed delay and
examine how well the searcher can perform. Note that knowing only relative or-
der makes 〈1, 0, . . . , 0〉 and 〈1/n, . . . , 1/n〉 indistinguishable. A searcher cannot
achieve the optimal cost since the strategies for opening these boxes associated
with the two vectors may be very different. The authors of [7] show that for
D ≥ log2(n) the searcher can find the token with cost at most two times larger
than an optimal solution that uses complete knowledge, and that for D < log2(n)
the cost is Θ(n1/D)Opt(n).

Let DRoot be the algorithm that creates D partitions by assigning di =
⌊
ni/D

⌋

for 1 ≤ i ≤ D.

Theorem 1 (from [7]). The cost of searching for a token, given only the
relative ordering of the boxes, computed by DRoot using at most D rounds is
O(n1/D) Opt(n) in the worst case.

In the next theorem, we show that DRoot is optimal.

Theorem 2. The lower bound on the performance in the worst case for any
algorithm that is given only the relative order of the probabilities associated with
the boxes is Ω(n1/D Opt(D)), for D < log2(n).

Proof. Let 〈d1, d2, . . . , dD〉 be the partition vector used by an arbitrary algo-
rithm, ALG. By the pigeon hole principal, there is at least one dj such that
dj/dj−1 ≥ n1/D (for j = 1, assume that d0 = 1; this allows us to treat d1 the
same as other d′js). The assumption that D < log2 n implies that n1/D > 2 and
therefore dj > 2dj−1. Consider a distribution that has 2dj−1 boxes each with
probability 1/(2dj−1) and the remaining boxes with probability equal to zero.
For this distribution the algorithm with the above partitions assigns dj−1 boxes
with nonzero probability to the jth round. Ignoring the cost that this algorithm
has to pay for the previous j − 1 rounds, its total cost is:

CostALG ≥
(

1
2dj−1

dj−1

)
dj = 1

2dj = 1
2dj−1n

1/D .

The optimal cost has to be no greater than the solution for 2 rounds in which
the first dj−1 boxes are opened in the first round, and the next dj−1 boxes are
opened in the second round. Therefore,

CostOpt ≤
(

1
2dj−1

dj−1

)
dj−1 +

(
1

2dj−1
dj−1

)
2dj−1 = 3

2dj−1 .

116 A. Bar-Noy and J. Klukowska

These two costs give a lower bound on the ratio of any algorithm and the optimal
solution: ρ ≥ n1/D/3.

Remark: For D = 2 it can be shown that the lower bound is larger, ρ ≥ n1/D/
√

3

3 Bins

A natural next step in limiting the knowledge available to a searcher is a pre-
diction bin strategy. We represent the knowledge of a searcher by bins that are
groupings of boxes based on some characteristic. The motivation for this limita-
tion in the applications described in the introduction is that it might be easier
to estimate the values of the probabilities this way, than trying to arrange them
in the complete relative order. The B bins, b1, b2, . . . , bB, are a partition of the
set of boxes, C1, C2, . . . , Cn, with probabilities p1, p2, . . . , pn, such that Ci ∈ bk

and Cj ∈ bk+1 implies that pi ≥ pj, where 1 ≤ i, j ≤ n and 1 ≤ k < B. We do
not know anything about the relationship of boxes that are in the same bin; i.e.,
if Ci, Cj ∈ bk, then pi ≥ pj or pi < pj .

We consider several criteria for putting boxes into bins. In size bin, each
bin contains some predefined number of boxes, for example, uniform size with
n
B boxes per bin. When B = n this uniform size bin assignment is equivalent
to the relative order case discussed in the previous section. In threshold bin, the
boundaries of the bins are assigned based on some threshold values. For example,
with B = 2 and threshold 1

n , all the boxes with probability greater then or equal
to 1

n are placed into b1 and all the boxes with probability less then 1
n are placed

into b2. Note that some bins can be empty. In solution for D bin, the B = D
bins are based on the optimal partition of n boxes into D rounds.

In this section we consider only sequential search using various bin assign-
ments. Given the set of prediction bins there is essentially one way to search,
since the boxes within a bin are indistinguishable from each other; the only rule
that any smart solution should follow is to search the bins according to their
order. In the analysis of the various types of bin strategies that follow, we call the
procedure for opening boxes using prediction bins, ALG, and the cost obtained
by it CostALG.

From the application point of view, consider the wireless cellular network that
provides some privacy to its users. The bins reveal much less information about
a mobile’s location than a full relative order among the cells does. With bins,
the system knows the relative order only among the bins, but within each bin,
it has no way of deciding what the order of cells is.

3.1 Size Bins

The idea of size bins is that the algorithm is given B bins with specific sizes.
When searching within a single bin, the worst case is when the searcher inad-
vertently opens the boxes within that bin in reverse order starting with the one
with the smallest probability, going to the largest. Performance in the worst case

Finding Mobile Data: Efficiency vs. Location Inaccuracy 117

depends on how the sizes of particular bins are chosen. If this happens in the
first bin (the one that contains the boxes with highest probabilities) and that
bin has large size, then the boxes with high values contribute to the cost a lot
more than they do if the opening process is done in the correct order. We provide
matching bounds for the performance of a searcher in the worst case.

Linear Size Bins. In this strategy, the sizes of all bins differ by at most one.
The first n − (n modB) bins have size �n/B	 and the remaining bins have size

n/B�. For simplicity of computation assume that n is a multiple of B; then
|b1| = |b2| = . . . = |bB| = n

B . The bins with lower index numbers contain the
boxes with higher probability, i.e., Ci ∈ bk and Cj ∈ bk+1 implies that pi ≥ pj

for any 1 ≤ i, j ≤ n and 1 ≤ k < B. For an arbitrary bin bi, the boxes in it
are opened in n/B rounds one after another without knowing which are opened
first.

Theorem 3. Any algorithm that opens boxes in n rounds given linear size pre-
diction bins achieves, in the worst case, a cost of n

B
Opt(n).

Proof Sketch. The worst case occurs when ALG opens the boxes placed in a
single bin from the one with smallest probability to largest. Then CostALG ≤
n
B

π1 + 2n
B

π2 + . . . + Bn
B

πB, where πi is the sum of all the probabilities in a bin
bi. The optimal algorithm that has complete knowledge of the prediction vector
opens the boxes from each bin in decreasing order, so its cost is CostOpt ≥
1π1 + n

B
π2 + . . . + (B−1)n

B
πB. This guarantees a ratio ρ ≤ n/B.

The worst case is met when the prediction vector is 〈1, 0, . . . , 0〉. Optimally
the box with probability 1 should be open first, but a searcher may open it as
the last box in the first bin causing the worst case ratio ρ = n/B.

Exponential Size Bins. In the exponential bin strategy, the size of a bin bi is
ni/B − n(i−1)/B, where 1 ≤ i ≤ B. For simplicity assume that n = kB for
some positive integer k. This type of bin assignment puts the boxes with higher
probability into smaller bins, thereby reducing the potential cost of the worst
case in which the boxes in the first few bins are opened in reverse order.

The proof of the next theorem is in the same style as the one for Theorem 3.

Theorem 4. Any algorithm that opens the boxes in n rounds given exponential
size prediction bins achieves, in the worst case, a cost of Θ(n1/B) Opt(n).

3.2 Threshold Bins

In the threshold bin strategy, bins are assigned probability ranges, and boxes
with probabilities within a bin’s range are assigned to that bin. Consequently, it
is possible to have empty bins. Like the size bin strategy, within any bin one does
not know the relative values of the probabilities. Ideally one would assign bin
boundaries in such a way that the boxes are nearly evenly distributed among the
bins, but there is no way to do this. A bad choice might place all the boxes into a
single bin. In practice, this method leaves a lot of bins empty, which leads to bad
performance. As for size bins, we provide matching bounds for the performance
of a searcher in the worst case.

118 A. Bar-Noy and J. Klukowska

Linear Threshold Bins. The simplest threshold bin strategy is the one in which
the width of the range of every bin is 1

B , i.e., the bins would be: (1 − 1
B , 1],

(1 − 2
B , 1 − 1

B], . . . , (1
B , 2

B], [0, 1
B]. Thus, bin bi has boxes with probabilities

pi such that B−i
B < pi ≤ B−i+1

B . The worst case occurs when all of the boxes
are placed into the last bin (the one with range [0, 1

B]), because no information
about relative values of probabilities is revealed.

Theorem 5. Any algorithm that opens the boxes in n rounds given linear thresh-
old prediction bins achieves, in the worst case, a cost of Θ(n

B) Opt(n).

Proof Sketch. Denote by zi the number of boxes in the bins with indices smaller
than i and by xi the number of boxes in the bin bi. No matter what the values
of zi and xi are, the costs for bin i are as follows:

CostALG ≤ B−i+1
B

∑zi+xi

j=zi+1 j and CostOpt ≥ B−i
B

∑zi+xi

j=zi+1 j .

The worst case for the game with only linear threshold prediction bins is ρ <
B−i+1

B−i < 2 for 1 ≤ i ≤ B − 1. The last bin requires special consideration. Let
xB+ be the number of boxes in the last bin with nonzero probability and xB0 be
the number of boxes in bB that have a probability of 0. The above costs become:

CostALG ≤ 1
B

∑zB+xB++xB0
j=zB+xB0+1 j and CostOpt ≥ pmin

∑zB+xB+
j=zB+1 j ,

in which pmin is the smallest nonzero probability associated with a box in bB.
Using the fact that zB + xB+ + xB0 = n the ratio can be simplified to ρ ≤
(2n − xB+ + 1)/(Bpmin(2zB + xB+ + 1)). This ratio has maximum value when
zB = 0, for which ρ = O(n/B). The ratio of the costs of two algorithms is
less then or equal to the maximum ratio of the costs of the two algorithms for
any given bin, so it is less than or equal to the worst ratio for the last bin,
ρ = O(n/B).

This worst case is met by the prediction vector
〈

1
B − ε′, . . . , 1

B − ε′, ε, . . . , ε
〉
.

Without affecting much the value of ρ, both ε′ and ε may be replaced by zero. If
a searcher opens boxes in order of nondecreasing probabilities, then the ratio of
the cost of this searcher to that of an optimal algorithm is ρ ≥ 2n−B+1

B+1 = Ω(n
B).

Exponential Threshold Bins. The exponential threshold bin strategy takes ad-
vantage of the fact that there can be only a few boxes with large probabilities
but possibly many with very small probabilities. The exponential threshold bin
strategy provides finer granularity of bins for the boxes with smaller probabili-
ties. This makes it less likely that all the boxes are placed into one or just a few
bins. Bin bi contains all the boxes with probabilities in the semi-closed range
from n−(i−1)/B to n−i/B , to be precise, the bins are: [n−1/B, 1], [n−2/B , n−1/B),
..., [0, n−(B−1)/B).

The proof of the next theorem is in the same style as the one for Theorem 5.

Theorem 6. Any algorithm that opens the boxes in n rounds given exponential
threshold prediction bins achieves, in the worst case, a cost of Θ(n1/B) Opt(n).

Finding Mobile Data: Efficiency vs. Location Inaccuracy 119

3.3 Optimal Solution Bins

This bin assignment strategy assumes that somehow the searcher knows the
values of the optimal partitions for D rounds and needs to find the token in
D′ �= D rounds. Specifically we analyze the case of going from a solution for 2
rounds to a sequential search, i.e., n rounds, and provide an upper bound on the
worst case performance of a searcher. Other cases remain open problems and we
present only simulation results for them in Section 4.

Solution for 2 Paging Rounds. Given the solution for 2 rounds, the only infor-
mation present is about which boxes are opened in which round. It is known
that the threshold between two partitions is between 1/2n and 2/n, [7]; hence,
the searcher can approximate the location of the threshold that separates two
bins.

Theorem 7. Any algorithm that opens the boxes in n rounds given prediction
bins that follow the optimal partition for two rounds achieves, in the worst case,
a cost of O(

√
n) Opt(n).

We use the above-mentioned characteristics of the optimal partitioning into two
paging rounds. This allows us to analyze two cases depending on the value of
the optimal partition. In the first, the worst case for an arbitrary algorithm is
caused by opening boxes in the second bin in the wrong order, in the second case
an algorithm has to pay more for opening in the wrong order the boxes from the
first bin. In both cases we show that the ratio of that algorithm to the optimal
cannot be more than O(

√
n). The detailed proof is beyond the space limitations

of this publication.

4 Performance Analysis

We implemented all of the proposed algorithms and strategies and compared all
results. We ran the algorithms on different combinations of the input parameters
n, D and B for various distributions. We present here just a selection of the
results. We mainly used the Zipf distribution, [16], which is observed in many
commonly occurring phenomena. The values of the probabilities associated with
the boxes according to this distribution are proportional to (1/i)α for 1 ≤ i ≤ n
and a parameter α ≥ 0 and normalized by

∑
(1/j)α so that

∑n
j=1 pj = 1. When

the parameter α is equal to zero the distribution is uniform (all the values are
the same), and as α increases the values become skewed towards the pi’s with
lower indices. When α = 3, the value of p1 is already very close to 1 and the
remaining pi’s are negligible.

The first set of tests examined the performance of algorithm DRoot that knows
only the relative order of probabilities of the token being located in each box.
The numerical results show that the performance is very close to the optimal
algorithm that knows the entire probability vector. The chart in Figure 1 shows
that the cost computed by DRoot algorithm remains very close to the cost of
the optimal algorithm as the number of boxes increases. We ran the algorithm

120 A. Bar-Noy and J. Klukowska

Fig. 1. The performance of DRoot algorithm improves as D increases

Table 1. The ratio of cost of the DRoot algorithm to the cost of an optimal solution for
different values of the delay (D) and different values of parameter α to Zipf distribution
in comparison to the theoretical worse case of that ratio

n = Parameter to Zipf distribution, α Theor.
10,000 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 worst case

D=2 1.438 1.500 1.541 1.531 1.449 1.298 1.123 1.010 1.033 1.221 1.569 100.000

D=4 1.524 1.543 1.537 1.496 1.411 1.282 1.133 1.026 1.037 1.219 1.577 10.000

D=6 1.435 1.434 1.417 1.378 1.312 1.218 1.109 1.023 1.019 1.144 1.405 4.642

D=8 1.357 1.350 1.331 1.298 1.247 1.174 1.090 1.025 1.033 1.171 1.409 3.162

D=10 1.299 1.290 1.273 1.245 1.203 1.144 1.075 1.020 1.023 1.111 1.255 2.512

D=12 1.256 1.247 1.232 1.208 1.172 1.123 1.067 1.025 1.043 1.134 1.277 2.154

D=14 1.223 1.215 1.201 1.180 1.149 1.107 1.057 1.013 1.001 1.029 1.071 1.931

(a) (b)

Fig. 2. The performance of the 5 bin strategies: linear (linSize) and exponential (ex-
pSize) size bins, linear (linThr) and exponential (expThr) threshold bins, and optimal
solution bin (OptBin) for (a) increasing number of bins, (b) increasing number of boxes

Finding Mobile Data: Efficiency vs. Location Inaccuracy 121

on input sizes of up to n = 10, 000 to see if the performance is affected by the
large number of boxes. We found out that DRoot performs well independent of
the input size. Table 1 shows more specific results for n = 10, 000. Independent
of the parameter α and the number of rounds allowed, D, algorithm DRoot
performs much better than suggested by the theoretical analysis. Similar results
were observed with other distributions (e.g. Gaussian).

The second set of tests compared the results of different bin strategies. We
compared five different types of inaccurate prediction vectors. The tests showed
that even with a very small number of bins the cost obtained by the searcher
that is given only knowledge about the bins is very close to the optimal cost. The
chart in Figure 2(a) shows these results for the Zipf distribution with parameter
α = 1.0 and n = 10, 000. The results for smaller values of n were even closer
to optimal. The tests on other distributions showed also that the searcher only
needs a small numbers of bins to obtain good results. The chart in Figure 2(b)
demonstrates the results obtained by the searcher with only 5 bins for different
types of bins as the number of boxes increases. For all the Zipf distributions the
optimal solution for D bin gave the cost closest to optimal.

5 Open Problems

We have presented several ways of finding a token in one out of n boxes, when
the knowledge about the prediction vector associated with these boxes is limited.
The limited information increases the cost of searching for the token, but the
increase is not significant even in the worst case. The performance analysis shows
that on average the increase in cost is much smaller than the one suggested by
the worst case analysis. There are several questions that still remain open (some
of which are work in progress).

In section 2, we showed a lower bound of the worst case behavior of any
algorithm that knows only the relative order of probabilities. Narrowing the gap
between the upper bound of algorithm DRoot and the general lower bound for
D ≥ 3 as well as matching the two bounds for D = 2 remain open problems.

In Section 3, we discussed the performance of sequential search given various
types of bins. An interesting research topic is to provide similar analysis of cases
in which the delay constraint is D < n. In Subsection 3.3, we analyzed the
sequential search performance of a searcher who knows the optimal solution for
D = 2 rounds. We encountered similar problems as the authors of [7] with the
analysis for the case of D ≥ 3 rounds. A matching lower bound for the case of
D = 2 is also work in progress.

Other bin assignments can be introduced and analyzed, for example a com-
bination of size type bins and threshold type bins, strategies with a variable
number of bins, or bins whose content adds up to some predetermined constant.

In practice, our results may suggest a method of measuring the privacy level
offered by the camouflaging strategies used by cellular networks. The question
is whether the optimality of a strategy could be an indication of privacy that
it provides to the user. That is, if the system can find the user with cost close

122 A. Bar-Noy and J. Klukowska

to optimal, does it follow that the strategy does not guarantee much privacy?
This type of analysis requires a specific definition of privacy that includes some
metrics by which it can be measured.

Acknowledgments. We thank the reviewers of the previous version of the
paper for the ideas and comments that were incorporated into this version.

References

1. Madhavapeddy, S., Basu, K., Roberts, A.: Adaptive paging algorithms for cellular
systems. Kluwer Academic Publishers, Norwell, MA, USA (1996)

2. Goodman, D.J., Krishnan, P., Sugla, B.: Minimizing queuing delays and number of
messages in mobile phone location. Mobile Networks and Applications 1(1), 39–48
(1996)

3. Krishnamachari, B., Gau, R.-H., Wicker, S.B., Haas, Z.J.: Optimal sequential pag-
ing in cellular wireless networks. Wirel. Netw. 10(2), 121–131 (2004)

4. Bar-Noy, A., Feng, Y.: Efficiently paging mobile users under delay constraints. In:
Proc. of 26th IEEE Conf. on Computer Communications, May 2007, pp. 1910–
1918. IEEE Computer Society Press, Los Alamitos (2007)

5. Jain, R., Lin, Y.B., Mohan, S.: Location Straegies for Personal Communications
Services. Mobile Communications Handbook, ch.18. CRC Press, Boca Raton, USA
(1996)

6. Akyildiz, I., McNair, J., Ho, J., Uzunalioglu, H., Wang, W.: Mobility management
in next-generation wireless systems. In: Proceedings of the IEEE, vol. 87, pp. 1347–
1384. IEEE Computer Society Press, Los Alamitos (1999)

7. Bar-Noy, A., Mansour, Y.: Competitive on-line paging strategies for mobile users
under delay constraints. In: Proceedings of the 23rd ACM Symposium on Principles
of Distributed Computing, pp. 256–265. ACM Press, New York (2004)

8. Rose, C., Yates, R.: Location uncertainty in mobile networks: a theoretical frame-
work. Communications Magazine, IEEE 35(2), 94–101 (1997)

9. Wang, W., Akyildiz, I.F., Stuber, G.: An optimal partition algorithm for minimiza-
tion of paging costs. IEEE Comm. Letters 5(2), 42–45 (2001)

10. Bar-Noy, A., Malewicz, G.: Establishing wireless conference calls under delay con-
straints. J. Algorithms 51(2), 145–169 (2004)

11. Rose, C., Yates, R.: Ensemble polling strategies for increased paging capacity in
mobile communication networks. Wirel. Netw. 3(2), 159–167 (1997)

12. Gau, R.-H., Haas, Z.J.: Concurrent search of mobile users in cellular networks.
IEEE/ACM Trans. Netw. 12(1), 117–130 (2004)

13. Minch, R.P.: Privacy issues in location-aware mobile devices. In: Proceedings of
the 37th Hawaii International Conference on System Sciences (2004)

14. Gruteser, M., Liu, X.: Protecting privacy in continuous location-tracking applica-
tions. IEEE Security and Privacy Magazine 02(2), 28–34 (2004)

15. Hoh, B., Gruteser, M.: Protecting location privacy through path confusion. In: Pro-
ceedings of the 1st International Conference on Security and Privacy for Emerging
Areas in Communications Networks, pp. 194–205 (2005)

16. Zipf, G.K.: Human Behaviour and the Principle of Least Effort. Addison-Wesley,
London, UK (1949)

A Faster Query Algorithm for the Text

Fingerprinting Problem

Chi-Yuan Chan, Hung-I Yu, Wing-Kai Hon, and Biing-Feng Wang

Department of Computer Science,
National Tsing Hua University,

Hsinchu, Taiwan 30043,
Republic of China

{jous,herbert,wkhon,bfwang}@cs.nthu.edu.tw

Abstract. Let S be a string over a finite, ordered alphabet Σ. For any
substring S′ of S, the set of distinct characters contained in S′ is called
its fingerprint. The text fingerprinting problem consists of constructing a
data structure for the string S in advance, so that on given any input set
C ⊆ Σ of characters, we can answer the following queries efficiently: (1)
determine if C represents a fingerprint of some substrings in S; (2) find all
maximal substrings of S whose fingerprint is equal to C. The best results
known so far solved these two queries in Θ(|Σ|) and Θ(|Σ|+K) time, re-
spectively, where K is the number of maximal substrings. In this paper,
we propose a new data structure that improves the time complexities
of the two queries to O(|C| log(|Σ|/|C|)) and O(|C| log(|Σ|/|C|) + K)
time, respectively, where the term |C| log(|Σ|/|C|) is always bounded
by Θ(|Σ|). This result answers the open problem proposed by Amir et
al. [A. Amir, A. Apostolico, G.M. Landau, G. Satta, Efficient text fin-
gerprinting via Parikh mapping, J. Discrete Algorithms 1 (2003) 409–
421]. In addition, our data structure uses less storage than the existing
solutions.

Keywords: Fingerprints, Combinatorial algorithms on words, Text
indexing, Patricia trie.

1 Introduction

Consider a string S over a finite, ordered alphabet Σ. Let |S| = n. For any
substring S′ of S, the set of distinct characters contained in S′ is called the fin-
gerprint of S′, and we say such a fingerprint appears in S. The text fingerprinting
problem, which was first introduced by Amir et al. [1], consists of the following
two sub-problems:

Find All: Compute all fingerprints that appear in S;
Indexing: Construct a data structure for S in advance, so that we can

answer several queries about the fingerprints that appear in S
efficiently.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 123–135, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

124 C.-Y. Chan et al.

For the indexing problem, the following queries are studied in the literature:

Query 1: Given a set C ⊆ Σ, answer if C is a fingerprint in S.
Query 2: Given a set C ⊆ Σ, find all maximal locations of C in S, where

a maximal location of a fingerprint F corresponds to a maximal
substring whose fingerprint is F .

Efficient solutions to these problems have important applications in the fields
of natural language processing [1,5], computational biology [2,9] and formal lan-
guages [1]. Amir et al. first proposed an O(n|Σ| log |Σ| log n)-time algorithm for
the Find All problem based on the interesting naming technique [1]. Using this
algorithm as a preprocessing step, they gave a data structure that answers Query
1 and Query 2 in O(|Σ| log n) time and O(|Σ| log n+K) time, respectively, where
K is the number of maximal locations of C. The space of their data structure is
Θ(n|Σ| log |Σ|). Didier et al [3] improved the time for Find All to Θ(n|Σ| log |Σ|),
while keeping the same query times and space for the indexing problem. Besides,
they also proposed a Θ(n2)-time algorithm for Find All.

Let F denote the set of all distinct fingerprints in S and let L denote the set of
all maximal locations of all fingerprints in F . Based on F and L as parameters,
Kolpakov and Raffinot [7] proposed a Θ((n + |L|) log |Σ|)-time algorithm for
Find All, and constructed an elegant data structure called the fingerprint tree
to answer Query 1 and Query 2 in Θ(|Σ|) time and Θ(|Σ|+K) time, respectively.
Their data structure can be constructed in Θ((n+ |L|) log |Σ|) time and occupies
Θ(|F| log |Σ| + |L|) space. The construction time is further improved to Θ(n +
|L| log |Σ|) time in [8]. Moreover, if only Query 1 is concerned, the space for the
data structure can be further reduced to Θ(|F| log |Σ|). As |F| ≤ |L| ≤ n|Σ| [7],
the above query results are the best known ones so far. All previous algorithms
used the naming technique for the indexing problem.

In this paper, we focus on the indexing problem of Query 1 and Query 2. All
these previous results for queries are independent of the size of the input set C.
Amir et al. [1] asked if there is a solution for Query 1 in O(|C|× polylog n) time.
We answer this open problem by designing a new data structure, called the lexi-
string trie, for answering Query 1 and Query 2 in O(|C| log(|Σ|/|C|)) time and
O(|C| log(|Σ|/|C|) + K) time, respectively. Note that the term |C| log(|Σ|/|C|)
is equal to Θ(|Σ|) in the worst case, but is usually better than Θ(|Σ|). The
construction of this data structure takes Θ(n + |L| log |Σ|) time by using the

Table 1. The results of the text fingerprinting problem

Construction Time Storage Query Times

[1,3] Θ(n|Σ| log |Σ|) Θ(n|Σ| log |Σ|) Q1: O(|Σ| log n)
Q2: O(|Σ| log n + K)

[7,8] Θ(n + |L| log |Σ|) Q1: Θ(|F| log |Σ|) Q1: Θ(|Σ|)
Q2: Θ(|F| log |Σ| + |L|) Q2: Θ(|Σ| + K)

Ours Θ(n + |L| log |Σ|) Q1: Θ(|F|) Q1: O(|C| log(|Σ|/|C|))
Q2: Θ(|L|) Q2: O(|C| log(|Σ|/|C|) + K)

A Faster Query Algorithm for the Text Fingerprinting Problem 125

Find All algorithm of Kolpakov and Raffinot as a tool. During the construc-
tion, Θ(|F| log |Σ| + |L|) working space is needed. On the other hand, the lexi-
string trie occupies only Θ(|F|) space for Query 1 and occupies Θ(|L|) space for
Query 2, which is more space-efficient than previous results. Instead of applying
the naming technique, our query algorithm uses a new approach by convert-
ing the input set C into a string, reducing the fingerprint query into a pattern
matching query, and then solving the latter query by the lexi-string trie. Table 1
summarizes the comparison of results.

The rest of this paper is organized as follows. Next section gives notation
and preliminaries. In Section 3, we review the previous result of Kolpakov and
Raffinot. In Section 4, we describe the lexi-string trie and show how to use it
to answer the fingerprint queries, while in Section 5, we show its construction.
Finally, Section 6 remarks a further improved result which we can obtain.

2 Notation and Preliminaries

Let S = s1s2 . . . sn be a string of length n over a finite, ordered alphabet Σ =
{1, 2, . . . , |Σ|}. Let S[i, j] be the substring si . . . sj of S, where 1 ≤ i ≤ j ≤ n.
The fingerprint of S[i, j] is the set of distinct characters appearing in S[i, j],
which is denoted by CS(i, j). Let F denote the set of all distinct fingerprints of
all substrings of a string S. For convenience, let ∅ (empty set) belong to F .

Given a fingerprint F , an interval [i, j] is a location of F in S if and only if
CS(i, j) = F . An interval [i, j] is a maximal location of F in S if and only if
CS(i, j) = F and si−1 /∈ F, sj+1 /∈ F , where s0 and sn+1 are assumed to be 0.
Let L be the set of all maximal locations of all fingerprints. In this paper, we
consider constructing an index on S to support the following queries:

Query 1: Given a set C ⊆ Σ, answer if C ∈ F .
Query 2: Given a set C ⊆ Σ, find all maximal locations of C in S.

Given a string S, let S′ be a string obtained by replacing each maximal sub-
strings of repeated characters ck in S by a single character c. We call S′ the
simple format of S. Kolpakov and Raffinot showed the following lemma.

Lemma 1. [8] In O(n) time, we can build an O(n)-space index such that each
fingerprint query on S can be reduced to a fingerprint query on S′ in O(1) time.

Based on Lemma 1, to construct an index for a string S that supports fingerprint
query, we can focus on constructing an index for its simple format instead. So,
in the following, we assume that S is already in a simple format. It follows that
each interval [i, i] will be a maximal location in S. Therefore, n ≤ |L|.

3 The Fingerprint Tree

In this section, we briefly review the fingerprint tree proposed by Kolpakov and
Raffinot [7,8] for the text fingerprinting problem; at the same time, we extract

126 C.-Y. Chan et al.

the useful concepts that are needed in later sections. In the following, we first
describe a preprocessing phase, which is used to compute the information for
generating the fingerprint tree. Then, we give the definition of the fingerprint
tree and explain how to use it to answer the desired queries.

3.1 The Preprocessing Phase

The main goals of the preprocessing phase are (1) to find all maximal locations
in S, and (2) to find all distinct fingerprints in S, and (3) for each distinct
fingerprint F , to find all maximal locations whose fingerprint is F .

To find all maximal locations, Kolpakov and Raffinot [7] showed that this can
be done in Θ(|L|) time. In fact, they gave a stronger result:

Lemma 2. [7] Let maxloci = (i1, i2, . . . , ik) be a list of sorted positions, with
i = i1 < i2 < . . . < ik, such that [i, i1], [i, i2], . . . , [i, ik] are exactly all max-
imal locations in S with starting position i. Then, all maximal location lists
maxloci, i = 1, 2, . . . , n, can be computed in Θ(|L|) time.

Next, we want to find all distinct fingerprints in S. However, instead of out-
putting the fingerprints explicitly, we will just assign a name for each distinct
fingerprint. (Later, we will discuss how to retrieve the actual fingerprint when
it is needed, based on the name.) The name assignment process is based on
the naming technique of Amir et al. [1]. We begin by defining some important
concepts:

1. For a fingerprint F , we define a |Σ|-bit array called fingerprint table BF ,
such that BF [α] = 1 if character α is in F , and BF [α] = 0 otherwise.

2. The name tree of a fingerprint F is a complete ordered binary tree with |Σ|
leaves, satisfying the following properties:
(a) For a node containing the xth, x + 1th, . . . , yth leaves in its subtree, the

node corresponds to the contents of the subarray BF [x..y]. (Thus, the
jth leaf corresponds to BF [j], and the root corresponds to BF [1..|Σ|].)

(b) Each node has a number as its name. For the αth leaf, it is named with
the content of BF [α]. For the internal nodes, they are named consistently
such that two nodes have the same name if and only if the contents of
their corresponding subarrays are the same.

(c) The name of the root represents the whole BF , and is called the finger-
print name of F .

3. If some internal node has the name x and its left and right children have
names y and z, respectively, the ordered pair of names (y, z) is then called
the source pair of the name x.

4. Let T1, T2, . . . , Tk be a set of name trees, where Ti is based on some finger-
print Fi. We say the set of name trees is agreeing if the following holds:
(a) For any two nodes from two distinct trees, they have the same name if

and only if the contents of their corresponding subarrays are the same.

A Faster Query Algorithm for the Text Fingerprinting Problem 127

By the above definition, given an agreeing set of name trees built on the
fingerprints of all maximal locations ∈ L, two maximal locations have the same
fingerprint if and only if the same fingerprint names are assigned to their name
tree. Thus, to find all distinct fingerprints in S, it is sufficient to build an agreeing
set of name trees for the fingerprints of all maximal locations in L. Then, we
can find all distinct fingerprint names as the representatives of their fingerprints,
and attach a list of maximal locations to each fingerprint name.

Since each name tree is of size Θ(|Σ|), building every name tree in an agree-
ing set explicitly may cost too much. However, if we focus on only getting the
fingerprint names in some agreeing set, it can be done faster. By exploiting the
fact that the fingerprints of two adjacent maximal locations in maxloci differ by
exactly one character, Kolpakov and Raffinot [8] gave the following result.

Lemma 3. [8] We can find all distinct fingerprint names for some agreeing set
and their maximal location lists in Θ(|L| log |Σ|) time and Θ(|F| log |Σ| + |L|)
space. In addition, the fingerprint names are sorted such that for any two finger-
print F and F ′ of F , the fingerprint name of F is smaller than the fingerprint
name of F ′ if and only if BF is lexicographically smaller than BF ′ .

Actually, Kolpakov and Raffinot’s algorithm is based on computing an implicit
representation of an agreeing set R, which uses only Θ(|F| log |Σ|) distinct names
on all name trees. Every name in R and its source pairs can be computed in
total Θ(|L| log |Σ|) time and Θ(|F| log |Σ| + |L|) space. With these information,
it can be observed that any name tree in R can be decoded from its fingerprint
name by recursively extracting the source pairs.

3.2 The Definition of Fingerprint Tree and Its Searching Algorithm

The fingerprint tree [7,8] is a compacted binary tree containing the bitstrings BF

for all fingerprints F ∈ F . Each leaf in the tree corresponds to some fingerprint
F in S, and it stores an additional pointer to the list of maximal locations whose
fingerprint is F . Each edge in the tree thus corresponds to a subarray of some
fingerprint table. Instead of labeling the edge with the bitstring of the subarray
explicitly, Kolpakov and Raffinot showed that we can encode this bitstring, say
b, with two appropriate names from the agreeing set R, so that with the help
of the source pairs, the bitstring b can be decoded in Θ(|b|) time. Thus, the
fingerprint tree occupies Θ(|F|) space.

When a query C comes, we construct the fingerprint table for C, and traverse
the fingerprint tree to check whether C is a fingerprint in S. As the bitstring of
each edge can be retrieved in time proportional to its length, the process takes
Θ(|Σ|) time. This gives the following theorem.

Theorem 1. [8] The fingerprint tree (and the source pairs) can be constructed
in Θ(|L| log |Σ|) time and Θ(|F| log |Σ|) space, which supports Query 1 in Θ(|Σ|)
time and Query 2 in Θ(|Σ|+K) time, where K is the number of maximal locations
of C.

128 C.-Y. Chan et al.

4 The Improved Query Algorithm

In the following two sections, a different approach is proposed for indexing all
fingerprints in F . More specifically, the fingerprints in F are treated as strings
and indexed by a compacted data structure, called the lexi-string trie. Given a
query set C ⊆ Σ, instead of encoding C by the naming technique, we convert
C into a string and find its match in the lexi-string trie. In Subsection 4.1, we
give the definition of the lexi-string trie. Then, in Subsection 4.2, the algorithms
for answering Query 1 and Query 2 by the lexi-string trie are discussed. The
construction of the data structure is discussed in Section 5.

4.1 The Definition of the Lexi-String Trie

In the previous algorithms [1,3,7,8], each query C is viewed as an array of size
|Σ|, so the query time has a trivial Ω(|Σ|) lower bound. For the case where a
query C is given by a set of distinct characters, Amir [1] asked if it is possible to
process the query in O(|C|× polylog n) time. In this section, we answer the open
problem by an intuitive idea: treat each query and fingerprint as a string such
that we can apply string handling techniques. For this purpose, we need some
definitions. The operators <L and >L are used to represent the lexicographical
order among strings. Also, an end-of-string symbol $ /∈ Σ is introduced such that
$ >L c for each c ∈ Σ, and let Σ′ = Σ ∪ {$}. For any character set C ⊆ Σ, the
lexi-string of C, which is denoted by LS (C), is defined to be the string formed
by concatenating all the characters in C and the symbol $ according to the <L

order. For example, assuming alphabetical order, the lexi-strings of the sets C1

= {a, b, d, f} and C2 = {d, b, a, f} are both “abdf$”.
In this section, we focus first on Query 1: given a query set C ⊆ Σ, determine

whether C ∈ F . Obviously, C ∈ F if and only if there exists some fingerprint F ∈
F such that LS(F) = LS(C). Let Z be the collection of all lexi-strings LS (F) of
all fingerprints F ∈ F . The query can thus be answered by determining whether
there is an exact match for LS(C) in the collection Z. By this observation, the
concept of text indexing can be applied to solving the problem. In fact, we aim
to construct a space-efficient data structure to implicitly represent Z, which
supports the match query for any given LS(C).

We begin from the definition of the Patricia trie [6], a classical text indexing
data structure. Let Y be a collection of distinct strings. The Patricia trie built on
Y can be defined in three steps. First, a compacted trie is built for Y . Next, each
node in the compacted trie is labeled with the length of the string represented
by this node. This value is called the skip value. Finally, the substring labeled on
each compacted trie edge is replaced by its first character, called the branching
character. The key property is, for any two leaves, the string represented by
their lowest common ancestor is the longest common prefix of the two strings
represented by this two leaves. Since the Patricia trie does not explicitly store
the substrings on the edges, its storage size is proportional to only the number
of strings in Y .

A Faster Query Algorithm for the Text Fingerprinting Problem 129

Now we can define the main data structure. Given the text S, the lexi-string
trie T of S, which is abbreviated as the LS trie, is defined to be the Patricia trie
built upon the lexi-string collection Z with respect to the fingerprint collection
F of S. Inherited from the compacted trie and the Patricia trie, the LS trie T
has the following basic properties:

1. T has |F| leaves and total Θ(|F|) nodes.
2. Each leaf of T represents exactly a lexi-string LS(F) of some fingerprint

F ∈ F .
3. Each internal node of T has at most |Σ′| branches, which are labeled with

distinct branching characters ∈ Σ′ and ordered by these characters according
to the <L order.

Furthermore, a constant-size label, called the recognizer, is also stored at each
leaf of T , which is used to retrieve the characters belonging to the fingerprint
associated with this leaf. The usage of the recognizer will be described in Subsec-
tion 4.2.2. Since each node and edge costs only O(1) space, the LS trie requires
only Θ(|F|) space in total.

4.2 Answering the Queries

For any given query C ⊆ Σ, we now show how to determine whether LS(C) ∈
Z by the LS trie T . This is done in two phases. At first, by performing an
O(|C| log(|Σ|/|C|))-time traversal on T , a candidate lexi-string LS(F) is re-
trieved from the collection Z. Then, the equivalence between LS(C) and LS(F)
is verified in O(|C|) time. The two phases are described in 4.2.1 and 4.2.2, re-
spectively. For ease of discussion, the characters in C are assumed to be given
according to the <L order, such that LS(C) is trivially created. (The assumption
can be easily resolved, as described in 4.2.2).

4.2.1 Finding a Candidate Lexi-String
Given a lexi-string LS(C), consider the problem of finding its exact match in Z
by the LS trie T . In general, there are two ways to perform search in a Patricia
trie. One way is to record a pointer on each edge of the Patricia trie during
construction. Each pointer points to one position of one of the strings in the
collection, such that the substring associated with this edge can be retrieved
directly from the string. Thus, it is just like searching on a compacted trie. An
example of such approach is the famous suffix tree [10], which is a variation of
the Patricia trie. The fingerprint tree used in [7,8] can also be seen as a Patricia
binary trie. However, due to space consideration, the lexi-string collection Z is
not maintained explicitly for the LS trie. Therefore, this approach is not suitable
for searching in the LS trie.

Instead, we use the other traditional approach [4,6] for the LS trie T . The
approach is called the blind search [4]. Given the lexi-string LS(C), the blind
search is performed in two phases: the traversal phase and the verification phase.
In the traversal phase, we traverse on T downward by LS(C) until a leaf is
reached. The traversal begins from the root. Let skip(u) denote the skip value

130 C.-Y. Chan et al.

labeled on the node u ∈ T . When a node u is visited in the traversal, the first
skip(u) characters in LS(C) are all ignored, and the downward branch is selected
by comparing the skip(u)+1th character among the branching characters of the
branches of u. This procedure terminates in three cases: (1) a leaf is reached;
(2) there exists no branch with the same branching character; (3) no sufficient
characters in LS(C) to continue the traversal, i.e., the length of LS(C) ≤ skip(u)
for some interval node u. For the two latter cases, we claim that the blind search
is failed and C /∈ F . If a leaf v is reached, the length of LS(C) is then compared
with skip(v), which is the length of the lexi-string represented by v. The blind
search is also claimed to be failed if they are not equal. Otherwise, we enter
the verification phase to determine whether LS(C) is equal to the lexi-string
represented by v. The blind search is said to be successful when the two lexi-
strings are equal. For the sake of clarity, the details about the verification phase
will be described in Subsection 4.2.2. Suppose the verification phase correctly
determines the equivalence between them, we have the following essential lemma.
Due to page limit, the proof is omitted.

Lemma 4. LS(C) is in the collection Z if and only if the blind search procedure
is successful on T .

Corollary 5. C is a fingerprint in S if and only if the blind search procedure is
successful.

After describing the concept of the blind search, we proceed to discuss its time
complexity on the LS trie T . Consider first the traversal phase. At each node
being visited, the traversal tests the skip value and, if not failed, selects an
appropriate branch to continue. The traversal does at most |C| + 1 times of
branch selections. Recall that there are at most |Σ′| = |Σ| + 1 branches on each
internal node of T and they are ordered by their branching characters. Therefore,
by simply performing binary search for each branch selection, we have the time
complexity O(|C| log |Σ|) for the traversal phase. However, this time may exceed
Θ(|Σ|) in the worst case. In the following, we show how to do better in branch
selection.

The concept is to search the appropriate branch by the exponential search.
Suppose the traversal goes through the nodes v1, v2, . . . , vk. While selecting on a
node vi, the branching characters on the 1st, 2nd, 4th, 8th, . . . branches are checked
one by one, until we find some j where the appropriate branch is between the
2j + 1th and the 2j+1th branches. The binary search is then applied to the 2j

branches for finding the appropriate branch. Suppose that the di
th branch is the

appropriate one for the node vi, obviously, it will be found in at most 2�log di�
steps. With some efforts, the following result can be obtained, which is bounded
by Θ(|Σ|). The proof is omitted due to page limit.

Lemma 6. The traversal phase requires O(|C| log(|Σ|/|C|)) time.

4.2.2 Verifying the Candidate Lexi-String
In the previous subsection, we introduce the blind search procedure on the LS
trie and discuss its traversal phase. It remains to implement its verification phase.

A Faster Query Algorithm for the Text Fingerprinting Problem 131

Suppose the traversal reaches a leaf of T , which represents the lexi-string LS(F)
of some fingerprint F ∈ F . The objective of the verification phase is to determine
whether LS(C) = LS(F) or, equivalently, whether F = C. This is not trivial
because neither F nor LS(F) is explicitly maintained. In this subsection, we
propose an auxiliary data structure such that the characters of any specified
fingerprint F can be retrieved in Θ(|F |) time. Then, we discuss how to verify C
with these characters. The concept of the data structure is based on the following
key lemma. The proof is omitted due to page limit.

Lemma 7. For any non-empty fingerprint F ∈ F , there exist at least a finger-
print F ′ ∈ F such that F ′ = F\{α} for some character α ∈ F .

It follows that we can get the characters in F by applying Lemma 7 recursively
on F and collecting the character α. This idea can be realized by defining the
following auxiliary data structure. First, |F| nodes are created for the |F| fin-
gerprints in F . Let v(F) denote the node which corresponds to the fingerprint
F . For each F ∈ F except ∅, an arbitrary fingerprint F ′ is selected, where
F ′ = F\{α} for some character α ∈ F . Then, an edge labeled with the character
α is created, which directs from the node v(F) to the node v(F ′). It is easy to
see that these edges connect the |F| nodes and form a directed tree rooted at
the node v(∅). This is called the backtracking tree, which requires total O(|F|)
space. On this tree, the character of a fingerprint F can be retrieved in Θ(|F |)
time by traversing the path from v(F) toward v(∅) and listing the characters on
the path. Recall that each leaf of the LS trie has to store a recognizer for its
retrieval. Therefore, for each F ∈ F , the pointer to v(F) is used as its recognizer.

Lemma 8. For any fingerprint F specified by its recognizer, the characters in
F can be retrieved in Θ(|F |) time by the backtracking tree.

Consider first the verification phase for a query C. A leaf v must be reached at
the end of the traversal phase. Suppose F is the fingerprint associated with the
leaf v. The checking in the traversal phase guarantees that |F | = |C|. Thus, the
characters in F is retrieved in O(|C|) time. Note that the retrieved characters
are not sorted in lexicographical order. To check the equivalence between F
and C, one way is to sort these characters and compare LS(F) with LS (C).
Generally, sorting |C| characters takes O(|C| log |C|) time. However, the time
complexity can be improved by a simple bucket sorting. First, the alphabet
space [1, |Σ|] is divided into |C| equal-sized buckets, and the characters in F
and C are distributed into the buckets. Then, each bucket runs a sorting. It is
easy to see that the sorting takes total O(|C| log(|Σ|/|C|)) time. Therefore, the
equivalence between F and C is determined in O(|C| log(|Σ|/|C|)) time. Note
that this sorting can also be used to resolve the sorted assumption on C.

Lemma 9. The verification phase can be done in O(|C| log(|Σ|/|C|)) time.

Now we show how to construct the backtracking tree in the preprocessing. By
Lemma 3, we have computed |F| fingerprint names to represent the fingerprints
in F and the maximal location list maxloci for each i. Also, each fingerprint

132 C.-Y. Chan et al.

name is assigned with a list of locations, which corresponds to the entries in
the n maximal location lists. Note that, for any two consecutive locations in
a maximal location list, their corresponding fingerprints differ by exactly one
character. By this fact, it is easy to build the backtracking tree in Θ(|F|) time
according to the steps in the definition. Due to page limit, the details are omitted.

Lemma 10. The backtracking tree can be constructed in Θ(|F|) time and space.

By Corollary 5, Lemmas 6, 9, and 10, the following theorem is derived.

Theorem 2. Query 1 can be done in O(|C| log(|Σ|/|C|)) time using Θ(|F|)
storage.

For answering Query 2, we can simply attach the list of maximal locations of a
fingerprint F to the leaf corresponding to LS(F) in T . The storage of these lists
takes Θ(|L|) space in total.

Theorem 3. Query 2 can be done in O(|C| log(|Σ|/|C|)+K) time using Θ(|L|)
storage, where K is the number of maximal locations of C.

5 The Construction of the LS Trie

In Section 4, we introduced the LS trie T and discussed the blind search pro-
cedure along with its auxiliary data structure. The remaining problem is the
construction of T . In this section, we show a Θ(|L| log |Σ|)-time construction for
T . The basic concept is to insert a leaf for each LS(F) ∈ Z one by one into T .
To implement this idea without explicitly maintaining the collection Z, more
discussions are required. By the preprocessing in Kolpakov and Raffinot’s algo-
rithm, we obtain |F| fingerprint names which correspond to the fingerprints in
F . Let X be the set of the |F| fingerprint names. For each x ∈ X , let B(x) be
its corresponding fingerprint table, which can also be treated as a bitstring of
length |Σ|. As mentioned in Lemma 3, the preprocessing numbers the fingerprint
names according to the increasing lexicographical order of their fingerprint ta-
bles. That is, for any two distinct x, x′ ∈ X, x < x′ if and only B(x) <L B(x′).
Let F (x) be the fingerprint represented by x, and LS(x) be the abbreviation of
the lexi-string LS (F (x)). We can derive a key lemma below. Due to page limit,
the proof is omitted.

Lemma 11. For any two distinct fingerprint names x, x′ ∈ X, if x < x′,
LS(x) >L LS(x′).

This key lemma implies that listing the fingerprint names in X in increasing order
implicitly represents a lexicographical decreasing ordering of all lexi-strings in
the collection Z. By definition of T , the branches of each internal node of T
are ordered by their branching characters, which means that the leaves of T
are ordered by the lexicographical order of their corresponding lexi-string in
Z. Therefore, by scanning the names ∈ X in decreasing order, it is as if the

A Faster Query Algorithm for the Text Fingerprinting Problem 133

leaves of T are traversed from left to right. From these arguments, we have the
idea to construct T by simulating an inorder depth-first traversal on T as if
T is available and then creating each node being visited accordingly. Suppose
that the names in X are x|F|, x|F|−1, . . . , x1, listed in decreasing order. For each
xi ∈ X , let v(xi) be the leaf in T corresponding to LS(xi). In the beginning,
we create the root of T , and “visit”the leftmost leaf v(x|F|) by creating it and
its edge to the root. Suppose that v(x|F|), . . . , v(xi) have been visited and we
are to visit the leaf v(xi−1). We then “backtrack” on the path from v(xi) to the
root in order to “find” the internal node u branching to the next leaf v(xi−1).
Afterwards, the internal node u and the leaf v(xi−1) are explicitly created and
connected by an edge. This procedure repeats until the rightmost leaf v(x1) is
inserted into T . In the following, we inspect more details inside this concept.

For any two names xi, xj ∈ X , let LCP(i, j) be the longest common prefix of
LS(xi) and LS(xj) and lcp(i, j) = |LCP(i, j)| be its length. By the definition of
the LS trie (a Patricia trie), the position of the branching node u between the
leaves v(xi) and v(xi−1) is closely related to lcp(i, i−1). To be more specific, the
branching node u for v(xi−1) should have its skip value skip(u) = lcp(i, i− 1) by
definition. Furthermore, when we find the position of u on the path from v(xi)
to the root, either u is an existing node on the path, or u must be placed on
an edge (u1, u2) where skip(u1) < skip(u) < skip(u2). After the position of u is
found, it remains to determine the branching characters on the branches of u
toward v(xi) and v(xi−1). By definition, the branching character from u toward
v(xi) is the character in LS(xi) just after the prefix LCP(i, i − 1). A similar
argument applies for the branching character from u to v(xi−1). All these pieces
of information require the LCP computation between lexi-strings.

For any x ∈ X , it is obvious that the lexi-string LS(x) can be derived directly
by finding each occurrence of 1 in the fingerprint table B(x) from beginning and
listing its corresponding character. For any two xi, xj ∈ X , let LCPB(i, j) be
the longest common prefix of B(xi) and B(xj) and lcpB(i, j) = |LCPB(i, j)| be
its length. From the above argument, LCP(i, j) can be derived by finding the 1s
in LCPB(i, j), and lcp(i, j) is the number of 1s in LCPB(i, j). Furthermore, by
using such mapping, the character in LS(xi) just after LCP(i, j) can be retrieved
by finding the first occurrence of 1 in B(xi)’s suffix starting at lcpB(i, j) + 1.
Note that if no 1 exists in the suffix, the desired character would be $. The same
argument holds for the case of LS(xj).

It is easy to compute LCPB(i, j) by using the source pairs derived in Kolpakov
and Raffinot’s preprocessing as follows. Suppose (yi, zi) be the source pair of xi

and (yj, zj) be the source pair of xj . We first compare yi with yj . If yi 	= yj ,
we know that LCPB(i, j) must be equal to the longest common prefix of B(yi)
and B(yj), where B(y) denote the bitstring corresponding to a non-fingerprint
name y. Otherwise, LCPB(i, j) should be the concatenation of B(yi) (or B(yj))
and the longest common prefix of B(zi) and B(zj). In either case, the desired
longest common prefix can be obtained by recursively comparing their source
pairs. In this way, we can find q ≤ O(log |Σ|) names in O(log |Σ|) time, such that
the concatenation of their corresponding bitstrings is LCPB(i, j).

134 C.-Y. Chan et al.

With a simple preprocessing, lcp(i, j) can be computed from these names. For
each name y, let num1(y) be the number of 1s in B(y). Since the source pairs of
all names are computed, it is easy to obtain num1(y) for all y in O(|F| log |Σ|)
time by summing up in a bottom-up way. Thus, lcp(i, j) can be trivially derived
from the q names. Also, in a similar way, we can find q′ ≤ O(log |Σ|) names for
the suffix of B(xi) starting at lcpB(i, j) + 1. To find the first occurrence of 1 in
the suffix, we only need to find the first y in the q′ names where num1(y) > 0 and
retrieve the first 1 in B(y) in a similar recursive way. Same arguments applies to
the searching in the suffix of B(xj). Thus, each of these LCP related operations
take O(log |Σ|) time.

From the above discussion, while inserting a leaf v(xi−1) into T , it takes a
total of O(log |Σ|) time to compute the skip value and the branching characters
of the branching node u. Then, the position of u can be found in O(log |Σ|) time
by applying binary search on the path from v(xi) to the root. Thus, it requires a
total of O(|F| log |Σ|) time to compute these values for all leaves. Also, it is easy
to see that the corresponding recognizer can be assigned to each leaf in O(1)
time. Finally, the preprocessing of Kolpakov and Raffinot requires Θ(|L| log |Σ|)
time and Θ(|F| log |Σ| + |L|) space. We have the following result.

Theorem 4. Using Θ(|L| log |Σ|) time and Θ(|F| log |Σ| + |L|) space, we can
construct the LS trie T , which uses only Θ(|F|) space.

6 Further Improvement

By observing some new properties and with minor modifications, we can reduce
the space requirement of the construction to O(|L|) and create a modified LS
trie T ′ without increasing the construction time. The modified LS trie T ′ can
still answer Query 1 and Query 2 correctly in the same time. Thus, we claim the
following result. Due to space limit, the proof is omitted here.

Theorem 5. Using Θ(|L| log |Σ|) time and Θ(|L|) space, we can construct a
modified LS trie T ′. Based on T ′, we can answer Query 1 in O(|C| log(|Σ|/|C|))
time with Θ(|F|) space, and answer Query 2 in O(|C| log(|Σ|/|C|) + K) time
with Θ(|L|) space, where K is the number of maximal locations of C.

References

1. Amir, A., Apostolico, A., Landau, G.M., Satta, G.: Efficient text fingerprinting via
Parikh mapping. Journal of Discrete Algorithms 1, 409–421 (2003)

2. Dandekar, T., Snel, B., Huynen, M., Bork, P.: Conservation of gene order: a fin-
gerprint of proteins that physically interact. Trends in biochemical sciences 23(9),
324–328 (1998)

3. Didier, G., Schmidt, T., Stoye, J., Tsur, D.: Character sets of strings. Journal of
Discrete Algorithms 5(2), 330–340 (2007)

4. Ferragina, P., Grossi, R.: The string B-tree: a new data structure for string search
in external memory and its applications. Journal of the ACM 46(2), 236–280 (1999)

A Faster Query Algorithm for the Text Fingerprinting Problem 135

5. Karlsson, F., Voutilainen, A., Heikkilä, J., Anttila, A.: Constraint grammar: A
language-independent system for parsing unrestricted text. de Gruyter, Berlin
(1995)

6. Knuth, D.E.: The art of computer programming. In: Sorting and searching, vol. 3,
Addison-Wesley, London, UK (1973)

7. Kolpakov, R., Raffinot, M.: New algorithms for text fingerprinting. In: Lewenstein,
M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 342–353. Springer, Hei-
delberg (2006)

8. Kolpakov, R., Raffinot, M.: New algorithms for text fingerprinting (2006) (unpub-
lished, submitted), http://www-igm.univ-mlv.fr/~raffinot/ftp/fingerprint.
pdf

9. Rogozin, I.B., Makarova, K.S., Murvai, J., Czabarka, E., Wolf, Y.I., Tatusov,
R.L., Szekely, L.A., Koonin, E.V.: Connected gene neighborhoods in prokaryotic
genomes. Nucleic Acids Research 30(10), 2212–2223 (2002)

10. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of the 14th IEEE
Annual Symposium on Switching and Automata Theory, pp. 1–11 (1973)

http://www-igm.univ-mlv.fr/~raffinot/ftp/fingerprint.pdf
http://www-igm.univ-mlv.fr/~raffinot/ftp/fingerprint.pdf

Polynomial Time Algorithms for Minimum

Energy Scheduling

Philippe Baptiste1,�, Marek Chrobak2,��, and Christoph Dürr1,�

1 CNRS, LIX UMR 7161, Ecole Polytechnique 91128 Palaiseau, France
2 Department of Computer Science, University of California,

Riverside, CA 92521, USA

Abstract. The aim of power management policies is to reduce the
amount of energy consumed by computer systems while maintaining
satisfactory level of performance. One common method for saving en-
ergy is to simply suspend the system during the idle times. No energy
is consumed in the suspend mode. However, the process of waking up
the system itself requires a certain fixed amount of energy, and thus sus-
pending the system is beneficial only if the idle time is long enough to
compensate for this additional energy expenditure. In the specific prob-
lem studied in the paper, we have a set of jobs with release times and
deadlines that need to be executed on a single processor. Preemptions
are allowed. The processor requires energy L to be woken up and, when
it is on, it uses the energy at a rate of R units per unit of time. It has
been an open problem whether a schedule minimizing the overall en-
ergy consumption can be computed in polynomial time. We solve this
problem in positive, by providing an O(n5)-time algorithm. In addition
we provide an O(n4)-time algorithm for computing the minimum energy
schedule when all jobs have unit length.

1 Introduction

Power Management Strategies. The aim of power management policies is to
reduce the amount of energy consumed by computer systems while maintaining
satisfactory level of performance. One common method for saving energy is a
power-down mechanism, which is to simply suspend the system during the idle
times. The amount of energy used in the suspend mode is negligible. However,
during the wake-up process the system requires a certain fixed amount of start-
up energy, and thus suspending the system is beneficial only if the idle time is
long enough to compensate for this extra energy expenditure. The intuition is
that we can reduce energy consumption if we schedule the work to performed
so that we reduce the weighted sum of two quantities: the total number of busy
periods and the total length of “short” idle periods, when the system is left on.

Scheduling to Minimize Energy Consumption. The scheduling problem we
study in this paper is quite fundamental. We are given a set of jobs with release
� Supported by CNRS/NSF grant 17171 and ANR Alpage.

�� Supported by NSF grants OISE-0340752 and CCR-0208856.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 136–150, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Polynomial Time Algorithms for Minimum Energy Scheduling 137

times and deadlines that need to be executed on a single processor. Preemptions
are allowed. The processor requires energy L to be woken up and, when it is
on, it uses the energy at a rate of R units per unit of time. The objective is
to compute a feasible schedule that minimizes the overall energy consumption.
Denoting by E the energy consumption function, this problem can be classified
using Graham’s notation as 1|rj ; pmtn|E.

The question whether this problem can be solved in polynomial time was
posed by Irani and Pruhs [8], who write that “. . . Many seemingly more com-
plicated problems in this area can be essentially reduced to this problem, so
a polynomial time algorithm for this problem would have wide application.”
Some progress towards resolving this question has already been reported. Chre-
tienne [3] proved that it is possible to decide in polynomial time whether there is
a schedule with no idle time. More recently, Baptiste [2] showed that the problem
can be solved in time O(n7) for unit-length jobs.

Our Results. We solve the open problem posed by Irani and Pruhs [8], by
providing a polynomial-time algorithm for 1|rj ; pmtn|E. Our algorithm is based
on dynamic programming and it runs in time O(n5). Thus not only our algorithm
solves a more general version of the problem, but is also faster than the algorithm
for unit jobs in [2]. For the case of unit jobs (that is, 1|rj ; pj = 1|E), we improve
the running time to O(n4).

The paper is organized as follows. First, in Section 2, we introduce the nec-
essary terminology and establish some basic properties. Our algorithms are de-
veloped gradually in the sections that follow. We start with the special case of
minimizing the number of gaps for unit jobs, that is 1|rj ; pj = 1; L = 1|E, for
which we describe an O(n4)-time algorithm in Section 3. Next, in Section 4, we
extend this algorithm to jobs of arbitrary length (1|rj ; pmtn; L = 1|E), increas-
ing the running time to O(n5). Finally, in Section 5, we show how to extend
these algorithms to arbitrary L without increasing their running times.

We remark that our algorithms are sensitive to the structure of the input
instance and on typical instances they are likely to run significantly faster than
their worst-case bounds.

Other Relevant Work. The non-preemptive version of our problem, that is
1|rj |E, can be easily shown to be NP-hard in the strong sense, even for L = 1
(when the objective is to only minimize the number of gaps), by reduction from
3-Partition [4, problem SS1].

More sophisticated power management systems may involve several sleep
states with decreasing rates of energy consumption and increasing wake-up over-
heads. In addition, they may also employ a method called speed scaling that relies
on the fact that the speed (or frequency) of processors can be changed on-line.
As the energy required to perform the job increases quickly with the speed of
the processor, speed scaling policies tend to slow down the processor while en-
suring that all jobs meet their deadlines (see [8], for example). This problem
is a generalization of 1|rj |E and its status remains open. A polynomial-time
2-approximation algorithm for this problem (with two power states) appeared
in [6].

138 P. Baptiste, M. Chrobak, and C. Dürr

As jobs to be executed are often not known in advance, the on-line version
of energy minimization is of significant interest. Online algorithms for power-
down strategies with multiple power states were considered in [5,7,1]. In these
works, however, jobs are critical, that is, they must be executed as soon as they
are released, and the online algorithm only needs to determine the appropri-
ate power-down state when the machine is idle. The work of Gupta, Irani and
Shukla [6] on power-down with speed scaling is more relevant to ours, as it in-
volves aspects of job scheduling. For the specific problem studied in our paper,
1|rj |E, it is easy to show that no online algorithm can have a constant compet-
itive ratio (independent of L), even for unit jobs. We refer the reader to [8] for
a detailed survey on algorithmic problems in power management.

2 Preliminaries

Minimum-Energy Scheduling. Formally, an instance of the scheduling prob-
lem 1|rj ; pmtn|E consists of n jobs, where each job j is specified by its processing
time pj , release time rj and deadline dj . We have one processor that, at each
step, can be on or off. When it is on, it consumes energy at the rate of R units
per time step. When it is off, it does not consume any energy. Changing the
state from off to on (waking up) requires additional L units of energy. Without
loss of generality, we assume that R = 1.

The time is discrete, and is divided into unit-length intervals [t, t + 1), where
t is an integer, called time slots or steps. For brevity, we often refer to time step
[t, t + 1) as time step t. A preemptive schedule S specifies, for each time slot,
whether some job is executed at this time slot and if so, which one. Each job
j must be executed for pj time slots, and all its time slots must be within the
time interval [rj , dj).

A block of a schedule S is a maximal interval where S is busy that is, executes
a job. The union of all blocks of S is called its support. A gap of S is a maximal
interval where S is idle (does not execute a job). By Cj(S) (or simply Cj , if S is
understood from context) we denote the completion time of a job j in a schedule
S. By Cmax(S) = maxj Cj(S) we denote the maximum completion time of any
job in S. We refer to Cmax(S) as the completion time of schedule S.

Since the energy used on the support of all schedules is the same, it can
be subtracted from the energy function for the purpose of minimization. The
resulting function E(S) is the “wasted energy” (when the processor is on but
idle) plus L times the number of wake-ups. Formally, this can be calculated as
follows. Let [u1, t1], . . . , [uq, tq] be the set of all blocks of S, where u1 < t1 <
u2 < . . . < tq. Then

E(S) =
q∑

i=2

min {ui − ti−1, L}.

(We do not charge for the first wake-up at time u1, since this term is independent
of the schedule.) Intuitively, this formula reflects the fact that once the support

Polynomial Time Algorithms for Minimum Energy Scheduling 139

of a schedule is given, the optimal suspension and wake-up times are easy to
determine: we suspend the machine during a gap if and only if its length is more
than L, for otherwise it would be cheaper to keep the processor on during the
gap.

Our objective is to find a schedule S that meets all job deadlines and minimizes
E(S). (If there is no feasible schedule, we assume that the energy value is +∞.)
Note that the special case L = 1 corresponds to simply minimizing the number
of gaps.

Simplifying Assumptions. Throughout the paper we assume that jobs are
ordered according to deadlines, that is d1 ≤ . . . ≤ dn. Without loss of generality,
we also assume that all release times are distinct and that all deadlines are
distinct. Indeed, if ri = rj for some jobs i < j, since the jobs cannot start both
at the same time ri, we might as well increase by 1 the release time of j. A
similar argument applies to deadlines.

To simplify the presentation, we assume that the job indexed 1 is a special job
with p1 = 1 and d1 = r1 +1, that is job 1 has unit length and must be scheduled
at its release time. (Otherwise we can always add such an extra job, released
L + 1 time slots before r1. This increases each schedule’s energy by exactly L
and does not affect the asymptotic running time of our algorithms).

Without loss of generality, we can also assume that the input instance is
feasible. A feasible schedule corresponds to a matching between units of jobs
and time slots, so Hall’s theorem gives us the following necessary and sufficient
condition for feasibility: for all times u < v,

∑

u≤rj ,dj≤v

pj ≤ v − u. (1)

We can also restrict our attention to schedules S that satisfy the following
earliest-deadline property: at any time t, either S is idle at t or it schedules a
pending job with the earliest deadline. In other words, once the support of S is
fixed, the jobs in the support are scheduled according to the earliest deadline
policy. Using the standard exchange argument, any schedule can be converted
into one that satisfies the earliest-deadline property and has the same support.

(k, s)-Schedules. We will consider certain partial schedules, that is schedules
that execute only some jobs from the instance. For jobs k and s, a partial schedule
S is called a (k, s)-schedule if it schedules all jobs j ≤ k with rs ≤ rj < Cmax(S)
(recall that Cmax(S) denotes the completion time of schedule S). From now on,
unless ambiguity arises, we will omit the term “partial” and refer to partial
schedules simply as schedules. When we say that that a (k, s)-schedule S has g
gaps, in addition to the gaps between the blocks we also count the gap (if any)
between rs and the first block of S. For any k, s, the empty schedule is also con-
sidered to be a (k, s)-schedule. The completion time of an empty (k, s)-schedule
is artificially set to rs. (Note that, in this convention, empty (k, s)-schedules, for
difference choices of k, s, are considered to be different schedules.)

140 P. Baptiste, M. Chrobak, and C. Dürr

The following “compression lemma” will be useful in some proofs.

Lemma 1. Let Q be a (k, s)-schedule with Cmax(Q) = u, and let R be a (k, s)
schedule with Cmax(R) = v > u and at most g gaps. Suppose that there is a
time t, u < t ≤ v, such that there are no jobs i ≤ k with u ≤ ri < t, and that
R executes some job m < k with rm ≤ u at or after time t. Then there is a
(k, s)-schedule R′ with completion time t and at most g gaps.

Proof. We can assume that R has the earliest-deadline property. We convert
R into R′ by gradually reducing the completion time, without increasing the
number of gaps.

Call a time slot z of R fixed if R executes some job j at time z and either
z = rj or all times rj , rj+1, ..., z − 1 are fixed as well. Let [w, v] be the last block
of R and let j be the job executed at time v − 1. If v = t, we are done. For v > t
we show that we can reduce Cmax(R) while preserving the assumptions of the
lemma.

Suppose first that the slot v−1 is not fixed. In this case, execute the following
operation Shift: for each non-fixed slot in [w, v] move the job unit in this slot to
the previous non-fixed slot in R. Shift reduces Cmax(R) by 1 without increasing
the number of gaps. We still need to justify that R is a feasible (k, s)-schedule.
To this end, it is sufficient only to show that no job will be scheduled before its
release time. Indeed, if a job i is executed at a non-fixed time z, where w ≤ z < v,
then, by definition, z > ri and there is a non-fixed slot in [ri, z−1], and therefore
after Shift z will be schedule at or after ri.

The other case is when the slot v−1 is fixed. In this case, we claim that there
is a job l such that w ≤ rl < v and each job i executed in [rl, v] satisfies ri ≥ rl.
This l can be found as follows. If v − 1 = rj , let l = j. Otherwise, from all jobs
executed in [rj , v−1] pick the job j′ with minimum rj′ . Suppose that j′ executes
at v′, rj ≤ v′ ≤ v − 1. Since, by definition, the slot v′ is fixed, we can apply this
argument recursively, eventually obtaining the desired job l. We then perform
the following operaiton Truncate: replace R by the segment of R in [rs, rl]. This
decreases Cmax(R) to rl, and the new R is a feasible (k, s)-schedule, by the choice
of l.

We repeat the process described above as long as v > t. Since the schedule at
each step is a (k, s)-schedule, we end up with a (k, s)-schedule R′. Let Cmax(R′) =
t′ ≤ t. It is thus sufficient to prove that t′ = t. Indeed, consider the last step, when
Cmax(R) decreases to t′. Operation Truncate reduces Cmax(R) to a completion
time of a job released after t, so it cannot reduce it to t′. Therefore the last
operation applied must have been Shift that reduces Cmax(R) by 1. Consequently,
t′ = t, as claimed.

The Uk,s,g Function. For any k = 0, ..., n, s = 1, ..., n, and g = 0, ..., n, define
Uk,s,g as the maximum completion time of a (k, s)-schedule with at most g
gaps. Our algorithms will compute the function Uk,s,g and use it to determine a
minimum energy schedule.

Clearly, Uk,s,g ≤ dk and, for any fixed s and g, the function k �→ Uk,s,g is
increasing (not necessarily strictly). For all k and s, the function g �→ Uk,s,g

Polynomial Time Algorithms for Minimum Energy Scheduling 141

increases as well. We claim that in fact it increases strictly as long as Uk,s,g < dk.
Indeed, suppose that Uk,s,g = u < dk and that Uk,s,g is realized by a (k, s)-
schedule S with at most g gaps. We show that we can extend S to a schedule S′

with g +1 gaps and Cmax(S′) > Cmax(S). If there is a job j ≤ k with rj ≥ u, take
j to be such a job with minimum rj . We must have rj > u, since otherwise we
could add j to S scheduling it at u without increasing the number of gaps, and
thus contradicting the maximality of Cmax(S). We thus obtain S′ by scheduling
j at rj . The second case is when rj ≤ u for all jobs j ≤ k. In particular, rk < u.
We obtain S′ by rescheduling k at u. (This creates an additional gap at the time
slot where k was scheduled, for otherwise we would get a contradiction with the
maximality of Cmax(S)).

An Outline of the Algorithms. Our algorithms are based on dynamic pro-
gramming, and they can be thought of as consisting of two stages. First, we
compute the table Uk,s,g, using dynamic programming. From this table we can
determine the minimum number of gaps in the (complete) schedule (it is equal to
the smallest g for which Un,1,g > maxj rj .) The algorithm computing Uk,s,g for
unit jobs is called AlgA and the one for arbitrary length jobs is called AlgB.

In the second stage, described in Section 5 and called AlgC, we use the ta-
ble Uk,s,g to compute the minimum energy schedule. In other words, we show
that the problem of computing the minimum energy reduces to computing the
minimum number of gaps. This reduction, itself, involves again dynamic pro-
gramming.

When presenting our algorithms, we will only show how to compute the min-
imum energy value. The algorithms can be modified in a straightforward way to
compute the actual optimum schedule, without increasing the running time. (In
fact, we explain how to construct such schedules in the correctness proofs).

3 Minimizing the Number of Gaps for Unit Jobs

In this section we give an O(n4)-time algorithm for minimizing the number of
gaps for unit jobs, that is for 1|rj ; pj = 1; L = 1|E. Recall that we assumed all
release times to be different and all deadlines to be different, which implies that
there is always a feasible schedule (providing that dj > rj for all j).

As explained in the previous section, the algorithm computes the table Uk,s,g.
The crucial idea here is this: Let S be a (k, s)-schedule that realizes Uk,s,g, that is
S has g gaps and Cmax(S) = u is maximized. Suppose that in S job k is scheduled
at some time t < u − 1. We show that then, without loss of generality, there is
a job l released and scheduled at time t + 1. Further, the segment of S in [rs, t]
is a (k − 1, s)-schedule with completion time t, the segment of S in [t + 1, u] is a
(k−1, l)-schedule with completion time u, and the total number of gaps in these
two schedules equals g. This naturally leads to a recurrence relation for Uk,s,g.

Algorithm AlgA. The algorithm computes all values Uk,s,g, for k = 0, ..., n,
s = 1, ..., n and g = 0, ..., n, using dynamic programming. The minimum number
of gaps for the input instance is equal to the smallest g for which Un,1,g >
maxj rj .

142 P. Baptiste, M. Chrobak, and C. Dürr

To explain how to compute all values Uk,s,g, we give the recurrence relation.
For the base case k = 0 we let U0,s,g ← rs for all s and g. For k ≥ 1, Uk,s,g is
defined recursively as follows:

Uk,s,g ← max
l<k,h≤g

⎧
⎪⎪⎨

⎪⎪⎩

Uk−1,s,g

Uk−1,s,g + 1 if rs ≤ rk ≤ Uk−1,s,g & ∀j < k rj �= Uk−1,s,g

dk if g > 0 & ∀j < k rj < Uk−1,s,g−1

Uk−1,l,g−h if rk < rl = Uk−1,s,h + 1

(2)

Note that only the last choice in the maximum depends on h and l. Also, as a
careful reader might have noticed, the condition “∀j < k rj 	= Uk−1,s,g” in the
second option is not necessary (the optimal solution will satisfy it automatically),
but we include it to simplify the correctness proof.

In the remainder of this section we justify the correctness of the algorithm
and analyze its running time. The first two lemmas establish the feasibility and
the optimality of the values Uk,s,g computed by Algorithm AlgA.

Lemma 2. For any choice of indices k, s, g, there is a (k, s)-schedule Sk,s,g with
Cmax(Sk,s,g) = Uk,s,g and at most g gaps.

Proof. The proof is by induction on k. For k = 0, we take S0,s,g to be the empty
(k, s)-schedule, which is trivially feasible and (by our convention) has completion
time rs = U0,s,g.

Now fix some k ≥ 1 and assume that the lemma holds for k − 1 and any s′

and g′, that is, for any s′ and g′ we have a schedule Sk−1,s′,g′ with completion
time Uk−1,s′,g′ . The construction of Sk,s,g depends on which expression realizes
the maximum (2).

If Uk,s,g = Uk−1,s,g, we simply take Sk,s,g = Sk−1,s,g. Since we did not choose
the second option in the maximum, either rk < rs or rk > Uk−1,s,g. Therefore,
directly from the inductive assumption, we get that Sk,s,g is a (k, s)-schedule
with completion time Uk,s,g.

If Uk,s,g = Uk−1,s,g + 1, rs ≤ rk ≤ Uk−1,s,g, and there is no job j < k with
rj = Uk−1,s,g, let Sk,s,g be the schedule obtained from Sk−1,s,g by adding to it
job k scheduled at time u = Uk−1,s,g. (Note that we must have u < dk.) Then
Sk,s,g is a (k, s)-schedule with completion time u + 1 = Uk,s,g.

Next, suppose that Uk,s,g = dk, g > 0, and maxj<k rj < Uk−1,s,g−1. Let Sk,s,g

be the schedule obtained from Sk−1,s,g−1 by adding to it job k scheduled at
dk − 1. The condition maxj<k rj < Uk−1,s,g−1 implies that no jobs j < k are
released between Uk−1,s,g−1 and dk −1. Therefore Sk,s,g is a (k, s)-schedule with
completion time dk = Uk,s,g and it has at most g gaps, since adding k can only
add one gap to Sk−1,s,g−1.

Finally, suppose that Uk,s,g = Uk−1,l,g−h, for some 1 ≤ l < k, 0 ≤ h ≤ g, that
satisfy rk < rl = Uk−1,s,h + 1. The schedule Sk,s,g is obtained by scheduling all
jobs j < k released between rs and rl −1 using Sk−1,s,h, scheduling all jobs j < k
released between rl and Uk−1,l,g−h − 1 using Sk−1,l,g−h, and scheduling job k at
rl − 1. By induction, Sk,s,g is a (k, s)-schedule with completion time Uk,s,g and
at most g gaps.

Polynomial Time Algorithms for Minimum Energy Scheduling 143

Lemma 3. For any choice of indices k, s, g, if Q is a (k, s)-schedule with at
most g gaps then Cmax(Q) ≤ Uk,s,g.

Proof. The proof is by induction on k. For k = 0, any (0, s)-schedule is empty
and thus has completion time rs. For a given k ≥ 1 assume that the lemma holds
for k − 1 and any s′ and g′, that is the values of Uk−1,s′,g′ are indeed optimal.
Let Q be a (k, s)-schedule with at most g gaps and maximum completion time
u. Withouth loss of generality, we can assume that Q has the earliest-deadline
property. The maximality of u implies that no job j ≤ k is released at time u,
for otherwise we could add j to Q by scheduling it at u and thus increasing the
completion time. (This property will be useful in the proof below.) We prove
that u ≤ Uk,s,g by analyzing several cases.

Case 1: Q does not schedule job k. In this case Q is a (k − 1, s)-schedule with
completion time u, so, by induction, we have u ≤ Uk−1,s,g ≤ Uk,s,g. In all the
remaining cases, we assume that Q schedules k. Obviously, this implies that
rs ≤ rk < u.

Case 2: Q schedules k as the last job and k is not the only job in its block. Let
u′ = u − 1, and define Q′ to be Q restricted to the interval [rs, u

′]. Then Q′ is a
(k −1, s)-schedule with completion time u′ and at most g gaps, so u′ ≤ Uk−1,s,g,
by induction. If u′ < Uk−1,s,g then, trivially, u ≤ Uk−1,s,g ≤ Uk,s,g. Otherwise,
assume u′ = Uk−1,s,g. Then, by the earliest deadline property, there is no job
j < k with rk = u′. Thus the second condition in the maximum (2) is satisfied,
so we have u = u′ + 1 = Uk−1,s,g + 1 ≤ Uk,s,g.

Case 3: Q schedules k as the last job and k is the only job in its block. If u = rs+1
then k = s and the condition in the second option of (2) is satisfied, so we have
u = rs +1 = Us−1,s,g +1 = Us,s,g. Therefore we can assume now that u > rs +1,
which, together with the case condition, implies that g > 0.

If u < dk, we can modify Q by rescheduling k at time u, obtaining a (k, s, u+1)
schedule (by the assumption about Q, no job j < k is released at u) with at
most g gaps – contradicting the maximality of u.

By the above paragraph, we can assume that u = dk. Let u′ be the smallest
time u′ ≥ rs such that Q is idle in [u′, dk − 1]. Then maxj<k rj < u′ and the
segment of Q in [rs, u

′] is a (k − 1, s)-schedule with at most g − 1 gaps, so, by
induction, we get u′ ≤ Uk−1,s,g−1. Thus the third option in (2) applies and we
get u = dk = Uk,s,g.

Uk,s,g = Uk−1,l,g−h

h gaps

k

Uk−1,s,h

rs rl

l

Fig. 1. Case 4 in the proof of Lemma 3

144 P. Baptiste, M. Chrobak, and C. Dürr

Case 4: Q schedules k and k is not the last job. Suppose that k is scheduled at
time t. Note that Q is not idle at times t− 1 and t+1, since otherwise we would
have u < dk and we could reschedule k at u, obtaining a (k, s)-schedule with at
most g gaps and completion time u + 1, which contradicts the maximality of u.
Since Q satisfies the earliest-deadline property, no job j < k is pending at time
t, and thus Q schedules at time t + 1 the job l < k with release time rl = t + 1.

Let Q1 be the segment of Q in the interval [rs, t]. Clearly, Q1 is a (k − 1, s)-
schedule with completion time t. Denote by h the number of gaps in Q1. We
claim that Q1 is in fact optimal, that is:

Claim 1: t = Uk−1,s,g.
Suppose for now that Claim 1 is true (see the proof below). Then the conditions
of the last option in (2) are met: l < k, h ≤ g, and rk < rl = Uk−1,s,h +1. Let Q2

be the segment of Q in [rl, u]. Then Q2 is a (k − 1, l)-schedule with completion
time u and at most g−h gaps, so by induction we get u ≤ Uk−1,l,g−h, completing
the argument for Case 4.

To complete the proof it only remains now to prove Claim 1. Denote v =
Uk−1,s,g. By induction, v is the maximum completion time of a (k−1, s)-schedule
with at most g gaps. Clearly, as Q1 is a (k − 1, s)-schedule with g gaps, we have
v ≥ t, and thus it suffices to show that v ≤ t. Towards contradiction, suppose
that v > t and let R be a (k −1, s)-schedule with completion time v and at most
h gaps. We consider two cases.

Case (a): R schedules all jobs j < k with rs ≤ rj ≤ t in the interval [rs, t]. The
earliest deadline property of Q implies that there is no job j < k released at
time t. So R must be idle at t. We can modify Q as follows: Reschedule k at
time u and replace the segment [rs, t + 1] of Q by the same segment of R. Let
Q′ be the resulting schedule. Q′ is a (k, s)-schedule. Since R has at most h gaps,
there are at most h gaps in Q′ in the segment [rs, t + 1], so Q′ has the total of
at most g gaps. We thus obtain a contradiction with the choice of Q, because
Cmax(Q′) = u + 1 > Cmax(Q).

Case (b): R schedules some job j < k with rs ≤ rj ≤ t at or after t. In this case,
Lemma 1 implies that there is a (k − 1, s)-schedule R′ with at most h gaps and
completion time t+1. Replace the segment [rs, t+1] of Q by the same segment of
R′ and reschedule k at u. The resulting schedule Q′ is a (k, s)-schedule and, since
Q executes job l at time t+1 = rl, Q′ has at most g gaps. We thus again obtain
a contradiction with the choice of Q, because Cmax(Q′) = u + 1 > Cmax(Q).

Theorem 1. Algorithm AlgA correctly computes the optimum solution for
1|rj ; pj = 1; L = 1|E, and it can be implemented in time O(n4).

Proof. The correctness of Algorithm AlgA follows from Lemma 2 and Lemma 3,
so it is sufficient to give the running time analysis. There are O(n3) values Uk,s,g

to be computed. For fixed k, s, g, the first two choices in the maximum (2) can
be computed in time O(1) and the third choice in time O(n). In the last choice
we maximize over pairs (l, h) that satisfy the condition rl = Uk−1,s,h + 1, and

Polynomial Time Algorithms for Minimum Energy Scheduling 145

thus we only have O(n) such pairs. Since the values of Uk−1,s,h increase with h,
we can determine all these pairs in time O(n) by searching for common elements
in two sorted lists: the list of release times, and the list of times Uk−1,s,h +1, for
h = 0, 1, ..., n. Thus each value Uk,s,g can be computed in time O(n), and the
overall running time is O(n4).

4 Minimizing the Number of Gaps for Arbitrary Jobs

In this section we give an O(n5)-time algorithm for minimizing the number
of gaps for instances with jobs of arbitrary lengths, that is for the scheduling
problem 1|rj ; pmtn; L = 1|E.

We first extend the definition of Uk,s,g as follows. Let 0 ≤ k ≤ n, 1 ≤ s ≤ n,
and 0 ≤ g ≤ n − 1. For any p = 0, . . . , pk, define Uk,s,g(p) as the value of Uk,s,g

— the maximum completion time of a (k, s)-schedule with at most g gaps — for
the modified instance where pk ← p.

The following “expansion lemma” will be useful in the correctness proof. The
proof of the lemma will appear in the final version.

Lemma 4. Fix any k, s, g and p. Then

(a) If Uk,s,g(p) < dk, then in the schedule realizing Uk,s,g(p) the last block has
at least one job other than k.

(b) If p < pk and Uk,s,g(p) < dk, then Uk,s,g(p + 1) > Uk,s,g(p).
(c) If p < pk and Uk,s,g(p) = dk then Uk,s,g(p + 1) = dk as well.

We now define another table Pk,s,l,g. For any k, s, l = 1, . . . , n, g = 0, . . . , n − 1,
if l = s, then Pk,s,l,g = 0, otherwise

Pk,s,l,g = min
p

{p + rl − Uk,s,g(p)},

where the minimum is taken over 0 ≤ p ≤ pk such that l is the next job to
be released after Uk,s,g(p), that is rl = minj<k {rj : rj > Uk,s,g(p)}. If there is
no such p, we let Pk,s,l,g = +∞. The intuition is that Pk,s,l,g is the minimum
amount of job k such that there is a (k, s)-schedule S with completion time rl

and at most g gaps. To be more precise, we also require that (for Pk,s,l,g > 0)
S executes k at time rl − 1 and that has maximal completion time among all
schedules over the same set of jobs than S.

Our algorithm computes both tables Uk,s,g and Pk,s,l,g. The intuition is this.
Let S be a (k, s)-schedule with g gaps and maximum possible completion time
u for the given values of k, s, g. Assume that S schedules job k and u < dk.
Moreover assume that k is scheduled in more than one interval, and let t be the
end of the second last interval of k. Then S schedules at t some job l < k, for
otherwise we could move some portion of k to the end, contradicting maximality
of u. Furthermore, rl = t by the earliest deadline policy. Now the part of S up
to rl has some number of gaps, say h. The key idea is that the amount of job k
in this part is minimal among all (k, s)-schedules with completion time rk and
at most h gaps, so this amount is equal to Pk,s,l,h.

146 P. Baptiste, M. Chrobak, and C. Dürr

Algorithm AlgB. For any k = 0, ..., n, s = 1, ..., n and g = 0, ..., n − 1, the
algorithm computes Uk,s,g, and Pk,s,l,g for all l = 1, ..., n. These values are com-
puted in order of increasing values of k, with all Pk,s,l,g computed before all
Uk,s,g, using the following recurrence relations.

Computing Uk,s,g. For the base case k = 0 we let U0,s,g ← rs for all s and g. For
k ≥ 1, Uk,s,g is defined recursively as follows:

Uk,s,g ← max
l<k,h≤g

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Uk−1,s,g if rk < rs or rk ≥ Uk−1,s,g

dk if Pk,s,l,h < pk, maxj<k rj < Uk−1,l,g−h−1

and dk − Uk−1,l,g−h−1 > pk − Pk,s,l,h

dk if Pk,s,l,h < pk, maxj<k rj < Uk−1,l,g−h

and dk − Uk−1,l,g−h ≤ pk − Pk,s,l,h

Uk−1,l,g−h + pk − Pk,s,l,h if Pk,s,l,h ≤ pk and

� ∃j < k : 0 ≤ rj − Uk−1,l,g−h < pk − Pk,s,l,g−h

(3)

Computing Pk,s,l,g . If rs = rl, let Pk,s,s,g ← 0 for rk ≤ rs < dk and Pk,s,s,g = +∞
otherwise. Suppose now that rs < rl. If rk < rs or rk ≥ rl, let Pk,s,l,g = +∞.
For rs ≤ rk < rl, we compute Pk,s,l,g recursively as follows:

Pk,s,l,g ← min
0≤h≤k,j<k

{
rj − Uk−1,s,h + Pk,j,l,g−h if rk ≤ Uk−1,s,h, Uk−1,s,h < rj ≤ rl, and

� ∃i < k : Uk−1,s,h ≤ ri < rj

(4)

k k

k k k

rj

h gaps

h gaps

Uk−1,s,h

k k k

dk

h gaps

k

k k k

dk

h gaps
Computing Uk,s,g :

rs

rs

rs

rl

rl

rl

rlrs

Uk−1,l,g−h

Uk−1,l,g−h

Uk−1,l,g−h−1

Computing Pk,s,l,g :

pk − Pk,s,l,g−h

≤ pk − Pk,s,l,g−h

pk − Pk,s,l,g−h−1

Fig. 2. Illustration of the cases in Algorithm AlgB

Polynomial Time Algorithms for Minimum Energy Scheduling 147

As usual, if the conditions in the minimum are not satisfied by any h, j, then
Pk,s,l,g is assumed to be +∞. The cases considered in the algorithm are illus-
trated in Figure 2.

Theorem 2. Algorithm AlgB correctly computes the optimum solution for
1|rj ; pmtn; L = 1|E, and it can be implemented in time O(n5).

The proof of this theorem will appear in the full version of the paper.

5 Minimizing the Energy

We now show how minimize the energy for an arbitrary L. This new algorithm
consists of computing the table Uk,s,g (using either Algorithm AlgA or AlgB)
and an O(n2)-time post-processing. Thus we can solve the problem for unit jobs
in time O(n4) and for arbitrary-length jobs in time O(n5).

Recall that for this general cost model, the cost (energy) is defined as the
sum over all gaps, of the minimum between L and the gap length. Call a gap
small if its length is at most L. The idea of the algorithm is this: We show first
that there is an optimal schedule where the short gaps divide the instance into
disjoint sub-instances. For those sub-instances, the cost is simply the number of
gaps times L. To compute the overall cost, we add to this quantity the total size
of short gaps.

Given two schedules S, S′ of the input instance, we say that S dominates
S′ if there is a time point t such that the supports of S and S′ in the interval
(−∞, t] are identical and at time t S schedules a job while S′ is idle. This relation
defines a total order on all schedules. The correctness of the algorithm relies on
the following separation lemma.

Lemma 5. There is an optimal schedule S with the following property: For any
small gap [u, v] of S, if a job j is scheduled at or after v then rj ≥ v.

Proof. Among all optimal schedules, choose S to be the one not dominated by
another optimal schedule, and let [u, v] be a small gap in S. If there is a job
j with rj < v and scheduled at some time unit t ≥ v, then we can move this
execution unit to the time unit v − 1. This will not increase the overall cost,
since the cost in the small gap decreases by one, and the idle time unit created
at t increases the cost at most by 1. The resulting schedule, however, dominates
S – contradiction.

For any job s, define an s-schedule to be a (partial) schedule that schedules all
jobs j with rj ≥ rs. We use notation Es to represent the minimum cost (energy)
of an s-schedule, including the cost of the possible gap between rs and its first
block.

Algorithm AlgC. The algorithm first computes the table Uk,s,g, for all k =
0, ..., n, s = 1, ..., n, and g = 0, 1, ..., n, using either Algorithm AlgA or AlgB,

148 P. Baptiste, M. Chrobak, and C. Dürr

whichever applies. Then we use dynamic programming to compute all values Es,
in order of decreasing release times rs:

Es ← min
0≤g≤n

{
Lg if Un,s,g > maxj rj

Lg + rl − u + El otherwise, where u = Un,s,g , rl = min {rj : rj > u}(5)

The minimum energy of the whole instance is then E1, where r1 is the first release
time. (Recall that the job 1 is assumed to be tight, so the schedule realizing E1

will not have a gap at the beginning).
We now prove the correctness of Algorithm AlgC and analyze its running

time.

Lemma 6. For each job s = 1, 2, ..., n there is an s-schedule Ss of cost at
most Es.

Proof. The proof is by backward induction on rs. In the base case, when s is
the job with maximum release time, then we take Ss to be the schedule Ss that
executes s at rs. The cost of Ss is 0. Also, since Un,s,0 > rs we have Es = 0, so
the lemma holds.

Suppose now that for any s′ > s we have already constructed an s′-schedule
Ss′ of cost at most Es′ . Let g be the value that realizes the minimum in (5).

If Un,s,g > maxj rj then, by Theorem 2, there is a schedule of all jobs released
at or after rs with at most g gaps. Let Ss be this schedule. Since each gap’s cost
is at most L, the total cost of Ss is at most Lg.

So now we can assume that Un,s,g ≤ maxj rj . By the maximality of Un,s,g, this
inequality is strict. As in the algorithm, let l be the first job released after Un,s,g.
Choose a schedule S′ realizing Un,s,g. By induction, there exists an l-schedule
Sl of cost at most El. We then define Ss as the disjoint union of S′ and Sl. The
cost of S′ is at most Lg. Denote u = Un,s,g. If v ≥ rl is the first start time of
a job in Sl, write El as El = max {v − rl, L} + E′. In other words, E′ is the
cost of the gaps in El excluding the gap before v (if any). Then the cost of Ss

is at most Lg + max {v − u, L} + E′ ≤ Lg + (rl − u) + max {v − rl, L} + E′ =
Lg + rl − u + El = Es.

Lemma 7. For each job s = 1, 2, ..., n there is an s-schedule Ss of cost at
most Es.

Proof. For any job s, we now prove that any s-schedule Q has cost at least Es.
The proof is by backward induction on rs. In the base case, when s is the job
that is released last then Es = 0, so the claim is true.

Suppose now that s is not the last job and let Q be an optimal s-schedule.
By Lemma 5, we can assume that Q is not dominated by any other s-schedule
with optimal cost. If Q does not have any small gaps then, denoting by g the
number of gaps in Q, the cost of Q is Lg ≥ Es.

Otherwise, let [u, v] be the first small gap in Q. Denote by Q′ the segment
of Q in [rs, u] and by Q′′ the segment of Q in [v, Cmax(S)]. By Lemma 5, Q′′

contains only jobs j with rj ≥ v. In particular the job l to be scheduled at v is
released at rl = v. By induction, the cost of Q′′ is at least El.

Polynomial Time Algorithms for Minimum Energy Scheduling 149

Let g be the number of gaps in Q′ and let R be the schedule realizing Un,s,g.
By the optimality of Un,s,g, we have Cmax(R) ≥ u. If Cmax(R) = u, then, by (5),
the cost of Q is Lg + rl − u + El ≥ Es, and we are done.

The remaining case is when Cmax(R) > u. By Lemma 1, this implies that
there is a (n, s)-schedule R′ with at most g gaps and Cmax(R′) ≤ v. But then we
could replace Q′ in Q by R′, getting a schedule of cost strictly smaller than that
of Q, contradicting the optimality of Q.

Theorem 3. Algorithm AlgC correctly computes the optimum solution for
1|rj |E, and it can be implemented in time O(n5). Further, in the special case
1|rj ; pj = 1|E, it can be implemented in time O(n4).

Proof. The correctness of Algorithm AlgC follows from Lemma 6 and Lemma 7,
so it is sufficient to justify the time bound. By Theorem 1 and Theorem 2, we
can compute the table Uk,s,g in time O(n4) and O(n5) for unit jobs and arbitrary
jobs, respectively. The post-processing, that is computing all values Es, can be
easily done in time O(n2 log n), since we have n values Es to compute, for each
s we minimize over n values of g, and for fixed s and g we can find the index
l in time O(log n) with binary search. (Finding this l can be in fact reduced to
amortized time O(1) if we process g in increasing order, for then the values of
Un,s,g, and thus also of l, increase monotonically as well).

6 Final Comments

We presented an O(n5)-time algorithm for the minimum energy scheduling prob-
lem 1|rj ; pmtn|E, and an O(n4) algorithm for 1|rj ; pj = 1|E.

Many open problems remain. Can the running times be improved further? In
fact, fast — say, O(n log n)-time — algorithms with low approximation ratios
may be of interest as well.

To our knowledge, no work has been done on the multiprocessor case. Can
our results be extended to more processors? Another generalization is to allow
multiple power-down states [8,7]. Can this problem be solved in polynomial-
time? In fact, the SS-PD problem discussed by Irani and Pruhs [8] is even more
general as it involves speed scaling in addition to multiple power states, and its
status remains open as well.

References

1. Augustine, J., Irani, S., Swamy, C.: Optimal power-down strategies. In: Proc. 45th
Symp. Foundations of Computer Science (FOCS’04), pp. 530–539 (2004)

2. Baptiste, P.: Scheduling unit tasks to minimize the number of idle periods: a polyno-
mial time algorithm for offline dynamic power management. In: Proc. 17th Annual
ACM-SIAM symposium on Discrete Algorithms (SODA’06), pp. 364–367 (2006)

3. Chretienne, P.: On the no-wait single-machine scheduling problem. In: Proc. 7th
Workshop on Models and Algorithms for Planning and Scheduling Problems (2005)

150 P. Baptiste, M. Chrobak, and C. Dürr

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H.Freeman and Co., New York (1979)

5. Irani, S., Gupta, R., Shukla, S.: Competitive analysis of dynamic power management
strategies for systems with multiple power savings states. In: Proc. Conf. on Design,
Automation and Test in Europe (DATE’02), p. 117 (2002)

6. Irani, S., Shukla, S., Gupta, R.: Algorithms for power savings. In: Proc. 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’03), pp. 37–46. ACM Press,
New York (2003)

7. Irani, S., Shukla, S., Gupta, R.: Online strategies for dynamic power management
in systems with multiple power-saving states. Trans. on Embedded Computing
Sys. 2(3), 325–346 (2003)

8. Irani, S., Pruhs, K.R.: Algorithmic problems in power management. SIGACT
News 36(2), 63–76 (2005)

k-Mismatch with Don’t Cares

Raphaël Clifford1, Klim Efremenko2, Ely Porat3, and Amir Rothschild4

1 University of Bristol, Dept. of Computer Science, Bristol, BS8 1UB, UK
clifford@cs.bris.ac.uk

2 Bar-Ilan University, Dept. of Computer Science, 52900 Ramat-Gan, Israel and
Weizman institute, Dept. of Computer Science and Applied Mathematics,

Rehovot, Israel
klimefrem@gmail.com

3 Bar-Ilan University, Dept. of Computer Science, 52900 Ramat-Gan, Israel
porately@cs.biu.ac.il

4 Tel-Aviv University, Dept. of computer science, Tel-Aviv, Israel and Bar-Ilan
University, Dept. of Computer Science, 52900 Ramat-Gan, Israel

rotshch@post.tau.ac.il

Abstract. We give the first non-trivial algorithms for the k-mismatch
pattern matching problem with don’t cares. Given a text t of length n
and a pattern p of length m with don’t care symbols and a bound k, our
algorithms find all the places that the pattern matches the text with at
most k mismatches. We first give an O(n(k + log n log log n) log m) time
randomised solution which finds the correct answer with high probability.
We then present a new deterministic O(nk2 log3 m) time solution that
uses tools developed for group testing and finally an approach based on
k-selectors that runs in O(nk polylog m) time but requires O(poly m)
time preprocessing. In each case, the location of the mismatches at each
alignment is also given at no extra cost.

1 Introduction

String matching, the problem of finding all the occurrences of a given pattern of
length m in a text t of length n is a classic problem in computer science and can
be solved in O(n) time [4, 16]. The problem of determining the time complexity
of exact matching with optional single character don’t care symbols has also
been well studied. Fischer and Paterson [13] presented the first solution based
on fast Fourier transforms (FFT) with an O(n log m log |Σ|) time algorithm in
19741, where Σ is the alphabet that the symbols are chosen from. Subsequently,
the major challenge has been to remove this dependency on the alphabet size.
Indyk [14] gave a randomised O(n log n) time algorithm which was followed by
a simpler and slightly faster O(n log m) time randomised solution by Kalai [15].
In 2002, the first deterministic O(n log m) time solution was given [8] which was
then further simplified in [7].
1 Throughout this paper we assume the RAM model when giving the time complexity

of the FFT. This is in order to be consistent with the large body of previous work
on pattern matching with FFTs.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 151–162, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

152 R. Clifford et al.

The key observation given by [7] but implicit in previous work is that for
numeric strings, if there are no don’t care symbols then for each location 1 ≤
i ≤ n − m + 1 we can calculate

m∑

j=1

(pj − ti+j−1)2 =
m∑

j=1

(p2
j − 2pjti+j−1 + t2i+j−1) (1)

in O(n log m) time using FFTs. Wherever there is an exact match this sum will
be exactly 0. If p and t are not numeric, then an arbitrary one-to-one mapping
can be chosen from the alphabet to the set of positive integers N. In the case of
matching with don’t cares, each don’t care symbol in p or t is replaced by a 0
and the sum is modified to be

m∑

j=1

p′jt
′
i+j−1(pj − ti+j−1)2

where p′j = 0 (t′i = 0) if pj (ti) is a don’t care symbol and 1 otherwise. This sum
equals 0 if and only if there is an exact match with don’t cares and can also be
computed in O(n log m) time using FFTs.

In many situations it is not enough to look for an exact match and some
form of approximation is required. This might be to compensate for errors in a
document, to look for similar images in a library or in the case of bioinformatics
to look for functional similarities between genes or proteins for example.

In this paper we consider the widely used Hamming distance and in particular
a bounded version of this problem which we call k-mismatch don’t cares. Given
a text t of length n and a pattern p of length m with don’t care symbols and
a bound k, our algorithms find all the places that the pattern matches the text
with at most k mismatches. If the distance is greater than k, the algorithm need
only report that fact and not give the actual Hamming distance.

2 Related Work and Previous Results

Much progress has been made in finding fast algorithms for the k-mismatch
problem without don’t cares over the last 20 years. O(n

√
m log m) time solutions

for the k-mismatch problem based on repeated applications of the FFT were
given independently by both Abrahamson and Kosaraju in 1987 [1, 17]. Their
algorithms are in fact independent of the bound k and report the Hamming
distance at every position irrespective of its value. In 1985 Landau and Vishkin
gave a beautiful O(nk) algorithm that is not FFT based which uses constant time
lowest common ancestor (LCA) operations on the suffix tree of p and t [18]. This
was subsequently improved in [3] to O(n

√
k log k) time by a method based on

filtering and FFTs again. Approximations within a multiplicative factor of (1+ε)
to the Hamming distance can also be found in O(n/ε2 log m) time [14]. A variant
of the edit-distance problem (see e.g. [19]) called the k-difference problem with
don’t cares was considered in [2].

k-Mismatch with Don’t Cares 153

To the authors’ knowledge, no non-naive algorithms have been given to date
for the k-mismatch problem with don’t cares. However, the O(n

√
m logm) divide

and conquer algorithm of Kosaraju and Abrahamson can be easily extended to
handle don’t cares in both the pattern and text with little extra work. This is
because the algorithm counts matches and not mismatches. First we count the
number of non don’t care matches at each position i in O(n

√
m log m) time.

Then we need only subtract this number from the maximum possible number of
non don’t care matches in order to count the mismatches. To do this we create a
new pattern string p′ so that p′j = 1 if pj is not a don’t care and pj = 0 otherwise.
A new text string t′ is also made in the same way. The cross-correlation of p′

and t′ now gives us the maximum number of non don’t care matches possible
at each position. This single cross-correlation calculation takes O(n log m) time.
Therefore the overall running time remains O(n

√
m logm).

3 Our Results

We present the first non-naive solutions to the k-mismatch problem with don’t
cares. This problem does not appear to be amenable to any of the recent methods
for solving the corresponding problem without don’t cares. For example, the LCA
based technique of Landau and Vishkin [18] requires the use of suffix trees to find
longest common prefix matches between strings in constant time. It is not known
how to solve this problem in even sublinear time when arbitrary numbers of don’t
cares are allowed. Similarly, it is not known how to apply filtering methods such
as those in [3] when don’t cares are permitted in both the pattern and the text.

We give two new algorithms that overcome these obstacles and provide sub-
stantial improvements to the known time complexities of the problem.

– In Section 5 we present a randomised algorithm that runs in O(n(k
+ log n log log n) log m) time and gives the correct answer with high proba-
bility. The basic technique is to repeatedly sample subpatterns of p and find
the positions of 1-mismatches in the text. In order to count the total number
of mismatches overall we are also required at each stage to find the position
and values of all the mismatches found so far. An further advantage of this
approach is that our randomised algorithm can be made Las Vegas.

– In Section 6 we give a deterministic algorithm that runs in O(nk2 log3 m)
time. The overall methodology is inspired by group testing but contains a
number of innovations. Instead of performing a full group testing procedure
we utilise the testing matrix to allow us to find 1-mismatches of selected
subpatterns of p. Combining the results of these tests enables us determin-
istically to find the locations of the mismatches and to check that there are
fewer than k.

– Finally we discuss the use of k-selectors instead of group testing and show
that a deterministic O(nk polylog m) time solution can be found but that it
requires preprocessing time polynomial in m.

154 R. Clifford et al.

4 Problem Definition and Preliminaries

Let Σ be a set of characters which we term the alphabet, and let φ be the don’t
care symbol. Let t = t1t2 . . . tn ∈ Σn be the text and p = p1p2 . . . pm ∈ Σm

the pattern. Both the pattern and text may also include φ in their alphabet
depending on the problem definition. The terms symbol and character are used
interchangeably throughout. Similarly, we will sometimes refer to a location in
a string and synonymously at other times a position.

– Define HD(i) to be the Hamming distance between p and t[i, . . . , i + m − 1]
and define the don’t care symbol to match any symbol in the alphabet.

– Define HDk(i) =
{

HD(i) if HD(i) ≤ k
⊥ otherwise

– We say that p is a k-mismatch at position i of t if HDk(i) �= ⊥.

Our algorithms make extensive use of the fast Fourier transform (FFT). An
important property of the FFT is that in the RAM model, the cross-correlation,

(t ⊗ p)[i] def=
m∑

j=1

pjti+j−1, 0 ≤ i ≤ n − m + 1,

can be calculated accurately and efficiently in O(n log n) time (see e.g. [9], Chap-
ter 32). By a standard trick of splitting the text into overlapping substrings of
length 2m, the running time can be further reduced to O(n log m). We will of-
ten assume that the text is of length 2m in the presentation of an algorithm
or analysis in this paper and that the reader is familiar with this splitting
technique.

5 Randomised k-Mismatch

We now present fast randomised algorithms that give the correct answer with
high probability (w.h.p). Due to space constaints, some proof details have been
omitted which will appear in the full version of the paper.

5.1 A Randomised Algorithm for the k-Mismatch Problem

Our randomised solution for the k-mismatch problem chooses a number of ran-
dom subpatterns of p and performs a 1-mismatch on each one. Each 1-mismatch
operation will tell us the location of a mismatch, if one occurs, at each position
in the text. We will show that after O(k log n) iterations and w.h.p. all of the
at most k mismatches at each location will have been identified and counted.
As each 1-mismatch stage takes O(n log m) time the overall running time of the
algorithm is O(nk log m log n). We will then show how to reduce the running
time further by recursively halving the number of sampling iterations.

k-Mismatch with Don’t Cares 155

1-Mismatch

The 1-mismatch problem is to determine if p matches t[i, . . . , i + m − 1] with
exactly one mismatch. Further, we identify the location of the mismatch for
each such i. The method that we employ is to modify Equation 1 to give us the
required information. The 1-mismatch algorithm is as follows:

1. Compute array A0[i] =
∑

j(pj − ti+j−1)2p′jt
′
i+j−1.

2. Compute array A1[i] =
∑

j(i + j − 1)(pj − ti+j−1)2p′jt
′
i+j−1.

3. If A0[i] �= 0 then B[i] = A1[i]/A0[i]. Otherwise let B[i] = ⊥.
4. For each i s.t. B[i] �= ⊥, check to see if (p[B[i] − i + 1] − t[B[i]])2 = A0[i]. If

this is not the case then let B[i] = ⊥.

For any i where there are no mismatches between p and t[i, . . . , i + m − 1],
both A0[i] = 0 and A1[i] = 0. If there is exactly one mismatch then B[i] is its
location in t. Step 4 checks that the value of B[i] came from no more than 1
mismatch. The following Theorem shows the overall time complexity.

Theorem 1. The 1-mismatch problem can be solved in O(n log m) time.

Proof. For a fixed location i in t, there are three cases for the 1-mismatch

algorithm.

1. HD(i) = 0 ⇒ A0[i] = 0 and B[i] is correctly set to ⊥.
2. HD(i) = 1 ⇒ There is exactly one mismatch at some position I. There-

fore A0[i] = (pI−i+1 − tI)2 and A1[i] = I(pI−i+1 − tI)2. Therefore B[i] =
A1[i]/A0[i] = I which gives the location of the mismatch in t.

3. HD(i) > 1 ⇒ (p[B[i] − i + 1] − t[B[i]])2 �= A0[i]. Therefore B[i] is correctly
set to ⊥.

The overall running time of the 1-mismatch algorithm is dominated by the time
taken to perform the FFTs and is therefore O(n log m). 	

Sampling and Matching

We show how the 1-mismatch algorithm can be repeatedly applied to random
subpatterns of p to solve the full k-mismatch problem. The 1-mismatch algo-
rithm allows us to determine if a pattern has a 1-mismatch with any position in
the text and also gives us the position of each mismatch. First a subpattern p∗

of p is selected and then used to find 1-mismatches in the text. We choose the
subpattern at random by selecting m/k locations j uniformly at random from
the pattern. The subpattern is set so that p∗j = pj for those chosen locations.
We set the characters of all other positions in p∗ to be the don’t care symbol
and ensure |p∗| = |p|. We then run the 1-mismatch algorithm using p∗ and t.
This whole “sample and match” process is repeated O(k log n) times, each time
keeping record of where any single mismatch occurs for each index i in the text.
Algorithm 1 sets out the main steps.

156 R. Clifford et al.

Input: Pattern p, text t and an integer k
Output: O[i] = HDk(p, t[i, . . . , i + m − 1])
Sample O(k log n) subpatterns;
for subpattern p∗ do

1-mismatch(p∗, t);
end
Let L[i] = total number distinct mismatches found at location i in t;
O[i] = L[i] if L[i] ≤ k, otherwise L[i] = ⊥;

Algorithm 1. Randomised k-mismatch with don’t cares

We analyse the algorithm for a single location in the text and show that
with w.h.p. the Hamming distance is correctly computed if there are no more
than k mismatches. This probabilistic bound is then sufficient to show that the
Hamming distance will be correctly computed for all locations i in t w.h.p. The
proof of the following Lemma is an application of the coupon collector’s problem
(see e.g. [12]) and is omitted for space reasons.

Lemma 1. For a single given location i in the text such that HD(i) ≤ k, HD(i)
will be correctly computed with probability at least 1−O(e−c/e) after 3k log k+ck
iterations of the sample and match stage, where c > 1.

The running time of the full algorithm follows immediately from the fact that
we need to ensure our bound holds not only for one position but for every one
in the text simultaneouly. Therefore c must be set to be O(log n) making a
total of O(k log k + k log n) iterations, each of which takes O(n log m) time. The
remaining element is how to determine if the Hamming distance is greater than
k. Notice that 1-mismatch gives us not only the location I of the error but also
the value A0[I − i + 1] = (pI−i+1 − tI)2 for each i where there is a 1-mismatch.
If we first compute C = p ⊗ t then we can “correct” this cross-correlation for
each distinct 1-mismatch found by subtracting A0[i] from C[i]. In this way, we
can check whether we have found all the mismatches at a given position in O(k)
time. If we have found up to k different mismatches at some position i and after
performing all the k corrections C[i] �= 0, then there is no k-mismatch at that
position.

Theorem 2. The k-mismatch problem with don’t cares can be solved w.h.p. in
O(nk log m log n)) time.

Proof. By Lemma 1, 3k log k+c′k log n sample and match iterations are sufficient
w.h.p. to compute HD(i) for every location i where HD(i) ≤ k. After O(k log n)
iterations we can check if there is a k-mismatch at position i by subtracting
the contributions of the mismatches from the value of (p ⊗ t)[i] and checking
if the result is zero. If after O(k log n) samples the corrected value at position
i is not zero then we know w.h.p. that HD(i) > k. Each call to 1-mismatch
takes O(n log m) time. Therefore the total running time is O(nk log m log n) as
k ≤ m ≤ n. 	

k-Mismatch with Don’t Cares 157

An O(n(k + log n log log n) log m) Time Recursive Algorithm
We discuss here how to improve the time complexity of the previous algorithm
from O(nk log m log n) to O(n(k + log n log log n) log m). The approach is recur-
sive and requires us to halve the number of mismatches we are looking for at each
turn. To simplify the explanation consider the worst case, where the number of
mismatches at a location is at least k. If the number of mismatches is less than
k then our algorithm will find the mismatches more quickly and so the bounds
given still hold.

Lemma 2 shows that we can find k/2 of the required mismatches in O(k) time.
We modify the 1-mismatch algorithm to allow us at each iteration to correct
the arrays A0 and A1 using the information from the distinct mismatches found
so far. This is performed before attempting to determine if there is a new 1-
mismatch. As before we will be given not only the location of each error but the
contributions they make to the overall cross-correlation.

Lemma 2. For a given position i in the text after ck iterations of 1-mismatch,
where c > e, the locations and values of k/2 different mismatches will be found
with probability at least 1 − e−Θ(ck).

Proof. We assume for simplicity the worst case where the number of mismatches
remaining to be found is k. The probability of finding a 1-mismatch after one it-
eration is ≥ e−1. Therefore the probability that fewer than ck/2e not necessarily
distinct mismatches are found after ck iterations ≤ e−Θ(ck). On the other hand,
given c′k not necessarily distinct mismatches, the probability that fewer than k/2
are distinct ≤ ((k/2)c′k

(
k

k/2

)
/kc′k). Therefore, assuming we have c > e and ck

iterations of 1-mismatch, the probability of finding fewer than k/2 mismatches
is at most e−Θ(ck) and the result is proved.

The recursive k-mismatch algorithm is as follows. First we fix some constant
c > 1.

1. Sample max(ck, c log(n)) subpatterns. Each has the symbols at m/k posi-
tions selected at random copied from p

2. For each subpattern p∗, compute A0 and A1 as in 1-mismatch

3. Correct A0 and A1 (resulting from step 2) using the information from the
distinct mismatches discovered so far

4. Locate up to k/2 different new mismatches at each position in the text and
their associated error locations and the contributions they make to A0 and
A1

5. Set k = k/2 and repeat from step 1

By Lemma 2 we can find k/2 different mismatches w.h.p. after having sam-
pled ck different subpatterns. Further, we can find not only the locations of
all these mismatches at each position in the text but also how much the mis-
matches contributed to the cross-correlation calculations. At the next iteration
of the algorithm we subtract all previously found contributions from the mis-
matches found so far. In this way we are able to correct the values found by

158 R. Clifford et al.

1-mismatch. However, in order to find the last remaining mismatches w.h.p. we
must perform some more work. If k < c log n we carry on doubling the sample
rate for the pattern but maintain the number of subpatterns sampled at c log n.
Combined with other minor modifications, the following theorem gives the final
time complexity of this modified recursive algorithm.

Theorem 3. The k-mismatch with don’t cares problem can be solved w.h.p in
O(n(k + log n log log n) log m) time.

Proof. Each level of the recursion where k ≥ c log n gives the correct answer
w.h.p. by Lemma 2. As there are only log k of these levels the bound also holds for
all levels simultaneously w.h.p. For the last O(log log n) steps when k < c log n,
we fix the number of subpatterns sampled to be c log n in order to ensure that
the bound holds for all O(n) positions in the text w.h.p.

6 Deterministic k-Mismatch with Don’t Cares

In this section we give an O(nk2 log3 m) time deterministic solution for the
k-mismatch with don’t cares problem. Our algorithm uses a testing matrix de-
signed for group testing and combines it with the 1-mismatch algorithm from
Section 5.1.

The group testing problem can be described as follows. Consider a set of n
items, each of which can be defective or non-defective. The task is to identify
the defective items using the minimum number of tests. Each test works on a
group of items simultaneously and returns whether that group contains at least
one defective item or not. If a defective item is present in a group then the test
result is said to be positive, otherwise it is negative.

Group testing has a long history dating back to at least 1943 [10]. In this
early work the problem of detecting syphilitic men for induction into the United
States military using the minimum number of laboratory tests was considered.
Subsequently a large literature has built up around the subject and we refer
the interested reader to [11] for a comprehensive survey of the topic. Our use of
group testing to find mismatches considers the squared L2 norm as before and
equates a positive value (i.e. (pj − ti+j−1)2 > 0 for some i and j) with a defective
item.

Some basic definitions are required first (see [11] for a full discussion of the
definitions and the context in which they are used). A 0 − 1 matrix sets out a
sequence of tests in the following way. A 1 at position (i, j) specifies that in test
i, the jth element should be included. A 0 specifies that the jth element should
be excluded from that test. To detect which items were defective after the tests
have completed we require that the result of the tests is unique as long as the
number of defective items is less than or equal to k. This condition is expressed
more formally as follows.

Definition 1. A t × n 0 − 1 matrix is k−-separable if the bitwise disjunction of
each set of at most k columns is distinct.

k-Mismatch with Don’t Cares 159

A k−-separable matrix will uniquely identify the defective items, however, in our
algorithm we require that the matrix will obey a stronger condition:

Definition 2. A t×n 0−1 matrix is k−-disjunct if no union of up to k columns
covers any other column. A vector a is said to cover b, if their bitwise disjunction
equals a (i.e. a ∨ b = a). Clearly, a k−-disjunct matrix is k−-separable.

The first stage of our algorithm will be to create a k−-disjunct matrix with
m columns and the minimum number of rows as possible. The result is a k−

disjunct matrix with m columns and O(k2 log2 m) rows (see e.g. [11]). There is
a lower bound of Ω(k2 logk m) for the number of rows (tests) in a k−-disjunct
matrix, however explicit constructions are not currently known [6].

Although it is possible to find all defective items from the result of the group
tests, in our case we would have to perform this work for all O(m) positions in
the text. Therefore we employ a different method to find the mismatches. The
following Lemma allows us to use a k−-disjunct matrix M to find 1-mismatches
of subpatterns of p.

Lemma 3. If there are at most k defective items then every defective item will
occur at least once on its own in one of the tests in the k−-disjunct matrix M .

Proof. The proof is by contradiction. Consider a defective item i. Assume that
for every test in M , i is included with some other defective item. This means
that ith column in M is covered by the union of the columns of the rest of the
defective items. There are at most k − 1 such columns which contradicts the
assumption that M is k−-disjunct. 	

The Deterministic Algorithm
We can now give a full deterministic algorithm for the k-mismatch problem
with don’t cares. We repeatedly run 1-mismatch on subpatterns of p as before.
However, this time we use the testing matrix M to only calculate the sum for
a subset of indices in the pattern. We therefore redefine A0 and A1 from 1-
mismatch as follows.

A0[i] =
∑

(pj − ti+j−1)2M�,jp
′
jt
′
i+j−1

and
A1[i] =

∑

j

(i + j − 1)(pj − ti+j−1)2M�,jp
′
jt
′
i+j−1

where p′j (t′i) equals 0 if pj (ti) is a don’t care symbol and 1 otherwise.
The above method also gives us the position of the mismatch, and we can

therefore check the mismatches in those positions in constant time per mismatch.
To finish the algorithm, we check whether all the mismatches have been found

at each position in the text. This can be done in the same way as in Section 5
by “correcting” the cross-correlation calculations. First, we compute the sum:

D[i] =
∑

(pj − ti+j−1)2p′jt
′
i+j−1

160 R. Clifford et al.

Input: Pattern p, text t and an integer k
Output: O[i] = HDk(p, t[i, . . . , i + m − 1])
M ← O(k2 log2 m) × m, k−-disjunct matrix;
for 1 ≤ � ≤ rows(M) do

S� ←1−mismatch(M�, t);
end
L[i] ← number of distinct 1-mismatches at position i in t;
Check at each position i in t that all mismatches were found;
O[i] = L[i], if all mismatches found, otherwise L[i] = ⊥;

Algorithm 2. Deterministic k-mismatch with don’t cares

Then in turn we subtract from D[i] the contributions for every 1-mismatch found.
This leaves us with 0 if and only if all the mismatches were found. Otherwise, we
know that there were more than k mismatches can report that fact. The time for
this stage is again O(m log m + mk) and so does not affect the overall running
time.

Theorem 4. The k-mismatch with don’t cares problem can be solved in
O(nk2 log3 m) time.

Proof. Algorithm 2 sets out the main steps of the algorithm. The k−-disjunct
matrix can be constructed in O(mk2 log2 m) time. For each �, the 1-mismatch
calculation to compute S� takes O(m log m) time. Up to k distinct 1-mismatches
can be found and counted in O(mk) further time. Finally, we can check and
correct all mismatches found in O(m log m + mk) time. The total running time
is therefore O(nk2 log3 m) as required. 	

Further Deterministic Speedups
k-selectors are generalizations of group testing which can also be used to solve our
problem in a similar way. With little change k-selectors could be used to replace
the k−-disjunct matrices for example. This is of interest as the lower bound for
the number of tests for a selector is Ω(k logk m) whereas it is Ω(k2 logk m) for
group testing [6]. Using selectors instead of k−-disjunct matrices might save us
a factor of k in the running time. Unfortunately, there are no known efficient
algorithms for building selectors of size smaller then O(k polylog m), and those
algorithms take O(poly m) time [5]. So while we save a factor of k, we lose a
factor of polylog m, and poly m preprocess time. We finish with the following
two remarks:

Remark 1. The k-mismatch with don’t cares problem can be solved using
k-selectors instead of k− disjunct matrices with the cost of an O(log m) fac-
tor in the algorithm. The extra O(log m) factor is due to the fact that one scan
for mismatches is no longer sufficient.

Remark 2. As the best construction of k-selectors is of size O(k polylogm) and
takes O(poly m) time to construct, the new algorithm will then run in

k-Mismatch with Don’t Cares 161

O(nk polylog m) time but with O(poly m) preprocessing time. However, more
efficient constructions of selectors will translate into more efficient algorithms
for the k-mismatch problem.

7 Conclusion

We have presented the first non-trivial algorithms for the k-mismatch with don’t
cares problem. We conjecture that the gap between their deterministic and
randomised complexities can be closed. A further interesting open question is
whether an Õ(n

√
k) algorithm can be found to match the fastest known solution

for the problem without don’t care symbols.

References

[1] Abrahamson, K.: Generalized string matching. SIAM journal on Computing 16(6),
1039–1051 (1987)

[2] Akutsu, T.: Approximate string matching with don’t care characters. Information
Procesing Letters 55, 235–239 (1995)

[3] Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with
k mismatches. J. Algorithms 50(2), 257–275 (2004)

[4] Boyer, R.S., Moore, J.S.: A fast string matching algorithm. Communications of
the ACM 20, 762–772 (1977)

[5] Chlebus, B.S., Kowalski, D.R.: Almost optimal explicit selectors. In: Lískiewicz,
M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, Springer, Heidelberg (2005)

[6] Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: Proceedings of the twelfth an-
nual ACM-SIAM symposium on Discrete algorithms (SODA ’01), pp. 709–718.
ACM Press, New York (2001)

[7] Clifford, P., Clifford, R.: Simple deterministic wildcard matching. Information
Processing Letters 101(2), 53–54 (2007)

[8] Cole, R., Hariharan, R.: Verifying candidate matches in sparse and wildcard
matching. In: Proceedings of the Annual ACM Symposium on Theory of Com-
puting, pp. 592–601. ACM Press, New York (2002)

[9] Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1990)

[10] Dorfman, R.: The detection of defective members of large populations. The Annals
of Mathematical Statistics 14(4), 436–440 (1943)

[11] Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and its Applications, 2nd
edn. Series on Applied Mathematics, vol. 12. World Scientific, Singapore (2000)

[12] Feller, W.: An introduction to probability theory and its applications, vol. 1.
Wiley, Chichester (1968)

[13] Fischer, M., Paterson, M.: String matching and other products. In: Karp, R.
(ed.) Proceedings of the 7th SIAM-AMS Complexity of Computation, pp. 113–
125 (1974)

[14] Indyk, P.: Faster algorithms for string matching problems: Matching the convo-
lution bound. In: Proceedings of the 38th Annual Symposium on Foundations of
Computer Science, pp. 166–173 (1998)

162 R. Clifford et al.

[15] Kalai, A.: Efficient pattern-matching with don’t cares. In: Proceedings of the 13th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 655–656, Philadel-
phia, PA, USA, Society for Industrial and Applied Mathematics (2002)

[16] Knuth, D.E., Morris, J.H., Pratt, V.B.: Fast pattern matching in strings. SIAM
Journal of Computing 6, 323–350 (1977)

[17] Kosaraju, S.R.: Efficient string matching. Manuscript (1987)
[18] Landau, G.M., Vishkin, U.: Efficient string matching with k mismatches. Theo-

retical Computer Science 43, 239–249 (1986)
[19] Landau, G.M., Vishkin, U.: Efficient string matching in the presence of errors.

In: Proc. 26th IEEE FOCS, pp. 126–126. IEEE Computer Society Press, Los
Alamitos (1985)

Finding Branch-Decompositions and

Rank-Decompositions

Petr Hliněný1,� and Sang-il Oum2,��

1 Faculty of Informatics, Masaryk University,
Botanická 68a, 602 00 Brno, Czech Republic

hlineny@fi.muni.cz
2 Department of Combinatorics and Optimization,

University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
sangil@math.uwaterloo.ca

Abstract. We present a new algorithm that can output the rank-
decomposition of width at most k of a graph if such exists. For that
we use an algorithm that, for an input matroid represented over a fixed
finite field, outputs its branch-decomposition of width at most k if such
exists. This algorithm works also for partitioned matroids. Both these
algorithms are fixed-parameter tractable, that is, they run in time O(n3)
for each fixed value of k where n is the number of vertices / elements
of the input. (The previous best algorithm for construction of a branch-
decomposition or a rank-decomposition of optimal width due to Oum
and Seymour [Testing branch-width. J. Combin. Theory Ser. B, 97(3)
(2007) 385–393] is not fixed-parameter tractable).

Keywords: Rank-width, clique-width, branch-width, fixed parameter
tractable algorithm, graph, matroid.

1 Introduction

Many graph problems are known to be NP -hard in general. But for practical
application we still need to solve them. One method to solve them is to restrict
the input graph to have a certain structure. Clique-width, defined by Courcelle
and Olariu [4], is very useful for that purpose. Many hard graph problems (in
particular all those expressible in MSO logic of adjacency graphs) are solvable
in polynomial time as long as the input graph has bounded clique-width and is
given in the form of the decomposition for clique-width, called a k-expression
[3,24,6,14,10]. A k-expression is an algebraic expression with the following four
operations on vertex-labeled graph with k labels: create a new vertex with label
i; take the disjoint union of two labeled graphs; add all edges between vertices of
label i and label j; and relabel all vertices with label i to have label j. However,
for fixed k > 3, it is not known how to find a k-expression of an input graph
having clique-width at most k. (If k ≤ 3, then it has been shown in [2,1]).

� Supported by research intent MSM0021622419 of the Czech Ministry of Education.
�� Partially supported by NSF grant 0354742.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 163–174, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

164 P. Hliněný and S. Oum

Rank-width is another graph complexity measure introduced by Oum and
Seymour [19], aiming at construction of an f(k)-expression of the input graph
having clique-width k for some fixed function f in polynomial time. Rank-width
is defined (Section 6) as the branch-width (see Section 2) of the cut-rank function
of graphs. Rank-width turns out to be very useful for algorithms on graphs of
bounded clique-width, since a class of graphs has bounded rank-width if and only
if it has bounded clique-width. In fact, if rank-width of a graph is k, then its
clique-width lies between k and 2k+1−1 [19] and an expression can be constructed
from a rank-decomposition of width k.

In this paper, we are mainly interested in the following problem:

• Find a fixed-parameter tractable algorithm that outputs a rank-decompo-
sition of width at most k if the rank-width of an input graph (with more
than one vertex) is at most k.

The first rank-width algorithm by Oum and Seymour [19] only finds a rank-
decomposition of width at most 3k+1 for n-vertex graphs of rank-width at most
k in time O(n9 log n). This algorithm has been improved by Oum [18] to output a
rank-decomposition of width at most 3k in time O(n3). Using this approximation
algorithm and finiteness of excluded vertex-minors [17], Courcelle and Oum [5]
have constructed an O(n3)-time algorithm to decide whether a graph has rank-
width at most k. However, this is only a decision algorithm; if the rank-width is
at most k, then this algorithm verifies that the input graph contains none of the
excluded graphs for rank-width at most k as a vertex-minor. It does not output
a rank-decomposition showing that the graph indeed has rank-width at most k.

In another paper, Oum and Seymour [20] have constructed a polynomial-time
algorithm that can output a rank-decomposition of width at most k for graphs of
rank-width at most k. However, it is not fixed-parameter tractable; its running
time is O(n8k+12 log n). Obviously, it is very desirable to have a fixed-parameter
tractable algorithm to output such an “optimal” rank-decomposition, because
most algorithms on graphs of bounded clique-width require a k-expression on
their input. So far probably the only known efficient way of constructing an
expression with bounded number of labels for a given graph of bounded clique-
width uses rank-decompositions.

In this paper, we present an affirmative answer to the above problem. An
amusing aspect of our solution is that we deeply use submodular functions and
matroids to solve the rank-decomposition problem, which shows (somehow un-
expectedly) a “truly geometrical” nature of this graph-theoretical problem. In
fact we solve the following related problem on matroids, too.

• Find a fixed-parameter tractable algorithm that, given a matroid represented
by a matrix over a fixed finite field, outputs a branch-decomposition of width
at most k if the branch-width of the input matroid is at most k.

Here we actually bring together two separate lines of research; Oum and Sey-
mour’s above sketched work on rank-width and on branch-width of submodular
functions, with Hliněný’s work [12,13] on parametrized algorithms for matroids
over finite fields, to give the final solution of our first problem — Theorem 6.3.

Finding Branch-Decompositions and Rank-Decompositions 165

We lastly remark that the following (indeed widely expected) hardness result
has been given only recently by Fellows, Rosamond, Rotics, and Szeider [7]; it
is NP -hard to find graph clique-width. To argue that it is NP -hard to find
rank-width, we combine some known results: Hicks and McMurray Jr. [11] (in-
dependently Mazoit and Thomassé [15]) recently proved that the branch-width
of the cycle matroid of a graph is equal to the branch-width of the graph if it
is 2-connected. Hence we can reduce (Section 6) the problem of finding branch-
width of a graph to finding rank-width of a certain bipartite graph, and finding
graph branch-width is NP -hard as shown by Seymour and Thomas [23].

Our paper is structured as follows: The next section briefly introduces def-
initions of branch-width, partitions, matroids and the amalgam operation on
matroids. After that (Section 3) we explain the notion of so-called titanic par-
titions, which we further use to “model” partitioned matroids in ordinary ma-
troids. (At this point it is worth to note that partitioned matroids present the
key tool that allows us to shift from a branch-width-testing algorithm [12] to a
construction of an “optimal” branch-decomposition, see Theorem 4.4, and of a
rank-decomposition.) In Section 4, we will discuss a simple but slow algorithm
for matroid branch-decompositions. In Section 5, we will present a faster algo-
rithm. As the main application we then use our result to give an algorithm for
constructing a rank-decomposition of optimal width of a graph in Section 6.

2 Definitions

Branch-Width. Let Z be the set of integers. For a finite set V , a function
f : 2V → Z is called symmetric if f(X) = f(V \ X) for all X ⊆ V , and is called
submodular if f(X)+ f(Y) ≥ f(X ∩Y) + f(X ∪Y) for all subsets X, Y of V . A
tree is subcubic if all vertices have degree 1 or 3. For a symmetric submodular
function f : 2V → Z on a finite set V , the branch-width is defined as follows.

A branch-decomposition of the symmetric submodular function f is a pair
(T, μ) of a subcubic tree T and a bijective function μ : V → {t : t is a leaf of T}.
(If |V | ≤ 1 then f admits no branch-decomposition.) For an edge e of T , the
connected components of T \ e induce a partition (X, Y) of the set of leaves
of T . (In such a case, we say that μ−1(X) (or μ−1(Y)) is displayed by e in
the branch-decomposition (T, μ). We also say that V and ∅ are displayed by
the branch-decomposition.) The width of an edge e of a branch-decomposition
(T, μ) is f(μ−1(X)). The width of (T, μ) is the maximum width of all edges of
T . The branch-width of f , denoted by bw(f), is the minimum of the width of all
branch-decompositions of f . (If |V | ≤ 1, we define bw(f) = f(∅).)

A natural application of this definition is the branch-width of a graph, as
introduced by Robertson and Seymour [22] along with better known tree-width,
and its direct matroidal counterpart below in this section. We also refer to further
formal definition of rank-width in Section 6.

Partitions. A partition P of V is a collection of nonempty pairwise disjoint
subsets of V whose union is equal to V . Each element of P is called a part. For

166 P. Hliněný and S. Oum

a symmetric submodular function f on 2V and a partition P of V , let fP be a
function on 2P (also symmetric and submodular) such that fP(X) = f(∪Y ∈XY).
The width of a partition P is f(P) = max{f(Y) : Y ∈ P}.

Matroids. We refer to Oxley [21] in our matroid terminology. A matroid is a
pair M = (E, B) where E = E(M) is the ground set of M (elements of M),
and B ⊆ 2E is a nonempty collection of bases of M , no two of which are in an
inclusion. Moreover, matroid bases satisfy the “exchange axiom”: if B1, B2 ∈ B

and x ∈ B1 \ B2, then there is y ∈ B2 \ B1 such that (B1 \ {x}) ∪ {y} ∈ B. A
typical example of a matroid is given by a set of vectors (forming the columns
of a matrix A) with usual linear independence. The matrix A is then called a
representation of the matroid.

All matroid bases have the same cardinality called the rank r(M) of the
matroid. Subsets of bases are called independent sets, and the remaining sets are
dependent. A matroid M is uniform if all subsets of E(M) of size r(M) are the
bases, and M is free if E(M) is a basis. The rank function rM (X) in M is the
maximum cardinality of an independent subset of a set X ⊆ E(M). The dual
matroid M∗ is defined on the same ground set with the bases as set-complements
of the bases of M . For a subset X of E, the deletion M \ X of X from M or
the restriction M � (E \ X) of M to E \ X , is the matroid on E \ X in which
Y ⊆ E \ X is independent in M \ X if and only if Y is an independent set of
M . The contraction M/X of X in M is the matroid (M∗ \X)∗. Matroids of the
form M/X \ Y are called minors of M .

To define the branch-width of a matroid, we consider its (symmetric and sub-
modular) connectivity function λM (X) = rM (X) + rM (E \ X) − rM (E) + 1
defined for all subsets X ⊆ E = E(M). A “geometric” meaning is that the
subspaces spanned by X and E \ X intersect in a subspace of rank λM (X) − 1.
Branch-width bw(M) and branch-decompositions of a matroid M are defined as
the branch-width and branch-decompositions of λM . A pair (M, P) is called a
partitioned matroid if M is a matroid and P is a partition of E(M). A connec-
tivity function of a partitioned matroid (M, P) is defined as λPM . Branch-width
bw(M, P) and branch-decompositions of a partitioned matroid (M, P) are de-
fined as branch-width, branch-decompositions of λPM .

Amalgams of Matroids. Let M1, M2 be matroids on E1, E2 respectively and
T = E1∩E2. Moreover let us assume that M1 � T = M2 � T . If M is a matroid on

⊕ →

Fig. 1. A “geometrical” illustration of an amalgam of two matroids, in which hollow
points are the shared elements T

Finding Branch-Decompositions and Rank-Decompositions 167

E1 ∪E2 such that M � E1 = M1 and M � E2 = M2, then M is called an amalgam
of M1 and M2 (see Fig. 1). It is known that an amalgam of two matroids need
not exist (and need not be unique). However, in a special case we shall use here
(see also Proposition 4.2), its existence easily follows from [21, (12.4.2)];

Lemma 2.1. If M1 � T is free, then an amalgam of M1 and M2 exists.

3 Titanic Partitions and Gadgets

Let V be a finite set and f be a symmetric submodular function on 2V . A subset
X of V is called titanic with respect to f if whenever A1, A2, A3 are pairwise
disjoint subsets of X such that A1 ∪A2 ∪A3 = X , there is i ∈ {1, 2, 3} such that
f(Ai) ≥ f(X). A partition P of V is called titanic with respect to f if every
part of P is titanic with respect to f . The following lemma is equivalent to a
lemma by Geelen, Gerards, and Whittle [9, 4.4], which generalizes a result of
Robertson and Seymour [22, (8.3)].

Lemma 3.1. Let V be a finite set and f be a symmetric submodular function
on 2V of branch-width at most k. If P is a titanic partition of width at most k
with respect to f , then the branch-width of fP is at most k.

The purpose of this section is to show how a partitioned matroid may be “mod-
eled” by an ordinary matroid having the same branch-width. We aim to trans-
form a partitioned matroid (M, P) to another partitioned matroid (M#, P#),
such that they have the same branch-width and P# is a titanic partition with
respect to λM# .

We may assume each part T of P satisfies λM (T) = |T |+1 if |T | > 1, because
otherwise we can contract or delete elements in T while preserving bw(M, P).
This means that M � T is a free matroid. For each part T of (M, P), if |T | > 1,
then we define a matroid UT as a rank-|T | uniform matroid on the ground set
ET = E(UT) such that |ET | = 3|T | − 2, E(M) ∩ ET = T , and ET ∩ ET ′ = ∅ if
T ′ �= T is a part of P and |T ′| > 1. Since M � T = UT � T is a free matroid, an
amalgam of M and UT exists by Lemma 2.1. The following theorem is based on
a lemma stating that set E(UT) is always titanic in this amalgam.

Theorem 3.2. Let (M0, P0) be a partitioned matroid and let T1, T2, . . . , Tm be
the parts of P0 having at least two elements. Assume that λM0 (Ti) = |Ti| + 1
for every i ∈ {1, 2, . . . , m}. For all i = 1, 2, . . . , m, let Mi be an amalgam of
Mi−1 and UTi . Then the branch-width of Mm is equal to the branch-width of the
partitioned matroid (M0, P0).

We call resulting M# = Mm the normalized matroid of (M0, P0).

4 Branch-Decompositions of Represented Partitioned
Matroids

We now specialize the above ideas to the case of representable matroids. We
aim to provide an efficient algorithm for testing small branch-width on such

168 P. Hliněný and S. Oum

matroids. For the rest of our paper, a represented matroid is the vector matroid
of a (given) matrix over a fixed finite field. We also write �-represented matroid
to explicitly refer to the field �. In other words, an �-represented matroid is a
set of points (a point configuration) in a (finite) projective geometry over �.

Not all matroids are representable over �. Particularly, in the construction
of the normalized matroid (Theorem 3.2) we apply amalgams with (uniform)
matroids which need not be �-representable. To achieve their representability,
we extend the field � to an extension field �′ = �(α) with |�|d elements in the
standard algebraic way with a polynomial root α of degree d.

Lemma 4.1. The n-element rank-r uniform matroid Ur,n is representable over
any (finite) field � such that |�| ≥ n − 1.

Proposition 4.2 (cf. Lemma 2.1). Let M1, M2 be two matroids such that
E(M1) ∩ E(M2) = T and M1 � T = M2 � T . If both M1, M2 are �-represented,
and the matroid M1 � T is free, then there exists an amalgam of M1 and M2

which is also �-represented.

Let k be a fixed integer. We outline a simple new fixed-parameter-tractable
algorithm for testing branch-width ≤ k on �-represented partitioned matroids:

– First we extend � to a (nearest) field �′ such that |�′| ≥ 3k − 6.
– If, for a given partitioned matroid (M, P), the width of P is more than k,

then the immediate answer is NO.
– Otherwise, we construct the normalized matroid M# (Theorem 3.2),

together with its vector representation over �
′ (Lemma 4.1 and

Proposition 4.2).
– Finally, we use the algorithm of Hliněný [12] to test the branch-width ≤ k

of M#.

Theorem 4.3. Let k > 1 be fixed and � be a finite field. For a partitioned
matroid (M, P) represented over �, one can test in time O(|E(M)|3) (with
fixed k,�) whether the branch-width of (M, P) is at most k.

Now that we are able to test branch-width of partitioned matroids, we show how
this result can be extended to finding an appropriate branch-decomposition.

Theorem 4.4. Let K be a class of matroids and let k be an integer. If there is
an f(|E(M)|, k)-time algorithm to decide whether a partitioned matroid (M, P)
has branch-width at most k for every pair of a matroid M ∈ K and a partition
P of E(M), then a branch-decomposition of the partitioned matroid (M, P) of
width at most k, if it exists, can be found in time O

(|P|3 · f(|E(M)|, k)
)
.

The idea of the proof is due to Jim Geelen, published by Oum and Seymour in
[20]. We briefly outline the algorithm since it is a base for our improved algorithm
in the next section.

Finding Branch-Decompositions and Rank-Decompositions 169

– If |P| ≤ 2, then it is trivial to output a branch-decomposition.
– We find a pair X, Y of disjoint parts of P such that a partitioned matroid

(M, (P \ {X, Y }) ∪ {X ∪ Y }) has branch-width at most k. Let P ′ = (P \
{X, Y }) ∪ {X ∪ Y }.

– Let (T ′, μ′) be the branch-decomposition of (M, P ′) of width at most k
obtained by calling this algorithm recursively.

– Let T be a tree obtained from T ′ by splitting the leaf μ′(X∪Y) into two leaves
which we denote by μ(X) and μ(Y). Let μ(Z) = μ′(Z) for all Z ∈ P\{X, Y }.
We output (T, μ) as a branch-decomposition of (M, P) of width at most k.

Corollary 4.5. For fixed k and finite field �, we can find a branch-decomposit-
ion of a given �-represented matroid M of branch-width at most k, if it exists,
in time O(|E(M)|6).
Remark 4.6. One can actually improve the bound in Theorem 4.4 to O

(|P|2 ·
f(|E(M)|, k)

)
time. The basic idea is the following: At the first level of recursion

we find not only one pair of parts, but a maximal set of disjoint pairs of parts
from P that can be joined (pairwise) while keeping the branch-width at most k.
This again requires O(|P|2) calls to the decision algorithm. At the deeper levels
of recursion we then use the same approach but process only such pairs of parts
that contain one joined at the previous level. The details of this approach can
be found further in Theorem 5.2.

5 Faster Algorithm for Branch-Decompositions

Even with Remark 4.6 in account, the approach of Section 4 results in an O(n5)
(at best) parametrized algorithm for constructing a branch-decomposition of
an n-element matroid represented over a finite field. That is still far from the
running time O(n3) (note fixed k and �) of the decision algorithm in [12]. Al-
though not straightforwardly, we are able to improve the running time of our
constructive algorithm to asymptotically match O(n3) of [12] and [5].

It is the purpose of this section to present a detailed analysis of such a faster
implementation of the algorithmic idea of Theorem 4.4 in new Algorithm 5.1.
For that we have to dive into fine details of the algorithms in [12], and recall few
necessary technical definitions here.

Briefly speaking, a parse tree [13] of an �-represented matroid M is a rooted
tree T , with at most two children per node, such that: The leaves of T hold
non-loop elements of M represented by points of a projective geometry over �
(or loops of M represented by the empty set). The internal nodes of T , on the
other hand, hold composition operators over �. A composition operator � is a
configuration in the projective geometry over � such that � has three subspaces
(possibly empty) distinguished as its boundaries ; two of which are used to “glue”
the matroid elements represented in the left and right subtrees, respectively,
together. The third one, upper boundary, is then used to “glue” this node further
up in the parse tree T . (Our “glue” operation, precisely the boundary sum by
[13], is analogous to the amalgam of matroids in Proposition 4.2.) The ranks

170 P. Hliněný and S. Oum

of adjacent boundaries of two composition operators in T must be equal for
“gluing”. A parse tree T is ≤t-boundaried if all composition operators in T
have boundaries of rank at most t. (Such a parse tree actually gives a branch-
decomposition of width at most t + 1 and vice versa, by [13, Theorem 3.8]).

Algorithm 5.1. Computing a branch-decomposition of a represented parti-
tioned matroid:

Parameters: A finite field �, and a positive integer k.
Input: A rank-r matrix A ∈ �

r×n and a partition P of the columns of A.
(Assume n ≥ 2.)

Output: For the vector matroid M = M(A) on the columns of A, either a
branch-decomposition of the partitioned matroid (M, P) of width at most
k, or the answer NO if bw(M, P) > k.

1. Using brute force, we extend the field � to a (nearest) finite field �′ such that
|�′| ≥ 3k − 6.

2. We check whether bw(M, P) ≤ k (Theorem 4.3, in cubic time). If not, then we an-
swer NO. Otherwise we keep the normalized matroid M# and its �′-representation
A# obtained at this step. We denote by P1 the (titanic) partition of E(M#) cor-
responding to P , and by τ (T) ∈ P for T ∈ P1 the corresponding parts.

3. We compute a ≤3(k − 1)-boundaried parse tree T for the matroid M# which is
�

′-represented by A# (regardless of P1). This is done by [12, Algorithm 4.1] in
cubic time.

4. We initially set T1 := T , Q1 := ∅, Q2 :=
{
{T1, T2} : T1 �= T2, T1, T2 ∈ P1

}
, and

create a new rooted forest D consisting so far of the set of disconnected nodes P1.
Then we repeat the following steps (a),(b), until P1 contains at most two parts:
(a) While there is {T1, T2} ∈ Q2 such that T1, T2 ∈ P1, we do:

i. Let Q2 := Q2 \
{
{T1, T2}

}
. Calling [12, Algorithm 4.9] in linear time,

we compute connectivity � = λM1(T1 ∪ T2) over the parse tree T1 which
now represents a matroid M1. If � > k, then we continue this cycle again
from (a).

ii. We call Algorithm 5.3 on T1 and W = T1 ∪T2 to compute a ≤(3k + �−2)-
boundaried parse tree T2. The matroid M2 of T2 is actually a represented
amalgam (Proposition 4.2) of our titanic gadget — a uniform matroid
UW � U�−1,3�−5, with the matroid M1 (formally replacing W with an
(� − 1)-element free sub-matroid of UW).

iii. We can immediately check whether branch-width bw(M2) ≤ k by applying
[12, Corollary 5.4] on T2, that is by linear-time testing of the (finitely many
by [8]) excluded minors for branch-width at most k. If bw(M2) > k, then
we continue this cycle again from (a).

iv. So (Lemma 3.1) we have bw
(
M1, P1∪{W}\{T1, T2}

)
= bw(M2) ≤ k, and

we add a new node E(UW) adjacent to T1 and T2 in our constructed decom-
position D and make the new node the root for its connected component.
We update P1 := P2 = P1∪{E(UW)}\{T1 , T2}, and Q1 := Q1∪{E(UW)}.

v. Lastly, by calling [12, Algorithm 4.1.3] on T2, we compute in quadratic
time a new ≤3(k − 1)-boundaried parse tree T3 for the matroid M2, and
set T1 := T3.

(b) When the “while” cycle (4.a) is finished, we set Q2 :=
{
{T1, T2} : T1 �= T2,

T1 ∈ P1, T2 ∈ Q1
}

and Q1 := ∅, and continue from (4.a).

Finding Branch-Decompositions and Rank-Decompositions 171

5. Finally, if |P1| = 2, then we connect by an edge in D the two nodes T1, T2 ∈ P1.
We output (D, τ) as the branch-decomposition of (M, P).

Theorem 5.2. Let k be a fixed integer and � be a fixed finite field. We assume
that a vector matroid M = M(A) is given as an input together with a partition P
of E(M), where n = |E(M)| and |P| ≥ 2. Algorithm 5.1 outputs in time O(n3)
(parametrized by k and �), a branch-decomposition of the partitioned matroid
(M, P) of width at most k, or confirms that bw(M, P) > k.

Note that Algorithm 5.1 implements the general outline of Theorem 4.4. Our
proof of this theorem constitutes the following four claims holding true if
bw(M, P) ≤ k.

(I) The computation of Algorithm 5.1 maintains invariants, with respect to
the actual matroid M2 of T2, the decomposition D and current value P2

of the partition variable P1 after each call to step (4.a.iv), that
– P2 is the set of roots of D, and a titanic partition of M2 such that

bw(M2, P2) = bw(M2) ≤ k,
– λM

(
τD(S)

)
= λP2

M2
(S) for each S ⊆ P2, where τD(S) is a shortcut

for the union of τ(T) with T running over all leaves of the connected
components of D whose root is in S (see Algorithm 5.1 step 2. for τ).

(II) Each iteration of the main cycle in Algorithm 5.1 (4.) succeeds to step
(4.a.iv) at least once.

(III) The main cycle in Algorithm 5.1 (4.) is repeated O(n) times. Moreover,
the total number of calls to the steps in (4.a) is: O(n2) for steps i,ii,iii,
and O(n) for steps iv,v.

(IV) Further defined Algorithm 5.3 (cf. step (4.a.ii)) computes correctly in
time O(n).

Having all these facts at hand, it is now easy to finish the proof. It is immedi-
ate from (I) that resulting (D, τ) is a branch-decomposition of width at most k of
(M, P). Note that all parse trees involved in the algorithm have constant width
less than 4k (see in steps (4.a.ii,v)). The starting steps (1.),(2.),(3.) of the algo-
rithm are already known to run in time O(n3) (Hliněný [12] and Theorem 4.3),
and the particular steps in (4.a) need time O(n2) · O(n) + O(n) · O(n2) = O(n3)
by (III) and (IV).

We are left with (IV), an immediate extension of [12, Algorithm 4.9] comput-
ing λM1 (W).

Algorithm 5.3. Computing an amalgam with a uniform matroid on the parse
tree.

Input: A ≤(3k − 1)-boundaried parse tree T1 of a matroid M1, and a set W ⊆
E(M1) such that λM1 (W) = � ≤ k.

Output: A ≤(3k + �−2)-boundaried parse tree T2 representing a matroid M2 on
the ground set E(M2) = E1∪E2 where E1 = E(M1)\W and E2∩E(M1) = ∅;
such that M2 � E1 = M1 � E1, M2 � E2 = UW U�−1,3�−5, and the set
E2 = E(UW) is spanned both by E1 and by W in the (combined) point
configuration M1 ∪ M2.

172 P. Hliněný and S. Oum

6 Finding a Rank-Decomposition of a Graph

In this last section, we present a fixed-parameter-tractable algorithm to find a
rank-decomposition of width at most k or confirm that the input graph has rank-
width larger than k. It is a direct translation of the algorithm of Theorem 5.2.
Let us first review necessary definitions. We assume that all graphs in this section
have no loops and no parallel edges.

We have seen in Section 2 that every symmetric submodular function can be
used to define branch-width. We define a symmetric submodular function on a
graph, called the cut-rank function of a graph. For an X × Y matrix R and
A ⊆ X , B ⊆ Y , let R[A, B] be the A × B submatrix of R. For a graph G, let
A(G) be the adjacency matrix of G, that is a V × V matrix over the binary
field GF(2) such that an entry is 1 if and only if vertices corresponding to the
column and the row are adjacent in G. The cut-rank function ρG(X) of a graph
G = (V, E) is defined as the rank of the matrix A(G)[X, V \ X] for each subset
X of V . Then ρG is symmetric and submodular, see [19]. Rank-decomposition
and rank-width and of a graph G is branch-decomposition and branch-width of
the cut-rank function ρG of the graph G, respectively. So if the graph has at
least two vertices, then the rank-width is at most k if and only if there is a
rank-decomposition of width at most k.

Now let us recall why bipartite graphs are essentially binary matroids. Oum
[17] showed that the connectivity function of a binary matroid is exactly one more
than the cut-rank function of its fundamental graph. The fundamental graph of
a binary matroid M on E = E(M) with respect to a basis B is a bipartite graph
on E such that two vertices in E are adjacent if and only if one vertex v is in B,
another vertex w is not in B, and (B \ {v}) ∪ {w} is independent in M . Given
a bipartite graph G, we can easily construct a binary matroid having G as a
fundamental graph; if (C, D) is a bipartition of V (G), then take the matrix

⎛

⎜⎝
1 0 A(G)[C, D]

. . . C × D submatrix of

0 1 the adjacency matrix

⎞

⎟⎠

as the representation of a binary matroid. (Thus the column indices are ele-
ments of the binary matroid and a set of columns is independent in the ma-
troid if and only if its vectors are linearly independent.) After all, finding the
rank-decomposition of a bipartite graph is equivalent to finding the branch-
decomposition of the associated binary matroid, that is essentially Theorem 5.2.

To find a rank-decomposition of non-bipartite graphs, we transform the graph
into a canonical bipartite graph. For a finite set V , let V ∗ be a disjoint copy of
V , that is, formally speaking, V ∗ = {v∗ : v ∈ V } such that v∗ �= w for all w ∈ V
and v∗ �= w∗ for all w ∈ V \{v}. For a subset X of V , let X∗ = {v∗ : v ∈ X}. For
a graph G = (V, E), let bip(G) be the bipartite graph on V ∪ V ∗ such that vw∗

are adjacent in bip(G) if and only if v and w are adjacent in G. Let Pv = {v, v∗}
for each v ∈ V . Then Π(G) = {Pv : v ∈ V } is a canonical partition of V (bip(G)).

Finding Branch-Decompositions and Rank-Decompositions 173

V

V ∗

Fig. 2. Graph G and the associated bipartite graph bip(G) with its canonical partition

Lemma 6.1. For every subset X of V (G), 2ρG(X) = ρbip(G)(X ∪ X∗).

Corollary 6.2. Let p : V (G) → Π(G) be the bijective function such that p(x) =
Px. If (T, μ) is a branch-decomposition of ρ

Π(G)
bip(G) of width k, then (T, μ ◦ p) is

a branch-decomposition of ρG of width k/2. Conversely, if (T, μ′) is a branch-
decomposition of ρG of width k, then (T, μ′ ◦ p−1) is a branch-decomposition of
ρ

Π(G)
bip(G) of width 2k. Therefore the branch-width of ρG is equal to the half of the

branch-width of ρ
Π(G)
bip(G).

Let M = mat(G) be the binary matroid on V ∪ V ∗ represented by the matrix:

(V V ∗

V
Identity
matrix A(G)

)
.

Since the bipartite graph bip(G) is a fundamental graph of M , we have λM (X) =
ρbip(G)(X)+1 for all X ⊆ V ∪V ∗ (see Oum [17]) and therefore (T, μ) is a branch-
decomposition of a partitioned matroid (M, Π(G)) of width k + 1 if and only if
it is a branch-decomposition of ρ

Π(G)
bip(G) of width k. Corollary 6.2 implies that a

branch-decomposition of ρ
Π(G)
bip(G) of width k is equivalent to that of ρG of width

k/2. So we can deduce the following theorem from Theorem 5.2.

Theorem 6.3. Let k be a constant. Let n ≥ 2. For an n-vertex graph G, we can
output the rank-decomposition of width at most k or confirm that the rank-width
of G is larger than k in time O(n3).

Acknowledgments. The authors are very grateful to Jim Geelen for his com-
ments on the possible approach to the problem. We would also like to thank the
anonymous referees for helpful comments.

References

1. Corneil, D.G., Habib, M., Lanlignel, J.M., Reed, B., Rotics, U.: Polynomial time
recognition of clique-width ≤ 3 graphs (extended abstract). In: Gonnet, G.H., et al.
(eds.) LATIN 2000. LNCS, vol. 1776, pp. 126–134. Springer, Heidelberg (2000)

174 P. Hliněný and S. Oum

2. Corneil, D.G., Perl, Y., Stewart, L.K: A linear recognition algorithm for cographs.
SIAM J. Comput. 14(4), 926–934 (1985)

3. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

4. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101(1-3), 77–114 (2000)

5. Courcelle, B., Oum, S.: Vertex-minors, monadic second-order logic, and a conjec-
ture by Seese. J. Combin. Theory Ser. B 97(1), 91–126 (2007)

6. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on
clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B.
(eds.) WG 2001. LNCS, vol. 2204, Springer, Heidelberg (2001)

7. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width minimization
is NP-hard. In: Proceedings of the 38th annual ACM Symposium on Theory of
Computing, pp. 354–362. ACM Press, New York, USA (2006)

8. Geelen, J.F., Gerards, A.M.H., Robertson, N., Whittle, G.: On the excluded minors
for the matroids of branch-width k. J. Combin. Theory Ser. B 88(2), 261–265 (2003)

9. Geelen, J.F., Gerards, A.M.H., Whittle, G.: Tangles, tree-decompositions, and grids
in matroids. Research Report 04-5, School of Mathematical and Computing Sci-
ences, Victoria University of Wellington (2004)

10. Gerber, M.U., Kobler, D.: Algorithms for vertex-partitioning problems on graphs
with fixed clique-width. Theoret. Comput. Sci. 299(1-3), 719–734 (2003)

11. Hicks, I.V., McMurray, Jr., N.B.: The branchwidth of graphs and their cycle ma-
troids. J. Combin. Theory Ser. B, 97(5), 681–692, (2007)

12. Hliněný, P.: A parametrized algorithm for matroid branch-width (loose erratum
(electronic)). SIAM J. Comput. 35(2), 259–277 (2005)

13. Hliněný, P.: Branch-width, parse trees, and monadic second-order logic for ma-
troids. J. Combin. Theory Ser. B 96(3), 325–351 (2006)

14. Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Appl. Math. 126(2-3), 197–221 (2003)

15. Mazoit, F., Thomassé, S.: Branchwidth of graphic matroids. Manuscript (2005)
16. Oum, S.: Approximating rank-width and clique-width quickly. In: Kratsch, D. (ed.)

WG 2005. LNCS, vol. 3787, pp. 49–58. Springer, Heidelberg (2005)
17. Oum, S.: Rank-width and vertex-minors. J. Combin. Theory Ser. B 95(1), 79–100

(2005)
18. Oum, S.: Approximating rank-width and clique-width quickly. Submitted, an ex-

tended abstract appeared in [16] (2006)
19. Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combin.

Theory Ser. B 96(4), 514–528 (2006)
20. Oum, S., Seymour, P.: Testing branch-width. J. Combin. Theory Ser. B 97(3),

385–393 (2007)
21. Oxley, J.G.: Matroid theory. Oxford University Press, New York (1992)
22. Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-decomposition.

J. Combin. Theory Ser. B 52(2), 153–190 (1991)
23. Seymour, P., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),

217–241 (1994)
24. Wanke, E.: k-NLC graphs and polynomial algorithms. Discrete Appl. Math. 54(2-

3), 251–266 (1994)

Fast Algorithms for Maximum Subset Matching

and All-Pairs Shortest Paths in Graphs with a
(Not So) Small Vertex Cover

Noga Alon1 and Raphael Yuster2

1 School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
nogaa@post.tau.ac.il

2 Department of Mathematics, University of Haifa, Haifa, Israel
raphy@math.haifa.ac.il

Abstract. In the Maximum Subset Matching problem, which general-
izes the maximum matching problem, we are given a graph G = (V, E)
and S ⊂ V . The goal is to determine the maximum number of vertices
of S that can be matched in a matching of G. Our first result is a new
randomized algorithm for the Maximum Subset Matching problem that
improves upon the fastest known algorithms for this problem. Our algo-
rithm runs in Õ(ms(ω−1)/2) time if m ≥ s(ω+1)/2 and in Õ(sω) time if
m ≤ s(ω+1)/2, where ω < 2.376 is the matrix multiplication exponent, m
is the number of edges from S to V \ S, and s = |S|. The algorithm is
based, in part, on a method for computing the rank of sparse rectangular
integer matrices.

Our second result is a new algorithm for the All-Pairs Shortest Paths
(APSP) problem. Given an undirected graph with n vertices, and with
integer weights from {1, . . . , W } assigned to its edges, we present an
algorithm that solves the APSP problem in Õ(Wnω(1,1,μ)) time where
nμ = vc(G) is the vertex cover number of G and ω(1, 1, μ) is the time
needed to compute the Boolean product of an n×n matrix with an n×nμ

matrix. Already for the unweighted case this improves upon the previous
O(n2+μ) and Õ(nω) time algorithms for this problem. In particular, if a
graph has a vertex cover of size O(n0.29) then APSP in unweighted graphs
can be solved in asymptotically optimal Õ(n2) time, and otherwise it can
be solved in O(n1.844vc(G)0.533) time.

The common feature of both results is their use of algorithms devel-
oped in recent years for fast (sparse) rectangular matrix multiplication.

1 Introduction

A matching in a graph is a set of pairwise disjoint edges. A maximum matching is
a matching of largest possible size. The problem of finding a maximum matching
is fundamental in both practical and theoretical computer science.

The first polynomial time algorithm for finding a maximum matching in a
general graph was obtained by Edmonds [6]. The currently fastest deterministic
algorithms for this problem run in O(mn1/2) time (see [13,2,19,7]), where m and

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 175–186, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

176 N. Alon and R. Yuster

n are the number of edges and vertices, respectively, in the input graph. For dense
graphs, better randomized algorithms are known. Lovász [12] showed that the
cardinality of a maximum matching can be determined, with high probability,
by computing the rank of a matrix. In particular, checking whether a graph
has a perfect matching amounts to checking whether a determinant of a certain
matrix, whose construction involves randomization, is nonzero. This randomized
algorithm can be implemented to run in O(nω) time, where ω is the exponent
of fast matrix multiplication. Coppersmith and Winograd [5] showed that ω <
2.376. Recently, Mucha and Sankowski [14] solved a long standing open problem
and showed that a maximum matching can be found, with high probability, in
O(nω) time.

Our first main result in this paper concerns a natural generalization of the
maximum matching problem. For a graph G = (V, E) and a subset of vertices
S ⊂ V , let f(S) denote the maximum possible number of vertices in S that can
be matched in a matching of G. Notice that if S = V then f(S) is simply the size
of a maximum matching of G. In general, however, not every maximum matching
of G saturates the maximum possible number of vertices of S (e.g. consider a
triangle where S consists of two vertices) and, conversely, not every matching
that saturates f(S) vertices of S can be extended to a maximum matching (e.g.
consider a path of length 3 where S consists of the two internal vertices). Thus,
the MAXIMUM SUBSET MATCHING problem is a true generalization of the
maximum matching problem.

Maximum Subset Matching also has natural applications. Consider a graph
modeling a social network, the vertices being the members of the network and
the edges being the symmetric social relations. There are two types of members:
privileged members (e.g. registered customers) and non-privileged members. Our
goal is to socially match the maximum number of privileged members.

We present an efficient randomized algorithm for computing f(S). The run-
ning time of our algorithm is expressed in terms of s = |S| and the number of
edges connecting S to V \ S, denoted by m. There could be as many as Θ(s2)
edges inside S, and hence the graph may have as many as Θ(m + s2) edges
(clearly we may assume that V \S is an independent set). As usual in matching
algorithms, we assume that the graph has no isolated vertices.

Theorem 1. Let G = (V, E) be a graph and let S ⊂ V , where |S| = s and
there are m edges from S to V \ S. Then, there is a randomized algorithm that
computes f(S) w.h.p. in time

Õ

({
ms

ω−1
2 if m ≥ s

ω+1
2 ,

sω if m ≤ s
ω+1

2

)
.

To evaluate the running time obtained in Theorem 1 we compare our algorithm
to known existing matching algorithms. First notice that for the current best
upper bound of ω, which is less than 2.376, we have that if m ≥ s1.688 the
algorithm runs in O(ms0.688) time, and if m ≤ s1.688 the algorithm runs in
O(s2.376) time. Notice that the running time is not expressed as a function of

Fast Algorithms for Maximum Subset Matching 177

|V | = n and that n may be as large as s+m. Maximum Subset Matching can be
solved via maximum weighted matching algorithms as follows. Assign to every
vertex with both endpoints in S weight 2, and edges from S to V \ S weight 1.
Then, clearly, a maximum weighted matching has weight f(S). The algorithm of
Gabow and Tarjan [7] is currently the fastest algorithm for maximum weighted
matching in general graphs. In our setting, it runs in Õ(

√
n(m + s2)) time (here

m + s2 is our upper bound on the total number of edges), which is worse than
the running time of the algorithm of Theorem 1 for a wide range of parameters
(in fact, if ω = 2 + o(1) as conjectured by many researchers, then it is never
better, for any valid combination of the parameters s, m, n). It is not known
how to apply Lovás’z randomized maximum cardinality matching algorithm to
the weighted case. Even if it were possible, the obtained running time would
only be Õ(nω).

We now turn to our second main result. In the All-Pairs Shortest Paths
(APSP) problem, which is one of the most fundamental algorithmic graph prob-
lems, we are given a graph G = (V, E) with V = {1, . . . , n}, and our goal is to
compute the distance matrix of G. This is an n×n matrix D where D(i, j) is the
length of a shortest path from i to j, for all i, j = 1, . . . , n. We also require a con-
cise n×n data structure so that given a pair i, j, a shortest path from i to j can
be constructed in time which is proportional to the number of edges it contains.
In the most fundamental case, the graph is undirected and unweighted; this is
the main case we address in this paper (more generally, we allow the weights to
be positive integers). The currently fastest algorithms for the APSP problem are
either the simple obvious O(nm) algorithm (here m = |E|) consisting of breadth
first search from each vertex, or, as m gets larger, a randomized algorithm of
Seidel [16] that solves the problem in Õ(nω) time. This algorithm also has a
deterministic version [8,1]. Shoshan and Zwick [17] proved that if the graph has
positive weights from {1, . . . , W} then APSP can be solved, deterministically, in
Õ(Wnω) time.

Is there a natural graph parameter for which there exists an algorithm whose
running time is expressed in terms of it and which always performs at least as
well as the Õ(nω) algorithm, and is generally faster? Our main result shows that
there is one.

Let vc(G) be the vertex cover number of G, that is the smallest possible
cardinality of a subset S ⊂ V so that V \ S is an independent set. The fact that
vc(G) is NP -Hard to compute is well known and its decision version is one of the
canonical examples for NP-Completeness. It is also well known, and trivial, that
vc(G) can be approximated to within a factor of two, in linear time (simply take
all the vertices in a maximal matching with respect to containment). Our main
result shows that if G is an undirected graph with n vertices and vc(G) = nμ

then the APSP problem can be solved in time Õ(Wnω(1,1,μ)), where each weight
is taken from {1, . . . , W}. Here ω(1, 1, μ) is the rectangular matrix multiplication
exponent. Namely, it is the number of algebraic operations needed to multiply an
n×n matrix with an n×nμ matrix over an arbitrary ring (hence, ω = ω(1, 1, 1)).

178 N. Alon and R. Yuster

Theorem 2. There is an APSP algorithm that, given an undirected n-vertex
graph G with weights from {1, . . . , W} and vc(G) = nμ, runs in Õ(Wnω(1,1,μ))
time. In particular, if W is constant and vc(G) ≤ n0.294 then the algorithm runs
in asymptotically optimal Õ(n2) time and, if vc(G) > n0.294 then the algorithm
runs in O(n1.844vc(G)0.533) time.

In our proof of Theorem 2 we construct the distance matrix in the guaranteed
running time. It is also possible to obtain a concise data structure representing
the paths, by using witnesses for (rectangular) matrix multiplication, as shown in
[1]; the details of this latter construction, which is quite standard, will appear in
the full version of this paper. In Section 2 we list the known results for ω(1, 1, μ).
In particular, Coppersmith [4] proved that ω(1, 1, μ) = 2 + o(1) for μ < 0.294,
and that, assuming ω = ω(1, 1, 1) > 2, then ω(1, 1, μ) < ω(1, 1, 1) for all μ < 1
(see Lemma 2 in the next section). Thus, at present, our algorithm is faster
than the O(nω) algorithm for all unweighted graphs having a vertex cover of
size n1−ε. We also note that the proof of Theorem 2 does not assume that
we can compute vc(G) precisely. As mentioned earlier, there is a Θ(m + n)
2-approximation algorithm for vc(G), which suffices for our purposes.

The rest of this paper is organized as follows. As both of our main results, al-
though having completely different proofs, rely on fast rectangular matrix multi-
plication, we present in Section 2 the facts we need about fast rectangular matrix
multiplication algorithms. In Section 3 we address our first main result on the
maximum subset matching problem and prove Theorem 1. The APSP problem
in undirected graphs is addressed in Section 4 where Theorem 2 is proved. The
final section contains some concluding remarks and open problems.

2 Fast (Sparse) Rectangular Matrix Multiplication

We start this section by presenting some parameters related to fast rectangular
matrix multiplication. Our assumption is that the input matrices are given to us
in sparse representation, that is as a collection of triplets (row, column, value)
listing all positions where the matrix is non-zero. Thus, the size of the repre-
sentation of an input matrix is linear in the number of non-zero entries of the
matrix.

Let M(a, b, c) be the minimal number of algebraic operations needed to mul-
tiply an a × b matrix by a b × c matrix over an arbitrary ring R. Let ω(r, s, t)
be the minimal exponent for which M(nr, ns, nt) = O(nω(r,s,t)). Recall that
ω = ω(1, 1, 1) < 2.376 [5]. The best bounds available on ω(1, μ, 1), for 0 ≤ μ ≤ 1
are summarized in the following results. Before stating them we need to define
two more constants, α and β, related to rectangular matrix multiplication.

Definition 1. α = max{0 ≤ μ ≤ 1 | ω(1, μ, 1) = 2 + o(1)}, β =
ω − 2
1 − α

.

Lemma 1 (Coppersmith [4]). α > 0.294 .

It is not difficult to see that Lemma 1 implies the following theorem. A proof
can be found, for example, in Huang and Pan [10].

Fast Algorithms for Maximum Subset Matching 179

Lemma 2

ω(1, μ, 1) = ω(1, 1, μ) = ω(μ, 1, 1) ≤
{

2 + o(1) if 0 ≤ μ ≤ α,
2 + β(μ − α) + o(1) otherwise.

Notice that Coppersmith’s result implies that if A is an n×n0.294 matrix and B is
an n0.294×n matrix then AB can be computed in O(n2+o(1)) time (assuming ring
operations take constant time), which is essentially optimal since the product
is an n × n matrix that may contain no zero elements at all. Note that with
ω = 2.376 and α = 0.294 we get β � 0.533. If ω = 2 + o(1), as conjectured by
many, then α = 1. (In this case β is not defined, but also not needed).

We now present results for fast sparse matrix multiplication. The running
times of these algorithms are expressed in terms of α, β, and ω.

Lemma 3 (Yuster and Zwick [21]). The product of two n × n matrices over
a ring R, each with at most m non-zero elements, can be computed in time

O(min{ m
2β

β+1 n
2−αβ
β+1 + n2+o(1) , nω }).

Note that for ω = 2.376, α = 0.294, and β = 0.533, the algorithm runs in
O(min{m0.7n1.2 + n2+o(1) , n2.376}) time (in fact, by “time” we assume that
each algebraic operation in the ring takes constant time; if not, then the running
time should be multiplied by the time needed for an algebraic operation).

It is possible to extend the method of [21] to rectangular matrices. This was
explicitly done in [11]. To simplify the runtime expressions, we only state the
case where A and BT (where A and B are the two matrices being multiplied)
have the same dimensions, as this case suffices for our purposes.

Lemma 4 (Kaplan, Sharir, and Verbin [11]). Let A be an n×r matrix and
let B be an r×n matrix, over a ring R, each with at most m non-zero elements.
Then AB can be computed in time

O

⎛

⎜⎝

⎧
⎪⎨

⎪⎩

mn
ω−1

2 if m ≥ n
ω+1

2 ,

m
2β

β+1 n
2−αβ
β+1 if n1+ α

2 ≤ m ≤ n
ω+1

2 ,

n2+o(1) if m ≤ n1+ α
2

⎞

⎟⎠ .

Notice that the value of r in the statement of Theorem 4 is irrelevant since our
sparse representation (and the fact that a common all-zero column of A and BT

can be discarded without affecting the product) implies that r = O(m).
Finally, a word about Boolean matrix multiplication. Although not properly a

ring, all of the results in this section also apply to Boolean matrix multiplication.
This is easy to see; simply perform the operations over Zn+1. A non-zero value
is interpreted as 1. As each algebraic operation in Zn costs only Θ(log n) time
it is not surprising that some researchers actually define ω as the exponent of
Boolean matrix multiplication.

180 N. Alon and R. Yuster

3 Maximum Subset Matching

Let G = (V, E) be an undirected graph with V = {1, . . . , n}. With each edge
e ∈ E we associate a variable xe. Define the skew adjacency matrix (also known
as the Tutte matrix) At(G) = (aij) by

aij =

⎧
⎨

⎩

+xe, if e = ij, i < j and (i, j) ∈ E;
−xe, if e = ij, i > j and (i, j) ∈ E;
0, otherwise.

Tutte [18] showed that At(G) is non-singular if and only if G has a perfect
matching. This was generalized later by Lovász [12] who proved that:

Lemma 5. The size of a maximum matching in G is 1
2rank(At(G)).

This fact, together with some additional non-trivial ideas, leads to an O(nω) time
randomized algorithm for deciding whether a graph has a perfect matching, and,
much later, to O(nω) time randomized algorithms that actually find a maximum
matching [14,9].

Our first lemma is a generalization of Lemma 5. For a graph G = (V, E) and
a subset S ⊂ V , let At(S, G) denote the sub-matrix of At(G) obtained by taking
only the rows corresponding to vertices of S. Thus, At(S, G) is an s × n matrix
where s = |S| and n = |V |. Recalling the definition of f(S) from the introduction
we prove:

Lemma 6
f(S) = rank(At(S, G)).

Proof. We first prove that f(S) ≤ rank(At(S, G)). Consider the case where
s−f(S) is even (the odd case is proved analogously). We may assume that n−s
is even since otherwise, we can alway add an additional isolated vertex to V \ S
without affecting the rank of At(S, G) nor the value f(S). We add edges to G so
that V \ S induces a complete graph, and denote the new graph by G′. Clearly,
the cardinality of the maximum matching of G′ is (n − s + f(S))/2. Thus, by
Lemma 5, rank(At(G′)) = n − s + f(S). In particular, we must have that

rank(At(S, G′)) ≥ rank(At(G′)) − (n − s) = f(S).

But At(S, G′) and At(S, G) are the same matrix, hence rank(At(S, G)) ≥ f(S).
We next prove that f(S) ≥ rank(At(S, G)). Suppose that rank(At(S, G)) = r.

We have to show that at least r vertices of S can be saturated by a matching.
As the rank is r there is an r × r sub-matrix of At(S, G)), call it B, which is
nonsingular. Let the rows of B correspond to S′ (notice that S′ ⊂ S), and the
columns to U , which is some set of vertices, possibly intersecting S′. It suffices
to show that there is a matching covering the vertices in S′. In the expansion of
the determinant of B we get r! products (with signs). Each product corresponds
to an oriented subgraph of G obtained by orienting, for each xij in the product,
the edge from i (the row) to j (the column). This gives a subgraph in which

Fast Algorithms for Maximum Subset Matching 181

the out-degree of every vertex of S′ is 1 and the indegree of every vertex of
U is 1. Thus any connected component is either a directed path, all of whose
vertices are in S′ besides the last one which is in U \ S′, or a cycle, all of whose
vertices are in S′. The crucial point now is that if there is an odd cycle in this
subgraph, then the contribution of this term to the determinant is zero, as we
can orient the cycle backwards and get the same term with an opposite sign (we
do it only for the lexicographically first such cycle in the subgraph, to make sure
this is well defined; this will pair the terms that cancel). As the determinant is
nonzero, there is at least one such subgraph in which all components are either
paths or even cycles, and hence there is a matching saturating all vertices in S′,
as needed. �	
Our algorithm computes f(S) by computing rank(At(S, G)) with high proba-
bility which, by Lemma 6, amounts to the same thing. Computing the rank of a
symbolic matrix (such as At(S, G)) directly is costly. Each algebraic operation
is performed in a ring of multivariate polynomials of high degree, and cannot,
therefore, be performed in constant (or, close to constant) time. By using a result
of Zippel [23] and Schwartz [15], Lovász [12] proved the following.

Lemma 7. If G is a graph with n vertices and we replace each variable of At(G)
with a random integer from {1, . . . , R} then the rank of the resulting matrix equals
rank(At(G)) with probability at least 1 − n/R. Similarly, if B is any given sub-
matrix of At(G) then the rank of the resulting sub-matrix equals the rank of B,
with probability at least 1 − n/R.

For a complex matrix A, let A∗ denote, as usual, the Hermitian transpose of A
(some researchers also denote it by AH). If A is a real matrix then A∗ = AT .
We need to recall the following simple fact from linear algebra.

Fact 8. Let A be a complex matrix, then A∗A and A have the same kernel.

Indeed, suppose A∗Ax = 0, then, using the Hermitian product, < Ax, Ax > =
< A∗Ax, x >= 0, whence Ax = 0. Notice that the assertion may fail for general
fields, as can be seen, for instance, by the p × p matrix over Fp, all of whose
entries are equal to 1.

We need the following result of Hopcroft and Bunch [3] which asserts that
Gaussian Elimination of a matrix requires asymptotically the same number of
algebraic operations needed for matrix multiplication. Notice that a by-product
of Gaussian elimination is the matrix rank.

Lemma 9. Let A be an n × n matrix over an arbitrary field. Then rank(A)
can be computed using O(nω) algebraic operations. In particular, if each field
operation requires Θ(K) time then rank(A) can be computed in O(Knω) time.

An important proposition which is obtained by combining Lemma 9, Lemma 4,
Fact 8, and one additional idea, is the following:

Theorem 3. Let A be an s×n matrix having at most m non-zero integer entries
located in an s × (n − s) sub-matrix (the other s2 entries may be all non-zero),

182 N. Alon and R. Yuster

and suppose that the largest absolute value of an entry is R. Then, rank(A) can
be computed, w.h.p., in time

Õ

({
(log R)ms

ω−1
2 if m ≥ s

ω+1
2 ,

(log R)sω if m ≤ s
ω+1

2

)
.

Proof: Let A2 be the s × (n − s) sub-matrix containing at most m non-zero
entries, and let A1 be the remaining s × s sub-matrix. Clearly,

B = AAT = A1A
T
1 + A2A

T
2 .

We first compute A1A
T
1 using O(sω) algebraic operations and in O((log R)sω)

time, as each algebraic operation requires O(log R) time. We compute A2A
T
2

using Lemma 4. This can be done in the time stated in Lemma 4, multiplied
by log R. We have therefore computed B. Notice that B is an s × s matrix,
and each entry in B has absolute value at most nR2. Furthermore, by Fact 8,
rank(B) = rank(A). Now, suppose rank(B) = t. Thus, B has a t× t sub-matrix
B′ whose rank is t, and hence det(B′)
= 0. On the other hand, by Hadamard
Inequality |det(B′)| ≤ (tn2R4)t/2 < (nR)2n. Since an integer x has O(log x)
prime divisors, choosing a random prime p = O((nR)2) guarantees that, w.h.p.,
det(B′)
= 0 also in Fp, and, in particular, rank(B) = t also in Fp. We compute
rank(B) using Lemma 9, using O(sω) algebraic operations, where each algebraic
operation in Fp requires O(log n + log r) time. Thus, in time Õ((log R)sω). The
overall running time of the algorithm is

Õ

⎛

⎜⎝

⎧
⎪⎨

⎪⎩

(log R)(sω + ms
ω−1

2) if m ≥ s
ω+1

2 ,

(log R)(sω + m
2β

β+1 s
2−αβ
β+1) if s1+ α

2 ≤ m ≤ s
ω+1

2 ,

(log R)(sω + s2+o(1)) if m ≤ s1+ α
2

⎞

⎟⎠

= Õ

({
(log R)ms

ω−1
2 if m ≥ s

ω+1
2 ,

(log R)sω if m ≤ s
ω+1

2

)
. �	

Completing the Proof of Theorem 1: We are given a graph G = (V, E) and
a subset S ⊂ V , where |S| = s and there are m edges between S and V \S. Our
goal is to compute f(S).

We construct the Tutte sub-matrix At(S, G) and replace each variable with
an integer from {1, . . . , n2}, uniformly at random. Denote the obtained inte-
ger matrix by A. By Lemma 7, with probability at least 1 − 1/n, rank(A) =
rank(At(S, G)). Thus, we need to compute rank(A). Notice, however, that A is
an s × n integer matrix with at most m non-zero entries in an s × (n − s) sub-
matrix. Furthermore, the absolute value of each entry of A is at most R = n2.
Thus, by Theorem 3 we can compute rank(A) in the stated running time. �	

It is important to notice that computing rank(A) directly in Theorem 1, without
computing AAT , is costly. The fastest algorithms for computing the rank of an
s × n matrix directly require the use of Gaussian elimination, and can be per-
formed using O(nsω−1) algebraic operations [3]. Gaussian elimination, however,

Fast Algorithms for Maximum Subset Matching 183

cannot make use of the fact that the matrix is sparse (namely, in our terms, make
use of m as a parameter to its running time). This can be attributed to the neg-
ative result of Yannakakis [20] who proved that controlling the number of fill-ins
(entries that were originally zero and become non-zero during the elimination
process) is an NP-Hard problem.

4 All Pairs Shortest Paths in Graphs with an s-Vertex
Cover

In this section we prove Theorem 2. Suppose G = (V, E) is an undirected graph
and S ⊂ V is a vertex cover of G. The weight of each edge is an integer from
{1, . . . , W}. We denote S = {1, . . . , s} and T = V \ S = {s + 1, . . . , n}. Our goal
is to obtain the distance matrix D = Dn×n whose rows and columns are indexed
by V , where D(x, y) is the length of a shortest path connecting x and y.

For an nα × nβ matrix A and an nβ × nγ matrix B, both with entries in
{0, . . . , K} ∪ {∞}, we define the distance product C = A � B to be C(i, j) =
Minnβ

k=1A(i, k) + B(k, j). Yuval [22] observed that C can be computed in time
O(Knω(α,β,γ)). The idea of his proof is to replace each entry z with (nβ + 1)z

(and infinity with 0), compute the usual product C′ of the resulting matrices A′

and B′ , and deduce C(i, j) by considering C′(i, j) as a number written in base
nβ + 1. In fact, this argument can be stated more generally as follows:

Lemma 10. For an nα × nβ matrix A and an nβ × nγ matrix B, both with
entries in {0, . . . , K} ∪ {∞}, let c(i, j, q) denote the number of distinct indices k
for which A(i, k)+B(k, j) = q, Then, all the numbers c(i, j, q) for i = 1, . . . , nα,
j = 1, . . . , nγ and q = 0, . . . , 2K can be computed in Õ(Knω(α, β, γ)) time.

Denote by A the adjacency matrix of G where the rows are indexed by S and
the columns by V . Thus, A is an s × n matrix and A(i, j) = w(i, j) if ij ∈ E,
A(i, i) = 0, and otherwise A(i, j) = ∞, for i = 1, . . . , s and j = 1, . . . , n. We first
compute the distance product B = A � AT . This can be done in Õ(Wnω(μ,1,μ))
time where s = nμ, using Lemma 10. We consider B as the adjacency matrix
of a weighted undirected graph G′ whose vertex set is S. Notice that the weight
of each edge of G′ is between 1 and 2W . The weight w′(i, j) corresponds to a
shortest path connecting i with j in G, among all paths with at most two edges.

We solve the APSP problem in G′. This can be done in Õ(Wsω) time using
the algorithm of Shoshan and Zwick [17]. Denote the output distance matrix
by D′. Clearly, D′(i, j) = D(i, j) for i = 1, . . . , s and j = 1, . . . , s. Indeed, in a
shortest path from i to j in G we can short-circuit any two consecutive edges
(i1, i2, i3) where i2 ∈ T with the direct edge (i1, i3) which is an edge of G′,
without increasing the length of the path.

We now remain with the problem of computing D(i, j) where at least one
of i or j is in T . By symmetry we shall assume that i < j. Consider first the
case i ∈ S and j ∈ T . In the beginning of the algorithm we can choose (in linear
time), for each j ∈ T , an arbitrary neighbor f(j) ∈ S. We have already computed

184 N. Alon and R. Yuster

D(i, f(j)); hence suppose that D(i, f(j)) = �. As our graph is undirected we
have that if � = ∞ then also D(i, j) = ∞. Otherwise, for each neighbor v of j,

|D(i, v) − �| ≤ 2W.

Let xh denote the number of neighbors v of j with D(i, v)+w(v, j) = �−2W +h,
for h = 1, . . . , 5W . Clearly, if we can determine all the xh then, if h′ is the smallest
index for which xh′ > 0 then D(i, j) = � − 2W + h.

We propose two methods for computing the xh’s. The first method is suitable
(in our setting) when W is constant, but is presented here since it is also appli-
cable in situations where the set of possible distances is not consecutive and not
necessarily constant, thus we believe it may find other applications. Let D(k) be
the matrix obtained from D′ by replacing each entry z with zk. We shall demon-
strate the method in case W = 1 (the unweighted case). The generalization is
not difficult. Consider the regular integer products Ck = AT D(k) for k = 0, . . . , 4
(for the sake of accuracy, we replace infinities with zeros when performing the
integer product). Thus, C0(j, i) is just the number of neighbors of j that can
reach i. Namely, C0(j, i) = x1 + x2 + x3 + x4 + x5. Similarly, Ck(j, i) is just the
sum of the distances from each of these neighbors to i, each distance taken to
the k’th power. Namely,

Ck(j, i) = (� − 2)kx1 + (� − 1)kx2 + �kx3 + (� + 1)kx4 + (� + 2)kx5.

Considering the x1, x2, x3, x4, x5 as unknown variables, we have a system of five
linear equations whose coefficient matrix is just the 5 × 5 Vandermonde matrix
with generators � − 2, � − 1, �, � + 1, � + 2. It is well known that this system has
a unique solution (all of our generators are distinct, and even consecutive). This
Vandermonde method becomes more inefficient if W is not constant, but each
linear system can be solved in O(W 2) time.

The second method uses truncated distance matrices. Let D̂′ be the matrix
obtained from D′ by replacing each entry z with z mod 5W . We apply Lemma
10 to the product AT � D̂′, and obtain, in particular, the values c(i, j, q) for
q = 0, . . . , 6W − 1. Notice that each finite entry in A is between 0 and W
and each finite entry in D̂′ is between 0 and 5W − 1. We claim that we can
determine the xh from these values. Indeed, each contribution to c(i, j, q) is due
to a neighbor v so that (D(i, v) mod 5W) + w(v, j) = q. But this determines
D(i, v) + w(v, j), and hence a corresponding xh, uniquely, since we know that
all the possible D(i, v) are between � − 2W and � + 2W , thus, in a 4W interval,
and we know that 1 ≤ w(v, j) ≤ W , which is another interval of length W .

We have thus shown how to compute all of the distances D(i, j) for i ∈ S
and j ∈ T precisely. In particular, we have determined the first s rows of D in
Õ(Wnω(1,μ,μ)) time. Denote these first s rows of D by D′′. To determine the
distances D(i, j) where i ∈ T and j ∈ T , we simply repeat the above procedure
using the truncated distance matrix D̂′′ (instead of D̂′) and applying Lemma 10
to the product AT � D̂′′. The running time now is Õ(Wnω(1,μ,1)).

We have shown how to correctly compute the final distance matrix D. What
remains is to determine the running time of the algorithm. As noted in the

Fast Algorithms for Maximum Subset Matching 185

introduction, if vc(G) = nμ then finding a vertex cover S with s ≤ 2nμ vertices
can be easily done in O(n2) time. Overall, the algorithm consists of three distance
products (three applications of Lemma 10), and one application of the algorithm
of Shoshan and Zwick. The most time consuming operation is Õ(Wnω(1,μ,1)),
and hence the result follows. �	

5 Concluding Remarks

We presented two new algorithms for two fundamental problems in algorithmic
combinatorics. Both of these algorithms are based on rectangular matrix mul-
tiplication, but each is combined with different tools from combinatorics and
linear algebra. It is plausible that for Maximum Subset Matching this is not the
end of the road. The possibility of a faster algorithm remains (whether using fast
matrix multiplication or not). This, however, is not the case for our APSP result.
Namely, no algorithm that is expressed in terms of n and vc(G) can outperform
the algorithm of Theorem 2. Assuming vc(G) = s, no algorithm can perform
faster than the time needed to multiply two Boolean matrices of orders n × s
and s × n.

To see this, consider the following simple reduction. Let A be an n×s Boolean
matrix and let B be an s×n Boolean matrix. Create a graph with 2n+s vertices,
consisting of sets X = {x1, . . . , xn}, Y = {y1, . . . , ys}, Z = {z1, . . . , zn}. There
is an edge from xi ∈ X to yj ∈ Y if an only if A(i, j) = 1. Similarly, there is an
edge from yi ∈ Y to zj ∈ Z if an only if B(i, j) = 1. Notice that Y is a vertex
cover of the created graph. Clearly, the shortest path from xi to zj has length 2
if and only if in the product C = AB we have C(i, j) = 1.

Another interesting remark, pointed out by one of the referees of this paper,
is that Theorem 3 can be extended to finite fields. To do so note, first that by
the Cauchy Binet formula, if A has full row-rank, call it r, and D is a random
diagonal matrix with independent variables in its diagonal, then the determinant
of ADAT is a nonzero polynomial of degree r in these variables. This implies that
in general for D as above, the rank of ADAT is equal to that of A. If the field is
large enough (much larger than the rank), then by the results of Zippel [23] and
Schwartz [15] this implies that substituting random elements of the field for the
diagonal entries of D would give, with high probability, a matrix with the same
rank as that of A. Otherwise, we can substitute random elements in a sufficiently
large extension field, noting that this involves only an extra logarithmic factor
in the complexity.

References

1. Alon, N., Naor, M.: Derandomization, witnesses for Boolean matrix multiplication
and construction of perfect hash functions. Algorithmica 16, 434–449 (1996)

2. Blum, N.: A New Approach to Maximum Matching in General Graphs. In: Pa-
terson, M.S. (ed.) Automata, Languages and Programming. LNCS, vol. 443, pp.
586–597. Springer, Heidelberg (1990)

186 N. Alon and R. Yuster

3. Bunch, J., Hopcroft, J.: Triangular factorization and inversion by fast matrix mul-
tiplication. Mathematics of Computation 28, 231–236 (1974)

4. Coppersmith, D.: Rectangular matrix multiplication revisited. Journal of Com-
plexity 13, 42–49 (1997)

5. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation 9, 251–280 (1990)

6. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449–
467 (1965)

7. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general graph matching
problems. Journal of the ACM 38(4), 815–853 (1991)

8. Galil, Z., Margalit, O.: All Pairs Shortest Paths for graphs with small integer length
edges. Journal of Computer and System Sciences 54, 243–254 (1997)

9. Harvey, N.: Algebraic Structures and Algorithms for Matching and Matroid Prob-
lems. Proceedings of the 47th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), Berkeley, CA (October 2006)

10. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplications and applications.
Journal of Complexity 14, 257–299 (1998)

11. Kaplan, H., Sharir, M., Verbin, E.: Colored intersection searching via sparse rect-
angular matrix multiplication. In: Proceedings of the 22nd ACM Symposium on
Computational Geometry (SOCG), pp. 52–60 (2006)

12. Lovász, L.: On determinants, matchings, and random algorithms. In: Fundamentals
of computation theory, vol. 2, pp. 565–574. Akademie, Berlin (1979)

13. Micali, S., Vazirani, V.V.: An O(
√

|V |·|E|) algorithm for finding maximum match-
ing in general graphs. In: Proceedings of the 21st IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 17–27, 1980.

14. Mucha, M., Sankowski, P.: Maximum Matchings via Gaussian Elimination. In:
Proceedings of the 45th IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 248–255. IEEE Computer Society Press, Los Alamitos (2004)

15. Schwartz, J.T.: Fast Probabilistic Algorithms for Verification of Polynomial Iden-
tities. Journal of the ACM 27(4), 701–717 (1980)

16. Seidel, R.: On the All-Pairs-Shortest-Path Problem in Unweighted Undirected
Graphs. Journal of Computer and System Sciences 51(3), 400–403 (1995)

17. Shoshan, A., Zwick, U.: All pairs shortest paths in undirected graphs with inte-
ger weights. In: Proceedings of the 40th Symposium of Foundations of Computer
Science (FOCS), pp. 605–614 (1999)

18. Tutte, W.T.: The factorization of linear graphs. Journal of the London Mathemat-
ical Society 22, 107–111 (1947)

19. Vazirani, V.V.: A theory of alternating paths and blossoms for proving correctness
of the O(

√
V E) general graph maximum matching algorithm. Combinatorica 14(1),

71–109 (1994)
20. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM Journal on

Algebraic and Discrete Methods 2(1), 77–79 (1981)
21. Yuster, R., Zwick, U.: Fast sparse matrix multiplication. ACM Transactions on

Algorithms 1, 2–13 (2005)
22. Yuval, G.: An algorithm for finding all shortest paths using N2.81 infinite-precision

multiplications. Information Processing Letters 4, 155–156 (1976)
23. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.)

Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Hei-
delberg (1979)

Linear-Time Ranking of Permutations

Martin Mareš� and Milan Straka

Department of Applied Mathematics and
Institute of Theoretical Computer Science (ITI)

Charles University
Malostranské nám. 25, 118 00 Praha, Czech Republic

{mares,fox}@kam.mff.cuni.cz

Abstract. A lexicographic ranking function for the set of all permuta-
tions of n ordered symbols translates permutations to their ranks in the
lexicographic order of all permutations. This is frequently used for in-
dexing data structures by permutations. We present algorithms for com-
puting both the ranking function and its inverse using O(n) arithmetic
operations.

1 Introduction

A permutation of order n is a bijection of an n-element set X onto itself. For con-
venience, we will always assume that X = [n] = {1, . . . , n}, so the permutations
become ordered n-tuples containing each number 1, . . . , n exactly once.

Many applications ask for arrays indexed by permutations. Among other uses
documented in [1], this is handy when searching for Hamilton cycles in Cayley
graphs [2,3] or when exploring state spaces of combinatorial puzzles like the
Loyd’s Fifteen [4]. To accomplish that, a ranking function is usually employed,
which translates a permutation π to a unique number R(π) ∈ {0, . . . , n! − 1}.
The inverse of the ranking function R−1(i) is also frequently used and it is called
the unranking function.

Each ranking function corresponds to a linear order on the set of all permu-
tations (it returns the number of permutations which are strictly less than the
given one). The traditional approach to the ranking problem is to fix lexico-
graphic order and construct the appropriate ranking and unranking functions.
In fact, an arbitrary order suffices in many cases, but the lexicographic ranking
has the additional advantage of a nice structure allowing additional operations
on permutations to be performed directly on their ranks.

Näıve implementations of lexicographic ranking require time Θ(n2) in the
worst case [5,6]. This can be easily improved to O(n log n) by using either a
binary search tree to calculate inversions, or by a divide-and-conquer technique
or by clever use of modular arithmetic (all three algorithms are described in [7]).
Myrvold and Ruskey [8] mention further improvements to O(n log n/ log log n)
by using the data structures of Dietz [9].

� Supported by grant 1M0021620808 of the Czech Ministry of Education.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 187–193, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

188 M. Mareš and M. Straka

Linear time complexity was reached also by Myrvold and Ruskey [8] by em-
ploying a different order, which is defined locally by the history of the data
structure — in fact, they introduce a linear-time unranking algorithm first and
then they derive an inverse algorithm without describing the order explicitly.
However, they leave the problem of lexicographic ranking open.

In this paper, we present a linear-time algorithm for the lexicographic order.
It is based on an observation that once we assume that our computation model
is capable of performing basic arithmetics on numbers of the order of magni-
tude of the resulting rank, we can use such integers to represent fairly rich data
structures working in constant time. This approach has been pioneered by Fred-
man and Willard [10,11], who presented Fusion trees and Atomic heaps working
in various RAM models. Our structures are built on similar principles, but in
a simpler setting, therefore we even can avoid random access arrays and our
algorithms work in almost all models of computation, relying only on the usual
set of arithmetic and logical operations on the appropriately large integers.

We also extend our algorithm to ranking and unranking of k-permutations,
i.e., ordered k-tuples of distinct elements drawn from [n].

2 Ranking Permutations

Permutations have a simple recursive structure: if we fix the first element π[1] of
a permutation π on [n] = {1, . . . , n}, the elements π[2], . . . , π[n] form a permu-
tation on {1, . . . , π[1] − 1, π[1] + 1, . . . , n}. The lexicographic order of π and π′

is then determined by π[1] and π′[1] and only if these elements are equal, it
is decided by the lexicographic comparison of permutations (π[2], . . . , π[n]) and
(π′[2], . . . , π′[n]). Therefore the rank of π is (π[1] − 1) · (n − 1)! plus the rank of
(π[2], . . . , π[n]).

This gives a reduction of (un)ranking of permutations on [n] to (un)ranking
of permutations on a (n − 1)-element set, which suggests a straightforward al-
gorithm, but unfortunately this set is different from [n − 1] and it even depends
on the value of π[1]. We could renumber the elements to get [n − 1], but it
would require linear time per iteration. Instead, we generalize the problem to
permutations on subsets of [n]. Therefore for a permutation π on A ⊆ [n] we
have:

R((π[1], . . . , π[m]), A) = r(π[1], A) · (m − 1)! +
R((π[2], . . . , π[m]), A \ {π[1]}),

where r(x, A) is a ranking function on elements of A.
This recurrence leads to the following well known algorithms (see for example

[7]) for ranking and unranking. Here π[i, . . . , n] denotes the array containing the
permutation and A is a data structure representing the subset of [n] on which
π is defined, i.e., A = {π(j) : i ≤ j ≤ n}. This structure supports ranking,
unranking and deletion of individual elements. We will denote these operations
r(x, A), r−1(i, A) and A \ {x} respectively.

Linear-Time Ranking of Permutations 189

function rank(π, i, n, A) { return the rank of perm. π[1, . . . , n] on A }
if i ≥ n then return 0
a ← r(π[i], A)
b ← rank(π, i + 1, n, A \ {π[i]})
return a · (n − i)! + b

end

function rank(π, n) { return the rank of a permutation π on [n] }
return rank(π, 1, n, [n])

end

function unrank(j, i, n, A) { get π[i, . . . , n] of the j-th perm. π on A }
if i > n then return (0, . . . , 0)
a ← r−1(�j/(n − i)!�, A)
π ← unrank(j mod (n − i)!, i + 1, n, A \ {π[i]})
π[i] ← a

end

function unrank(j, n) { return the j-th permutation on [n] }
return unrank(j, 1, n, [n])

end

If we precalculate the factorials and assume that each operation on the data
structure A takes time at most t(n), both algorithms run in time O(n · t(n)) and
their correctness follows from the discussion above.

A trivial implementation of the data structure by an array yields t(n) = O(n).
Using a binary search tree instead gives t(n) = O(log n). The data structure of
Dietz [9] improves it to t(n) = O(log n/ log log n). In fact, all these variants are
equivalent to the classical algorithms based on inversion vectors, because at the
time of processing π[i], the value of r(π[i], A) is exactly the number of elements
forming inversions with π[i].

If we relax the requirements on the data structure to allow ordering of ele-
ments dependent on the history of the structure (i.e., on the sequence of deletes
performed so far), we can implement all three operations in time O(1). We store
the values in an array and we also keep an inverse permutation. Ranking is
done by direct indexing, unranking by indexing of the inverse permutation and
deleting by swapping the element with the last element. We can observe that
although it no longer gives the lexicographic order, the unranking function is
still the inverse of the ranking function (the sequence of deletes from A is the
same in both functions), so this leads to O(n) time ranking and unranking in a
non-lexicographic order. This order is the same as the one used by Myrvold and
Ruskey in [8].

However, for our purposes we need to keep the same order on A over the
whole course of the algorithm.

190 M. Mareš and M. Straka

3 Word-Encoded Sets

We will describe a data structure for the subsets of [n] supporting insertion,
deletion, ranking and unranking in constant time per operation in the worst
case. It uses similar techniques as the structures introduced by Fredman and
Willard in [10,11], but our setting allows for a much simpler implementation.

First, let us observe that whatever our computation model is, it must allow
operations with integers up to n!−1, because the ranks of permutations can reach
such large numbers. In accordance with common practice, we will assume that
the usual set of arithmetic and logical operations is available and that they work
in constant time on integers of that size, i.e., on 	log2(n!)
 = Ω(n log n) bits.
Furthermore, multiple-precision arithmetics on numbers which fit in a constant
number of machine words can be emulated with a constant number of operations
on these words, so we can also assume existence of constant-time operations on
arbitrary O(n log n)-bit numbers. This gives us an opportunity for using the
integers to encode data structures.

Let us denote b = 	log2(n+1)
 the number of bits needed to represent a single
element of [n]. We will store the whole subset A ⊆ [n], � = |A|, as a bit vector a
consisting of � fields of size b, each field containing a single element of A. The
fields will be maintained in increasing order of values and an additional zero bit
will be kept between adjacent fields and also above the highest field. The vector
is �(b+1) = O(n log n) bits long, so it fits in O(1) integers. We will describe how
to perform the data structure operations using arithmetic and logical operations
on these integers.

Unranking is just extraction of the r-th field of the vector. It can be accom-
plished by shifting the representation of a by r · (b + 1) bits to the right and
anding it with 2b − 1, which masks out the high-order bits.

Insertion can be reduced to ranking: once we know the position in the vector
the new element should land at, i.e., its rank, we can employ bit shifts, ands and
ors to shift apart the existing fields and put the new element to the right place.

Deletion can be done in a similar way. The rank gives us the position of the
field we want to delete and we again use bit operations to move the other fields
in parallel.

Ranking of an element x is the only non-trivial operation. We prepare a vec-
tor c, which has all � fields set to x (this can be done in a single multiplication
by an appropriate constant) and the separator bits between them set to ones.
Observe that if we subtract a from c, the separator bits change to zeroes exactly
at the places where a[i] > c[i] = x (and they absorb the carries, so the fields
do not interfere with each other). Therefore the desired rank is the number of
remaining ones in the separator bits minus 1.

Let us observe that if z is an encoding of a vector with separator zeroes, then
z mod (2b+1 − 1) is the sum of all fields of the vector modulo 2b+1 − 1. This
works because z =

∑
i z[i] · 2(b+1)i and 2(b+1)i mod (2b+1 − 1) = 1 for every i.

Hence the separator bits in c can be summed by masking out all non-separator
bits, shifting c to the right to transform the separator bits to field values and
calculating c mod (2b+1 − 1).

Linear-Time Ranking of Permutations 191

c

a

c − a

1 1 1

0 0 0

0 1 1 0 1 1 0 1 1

1 0 1 0 1 1 0 0 1

0 1 1 0 1 0 0 0 1 0 1 0

−

Fig. 1. Computing the rank of element 3 in a set A = {1, 3, 5}. The bits framed in
bold are the separator bits, c is the vector containing copies of the number 3.

All four operations work in constant time. The auxiliary constants for bit pat-
terns we needed can be precalculated in linear time at the start of the algorithm
(we could even calculate them in constant time, as 20 + 2q + 22q + . . . + 2pq =
(2(p+1)q − 1)/(2q − 1), but it is an unnecessary complication). With this data
structure, the ranking and unranking algorithms achieve linear time complexity.

4 Ranking k-Permutations

Our (un)ranking algorithms can be used for k-permutations as well if we just
stop earlier and divide everything by (n − k)!. Unfortunately, the ranks of
k-permutations can be much smaller, so we can no longer rely on the data
structure fitting in a constant number of integers. For example, if k = 1, the
ranks are O(log n)-bit numbers, but the data structure still requires Θ(n log n)
bits.

We do a minor side step by remembering the complement of A instead, that
is the set of the at most k elements we have already seen. We will call it G (and
the corresponding vector g), because they are the gaps in A. Let us prove that
Ω(k log n) bits are needed to store the rank, which is enough space to represent
the whole g.

Lemma 1. The number of k-permutations on [n] is 2Ω(k log n).

Proof. There are nk = n(n − 1) . . . (n − k + 1) such k-permutations. If k ≤ n/2,
then every term in the product is at least n/2, so log2 nk ≥ k(log2 n − 1). If
k ≥ n/2, then nk ≥ nn/2 and log2 nk ≥ (n/2)(log2 n−1) ≥ (k/2)(log2 n−1). ��
Deletes in A now become inserts in G. The rank of x in A is just x minus the
rank of the largest element of G which is smaller than x. This is easy to get,
since when we ask our data structure for a rank of an element x outside the set,
we get exactly the number elements of the set smaller than x.

The only operation we cannot translate directly is unranking in A. To achieve
that, we will maintain another vector b such that b[i] = g[i] − i, which is the
number of elements in A smaller than g[i]. Now, if we want to find the r-th
element of A, we find the largest i such that b[i] < r (the rank of r in b in the

192 M. Mareš and M. Straka

same sense as above) and we return g[i] + 1 + r − b[i]. This works because there
is no gap in A between element g[i] + 1, which has rank b[i], and the desired
element of rank r.

For example, if A = {2, 5, 6} and n = 8, then g = (1, 3, 4, 7, 8) and b =
(0, 1, 1, 3, 3). When we want to calculate r−1(2, A), we find i = 3 and we get
g[3] + 1 + 2 − b[3] = 4 + 1 + 2 − 1 = 6.

Also, whenever a new element is inserted into g, we can shift the fields of b
accordingly and decrease all higher fields by one in parallel by a single subtrac-
tion.

We have replaced all operations on A by the corresponding operations on the
modified data structure, each of which works again in constant time. This gives
us a linear-time algorithm for the k-permutations, too.

5 Concluding Remarks

We have shown linear-time algorithms for ranking and unranking of permu-
tations and k-permutations on integers, closing a frequently encountered open
question.

Our algorithms work in linear time in a fairly broad set of computation models.
Even if we take the complexity of operations on numbers in account, we have
proven that the number of arithmetic operations for determining the inversion
vector is bounded by the number of those required to calculate the rank from
the inversion vector, contrary to previous intuition.

The technique we have demonstrated should give efficient algorithms for rank-
ing of various other classes of combinatorial objects, if the number of such objects
is high enough to ensure word size suitable for our data structures.

References

1. Critani, F., Dall’Aglio, M., Di Biase, G.: Ranking and unranking permutations
with applications. In: Innovation in Mathematics. In: Proceedings of Second Inter-
national Mathematica Symposium, pp. 99–106 (1997)

2. Ruskey, F., Jiang, M., Weston, A.: The Hamiltonicity of directed-Cayley graphs
(or: A tale of backtracking). Discrete Appl. Math. 57, 75–83 (1995)

3. Ruskey, F., Savage, C.: Hamilton Cycles that Extend Transposition Matchings in
Cayley Graphs of Sn. SIAM Journal on Discrete Mathematics 6(1), 152–166 (1993)

4. Slocum, J., Sonneveld, D.: The 15 Puzzle Book. The Slocum Puzzle Foundation,
Beverly Hills, CA, USA (2006)

5. Liebehenschel, J.: Ranking and Unranking of Lexicographically Ordered Words: An
Average-Case Analysis. Journal of Automata, Languages and Combinatorics 2(4),
227–268 (1997)

6. Reingold, E.: Combinatorial Algorithms: Theory and Practice. Prentice Hall Col-
lege Div., Englewood Cliffs (1977)

7. Knuth, D.: The Art of Computer Programming, Sorting and Searching, vol. 3.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA (1998)

8. Myrvold, W., Ruskey, F.: Ranking and unranking permutations in linear time.
Information Processing Letters 79(6), 281–284 (2001)

Linear-Time Ranking of Permutations 193

9. Dietz, P.F.: Optimal algorithms for list indexing and subset rank. In: Dehne, F.,
Santoro, N., Sack, J.-R. (eds.) WADS 1989. LNCS, vol. 382, pp. 39–46. Springer,
Heidelberg (1989)

10. Fredman, M., Willard, D.: Surpassing the information theoretic bound with fusion
trees. Journal of Computer and System Sciences 47(3), 424–436 (1993)

11. Fredman, M., Willard, D.: Trans-dichotomous algorithms for minimum spanning
trees and shortest paths. Journal of Computer and System Sciences 48(3), 533–551
(1994)

Radix Sorting with No Extra Space�

Gianni Franceschini1, S. Muthukrishnan2, and Mihai Pǎtraşcu3

1 Dept of Computer Science, Univ. of Pisa
francesc@di.unipi.it

2 Google Inc., NY
muthu@google.com

3 MIT, Boston
mip@mit.edu

Abstract. It iswell known thatn integers in the range [1, nc] can be sorted
in O(n) time in the RAM model using radix sorting. More generally, inte-
gers in any range [1, U] can be sorted in O(n

√
log log n) time [5]. However,

these algorithms use O(n) words of extra memory. Is this necessary?
We present a simple, stable, integer sorting algorithm for words of size

O(log n), which works in O(n) time and uses only O(1) words of extra
memory on a RAM model. This is the integer sorting case most useful in
practice. We extend this result with same bounds to the case when the
keys are read-only, which is of theoretical interest. Another interesting
question is the case of arbitrary c. Here we present a black-box transfor-
mation from any RAM sorting algorithm to a sorting algorithm which
uses only O(1) extra space and has the same running time. This settles
the complexity of in-place sorting in terms of the complexity of sorting.

1 Introduction

Given n integer keys S[1 . . . n] each in the range [1, n], they can be sorted in O(n)
time using O(n) space by bucket sorting. This can be extended to the case when
the keys are in the range [1, nc] for some positive constant c by radix sorting
that uses repeated bucket sorting with O(n) ranged keys. The crucial point is
to do each bucket sorting stably, that is, if positions i and j, i < j, had the
same key k, then the copy of k from position i appears before that from position
j in the final sorted order. Radix sorting takes O (cn) time and O(n) space.
More generally, RAM sorting with integers in the range [1, U] is a much-studied
problem. Currently, the best known bound is the randomized algorithm in [5]
that takes O(n

√
log log n) time, and the deterministic algorithm in [1] that takes

O(n log log n) time. These algorithms also use O(n) words of extra memory in
addition to the input.

We ask a basic question: do we need O(n) auxiliary space for integer sorting? The
ultimate goal would be to design in-place algorithms for integer sorting that uses
only O(1) extra words, This question has been explored in depth for comparison-
based sorting, and after a series of papers, we now know that in-place, stable
comparison-based sorting can be done in O(n log n) time [10]. Some very nice al-
gorithmic techniques have been developed in this quest. However, no such results
� A full version of this paper is available as arXiv:0706.4107.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 194–205, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

arXiv:0706.4107

Radix Sorting with No Extra Space 195

are known for the integer sorting case. Integer sorting is used as a subroutine in
a number of algorithms that deal with trees and graphs, including, in particu-
lar, sorting the transitions of a finite state machine. Indeed, the problem arose in
that context for us. In these applications, it is useful if one can sort in-place in
O(n) time. From a theoretical perspective, it is likewise interesting to know if the
progress in RAM sorting, including [3,1,5], really needs extra space.

Our results are in-place algorithms for integer sorting. Taken together, these
results solve much of the issues with space efficiency of integer sorting problems.
In particular, our contributions are threefold.

A practical algorithm. In Section 2, we present a stable integer sorting algorithm
for O(log n) sized words that takes O(n) time and uses only O(1) extra words.

This algorithm is a simple and practical replacement to radix sort. In the
numerous applications where radix sorting is used, this algorithm can be used
to improve the space usage from O(n) to only O(1) extra words. We have im-
plemented the algorithm with positive results.

One key idea of the algorithm is to compress a portion of the input, modi-
fying the keys. The space thus made free is used as extra space for sorting the
remainder of the input.

Read-only keys. It is theoretically interesting if integer sorting can be performed
in-place without modifying the keys. The algorithm above does not satisfy this
constraint. In Section 3, we present a more sophisticated algorithm that still
takes linear time and uses only O(1) extra words without modifying the keys.
In contrast to the previous algorithm, we cannot create space for ourselves by
compressing keys. Instead, we introduce a new technique of pseudo pointers
which we believe will find applications in other succinct data structure problems.
The technique is based on keeping a set of distinct keys as a pool of preset read-
only pointers in order to maintain linked lists as in bucket sorting.

As a theoretical exercise, the full version of this paper also considers the case
when this sorting has to be done stably. We present an algorithm with identi-
cal performance that is also stable. Similar to the other in-place stable sorting
algorithms e.g., comparison-based sorting [10], this algorithm is quite detailed
and needs very careful management of keys as they are permuted. The resulting
algorithm is likely not of practical value, but it is still fundamentally important
to know that bucket and radix sorting can indeed be solved stably in O(n) time
with only O(1) words of extra space. For example, even though comparison-
based sorting has been well studied at least since 60’s, it was not until much
later that optimal, stable in-place comparison-based sorting was developed [10].

Arbitrary word length. Another question of fundamental theoretical interest is
whether the recently discovered integer sorting algorithms that work with long
keys and sort in o(n log n) time, such as [3,1,5], need any auxiliary space. In
Section 4, we present a black-box transformation from any RAM sorting algo-
rithm to an sorting algorithm which uses only O(1) extra space, and retains the
same time bounds. As a result, the running time bounds of [1,5] can now be
matched with only O(1) extra space. This transformation relies on a fairly natu-
ral technique of compressing a portion of the input to make space for simulating
space-inefficient RAM sorting algorithms.

196 G. Franceschini, S. Muthukrishnan, and M. Pǎtraşcu

Definitions. Formally, we are given a sequence S of n elements. The problem is
to sort S according to the integer keys, under the following assumptions:

(i) Each element has an integer key within the interval [1, U].
(ii) The following unit-cost operations are allowed on S: (a) indirect address

of any position of S; (b) read-only access to the key of any element; (c)
exchange of the positions of any two elements.

(iii) The following unit-cost operations are allowed on integer values of O(log U)
bits: addition, subtraction, bitwise AND/OR and unrestricted bit shift.

(iv) Only O(1) auxiliary words of memory are allowed; each word had log U
bits.

For the sake of presentation, we will refer to the elements’ keys as if they were
the input elements. For example, for any two elements x, y, instead of writing
that the key of x is less than the key of y we will simply write x < y. We also
need a precise definition of the rank of an element in a sequence when multiple
occurrences of keys are allowed: the rank of an element xi in a sequence x1 . . . xt

is the cardinality of the multiset {xj | xj < xi or (xj = xi and j ≤ i)}.

2 Stable Sorting for Modifiable Keys

We now describe our simple algorithm for (stable) radix sort without additional
memory.

Gaining space. The first observation is that numbers in sorted order have less
entropy than in arbitrary order. In particular, n numbers from a universe of u
have binary entropy n log u when the order is unspecified, but only log

(
u
n

)
=

n log u−Θ(n logn) in sorted order. This suggests that we can “compress” sorted
numbers to gain more space:

Lemma 1. A list of n integers in sorted order can be represented as: (a) an
array A[1 . . . n] with the integers in order; (b) an array of n integers, such that
the last Θ(n log n) bits of the array are zero. Furthermore, there exist in-place
O(n) time algorithms for switching between representations (a) and (b).

Proof. One can imagine many representations (b) for which the lemma is true.
We note nonetheless that some care is needed, as some obvious representations
will in fact not lead to in-place encoding. Take for instance the appealing ap-
proach of replacing A[i] by A[i] − S[i − 1], which makes numbers tend to be
small (the average value is u

n). Then, one can try to encode the difference using
a code optimized for smaller integers, for example one that represents a value x
using log x+O(log log x) bits. However, the obvious encoding algorithm will not
be in-place: even though the scheme is guaranteed to save space over the entire
array, it is possible for many large values to cluster at the beginning, leading to
a rather large prefix being in fact expanded. This makes it hard to construct the
encoding in the same space as the original numbers, since we need to shift a lot
of data to the right before we start seeing a space saving.

As it will turn out, the practical performance of our radix sort is rather insen-
sitive to the exact space saving achieved here. Thus, we aim for a representation

Radix Sorting with No Extra Space 197

which makes in-place encoding particularly easy to implement, sacrificing con-
stant factors in the space saving.

First consider the most significant bit of all integers. Observe that if we only
remember the minimum i such that A[i] ≥ u/2, we know all most significant bits
(they are zero up to i and one after that). We will encode the last n/3 values
in the array more compactly, and use the most significant bits of A[1 . . . 2

3n] to
store a stream of 2

3n bits needed by the encoding.
We now break a number x into hi(x), containing the upper �log2(n/3)� bits, and

lo(x), with the low log u−�log2(n/3)� bits. For all values in A[23n+1 . . . n], we can
throw away hi(A[i]) as follows. First we add hi(A[23n + 1]) zeros to the bit stream,
followed by a one; then for every i = 2

3n + 2, . . . , n we add hi(A[i]) − hi(A[i − 1])
zeros, followed by a one. In total, the stream contains exactly n/3 ones (one per
element), and exactly hi(A[n]) ≤ n/3 zeros. Now we simply compact lo(A[23n +
1]), . . . , lo(A[n]) in one pass, gaining n

3 �log2(n/3)� free bits.

An unstable algorithm. Even just this compression observation is enough to give
a simple algorithm, whose only disadvantage is that it is unstable. The algorithm
has the following structure:

1. sort the subsequence S[1 . . . (n/ log n)] using the optimal in-place mergesort
in [10].

2. compress S[1 . . . (n/ logn)] by Lemma 1, generating Ω(n) bits of free space.
3. radix sort S[(n/ log n) + 1 . . . n] using the free space.
4. uncompress S[1 . . . (n/ log n)].
5. merge the two sorted sequences S[1 . . . (n/ log n)] and S[(n/ logn) + 1 . . . n]

by using the in-place, linear time merge in [10].

The only problematic step is 3. The implementation of this step is based on the
cycle leader permuting approach where a sequence A is re-arranged by following
the cycles of a permutation π. First A[1] is sent in its final position π(1). Then,
the element that was in π(1) is sent to its final position π(π(1)). The process
proceeds in this way until the cycle is closed, that is until the element that is
moved in position 1 is found. At this point, the elements starting from A[2] are
scanned until a new cycle leader A[i] (i.e. its cycle has not been walked through)
is found, A[i]’s cycle is followed in its turn, and so forth.

To sort, we use 2nε counters c1, . . . , cnε and d1, . . . , dnε . They are stored in the
auxiliary words obtained in step 2. Each dj is initialized to 0. With a first scan
of the elements, we store in any ci the number of occurrences of key i. Then, for
each i = 2 . . . nε, we set ci = ci−1 + 1 and finally we set c1 = 1 (in the end, for
any i we have that ci =

∑
j<i cj + 1). Now we have all the information for the

cycle leader process. Letting j = (n/ logn) + 1, we proceed as follows:

(i) let i be the key of S[j];
(ii) if ci ≤ j < ci+1 then S[j] is already in its final position, hence we increment

j by 1 and go to step (i);
(iii) otherwise, we exchange S[j] with S[ci + di], we increment di by 1 and we

go to step (i).

Note that this algorithm is inherently unstable, because we cannot differentiate
elements which should fall between ci and ci+1 −1, given the free space we have.

198 G. Franceschini, S. Muthukrishnan, and M. Pǎtraşcu

Stability through recursion. To achieve stability, we need more than n free bits,
which we can achieve by bootstrapping with our own sorting algorithm, instead
of merge sort. There is also an important practical advantage to the new stable
approach: the elements are permuted much more conservatively, resulting in
better cache performance.

1. recursively sort a constant fraction of the array, say S[1 . . . n/2].
2. compress S[1 . . . n/2] by Lemma 1, generating Ω(n log n) bits of free space.
3. for a small enough constant γ, break the remaining n/2 elements into chunks

of γn numbers. Each chunk is sorted by a classic radix sort algorithm which
uses the available space.

4. uncompress S[1 . . . n/2].
5. we now have 1+1/γ = O(1) sorted subarrays. We merge them in linear time

using the stable in-place algorithm of [10].

We note that the recursion can in fact be implemented bottom up, so there is
no need for a stack of superconstant space. For the base case, we can use bubble
sort when we are down to n ≤ √

n0 elements, where n0 is the original size of the
array at the top level of the recursion.

Steps 2 and 4 are known to take O(n) time. For step 3, note that radix sort
in base R applied to N numbers requires N + R additional words of space, and
takes time O(N logR u). Since we have a free space of Ω(n log n) bits or Ω(n)
words, we can set N = R = γn, for a small enough constant γ. As we always
have n = Ω(

√
n0) = uΩ(1), radix sort will take linear time.

The running time is described by the recursion T (n) = T (n/2)+O(n), yielding
T (n) = O(n).

A self-contained algorithm. Unfortunately, all algorithms so far use in-place sta-
ble merging algorithm as in [10]. We want to remove this dependence, and obtain
a simple and practical sorting algorithm. By creating free space through com-
pression at the right times, we can instead use a simple merging implementation
that needs additional space. We first observe the following:

Lemma 2. Let k ≥ 2 and α > 0 be arbitrary constants. Given k sorted lists of
n/k elements, and αn words of free space, we can merge the lists in O(n) time.

Proof. We divide space into blocks of αn/(k+1) words. Initially, we have k+1 free
blocks. We start merging the lists, writing the output in these blocks. Whenever
we are out of free blocks, we look for additional blocks which have become free
in the original sorted lists. In each list, the merging pointer may be inside some
block, making it yet unavailable. However, we can only have k such partially
consumed blocks, accounting for less than k αn

k+1 wasted words of space. Since in
total there are αn free words, there must always be at least one block which is
available, and we can direct further output into it.

At the end, we have the merging of the lists, but the output appears in a
nontrivial order of the blocks. Since there are (k + 1)(1 + 1/α) = O(1) blocks
in total, we can remember this order using constant additional space. Then, we
can permute the blocks in linear time, obtaining the true sorted order.

Radix Sorting with No Extra Space 199

Since we need additional space for merging, we can never work with the entire
array at the same time. However, we can now use a classic sorting idea, which is
often used in introductory algorithms courses to illustrate recursion (see, e.g. [2]).
To sort n numbers, one can first sort the first 2

3n numbers (recursively), then the
last 2

3n numbers, and then the first 2
3n numbers again. Though normally this

algorithm gives a running time of ω(n2), it works efficiently in our case because
we do not need recursion:

1. sort S[1 . . . n/3] recursively.
2. compress S[1 . . . n

3], and sort S[n
3 + 1 . . . n] as before: first radix sort chunks

of γn numbers, and then merge all chunks by Lemma 2 using the available
space. Finally, uncompress S[1 . . . n

3].
3. compress S[2n

3 + 1 . . . n], which is now sorted. Using Lemma 2, merge
S[1 . . . n

3] with S[n
3 + 1 . . . 2n

3]. Finally uncompress.
4. once again, compress S[1 . . . n

3], merge S[n
3 + 1 . . . 2n

3] with S[2n
3 + 1 . . . n],

and uncompress.

Note that steps 2–4 are linear time. Then, we have the recursion T (n) = T (n/3)+
O(n), solving to T (n) = O(n). Finally, we note that stability of the algorithm
follows immediately from stability of classic radix sort and stability of merging.

Practical experience. The algorithm is surprisingly effective in practice. It can
be implemented in about 150 lines of C code. Experiments with sorting 1-10
million 32-bit numbers on a Pentium machine indicate the algorithm is roughly
2.5 times slower than radix sort with additional memory, and slightly faster than
quicksort (which is not even stable).

3 Unstable Sorting for Read-Only Keys

3.1 Simulating Auxiliary Bits

With the bit stealing technique [9], a bit of information is encoded in the relative
order of a pair of elements with different keys: the pair is maintained in increasing
order to encode a 0 and vice versa. The obvious drawback of this technique is that
the cost of accessing a word of w encoded bits is O (w) in the worst case (no word-
level parallelism). However, if we modify an encoded word with a series of l in-
crements (or decrements) by 1, the total cost of the entire series is O (l) (see [2]).

To find pairs of distinct elements, we go from S to a sequence Z ′Y ′XY ′′Z ′′
with two properties. (i) For any z′ ∈ Z ′, y′ ∈ Y ′, x ∈ X , y′′ ∈ Y ′′ and z′′ ∈ Z ′′
we have that z′ < y′ < x < y′′ < z′′. (ii) Let m = α �n/ log n	, for a suitable
constant α. Y ′ is composed by the element y′m with rank m plus all the other
elements equal to y′m. Y ′′ is composed by the element y′′m with rank n−m+1 plus
all the other elements equal to y′′m. To obtain the new sequence we use the in-
place, linear time selection and partitioning algorithms in [6,7]. If X is empty, the
task left is to sort Z ′ and Z ′′, which can be accomplished with any optimal, in-
place mergesort (e.g. [10]. Let us denote Z ′Y ′ with M ′ and Y ′′Z ′′ with M ′′. The
m pairs of distinct elements (M ′[1], M ′′[1]), (M ′[2], M ′′[2]), . . . , (M ′[m], M ′′[m])
will be used to encode information.

200 G. Franceschini, S. Muthukrishnan, and M. Pǎtraşcu

Since the choice of the constant α does not affect the asymptotic complexity
of the algorithm, we have reduced our problem to a problem in which we are
allowed to use a special bit memory with O (n/ logn) bits where each bit can be
accessed and modified in constant time but without word-level parallelism.

3.2 Simulating Auxiliary Memory for Permuting

With the internal buffering technique [8], some of the elements are used as place-
holders in order to simulate a working area and permute the other elements at
lower cost. In our unstable sorting algorithm we use the basic idea of internal
buffering in the following way. Using the selection and partitioning algorithms
in [6,7], we pass from the original sequence S to ABC with two properties. (i)
For any a ∈ A, b ∈ B and c ∈ C, we have that a < b < c. (ii) B is composed of
the element b′ with rank �n/2	 plus all the other elements equal to b′. We can
use BC as an auxiliary memory in the following way. The element in the first
position of BC is the separator element and will not be moved. The elements in
the other positions of BC are placeholders and will be exchanged with (instead
of being overwritten by) elements from A in any way the computation on A (in
our case the sorting of A) may require. The “emptiness” of any location i of the
simulated working area in BC can be tested in O(1) time by comparing the sep-
arator element BC[1] with BC[i]: if BC[1] ≤ BC[i] the ith location is “empty”
(that is, it contains a placeholder), otherwise it contains one of the elements in A.

Let us suppose we can sort the elements in A in O(|A|) time using BC as work-
ing area. After A is sorted we use the partitioning algorithm in [6] to separate
the elements equal to the separator element (BC[1]) from the elements greater
than it (the computation on A may have altered the original order in BC). Then
we just re-apply the same process to C, that is we divide it into A′B′C′, we sort
A′ using B′C′ as working area and so forth. Clearly, this process requires O(n)
time and when it terminates the elements are sorted. Obviously, we can divide
A into p = O (1) equally sized subsequences A1, A2 . . . Ap, then sort each one of
them using BC as working area and finally fuse them using the in-place, linear
time merging algorithm in [10]. Since the choice of the constant p does not affect
the asymptotic complexity of the whole process, we have reduced our problem
to a new problem, in which we are allowed to use a special exchange memory of
O (n) locations, where each location can contain input elements only (no integers
or any other kind of data). Any element can be moved to and from any location
of the exchange memory in O(1) time.

3.3 The Reduced Problem

By blending together the basic techniques seen above, we can focus on a reduced
problem in which assumption (iv) is replaced by:

(iv) Only O(1) words of normal auxiliary memory and two kinds of special aux-
iliary memory are allowed:

(a) A random access bit memory B with O (n/ logn) bits, where each bit
can be accessed in O(1) time (no word-level parallelism).

(b) A random access exchange memory E with O (n) locations, where each
location can contain only elements from S and they can be moved to and
from any location of E in O(1) time.

Radix Sorting with No Extra Space 201

If we can solve the reduced problem in O (n) time we can also solve the original
problem with the same asymptotic complexity. However, the resulting algorithm
will be unstable because of the use of the internal buffering technique with a
large pool of placeholder elements.

3.4 The Naive Approach

Despite the two special auxiliary memories, solving the reduced problem is not
easy. Let us consider the following naive approach. We proceed as in the normal
bucket sorting: one bucket for each one of the nε range values. Each bucket is
a linked list: the input elements of each bucket are maintained in E while its
auxiliary data (e.g. the pointers of the list) are maintained in B. In order to
amortize the cost of updating the auxiliary data (each pointer requires a word of
Θ (log n) bits and B does not have word-level parallelism), each bucket is a linked
list of slabs of Θ

(
log2 n

)
elements each (B has only O (n/ logn) bits). At any

time each bucket has a partially full head slab which is where any new element
of the bucket is stored. Hence, for each bucket we need to store in B a word of
O (log log n) bits with the position in the head slab of the last element added.
The algorithm proceeds as usual: each element in S is sent to its bucket in O (1)
time and is inserted in the bucket’s head slab. With no word-level parallelism in
B the insertion in the head slab requires O (log log n) time. Therefore, we have
an O(n log log n) time solution for the reduced problem and, consequently, an
unstable O(n log log n) time solution for the original problem.

This simple strategy can be improved by dividing the head slab of a bucket
into second level slabs of Θ (log log n) elements each. As for the first level slabs,
there is a partially full, second level head slab. For any bucket we maintain
two words in B: the first one has O (log log log n) bits and stores the position
of the last element inserted in the second level head slab; the second one has
O (log log n) bits and stores the position of the last full slab of second level
contained in the first level head slab. Clearly, this gives us an O(n log log log n)
time solution for the reduced problem and the corresponding unstable solution
for the original problem. By generalizing this approach to the extreme, we end
up with O (log∗ n) levels of slabs, an O (n log∗ n) time solution for the reduced
problem and the related unstable solution for the original problem.

3.5 The Pseudo Pointers

Unlike bit stealing and internal buffering which were known earlier, the pseudo
pointers technique has been specifically designed for improving the space com-
plexity in integer sorting problems. Basically, in this technique a set of elements
with distinct keys is used as a pool of pre-set, read-only pointers in order to sim-
ulate efficiently traversable and updatable linked lists. Let us show how to use
this basic idea in a particular procedure that will be at the core of our optimal
solution for the reduced problem.

Let d be the number of distinct keys in S. We are given two sets of d input
elements with distinct keys: the sets G and P of guides and pseudo pointers,
respectively. The guides are given us in sorted order while the pseudo pointers
form a sequence in arbitrary order. Finally, we are given a multiset I of d in-
put elements (i.e. two elements of I can have equal keys). The procedure uses

202 G. Franceschini, S. Muthukrishnan, and M. Pǎtraşcu

the guides, the pseudo pointers and the exchange memory to sort the d input
elements of I in O (d) time.

We use three groups of contiguous locations in the exchange memory E . The
first group H has nε locations (one for each possible value of the keys). The
second group L has nε slots of two adjacent locations each. The last group R
has d locations, the elements of I will end up here in sorted order. H , L and R
are initially empty. We have two main steps.

First. For each s ∈ I, we proceed as follows. Let p be the leftmost pseudo pointer
still in P . If the sth location of H is empty, we move p from P to H [s] and then
we move s from I to the first location of L[p] (i.e. the first location of the pth
slot of L) leaving the second location of L[p] empty. Otherwise, if H [s] contains
an element p′ (a pseudo pointer) we move s from I to the first location of L[p],
then we move p′ from H [s] to the second location of L[p] and finally we move p
from P to H [s].

Second. We scan the guides in G from the smallest to the largest one. For a guide
g ∈ G we proceed as follows. If the gth location of H is empty then there does not
exist any element equal to g among the ones to be sorted (and initially in I) and
hence we move to the next guide. Otherwise, if H [G] contains a pseudo pointer
p, there is at least one element equal to g among the ones to be sorted and this
element is currently stored in the first location of the pth slot of L. Hence, we
move that element from the first location of L[p] to the leftmost empty location
of R. After that, if the second location of L[p] contains a pseudo pointer p′, there
is another element equal to g and we proceed in the same fashion. Otherwise,
if the second location of L[p] is empty then there are no more elements equal
to g among the ones to be sorted and therefore we can focus on the next guide
element.

Basically, the procedure is bucket sorting where the auxiliary data of the list
associated to each bucket (i.e. the links among elements in the list) is imple-
mented by pseudo pointers in P instead of storing it explicitly in the bit memory
(which lacks of word-level parallelism and is inefficient in access). It is worth
noting that the buckets’ lists implemented with pseudo pointers are spread over
an area that is larger than the one we would obtain with explicit pointers (that
is because each pseudo pointer has a key of log nε bits while an explicit pointer
would have only log d bits).

3.6 The Optimal Solution

We can now describe the algorithm, which has three main steps.

First. Let us assume that for any element s ∈ S there is at least another element
with the same key. (Otherwise, we can easily reduce to this case in linear time:
we isolate the O (nε) elements that do not respect the property, we sort them
with the in-place mergesort in [10] and finally we merge them after the other
O(n) elements are sorted.) With this assumption, we extract from S two sets G
and P of d input elements with distinct keys (this can be easily achieved in O (n)
time using only the exchange memory E). Finally we sort G with the optimal
in-place mergesort in [10].

Radix Sorting with No Extra Space 203

Second. Let S′ be the sequence with the (O (n)) input elements left after the
first step. Using the procedure in § 3.5 (clearly, the elements in the sets G and
P computed in the first step will be the guides and pseudo pointers used in the
procedure), we sort each block Bi of S′ with d contiguous elements. After that,
let us focus on the first t = Θ (log log n) consecutive blocks B1, B2, . . . , Bt. We
distribute the elements of these blocks into ≤ t groups G1, G2 . . . in the following
way. Each group Gj can contain between d and 2d elements and is allocated in
the exchange memory E . The largest element in a group is its pivot. The number
of elements in a group is stored in a word of Θ (log d) bits allocated in the bit
memory B. Initially there is only one group and is empty. In the ith step of the
distribution we scan the elements of the ith block Bi. As long as the elements
of Bi are less than or equal to the pivot of the first group we move them into it.
If, during the process, the group becomes full, we select its median element and
partition the group into two new groups (using the selection and partitioning
algorithms in [6,7]). When, during the scan, the elements of Bi become greater
than the pivot of the first group, we move to the second group and continue in the
same fashion. It is important to notice that the number of elements in a group
(stored in a word of Θ (log d) bits in the bit memory B) is updated by increments
by 1 (and hence the total cost of updating the number of elements in any group
is linear in the final number of elements in that group, see [2]). Finally, when all
the elements of the first t = Θ (log log n) consecutive blocks B1, B2, . . . , Bt have
been distributed into groups, we sort each group using the procedure in § 3.5
(when a group has more than d elements, we sort them in two batches and then
merge them with the in-place, linear time merging in [10]). The whole process
is repeated for the second t = Θ (log log n) consecutive blocks, and so forth.

Third. After the second step, the sequence S′ (which contains all the elements
of S with the exclusion of the guides and pseudo pointers, see the first step) is
composed by contiguous subsequences S′1, S′2, . . . which are sorted and contain
Θ(d log log n) elements each (where d is the number of distinct elements in S).
Hence, if we see S′ as composed by contiguous runs of elements with the same
key, we can conclude that the number of runs of S′ is O (n/ log log n). Therefore
S′ can be sorted in O (n) time using the naive approach described in § 3.4
with only the following simple modification. As long as we are inserting the
elements of a single run in a bucket, we maintain the position of the last element
inserted in the head slab of the bucket in a word of auxiliary memory (we can
use O(1) of them) instead of accessing the inefficient bit memory B at any single
insertion. When the current run is finally exhausted, we copy the position in the
bit memory. Finally, we sort P and we merge P , A and S′ (once again, using
the sorting and merging algorithms in [10]).

3.7 Discussion: Stability and Read-Only Keys

Let us focus on the reasons why the algorithm of this section is not stable. The
major cause of instability is the use of the basic internal buffering technique
in conjunction with large (ω(polylog (n))) pools of placeholder elements. This
is clearly visible even in the first iteration of the process in § 3.2: after being
used to permute A into sorted order, the placeholder elements in BC are left
permuted in a completely arbitrary way and their initial order is lost.

204 G. Franceschini, S. Muthukrishnan, and M. Pǎtraşcu

4 Reducing Space in any RAM Sorting Algorithm

In this section, we consider the case of sorting integers of w = ω(log n) bits.
We show a black box transformation from any sorting algorithm on the RAM
to a stable sorting algorithm with the same time bounds which only uses O(1)
words of additional space. Our reduction needs to modify keys. Furthermore, it
requires randomization for large values of w.

We first remark that an algorithm that runs in time t(n) can only use O(t(n))
words of space in most realistic models of computation. In models where the
algorithm is allowed to write t(n) arbitrary words in a larger memory space, the
space can also be reduced to O(t(n)) by introducing randomization, and storing
the memory cells in a hash table.

Small word size. We first deal with the case w = polylog (n). The algorithm has
the following structure:

1. sort S[1 . . . n/ log n] using in-place stable merge sort [10]. Compress these
elements by Lemma 1 gaining Ω(n) bits of space.

2. since t(n) = O(n log n), the RAM sorting algorithm uses at most O(t(n) ·
w) = O(n polylog (n)) bits of space. Then we can break the array into chunks
of n/ logc n elements, and sort each one using the available space.

3. merge the logc n sorted subarrays.
4. uncompress S[1 . . . n/ logn] and merge with the rest of the array by stable

in-place merging [10].

Steps 1 and 4 take linear time. Step 2 requires logc n · t(n/ logc n) = O(t(n))
because t(n) is convex and bounded in [n, n log n]. We note that step 2 can
always be made stable, since we can afford a label of O(log n) bits per value.

It remains to show that step 3 can be implemented in O(n) time. In fact, this
is a combination of the merging technique from Lemma 2 with an atomic heap
[4]. The atomic heap can maintain a priority queue over polylog (n) elements
with constant time per insert and extract-min. Thus, we can merge logc n lists
with constant time per element. The atomic heap can be made stable by adding
a label of c log log n bits for each element in the heap, which we have space for.
The merging of Lemma 2 requires that we keep track of O(k/α) subarrays, where
k = logc n was the number of lists and α = 1/ polylog (n) is fraction of additional
space we have available. Fortunately, this is only polylog (n) values to record,
which we can afford.

Large word size. For word size w ≥ log1+ε n, the randomized algorithm of [1]
can sort in O(n) time. Since this is the best bound one can hope for, it suf-
fices to make this particular algorithm in-place, rather than give a black-box
transformation. We use the same algorithm from above. The only challenge is
to make step 2 work: sort n keys with O(n polylog (n)) space, even if the keys
have w > polylog (n) bits.

We may assume w ≥ log3 n, which simplifies the algorithm of [1] to two stages.
In the first stage, a signature of O(log2 n) bits is generated for each input value
(through hashing), and these signatures are sorted in linear time. Since we are

Radix Sorting with No Extra Space 205

working with O(log2 n)-bit keys regardless of the original w, this part needs
O(n polylog (n)) bits of space, and it can be handled as above.

From the sorted signatures, an additional pass extracts a subkey of w/ log n
bits from each input value. Then, these subkeys are sorted in linear time. Finally,
the order of the original keys is determined from the sorted subkeys and the
sorted signatures.

To reduce the space in this stage, we first note that the algorithm for extract-
ing subkeys does not require additional space. We can then isolate the subkey
from the rest of the key, using shifts, and group subkeys and the remainder of
each key in separate arrays, taking linear time. This way, by extracting the sub-
keys instead of copying them we require no extra space. We now note that the
algorithm in [1] for sorting the subkeys also does not require additional space.
At the end, we recompose the keys by applying the inverse permutation to the
subkeys, and shifting them back into the keys.

Finally, sorting the original keys only requires knowledge of the signatures
and order information about the subkeys. Thus, it requires O(n polylog (n)) bits
of space, which we have. At the end, we find the sorted order of the original keys
and we can implement the permutation in linear time.

Acknowledgements. Our sincere thanks to Michael Riley and Mehryar Mohri
of Google, NY who, motivated by manipulating transitions of large finite state
machines, asked if bucket sorting can be done in-place in linear time.

References

1. Andersson, A., Hagerup, T., Nilsson, S., Raman, R.: Sorting in linear time? Journal
of Computer and System Sciences 57(1), 74–93 (1998)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2001)

3. Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with
fusion trees. J. Comput. System Sci. 47, 424–436 (1993)

4. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. J. Comput. System Sci. 48(3), 533–551 (1994)

5. Han, Y., Thorup, M.: Integer sorting in O(n
√

log log n) expected time and linear
space. In: FOCS, pp. 135–144. IEEE Computer Society, Los Alamitos (2002)

6. Katajainen, J., Pasanen, T.: Stable minimum space partitioning in linear time.
BIT 32(4), 580–585 (1992)

7. Katajainen, J., Pasanen, T.: Sorting multisets stably in minimum space. Acta
Informatica 31(4), 301–313 (1994)

8. Kronrod, M.A.: Optimal ordering algorithm without operational field. Soviet Math.
Dokl. 10, 744–746 (1969)

9. Munro, J.I.: An implicit data structure supporting insertion, deletion, and search
in O(log2 n) time. Journal of Computer and System Sciences 33(1), 66–74 (1986)

10. Salowe, J., Steiger, W.: Simplified stable merging tasks. Journal of Algorithms 8(4),
557–571 (1987)

Fast Low Degree Connectivity of

Ad-Hoc Networks Via Percolation

Emilio De Santis1, Fabrizio Grandoni2, and Alessandro Panconesi2

1 Dipartimento di Matematica, Sapienza Università di Roma,
P.le Aldo Moro 2, 00185 Roma, Italy

desantis@mat.uniroma1.it
2 Dipartimento di Informatica, Sapienza Università di Roma,

Via Salaria 113, 00198 Roma, Italy
{grandoni,ale}@di.uniroma1.it

Abstract. Consider the following classical problem in ad-hoc networks:
n devices are distributed uniformly at random in a given region. Each
device is allowed to choose its own transmission radius, and two devices
can communicate if and only if they are within the transmission radius
of each other. The aim is to (quickly) establish a connected network of
low average and maximum degree.

In this paper we present the first efficient distributed protocols that,
in poly-logarithmically many rounds and with high probability, set up
a connected network with O(1) average degree and O(log n) maximum
degree. This is asymptotically the best possible.

Our algorithms are based on the following result, which is a non-trivial
consequence of classical percolation theory: suppose that all devices set
up their transmission radius in order to reach the K closest devices.
There exists a universal constant K (independent of n) such that, with
high probability, there will be a unique giant component, i.e. a connected
component of size Θ(n). Furthermore, all remaining components will be
of size O(log2 n). This leads to an efficient distributed probabilistic test
for membership in the giant component, which can be used in a second
phase to achieve full connectivity.

Preliminary experiments suggest that our approach might very well
lead to efficient protocols in real wireless applications.

1 Introduction

In this paper we study a geometric random graph model that has interesting
applications to wireless networking. We are given n points distributed uniformly
at random within the unit square. Each point v is connected via a directed arc
to the closest k(v) points, according to the Euclidean distance, where k(v) is a
positive integer value. Given this directed graph we define an undirected graph G
with the same vertex set as follows: vw ∈ E(G) if and only if there is a directed
arc from v to w and viceversa. Henceforth, we will refer to the the points also
as nodes or devices.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 206–217, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Fast Low Degree Connectivity of Ad-Hoc Networks Via Percolation 207

The question that we study in this paper is how to determine the value of
the k(v)’s in order to meet two conflicting goals: G should be connected, but its
average degree should be as small as possible. Moreover, the maximum degree
should also be small. In this paper we give two efficient (i.e. poly-logarithmic)
distributed algorithms that set up a connected network G in such a way that
(a) the expected degree of a node is constant and (b) the maximum degree is
O(log n) (resp. O(log2 n)) with high probability. The number of communication
rounds needed is O(log3 n) (resp. O(log2 n)).

These results appear to be relevant to wireless networking. Our model of
connectivity for G is the most realistic from the point of view of wireless appli-
cations since the communication primitives of standards such as IEEE 802.11
and Bluetooth rely on ack messages, and therefore a communication link really
exists only when both nodes are within transmission radius of each other. Our
algorithms are very simple and we give experimental evidence that they might
very well admit efficient wireless implementations. Limiting the degree of nodes
can be beneficial in many ways. For instance, in security applications, nodes
exchange keys and run cryptographic protocols with their neighbors (see, for for
instance, [13]). Limiting the degree reduces the amount of traffic and compu-
tation. Moreover, the transmission radius of v is set in order to reach its k(v)
closest neighbors. Hence, the larger k(v), the larger the power v needs. Limiting
the k(v)’s thus reduces the overall transmission power and translates in longer
network lifetimes. In particular, we can show that while (a) the optimal power
consumption is, with high probability, proportional to the area of the region
within which the nodes are randomly distributed, (b) the expected power con-
sumption to sustain the network with our approach is order of the area and
hence it is in some sense optimal. (This is a consequence of our main results and
its proof is omitted from this extended abstract). Probably the most important
benefit is that, by bounding k(v) and by setting the transmission power accord-
ingly, interference is kept under control: The lower a node’s degree, the lower
the number of neighbors affected by a transmission and, consequently, the lower
the number of possible packet collisions and corresponding retransmission (see,
for instance, [1]). Note that our high probability bound on the maximum degree
ensures that not only things are good on average, but also that no node will be
penalized too much.

Let us now describe our algorithms. Probably the simplest distributed algo-
rithm one can think of is the following: set beforehand k(v) = K, for all nodes
v and for a suitable constant K (see [5,6,10,11] for experimental results). Unfor-
tunately, there is no constant K which guarantees connectivity with probability
going to 1 as n grows. To reach that goal, K must grow like log n [12].

If points can communicate, the situation changes. Indeed, Kucera [7] gives a
protocol to decide k(v), for all v, that sets up a connected network of expected
constant degree and maximum degree O(log n). The result however is existen-
tial in flavor: the protocol requires nodes to explore linear-size components of
the network, linearly many times, making it completely impractical. Our faster
protocols are based on the following insight.

208 E. De Santis, F. Grandoni, and A. Panconesi

Theorem 1. There is a universal constant K, independent of n, such that, if all
the devices set k(v) = K, with probability going to 1 as n grows, the network has
the following special structure: (a) there is a unique giant component containing
Θ(n) nodes; (b) all other components have size O(log2 n).

This theorem says that it is possible to set up a giant component in a very simple
way, a useful fact by itself (e.g. for coverage applications). It also says that there
is an efficient distributed test for membership to the giant component: a node
belongs to the unique giant component if and only if it belongs to a component
with more than (order of) log2 n nodes.

Given this, the following strategy is very natural. Devices that discover to
be trapped inside small components increase their transmitting power in order
to reach a device that belongs to the giant component. A node in the giant
component that is contacted in this way will respond, setting its power in order
to reach the calling node. We shall refer to this as Algorithm A.

Theorem 2. Algorithm A sets up a network in which the expected number of
neighbors of each device is constant. Furthermore, with probability going to 1 as
n grows, the network is connected and its maximum degree is O(log2 n). The
number of communication rounds required is O(log2 n).

This result gives an exponential speed up with respect to [7]. We can improve the
bound on the maximum degree at the expense of an increased communication
cost. Suppose that each device v belonging to a small component increases its
transmitting power a bit at a time, each time checking if it has reached a node
in the giant component. Nodes closer to the giant component will join it first.
Nodes farther away might be able to connect to such closer nodes, rather than
expanding their radius all the way to the closest node in the original giant
component. In the next section we will give a precise description of this, referred
to as Algorithm B.

Theorem 3. Algorithm B sets up a network in such a way that the expected
number of neighbors of each device is constant. Furthermore, with probability
going to 1 as n grows, the network is connected and its maximum degree is
O(log n). The number of communication rounds required is O(log3 n).

Preliminary experiments show that our approach might very well lead to efficient
protocols in real wireless applications.

2 The Algorithms

The input to the algorithms consists of n devices that are spread uniformly at
random within the unit box. The value of n is known to the devices. We assume
that the network is synchronous and that in one communication round each
device is able to send messages to all neighbors and to receive messages from
all of them. The running time of the protocols is given by the number of such
communication rounds. Each device is initially marked as lacustrine. Algorithm
A has two constant parameters K and ϕ, and works as follows.

Fast Low Degree Connectivity of Ad-Hoc Networks Via Percolation 209

Phase 1: Every device v sets its own transmission radius in order to reach
the closest k(v) := K neighbors (all the devices if n < K).
Phase 2: Every device v explores its own connected component, denoted
as C(v). If |C(v)| > C = ϕ log2 n, v marks itself as continental. Every
lacustrine device v increases k(v) in order to reach the closest continental
device, denoted as s(v). Device s(v) responds by increasing its transmission
radius in order to reach v (if this is not already the case).

Algorithm B, has a third constant parameter μ > 0, and works as follows:

Phase 1: As in Algorithm A.
Phase 2: Repeat μ log n many times: Let v be lacustrine. If |C(v)| > C =
ϕ log2 n then v marks itself as continental. Otherwise, v increases k(v) by
one, in order to reach the next closest device s(v). If s(v) is continental, it
responds by increasing its transmission radius in order to reach v.

The mapping s(v) is, for all practical purposes, well-defined since almost surely
all pairwise distances are different. The constants K and ϕ (independent of
n) ensure that, with high probability, at the end of the first phase there is a
unique giant component of Θ(n) points, while all the other components contain
ϕ log2 n points. Observe that Phase 1 does not require any global information,
such as the value of n. We shall refer to a round of Phase 2 of Algorithm B as
an expansion round. The constant μ ensures that, with high probability, within
μ log n expansion rounds all the nodes become continental. As a consequence,
Algorithms A and B achieve connectivity with high probability. Moreover they
require O(log2 n) and O(log3 n) communication rounds, respectively.

3 Overview

Since the proof of Theorems 1, 2, and 3 is rather involved we first give an
overview. The basic idea is to reduce our connectivity problem to site percolation
in a finite box (for an introduction to percolation, see, e.g., [3,9]). It is known that
in the supercritical phase, with high probability there is a unique giant cluster
in the box and that its complement consists of small regions each containing
O(log2 n) sites (see, among others, [2,3,4]). In the following we shall refer to the
maximal regions in the complement of the giant cluster as lakes. The reduction
will ensure that the unique giant cluster in the box will correspond to a unique
giant component of points, and that the remaining components of points are
trapped inside lakes, each containing O(log2 n) points. This is the situation at
the end of Phase 1 (with high probability).

The reduction to site percolation is achieved via several intermediate steps.
The first is to replace the uniform distribution of points with a Poisson distribu-
tion, to exploit the strong independence properties of the latter. In particular,
unlike the uniform distribution, the Poisson distribution ensures that the con-
figuration of points in one region does not affect the distribution of points of
any other disjoint region. There are some standard and rather general ways to

210 E. De Santis, F. Grandoni, and A. Panconesi

connect the two settings, but here we will make use of a coupling construction
that gives stronger bounds than these general tools. The configurations of points
given by the mentioned Poisson processes is referred to as scenario A.

We introduce next a first percolation problem, scenario B, by subdividing the
unit square into a grid of non-overlapping square cells. The area of each cell is
such that the expected number of points inside it is a constant parameter α.
This parameter is crucial for the whole construction. A cell is good if the number
of points that it contains is in [α

2 , 2α].
Scenario B is a Bernoulli field but unfortunately clusters of good cells do not

translate necessarily into connected components of points. Therefore another
percolation problem, scenario C, is introduced by defining a cell i open if it is
good and moreover all cells within distance D from i are good. The value of D
is a constant, independent of n. The definition is such that the points belonging
to a cluster of open cells form themselves a component of points.

The problem with scenario C is that it is not a Bernoulli field– knowing that
a cell i is open or closed alters the distribution of neighboring cells. However the
mentioned dependence only involves cells at distance at most h = 2D from i,
that is the field is h-dependent (see [3]). Therefore a new scenario D is introduced.
Scenario D is given by a general construction of [8]. This construction translates
scenario C into a Bernoulli field (i.e. D) that is stochastically dominated by C:
if a cell is open in scenario D then it is also open in scenario C. It follows that
if a giant cluster of open cells exists with probability p in scenario D, the same
cluster exists in scenario C with probability at least p. Essentially, scenario C
ensures that the unique giant component of cells that, with high probability,
exists in it translates into a connected component of points in scenario A, and
that all other components are small. While scenario D is used to compute the
probability that these events take place.

The probability that sites are on or off in the various scenarios depends on
the value of the constant K of the protocol. We will fix K in such a way that
a unique giant cluster of open cells exists in scenario D with high probability.
By construction, this translates into a giant component of points in scenario A,
henceforth denoted as G.

To ensure that G is unique in scenario A we make use of the definition of open
cells of scenario C which ensures that points trapped inside lakes cannot connect
to points in other lakes, bypassing G.

Remark 1. By setting the radius of each point to ∼ n−1/2 we would obtain a
simpler reduction to site percolation to show the emergence of a giant component.
Our reduction however is independent of n, showing that a giant component can
be created with no global information at all. This might be of independent
interest.

3.1 Preliminaries

As mentioned, in scenarios B, C, and D, we consider a partition of the unit square
into a grid of non-overlapping square cells of the same size. The number of cells is

Fast Low Degree Connectivity of Ad-Hoc Networks Via Percolation 211

m = k2, where k :=
⌊√

n
α

⌋
, and α is a constant. This partition naturally induces

a mesh, where the nodes are the cells and each cell has (at most) four neighbors:
the cells on the left, right, top and bottom. Let ix,y be the cell in position (x, y)
in the grid. The distance between ix1,y1 and ix2,y2 is max{|x1 − x2|, |y1 − y2|}.
The star-neighbors of cell i are the cells at distance one from i. We call cluster
a connected component of cells, and star-cluster a connected component of cells
with respect to star-neighborhood. We will use this distance in the mesh, while
we will use the Euclidean distance when talking about points in the unit square.

A giant cluster is a cluster of open cells which contains at least δ m cells, for a
given constant δ ∈ (0, 1]. Assuming a unique giant cluster (an event that we will
show happening with high probability), a lake is a maximal star-cluster in the
complement of the giant cluster. A giant component is a connected component
of points of linear (in n) size in the network set-up by the protocol. With |X | we
denote either the number of cells of X or the number of points of X , depending
on whether X is a cluster or a component, respectively.

4 Emergence of a Giant Component

In this section we show that after Phase 1 of the algorithm |G| = Θ(n) with high
probability.

As outlined previously we consider four different scenarios. In scenario A
points are placed in the unit box by means of a Poisson process. More precisely,
we consider two Poisson processes P0 and Pt. Process P0 has parameter μ0 := n−
ε n, where ε is a small positive constant, say ε = 1

4 . Process Pt is built on top of P0

by adding to it a new independent Poisson process ΔP with parameter 2 ε n. It is
well-known that Pt is a Poisson process with parameter μt := μ0+2 ε n = n+ε n.
We then define a sequence of point processes {Qi} sandwiched between P0 and
Pt. Starting from Q0 := P0, Qi+1 is given by Qi by adding one point chosen
uniformly at random in Pt − Qi.

Our reduction to site percolation will apply simultaneously to all Qi’s, showing
the existence of a unique giant component in scenario A for each Qi with high
probability. Each Qi generates points uniformly in the box (conditioned on the
given number of points). The next lemma shows that, with high probability, one
of the Qi will generate exactly n points. As a consequence, if something holds
for all Qi’s of scenario A simultaneously, it also holds for the original n-points
problem.

Lemma 1. Let N0 and Nt be the Poisson variables relative to P0 and Pt, re-
spectively. There is a positive constant γ (independent of n) such that

Pr
(
{N0 ≤ n ≤ Nt}

)
≤ e−γn.

Proof. (Sketch) Apply the large deviation principle to {N0 > n} and to {n <
Nt}.

We now define scenario B. Let us subdivide the unit square into a grid of m = k2

non-overlapping square cells, where k :=
⌊√

n
α

⌋
, and α is a constant. Note that

212 E. De Santis, F. Grandoni, and A. Panconesi

m = Θ(n) and the expected number of points in a cell is (roughly) α. The
parameter α plays a crucial role in the whole proof. This parameter should be
thought of as a large constant. Its value will be fixed later.

Definition 1. A cell is good if the number of points in the cell given by both P0

and Pt is in [α
2 , 2α]. The cell is bad otherwise.

In scenario B we define a site percolation problem with a Bernoulli field, where
the good cells will be the on sites in the finite box. Note that if a cell is good
then its number of points is in [α

2 , 2α] for all Qi’s of scenario A. By construction,
cells are good independently of each other and the probability of being good is
the same for all cells.

Lemma 2. Let pα be the probability that a cell is good. Then limα→∞ pα = 1.

Proof. Apply the standard large deviation principle to the Poisson random vari-
ables corresponding to the number of points given by P0 and Pt in the cell
considered.

We would like to show that large connected clusters of good cells in scenario B
give raise to large connected components of points in scenario A. This however
is not true. This motivates the next scenario C. In it we consider another site
percolation problem which is not, however, independent. Let D ≥ 3 be a constant
to be fixed later.

Definition 2. A cell i is open if i and all the cells at distance at most D from
i are good. The cell is closed otherwise.

We now choose K and D in order to enforce the following two properties: First,
if we have a giant cluster of open cells in scenario C, then the points inside
these cells belong to a giant component G of scenario A for each Qi. Second,
components other than G will be trapped inside lakes (delimited by closed cells),
i.e. points inside distinct lakes cannot establish links among them directly, by-
passing G. The first property is guaranteed by choosing

K := 72(2α) = 98 α

(the maximum number of points in the cells at distance at most 3 from a given
open cell). This choice of K ensures that the transmission radius of every point
in an open cell will reach all points in neighboring cells. Thus, if two neighboring
cells are open the points in them will form a clique. Observe that, for similar
reasons, any point inside a cell at distance at most D − 3 from an open cell i
belongs to the same connected component to which the points in i belong. This
implies that, by choosing D such that 2(D − 3)α/2 > K, say D = 102, also the
second property is ensured (see the proof of Lemma 5). We have not tried to
optimize the values of D and K.

In scenario C we have the desired translation of connectivity– if we have a
cluster of open cells then all points belonging to these cells form a connected
component of points in scenario A (for all Qi’s). Moreover, the probability qα

Fast Low Degree Connectivity of Ad-Hoc Networks Via Percolation 213

that a cell is open satisfies qα ≥ p
(2D+1)2

α and thus limα→∞ qα = 1. Unfortunately
scenario C is not a Bernoulli field. Definition 2 however ensures that it is h-
dependent with h = 2D (the probability that a cell is open is independent from
what happens in cells at distance 2D + 1 or larger).

Therefore we introduce a fourth scenario D that is a Bernoulli field. The
connection between scenarios C and D is given by a very general theorem of [8].
The theorem states that there is a coupling between scenario C and a Bernoulli
field, referred to as scenario D, with site probability rα such that: (a) If qα goes
to 1 so does rα, and hence limα→∞ rα = 1; and, (b) If a cell is open in scenario
D the same cell is open in scenario C. Therefore, if we have a giant cluster in
scenario D, the same cells form a cluster also in scenario C. In turn, all points
inside these cells will be connected in scenario A.

Scenario D allows us to estimate the probability of relevant events. A result
of Deuschel and Pisztora [2] ensures that, for every constant δ ∈ (0, 1) there is a
value of rα < 1 such that, with probability at least 1 − e−γ

√
m there is a unique

giant cluster of at least δm open cells in scenario D, for some constant γ > 0.
The following theorem and corollary summarize the discussion above.

Theorem 4. Let G denote a maximum cardinality component of points at the
end of Phase 1 of the algorithm. For every c ∈ (0, 1

2) there is a choice of α > 0,
and so a corresponding choice of K, such that

Pr(|G| ≤ cn) ≤ 2 e−ξ
√

n

where ξ > 0 is a constant independent of n.

Proof. Let m � n
α be the number of cells in scenario D, and let C be a maximum

size cluster in scenario D. By [2], for any given δ ∈ (0, 1) there is a value of α
such that Pr(|C| ≤ (1− δ)m) ≤ e−γ

√
m. The same set of cells is open in scenario

C. By definition, an open cell contains at least α
2 points. Thus, C corresponds

to a giant component of at least (1 − δ)mα
2 points in scenario A (for all Qi’s).

Recalling Lemma 1 and by choosing δ < 1 − 2c, we have

Pr(|G| ≤ cn) ≤ Pr(|C| ≤ 2cn/α) + Pr({N0 ≤ n ≤ Nt}) ≤ 2 e−ξ
√

n,

for some constant ξ > 0 and n large enough. This follows from the fact that if
the condition {N0 ≤ n ≤ Nt} does not hold we give up, while we pursue the
construction of the 4 scenarios only if it holds.

Remark 2. By choosing ε appropriately in the definition of the two Poisson pro-
cesses P0 and Pt of scenario A, and by defining a cell to be good if its number
of points in both P0 and Pt is in the interval [(1 − ε′)α, (1 + ε′)α], the size of G
can be made arbitrarily close to 1, for a proper choice of ε′.

Corollary 1. For every c ∈ (0, 1) there exist constants K > 0 and γ > 0 such
that, if every point v sets k(v) = K, then Pr[|G| < cn] ≤ e−γ

√
n.

Proof. It follows from the proof of Theorem 4 and Remark 2.

214 E. De Santis, F. Grandoni, and A. Panconesi

5 Uniqueness of the Giant Component

In this section we show that at the end of Phase 1 of the algorithm, with prob-
ability 1 − o(1), there is a unique giant component G with linearly many points,
and that all other components contain O(log2 n) points.

The next lemma bounds the number of cells of a lake in scenario C.

Lemma 3. For any lake L of scenario C, Pr(|L| > k) ≤ e−γ
√

k, where γ > 0 is
a constant and |L| is the number of cells of L.

Proof. It is well-known that for a Bernoulli field, in the super-critical phase for
percolation, if we take any star-cluster S in the complement of the giant cluster
then Pr(|S| > k) ≤ e−γ

√
k, for some constant γ > 0 [3]. Therefore the same holds

for any lake of scenario D. Now, by the monotonicity implied by the coupling
construction of [8] that relates scenario C and scenario D, the same bound holds
for L in scenario C (lakes can only be smaller).

The next, crucial lemma bounds the number of points of each lake in scenario
A. The difficulty is to analyze the dependencies carefully– knowing that a cell is
closed/open affects not only the distribution of points inside this cell, but also
that of neighboring cells.

Lemma 4. Let Zi be the number of points in cell i, and let L be a lake in
scenario C with n points. Then, for large enough number of points n, there is a
constant γ > 0 such that

Pr(
∑

i∈L

Zi > h) ≤ e−γ
√

h.

Proof. Let B := (B1, . . . , Bm) be the random vector denoting which cells are
good or bad, and b = (b1, . . . , bm) any particular such configuration. Then

Pr(
∑

i∈L

Zi > h)=
∑

k

Pr

(
∑

i∈L

Zi > h | |L| = k

)
Pr(|L| = k)

=
∑

k

∑

b

Pr

(
∑

i∈L

Zi>h | |L|=k, B=b

)
Pr(B=b | |L|=k) Pr(|L|=k)

=
∑

k

∑

b

Pr(
∑

i∈L

Zi > h | B = b) Pr(B = b | |L| = k) Pr(|L| = k).

The last equality follows, since if we know B we also know the size of L. We
now focus on the term Pr(

∑
i∈L Zi > h | B = b). We will show that we can

replace the variables (Zi | B = b) with a set of i.i.d. variables that stochastically
dominate them and that obey the large deviation principle.

The Poisson process can be realized as the product of m independent Poisson
processes, each operating inside a cell. This implies that if we have a set of events
Ei where each event depends only on what happens in cell i, then Pr(∩iEi) =∏

i Pr(Ei). Thus, we have

Fast Low Degree Connectivity of Ad-Hoc Networks Via Percolation 215

Pr(∩i{Zi = hi}|B = b) =
Pr(∩i{Zi = hi, Bi = bi})

Pr(∩i{Bi = bi})
=

∏
i Pr(Zi = hi, Bi = bi)∏

i Pr(Bi = bi)

=
∏

i

Pr(Zi = hi|Bi = bi).

If we define Xi = (Zi|Bi = good) and Yi = (Zi|Bi = bad), it follows that∑
i(Zi|B) has the same law of the sum of independent variables each of which is

Xi or Yi depending on whether cell i is good or bad. Let us define a collection of
i.i.d. random variables Wi’s each of which has the distribution of (Zi|Zi > 2α).
Each Wi stochastically dominates both Xi and Yi so that

Pr(
∑

i∈L

Zi > h | B = b) ≤ Pr(
∑

i∈L

Wi > h),

for each configuration b. Moreover the Wi obey the large deviation principle,
i.e. the probability of large deviations from the mean is exponentially small. We
thus have, for β < 1/E[W1],

Pr(
∑

i∈L

Zi > h) =
∑

k

∑

b

Pr(
∑

i∈L

Zi > h | B = b) Pr(B = b | |L| = k) Pr(|L| = k)

≤
∑

k

∑

b

Pr(
∑

i≤k

Wi > h) Pr(B = b | |L| = k) Pr(|L| = k)

=
∑

k

Pr(
∑

i≤k

Wi > h) Pr(|L| = k)

=
∑

k≤βh

Pr(
∑

i≤k

Wi > h) Pr(|L| = k) +
∑

k>βh

Pr(
∑

i≤k

Wi > h) Pr(|L| = k)

≤
∑

k≤βh

Pr(
∑

i≤βh

Wi > h) Pr(|L| = k) +
∑

k>βh

Pr(
∑

i≤k

Wi > h) Pr(|L| = k)

≤
∑

k≤βh

Pr(
∑

i≤βh

Wi > h) +
∑

k>βh

Pr(|L| = k)

= βh Pr(
∑

i≤βh

Wi > h) +
∑

k>βh

Pr(|L| = k)

≤ βh e−γ1h +
∑

k>βh

e−γ2
√

k ≤ e−γ
√

h.

The next lemma shows that, for any given Qi of scenario A components of points
inside distinct lakes cannot hook up together, by-passing G.

Lemma 5. Let u and v be points contained in two distinct lakes of scenario C.
Unless they both belong to G they are disconnected.

Proof. Let us assume by contradiction that u and v are connected in scenario
A without being connected to G. Since u and v belong to different lakes, they
must be separated by a portion of the giant cluster. Let i be an open cell and
let vi be a point inside it. By definition of open, if vj is a point inside a cell
j within distance D − 3 from i, then vi and vj belong to the same connected
component. In particular, if vi belongs to the giant component, so does vj . Thus,

216 E. De Santis, F. Grandoni, and A. Panconesi

u and v must be separated by at least 2(D − 3) good cells. But each good cell
contains at least α/2 points, and 2(D − 3)α/2 = 102α − 3α > 98α = K, which
is a contradiction.

The following lemma immediately follows from Lemmas 1, 4, and 5, and con-
cludes the proof of Theorem 1.

Lemma 6. Consider the following event E: at the end of Phase 1 there is a
unique giant component containing at least c n points while the remaining compo-
nents are trapped inside lakes, with each lake containing at most ϕ log2 n points.
For every constant c ∈ (0, 1), and for n sufficiently large, Pr[E] ≤ 2/nd where
d = γ

√
ϕ − 1 and γ > 0 is a constant.

Proof. By Corollary 1, for every c ∈ (0, 1), there exist constants γ1 and K̂, such
that, when the algorithm is run with parameter K ≥ K̂, the probability that,
at the end of phase 1, there is no component with at least c n points, is at most
2e−γ1

√
n. By Lemma 4 and the union bound, the probability that there exists a

lake with more than ϕ log2 n points is at most ne−γ2

√
ϕ log2 n = n−γ2

√
ϕ+1. Thus

Pr[E] ≤ 2e−γ1
√

n + n−γ2
√

ϕ+1 ≤ 2/nd for n large enough.

Therefore, by choosing ϕ large enough, we can bound Pr[E] with any inverse
polynomial.

6 Expected and Maximum Degree

Let us now consider the degree of the nodes at the end of the algorithms. We
first analyze the maximum degree.

Lemma 7. With probability 1−o(1) the final maximum degree is O(log2 n) with
Algorithm A.

Proof. (Sketch) For a lacustrine node the bound follows from Lemma 6, ob-
serving that before reaching the closest continental node, lacustrine nodes that
increase their radius will cover at most their own lake, which is of size O(log2 n)
with high probability. We omit the proof of the bound for continental nodes,
which is analogous.

For lack of space we do not give the proof of the following lemma.

Lemma 8. With probability 1 − o(1) the final maximum degree is O(log n) with
Algorithm B.

Lemma 9. With both Algorithms A and B, the expected final degree of a point
is bounded by a constant.

Proof. (Sketch) We bound the degree for Algorithm A. Basically the same proof
holds for Algorithm B as well. Consider first the expected degree of any lacustrine
point v. Let L be the lake containing v at the end of the first Phase and let w be

Fast Low Degree Connectivity of Ad-Hoc Networks Via Percolation 217

the point of the initial giant component G closest to v. By Lemma 5 the value
of k(v) is bounded by 1 +

∑
i∈L Zi since in the worst case, v will capture the

points in L plus w. By Lemma 4,

E[
∑

i∈L

Zi] ≤
∑

h

h Pr(
∑

i∈L

Zi ≥ h) ≤
∑

h

he−γ
√

h < ∞.

The growth of the degree of continental nodes can be bounded in a similar
way, and thus we omit the proof in this extended abstract.

This ends the proof of Theorems 2 and 3. We remark that the probability that
the protocols fail can be made as small as n−d, for any constant d > 0, by a
suitable choice of constants that appear in the analysis.

References

1. Blough, D., Leoncini, M., Resta, G., Santi, P.: The k-Neighbors Approach to In-
terference Bounded and Symmetric Topology Control in Ad Hoc Networks, IEEE
Trans. on Mobile Computing

2. Deuschel, J.-D., Pisztora, A.: Surface order large deviations for high-density per-
colation. Probability Theory and Related Fields 104(4), 467–482 (1996)

3. Grimmet, G.: Percolation. Springer, Heidelberg (1989)
4. Häggström, O., Meester, R.: Nearest neighbor and hard sphere models in contin-

uum percolation. Random Structures and Algorithms 9, 295–315 (1996)
5. Hou, T., Li, V.: Transmission range control in multihop packet radio networks.

IEEE Transactions on Communications COM-34, 38–44 (1986)
6. Kleinrock, L., Silvester, J.: Optimum transmission radii for packet radio networks

or why six is a magic number. In: IEEE National Telecommunication Conference,
pp. 431–435 (1978)

7. Kucera, L.: Low degree connectivity in ad-hoc networks. In: Brodal, G.S., Leonardi,
S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 203–214. Springer, Heidelberg (2005)

8. Liggett, T.M., Schonmann, R.H., Stacey, A.M.: Domination by product measures.
Annals of Probability 25(1), 71–95 (1997)

9. Meester, R., Roy, R.: Continuum Percolation. Cambridge University Press, Cam-
bridge (1996)

10. Ni, J., Chandler, S.A.G.: Connectivity Properties of a Random Radio Network.
IEE Prec. Commun. 141, 289–296 (1994)

11. Takagi, H., Kleinrock, L.: Optimal transmission ranges for randomly distributed
packet radio terminals. IEEE Transactions on Communications COM-32(3), 246–
257 (1984)

12. Xue, F., Kumar, P.: The number of neighbors needed for connectivity of wireless
networks. Wireless Networks 10(2), 169–181 (2004)

13. Zhu, S., Setia, S., Jajodia, S.: LEAP: Efficient Security Mechanisms for Large-Scale
Distributed Sensor Networks. In: Proc. of the 10th ACM Conference on Computer
and Communications Security (CCS ’03), Washington, D.C. (October 2003)

Order Statistics in the Farey Sequences in
Sublinear Time

Jakub Pawlewicz

Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warsaw, Poland

pan@mimuw.edu.pl

Abstract. The paper presents the first sublinear algorithm for comput-
ing order statistics in the Farey sequences. The algorithm runs in time
O(n3/4 log n) and in space O(

√
n) for Farey sequence of order n. This

is a significant improvement to the algorithm from [1] that runs in time
O(n log n).

1 Introduction

The Farey sequence of order n (denoted Fn) is the increasing sequence of all
irreducible fractions from interval [0, 1] with denominators less than or equal
to n. The Farey sequences have numerous interesting properties and they are
well known in the number theory and in the combinatorics. They are deeply
investigated in [2]. In this paper we study the following algorithmic problem. For
given positive integers n and k compute the k-th element of the Farey sequence
of order n. This problem is known as order statistics problem.

The solution to the order statistics problem is based on a solution to a related
rank problem, i.e. the problem of finding the rank of a given fraction in the Farey
sequence. Both, the order statistics problem and the rank problem, can be easily
solved in quadratic time by listing all elements of the sequence (see [2, Problem
4-61] and Section 2.1).

Faster solutions for order statistics are possible by reducing the main problem
to the rank problem. The roughly linear time algorithm is presented in [1]. The
authors present a solution of the rank problem working in time O(n) and in
sublinear space. They also show how to reduce the order statistics problem to
the rank problem by calling O(log n) instances of the rank problem. This gives
an algorithm running in O(n log n) time. They remark that their solution to
the rank problem could run in time O(n5/6+o(1)) if it was possible to compute
the sum

∑n
i=1�xi�, for a rational x, in this time or faster. This sum is related

to counting lattice points in right triangles. A simple algorithm for that task
running in logarithmic time can be found in [3]. Nevertheless, for completeness
we present a simple logarithmic algorithm computing that sum in Section 3.

The O(n5/6+o(1)) solution is complicated. For instance it involves summation
of Möbius function and subexpotential integer factorization. In Section 2.3 we

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 218–229, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Order Statistics in the Farey Sequences in Sublinear Time 219

present a simple algorithm for the rank problem with time complexity O(n3/4)
and space complexity O(

√
n). We assume RAM as a model of computation.1

What remains is to show a faster reduction in order to find order statistics
in sublinear time. In [1] the reduction was made in two stages. The first stage
consists of finding out the interval

[
j
n , j+1

n

)
containing the k-th term in the

sequence. The interval is computed by a binary search with calling the rank
problem O(log n) times. The second stage tracks the searched term by checking
all fractions in the interval. Since there are at most n such fractions, in the
worst case this stage runs in O(n) time, which dominates time complexity of
the reduction. In [1] the authors proposed to take smaller interval

[
j

n2 , j+1
n2

)
,

since this interval contains exactly one fraction. However, there is a problem
of tracking that fraction, which is not solved by them. In Section 2.2 we show
solution to that problem. We also show another, more direct reduction running
in logarithmic time and using O(log n) calls to the rank problem. This reduction
is obtained by exploring Stern–Brocot tree in a smart way.

2 Computing Order Statistics in the Farey Sequences

2.1 An O(n2) Time Algorithm

We show two O(n2) time methods. The working time follows the number of
elements in the sequence Fn, which is asymptotically equal to 3

π2 n2.
We use the following property of the Farey sequences. For two consecutive

fractions a
b < c

d in a Farey sequence, the first fraction that appears between them
is a+c

b+d – the mediant of these two fractions. The mediant is already reduced and
it firstly appears in Fb+d. Using this property one can successively compute all
fractions. That way the Stern–Brocot tree2 is obtained. Farey fractions form a
subtree. In–order traversal gives an O(n2) time and O(n) space algorithm. Space
complexity depends on the depth of the Farey tree.

The second O(n2) method is a straightforward application of a surprising
formula. For three consecutive fractions a

b < c
d < e

f the following holds:

e

f
=

tc − a

td − b
, where t =

⌊
b + n

d

⌋
.

That method works in optimal O(1) space.

2.2 Reduction to the Rank Problem

In order to achieve a solution faster than quadratic one we reduce the problem of
finding given term of the Farey sequence to a problem of counting the number of
fractions bounded by a real number (the rank problem). To be more precise, for
1 In RAM (Random Access Machine) single cell can store arbitrarily large integers.

Cell access or arithmetic operations on cells are performed in constant time. Also
memory complexity is measured in cells.

2 For a description of Stern–Brocot tree together with its properties we refer to [2].

220 J. Pawlewicz

given positive integer n and real number x ∈ [0, 1] we want to find the number
of fractions a

b belonging to sequence Fn not larger than x. We show how to solve
the original problem given an algorithm for the rank problem.

Reduction in linear time. We recall the reduction from [1]. Firstly, the inter-
val

[
j
n , j+1

n

)
containing the k-th term is searched by a binary search starting from

the interval
[

0
n , n

n

)
, splitting interval

[
l
n , r

m

)
into two smaller intervals

[
l
n , m

n

)

and
[

m
n , r

n

)
, where m =

⌊
l+r
2

⌋
. Next, we track the fraction in

[
j
n , j+1

n

)
. Because

the size of the interval is 1
n , it contains at most one fraction with denomina-

tor b ≤ n. That fraction can be found in constant time since numerator must
be

⌊ (j+1)b−1
n

⌋
. We check all such fractions for all possible denominators. Total

tracking time is O(n) and whole reduction also works in time O(n).
It is sufficient to use the above reduction to construct roughly linear time so-

lution, but it is not enough if we want to create a sublinear algorithm. Therefore,
we need faster reduction. We show two reductions with logarithmic time.

Smaller interval. First, we can tune up the construction using intervals. As
it was suggested in [1] we can find smaller interval

[
j

n2 , j+1
n2

)
also by a binary

search. Now in such interval there is at most one fraction in Fn which belongs
to that interval. This is because the size of the interval is 1

n2 and because the
following inequality holds for every two consecutive fractions a

b < c
d in sequence

Fn:
c

d
− a

b
=

1
bd

≤ 1
n2

.

The k-th term of the Farey sequence Fn is the only fraction from Fn in
the interval

[
j

n2 , j+1
n2

)
. What is left is to track this fraction. We use the Stern–

Brocot tree to this task. The Stern–Brocot tree allows us to explore all irreducible
fraction in an organized way. We start from two fractions 0

1 and 1
0 . These fractions

represent the interval where the k-th term resides. We repeatedly narrow that
interval to enclose the interval

[
j

n2 , j+1
n2

)
until we find the fraction. Assume we

have already narrowed the interval to fractions a
b and c

d , such that

a

b
<

j

n2
<

j + 1
n2

≤ c

d
.

Then, in a single iteration we split the interval by the mediant a+c
b+d . If the mediant

falls into the interval
[

j
n2 , j+1

n2

)
, then the k-th term is found and this is the

mediant a+c
b+d . Otherwise, we replace one of the fractions a

b and c
d by a+c

b+d . If
a+c
b+d < j

n2 , we replace fraction a
b , otherwise a+c

b+d ≥ j+1
n2 and we replace c

d .
The above procedure guarantees successful tracking. However, the time com-

plexity is O(n) since in the worst case n iterations are needed. For instance
for k = 1 we replace the right fraction n times consecutively to 1

1 , 1
2 , . . . , 1

n .
This problem can be solved by grouping successive substitutions of left or right
fractions.

Suppose we replace several times the left fraction. After first substitution we
have fractions a+c

b+d and c
d . After second substitution the fractions become a+2c

b+2d

Order Statistics in the Farey Sequences in Sublinear Time 221

and c
d and so on. Generally, after t substitutions of left fractions the final fraction

is equal to a+tc
b+td . In the above procedure we replace the left fractions as long as

a + tc

b + td
<

j

n2
. (1)

If t is the largest integer satisfying the above inequality then for the next mediant
we have j

n2 ≤ a+(t+1)c
b+(t+1)d . If there is also a+(t+1)c

b+(t+1)d < j+1
n2 , then the fraction is found

and we can finish the search. Otherwise, the next mediant will substitute the
right fraction.

We see that we can make all successive iterations replacing the left fraction
at once. We only need to determine the value of t. After rewriting (1) we get

(n2c − jd)t < jb − n2a. (2)

Because j
n2 < c

d we know that n2c − jd > 0, so (2) is equivalent to

t <
jb − n2a

n2c − jd
.

The largest t satisfying that inequality is

t =
⌈jb − n2a

n2c − jd

⌉
− 1. (3)

Analogously we analyze a situation when we replace several times the right
fractions. After t substitutions the right fraction is equal to ta+c

tb+d . Replacement
takes place as long as

j + 1
n2

≤ ta + c

tb + d
.

The largest t satisfying the above inequality is

t =
⌊ (j + 1)d − n2c

n2a − (j + 1)b

⌋
. (4)

We conclude that the procedure of tracking the fraction from the interval[
j

n2 , j+1
n2

)
can be much faster if we group steps in one direction. In the first

iteration we make all steps to the left replacing the right fraction. Then, in the
next iteration, we make all steps to the right replacing the left fraction. Next,
we make all steps to the left and so on until we find the fraction from the given
interval. In a single iteration, if we are going to the right, we replace the left
fraction by a+tc

b+td where t is given by (3) and if we are going to the left, we
replace the right fraction by ta+c

tb+d where t is given by (4). Excluding the first
iteration we know that t is always at least one since the next mediant has to
replace the opposite fraction. It means that the denominator is always replaced
at least by a sum of the previous two denominators. Therefore, the sequence
of successive denominators increases as fast as Fibonacci numbers. Thus, the
number of iterations in this procedure is O(log n).

222 J. Pawlewicz

Exploring Stern–Brocot tree directly. Suppose we are able to solve the
rank problem in “reasonable” time. This means that for every fraction a

b ∈ Fn

we can compare it with the k-th term of the sequence Fn. Using only comparisons
we can descend the Stern–Brocot tree down to the searched fraction. We start
from the interval

(
0
1 , 1

0

)
. Then, we repeatedly split the interval by the mediant

and choose the interval containing the searched fraction. That is, if we have
interval

(
a
b , c

d

)
, we take the mediant a+c

b+d and compare it with the k-th term.
If the number of fractions in Fn not larger than a+c

b+d equals k, then we get the
result; if it is larger than k, then the term lies in the interval

(
a
b , a+c

b+d

)
; and if it

is less than k, then the term lies in
(

a+c
b+d , c

d

)
.

As in the previous reduction in the worst case we have to call the rank problem
O(n) times and, as previously, we have to optimize the search by grouping moves
in a single direction. However, here we cannot give an explicit formula for the
number of steps t, because we can only ask on which side of a given fraction the
searched term lies. Fortunately, there is a technique for finding t using at most
O(log t) questions.

The technique can be used when for any integer s we can ask whether s < t
or s = t or s > t. First, for successive i = 0, 1, 2, . . . we check whether 2i < t.
If it shows that t = 2i for some i, then we find t in i + 1 questions. Otherwise,
we can find the smallest positive integer l such that 2l−1 < t < 2l after l + 1
questions. In this case we perform a binary search for t in the interval (2l−1, 2l).
The binary search takes at most l − 1 questions so the whole procedure has at
most 2l ≤ 2 log t questions.

Using the above technique for grouping steps in a single direction we can
achieve a method which asks only at most 4 log n questions. We formalize this
method for clearer analysis.

Let P0
Q0

= 1
0 and P1

Q1
= 0

1 so that the starting interval is
(

P1
Q1

, P0
Q0

)
. In the i-th

iteration, for i = 2, 3, . . ., we construct fraction Pi

Qi
. For even i we move to the

left and replace the right fraction. For odd i we move to the right and replace
the left fraction.

Assume i is even. In that case the interval is
(Pi−1

Qi−1
, Pi−2

Qi−2

)
. Here we are moving

to the left adding the left fraction to the right as many times as possible. We
search for the largest ti such that the searched fraction is not larger than

tiPi−1 + Pi−2

tiQi−1 + Qi−2
.

Then we replace the right fraction by it, thus Pi = tiPi−1 + Pi−2 and Qi =
tiQi−1 + Qi−2. When i is odd we proceed analogously but in opposite
direction.

We repeat calculating successive Pi

Qi
until for some i that fraction is the k-term

of the sequence Fn. The above procedure is nothing new. In fact it has strict
connection with continued fractions. One may prove that

Order Statistics in the Farey Sequences in Sublinear Time 223

Pi

Qi
=

1

t2 +
1

...

ti−1 +
1
ti

Let us analyze the time complexity. First, observe that every ti is positive.
For each i = 2, 3, . . . we ask at most 2li questions in the i-th iteration, where
2li−1 ≤ ti < 2li . Suppose we made h iterations so the searched fraction is Ph

Qh

and Qh ≤ n. From the recursive formula for Qi = tiQi−1 + Qi−2 we conclude
that sequence Qi is non-decreasing and thus the following inequality holds Qi ≥
(ti + 1)Qi−1. Hence,

n ≥ Qh ≥ (th + 1)Qh−1 ≥ (th + 1)(th−1 + 1)Qh−2 ≥ · · ·
≥ (th + 1) · · · (t2 + 1)Q1 = (th + 1) · · · (t2 + 1).

There are two consequences of the above inequality. First, since ti+1 ≥ 2 we have
n ≥ 2h−1 so h − 1 ≤ log n. Second, since ti ≥ 2li−1 we have n ≥ 2lh+...+l2−(h−1).
Combining it we get

l2 + . . . + lh ≤ log n + (h − 1) ≤ 2 logn.

Therefore, the total number of questions is O(log n), since in all iterations we
ask at most 2(l2 + . . . + lh) questions.

2.3 Solution to the Rank Problem

Let Sn(x) be the number we are searching for, i.e. the number of irreducible
fractions a

b such that a
b ≤ x and b ≤ n. For simplicity we will sometimes write

Sn instead of Sn(x) because in fact x is fixed.
Playing with symbol Sn(x) and grouping by gcd we can get a recursive for-

mula, which will be a starting point to our algorithm:

Sn(x) =
∣∣∣
{a

b

∣∣ b ≤ n ∧ a

b
≤ x ∧ gcd(a, b) = 1

}∣∣∣

=
∣∣∣
{a

b

∣∣ b ≤ n ∧ a

b
≤ x

}∣∣∣ −
∑

d≥2

∣∣∣
{a

b

∣∣ b ≤ n ∧ a

b
≤ x ∧ gcd(a, b) = d

}∣∣∣

=
n∑

b=1

�bx� −
∑

d≥2

S�n
d �(x).

We explain each step. For given constraints the number of irreducible fractions
is the total number of fractions minus the number of fractions with gcd of nu-
merator and denominator equal or larger 2. It is written in the second line of the
equation. The number of fractions with given denominator b less than or equal
to x is �bx�, so the number of all fractions less than or equal to x is the sum:

n∑

b=1

�bx�.

224 J. Pawlewicz

We should also explain equality
∣∣∣
{a

b

∣∣ b ≤ n ∧ a

b
≤ x ∧ gcd(a, b) = d

}∣∣∣ = S�n
d �(x).

Every fraction a
b with gcd(a, b) = d has form a′d

b′d , where a′d = a, b′d = b and
gcd(a′, b′) = 1. It means that fraction a′

b′ is irreducible and b′ ≤ n
d , since b ≤ n.

The number of irreducible fractions such that a′

b′ = a
b ≤ x is exactly S�n

d �(x).
Let us look again at the recursive formula:

Sn =
n∑

b=1

�bx� −
∑

d≥2

S�n
d �. (5)

In fact, x is always a rational number in our algorithm. In that case the sum∑n
b=1�bx� can be calculated in O(polylog(n)). It is shown in Section 3. So the

only problem is to calculate the sum
∑

d≥2 S�n
d �. Let us focus on how many

different summands there are. For d ≤ √
n all expressions S�n

d �(x) are unique. If
d >

√
n, then n

d <
√

n, so for d >
√

n there are at most
√

n different summands.
Therefore, on the right hand side of the formula (5) there are O(

√
n) summands.

Moreover, in deeper level of recursion, occurrence of symbol Si is only possible
if i = �n

d �, for some positive integer d. This property follows from the equality

⌊⌊
n
d1

⌋

d2

⌋
=

⌊ n

d1d2

⌋
.

We are left with computing Si where i is from set I =
{⌊

n
d

⌋ | d ≥ 1
}
. We split

the set to two sets I1 = {1, 2, . . . , �√n�} and I2 =
{⌊

n
�√n�

⌋
, . . . , �n

2 �, �n
1 �

}
. Each

of these sets has �√n� elements and they sum to I. We use dynamic programming
to calculate successive Si for increasing i ∈ I. To calculate Si we use formula

Si =
i∑

b=1

�bx� −
∑

d≥2

S� i
d �. (6)

As it was already mentioned actual size of the sum
∑

d≥2 S� i
d � is O

(√
i
)
. For

each symbol Sj occurring in the sum we can find its multiplicity in constant
time, simply by finding interval for d values for which �n

d � = j. Therefore, the
time complexity of calculating the right hand side of (6) is O

(√
i
)
. The memory

complexity is O(
√

n), since we have to store only Si for i ∈ I.
Surprisingly, the above algorithm for calculating all Si works in O(n3/4). We

prove it in two parts. In the first part let us determine the time of calculating
Si for all i ∈ I1:

∑

1≤i≤√n

O
(√

i
) ⊆

∑

1≤i≤√n

O

(√√
n

)
= O

(√
n ·

√√
n

)
= O(n3/4).

Order Statistics in the Farey Sequences in Sublinear Time 225

For the second part observe that I2 =
{⌊

n
d

⌋ | 1 ≤ d ≤ √
n
}
. Thus, the time

complexity of calculating Si for all i ∈ I2 is

∑

1≤d≤√n

O

(√⌊n

d

⌋)
= O

(
√

n
∑

1≤d≤√n

1√
d

)
.

Using the asymptotic equality
∑

1≤i≤x

1√
i

= O
(√

x
)

we get the result

O

(√
n ·

√√
n

)
= O(n3/4).

3 Computing
∑n

i=1

⌊
a
b
i
⌋

In this section we present a simple algorithm for computing the sum
∑n

i=1�a
b i�,

where a
b is a non-negative irreducible fraction. We remark that a polynomial time

algorithm (in size of a, b and n) was previously presented in [4] or in [5]. However
in these papers used methods are rather complicated for easy implementation.
Much simpler algorithm for computing lattice points in a rational right triangle
was presented in [3]. Although our algorithm is very similar, we decided to
include a description for this specific task for two reasons. First, since a solution
to the rank problem needs to calculate this sum, we want to make the whole
procedure to be completed. Second, the sum is a special case of rational right
triangle. Therefore, formulas used in an algorithm can be easier determined and
slightly simplified comparing to formulas presented in [3].

A graphical representation of the given sum is shown in Fig. 1. The value of
the sum is the number of lattice points in a triangle bounded by X–axis and
lines x = n and y = a

b x excluding lattice points on X–axis. That representation
will help to see properties of the sum.

Let us denote

T (n, a, b) =
n∑

i=1

⌊a

b
i
⌋
.

y =
a
b
x

0 1 2 3 n· · ·

Fig. 1. Graphical representation of the sum
∑n

i=1�a
b
i�

226 J. Pawlewicz

0
0

b

a

2b

2a

qb

qa

· · ·

Fig. 2. Case when n is divisible by b

We develop recursive formulas for T (n, a, b). These formulas lead to a straight-
forward polynomial time algorithm (in size of n, a, b).

3.1 Case n ≥ b

If n is divisible by b, we can derive a closed form. Let n = qb and look at Fig. 2.
We can easily calculate the number of lattice points in the lower right triangle.
Observe that the lower right triangle is identical to the upper left triangle and it
contains the same number of lattice points. Summing up both triangles we get
the rectangle with diagonal counted twice. The number of lattice points in the
rectangle is (qb+1)(qa+1) and the number of points on the diagonal is equal to
q + 1. The sum of both values divided by two gives the number of lattice points
in a triangle. Now, we subtract the number of lattice points on X-axis getting
the result:

T (qb, a, b) =
(qa + 1)(qb + 1) + q + 1

2
− (qb + 1) =

q(qab − b + a + 1)
2

. (7)

More generally, suppose n ≥ b and let n = qb + r, where q ≥ 1 and 0 ≤ r < b.
The sum can be splitted into three parts:

qb+r∑

i=1

⌊a

b
i
⌋

=
qb∑

i=1

⌊a

b
i
⌋

+
qb+r∑

i=qb+1

⌊a

b
i
⌋

=
qb∑

i=1

⌊a

b
i
⌋

+
r∑

i=1

⌊a

b
(qb + i)

⌋

=
qb∑

i=1

⌊a

b
i
⌋

+ r · aq +
r∑

i=1

⌊a

b
i
⌋
.

See Fig. 3 for intuition. As a result we get the equation:

T (qb + r, a, b) = T (qb, a, b) + rqa + T (r, a, b). (8)

As a consequence of the above formula together with equation (7) we can reduce
n below b in a single step. Therefore, in the succeeding sections we assume that
n < b. Notice that it also means that there is no integral point on the line y = a

b x
for x = 1, 2, . . . , n.

Order Statistics in the Farey Sequences in Sublinear Time 227

qbX
i=1

ja

b
i
k r · qa

rqb

qa

n

rX
i=1

ja

b
i
k

Fig. 3. Case n ≥ b

n

ja

b
n

k

S1

S2

Fig. 4. Graphical representation of sums
∑

�a
b
i� and

∑
� b

a
i�

3.2 Case a ≥ b

If a = qb + r for some q ≥ 1 and 0 ≤ r < b, we can rewrite:
n∑

i=1

⌊a

b
i
⌋

=
n∑

i=1

⌊qb + r

b
i
⌋

=
n∑

i=1

qi +
n∑

i=1

⌊r

b
i
⌋

= q
n(n + 1)

2
+

n∑

i=1

⌊r

b
i
⌋
.

Thus in this case we have the formula:

T (n, qb + r, b) =
n(n + 1)

2
q + T (n, r, b). (9)

3.3 Inverting a
b

We use graphical representation to correlate sums
∑�a

b i� and
∑� b

a i� in one
equation. In Fig. 4 area labelled S1 represents the sum

∑n
i=1�a

b i�. The largest
x and y coordinates of lattice points in this area are n and �a

b n� respectively.
Consider the rectangular set R of lattice points with x coordinates spanning
from 1 to n and with y coordinates spanning from 1 to �a

b n�. This set has size
n�a

b n�. Let S2 be complement of S1 in R. We assumed that n < b and there is
no element in R lying on the line y = a

b x. Therefore, for given j = 1, . . . , �a
b n�,

the number of lattice points with y coordinate set to j in area S2 is equal to
� b

aj�. Hence, the size of S2 is
∑�a

b n�
j=1 � b

aj�. Since |S1| + |S2| = |R| we have

n∑

i=1

⌊a

b
i
⌋

+
�a

b n�∑

j=1

⌊ b

a
j
⌋

= n
⌊a

b
n
⌋
.

228 J. Pawlewicz

Thus, the last recursive formula is

T (n, a, b) = n
⌊a

b
n
⌋

− T
(⌊a

b
n
⌋
, b, a

)
. (10)

It allows to swap a with b in T (·, a, b). It can be used to make a ≥ b. Notice that
after swapping a with b our assumption that n < b holds since if n < b, then
a
b n < a and �a

b n� < a.

3.4 Final Algorithm

Combining presented recursive formulas for T (n, a, b) we can design the final
algorithm. The procedure is similar to the Euclidean algorithm. First, if n ≥ b
reduce n using (8) making n < b, then repeat the following steps until n or a
reaches zero. If a < b, use (10) to exchange a with b. Next, use (9) to reduce a
to a mod b.

The number of steps in the above procedure is O(log max(n, a, b)) as it is in
the Euclidean algorithm. The algorithm is fairly simple and it can be written in
the recursive fashion.

4 Summary and Remarks

We presented a simple sublinear algorithm for the rank problem. We showed
that this algorithm has O(n3/4) time complexity and needs O(

√
n) space.

The order statistics problem was reduced to the rank problem. We included
two reductions. Both call the rank problem O(log n) times and run in O(log n)
time. Therefore, we showed that the order statistics in the Farey sequences can
be computed in O(n3/4 log n) time.

In reduction exploring the Brocot–Stern tree, we showed how to find a ra-
tional number if we are only allowed to compare it with fractions. We remark
that this technique can be used in other fields. For instance, it can be used to
expand a real number into a continued fraction. We do not need the value of
this number. We only need a comparison procedure between that number and
an arbitrary fraction. For instance, numbers with such property are algebraic
numbers. However, in this case there are other methods of expanding them into
continued fractions [6]. The usefullness of the presented technique should be
further investigated.

References

1. Pǎtrascu, C.E, Pǎtrascu, M.: Computing order statistics in the Farey sequence.
In: Buell, D.A. (ed.) Algorithmic Number Theory. LNCS, vol. 3076, pp. 358–366.
Springer, Heidelberg (2004)

2. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn.
Addison-Wesley, London, UK (1994)

Order Statistics in the Farey Sequences in Sublinear Time 229

3. Yanagisawa, H.: A simple algorithm for lattice point counting in rational polygons.
Research report, IBM Research, Tokyo Research Laboratory (August 2005)

4. Barvinok, A.I: A polynomial time algorithm for counting integral points in polyhedra
when the dimension is fixed. Mathematics of Operations Research 19(4), 769–779
(1994)

5. Beck, M., Robins, S.: Explicit and efficient formulas for the lattice point count in
rational polygons using Dedekind–Rademacher sums. Discrete and Computational
Geometry 27(4), 443–459 (2002)

6. Brent, R.P., van der Poorten, A.J., te Riele, H.: A comparative study of algorithms
for computing continued fractions of algebraic numbers. In: Cohen, H. (ed.) Algo-
rithmic Number Theory. LNCS, vol. 1122, pp. 35–47. Springer, Heidelberg (1996)

New Results on Minimax Regret Single Facility

Ordered Median Location Problems on
Networks�

Justo Puerto, Antonio M. Rodriguez-Chia, and Arie Tamir

1 Facultad de Matemáticas. Universidad de Sevilla
2 Facultad de Ciencias. Universidad de Cádiz

3 School of Mathematical Sciences. Tel Aviv University

Abstract. We consider the single facility ordered median location prob-
lem with uncertainty in the parameters (weights) defining the objective
function. We study two cases. In the first case the uncertain weights be-
long to a region with a finite number of extreme points, and in the second
case they must also satisfy some order constraints and belong to some
box, (convex case). To deal with the uncertainty we apply the minimax
regret approach, providing strongly polynomial time algorithms to solve
these problems.

Keywords: Analysis of algorithms, networks, facility location.

1 Introduction

The definition of an instance of an optimization problem requires the specifi-
cation of the problem parameters, like resource limitations and coefficients of
the objective function in a linear program, or edge capacities in network flow
problems, which may be uncertain or imprecise. Uncertainty/imprecision can be
structured through the concept of a scenario which corresponds to an assignment
of plausible values to the model parameters. In general, the set of all admissible
scenarios may depend on the properties of the underlying model, and on some
possible known relationships between the model parameters. Nevertheless, we
note that in most published studies it has been assumed that each parameter
can independently take on values in some prespecified interval. This is the so
called interval data approach.

One of the most common approaches to deal with uncertain data is throughout
the minimax absolute regret criterion. In this approach the goal is to minimize
the worst case opportunity loss, defined as the difference between the achieved
objective-function value and the optimal objective-function value under the re-
alized scenario. We refer the reader to [2,3,5,8,12,17], where recent results on
this subject for general optimization problems are described.

� Partially supported by grants n. MTM2004-0909, SAB2005-0095, P06-BFM-01366,
MTM2007-67433-C02.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 230–240, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

New Results on Minimax Regret Single Facility OM Location Problems 231

We were motivated by facility location optimization problems where the exact
nature of the optimality criteria was uncertain. Consider, for example, a location
model in which the central administration subsidizes the transportation cost of
the users only after the establishment of a server. Hence, at the moment when
the facility has to be established, it is not yet clear what is the cost function
that the central administration will apply for determining the magnitude of the
subsidy. The administration may decide that the subsidy will be proportional to
the distances traveled to the facility by all the customers with the exception of
some unknown subset of outliers, e.g., those customers who are too close or too
far to the server. The uncertainty is in the size or the exact definition of the set
of outliers. In such a case, the criterion to be chosen ‘a priori’ for the location
of the server might be taken as minimizing the regret of the decision among a
certain family of criteria.

The approach that we suggest to deal with this uncertainty is to limit ourselves
to certain families of objective functions, and apply the approach of minimizing
the maximum regret with respect to the selection of an objective within the pre-
specified. Our approach is different from the approach in the existing literature
on minimax regret facility location models, where the objective function used is
usually assumed to be known and certain ([4,5]). Specifically, in this paper, we
will restrict ourselves to the family of ordered median functions (OMF) which
has been studied extensively in the last decade in location theory, see [9,15]. This
family unifies large variety of criteria used in location modeling.

The OMF is a real function defined on R
n and characterized by a sequence of

reals, λ = (λ1, ..., λn). For a given point z ∈ R
n, let z̄ ∈ R

n be the vector obtained
from z by sorting its components in nondecreasing order. In the context of a
single facility (server) location model with n demand points, the OMF objective
is applied as follows. Let x denote the location of the server in the respective
metric space, and let z(x) denote the vector of the n weighted distances of the
demand points to the server at x. The value of the ordered median objective
at x is then defined as the scalar product of λ with z̄(x). As noted above, this
function unifies and generalizes the classical and most common criteria, i.e.,
center and median, used in location modeling. (We get the median objective
when λi = 1, i = 1, ..., n, and the center objective when λi = 0, i = 1, ..., n − 1
and λn = 1.) Another important case is the k-centrum objective, where the goal
is to minimize the sum of the k-largest weighted distances to the server. This
case is characterized by λi = 0, i = 1, ..., n − k, and λi = 1, i = n − k + 1, ..., n.
In addition to the above examples, the ordered median objective generalizes
other popular criteria often used in facility location studies, e.g., centdian and
(k1, k2)-trimmed mean.

In this paper, we solve a variety of single facility minimax regret ordered
median problems on general networks finding best solutions on each edge. The
reader can find further details in [16]. A summary of the results is given in
Table 1.

The paper is organized as follows. In Section 2, we present the single facility
ordered median problem in general networks. Section 3 introduces the minimax

232 J. Puerto, A.M. Rodŕıguez-Ch́ıa, and A. Tamir

Table 1. Summary of results

Objective function Complexity
OMF with lower and upper bounds O(m2n4 log n)

(k1, k2)-trimmed mean O(mn4)

k-centrum O(mn2 log2 n)

Convex OMF with lower and upper bounds O(m2n6 log4 n)

Convex OMF with lower and upper bounds on trees O(n6 log4 n)

regret ordered median problem and some results concerning the convexity of
the objective function. In Section 4, we develop strongly polynomial algorithms
for this type of problems when the feasible region of the λ-weights has a finite
number of extreme points. Section 5 is devoted to analyze the convex case, which
is defined by the property that the λ-weights are given in nondecreasing order;
for this case a strongly polynomial algorithm is developed.

2 Notation

Let G = (V, E) be an undirected graph with node set V = {v1, ..., vn} and edge
set E, |E| = m. Each edge e ∈ E, has a positive length le, and is assumed to
be rectifiable. In particular, an edge e is identified as an interval of length le, so
that we can refer to its interior points. Let A(G) denote the continuum set of
points on the edges of G. Each subgraph of G is also viewed as a subset of A(G),
e.g., each edge e ∈ E is a subset of A(G). We refer to an interior point on an
edge by its distance along the edge to the nodes of the edge.

The edge lengths induce a distance function d on A(G) and thus A(G) is a
metric space , see [18]. We consider a set of nonnegative weights {w1, . . . , wn},
called w-weights, where wi, i = 1, . . . , n, is associated with node vi and represents
the intensity of the demand at this node.

For any x ∈ A(G), let σ = σ(x) be a permutation of the set {1, . . . , n}
satisfying wσ1d(vσ1 , x) ≤ . . . ≤ wσnd(vσn , x). For i = 1, . . . , n, denote d(i)(x) =
wσid(vσi , x). (d(i)(x) is an i-th smallest element in the set {wjd(vj , x)}j).

For a given vector λ = (λ1, . . . , λn) with real components, called λ-weights,
the ordered median function on A(G) is defined as

fλ(x) :=
n∑

i=1

λiwσid(vσi , x).

The single facility ordered median problem is to minimize fλ(x) over A(G), [15].
An ordered median function is called convex if 0 ≤ λ1 ≤ . . . ≤ λn.
A point x ∈ A(G) is an equilibrium point with respect to a pair of nodes vk,

vl, k �= l, if wk d(vk, x) = wl d(vl, x). A point x ∈ A(G) is a bottleneck point if for
some i = 1, . . . , n, with wi > 0, and e ∈ E, x is the unique maximum point of
the (concave) function wid(vi, y) when y is restricted to be in e. Denote by EQ
the set of all equilibrium and bottleneck points. This set can be a continuum set

New Results on Minimax Regret Single Facility OM Location Problems 233

even in the case of a tree network when two nodes are equally weighted. Let EQ
be the set consisting of the nodes of G and all the boundary points of EQ. Let B
be the subset consisting of the nodes of G and the bottleneck points in EQ. For
each e ∈ E define EQ(e) = EQ∩e and B(e) = B∩e. Note that |EQ(e)| = O(n2)
and |B(e)| = O(n).

For each e ∈ E the points in EQ(e) (B(e)) induce a partition of the edge e
into |EQ(e)| − 1 (|B(e)| − 1) subedges. These subedges (subinterals) are viewed
as consecutive subintervals of the rectified edge (interval) e.

After computing the distances between all the nodes, the effort to compute
and sort the points in EQ(e) (B(e)) for each e ∈ E is O(n2 + |EQ(e)| log n)
(O(n + |B(e)| log n)). Note that for each subinterval in the partition induced by
B(e), each function wid(vi, x) is linear. Moreover, for each open subinterval in the
partition induced by EQ(e), no pair of functions in the collection {wid(vi, x)}i

intersect.

3 The Minimax Regret Ordered Median Problem

We assume that the vector λ is unknown and can take on any value in some
compact set Λ ⊂ R

n. Any λ ∈ Λ is called a scenario and represents a possible
λ−weight instance. The minimax regret ordered median optimization problem
is formally defined by:

min
x∈A(G)

R(x) := max
λ∈Λ

max
y∈A(G)

(
fλ(x) − fλ(y)

)
.

For any choice of the λ-weights, EQ contains at least one optimal solution for
the respective ordered median problem, [15]. Thus, for a given x ∈ A(G)

max
y∈A(G)

(
fλ(x) − fλ(y)

)
= max

y∈EQ

(
fλ(x) − fλ(y)

)
= fλ(x) − fλ(y∗(λ)),

where y∗(λ) ∈ EQ is a minimizer of fλ(u) with u ∈ A(G). For each fixed
y ∈ A(G) define

Ry(x) = max
λ∈Λ

(
fλ(x) − fλ(y)

)
. (1)

By definition, for a given pair x, y ∈ A(G) the function fλ(x)− fλ(y) is linear in
λ. Therefore, Ry(x) = max

λ∈ext(CH(Λ))

(
fλ(x)− fλ(y)

)
, where CH(Λ) is the convex

hull of Λ and ext(CH(Λ)) is the set of extreme points of CH(Λ).
With this notation

R(x) = max
y∈EQ

Ry(x). (2)

Consider an edge e ∈ E and let xe
1 < . . . < xe

q(e), be the sequence of equi-
librium points in EQ(e). (q(e) = |EQ(e)|.) Similarly, let x̄e

1 < . . . < x̄e
b(e), be

the sequence of bottleneck points in B(e). (b(e) = |B(e)|.) (See Figure 1). From
the definition of equilibrium and bottleneck points and the above notation, we
clearly have the following results.

234 J. Puerto, A.M. Rodŕıguez-Ch́ıa, and A. Tamir

Lemma 1. Consider a subedge [xe
k, xe

k+1], 1 ≤ k < q(e). For any λ ∈ Λ, the
function fλ(x) is linear on the subedge. For any y ∈ EQ the function Ry(x) is
continuous and convex on the subedge. Moreover, if the number of extreme points
of CH(Λ) is finite Ry(x) is also piecewise linear on the subedge.

Lemma 2. For any y ∈ EQ, the function fλ(y) is linear in λ. Let P ⊆ A(G)
be a path such that fλ(x) is convex on P for any λ ∈ Λ. Then for any y ∈ EQ
the function Ry(x) is convex on P . Moreover, the function R(x) is convex on P .

To solve the minimax regret ordered median problem on a general network we
will find the best local solution on each edge, i.e., we will solve m subproblems.
We refer to each local subproblem as a restricted subproblem.

d(1)(y)

d(2)(y)

d(3)(y)

d(4)(y)

d(1)(x)

d(2)(x)

d(3)(x)

d(4)(x)

d(1)(x)

d(2)(x)

d(3)(x)

d(4)(x)

d(1)(x)

d(2)(x)

d(3)(x)

d(4)(x)

x1 x2 x4x3 x5 x6

x̄1 x̄3x̄2 x̄4
z1
1 z1

2 z1
3 z2

1 z2
2 z2

3 z5
1 z5

2

vi vj| || || | | || | || | |

Fig. 1. Equilibrium and bottleneck points

4 Specific Models

In this section, we focus on solving restricted subproblems for a variety of sets
Λ, where the number of extreme points of the convex hull of Λ is finite. As noted
above, we concentrate on finding the best solution on each edge. Hence, we focus
on optimizing R(x) on a given edge e.

We start with the case where Λ = {(λ1, . . . , λn) : ai ≤ λi ≤ bi, i = 1, . . . , n}.
The reader may notice that this type of sets is the most common one used in
the literature on regret analysis, see [12]. Here, we can strengthen the result in
Lemma 1. Consider an edge e ∈ E.

Lemma 3. For each 1 ≤ k < q(e), and any y ∈ EQ the function Ry(x) is the
maximum of n linear functions in [xe

k, xe
k+1].

New Results on Minimax Regret Single Facility OM Location Problems 235

Lemma 4. For each 1 ≤ k < q(e), the function R(x) is the upper envelope of
O(n|EQ|) linear functions for all x ∈ [xe

k, xe
k+1].

To solve the restricted problem on an edge e, we first do some preprocessing on
this edge. Assume that we have already computed and sorted the equilibrium
points in EQ(e). For each triplet y ∈ EQ, vi, vj ∈ V , we compute the at most
two roots of the equation wid(x, vi) = wjd(y, vj) on e. Define BP (e) to be the
set consisting of EQ(e) and all these roots. |BP (e)| = O(n2|EQ|). Moreover, for
each i let zk

i (y) be the solution, if it exists, to the equation d(i)(x) = d(i)(y) (in
the variable x), in the interval [xe

k, xe
k+1]. Each point zk

i (y), is in BP (e).) Finally,
we sort the elements in BP (e). The total preprocessing effort is O(n2|EQ| log n).

Corollary 1. After spending O(n2|EQ| logn) time on preprocessing, for each
1 ≤ k < q(e) the local minimizer of R(x) over the interval [xe

k, xe
k+1] can be

computed in O(n|EQ|) time. The optimal solution to the minimax regret ordered
median problem on the edge e can be computed in O(n|EQ||EQ(e)|) time.

The above result implies that for a general network the total time to solve the
minimax regret ordered median problem over a box is O(m2n5). The latter bound
can be further improved. Focusing on a given edge, we dynamically maintain
[11] the upper envelope of O(|EQ|) linear functions which define the function
R(x) over a refined subinterval defined by two consecutive elements in the set
BP (e). Specifically, following the ordering of the elements in BP (e) we update
this envelope. For a given element u ∈ BP (e), if u ∈ EQ(e) we may need to
update O(|EQ|) linear functions since the ordering or some of the slopes of
the functions {d(i)(x)} change. (For each y ∈ EQ we need to update at most
two elements, per pair of indices j, k such that wjd(vj , u) = wkd(vk, u), in the
sequence {d(i)(x) − d(i)(y)}i, or change the slope of a d(i)(x) function, per each
j such that u is the maximum of the function wjd(vj , x) on e.) If u coincides
with some element zk

i (y) defined above, we need to update one function, per
each y ∈ EQ and j, k such that wjd(vj , u) = d(i)(u) = d(i)(y) = wkd(vk, y), in
the collection. Thus, the total number of insertions and deletions of functions to
the collection of O(|EQ|) functions in the upper envelope is O(|EQ|n2). Using
the data structure in Hershberger and Suri [11], each insertion and deletion can
be performed in O(log n) time. Also, the minimum of R(x) over each subinterval
connecting two consecutive elements of BP (e) can be computed in O(log n) time.

Since there are O(n2) points in EQ(e) and O(n2|EQ|) points in BP (e) the
overall effort to find the best solution on e is O(n2|EQ| log n).

Theorem 1. The total time to solve the single facility minimax regret ordered
median problem over a box on a general graph is O(m2n4 log n).

We note that in some important cases the number of extreme points of the convex
hull of Λ is relatively small. Hence, it may be advantageous to consider these
extreme points explicitly. This is the case of the family of (k1, k2)-trimmed mean
functions [15], mentioned in the introduction. (Other cases are analyzed in the
next section.) For this family Λ = {(λ1, . . . , λn) : ∃k1, k2; k1 +k2 < n, λ1 = . . . =

236 J. Puerto, A.M. Rodŕıguez-Ch́ıa, and A. Tamir

λk1 = λn−k2+1 = . . . = λn = 0, λk1+1 = . . . = λn−k2 = 1}. The extreme points
of the convex hull of Λ are the vectors of the form (0, . . . , 0, 1, . . . , 1, 0, . . . , 0).
Therefore, in total there are O(n2) extreme points.

Consider an edge e ∈ E. We claim that for this family, on each interval defined
by two consecutive points of EQ(e), the function R(x) can be described as an
upper envelope of O(n2) linear functions. To facilitate the discussion, for each
k = 1, . . . , n, let Sk(x) =

∑n
i=n−k+1 d(i)(x).

For each 1 ≤ s < q(e), and for each x ∈ [xe
s, x

e
s+1], we have R(x) =

max
k1,k2;k1+k2<n

((
n−k2∑

i=k1+1

d(i)(x)

)
− �k1,k2

)
, where �k1,k2 = min

y∈EQ

n−k2∑

l=k1+1

d(l)(y).

Hence, R(x) = max
k1,k2;k1+k2<n

(
Sn−k1(x) − Sk2(x) − min

y∈EQ

(
Sn−k1(y) − Sk2(y)

))
.

Since R(x) is the upper envelope of O(n2) linear functions, its minimum on
the interval [xe

s, x
e
s+1] can be computed in O(n2) time using the algorithm in

[14]. Hence, the solution to the minimax regret ordered median problem on a
given edge e for this family of functions, can be obtained in O(n2|EQ(e)|) time.

Theorem 2. The total time to solve the single facility minimax regret (k1, k2)-
trimmed mean problem on a general graph is O(mn4).

5 Minimax Regret Convex Ordered Median Problem

In this section we analyze the minimax regret convex ordered median problem
which includes several interesting and most common families of functions used
in Location Theory.

The first is the family of k-centrum functions where k can vary between 1 and
n (see [19]). We have Λ = {(λ1, . . . , λn) : λ1 ≤ . . . ≤ λn and λi ∈ {0, 1}, i =
1, ..., n}. The n extreme points of the convex hull of Λ are the vectors of the form
(0, . . . , 0, 1, . . . , 1).

Consider an edge e ∈ E. We claim that for this family, on each interval
defined by two consecutive points of B(e), the function R(x) can be described
as an upper envelope of n convex functions. Indeed, for each 1 ≤ s < b(e),

and for each x ∈ [x̄e
s, x̄

e
s+1], R(x) = max

k=1,...,n

((n∑

i=n−k+1

d(i)(x)
)

− ζk

)
, where

ζk = min
y∈EQ

n∑

l=n−k+1

d(l)(y). Hence,

R(x) = max
k=1,...,n

(
Sk(x) − min

y∈EQ
Sk(y)

)
.

Note that for each i = 1, . . . , n, the function d(vi, x) is linear over the subin-
terval [x̄e

s, x̄
e
s+1]. Therefore, for each k = 1, . . . , n, the function

∑n
l=n−k+1 d(l)(x)

is convex over the subinterval [x̄e
s, x̄

e
s+1]. (See [15,19]).

New Results on Minimax Regret Single Facility OM Location Problems 237

To evaluate R(x) for a given x, it is sufficient to sort the elements {wid(x, vi)}
in order to compute the terms {Sk(x)}k, and finally find maxk=1,...,n

(
Sk(x) −

miny∈EQ Sk(y)
)
. The minimum of R(x) on the interval [x̄e

s, x̄
e
s+1] can then be

computed in O(n log2 n) time by using the parametric approach of Megiddo [13]
with the modification in Cole [7]. Hence, the solution to the minimax regret
ordered median problem on a given edge e for this family of functions can be
obtained in O(n log2 n|B(e)|) time. (We assume that in the preprocessing phase
of the algorithm we have already calculated the terms {ζk}k. The total effort for
this phase is O(mn2 log n), see [15]).

Theorem 3. The total time to solve the minimax regret k-centrum problem on
a general graph is O(mn2 log2 n).

The above analysis and algorithm are also applicable to the more general convex
case defined by Λ = {(λ1, . . . , λn) : λ1 ≤ . . . ≤ λn and λi ∈ [a, b], i = 1, . . . , n},
where a and b satisfy 0 ≤ a ≤ b, see [15]. In this case we have

Λ = CH({(λ1, . . . , λn) : λ1 ≤ . . . ≤ λn and λi ∈ {a, b}, i = 1, . . . , n}).

As another example of a convex family of ordered median functions with a
small number of extreme points, consider the model corresponding to the α-
centdian problem, see [15]. In this case, Λ = {(λ1, . . . , λn) : ∃ 0 ≤ α ≤ 1, λ1 =
. . . = λn−1 = α, and λn = 1}. We have ext(Λ) = {(0, . . . , 0, 1), (1, . . . , 1)}.

5.1 The Case of Interval Weights and Order Constraints

In this section, we consider the minimax regret convex ordered median problem
where the λ−weights are in the set,

Λ≤ = {(λ1, . . . , λn) : λi ∈ [ai, bi] for i = 1, . . . , n, and 0 ≤ λ1 ≤ . . . ≤ λn}.

Without loss of generality, we may assume that both sequences {ai} and {bi}
are nonnegative and nondecreasing. We note that the components of each ex-
treme point of Λ≤ are elements of the set AB = {a1, . . . , an, b1, . . . , bn}. Indeed,
let λ be an extreme point and suppose without loss of generality that some
λi �∈ AB. Let 1 ≤ s ≤ i ≤ t ≤ n be such that λs−1 < λs = λi = λt < λt+1.
For ε > 0 sufficiently small, consider the vector λ(ε+) defined by setting
λj(ε+) = λj + ε for s ≤ j ≤ t and λj(ε+) = λj otherwise. Similarly, con-
sider the vector λ(ε−) defined by setting λj(ε−) = λj − ε for s ≤ j ≤ t and
λj(ε−) = λj otherwise. The vector λ is the midpoint of the interval connecting
λ(ε+) and λ(ε−), contradicting the fact that λ is an extreme point of Λ≤.

Recall that for a given y ∈ EQ, Ry(x) = maxλ∈Λ≤

(
fλ(x) − fλ(y)

)
, see (1).

Evaluating R(x) for a given x amounts to computing the |EQ| values Ry(x) for
all y ∈ EQ, see (2).

We propose an algorithm to compute Ry(x) for any fixed y ∈ EQ. Consider
an edge e ∈ E. Let x̄e

k and x̄e
k+1 be two consecutive elements of B(e). fλ(x) is a

238 J. Puerto, A.M. Rodŕıguez-Ch́ıa, and A. Tamir

convex function on [x̄e
k, x̄e

k+1], see [15]. By Lemma 2, the functions {Ry(x)}y∈EQ,
as well as R(x), are all piecewise linear and convex on [x̄e

k, x̄e
k+1].

For a fixed y ∈ EQ and x ∈ [x̄e
k, x̄e

k+1] the evaluation of Ry(x) can be done
by solving the following linear program:

Ry(x) = max cT (x)λ − hT (y)λ
s.t. λi − λi+1 ≤ 0, ∀i = 1, . . . , n − 1,

ai ≤ λi ≤ bi, ∀i = 1, . . . , n,

where cT (x) = (d(1)(x), . . . , d(n)(x)) and hT (y) = (d(1)(y), . . . , d(n)(y)). (Recall
that the optimal solution λ∗ satisfies λ∗i ∈ AB for i = 1, . . . , n).

Defining μi = λi −ai, βi = bi −ai, for i = 1, . . . , n, αn = 0, and αi = ai+1 −ai

for i = 1, . . . , n − 1, the formulation above reduces to:

n∑

i=1

ai(d(i)(x) − d(i)(y))+ max cT (x)μ − hT (y)μ

s.t. μi − μi+1 ≤ αi, ∀i = 1, . . . , n − 1,

μi ≤ βi, ∀i = 1, . . . , n,

μi ≥ 0, ∀i = 1, . . . , n.

Setting u0 = un = 0, the formulation of its corresponding dual problem is:

n∑

i=1

ai(d(i)(x) − d(i)(y))+ min
n∑

i=1

αiui +
n∑

i=1

βiti

s.t. ui − ui−1 + ti ≥ d(i)(x) − d(i)(y), ∀i = 1, . . . , n,

ui, ti ≥ 0, i = 1, . . . , n.

Notice that the matrix defining the above linear program is totally unimodular
since it is a flow matrix augmented by the identity matrix.

The above model corresponds to the following single commodity min-cost
flow problem. (See Figure 2.) For each i = 1, . . . , n − 1, ui is the flow on the
arc (i + 1, i), and for each i = 1, . . . , n, ti is the flow on left-arc (0, i). For
i = 1, . . . , n, the demand at node i is d(i)(x) − d(i)(y). Note that the demand
can be of any sign. To account for the sign of the demand for i = 1, . . . , n, define
δ+
i (x) = max{0, d(i)(x)−d(i)(y)} and δ−i (x) = max{0, −(d(i)(x)−d(i)(y))}. The

label attached to each edge in the graph has two coordinates. The left coordinate
is the capacity upper bound on the flow, and the right one is the per unit cost
of flow on the edge. The min-cost flow problem is to find the minimum cost of
transporting

∑n
i=1 δ+

i (x) units from the source node 0 to the destination n + 1.
The fastest known strongly polynomial algorithm to solve a single com-

modity min-cost flow problem on a network with n nodes and m edges is
O(mS(n, m) log n), where S(n, m) is the time to solve the single source short-
est path problem on a network with n nodes and m edges, having nonnegative
lengths. (See Ahuja et al. [1].) This algorithm has O(m log n) scaling phases,
where in each phase a shortest path problem is solved in S(n, m) time. For a

New Results on Minimax Regret Single Facility OM Location Problems 239

general graph S(n, m) = O(m + n log n) time. In our case m, the number of
edges, satisfies m ≤ 4n, and S(n, m) = O(n log n). Moreover, the above flow
problem is defined on a special planar network. It is a 3-tree, i.e., its tree-width
is bounded by 3. The latter bound follows from the fact that this network has a
separator consisting of the three nodes, {0, �n/2�, n + 1}. (Each of the two con-
nected components obtained by removing these three nodes is a path consisting
of at most n/2 nodes. In particular, each component has a separator consisting
of its median node).

Using the linear time algorithm in Henzinger et al., [10], designed for general
planar graphs, or the more special algorithm for graphs with bounded tree-
width in Chaudhuri and Zaroliagis, [6], in our case we have S(n, m) = O(n).
We conclude that computing Ry(x) for a given x and y ∈ EQ can be done
in O(n2 log n) time. Moreover, applying the results in [6], Ry(x) can also be
computed in O(n log2 n) parallel time with O(n/ log n) processors. With the
above tools we can then directly use the parametric approach in Megiddo [13]
with the modification in Cole [7], to obtain the next result.

n
. . .

(+∞, αi)

i

(+∞, αi−1)
. . .

1

(+∞, βn)
(+∞, βi) (δ−

i (x), 0) (δ−
1 (x), 0)

(+∞, β1)

(δ+
i (x), 0)(δ+

n (x), 0) (δ+
1 (x), 0)

(δ−
n (x), 0)

n + 1

0

δ+
i (x) = max{0, d(i)(x) − d(i)(y)}

δ−
i (x) = max{0, d(i)(y) − d(i)(x)}

� � �

�

�

Fig. 2. Illustration of a n-diamond type network

Theorem 4. The total time to solve the single facility minimax regret convex
ordered median problem on a general graph is O(m2n6 log4 n).

Finally, we use global convexity properties of the function R(x) on tree graphs to
solve the minimax regret convex ordered median problem on such graphs more
efficiently.

240 J. Puerto, A.M. Rodŕıguez-Ch́ıa, and A. Tamir

Theorem 5. The total time to solve the single facility minimax regret convex
ordered median problem on a tree graph is O(n6 log4 n). If the node weights are
identical the total time reduces to O(n5 log4 n).

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall, New Jersey
(1993)

2. Aissi, H., Bazgan, C., Vanderpooten, D.: Approximation of min-max and min-
max regret versions of some combinatorial optimization problems. Eur. J. Oper.
Res. 179, 281–290 (2007)

3. Averbakh, I.: On the complexity of a class of combinatorial optimization problems
with uncertainty. Math. Program. 90, 263–272 (2001)

4. Averbakh, I., Berman, O.: An improved algorithm for the minmax regret median
problem on a tree. Networks 41(2), 97–103 (2003)

5. Averbakh, I., Berman, O.: On the complexity of minmax regret linear program-
ming. Eur. J. Oper. Res. 160, 227–231 (2005)

6. Chaudhuri, S., Zaroliagis, C.: Shortest paths in digraphs of small treewidth. Part
I: Sequential algorithms. Algorithmica. 27, 212–226

7. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J.
Assoc. Comput. Mach. 34, 200–208 (1987)

8. Conde, E.: An improved algorithm for selecting p items with uncertain returns
according to the minmax-regret criterion. Math. Program 100, 345–353 (2004)

9. Francis, R.L., Lowe, T.J., Tamir, A.: Aggregation error bounds for a class of loca-
tion models. Oper. Res. 48, 294–307 (2000)

10. Henzinger, M.R., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algo-
rithms for planar graphs. Journal of Computers and System Sciences 55, 3–23
(1997)

11. Hershberger, J., Suri, S.: Off-line maintenance of planar configurations. J. Algo-
rithms 21(3), 453–475 (1996)

12. Kouvelis, P., Yu, G.: Robust discrete optimization and its applications. Kluwer
Academic Publishers, Dordrecht (1997)

13. Megiddo, N.: Applying parallel computation algorithms in the design of serial al-
gorithms. J. Assoc. Comput. Mach. 30, 852–865 (1983)

14. Megiddo, N.: Linear-time algorithms for linear programming in R
3 and related

problems. SIAM J. Comput. 12, 759–776 (1983)
15. Nickel, S., Puerto, J.: Location Theory: A unified approach. Springer, Heidelberg

(2005)
16. Puerto, J., Rodriguez-Chia, A.M., Tamir, A.: Minimax regret single facility or-

dered median location problems on networks. Preprint Facultad de Matemáticas,
Universidad de Sevilla (2007)

17. Ravi, R., Sinha, A.: Hedging uncertainty: approximation algorithms for stochastic
optimization problems. Math. Program. 108, 97–114 (2006)

18. Tamir, A.: On the solution value of the continuous p-center location problem on a
graph. Math. Oper. Res. 12, 340–349 (1987)

19. Tamir, A.: The k-centrum multi-facility location problem. Discrete Appl.
Math. 109, 292–307 (2000)

Dial a Ride from k-Forest

Anupam Gupta�, MohammadTaghi Hajiaghayi��,
Viswanath Nagarajan���, and R. Ravi���

Carnegie Mellon University, Pittsburgh PA 15213, USA

Abstract. The k-forest problem is a common generalization of both
the k-MST and the dense-k-subgraph problems. Formally, given a metric
space on n vertices V , with m demand pairs ⊆ V × V and a “target”
k ≤ m, the goal is to find a minimum cost subgraph that connects
at least k demand pairs. In this paper, we give an O(min{√

n,
√

k})-
approximation algorithm for k-forest, improving on the previous best
ratio of O(min{n2/3,

√
m} log n) by Segev and Segev [20].

We then apply our algorithm for k-forest to obtain approximation al-
gorithms for several Dial-a-Ride problems. The basic Dial-a-Ride prob-
lem is the following: given an n point metric space with m objects each
with its own source and destination, and a vehicle capable of carrying
at most k objects at any time, find the minimum length tour that uses
this vehicle to move each object from its source to destination. We
prove that an α-approximation algorithm for the k-forest problem im-
plies an O(α · log2 n)-approximation algorithm for Dial-a-Ride. Using our
results for k-forest, we get an O(min{

√
n,

√
k}· log2 n)-approximation al-

gorithm for Dial-a-Ride. The only previous result known for Dial-a-Ride
was an O(

√
k log n)-approximation by Charikar and Raghavachari [5];

our results give a different proof of a similar approximation guarantee—
in fact, when the vehicle capacity k is large, we give a slight improvement
on their results.

The reduction from Dial-a-Ride to the k-forest problem is fairly ro-
bust, and allows us to obtain approximation algorithms (with the same
guarantee) for the following generalizations: (i) Non-uniform Dial-a-Ride,
where the cost of traversing each edge is an arbitrary non-decreasing
function of the number of objects in the vehicle; and (ii) Weighted Dial-
a-Ride, where demands are allowed to have different weights. The reduc-
tion is essential, as it is unclear how to extend the techniques of Charikar
and Raghavachari to these Dial-a-Ride generalizations.

1 Introduction

In the Steiner forest problem, we are given a set of vertex-pairs, and the goal is
to find a forest such that each vertex pair lies in the same tree in the forest. This

� Supported in part by an NSF CAREER award CCF-0448095, and by an Alfred P.
Sloan Fellowship.

�� Supported in part by NSF ITR grant CCR-0122581 (The ALADDIN project).
��� Supported in part by NSF grants CCF-0430751 and ITR grant CCR-0122581 (The

ALADDIN project).

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 241–252, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

242 A. Gupta et al.

is a generalization of the Steiner tree problem, where all the pairs contain a com-
mon vertex called the root; both the tree and forest versions are well-understood
fundamental problems in network design, and constant factor approximation al-
gorithms are known [17,1,12]. An important extension of the Steiner tree prob-
lem studied in the late 1990s was the k-MST problem, where one sought the
least-cost tree that connected any k of the terminals: several approximations
algorithms were given for the problem, culminating in the 2-approximation of
Garg [11]; the k-MST problem proved crucial in many subsequent developments
in network design and vehicle routing [6,8,3,2]. One can analogously define the
k-forest problem where one needs to connect only k of the pairs in some Steiner
forest instance: surprisingly, very little is known about this problem, which was
first studied formally as recently as last year [15,20]. In this paper, we give a
simpler and improved approximation algorithm for the k-forest problem.

Moreover, just like the k-MST variant, the k-forest problem seems to be useful
in applications to network design and vehicle routing. In the second half of
the paper, we show a (somewhat surprising) reduction of a well-studied vehicle
routing problem called the Dial-a-Ride problem to the k-forest problem. In the
Dial-a-Ride problem, we are given a metric space with people having sources
and destinations, and a bus of some capacity k; the goal is to find a route for
this bus so that each person can be taken from her source to destination without
exceeding the capacity of the bus at any point, such that the length of the bus
route is minimized. We show how the results for the k-forest problem slightly
improve upon existing results for the Dial-a-Ride problem; in fact, they give the
first approximation algorithms for some generalizations of Dial-a-Ride which do
not seem amenable to previous techniques.

1.1 The k-Forest Problem

Our starting point is the k-forest problem, which generalizes both the k-MST
and the dense-k-subgraph problems.

Definition 1 (The k-Forest Problem). Given an n-vertex metric space
(V, d), and demands {si, ti}m

i=1 ⊆ V × V , find the least-cost subgraph that con-
nects at least k demand-pairs.

Note that the k-forest problem is a generalization of the (minimization version
of the) well-studied dense-k-subgraph problem, for which nothing better than
an O(n1/3−δ) approximation is known (δ > 0 is some constant). The k-forest
problem was first defined in [15], and the first non-trivial approximation was
given by Segev and Segev [20], who gave an algorithm with an approximation
guarantee of O(n2/3 log n). We improve the approximation guarantee of the k-
forest problem to O(min{√

n,
√

k}); formally, we prove the following theorem in
Section 2.

Theorem 2 (Approximating k-forest). There is an O(min{√
n · log k

log n ,
√

k})-
approximation algorithm for the k-forest problem. For the case when k
is less than a polynomial in n, the approximation guarantee improves to
O(min{√

n,
√

k}).

Dial a Ride from k-Forest 243

Apart from giving an improved approximation guarantee, our algorithm for
the k-forest problem is arguably simpler and more direct than that of [20] (which
is based on Lagrangian relaxations for the problem, and combining solutions
to this relaxation). Indeed, we give two algorithms, both reducing the k-forest
problem to the k-MST problem in different ways and achieving different ap-
proximation guarantees—we then return the better of the two answers. The first
algorithm (giving an approximation of O(

√
k)) uses the k-MST algorithm to

find good solutions on the sources and the sinks independently, and then uses
the Erdős-Szekeres theorem on monotone subsequences to find a “good” subset
of these sources and sinks to connect cheaply; details are given in Section 2.1.
The second algorithm starts off with a single vertex as the initial solution, and
uses the k-MST algorithm to repeatedly find a low-cost tree that satisfies a large
number of demands which have one endpoint in the current solution and the
other endpoint outside; this tree is then used to greedily augment the current
solution and proceed. Choosing the parameters (as described in Section 2.2)
gives us an O(

√
n) approximation.

1.2 The Dial-a-Ride Problem

In this paper, we use the k-forest problem to give approximation algorithms for
the following vehicle routing problem.

Definition 3 (The Dial-a-Ride Problem). Given an n-vertex metric space
(V, d), a starting vertex (or root) r, a set of m demands {(si, ti)}m

i=1, and a
vehicle of capacity k, find a minimum length tour of the vehicle starting (and
ending) at r that moves each object i from its source si to its destination ti such
that the vehicle carries at most k objects at any point on the tour.

We say that an object is preempted if, after being picked up from its source, it can
be left at some intermediate vertices before being delivered to its destination.
In this paper, we will not allow this, and will mainly be concerned with the
non-preemptive Dial-a-Ride problem.1

The approximability of the Dial-a-Ride problem is not very well understood:
the previous best upper bound is an O(

√
k log n)-approximation algorithm due

to Charikar and Raghavachari [5], whereas the best lower bound that we are
aware of is APX-hardness (from TSP, say). We establish the following (some-
what surprising) connection between the Dial-a-Ride and k-forest problems in
Section 3.

Theorem 4 (Reducing Dial-a-Ride to k-forest). Given anα-approximation
algorithm for k-forest, there is an O(α · log2 n)-approximation algorithm for the
Dial-a-Ride problem.
1 A note on the parameters: a feasible non-preemptive tour can be short-cut over

vertices that do not participate in any demand, and we can assume that every vertex
is an end point of some demand; so n ≤ 2m. We may also assume, by preprocessing
some demands, that m ≤ n2 · k. However in general, the number of demands m and
the vehicle capacity k may be much larger than the number of vertices n.

244 A. Gupta et al.

In particular, combining Theorems 2 and 4 gives us an O(min{√
k,

√
n} · log2 n)-

approximation guarantee for Dial-a-Ride. Of course, improving the approxima-
tion guarantee for k-forest would improve the result for Dial-a-Ride as well.

Note that our results match the results of [5] up to a logarithmic term, and
even give a slight improvement when the vehicle capacity k � n, the number of
nodes. Much more interestingly, our algorithm for Dial-a-Ride easily extends to
generalizations of the Dial-a-Ride problem. In particular, we consider a substan-
tially more general vehicle routing problem where the vehicle has no a priori
capacity, and instead the cost of traversing each edge e is an arbitrary non-
decreasing function ce(l) of the number of objects l in the vehicle; setting ce(l)
to the edge-length de when l ≤ k, and ce(l) = ∞ for l > k gives us back the
classical Dial-a-Ride setting. We show that this general non-uniform Dial-a-Ride
problem admits an approximation guarantee that matches the best known for
the classical Dial-a-Ride problem. Another extension we consider is the weighted
Dial-a-Ride problem. In this, each object may have a different size, and total
size of the items in the vehicle must be bounded by the vehicle capacity; this has
been earlier studied as the pickup and delivery problem [19]. We show that this
problem can be reduced to the (unweighted) Dial-a-Ride problem at the loss of
only a constant factor in the approximation guarantee.

As an aside, we consider the effect of the number of preemptions in the Dial-
a-Ride problem. It was shown in Charikar and Raghavachari [5] that the gap
between the optimal preemptive and non-preemptive tours could be as large
as Ω(n1/3). We show that the real difference arises between zero and one pre-
emptions: allowing multiple preemptions does not give us much added power. In
particular, we show that for any instance of the Dial-a-Ride problem, there is a
tour that preempts each object at most once and has length at most O(log2 n)
times an optimal preemptive tour (which may preempt each object an arbitrary
number of times).

Due to lack of space, the results on extensions of Dial-a-Ride and the effect of
preemptions are deferred to the full version of the paper [13].

1.3 Related Work

The k-forest problem: The k-forest problem is relatively new: it was defined
by Hajiaghayi and Jain [15]. An Õ(k2/3)-approximation algorithm for even the
directed k-forest problem can be inferred from [4]. Recently, Segev and Segev [20]
gave an O(min{n2/3,

√
m} logn) approximation algorithm for k-forest.

Dense k-subgraph: The k-forest problem is a generalization of the dense-k-
subgraph problem [9], as shown in [15]. The best known approximation guarantee
for the dense-k-subgraph problem is O(n1/3−δ) where δ > 0 is some constant, due
to Feige et al. [9], and obtaining an improved guarantee has been a long stand-
ing open problem. Strictly speaking, Feige et al. [9] study a potentially harder
problem: the maximization version of dense-k-subgraph, where one wants to
pick k vertices to maximize the number of edges in the induced graph. However,
nothing better is known even for the minimization version of dense-k-subgraph

Dial a Ride from k-Forest 245

(where one wants to pick the minimum number of vertices that induce k edges),
which is a special case of k-forest. The k-forest problem is also a generalization
of k-MST, for which a 2-approximation is known (Garg [11]).

Dial-a-Ride: While the Dial-a-Ride problem has been studied extensively in the
operations research literature, relatively little is known about its approximabil-
ity. The currently best known approximation ratio for Dial-a-Ride is O(

√
k log n)

due to Charikar and Raghavachari [5]. We note that their algorithm assumes in-
stances with unweighted demands. Krumke et al. [16] give a 3-approximation
algorithm for the Dial-a-Ride problem on a line metric; in fact, their algorithm
finds a non-preemptive tour that has length at most 3 times the preemptive lower
bound. (Clearly, the cost of an optimal preemptive tour is at most that of an
optimal non-preemptive tour.) A 2.5-approximation algorithm for single source
version of Dial-a-Ride (also called the “capacitated vehicle routing” problem)
was given by Haimovich and Kan [14]; again, their algorithm outputs a non-
preemptive tour with length at most 2.5 times the preemptive lower bound. The
k = 1 special case of Dial-a-Ride is also known as the stacker-crane problem, for
which a 1.8-approximation is known [10]. For the preemptive Dial-a-Ride prob-
lem, [5] gave the current-best O(log n) approximation algorithm, and Gørtz [18]
showed that it is hard to approximate this problem to better than Ω(log1/4−ε n),
for any constant ε > 0. Recall that no super-constant hardness results are known
for the non-preemptive Dial-a-Ride problem.

2 The k-Forest Problem

In this section, we study the k-forest problem, and give an approximation
guarantee of O(min{√

n,
√

k}). This result improves upon the previous best
O(n2/3 log n)-approximation guarantee [20] for this problem. The algorithm in
Segev and Segev [20] is based on a Lagrangian relaxation for this problem, and
suitably combining solutions to this relaxation. In contrast, our algorithm uses a
more direct approach and is much simpler in description. Our approach is based
on approximating the following “density” variant of k-forest.

Definition 5 (Minimum-ratio k-forest). Given an n-vertex metric space
(V, d), m pairs of vertices {si, ti}m

i=1, and a target k, find a tree T that con-
nects at most k pairs, and minimizes the ratio of the length of T to the number
of pairs connected in T .2

We present two different algorithms for minimum-ratio k-forest, obtaining ap-
proximation guarantees of O(

√
k) (Section 2.1) and O(

√
n) (Section 2.2); these

are then combined to give the claimed result for the k-forest problem. Both our
algorithms are based on subtle reductions to the k-MST problem, albeit in very
different ways.

As is usual, when we say that our algorithm guesses a parameter in the fol-
lowing discussion, it means that the algorithm is run for each possible value of
2 Even if we relax the solution to be any forest, we may assume (by averaging) that

the optimal ratio solution is a tree.

246 A. Gupta et al.

that parameter, and the best solution found over all the runs is returned. As
long as only a constant number of parameters are being guessed and the num-
ber of possibilities for each of these parameters is polynomial, the algorithm is
repeated only a polynomial number of times.

2.1 An O(
√

k) Approximation Algorithm

In this section, we give an O(
√

k) approximation algorithm for minimum ratio
k-forest, which is based on a simple reduction to the k-MST problem. The basic
intuition is to look at the solution S to minimum-ratio k-forest and consider
an Euler tour of this tree S—a theorem of Erdős and Szekeres on increasing
subsequences implies that there must be at least

√|S| sources which are visited
in the same order as the corresponding sinks. We use this existence result to
combine the source-sink pairs to create an instance of

√|S|-MST from which we
can obtain a good-ratio tree; the details follow.

Let S denote an optimal ratio tree, that covers q demands and has length B,
and let D denote the largest distance between any demand pair that is covered
in S (note D ≤ B). We define a new metric l on the set {1, · · · , m} of demands
as follows. The distance between demands i and j, li,j = d(si, sj) + d(ti, tj),
where (V, d) is the original metric. The O(

√
k) approximation algorithm first

guesses the number of demands q and the largest demand-pair distance D in the
optimal tree S (there are at most m choices for each of q & D). The algorithm
discards all demand pairs (si, ti) such that d(si, ti) > D (all the pairs covered
in the optimal solution S still remain). Then the algorithm runs the unrooted
k-MST algorithm [11] with target �√q�, in the metric l, to obtain a tree T on
the demand pairs P . From T , we easily obtain trees T1 (on all sources in P) and
T2 (on all sinks in P) in metric d such that d(T1) + d(T2) = l(T). Finally the
algorithm outputs the tree T ′ = T1∪T2∪{e}, where e is any edge joining a source
in T1 to its corresponding sink in T2. Due to the pruning on demand pairs that
have large distance, d(e) ≤ D and the length of T ′, d(T ′) ≤ l(T)+D ≤ l(T)+B.

We now argue that the cost of the solution T found by the k-MST algorithm
l(T) ≤ 8B. Consider the optimal ratio tree S (in metric d) that has q demands
{(s1, t1), · · · , (sq, tq)}, and let τ denote an Euler tour of S. Suppose that in a
traversal of τ , the sources of demands in S are seen in the order s1, · · · , sq.
Then in the same traversal, the sinks of demands in S will be seen in the order
tπ(1), · · · , tπ(q), for some permutation π. The following fact is well known (see,
e.g., [21]).

Theorem 6 (Erdős and Szekeres). Every permutation on {1, · · · , q} has ei-
ther an increasing or a decreasing subsequence of length �√q�.
Using Theorem 6, we obtain a set M of p = �√q� demands such that (1) the
sources in M appear in increasing order in a traversal of the Euler tour τ , and
(2) the sinks in M appear in increasing order in a traversal of either τ or τR (the
reverse traversal of τ). Let j0 < j1 < · · · < jp−1 denote the demands in M in
increasing order. From statement (1) above,

∑p−1
i=0 d(s(ji), s(ji+1)) ≤ d(τ), where

Dial a Ride from k-Forest 247

the indices in the summation are modulo p. Similarly, statement (2) implies that∑p−1
i=0 d(t(ji), t(ji+1)) ≤ max{d(τ), d(τR)} = d(τ). Thus we obtain:

p−1∑

i=0

[d(s(ji), s(ji+1)) + d(t(ji), t(ji+1))] ≤ 2d(τ) ≤ 4B

But this sum is precisely the length of the tour j0, j1, · · · , jp−1, j0 in metric l. In
other words, there is a tree of length 4B in metric l, that contains �√q� vertices.
So, the cost of the solution T found by the k-MST approximation algorithm is
at most 8B.

Now the final solution T ′ has length at most l(T) + B ≤ 9B, and ratio that
at most 9

√
q B

q ≤ 9
√

k B
q . Thus we have an O(

√
k) approximation algorithm for

minimum ratio k-forest.

2.2 An O(
√

n) Approximation Algorithm

In this section, we show an O(
√

n) approximation algorithm for the minimum
ratio k-forest problem. The approach is again to reduce to the k-MST problem;
the intuition is rather different: either we find a vertex v such that a large number
of demand-pairs of the form (v, ∗) can be satisfied using a small tree (the “high-
degree” case); if no such vertex exists, we show that a repeated greedy procedure
would cover most vertices without paying too much (and since we are in the “low-
degree” case, covering most vertices implies covering most demands too). The
details follow.

Let S denote an optimal solution to minimum ratio k-forest, and q ≤ k the
number of demand pairs covered in S. We define the degree Δ of S to be the
maximum number of demands (among those covered in S) that are incident
at any vertex in S. The algorithm first guesses the following parameters of the
optimal solution S: its length B (within a factor 2), the number of pairs covered
q, the degree Δ, and the vertex w ∈ S that has Δ demands incident at it.
Although, there may be an exponential number of choices for the optimal length,
a polynomial number of guesses within a binary-search suffice to get a B such
that B ≤ d(S) ≤ 2 · B. The algorithm then returns the better of the two
procedures described below.

Procedure 1 (high-degree case): Since the degree of vertex w in the optimal
solution S is Δ, there is tree rooted at w of length d(S) ≤ 2B, that contains at
least Δ demands having one end point at w. We assign a weight to each vertex
u, equal to the number of demands that have one end point at this vertex u and
the other end point at w. Then we run the k-MST algorithm [11] with root w
and a target weight of Δ. By the preceding argument, this problem has a feasible
solution of length 2B; so we obtain a solution H of length at most 4B (since the
algorithm of [11] is a 2-approximation). The ratio of solution H is thus at most
4B/Δ = 4q

Δ
B
q .

248 A. Gupta et al.

Procedure 2 (low-degree case): Set t = q
2Δ ; note that q ≤ Δ·n

2 and so
t ≤ n/4. We maintain a current tree T (initially just vertex w), which is updated
in iterations as follows: shrink T to a supernode s, and run the k-MST algorithm
with root s and a target of t new vertices. If the resulting s-tree has length at
most 4B, include this tree in the current tree T and continue. If the resulting
s-tree has length more than 4B, or if all the vertices have been included, the
procedure ends. Since t new vertices are added in each iteration, the number of
iterations is at most n

t ; so the length of T is at most 4n
t B. We now show that

T contains at least q
2 demands. Consider the set S \ T (recall, S is the optimal

solution). It is clear that |V (S)\V (T)| < t; otherwise the k-MST instance in the
last iteration (with the current T) would have S as a feasible solution of length
at most 2B (and hence would find one of length at most 4B). So the number
of demands covered in S that have at least one end point in S \ T is at most
|V (S)\V (T)| ·Δ ≤ t ·Δ = q/2 (as Δ is the degree of solution S). Thus there are
at least q/2 demands contained in S ∩T , in particular in T . Thus T is a solution
having ratio at most 4n

t B · 2
q = 8n

t
B
q .

The better ratio solution among H and T from the two procedures has ratio
at most min{ 4q

Δ , 8n
t } · B

q = min{8t, 8n
t } · B

q ≤ 8
√

n · B
q ≤ 8

√
n · d(S)

q . So this
algorithm is an O(

√
n) approximation to the minimum ratio k-forest problem.

2.3 Approximation Algorithm for k-Forest

Given the two algorithms for minimum ratio k-forest, we can use them in a stan-
dard greedy fashion (i.e., keep picking approximately minimum-ratio solutions
until we obtain a forest connecting at least k pairs); the standard set cover anal-
ysis can be used to show an O(min{√

n,
√

k}· log k)-approximation guarantee for
k-forest. A tighter analysis of the greedy algorithm (as done, e.g., in Charikar et
al. [4]) can be used to remove the logarithmic terms and obtain the guarantee
stated in Theorem 2.

3 Application to Dial-a-Ride Problems

In this section, we study an application of the k-forest problem to the Dial-a-Ride
problem (Definition 3). A natural solution-structure for Dial-a-Ride involves
servicing demands in batches of at most k each, where a batch consisting of
a set S of demands is served as follows: the vehicle starts out being empty,
picks up each of the |S| ≤ k objects from their sources, then drops off each
object at its destination, and is again empty at the end. If we knew that the
optimal solution has this structure, we could obtain a greedy framework for Dial-
a-Ride by repeatedly finding the best ‘batch’ of k demands. However, the optimal
solution may involve carrying almost k objects at every point in the tour, in
which case it can not be decomposed to be of the above structure. In Theorem 7,
we show that there is always a near optimal solution having this ‘pick-drop in
batches’ structure. Using Theorem 7, we then obtain an approximation algorithm
for the Dial-a-Ride problem.

Dial a Ride from k-Forest 249

Theorem 7 (Structure Theorem). Given any instance of Dial-a-Ride, there
exists a feasible tour τ satisfying the following conditions:

1. τ can be split into a set of segments {S1, · · · , St} (i.e., τ = S1 · S2 · · · St)
where each segment Si services a set Oi of at most k demands such that Si

is a path that first picks up each demand in Oi and then drops each of them.
2. The length of τ is at most O(log m) times the length of an optimal tour.

Proof: Consider an optimal non-preemptive tour σ: let c(σ) denote its length,
and |σ| denote the number of edge traversals in σ. Note that if in some visit to
a vertex v in σ there is no pick-up or drop-off, then the tour can be short-cut
over vertex v, and it still remains feasible. Further, due to triangle inequality,
the length c(σ) does not increase by this operation. So we may assume that each
vertex visit in σ involves a pick-up or drop-off of some object. Since there is
exactly one pick-up & drop-off for each object, we have |σ| ≤ 2m + 1. Define
the stretch of a demand i to be the number of edge traversals in σ between the
pick-up and drop-off of object i. The demands are partitioned as follows: for
each j = 1, · · · , log(2m)�, group Gj consists of all the demands whose stretch
lie in the interval [2j−1, 2j). We consider each group Gj separately.

Claim 8. For each j = 1, · · · , log(2m)�, there is a tour τj that serves all the
demands in group Gj, satisfies condition 1 of Theorem 7, and has length at most
6 · c(σ).

Proof: Consider tour σ as a line L, with every edge traversal in σ represented
by a distinct edge in L. Number the vertices in L from 0 to h, where h = |σ| is the
number of edge traversals in σ. Note that each vertex in V may be represented
multiple times in L. Each demand is associated with the numbers of the vertices
(in L) where it is picked up and dropped off.

Let r = 2j−1, and partition Gj as follows: for l = 1, · · · , h
r �, set Ol,j consists

of all demands in Gj that are picked up at a vertex numbered between (l − 1)r
and lr − 1. Since every demand in Gj has stretch in the interval [r, 2r], every
demand in Ol,j is dropped off at a vertex numbered between lr and (l + 2)r − 1.
Note that |Ol,j | equals the number of demands in Gj carried over edge (lr−1, lr)
by tour σ, which is at most k. We define segment Sl,j to start at vertex number
(l − 1)r and traverse all edges in L until vertex number (l + 2)r − 1 (servicing
all demands in Ol,j by first picking up each demand between vertices (l − 1)r &
lr−1; then dropping off each demand between vertices lr & (l+2)r−1), and then
return (with the vehicle being empty) to vertex lr. Clearly, the number of objects
carried over any edge in Sl,j is at most the number carried over the corresponding
edge traversal in σ. Also, each edge in L participates in at most 3 segments Sl,j ,
and each edge is traversed at most twice in any segment. So the total length of
all segments Sl,j is at most 6 · c(σ). We define tour τj to be the concatenation
S1,j · · · S�h/r�,j . It is clear that this tour satisfies condition 1 of Theorem 7. �
Applying this claim to each group Gj , and concatenating the resulting
tours, we obtain the tour τ satisfying condition 1 and having length at most
6 log(2m) · c(σ) = O(log m) · c(σ). �

250 A. Gupta et al.

Remark: The ratio O(log m) in Theorem 7 is almost best possible. There are
instances of Dial-a-Ride (even on an unweighted line), where every solution satis-
fying condition 1 of Theorem 7 has length at least Ω(max{ log m

log log m , k
log k}) times

the optimal non-preemptive tour. So, if we only use solutions of this structure,
then it is not possible to obtain an approximation factor (just in terms of ca-
pacity k) for Dial-a-Ride that is better than Ω(k/ log k). The solutions found
by the algorithm for Dial-a-Ride in [5] also satisfy condition 1 of Theorem 7. It
is interesting to note that when the underlying metric is a hierarchically well-
separated tree, [5] obtain a solution of such structure having length O(

√
k) times

the optimum, whereas there is a lower bound of Ω(k
log k) even for the simple case

of an unweighted line.
Theorem 7 suggests a greedy strategy for Dial-a-Ride, based on repeatedly

finding the best batch of k demands to service. This greedy subproblem turns
out to be the minimum ratio k-forest problem (Definition 5), for which we already
have an approximation algorithm. The next theorem sets up the reduction from
Dial-a-Ride to k-forest.

Theorem 9 (Reducing Dial-a-Ride to minimum ratio k-forest). An ap-
proximation algorithm for minimum ratio k-forest with guarantee ρ implies an
O(ρ log2 m) approximation algorithm for Dial-a-Ride.

Proof: The algorithm for Dial-a-Ride is as follows.

1. C = φ.
2. Until there are no uncovered demands, do:

(a) Solve the minimum ratio k-forest problem, to obtain a tree C covering
kC ≤ k new demands.

(b) Set C ← C ∪ C.
3. For each tree C ∈ C, obtain an Euler tour on C to locally service all demands

(pick up all kC objects in the first traversal, and drop them all in the second
traversal). Then use a 1.5-approximate TSP tour on the sources, to connect
all the local tours, and obtain a feasible non-preemptive tour.

Consider the tour τ and its segments as in Theorem 7. If the number of
uncovered demands in some iteration is m′, one of the segments in τ is a solution
to the minimum ratio k-forest problem of value at most d(τ)

m′ . Since we have a
ρ-approximation algorithm for this problem, we would find a segment of ratio at
most O(ρ) · d(τ)

m′ . Now a standard set cover type argument shows that the total
length of trees in C is at most O(ρ log m) ·d(τ) ≤ O(ρ log2 m) ·OPT , where OPT
is the optimal value of the Dial-a-Ride instance. Further, the TSP tour on all
sources is a lower bound on OPT , and we use a 1.5-approximate solution [7].
So the final non-preemptive tour output in step 5 above has length at most
O(ρ log2 m) · OPT . �
This theorem is in fact stronger than Theorem 4 claimed earlier: it is easy to
see that any approximation algorithm for k-forest implies an algorithm with
the same guarantee for minimum ratio k-forest. Note that, m and k may be

Dial a Ride from k-Forest 251

super-polynomial in n. However, it can be shown (see [13]) that with the loss of
a constant factor, the general Dial-a-Ride problem can be reduced to one where
the number of demands m ≤ n4. Based on this and Theorem 9, a ρ approx-
imation algorithm for minimum ratio k-forest actually implies an O(ρ log2 n)
approximation algorithm for Dial-a-Ride. Using the approximation algorithm
for minimum ratio k-forest (Section 2), we obtain an O(min{√

n,
√

k} · log2 n)
approximation algorithm for the Dial-a-Ride problem.

Remark: If we use the O(
√

k) approximation for k-forest, the resulting non-
preemptive tour is in fact feasible even for a

√
k capacity vehicle! As noted in

[5], this property is also true of their algorithm, which is based on an entirely
different approach.

References

1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approximation algorithm
for the generalized steiner problem on networks. In: Proceedings of the 23rd Annual
ACM Symposium on Theory of Computing, pp. 134–144. ACM Press, New York
(1991)

2. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation Algorithms for
Deadline-TSP and Vehicle Routing with Time Windows. In: Proceedings of the
36th Annual ACM Symposium on Theory of Computing, pp. 166–174. ACM Press,
New York (2004)

3. Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Approx-
imation Algorithms for Orienteering and Discounted-Reward TSP. In: Proceedings
of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp.
46–55. IEEE Computer Society Press, Los Alamitos (2003)

4. Charikar, M., Chekuri, C., yat Cheung, T., Dai, Z., Goel, A., Guha, S., Li, M.: Ap-
proximation algorithms for directed Steiner problems. In: SODA ’98: Proceedings
of the ninth annual ACM-SIAM symposium on Discrete algorithms, pp. 192–200.
ACM Press, New York (1998)

5. Charikar, M., Raghavachari, B.: The Finite Capacity Dial-A-Ride Problem. In:
IEEE Symposium on Foundations of Computer Science, pp. 458–467. IEEE Com-
puter Society Press, Los Alamitos (1998)

6. Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency
tours. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science, pp. 36–45 (2003)

7. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. GSIA, CMU-Report 388 (1977)

8. Fakcharoenphol, J., Harrelson, C., Rao, S.: The k-traveling repairman problem. In:
Proceedings of the 14th annual ACM-SIAM symposium on Discrete algorithms,
pp. 655–664. ACM Press, New York (2003)

9. Feige, U., Peleg, D., Kortsarz, G.: The Dense k -Subgraph Problem. Algorith-
mica 29(3), 410–421 (2001)

10. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some
routing problems. SIAM Journal on Computing 7(2), 178–193 (1978)

11. Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs.
In: Proceedings of the thirty-seventh annual ACM symposium on Theory of com-
puting, pp. 396–402. ACM Press, New York (2005)

252 A. Gupta et al.

12. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. In: Proceedings of the 3rd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 307–316. ACM Press, New York (1992)

13. Gupta, A., Hajiaghayi, M.T., Nagarajan, V., Ravi, R.: Dial a Ride from k-forest
(2007), http://arxiv.org/abs/0707.0648

14. Haimovich, M., Rinnooy Kan, A.H.G.: Bounds and heuristics for capacitated rout-
ing problems. Mathematics of Operations Research 10, 527–542 (1985)

15. Hajiaghayi, M.T., Jain, K.: The prize-collecting generalized steiner tree problem
via a new approach of primal-dual schema. In: SODA ’06: Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algorithm, pp. 631–640.
ACM Press, New York (2006)

16. Krumke, S., Rambau, J., Weider, S.: An approximation algorithm for the nonpre-
emptive capacitated dial-a-ride problem. Preprint 00-53, Konrad-Zuse-Zentrum fr
Informationstechnik Berlin (2000)

17. Robins, G., Zelikovsky, A.: Tighter Bounds for Graph Steiner Tree Approximation.
SIAM Journal on Discrete Mathematics 19, 122–134 (2005)

18. Gørtz, I.L.: Hardness of Preemptive Finite Capacity Dial-a-Ride. In: 9th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization
Problems (2006)

19. Savelsbergh, M.W.P., Sol, M.: The general pickup and delivery problem. Trans-
portation Science 29, 17–29 (1995)

20. Segev, D., Segev, G.: Approximate k-Steiner Forests via the Lagrangian Relaxation
Technique with Internal Preprocessing. In: 14th Annual European Symposium on
Algorithms, pp. 600–611 (2006)

21. Steele, J.M.: Variations on the monotone subsequence theme of Erdős and Szek-
eres. In: Discrete probability and algorithms (Minneapolis, MN, 1993). IMA Math.
Appl., vol. 72, pp. 111–131. Springer, New York (1995)

http://arxiv.org/abs/0707.0648

Online Primal-Dual Algorithms for Maximizing
Ad-Auctions Revenue

Niv Buchbinder1, Kamal Jain2, and Joseph (Seffi) Naor1,�

1 Computer Science Department, Technion, Haifa, Israel
2 Microsoft Research, Redmond, WA

Abstract. We study the online ad-auctions problem introduced by Mehta et al.
[15]. We design a (1 − 1/e)-competitive (optimal) algorithm for the problem,
which is based on a clean primal-dual approach, matching the competitive factor
obtained in [15]. Our basic algorithm along with its analysis are very simple. Our
results are based on a unified approach developed earlier for the design of online
algorithms [7,8]. In particular, the analysis uses weak duality rather than a tailor
made (i.e., problem specific) potential function. We show that this approach is
useful for analyzing other classical online algorithms such as ski rental and the
TCP-acknowledgement problem. We are confident that the primal-dual method
will prove useful in other online scenarios as well.

The primal-dual approach enables us to extend our basic ad-auctions algo-
rithm in a straight forward manner to scenarios in which additional information
is available, yielding improved worst case competitive factors. In particular, a
scenario in which additional stochastic information is available to the algorithm,
a scenario in which the number of interested buyers in each product is bounded
by some small number d, and a general risk management framework.

1 Introduction

Maximizing the revenue of a seller in an auction has received much attention recently,
and studied in many models and settings. In particular, the way search engine companies
such as MSN, Google and Yahoo! maximize their revenue out of selling ad-auctions
was recently studied by Mehta et al. [15]. In the search engine environment, advertisers
link their ads to (search) keywords and provide a bid on the amount paid each time
a user clicks on their ad. When users send queries to search engines, along with the
(algorithmic) search results returned for each query, the search engine displays funded
ads corresponding to ad-auctions. The ads are instantly sold, or allocated, to interested
advertisers (buyers). The total revenue out of this fast growing market is currently bil-
lions of dollars. Thus, algorithmic ideas that can improve the allocation of the ads, even
by a small percentage, are crucial. The interested reader is refered to [16] for a popular
exposition of the ad-auctions problem and the work of [15].

Mehta et al. [15] modeled the optimal allocation of ad-auctions as a generalization
of online bipartite matching [13]. There are n bidders, where each bidder i (1 ≤ i ≤ n)
has a known daily budget B(i). Ad-auctions, or products, arrive one-by-one in an online

� Work done while visiting Microsoft Research, Redmond, WA.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 253–264, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

254 N. Buchbinder, K. Jain, and J. (Seffi) Naor

fashion. Upon arrival of a product, each buyer provides a bid b(i, j) for buying it. The
algorithm (i.e., the seller) then allocates the product to one of the interested buyers
and this decision is irrevocable. The goal of the seller is to maximize the total revenue
accrued. Mehta et al. [15] proposed a deterministic (1−1/e)-competitive algorithm for
the case where the budget of each bidder is relatively large compared to the bids. This
assumption is indeed realistic in the ad-auctions scenario.

1.1 Results and Techniques

We propose a simple algorithm and analysis for the online ad-auctions problem which
is based on a clean primal-dual framework. The competitive ratio of our algorithm is
(1 − 1/e), thus matching the bounds of [15]. The primal-dual method is one of the
fundamental design methodologies in the areas of approximation algorithms and com-
binatorial optimization. Recently, Buchbinder and Naor [7,8] have further extended the
primal-dual method and have shown its applicability to the design and analysis of on-
line algorithms. We use the primal-dual method here for both making online decisions
as well as for the analysis of the competitive factors. Moreover, we observe that sev-
eral other classic online problems, e.g. ski rental and TCP acknowledgement [9,12],
for which (optimal) e/(e − 1) competitive (randomized) algorithms are known, can be
viewed and analyzed within the primal-dual framework, thus leading to both simpler
and more general analysis. We defer the details to the full version and just sketch how
to obtain the bounds. First, an e/(e−1) competitive fractional solution is computed and
then the solution is rounded online with no further cost, yielding an optimal randomized
algorithm. This generalizes and simplifies the online framework developed in [12]. It
is no coincidence that the techniques developed for the ad-auctions problem are also
applicable to the ski rental and TCP acknowledgement problems; in fact, these prob-
lems are in some sense dual problems of the ad-auctions problem. Another interesting
outcome of our work is a deterministic (1 − 1/e)-competitive fractional algorithm1 for
the online matching problem in bipartite graphs [13]. However, rounding with no loss
the fractional solution to an integral solution, thus matching the bounds of [13], remains
a challenging open problem.

We remark that in [7,8] a primal-dual framework for online packing and covering
problems is presented. This framework includes, for example, a large number of rout-
ing and load balancing problems [4,3,10,8], the online set cover problem [1], as well
as other problems. However, in these works only logarithmic competitive factors are
achieved (which are optimal in the considered settings), while the ad-auctions problem
requires much more delicate algorithms and analysis. Our analysis of the algorithms we
design in this paper is very simple and uses weak duality rather than a tailor made (i.e.,
problem specific) potential function. We believe our results further our understanding
of the primal-dual method for online algorithms and we are confident that the method
will prove useful in other online scenarios as well.

Extensions. The (1−1/e) competitive factor is tight for the general ad-auctions model
considered by [15]. Therefore, obtaining improved competitive factors requires extend-
ing the model by relaxing certain aspects of it. The relaxations we study reveal the

1 In fact, we show that the bound is slightly better as a function of the maximum degree.

Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue 255

flexibility of the primal-dual approach, thus allowing us to derive improved bounds.
The algorithms developed for the different extensions (except for the bounded degree
case) build very nicely on the basic ad-auctions algorithm, thus allowing us to gain more
insight into the primal-dual method. We also believe that the extensions we consider re-
sult in more realistic ad-auctions models. We consider four relaxations and extensions
of the basic model.

Multiple Slots. Typically, in search engines, keywords can be allocated to several ad-
vertisement slots. A slot can have several desired properties for a specific buyer, such
as rank in the list of ads, size, shape, etc. We extend the basic ad-auctions algorithm
to a scenario in which there are � slots to which ad-auctions can be allocated. Buyers
are allowed to provide slot dependent bids on keywords and we assume that each buyer
would like to buy only a single slot in each round. Our basic algorithm generalizes very
easily to handle this extension, yielding a competitive factor of 1 − 1/e. Specifically,
the algorithm computes in each round a maximum weight matching in a bipartite graph
of slots and buyers. The proof then uses the fact that there exists an optimal primal-
dual solution to the (integral) matching problem. In retrospective, our basic ad-auctions
algorithm can be viewed as computing a maximum weight matching in a (degenerate)
bipartite graph in which one side contains a single vertex/slot. We note that Mehta et
al. [15] also considered a multiple slots setting, but with the restriction that each bidder
has the same bid for all the slots.

Incorporating Stochastic information. Suppose that it is known that a bidder is likely
to spend a good fraction of its daily budget. This assumption is justified either stochas-
tically or by experience. We want to tweak the basic allocation algorithm so that the
worst case performance improves. As we tweak the algorithm it is likely that the bidder
spends either a smaller or a larger fraction of its budget. Thus, we propose to tweak the
algorithm gradually until a steady state is reached, i.e., no more tweaking is required.
Suppose that at the steady state bidder i is likely to spent gi fraction of its budget. In
a realistic modeling of a search engine it is likely to assume that the number of times
each query appears each day is more or less the same. Thus, no matter what is the exact
keyword pattern, each of the advertisers spends a good fraction of its budget, say 20%.
This allows us to improve the worst case competitive ratio of our basic ad-auctions
algorithm. In particular, when the ratio between the bid and the budgets is small, the
competitive ratio improves from 1 − 1/e to 1 − 1−g

e1−g , where g = mini∈I{gi} is the
minimum fraction of budget extracted from a buyer. As expected, the worst case com-
petitive ratio is (1 − 1/e) when g = 0, and it is 1 when g = 1.

Bounded Degree Setting. The proof of the (1 − 1/e) lower bound on the competi-
tiveness in [15] uses the fact that the number of bidders interested in a product can be
unbounded and, in fact, can be as large as the total number of bidders. This assumption
may not be realistic in many settings. In particular, the number of bidders interested
in buying an ad for a specific query result is typically small (for most ad-auctions).
Therefore, it is interesting to consider an online setting in which, for each product, the
number of bidders interested in it is at most d � n. The question is whether one can
take advantage of this assumption and design online algorithms with better competitive
factor (better than 1 − 1/e) in this case.

256 N. Buchbinder, K. Jain, and J. (Seffi) Naor

Lower Bound Upper Bound Lower Bound Upper Bound
d = 2 0.75 0.75 d = 10 0.662 0.651
d = 3 0.704 0.704 d = 20 0.648 0.641
d = 5 0.686 0.672 d → ∞ 0.6321. . . 0.6321 . . .

Fig. 1. Summary of upper and lower bounds on the competitive ratio for certain values of d

As a first step, we resolve this question positively in a slightly simpler setting, which
we call the allocation problem. In the allocation problem, the seller introduces the prod-
ucts one-by-one and sets a fixed price b(j) for each product j. Upon arrival of a product,
each buyer announces whether it is interested in buying it for the set price and the seller
decides (instantly) to which of the interested buyers to sell the product. We have indica-
tions that solving the more general ad-auctions problem requires overcoming a few ad-
ditional obstacles. Nevertheless, achieving better competitive factors for the allocation
problem is a necessary non-trivial step. We design an online algorithm with competitive
ratio C(d) = 1 − d−1

d(1+ 1
d−1)

d−1 . This factor is strictly better than 1 − 1/e for any value

of d, and approaches (1 − 1/e) from above as d goes to infinity. We also prove lower
bounds for the problem that indicate that the competitive factor of our online algorithm
is quite tight. Our improved bounds for certain values of d are shown in Figure 1.

Our improved competitive factors are obtained via a new approach. Our algorithm is
composed of two conceptually separate phases that run simultaneously. The first phase
generates online a fractional solution for the problem. A fractional solution for the prob-
lem allows the algorithm to sell each product in fractions to several buyers. This prob-
lem has a motivation of its own in case products can be divided between buyers. An
example of a divisible product is the allocation of bandwidth in a communication net-
work. This part of our algorithm that generates a fractional solution in an online fashion
is somewhat counter-intuitive. In particular, a newly arrived product is not split equally
between buyers who have spent the least fraction of their budget. Such an algorithm
is referred to as a “water level” algorithm and it is not hard to verify that it does not
improve upon the (1−1/e) worst case ratio, even for small values of d. Rather, the idea
is to split the product between several buyers that have approximately spent the same
fraction of their total budget. The analysis is performed through (online) linear program-
ming dual fitting: we maintain during each step of the online algorithm a dual fractional
solution that bounds the optimum solution from above. We also remark that this part
of the algorithm yields a competitive solution even when the prices of the products are
large compared with the budgets of the buyers. As a special case, the first phase implies
a C(d)-competitive algorithm for the online maximum fractional matching problem in
bounded degree bipartite graphs [13].

The second phase consists of rounding the fractional solution (obtained in the first
phase) in an online fashion. We note again that this is only a conceptual phase which is
simultaneously implemented with the previous phase. This step can be easily done by
using randomized rounding. However, we show how to perform the rounding determin-
istically by constructing a suitable potential function. The potential function is inspired
by the pessimistic estimator used to derandomize the offline problem. We show that if
the price of each product is small compared with the total budget of the buyer, then

Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue 257

this rounding phase only reduces the revenue by a factor of 1 − o(1) compared to the
revenue of the fractional solution.

Risk Management. Some researchers working in the area of ad-auctions argue that
typically budgets are not strict. The reason they give is that if clicks are profitable, i.e.,
the bidder is expected to make more money on a click than the bid on the click, then
why would a bidder want to limit its profit. Indeed, Google’s Adwords program al-
lows budget flexibility, e.g., it can overspend the budget by 20%. In fact, the arguments
against daily budgets are valid for any investment choice. For example, if you consider
investing ten thousand dollars in stock A and ten thousand dollars in stock B, then the
expected gain for investing twenty thousand dollars in either stocks is not going to be
less profitable in expectation (estimated with whatever means). Still, the common wis-
dom is to diversify and the reason is risk management. For example, a risk management
tools may suggest that if a stock reaches a certain level, then execute buy/sell of this
stock and/or buy/sell the corresponding call/put options.

Industry leaders are proposing risk management for ad-auctions too. The simplest
form of risk management is to limit the investment. This gives us the notion of a bud-
get. We consider a more complex form of real time risk management. Instead of strict
budgets, we allow a bidder to specify how aggressive it wants to bid. For example, a
bidder may specify that it wants to bid aggressively for the first hundred dollars of its
budget. After having spent one hundred dollars, it still wants to buy ad-auctions if it gets
them at, say, half of its bid. In general, a bidder has a monotonically decreasing function
f of the budget spent so far specifying how aggressive it wants to bid. We normalize
f(0) = 1, i.e., at the zero spending level the bidder is fully aggressive. If it has spent
x dollars, then its next bid is scaled by a factor of f(x). In Section 6 we show how to
extend the primal-dual algorithm to deal with a more general scenario of real time risk
management. For certain settings we also obtain better competitive factors.

1.2 Comparison to Previous Results

Maximizing the revenue of a seller in both offline and online settings has been stud-
ied extensively in many different models, e.g., [15,2,14,6,5]. The work of [15] builds
on online bipartite matching [13] and online b-matching [11]. The online b-matching
problem is a special case of the online ad-auctions problem in which all buyers have a
budget of b, and the bids are either 0 or 1. In [11] a deterministic algorithm is given for
b-matching with competitive ratio tending to (1 − 1/e) (from below) as b grows.

The idea of designing online algorithms that first generate a fractional solution and
then round it in an online fashion appeared implicitly in [1]. An explicit use of this idea,
along with a general scheme for generating competitive online fractional solutions for
packing and covering problems, appeared in [7]. Further work on primal-dual online
algorithms appears in [8].

2 Preliminaries

In the online ad-auctions problem there is a set I of n buyers, each buyer i (1 ≤ i ≤ n)
has a known daily budget of B(i). We consider an online setting in which m products

258 N. Buchbinder, K. Jain, and J. (Seffi) Naor

Dual (Packing) Primal (Covering)

Maximize:
∑m

j=1

∑n
i=1 b(i, j)y(i, j) Minimize :

∑n
i=1 B(i)x(i) +

∑m
j=1 z(j)

Subject to: Subject to:
For each 1 ≤ j ≤ m:

∑n
i=1 y(i, j) ≤ 1 For each (i, j): b(i, j)x(i) + z(j) ≥ b(i, j)

For each 1 ≤ i ≤ n:
∑m

j=1 b(i, j)y(i, j) ≤ B(i) For each i, j: x(i), z(j) ≥ 0

For each i, j: y(i, j) ≥ 0

Fig. 2. The fractional ad-auctions problem (the dual) and the corresponding primal problem

arrive one-by-one in an online fashion. Let M denote the set of all the products. The
bid of buyer i on product j (which states the amount of money it is willing to pay for
the item) is b(i, j). The online algorithm can allocate (or sell) the product to any one
of the buyers. We distinguish between integral and fractional allocations. In an integral
allocation, a product can only be allocated to a single buyer. In a fractional allocation,
products can be fractionally allocated to several buyers, however, for each product, the
sum of the fractions allocated to buyers cannot exceed 1. The revenue received from
each buyer is defined to be the minimum between the sum of the costs of the products
allocated to a buyer (times the fraction allocated) and the total budget of the buyer.
That is, buyers can never be charged by more than their total budget. The objective is
to maximize the total revenue of the seller. Let Rmax = maxi∈I,j∈M{ b(i,j)

B(i) } be the
maximum ratio between a bid of any buyer and its total budget.

A linear programming formulation of the fractional (offline) ad-auctions problem
appears in Figure 2. Let y(i, j) denote the fraction of product j allocated to buyer i.
The objective function is maximizing the total revenue. The first set of constraints guar-
antees that the sum of the fractions of each product is at most 1. The second set of
constraints guarantees that each buyer does not spend more than its budget. In the pri-
mal problem there is a variable x(i) for each buyer i and a variable z(j) for each product
j. For all pairs (i, j) the constraint b(i, j)x(i) + z(j) ≥ b(i, j) needs to be satisfied.

3 The Basic Primal-Dual Online Algorithm

The basic algorithm for the online ad-auctions produces primal and dual solutions to
the linear programs in Figure 2.

Allocation Algorithm: Initially ∀i x(i) ← 0.
Upon arrival of a new product j allocate the product to the buyer i that maximizes
b(i, j)(1 − x(i)). If x(i) ≥ 1 then do nothing. Otherwise:

1. Charge the buyer the minimum between b(i, j) and its remaining budget and
set y(i, j) ← 1

2. z(j) ← b(i, j)(1 − x(i))

3. x(i) ← x(i)
(
1 + b(i,j)

B(i)

)
+ b(i,j)

(c−1)·B(i) (c is determined later).

The intuition behind the algorithm is the following. If the competitive ratio we are
aiming for is 1 − 1/c, then we need to guarantee that in each iteration the change in the

Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue 259

primal cost is at most 1 + 1/(c − 1) the change in the dual profit. The value of c is then
maximized such that both the primal and the dual solutions remain feasible.

Theorem 1. The allocation algorithm is (1 − 1/c) (1−Rmax)-competitive, where c =
(1 + Rmax)

1
Rmax . When Rmax → 0 the competitive ratio tends to (1 − 1/e).

Proof. We prove three simple claims:

1. The algorithm produces a primal feasible solution.
2. In each iteration: (change in primal objective function)/ (change in dual objective

function) ≤ 1 + 1
c−1 .

3. The algorithm produces an almost feasible dual solution.

Proof of (1): Consider a primal constraint corresponding to buyer i and product j.
If x(i) ≥ 1 then the primal constraint is satisfied. Otherwise, the algorithm allocates
the product to the buyer i′ for which b(i′, j)(1 − x(i′)) is maximized. Setting z(j) =
b(i′, j)(1 − x(i′)) guarantees that the constraint is satisfied for all (i, j). Subsequent
increases of the variables x(i)’s cannot make the solution infeasible.

Proof of (2): Whenever the algorithm updates the primal and dual solutions, the change
in the dual profit is b(i, j). (Note that even if the remaining budget of buyer i to which
product j is allocated is less than its bid b(i, j), variable y(i, j) is still set to 1.) The
change in the primal cost is:

B(i)Δx(i) + z(j) =

(
b(i, j)x(i) +

b(i, j)

c − 1

)
+ b(i, j)(1 − x(i)) = b(i, j)

(
1 +

1

c − 1

)
.

Proof of (3): The algorithm never updates the dual solution for buyers satisfying x(i) ≥
1. We prove that for any buyer i, when

∑
j∈M b(i, j)y(i, j) ≥ B(i), then x(i) ≥ 1. This

is done by proving that:

x(i) ≥ 1
c − 1

(
c

∑
j∈M b(i,j)y(i,j)

B(i) − 1
)

. (1)

Thus, whenever
∑

j∈M b(i, j)y(i, j) ≥ B(i), we get that x(i) ≥ 1. We prove (1)
by induction on the (relevant) iterations of the algorithm. Initially, this assumption is
trivially true. We are only concerned with iterations in which a product, say k, is sold
to buyer i. In such an iteration we get that:

x(i)end = x(i)start ·
(

1 +
b(i, k)
B(i)

)
+

b(i, k)
(c − 1) · B(i)

≥ 1
c − 1

[
c

∑
j∈M\{k} b(i,j)y(i,j)

B(i) − 1
]

·
(

1 +
b(i, k)
B(i)

)
+

b(i, k)
(c − 1) · B(i)

(2)

=
1

c − 1

[
c

∑
j∈M\{k} b(i,j)y(i,j)

B(i) ·
(

1 +
b(i, k)
B(i)

)
− 1

]

≥ 1
c−1

[
c

∑
j∈M\{k} b(i,j)y(i,j)

B(i) ·c(b(i,k)
B(i))−1

]
=

1
c−1

[
c

∑
j∈M b(i,j)y(i,j)

B(i) −1
]

(3)

260 N. Buchbinder, K. Jain, and J. (Seffi) Naor

where Inequality (2) follows from the induction hypothesis, and Inequality (3) follows
since, for any 0 ≤ x ≤ y ≤ 1, ln(1+x)

x ≥ ln(1+y)
y . Note that when b(i,k)

B(i) = Rmax

then Inequality 3 holds with equality. This is the reason why we chose the value c

to be (1 + Rmax)
1

Rmax . Thus, it follows that whenever the sum of charges to a buyer
exceeds the budget, we stop charging this buyer. Hence, there can be at most one it-
eration in which a buyer is charged by less than b(i, j). Therefore, for each buyer i:∑

j∈M b(i, j)y(i, j) ≤ B(i) + maxj∈M{b(i, j)}, and thus the profit extracted from
buyer i is at least:

[
∑

j∈M

b(i, j)y(i, j)

]
B(i)

B(i) + maxj∈M{b(i, j)} ≥
[

∑

j∈M

b(i, j)y(i, j)

]
(1 − Rmax).

By the second claim the dual it at least 1 − 1/c times the primal, and thus (by weak
duality) we conclude that the competitive ratio of the algorithm is (1−1/c) (1 − Rmax).

3.1 Multiple Slots

In this section we show how to extend the algorithm in a very elegant way to sell differ-
ent advertisement slots in each round. Suppose there are � slots to which ad-auctions can
be allocated and suppose that buyers are allowed to provide bids on keywords which are
slot dependent. Denote the bid of buyer i on keyword j and slot k by b(i, j, k). The re-
striction is that an (integral) allocation of a keyword to two different slots cannot be sold
to the same buyer. The linear programming formulation of the problem is in Figure 3.
Note that the algorithm does not update the variables z(·) and s(·) explicitly. These
variables are only used for the purpose of analysis, and are updated conceptually in
the proof using the strong duality theorem. The algorithm for the online ad-auctions
problem is as follows.

Allocation Algorithm: Initially, ∀i, x(i) ← 0. Upon arrival of a new product j:

1. Generate a bipartite graph H : n buyers on one side and � slots on the other
side. Edge (i, k) ∈ H has weight b(i, j, k)(1 − x(i)).

2. Find a maximum weight (integral) matching in H , i.e., an assignment to the
variables y(i, j, k).

3. Charge buyer i the minimum between
∑�

k=1 b(i, j, k)y(i, j, k) and its remain-
ing budget.

4. For each buyer i, if there exists slot k for which y(i, j, k) > 0:

x(i) ← x(i)
(

1 +
b(i, j, k)y(i, j, k)

B(i)

)
+

b(i, j, k)y(i, j, k)
(c − 1) · B(i)

Theorem 2. The algorithm is (1 − 1/c) (1 − Rmax)-competitive, where c tends to e
when Rmax → 0.

4 Incorporating Stochastic Information

In this Section we improve the worst case competitive ratio when additional stochastic
information is available. We assume that stochastically or with historical experience we

Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue 261

Dual (Packing)
Maximize:

∑m
j=1

∑n
i=1

∑k
�=1 b(i, j, �)y(i, j, �)

Subject to:
∀1 ≤ j ≤ m, 1 ≤ k ≤ �:

∑n
i=1 y(i, j, k) ≤ 1

∀1 ≤ i ≤ n:
∑m

j=1

∑�
k=1 b(i, j, k)y(i, j, k) ≤ B(i)

∀1 ≤ j ≤ m, 1 ≤ i ≤ n:
∑�

k=1 y(i, j, k) ≤ 1

Primal (Covering)
Minimize :

∑n
i=1 B(i)x(i) +

∑m
j=1

∑�
k=1 z(j, k) +

∑n
i=1

∑m
j=1 s(i, j)

Subject to:
∀i, j, k: b(i, j, k)x(i) + z(j, k) + s(i, j) ≥ b(i, j, k)

Fig. 3. The fractional multi-slot problem (the dual) and the corresponding primal problem

know that, a bidder i is likely to spent a good fraction of her budget. We want to tweak
the algorithm so that the algorithm’s worst case performance improves. As we tweak the
algorithm it is likely that the bidder may spent more or less fraction of her budget. So
we propose to tweak the algorithm gradually until some steady state is reached, i.e., no
more tweaking is required. Suppose at the steady state, buyer i is likely to spent a good
fraction of his budget. Let 0 ≤ gi ≤ 1 be a lower bound on the fraction of the budget
buyer i is going to spend. We show that having this additional information allows us
to improve the worst case competitive ratio to 1 − 1−g

e1−g , where g = mini∈I{gi} is the
minimal fraction of budget extracted from a buyer.

The main idea behind the algorithm is that if a buyer is known to spend at least gi

fraction of his budget, then it means that the corresponding primal variable x(i) will
be large at the end. Thus, in order to make the primal constraint feasible, the value of
z(j) can be made smaller. This, in turn, gives us additional “money” that can be used to
increase x(i) faster. The tradeoff we have is on the value that x(i) is going to be once
the buyer spent gi fraction of his budget. This value is denoted by xs(i) and we choose
it so that after the buyer has spent gi fraction of its budget, x(i) = xs(i), and after
having extracting all its budget, x(i) = 1. In addition, we need the change in the primal
cost to be the same with respect to the dual profit in iterations where we sell the product
to a buyer i who has not yet spent the threshold of gi of his budget. The optimal choice
of xs(i) turns out to be gi

c1−gi−(1−gi)
, and the growth function of the primal variable

x(i), as a function of the fraction of the budget spent, should be linear until the buyer
has spent a gi fraction of his budget, and exponential from that point on. The modified
algorithm is the following:

Allocation Algorithm: Initially ∀i x(i) ← 0. Upon arrival of a new product j
Allocate the product to the buyer i that maximizes b(i, j)(1 − max{x(i), xs(i)}),
where xs(i) = gi

c1−gi−(1−gi)
. If x(i) ≥ 1 then do nothing. Otherwise:

1. Charge the buyer the minimum between b(i, j) and its remaining budget
2. z(j) ← b(i, j)(1 − max{x(i), xs(i)})
3. x(i) ← x(i) + max{x(i), xs(i)} b(i,j)

B(i) + b(i,j)
B(i)

1−gi

c1−gi−(1−gi)
(c is determined

later).

262 N. Buchbinder, K. Jain, and J. (Seffi) Naor

Theorem 3. If each buyer spends at least gi fraction of its budget, then the algorithm

is:
(
1 − 1−g

c1−g

)
(1 − Rmax)-competitive, where c = (1 + Rmax)

1
Rmax .

5 Bounded Degree Setting

In this section we improve on the competitive ratio under the assumption that the num-
ber of buyers interested in each product is small compared with the total number of
buyers. To do so, we design a modified primal-dual based algorithm. The algorithm
only works in the case of a simpler setting (which is still of interest) called the alloca-
tion problem. Still, this construction turns out to be non-trivial and gives us additional
useful insight into the primal-dual approach. In the allocation problem, a seller is inter-
ested in selling products to a group of buyers, where buyer i has budget B(i). The seller
introduces the products one-by-one and sets a fixed price b(j) for each product j. Each
buyer then announces to the seller (upon arrival of a product) whether it is interested
in buying the current product for the set price. The seller then decides (instantly) to
which of the interested buyers to sell the product. For each product j let S(j) be the set
of interested buyers. We assume that there exists an upper bound d such that for each
product j, |S(j)| ≤ d.

The main idea is to divide the buyers into levels according to the fraction of the
budget that they have spent. For 0 ≤ k ≤ d, let L(k) be the set of buyers that have spent
at least a fraction of k

d and less than a fraction of k+1
d of their budget (buyers in level d

exhausted their budget). We refer to each L(k) as level k and say that it is nonempty if
it contains buyers. We design an algorithm for the online allocation problem using two
conceptual steps. First, we design an algorithm that is allowed to allocate each product
in fractions. We bound the competitive ratio of this algorithm with respect to the optimal
fractional solution for the problem. We then show how to deterministically produce an
integral solution that allocates each product to a single buyer. We prove that when the
prices of the products are small compared to the total budget, the loss of revenue in this
step is at most an o(1) with respect to the fractional solution.

Our fractional allocation algorithm is somewhat counter-intuitive. In particular, the
product is not split equally between buyers that spent the least fraction of their budget2,
but rather to several buyers that have approximately spent the same fraction of their
total budget. The formal description of the algorithm is the following:

Allocation Algorithm: Upon arrival of a new product j allocate the product to the
buyers according to the following rules:

– Allocate the product equally and continuously between interested buyers in
the lowest non empty level that contain buyers from S(j). If during the allo-
cation some of the buyers moved to a higher level, then continue to allocate
the product equally only among the buyers in the lowest level.

– If all interested buyers in the lowest level moved to a higher level, then allocate
the remaining fraction of the product equally and continuously between the
buyers in the new lowest level. If all interested buyers have exhausted their
budget, then stop allocating the remaining fraction of the product.

2 Such an algorithm is usually called a “water level” algorithm.

Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue 263

The idea of the analysis is to find the best tradeoff function, fd, that relates the value
of each primal variable to the value of its corresponding dual constraint. It turns out that
the best function is a piecewise linear function that consists of d linear segments. As d
grows, the function approximates the exponential function f(d=∞)(x) = ex−1

e−1 . Due to
lack of space we defer the full analysis to the full version of the paper and just state the
main theorem we proved.

Theorem 4. The allocation algorithm is C(d)-competitive with respect to the optimal
offline fractional solution, where: C(d) = 1 − d−1

d(1+ 1
d−1)

d−1 .

As stated we prove that when the prices of the products are small compared to the total
budget, we may transform the fractional allocation to an integral allocation with only a
small loss of revenue. We do so, by introducing another potential function that is used
to make the rounding decisions. We defer the description of this part to the full version
of the paper.

Lower Bounds. As we stated earlier, the standard lower bound example makes use
of products with large number of interested buyers. Though, the same example when
restricted to bounded degree d gives quite tight bounds. Inspecting this bound more
accurately we can prove the following lower bound for any value d. Figure 1 provides
the lower bounds for several sample values of d.

Lemma 1. For any value d: C(d) ≤ 1 − k−kH(d)+
∑ k

i=1 H(d−i)

d , where H(·) is the
harmonic number, and k is the largest value for which H(d) − H(d − k) ≤ 1.

Our bound is only tight for d = 2. We can derive better tailor-made lower bounds for
specific values of d. In particular it is not hard to show that our algorithm is optimal for
d = 3. We defer this result to the full version of the paper.

6 Risk Management

We extend our basic ad-auctions algorithm to handle a more general setting of real time
risk management. Here each buyer has a monotonically decreasing function f of budget
spent, specifying how aggressive it wants to bid. We normalize f(0) = 1, i.e., at the zero
spending level it is fully aggressive. If it has spent x dollars then its next bid is scaled by
a factor of f(x). Note that since f is a monotonically decreasing function, the revenue
obtained by allocating buyer i a set of items is a concave function of

∑
j b(i, j)y(i, j).

Since we are interested in solving this problem integrally we assume the revenue
function is piecewise linear. Let Ri be the revenue function of buyer i. Let ri be the
number of pieces of the function Ri. We define for each buyer (ri − 1) different bud-
gets B(i, r), defining the amount of money spent in each “aggression” level. When the
buyer spends money from budget B(i, r), the aggression ratio is a(i, r) ≤ 1 (a(i, 1) = 1
for each buyer i). We then define a new linear program with variables y(i, j, k) indi-
cating that item j is sold to buyer i using the kth budget. Note that the ad-auctions
problem considered earlier is actually this generalized problem with two pieces. In
some scenarios it is likely to assume that each buyer has a lowest “aggression” level
that is strictly more than zero. For instance, a buyer is always willing to buy an item

264 N. Buchbinder, K. Jain, and J. (Seffi) Naor

if he only needs to pay 10% of its value (as estimated by the buyer’s bid). Our modi-
fied algorithm for this more general setting takes advantage of this fact to improve the
worst case competitive ratio. In particular, let amin = minn

i=1{a(i, ri)} be the min-
imum “aggression” level of the buyers, then the competitive factor of the algorithm
is e−1

e−amin
. If the minimum level is only 10% (0.1), for example, the competitive ra-

tio is 0.656, compared with 0.632 ≈ 1 − 1/e of the basic ad-auctions algorithm. Let
Rmax = maxi∈I,j∈M,1≤r≤ri−1{a(i,r)b(i,j)

B(i,r) } be the maximum ratio between a charge
to a budget and the total budget. The modified linear program for the more general risk
management setting along with our modified algorithm are deferred to the full version.

Theorem 5. The algorithm is
(

c−1
c−amin

)
(1 − Rmax)-competitive, where c tends to e

when Rmax → 0.

Acknowledgements. We thank Allan Borodin for pointing to us the mutiple slot
setting.

References

1. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover problem. In:
Proceedings of the 35th STOC, pp. 100–105 (2003)

2. Andelman, N., Mansour, Y.: Auctions with budget constraints. In: Proc. of the 9th Scandina-
vian Workshop on Algorithm Theory, pp. 26–38 (2004)

3. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual circuits with
applications to load balancing and machine scheduling. J. ACM 44(3), 486–504 (1997)

4. Awerbuch, B., Azar, Y., Plotkin, S.: Throughput-competitive online routing. In: Proc. of the
34th Annual Symposium on Foundations of Computer Science, pp. 32–40 (1993)

5. Blum, A., Hartline, J.: Near-optimal online auctions (2005)
6. Borgs, C., Chayes, J., Immorlica, N., Mahdian, M., Saberi, A.: Multi-unit auctions with

budget-constrained bidders. In: Proc. of the 6th EC, pp. 44–51 (2005)
7. Buchbinder, N., Naor, J.: Online primal-dual algorithms for covering and packing problems.

In: Proc. of the 13th Annual European Symposium on Algorithms, pp. 689–701 (2005)
8. Buchbinder, N., Naor, J.: A primal-dual approach to online routing and packing. In: Proc. of

the 47th Annual Symposium on Foundations of Computer Science, pp. 293–204 (2006)
9. Dooly, D.R., Goldman, S., Scott, S.D.: On-line analysis of the TCP acknowledgement delay

problem. Journal of the ACM 48, 243–273 (2001)
10. Goel, A., Meyerson, A., Plotkin, S.A.: Combining fairness with throughput: Online routing

with multiple objectives. J. Comput. Syst. Sci. 63(1), 62–79 (2001)
11. Kalyanasundaram, B., Pruhs, K.R.: An optimal deterministic algorithm for online b -

matching. Theoretical Computer Science 233(1-2), 319–325 (2000)
12. Karlin, A.R., Kenyon, C., Randall, D.: Dynamic TCP acknowledgement and other stories

about e/(e-1). In: Proc. of the 33rd Symposium on Theory of Computing, pp. 502–509 (2001)
13. Karp, R., Vazirani, U., Vazirani, V.: An optimal algorithm for online bipartite matching. In:

Proceedings of the 22nd Annual Symposium on Theory of Computing, pp. 352–358 (1990)
14. Mahdian, M., Saberi, A.: Multi-unit auctions with unknown supply. In: EC ’06: Proceedings

of the 7th ACM conference on Electronic commerce, pp. 243–249 (2006)
15. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized on-line matching.

In: Proc. of the 46th IEEE Symp. on Foundations of Computer Science, pp. 264–273 (2005)
16. Robinson, S.: Computer scientists optimize innovative ad auction. SIAM News 38, 243–273

(2005)

Unique Lowest Common Ancestors in Dags Are

Almost as Easy as Matrix Multiplication

Miros�law Kowaluk1,� and Andrzej Lingas2,��

1 Institute of Informatics, Warsaw University, Warsaw
kowaluk@mimum.edu.pl

2 Department of Computer Science, Lund University, S-221 00 Lund
Andrzej.Lingas@cs.lth.se

Abstract. We consider the problem of determining for each pair of ver-
tices of a directed acyclic graph (dag) on n vertices whether or not it has
a unique lowest common ancestor, and if so, finding such an ancestor.
We show that this problem can be solved in time O(nω log n), where
ω < 2.376 is the exponent of the fastest known algorithm for multiplica-
tion of two n × n matrices.

We show also that the problem of determining a lowest common an-
cestor for each pair of vertices of an arbitrary dag on n vertices is solvable
in time 1 Õ(n2p+nω), where p is the minimum number of directed paths
covering the vertices of the dag. With the help of random bits, we can
solve the latter problem in time Õ(n2p).

1 Introduction

A lowest common ancestor (lca) of vertices u and v in a directed acyclic graph
(dag) is an ancestor of both u and v that has no descendant which is an ancestor
of u and v, see Fig. 1 for an example. The problem of finding an lca for a pair
of vertices in a (rooted) tree, or more generally, in a dag is a basic problem in
algorithmic graph theory. Its numerous applications range from computing max-
imum matching in graphs through various string problems, inheritance analysis
in programming languages and analysis of genealogical data to lattice operations
in complex systems (for more details, see, e.g., [4,10,20,23]). It has been exten-
sively studied in the context of preprocessing the input tree or dag such that lca
queries can be answered quickly for any pair of vertices.

For rooted trees, Harel and Tarjan [16] provided the first linear-time prepro-
cessing sufficient to ensure lca constant-time queries. For general dags, Bender
et al. were the first to derive a substantially sub-cubic upper time-bound (i.e.,
O(n(3+ω)/2) = O(n2.688)) on the preprocessing guaranteeing constant-time lca
queries [4]. Recently, Kowaluk et al. [19] and Czumaj et al. [12,11] subsequently
improved this upper bound to O(n2.616) and O(n2.575) by reduction to the prob-
lem of determining maximum witnesses for Boolean product of two n×n Boolean

� Research supported by KBN grant N20600432/0806.
�� Research supported in part by VR grant 621-2005-4806.
1 The notation Õ(f(n)) stands for O(f(n) logc n) for some positive constant c.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 265–274, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

266 M. Kowaluk and A. Lingas

matrices. (In [19,11], there is also given a natural O(nm)-time method for the
all-pairs lca problem in a dag, where m is the number of edges in the input dag.
This method is superior for sparse dags).

A reverse size-preserving reduction from the maximum witness problem for
Boolean n × n matrix product to the all-pairs lca problem in dags on n vertices
is not known. One of the difficulties here is that a maximum witness for an entry
of Boolean product is unique whereas generally a pair of vertices in a dag can
have several lowest common ancestors, see Fig. 1. Thus, such a reverse reduction
likely would reduce the maximum witness problem to a special case of the all-
pair lca problem where there is need to report lca only for those pairs which
a have a unique lca (this is the case of the reverse reduction presented in [11]
which unfortunately squares the parameter n).

The maximum witness problem for Boolean matrix product is of interest
in its own rights, and recently Shapira et al. demonstrated that several other
important problems are easily reducible or even computationally equivalent to
it (up to constant factors), for example, the problem of the all-pairs bottleneck
paths in vertex weighted graphs [22]. The scenario that the maximum witness
problem has substantially higher time complexity than that of the all-pairs lca
problem in a dag in the absence of the aforementioned reverse reduction seems
possible.

In the first part of our paper, we consider the problem of determining lowest
common ancestors for all pairs of vertices that have exactly one lca (for pairs
that do not have unique lca a negative answer is required). We show that this
problem is solvable in time O(nω log n). By our result, a reverse (even slightly
non-preserving size) reduction from the maximum witness problem for Boolean
n × n matrix product to the all-pairs unique lca problem in a dag on up to
about O(n1.083) vertices would yield substantially better upper time-bound for
the former problem and the aforementioned class of important problems related
to it [22]. Therefore, our result can be also regarded as an evidence that the
aforementioned reverse reduction from maximum witnesses to all-pairs lca is
either unlikely or highly non-trivial.

The problem of detecting unique lca is also of interest in its own rights sim-
ilarly as known “unique” variants of many combinatorial problems (cf. [14])2.
For example, a solution to it allows to detect those pairs in a dag that would be
strongly affected by a failure of a single vertex in the context of lca.

In the second part of the paper, we combine the reducibility of the general all-
pairs lca problem in a dag to the maximum witness problem for Boolean matrix
product with known fast combinatorial algorithms for Boolean matrix product
in special cases [5,13] in order to derive improved upper time-bounds for the
former problem in the corresponding cases. We conclude in particular that the
problem of determining a lowest common ancestor for each pair of vertices of
an arbitrary dag on n vertices is solvable in time Õ(n2p + nω), where p is the

2 One should also recall that the idea of the fastest known algorithm for witnesses of
Boolean matrix product due to Alon et al. is based on an extention of an algorithmic
solution to the case where witnesses are unique [1,21].

Unique Lowest Common Ancestors in Dags 267

u

w

v

qy

z

x

Fig. 1. A dag with 7 vertices. The lca of vertices x and y are both, vertex u and vertex
z; vertex w is a common ancestor of x and y but it is not the lca of x and y. There is
no common ancestor of vertices w and q. Vertex w is the unique lca of z and v while
v is the unique lca of y and q.

minimum number of directed paths covering the vertices of the dag. With the
help of random bits, we can solve the latter problem in time Õ(n2p). Observe
that a dag does not have to be sparse to be vertex coverable with a small number
of directed paths.

Organization. Our paper is structured as follows. In Preliminaries, we introduce
several concepts and facts used by our matrix based methods for the all-pairs lca
problem in dags. In Section 3, we present our O(nω log n)-time algorithm for the
all-pairs unique lca problem. In Section 3, we present our method for the general
all-pairs lca problem whose time complexity can be expressed in particular in
terms of the minimum number of paths covering the vertices in the input dag.

2 Preliminaries

We shall use several facts and concepts related to matrix multiplication, in par-
ticular Boolean matrix product.

Let ω denote the exponent of square matrix multiplication, that is, the small-
est constant for which the product of two n × n matrices can be computed
in O(nω) time. The best asymptotic upper bound on ω currently known is
ω < 2.376, by Coppersmith and Winograd [8].

The following fact which relates graph problems to fast matrix multiplication
is well known.

Fact 1. The transitive closure of any directed graph with n vertices, in particular
a dag, can be computed in time O(nω).

We define the concept of witness and maximum witness in Boolean matrix mul-
tiplication as follows.

Definition 1. If an entry C[i, j] of the Boolean product of two Boolean matrices
A and B is equal to 1 then any index k such that A[i, k] and B[k, j] are equal to

268 M. Kowaluk and A. Lingas

1 is a witness for C[i, j]. If k is the largest possible witness for C[i, j] then it is
called the maximum witness for C[i, j]. The minimum witness for C[i, j]
is defined analogously.

The following fact is due to Alon and Naor [1].

Fact 2. The witnesses of the Boolean product of two n×n Boolean matrices can
be computed in time Õ(nω).

The next fact is due to Czumaj, Kowaluk and Lingas [11].

Fact 3. The maximum witnesses (or, minimum witnesses, respectively) for all
positive entries of the Boolean product of two n × n Boolean matrices can be
computed in time O(n2.575).

3 A Fast Algorithm for Unique lca in Dags

In this section we show that all unique lca in a dag can be determined in time
O(nω log n). We begin with the following theorem.

Theorem 1. Let G be a dag on n vertices such that for each pair of its vertices
having a common ancestor, there is exactly one lowest common ancestor. The
all-pairs lca problem for G can be solved in time O(nω log n).

Proof. Let V be the vertex set of G, and let V ′ be a set {v′|v ∈ V } of copies of
the vertices in V. We shall consider auxiliary dags G′ on the vertex set V ∪ V ′

which are formed from G by augmenting the set of direct ancestors for some
vertices v ∈ V with v′. The vertices in V are numbered by 1 through n whereas
those in V ′ by n + 1, n + 2,... .

First, we show how to construct a dag G′ such that for i = 1, ..., n, the i-th
vertex of G, where the last bit of the binary representation of i is 1, has an
odd number of ancestors in G′ whereas all remaining vertices of G have an even
number of ancestors in G′.

To specify G′ in such a way, first we compute the transitive closure of G which
takes O(nω) time by Fact 1. On the basis of the transitive closure, we can easily
compute the number of ancestors for each vertex in G and the parity of this
number. Importantly, we assume here that each vertex is its own ancestor. Next,
we sort the vertices of G in topological order in time O(n2) [9], and scan them
in this order performing the following operations for the currently scanned i-th
vertex of G:

If the i-th vertex has an even number of ancestors in the current G′ and the
last bit of the binary representation of i is 1, or conversely, the i-th vertex of
G has an odd number of ancestors in the current G′ and the last bit of the
binary representation of i is 0, then we augment the set of direct ancestors of
the i-th vertex with the copy of the i-th vertex and update the parity of the
set of ancestors for all descendants of the i-th vertex in G using the transitive
closure of G.

Unique Lowest Common Ancestors in Dags 269

Note that the updates take totally time O(n × n) time and hence the whole
construction of G′ takes time O(nω + n2) = O(nω).

Given such a dag G′, we compute the transitive closure (A′)∗ of its adjacency
matrix A′ in time O(nω). Next, we compute the product C of (A′)∗ with its
transpose in Z2n+1.

Note that for 1 ≤ i ≤ n and 1 ≤ k ≤ 2n, the k-th element of the i-th row
of (A′)∗ is 1 iff the k-th vertex of G′ is an ancestor of the i-th vertex of G.
Analogously, for 1 ≤ j ≤ n and 1 ≤ k ≤ 2n, the k-th element of the j-th column
of the transpose of (A′)∗ is 1 iff the k-th vertex of G′ is an ancestor of the i-th
vertex of G. Hence, C[i, j] is equal to the number of common ancestors of the
i-th and the j-th vertex of G in G′.

By the uniqueness of the lca of the i-th and the j-th vertex in G, the lca, say
the k-th vertex of G, has exactly C[i, j] ancestors. Hence, the parity of k is the
same as that of C[i, j] by the specification of G′.

Next, for l = 2, ..., O(log n), we iterate the procedure specifying in a such way
G′ that the number of ancestors of the i-th vertex of G in G′ has the parity
of the l-th bit in the reversed binary representation of i. The whole algorithm
termed as UniqueLCA is given in Fig. 2.

In effect, for each pair of vertices of G, we obtain either the full binary repre-
sentation of its unique lowest ancestor or just a sequence of zeros if they do not
have a common ancestor.

Since the time complexity of each iteration is dominated by the time required
to find the transitive closure of G′, the total running time of the method is
O(nω log n).

The algorithm of Theorem 1 run on an arbitrary dag (see Fig. 3 for an example)
might happen to produce a candidate for a unique lca for a vertex pair that does
not have a unique lca. The following theorem will be helpful in handling such a
situation.

Theorem 2. Let G = (V, E) be a dag on n vertices, and let P ⊆ V ×V. Suppose
that for each pair (u, v) in P, there is a candidate vertex c(u, v) for a unique lca
for u and v in G. One can verify the correctness of all the candidate vertices in
P in time O(nω).

Proof. By computing the transitive closure A∗ of the adjacency matrix A of G,
we can verify for all (u, v) ∈ P whether or not c(u, v) is a common ancestor of
u and v in time O(nω + |P |) = O(nω). Let An(v) denote the set of ancestors of
v inclusive itself. If the candidate vertex c(u, v) is a common ancestor of u and
v, then An(c(u, v)) is a subset of the set of all common ancestors for p. Hence,
the cardinality of An(c(u, v)) equals that of the set of all common ancestors for
u and v iff c(u, v) is a unique lca for u and v.

To test the aforementioned equality for a candidate vertex c(u, v), which is a
common ancestor of u and v, we proceed as follows. First we precompute the
cardinalities of the sets An(v) of ancestors for all vertices v of G by a straight-
forward bottom up method in time O(|V | + |E|) = O(n2). Next, we compute
the product C of A∗ with its transpose in time O(nω).

270 M. Kowaluk and A. Lingas

procedure UniqueLCA(G)

Input: a dag G on n vertices such that for any pair of vertices in G there is a
unique lca;
Output: for each pair of vertices, their unique lca.

1. Compute the transitive closure of G;
2. For each vertex of G, compute the number of its ancestors;
3. Sort topologically G;
4. for l = 1...�log n� do

(a) G′ ← G;
(b) while scanning vertices of G in topological order do

i. if the scanned vertex has an even number of ancestors in G′ and
the l-th bit of the reverse binary representation of its number i is
1, or conversely, the i-th vertex has an odd number of ancestors
in G′ and the l-th bit of the reverse binary representation of i is
0 then augment the set of direct ancestors of the i-th vertex of
G in G′ with the copy of the i-th vertex and update the parity of
the cardinality of the set of ancestors for all descendants of the
i-th vertex in G using the transitive closure of G;

(c) Compute the transitive closure (A′)∗ of the adjacency matrix A′ of
G′;

(d) Compute the product C of (A′)∗ with its transpose;
(e) For each pair of i, j of vertices of G set the l-th bit of the reversed

binary representation of their unique lca to 1 if C[i, j] is odd and to
0 otherwise.

Fig. 2. The procedure UniqueLCA

Note that the cardinality of the set of common ancestors of the pair v, u
equals C[v, u]. Thus, in case c(v, u) is a common ancestor of (u, v), it remains to
verify whether or not C[u, v] = |An(c(u, v))| which takes time O(|P |) = O(n2).

As a corollary, we obtain the following strengthening of Theorem 1.

Theorem 3. For a dag G on n vertices, for all pairs of vertices in G one can
determine whether or not they have a unique lowest common ancestor, and if
so, determine the unique ancestor, in total time O(nω log n).

Interestingly, Theorem 2 can be be extended to include two candidate vertices
for at most two lowest common ancestors.

Remark. Let G = (V, E) be a dag on n vertices, and let Q ∈ V × V. Suppose
that for each pair p in Q, there are candidate vertices c1(p), c2(p) for a unique
pair of lca for p in G. One can verify the candidate pairs in time O(nω).

Proof. sketch. The proof goes along the lines of that of Theorem 2. In particular,
we check first if c1(p) and c2(p) are common ancestors of p for all pairs p. If so,

Unique Lowest Common Ancestors in Dags 271

010

100

111 011

101 110 001

010

100

111 011

101 110 001

010

100

111 011

101 110 001

Fig. 3. Three iterations of UniqueLCA run on the example dag

then c1(p) and c2(p) form a unique pair of ancestors of p, or one of them is a
unique lca of p, iff the number of common ancestors of p in G equals |An(c1(p))|+
|An(c2(p))|−B, where B is the set of common ancestors of c1(p) and c2(p). Since,
as in the proof of Theorem 2, the number of common ancestors for all vertex
pairs in G can be computed in time O(nω) and the cardinalities of the sets of all
ancestors for all vertices can be computed in time O(n2), we obtain the thesis.

4 Lowest Common Ancestors in Dags of Small Path
Coverage

A path coverage of a dag is a set of directed paths which cover all vertices of the
dag. A path coverage number of a dag G is the minimum cardinality of a path
coverage of G; it is denoted by PCN(G). See Fig. 3 for an example.

In this section, we show in particular that for a dag G on n vertices the all-pair
lca problem can be solved deterministically in time Õ(n2PCN(G) + nω) or by
a randomized algorithm in time Õ(n2PCN(G)).

In [5] (see also [13]), Björklund et al. have presented a combinatorial random-
ized algorithm for the Boolean product of two n×n matrices and the witnesses of
the product which runs in time Õ(n(n+ c)) where c is the minimum of the costs
of the minimum spanning trees for the rows of A and the columns B, respectively,
in the Hamming metric3 (recall that Õ(f(n)) means O(f(n)poly − log n)).

The algorithm of Björklund et al. first computes an O(log n) approximate
minimum spanning tree of the rows of the first matrix in the Hamming metric
as well as an O(log n) approximate minimum spanning tree of the columns of
the second matrix by using a randomized algorithm of Indyk et al. [18]. We may
assume without loss of generality that the cost of the first tree is not larger than
that of the second one. Then, the algorithm fixes a traversal of the tree. Next,
for each pair of consecutive neighboring rows in the traversal, it determines the
3 A minimum spanning tree of the rows (or, columns) of a Boolean matrix in the

Hamming metric is a spanning tree of the complete graph whose vertices are in one-
to-one correspondance with the rows (or, columns, respectively) of the matrix and
the weight of each edge is equal to the Hamming distance between the rows (or,
columns, respectively) correponding to the endpoints of the edge.

272 M. Kowaluk and A. Lingas

u

w

v

qy

z

x

Fig. 4. An example of a minimum cardinality path coverage of a dag

positions on which they differ. Observe that the number of these positions is
equal to the Hamming distance between the rows. Finally, for each column q of
the second matrix, the algorithm traverses the tree and implicitly computes the
set witnesses of the · product of the traversed row of the first matrix with q by
updating the set of witnesses for the · product of the previously traversed row
of the first matrix with q at the positions on which the two rows differ.

The algorithm of Björklund et al. can be easily adopted to the problem of
finding maximum witnesses. Simply, the witnesses for the · product of the tra-
versed row of the first matrix with the fixed column of the second one can be
kept in a heap. While passing to the next row, the heap needs to be updated
only for the elements corresponding to the positions on which the new row differs
from the previous one. Hence, we obtain the following theorem.

Theorem 4. There is a randomized algorithm for the maximum witnesses of
the Boolean product of two n × n matrices A, B running in time Õ(n(n + c))
where c is the minimum of the costs of the minimum spanning trees for the rows
of A and the columns B, respectively, in the Hamming metric.

For a dag G, let G′ be the edge weighted dag obtained by assigning to each edge
(v, u) the difference between the number of ancestors of u and that of v. Consider
a minimum spanning forest T of G′ where the roots of the trees are the sources
of G′. On the other hand, consider the adjacency matrix A∗ of the transitive
closure of G. Let T ∗ be the spanning tree of the rows of A∗ in the Hamming
metric induced by T so that a row corresponding to a source is the root and in
particular the other rows corresponding to sources are the children of the root.
It is not difficult to see that T ∗ has the same cost as T. Recall that the maximum
witnesses for the Boolean product of A∗ with its transpose yield a solution to the
all-pairs lca problem for G. To compute the product and its maximum witnesses
we can either use the algorithm of Theorem 4 or plug in the tree T ∗ instead of the
approximation one due to Indyk et al. in this algorithm. In the latter way, we can
solve deterministically the all-pairs lca problem for G in time O(n(n+ t)) where
t is the cost of T provided T is given. To specify G′ and compute T , we need to
compute the transitive closure of G which takes O(nω) time. Summarizing, we
obtain the following theorem.

Unique Lowest Common Ancestors in Dags 273

Theorem 5. For a dag G on n vertices, let G′ be the edge weighted dag obtained
by assigning to each edge (v, u) the difference between the number of ancestors
of u and that of v, and let t be the minimum cost of a spanning forest of G′

where the sources of G′ are the roots of the trees in the forest. The all-pairs lca
problem for G can be solved in time Õ(n(n+t)+nω). There is also a randomized
algorithm solving the all-pairs lca problem for G in time Õ(n(n + t)).

Consider a path coverage S of a dag G. For the sake of a proof, extend each
directed path in S that does not start from a source to a directed path starting
from a source. It is not difficult to see that the total cost of edges in the extended
paths originally in S in the weighted dag G′ is not less than the cost of a minimum
spanning tree of G′. On the other hand, the total cost of edges in a directed path
in G′ is at most n. Hence, we obtain the following theorem.

Theorem 6. For a dag G on n vertices, the all-pairs lca problem for G can be
solved in time Õ(n2PCN(G)+nω). There is also a randomized algorithm solving
the all-pairs lca problem for G in time Õ(n2PCN(G)).

5 Final Remarks

Our algorithms for the unique lca problem in a dag and that for the all-pairs lca
problem in an arbitrary dag whose complexity is expressed in terms of the cost
of a minimum spanning tree or the path coverage number extend substantially
the list of cases for which the all-pairs lca problem can solved faster than in the
general case. Previously, more efficient solutions have been reported for sparse
dags and bounded depth dags [11,12,19]. One can hope that by using the afore-
mentioned more efficient cases, possibly extended by new ones, and a careful
case analysis, one could substantially improve the upper bound O(n2.575) for
the general problem.

References

1. Alon, N., Naor, M.: Derandomization, witnesses for Boolean matrix multiplication
and construction of perfect hash functions. Algorithmica 16, 434–449 (1996)

2. Becker, A., Geiger, D., Schaeffer, A.A.: Automatic Selection of Loop Breakers for
Genetic Linkage Analysis.

3. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–93. Springer, Heidelberg
(2000)

4. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest
common ancestors in trees and directed acyclic graphs. Journal of Algorithms,
57(2), 75–94 (2005) (a preliminary version in Proc. SODA 2001, pp. 845–853)

5. Björklund, A., Lingas, A.: Fast Boolean matrix multiplication for highly clustered
data. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125,
Springer, Heidelberg (2001)

6. Cole, R., Hariharan, R.: Dynamic LCA queries in trees. SIAM Journal on Com-
puting 34(4), 894–923 (2005)

274 M. Kowaluk and A. Lingas

7. Coppersmith, D.: Rectangular matrix multiplication revisited. Journal of Symbolic
Computation 13, 42–49 (1997)

8. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progression.
Journal of Symbolic Computation 9, 251–290 (1990)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. McGraw-Hill Book Company, Boston, MA (2001)

10. Cottingham Jr., R.W., Idury, R.M., Shäffer, A.A.: Genetic linkage computations.
American Journal of Human Genetics 53, 252–263 (1993)

11. Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common
ancestors in directed acyclic graphs. Theoretical Computer Science 380(1-2), 37–46
(2007)

12. Czumaj, A., Lingas, A.: Improved algorithms for the all-pairs lowest common an-
cestor problem in directed acyclic graphs. Manuscript (2005)

13. Gasieniec, L., Lingas, A.: An improved bound on Boolean matrix multiplication
for highly clustered data. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003.
LNCS, vol. 2748, pp. 329–339. Springer, Heidelberg (2003)

14. Gabow, H.N., Kaplan, H., Tarjan, R.E.: Unique Maximum Matching Algorithms.
In: Proc. 31st Annual ACM Symposium on Theory of Computing (STOC’99)
(1999)

15. Galil, Z., Margalit, O.: Witnesses for Boolean matrix multiplication and for tran-
sitive closure. Journal of Complexity 9, 201–221 (1993)

16. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing 13(2), 338–355 (1984)

17. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplications and applications.
Journal of Complexity 14, 257–299 (1998)

18. Indyk, P., Motwani, R.: Approximate Nearest Neighbors: Towards Removing the
Curse of Dimensionality. In: Proc. 30th ACM Symposium on Theory of Computing
(STOC’98) (1998)

19. Kowaluk, M., Lingas, A.: LCA queries in directed acyclic graphs. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 241–248. Springer, Heidelberg (2005)

20. Nykänen, M., Ukkonen, E.: Finding lowest common ancestors in arbitrarily directed
trees. Information Processing Letters 50(6), 307–310 (1994)

21. Seidel, R. (ed.): On the All-Pairs-Shortest-Path Problem, pp. 745–749. ACM Press,
New York (1992)

22. Shapira, A., Yuster, R., Zwick, U.: All-Pairs Bottleneck Paths in Vertex Weighted
Graphs. In: Proc. 18th Ann. ACM-SIAM Symposium on Discrete Algorithms
(SODA’07), pp. 978–985 (2007)

23. Shäffer, A.A., Gupta, S.K., Shriram, K., Cottingham Jr., R.W.: Avoiding recom-
putation in linkage analysis. Human Heredity 44, 225–237 (1994)

24. Tarjan, R.E.: Applications of path compression on balanced trees. Journal of the
ACM 26(4), 690–715 (1979)

Optimal Algorithms for k-Search with

Application in Option Pricing

Julian Lorenz�, Konstantinos Panagiotou��, and Angelika Steger

Institute of Theoretical Computer Science, ETH Zurich, 8092 Zurich, Switzerland
{jlorenz,panagiok,steger}@inf.ethz.ch

Abstract. In the k-search problem, a player is searching for the k high-
est (respectively, lowest) prices in a sequence, which is revealed to her
sequentially. At each quotation, the player has to decide immediately
whether to accept the price or not. Using the competitive ratio as a
performance measure, we give optimal deterministic and randomized al-
gorithms for both the maximization and minimization problems, and
discover that the problems behave substantially different in the worst-
case. As an application of our results, we use these algorithms to price
“lookback options”, a particular class of financial derivatives. We derive
bounds for the price of these securities under a no-arbitrage assumption,
and compare this to classical option pricing.

1 Introduction

1.1 k-Search Problem

We consider the following online search problem: a player wants to sell (re-
spectively, buy) k ≥ 1 units of an asset with the goal of maximizing her profit
(minimizing her cost). At time points i = 1, . . . , n, the player is presented a price
quotation pi, and must immediately decide whether or not to sell (buy) one unit
of the asset for that price. The player is required to complete the transaction
by some point in time n. We ensure that by assuming that if at time n − j
she has still j units left to sell (respectively, buy), she is compelled to do so in
the remaining j periods. We shall refer to the profit maximization version (sell-
ing k units) as k-max-search, and to the cost minimization version (purchasing k
units) as k-min-search.

In this work, we shall make no modeling assumptions on the price path except
that it has finite support, which is known to the player. That is, the prices are
chosen from the real interval I = {x | m ≤ x ≤ M}, where 0 < m < M . We
define the fluctuation ratio ϕ = M/m. Let P =

⋃
n≥k In be the set of all price

sequences of length at least k. Moreover, the length of the sequence is known to
the player at the beginning of the game.

Sleator and Tarjan [1] proposed to evaluate the performance of online algo-
rithms by using competitive analysis. In this model, an online algorithm ALG is

� This work was partially supported by UBS AG.
�� This work was partially supported by the SNF, grant number: 200021-107880/1.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 275–286, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

276 J. Lorenz, K. Panagiotou, and A. Steger

compared with an offline optimum algorithm OPT (which knows all prices in
advance), on the same price sequence. Here, the price sequence is chosen by an
adversary out of the set P of admissible sequences. Let ALG(σ) and OPT(σ)
denote the objective values of ALG and OPT when executed on σ ∈ P . The
competitive ratio of ALG is defined for maximization problems as

CR(ALG) = max
{

OPT(σ)
ALG(σ)

∣∣∣ σ ∈ P
}

,

and similarly, for minimization problems

CR(ALG) = max
{

ALG(σ)
OPT(σ)

∣∣∣ σ ∈ P
}

.

We say that ALG is c-competitive if it achieves a competitive ratio not larger
than c. For randomized algorithms, we substitute the expected objective va-
lue E[ALG] for ALG in the definitions above.

Related Work. In 2001, El-Yaniv, Fiat, Karp and Turpin studied, among other
problems, the case k = 1, i.e. 1-max-search, and the closely related one-way
trading problem [2] with the competitive ratio (defined above) as performance
measure. In the latter, a player wants to exchange some initial wealth to some
other asset, and is again given price quotations one-by-one. However, the player
may exchange an arbitrary fraction of her wealth for each price. Hence, the
k-max-search problem for general k ≥ 1 can be understood as a natural bridge
between the two problems considered in [2], with k → ∞ corresponding to the
one-way trading problem. This connection will be made more explicit later.

Several variants of search problems, which will discussed below, have been ex-
tensively studied in operations research and mathematical economics. However,
traditionally most of the work follows a Bayesian approach: optimal algorithms
are developed under the assumption that the prices are generated by a known
distribution. Naturally, such algorithms heavily depend on the underlying model.

Lippmann and McCall [3,4] give an excellent survey on search problems with
various assumptions on the price process. More specifically, they study the prob-
lem of job and employee search and the economics of uncertainty, which are two
classical applications of series search problems. In [5], Rosenfield and Shapiro
study the situation where the price follows a random process, but some of its
parameters that may be random variables with known prior distribution. Hence,
the work in [5] tries to get rid of the assumption of the Bayesian search models
that the underlying price process is fully known to the player. Ajtai, Megiddo
and Waarts [6] study the classical secretary problem. Here, n objects from an
ordered set are presented in random order, and the player has to accept k of
them so that the final decision about each object is made only on the basis of its
rank relative to the ones already seen. They consider the problems of maximizing
the probability of accepting the best k objects, or minimizing the expected sum
of the ranks (or powers of ranks) of the accepted objects. In this context, Klein-
berg designed in [7] an (1 − O(1/

√
k))-competitive algorithm for the problem of

maximizing the sum of the k chosen elements.

Optimal Algorithms for k-Search with Application in Option Pricing 277

Results & Discussion. In contrast to the Bayesian approaches, El-Yaniv et al. [2]
circumvent almost all distributional assumptions by resorting to competitive
analysis and the minimal assumption of a known finite price interval. In this
paper we also follow this approach. The goal is to provide a generic search strat-
egy that works with any price evolution, rather than to retrench to a specific
stochastic price process. In many applications, where it is not clear how the
generating price process should be modeled, this provides an attractive alter-
native to classical Bayesian search models. In fact, in the second part of the
paper we give an interesting application of k-max-search and k-min-search to
robust option pricing in finance, where relaxing typically made assumptions on
the (stochastic) price evolution to the minimal assumption of a price interval
yields remarkably good bounds.

Before we proceed with stating our results, let us introduce some notation.
For σ ∈ P , σ = (p1, . . . , pn), let pmax(σ) = max1≤i≤n pi denote the maximum
price, and pmin(σ) = max1≤i≤n pi the minimum price. Let W denote Lambert’s
W -function, i.e., the inverse of f(w) = w exp(w). For brevity we shall write
f(x) ∼ g(x), if limx→∞ f(x)/g(x) = 1. It is well-known that W (x) ∼ log x.

Our results for deterministic k-max-search are summarized in Theorem 1.

Theorem 1. Let k ∈ N, ϕ > 1. There is a r∗-competitive deterministic algo-
rithm for k-max-search, where r∗ = r∗(k, ϕ) is the unique solution of

ϕ − 1
r∗ − 1

=
(

1 +
r∗

k

)k

, (1)

and there exists no deterministic algorithm with smaller competitive ratio. Fur-
thermore, it holds

(i) For fixed k ≥ 1 and ϕ → ∞, we have r∗(k, ϕ) ∼ k+1
√

kkϕ.
(ii) For fixed ϕ > 1 and k → ∞, we have r∗(k, ϕ) ∼ 1 + W (ϕ−1

e).

The algorithm in the theorem above is given explicitly in Section 2. Interestingly,
the optimal competitive deterministic algorithm for the one-way trading problem
studied in [2] has competitive ratio exactly 1 + W (ϕ−1

e) (for n → ∞), which
coincides with the ratio of our algorithm given by the theorem above for k → ∞.
Hence, k-max-search can indeed be understood as a natural bridge between the
1-max-search problem and the one-way trading problem.

For deterministic k-min-search we obtain the following statement.

Theorem 2. Let k ∈ N, ϕ > 1. There is a s∗-competitive deterministic algo-
rithm for k-min-search, where s∗ = s∗(k, ϕ) is the unique solution of

1 − 1/ϕ

1 − 1/s∗
=

(
1 +

1
ks∗

)k

, (2)

and there exists no deterministic algorithm with smaller competitive ratio. Fur-
thermore, it holds

(i) For fixed k ≥ 1 and ϕ → ∞, we have s∗(k, ϕ) ∼
√

k+1
2k ϕ.

(ii) For fixed ϕ > 1 and k → ∞, we have s∗(k, ϕ) ∼ (W (−ϕ−1
eϕ) + 1)−1.

278 J. Lorenz, K. Panagiotou, and A. Steger

The algorithm in the theorem above is also given explicitly in Section 2. Sur-
prisingly, although one might think that k-max-search and k-min-search should
behave similarly with respect to competitive analysis, Theorem 2 states that this
is in fact not the case. Indeed, according to Theorems 1 and 2, for large ϕ, the
best algorithm for k-max-search achieves a competitive ratio of roughly k k

√
ϕ,

while the best algorithm for k-min-search is at best
√

ϕ/2-competitive. Simi-
larly, when k is large, the competitive ratio of a best algorithm for k-max-search
behaves like log ϕ, in contrast to k-min-search, where a straightforward analysis
(i.e. series expansion of the W function around its pole) shows that the best al-
gorithm achieves a ratio of Θ(

√
ϕ). Hence, algorithms for k-min-search perform

in the worst-case rather poorly compared to algorithms for k-max-search.
Furthermore, we investigate the performance of randomized algorithms for the

problems in question. In [2] the authors gave a O(log ϕ)-competitive randomized
algorithm for 1-max-search, but did not provide a lower bound.

Theorem 3. Let k ∈ N, ϕ > 1. For every randomized k-max-search algorithm
RALG we have

CR(RALG) ≥ (ln ϕ)/2. (3)

Furthermore, there is a (ln ϕ)/ln 2-competitive randomized algorithm.

Note that the lower bound above is independent of k, i.e., randomized algorithms
cannot improve their performance when k increases. In contrast to that, by
considering Theorem 1, as k grows the performance of the best deterministic
algorithm improves, and approaches log ϕ, which is only a multiplicative factor
away from the best ratio that a randomized algorithm can achieve.

Our next result is about randomized algorithms for k-min-search.

Theorem 4. Let k ∈ N, ϕ > 1. For every randomized k-min-search algorithm
RALG we have

CR(RALG) ≥ (1 +
√

ϕ)/2. (4)

Again, the given lower bound is independent of k. More surprising, combined
with Theorem 2, the theorem above states that for all k ∈ N, randomization
does not improve the performance (up to possibly a multiplicative constant) of
algorithms for k-min-search, compared to deterministic algorithms. This is again
a slightly unexpected difference between k-max-search and k-min-search.

1.2 Application to Robust Valuation of Lookback Options

In the second part of the paper we will use competitive k-search algorithms
to derive upper bounds for the price of lookback options, a particular class of
financial derivatives (see e.g. [8]). An option is a contract whereby the option
holder has the right (but not obligation) to exercise a feature of the option
contract on or before an exercise date, delivered by the other party – the writer
of the option. Since the option gives the buyer a right, it will have a price that
the buyer has to pay to the option writer.

Optimal Algorithms for k-Search with Application in Option Pricing 279

The most basic type of options are European options on a stock. They give the
holder the right to buy (respectively, sell) the stock on a prespecified date T (ex-
piry date) for a prespecified price K. Besides these standard and well-understood
types, there is also a plethora of options with more complex features. One type
are so called lookback options. A lookback call allows the holder to buy the un-
derlying stock at time T from the option writer at the historical minimum price
observed over [0, T], and a lookback put to sell at the historical maximum.

A fundamental question is to determine the value of an option at time t < T .
Black and Scholes [9] studied European call and put options on non-dividend
paying stocks in a seminal paper. The key argument in their derivation is a no
arbitrage condition. Loosely speaking, an arbitrage is a zero-risk, zero net in-
vestment strategy that still generates profit. If such an opportunity came about,
market participants would immediately start exploiting it, pushing prices until
the arbitrage opportunity ceases to exist. Black and Scholes essentially give a
dynamic trading strategy in the underlying stock by which an option writer can
risklessly hedge an option position. Thus, the no arbitrage condition implies that
the cost of the trading strategy must equal the price of the option to date.

In the model of Black and Scholes trading is possible continuously in time and
in arbitrarily small portions of shares. Moreover, a central underlying assump-
tion is that the stock price follows a geometric Brownian motion (see e.g. [10]),
which then became the standard model for option pricing. While it certainly
shows many features that fairly resemble reality, the behavior of stock prices
in practice is not fully consistent with this assumption. For instance, the distri-
bution observed for the returns of stock price processes are non-Gaussian and
typically heavy-tailed [11], leading to underestimation of extreme price move-
ments. Furthermore, in practice trading is discrete, price paths include price
jumps and stock price volatility is not constant. As a response, numerous mod-
ifications of the original Black-Scholes setting have been proposed, examining
different stochastic processes for the stock price (for instance [12,13,14]).

In light of the persistent difficulties of finding and formulating the “right”
model for the stock price dynamic, there have also been a number of attempts
to price financial instruments by relaxing the Black-Scholes assumptions instead.
The idea is to provide robust bounds that work with (almost) any evolution of
the stock price rather than focusing on a specific formulation of the stochastic
process. In this fashion, DeMarzo, Kremer and Mansour [15] derive both upper
and lower bounds for option prices in a model of bounded quadratic variation,
using competitive online trading algorithms. In the mathematical finance com-
munity, Epstein and Wilmott [16] propose non-probabilistic models for pricing
interest rate securities in a framework of “worst-case scenarios”. Korn [17] com-
bines the random walk assumption with a worst-case analysis to tackle optimal
asset allocation under the threat of a crash.

In this spirit, using the deterministic k-search algorithms from Section 2 we
derive in Section 4 upper bounds for the price of lookback calls and puts, un-
der the assumption of bounded stock price paths and non-existence of arbitrage
opportunities. Interestingly, the resulting bounds are remarkably good, showing
similar qualitative properties and quantitative values as pricing in the standard

280 J. Lorenz, K. Panagiotou, and A. Steger

Black-Scholes model. Note that the assumption of a bounded stock price is in-
deed very minimal, since without any assumption about the magnitude of the
stock price fluctuation in fact no upper bounds for the option price apply.

2 Deterministic Search

Let us consider the following reservation price policy RPP for k-max-search. Prior
to the start of the game, we choose reservation prices p∗i (i = 1 . . . k). As the
prices are sequentially revealed, RPP accepts the first price that is at least p∗1 and
sells one unit. It then waits for the first price that is at least p∗2, and subsequently
continues with all reservation prices. RPP works through the reservation prices
in a strictly sequential manner. Note that RPP may be forced to sell at the last
prices of the sequence, which may be lower than the remaining reservations, to
meet the constraint of completing the sale.

The proof of the lemma below generalizes the ideas presented in [2].

Lemma 1. Let k ∈ N, ϕ > 1. Let r∗ = r∗(k, ϕ) be defined as in (1). Then the
reservation price policy RPP with reservation prices given by

p∗i = m
[
1 + (r∗ − 1) (1 + r∗/k)i−1

]
, (5)

satisfies k pmax(σ) ≤ r∗ ·RPP(σ) for all σ ∈ P. In particular, RPP is a r∗-compe-
titive algorithm for the k-max-search problem.

Proof. For 0 ≤ j ≤ k, let Pj ⊆ P be the sets of price sequences for which RPP
accepts exactly j prices, excluding the forced sale at the end. Then P is the
disjoint union of the Pj ’s. To shorten notation, let us write p∗k+1 = M . Let ε > 0
be fixed and define the price sequences

∀0 ≤ i ≤ k : σi = p∗1, p
∗
2, . . . , p

∗
i , p∗i+1 − ε, . . . , p∗i+1 − ε

︸ ︷︷ ︸
k

, m, m, . . . , m︸ ︷︷ ︸
k

.

Observe that as ε → 0, each σj is a sequence yielding the worst-case ratio
in Pj, in the sense that for all σ ∈ Pj

OPT(σ)
RPP(σ)

≤ kpmax(σ)
RPP(σ)

≤ kp∗j+1

RPP(σj)
. (6)

Thus, to prove the statement we show that for 0 ≤ j ≤ k it holds kp∗j+1 ≤
r∗ · RPP(σj). A straightforward calculation shows that for all 0 ≤ j ≤ k

j∑

i=1

p∗i = m
[
j + k(1 − 1/r∗)

(
(1 + r∗/k)j − 1

)]
.

But then we have for ε → 0,

∀ 0 ≤ j ≤ k :
kp∗j+1

RPP(σj)
=

kp∗j+1∑j
i=1 p∗i + (k − j)m

= r∗.

Thus, from (6) the r∗-competitiveness of RPP follows immediately. ��

Optimal Algorithms for k-Search with Application in Option Pricing 281

By considering the choice of reservation prices in Lemma 1, we see that in fact
no deterministic algorithm will be able to do better than RPP in the worst-case.

Lemma 2. Let k ≥ 1, ϕ > 1. Then r∗(k, ϕ) given by (1) is the lowest possible
competitive ratio that a deterministic k-max-search algorithm can achieve.

By combining Lemma 1 and Lemma 2 we immediately obtain the first part of
Theorem 1. The proofs of Lemma 2 and the statements about the asymptotic
behavior of the competitive ratio are omitted due to space restrictions.

Similarly, we can construct a reservation price policy RPP for k-min-search.
Naturally, RPP is modified such that it accepts the first price lower than the
current reservation price.

Lemma 3. Let k ∈ N, ϕ > 1. Let s∗ = s∗(k, ϕ) be defined as in (2). Then the
reservation price policy RPP with reservation prices p∗1 > · · · > p∗k,

p∗i = M

[
1 −

(
1 − 1

s∗

) (
1 +

1
ks∗

)i−1
]

, (7)

satisfies RPP(σ) ≤ s∗(k, ϕ) · k pmin(σ), and is a s∗(k, ϕ)-competitive determin-
istic algorithm for k-min-search.

Again, no deterministic algorithm can do better than RPP in Lemma 3.

Lemma 4. Let k ≥ 1, ϕ > 1. Then s∗(k, ϕ) given by (2) is the lowest possible
competitive ratio that a deterministic k-min-search algorithm can achieve.

The proofs of Lemma 3 and 4 and the asymptotic behavior of s∗ in Theorem 2
are omitted due to space restrictions.

3 Randomized Search

3.1 Lower Bound for Randomized k-Max-Search

We consider k = 1 first. The optimal deterministic online algorithm achieves a
competitive ratio of r∗(1, ϕ) =

√
ϕ. As shown in [2], randomization can dramat-

ically improve this. Assume for simplicity, that ϕ = 2� for some integer �. For
0 ≤ j < � let RPP(j) be the reservation price policy with reservation m2j, and
define EXPO to be a uniform probability mixture over {RPP(j)}�−1

j=0.

Lemma 5 (Levin, see [2]). Algorithm EXPO is O(log ϕ)-competitive.

We shall prove that EXPO is in fact the optimal randomized online algorithm
for 1-max-search. We will use the following version of Yao’s principle [18].

Theorem 5 (Yao’s principle). For an online maximization problem denote
by S the set of possible input sequences, and by A the set of deterministic algo-
rithms, and assume that S and A are finite. Fix any probability distribution y(σ)

282 J. Lorenz, K. Panagiotou, and A. Steger

on S, and let S be a random sequence according to this distribution. Let RALG
be any mixed strategy, given by a probability distribution on A. Then,

CR(RALG) = max
σ∈S

OPT(σ)
E[RALG(σ)]

≥
(

max
ALG∈A

E

[
ALG(S)
OPT(S)

])−1

. (8)

The reader is referred to standard textbooks for a proof (e.g. chapter 6 and
8 in [19]). In words, Yao’s principle says that we obtain a lower bound on the
competitive ratio of the best randomized algorithm by calculating the perfor-
mance of the best deterministic algorithm for a chosen probability distribution
of input sequences. Note that (8) gives a lower bound for arbitrary chosen in-
put distributions. However, only for well-chosen y’s we will obtain strong lower
bounds.

We first need to establish the following lemma on the representation of an
arbitrary randomized algorithm for k-search.

Lemma 6. Let RALG be a randomized algorithm for the k-max-search problem.
Then RALG can be represented by a probability distribution on the set of all
deterministic algorithms for the k-max-search problem.

The proof is omitted due to space restrictions. The next lemma yields the desired
lower bound.

Lemma 7. Let ϕ > 1. Every randomized 1-max-search algorithm RALG satisfies

CR(RALG) ≥ (ln ϕ)/2.

Proof. Let b > 1 and � = logb ϕ. We define a finite approximation of I by
Ib = {mbi | i = 0 . . . �}, and let Pb =

⋃
n≥k In

b . We consider the 1-max-search
problem on Pb. As Pb is finite, also the set of deterministic algorithms Ab is
finite. For 0 ≤ i ≤ � − 1, define sequences of length � by

σi = mb0, . . . , mbi, m, . . . , m. (9)

Let Sb = {σi | 0 ≤ i ≤ � − 1} and define the probability distribution y on Pb by

y(σ) =

{
1/� for σ ∈ Sb,

0 otherwise.

Let ALG ∈ Ab. Note that for all 1 ≤ i ≤ �, the first i prices of the sequences σj

with j ≥ i−1 coincide, and ALG cannot distinguish them up to time i. As ALG is
deterministic, it follows that if ALG accepts the i-th price in σ�−1, it will accept
the i-th price in all σj with j ≥ i−1. Thus, for every ALG, let 0 ≤ χ(ALG) ≤ �−1
be such that ALG accepts the (χ(ALG) + 1)-th price, i.e. mbχ(ALG), in σ�−1. ALG
will then earn m bχ(ALG) on all σj with j ≥ χ(ALG), and m on all σj with
j < χ(ALG). To shorten notation, we write χ instead of χ(ALG) in the following.
Thus, we have

E

[
ALG
OPT

]
=

1
�

⎡

⎣
χ−1∑

j=0

m

mbj
+

�−1∑

j=χ

mbχ

mbj

⎤

⎦ =
1
�

[
1 − b−χ

1 − b−1
+

1 − b−(�−χ)

1 − b−1

]
,

Optimal Algorithms for k-Search with Application in Option Pricing 283

where the expectation E[·] is with respect to the probability distribution y(σ).
If we consider the above term as a function of χ, then it is easily verified that it
attains its maximum at χ = �/2. Thus,

max
ALG∈Ab

E

[
ALG
OPT

]
≤ 1

�

(
1 − 1√

ϕ

)
2b

b − 1
≤ 1

ln ϕ
· 2b ln b

b − 1
. (10)

Let Υb be the set of all randomized algorithms for 1-max-search with possible
price sequences Pb. By Lemma 6, each RALGb ∈ Υb may be given as a probability
distribution on Ab. Since Ab and Sb are both finite, we can apply Theorem 5.
Thus, for all b > 1 and all RALGb ∈ Υb, we have

CR(RALGb) ≥
(

max
ALG∈Ab

E

[
ALG
OPT

])−1

≥ ln ϕ
b − 1
2b ln b

.

Let Υ be the set of all randomized algorithms for 1-max-search on P . Since
for b → 1, we have Ab → A, Υb → Υ and (b − 1)/(2b ln b) → 1

2 , the proof is
completed. ��
In fact, Lemma 7 can be generalized to arbitrary k ≥ 1.

Lemma 8. Let k ∈ N, ϕ > 1. Let RALG be any randomized algorithm for
k-max-search. Then, we have

CR(RALG) ≥ (ln ϕ)/2.

Giving an optimal randomized algorithm for k-max-search is straightforward.
For 1 < b < ϕ and � = logb ϕ, EXPOk chooses j uniformly at random from
{0, . . . , � − 1}, and sets all its k reservation prices to mbj.

Lemma 9. Let k ∈ N. EXPOk is an asymptotically optimal randomized algo-
rithm for the k-max-search problem with CR(EXPOk) = lnϕ/ ln 2 as ϕ → ∞.

The proofs of Lemma 8 and Lemma 9 are omitted due to space restrictions.

3.2 Randomized k-Min-Search

The proof of the lower bound for k-min-search, Theorem 4, uses an analogous
version of Yao’s principle (see for instance Theorem 8.5 in [19]).

Proof (Theorem 4). We only give the proof for k = 1. Let S = {σ1, σ2} with

σ1 = m
√

ϕ, M, . . . , M and σ2 = m
√

ϕ, m, M, . . . , M,

and let y(σ) be the uniform distribution on S. For i ∈ {1, 2}, let ALGi be
the reservation price policy with reservation prices p∗1 = m

√
ϕ and p∗2 = m,

respectively. Obviously, the best deterministic algorithm against the randomized
input given by the distribution y(σ) must be either ALG1 or ALG2. Since

E

[
ALGi

OPT

]
= (1 +

√
ϕ)/2, i ∈ {1, 2},

the desired lower bound follows from the min-cost version of Yao’s principle. The
proof for general k ≥ 1 is straightforward by repeating the prices m

√
ϕ and m

in σ1 and σ2 in blocks of k times. ��

284 J. Lorenz, K. Panagiotou, and A. Steger

4 Robust Valuation of Lookback Options

In this section, we use the deterministic k-search algorithms from Section 2 to
derive upper bounds for the price of lookback options under the assumption
of bounded stock price paths and non-existence of arbitrage opportunities. We
consider a discrete-time model of trading. For simplicity we assume that the
interest rate is zero. The price of the stock at time t ∈ {0, 1, . . . , T} is given
by St, with S0 being the price when seller and buyer enter the option contract.
At each price quotation St, only one unit of stock (or one lot of constant size)
can be traded. In reality, certainly the amount of shares tradeable varies, but
we can model this by multiple quotations at the same price. We assume that a
lookback option is on a fixed number k ≥ 1 of shares. Recall that the holder of
a lookback call has the right to buy shares from the option writer for the price
Smin = min{St | 0 ≤ t ≤ T }. Neglecting stock price appreciation, upwards and
downwards movement is equally probably. Consequently, we assume a symmetric
trading range [ϕ−1/2S0, ϕ

1/2 S0] with ϕ > 1. We refer to a price path that
satisfies St ∈ [ϕ−1/2S0, ϕ

1/2 S0] for all 1 ≤ t ≤ T as a (S0, ϕ) price path.

4.1 Upper Bounds for the Price of Lookback Options

Theorem 6. Assume (St)0≤t≤T is a (S0, ϕ) stock price path. Let s∗(k, ϕ) be
given by (2), and let

V ∗Call(k, S0, ϕ) = kS0(s∗(k, ϕ) − 1)/
√

ϕ. (11)

Let V be the option premium paid at time t = 0 for a lookback call option on k
shares expiring at time T . Suppose we have V > V ∗Call(k, S0, ϕ). Then there exists
an arbitrage opportunity for the option writer, i.e., there is a zero-net-investment
strategy which yields a profit for all (S0, ϕ) stock price paths.

Proof. In the following, let Ct denote the money in the option writer’s cash
account at time t. At time t = 0, the option writer receives V from the option
buyer, and we have C0 = V . The option writer then successively buys k shares,
applying RPP for k-min-search with reservation prices as given by (7). Let H
be the total sum of money spent for purchasing k units of stock. By Lemma 3
we have H ≤ ks∗(k, ϕ)Smin. At time T the option holder executes her option,
buying k shares from the option writer for kSmin in cash. Thus, after everything
has been settled, we have CT = V − H + kSmin ≥ V + kSmin(1 − s∗(k, ϕ)).
Because of Smin ≥ S0/

√
ϕ and V > V ∗Call(k, S0, ϕ), we conclude that CT > 0 for

all possible (S0, ϕ) stock price paths. Hence, this is indeed a zero net investment
profit for the option writer on all (S0, ϕ) stock price paths. ��
Under the no-arbitrage assumption, we immediately obtain an upper bound for
the value of a lookback call option.

Corollary 1. Under the no-arbitrage assumption, we have V ≤ V ∗Call(k, S0, ϕ),
with V ∗Call(k, S0, ϕ) as defined in (11).

Optimal Algorithms for k-Search with Application in Option Pricing 285

0 0.2 0.4 0.6 0.8 1
17

18

19

20

21

22

23

24

Time T in years

S
to

ck
 p

ric
e

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Time to expiry T in years

O
pt

io
n

pr
ic

e

Fig. 1. The left plot shows the expected trading range of a geometric Brownian motion
with volatility σ = 0.2 and S(0) = 20. The right plot shows the price of a lookback call
with maturity T in the Black-Scholes model (solid line) and the bound V ∗

Call (dashed
line), with k = 100 and ϕ(T) chosen to match the expected trading range.

Using Lemma 1 and similar no-arbitrage arguments, also an upper bound for
the price of a lookback put option can be established.

Note that it is not possible to derive non-trivial lower bounds for lookback
options in the bounded stock price model, as a (S0, ϕ)-price path may stay at S0

throughout, making the option mature worthless for the holder. To derive lower
bounds, there must be a promised fluctuation of the stock. In the classical Black-
Scholes pricing model, this is given by the volatility of the Brownian motion.

4.2 Comparison to Pricing in Black-Scholes Model

Goldman, Sosin and Gatto [20] give closed form solutions for the value of look-
back puts and calls in the Black-Scholes setting. Let σ be the volatility of the
stock price, modeled by a geometric Brownian motion, S(t) = S0 exp(−σ2t/2 +
σB(t)), where B(t) is a standard Brownian motion. Let Φ(x) denote the cumu-
lative distribution function of the standard normal distribution. Then, for zero
interest rate, at time t = 0 the value of a lookback call on one share of stock,
expiring at time T , is given by

V BS
Call(S0, T, σ) = S0

(
2 Φ(σ

√
T/2) − 1

)
. (12)

The hedging strategy is a certain roll-over replication strategy of a series of Eu-
ropean call options. Everytime the stock price hits a new all-time low, the hedger
has to “roll-over” her position in the call to one with a new strike. Interestingly,
this kind of behavior to act only when a new all-time low is reached resembles
the behavior of RPP for k-min-search.

For a numerical comparison of the bound V ∗Call(k, S0, ϕ, T) with the Black-
Scholes-type pricing formula (12), we choose the fluctuation rate ϕ = ϕ(T)
such that the expected trading range

[
E(min0≤t≤T St), E(max0≤t≤T St)

]
of a

286 J. Lorenz, K. Panagiotou, and A. Steger

geometric Brownian motion starting at S0 with volatility σ is
[
ϕ−1/2S0, ϕ

1/2S0

]
.

Figure 1 shows the results for σ = 0.2, S0 = 20 and k = 10.

References

1. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Comm. ACM 28(2), 202–208 (1985)

2. El-Yaniv, R., Fiat, A., Karp, R.M., Turpin, G.: Optimal search and one-way trading
online algorithms. Algorithmica 30(1), 101–139 (2001)

3. Lippmann, S.A., McCall, J.J.: The economics of job search: a survey. Economic
Inquiry XIV, 155–189 (1976)

4. Lippmann, S.A., McCall, J.J.: The economics of uncertainty: selected topics and
probabilistic methods. Handbook of mathematical economics 1, 211–284 (1981)

5. Rosenfield, D.B., Shapiro, R.D.: Optimal adaptive price search. Journal of Eco-
nomic Theory 25(1), 1–20 (1981)

6. Ajtai, M., Megiddo, N., Waarts, O.: Improved algorithms and analysis for secretary
problems and generalizations. SIAM Journal on Disc. Math. 14(1), 1–27 (2001)

7. Kleinberg, R.D.: A multiple-choice secretary algorithm with applications to online
auctions. In: SODA, pp. 630–631 (2005)

8. Hull, J.C.: Options, Futures, and Other Derivatives. Prentice-Hall, Englewood
Cliffs (2002)

9. Black, F., Scholes, M.S.: The pricing of options and corporate liabilities. Journal
of Political Economy 81(3), 637–654 (1973)

10. Shreve, S.E.: Stochastic calculus for finance. II. Springer Finance. Springer-Verlag,
New York, Continuous-time models (2004)

11. Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues.
Quantitative Finance 1, 223–236 (2001)

12. Merton, R.C.: Option pricing when underlying stock returns are discontinuous.
Journal of Financial Economics 3(1-2), 125–144 (1976)

13. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. CRC Press, Boca
Raton, USA (2004)

14. Heston, S.L.: A closed-form solution for options with stochastic volatility with
applications to bond and currency options. Rev. of Fin. Stud. 6(2), 327–343 (1993)

15. DeMarzo, P., Kremer, I., Mansour, Y.: Online trading algorithms and robust option
pricing. In: Proc. of the ACM Symp. on Theory of Comp., STOC, pp. 477–486.
ACM Press, New York, USA (2006)

16. Epstein, D., Wilmott, P.: A new model for interest rates. International Journal of
Theoretical and Applied Finance 1(2), 195–226 (1998)

17. Korn, R.: Worst-case scenario investment for insurers. Insurance Math.
Econom. 36(1), 1–11 (2005)

18. Yao, A.C.C.: Probabilistic computations: toward a unified measure of complexity.
In: 18th Symp. on Foundations of Comp. Sci., pp. 222–227. IEEE Computer Society
Press, Los Alamitos (1977)

19. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cam-
bridge University Press, New York (1998)

20. Goldman, M.B., Sosin, H.B., Gatto, M.A.: Path dependent options: buy at the
low, sell at the high. The Journal of Finance 34(5), 1111–1127 (1979)

Linear Data Structures for Fast Ray-Shooting

Amidst Convex Polyhedra�

Haim Kaplan, Natan Rubin, and Micha Sharir

School of Computer Science, Tel Aviv University, Tel Aviv, Israel
{haimk,rubinnat,michas}@post.tau.ac.il

Abstract. We consider the problem of ray shooting in a three-
dimensional scene consisting of k (possibly intersecting) convex poly-
hedra with a total of n facets. That is, we want to preprocess them into
a data structure, so that the first intersection point of a query ray and
the given polyhedra can be determined quickly. We describe data struc-
tures that require Õ(npoly(k)) preprocessing time and storage, and have
polylogarithmic query time, for several special instances of the problem.
These include the case when the ray origins are restricted to lie on a
fixed line �0, but the directions of the rays are arbitrary, the more gen-
eral case when the supporting lines of the rays pass through �0, and the
case of rays orthogonal to z-axis with arbitrary origins. In all cases, this
is a significant improvement over previously known techniques (which
require Ω(n2) storage, even when k � n).

1 Introduction

The general ray-shooting problem can be defined as follows: Given a collection
Γ of n objects in R

d, preprocess Γ into a data structure so that one can quickly
determine the first object in Γ intersected by a query ray.

The ray-shooting problem has received much attention because of its appli-
cations in computer graphics and other geometric problems. Generally, there
is a tradeoff between query time and storage (and preprocessing), where faster
queries require more storage and preprocessing. In this paper, we focus on the
case of fast (polylogarithmic) query time, and seek to minimize the storage of
the data structures. For a more comprehensive review of the problem and its
solutions, see [12]. If Γ consists of arbitrary triangles in R

3, the best known data
structure is due to Pellegrini [11]; it requires O(n4+ε) preprocessing and storage
and has logarithmic query time. If Γ is the collection of facets on the boundary
of a convex polyhedron, then an optimal algorithm, with O(log n) query and

� Work by Haim Kaplan and Natan Rubin has been supported by Grant 975/06 from
the Israel Science Fund. Work by Micha Sharir and Natan Rubin was partially
supported by NSF Grant CCF-05-14079, by a grant from the U.S.-Israeli Binational
Science Foundation, by grant 155/05 from the Israel Science Fund, Israeli Academy
of Sciences, and by the Hermann Minkowski–MINERVA Center for Geometry at Tel
Aviv University.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 287–298, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

288 H. Kaplan, N. Rubin, and M. Sharir

O(n) storage, can be obtained using the hierarchical decomposition of Dobkin
and Kirkpatrick [9]. For the case where Γ consists of the boundary facets of k
convex polyhedra, Agarwal and Sharir [4] describe a solution having polyloga-
rithmic query time and O(n2+εk2) storage, which is an improvement over [11].
Still, this solution requires Ω(n2) storage, even for small k, in contrast to the
O(n) storage achieved in [9] for the case k = 1.

A wide range of special instances of the ray-shooting problem have been con-
sidered, where restrictions are imposed either on the query rays or on the input
polyhedra. The most popular are the cases of C-oriented or fat input polyhedra,
as well as the case of vertical ray-shooting (amidst arbitrary convex polyhedra).
Another case, studied by Bern et al. [6], involves rays whose origins lie on a fixed
straight line in R

3. Unfortunately, all the known solutions to the restricted prob-
lems mentioned above require Ω(n2) storage to achieve polylogarithmic query
time, even in the case where the input consists of k convex polyhedra, where k
is small relatively to n.

Our contribution. In this paper we focus on the case where the input consists of
k convex polyhedra with a total of n facets, and implicitly assume that k � n.
Our goal is to derive algorithms with polylogarithmic query time, for which the
storage that they require is (nearly) linear in n. We achieve this in several useful
special cases, where one case involves ray-shooting with rays whose origins lie
on a fixed line. In this case our solution uses Õ(nk5) storage and preprocessing,
and answers queries in polylogarithmic time. (The notation Õ(·) hides polyloga-
rithmic factors.) We extend this solution for the case where the rays lie on lines
that pass through a fixed line, but their origins are arbitrary, and for the case of
rays orthogonal to the z-axis with arbitrary origins. This is achieved at the cost
of increasing the preprocessing time to Õ(nk6), with similar time and storage
complexity. The problems that we study have the common property that the
lines containing the query rays have only three degrees of freedom, as opposed
to the general case when the lines have four degrees of freedom. If we ignore
the issue of making the performance of the algorithm depend on k, there are
solutions that require O(n3+ε) storage and preprocessing, with polylogarithmic
query time (e.g., a simple adaptation of the technique of [3]). No previous al-
gorithm solves these problems with performance that depends subquadratically
on n, when k � n.

Overview. We apply the following uniform approach to both problem instances.
Denote by P the set of input polyhedra. We define a parametric space S whose
points represent lines containing the query rays. Since the lines containing the
query rays have three degrees of freedom, we take S to be R

3. Each polyhedron
P ∈ P defines a surface σP in S, which is the locus of all (points representing)
lines that are tangent to P . The arrangement C(P) of the surfaces σP yields a
subdivision of S, each of whose cells C is a maximal connected relatively open
set of lines which stab the same subset PC of P . When the polyhedra of P
are pairwise disjoint, the order in which lines � in any fixed cell C intersect
the polyhedra of PC is the same for all � ∈ C. Let r be a query ray, let �r

Linear Data Structures for Fast Ray-Shooting Amidst Convex Polyhedra 289

be the line containing r, and let C ⊂ S denote the cell of C(P) containing the
point representing �r. We can answer a query by a binary search with the ray
origin among the sorted list of polyhedra of PC . In Section 2, we modify the
analysis of Brönnimann et al. [7] to prove that the complexity of C(P), for lines
�r passing through a fixed line, is O(nk2). We use the persistent data structure
technique of [13] to search for the cell of C(P) containing �r. This results in
an algorithm for ray-shooting from a line into a collection of pairwise disjoint
polyhedra, which requires Õ(nk2) storage and preprocessing time, and supports
queries in polylogarithmic time.

The above approach fails when the polyhedra of P may intersect each other,
because the order in which the polyhedra of PC are intersected by �r need not
be fixed over �r ∈ C. To handle this difficulty, we apply a more sophisticated
technique. We add to P all pairwise intersections between the polyhedra of P ,
and obtain a set Q, consisting of O(k2) polyhedra with a total of O(nk) facets.
Instead of C(P) we now consider the arrangement C(Q), which is a refinement
of C(P). Each cell C in C(Q) is a maximal connected region of S such that all
lines represented in C stab the same subset QC of Q. We can use essentially the
same spatial data structure as in the case of disjoint polyhedra, constructed over
C(Q) instead of over C(P), to locate the cell of C(Q) containing a query line �r.
Now the structure requires Õ(nk · (k2)2) = Õ(nk5) storage and preprocessing,
and supports queries in polylogarithmic time; see Section 3.

Let P and Q be any pair of polyhedra in PC . If P ∩ Q does not belong to
QC , that is, P ∩ Q is not intersected by lines represented in C, then P and Q
are intersected in the same order by all lines � represented in C. This induces a
partial order ≺C on the polyhedra of P . Clearly, Ξ ⊂ PC is an antichain with
respect to ≺C if and only if, for all P and Q in Ξ, the polyhedron P ∩Q is in QC .
The one-dimensional Helly theorem then implies that the polyhedron

⋂
Ξ (the

intersection of all of the polyhedra in Ξ) (a) is nonempty, and (b) is intersected
by all lines represented in C.

Using parametric search, the ray-shooting problem reduces to testing a query
segment for intersection with P ; see also [2]. The latter problem can be solved, for
segments contained in lines represented in C, using a small number of
ray-shooting queries amidst polyhedra of the form

⋂
Ξ, where Ξ is a maximal

antichain with respect to ≺C . Organizing the data to facilitate efficient im-
plementation of these ray shootings requires several additional technical steps,
which are detailed in the relevant sections below.

The paper is organized as follows. In Section 2 we describe the solution for
ray-shooting from a fixed line �0 amidst disjoint polyhedra. In Section 3 we de-
scribe the extra machinery used to handle intersecting polyhedra. In the full ver-
sion [10], we generalize our approach to solve the ray-shooting problem for rays
with arbitrary origins that contained in lines which intersect �0, and for rays or-
thogonal to the z-axis. For lack of space some proofs are omitted from this
extended abstract.

Preliminaries. Let P be a set of k polyhedra in R
3. A support vertex of a line

� is a vertex v of a polyhedron P ∈ P , so that v lies on � (and � does not meet

290 H. Kaplan, N. Rubin, and M. Sharir

the interior of P). A support edge of a line � is an edge e of a polyhedron P ∈ P ,
so that e intersects � at its relative interior (and � does not meet the interior of
P). A support polyhedron of a line is a polyhedron that contains a support edge
or vertex of the line.

Let S be a set of edges and vertices. A line � is a transversal of S if � intersect
every edge or vertex in S. Line � is an isolated transversal of S if it is a transversal
of S and it cannot be moved continuously while remaining a transversal of S. A
set S of edges and vertices admits an isolated transversal if there is an isolated
transversal � of S.

Brönnimann et al. [7] prove that there are O(n2k2) minimal sets of relatively
open edges and vertices, chosen from some of the polyhedra, which admit an
isolated transversal that is tangent to these support polyhedra. This bound is
an easy consequence of the following main lemma of [7].

Theorem 1. Let P , Q and R be three convex polyhedra in R
3, having p, q and

r facets, respectively, and let �0 be an arbitrary line. There are O(p + q + r)
minimal sets of relatively open edges and vertices, chosen from some of these
three polyhedra, which, together with �0, admit an isolated transversal that is
tangent to these support polyhedra (excluding sets that lie in planes which contain
�0 and are tangent to all three polyhedra, if such planes exist).

Clearly, the number of such transversals, over all triples of polyhedra, is O(nk2).
They can be computed in O(nk2 log n) time, as described in [7].

2 Ray-Shooting from a Line: Disjoint Polyhedra

In this section we present an algorithm for the case where we shoot from a
fixed line �0, and the input consists of pairwise-disjoint polyhedra. Our approach
somewhat resembles that of [7]. We parameterize the set of planes containing
�0 by fixing one such plane Π0 in an arbitrary manner, and by defining Πt, for
0 ≤ t < π, to be the plane obtained by rotating Π0 around �0 by angle t.

We represent a line � passing through �0 by the pair (t(�), Dt(�)), where t(�)
is such that Πt(�) contains �, and Dt(�) is the point dual to � in Πt(�). For conve-
nience, we choose Dt(·) to be a planar duality transform which excludes points
corresponding to lines parallel to �0. That is, if we choose in Πt a coordinate
frame in which �0 is the y-axis and the origin is a fixed point on �0, then the
duality maps each point (ξ, η) to the line y = ξx − η and vice versa. As above,
we denote by S the resulting 3-dimensional parametric space of lines.

We use the arrangement C(P) defined in the introduction, and recall that each
cell C of C(P) is a maximal connected region in S, such that all lines in C stab
the same subset of P . For a cell C ∈ C(P), we denote by PC ⊆ P the set of the
polyhedra stabbed by the lines in C. Clearly, the polyhedra of PC are intersected
in the same order by all lines in C (this follows by a simple continuity argument,
using the fact that C is connected). This allows us to reduce ray-shooting queries
with rays emanating from �0 to point location queries in C(P), in the manner
explained in the introduction.

Linear Data Structures for Fast Ray-Shooting Amidst Convex Polyhedra 291

�

Qt

Pt�0
Πt

Q

P U(Pt)

L(Qt)
Dt(�)

L(Pt)

U(Qt)

Fig. 1. � is a common tangent of Pt and Qt in the primal plane Πt (left). The dual
arrangement A∗

t (right). Dt(�) is an intersection of two lines, which are dual to the
support vertices of � in Πt.

Without loss of generality we assume that the interiors of all the polyhedra
in P are disjoint from �0. Otherwise, we can cut each of the polyhedra, whose
interior is intersected by �0, into two sub-polyhedra, by some plane through �0.
This will not affect the asymptotic complexity of the solution.

This allows us, for each cell C, to order the polyhedra in PC , and the line �0,
according to their intersections with a line � ∈ C, where the order is independent
of �. In fact, it suffices to store, for each C ∈ C(P), the two polyhedra of PC that
are adjacent to �0 in this order. We denote these polyhedra by P+

C and P−C .
Next we describe how to construct the point location data structure over

C(P), and how to compute P+
C and P−C , as defined above, for each C ∈ C(P).

Point location in C(P). Consider a plane Πt, for some fixed value of the
rotation angle t. For each polyhedron P ∈ P , let Pt denote the intersection
polygon P ∩ Πt, and let Pt = {Pt | P ∈ P , Pt 	= ∅} be the set of all resulting
(non-empty) polygons. For each polygon Pt ∈ Pt we denote by U(Pt) (resp.,
L(Pt)) the upper (resp., lower) envelope of all the lines dual to the vertices of
Pt in the plane Πt. The following observation is elementary.

Observation: Let � be a line contained in Πt, and let Dt(�) be the point dual to
� in the dual plane. Then � does not intersect P if and only if Dt(�) lies above
U(Pt) or below L(Pt). Points on U(Pt) and L(Pt), are dual to lines tangent to
Pt (and, therefore, also to P). (See Figure 1 for an illustration).

We denote by A∗t the arrangement of the monotone piecewise-linear unbounded
curves {L(Pt), U(Pt)}Pt∈Pt . Clearly, regions in A∗t correspond to maximal con-
nected sets of lines passing through �0, such that all lines in the same region
stab the same subset of P .1

Hence, for each cell C ∈ C(P), the intersection of C with the surface {t(�) = t}
consists of one or several connected cells in A∗t . Thus, answering a point-location
query in C(P), for a query point (t(�), Dt(�)), is reduced to answering a point-
location query in A∗t(�), with the point Dt(�).

To perform point location queries in A∗t , for all t ∈ [0, π], we employ an
adapted version of the technique of Preparata and Tamassia [13] for point

1 We regard the polyhedra P ∈ P as closed, so tangency of a line to some P also counts
as intersection. This requires some (routine) care in handling lower-dimensional faces
of A∗

t , which we omit.

292 H. Kaplan, N. Rubin, and M. Sharir

location in a dynamically changing monotone planar subdivision. There are cer-
tain events, of two different kinds, at which A∗t changes combinatorially. Events
of the first kind occur when the sweep plane Πt passes through a vertex v of
some P ∈ P . It can easily be argued that all such events cause O(nk) topology
changes to A∗t in total (at each of there events, we either get O(k) new vertices of
A∗t , or have to delete O(k) vertices from A∗t). In events of the second kind, each
of the envelopes in {L(Pt), U(Pt)}Pt∈Pt is combinatorially unchanged. Events of
this kind either involve a concurrent triple of envelopes (where the intersection
point is dual to a line tangent to three polygons of Pt), or involve a vertex of
one envelope lying on another envelope (which is dual to a line supporting a
vertex of one Pt and tangent to another Qt). That is, each of the listed events
corresponds to a set of polyhedra edges and vertices which (together with �0)
admit an isolated transversal. Hence, by Theorem 1, the number of such events
is O(nk2). In summary, we have:

Theorem 2. Let P be a set of k convex polyhedra with a total of n facets, let
�0 be a fixed line, and let C(P) be the corresponding cell decomposition of the
parametric space S, as defined above. We can construct, in O(nk2 log2 n) time, a
data structure which supports point location queries in C(P) in O(log2 n) time,
and requires O(nk2 log2 n) storage.

Note that this theorem does not require the input polyhedra to be disjoint. We
will apply it also in Section 3, in contexts involving intersecting polyhedra.

To compute, for each cell C ∈ C(P), the pair of polyhedra P+
C and P−C “near-

est“ to �0, we note that the enumeration of the elements of PC ∪ {�0}, ordered
according to their intersections with lines � ∈ C, changes in at most one position
as we pass between neighboring cells of C(P) (across a common 2-face), where
in each such change we have to either insert a new polyhedron P into PC , or
remove a polyhedron from this list. So we maintain this list in a persistent search
tree, as follows. After C(P) has been constructed, we construct a spanning tree
of the adjacency graph of its cells, and turn it into a linear-size sequence of cells,
each consecutive pair of which are adjacent. We then traverse the sequence, and
when we pass from a cell C to the next (adjacent) cell C′, we update PC in a
persistent manner, and construct from it PC′ , by the corresponding insertion or
deletion of a polyhedron.

Theorem 3. Let P be a set of k pairwise disjoint convex polyhedra in R
3 with a

total of n facets, and let �0 be a fixed line. Then we can construct, in O(nk2 log2 n)
time, a data structure of size O(nk2 log2 n), which supports ray-shooting queries
from �0 in O(log2 n) time.

3 Ray-Shooting from a Line: Handling Intersecting
Polyhedra

The solution described in the previous section fails for the case of intersect-
ing polyhedra because lines which belong to the same cell C may intersect the

Linear Data Structures for Fast Ray-Shooting Amidst Convex Polyhedra 293

P Q

�
�0

P ∩ Q

(a)

P1 P2

P4
P3

P5

�
�0

(b)

Fig. 2. (a) P ≺C Q, for the cell C containing �; the polyhedron P ∩ Q is not in QC .
(b) Illustrating Front(C), for the cell C containing �. We have Front(C) = {P1, P2}
and Front(C) = {P1, P2, P3}. The maximal antichains are {P1, P2, P3} and {P4, P5}.

boundaries of the polyhedra of PC in different orders. In this section we consider
this case, and derive a solution which is less efficient, but still nearly linear in n.

As described in Section 1, we use parametric search to reduce the problem to
segment intersection detection. Specifically, the problem is reduced to testing a
segment s = o1o2, such that o1 is on �0, for intersection with the polyhedra of
P . We begin with the following trivial observation.

Observation: Let P be a set of convex polyhedra, let A denote the arrangement
of their boundaries, and let s be a segment. If the endpoints of s belong to distinct
cells of A then s intersects the boundary of a polyhedron of P.

The first ingredient of our algorithm is thus a data structure for point location
in A. For example, we can use the structure described in [13]. For this, we note
that A is not xy-monotone, as required in [13]. Nevertheless, we can replace
each polyhedron P ∈ P by two semi-unbounded polyhedra P+, P−, where P+

(resp., P−) consists of all the points that lie in P or above (resp., below) it. We
obtain 2k convex polyhedra, still with a total of O(n) facets, whose arrangement
is xy-monotone, and is in fact a refinement of A. Thus, locating a point in
the new arrangement, using the algorithm in [13], gives us the cell of A that
contains it. The complexity of the (extended) A is O(nk2)—an easy and well
known fact. Hence, the resulting data structure requires O(nk2 log2 n) storage
and preprocessing, and answers point-location queries in O(log2 n) time.

The more difficult part is to test whether s intersects a polyhedron of P when
the endpoints of s belong to the same cell of A. In this case, it is sufficient to test
s for intersection with the polyhedra of P which do not contain o1. Indeed, if s
intersects a polyhedron P containing o1 then the other endpoint o2 is outside of
P , and, therefore, o1 and o2 belong to different cells of A.

As in the previous section, we cut each of the polyhedra, whose interior is
intersected by �0, into two sub-polyhedra, by some plane through �0, and leave
rest of the polyhedra unchanged. Note, that we have just added artificial facets
to the polyhedra of P , whose affine extensions contain �0.

We replace P with the set Q = {P ∩ Q | P, Q ∈ P}; note that the original
polyhedra of P are also in Q. The new set contains O(k2) convex polyhedra of
total complexity O

(∑
P,Q∈P(nP + nQ)

)
= O(nk), where nP is the number of

294 H. Kaplan, N. Rubin, and M. Sharir

facets of polyhedron P . As above, let C(Q) denote the 3-dimensional arrangement
in S defined by the surfaces of tangents to the polyhedra in Q.

We construct a point location structure over C(Q) as we did for C(P) in
Section 2. Each cell C ∈ C(Q) is a maximal connected region with the property
that all lines in C stab the same subset of polyhedra of Q, which we denote
by QC . This point location data structure supports queries in O(log2(nk)) =
O(log2 n) time, and requires O(nk · (k2)2 log2(nk)) = O(nk5 log2 n) storage and
preprocessing time. The following is an obvious but crucial observation, which
justifies the introduction of Q.
Observation: Let C be a cell of C(Q), and let � be a line in C. For any pair
of distinct polyhedra P, Q ∈ PC , the segments P ∩ � and Q ∩ � intersect if and
only if P ∩ Q is in QC .

We consider a query ray in a line � to be positive if it is contained in the halfplane
of Πt(�) which lies to the right of �0 (in an appropriate coordinate frame, as
described above). We focus below on the case of positive rays, since negative
rays can be handled in a fully symmetric manner. We denote by �+ the positive
ray (emanating from �0) contained in the line �, and, for a cell C ∈ C(Q), we
denote by P+

C ⊆ P the subset of polyhedra of P intersected by �+, for any line �
in C; since we have assumed that no polyhedron of P intersects �0, this property
is indeed independent of the choice of � in C.

We define Front(C) to be the set of all polyhedra P ∈ P+
C for which there

exists a line � in C, such that an endpoint of P ∩ � is the closest to �0, among
all the boundary points, along �. That is, Front(C) consists of all candidate
polyhedra to be the first intersected by positive rays �+, for � ∈ C.

We define a partial order ≺C on the polyhedra of PC , as follows. For P, Q ∈
PC , we say that P ≺C Q if P ∩ Q /∈ QC (the polyhedron P ∩ Q is not stabbed
by any line in C), and the segment P ∩ � appears before Q ∩ � along �, for any
line � in C. See Figure 2 (a) for an illustration.

Lemma 1. The order P ≺C Q (a) is well defined and is independent of the
choice of � in C, and (b) is indeed a partial order.

Recall that a subset T ⊆ PC is called an antichain of ≺C if any two distinct
polyhedra P, Q ∈ T are unrelated under ≺C ; T is called a maximal antichain if
no (proper) superset of T is an antichain.

Lemma 2. A subset T ⊆ PC is an antichain under ≺C if and only if every line
� in C intersects the polyhedron

⋂ T =
⋂

P∈T P .

Proof. Let T be an antichain under ≺C . For any P, Q ∈ T , the polyhedra P
and Q are unrelated under ≺C , so P ∩ Q ∈ QC . Therefore, for every line � in
C, the segments P ∩ � and Q ∩ � intersect. Hence, by the one-dimensional Helly
theorem,

⋂
P∈T (P ∩ �) = (

⋂ T) ∩ � is not empty, for every � ∈ C.
To prove the converse statement, let T be a subset of PC such that

⋂ T is
stabbed by every line in C. In particular, for any pair of polyhedra P and Q
in T , the polyhedron P ∩ Q is stabbed by every line in C. Thus, P and Q are
unrelated under ≺C . �

Linear Data Structures for Fast Ray-Shooting Amidst Convex Polyhedra 295

We define Front(C) ⊆ PC to be the set of all minimal polyhedra under ≺C . It
is easy to see that Front(C) ⊆ Front(C). (A proper inclusion is possible—see
Figure 2 (b).) Since Front(C) is a maximal antichain under ≺C , we obtain the
following corollary. See Figure 2(b) for an illustration.

Corollary 1. Every line in C intersects the polyhedron
⋂

Front(C).

For each cell C we store a pointer to a data structure which supports ray-
shooting queries at the polyhedron

⋂
Front(C) with positive rays contained in

lines � ∈ C. Details about the structure, and the analysis of its storage and
construction cost, will be presented later in this section.

Answering Queries. The query algorithm is based on the following lemma.
See Figure 3(a) for an illustration.

Lemma 3. Let s = o1o2 be a query segment (where o1 ∈ �0), contained in a
positive ray. Let � be the line containing s, and let C be the cell of C(Q) that
contains �. Then s intersects a (non-artificial) facet on the boundary of some
polyhedron of P if and only if one of the following two conditions holds:

(i) o1 and o2 belong to distinct cells of A.
(ii) s intersects the boundary of the polyhedron

⋂
Front(C) and o2 is not con-

tained in
⋂

Front(C).

Proof. If the first one of the two conditions holds then s clearly intersects the
boundary of some polyhedron of P . Now assume s intersects the boundary of⋂

Front(C) and o2 is not contained in Front(C). In particular, there is P ∈
Front(C) such that o2 is not contained in P , and s intersects P . Hence, s
intersects a non-artificial facet on the boundary of P .

For the converse statement, assume that s intersects a non-artificial facet
on the boundary of some polyhedron P of P . If o2 is contained in P then,
by assumption, o1 and o2 belong to distinct cells of A. Otherwise, let P be
the first polyhedron intersected by s, and let �+ denote the ray which contains
s. Since o2 is not contained in P , the segment P ∩ �+ is contained in s. By
definition, P belongs to Front(C). By Corollary 1, �+ intersects

⋂
Front(C).

Since Front(C) ⊂ P , the intersection of �+ with
⋂

Front(C) is also contained
in s. Hence, o2 is not contained in

⋂
Front(C), and s intersects

⋂
Front(C). �

Now we are ready to describe our query algorithm. First, we use the data struc-
ture for point location in A to test whether the endpoints of s belong to different
cells of A. If this is the case, we report intersection and finish. Otherwise, we
query the spatial point location structure of C(Q) to find the cell C which con-
tains the line � containing s. Then, we test whether s intersects

⋂
Front(C),

and whether o2 is not contained in Front(C), and report intersection if and
only if the answer is positive. The correctness of this procedure follows from the
preceding analysis.

Query Time and Storage. For any collection of polyhedra P ′ ⊆ P , and a face
f of A, we say that f is good for P ′ if P ′ is the set of all (closed) polyhedra in
P that contain f .

296 H. Kaplan, N. Rubin, and M. Sharir

�+�0

o1 P

o2

(a)

�0

P

Q

�R

(b)

Fig. 3. (a) Query algorithm: case (ii). o1 and o2 lie in the same cell of A, s intersects⋂
Front(C) and o2 lies out of

⋂
Front(C). (b) Good facets. For the cell C which

contains �,
⋂

Front(C) = P ∩ Q. The facets of P ∩ Q which are contained in R (bold)
are not good and are not intersected by lines in C.

Lemma 4. Let C be a cell of C(Q). If a line � in C intersects f ∈ A, and f is
on ∂(

⋂
Front(C)), then f is good for Front(C).

Proof. We have to prove that the set of polyhedra that contain f is equal to
Front(C). Since f is on ∂(

⋂
Front(C)), it is clear that every polyhedron in

Front(C) contains f . Conversely, let P be a polyhedron that contains f . We
claim that P is minimal in P+

C under ≺C , and therefore P ∈ Front(C). Indeed,
if P is not minimal under ≺C , then there exists Q ∈ Front(C) such that Q ≺C P .
It follows that Q ∩ � is disjoint from P ∩ �, but this contradicts the fact that �
intersects f , which clearly lies in P ∩ Q. �

Therefore, it suffices to solve, for each cell C, the ray-shooting problem only
amidst the faces of A that lie on the boundary of

⋂
Front(C) and are good for

Front(C). See Figure 3(b) for an illustration.
Let P ′ ⊆ P be a set of polyhedra. Let f be a good facet for P ′, let hf

be the plane containing f , and let h+
f be the halfspace bounded by hf and

containing
⋂ P ′. We define G(P ′) to be the polyhedron obtained by intersecting

the halfspaces h+
f , over all good faces f for P ′. Note that

⋂
P ′ ⊆ G(P ′), and

that every good face for P ′ lies on ∂G(P ′). In particular, we have the following
property (brought without proof).

Lemma 5. Let C be a cell in C(P), let � be a line in C, and let �+ be the positive
ray of �, as defined above. Then

⋂
Front(C) and G(Front(C)) have the same

intersection with �+.

Hence, s intersects
⋂

Front(C), and o2 is not in Front(C) if and only if it
intersects G(Front(C)), and o2 is not in G(Front(C)). It suffices to test s for
the latter property.

For each cell C ∈ C(Q), we construct a data structure which supports ray-
shooting queries at G(Front(C)). If implemented as in [9], the structure uses
storage linear in the complexity of G(Front(C)), and can answer queries in
O(log n) time. With each cell C ∈ C(Q) we store a pointer to the ray-shooting
structure at G(Front(C)). As each face of A is good for exactly one subset P ′

Linear Data Structures for Fast Ray-Shooting Amidst Convex Polyhedra 297

of polyhedra, the total storage and preprocessing required for all these auxiliary
ray-shooting data-structures is O(nk2 log n).

Hence, the resulting data structure uses O(nk5 log2 n) storage (the major part
of which is consumed by the point location structure in the decomposition C(Q)).
Since we use parametric search, the actual query time is quadratic in the cost of
a segment intersection query, and is thus O(log4 n).

Preprocessing. The only nontrivial part of the preprocessing is the construction
of the ray-shooting structures at the polyhedra G(Front(C)), for all the cells
C ∈ C(Q). First, for each face f of A, we compute the unique subset Pf ⊆ P for
which f is good, which is done by testing, for each polyhedron P ∈ P , whether P
contains some fixed point pf ∈ f . Since the complexity of A is O(nk2), this can
be done in total time O(nk3 log n). We represent each subset Pf by a bitvector
in {0, 1}k. Next, we collect the faces f having the same set Pf . This can be done
by sorting the O(nk2) k-long bitvectors Pf , in time O(nk3 log n). We construct
for each of the resulting equivalence classes T a ray-shooting structure on the
polyhedron G(T).

To supply each cell C ∈ C(Q) with a pointer to the ray-shooting structure
corresponding to G(Front(C)), we proceed as follows. Recall that C(Q) is a
refinement of C(P). For a cell C̃ ∈ C(P), the cells C ∈ C(Q) contained in C̃ form
a connected portion of the adjacency structure induced by the arrangement C(Q).
Let C and C′ be a pair of adjacent cells in C(Q) which are contained in the same
cell of C(P). If the set P of original polyhedra is in general position, there is a
unique pair of polyhedra P and Q such that {P ∩ Q} = QC�QC′ . Therefore,
(P, Q) is the only pair of polyhedra related under ≺C and unrelated under ≺C′

(or vice versa). Thus in C we have, say, P ≺C Q, so Q is not in Front(C). Since
all other pairs do not change their status in ≺, the only possible change from
Front(C) to Front(C′) is that Q may be added to the latter set, which is the
case if and only if the following property holds. Let � be a line on the common
boundary between C and C′, and let q be the singleton point in P ∩Q∩ �. Then
Q is added to Front(C′) if and only if q ∈ ⋂

Front(C); In other words, we have
argued that |Front(C)�Front(C′)| ≤ 1.

Let C̃ be a cell in C(P). We pick a representative cell C0 ∈ C(Q) contained
in C̃, and compute Front(C0) by brute force, as described above. Next we trace
the adjacency structure of C(Q) within C̃ in breadth-first fashion, and find all
the cells C ∈ C(Q) contained in C̃. For each newly encountered cell C′, reached
via a previous cell C, we already have, by construction, the pair P, Q ∈ P such
that {P ∩ Q} = QC�QC′ . We can now compute Front(C′) from Front(C) as
follows. We take a line � on the common boundary of C and C′, compute P ∩ �
and Q ∩ �, obtain their common endpoint q, verify that, say, P ∩ � precedes
Q ∩ � along �, and test whether q ∈ ⋂

Front(C′). If so, Front(C′) is obtained
by either adding or removing Q from Front(C) (we know which action to take);
otherwise Front(C) = Front(C′).

To make the transition from Front(C) to Front(C′) efficient, we precompute
a table on the equivalence classes T that were constructed at the preliminary

298 H. Kaplan, N. Rubin, and M. Sharir

stage. For each class T and each polyhedron P we store a pointer to T ′ =
T �{P}.

To bound the total preprocessing time, we note that the brute force method for
finding Front(C) takes O(k log n) time and is applied to O(nk2) representatives
of cells in C(P). Also observe that in our traversal of C(Q), over all cells C̃ ∈
C(P), we make a total of O(nk5) transitions, by the upper bound on the overall
complexity of A(Q). Each such transition takes O(log n) time. In summary, we
have:

Theorem 4. Let P be a set of k possibly intersecting convex polyhedra with a
total of n facets, and a let �0 be a fixed line in R

3. Then we can construct a
data structure supporting ray-shooting queries with rays emanating from �0, in
O(log4 n) time. The structure uses O(nk5 log2 n) storage and preprocessing.

References

1. Aronov, B., de Berg, M., Gray, C.: Ray shooting and intersection searching amidst
fat convex polyhedra in 3-space. In: Proc. 22nd Annu. ACM Sympos. Comput.
Geom., pp. 88–94. ACM Press, New York (2006)

2. Agarwal, P.K., Matoušek, J.: Ray shooting and parametric search. SIAM J. Com-
put. 22, 794–806 (1993)

3. Agarwal, P.K., Matoušek, J.: Range searching with semialgebraic sets. Discrete
Comput. Geom. 11, 393–418 (1994)

4. Agarwal, P.K., Sharir, M.: Ray shooting amidst convex polyhedra and polyhedral
terrains in three dimensions. SIAM J. Comput. 25, 100–116 (1996)

5. Aronov, B., Pellegrini, M., Sharir, M.: On the zone of a surface in a hyperplane
arrangement. Discrete Comput. Geom. 9, 177–186 (1993)

6. Bern, M., Dobkin, D.P., Eppstein, D., Grossman, R.: Visibility with a moving point
of view. Algorithmica 11, 360–378 (1994)

7. Brönnimann, H., Devillers, O., Dujmovic, V., Everett, H., Glisse, M., Goaoc, X.,
Lazard, S., Na, H.-S., Whitesides, S.: Lines and free line segments tangent to arbi-
trary three-dimensional convex polyhedra. SIAM J. Comput. 37, 522–551 (2007)

8. Cole, R., Sharir, M.: Visibility problems for polyhedral terrains. J. Symb. Com-
put. 7, 11–30 (1989)

9. Dobkin, D.P., Kirkpatrick, D.: A linear algorithm for determining the separation
of convex polyhedra. J. Algorithms 6, 391–395 (1985)

10. Kaplan, H., Rubin, N., Sharir, M.: Linear Data Structures for Fast Ray-Shooting
amidst Convex Polyhedra http://www.cs.tau.ac.il/∼rubinnat/fastRaySh.pdf

11. Pellegrini, M.: Ray Shooting on Triangles in 3-Space. Algorithmica 9, 471–494
(1993)

12. Pellegrini, M.: Ray shooting and lines in space. In: Goodman, J.E., O’Rourke, J.
(eds.) Handbook of Discrete and Computational Geometry, 2nd edn., Boca Raton,
FL, pp. 839–856. Chapman & Hall/CRC Press (2004)

13. Preparata, F.P., Tamassia, R.: Efficient point location in a convex spatial cell
complex. SIAM J. Comput. 21, 267–280 (1992)

http://www.cs.tau.ac.il/~rubinnat/fastRaySh.pdf

Stackelberg Strategies for Atomic Congestion Games

Dimitris Fotakis

Dept. of Information and Communication Systems Engineering,
University of the Aegean, 83200 Samos, Greece

fotakis@aegean.gr

Abstract. We investigate the effectiveness of Stackelberg strategies for atomic
congestion games with unsplittable demands. In our setting, only a fraction of the
players are selfish, while the rest are willing to follow a predetermined strategy.
A Stackelberg strategy assigns the coordinated players to appropriately selected
strategies trying to minimize the performance degradation due to the selfish play-
ers. We consider two orthogonal cases, namely linear congestion games with arbi-
trary strategies and congestion games on parallel links with arbitrary non-negative
and non-decreasing latency functions. We restrict our attention to pure Nash equi-
libria and derive strong upper and lower bounds on the Price of Anarchy under
different Stackelberg strategies.

1 Introduction

Congestion games provide a natural model for non-cooperative resource allocation in
large-scale communication networks and have been the subject of intensive research
in algorithmic game theory. In a congestion game [15], a finite set of non-cooperative
players, each controlling an unsplittable unit of load, compete over a finite set of re-
sources. All players using a particular resource experience a cost (or latency) given by a
non-negative and non-decreasing function of the resource’s load (or congestion). Each
player selects her strategy selfishly trying to minimize her individual cost, that is the
sum of the costs for the resources in her strategy. A natural solution concept is that
of a pure Nash equilibrium, a configuration where no player can decrease her cost by
unilaterally changing her strategy.

At the other end, the network manager cares about the public benefit and aims to
minimize the total cost incurred by all players. Since a Nash equilibrium does not need
to optimize the total cost, one seeks to quantify the inefficiency due to selfish behaviour.
The Price of Anarchy was introduced in [12] and has become a widely accepted measure
of the performance degradation due to the players’ selfish behaviour. The (pure) Price
of Anarchy is the worst-case ratio of the total cost of a (pure) Nash equilibrium to the
optimal total cost. Many recent contributions have provided strong upper and lower
bounds on the Price of Anarchy (PoA) for several classes of congestion games, mostly
linear congestion games and congestion games on parallel links (see e.g. [14,7,2,3,1]).

In many cases however, only a fraction of the players are selfish, while the rest are
willing to follow a strategy suggested by the network manager (see e.g. [11,17] for mo-
tivation and examples). Korilis et al. [11] introduced the notion of Stackelberg routing
as a theoretical framework for this setting. In Stackelberg routing, a central authority
coordinates a fixed fraction of the players and assigns them to appropriately selected

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 299–310, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

300 D. Fotakis

strategies trying to minimize the performance degradation due to the selfish behaviour
of the remaining players. A Stackelberg strategy is an algorithm that determines the
strategies of the coordinated players. Given the strategies of the coordinated players,
the selfish players lead the system to a configuration where they are at a Nash equilib-
rium. The goal is to find a Stackelberg strategy of minimum PoA, that is the worst-case
ratio of the total cost of all (coordinated and selfish) players in such a configuration
to the optimal total cost. Now the PoA is a non-increasing function of the fraction of
coordinated players and ideally is given by a continuous curve decreasing from the PoA
when all players are selfish to 1 if all players are coordinated (aka a normal curve [10]).

In this work, we investigate the effectiveness of Stackelberg routing for atomic
congestion games. We consider two essentially orthogonal settings, namely linear con-
gestion games with arbitrary strategies and congestion games on parallel links with
arbitrary non-negative and non-decreasing latency functions. We restrict our attention
to pure Nash equilibria and obtain strong upper and lower bounds on the pure PoA un-
der different Stackelberg strategies. To the best of our knowledge, this is the first work
on Stackelberg routing for atomic congestion games with unsplittable demands.

Related Work. Lücking et al. [14] were the first to consider the PoA of atomic con-
gestion games for the objective of total cost1. For the special case of uniformly related
parallel links, they proved that the PoA is 4/3. For parallel links with polynomial la-
tency functions of degree d, Gairing et al. [7] proved that the PoA is at most d + 1.
Awerbuch et al. [2] and Christodoulou and Koutsoupias [3] proved independently that
the PoA of congestion games is 5/2 for linear latencies and dΘ(d) for polynomial laten-
cies of degree d. Subsequently, Aland et al. [1] presented exact bounds on the PoA of
congestion games with polynomial latencies. For non-atomic congestion games, where
the number of players is infinite and each player controls an infinitesimal amount of
load, Roughgarden [16] proved that the PoA is independent of the strategy space and
equal to ρ(D), where ρ depends only on the class of latency functions D. Subsequently,
Correa et al. [4] gave a simple proof of the same bound by introducing β(D) = 1− 1

ρ(D) .
To the best of our knowledge, Stackelberg routing has been investigated only in the

context of non-atomic games. Focusing on parallel links, Roughgarden [17] proved
that it is NP-hard to compute an optimal Stackelberg configuration and investigated the
performance of two natural strategies, Scale and Largest Latency First (LLF). Scale uses
the optimal configuration scaled by the fraction of coordinated players, denoted α. LLF
assigns the coordinated players to the largest cost strategies in the optimal configuration.
Roughgarden proved that the PoA of LLF is 1/α for arbitrary latencies and 4/(3 + α)
for linear latencies. Kumar and Marathe [13] presented an approximation scheme for
the best Stackelberg configuration on parallel links with polynomial latencies.

Some recent papers [19,5,10] extended the results of Roughgarden [17] in several
directions. Swamy [19] and independently Correa and Stier-Moses [5] proved that the
PoA of LLF is at most 1 + 1/α for series-parallel networks with arbitrary latency func-
tions. In addition, Swamy proved that the PoA of LLF is at most α + (1 − α)ρ(D)

1 We cite only the most relevant results on the pure PoA of linear congestion games and con-
gestion games on parallel links for the objective of total cost. For a survey on the PoA of
congestion games for total and max cost, see e.g. [6,8].

Stackelberg Strategies for Atomic Congestion Games 301

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Pr
ic

e
of

 A
na

rc
hy

 o
f

L
L

F

0 0.2 0.4 0.6 0.8 1 1

1.2

1.4

1.6

1.8

2

2.2

2.4

Pr
ic

e
of

 A
na

rc
hy

 o
f

Sc
al

e

0 0.2 0.4 0.6 0.8 1

Fig. 1. The upper (solid curves) and lower (dotted curnes) bounds on the PoA of LLF and Scale
for linear congestion games as functions of the fraction of coordinated players α. The bounds for
LLF are on the left and the bounds for Scale are on the right. The lower bound on the right holds
for any optimal-restricted strategy.

for parallel links with latency functions in class D and obtained upper bounds on the
PoA of LLF and Scale for general networks. Karakostas and Kolliopoulos [10] con-
sidered non-atomic linear congestion games with arbitrary strategies and presented the
best known upper and lower bounds on the PoA of LLF and Scale.

Other recent work on Stackelberg routing for non-atomic games includes [9,18]. In
particular, Kaporis and Spirakis [9] showed how to compute efficiently the smallest
fraction of coordinated players required to induce an optimal configuration. For the
related question of determining the smallest fraction of coordinated players required to
improve the cost of a Nash equilibrium, Sharma and Williamson [18] derived a closed
expression for parallel links with linear latencies.

Contribution. Motivated by the recent interest in bounding the PoA of LLF and Scale
in the non-atomic setting, we investigate the effectiveness of Stackelberg routing in the
context of atomic congestion games with unsplittable demands.

For linear congestion games, we derive strong upper and lower bounds on the PoA of
LLF and Scale expressed as decreasing functions of the fraction of coordinated players,
denoted α (see the plots in Fig. 1). For LLF, we obtain an upper bound of min{(20 −
11α)/8, (3 − 2α +

√
5 − 4α)/2} and a lower bound of 5(2 − α)/(4 + α), whose ratio

is less than 1.1131. We use a randomized version of Scale, because scaling the optimal
configuration by α may be infeasible in the atomic setting. We prove that the expected
total cost of the worst configuration induced by Scale is at most max{(5 − 3α)/2, (5−
4α)/(3 − 2α)} times the optimal total cost. On the negative side, we present a lower
bound that holds not only for Scale, but also for any randomized Stackelberg strategy
that assigns the coordinated players to their optimal strategies.

An interesting case arises when the number of players is large and the number of co-
ordinated players is considerably larger than the number of resources, even if α is small.
To take advantage of this possibility, we introduce a simple Stackelberg strategy called
Cover. Assuming that the ratio of the number of coordinated players to the number of
resources is no less than a positive integer λ, Cover assigns to every resource either at
least λ or as many coordinated players as the resource has in the optimal configuration.

302 D. Fotakis

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Pr
ic

e
of

 A
na

rc
hy

 o
f

L
L

F-
C

ov
er

0.2 0.4 0.6 0.8 1 1

1.2

1.4

1.6

1.8

2

2.2

2.4

Pr
ic

e
of

 A
na

rc
hy

 o
f

C
ov

er
-S

ca
le

0.2 0.4 0.6 0.8 1

Fig. 2. The PoA of combined LLF-Cover and Cover-Scale vs. the PoA of LLF and Scale for
atomic and non-atomic games. Let n be the total number of players, ns the number of coordinated
players, and m the number of resources. For these plots, we let n = 10m, assume that ns ≥ m,
and use 1-Cover. On the x-axis, we have the fraction of coordinated players ns/n (since ns ≥ m,
the x-axis starts at 0.1). The solid black curves are the upper bounds on the PoA of atomic linear
games under LLF-Cover and Cover-Scale. The dotted black curves are the upper bounds on the
PoA of atomic games under LLF and Scale. The solid grey curves are the upper bounds on the
PoA of non-atomic linear games under LLF ([10, Theorem 2]) and Scale ([10, Theorem 1]).

We prove that the PoA of Cover tends to the PoA of the corresponding non-atomic
linear congestion game as λ grows2. More precisely, for linear latencies without con-
stant term, the PoA of Cover is at most 1 + 1

2λ for arbitrary strategies and at most
1 + 1

4(λ+1)2−1 for parallel links. For arbitrary linear latencies, the PoA of Cover is at
most (4λ−1)/(3λ−1). Furthermore, if the ratio of the total number of players n to the
number of resources m is large enough (e.g. n/m ≥ 10), combining Cover with either
LLF or Scale gives considerably stronger bounds on the PoA than when using LLF or
Scale alone. These bounds are quite close to the best known bounds for non-atomic
linear games [10] (see the plots in Fig. 2).

For parallel links, we prove that the PoA of LLF matches that for non-atomic games.
In particular, we show that the PoA of LLF is at most 1/α for arbitrary latencies and at
most α + (1 − α)ρ(D) for latency functions in class D.

2 Model, Definitions, and Notation

Congestion Games. A congestion game is a tuple Γ (N, E, (Σi)i∈N , (de)e∈E), where
N denotes the set of players, E denotes the set of resources, Σi ⊆ 2E denotes the
strategy space of each player i ∈ N , and de : IN �→ IN is a non-negative and non-
decreasing latency function associated with each resource e ∈ E. A congestion game
is symmetric if all players share the same strategy space. A vector σ = (σ1, . . . , σn)
consisting of a strategy σi ∈ Σi for each player i ∈ N is a configuration. For each
resource e, let σe ≡ |{i ∈ N : e ∈ σi}| denote the congestion (or load) induced on e by
σ. The individual cost of each player i in the configuration σ is ci(σ) =

∑
e∈σi

de(σe).

2 If all players are selfish however, the PoA of a non-symmetric linear congestion game can be
2.5 even if the ratio of the number of players to the number of resources is arbitrarily large.

Stackelberg Strategies for Atomic Congestion Games 303

A configuration σ is a pure Nash equilibrium if no player can improve her individual
cost by unilaterally changing her strategy. Formally, σ is a pure Nash equilibrium if for
every player i and all strategies si ∈ Σi, ci(σ) ≤ ci(σ−i, si). Rosenthal [15] proved that
the pure Nash equilibria of congestion games correspond to the local optima of a natural
potential function. Hence every congestion game admits a pure Nash equilibrium.

We mostly consider linear congestion games, where every resource e is associated
with a linear latency function de(x) = aex + be, ae, be ≥ 0. In the special case of
linear functions without constant term (i.e. if be = 0 for all e ∈ E), we say that the
resources are uniformly related. We also pay special attention to congestion games on
parallel links, where the game is symmetric and the common strategy space consists of
m singleton strategies, one for each resource.

Social Cost. We evaluate configurations using the objective of total cost. The total
cost C(σ) of a configuration σ is the sum of players’ costs in σ. Formally, C(σ) =∑n

i=1 ci(σ) =
∑

e∈E σede(σe). An optimal configuration, usually denoted o, mini-
mizes the total cost C(o) among all configurations in ×i∈NΣi. Even though this work
is not concerned with the complexity of computing an optimal configuration, we re-
mark that an optimal configuration can be computed in polynomial time for symmetric
network congestion games if xde(x)’s are convex.

Price of Anarchy. The pure Price of Anarchy (PoA) is the maximum ratio C(σ)/C(o)
over all pure Nash equilibria σ. In other words, the PoA is equal to C(σ)/C(o), where
σ is the pure Nash equilibrium of maximum total cost.

Stackelberg Strategies. We consider a scenario where a leader coordinates ns players,
and only n − ns players are selfish. The leader assigns the coordinated players to ap-
propriately selected strategies trying to minimize the performance degradation due to
the selfish behaviour of the remaining players. A Stackelberg configuration consists of
the strategies to which the coordinated players are assigned. A Stackelberg strategy is
an algorithm computing a Stackelberg configuration3.

We restrict our attention to optimal-restricted Stackelberg strategies that assign the
coordinated players to their strategies in the optimal configuration. Given an optimal
configuration o = (o1, . . . , on), an optimal-restricted Stackelberg strategy selects a
(possibly random) set L ⊆ N , |L| = ns, and assigns the coordinated players to the cor-
responding strategies in o. For non-symmetric games, L also determines the identities
of the coordinated players4. The Stackelberg configuration corresponding to L, denoted
s(L), is s(L) = (oi)i∈L. By definition, for every (optimal-restricted) Stackelberg strat-
egy and every L, se(L) ≤ oe for all e ∈ E. In the following, we let α = ns/n denote
the fraction of players coordinated by the Stackelberg strategy, and let k = n − ns

denote the number of selfish players.
Let Γ (N, E, (Σi)i∈N , (de)e∈E) be the original congestion game. The congestion

game induced by L is Γ̃L(N\L, E, (Σi)i∈N\L, (d̃e)e∈E), where d̃e(x) = de(x+se(L))

3 We highlight the distinction between a Stackelberg strategy, that is an algorithm, and a strategy
of some player i, that is an element of Σi.

4 In the terminology of [10], we employ strong Stackelberg strategies for non-symmetric games.
A strong Stackelberg strategy is free to choose the identities of the coordinated players in
addition to their strategies.

304 D. Fotakis

for each e ∈ E. The players in N\L are selfish and reach a pure Nash equilibrium of Γ̃L.
Since there may be many pure Nash equilibria, we assume that the selfish players reach
the worst pure Nash equilibrium of Γ̃L, namely the equilibrium σ(L) that maximizes
the total cost of σ(L) + s(L)5. We let σ(L) denote the worst pure Nash equilibrium
of Γ̃L that maximizes C(σ(L) + s(L)) =

∑
e∈E(σe(L) + se(L))de(σe(L) + se(L)).

We usually refer to σ(L) as the worst Nash equilibrium induced by L (or by s(L)). In
addition, we let f(L) = σ(L) + s(L) denote the worst configuration induced by L (or
by s(L))6. With this notation in place, the PoA is equal to C(f(L))/C(o).

Largest Latency First (LLF). LLF assigns the coordinated players to the largest cost
strategies in o. More precisely, if we index the players in non-decreasing order of their
cost in the optimal configuration o, i.e. c1(o) ≤ · · · ≤ cn(o), the set of coordinated
players selected by LLF is L = {k + 1, . . . , n}.

Scale. We use a randomized version of Scale that selects each different set L ⊆ N ,
|L| = ns, with probability 1/

(
n
ns

)
and adopts the configuration s(L) = (oi)i∈L. Every

player i ∈ N is selected in L with probability α = ns/n and the expected number of
coordinated players on every resource e is αoe.

Cover. Cover can be applied only if the number of coordinated players is so large that
every resource e with oe ≥ 1 can be “covered” by at least one coordinated player.
Even though this may be achieved with less coordinated players than m, we assume
that ns ≥ m for simplicity, and let λ =
ns/m� ≥ 1. Cover selects a set L ⊆ N
such that |L| ≤ ns and either se(L) ≥ λ or se(L) = oe for every e ∈ E. Hence
oe ≥ se(L) ≥ min{λ, oe} for all e ∈ E. Given an optimal configuration o, such a set L
can be computed efficiently by the greedy λ-covering algorithm. Despite its simplicity,
there are instances where Cover outperforms Scale and LLF.

When L is clear from the context, we omit the dependence on L and use s instead of L.
In the following, s denotes the Stackelberg configuration, and σ (resp. f) denotes the
worst pure Nash equilibrium (resp. configuration) induced by s. We sometimes write
α-LLF, (resp. α-Scale, λ-Cover) to denote LLF (resp. Scale, Cover) coordinating at
least αn (resp. αn, λm) players.

3 Stackelberg Strategies for Linear Congestion Games

In this section, we establish upper and lower bounds on the PoA of linear congestion
games under different Stackelberg strategies. The upper bounds are based on the fol-
lowing lemma.

Lemma 1. Let o be an optimal configuration, let s be any optimal-restricted Stackel-
berg configuration, and let f be the worst configuration induced by s. For all ν ∈ (0, 1),

5 If s ∈ ×i∈LΣi is a configuration for L ⊆ N and σ ∈ ×i∈N\LΣi is a configuration for N \L,
f = σ + s denotes a configuration for N with fi = si if i ∈ L, and fi = σi if i ∈ N \ L.
The notation is motivated by the fact that fe = σe + se for all e ∈ E.

6 Γ̃L may have many different worst pure Nash equilibria. Since we are interested in bounding
the PoA, we can assume wlog that for every L, there is a unique worst pure Nash equilibrium
σ(L) and a unique worst configuration f(L) = σ(L) + s(L) induced by L.

Stackelberg Strategies for Atomic Congestion Games 305

(a) C(f) ≤ ∑
e∈E [aefeoe + ae(oe − se) + beoe].

(b) (1−ν)C(f) ≤ 1
4ν

∑
e∈E aeo

2
e +

∑
e∈E ae(oe −se)+

∑
e∈E beoe −ν

∑
e∈E befe .

(c) (1 − ν)C(f) ≤ 1
4ν C(o) +

∑
e∈E ae(oe − se) + (1 − 1

4ν)
∑

e∈E be(oe − se).

Proof sketch. To obtain (a), we apply the approach of [3, Theorem 1] and [2, Theo-
rem 3.2] for the selfish players and use the fact that s is optimal-restricted. Then (b)
is obtained from (a) by applying the inequality xy ≤ νx2 + 1

4ν y2, which holds for all
x, y ∈ IR and all ν ∈ (0, 1), to the terms aefeoe. Finally, (c) is obtained from (b) using
se ≤ fe and the inequality ν + 1

4ν ≥ 1, which holds for all ν ∈ (0, 1). �
Largest Latency First. We first prove an upper and a lower bound on the PoA of LLF.

Theorem 1. The PoA of α-LLF is at most min{ 20−11α
8 , 3−2α+

√
5−4α

2 }.

Proof. Starting from Lemma 1.a, observing that for all non-negative integers x, y, z
with z ≤ y, xy + y − z ≤ 1

3x2 + 5
3y2 − 11

12yz, and using that se ≤ fe and se ≤ oe for
all e ∈ E, we obtain that

C(f) ≤ 1
3C(f) + 5

3C(o) − 11
12

∑
e∈E se(aeoe + be) ≤ 1

3C(f) + 20−11α
12 C(o)

For the last inequality, we use that
∑

e∈E se(aeoe + be) =
∑

i∈L ci(o) ≥ αC(o), be-
cause LLF assigns the coordinated players to the largest cost strategies in o. Therefore,
the PoA is at most 20−11α

8 .
For the second bound, we start from Lemma 1.c and observe that for all e ∈ E,

oe − se ≤ oe(oe − se), because oe and oe − se are non-negative integers. Thus we
obtain that for all ν ∈ (0, 1),

(1 − ν)C(f) ≤ 1
4ν C(o) +

∑
e∈E(oe − se)(aeoe + be) ≤ (1

4ν + 1 − α)C(o)

For the last inequality, we use that
∑

e∈E(oe −se)(aeoe + be) = C(o)−∑
i∈L ci(o) ≤

(1−α)C(o). Therefore, we obtain an upper bound of minν∈(0,1)(1
4ν +1−α)/(1− ν).

Using ν =
√

5−4α−1
4(1−α) , we conclude that the PoA is at most 3−2α+

√
5−4α

2 . �
The following theorem gives a lower bound on the PoA of LLF.

Theorem 2. For every α ∈ [0, 1) and ε > 0, there is a symmetric linear congestion
game for which the PoA under α-LLF is at least 5(2−α)

4+α − ε.

Proof. For any fixed α ∈ [0, 1), let n be a positive integer chosen sufficiently large.
Wlog we assume that ns = αn is an integer. Let k = n−ns, and let L = {k+1, . . . , n}.
We construct a symmetric game with ns coordinated and k selfish players.

The construction consists of two parts, one for the selfish players and one for the
coordinated players. For the selfish players, we employ the instance of [3, Theorem 4].
For the coordinated players, we use ns singleton parallel strategies. Formally, there are
k2 resources gi,j , i, j ∈ [k], k2(k − 1)/2 resources hi,(j,q), i ∈ [k], 1 ≤ j < q ≤ k,
and ns resources ri, i ∈ L. The latency function of each g-resource is dg(x) = x, the
latency function of each h-resource is dh(x) = 2

k+2x, and the latency function of each

r-resource is dr(x) = (5k−2)k
2(k+2) x.

306 D. Fotakis

The g-resources are partitioned in k rows Gi = {gi,j : j ∈ [k]}, i ∈ [k], and in
k columns Gi = {gj,i : j ∈ [k]}, i ∈ [k]. The h-resources are partitioned in k rows
Hi = {hi,(j,q) : 1 ≤ j < q ≤ k}, i ∈ [k]. For h-resources, we have k sets of columns
Hi = {hj,(i,q) : j ∈ [k], i < q ≤ k}∪{hj,(q,i) : j ∈ [k], 1 ≤ q < i}, i ∈ [k]. Every Hi

contains k(k − 1) resources and every resource hi,(j,q) is included in Hj and Hq. The
r-resources are partitioned in ns singleton sets Ri = {ri}, i ∈ L. The common strategy
space of all players is Σ = {Gi ∪ Hi : i ∈ [k]} ∪ {Gi ∪ Hi : i ∈ [k]} ∪ {Ri : i ∈ L},
i.e. a player can choose either a row strategy Gi ∪ Hi, or a column strategy Gi ∪ Hi, or
a parallel strategy Ri.

In the optimal configuration o, every player i ∈ [k] uses the row strategy Gi ∪Hi and
every player i ∈ L uses the parallel strategy Ri. The cost of the optimal configuration is

C(o) = (5k−2)kn−k2(k−4)
2(k+2) . Assuming that n is so large that k > 4, the cost of the paral-

lel strategies in o is greater than the cost of the row strategies. Hence the configuration of
LLF is s = (Ri)i∈L. In the worst Nash equilibrium σ induced by s, every selfish player
i ∈ [k] uses the column strategy Gi ∪Hi and the total cost is C(σ+s) = (5k−2)k(n+k)

2(k+2) .

Therefore, the PoA is at least (5k−2)(n+k)
(5k−2)n−k(k−4) . Using k = (1−α)n, we obtain the lower

bound of 5(2 − α)/(4 + α) − ε, where ε ≤ 3/n. �
Scale. We proceed to obtain an upper bound on the PoA of Scale. The configuration
of Scale s, the worst Nash equilibrium σ induced by s, and the worst configuration f
induced by s are random variables uniquely determined by Scale’s random choice L.
Also for every resource e, the congestion se (resp. σe, fe) induced on e by s (resp. σ,
f) is a non-negative integral random variable uniquely determined by L.

Let IPr[L] = 1/
(

n
ns

)
be the probability that each L ⊆ N , |L| = ns, occurs as the

choice of Scale. The expected number of coordinated players on every resource e is:

IE[se] =
∑

L⊆N,|L|=ns

IPr[L]se(L) = αoe , (1)

because every player i ∈ N is selected in L with probability α = ns/n. The following
theorem gives an upper bound on IE[C(f)] =

∑
L⊆N,|L|=ns

IPr[L]C(f(L)), namely
the expected cost of the worst configuration f induced by Scale.

Theorem 3. Let o be an optimal configuration. The expected cost of the worst configu-
ration f induced by α-Scale is IE[C(f)] ≤ max{ 5−3α

2 , 5−4α
3−2α} C(o).

Proof sketch. Applying Lemma 1.a for any fixed choice of Scale L, multiplying by
IPr[L], and using linearity of expectation and (1), we obtain that

IE[C(f)] ≤ ∑
e∈E [ae(IE[fe] + 1 − α)oe + beoe] , (2)

where IE[fe] =
∑

L⊆N,|L|=ns
IPr[L]fe(L) is the expected number of players on re-

source e in the worst configuration induced by Scale. To complete the proof, we apply
the following proposition to the right-hand side of (2).

Proposition 1. Let y be a non-negative integer, let α ∈ [0, 1], and let X be a non-
negative integral random variable. Then,

(IE[X] + 1 − α)y ≤
{

1
3 IE[X2] + (5

3 − α)y2 for all α ∈ [0, 5
6]

(α − 1
2)IE[X2] + (5

2 − 2α)y2 for all α ∈ (5
6 , 1]

Stackelberg Strategies for Atomic Congestion Games 307

We observe that (5 − 3α)/2 is greater (resp. less) than or equal to (5 − 4α)/(3 − 2α)
for all α ∈ [0, 5/6] (resp. α ∈ [5/6, 1]). First we show that IE[C(f)] ≤ 5−3α

2 C(o), for
all α ∈ [0, 5/6]. Then we show that IE[C(f)] ≤ 5−4α

3−2α C(o), for all α ∈ (5/6, 1]. �
A Lower Bound for Optimal-Restricted Strategies. The following theorems give a
lower bound on the PoA of Scale and any (even randomized) optimal-restricted strategy.

Theorem 4. For every α ∈ [0, 1) and ε > 0, there is a symmetric linear congestion
game for which the PoA under any randomized optimal-restricted Stackelberg strategy
coordinating a fraction α of the players is at least 2

1+α − ε.

Proof sketch. For any fixed α ∈ [0, 1), we construct a symmetric game with ns = αn
coordinated players and k = n − ns selfish players. There are n2(n − 1)/2 resources
hi,(j,q), i ∈ [n], 1 ≤ j < q ≤ n, each with latency function dh(x) = x, and a resource
r of constant latency dr(x) = (n − 1)(3

2n − k) + k − 1. The common strategy space
for all players consists of n row strategies {r} ∪ Hi and n column strategies Hi, where
Hi’s and Hi’s are defined as in the proof of Theorem 2.

The optimal configuration o assigns every player i to the corresponding row strategy
{r} ∪ Hi. The total cost is C(o) = n(n − 1)(2n − k) + O(n2). By symmetry, we can
assume that any optimal-restricted Stackelberg strategy selects L = {k + 1, . . . , n}.
In the worst Nash equilibrium σ induced by s = ({r} ∪ Hi)i∈L, every selfish player
i ∈ [k] uses the column strategy Hi and the total cost is C(σ + s) ≥ 2n2(n − 1). �
Theorem 5. For every α ∈ [0, 1

2) and ε > 0, there is a symmetric linear congestion
game for which the PoA under any randomized optimal-restricted Stackelberg strategy
coordinating a fraction α of the players is at least 5−5α+2α2

2 − ε.

Proof sketch. Instead of the resource r in the proof of Theorem 4, we use a grid of
g-resources as in the proof of Theorem 2, which yields the same strategy space as in
[3, Theorem 4]. The latency function of each h-resource is dh(x) = x and the latency
function of each g-resource is dg(x) = γx, where γ = (n−1)(3n/2−k)+k−1

2k−n−1 . The rest of
the proof is similar to the proof of Theorem 4. �
Cover. The PoA of Cover tends to the PoA of non-atomic linear congestion games as
the ratio of the number of coordinated players to the number of resources grows.

Theorem 6. If ns ≥ m, the PoA of λ-Cover is at most 4λ−1
3λ−1 , where λ =
ns/m�. For

uniformly related resources, the PoA of λ-Cover is at most 1 + 1
2λ .

Proof. Let s be the configuration of λ-Cover, and let f be the worst configuration in-
duced by s. Since either se = oe or se ≥ λ, it holds that oe − se ≤ 1

4λo2
e for every

resource e. Applying this inequality to Lemma 1.c, we obtain that for all ν ∈ (0, 1),

(1 − ν)C(f) ≤ 1
4ν C(o) + max{ 1

4λ , 1 − 1
4ν }C(o) = max{ 1

4λ + 1
4ν , 1}C(o) (3)

Using ν = λ
4λ−1 , we conclude that the PoA of λ-Cover is at most 4λ−1

3λ−1 .
For uniformly related resources, (3) becomes (1− ν)C(f) ≤ (1

4ν + 1
4λ)C(o). Using

ν =
√

λ2 + λ − λ, we conclude that the PoA is at most 2λ+2
√

λ2+λ+1
4λ ≤ 1 + 1

2λ . �

308 D. Fotakis

A careful analysis gives a stronger upper bound for congestion games on uniformly
related parallel links. The proof of the following lemma is omitted due to lack of space.

Lemma 2. If ns ≥ m, the PoA of λ-Cover for congestion games on uniformly related
parallel links is at most 1 + 1

4(λ+1)2−1 , where λ =
ns/m�.

Combining Cover with LLF and Scale. If the ratio of the number of players n to the
number of resources m is large enough (e.g. n/m ≥ 10), combining Cover with either
LLF or Scale gives considerably stronger upper bounds on the PoA than when using
LLF or Scale alone. Throughout this section, we assume that ns ≥ m and let λ be any
positive integer not exceeding
ns/m�. Also the definition of α is different and does not
take the players coordinated by Cover into account.

Combining Cover with LLF. First LLF assigns ns − λm coordinated players to the
largest cost strategies in the optimal configuration o. Let LL ⊆ N , |LL| = ns −λm, be
the set of players assigned by LLF. Then Cover assigns the remaining λm coordinated
players wrt (oi)i∈N\LL . Let LC ⊆ N \ LL, |LC | ≤ λm, be the set of players assigned
by Cover such that min{λ, oe − se(LL)} ≤ se(LC) ≤ oe − se(LL) for all e ∈ E. The
joint Stackelberg configuration is s = (oi)i∈LL∪LC .

Theorem 7. If ns ≥ m, let λ be any positive integer not exceeding
ns/m�, and let
α = ns−λm

n . The PoA of combined α-LLF and λ-Cover is at most
{

4λ−1
3λ−1 (1 − α

4λ) for all α ∈ [0, 4λ2

12λ2−6λ+1]
2−α+

√
4α−3α2

2 for all α ∈ [4λ2

12λ2−6λ+1 , 1]

Proof sketch. Combining the proofs of Theorem 6 and Theorem 1, we obtain that the
PoA is at most minν∈(0,1)[1

4ν +max{ 1
4λ , 1− 1

4ν }(1−α)]/(1−ν). The theorem follows
by choosing ν appropriately. �
Remark 1. In Theorem 7, α ≤ 1 − λm

n and the upper bound remains greater than 1
even if ns = n. To obtain a normal curve, we replace combined LLF-Cover with LLF
as soon as ns/n is so large that the bound of Theorem 1 becomes stronger than the
bound of Theorem 7 (see also the left plot of Fig. 2).

Combining Cover with Scale. First Cover assigns (at most) λm coordinated players. Let
LC ⊆ N , |LC | ≤ λm, be the set of players assigned by Cover such that for all e ∈ E,
min{λ, oe} ≤ se(LC) ≤ oe. Then Scale selects a random set LS ⊆ N \ LC , |LS| =
ns −λm, and assigns the remaining ns −λm coordinated players to the corresponding
optimal strategies. The joint Stackelberg configuration is s(LC ∪ LS) = (oi)i∈LC∪LS .
Hence the joint Stackelberg configuration s and the worst configuration f induced by s
are random variables uniquely determined by LC ∪ LS.

For the analysis, we fix an arbitrary choice LC of Cover. Let IPr[LS] = 1/
(

n−λm
ns−λm

)

be the probability that each set LS ⊆ N \LC , |LS | = ns −λm, occurs as the choice of
Scale. The following theorem establishes an upper bound on the expected cost IE[C(f)]
of the worst configuration f induced by the combined Cover-Scale strategy s, where
IE[C(f)] is given by

IE[C(f)] =
∑

LS⊆N\LC ,|LS|=ns−λm

IPr[LS]C(f(LC ∪ LS))

Stackelberg Strategies for Atomic Congestion Games 309

Theorem 8. If ns ≥ m, let λ be any positive integer not exceeding
ns/m�, let α =
ns−λm
n−λm , and let o be an optimal configuration. The expected cost of the worst configu-

ration f induced by combining λ-Cover and α-Scale is bounded as follows:

IE[C(f)] ≤ 2λ(3α−2)+1−α2−(1−α)
√

α2−2α(8λ2−4λ+1)+16λ2−8λ+1

2λ(4α−3)+2(1−α) C(o)

Proof sketch. Combining the proofs of Theorem 3 and Theorem 6, we show that

IE[C(f)] ≤ minν∈(0,1)[max{ 1
4ν + 1−α

4λ , 1 − αν}/(1 − ν)] C(o)

The theorem follows by choosing ν appropriately. �

4 Largest Latency First for Congestion Games on Parallel Links

LLF becomes particularly simple when restricted to parallel links (see also
[17, Section 3.2]). LLF indexes the links in non-decreasing order of their latencies in
the optimal configurationo, i.e. d1(o1)≤ · · · ≤dm(om), and finds the largest index q with∑m

�=q o�≥ns. In the configuration of LLF, s� = 0 for all �<q, s� = o� for all �>q, and
sq=ns−

∑m
�=q+1. Hence q is the first link to which some coordinated players are as-

signed and Λ=dq(oq) is a lower bound on the cost of the coordinated players in o.

Theorem 9. The PoA of LLF for atomic congestion games on parallel links is at most
1/α, where α is the fraction of players coordinated by LLF.

Proof sketch. The proof is similar to that of [19, Theorem 3.4]. Let o be the optimal
configuration, let s be the configuration of LLF, let σ be the worst Nash equilibrium
induced by s, and let f = σ + s be the worst configuration induced by s.

Every coordinated player has cost at least Λ in o and C(o) ≥ nsΛ. The crucial
observation is that for every link � with σ� > 0, d�(f�) ≤ Λ. Hence the total cost of
selfish players in f is at most (n − ns)Λ, and for every link � with s� > 0, d�(f�) ≤
d�(o�). The latter holds because either σ� = 0 and f� = s� ≤ o�, or both σ� > 0 and
s� > 0, in which case d�(f�) ≤ Λ ≤ d�(o�). Therefore, the total cost of coordinated
players in f is at most C(o) and C(f) ≤ C(o) + (n − ns)Λ ≤ (n/ns)C(o). �
Let D be a non-empty class of non-negative and non-decreasing latency functions. In
[16,4], it is shown that the PoA of non-atomic congestion games with latency func-
tions in class D is at most ρ(D) = supd∈D supx≥y≥0

xd(x)
yd(y)+(x−y)d(x) . The following

theorem establishes the same upper bound on the PoA of atomic congestion games on
parallel links. The proof is omitted due to lack of space.

Theorem 10. The PoA of atomic congestion games on parallel links with latency func-
tions in class D is at most ρ(D).

The next theorem follows easily from Theorem 10 and Theorem 9. The proof is similar
to that of [19, Theorem 3.5].

Theorem 11. For atomic congestion games on parallel links, the PoA of LLF is at most
α + (1 − α)ρ(D), where α is the fraction of players coordinated by LLF and D is a
class of latency functions containing {d�(x + s�)}�∈[m].

310 D. Fotakis

Remark 2. For linear latencies, Theorem 11 gives an upper bound of (4 − α)/3 on the
PoA of LLF for atomic congestion games on parallel links, which is quite close to the
tight bound of 4/(3 + α) for the corresponding class of non-atomic games [17].

References

1. Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact Price of Anarchy
for Polynomial Congestion Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 218–229. Springer, Heidelberg (2006)

2. Awerbuch, B., Azar, Y., Epstein, A.: The Price of Routing Unsplittable Flow. In: STOC ’05,
pp. 57–66 (2005)

3. Christodoulou, G., Koutsoupias, E.: The Price of Anarchy of Finite Congestion Games. In:
STOC’05, pp. 67–73 (2005)

4. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Selfish Routing in Capacitated Networks.
Mathematics of Operations Research 29(4), 961–976 (2004)

5. Correa, J.R., Stier-Moses, N.E.: Stackelberg Routing in Atomic Network Games. Technical
Report DRO-2007-03, Columbia Bussiness School (2007)

6. Czumaj, A.: Selfish Routing on the Internet. In: Leung, J. (ed.) Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, CRC Press, Boca Raton, USA (2004)

7. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: Nash Equilibria in Dis-
crete Routing Games with Convex Latency Functions. In: Dı́az, J., Karhumäki, J., Lepistö, A.,
Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 645–657. Springer, Heidelberg (2004)

8. Gairing, M., Lücking, T., Monien, B., Tiemann, K.: Nash Equilibria, the Price of Anarchy
and the Fully Mixed Nash Equilibrium Conjecture. In: Caires, L., Italiano, G.F., Monteiro,
L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 51–65. Springer,
Heidelberg (2005)

9. Kaporis, A.C., Spirakis, P.G.: The Price of Optimum in Stackelberg Games on Arbitrary
Single Commodity Networks and Latency Functions. In: SPAA ’06, pp. 19–28 (2006)

10. Karakostas, G., Kolliopoulos, S.: Stackelberg Strategies for Selfish Routing in General Mul-
ticommodity Networks. Technical Report AdvOL 2006/08, McMaster University (2006)

11. Korilis, Y.A., Lazar, A.A., Orda, A.: Achieving Network Optima Using Stackelberg Routing
Strategies. IEEE/ACM Transactions on Networking 5(1), 161–173 (1997)

12. Koutsoupias, E., Papadimitriou, C.: Worst-case Equilibria. In: Meinel, C., Tison, S. (eds.)
STACS 99. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

13. Kumar, V.S.A., Marathe, M.V.: Improved Results for Stackelberg Strategies. In: Widmayer,
P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002.
LNCS, vol. 2380, pp. 776–787. Springer, Heidelberg (2002)

14. Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A New Model for Selfish Routing.
In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 547–558. Springer,
Heidelberg (2004)

15. Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria. International
Journal of Game Theory 2, 65–67 (1973)

16. Roughgarden, T.: The Price of Anarchy is Independent of the Network Topology. Journal of
Computer and System Sciences 67(2), 341–364 (2003)

17. Roughgarden, T.: Stackelberg Scheduling Strategies. SIAM Journal on Computing 33(2),
332–350 (2004)

18. Sharma, Y., Williamson, D.P.: Stackelberg Thresholds in Network Routing Games. In:
EC ’07 (to appear 2007)

19. Swamy, C.: The Effectiveness of Stackelberg Strategies and Tolls for Network Congestion
Games. In: SODA ’07 (2007)

Good Quality Virtual Realization of Unit Ball

Graphs

Sriram V. Pemmaraju and Imran A. Pirwani

Department of Computer Science,
University of Iowa, Iowa City, IA 52242-1419, USA

{sriram,pirwani}@cs.uiowa.edu

Abstract. The quality of an embedding Φ : V �→ R
2 of a graph G =

(V, E) into the Euclidean plane is the ratio of max{u,v}∈E ||Φ(u)−Φ(v)||2
to min{u,v}�∈E ||Φ(u) − Φ(v)||2. Given a unit disk graph G = (V, E), we
seek algorithms to compute an embedding Φ : V �→ R

2 of best (smallest)
quality. This paper presents a simple, combinatorial algorithm for com-
puting a O(log2.5 n)-quality 2-dimensional embedding of a given unit
disk graph. Note that G comes with no associated geometric informa-
tion. If the embedding is allowed to reside in higher dimensional space,
we obtain improved results: a quality-2 embedding in R

O(1). Our results
extend to unit ball graphs (UBGs) in fixed dimensional Euclidean space.
Constructing a “growth-restricted approximation” of the given unit disk
graph lies at the core of our algorithm. This approach allows us to by-
pass the standard and costly technique of solving a linear program with
exponentially many “spreading constraints.” As a side effect of our con-
struction, we get a constant-factor approximation to the minimum clique
cover problem on UBGs, described without geometry. Our problem is a
version of the well known localization problem in wireless networks.

1 Introduction

A graph G = (V, E) is a d-dimensional unit ball graph (UBG) if there is an
embedding Φ : V �→ R

d such that {u, v} ∈ E iff ‖Φ(u) − Φ(v)‖2 ≤ 1. Such an
embedding Φ of G is called a realization of G. When d = 2, G is called a unit
disk graph (UDG). In this paper, we are interested in the problem of finding a
realization Φ of a given UBG. Recently, Aspnes et al. [1] have shown that the
problem of computing a realization of a given UDG is NP-hard even if all edge
lengths between pairs of neighboring vertices are known. The problem remains
NP-hard when all angles between adjacent edges are known [3] and also when all
angles plus slightly noisy, pairwise distances are known [2]. Given this situation,
we consider the problem of computing an “approximate” realization of the given
UBG. Let G = (V, E) be a d-dimensional UBG. Let Φ : V �→ R

2 be an embedding
of G into R

2. If G is not a clique, then the quality of the embedding Φ is defined as:

max{u,v}∈E ‖Φ(u) − Φ(v)‖2

min{u′,v′}/∈E ‖Φ(u′) − Φ(v′)‖2
.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 311–322, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

312 S.V. Pemmaraju and I.A. Pirwani

In case G is a clique, then the quality of Φ is simply max{u,v}∈E ‖Φ(u)−Φ(v)‖2.
The specific optimization problem we consider is the following: Given a d-
dimensional UBG G = (V, E), for fixed d, find an embedding Φ : V �→ R

2

with best (smallest) quality. We call this the best quality embedding problem.
This paper focuses on devising an approximation algorithm for the best quality
embedding problem.

Motivated by applications in VLSI design, Vempala considers a similar prob-
lem [13]: given an undirected graph G, compute a one-to-one assignment of
vertices of G to points of a 2-dimensional grid (with unit square cells) such that
the maximum Euclidean length of an edge is minimized. Note that G is an arbi-
trary graph, not just a UBG. Using the random projection approach, Vempala
obtains an embedding with maximum length O(log3 n

√
log log n)1. Note that the

embedding constructed by Vempala’s algorithm has quality O(log3 n
√

log log n)
because every pair of vertices are separated by at least one unit distance. Moti-
vated by the localization problem in wireless sensor networks, Moscibroda et al.
define quality as a measure the “goodness” of a realization [10]. This paper [10]
claims an O(log2.5 n·√log log n)-quality embedding for UDGs into R

2, but a sub-
sequent full version of the paper [7] corrects this bound to O(log3.5 n·√log log n).

1.1 Results and Techniques

In this paper, we present a combinatorial algorithm for computing an O(log2.5 n)-
quality embedding of any d-dimensional UBG (for any fixed d) into R

2. Our re-
sult can be seen as improving Vempala’s bound [13] when the input is restricted
to be a d-dimensional UBG. However, the most important aspect of our algo-
rithm is that it is combinatorial. Our algorithm avoids the costly first step of
Vempala’s algorithm in which an exponentially large linear program (LP), that
imposes spreading constraints on the vertices, is solved via the ellipsoid method.
We avoid the spreading constraints approach via a combinatorial algorithm for
computing a “growth-restricted approximation” of the given UBG. In a related
result, we point out that using the “growth-restricted approximation” of the
UBG in combination with a recent result due to Krauthgamer and Lee [6] leads
to a quality-2 embedding of any d-dimensional UBG into R

O(d log d). Since we
are primarily interested in small, fixed values of d, this is a quality-2 embedding
into constant dimensional space. Our algorithm has three main steps.

1. Constructing a growth-restricted approximation H of G.
2. Constructing a volume respecting embedding of H .
3. Performing a random projecting of the volume respecting embedding in R

2.

We describe Steps (1)-(2) in detail; Step (3) and its analysis are essentially the
same as in Vempala’s paper [13].

1 Due to a small error in Lemma 2 in Vempala’s paper [13], the bound proved in the
paper is O(log4 n). However, by using a stronger version of Theorem 2 in his paper,
one can obtain an O(log3 n

√
log log n) bound.

Good Quality Virtual Realization of Unit Ball Graphs 313

Constructing a Growth-Restricted Approximation. For any graph G =
(V, E) and for any pair of vertices u, v ∈ V , let dG(u, v) denote the shortest path
distance between u and v. Let BG(v, r) = {u ∈ V | dG(u, v) ≤ r}2 denote the
closed ball of radius r centered at v in G. Define the growth rate of G to be

ρG = inf{ρ : |BG(v, r)| ≤ rρ for all v ∈ V and all integers r > 1}.

A class G of graphs is growth-restricted if there is some constant c such that for
every graph G in G, ρG ≤ c. For any partition C = {C1, C2, . . .} of the vertex
set V of G, the cluster graph of G induced by C, denoted G[C], is obtained from
G by contracting each Ci into a vertex. In Section 2, we show how to partition
a given d-dimensional UBG G = (V, E) into cliques C = {C1, C2, . . .} such that
the cluster graph G[C] induced by the clique partition has constant growth rate.
Note that if we can construct an α-quality embedding Φ of G[C] into R

L, we can
immediately get an α-quality embedding Φ′ of G into R

L: for each vertex v of
G set Φ′(v) := Φ(Ci), where Ci is the clique that contains v. This allows us to
focus on the problem of obtaining a good quality embedding of growth-restricted
graphs.

It is quite easy to obtain a clique-partition C = {C1, C2, . . .} with the desired
properties if a realization of G is given. For example, given a UDG with 2-
dimensional coordinates of vertices known, one can place an infinite grid of
1√
2
× 1√

2
square cells on the plane and obtain a vertex partition C = {C1, C2, . . .}

in which each part Ci is all vertices in a cell. Due to the size of the cells each Ci

is a clique and furthermore a simple geometric argument shows that there are
O(r2) cells in the radius-2r ball centered at the center of any cell. This suffices
to show that in H := G[C], |BH(v, r)| = O(r2), implying that ρH is bounded by
a constant. See Figure 1(a) for an illustration.

In the absence of geometric information, it is not immediately clear how to
come up with an appropriate clique partition. One possible approach is to start
with a maximal independent set I of G and attach each v ∈ V \I to an arbitrary
neighbor in I. For each v ∈ I, let Sv denote the set consisting of v along with
neighbors which have been attached to v. Let S = {Sv | v ∈ I} be the induced
vertex partition of V . Since I is an independent set, in any realization Φ of G
into R

d, ‖Φ(u) − Φ(v)‖2 > 1 for all u, v ∈ I, u �= v. From this observation, one
can deduce the fact that H := G[S] has bounded growth rate. However, the
sets Sv are not cliques, even though the subgraphs they induce, Hv := G[Sv],
have diameter at most 2. We know that each Hv has a partition into O(1)
cliques. For example, if G is a UDG, there exists a partition of Hv into at most
5 cliques. But, how to find a constant-sized partition of Hv? Noteworthy is the
work of Raghavan and Spinrad [11] that computes a maximum cardinality clique
of an input UBG, given without any geometric information; one can use their
algorithm as a subroutine in the following greedy approach. Repeatedly find and
remove a maximum size clique from Hv, until it becomes empty. Since we know
that Hv can be partitioned into a constant c number of cliques, Hv contains a
clique of size at least |Sv|/c and therefore each step removes a 1/c fraction of
2 Where it is clear from the context, we write B(u, v) instead of BG(u, v).

314 S.V. Pemmaraju and I.A. Pirwani

vertices (or more) from Hv. This immediately implies that the greedy approach
produces O(log n) cliques, where n = |Sv|. Unfortunately, this bound is tight and
there is a simple example (see Figure 1(b)) showing that the greedy approach
can lead to a clique-partition of Sv of size Ω(log n). In Section 2 we present a
polynomial time algorithm for partitioning Hv into O(1) cliques.

(a) (b)

Fig. 1. (a) A realization of a UDG G, partitioned by a grid of 1√
2

× 1√
2

square cells.

The cluster graph G[C] induced by the partition C is also shown. (b) A bad example
for the greedy approach. Each Ai and each Bi is a set of 2i points. A point in Ai is
adjacent to all points in Aj , 1 ≤ j ≤ k and exactly the points in Bi. The adjacencies
for points in Bi are symmetric. Thus the largest clique is Ak ∪ Bk and has size 2 · 2k.
Removing this clique leaves sets Aj and Bj , 1 ≤ j ≤ k − 1 intact. Thus the algorithm
uses k cliques to cover about 2k+2 points, yielding a lower bound of Ω(log n) on the
size of the clique cover produced by the greedy algorithm.

Constructing Volume Respecting Embeddings. Let H := G[C] be the
cluster graph of G constructed in the previous step. In the second step of our al-
gorithm, we construct a volume respecting embedding of the shortest path metric
of H . The notion of volume respecting embeddings was introduced by Feige [4] in
the context of the minimum bandwidth problem. Let (X, d) be a metric space.
An embedding Φ : X �→ R

L is a contraction if ‖Φ(u) − Φ(v)‖2 ≤ d(u, v) for
all u, v ∈ X . For a set T of k points in R

L, define Evol(T) to be the (k − 1)-
dimensional volume of the (k −1)-dimensional simplex spanned by T , computed
using the �2 norm. Note that Evol(T) = 0 if T is affinely dependent. For any
finite metric space (X, d), define Vol(X) as supΦ Evol(Φ(X)), where the supre-
mum is over all contractions Φ : X → R

|X|−1. Given an arbitrary metric space
(X, d), a contraction Φ : X → R

L is called (k, D)-volume respecting embedding if

for every size-k subset S ⊆ X , we have: Evol(Φ(S)) ≥
(

Vol(S)
Dk−1

)
Note that when

k = 2, this condition reduces to ‖Φ(u) − Φ(v)‖2 ≥ d(u, v)/D for all u, v ∈ X .
Thus, a volume respecting embedding is a generalization of the more commonly
used notion of small distortion embeddings [9], in which only pairs of points are
considered. A volume respecting embedding will be very useful for the last step
our algorithm, in which a random projection of the vertices of H into R

2, will
be performed. In Section 3 we show how to construct a (k, O(

√
log n))-volume

respecting embedding of H . Here k ≥ 2 and n is the number of vertices in H .

Good Quality Virtual Realization of Unit Ball Graphs 315

2 Constructing a Growth-Restricted Approximation

In this section, we show how to construct a clique partition C = {C1, C2, . . .} of
a given d-dimensional UBG G so that G[C] has constant growth rate. Consider
the following algorithm.

CLIQUE-PARTITION(G, Φ)

1. Compute a maximal independent set (MIS) I of G.
2. Associate each vertex u ∈ V \ I to a neighbor in I. For each v ∈ I, let Sv

consist of v and its associated vertices.
3. Partition each vertex subset Sv into a constant number of cliques (this con-

stant may depend on d).

Clearly, Steps (1)-(2) do not need any geometric information. In the following,
we show how to implement the Step (3) of the CLIQUE-PARTITION algorithm,
without using any geometric information about G. For this we make use of
ideas due to Raghavan and Spinrad [11]. For simplicity, we discuss only the
2-dimensional case; extension to d-dimensional UBGs is straightforward.

Raghavan and Spinrad [11] present a “robust” algorithm for the problem of
finding a maximum cardinality clique (henceforth, maximum clique) in a given
UDG. Their algorithm is robust in the sense that it takes as input an arbitrary
graph G and in polynomial time, (i) either returns a maximum clique in G or (ii)
produces a certificate indicating that G is not a UDG. The key idea underlying
the Raghavan-Spinrad algorithm is the existence of a superclass G of the class
of UDGs such that in polynomial time one can determine if a given graph G is
in G or not. Furthermore, for any G in G a maximum clique can be computed in
polynomial time.

The superclass G is the set of all graphs that admit a cobipartite neighborhood
edge elimination ordering (CNEEO). Given a graph G = (V, E) and an edge
ordering L = (e1, e2, . . . , em) of E, let GL[i] denote the spanning subgraph of
G with edge set {ei, ei+1, . . . , em}. For each edge ei = {x, y} define NL[i] to
be the set of common neighbors of x and y in GL[i]. An edge ordering L =
(e1, e2, . . . , em) of G = (V, E) is a CNEEO if for every edge ei, NL[i] induces a
cobipartite (i.e., the complement of a bipartite) graph. Raghavan and Spinrad
prove three results: (1) If a graph G admits a CNEEO, then there is a simple
greedy algorithm for finding a CNEEO of G. (2) Given a graph G and a CNEEO
of G, a maximum clique in G can be found in polynomial time. (3) Every UDG
admits a CNEEO. See Figure 2(a) for an illustration of why every UDG admits
a CNEEO.

We now show how to use the CNEEO idea to implement Step (3) of the
CLIQUE-PARTITION algorithm. Let Gv := G[Sv] be the subgraph of G induced
by Sv. Since Gv is also a UDG, it admits a CNEEO. We start with a simple
lemma.

Lemma 1. Let C be a clique in Gv and let L = (e1, e2, . . . , em) be a CNEEO
of Gv. There is an i, 1 ≤ i ≤ m, such that NL[i] contains C.

316 S.V. Pemmaraju and I.A. Pirwani

x y
r units

(a) (b)

Fig. 2. (a) Suppose that edge {x, y} has rank i in an ordering of the edges of G in non-
increasing length order. The points in the common neighborhood of x and y in GL[i]
are exactly those in the lune shown above. A point outside the lune may be a common
neighbor of x and y in G, but not in GL[i]. The diameter of the upper and lower
halves of the lune are r and therefore the vertices in each half induce a clique in GL[i].
Hence, NL[i] induces a cobipartite graph. (b) A sample run of NBD-CLIQUE-PARTITION
on the “bad example” for the greedy algorithm. The 5 thick lines correspond (in some
order) to the 5-edge sequence guessed by NBD-CLIQUE-PARTITION in Step (1). Among
the guessed edges, the edge between A1 and Ak, say eA, and the edge between B1 and
Bk, say eB , are critical because the common neighborhood of the endpoints of eA is
the clique

⋃
i Ai and similarly, the common neighborhood of the endpoints of eB is the

clique
⋃

i Bi. Note that in the guess as highlighted by the thick lines, the algorithm will
produce a clique partition with at most 10 cliques independent of the order in which
the 5 edges are processed.

Proof. Let ei = {x, y} be the edge in Gv[C] that occurs first in L. Recall the
notation NL[i]: this denotes the common neighborhood of the endpoints of edge
ei in the spanning subgraph of Gv containing only edges ei, ei+1, Since ei is
the first edge in C, NL[i], contains C.

Recall that the closed neighborhood of a vertex in a UDG can be partitioned into
at most 5 cliques. Let C1, C2, . . . , C5 be a clique partition of Sv. The implication
of the above lemma is that even though we do not know the clique partition
C1, C2, . . . , C5, we do know that for every CNEEO L = (e1, e2, . . . , em) of Gv,
there is an edge ei such that NL[i] can be partitioned into two cliques that cover
C1. This follows simply from the fact that L is a CNEEO and therefore the
graph induced by NL[i] is cobipartite. This suggests an algorithm that starts by
guessing an edge sequence (f1, f2, . . . f5) of Gv. Then the algorithm computes
L, a CNEEO of Gv. The algorithm’s first guess is “good” if f1 is the edge in
C1 that occurs first in L. Suppose this is the case and further suppose that f1

has rank i in L. Then C1 is contained in NL[i]. Therefore, when NL[i] is deleted
from Gv we have a graph, say G′v, that can be partitioned into 4 cliques, namely
Cj \ NL[i] for j = 2, 3, 4, 5. For each j, let C′j denote Cj \ NL[i] and let L′ be
a CNEEO of G′v. The algorithm’s second guess, f2, is “good” if f2 is the edge
in C′2 that occurs first in L′. Letting i′ denote the rank of f2 in L′, we see that

Good Quality Virtual Realization of Unit Ball Graphs 317

NL′ [i′] contains C′2. Continuing in this manner we get a partition of Gv into 10
cliques. Below, the algorithm is described more formally.

NBD-CLIQUE-PARTITION(Gv)
1. for each 5-edge sequence (f1, f2, . . . f5) of E(Gv) do
2. G0 ← Gv

3. for j ← 1 to 5 do
4. Compute a CNEEO L of Gj−1

5. i ← rank of fj in L
6. Partition NL[i] into two cliques C′j and C′′j
7. Gj ← Gj−1 \ NL[i]
8. if (G5 = ∅) return {C′j , C

′′
j | j = 1, 2, . . . , 5}

The correctness of NBD-CLIQUE-PARTITION follows from the fact that there is
some edge sequence (f1, f2, . . . f5) of E(Gv) for which G5 is empty. Figure 2(b)
shows a sample run of the algorithm. We state without proof the following
lemma.

Lemma 2. Algorithm NBD-CLIQUE-PARTITION partitions Gv into at most 10
cliques.

If Gv has m edges then the number of guesses verified by the algorithm is O(m5).
Since a CNEEO of a graph can be computed polynomial time (if it exists)
and since a cobipartite can be partitioned into two cliques in linear time, we
see that the algorithm NBD-CLIQUE-PARTITION runs in polynomial time. Thus
Step (3) of the CLIQUE-PARTITION algorithm can be implemented by calling the
NBD-CLIQUE-PARTITION algorithm for each vertex v ∈ I.

Let C = {C1, C2, . . .} be the clique partition of G produced by the algorithm
CLIQUE-PARTITION. Let H := G[C]. We now argue that H is growth-restricted.
For each vertex c ∈ V (H), there is a corresponding vertex v in the MIS I of G.
Specifically, c corresponds to a clique in G that was obtained by partitioning Sv

for some vertex v ∈ I. Recall that Sv consists of v along with some neighbors
of v. Denote by i(c) the vertex in I corresponding to c ∈ V (H). Consider an
arbitrary 2-dimensional realization Φ of G and for any pair of vertices x, y ∈ V ,
let |xy| denote ‖Φ(x) − Φ(y)‖2. Let B(v, r) = {u ∈ V (H) | dH(v, u) ≤ r} denote
the closed ball of radius r, centered at v, with respect to shortest path distances
in H . We present two structural lemmas pertaining to H .

Lemma 3. For any u, v ∈ V (H) and r ≥ 0, if u ∈ B(v, r) then |i(u)i(v)| ≤ 3r.

Proof. Consider two neighbors in H , x and y. Let Cx and Cy denote the cliques
in G that were contracted into x and y respectively. Since x and y are neighbors
in H , there are vertices x′ ∈ Cx and y′ ∈ Cy that are neighbors in G. Also,
because of the way the cliques are constructed, x′ is a neighbor of i(x) and
y′ is a neighbor of i(y). Since G is a UDG, by triangle inequality |i(x)i(y)| ≤
|i(x)x′| + |x′y′| + |y′i(y)| ≤ 3.

If u ∈ B(v, r), then there is a uv-path P in H of length at most r. Correspond-
ing to P there is a sequence of vertices in I starting with i(u) and ending with

318 S.V. Pemmaraju and I.A. Pirwani

i(v) such that consecutive vertices in this sequence are at most 3 units apart in
any realization. Therefore, by triangle inequality |i(u)i(v)| ≤ 3r.

Lemma 4. There is a constant α such that for any v ∈ V (H), |B(v, r)| ≤ α ·r2.

Proof. Let X be the number of vertices in B(v, r). By the previous lemma, for
each u ∈ B(v, r), there is a vertex i(u) ∈ I such that i(u) ∈ Disk(i(v), 3r).
Here Disk(i(v), 3r) denotes the disk of radius 3r centered at vertex i(v) in any
realization of G. Also, by Lemma 2, there are at most 10 vertices in H that
have the same corresponding vertex in I. Therefore, the number of vertices in
Disk(i(v), 3r) needs to be at least X/10. Any pair of vertices in I are more
than one unit apart (in Euclidean distance) from each other. By the standard
packing argument, this implies that the ball Disk(i(v), 3r) can contain at most
4 · (3r + 1/2)2 points in I. Therefore, X/10 ≤ 4(3r + 1/2)2 and hence for a
constant α, we have X ≤ α · r2.

Lemma 4 can be generalized to higher dimensions to yield the following theorem.

Theorem 1. There is a polynomial time algorithm that takes as input the com-
binatorial representation of a d-dimensional UBG G = (V, E), and constructs a
clique partition C = {C1, C2, . . .} of G such that G[C] has growth rate O(d).

A side effect of our construction is that the constructed clique partition C =
{C1, C2, . . .} is a constant-factor approximation to the minimum clique cover
for any UBG in fixed dimensional space. This follows from the fact that the size
of any independent set is a lower bound on the size of a minimum clique cover
and our solution produces a clique partition whose size is within a constant of
the size of a maximal independent set.

Theorem 2. There is a polynomial time algorithm that takes as input the com-
binatorial representation of a d-dimensional UBG G = (V, E) for fixed d and
constructs a clique partition C = {C1, C2, . . .} of G, whose size is within a con-
stant times the size of a minimum clique cover of G.

3 Volume Respecting Embedding of Growth-Restricted
Graphs

In this section, we show that by combining techniques due to Krauthgamer and
Lee [6] with Rao’s technique [12], we can derive a simple, combinatorial algorithm
for constructing a (k, O(

√
log n))-volume respecting embedding of any n-vertex

growth-restricted graph and any k ≥ 2. We emphasize the combinatorial nature
of our algorithm because in earlier papers [13,10], this step involved solving an
LP with exponentially many constraints via the ellipsoid method.

Rao [12] presents an algorithm for computing a (k, O(
√

log n))-volume re-
specting embedding for graphs that exclude Kt,t as a minor for a fixed t. A key
step of Rao’s embedding algorithm uses a graph decomposition due to Klein,

Good Quality Virtual Realization of Unit Ball Graphs 319

Plotkin, and Rao [5] that works for Kt,t-minor free graphs. In our case, the in-
put graph is not guaranteed to be Kt,t-minor free for any t and therefore the
Klein-Plotkin-Rao decomposition algorithm cannot be used. But, since our input
graph is growth-restricted, we replace the Klein-Plotkin-Rao decomposition by
the probabilistic decomposition due to Krauthgamer and Lee [6] that exploits
the growth-restricted nature of the graph.

Let G = (V, E) be a graph with growth rate ρ. Krauthgamer and Lee [6]
present the following simple partitioning procedure for G, parameterized by an
integer r > 0, that will be the first step of our algorithm. For any M > 0,
let Texp(r, M) denote the probability distribution obtained by taking the con-
tinuous exponential distribution with mean r, truncating it at M , and rescal-
ing the density function. The resulting distribution has density function p(z) =

eM/r

r(eM/r−1)
·e−z/r for any z ∈ (0, M). Let V ={v1, v2, . . . , vn}. For each vertex vj ,

independently choose a radius rj by sampling the distribution Texp(r, 8ρr ln r).
Now define Sj = B(vj , rj) \ ∪j−1

i=1 B(vi, ri). Thus Sj is the set of all vertices in
the ball B(vj , rj) that are not contained in any of the earlier balls B(vi, ri),
1 ≤ i ≤ j − 1. It is clear that C = {S1, S2, . . . , Sn} partitions G such that the
weak diameter of each Si is at most 16ρr ln r.

Now we state a key lemma from Krauthgamer and Lee [6] that allows us to
use Rao’s technique. For any u ∈ V and x ≥ 0, let Ex

u denote the event that
B(u, x) is split between multiple clusters in C.

Lemma 5. Let u ∈ V , r ≥ 16ρ, and x ≥ 0. Then Pr[Ex
u] ≤ 10x/r.

The implication of this lemma is that for any vertex u, with probability at
least a constant, a “large” ball (e.g., with radius x = r/20) centered at u is
completely contained in one of the clusters in C. This implication can be stated
more precisely, as follows. For each cluster C ∈ C, define the boundary of C,
denoted ∂C, as the subset of vertices in C that have neighbors (in G) outside
of C. Let B denote the set of all boundary vertices of all clusters in C. Define a
δ-good vertex to be a vertex that is at least δ hops away from any vertex in B.
From Lemma 5 we can immediately derive the following.

Lemma 6. Let u ∈ V and r ≥ 16ρ. With probability at least 1
2 , u is r

20 -good.

The above lemma (which is similar to Lemma 3 in Rao [12]) leads to the second
stage of the algorithm. Consider the graph G−B. For each connected component
Y in G − B, pick a rate α independently and uniformly at random from the
interval [1, 2]. To each edge in Y , assign as weight the rate α corresponding to
Y . Thus all edges in a connected component in G − B have the same weight.
To all other edges in G (i.e., those that are incident on vertices in B) assign the
weight 0. Finally, to each vertex u in G assign a weight that is the length of a
shortest path from u to a vertex in B. Note that the shortest paths are computed
in the weighted version of G. Thus all vertices in B will get assigned a weight 0,
whereas vertices in G − B will get assigned a positive weight. In fact, it is easy
to verify that the weight assigned to a vertex in G − B is at least 1 and at most
16ρr ln r. Exactly, as in Rao [12], we can derive the following lemma.

320 S.V. Pemmaraju and I.A. Pirwani

Lemma 7. The weight of any δ-good node ranges uniformly over an interval I
of length at least δ. Moreover, the choice is independent of anything in a different
component.

For each vertex v, the weight of v forms one coordinate of v. For each value of
r, the above algorithm is repeated αk log n times for a large enough constant
α. Since Lemma 6 holds only for values of r ≥ 16ρ, we repeat this the entire
process for r = 1, 16ρ, (16ρ)2, . . . , diam(G). For any constant ρ, this is essentially
the same as using values of r = 1, 2, 4, . . . , diam(G) as Rao does [12]. Lemmas
6 and 7 are the two key results needed for the rest of Rao’s analysis [12] to go
through. Therefore, we get the following result.

Theorem 3. For any k ≥ 2, there is a polynomial time algorithm that con-
structs a (k, O(

√
log n))-volume respecting embedding, with high probability, of

any n vertex growth-restricted graph.

4 Good Quality Embeddings of UBGs

In this section, we use the ideas developed in earlier sections to devise good
quality embeddings of UBGs.

4.1 Constant Quality Embedding in Constant Dimensions

Levin, together with Linial, London, and Rabinovich [9], made a conjecture (Con-
jecture 8.2 in [9]) that is quite relevant to the best quality embedding problem.
Let Z

d
∞ be the infinite graph with vertex set Z

d (i.e., the d-dimensional integral
lattice) and an edge {u, v} whenever ‖u − v‖∞ = 1. For any graph G, define
dim(G) to be the smallest d such that G occurs as a (not necessarily induced)
subgraph of Z

d
∞.

Conjecture 1. [Levin, Linial, London, Rabinovich] For any graph G=(V, E)
with growth rate ρG, G occurs as a (not necessarily induced) subgraph of Z

O(ρG)
∞ .

In other words, dim(G) = O(ρG).

Linial [8] introduced the following Euclidean analogue to this notion of dimen-
sionality. For any graph G, define dim2(G) to be the smallest d such that there
is a mapping Φ : V �→ R

d with the properties: (i) ‖Φ(u) − Φ(v)‖2 ≥ 1 for all
u �= v ∈ V and (ii) ‖Φ(u) − Φ(v)‖2 ≤ 2 for all {u, v} ∈ V .

Lee and Krauthgamer [6] show that the specific bound on dim(G), men-
tioned in the above conjecture does not hold, by exhibiting a graph G for which
dim(G) = Ω(ρG log ρG). They also prove a weaker form of the conjecture by
showing that dim(G) = O(ρG log ρG) for any graph G [6]. This proof relies on
the Lovász Local Lemma, but can be turned into a polynomial time algorithm
using standard techniques for turning proofs based on the Lovász Local Lemma
into algorithms. Finally, they also prove that dim2(G) = O(ρG log ρG). This
result, along with Theorem 1 leads to the following theorem.

Good Quality Virtual Realization of Unit Ball Graphs 321

Theorem 4. There is a polynomial time algorithm, that takes as input a d-
dimensional UBG and constructs an embedding of quality-2 in O(d log d) dimen-
sional Euclidean space.

4.2 O(log2.5 n) Quality Embedding in the Plane

In this section, we describe our complete algorithm. The first two steps of our
algorithm are described in detail in the previous two sections. The last three
steps respectively describe (i) a random projection into R

2, (ii) a “rounding”
step, and (iii) constructing an embedding of the original input graph G from the
embedding of the cluster graph G[C]. The random projection and the subsequent
“rounding” step are essentially the same as in Vempala’s algorithm [13].

Step 1. Construct a clique partition C = {C1, C2, . . .} of the given UBG G =
(V, E) so that the induced cluster graph H := G[C] is growth-restricted. This
is described in Section 2.

Step 2. Let V (H) = {v1, v2, . . . , vn}. Construct a (log n, O(
√

log n))-volume
respecting embedding Φ of the shortest path metric of H , as described in
Section 3. Let ui := Φ(vi) for i = 1, 2, . . . , n.

Step 3. Choose 2 random lines, �1 and �2 (independently), passing through
the origin. Project the point set {u1, u2, . . . , un} onto each of the two lines,
mapping each ui to (ui · �1, ui · �2). Denote each (ui · �1, ui · �2) by wi.

Step 4. Discretize the plane into grid, with each cell having dimension 1/
√

n×
1/

√
n. Call each such grid cell an an outer grid cell. Let M be the maxi-

mum number of points wi that fall in any cell after the random projection
step. Subdivide each outer grid cell into a finer grid, with each cell having
dimensions 1/

√
n· M × 1/

√
n· M . For each outer cell C, map all points that

fall into C to grid points of the finer grid. Finally, scale up all grid points by
a factor of

√
n· M along both dimensions so that each cell has unit width.

Step 5. Since every vertex vi in H is associated with a clique Ci in G, all
vertices in Ci are assigned the coordinates assigned to vi in Step (4), to get
the final embedding of G.

We skip the analysis of the above algorithm because it is similar to Vempala’s
analysis [13]. The final result we obtain is this.

Theorem 5 (Main Result). With high probability, the quality of the embed-
ding is O(log2.5 n).

References

1. Aspnes, J., Goldenberg, D.K., Yang, Y.R.: On the computational complexity of
sensor network localization. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSEN-
SORS 2004. LNCS, vol. 3121, pp. 32–44. Springer, Heidelberg (2004)

2. Basu, A., Gao, J., Mitchell, J.S.B., Sabhnani, G.: Distributed localization using
noisy distance and angle information. In: MobiHoc ’06: Proceedings of the seventh
ACM international symposium on Mobile ad hoc networking and computing, pp.
262–273. ACM Press, New York, USA (2006)

322 S.V. Pemmaraju and I.A. Pirwani

3. Bruck, J., Gao, J., Jiang, A.(A).: Localization and routing in sensor networks by
local angle information. In: MobiHoc ’05: Proceedings of the 6th ACM international
symposium on Mobile ad hoc networking and computing, pp. 181–192. ACM Press,
New York, NY, USA (2005)

4. Feige, U.: Approximating the bandwidth via volume respecting embeddings. J.
Comput. Syst. Sci. 60(3), 510–539 (2000)

5. Klein, P., Plotkin, S.A., Rao, S.: Excluded minors, network decomposition, and
multicommodity flow. In: STOC ’93: Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, pp. 682–690. ACM Press, New York, USA
(1993)

6. Krauthgamer, R., Lee, J.R.: The intrinsic dimensionality of graphs. In: STOC ’03:
Proceedings of the thirty-fifth annual ACM symposium on Theory of computing,
pp. 438–447. ACM Press, New York, NY, USA (2003)

7. Kuhn, F., Moscibroda, T., O’Dell, R., Wattenhofer, M., Wattenhofer, R.: Virtual
coordinates for ad hoc and sensor networks. Algorithmica (to appear 2006)

8. Linial, N.: Variation on a theme of Levin. In: Matoušek, J. (ed.) Open Problems,
Workshop on Discrete Metric Spaces and their Algorithmic Applications (2002)

9. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its
algorithmic applications. Combinatorica 15, 215–245 (1995)

10. Moscibroda, T., O’Dell, R., Wattenhofer, M., Wattenhofer, R.: Virtual coordinates
for ad hoc and sensor networks. In: DIALM-POMC ’04: Proceedings of the 2004
joint workshop on Foundations of mobile computing, pp. 8–16. ACM Press, New
York, NY, USA (2004)

11. Raghavan, V., Spinrad, J.: Robust algorithms for restricted domains. In: SODA ’01:
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,
pp. 460–467. Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA (2001)

12. Rao, S.: Small distortion and volume preserving embeddings for planar and eu-
clidean metrics. In: SCG ’99: Proceedings of the fifteenth annual symposium on
Computational geometry, pp. 300–306. ACM Press, New York, USA (1999)

13. Vempala, S.: Random projection: A new approach to VLSI layout. In: FOCS ’98:
Proceedings of the 39th Annual Symposium on Foundations of Computer Science,
pp. 389–395. IEEE Computer Society Press, Washington, DC, USA (1998)

Algorithms for Playing Games with Limited
Randomness�

Shankar Kalyanaraman and Christopher Umans

Dept of Computer Science, California Institute of Technology, Pasadena, CA 91125
{shankar,umans}@cs.caltech.edu

Abstract. We study multiplayer games in which the participants have access
to only limited randomness. This constrains both the algorithms used to compute
equilibria (they should use little or no randomness) as well as the mixed strategies
that the participants are capable of playing (these should be sparse). We frame
algorithmic questions that naturally arise in this setting, and resolve several of
them.

We give deterministic algorithms that can be used to find sparse ε-equilibria in
zero-sum and non-zero-sum games, and a randomness-efficient method for play-
ing repeated zero-sum games. These results apply ideas from derandomization
(expander walks, and δ-independent sample spaces) to the algorithms of Lipton,
Markakis, and Mehta [LMM03], and the online algorithm of Freund and Schapire
[FS99].

Subsequently, we consider a large class of games in which sparse equilibria
are known to exist (and are therefore amenable to randomness-limited players),
namely games of small rank. We give the first “fixed-parameter” algorithms for
obtaining approximate equilibria in these games. For rank-k games, we give a
deterministic algorithm to find (k + 1)-sparse ε-equilibria in time polynomial
in the input size n and some function f(k, 1/ε). In a similar setting Kannan
and Theobald [KT07] gave an algorithm whose run-time is nO(k). Our algorithm
works for a slightly different notion of a game’s “rank,” but is fixed parameter
tractable in the above sense, and extends easily to the multi-player case.

1 Introduction

Ever since Nash’s work in 1951 [Nas51] and Morgenstern and von Neumann’s treatise
[MvN44] that introduced the subject, game theory has been one of the cornerstones
of economic analysis. In recent years, game theory has increasingly become embedded
into theoretical computer science. In particular, the field of algorithmic game theory has
seen prolific contributions to areas such as auctions, mechanism design and congestion
games.

Traditionally, designing algorithms for such games has been largely driven by the
need to find equilibria time-efficiently. In this context, Chen and Deng [CD06] built on
prior work [DP05, CD05, DGP06, GP06] and showed that the problem of finding a Nash
equilibrium for the two-player game is complete for the PPAD class. This suggests that

� This research was supported by NSF grant CCF-0346991, BSF Grant 2004329, a Sloan Re-
search Fellowship and an Okawa Foundation research grant.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 323–334, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

324 S. Kalyanaraman and C. Umans

a polynomial-time algorithm is unlikely to exist. With Teng, Chen and Deng [CDT06]
showed further that finding O(1/nΘ(1))-approximate Nash equilibria is also PPAD-
complete. In this paper, we study algorithms for finding equilibria and playing games
randomness-efficiently. By “playing a game” we mean the actions a player must take
to actually sample and play a strategy from a mixed strategy profile, which necessarily
entails randomness. There is an immense body of literature in theoretical computer
science devoted to addressing computational issues when limited or no randomness is
available, and for the same reasons it makes sense to study games whose players have
limited access to randomness. Moreover, limited randomness in games motivates some
special classes of games that have arisen in other contexts thereby providing a viewpoint
that we believe is helpful.

Limited randomness imposes two major constraints on players. Firstly, players with
access to limited randomness are precluded from executing mixed strategies with large
support since playing a mixed strategy with support size m requires at least log m bits of
randomness (to sample a single strategy from the distribution). Secondly, they are lim-
ited to executing algorithms to help find optimal strategies or equilibria that use a small
amount of randomness. We look at both such manifestations of limited randomness.

We first look at sparse strategies in single-round games. For the case of zero-sum
games where both players have n available strategies, Lipton and Young [LY94] showed
that a random sample of O(log n

ε2) strategies was sufficient to approximate the value of
the game by ε. Lipton, Markakis and Mehta [LMM03] extended this to ε-equilibria for
two-player nonzero-sum games. Indeed, they gave a randomized procedure that pro-
duced small-support strategies for an ε-equilibrium when given a Nash equilibrium with
possibly large support. In the following theorem, we derandomize this procedure by us-
ing random walks on expander graphs:

Theorem 1. Let G = (R, C, n) be a two-player game, and let (p∗, q∗) be a Nash
equilibrium for G. For every ε > 0, there is a deterministic procedure P running in
time poly(|G|)1/ε2 such that the pair (P (G, p∗, 1), P (G, q∗, 2)) is an O(log n

ε2)-sparse
4ε-equilibrium for G.

This can be viewed as a deterministic “sparsification” procedure for ε-equilibria in gen-
eral two player games. In zero-sum games one can find optimal strategies efficiently,
and as a result, we obtain a deterministic polynomial time algorithm to find sparse ε-
equilibria for zero-sum games:

Corollary 1. Let G = (R, C, n) be a two-player zero-sum game. For every ε > 0,
there is a deterministic procedure running in time poly(|G|)1/ε2 that outputs a pair
(p∗, q∗) that an O(log n

ε2)-sparse ε-equilibrium for G.

We point out that Freund and Schapire [FS96] obtained a similar result using an adaptive
multiplicative-weight algorithm (discussed below) with poly(|G|, 1/ε) running time.
We obtain the corollary above using a very different proof technique that flows from
well-known derandomization techniques.

In single-round games a randomness-limited player requires sparse strategies, but in
multiple-round games, we would like to be able to “reuse” randomness across rounds.
This is an orthogonal concern to that of reducing randomness within a single round.

Algorithms for Playing Games with Limited Randomness 325

Freund and Schapire [FS99] proposed an adaptive online algorithm for a T -round two-
player zero-sum game with n strategies available to each. Executing the mixed strate-
gies produced by their algorithm uses Ω(T log n) bits of randomness over T rounds, in
the worst case. By making use of almost-pairwise independence, we show how to reuse
randomness across rounds: it is possible to make do with just O(log n + log log T +
log(1/ε)) bits and achieve close to the same quality of approximation as in [FS99].

Theorem 2. Let M be the n × n-payoff matrix for a two-player zero-sum T -round
game with entries in {0, 1}. For any ε < 1/2 and constant δ, there exists an online
randomized algorithm R using O(log n + log log T + log(1/ε)) random bits with the
following property: for any arbitrary sequence Q1, . . . , QT of mixed strategies played
(adaptively) by the column player over T rounds, R produces a sequence of strategies
S1, . . . , ST such that with probability at least 1 − δ:

1
T

T∑

i=1

M(Si, Qi) ≤ 1
T

min
P

T∑

i=1

M(P, Qi) + O

(√
log n

T
+ ε

)

As we have discussed, players with limited access to randomness can only achieve equi-
libria that are sparse. We saw before that in the general setting, we are able to “sparsify”
deterministically if we are willing to settle for ε-equilibria. The sparsity cannot in gen-
eral be less than log n, though, so we are motivated to consider broad classes of games
in which even sparser equilibria are guaranteed to exist. Perhaps the simplest example
is a 2-player games in which one player has only k available strategies, while the other
player has n � k available strategies. The results in Lipton et al. [LMM03] imply there
is a Nash equilibrium in this game with support size k + 1. This is somewhat unsatisfy-
ing – it means that in a two-player game one player may need to choose from less-sparse
strategies than his opponent (i.e. requiring slightly more randomness) to achieve equi-
librium. Theorem 3 rectifies this asymmetry by showing that k-sparse strategies suffice
for the opposing player.

Theorem 3. Let G = (R, C, k, n) be a two-player game. Given p∗ for which there
exists a q∗ such that (p∗, q∗) is a Nash equilibrium, we can compute in deterministic
polynomial time q′ for which (p∗, q′) is a Nash equilibrium and |supp(q′)| ≤ k.

We also give a deterministic polynomial time algorithm to compute such a limited-
support strategy for one player, given the k-sparse strategy of the other. We can extend
this further to the multiplayer case to show that for an �-player game where players 1
through � − 1 have k1, . . . , k�−1 pure strategies, respectively, the �-th player need only
play a (

∏�−1
i=1 ki)-sparse strategy to achieve equilibrium (these bounds are tight).

Perhaps the most significant technical contribution in this paper pertains to a gen-
eralization of the “unbalanced” games that we saw above, namely, games of small
rank. This is a broad class of games for which sparse equilibria are known to exist.
For 2-player games with rank-k payoff matrices, Lipton et al. describe an enumeration
algorithm that finds (k + 1)-sparse strategies in O(nk+1) time. We improve dramati-
cally on this bound but we must relax the problem in two ways: first, we compute an
ε-equilibrium rather than an exact one; second we require that the payoff matrices be
presented as a low-rank decomposition, with entries up to precision B (limited precision
makes sense since we are only considering ε-equilibria).

326 S. Kalyanaraman and C. Umans

Theorem 4. Let G = (R, C, n) be a two player game such that R and C have rank
at most k. Furthermore, let R = R1R2, C = C1C2 be a decomposition of R, C with
R1, R2, C1, C2 containing integer entries in [−B, B]. Then, for every ε > 0, there is a
deterministic procedure P running in time (4B2k/ε)2kpoly(|G|) that returns a 4ε-Nash
equilibrium (p, q) with |supp(p)|, |supp(q)| ≤ k + 1.

To the best of our knowledge, Theorem 4 provides the first efficient “fixed-parameter”
algorithm to this problem in the sense that the running time is polynomial in the input
size n and some function f(k, 1/ε, B). The closest parallel to our result is by Kan-
nan and Theobald [KT07] who consider a somewhat different definition of “rank” for
two-player games: in their definition, the sum of the payoff matrices is required to have
small rank. In that case, they present an algorithm that finds an ε-equilibrium in a rank
k 2-player game in O(n2k+o(1)B2) time. Their algorithm relies on results of Vavasis
for solving indefinite quadratic programs [Vav92] and does not seem to generalize to
� > 2 players. Our algorithm is (arguably) simpler, and moreover, it easily generalizes
to � > 2 players, where small rank games still are guaranteed to have sparse equilibria.
In the �-player setting, we give an O(((2B)�k�/ε)k�(�−1))poly(n�) time determinis-
tic procedure that computes such a sparse ε-equilibrium, when the payoff tensors are
presented as a rank-k decomposition with entries up to precision B.

All of the algorithms for low-rank games rely on enumerating potential equilibria
distributions in a basis dictated by the small rank decomposition. This seems like a
technique that may be useful for algorithmic questions regarding low-rank games be-
yond those we have considered in this paper.

2 Preliminaries

Definition 1. For a finite strategy set S we define Δ(S) to be the set of probability
distributions over S, i.e, all vectors p = (ps)s∈S satisfying

∑
s∈S ps = 1 with each

ps ∈ [0, 1]. A mixed strategy p is an element of Δ(S). The support of a mixed strategy
p ∈ Δ(S) is the set supp(p) given by supp(p) = {s ∈ S|ps > 0}. A mixed strategy p is
k-sparse if |supp(p)| = k.

In this paper, we will concern ourselves with games that can be specified by payoff
matrices (or tensors) whose entries denote the payoff upon playing the corresponding
strategy tuple. We will also assume, unless otherwise specified, that these entries are
bounded and can be scaled to lie in [−1, 1].

Definition 2. An �-player finite game G is a tuple (T1, . . . , T�, n1, n2, . . . , n�) where
Ti is the (n1 × . . . × n�) �-dimensional payoff tensor with Ti(s1, . . . , s�) denoting the
payoff to player i when the pure strategy �-tuple (s1, . . . , s�) is played in the game.

For ease of presentation, in the rest of this paper we will often restrict ourselves to
�-player games where n1 =n2 = · · ·=n� =n, which we denote by G=(T1, . . . , T�, n).
We often refer to players by their payoff tensors. For example, for the two-player game
G = (R, C, n) we will refer to the row player as R and the column player as C. All
vectors are thought of as row vectors.

Algorithms for Playing Games with Limited Randomness 327

Definition 3. In an �-player game G = (T1, T2, . . . , T�, n1, n2, . . . , n�), we denote by
Ti(p1, . . . , p�) the payoff to the i-th player when the � players play mixed strategies
p1, . . . , p�, i.e.,

Ti(p1, . . . , p�) =
∑

i1∈[n1],...,i�∈[n�]

pi1pi2 . . . pi�
Ti(i1, i2, . . . , i�).

If we substitute some a ∈ [nj] for pj we understand that to mean the distribution that
places weight 1 on a and 0 everywhere else.

Definition 4. Let G = (T1, . . . , T�, n1, . . . , n�) be an �-player. An l-tuple (p∗1, . . . , p
∗
�)

with each p∗i ∈ Δ([ni]) is an ε-equilibrium for G if: for every i and every p ∈ Δ([ni]),

Ti(p∗1, . . . , p
∗
i−1, p, p∗i+1, . . . , p

∗
�) ≤ Ti(p∗1, . . . , p

∗
i−1, p

∗
i , p
∗
i+1, . . . , p

∗
�) + ε.

A Nash equilibrium is an ε-equilibrium for ε = 0.

Let G be an �-player game. It is well-known that given the supports of the � different p∗i
in a Nash equilibrium, one can find the actual distributions by linear programming. We
will use a similar fact repeatedly (we defer the proof to a longer version of the paper
[KU07]):

Lemma 1. Let G = (T1, T2, . . . , T�, n) be an �-player game, and let (p∗1, p∗2, . . . , p∗�)
be a Nash equilibrium. Given G and p∗1, p

∗
2, . . . , p

∗
�−1 one can find a distribution q in de-

terministic polynomial time for which (p∗1, p
∗
2, . . . , p

∗
�−1, q) is also a Nash

equilibrium.

3 Sparsifying Nash Equilibria Deterministically

In this section we give deterministic algorithms for “sparsifying” Nash equilibria (in
the process turning them into ε-equilibria). In this way, a player with limited access to
randomness, but who has access to an equilibrium mixed strategy, is able to produce a
small strategy that can then be played.1 We prove our results in detail for the two player
case, and then sketch the (easy) extension to multiple players in the longer version of
the paper [KU07]. Lipton et al. showed the following result:

Theorem 5 (Lipton et al. [LMM03]). Let G = (R, C, n) be a two-player game, and
let (p∗, q∗) be a Nash equilibrium for G. There is a polynomial-time randomized pro-
cedure P such that with probability at least 1/2, the pair (P (G, p∗), P (G, q∗)) is an
O(log n/ε2)-sparse ε-equilibrium for G.

The algorithm P is very simple: it amounts to sampling uniformly from the given equi-
librium strategy. The analysis applies Chernoff bounds to show that the sampled strate-
gies present the opposing players with approximately (within ε) the same weighted
row- and column- sums, and hence constitute an ε-equilibrium. In our setting, since the

1 The question of how the player may obtain an equilibrium mixed strategy is a separate and
well-studied topic, but not the focus of this work.

328 S. Kalyanaraman and C. Umans

players have limited randomness they cannot afford the above sampling (it requires at
least as much randomness as simply playing (p∗, q∗)), so we derandomize the algo-
rithm using an expander walk. Before proving Theorem 1, we will give a convenient
characterization of ε-equilibrium:

Lemma 2. Let G = (R, C, n) be a 2-player game. Define

Tp = {i|(pC)i ≥ max
r

(pC)r − ε}
Sq = {j|(RqT)j ≥ max

t
(RqT)t − ε}.

If supp(p) ⊆ Sq and supp(q) ⊆ Tp, then (p, q) is an ε-equilibrium for G.

We will use the Chernoff bound for random walks on an expander:

Theorem 6 (Gillman [Gil93]). Let H be an expander graph with second largest eigen-
value λ and vertex set V , and let f : V → [−1, 1] be arbitrary with E[f] = μ. Let
X1, X2, . . . , Xt be the random variables induced by first picking X1 uniformly in V
and X2, . . . , Xt by taking a random walk in H from X1. Then

Pr

[∣∣∣∣∣
1
t

∑

i

f(Xi) − μ

∣∣∣∣∣ > δ

]
< e−O((1−λ)δ2t).

Proof (of Theorem 1). When we are given G and p∗, we perform the following steps.
First, construct a multiset S of [n] for which uniformly sampling from S approximates
p∗ to within ε/n. This can be done with |S| ≤ O(n/ε). Denote by p̃ the distribu-
tion induced by sampling uniformly from S. We identify S with the vertices of a
constant-degree expander H , and we can sample S′ ⊆ S by taking a walk of length
t = O(log n/ε2) steps in H . Note that this requires O(log |S| + O(t)) = O(log n/ε2)
random bits. Let p′ be the probability distribution induced by sampling uniformly from
S′. By Theorem 6 (and using the fact that C has entries in [−1, 1]), for each fixed i,

Pr[|(p′C)i − (p̃C)i| ≥ ε] ≤ e−O(ε2t) < 1/n. (1)

By a union bound |(p′C)i − (p̃C)i| ≤ ε for all i with non-zero probability. This condi-
tion can be checked given G, p∗, and so we can derandomize the procedure completely
by trying all choices of the random bits used in the expander walk.

When we are given G and q∗, we perform essentially the same procedure (with
respect to R and q∗), and in the end we output a pair p′, q′ for which |(p′C)i −(p̃C)i| ≤
ε for all i and |(Rq

′T)j − (Rq̃T)j | ≤ ε for all j. We claim that any such (p′, q′) is
a 4ε-equilibrium, assuming (p∗, q∗) is an equilibrium. Using the fact that C, R have
entries in [−1, 1], and the fact that our multiset approximations to p∗, q∗ have error
at most ε/n in each coordinate, we obtain that |(p̃C)i − (p∗C)i| ≤ ε for all i and
|(Rq̃T)j − (Rq∗T)j | ≤ ε for all j. Define (as in Lemma 2)

Tp′ = {i|(p′C)i ≥ max
i

(p′C)i − 4ε}
Sq′ = {j|(Rq

′T)j ≥ max
j

(Rq
′T)j − 4ε}.

Algorithms for Playing Games with Limited Randomness 329

Now, w ∈ supp(p′) implies w ∈ supp(p∗) which implies (Rq∗T)w = maxj(Rq∗T)j

(since (p∗, q∗) is a Nash equilibrium). From above we have that maxj(Rq′T)j ≤
maxj(Rq∗T)j +2ε and that (Rq′T)w ≥ (Rq∗T)w −2ε. So (Rq′T)w ≥ maxj(Rq′T)j −
4ε, and hence w is in Sq′ . We conclude that supp(p′) ⊆ Sq′ . A symmetric argument
shows that supp(q′) ⊆ Tp′ . Applying Lemma 2, we conclude that (p′, q′) is a 4ε-
equilibrium as required and this completes the proof. �	

Since an equilibrium can be found efficiently by Linear Programming in the two player
zero-sum case, we obtain Corollary 1. We extend the algorithm above to make it work
for games involving three or more players.

Theorem 7. Let G = (T1, T2, . . . , T�, n) be an �-player game, and let (p∗1, p
∗
2, . . . , p

∗
�)

be a Nash equilibrium for G. For every ε > 0, there is a deterministic procedure P
running in time poly(|G|)1/ε2 , such that the tuple (P (G, p∗1, 1), P (G, p∗2, 2), . . . ,
P (G, p∗� , �)) is an O((� log n)/ε2)-sparse 4ε-equilibrium for G.

4 Limited Randomness in Repeated Games

So far we have looked at optimizing the amount of randomness needed in single-round
games where players execute their strategies only once. In this section, we investigate
multiple-round games and in particular, the adaptive multiplicative weight algorithm of
Freund and Schapire [FS99] for which we describe randomness-efficient modifications.
In particular, we show that by using almost-pairwise independent random variables it is
possible to achieve close to the same quality of approximation as in their work.

Note that we make crucial use of the full power of [FS99] – i.e., their guarantee still
holds if the column player changes his play in response to the particular randomness-
efficient sampling being employed by the row player.

Proof (of Theorem 2). Our randomized online algorithm R is a modification of Freund
and Schapire’s multiplicative-weight adaptive algorithm [FS99]. For a game with pay-
off matrix M where both players have n strategies belonging to a strategy-set S, and
for a sequence of mixed strategies (P1, P2, . . . , PT) over T rounds for the first player
described by

Pi+1(s) =
(

βM(s,Qt)

∑
s pi(s)βM(s,Qt)

)
pi(s) (2)

where Q1, . . . , QT are arbitrary (adaptive) mixed strategies of the column player and
β = 1/(1+

√
2 log n/T), the Freund-Schapire algorithm offers the following guarantee

on the expected payoff over T rounds:

Lemma 3 (Freund and Schapire [FS99])

1
T

T∑

t=1

M(Pt, Qt) ≤ min
P

1
T

T∑

t=1

M(P, Qt) + O

(√
log n

T

)
(3)

330 S. Kalyanaraman and C. Umans

Running the Freund-Schapire algorithm requires Ω(T log n) random bits in order to
select a strategy from each distribution but we can optimize on this by using almost
pairwise independent random variables.

Definition 5. [AGHP92] Let Zn ⊆ {0, 1}n be a sample space and X = x1 . . . xn be
chosen uniformly from Zn. Zn is (ρ, k)-independent if for any positions i1 < i2 <
. . . < ik and any k-bit string t1 . . . tk, we have

∣∣∣Pr
X

[xi1xi2 . . . xik
= t1 . . . tk] − 2−k

∣∣∣ ≤ ρ

Alon et al. [AGHP92] give efficient constructions of (ρ, k)-independent random vari-
ables over {0, 1}n that we can suitably adapt to obtain T (ρ, 2)-independent random
variables S1, . . . , ST over a larger alphabet of size O(n/ε) using O(log n+log(1/ρ)+
log(1/ε) + log log T) random bits.

Note that as we did in the proof of Theorem 1 in Section 3, we can approximate
any distribution Pt by a uniform distribution St drawn from a multiset of size O(n/ε)
that approximates Pt to within ε/n and suffer at most O(ε) error. Therefore, under
the uniform distribution over vertices s ∈ Si for all i = 1, . . . , T : |M(Pi, Qi) −
E[M(S, Qi)]| ≤ O(ε). The following lemma is the key step in our derandomization.

Lemma 4. Let S1, . . . , ST be (ρ, 2)-independent random variables. Then, for any δ:

Pr
S1,...,ST

[
1
T

T∑

i=1

M(Si, Qi) ≥ 1
T

E

[
T∑

i=1

M(Si, Qi)

]
+

√
1
δ

(
1
T

+
2ρn2

ε2

)]
≤ δ

Setting ρ = O(δε6/n2) in Lemma 4 gives us that with probability at least 1 − δ over
the choice of randomness of S1, . . . , ST

1
T

T∑

i=1

M(Si, Qi) ≤ 1
T

E

[
T∑

i=1

M(Si, Qi)

]
+ ε ≤ 1

T

T∑

i=1

M(Pi, Qi) + O(ε)

Finally by application of Lemma 3 we have with probability at least 1 − δ

1
T

T∑

i=1

M(Si, Qi) ≤ 1
T

min
P

T∑

i=1

M(P, Qi) + O

(√
log n

T

)
+ O(ε) (4)

Note that by our choice of ρ, we require O(log n + log log T + log(1/ε)) random bits.
This completes the proof of the theorem. �	

5 Unbalanced Games

In this section we look at what happens when one of the players (perhaps as a con-
sequence of having limited randomness) is known to have very few – say k – avail-
able strategies, while the other player has n � k available strategies. In such a game
does there exist a k-sparse strategy for the second player? We prove that this is indeed
the case. The main technical tool we use is a constructive version of Carathéodory’s
Theorem which we state below.

Algorithms for Playing Games with Limited Randomness 331

Theorem 8 (Carathéodory’s Theorem, constructive version). Let v1, v2, . . . , vn be
vectors in a k-dimensional subspace of R

m where n ≥ k + 1, and suppose

v =
n∑

i=1

αivi with
∑

i

αi = 1 and αi ≥ 0 for all i (5)

Then there exist α′1, . . . , α
′
n for which v =

∑n
i=1 α′ivi with

∑
i α′i = 1 and α′i ≥ 0 for

all i, and |{i : α′i > 0}| ≤ k + 1. Moreover the α′i can be found in polynomial time,
given the αi and the vi.

Due to paucity of space, we defer the proof of Theorem 3 and its generalization to �
players to the longer version [KU07]. The main idea is to argue that for a Nash equilib-
rium distribution (p∗, q∗), u = Rq∗T lies in a (k − 1)-dimensional subspace. We then
apply Theorem 8 to express u as a convex combination R′q′T where |supp(q′)| ≤ k.
This gives us the required Nash equilibrium (p∗, q′).

6 Finding Sparse ε-Equilibria in Low-Rank Games

We now consider games of rank k, which is a significant generalization of the “unbal-
anced” games in the previous section. Indeed, rank k games are perhaps the most gen-
eral class of games for which sparse equilibria are guaranteed to exist. In this section we
give algorithms to compute sparse ε-equilibria in this setting. Lipton et al. showed that
there exist (k+1)-sparse Nash equilibria in this setting and this implies an enumeration
algorithm to find an equilibrium in time approximately nk+1poly(|G|). Our algorithm
shows that the problem is “fixed parameter tractable” [Ces05, DF99, DFS97] where ε,
the rank k and precision B are the parameters.

We first look at the two-player case. Since we are computing ε-equilibria, we only
expect the game specification to be given up to some fixed precision. We will be work-
ing with rank k matrices M expressed as M1M2 (where M1 is a n × k matrix and M2

is a k × n matrix). Such a decomposition can be found efficiently via basic linear alge-
bra. In the following theorem we take M1 and M2, specified up to fixed precision, as
our starting point.2 As the example in §6.1 illustrates, such a decomposition is already
available for many natural games. Our convention for expressing fixed precision entries
will be to require them to be integers in the range [−B, B] for a bound B.

Proof (of Theorem 4). Note that the payoff to the row-player when (p, q) is the strat-
egy tuple for the game which is given by pRqT can now be written as pR1R2q

T and
likewise for the column player. The first step in our algorithm is to “guess” a collection
of vectors to within δ = ε/(2Bk) precision. We describe the “correct” guess relative
to an (arbitrary) Nash equilibrium (p∗, q∗) for G. Let p∗

′
= p∗C1, q

∗′
= R2q

∗T . Note
that from our choice of C1, R2 it holds that p∗

′
, q∗

′
satisfy −B ≤ p∗

′

i , q∗
′

i ≤ B; i =
1, . . . , k. The algorithm is as follows:

2 We note that computing M1, M2 of fixed precision such that M1M2 approximates M is not
necessarily always possible or straightforward. We state our theorem in this way to avoid these
complications, a detailed discussion of which would be beyond the scope of this paper.

332 S. Kalyanaraman and C. Umans

1. Guess a p̃′ such that for all i = 1, . . . , k |p∗′

i − p̃′i| ≤ δ. Similarly, guess q̃′ such
that for all i = 1, . . . , k |q∗′

i − q̃′i| ≤ δ.
2. Let αs = (p̃′C2)s and βt = (R1q̃

′T)t. Set S = {s| maxr αr − 2ε ≤ αs ≤
maxr αr} and T = {t| maxr βr − 2ε ≤ βt ≤ maxr βr}.

3. Find a feasible solution p̄ to the following linear program

|(p̄C1)j − p̃′j | ≤ δ; j = 1, . . . , k (6)

p̄i ≥ 0; i = 1, . . . , n (7)

p̄i = 0; i /∈ T (8)
n∑

i=1

p̄i = 1 (9)

and a feasible solution q̄ to the analogous linear program in which the first set of
constraints is

|(R2q̄
T)j − q̃′j | ≤ δ; j = 1, . . . , k.

4. v = p̄C1 is a convex combination of the rows of C1, all of which lie in a
k-dimensional subspace. From Carathéodory’s Theorem (Theorem 8), we can find
p̂ with supp(p̂) ⊆ supp(p) for which |supp(p̂)| ≤ k + 1 and v = p̂C1.

5. Similarly u = R2q̄
T is a convex combination of the columns of R2, all of which lie

in a k-dimensional subspace. Applying Theorem 8 again, we find q̂ with supp(q̂) ⊆
supp(q) for which |supp(q̂)| ≤ k + 1 and u = R2q̂

T .
6. Return p̂, q̂.

Correctness follows from the next two claims, whose proofs are in the longer version
[KU07]:

Claim. A feasible solution to the linear programs formulated in step 3 of the algorithm
exists.

Claim. (p̂, q̂) as returned by the algorithm is a 4ε-equilibrium.

It is not hard to see that the run-time of the algorithm is (4B2k/ε)2k taking into
account the enumerations of p̃′. The applications of Theorem 8 also take poly(|G|) and
so the running time is as claimed. �	
For the case of three or more players, obtaining approximate Nash equilibria for low-
rank games does not seem to have been studied previously. Furthermore, the previously
best known algorithms for low-rank games [KT07] do not seem to extend to more than
two players. Theorem 9 provides an extension of the result above to the multi-player
case.

Theorem 9. Let G = (T1, . . . , T�, n) be an �-player game, and suppose we are given
a k-decomposition of Ti = (Ci1, . . . , Ci�) where each of the Cij is an n × k matrix
with integer values in [−B, B] for i, j = 1, . . . , �. Then for every ε > 0, there is a
deterministic procedure P running in time

(
(2B)�k�/ε

)k(�−1)�
poly(|G|)

that returns a 4ε-Nash equilibrium (p1, p2, . . . , p�) with |supp(pi)| ≤ 1 + �k for all i.

Algorithms for Playing Games with Limited Randomness 333

6.1 An Example of Games with Known Low-Rank Tensor Decomposition

Many natural games are specified implicitly (rather than by explicitly giving the ten-
sors) by describing the payoff function, which itself is often quite simple. In such cases,
the tensor ranks may be significantly smaller than n, and moreover, a low-rank decom-
position into components with bounded entries can often be derived from the payoff
functions.

One prominent example is simple �-player congestion games as discussed in game
theory literature [FPT04, Pap05]. Such a game is based on a graph G(V, E) with n ver-
tices and m edges. Each player’s strategy set corresponds to a subset Sp ⊆ 2E , the set of
all subsets of edges. We define the payoff accruing to some strategy l-tuple (s1, . . . , s�)
as U(s1, . . . , s�) = − ∑

e ce(s1, . . . , s�) where ce(s1, . . . , s�) = |{i|e ∈ si, 1 ≤ i ≤
�}| is thought of as the congestion on paths s1, . . . , s�. Let G = (T1, . . . , T�, N = 2m)
be the game corresponding to the situation described above where for i = 1, . . . , � and
strategy tuple (s1, . . . , s�), Ti(s1, . . . , s�) = − ∑

e ce(s1, . . . , s�). We defer proof of
the following theorem to the longer version of the paper [KU07].

Theorem 10. For i = 1, . . . , � Ti as defined above is of rank at most �m. Furthermore,
an explicit �m-decomposition (Ci1, Ci2, . . . , Ci�) for Ti exists where Cij are n × k
matrices with entries in {−1, 0, 1}.

7 Conclusion

There are many other interesting questions that are raised by viewing game theory
through the lens of requiring players to be randomness-efficient. In this paper, we have
framed some of the initial questions that arise and have provided answers to several
of them. In particular, we have exploited the extensive body of work in derandomiza-
tion to construct deterministic algorithms for finding sparse ε-equilibria (which can
be played with limited randomness), and for playing repeated games while reusing
randomness across rounds. The efficient fixed-parameter algorithms we describe for
finding ε-equilibria in games of small rank significantly improve over the standard enu-
meration algorithm, and to the best of our knowledge, they are the first such results for
games of small rank.

The notion of resource-limited players has been an extremely useful one in game the-
ory, and we think that it is an interesting and natural question in this context to consider
the case in which the limited computational resource is randomness. These considera-
tions expose a rich and largely untapped area straddling complexity theory and game
theory.

Acknowledgments. We are grateful to the anonymous referees for their valuable com-
ments and suggestions.

References

[AGHP92] Alon, N., Goldreich, O., Hastad, J., Peralta, R.: Simple constructions of almost k-
wise independent random variables. Random Structures and Algorithms 3, 289–304
(1992)

334 S. Kalyanaraman and C. Umans

[CD05] Chen, X., Deng, X.: 3-NASH is PPAD-complete. Electronic Colloquium on Com-
putational Complexity (ECCC) (134) (2005)

[CD06] Chen, X., Deng, X.: Settling the Complexity of Two-Player Nash Equilibrium. In:
Foundations of Computer Science (FOCS 2006), pp. 261–272. IEEE Computer So-
ciety Press, Los Alamitos (2006)

[CDT06] Chen, X., Deng, X., Teng, S.-H.: Computing Nash Equilibria: Approximation and
Smoothed Complexity. In: Foundations of Computer Science (FOCS 2006), pp.
603–612. IEEE Computer Society Press, Los Alamitos (2006)

[Ces05] Cesati, M.: Compendium of parameterized problems (2005), http://
bravo.ce.uniroma2.it/home/cesati/research/compendium/

[DF99] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

[DFS97] Downey, R.G., Fellows, M.R., Stege, U.: Parameterized complexity: A framework
for systematically confronting computational intractability. In: Proceedings of the
First DIMATIA Symposium (1997)

[DGP06] Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. In: Symposium on Theory of Computing (STOC 2006), pp.
71–78 (2006)

[DP05] Daskalakis, C., Papadimitriou, C.H.: Three-player games are hard. Electronic Col-
loquium on Computational Complexity (ECCC) (139) (2005)

[FPT04] Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure-strategy
equilibria. In: Symposium on Theory of Computing (STOC 2004), pp. 604–612
(2004)

[FS96] Freund, Y., Schapire, R.: Game theory, on-line prediction and boosting. In: COLT
1996, pp. 325–332 (1996)

[FS99] Freund, Y., Schapire, R.: Adaptive game playing using multiplicative weights.
Games and Economic Behavior 29, 79–103 (1999)

[Gil93] Gillman, D.: A Chernoff bound for random walks on expander graphs. In: Founda-
tions of Computer Science (FOCS 1993), pp. 680–691. IEEE, Los Alamitos (1993)

[GP06] Goldberg, P.W., Papadimitriou, C.H.: Reducibility among equilibrium problems. In:
Symposium on Theory of Computing (STOC 2006), pp. 61–70 (2006)

[KT07] Kannan, R., Theobald, T.: Games of fixed rank: A hierarchy of bimatrix games. In:
ACM-SIAM Symposium on Discrete Algorithms, ACM Press, New York (2007)

[KU07] Kalyanaraman, S., Umans, C.: Algorithms for playing games with limited
randomness (2007), http://www.cs.caltech.edu/˜shankar/pubs/
ku07-apglr.pdf

[LMM03] Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: EC ’03: Proceedings of the 4th ACM conference on Electronic commerce, pp.
36–41. ACM Press, New York, NY, USA (2003)

[LY94] Lipton, R.J., Young, N.E.: Simple strategies for large zero-sum games with applica-
tions to complexity theory. In: STOC ’94: Proceedings of the twenty-sixth annual
ACM symposium on Theory of computing, pp. 734–740. ACM Press, New York,
USA (1994)

[MvN44] Morgenstern, O., von Neumann, J.: Theory of Games and Economic Behavior.
Princeton University Press, Princeton (1944)

[Nas51] Nash, J.F.: Non-cooperative games. Annals of Mathematics 54, 286–295 (1951)
[Pap05] Papadimitriou, C.H.: Computing Correlated Equilibria in Multi-Player Games. In:

Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp.
49–56 (May 2005)

[Vav92] Vavasis, S.A.: Approximation algorithms for indefinite quadratic programming.
Math. Program. 57, 279–311 (1992)

http://bravo.ce.uniroma2.it/home/cesati/research/compendium/
http://bravo.ce.uniroma2.it/home/cesati/research/compendium/
http://www.cs.caltech.edu/~shankar/pubs/ku07-apglr.pdf
http://www.cs.caltech.edu/~shankar/pubs/ku07-apglr.pdf

Approximation of

Partial Capacitated Vertex Cover�

Reuven Bar-Yehuda1, Guy Flysher2,��, Julián Mestre3,���, and Dror Rawitz4,†

1 Department of Computer Science, Technion, Haifa 32000, Israel
reuven@cs.technion.ac.il

2 Google Inc., Building 30, MATAM, Haifa 31905, Israel
guyfl@google.com

3 Department of Computer Science, University of Maryland,
College Park, MD 20742, USA

jmestre@cs.umd.edu
4 School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel

rawitz@eng.tau.ac.il

Abstract. We study the partial capacitated vertex cover problem (pcvc)
in which the input consists of a graph G and a covering requirement L.
Each edge e in G is associated with a demand �(e), and each vertex v is
associated with a capacity c(v) and a weight w(v). A feasible solution is
an assignment of edges to vertices such that the total demand of assigned
edges is at least L. The weight of a solution is

∑
v α(v)w(v), where α(v)

is the number of copies of v required to cover the demand of the edges
that are assigned to v. The goal is to find a solution of minimum weight.
We consider three variants of pcvc. In pcvc with separable demands the
only requirement is that total demand of edges assigned to v is at most
α(v)c(v). In pcvc with inseparable demands there is an additional re-
quirement that if an edge is assigned to v then it must be assigned to one
of its copies. The third variant is the unit demands version. We present
3-approximation algorithms for both pcvc with separable demands and
pcvc with inseparable demands and a 2-approximation algorithm for
pcvc with unit demands. We show that similar results can be obtained
for pcvc in hypergraphs and for the prize collecting version of capaci-
tated vertex cover. Our algorithms are based on a unified approach for
designing and analyzing approximation algorithms for capacitated cov-
ering problems. This approach yields simple algorithms whose analyses
rely on the local ratio technique and sophisticated charging schemes.

1 Introduction

The problems. Given a graph G = (V, E), a vertex cover is a subset U ⊆ V
such that each edge in G has at least one endpoint in U . In the vertex cover
problem, we are given a graph G and a weight function w on the vertices, and our

� Research supported in part by REMON — Israel 4G Mobile Consortium.
�� Research was done while the author was a graduate student at the Technion.

��� Supported by the University of Maryland Dean’s Dissertation Fellowship.
† Research was done while the author was a postdoc at CRI, University of Haifa.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 335–346, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

336 R. Bar-Yehuda et al.

goal is to find a minimum weight vertex cover. Vertex cover is NP-hard [1], and
cannot be approximated within a factor of 10

√
5 − 21 ≈ 1.36, unless P=NP [2].

On the positive side, there are several 2-approximation algorithms for vertex
cover (see [3,4] and references therein).

The capacitated vertex cover problem (cvc) is an extension of vertex cover
in which each vertex u has a capacity c(u) ∈ N that determines the number of
edges it may cover, i.e., u may cover up to c(u) incident edges. Multiple copies
of u may be used to cover additional edges, provided that the weight of u is
counted for each copy (soft capacities). A feasible solution is an assignment of
every edge to one of its endpoints.

A capacitated vertex cover is formally defined as follows. An assignment is a
function A : V → 2E. That is, for every vertex u, A(u) ⊆ E(u), where E(u)
denotes the set of edges incident on u. An edge e is said to be covered by A
(or simply covered) if there exists a vertex u such that e ∈ A(u). Henceforth,
we assume, w.l.o.g., that an edge is covered by no more than one vertex. An
assignment A is a cover if every edge is covered by A, i.e., if

⋃
u∈V A(u) = E.

The multiplicity (or number of copies) of a vertex u with respect to an assignment
A is the smallest integer α(u) for which |A(u)| ≤ α(u)c(u). The weight of a cover
A is w(A) =

∑
u α(u)w(u). Note that the presence of zero-capacity vertices may

render the problem infeasible, but detecting this is easy: the problem is infeasible
if and only if there is an edge whose two endpoints have zero capacity. Also note
that vertex cover is the special case where c(u) = deg(u) for every vertex u.

In a more general version of cvc we are given a demand or load function
� : E → N. In the separable edge demands case α(u) is the number of copies of u
required to cover the total demand of the edges in A(u), i.e., α(u) is the smallest
integer for which

∑
e∈A(u) �(e) ≤ α(u)c(u). In the case of inseparable demands

there is an additional requirement that if an edge is assigned to u then it must be
assigned to one of its copies. Hence, if the demand of an edge is larger than the
capacity of both its endpoints, it cannot be covered. Clearly, given an assignment
A, this additional requirement may only increase α(u). (Each vertex faces its
own bin packing problem.) Hence, if all edges are coverable in the inseparable
demands sense, then the optimum value for cvc with separable demands is not
larger than the optimum value for cvc with inseparable demands.

Another extension of vertex cover is the partial vertex cover problem (pvc).
In pvc the input consists of a graph G and an integer L and the objective is to
find a minimum weight subset U ⊆ V that covers at least L edges. pvc extends
vertex cover, since in vertex cover L = |E|. In a more general version of pvc we
are given edge demands, and the goal is to find a minimum weight subset U that
covers edges whose combined demand is at least L.

In this paper we study the partial capacitated vertex cover problem (pcvc)
that extends both pvc and cvc. In this problem we are asked to find a minimum
weight capacitated vertex cover that covers edges whose total demand is at least
L. We consider three variants of pcvc: pcvc with separable demands, pcvc with
inseparable demands, and pcvc with unit demands.

Approximation of Partial Capacitated Vertex Cover 337

Motivation. cvc was proposed by Guha et al. [5], who were motivated by a
problem from the area of bioinformatics. They described a chip-based technology,
called GMID (Glycomolecule ID), that is used to discover the connectivity of
building blocks of glycoproteins. Given a set of building blocks (vertices) and
their possible connections (edges), the goal is to identify which connections exist
between the building blocks in order to discover the variant of the glycoprotein
in question. Given a block B and a set S that consists of k of B’s neighbors,
GMID can reveal which of the building blocks from S are connected to B. The
problem of minimizing the number of GMID operations needed to cover the
required information graph is exactly cvc with uniform capacities. Since not all
possible combinations of ties between building blocks may appear, it is sometimes
sufficient to probe only a fraction of the edges in the information graph. In this
case the problem of minimizing the number of GMID operations is pcvc with
uniform capacities. (For details on the structure of glycoproteins see [6]).

cvc can be seen as a capacitated facility location problem, where the edges are
the clients and the vertices are the capacitated facilities. For instance, cvc in
hyper-graphs can be used to model a cellular network planning problem, in which
we are given a set of potential base stations that are supposed to serve clients
located in receiving areas. Each such area corresponds to a specific subset of the
potential base stations. We are supposed to assign areas (edges) to potential base
stations (vertices) and to locate transmitters with limited bandwidth capacity
in each potential base station that will serve the demand of receiving areas that
are assigned to it. Our goal is to assign areas to base stations so as to minimize
transmitter costs. In terms of the above cellular network planning problem, pcvc

is the case where we are required to cover only a given percentage of the demands.

Related work. Capacitated covering problems date back to Wolsey [7] who
presented a greedy algorithm for weighted set cover with hard capacities that
achieves a logarithmic approximation ratio. Guha et al. [5] presented a primal-
dual 2-approximation algorithm for cvc. (A local ratio version was given in [4].)
They also gave a 3-approximation algorithm for cvc with separable edge de-
mands. Both algorithms can be extended to hyper-graphs in which the maximum
size of an edge is Δ. The resulting approximation ratios are Δ and Δ + 1. Guha
et al. [5] also studied cvc in trees. They obtained polynomial time algorithms
for the unit demands case and for the unweighted case, and proved that cvc

with separable demands in trees is weakly NP-hard. Gandhi et al. [8] presented a
2-approximation algorithm for cvc using an LP-rounding method called depen-
dent rounding. Chuzhoy and Naor [9] presented a 3-approximation algorithm for
unweighted cvc with hard capacities, and proved that the weighted version of
this problem is as hard to approximate as set cover. Gandhi et al. [10] improved
the approximation ratio for unweighted cvc with hard capacities to 2.

Partial set cover was studied by Kearns [11], who proved that the perfor-
mance ratio of the greedy algorithm is at most 2Hm + 3, where Hm is the
mth harmonic number. Slav́ık [12] showed that it is actually bounded by Hm.
Bshouty and Burroughs [13] obtained the first 2-approximation algorithm for
pvc. Bar-Yehuda [14] presented a local ratio 2-approximation algorithm for pvc

338 R. Bar-Yehuda et al.

with demands. His algorithm extends to a Δ-approximation algorithm in hyper-
graphs in which the maximum size of an edge is Δ. Gandhi et al. [15] presented
a different algorithm with the same approximation ratio for pvc with unit de-
mands in hyper-graphs that is based on a primal-dual analysis. Building on [15],
Srinivasan [16] obtained a polynomial time (2−Θ(1

d))-approximation algorithm
for pvc, where d is the maximum degree of a vertex in G. Halperin and Srini-
vasan [17] developed a (2 − Θ(ln ln d

ln d))-approximation algorithm for pvc.
Recently, Mestre [18] presented a primal-dual 2-approximation algorithm for

pcvc with unit demands that is based on the 2-approximation algorithm for
cvc from [5] and on the 2-approximation algorithm for pvc from [15].

Our results. We present constant factor approximation algorithms to several
variants of pcvc. Our algorithms are based on a unified approach for design-
ing and analyzing approximation algorithms for capacitated covering problems.
This approach yields simple algorithms whose analyses rely on the local ratio
technique and sophisticated charging schemes. Our method is inspired by the
local ratio interpretations of the approximation algorithms for cvc from [5] and
the local ratio 2-approximation algorithm for pvc from [14].

We present a 3-approximation algorithm for pcvc with separable demands
whose analysis is one of the most sophisticated local ratio analyses in the litera-
ture. In the full version of the paper we present a 3-approximation algorithm for
pcvc with inseparable demands. As far as we know, this algorithm is the first
3-approximation algorithm for cvc with inseparable demands. We also present
a 2-approximation algorithm for pcvc with unit demands which is much simpler
and more intuitive than Mestre’s algorithm [18]. Note that our algorithm is not
a local ratio manifestation of Mestre’s algorithm. While his algorithm relies on
the algorithm for pvc from [15], our algorithm extends the algorithm for pvc

from [14]. In the full version of the paper we also show that our algorithms can
be extended to pcvc in hyper-graphs, where the maximum size of an edge is
Δ. The approximation ratios for separable demands, inseparable demands, and
unit demands are Δ + 1, Δ + 1, and Δ, respectively. Finally, we show that the
same ratios can be obtained for prize collecting vertex cover in hyper-graphs.

2 Preliminaries

Notation and terminology. Given an undirected graph G = (V, E), let E(u)
be the set of edges incident on u, and let N(u) be the set of u’s neighbors. Given
an edge set F ⊆ E and a demand (or load) function � on the edges of G, we
denote the total demand of the edges in F by �(F), i.e., �(F) =

∑
e∈F �(e). We

define deg(u) = �(E(u)). Hence, in the unit demands case deg(u) is the degree
of u, i.e., deg(u) = |E(u)| = |N(u)|.

We define c̃(u) = min {c(u), deg(u)}. This definition may seem odd, since we
may assume that c(u) ≤ deg(u) for every vertex u in the input graph. However,
our algorithms repeatedly remove vertices from the given graph, and therefore
we may encounter a graph in which there exists a vertex where deg(u) < c(u).
We define b(u) = min {c(u), deg(u), L} = min {c̃(u), L}. b(u) can be seen as the

Approximation of Partial Capacitated Vertex Cover 339

covering potential of u in the current graph. A single copy of u can cover c(u) of
the demand if deg(u) ≥ c(u), but if deg(u) < c(u), we cannot cover more than
a total of deg(u) of the demand. Moreover, if L is smaller than c̃(u), we have
nothing to gain from covering more than L.

The support of an assignment A is the set of vertices V (A)={u : A(u) 	= ∅}.
We denote by E(A) the set of edges covered by A, i.e., E(A)=∪uA(u). We define
|A|= |E(A)| and �(A)=�(E(A)). Note that in the unit demand case �(A)= |A|.
Small, medium, and large edges. Given a pcvc instance, we refer to an
edge e = (u, v) as large if �(e) > c(u), c(v). If �(e) ≤ c(u), c(v) it is called small.
Otherwise, e is called medium.

Consider the case of pcvc with inseparable demands. Since a large edge can-
not be assigned to a single copy of one of its endpoints, we may ignore large edges
in this case. Notice that the instance may contain a medium edge e = (u, v) such
that c(u) < �(e) ≤ c(v). If there exist such an edge e, then we may add a new
vertex ue to the graph, where w(ue) = ∞ and c(ue) = �(e), and connect e to ue

instead of to u. We refer to this operation as an edge detachment. Since e 	∈ A(ue)
in any solution A of finite weight, it follows that we may assume, w.l.o.g, that
all edges are small when the demands are inseparable.

A similar problem may happen in the separable demands case when there
exists a vertex u such that c(u) = 0. We assume that there are no such vertices.
If there exists such a vertex u we simply define c(u) = 1 and w(u) = ∞.

Local ratio. The local ratio technique [19] is based on the Local Ratio Theorem,
which applies to problems of the following type: given a non-negative weight vec-
tor w and a set of feasibility constraints F , find a vector x ∈ R

n that minimizes
the inner product w · x subject to the set of constraints F .

Theorem 1 (Local Ratio [20]). Let F be a set of constraints and let w, w1,
and w2 be weight vectors such that w = w1 + w2. Then, if x is r-approximate
with respect to (F , w1) and with respect to (F , w2), for some r, then x is also an
r-approximate solution with respect to (F , w).

3 Partial Capacitated Covering with Separable Demands

We present a 3-approximation algorithm for pcvc with separable demands. At
the heart of our scheme is Algorithm PCVC, which is inspired by the local ratio
interpretation of the approximation algorithms for cvc from [5] and the local
ratio approximation algorithm for pvc from [14].

In the description of the algorithm, we use a function called Uncovered
that, given a vertex u, returns an uncovered edge e incident on u with maximum
demand, i.e., it returns an edge e ∈ E(u) \ A(u) such that �(e) ≥ �(e′) for every
e′ ∈ E(u) \ A(u). (If A(u) = E(u) it returns nil).

First, observe that there are O(|V |) recursive calls. Hence, the running time
of the algorithm is polynomial.

Consider the recursive call made in Line 5. In order to distinguish between
the assignment obtained by this recursive call and the assignment returned in

340 R. Bar-Yehuda et al.

Algorithm 1. PCVC(V, E, w, L)
1: if L = 0 then return A(v) ← ∅ for all v ∈ V
2: if there exists x ∈ V and ex ∈ E(x) s.t. �(ex) > max {L, c(x)} then

return A(x) ← {ex} and A(v) ← ∅ for all v �= x
3: if there exists u ∈ V s.t. deg(u) = 0 then return PCVC(V \ {u} , E, w, L)
4: if there exists u ∈ V s.t. w(u) = 0 then
5: A ← PCVC(V \ {u} , E \ E(u), w, max {L − deg(u), 0})
6: if V (A) = ∅
7: while �(A(u)) < L do

A(u) ← A(u) ∪ {Uncovered(u)}
8: while (A(u) �= E(u)) and (�(A(u)) + �(Uncovered(u)) < c(u)) do

A(u) ← A(u) ∪ {Uncovered(u)}
9: else

10: if �(A) < L then A(u) ← E(u)
11: return A
12: Let ε = minu∈V {w(u)/b(u)}
13: Define the weight functions w1(v) = ε · b(v), for every v ∈ V , and w2 = w − w1

14: return PCVC(V,E, w2, L)

Line 11, we denote the former by A′ and the latter by A. Assignment A′ is for
G′ = (V ′, E′), and we denote the corresponding parameters α′, deg′, c̃′, b′, and
L′. Similarly, we use α, deg, c̃, b, and L, for the parameters of A and G = (V, E).

Lemma 1. Algorithm PCVC computes a partial capacitated vertex cover.

Proof. First, notice that we assign only uncovered edges. We prove that �(A) ≥ L
by induction on the recursion. Consider the base case. If the recursion ends
in Line 1 then �(A) = 0 = L. Otherwise the recursion ends in Line 2 and
�(A) = �(ex) > L. In both cases the solution is feasible. For the inductive
step, if the recursive call was made in Line 3 or in Line 14, then �(A) ≥ L by
the inductive hypothesis. If the recursive call was made in Line 5, then �(A′) ≥
max {L − deg(u), 0} by the inductive hypothesis. If V (A′) = ∅, then deg(u) ≥ L,
and therefore �(A(u)) ≥ L. Otherwise, if V (A′) 	= ∅ then there are two options.
If �(A′) ≥ L, then A = A′ and we are done. If �(A′) < L, the edges in E(u)
are assigned to u, and since their combined demand is deg(u) it follows that
�(A) = �(A′) + deg(u) ≥ L′ + deg(u) = L. �
The assignment returned by Algorithm PCVC is not 3-approximate in general.
If there exists a very large edge whose covering is enough to attain feasibility
then Line 2 will choose to cover the edge no matter how expensive its endpoints
may be. Nevertheless, we can still offer the following slightly weaker guarantee.

Theorem 2. If the recursion of Algorithm PCVC ends in Line 1 then the as-
signment returned is 3-approximate. Otherwise, if the recursion ends in Line 2,
assigning edge ex to vertex x, then the solution returned is 3-approximate com-
pared to the cheapest solution that assigns ex to x.

The proof of the theorem is given in Sect. 4.

Approximation of Partial Capacitated Vertex Cover 341

Observe that Line 2 is never executed, if all edges are small. Thus, by The-
orem 2, the algorithm computes 3-approximations when the instance contains
only small edges. It can be shown that without Line 2 the algorithm may fail to
provide a 3-approximation if the instance contains medium or large edges.

Based on Theorem 2 it is straightforward to design a 3-approximation al-
gorithm using Algorithm PCVC. First PCVC is run on the input instance.
Suppose the recursion ends in Line 2 with edge ex assigned to vertex x. The as-
signment found is considered to be a candidate solution and set aside. Then the
instance is modified by detaching edge ex from x. These steps are repeated until
an execution of Algorithm PCVC ends its recursion in Line 1 with the empty
assignment. At the end, a candidate solution with minimum cost is returned.

Theorem 3. There exists a 3-approximation algorithm for pcvc with separable
demands.

Proof. First, notice that once an edge is detached from an endpoint it cannot
be detached from the same endpoint again. Thus, Algorithm PCVC is executed
O(|E|) times, and the overall running time is polynomial.

We argue by induction on the number of calls to PCVC that at least one
of the candidate solutions produced is 3-approximate. For the base case, the
first call to PCVC ends with the empty assignment and by Theorem 2 the
assignment is 3-approximate. For the inductive step, the first run ends with
edge ex assigned to vertex x. If there exists an optimal solution that assigns ex

to x then by Theorem 2 the assignment is 3-approximate. Otherwise the problem
of finding a cover in the new instance, where ex is detached from x, is equivalent
to the problem on the input instance. By inductive hypothesis, one of the later
calls is guaranteed to produce a 3-approximate solution. We ultimately return a
candidate solution with minimum cost, thus the theorem follows. �

4 Analysis of Algorithm PCVC

In the next two sections we pave the way for the proof of Theorem 2. Our ap-
proach involves constructing a subtle charging scheme by which at each point we
have at our disposal a number of coins that we distribute between the vertices.
The charging scheme is later used in conjunction with the Local Ratio Theo-
rem to relate the cost of the solution produced by the algorithm to the cost of
an optimal solution. We describe two changing schemes depending on how the
recursion ends. We use the following observations in our analysis.

Observation 1. Suppose a recursive call is made in Line 5. Then, α(v) = α′(v)
for every v ∈ V \ {u}.
Observation 2. α(v)c̃(v) ≤ 2 deg(v). Moreover, if α(v) > 1 then, α(v)c̃(v) ≤
2�(A(v))

Proof. Since c̃(v) ≤ deg(v), the first claim is trivial if α(v) ≤ 2. If α(v) > 1 then
deg(v) > c(v), and therefore α(v)c̃(v) = α(v)c(v) < �(A(v))+ c(v) ≤ 2�(A(v)) ≤
2 deg(v). �

342 R. Bar-Yehuda et al.

4.1 The Recursion Ends with the Empty Assignment

In this section we study what happens when the recursion of Algorithm PCVC
ends in Line 1. Let $(v) be the number of coins that are given to v. A charging
scheme $ is called valid if

∑
v $(v) ≤ 3L. We show that if the assignment A was

computed by Algorithm PCVC then there is a way to distribute 3L coins so
that $(v) ≥ α(v)b(v). The proof of the next lemma contains a recursive definition
of our charging scheme. We denote by v0, v1, . . . the vertices of V (A) in the order
they join the set.

Lemma 2. Let A be an assignment that was computed by Algorithm PCVC
for a graph G = (V, E) and a covering demand L. Furthermore, assume the
recursion ended in Line 1. Then, one of the following conditions must hold:

1. V (A) = ∅. Also, the charging scheme $(v) = 0 for every v ∈ V is valid.
2. V (A) = {v0}, α(v0) = 1, and �(A(v0)) ≥ 1

2c(v0). Also, the charging scheme
$(v0) = 3L and $(v) = 0 for every v 	= v0 is valid.

3. V (A) = {v0}, α(v0) = 2, and �(A(v0)) − �(e0) < L, where e0 is the last edge
that was assigned to v0. Also, the charging scheme $(v0) = 3L and $(v) = 0
for every v 	= v0 is valid.

4. V (A) = {v0, v1}, α(v0) = 1, α(v1) ≥ 2, and �(A(v0)) ≥ 1
2c(v0). Also, there

exists a valid charging scheme $ such that $(v0) ≥ L, $(v0) ≥ 2�(A(v0)) −
(�(A) − L), $(v1) ≥ α(v1)c(v1), and $(v) = 0 for every v 	= v0, v1.

5. α(v0) = 1, �(A(v0)) < 1
2c(v0), α(v) ≥ 2 for every v ∈ V (A) \ {v0}, and

L > deg(v0) − �(A(v0)). Also, there exists a valid charging scheme $ such
that $(v0) ≥ 2L+ �(A(v0))− �(A), $(v) ≥ α(v)c(v) for every v ∈ A(v)\{v0},
and $(v) = 0 for every v 	∈ V (A).

6. V (A) 	= ∅. Also, there exists a valid charging scheme $ such that $(v) ≥
α(v)c̃(v) for every v ∈ V .

Proof sketch. We prove the lemma by induction on the length of the creation
series of the solution. Specifically, we assume that one of the conditions holds
and prove that the augmented solution always satisfies one of the conditions.
The possible transitions from condition to condition are given in Fig. 1. First,
at the base of the induction the computed solution is the empty assignment and
therefore Cond. 1 holds. For the inductive step, there are three possible types of
recursive calls corresponding to Line 3, Line 5, and Line 14 of Algorithm PCVC.
The calls in Line 3 and Line 14 do not change the assignment that is returned
by the recursive call, nor does it change b for any vertex. Thus, if it satisfies one
of the conditions it continues to satisfy them. The only correction is needed in
the case of Line 3, where we need to extend the corresponding charging scheme
by assigning $(u) = 0. For the rest of the proof we concentrate on recursive calls
that are made in Line 5. We consider a solution A′ that was computes by the
recursive call, and denote by $′ the charging scheme that corresponds to A′.

Consider a recursive call in which A′ satisfies Cond. 1. In this case, V (A) =
{u}. There are four possible options:

Approximation of Partial Capacitated Vertex Cover 343

1

2

3 5

4

6

α(u) = 1, �(A(u)) ≥ 1
2 c(u)

α(u) = 2

α(u) = 1, �(A(u)) < 1
2 c(u)

α(u) ≥ 3

α(u) = 0

α(u) ≥ 2

α(u) = 1

α(u) = 0

α(u) ≥ 1

α(u) �= 1

α(u) = 1

α(u) = 0

α(u) > 0

Fig. 1. Possible transitions between the conditions

(1 → 5) If α(u) = 1 and �(A(u)) < c(u)/2, then we claim that �(A(u)) = deg(u).
Observe that edges are added to A(u) in a non-increasing order of demands in
Lines 7 and 8. Hence, �(A(u)) < c(u)/2 implies that A(u) = E(u). It follows
that deg(u) − �(A(u)) = 0 < L. Consider the charging scheme $(u) = 3L
and $(v) = 0 for every v 	= u. $(u) = 3L ≥ 2L + �(A(v0)) − �(A) since
�(A) = �(A(v0)). Hence, Cond. 5 holds.

(1 → 2) If α(u) = 1 and �(A(u)) ≥ c(u)/2, then Cond. 2 holds.
(1 → 3) If α(u) = 2, then by the construction of A(u) (Line 7), we know that

�(A(u))−�(eu) < L, where eu is the last edge that was added to A(u). Hence,
Cond. 3 holds.

(1 → 6) If α(u) ≥ 3, let eu be the last edge assigned to u. Observe that �(eu) ≤ L,
since Line 2 was not executed, and �(A(u)) < L+�(eu) due to Line 7. Hence,
�(A(u)) < 2L. Furthermore, note that c̃(u) = c(u), since deg(u) > c(u). Let
the charging scheme be $(u) = 3L and $(v) = 0 for every v 	= u. Cond. 6
holds, since α(u)c̃(u) = α(u)c(u) < �(A(u)) + c(u) < 3

2�(A(u)) < 3
22L = 3L.

Consider a recursive call in which A′ satisfies Cond. 2. That is, V (A′) = {v0},
α′(v0) = 1, and �(A′(v0)) ≥ c(v0)/2. There are three possible options:

(2 → 2) If α(u) = 0 then A = A′ and therefore A satisfies Cond. 2.
(2 → 6) If α(u) = 1 then we show that Cond. 6 holds. Consider the charging

scheme $(v0) = $′(v0) + 2 deg(u), $(u) = deg(u), and $(v) = $′(v) for every
v 	= v0, u. Observe that deg(u) ≤ c(u). Hence, $(u) = deg(u) = α(u)c̃(u).
Also, �(A(v0)) < L since α(u) > 0. Therefore, $(v0) = 3L′+2 deg(u) ≥ 2L ≥
2�(A(v0)) ≥ c(v0). Hence, $(v) ≥ α(v)c̃(v) for every v and Cond. 6 holds.

(2 → 4) If α(u) ≥ 2 then we show that Cond. 4 holds. Consider the charging
scheme $(v0) = $′(v0) + deg(u), $(u) = 2 deg(u), and $(v) = $′(v) for every
v 	= v0, u. Since �(A(u)) = deg(u) > c(u) it follows that $(u) = 2 deg(u) ≥
α(u)c(u). Moreover, $(v0) ≥ L since $′(v0) ≥ L′. Hence, it remains to show
that $(v0) ≥ 2�(A(v0)) − (�(A) − L). Since α(u) > 0 we know that deg(u) >
�(A′) − L′. Also, observe that �(A′) − L′ = �(A) − L. Hence, $(v0) ≥ 2L′ +
deg(u) = 2�(A′) − 2(�(A′) − L′) + deg(u) > 2�(A(v0)) − (�(A) − L).

344 R. Bar-Yehuda et al.

Consider a recursive call in which A′ satisfies Cond. 3. That is, V (A) = {v0},
α(v0) = 2, and �(A′(v0)) − �(e0) < L′. There are two possibilities:

(3 → 3) If α(u) = 0 then A satisfies Cond. 3, since �(A(v0)) − �(e0) < L′ < L.
(3 → 6) If α(u) > 0 then we show that Cond. 6 holds. Consider the charg-

ing scheme $(v0) = $′(v0) + deg(u), $(u) = 2 deg(u), and $(v) = $′(v)
for every v 	= v0, u. First, since �(A(u)) = deg(u) ≥ c̃(u) it follows that
$(u) = 2 deg(u) ≥ α(u)c̃(u). As for v0, first observe that since α(v0) = 2 and
α(u) > 0 it follows that c(v0) < �(A(v0)) < L. We claim that A(v0) contains
at least two edges, otherwise A′ could only have been constructed in Line 2
and we assume the recursion ends in Line 1. Since we add edges to A(v0) in
a non-decreasing order of demands it follows that �(e0) ≤ �(A(v0))/2. This
implies that L′ ≥ �(A(v0))/2 > c(v0)/2 because �(A′(v0)) − �(e0) < L′. It
follows that $(v0) = 2L′ + L ≥ c(v0) + c(v0) = α(v0)c̃(v0).

The rest of the transitions are omitted for lack of space. �
Lemma 3. Let A be an assignment that was computed by Algorithm PCVC for
G = (V, E) and L. Furthermore, assume the recursion ended in Line 1. Then,
there exists a charging scheme (with respect to G and assignment A) in which
every vertex v is given at least α(v)b(v) coins and

∑
v α(v)b(v) ≤ 3L.

Proof. The lemma follows from Lemma 2 and the definition of b. �

4.2 The Recursion Ends with a Medium or Large Edge

In this section we study what happens when Algorithm PCVC ends its recursion
in Line 2 assigning edge ex to vertex x. The approach is similar to that used in
the previous section, the main difference being that since we want to compare
our solution to one that assigns ex to x we have more coins to distribute. More
specifically, we say a charging scheme $ is valid if

∑
v $(v) ≤ 3 max {L, α(x)c(x)}.

We show that there is a way to distribute these coins so that $(v) ≥ α(v)b(v).
The proof of the next lemma contains a recursive definition of our charging
scheme. The proof is omitted for lack of space.

Lemma 4. Let A be an assignment that was computed by Algorithm PCVC for
G = (V, E) and L. Furthermore, assume the recursion ended in Line 2 assigning
edge ex to x. Then, one the following conditions must hold:

1. V (A) = {x}. Also, the charging scheme $(x) = α(x)c(x) and $(v) = 0 for
every v 	= x is valid.

2. V (A) = {x, v1}, α(v1) > 1. Also, the charging scheme $(x) = α(x)c(x),
$(v1) = 2�(A(v1)) and $(v) = 0 for every v 	= x, v1 is valid.

3. V (A) 	= ∅. Also, there exists a valid charging scheme $ such that $(v) ≥
α(v)c̃(v) for every v ∈ V and

∑
v $(v) ≤ 3L.

Lemma 5. Let A be an assignment that was computed by Algorithm PCVC
for G = (V, E) and L. Furthermore, assume the recursion ended in Line 2

Approximation of Partial Capacitated Vertex Cover 345

assigning edge ex to x. Then, there exists a charging scheme (with respect G and
A) in which every vertex v is given at least α(v)b(v) coins and

∑
v α(v)b(v) ≤

3 max {L, α(x)c(x)}.
Proof. The lemma follows from Lemma 4 and the definition of b. �

4.3 Proof of Theorem 2

For the sake of brevity when we say that a given assignment is 3-approximate
we mean compared to an optimal solution if the recursion of Algorithm PCVC
ended in Line 1, and compared to the cheapest solution that assigns ex to x if
the recursion ended in Line 2.

Our goal is to prove that the assignment produced by Algorithm PCVC is
3-approximate. The proof is by induction on the recursion. In the base case
the algorithm returns an empty assignment (if the recursion ends in Line 1) or
assigns ex to x (if the recursion ends in Line 2), in both cases the assignment is
optimal. For the inductive step there are three cases.

First, if the recursive call is made in Line 3, then by the inductive hypothesis
the assignment A′ is 3-approximate with respect to (V \ {u} , E). A′ is clearly
3-approximate with respect to (V, E) since deg(u) = 0.

Second, if the recursive invocation is made in Line 5, then by the inductive
hypothesis the assignment A′ is 3-approximate with respect to (V \{v} , E\E(u)),
w, and max {L − deg(u), 0}. Since w(u) = 0, the optimum with respect to (V, E),
w, and L is equal to the optimum with respect to (V \ {v} , E \ E(u)), w, and
max {L − deg(u), 0}. Moreover, since α(v) = α′(v) for every v ∈ V \ {u} due to
Obs. 1, it follows that w(A) = w(A′). Thus A is 3-approximate with respect to
(V, E), w, and L.

Third, if the recursive call is made in Line 14, then by the inductive hypothesis
the assignment A′ is 3-approximate with respect to (V, E), w2, and L. If the
recursion ended in Line 1 then by Lemma 3 w1(A) ≤ ε · 3L. We show that
w1(Ā) ≥ ε · L for every feasible assignment Ā. First, if there exists v ∈ V (Ā)
such that b(v) = L then w1(Ā) ≥ L · ε. Otherwise, b(v) = c̃(v) < L for every
v ∈ V (Ā). It follows that w1(Ā) = ε·∑v ᾱ(v)c̃(v) ≥ ε·∑v �(Ā(v)) ≥ ε·L. Hence,
if the recursion ended in Line 1, A is 3-approximate with respect to w1 too, and
by the Local Ratio Theorem it is 3-approximation with respect to w as well.
On the other hand, if the recursion ended in Line 2 then by Lemma 5 w1(A) ≤
ε · 3 max {L, α(x)c(x)}. We need to show that w1(Ā) ≥ ε · max {L, α(x)c(x)} for
any feasible cover Ā that assigns ex to x. By the previous argument we know
that w1(Ā) ≥ ε·L. In addition, because e ∈ Ā(x), we have w1(Ā) ≥ ᾱ(x)w1(x) ≥
α(x)w1(x) = ε ·α(x)b(x). Since the if condition in Line 2 was not met in this call
we have �(ex) ≤ L and so b(x) = c(x). Thus, if the recursion ended in Line 2, A
is 3-approximate with respect to w1 too, and by the Local Ratio Theorem it is
3-approximate with respect to w as well.

Acknowledgments. We thank Einat Or for helpful discussions. We also thank
Roee Engelberg for his suggestions.

346 R. Bar-Yehuda et al.

References

1. Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer
Computations, 85–103 (1972)

2. Dinur, I., Safra, S.: The importance of being biased. In: 34th ACM Symp. on the
Theory of Computing, pp. 33–42 (2002)

3. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problem. PWS
Publishing Company (1997)

4. Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: a unified frame-
work for approximation algorithms. ACM Comp. Surveys 36(4), 422–463 (2004)

5. Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering. Journal of
Algorithms 48(1), 257–270 (2003)

6. Lustbader, J.W., Puett, D., Ruddon, R.W. (eds.): Symposium on Glycoprotein
Hormones: Structure, Function, and Clinical Implications (1993)

7. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 2, 385–393 (1982)

8. Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding and
its applications to approximation algorithms. Journal of the ACM 53(3), 324–360
(2006)

9. Chuzhoy, J., Naor, J.: Covering problems with hard capacities. In: 43nd IEEE
Symp. on Foundations of Comp.Sci., pp. 481–489 (2002)

10. Gandhi, R., Halperin, E., Khuller, S., Kortsarz, G., Srinivasan, A.: An improved
approximation algorithm for vertex cover with hard capacities. Journal of Com-
puter and System Sciences 72(1), 16–33 (2006)

11. Kearns, M.: The Computational Complexity of Machine Learning. MIT Press,
Cambridge (1990)

12. Slav́ık, P.: Improved performance of the greedy algorithm for partial cover. Infor-
mation Processing Letters 64(5), 251–254 (1997)

13. Bshouty, N.H., Burroughs, L.: Massaging a linear programming solution to give a
2-approximation for a generalization of the vertex cover problem. In: Meinel, C.,
Morvan, M. (eds.) STACS 98. LNCS, vol. 1373, pp. 298–308. Springer, Heidelberg
(1998)

14. Bar-Yehuda.: Using homogeneous weights for approximating the partial cover prob-
lem. Journal of Algorithms 39, 137–144 (2001)

15. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial cov-
ering problems. Journal of Algorithms 53(1), 55–84 (2004)

16. Srinivasan, A.: Distributions on level-sets with applications to approximation al-
gorithms. In: 42nd IEEE Symp. on Foundations of Comp. Sci., pp. 588–597 (2001)

17. Halperin, E., Srinivasan, A.: Improved approximation algorithms for the partial
vertex cover problem. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX
2002. LNCS, vol. 2462, pp. 161–174. Springer, Heidelberg (2002)

18. Mestre, J.: A primal-dual approximation algorithm for partial vertex cover: Making
educated guesses. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.)
APPROX 2005 and RANDOM 2005. LNCS, vol. 3624, pp. 182–191. Springer,
Heidelberg (2005)

19. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics 25, 27–46 (1985)

20. Bar-Yehuda, R.: One for the price of two: A unified approach for approximating
covering problems. Algorithmica 27(2), 131–144 (2000)

Optimal Resilient Dynamic Dictionaries�

Gerth Stølting Brodal1, Rolf Fagerberg2, Irene Finocchi3,
Fabrizio Grandoni3, Giuseppe F. Italiano4, Allan Grønlund Jørgensen1,

Gabriel Moruz1, and Thomas Mølhave1

1 BRICS��, MADALGO���, Department of Computer Science,
University of Aarhus, Denmark

{gerth,jallan,gabi,thomasm}@daimi.au.dk
2 Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

rolf@imada.sdu.dk
3 Dipartimento di Informatica, Università di Roma “La Sapienza”, Italy

{finocchi,grandoni}@di.uniroma1.it
4 Dipartimento di Informatica, Sistemi e Produzione, Università di Roma

“Tor Vergata”, Italy
italiano@disp.uniroma2.it

Abstract. We investigate the problem of computing in the presence of
faults that may arbitrarily (i.e., adversarially) corrupt memory locations.
In the faulty memory model, any memory cell can get corrupted at any
time, and corrupted cells cannot be distinguished from uncorrupted ones.
An upper bound δ on the number of corruptions and O(1) reliable mem-
ory cells are provided. In this model, we focus on the design of resilient
dictionaries, i.e., dictionaries which are able to operate correctly (at least)
on the set of uncorrupted keys. We first present a simple resilient dynamic
search tree, based on random sampling, with O(log n+δ) expected amor-
tized cost per operation, and O(n) space complexity. We then propose an
optimal deterministic static dictionary supporting searches in Θ(log n+δ)
time in the worst case, and we show how to use it in a dynamic setting in
order to support updates in O(log n + δ) amortized time. Our dynamic
dictionary also supports range queries in O(log n+δ+t) worst case time,
where t is the size of the output. Finally, we show that every resilient
search tree (with some reasonable properties) must take Ω(log n + δ)
worst-case time per search.

� Work partially supported by the Danish Natural Science Foundation (SNF), by
the Italian Ministry of University and Research under Project MAINSTREAM
“Algorithms for Massive Information Structures and Data Streams”, by an Ole
Roemer Scholarship from the Danish National Science Research Council, and by a
Scholarship from the Oticon Foundation.

�� Basic Research in Computer Science, research school.
��� Center for Massive Data Algorithmics, a Center of the Danish National Research

Foundation.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 347–358, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

348 G.S. Brodal et al.

1 Introduction

Memories in modern computing platforms are not always fully reliable, and
sometimes the content of a memory word may be temporarily or permanently
lost or corrupted. This may depend on manufacturing defects, power failures, or
environmental conditions such as cosmic radiation and alpha particles [17,22].
Furthermore, latest trends in storage development point out that memory devices
are getting smaller and more complex. Additionally, they work at lower voltages
and higher frequencies [10]. All these improvements increase the likelihood of soft
memory errors, whose rate is expected to increase for both SRAM and DRAM
memories [24]. These phenomena can seriously affect the computation, especially
if the amount of data to be processed is huge. This is for example the case for
Web search engines, which store and process Terabytes of dynamic data sets,
including inverted indices which have to be maintained sorted for fast document
access. For such large data structures, even a small failure probability can result
in bit flips in the index, which may become responsible of erroneous answers to
keyword searches [18].

Memory corruptions have been addressed in various ways, both at the hard-
ware and software level. At the hardware level, memory corruptions are tackled
using error detection mechanisms, such as redundancy, parity checking or Ham-
ming codes. However, adopting such mechanisms involves non-negligible penal-
ties with respect to performance, size, and cost, thus memories implementing
them are rarely found in large scale clusters or ordinary workstations. Dealing
with unreliable information has been addressed in the algorithmic community
in a variety of different settings, including the liar model [1,5,12,20,23], fault-
tolerant sorting networks [2,21,25], resiliency of pointer-based data structures [3],
parallel models of computation with faulty memories [9].

A model for memory faults. Finocchi and Italiano [16] introduced the faulty-
memory RAM. In this model, we assume that there is an adaptive adversary
which can corrupt up to δ memory words, in any place and at any time (even
simultaneously). We remark that δ is not a constant, but is a parameter of the
model. The pessimistic faulty-memory RAM captures situations like cosmic-rays
bursts and memories with non-uniform fault-probability, which would be diffi-
cult to be modeled otherwise. The model also assumes that there are O(1) safe
memory words which cannot be accessed by the adversary. Note that, without
this assumption, no reliable computation is possible: in particular, the O(1) safe
memory can store the code of the algorithm itself, which otherwise could be
corrupted by the adversary. In the case of randomized algorithms, we assume
that the random bits are not accessible to the adversary. Moreover, we assume
that reading a memory word (in the unsafe memory) is an atomic operation,
that is the adversary cannot corrupt a memory word after the reading process
has started. Without the last two assumptions, most of the power of random-
ization would be lost in our setting. An algorithm or a data structure is called
resilient if it works correctly at least on the set of uncorrupted cells in the input.
In particular, a resilient searching algorithm returns a positive answer if there

Optimal Resilient Dynamic Dictionaries 349

exists an uncorrupted element in the input equal to the search key. If there is
no element, corrupted or uncorrupted, matching the search key, the algorithm
returns a negative answer. If there is a corrupted value equal to the search key,
the answer can be either positive or negative.

Previous work. Several problems have been addressed in the faulty-memory
RAM. In the original paper [16], lower bounds and (non-optimal) algorithms
for sorting and searching were given. In particular, it has been proved in [16]
that searching in a sorted array takes Ω(log n + δ) time, i.e., up to O(log n)
corruptions can be tolerated while still preserving the classical O(log n) search-
ing bound. Matching upper bounds for sorting and randomized searching, as
well as an O(log n + δ1+ε) deterministic searching algorithm, were then given
in [14]. Resilient search trees that support searches, insertions, and deletions
in O(log n + δ2) amortized time were introduced in [15]. Recently, Jørgensen
et al. [19] proposed priority queues supporting both insert and delete-min oper-
ations in O(log n + δ) amortized time. Finally, in [13] it was empirically shown
that resilient sorting algorithms are of practical interest.

Our contribution. In this paper we continue the work on resilient dictionaries.
We present a simple randomized dynamic search tree achieving O(log n + δ)
amortized expected time per operation. We then present the first resilient algo-
rithm for deterministically searching in a sorted array in optimal O(log n + δ)
time, matching the lower bound from [16]. We use this algorithm, to build a
resilient deterministic dynamic dictionary supporting searches in O(log n + δ)
worst case time and updates in O(log n + δ) amortized time. Range queries are
supported in O(log n + δ + t) time where t is the size of the output. Further-
more, we prove a lower bound stating that every resilient dictionary (with some
reasonable properties) must take Ω(log n + δ) worst-case time per search.

Preliminaries. We denote by α the actual number of faults. Of course α ≤ δ. A
resilient variable x consists of (2δ + 1) copies of a (classical) variable. The value
of x is the majority value of its copies. This value is well defined since at most δ
copies can be corrupted. Assigning a value to x means assigning such value to
all the copies of x. Note that both reading and updating x can be done in O(δ)
time and O(1) space (using, e.g., the algorithm for majority computation in [6]).

2 A Simple Randomized Resilient Dictionary

In this section we present a simple randomized resilient search tree, which builds
upon the resilient search tree of [15]. Our search tree takes O(log n+δ) amortized
time per operation, in expectation. We maintain a dynamically evolving set of
intervals I1, I2, . . . Ih. Initially, when the set of keys is empty, there is a unique
interval I1 = (−∞, +∞). Throughout the sequence of operations we maintain
the following invariants:

(i) The intervals are non-overlapping, and their union is (−∞, +∞).
(ii) Each interval contains less than 2δ keys.

350 G.S. Brodal et al.

(-∞∞∞∞,-10]

3: -10, -20, -12

(-10, 2]

4: 1, -9, -5, 0

(2, 9]

6: 4, 3, 7, 8, 5, 6

(30, 50]

2: 40, 38

(50, +∞∞∞∞)

3: 100, 56, 60

(9, 30]

4: 18, 29, 27, 10

node interval I(v)

number of keys and
key list (disordered)

node v

Fig. 1. A resilient search tree

(iii) Each interval contains more than δ/2 keys, except possibly for the leftmost
and the rightmost intervals (boundary intervals).

To implement any search, insert, or delete of a key e, we first need to find the
interval I(e) containing e (interval search). Invariant (i) guarantees that such an
interval exists, and is unique. Invariants (ii) and (iii) have a crucial role in the
amortized analysis of the algorithm, as we will clarify later.

The intervals are maintained in a standard balanced binary search tree.
Throughout the paper we use as a reference implementation an AVL tree [11].
However, the same basic approach also works with other search trees. Intervals
are ordered according to, say, their left endpoints. For each node v of the search
tree, we maintain the following variables:

1. (reliably) the endpoints of the corresponding interval I(v) and the num-
ber |I(v)| of keys contained in the interval I(v);

2. (reliably) the addresses of the left child, the right child, and the parent of v,
and all the information needed to keep the search tree balanced with the
implementation considered;

3. (unreliably, i.e., in a single copy) the (unordered) set of current keys con-
tained in I(v), stored in an array of size 2δ.

For an example, see Figure 1. The nodes of the search tree are stored in an array.
The main reason for this is that it makes it easy to check whether a pointer/index
points to a search tree node. Otherwise, the algorithm could jump outside of the
search tree by following a corrupted pointer, without even noticing it: this would
make the behavior of the algorithm unpredictable. The address of the array and
the current number of nodes is kept in safe memory, together with the address
of the root node. We use a standard doubling technique to ensure that the size
of the array is linear in the current number of nodes. The amortized overhead
per insertion/deletion of a node due to doubling is O(δ). As we will see, this
cost can be charged to the cost of the interval search which is performed in each
operation: from now on we will not mention this cost any further.

Optimal Resilient Dynamic Dictionaries 351

We next describe how to search, insert, and delete a given key e.

Search. Every search is performed by first searching for the interval I(e) contain-
ing e (interval search), and then by linearly searching for e in I(e). The interval
search is implemented as follows. We perform a classical search, where for each
relevant resilient variable we consider one of its 2δ + 1 copies chosen uniformly
at random. We implement the search so as to read at most one random copy
of each resilient variable (unless pointers corruption forces the search to cycle).
This assumption will turn out to be useful in the analysis. Once the search is
concluded, we check reliably (in O(δ) time) whether the final interval contains e.
If not, the search is restarted from scratch. The search is restarted also as soon
as an inconsistency is found, for instance if the number of steps performed gets
larger than the height of the tree.

Insert. We initially find I = I(e) with the procedure above. Then, if e is not
already in the list of keys associated to I, we add e to such list. If the size of the
list becomes 2δ because of this insertion, we perform the following operations in
order to preserve Invariant (ii). We delete interval I from the search tree, and
we split I in two non-overlapping subintervals L and R, L ∪ R = I, which take
the smaller and larger half of the keys of I, respectively. In order to split the
keys of I in two halves, we use two-way BubbleSort as described in [14]. This
takes time O(δ2). Eventually, we insert L and R in the search tree. Both deletion
and insertion of intervals from/in the search tree are performed in the standard
way (with rotations for balancing), but using resilient variables only, hence in
time O(δ log n). Note that Invariants (i) and (iii) are preserved.

Delete. We first find I = I(e) using the search procedure above. If we find e
in the list of keys associated to I, we delete e. Then, if |I| = δ/2 and I is not
a boundary interval, we perform, reliably, the following operations in order to
preserve Invariant (iii). First, we search the interval L to the left of I, and delete
both L and I from the search tree. Then we do two different things, depending
on the size of L. If |L| ≤ δ, we merge L and I into a unique interval I ′ = L ∪ I,
and insert I ′ in the search tree. Otherwise (|L| > δ), we create two new non-
overlapping intervals L′ and I ′ such that L′ ∪ I ′ = L ∪ I, L′ contains all the
keys of L but the δ/4 largest ones, and I ′ contains the remaining keys of L ∪ I.
Also in this case creating L′ and I ′ takes time O(δ2) with two-way BubbleSort.
We next insert intervals L′ and I ′ into the search tree. Again, the cost per
insertion/deletion of an interval is O(δ log n), since we use resilient variables.
Observe that Invariants (i) and (ii) are preserved.

By Invariant (iii), the total number of nodes in the search tree is O(1 + n/δ).
Since each node takes Θ(δ) space, and thanks to doubling, the space occupied
by the search tree is O(n + δ). This is also an upper bound on the overall space
complexity. The space complexity can be reduced to O(n) by storing the variables
associated to boundary intervals in the O(1) size safe memory, and by handling
the corresponding set of keys via doubling. This change can be done without

352 G.S. Brodal et al.

affecting the running time of the operations. We remark that the implementation
of the interval search is the main difference between our improved search tree
and the search tree in [15].

Theorem 1. The resilient search tree above has O(log n+δ) expected amortized
time per operation and O(n) space complexity.

Proof. The space complexity is discussed above. Let S(n, δ) be the expected
time needed to perform an interval search. By Invariant (ii), each search oper-
ation takes S(n, δ) + O(δ) expected time. The same holds for insert and delete
operations, when the structure of the search tree has not to be modified. Oth-
erwise, there is an extra O(δ log n + δ2) cost. However, it is not hard to show
that, by Invariants (ii) and (iii), the search tree is modified every Ω(δ) insert
and/or delete operations (see [15] for a formal proof of this simple fact). Hence
the amortized cost of insert and delete operations is S(n, δ) + O(log n + δ) in
expectation.

It remains to bound S(n, δ). Each search round takes O(log n+ δ) time. Thus
it is sufficient to show that the expected number of rounds is constant. Consider
a given round. Let αi be the actual number of faults happening at any time
on the i-th resilient variable considered during the round, i = 1, 2, . . . , p. The
probability that all the copies chosen during a given round are faithful is at least

(
1 − α1

2δ + 1

) (
1 − α2

2δ + 1

)
· · ·

(
1 − αp

2δ + 1

)
≥

(
1 −

∑p
i=1 αi

2δ + 1

)
.

Given this event, by the assumptions on the algorithm the resilient variables
considered must be all distinct. As a consequence

∑p
i=1 αi ≤ α ≤ δ, and hence

(
1 −

∑p
i=1 αi

2δ + 1

)
≥

(
1 − δ

2δ + 1

)
≥ 1

2
.

It follows that the expected number of rounds is at most 2. ��

3 An Optimal Static Dictionary

In this section we close the gap between lower and upper bounds for deterministic
resilient searching algorithms. We present a resilient algorithm that searches for
an element in a sorted array in O(log n + δ) time in the worst case, which
is optimal [16]. The previously best known deterministic dictionary supports
searches in O(log n + δ1+ε) time [14].

We design a binary search algorithm, which only advance one level in the
wrong direction for each corrupted element misleading it. We then design a
verification procedure that checks the result of the binary search. We count the
number of detected corruptions and adjust our algorithm accordingly to ensure
that no element is used more than once. To avoid reading the same faulty value
twice, we divide the input array into implicit blocks. Each block consists of 5δ+1
consecutive elements of the input and is structured in three segments: the left

Optimal Resilient Dynamic Dictionaries 353

verification segment, LV , consists of the first 2δ elements, the next δ+1 elements
form the query segment, Q, and the right verification segment, RV , consists of
the last 2δ elements of the block. The left and right verification segments, LV
and RV , are used only by the verification procedure. The elements in the query
segment are used to define δ + 1 sorted sequences S0, . . . , Sδ. The j’th element
of sequence Si, Si[j], is the i’th element of the query segment of the j’th block,
and is located at position posi(j) = (5δ + 1)j + 2δ + i in the input array.

We store a value k ∈ {0, . . . , δ} in safe memory identifying the sequence Sk on
which we perform the binary search. Also, k identifies the number of corruptions
detected. Whenever we detect a corruption, we change the sequence on which we
perform the search by incrementing k. Since there are δ + 1 disjoint sequences,
there exists at least one sequence without any corruptions.

Binary search. The binary search is performed on the elements of Sk. We store
in safe memory the search key, e, and the left and right sequence indices, l and r,
used by the binary search. Initially, l = −1 is the position of an implicit −∞
element. Similarly, r is the position of an implicit ∞ to the right of the last
element. Since each element in Sk belongs to a distinct block, l and r also
identify two blocks Bl and Br.

In each step of the binary search the element at position i = 	(l + r)/2

in Sk is compared with e. Assume without loss of generality that this element
is smaller than e. We set l to i and decrement r by one. We then compare e
with Sk[r]. If this element is larger than e, the search continues. Otherwise, if
no corruptions have occurred, the position of the search element is in block Br

or Br+1 in the input array. When two adjacent elements are identified as in the
case just described, or when l and r become adjacent, we invoke a verification
procedure on the corresponding blocks.

The verification procedure determines whether the two adjacent blocks, de-
noted Bi and Bi+1, are correctly identified. If the verification succeeds, the bi-
nary search is completed, and all the elements in the two corresponding adjacent
blocks, Bi and Bi+1 are scanned. The search returns true if e is found during the
scan, and false otherwise. If the verification fails, we backtrack the search two
steps, since it may have been mislead by corruptions. To facilitate backtracking,
we store two word-sized bit-vectors, d and f in safe memory. The i’th bit of d
indicates the direction of the search and the i’th bit of f indicates whether there
was a rounding in computing the middle element in the i’th step of the binary
search respectively. We can compute the values of l and r in the previous step
by retrieving the relevant bits of d and f . If the verification fails, it detects at
least one corruption and therefore k is incremented, thus the search continues
on a different sequence Sk.

Verification phase. Verification is performed on two adjacent blocks, Bi and
Bi+1. It either determines that e lies in Bi or Bi+1 or detects corruptions. The
verification is an iterative algorithm maintaining a value which expresses the
confidence that the search key resides in Bi or Bi+1. We compute the left con-
fidence, cl, which is a value that quantifies the confidence that e is in Bi or to

354 G.S. Brodal et al.

the right of it. Intuitively, an element in LVi smaller than e is consistent with
the thesis that e is in Bi or to the right of it. However, an element in LVi larger
than e is inconsistent. Similarly, we compute the right confidence, cr, to express
the confidence that e is in Bi+1 or to the left of it.

We compute cl by scanning a sub-interval of the left verification segment, LVi,
of Bi. Similarly, the right confidence is computed by scanning the right verifica-
tion segment, RVi+1, of Bi+1. Initially, we set cl = 1 and cr = 1. We scan LVi

from right to left starting at the element at index vl = 2δ − 2k in LVi. Similarly,
we scan RVi+1 from left to right beginning with the element at position vr = 2k.
In an iteration we compare LVi[vl] and RVi+1[vr] against e. If LVi[vl] ≤ e, we
increment cl by one, otherwise it is decreased by one and k is increased by one.
Similarly, if RVi+1[vr] ≥ e, we increment cr by one; otherwise, we decrease cr

and increase k. The verification procedure stops when min(cr, cl) equals δ−k+1
or 0. The verification succeeds in the former case, and fails in the latter.

Theorem 2. The algorithm is resilient and searches for an element in a sorted
array in O(log n + δ) time.

Proof. We first prove that when cl or cr decrease during verification, a corruption
has been detected. We increase cl when an element smaller than e is encountered
in LVi, and decrease it otherwise. Intuitively, cl can been seen as the size of a
stack S. When we encounter an element smaller than e, we treat it as if it was
pushed, and as if a pop occurred otherwise. Initially, the element g from the
query segment of Bi used by the binary search is pushed in S. Since g was used
to define the left boundary in the binary search, g < e at that time. Each time
an element LVi[v] < e is popped from the stack, it is matched with the current
element LVi[vl]. Since LVi[v] < e < LVi[vl] and vl < v, at least one of LVi[vl]
and LVi[v] is corrupted, and therefore each match corresponds to detecting at
least one corruption. It follows that if 2t − 1 elements are scanned on either side
during a failed verification, then at least t corruptions are detected.

We now argue that no single corruption is counted twice. A corruption is
detected if and only if two elements are matched during verification. Thus it
suffices to argue that no element participates in more than one matching. We
first analyze corruptions occurring in the left and right verification segments.
Since the verification starts at index 2(δ − k) in the left verification segment
and k is increased when a corruption is detected, no element is accessed twice,
and therefore not matched twice either. A similar argument holds for the right
verification segment. Each failed verification increments k, thus no element from
a query segment is read more than once. In each step of the binary search both
the left and the right indices are updated. Whenever we backtrack the binary
search, the last two updates of l and r are reverted. Therefore, if the same block
is used in a subsequent verification, a new element from the query segment is
read, and this new element is the one initially on the stack. We conclude that
elements in the query segments, which are initially placed on the stack, are never
matched twice either.

To argue correctness we prove that if a verification is successful, and e is
not found in the scan of the two blocks, then no uncorrupted element equal to e

Optimal Resilient Dynamic Dictionaries 355

exists in the input. If a verification succeeded then cl ≥ δ−k+1. Since only δ−k
more corruptions are possible and since an element equal to e was not found,
there is at least one uncorrupted element in LVi smaller than e, and thus there
can not be any uncorrupted elements equal to e to the left of Bi in the input
array. By a similar argument, if cr ≥ δ − k + 1, then all uncorrupted elements
to the right of Bi+1 in the input array are larger than e.

We now analyze the running time. We charge each backtracking of the binary
search to the verification procedure that triggered it. Therefore, the total time of
the algorithm is O(log n) plus the time required by verifications. To bound the
time used for all verification steps we use the fact that if O(f) time is used for a
verification step, then Ω(f) corruptions are detected or the algorithm ends. At
most O(δ) time is used in the last verification for scanning the two blocks. ��

4 A Dynamic Dictionary

In this section we describe a linear space resilient dynamic dictionary support-
ing searches in optimal O(log n + δ) worst case time and range queries in op-
timal O(log n + δ + t) worst case time, where t is the size of the output. The
amortized update cost is O(log n + δ). The previous best known deterministic
dynamic dictionary, is the resilient search tree of [15], which supports searches
and updates in O(log n + δ2) amortized time.

Structure. The sorted sequence of elements is partitioned into a sequence of leaf
structures, each storing Θ(δ log n) elements. For each leaf structure we select a
guiding element, and these O(n/(δ log n)) elements are also stored in the leaves
of a reliably stored binary search tree. Each guiding element is larger than all
uncorrupted elements in the corresponding leaf structure.

For this reliable top tree T , we use the binary search tree in [7], which consists
of h = log |T | + O(1) levels when containing |T | elements. In the full version [8]
it is shown how the tree can be maintained such that the first h − 2 levels are
complete. We lay out the tree in memory in left-to-right breadth first order,
as specified in [7]. It uses linear space, and supports updates in O(log2 |T |)
amortized time. Global rebuilding is used when |T | changes by a constant factor.

All the elements in the top tree are stored as resilient variables. . Since a
resilient variable takes O(δ) space, O(δ|T |) space is used for the entire structure.
The time used for storing and retrieving a resilient variable is O(δ), and there-
fore the additional work required to handle the resilient variables increases the
amortized update cost to O(δ log2 |T |) time.

The leaf structure consists of a top bucket B and b buckets, B0, . . . , Bb−1,
where log n ≤ b ≤ 4 log n. Each bucket Bi contains between δ and 6δ input
elements, stored consecutively in an array of size 6δ, and uncorrupted elements
in Bi are smaller than uncorrupted elements in Bi+1. For each bucket Bi, the
top bucket B associates a guiding element larger than all elements in Bi, a
pointer to Bi, and the size of Bi, all stored reliably. Since storing a value reliably
uses O(δ) space, the total space used by the top bucket is O(δ log n). The guiding
elements of B are stored as a sorted array to enable fast searches.

356 G.S. Brodal et al.

Searching. The search operation first finds a leaf in the top tree, and then
searches the corresponding leaf structure. Let h denote the height of T . If h ≤ 3,
we perform a standard tree search from the root of T using the reliably stored
guiding elements. Otherwise, we locate internal nodes, v1 and v2, with guiding
elements g1 and g2, such that g1 < e ≤ g2, where e is the search key. Since h − 2
is the last complete level of T , level � = h − 3 is complete and contains only
internal nodes. The breadth first layout of T ensures that elements of level � are
stored consecutively in memory. The search operation locates v1 and v2 using the
deterministic resilient search algorithm from Section 3 on the array defined by
level �. The search only considers the 2δ+1 cells in each node containing guiding
elements and ignores memory used for auxiliary information. Although they are
stored using as resilient variables, each of the 2δ+1 copies are considered a single
element by the search. We modify the resilient searching algorithm previously
introduced such that it reports two consecutive blocks with the property that if
the search key is in the structure, it is contained in one of them. The reported
two blocks, each of size 5δ + 1, span O(1) nodes of level � and the guiding
elements of these are queried reliably to locate v1 and v2. The appropriate leaf
can be in either of the subtrees rooted at v1 and v2, and we perform a standard
tree search in both using the reliably stored guiding elements. Searching for an
element in a leaf structure is performed by using the resilient search algorithm
from Section 3 on the top bucket, B, similar to the way v1 and v2 were found in T .
The corresponding reliably stored pointer is then followed to a bucket Bi, which
is scanned. Range queries can be performed by scanning the level �, starting
at v, and reporting relevant elements in the leaves below it.

Updates. Efficiently updating the structure is performed using standard buck-
eting techniques. To insert an element into the dictionary, we first perform a
search to locate the appropriate bucket Bi in a leaf structure, and then the el-
ement is appended to Bi and the size updated. When the size of Bi increases
to 6δ, we split it into two buckets. We compute a guiding element that splits Bi

in O(δ2) time by repeatedly scanning Bi and extracting the minimum element.
The element m returned by the last iteration is kept in safe memory. In each
iteration, we select a new m which is the minimum element in Bi larger than
the current m. Since at most δ corruptions can occur, Bi contains at least 2δ
uncorrupted elements smaller than m and 2δ uncorrupted elements larger, af-
ter |Bi|/2 iterations. The new split element is reliably inserted in the top bucket
using an insertion sort step in O(δ log n) time. Similarly, when the degree the top
bucket becomes 4 log n, it is split in two new leaf structures in O(δ log n) time,
and a new guiding element is inserted into the top tree. Deletions are handled
similarly.

Theorem 3. The resilient dynamic dictionary structure uses O(n) space while
supporting searches in O(log n + δ) time worst case with an amortized update
cost of O(log n+ δ). Range queries with an output size of t is performed in worst
case O(log n + δ + t) time.

Optimal Resilient Dynamic Dictionaries 357

5 A Lower Bound

In the following we restrict our attention to comparison based dictionaries where
the keys are stored in one or more arrays, and the address of each array is
maintained in one or more pointers. These assumptions can be partially relaxed.
However, we do not discuss such relaxations since they do not add much to the
discussion below.

Theorem 4. Every resilient search tree of the kind above requires Ω(log n + δ)
worst-case time per search.

Proof. Every search tree, even in a system without memory faults, takes Ω(log n)
worst-case time per search. This lower bound extends immediately to the case of
resilient search trees. Hence, without loss of generality, assume that log n = o(δ).
Under this assumption, it is sufficient to show that the time required by a resilient
search operation is Ω(δ).

Consider any given search tree ST of the kind considered. Let K1, K2, . . . , Kp

be the arrays in unsafe memory where (subset of) the keys are maintained. For
each Ki there must be at least one pointer containing its address. Recall that
only a constant number of keys can be kept in safe memory. Hence Θ(n) keys
are stored in unsafe memory only.

Suppose there is an array Ki containing Ω(n) keys. Then, by the lower
bound on static resilient searching [14], searching for a given key in Ki takes
time Ω(log n + δ) = Ω(δ). Hence, let us assume that all the arrays contain o(n)
keys. Since there are ω(1) arrays, not all the corresponding pointers can be
kept in safe memory. In particular, there must be an array Ki whose pointers
are all maintained in the unsafe memory. Assume that we search for a faithful
key e contained in Ki. Suppose by contradiction that ST concludes the search
in o(δ) time. This means that ST can read only o(δ) pointers to reach Ki, and
at most o(δ) keys of Ki. Then an adversary, by corrupting o(δ) memory words
only, can make ST answer no to the query. This contradicts the resiliency of ST ,
which in the case considered must always find a key equal to e. ��

References

1. Aslam, J.A., Dhagat, A.: Searching in the presence of linearly bounded errors. In:
ACM STOC’91, pp. 486–493

2. Assaf, S., Upfal, E.: Fault-tolerant sorting networks. SIAM J. Discrete Math. 4(4),
472–480 (1991)

3. Aumann, Y., Bender, M.A.: Fault-tolerant data structures. In: IEEE FOCS’96, pp.
580–589

4. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness
of memories. In: IEEE FOCS’91

5. Borgstrom, R.S., Rao Kosaraju, S.: Comparison based search in the presence of
errors. In: ACM STOC’93, pp. 130–136.

6. Boyer, R., Moore., S.: MJRTY: - A fast majority vote algorithm. University of
Texas Tech. Report (1982)

358 G.S. Brodal et al.

7. Brodal, G.S., Fagerberg, R., Jacob, R.: Cache-oblivious search trees via binary
trees of small height. ACM-SIAM SODA’02, 39–48

8. Brodal, G.S., Fagerberg, R., Jacob, R.: Cache-oblivious search trees via trees of
small height. Technical Report ALCOMFT-TR-02-53, ALCOM-FT (May 2002)

9. Chlebus, B.S., Gambin, A., Indyk, P.: Shared-memory simulations on a faulty-
memory DMM. In: ICALP’96, pp. 586–597

10. Constantinescu, C.: Trends and challenges in VLSI circuit reliability. IEEE mi-
cro 23(4), 14–19 (2003)

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press/McGraw-Hill Book Company (2001)

12. Feige, U., Raghavan, P., Peleg, D., Upfal, E.: Computing with noisy information.
SIAM Journal on Computing 23, 1001–1018 (1994)

13. Petrillo, U.F., Finocchi, I., Italiano, G.F.: The price of resiliency: a case study on
sorting with memory faults. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, pp. 768–779. Springer, Heidelberg (2006)

14. Finocchi, I., Grandoni, F., Italiano, G.F.: Optimal sorting and searching in the
presence of memory faults. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I.
(eds.) ICALP 2006. LNCS, vol. 4052, pp. 286–298. Springer, Heidelberg (2006)

15. Finocchi, I., Grandoni, F., Italiano, G.: Resilient search trees. In: ACM-SIAM
SODA’07, pp. 547–555.

16. Finocchi, I., Italiano, G.F.: Sorting and searching in faulty memories. Algorithmica
ACM STOC’04, pp. 101–110 (Extended abstract) (to appear)

17. Hamdioui, S., Al-Ars, Z., de Goor, J.V., Rodgers, M.: Dynamic faults in random-
access-memories: Concept, faults models and tests. Journal of Electronic Testing:
Theory and Applications 19, 195–205 (2003)

18. Henzinger, M.R.: Combinatorial algorithms for web search engines - three success
stories. In: ACM-SIAM SODA’07 (invited talk)

19. Jørgensen, A.G., Moruz, G., Mølhave, T.: Priority queues resilient to memory
faults. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619,
Springer, Heidelberg (2007)

20. Kleitman, D.J., Meyer, A.R., Rivest, R.L., Spencer, J., Winklmann, K.: Coping
with errors in binary search procedures. Journal of Computer and System Sci-
ences 20, 396–404 (1980)

21. Leighton, T., Ma, Y.: Tight bounds on the size of fault-tolerant merging and sort-
ing networks with destructive faults. SIAM Journal on Computing 29(1), 258–273
(1999)

22. May, T.C., Woods, M.H.: Alpha-particle-induced soft errors in dynamic memories.
IEEE Transactions on Electron Devices 26(2) (1979)

23. Pelc, A.: Searching games with errors: Fifty years of coping with liars. Theoretical
Computer Science 270, 71–109 (2002)

24. Tezzaron Semiconductor. Soft errors in electronic memory - a white paper (2004),
http://www.tezzaron.com/about/papers/papers.html

25. Yao, A.C., Yao, F.F.: On fault-tolerant networks for sorting. SIAM Journal on
Computing 14, 120–128 (1985)

http://www.tezzaron.com/about/papers/papers.html

Determining the Smallest k Such That G Is

k-Outerplanar

Frank Kammer

Institut für Informatik, Universität Augsburg, 86135 Augsburg, Germany
kammer@informatik.uni-augsburg.de

Abstract. The outerplanarity index of a planar graph G is the smallest
k such that G has a k-outerplanar embedding. We show how to compute
the outerplanarity index of an n-vertex planar graph in O(n2) time,
improving the previous best bound of O(k3n2). Using simple variations
of the computation we can determine the radius of a planar graph in
O(n2) time and its depth in O(n3) time.

We also give a linear-time 4-approximation algorithm for the outerpla-
narity index and show how it can be used to solve maximum independent
set and several other NP-hard problems faster on planar graphs with out-
erplanarity index within a constant factor of their treewidth.

Keywords: Outerplanarity index, k-outerplanar, fixed-parameter
algorithms, NP-hard, SPQR trees.

1 Introduction

A promising approach to solve NP-hard graph problems to optimality is to deal
with fixed-parameter algorithms, i.e., the aim is to solve NP-hard problems on an
n-vertex graph in O(f(k) ·nO(1)) time for some function f that depends only on
some parameter k but not on n. For example, we can use the so-called treewidth
as the parameter k. The treewidth of a graph G measures the minimum width
of a so-called tree decomposition of G and, intuitively, describes how treelike
G is. Tree decompositions and treewidth were introduced by Robertson and
Seymour [15]. Given a tree decomposition of width k of an n-vertex graph G,
one can solve many NP-hard problems such as maximum 3-coloring, maximum
independent set, maximum triangle matching, minimum edge dominating set,
minimum dominating set, minimum maximal matching and minimum vertex
cover on G in O(ckn) time for some constant c. For a definition of these problems
see, e.g., [1] and [8].

Many algorithms for computing the treewidth have been published. Reed [13]
showed that a tree decomposition of width O(k) can be found for an n-vertex
graph G of treewidth k in O(33kk ·n log n) time. Thus, many NP-hard problems
can be solved on G in O(ckn log n) time for a constant c. Moreover, Bodlaender
[4] gave an algorithm that computes a tree decomposition of width k of an
n-vertex graph G of treewidth k in Θ(f(k)n) time for some exponential function
f . The author only states that f(k) is very large; however, Röhrig [14] shows that

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 359–370, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

360 F. Kammer

f = 2Θ(k3). Much research for finding tree decompositions has also considered
special classes of graphs, e.g., the (k-outer)planar graphs.

Definition 1. An embedding ϕ of a planar graph is 1-outerplanar if it is outer-
planar, i.e., all vertices are incident on the outer face in ϕ. An embedding of a
planar graph is k-outerplanar if removing all vertices on the outer face (together
with their incident edges) yields a (k − 1)-outerplanar embedding.

A graph is k-outerplanar if it has a k-outerplanar embedding. The outerpla-
narity index of a graph G is the smallest k such that G is k-outerplanar.

Using the ratcatcher algorithm of Seymour and Thomas [17] and the results of
Gu and Tamaki [9], one can obtain a tree decomposition of width O(k) for a k-
outerplanar graph in O(n3) time. All of the NP-hard problems mentioned above
remain NP-hard even on planar graphs [8]. In the special case of planar graphs,
the outerplanarity index is a very natural parameter to use for a fixed-parameter
algorithm. Bienstock and Monma [2] showed that for a planar n-vertex graph, the
outerplanarity index k and a k-outerplanar embedding can be found in O(k3n2)
time. A general technique due to Baker [1] enables us to solve each of the NP-
hard problems mentioned above on k-outerplanar n-vertex graphs G in O(ckn)
time for a constant c if a k-outerplanar embedding of G is given.

Using a new and simple algorithm presented here, we can find the outer-
planarity index k and a k-outerplanar embedding in O(n2) time. Moreover, a
slightly modified version of the new algorithm is 4-approximative and runs in
linear time. Using the approximation algorithm and Baker’s technique, we can
solve many NP-hard problems to optimality on k-outerplanar graphs in O(ckn)
time for some constant c (e.g., maximum independent set in O(84kn) time and
maximum triangle matching in O(164kn) time). Thus, this approach is the fastest
for many NP-hard problems for planar graphs whose outerplanarity index k
is within a constant factor of their treewidth. Moreover, given a k-outerplanar
graph, using the new algorithms one can find tree decompositions of width 3k−1
and 12k − 4 in O(n2) time and in O(kn) time, respectively [5,16].

In the following we will consider only the outerplanarity index. However our
approach can also be used to determine other distance measures such as the
radius and the width. For a definition of these distance measures, see [2].

2 Ideas of the Algorithm

An often used technique is to remove some subgraph C from a given graph G
and solve a problem recursively on the remaining graph G′. (G′ is later called the
induced graph of G and C.) Unfortunately, the outerplanarity index of G is not
a function of the outerplanarity indices of G′ and C alone. However, one can de-
termine the outerplanarity index of G by a computation of the so-called weighted
outerplanarity index of C—this is a small generalization of the outerplanarity
index—that additionally takes into account the weighted outerplanarity indices
of � ∈ IN different graphs, each of which is G′ with a few additional edges. It
turns out that by a recursive call one can compute the weighted outerplanarity

Determining the Smallest k Such That G Is k-Outerplanar 361

indices of the � graphs simultaneously. The exact value of � depends on the dis-
tance measure. For the (weighted) outerplanarity index and the radius, � is 6,
and for the width, � is the number of edges. One can observe that this leads to
time bounds of O(n2) for determining the radius of an n-vertex planar graph
and O(n3) time for determining its depth.

As we observe later, the computation of the weighted outerplanarity index
is a slight modification of the computation of the outerplanarity index. For the
time being let us consider only the outerplanarity index. For a fast and simple
computation of the outerplanarity index of C, we have to choose C in a spe-
cial way. Before going into the details, we need additional terminology. A rooted
embedding of a planar graph G is a combinatorial embedding of G with a spec-
ified outer face. An embedded graph (G, ϕ) is a planar graph G with a rooted
embedding ϕ. A graph G is biconnected (triconnected) if no removal of one ver-
tex (two vertices) from G disconnects G. As an auxiliary tool for describing the
computation of the outerplanarity index, we consider so-called peelings. These
are defined precisely in the next section. For now it will suffice to think of a
peeling as a process that removes the vertices of a graph in successive steps,
each of which removes all vertices incident on the outer face. Define the peeling
index of an embedded graph (G, ϕ) as the minimal number of steps to remove
all vertices of G. Let us call an embedding optimal (c-approximative) if it is a
rooted embedding ϕ of a planar graph G such that the peeling index of (G, ϕ)
equals (is bounded by c times) the outerplanarity index of G.

Suppose that C is a triconnected graph. A theorem of Whitney [19] states
that the combinatorial embedding of C is unique. Moreover, it can be found in
linear time [3,12]. Hence, if one face f is chosen as the outer face, the rooted
embedding ϕ of C is also unique. Obviously, we can determine the peeling index
k of (C, ϕ) in linear time. Let ϕOPT be an optimal embedding of C. Define fOPT

as the outer face of ϕOPT and kOPT as the peeling index of (C, ϕOPT). If the
distance of two faces f1 and f2 is taken to be the minimal number of edges we
have to cross by going from f1 to f2, the distance in ϕOPT from f to fOPT and
from fOPT to any other face is at most kOPT. Consequently, k is at most 2kOPT.
By iterating over all (≤ 2n) faces of a combinatorial embedding of G, we find an
optimal embedding. Therefore we can conclude the following.

Corollary 2. Given a triconnected graph G, a 2-approximative and an optimal
embedding of G can be obtained in linear and in quadratic time, respectively.

3 Peelings and Induced Graphs

A separation vertex (separation pair) of a graph G is a vertex (a pair of ver-
tices) whose removal from G disconnects G. A biconnected component of G is a
maximal biconnected subgraph of G. Say (G, ϕ) is biconnected and triconnected,
respectively, if G is. Call a function a weight function for G if it maps each vertex
and each edge of G to a non-negative rational number. Let us call a vertex or
edge outside in a rooted embedding ϕ if it is incident on the outer face of ϕ. For
an edge e in an embedded graph (G, ϕ), define ϕ− e as the embedding obtained

362 F. Kammer

by removing e and merging the two faces f1 and f2 incident on e in ϕ to a face
f3 in ϕ − e. Then f3 contains the faces f1 and f2. Let G = (VG, EG) be a con-
nected embedded graph with weight function r and let ϕ be a rooted embedding
of G. Define Out(ϕ) as the set of outside vertices. If S = Out(ϕ) and u, v ∈ S,
Sϕ

u→v ⊂ S is the set of vertices visited on a shortest clockwise travel around the
outer face of ϕ from u to v, including u and v. If u = v, Sϕ

u→v = {u}. Given a
directed edge (u, v), we say that an embedding ϕ′ is obtained from ϕ by adding
(u, v) clockwise if ϕ′ is a (planar) rooted embedding of (VG, EG ∪ {{u, v}}) such
that all inner faces of ϕ are also inner faces of ϕ′ and Out(ϕ′) = Out(ϕ)ϕ

v→u. By
iterating over a set of directed edges E+ we can add E+ clockwise into an em-
bedded graph. The embedding obtained does not depend on the order in which
edges are added since the edges in E+ can be added clockwise only if they do not
interlace. Let E+ be a set of directed edges that all can be added clockwise into
ϕ. Call the resulting embedding ϕ+. The peeling P of the quadruple (G, ϕ, r, E+)
is the (unique) list of vertex sets (V1, . . . , Vt) with

⋃t
i=1 Vi = VG and Vt �= ∅ such

that each set Vi (1 ≤ i ≤ t) contains all vertices that are incident on the outer
face obtained after the removal of the vertices in V1, . . . , Vi−1 in the initial em-
bedding ϕ+. Thus, (peeling) step i removes the vertices in Vi. Note that after each
step i we obtain a unique embedding of the subgraph G[V \⋃i

j=1 Vj]. Define the
peeling number of a vertex u ∈ Vi and an edge {u, v} with v ∈ Vj (1 ≤ i, j ≤ t)
in the peeling P as NP(v) = i + r(v), NP ({u, v}) = min{i, j} + r({u, v}) and
NP(G) = max{maxv∈VGNP(v), maxe∈EGNP(e)}. For simplicity, if r is clear from
the context, let a peeling of (G, ϕ) be the peeling of (G, ϕ, r, ∅).

The weighted outerplanarity index of G with weight function r is the minimal
peeling number of the peelings of (G, ϕ′, r, ∅) over all rooted embeddings ϕ′ of
G. Note that the outerplanarity index of G is the weighted outerplanarity index
in the special case r ≡ 0.

For a subgraph H = (VH , EH) of G, let us say that two vertices u and v are
connected in G by an internally H-avoiding path if there is a path from u to v
in G, no edge of which belongs to H . Moreover, an H-attached component in G
is a maximal vertex-induced subgraph G′ = G[V ′] of G such that each pair of
vertices in V ′ is connected in G by an internally H-avoiding path. A subgraph
H of G is a peninsula of G if H = G or each H-attached component of G has at
most two vertices in common with H . An outer component C of a peninsula H
of G is defined in ϕ as H itself or as an H-attached component of G such that
C contains an outside edge in ϕ. Next we define the induced graph H(G) of a
peninsula H of G and its embedding ϕH(G) inherited from of the embedding ϕ
of G. For an example, see Fig. 1. The motivation for this definition is that—as
we observe later—peelings of (G, ϕ) and of (H(G), ϕH(G)) are very similar.

Definition 3 (Induced graph). Given a connected planar graph G and a
peninsula H = (VH , EH) of G, the induced graph H(G) has the vertex set VH

and the edge set {{u, v} | ({u, v} ∈ EH) ∨ (u, v ∈ VH and u and v are connected
in G by an internally H-avoiding path) }. An edge {u, v} in H(G) is called a
virtual edge if there is an internally H-avoiding path between u and v in G (even
if {u, v} ∈ EH).

Determining the Smallest k Such That G Is k-Outerplanar 363

28

1

2

3

4 5

6

7

89
10

11

12

13

14

15 16

17

1819

20

21

22

2324

25

26

27

1

2

3

6

7

10
12

27

Fig. 1. Left: An embedded graph (G, ϕ) with a peninsula H (black), an outer compo-
nent of H in G (all white vertices and vertices 2 and 3) and three further H-attached
components in G. Right: The inherited embedding ϕH(G) with the virtual edges dashed.

A triconnected component of G is the triconnected induced graph H(G) of a
peninsula H of G such that there exists no subgraph H ′ of G for which H is
a subgraph of H ′ and H ′(G) is triconnected. For each peninsula H , define RH

as the function that maps each H-attached component C to the set of vertices
common to C and H . Let C be a H-attached component. By definition of a
peninsula, |RH(C)| ≤ 2. If |RH(C)| = 2 we usually take RH(C) as a virtual
edge instead of a set of two vertices.

Definition 4 (Inherited embedding). Given a connected embedded graph
(G, ϕ) and a peninsula H of G, an embedding ϕ′ of H inherited from ϕ is
a rooted embedding of H for which the edges incident on each vertex v of H
appear around v in the same order in ϕ and in ϕ′. Moreover, the outer face of
ϕ′ contains the outer face of ϕ.

For the induced graph H(G) of H, an inherited embedding is a rooted embed-
ding H(G) defined almost as before; the only difference is that each virtual edge
{u, v} is mapped to the cyclic position around u of an edge incident on u of a
simple internally H-avoiding path from u to v in G.

Observe that the inherited embedding of an induced peninsula is unique if at
each vertex u, a virtual edge {u, v} can be mapped only to a set of consecutive
edges around u, none of which is part of the peninsula. Let us call a peninsula
H good if this is the case and if additionally for each virtual edge {u, v} only one
H-attached component C exists such that RH(C) = {u, v}. The last condition
allows us later to identify each H-attached component with a virtual edge. For
each embedded graph (G, ϕ) and for each a good peninsula H of G, define the
embedding ϕH as the embedding of H inherited from ϕ. In the rest of this section
we consider different properties of peelings and of inherited embeddings.

Lemma 5. Let (G, ϕ) be a connected embedded graph and let e be an edge of G
incident on the outer face in ϕ. For each good peninsula H of G, either e is in H
and incident on the outer face in ϕH(G), or e is in some H-attached component
C in G and RH(C) is incident on the outer face in ϕH(G).

364 F. Kammer

Fig. 2. Possibilities for an edge to be outside, e.g., 1: Both endpoints are outside

Proof. If e is in H , i.e., e is in H(G), e remains outside. Otherwise, e is in C �= H .
Let {u, v} = RH(C)—possibly u = v. Let p a internally H-avoiding path from
u to v using e such that p contains no simple cycle. The faces of ϕ are merged
in ϕH(G) such that at least one side of p is outside in ϕH(G).

Given an embedded graph (G, ϕ), the enclosure of a vertex set S in G is the
maximal subgraph C of G such that the only vertices outside in ϕC are the
vertices of S.

Observation 6. Let (G, ϕ) and (G′, ϕ′) be embedded graphs and let S and S′

be vertex sets in these graphs, respectively, such that between the enclosure S+
G

of S in (G, ϕ) and the enclosure S+
G′ of S′ in (G′, ϕ′) an graph isomorphism

f exists such that vertices u and v from S+
G are adjacent if and only if f(u)

and f(v) are adjacent in S+
G′ . Moreover, let r and r′ be weight functions for

G and G′, respectively, such that r(v) = r′(f(v)) for all vertices v from S+
G . If

NP(v) − NP′(f(v)) is constant on all v ∈ S, then it is constant on all v ∈ S+
G.

Let (G, ϕ) be a connected embedded graph with weight function r and let
H = (VH , EH) be a good peninsula with an edge {u∗, v∗} outside in ϕ. In-
formally, we now want to compare the peeling of (G, ϕ) with the peeling of
the inherited embedding of (H(G), ϕH(G)). Moreover, what happens with an
H-attached component C = (VC , EC) of G during the peeling of ϕ?

Define L(V +) for a set V + = {u} as the list of edge sets ({(u, u)}, {}) and for
a set V + = {u, v} as ({(u, v), (v, u)}, {(u, u)}, {(v, v)}, {}, {(v, u)}, {(u, v)}). The
directed edges of Fig. 2 shows L({u, v}). Take E+ as a set in the list L({u∗, v∗})
and P = (V1, V2, . . . , Vt) as a peeling of (G, ϕ, r, E+). Choose u and v such
that {u, v} = RH(C)—possibly u = v. If u ∈ Vi and v ∈ Vj (1 ≤ i, j ≤ t), take
q = min{i, j}. For the embedding ϕC of C inherited from ϕ, define S = Out(ϕC).
Let H ′ be the outer component of C that is a supergraph of H and that contains
{u∗, v∗}. Let P ′ be the peeling of (H ′(G), ϕH′(G), r

′, E+) where r′ is an arbitrary
weight function such that r′ is equal to r for all vertices of H ′(G). The following
two properties are proved below.

Property 1. Vq ∩VC equals one of the 6 sets below. In other words, if we ignore
the vertices not in C, peeling step q removes one of these 6 sets: 1. {u, v},
2. {u}, 3. {v}, 4. S, 5. SϕC

u→v or 6. SϕC
v→u. The remaining vertices of S are

removed in step q + 1.
Property 2. The removal of C from G if |RH(C)| = 1 and the replacement of

C by the (virtual) edge RH′ (C) in G if |RH(C)| = 2 does not change the
peeling numbers of the vertices in H ′, i.e., NP(H ′) = NP′(H ′).

Determining the Smallest k Such That G Is k-Outerplanar 365

For each of the 6 sets of Property 1 an example in Fig. 2 shows a situation just
before the qth peeling step. In each example the black edge corresponds to C
and each directed edge has a corresponding undirected path in H .

Proof of Property 1. Consider the two cases |RH(C)| = 1 and |RH(C)| = 2.
For the first case (i.e., u = v), observe that if one vertex of S \ {u} is
removed in peeling step q, then all vertices in S are removed in that step
because there is no edge from S \ {u} to H . Thus, Vq ∩ VC equals {u} or S.
In the second case we argue in the same way that if a vertex in SϕC

u→v \{u, v}
or SϕC

v→u \ {u, v} is removed, then all vertices in SϕC
u→v or SϕC

v→u, respectively,
are removed. The remaining vertices in S are outside after step q.

Proof of Property 2. Starting with the initial embedding ϕP0 = ϕ and ϕP
′

0 =
ϕH′(G) and carrying out in parallel the peelings P and P ′, let us compare
the embeddings ϕPi and ϕP

′

i obtained after i = 1, 2, . . . peeling steps. By
induction on i, we can observe that if a C-internal face is one that is incident
only on vertices of C, there is the following bijection between the not C-
internal faces of ϕPi and the faces of ϕP

′

i : Each face f in ϕPi is mapped
to the face in ϕP

′

i whose boundary vertices are those of f , except for the
vertices in C. Thus, we can conclude that a face of ϕPi is the outer face if
and only if the corresponding face of ϕP

′

i is the outer face, i.e., a vertex in
H ′ is outside after the same number of peeling steps in P and in P ′.

Since C is the enclosure of S, we can apply Observation 6. Informally, the peel-
ing numbers of vertices in C depend only on the peeling numbers of vertices in S.
Because of that and Property 1, a set of edges E′ ∈ L({u, v}) exists such that for
the peeling P ′′ of (C, ϕC , r, E′) and all v ∈ C: NP(v) = NP′′(v)+ q −1. Observe
that E′ can be determined during the peeling P ′ of (H ′(G), ϕH′(G), r

′, E+) by
observing which parts of the virtual edge RH(C) are outside just before it is
removed. For that reason, let us define E′ as the induced set of extra edges of P ′
and RH(C). Figure 2 shows various possibilities for how a virtual edge (black)
can be outside.

The removal and replacement described in Property 2, applied to all H-
attached components of G in ϕ, results (after the removal of multiple edges)
in the inherited embedding ϕH(G). Thus, for the vertices in H , the peeling num-
bers in the peeling of (G, ϕ, r, E+) and in the peeling P∗ of (H(G), ϕH(G), r

′, E+)
coincide for each set E+ where r′ is—except to the following two changes—equal
to r. The changes enables us to add the peeling numbers of all H-attached com-
ponents to the computation of the peeling P∗. The first change is to extend the
domain of the weight function r to all virtual edges RH(C′) and set r(RH(C′))
to −1 plus the peeling number of C′ in the peeling (C′, ϕC′ , r, E′) where E′ is
the induced set of extra edges of P∗ and RH(C′) and the second change is to in-
crease r(v) by −1 plus the highest peeling number of an H-attached component
C∗ with RH(C∗) = {v} (v ∈ VH). Leave r(v) unchanged if no such C∗ ex-
ists. Denote the function obtained the (G, H, P∗)-extended and (G, H)-increased
weight function of r.

Given a graph G, a set of directed edges E′ and a set S of vertices (edges), an
embedding ϕ is vertex-constrained (edge-constrained) optimal for (G, r, E′, S) if

366 F. Kammer

all s ∈ S are outside with respect to ϕ and for all embeddings ϕ′ the following is
true: Either not all s ∈ S are outside with respect to ϕ′ or NP′(G) ≤ NP′′(G),
where P ′ and P ′′ are the peelings of (G, ϕ, r, E′) and (G, ϕ′, r, E′), respectively.
Note that a smallest peeling number and a rooted embedding with this peeling
number can be computed simultaneously.

Theorem 7. Given a graph G = (VG, EG) with a weight function r and an
edge {u∗, v∗} ∈ EG, one can find an edge-constrained optimal embedding of
(G, r, E+, {u∗, v∗}) for all E+ ∈ L({u∗, v∗}) as follows:

Taking a good peninsula H = (VH , EH) of G that contains {u∗, v∗}, first
determine for each H-attached component C the constrained optimal embedding
of (C, r, E′, RH(C)) for all E′ ∈ L(RH(C)) recursively.

For each E+ and each embedding ϕ of H(G) with {u∗, v∗} outside, then de-
termine the peeling number of the peeling P of (H(G), ϕ, r′, E+), where r′ is the
(G, H, P)-extended and (G, H)-increased weight function of r.

For each E+ finally return the smallest peeling number and a corresponding
embedding ϕ.

4 The Outerplanarity Index for Biconnected Graphs

Before applying Theorem 7, we have to decompose G into good peninsulas. Given
a biconnected planar graph G, this can be done in linear time by constructing
a so-called SPQR tree of G [11]. An SPQR tree [6] of a biconnected graph G
is a tree T = (W , F) with a mapping M from W to a set of so-called split-
components of G. Each split-component—consisting of either a triconnected, a
cycle or a multiple-edge component as defined later—is the induced graph H(G)
of a good peninsula H of G, which, in the case of a multiple-edge component,
is extended by some edges. Additionally, for an SPQR tree the following two
properties hold: First, each edge of G is part of exactly one split-component
H ∈ M(W) and second, two nodes w1, w2 ∈ W with Hi = M(wi) (i = 1, 2)
are connected by an edge in F if and only if RH1(H2) �= ∅. A cycle component
is a simple cycle and a multiple-edge component consists of only 2 vertices (a
separation pair of G) connected by at most one edge of G and several virtual
edges. In addition, let us extend the mapping M from the nodes of T to each
subtree T ′ of T in the canonical way. In detail, if we take {w1, . . . , w�} as the
nodes of T ′, (Wi, Fi) = M(wi) and S as the set of all virtual edges {e | e ∈ Fi∩Fj

and (1 ≤ i < j ≤ �)}, define M(T ′) = (∪�
i=1Wi, ∪�

i=1Fi \ S).
For a graph G and an edge e of G, a rooted SPQR tree T = (W , F) of (G, e) is

an SPQR tree of G rooted at the unique node r ∈ W with e ∈ M(r). The subtree
module of a node w in T is the graph M(Tw), where Tw is the maximal subtree
of T with root w. Observe that in a rooted SPQR tree each subtree module is
the induced graph of a good peninsula. Let w ∈ W and let C = M(w). The
virtual parent-edge ep of C and of the subtree module of w is defined as follows.
If w is the root of a rooted SPQR tree of (G, e), take ep = e; otherwise, take
ep = RC(H) with H = M(w′) and w′ being the parent of w.

Determining the Smallest k Such That G Is k-Outerplanar 367

Given a biconnected planar graph G, a weight function r and an edge eout

of G, let us now compute an edge-constrained optimal embedding of G with
eout outside since we can later use this computation as an auxiliary procedure
for finding an optimal or an approximative embedding. Recall that a rooted
embedding ϕ of G is optimal (c-approximative) if the peeling steps of the peeling
of (G, ϕ, r, ∅) equals (is bounded by c times) the outerplanarity index of G. Note
that the peeling steps do not depend on r.

First, we compute a rooted SPQR tree T of (G, eout) and then traverse it
bottom-up. Let w be the current node visited by the traversal and let ep = {u, v}
be the virtual parent edge of w. Define H = M(w), C as the subtree module
of w and ϕ as some constrained optimal embedding of (G, r, ∅, eout). In the
following we determine an embedding ϕC′ of C′ = C − ep inherited from ϕ. Let
H ′ = H−ep. By Lemma 5, ep is incident on the outer face of ϕC , i.e., u and v are
incident on the outer face of ϕC′ . By Theorem 7, for all E+ ∈ L({u, v}) we can
determine a constrained optimal embedding ϕC′ of (C′, r, E+, ep) by considering
the peeling P of (H ′, ϕH′ , r′, E+) for all embeddings ϕH′ of H ′ with ep outside
and r′ the (C′, H ′, P)-extended weight function of r. The reason for this is that
recursive calls have already found the constrained optimal embeddings for the
subtree modules of all children of w.

If H is a triconnected or a cycle component, there are only two possible rooted
embeddings of H with ep outside. Thus, there is only one rooted embedding of
H ′ with u and v outside. Therefore, ϕH′ and also ϕC′ can be found in time
linear in the size of H . If H = ({u, v}, EH) is a multiple-edge component, both
vertices of H have to be outside. Depending on E+, we can choose d ∈ {0, 1, 2}
children of w such that their subtree modules are (with an edge) outside in the
embedding obtained from ϕC′ by adding E+ clockwise. Observe that the peeling
numbers of a subtree module of a child of w differ only by at most one for
different orders of the embeddings of the subtree modules between u and v. Let
C1, . . . , C� be the subtree modules of the children of w. The inside peeling number
of Ci (i ∈ {1, . . . , �}) is the number of peeling steps in a constrained optimal
embedding of (Ci, r, {(u, v), (v, u)}, {u, v}) and the outside peeling number of Ci

is the smaller number of peeling steps in the constrained optimal embeddings of
(Ci, r, {(u, v)}, {u, v}) and of (Ci, r, {(v, u)}, {u, v}). Since the peeling number of
C′ is the maximum over the peeling numbers of all Ci (1 ≤ i ≤ �), our goal is
to reduce the largest peeling number. Therefore, we choose for C′ an embedding
such that d subtree modules of the children of w with largest inside peeling
number have outside vertices in ϕC′ . Finding d subtree modules with largest
inside peeling number (i.e., finding ϕC′) needs time linear in the size of H .

Lemma 8. Given a biconnected graph G with a weight function r and an edge
eout of G, an edge-constrained optimal embedding of (G, r, ∅, eout) can be found
in linear time.

For an optimal embedding of a given graph G = (V, E), iterate over all edges
e ∈ E and for an approximative embedding of G consider only one arbitrary
edge e ∈ E. In each iteration use weight function r ≡ 0 and compute an edge-
constrained optimal embedding with e outside. The quality of the approximative

368 F. Kammer

embedding ϕ with edge e outside can be estimated with arguments similar to
those used in the proof of Corollary 2. Let ϕOPT be an optimal embedding of G
and let fOPT be the outer face of ϕOPT. Choose ϕ′ as the rooted embedding such
that ϕOPT and ϕ′ have the same combinatorial embedding and e is outside. The
number of peeling steps to remove (G, ϕ′) is at most twice the number of peeling
steps to remove (G, ϕOPT). Since ϕ is an edge-constrained optimal embedding
with r ≡ 0 and e outside, (G, ϕ) does not need more peeling steps to remove
than (G, ϕ′).

Corollary 9. Given a biconnected planar graph G, a 2-approximative and an
optimal embedding of G can be found in linear and in quadratic time, respectively.

5 The Outerplanarity Index for General Graphs

Given a planar graph G = (VG, EG) with weight function r, we can determine the
peeling number for each connected component separately. Thus, let us assume
in the following that all graphs considered are connected.

Let e ∈ EG and let B be the biconnected component containing e. For the mo-
ment, let us assume that we know the peeling number of a vertex-constrained op-
timal embedding (H, r, ∅, RH(B)) of each B-attached component H . By Theorem
7 we can then determine the (G, B)-increased weight function r′ of r and use the
algorithm for edge-constrained optimal embeddings on B with weight function r′

to obtain an edge-constrained optimal embedding for the whole graph G with e
outside. By an iteration over all edges of G an optimal embedding can be found.

It remains to show how all necessary vertex-constrained optimal embeddings
can be found. For this purpose let us construct the block-cutpoint tree of G
[7,10]. A block-cutpoint tree of a connected graph G is a tree T whose nodes are
the separation vertices and the biconnected components of G. Each biconnected
component B is incident in T to all separation vertices in B. A block-cutpoint
tree can be found in linear time [18]. A rooted block-cutpoint tree T = (W, F, R) is
a block-cutpoint tree (W, F) rooted at some biconnected component R. Given a
rooted block-cutpoint tree T = (W, F, R), the subtree (supertree) component of a
biconnected component B of G is the subgraph of G consisting of the biconnected
component B and all biconnected components below (strictly above) B in T .

Let us traverse some rooted block-cutpoint tree T = (W, F, R) of G first
bottom-up and then top-down. During the bottom-up (top-down) traversal we
compute at each biconnected component B �= R with parent v a vertex-con-
strained optimal embedding of the subtree (supertree) component of B with v
outside as follows. Define during the traversals for each B in the bottom-up case
B′ as B and in the top-down case B′ as the grandparent of B. Note that for
each sub- and supertree component C, we already know the peeling numbers of
each B′-attached component in C. Thus, we can determine the (C, B′)-increased
weight function r′ of r. A vertex-constrained optimal embedding with a vertex
v outside can be found by iterating over each edge e of B′ incident to v and
computing an edge-constrained optimal embedding (B′, r′, ∅, e). In the end, we
obtain for each separation vertex v a vertex-constrained optimal embeddings

Determining the Smallest k Such That G Is k-Outerplanar 369

of all ({v}, {})-attached components in G in quadratic time. Taking r ≡ 0 we
obtain the following.

Theorem 10. Given a planar graph G, an optimal embedding and the outer-
planarity index of G can be found in quadratic time.

For an approximate embedding of a graph G with weight function r the idea is so
far to fix an arbitrary edge e and to search for an edge-constrained optimal em-
bedding with e outside. Unfortunately, we cannot use the same approach as for
an optimal embedding since determining a vertex-constrained optimal embed-
ding of a single big biconnected component may take to much time. Therefore
we take a rooted block-cutpoint tree T , compute only bottom-up for each bi-
connected component B with parent v and subtree component C = (VC , EC) in
T the two embeddings ϕ and ϕ′ of B as defined below and return the smaller
peeling number of the two peelings of (B, ϕ) and of (B, ϕ) and the corresponding
embedding. As weight function use the (C, B)-increased weight function r′ of r
adapted from the peeling numbers obtained by recursive calls.

For some edge e incident on v take ϕ as an edge-constrained optimal embed-
ding of C with e outside. If D is a grandchild of B such that the algorithm has
recursively obtained on input D a biggest peeling number over all grandchildren
and if v∗ is the parent of D, ϕ′ is taken to be a vertex-constrained optimal
embedding of C with v and v∗ outside. Note that ϕ′ need not exist. We can
find ϕ′—if it exists—by computing an edge-constrained optimal embedding of
(VC , EC ∪{v, v∗}) with {v, v∗} outside and then removing {v, v∗}. Use the results
of the recursive calls to find ϕ and ϕ′ in time linear in the size of B.

We now show by induction on the height of a vertex B in T that this bottom-
up computation finds a vertex-constrained 2-approximative embedding ϕ of C
with v outside, i.e., the peeling number of (C, ϕ) is at most twice the peeling
number of (C, ϕ∗) for every other embedding ϕ∗ of C with v outside.

Let kOPT
B , kOPT

C and kOPT
D be the peeling number of a constrained optimal

embedding of (B, r, ∅, {v}), (C, r, ∅, {v}) and (D, r, ∅, {v}), respectively, and let
kB, kC and kD be the peeling numbers obtained from our algorithm for inputs
B, C and D, respectively. Although in ϕ we enforce one fixed edge incident to
v to be outside, the extra peeling costs of kB − kOPT

B are at most 1 since after a
first peeling step the outer face contains each face incident on v. If a vertex of B
causes peeling number kC , i.e., kC = kB , the embedding obtained for C is vertex-
constrained 2-approximative since kC = kB ≤ kOPT

B + 1 ≤ 2kOPT
B ≤ 2kOPT

C .
Otherwise, some subtree component H—possibly H = D—of some grandchild
of B causes the peeling number kC . Let v′ be a child of B connecting B and
H . Let kOPT

H be the peeling number of a constrained optimal embedding of
(H, r, ∅, {v}) and let kH be the peeling number obtained from our algorithm for
input H . Then kD ≥ kH . Define q = kOPT

C − kOPT
H . Let us consider 3 cases:

q > 0: kC ≤ 2kOPT
H + (q + 1) ≤ 2kOPT

H + 2q = 2kOPT
C .

q = 0 ∧ kH < 2kOPT
H : kC ≤ kH +(q+1) = (kH +1)+q ≤ 2kOPT

H +2q = 2kOPT
C .

q = 0 ∧ kH ≥ 2kOPT
H : kOPT

D ≥ kD/2 ≥ kH/2 ≥ kOPT
H = kOPT

C , so that in some
optimal embedding v∗ is outside.

370 F. Kammer

In the first and second case ϕ and in the last case ϕ′ gives us a vertex-constrained
2-approximative embedding. Similarly as in the proof of Corollary 9 we can con-
clude that a vertex-constrained 2-approximative embedding is a 4-approximative
embedding. Taking r ≡ 0 we obtain the following.

Theorem 11. Given a planar graph G, a 4-approximative embedding of G and
a 4-approximation of the outerplanarity index of G can be found in linear time.

References

1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. Journal of the ACM 41, 153–180 (1994)

2. Bienstock, D., Monma, C.L.: On the complexity of embedding planar graphs to
minimize certain distance measures. Algorithmica 5, 93–109 (1990)

3. Chiba, N., Nishizeki, T., Abe, S., Ozawa, T.: A linear algorithm for embedding
planar graphs using PQ-trees. J. Comput. System Sci. 30, 54–76 (1985)

4. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

5. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science 209, 1–45 (1998)

6. Di Battista, G., Tamassia, R.: Incremental planarity testing. In: Proc. 30th IEEE
Symp. on Foundations of Computer Science, pp. 436–441 (1989)

7. Gallai, T.: Elementare Relationen bezüglich der Glieder und trennenden Punkte
von Graphen. Magyar Tud. Akad. Mat. Kutato Int. Kozl. 9, 235–236 (1964)

8. Garey, M.R., Johnson, D.S: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co, San Francisco, Calif. (1979)

9. Gu, Q.P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n3)
time. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 373–384. Springer, Heidelberg (2005)

10. Harary, F., Prins, G.: The block-cutpoint-tree of a graph. Publicationes Mathe-
maticae Debrecen 13, 103–107 (1966)

11. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR tree. In: Marks,
J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

12. Mehlhorn, K., Mutzel, P.: On the embedding phase of the Hopcroft and Tarjan
planarity testing algorithm. Algorithmica 16, 233–242 (1996)

13. Reed, B.: Finding approximate separators and computing tree-width quickly. In:
Proc. 24th Annual ACM Symp. on Theory of Computing (STOC 1992), pp. 221–
228 (1992)

14. Röhrig, H.: Tree Decomposition: A Feasibility Study, Master’s thesis, Max-Planck-
Institut für Informatik in Saarbrücken (1998)

15. Robertson, N., Seymour, P.D.: Graph minors. I Excluding a forest. J.Comb.Theory
Series B 35, 39–61 (1983)

16. Robertson, N., Seymour, P.D.: Graph minors. III Planar tree-width.
J.Comb.Theory Series B 36, 49–64 (1984)

17. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

18. Tarjan, R.E.: Depth-first search and linear algorithms. SIAM J. Comp. 1, 146–160
(1972)

19. Whitney, H.: Non-separable and planar graphs. Trans. Amer. Math. Soc. 34, 339–
362 (1932)

On the Size of Succinct Indices�

Alexander Golynski1, Roberto Grossi2, Ankur Gupta3,
Rajeev Raman4, and Satti Srinivasa Rao5

1 David R. Cheriton School of Computer Science, University of Waterloo, Canada
2 Dipartimento di Informatica, Università di Pisa, Italy

3 Butler University, USA
4 Department of Computer Science, University of Leicester, UK

5 IT University of Copenhagen, Denmark

Abstract. A succinct data structure occupies an amount of space that
is close to the information-theoretic minimum plus an additional term.
The latter is not necessarily a lower-order term and, in several cases,
completely dominates the space occupancy both in theory and in prac-
tice. In this paper, we present several solutions to partially overcome this
problem, introducing new techniques of independent interest that allow
us to improve over previously known upper and lower bounds.

1 Introduction

What is the minimal space complexity for encoding and storing a subset of
n elements out of an universe of m elements? Having numbered the elements
of the universe from 1 to m, information theory indicates that since there are(
m
n

)
such subsets, each one to be distinguished from the others requires at least

B(m, n) = �lg (
m
n

)� bits1. According to Jacobson [9], a representation that uses
B(m, n)+O(1) bits for an arbitrarily chosen subset is called a succinct encoding.

Dictionaries over the universe {1, 2, . . . , m} are ubiquitous data structures
that have been the subject of deep theoretical investigation and are interesting
also from a practical point of view. A subset implicitly represents a dictionary
storing n elements as a bit-string S of length m with n 1s, such that the ith bit
is 1 if and only if the ith element of the universe belongs to the dictionary. We
wish to support the following operations, where x can be chosen as bit 0 or 1:

– rankx(S, i) returns how many xs are contained in the first i positions of S.
– selectx(S, i) returns the position of the ith occurrence of x in S.

We omit the first parameter S when it is clear from the context. We wish to
support these operations in constant time on the RAM model with word size
O(lg m) bits. Following [15], we call such a data structure a fully indexable dictio-
nary (FID). Note that the predecessor of an element k to the dictionary can be
found in O(1) time using select1(rank1(k)). Using the lower bound by Beame and
Fich [1], we can infer that FIDs using at most B(m, n) + nO(1) lg m bits do not
� Part of this work was done while Gupta was at Purdue University, and Raman was

on study leave and visiting DIMACS.
1 lg denotes the logarithm base 2.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 371–382, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

372 A. Golynski et al.

exist in general. A recent paper by Patrascu and Thorup [14] implies that there
is no FID that uses B(m, n) + o(n) bits unless m = n lgO(1) n or n = lgO(1) m.

Theorem 1 ([15]). A FID uses B(m, n) + O(m lg lg m/ lgm) bits.

Theorem 1 has found many applications, but leaves open the fundamental ques-
tion of the precise space complexity of FIDs that support operations quickly —
as a first step, is the term of O(m lg lg m/ lg m) in Theorem 1 necessary?

In an effort to answer this question, researchers have considered the case when
the bit-string of m bits representing the set is explicitly stored in the encoding
in raw form: such encodings are called systematic in [4]. Note that in many
applications of FIDs, n ∼ m/2, and B(m, n) = m − O(lg m). In this case, the
restriction to systematic encodings would appear, naively, not to be a serious one.
For systematic encodings, it has been shown that Ω(m lg lg m/ lgm) additional
bits are needed to support operations in O(1) time by Miltersen [10] (for rank)
and Golynski [6] (for select). A matching upper bound, with improved constants
is described in [6]. Hence, systematic FIDs require m + Θ(m lg lg m/ lgm) bits.

As B(m, n) can be significantly less than m when n � m, it is clear that any
FID that approaches the information-theoretic lower bound of B(m, n), including
the FID of Theorem 1, cannot be systematic. We show the following:

(1) We give an FID that uses B(m, n) + O(m lg lg m/(lg m)2) bits of space,
saving a lg m factor from the “wasted space” in Theorem 1. FIDs are employed
in a variety of compressed data structures for text indexing, data compression,
and graph algorithms: we improve the complexity for many of these results.
Since B(m, n) ≤ m for all n, we obtain an FID that takes no more than
m + O(m lg lg m/(lg m)2) bits of space, which is lower than the lower bound
of Miltersen [10] and Golynski [6] for systematic encodings. This shows that
even in the important case of FIDs for sets where n ∼ m/2 (and hence where
B(m, n) ∼ m), the restriction to systematic encodings yields weaker space upper
bounds. The general observation that systematic encodings are strictly weaker
than unrestricted encodings was previously noted in several places, most notably
Gál and Miltersen [4] and Munro et al. [12] (see also [15]).

(2) As noted, O(1)-time FIDs only exist when m = n lgO(1) n. For sufficiently
sparse sets, e.g., m = n(lg n)1+c for any c > 0, the O(m lg lg m/ lg m) term in
Theorem 1 is larger than B(m, n), and Theorem 1 is not even close to being a
succinct representation. A previous result of Pagh [13] obtained an implemen-
tation of rank alone using B(m, n) + O(n(lg lg n)2/ lg n) bits for the case where
m = n lgO(1) n. In this paper, we provide an implementation of an FID (including
select) using B(m, n) + O(n(lg lg n)2/ lg n) bits when m = n lgO(1) n, thus pro-
viding a succinct FID for all “interesting” values of n for which O(1)-time FIDs
can exist. The lower bound of Ω((n lg t)/t) in [6] implies that for m = n lgO(1) n
and t = O(lg m) = O(lg n), we obtain Ω(n lg lg n/ lg n), so our upper bound is a
lg lg n factor larger (and can be converted to an indexing data structure).

(3) Informative encoding is a crucial and novel technique that we introduce
in this paper. It is able to store the summary information by “wasting” only
O(1) bits. As an example, we give an encoding E of a sequence of k bits that

On the Size of Succinct Indices 373

occupies at most k + 2 bits, such that the number of 1s in the sequence can
be determined by looking at lg k + O(1) consecutive bits of E. Instead, existing
FIDs use k + Θ(lg k) bits for this purpose, giving rise to O(m lg lg m/ lg m).

(4) We also study the complexity of encoding a sequence of m balanced
parentheses, to support the following operations in O(1) time: finding a match-
ing parenthesis (findclose, findopen) and finding the nearest enclosing matching
pair of parentheses (enclose). This data structure is fundamental to succinct
representations of trees and graphs [11,9]. We obtain an upper bound of m +
O(m lg lg m/(lg m)2) bits — the lower-order term is Θ(lg m) times smaller
than [5] — and a lower bound of m+Ω(m lg lg m/ lgm) for systematic encodings.

We aim at improving the additional terms. Some experimental work has shown
that this improvement is significant [8]. To this end, let’s discuss one of the
applications of succinct dictionaries, namely, compressed text indexing [7]. Given
a text T defined over an alphabet of size σ, its compressed text index or self-
index stores T in nHk + O(n lg lg n/ lgσ n) bits for k ≤ ε lgσ n and a positive
constant ε < 1, and allows searching for any pattern string P as a substring of T
in O(|P |+lgO(1) n) time. The additional term of O(n lg lg n/ lgσ n) can be much
larger than nHk (i.e., if T is made up of all equal symbols, nHk = 0), and comes
from the additional term of O(m lg lg m/ lg m) in the FIDs used to implement
the compressed text index. Improving the latter to O(m lg lg m/ lg2 m) may give
a better bound of nHk + O(n lg lg n/(lgσ n lg n)) for the space complexity.

Preliminaries. We describe a few basic notations and conventions that we will
use throughout the paper. For any integer x ≥ 1, we let [x] refer to the set
{1, 2, . . . , x}. For a given input bit-string S, we will often partition S into fixed-
length substrings, which we call blocks ; S may also be divided into variable-length
chunks. We refer to the length of a chunk (in bits) as its width, and the number
of 1s it contains as its cardinality.

2 Compressed Bit Vector

In this section, we improve the lower order term in Theorem 1 by a poly-
logarithmic factor when the length m of a bit vector S is a poly-logarithmic
factor larger than its cardinality n, i.e., m = n lgO(1) n.

Theorem 2. When m = Θ(n lgc n) for a constant c > 0, we can store a FID
using B(m, n) + O(n (lg lg n)2/ lg n) bits.

2.1 Partition into Chunks

We partition S into blocks of length b = m(lg n)/n, and further partition blocks
into variable width chunks. We allocate chunks within a block in a greedy fashion
from left to right subject to the constraint that the cardinality of a chunk cannot
exceed s = lg n/(2(c + 1) lg lg n). See Fig. 1 for an example.

Lemma 1. The number g of chunks c1, . . . , cg obtained by the above greedy par-
titioning satisfies g ≤ n/s + m/b = O(n lg lg n/ lg n).

374 A. Golynski et al.

1 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0

1 1 0 1 0 0 1 1 0 0 0 0 1

1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 1

10 0

S

R1

R0

chunk

block

Fig. 1. Partition into chunks (dashed lines) of sequence S and its corresponding bitvec-
tors R0 and R1, using the logical blocks (in gray lines)

Let mj denote the width of chunk cj , and nj denote the cardinality of cj, for
1 ≤ j ≤ g. Note that m =

∑g
j=1 mj and n =

∑g
j=1 nj, and that mj ≤ b and

nj ≤ s. We build a basic suite of common components according to Lemma 1.
The chunk representation bit-string C: each chunk cj is represented using the

canonical subset encoding in B(mj , nj) ≤ s lg b + O(1) = (lg n)/2 + O(1) bits of
space, and C is the orderly concatenation of the binary encoding for c1, c2, . . . , cg.
Using the fact that

∑g
j=1 B(mj , nj) ≤ B(m, n) + O(g) (see [2]), the total space

occupancy for C is B(m, n) + O(g) bits.
The chunk offset data structure CO: it stores, for each chunk cj , the starting

position of its binary encoding in C. The data structure is an array with fixed-
size entries, where the jth entry stores the length of the binary encoding of cj ,
for 1 ≤ j ≤ g. The size of cj ’s binary encoding cannot be greater than mj ; since
mj ≤ b, the array entries can take lg b bits each. In addition, we explicitly store
the offset of every (lg n/(2 lg b))th chunk in a second array, and build a lookup
table for every possible sequence of (lg n/(2 lg b)) chunk offsets. This allows us
to compute the prefix sums of the offsets for the first k chunks in the sequence,
where 1 ≤ k ≤ (lg n/(2 lg b)). The total space used by the two arrays and the
table is O(g lg b) = O(n(lg lg n)2/ lg n) bits. To decode an individual offset, we
look up an explicitly-stored offset in the second array, and then perform a table
lookup on the entries of the first array in between.

2.2 Supporting rank on S

We store the following data structures. We store chunk widths m1, m2, . . . , mg in
an array CW with fixed-size entries of lg b bits each, taking O(n(lg lg n)2/ lg n)
bits. First, we find the correct block of S by using a classic two-level scheme that
occupies O(n lg lg n/ lg n) bits of space. To compute prefix sums within a block,
we store a sequence of implicit tree structures, one for each block, that performs
this search in O(1) time. To mark the location of each implicit tree, we require
O(g lg lg n) bits, using Theorem 1.

Assume that b is a multiple of �lg b�. Then, the implicit tree for a given block
has no more than b/ lg b = O(lgc+1 n/ lg lg n) leaves. The internal nodes are fixed-
size of (lg n)/2 bits each, and have Θ(lg n/ lg b) = Θ(lg n/ lg lg n) children. An
internal node stores the sum of the chunk widths stored in the descending leaves

On the Size of Succinct Indices 375

of each child using lg b bits per child. These stored sums fit in the node. The total
number of bits needed to store the internal nodes is proportional to the number
of bits required to store the chunk widths, which are the leaves. Therefore, the
space occupancy for all implicit trees is O(g lg lg n), as for the sequence of chunk
widths. All the nodes are stored in heap order. Thus, multiway branching from
each node can be performed in O(1) time by a table lookup using an additional
O(

√
n · b) = Θ(

√
n lgc+1 n) bits. Finally, since the height of each tree is O(1), we

can identify the correct leaf/chunk cj in O(1) time. The total space required by
CW is O(n(lg lg n)2/ lg n) bits.

The chunk cardinality data structure CC: it stores the sequence of chunk
cardinalities n1, n2, . . . , ng in an array with fixed-size entries of lg b bits each.
This takes O(g lg b) = O(g lg lg n) = O(n(lg lg n)2/ lgn) bits and operates in
O(1) time. We use implicit trees as in CW to implement CC.

The implementation of operation rank(i) proceeds as follows. We perform a
search on CW to find the chunk cj in which i lies. Then we search on CC to
find the number x of 1s contained in the first j − 1 chunks of S. We get the
number y of 1s up to position i inside cj by a table lookup on cj itself (accessed
via C and CO), since the binary encoding of cj is at most (lg n)/2 + O(1) bits.
We return x + y as output, taking a total of O(1) time.

2.3 Supporting select on S

It is not clear how to support both kinds of select operations using the above
representations, and we take an indirect approach. Assume that S begins with
a 1 and ends with a 0; (otherwise ensure this by adding one bit before and
after S at negligible cost, and adjust Proposition 1 appropriately). We describe
S by two bit-vectors R0 and R1, defined as follows. If there are runs of 0s of
length l1, l2, . . . , lz in S, then R0 is simply 0l1−110l2−11 . . .0lz−11. R1 is defined
analogously, using the runs of 1s. See Fig. 1 for an example.

Proposition 1 ([3]). If S has n 1s then R1 is of length n and has at most n
1s. R0 is of length m − n and has at most n 1s. Furthermore, select1(S, i) =
select1(R0, rank1(R1, i − 1)) + i and select0(S, i) = select1(R1, rank1(R0, i − 1) +
1) + i, taking select1(·, 0) = rank1(·, 0) = 0 on the RHS.

We only need to support select1 and rank1 on R0 and R1. However, we will
not store R0 and R1 explicitly, as it would take too much space. Instead, we
conceptually partition R0 and R1 in a manner consistent with the partition of
S (Lemma 1), allowing the chunks of R0 and R1 to be deduced from the chunks
of S. Since the length of R1 equals the number of 1s in S, if a chunk in S
contains the k-th, (k + 1)-st, . . ., (k + l − 1)th 1s in S, for some l ≥ 0, then the
corresponding chunk in R1 consists of all the bits in positions k, k+1, . . . , k+l−1
of R1. (The chunk in R1 may be of cardinality zero.) Similar observations apply
for R0. Now, the chunks of S and their homologous chunks in R0 and R1 do
not cross block boundaries. We state a few facts about R1 that apply to R0

unless noted otherwise. R1 consists of at most g = n/s+m/b = O(n lg lg n/ lg n)
chunks, each of length b, and contains at most s 1s. (R0 can have s + 1 1s.) The

376 A. Golynski et al.

representation of a chunk x in S, together with the bit that immediately follows
x in S, implicitly determines the corresponding chunk in R1.

Operation rank on R1 and R0. These proceed exactly as rank on S (Sec-
tion 2.2), but we cannot store R1 and R0 explicitly. We recover the jth chunk of
R1 and R0 by using CO, a table lookup on its corresponding chunk cj (stored
using at most (lg n)/2 + O(1) bits, and the first bit of cj+1 (if any). This pro-
cess takes O(1) time, and the lookup table requires O(

√
n lg n) bits. We also

build data structures to support rank on R1 (R0), similar to those on S, namely,
chunk width CW (R1), stored in O(n(lg lg n)2/ lg n) bits, and chunk cardinality
CC(R1), stored in O(n(lg lg n)2/ lg n) bits. Since we can retrieve any chunk of
R1 in O(1) time, the implementation of rank on R1 and R0 is a straightforward
generalization of what we discussed in Section 2.2. Time complexity is still O(1).

Operation select1 on R1 and R0. We describe how to perform select1 on R1.
(R0 is similar.) The chunks of R1 and R0 are obtained implicitly in O(1) time,
so we just need the following additional data structure.

The ones distribution data structure OD(R1): it is a bit-vector with g 0s and
at most n 1s; in effect, a unary encoding of the distribution of 1s of R1 to the
chunks of R1. Each of the 0s delimits a chunk boundary and the non-negative
number of 1s between consecutive 0s indicates the cardinality (number of 1s)
of the corresponding chunk. We store the bit-vector using Theorem 1, taking
O(g lg(n/g)) = O(n(lg lg n)2/ lg n) bits.

The implementation of select1(i) on R1 uses OD(R1). We compute r =
select1(i) and j = rank0(r) + 1 (both on OD(R1)). This tells us that the jth
chunk in R1 contains the ith 1 of R1. Using CC(R1), we find a non-negative
number x, which is the number of 1s in R1 up to the start of chunk cj . We then
look up CO to access chunk cj (and the first bit of cj+1), and the lookup table
to deduce the jth chunk of R1. At this point, using another table, we can select
the (i − x)th 1 that appear in the jth chunk of R1. This displacement is added
to the prefix sum of the widths of the first j − 1 chunks in R1 (computed using
CW (R1)), and the result is given as the output of select1(i) on R1. This takes
O(1) time. This discussion completes the proof of Theorem 2.

3 Compressed Dense FIDs

3.1 Informative Encodings

Recall that informative encodings of an object use space very close to the
information-theoretic bound, but allow some properties of the object to be de-
duced by looking at a few consecutive bits of the encoding. We now show the
existence of one kind of informative encoding:

Lemma 2. Given a finite universe U , and a partition of U into t sets C1, . . . , Ct.
For any probability distribution P over U such that for all i, and all x, y ∈ Ci,
P(x) = P(y) > 0, we can encode any x ∈ U such that:

On the Size of Succinct Indices 377

– the encoding takes at most �lg(1/P(x))� + 2 bits, and
– by inspecting lg t + O(1) consecutive bits of the encoding of x, we can deter-

mine the index i such that x ∈ Ci.

Proof. Consider the alphabet Σ = {“1”, “2”, . . ., “t”}. We construct a prefix
code φ on Σ. If x ∈ Ci, the encoding of x comprises φ(“i”) followed by an
encoding of x as an integer in the range 1..|Ci|, using �lg |Ci|� bits. Clearly, this
is a valid encoding of x; we next show the existence of a suitable prefix code φ.

Let pi be the (common) probability of all elements in Ci, and take li =
�lg(1/pi) − lg |Ci|�. We require that the length of φ(“i”) is at most li, so that the
total length of the encoding of x is li+�lg |Ci|� ≤ �lg(1/pi)�+1 = �lg(1/P(x))�+1
bits. Now observe that

∑t
i=1 2−li ≤ ∑t

i=1 pi · |Ci| = 1, the latter equality holding
since P is a probability distribution. Thus, by the Kraft-McMillan inequality, a
prefix code φ′ exists where the code for “i” has length at most li, and indeed φ′

can be constructed by a simple greedy algorithm given the lengths li.
To limit on the length of the code of an individual symbol, we create a new

prefix code φ from φ′ as follows. Whenever φ′ assigns a code that is longer than
�lg t� bits to a symbol, φ encodes the symbol using a fixed-width code of length
�lg t� bits, otherwise φ uses the code assigned by φ′ to the symbol. To distinguish
between the two cases, each code in φ is prefixed with an additional bit to specify
whether the symbol is encoded using φ′ or the fixed-width code. Using φ as our
prefix code, the length of the encoding of x increases to at most �lg(1/P(x))�+2
bits, but allows the index i to be decoded by reading at most �lg t� + 1 bits.

We now illustrate a use of this lemma. Suppose we consider U to be all subsets
of [k] and, for i = 0, . . . , k, we let Ci = {S ∈ U ||S| = i}. For all S ⊆ [k], we take
P(S) = 2−k (i.e. the uniform distribution over subsets of [k]). Then we get an
encoding of a given S ⊆ [k] that uses at most k + 2 bits, such that |S| can be
determined by reading lg(k +1)+O(1) contiguous bits of the encoding of S. We
now show a more complex application of Lemma 2:

Corollary 1. Let k, t > 0 be integers, and p, q > 0 be reals with p+q = 1. Given
a sequence of kt bits, viewed as t contiguous subsequences of k bits each, there
is an encoding of this sequence using is at most �r lg(1/p) + (kt − r) lg(1/q)�+4
bits, which is a concatenation of the following parts:

1. a prefix code of at most lg(kt) + O(1) bits that specifies the number r of 1
bits in the sequence.

2. an encoding of the positions of the 1 bits that occupies at most B(kt, r)+O(1)
bits, itself comprising: (a) a prefix code of t lg(kt) + O(1) bits, that specifies
the number of 1 bits in each subsequence, and (b) an encoding of the positions
of the 1 bits in each subsequence.

3.2 Compressed Dense FIDs Via Informative Encodings

We first show the following generalization of [12, Theorem 3] (proof omitted)
before proving the main result of this section, Theorem 3:

378 A. Golynski et al.

Lemma 3. Let t > 0 be an integer and let ū = (u1, . . . , ut) be a sequence of
positive integers. Given t and ū, and a positive integer parameter z < t, one can
represent any sequence of positive integers x̄ = (x1, . . . , xt), where 1 ≤ xi ≤ ui,
using

∑t
i=1 lg ui +O(1+ t/z) bits, in such a way that xi can be accessed in O(1)

time, for any i, on a RAM with word size O(t lg z + lg maxi{ui}) bits, using
precomputed tables of size O(t(zt lg z + lg(

∑t
i=1 lg ui))) bits that depend upon ū,

t and z, but not upon x̄.

Theorem 3. We can store a FID using B(m, n) + O(m lg lg m/(lg m)2) bits.

Proof. We divide the input bit sequence into blocks of k = �(lg m)/2� bits each,
superblocks comprising t = �α lg m/ lg lg m� blocks each for sufficiently small α >
0, and megablocks comprising t superblocks each. Letting p = n/m and q = 1−p,
we aim to represent a megablock with r 1s in r lg(1/p)+ (kt2 − r) lg(1/q)+O(t)
bits, so that rank and select within a megablock can be supported in O(1) time;
the sizes of the megablock representations add up to n lg(1/p)+(m−n) lg(1/p)+
O(m/(kt)) = B(m, n) + O(m lg lg m/(lg m)2) bits.

A superblock is encoded along the lines described in Corollary 1, using
Lemma 3 to implement item 2(b), with a few additional details. Specifically,
let Ri denote the number of 1s in the i-th superblock. The prefix codes for the
Ris (item (1) from Corollary 1) are concatenated at the start of the megablock,
forming a megablock overview. Since each prefix code is O(lg(kt)) = O(lg lg m)
bits, the megablock overview takes at most O(t lg lg m) ≤ (lg m)/8 bits if α is
chosen sufficiently small. The megablock overview is followed by the encoding
of the superblocks, where the i-th superblock is stored in B(kt, Ri) + O(1) bits,
for i = 1, . . . , t. If a superblock’s encoding is shorter than B(kt, Ri) + O(1) bits,
it is padded out to this length: this ensures that table lookup on the megablock
overview allows us to determine the offset where the encoding of the ith su-
perblock begins. The megablock overview also allows (via table lookup) a rank
or select in a megablock to be reduced to that in a superblock.

Consider a particular superblock and denote its blocks by b1, . . . , bt, and let
the number of 1s in bi be ri; let r =

∑t
i=1 ri. We use Lemma 3 to store the

encodings of the blocks, with parameters t as here, and z = t. The size of the
tables for constant-time decoding of an individual block is easily seen to be
O(mε) bits, for any ε > 0, by choosing α small enough, and these tables can be
re-used by all superblocks that have exactly the same distribution of 1s in their
blocks. The prefix code for the tuple (r1, . . . , rt) is α lg m + O(1) bits long, and
it can be decoded using tables of size O(mε′

) bits, for any ε′ > 0, by choosing α
small enough. This also shows that the number of distinct tuples (r1, . . . , rt) is
O(mε′

), and so the tables across all applications of Lemma 3 have size O(mε+ε′
).

We now complete the proof. Let Mi denote the number of 1s in the ith
megablock. We create bit sequences D0 = 0kt2−M110kt2−M21 . . . and D1 =
0M110M21 . . ., and store them as FIDs using Theorem 2. Note that both D0

and D1 have m/(kt2) 1s (equal to the number of megablocks) and at most m 0s,
and thus have a sufficiently large number of 1s relative to their total size that
Theorem 2 applies. Further, note that the FIDs occupy O(m(lg lg m/ lg m)3) bits

On the Size of Succinct Indices 379

and so have negligible size. It is also easy to verify that using rank and select
operations on D0 and D1 one can reduce rank and select operations on the input
bit sequence to operations on the megablocks.

4 Representing Balanced Parenthesis Sequences

Given a balanced parenthesis sequence (BP, for short) of length m, we want to
represent it space-efficiently to support the following operations, for a position
1 ≤ i ≤ m: findopen(i) (findclose(i)) returns the location of the matching paren-
thesis for an opening (closing) parenthesis at the location i; enclose(i): returns
the open parenthesis of the pair that most tightly encloses the location i.

4.1 Lower Bound

Weshowalowerboundonthesizeoftheindexrequiredtosupportfindcloseonagiven
BP, S, that is represented in memory in its verbatim form. On a query findclose(i),
our algorithm performs at most τ bit probes on S (adaptively), any number of bit
probes on an index I of size r, and also allowed unlimited computation.

Theorem 4. Given a balanced parenthesis sequence S of length m, any index
that supports findclose queries by making τ bit probes to S requires an additional
index of size r = Ω(m lg τ/τ) bits.

Proof. We use techniques similar to [6]. Let us consider a set B of balanced paren-
thesis strings S of the following form: (i) S starts with hp opening parentheses
for some parameters h and p, (ii) the rest of S is divided into 2p blocks of width
k, k = (m − hp)/(2p); and (iii) the matching parenthesis pi = findclose(ih + 1)
is located in the 2(p − i)-th block for 0 < i < p, and findclose(1) = n.

S = ((. . . (︸ ︷︷ ︸
hp

∗ ∗ . . . ∗︸ ︷︷ ︸
k

∗ ∗. . .). . .∗︸ ︷︷ ︸
k

. . . ∗ ∗. . .). . .∗︸ ︷︷ ︸
k

∗ ∗. . .∗︸ ︷︷ ︸
k

∗ ∗ . . . ∗)︸ ︷︷ ︸
k︸ ︷︷ ︸

2p blocks

We start by showing that |B| = Ω(2m−hp−Θ(p)). First, divide S into chunks,
so that the first chunk starts at the position hp + 1 and ends at the posi-
tion findclose(i(p − 1) + 1), and the (p + 1 − i)-th chunk starts at the po-
sition findclose(ih + 1) + 1 and ends at the position findclose((i − 1)h + 1)
for i, 1 ≤ i ≤ p − 1. Let m1, m2, . . . , mp denote the width of these chunks,∑

mi = m − hp, and note that k ≤ mi ≤ 3k for all i, 1 ≤ i ≤ p. We use
Bertrand’s ballot theorem to bound the number of sequences with fixed width
of chunks. This theorem shows that ”If in an election where one candidate re-
ceives x votes and the other y votes with x ≥ y, the probability that the first
candidate be strictly ahead of the second candidate throughout the count is
(x−y)/(x+y)”. We can look at the i-th chunk from right to left (i.e. backward)
as a sequence of votes: closing parenthesis is a +1 vote, and open parenthesis
is a −1 vote. The sum of the votes is h at the end, and at each moment of

380 A. Golynski et al.

time, it is strictly positive. Thus, the number of possible blocks of length mi is
h

mi

(
mi

(mi + h)/2

)
= Ω

(
h

mi

(
mi

mi/2

))
= Ω

(
h

mi

2mi

√
mi

)
, if h = O(

√
mi). Taking

product over all i, we obtain Ω

(
2m−hp−Θ(p) hp

k3p/2

)
. We can choose the posi-

tion pi within the 2(p − i)-th block arbitrarily respecting the parity constraint
(the width of any block should be the same parity as h), so that there are at
least Ω((k/2)p) possible combinations of blocks’ boundaries. If h =

√
k, then

|B| ≥ 2m−ph−Θ(p).
The choices tree is a binary tree, the nodes of the first r levels are labeled with

“I[d]=?” where d is the depth of the node, and the rest of nodes are labeled with
“S[l]=?” for some l, 1 ≤ l ≤ m. The edges are labeled with 0 or 1. The first r levels
of this tree correspond to the index. At each node at depth r of the tree constructed
so far, we attach the decision tree of the algorithm on the query findclose(1). At each
leaf the previously constructed tree, we attach the decision tree for findclose(h+1)
and so on. If on the same computation path we discover two nodes of the form
“S[l]=?” for the same value of l, we delete all of them except the topmost. We also
delete the nodes that probe the first hp locations. We pad the tree by probing ar-
bitrary locations, so that all the leaves are at the same level r + pτ .

Let us fix a leaf x, we call a string S compatible with x if: (1) first r nodes on the
root to the leaf path correspond to the index for S; and (2) the remaining nodes
on the root to the leaf path correspond to the choices made by the computation
described above performed on S. Let C(x) be the set of compatible strings for
the leaf x. Let ui be the number of unprobed locations in the i-th chunk, and vi

be the number of unprobed locations that correspond to opening parentheses, vi

equals to (mi −h)/2 minus the number of revealed “(” on the computation path
to x. Both values ui and vi depend on the leaf x only, but not on the choice of
string S ∈ C(x). Thus,

C(x) ≤ 2U

(
u1
v1

)

2u1

(
u2
v2

)

2u2
. . .

(
up

vp

)

2up
≤

(
u1

u1/2

)

2u1

(
u2

u2/2

)

2u2
. . .

(up

up/2

)

2up
= O

(
2U

√
u1

√
u2 . . .

√
up

)

where U =
∑

ui = m − hp − pτ is the total number of unprobed locations. Let
p = m/(6τ), so that k = 3τ −o(τ) (since h = O(

√
τ)). We say that the i-th chunk

is determined if ui < τ , i.e. at least 2τ locations are probed, the number of such
chunks is at most p/2. Thus, the product in the denominator is at least τm/(12τ).
The total number of leaves in the choices tree is 2r2pτ , so that 2m−hp−Θ(p) ≤
|B| ≤ 2r2pτ2m−hp−pττ−m/(12τ), and hence r ≥ (m lg τ)/(12τ) − Θ(m/τ).

4.2 Upper Bound

Theorem 5. A BP of length m can be encoded in m+O(m lg lg m/(lg m)2) bits
to support findclose, findopen and enclose in O(1) time.

Proof. Divide the balanced parenthesis sequence (BP) into blocks of size k =
(lg m)/2 each, superblocks comprising t = O(lg m/ lg lg m) blocks each, and
megablocks comprising t superblocks each (as in the proof of Theorem 3).

On the Size of Succinct Indices 381

Given a parenthesis sequence x (not necessarily balanced), we define the func-
tion closeexcess(x, i) = rankclose(x, i) − rankopen(x, i) and (note that rankopen
and rankclose are same as rank0 and rank1 as we store the BP as a bit sequence).
We also define maxclose(x) (maxopen(x)) as the maximum, over all prefixes of
x, of the number of closing (opening) parentheses minus the number of opening
(closing) parentheses. Note that 0 ≤ maxopen(x), maxclose(x) ≤ |x|.

We partition the set of all possible blocks into sets C〈n,d,e〉 for 0 ≤ n, d, e ≤ k.
A block x belongs to the set C〈n,d,e〉 where n = rankopen(x, |x|), d = maxopen(x)
and e = maxclose(x). A block x is uniquely determined by the triple 〈n, d, e〉
together with an index c in the range 1..|C〈n,d,e〉| that stores the position of x
among all the blocks that belong to C〈n,d,e〉 in some canonical ordering. We also
use a similar partition over all superblocks to encode them succinctly.

Using the ideas described in the proof of Theorem 3 we encode each megablock
using kt2+O(t) bits that enables us to retrieve the 〈n, d, e〉 triple for any block or
superblock within the megablock in constant time (using additional precomputed
tables of negligible size. So the overall space used to store the encodings of all
the megablocks is (m/kt2)(kt2 + O(t)) = m + O(m lg lg m/(lg m)2) bits.

Operations. For each megablock, we store rankopen and rankclose up to its
beginning using Theorem 2. Since the number of megablocks is O(m/kt2) it
requires O((m/kt2) lg(kt2)) = o(m/(lg m)2) bits. These values up to the begin-
ning of a block or a superblock within a megablock can be obtained using the
megablock encoding. Within a block, these values can be computed using a table
lookup on the block representation. Thus we can support rankopen and rankclose,
and hence closeexcess, for an arbitrary position in the sequence, in O(1) time.

Findclose. We use a structure similar to the one described in Geary et al. [5],
and we only mention the deviations required to reduce the space bound.

We define the pioneer and far parentheses and the pioneer family as in
Geary et al. [5], except that we define them with respect to the megablocks
instead of blocks. The original sequence is encoded as outlined above, to
support rankopen, rankclose and closeexcess operations in constant time using
m + O(m lg lg m/(lg m)2) bits. The NND storing the positions of the pioneer
family (a set of size O(m/kt2) from [m]) takes o(m/(lg m)2) bits by using the
structure of Theorem 2. The recursive parenthesis data structure for the pioneer
family (a BP of length O(m/kt2)) also takes o(m/(lg m)2) bits.

As all the required operations on the pioneer family can be supported in con-
stant time, it suffices to support the following operation in constant time: given
a megablock x, an index i within it and a value 0 ≤ v ≤ kt2, find the first
(closing parenthesis at) position j after i within x such that closeexcess(x, j) =
closeexcess(x, i) + v (if it exists). We use precomputed tables on block repre-
sentations, and on the sequences of 〈n, d, e〉 triples stored for the blocks and
superblocks stored in the megablock encoding to support the above operation
(and also various other operations described below, within a megablock).

Enclose. Let μ(i) denote the position of the closing parenthesis corresponding
to the opening parenthesis at position i. To find p = enclose(c), we first check

382 A. Golynski et al.

whether p or μ(p) is in the same megablock as c. Finding μ(p) if it belongs to
the same megablock as c is same as the above operation with v = 2. Finding p
if it belongs to the same megablock as c can be done similarly.

Since operations on the pioneer family can be supported in O(1) time, it
suffices to show how to find the first far open parenthesis to the left of a given
position q in a megablock. Within a block, this can be done in constant time by
a table lookup, but it’s not clear how to support it in a megablock in constant
time. We further observe that it suffices to support this when the parenthesis at
position q is a pioneer. In this special case, we can actually store these values
(the difference between q and the answer, using O(lg lg m) bits) for each pioneer.

References

1. Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related
problems. J. Comput. Syst. Sci. 65, 38–72 (2002)

2. Brodnik, A., Munro, J.I.: Membership in Constant Time and Almost-Minimum
Space. SIAM J. Computing 28, 1627–1640 (1999)

3. Delpratt, O., Rahman, N., Raman, R.: Engineering the LOUDS succinct tree rep-
resentation. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp.
134–145. Springer, Heidelberg (2006)

4. Gál, A., Miltersen, P.B.: The cell probe complexity of succinct data structures.
Theor. Comput. Sci. 379, 405–417 (2007)

5. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation
for balanced parentheses. Theor. Comput. Sci. 368, 231–246 (2006)

6. Golynski, A.: Optimal lower bounds for rank and select indexes. In: Bugliesi, M.,
Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
370–381. Springer, Heidelberg (2006)

7. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proc. 14th ACM-SIAM SODA, pp. 841–850. ACM Press, New York (2003)

8. Grossi, R., Gupta, A., Vitter, J.S.: When indexing equals compression: experiments
with compressing suffix arrays and applications. In: SODA ’04, pp. 636–645

9. Jacobson, G.: Space efficient static trees and graphs. In: Proc. 30th IEEE Symp.
FOCS, pp. 549–554. IEEE Computer Society Press, Los Alamitos (1989)

10. Miltersen, P.B.: Lower bounds on the size of selection and rank indexes. In: Pro-
ceedings of the ACM-SIAM SODA, pp. 11–12. ACM Press, New York (2005)

11. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31, 762–776 (2001)

12. Munro, J I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of per-
mutations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 345–356. Springer, Heidelberg (2003)

13. Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM
J. Computing 31, 353–363 (2001)

14. Patrascu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: Proc.
38th ACM STOC, pp. 232–240. ACM Press, New York (2006)

15. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries, with applica-
tions to representing k-ary trees and multisets. In: ACM-SIAM SODA ’03, pp.
233–242

Compact Oracles for Approximate Distances

Around Obstacles in the Plane

Mikkel Thorup

AT&T Labs—Research, Shannon Laboratory,
180 Park Avenue, Florham Park, NJ 07932, USA

mthorup@research.att.com

Abstract. Consider the Euclidean plane with arbitrary polygonal ob-
stacles with a total of n corners. For arbitrary ε > 0, in O(n(log n)3/ε2)
time, we construct an O(n(log n)/ε) space oracle that given any two
points reports a (1 + ε) approximation of the obstacle avoiding distance
in O(1/ε3 + (log n)/(ε log log n)) time. Increasing the oracle space to
O(n(log n)2/ε), we can further report a corresponding path in constant
time per hop.

1 Introduction

As described by Hershberger and Suri [1], “the Euclidean shortest path problem
is one of the oldest and best-known problems in computational geometry. Given
a planar set of arbitrary polygonal obstacles with disjoint interiors, the problem
is to compute a shortest path between two points avoiding all the obstacles. Due
to its simple formulation and obvious applications in routing and robotics, the
problem has drawn the attention of many researchers in computational geome-
try...” Here an obstacle avoiding path is allowed to touch obstacles, but not to
cross them. This implies that a shortest path only bends at obstacle corners.
With n denoting the total number of corners, Hershberger and Suri proceed
to show that this off-line problem can be solved for any two points a and b in
O(n log n) time, which is optimal.

The problem we consider here is to preprocess the plane with the obstacles so
that we can quickly estimate the distance between any pair of points, and report
a corresponding path. This kind of preprocessing for two-point queries problem
has a rich history [2].

We consider the approximate version, where the distances and paths reported
have stretch 1 + ε for an arbitrarily small ε > 0. Formally, a distance estimator
d has stretch s relative to the real distance function δ if for each pair of points
a and b, we have δ(a, b) ≤ d(a, b) ≤ s δ(a, b). Our main result is as follows.

Theorem 1. Consider the Euclidean plane with polygonal obstacles with a total
of n corners. Let ε > 0. In O(n(log n)3/ε2) time we can produce an O(n(log n)/ε)
space distance oracle that estimates arbitrary obstacle avoiding distances with
stretch 1 + ε in O(1/ε3 + (log n)/(ε log log n)) time. Increasing the space to
O(n(log n)2/ε), we can report a corresponding path in constant time per hop.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 383–394, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

384 M. Thorup

In the above bounds, we have assumed that our algorithm is implemented in a
standard imperative programming language such as C [3] and that point loca-
tions and distances are represented as integers or floating point numbers. Such
representation is certainly reasonable when aiming for approximate distances. In
particular, we can use distance values to compute addresses as done in bucket
and radix sort, and this allows us to compute undirected single source shortest
paths in linear time [4,5]. The addressing also allows us to compute nearest com-
mon ancestors in a rooted tree in constant time [6]. On a comparison-addition
based pointer machine, some of the bounds would grow by a factor O(log n).
Our construction works not only for the Euclidean plane but for any �p norm.

Closely related work. Based on Clarkson’s [7] approximate solution to the
off-line problem, Chen [8] shows that a data structure can be built in near-
quadratic time and space, estimating distances with stretch 1 + ε in logarithmic
time. For now we think of ε as a small positive constant. Chen [8] also constructs
a near-linear space data structure in Õ(n3/2) time which estimates distance with
stretch 6+ ε in logarithmic time. As a later improvement, Arikati et al. [9] show
that using near-linear space, we can answer rectilinear distance queries with
stretch 2 + ε in logarithmic time. For the Euclidean metric, this implies stretch√

2(2 + ε). Chiang and Mitchell [10] show that we can get exact answers in
logarithmic time, but their data structure uses O(n11) space. Gudmundson et
al. [11,12] show that if there is a constant bounding the ratio of direct Euclidean
distances over obstacle avoiding distances, then there is a near-linear space data
structure answering distance queries with stretch 1+ε in constant time. However,
the bounded ratio rules out thin obstacles like rivers.

Varadarajan [13] pointed out a construction implicit in previous work leading
to near-linear space oracle like the one claimed in Theorem 1, providing stretch
1 + ε distances in sub-logarithmic time. However, the previous oracle construc-
tion is more complicated and slower by a factor 1/ε4, which matters in theory
when ε is o(1), and in practice if, say, ε < 1/5. The construction uses a 1 + ε
spanner graph over the obstacle corners claimed by Arikati et al. [9] in a final
remark. They provide no details, but Zeh [14, Lemma 14.18] calculates the size
of this planar spanner to be O(n/ε4). A distance oracle for this planar spanner is
constructed using Klein [15] or Thorup [16]. Finally Chen [8] has shown how to
use a corner distance oracle to get obstacle avoiding distances between arbitrary
pairs of points.

The technical contribution of this paper is to bypass the spanner construction
above and instead modify the planar graph distance oracle construction from [16]
to work directly with obstacles in the Euclidean plane. Instead of working with
the planar spanner with O(n/ε4) vertices and edges, we work with Clarkson’s [7]
cone graph whose vertices are the n obstacle corners connected by O(n/ε) edges.
The extra edges do not affect the running time because the algorithm internally
works with even more auxiliary edges. The fewer vertices gain us a factor 1/ε4

in construction time. The cone graph data structure is used internally in the
previous construction, so it does not add new complexity. The cone graph is
highly non-planar, but in a way that can be cut efficiently by the planar path

Compact Oracles for Approximate Distances Around Obstacles in the Plane 385

separators from [16]. For contrast, the traditional planar vertex separators of
Lipton and Tarjan [17] cannot cut the cone graph.

2 Borrowed Framework and Techniques

Instead of the parameter ε, we will use an inverse integer parameter k, and get
a stretch of 1 + O(1/k). We will use a technique of Clarkson [7] the off-line
approximate shortest path problem among polygonal obstacles.

For any point a, the view is divided into k cones. Cone i ∈ [k] covers directions
between 360◦(i−1/2)/k and 360◦(i+1/2)/k. Here, 0◦ represents some fixed base
direction. For any cone i, we want to know the closest visible obstacle corner v.
Here closeness is measured as projected on the central cone direction 360◦i/k.
Unless otherwise stated, we will always have this understanding of closeness to
a within a given cone i from a. Clarkson [7] presented a data structure for this
problem called a cone Voronoi diagram. The cone Voronoi diagram is constructed
in O(nk log n) time and O(nk) space, and it supports queries in O(log n) time.

Clarkson [7] constructs a cone graph G whose vertices are the obstacle corners.
For each corner u, he uses the cone Voronoi diagram to find the nearest corner
vi �= u in each of the k cones, and add the cone edge (u, vi). This cone edge
embeds into the straight line from u to vi in the plane. The line does not cross
any obstacle, so a path in G embeds into an obstacle avoiding path. Clarkson
proves that a shortest path in G has stretch 1 + O(1/k) compared with shortest
obstacle avoiding path in the plane. The cone graph G may be very far from
planar in that the embedding of cone edges may cross arbitrarily.

Note that a cone edge (u, vi) is asymmetric in the sense that u may not be
the corner nearest v in the reverse cone from v. We will use the cone graph as
an undirected graph, but remember the vertex u a cone edge is generated from.

To solve the shortest path problem approximately, Clarkson adds a and b as
single point obstacle corners, and construct the above cone graph. The graph is
constructed in O(kn log n) time. It has n + 2 nodes and at most k(n + 2) edges.
The shortest graph path from a to b is computed in O(kn + n log n) time. We
shall need the following from Clarkson’s work:

Lemma 1 (Clarkson1). Given the plane with polygonal obstacles with a total
of n corners, we can construct a cone Voronoi diagram in O(nk log n) time and
O(nk) space. Subsequently, for any cone i from a point a, we find a closest visible
corner, if any, in O(log n/ log log n) time. In particular, we can build the cone
graph in O(nk log n) time. The vertices of the cone graph are the n obstacle
corners connected by O(nk) edges, and it represents obstacle avoiding distances
between the corners with stretch 1 + O(1/k).

Chen [8] has shown how to modify Clarkson’s approach for the off-line shortest
path problem into a preprocessing for two point queries. The preprocessing does
not know the query points, but computes all-pairs shortest paths in Clarkson’s
1 We base our time bounds on the recent point location of Chan and Patrascu [18,19]

which takes O(log n/ log log n) time as opposed to the classic O(log n) time.

386 M. Thorup

cone graph over all the original obstacle corners. This takes Õ(kn2) time. The
resulting distance matrix is used as a stretch 1 + O(1/k) oracle for obstacle
avoiding distances between corners.

Chen uses the conical Voronoi diagrams to construct cone edges from query
points a and b to the obstacle corners. This takes O(k log n) time. For each
cone edge (a, u) from a and (v, b) to b, he uses the corner oracle to estimate
the distances from u to v, and add this to the Euclidean distances from a to
u and from v to b. The smallest such value is a stretch 1 + O(1/k) estimate
of the shortest path from a to b that touches some obstacle corner on the way.
Computing all these combinations takes O(k2) time.

We have now simulated Clarkson’s off-line algorithm except for the case with
a direct cone edge between a to b, in which case the answer to the distance query
should be the Euclidean distance from a to b. Chen augments the cone Voronoi
diagram from the corners with extra information so as to check for this special
case in O(k log n) time. Thanks to this fix of Chen, we can forget about this
special case. However, we shall need some details from Chen’s solution in our
own construction, so we state here the relevant lemmas. First we have

Lemma 2 (Chen). Consider a set of polygonal obstacles plus two arbitrary
points a and b. Consider the cone i from a that contains b, that is, the direction
to b is between 360◦(i − 1/2)/k and 360◦(i + 1/2)/k. Suppose b is as close to
a as any visible obstacle corner in cone i. If b is not visible from a then the
first obstacle hit by the line from a to b is an obstacle segment (u, v) that is
also the first obstacle hit by one of the cone boundary lines from a in directions
360◦(i − 1/2)/k and 360◦(i + 1/2)/k.

We already have Clarkson’s cone Voronoi diagram from Lemma 1 which tells us
the closest visible corner u in cone i from a, and if u is closer in the central cone
direction than b, then we know that a cone edge from a to b is not needed. Hence
we can assume that b is as close as any visible corner in cone i. Now to check if a
cone edge from a to b is appropriate, using Lemma 2 we consider each directions
360◦(i − 1/2)/k and 360◦(i + 1/2)/k, and find the first obstacle segment (u, v)
hit, if any, and check if it blocks b from the view of a. If no such blocking is found,
we know that a sees b, and then we return ‖a− b‖2 as the exact distance from a
to b. To find the first obstacle hit in a cone boundary direction 360◦(i + 1/2)/k,
Chen uses the preprocessing of the following lemma.

Lemma 3 (Chen). For a given direction, we can preprocess the plane with
polygonal obstacles with a total of n corners in O(n log n) time and O(n) space
so that for any query point a, we can identify the first obstacle point hit in
the given direction in O(log n/ log log n) time. Applying this preprocessing for
each of the k cone boundary directions 360◦(i + 1/2)/k, the preprocessing takes
O(nk log n) time and O(kn) space while the query time along any one of these
directions remain O(log n/ log log n).

Using Lemma 2 and Lemma 3, we can check if a cone edge from a to b is
appropriate in O(log n/ log log n) time. We note that Chen’s construction can be
used in conjunction with any distance oracle over the obstacle corners.

Compact Oracles for Approximate Distances Around Obstacles in the Plane 387

Lemma 4 (Chen). Suppose we have an oracle that estimates the obstacle
avoiding distance between obstacle corners with stretch s in time t. With an
additional preprocessing O(nk log n) time and O(kn) space, we can estimate the
distance between any pair of points in O(k2t+k log n/ log log n) time and stretch
max{s, 1 + 1/k}.
The corner oracle based on an all pairs shortest path computation over Clark-
son’s cone graph has s = 1 + O(1/k) and t = O(1), which is very good, but the
preprocessing time and space is near-quadratic. Chen presents a more economic
oracle for corner distances. He constructs it in Õ(n3/2) and it uses only near-
linear space. However, the corner distance stretch is 6, which then becomes the
stretch of his distance estimates for arbitrary two point queries. This paper is
also about a more efficient distance oracle for corners, referring to Lemma 4 for
distances between arbitrary points.

3 An Approximate Distance Oracle for Obstacle Corners

We will now show how to construct an oracle providing stretch 1 + O(1/k) dis-
tances between the corners of the obstacles. This is a modification of the tech-
nique of Klein and Thorup [15,16] to construct approximate distance oracles for
the vertices of an undirected planar graph. In this section we show the existence
of such an oracle, and pay only little attention to the construction time. This
part is very similar to the planar graph construction by Thorup [16], yet our
presentation is focused on the geometric case. The efficient construction in the
next section is more technically interesting.

Distance notation. As a general notation, we shall use δ(a, X1, ..Xj , b) to de-
note the distance from a to b passing X1, ..., Xj. Here each Xi represents a
portion of the plane, e.g., Xi could be a single point, a set of discrete points, or
a curve. We want the shortest length of a path from a to b that passes points
p1, ..., pj in this order with pi ∈ Xi. For example, if V is the set of obstacle
corners, then δ(a, V, b) denotes the shortest distance via some corner.

Distances in a domain X are denoted δX . If the domain is understood, the
subscript X may be omitted. Currently, δ denotes distances in the plane without
obstacles. Now take Clarkson’s cone edge graph G from Lemma 1. The fact that
it represents distances between corner obstacles u and v with stretch 1+O(1/k)
can be stated as δ(u, v) ≤ δGk

(u, v) ≤ (1 + O(1/k)) δ(u, v).

Separator paths. As a first step we pick an arbitrary corner from which we
construct an exact shortest path tree T spanning all the obstacle corners. Her-
shberger and Suri [1] have shown that this can be done in O(n log n) time and
space. Next, starting from the polygonal lines of the obstacles and the tree T ,
we triangulate the plane, both inside and outside the obstacles. We assume that
our plane has a polygonal frame so the triangulation can be done with straight
line segments inside the frame. The exterior region outside the frame may not
be used by any shortest path and is triangulated with curved edges.

388 M. Thorup

The triangulated plane is now a planar graph with a spanning tree T . As
described in [16], in O(n) time, we can find a triangle Δ so that if we look at
the region of the fundamental cycle induced by any side (u, v) of Δ, then this
cycle contains less than half the triangles. Here, the fundamental cycle consists
of (u, v) together with the unique path in T between u and v. As a degenerate
case, we note that if (v, w) ∈ T , the inside is empty.

We now have a separator S of the plane which is the union of at most 6
shortest paths; namely the at most three paths in T from the triangle corners
plus any triangle side which is not inside an obstacle or in the exterior region.
We refer to these paths as separator paths. Working with planar graphs, Thorup
[16] did not need to include the triangle sides in his separators.

Connections via a shortest path. We will now show how to represent ap-
proximate distances via a given shortest path Q. We are going to do this for
each of the at most 6 shortest paths in the above separator. For corners u and v,
we want to approximate δ(u, Q, v). So far, the representation is only existential.

For each vertex u, we want a set of connections C(u, Q) which are auxiliary
weighted edges from u to points qi in Q. The weight of (u, qi) is δ(u, qi). These
connections have stretch s if for every point q in Q, the distance from u in
C(u, Q) ∪ Q is at most s times longer than the original distance. Recall that Q
is a shortest path. Hence, if we have a connection (u, qi) ∈ C(u, Q) and q is any
point in Q, then δQ∪C(u,Q)(u, q) ≤ δ(u, qi, q).

Lemma 5. There is a set C(u, Q) of 4k connections from u to Q with stretch
1 + 1/k.

Proof. Let q0 be the vertex in Q nearest u, that is, δ(u, q0) = δ(u, Q). We will
now move from q0 towards one end t of Q, identifying connection points qi.
Having identified qi, i > 0, we pick qi as the first subsequent point in Q such
that (1 + 1/k)δ(u, qi) < δ(u, qi−1, qi).

We claim that this process results in at most 2k connections. The point is that
δ(u, qi) < δ(u, qi−1, qi) − δ(u, qi)/k ≤ δ(u, qi−1, qi) − δ(u, q0)/k. Hence δ(u, qi) <
δ(u, q0, qi) − i δ(u, q0)/k, so i δ(u, q0)/k < δ(u, q0) + (δ(q0, qi) − δ(u, qi)) ≤
2 δ(u, q0). Thus i < 2k. The same procedure is applied to the other end-point of
Q, so we end up with at most 1 + 2(2k − 1) ≤ 4k − 1 connections. �	
Representing connections for efficient queries. We will now show how to
represent connections to Q so that we can quickly estimate distances via these
connections. We chose one end of Q as the starting point, and let Q[x] denote
the point at distance x from this starting point. We call x the offset of Q[x] in Q.
For each connection (u, qi) ∈ C(u, Q), let xi be the offset of qi. We represent this
connection by the pair (xi, yi) where yi = δ(u, qi). Now, for any point q = Q[x]
in Q, we have δ(u, qi, q) = yi + |x − xi|. The connections in C(u, Q) are always
sorted according to the offset.

Now, consider two corners u and v. Suppose we have a connection (x, y) ∈
C(u, Q) from u to Q and a connection (x′, y′) ∈ C(v, Q) from v to Q. Then
δ(u, Q[x], Q[x′], v) = y + |x − x′| + y′. This way we use connections from u and
v to Q to get distances from u to v via Q.

Compact Oracles for Approximate Distances Around Obstacles in the Plane 389

To estimate δ(u, Q, v) from C(u, Q) and C(v, Q) we first merge C(u, Q) and
C(v, Q). In the resulting sorted list we look for neighbors (x, y) ∈ C(u, Q) and
(x′, y′) ∈ C(v, Q). This neighboring pair corresponds to the distance y+|x−x′|+
y′ = δ(u, Q[x], Q[x′], v), and we return the minimal such distance via neighboring
connections from u and v. We denote this estimate d(u, Q, v).

Lemma 6. If C(u, Q) and C(v, Q) provide connections from u and v to Q with
stretch s, then d(u, Q, v) estimates δ(u, Q, v) with stretch s in O(|C(u, Q)| +
|C(v, Q)|) time.

Proof. The query time is trivially linear. Now consider the shortest path P
from u to v intersecting Q in some point Q[z]. Since C(u, Q) has stretch s, it
has a connection (x, y) such that δ(u, Q[x], Q[z]) = y + |x − z| ≤ s δ(v, Q[z]).
Similarly, we have a connection (x′, y′) ∈ C(v, Q) such that δ(v, Q[x′], Q[z′]) =
y′ + |x′ − z| ≤ s δ(v, Q[z]). Hence y + |x − x′| + y′ ≤ y + |x − z| + |x′ − z| + y′ ≤
s δ(u, Q[z]) + s δ(Q[z], v) = s δ(u, Q, v). Now, it may that the above (x, y) and
(x′, y′) are not neighbors. However, let (x, y) and (x′, y′) be picked as close as
possible yet producing the minimal distance. Then they must be neighbors; for
otherwise there is a connection (x∗, y∗) between them. By symmetry, we can as-
sume (x∗, y∗) ∈ C(v, Q). Then δ(u, Q[x], Q[x′], v) = δ(u, Q[x], Q[x∗], Q[x′], v) ≥
δ(u, Q[x], Q[x∗], v). Hence we get a no worse distance using (x∗, y∗) instead of
(x′, y′), contradicting the choice of (x′, y′). Thus we conclude that (x, y) and
(x′, y′) are neighbors, providing the distance with the desired stretch. �	
A recursive distance oracle. We are now ready to describe our distance oracle
for the corner recursively. We have a separator S consisting of at most 6 shortest
paths. Using Lemma 5, for each vertex v and separator path Q ∈ S, we get a
set of O(k) connections with stretch 1 + 1/k. The total space is now O(kn).

Having represented the distances via the separator, we cut the plane along the
6 separator paths, and recurse on each region as an independent subproblem.
This cutting may split corners and edges into multiple copies. Including the parts
of T along the boundary of a piece, each piece inherits a shortest path tree and a
triangulation. The size of a subproblem is measured by the number of triangles.
Each time we divide into subproblems, each subproblem has at most half as
many triangles, so the recursion depth is O(log n). We continue recursing until
the subproblems are individual triangles, and we store the recursion tree R as
part of our representation.

A corner u is only a participant in a subproblem Φ if it belongs to the region
of the subproblem and it is not part of a separator on a higher levels. Then u can
only participate in one subproblem on each level. It is only from participating
corners that we store connections to the at most 6 separator paths Q of Φ. Hence
the total space for these connections is O(nk log n). For each corner u we store
the lowest subproblem Ψu that u participates in. Then u is part of the separator
of this subproblem.

Now, how do we answer distance queries between vertices u and v? From
Ψu and Ψv, we go up the recursion tree finding the O(log n) common ancestor
problems Φ that both u and v participate in. For each common subproblem Φ,

390 M. Thorup

we compute the estimate dΦ(u, Q, v) via each separator path Q in O(k) time.
The smallest estimate over all common subproblems is returned. The total query
time is then O(k log n).

To see that the stretch is 1+1/k, consider a shortest path P from u to v. As we
perform the recursion, there will be a first subproblem Φ with a separator path Q
intersecting P . Since P was not intersected by a separator path on a higher level,
we know that u and v both participate in this subproblem and that P is in Φ.
Hence we have δ(u, v) = |P | = δΦ(u, v) = δΦ(u, Q, v). and then our connections
in Φ from u and v to Q gives us an estimate dΦ(u, Q, v) ≤ (1+1/k) δΦ(u, Q, v) =
(1 + 1/k)δ(u, v).

4 Efficient Construction

We will now describe an efficient construction of the connections to separator
paths. Technically, this is the most novel part of the paper. First we construct
the recursive separator hierarchy. So far we have not made any connections. The
construction time for the recursive hierarchy R is O(n log n).

We shall use Clarkson’s cone edge graph G from Lemma 1 which represent
distances between obstacle corners with stretch 1 + O(1/k). To construct the
graph, for each corner u and each of k cones Cu from u, we added a straight
line cone edge from u to the nearest corner v in Cu, if any. The result is not
a planar graph as the straight line edges may cross. However, the straight lines
do not cross any obstacle or the external boundary. Hence each path P in G is
embedded into an obstacle avoiding path in the plane.

Our overall goal is to provide corner distance estimates d(u, v) so that

δ(u, v) ≤ d(u, v) ≤ (1 + 1/k)δG(u, v). (1)

Note that d(u, v) is only lower bounded by the real distance in the plane with
obstacle. Since δG(u, v) ≤ (1 + O(1/k))δ(u, v), we have that (1) implies that d
has stretch 1 + O(1/k) compared with the real distances.

We are going to construct connections to a separator path Q ∈ S which is
a shortest obstacle avoiding path in the plane. The precise goal is that if there
is a u-v path P in G whose embedding touch Q, the connections via Q should
provide a distance estimate bounded by (1 + 1/k)|P |.

Our first step is to construct a new graph GQ from G so as to encode the
relationship between the graph G and the plane separator path Q. First we add
all segments of Q as graph edges. Next we consider all intersections between
cone edges (u, v) and segments (f, g) of the separator path Q. If they intersect
in a point p, we make p a new auxiliary vertex, and replace (u, v) with (u, p) and
(p, v) and (f, g) by (f, p) and (p, g).

Lemma 7. For any corners u and v we have δ(u, v) ≤ δGQ(u, v) ≤ δG(u, v).
Moreover, if the embedding of a path P in GQ intersects Q, then P intersects Q
in GQ.

Compact Oracles for Approximate Distances Around Obstacles in the Plane 391

Proof. Introducing the new intersections and edges can only reduce distances in
the graph, and since graph paths in GQ embed into obstacle avoiding paths, they
can never be too short. Finally, the graph GQ has no edges whose embeddings
cross Q. �	
We are now left with a pure graph problem; namely to construct connections
from each vertex in GQ to Q with stretch (1+1/k) compared with the distances
in GQ. For the efficiency of the construction, we need to show that GQ is not
too large.

Lemma 8. A cone edge e can only intersect a separator path Q in a single point
unless the cone edge is itself an edge in Q.

Proof. First, as a matter of definition, if e coincide with a segment of Q, then e
is an edge in Q because all corners touched by Q are considered vertices of Q.

Since Q is a shortest path and e a straight line, both avoiding obstacles, we
cannot have Q leaving e and coming back to e. Hence, if Q and e were to intersect
in more than one point, it would be in a straight line segment pq. However, if Q
arrives e not in the end of e, and turn to follow e, then p is a corner because the
shortest path Q only bends at corners. However, then this point is closer to the
start of the cone, contradicting the definition of cone edges. �	
Lemma 9. The graph GQ has at most (k+1)n vertices and at most 3kn+n−1 =
O(kn) edges. At most n vertices of GQ are not in Q.

Proof. The starting point is at most n vertices, at most n − 1 edges in Q, and
at most kn cone edges. These numbers can grow when one of the kn cone edges
intersect Q in a single point, as stated in Lemma 8. The subdivisions may lead
to 2 extra edges and one extra vertex in Q. �	
To get construct the connections, we use the lemma below which is implicit in
the proof of [16, Lemma 3.18].

Lemma 10 (Thorup). Given an arbitrary weighted undirected graph GQ with a
shortest path Q, for each vertex u, we can construct a set C(u, Q) of connections
to Q with stretch 1 + 1/k and size O(1/k). The total construction is done via
single source shortest path computations in subgraphs HQ′

of GQ except that the
shortest path Q′ may bypass some vertices in Q. The source is located in Q′.
Each vertex appears in O(k log n) of these subgraphs HQ′

.

Using linear time undirected single source shortest paths [4,5], we get

Lemma 11. For the particular GQ in our construction, for each vertex u, we
can construct a set C(u, Q) of connections to Q with stretch 1 + 1/k and size
O(1/k) in O(nk2 log n) total time.

Constructing GQ. We will now show how to construct GQ. First we apply the
preprocessing of Lemma 3 to the separator path Q alone so that we from any
point a in any obstacle boundary direction 360◦(i + 1/2)/k can find the first
segment or vertex of Q hit in this direction in O(log n) time. This preprocessing
takes O(k|Q| log n) time and O(k|Q|) space. For each cone edge (u, v) in G we
will now check if and where it intersects Q.

392 M. Thorup

Lemma 12. If the cone edge (u, v) in cone i is crossed by Q, then it is by a
segment (f, g) which is the first part of Q hit from u in one of the two cone
boundary directions 360◦(i − 1/2)/k and 360◦(i + 1/2)/k.

Proof. Assume that (u, v) is crossed by Q in cone i from u. We want to prove
that the intersection is in one of the segments (f, g) ∈ Q considered. We will
apply Lemma 2 with (u, v) as (a, b). By definition of (u, v), we know that in the
original plane with all its obstacles O, the vertex v is as close to u as any visible
obstacle corner in cone i from u. If we add Q as an obstacle path, this can only
decrease visibility, so v is still as close to u as any visible obstacle corner from
O ∪ Q in cone i. This uses that all corners of Q were original obstacle corners.

From Lemma 2 we now know that if v is blocked from u by O∪Q, then this is
by a segment (f ′, g′) that is also the first segment from O ∪ Q hit by one of the
cone boundary lines from u in directions 360◦(i − 1/2)/k and 360◦(i + 1/2)/k.
However, if such an (f ′, g′) blocks v from u, then (f ′, g′) must be from Q since
O did not block v from u. Then (f ′, g′) must be the first segment from Q hit
by one of the cone boundary lines from u in directions 360◦(i − 1/2)/k and
360◦(i + 1/2)/k. Thus (f ′, g′) is one of the segments of Q considered. �	

The test in Lemma 12 takes O(log n) time given the preprocessing from Lemma
2, and from Lemma 8, we know that we only have to find a single intersection
point in (u, v). We therefore conclude:

Lemma 13. We can construct GQ from G and Q in time O(kn log n).

Dealing with all separator paths and recursing. We are now done with
all connections to Q, and hence we can delete all edges incident to Q from
GQ including Q itself. More formally, from (1) and Lemma 7 we know that
it suffices to estimate distances in GQ as they are no worse than those in G.
Moreover, for any vertices in u and v, δGQ(u, v) ≤ δGQ(u, Q, v)+δGQ\V (Q)(u, v).
The connections to Q give us an estimate d(u, Q, v) of δGQ(u, Q, v) with stretch
1+1/k, so now it only remains to estimate distances in GQ\V (Q). Let G′ denote
GQ \ V (Q). It is important to note that G′ is a subgraph of G. Recursively, this
will mean that the edges in G′ are the original cone edges whose embedding do
not touch any previous separator path.

Next we make connections to the next separator Q′, remove it, and continue
this way with the up to 6 separator paths in S. When done, we have a graph
G∗ which is the subgraph of G where we have removed all parts of G whose
embedding intersects S. The separator S splits the plane into regions, each with
at most half the triangles, and each component of G∗ is embedded into one of
these regions. We can find out which region in O(log n) time using the recursion
tree R. As in Section 3, we recurse on the regions of the plane obtained by
cutting along the separator paths. It might have seemed more natural to recurse
separately on each component of G∗, but we measure complexity in terms of
the triangles in a region, and if we recursed separately on different components
in the same region, the we would have multiple subproblems on the same level
sharing the same triangles.

Compact Oracles for Approximate Distances Around Obstacles in the Plane 393

The recursion tree and triangulation was all done in O(n log n) time. We have
O(n) triangles to start with and each triangle occurs in only one subproblem on
each level, so the total construction time for a level is O(kn log n) for constructing
the graphs GQ with Lemma 13 and O(nk2 log n) for constructing the connections
to separators Q using Lemma 11. Summing over all levels, we get

Lemma 14. The above construction is done in O(nk2(log n)2) time and
O(kn log n) space.

Given two corners u and v, the query algorithm is the same as in Section 3,
considering all the O(log n) separator paths connected to u and v, returning the
best estimate d(u, Q, v) from Lemma 11.

Lemma 15. The above query algorithm provides stretch 1 + O(1/k) estimates
of the original obstacle avoiding distances between corners in O(k log n) time.

Proof. The total query time is O(log n) multiplied with the query time from
Lemma 11. For the stretch, consider a shortest u-v path P in the original cone
graph G. Then |P | ≤ (1+O(1/k))δ(u, v), The path P remain intact in subgraphs
H until the first time we process a separator path Q intersecting the embedding
of P . Then the graph HQ has a path P ′ with the same embedding as P and
which intersects Q, and then the connections from u and v to Q provide an stretch
1 + 1/k estimate d(u, Q, v) of δHQ(u, Q, v) ≤ |P |. Hence d(u, v) ≤ d(u, Q, v) ≤
(1 + 1/k)(1 + O(1/k))δ(u, v) = (1 + O(1/k))δ(u, v). Since any estimate we make
corresponds to the length of an obstacle avoiding path in the plane, we know
that d(u, v) ≥ δ(u, v). �	
Thus we have proved

Proposition 1. Given a plane with polygonal obstacles, in O(nk2(log n)2) time
we can construct an O(kn(log n)) space distance oracle that can provide stretch
(1 + O(1/k)) distances between obstacle corners in O(k log n) time.

We can improve the query time of the above corner oracle to O(k) using the
same modifications as in [16] for planar graphs. In [16], the construction time is
increased by a factor k log n, but in our case, it only increases by a factor k. The
reason is that the modified construction internally use O(nk log n) connections
as auxiliary edges. This is a factor k log n more edges than in the planar graphs
considered in [16], but only a factor log n more than the O(kn) edges in the cone
graphs considered here.

Proposition 2. Given a plane with polygonal obstacles, in O(nk2(log n)3) time
we can construct an O(kn(log n)) space distance oracle that can provide stretch
(1 + O(1/k)) distances between obstacle corners in O(k) time.

Plugging this into Chen’s construction from Lemma 4, we get answers to ar-
bitrary two point queries in O(k3 + k(log n)/(log log n)) time and with stretch
1+O(1/k). To get a desired stretch of 1+ε, we choose a large enough k = O(1/ε).
As in [16], paying an extra factor log n in space,we can also produce a short path
in constant time per hop, and even perform routing. This settles Theorem 1.

394 M. Thorup

References

1. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the
plane. SIAM Journal on Computing 28(6), 2215–2256 (1999)

2. Mitchell, J.: Geometric shortest paths and network optimization. In: Handbook of
Computational Geometry, pp. 633–701. North Holland, Amsterdam (2000)

3. Kernighan, B.W., Ritchie, D.M.: The C Programming Language, 2nd edn.
Prentice-Hall, Englewood Cliffs (1988)

4. Thorup, M.: Undirected single-source shortest paths with positive integer weights
in linear time. J. ACM 46, 362–394 (1999)

5. Thorup, M.: Floats, integers, and single source shortest paths. J. Algorithms 35,
189–201 (2000)

6. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comp. 13(2), 338–355 (1984)

7. Clarkson, K.: Approximation algorithms for shortest path motion planning. In:
Proc. 19th STOC, pp. 56–65 (1987)

8. Chen, D.Z.: On the all-pairs Euclidian shortest path problem. In: Proc. 6th SODA,
pp. 292–301 (1995)

9. Arikati, S., Chen, D.Z., Chew, L.P., Das, G., Smid, M., Zaroliagis, C.D.: Planar
spanners and approximate shortest path queries among obstacles in the plane. In:
Dı́az, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 514–528. Springer, Heidelberg (1996)

10. Chiang, Y.J., Mitchell, J.S.B.: Two-point euclidean shortest path queries in the
plane. In: Proc. 10th SODA, pp. 215–224 (1999)

11. Gudmundson, J., Levcopoulos, C., Narasimhan, G., Smid, M.: Approximate dis-
tance oracles for geometric graphs. In: Proc. 13th SODA, pp. 828–837 (2002)

12. Gudmundson, J., Levcopoulos, C., Narasimhan, G., Smid, M.: Approximate dis-
tance oracles revisited. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518,
pp. 357–368. Springer, Heidelberg (2002)

13. Varadajan, K.R.: Personal Communication (2006)
14. Zeh, N.: I/O-Efficient Algorithms for Shortest Path Related Problems. PhD thesis,

Carleton University (2002)
15. Klein, P.: Preprocessing an undirected planar network to enable fast approximate

distance queries. In: Proc. 13th SODA, pp. 820–827 (2002)
16. Thorup, M.: Compact oracles for reachability and approximate distances in planar

digraphs. J. ACM 51(6), 993–1024 (2004) (Announced at FOCS’01)
17. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl.

Math. 36, 177–189 (1979)
18. Chan, T.M.: Point location in o(log n) time, Voronoi diagrams in o(n log n) time,

and other transdichotomous results in computational geometry. In: Proc. 47th
FOCS, pp. 325–332 (2006)

19. Patrascu, M.: Planar point location in sublogarithmic time. In: Proc. 47th FOCS,
pp. 325–332 (2006)

Convex Combinations of
Single Source Unsplittable Flows�

Maren Martens1,��, Fernanda Salazar2,��, and Martin Skutella3

1 University of British Columbia, Sauder School of Business,
2053 Main Mall, Vancouver, BC V6T1Z2, Canada

maren.martens@sauder.ubc.ca
2 Escuela Politécnica Nacional, Departamento de Matemática,

Ladrón de Guevara E11-253, Quito, Ecuador
msalazar@math.epn.edu.ec

3 Universität Dortmund, Fachbereich Mathematik,
44221 Dortmund, Germany

martin.skutella@uni-dortmund.de

Abstract. In the single source unsplittable flow problem, commodities must be
routed simultaneously from a common source vertex to certain destination ver-
tices in a given digraph. The demand of each commodity must be routed along
a single path. In a groundbreaking paper Dinitz, Garg, and Goemans [4] prove
that any given (splittable) flow satisfying certain demands can be turned into an
unsplittable flow with the following nice property: In the unsplittable flow, the
flow value on any arc exceeds the flow value on that arc in the given flow by no
more than the maximum demand.

Goemans conjectures that this result even holds in the more general context
with arbitrary costs on the arcs when it is required that the cost of the unsplit-
table flow must not exceed the cost of the given (splittable) flow. The following is
an equivalent formulation of Goemans’ conjecture: Any (splittable) flow can be
written as a convex combination of unsplittable flows such that the unsplittable
flows have the nice property mentioned above. We prove a slightly weaker ver-
sion of this conjecture where each individual unsplittable flow occurring in the
convex combination does not necessarily fulfill the original demands but rounded
demands. Preliminary computational results based on our underlying algorithm
support the strong version of the conjecture.

1 Introduction

Problem Definition and Notation. The single source unsplittable flow problem was
introduced by Kleinberg [8]. We are given a digraph D = (V, A), a source s ∈ V
and K sinks t1, . . . , tK ∈ V . The source and sink nodes are also called terminals. We
assume without loss of generality that the terminals are pairwise distinct. An unsplit-
table flow f consists of s-ti-paths Pi, for i = 1, . . . , K , together with corresponding

� This work was supported in part by the Graduate School of Production Engineering and Logis-
tics, North Rhine-Westphalia, by the DFG Focus Program 1126, Algorithmic Aspects of Large
and Complex Networks, grants SK 58/4-1 and SK 58/5-3, and by the German Academic Ex-
change Service (DAAD).

�� Part of this work was done while the authors were at Universität Dortmund.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 395–406, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

396 M. Martens, F. Salazar, and M. Skutella

flow values fi ≥ 0. The flow on arc a ∈ A is then given as f(a) =
∑

i:a∈Pi
fi. An

unsplittable flow is said to satisfy demands di, i = 1, . . . , K , if fi = di for all i.
We also consider flows from s to the sinks t1, . . . , tK that are not necessarily un-

splittable. Such a flow f is given by flow values f(a) for all arcs a ∈ A such that flow
conservation constraints for all non-terminal nodes are met. Moreover, the net amount
of flow leaving the source s as well as the net amount of flow arriving at each sink ti
must be non-negative. In order to emphasize that a flow is not unsplittable we some-
times also call it a splittable flow. A splittable flow satisfies demands di, i = 1, . . . , K ,
if the net amount of flow arriving at ti equals di for all i. The flow traveling from the
source to sink ti is sometimes also referred to as commodity i.

Dinitz, Garg, and Goemans [4] present an algorithm that turns a given splittable
flow f init satisfying demands di, i = 1, . . . , K , into an unsplittable flow f satisfying
the same demands such that

f(a) ≤ f init(a) + dmax for all arcs a ∈ A (1)

where dmax := maxi=1,...,K di. Goemans conjectures that this result can be generalized
as follows.

Conjecture 1 (Goemans [6]). For any cost function c : A → R, a splittable flow f init

satisfying given demands di, i = 1, . . . , K , can be turned into an unsplittable flow f
satisfying the same demands such that property (1) holds and the cost of f is bounded
by the cost of f init, i.e.,

∑

a∈A

c(a)f(a) ≤
∑

a∈A

c(a)f init(a).

Network flows are usually considered in digraphs with arc capacities u : A → R
+
0 . The

capacity u(a) of arc a is an upper bound on the amount of flow that can be sent through
arc a. Moreover, for unsplittable flow problems it is often assumed that all demands are
at most as large as the minimum arc capacity, i.e., dmax ≤ umin := mina∈A u(a) such
that any commodity can in principle be routed through any arc unsplittably. This condi-
tion is also known as the balance condition. If the balance condition is fulfilled and f init

obeys given arc capacities, then it follows from property (1) that the unsplittable flow f
has congestion at most 2, i.e., f(a) ≤ 2u(a) for all arcs a ∈ A. In particular, the al-
gorithm presented by Dinitz et al. [4] achieves performance ratio 2 for the objective to
minimize congestion.

Related Results from the Literature. The single source unsplittable flow problem is a
special case of the more general unsplittable flow problem (UFP) where each commod-
ity has its own source and sink. This problem has been well studied in the literature.
In the case that we are given arc capacities and demands for each commodity and look
for an unsplittable flow of minimum congestion, i.e., of minimum overload of arc ca-
pacities, Raghavan and Thompson [13,12] introduce a randomized rounding technique
which yields an O(log m/ log log m)-approximation algorithm provided that the bal-
ance condition1 holds. Here, m is the number of arcs in the underlying graph. Chuzhoy

1 Unless stated otherwise, the balance condition is always assumed to be met for the UFP.

Convex Combinations of Single Source Unsplittable Flows 397

and Naor [3] show that the directed case of the UFP is Ω(log log m)-hard to approx-
imate unless NP ⊆ DTIME(nO(log log log n)), where n is the number of vertices in
the underlying graph. Before this result was found, only APX-hardness for the UFP
was known (see, e.g., Kleinberg [8]). In the special case of unit demands and unit edge
capacities (the edge-disjoint paths problem) Andrews and Zhang [1] prove that there is
no (log log m)1−ε-approximation for the undirected congestion minimization problem,
unless NP ⊆ ZPTIME(npolylog n).

For the optimization problem to route a subset of commodities whose total sum of
demands is maximal, Azar and Regev [2] present a strongly polynomial algorithm with
approximation ratio O(

√
m). Kolman and Scheideler [10] even give a strongly polyno-

mial O(
√

m)-approximation algorithm for the problem without the balance condition.
On the other hand, Guruswami, Khanna, Rajaraman, Shepherd, and Yannakakis [7]
show that there is no approximation algorithm with performance ratio O(m

1
2−ε) for

any ε > 0, unless P = NP .
It is an easy observation that already the single source unsplittable flow problem

without costs contains several well-known NP-complete problems as special cases, such
as, for example, PARTITION, BIN PACKING, or even scheduling parallel machines with
makespan objective [11]. If we consider the problem with costs, we obtain the KNAP-
SACK problem as a special case. We refer to [4,8,9,14] for more details and other special
cases.

Kleinberg [8], Dinitz, Garg, and Goemans [4], Kolliopoulos and Stein [9], and
Skutella [14] present approximation algorithms for various optimization versions of
the single source unsplittable flow problem. Du and Kolliopoulos [5] have implemented
and empirically tested several of those approximation algorithms. As already mentioned
above, a 2-approximation algorithm for congestion minimization is given in [4]. In [14],
a 3-approximation algorithm is presented for the corresponding problem with costs. It
is also shown there that the performance ratio can be decreased to 2 if the demands are
multiples of each other, i.e., di|dj or dj |di for all i, j = 1, . . . , K . In fact, it is shown
in [14] that Conjecture 1 holds in this special case. For arbitrary demands, a weaker
version of Conjecture 1 is shown where property (1) is replaced with the following less
restrictive property: f(a) ≤ 2f init(a) + dmax for all arcs a ∈ A.

Contribution of this Paper. It is not difficult to observe that the following conjecture is
equivalent to Conjecture 1.

Conjecture 2. A splittable flow f init satisfying given demands di, i = 1, . . . , K , can be
written as a convex combination of unsplittable flows satisfying the same demands such
that property (1) holds for each unsplittable flow f occurring in the convex combination.

We argue briefly that the two conjectures are indeed equivalent. It is easy to see that
Conjecture 1 holds if Conjecture 2 is true. On the other hand, if Conjecture 2 is false,
then there exists a splittable flow f init that is not contained in the convex hull of the
set of unsplittable flows f satisfying property (1) and the same demands as f init. In
this case there must exist a separating hyperplane whose normal vector yields a cost
function c such that the cost of f init with respect to c is strictly smaller than the cost of
every unsplittable flow under consideration. This contradicts Conjecture 1.

Unfortunately we are not able to prove Goemans’ Conjecture in this paper but we
show the following slightly weaker version.

398 M. Martens, F. Salazar, and M. Skutella

Theorem 1. A splittable flow f init satisfying given demands di, i = 1, . . . , K , can be
written as a convex combination of unsplittable flows such that property (1) holds for
each unsplittable flow f occurring in the convex combination.

The only difference to Conjecture 2 is that we cannot guarantee that the unsplittable
flows occurring in the convex combination satisfy the same demands as the given
flow f init. Instead the demands satisfied by an individual unsplittable flow are the orig-
inal demands rounded (up or down) by a factor of at most 2 to the next dmax/2�

with � ∈ N. Here, dmax is the maximum original demand.
In Section 2 we present an algorithm that, given a splittable flow f init, computes un-

splittable flows together with appropriate weights such that the resulting convex com-
bination (weighted sum) is equal to the given flow f init. The algorithm uses ideas of
Kolliopoulos and Stein [9] and Skutella [14]. It builds a binary tree whose root node
is the given splittable flow f init and whose leafs are unsplittable flows fulfilling prop-
erty (1). Moreover, each non-leaf node is a convex combination of its two children.
As a consequence, the splittable flow f init at the root is a convex combination of the
unsplittable flows at the leafs.

We give a detailed analysis of the algorithm proving its correctness and the existence
of the requested unsplittable flows in Section 3. Finally, in Section 4 we discuss prelim-
inary computational results trying to confirm that there also exist convex combinations
of unsplittable flows of additive congestion at most dmax if we restrict to using the
original demands instead of the rounded ones that are produced by our algorithm. We
also observe in this section that a convex combination as described in Theorem 1 can
be computed in polynomial time.

2 Constructing the Convex Combination

We present an algorithm that, given a splittable flow f init, computes unsplittable flows
with weights such that the weighted sum (convex combination) of the unsplittable flows
equals f init. These unsplittable flows have property (1) and they satisfy demands that are
obtained by rounding the ones in f init.

2.1 Preliminaries

To simplify the description of the algorithm we introduce some more vocabulary. We
say that a terminal path is a maximal (not necessarily directed) simple path in D with
endpoints in {s, t1, . . . , tK}, where maximal means that it is not extendable at either of
its endpoints. A (not necessarily directed) cycle or a terminal path is called an augment-
ing structure.

We use dmax := maxi=1,...,K di (dmin := mini=1,...,K di) to denote the maximum
(minimum) demand satisfied by f init. For a natural number �, we define r�

f (a) := f(a)
mod dmax

2� , for a ∈ A. A flow is called q-integral for some q ∈ R
+, if the flow value on

each arc is an integral multiple of q. It is well known that any single source multicom-
modity flow that is q-integral can be decomposed into flows on paths with flow value q.

The definition f(a) :=
∑

i:a∈Pi
fi, for all a ∈ A, enables us to build the sum f +g of

two flows f and g arcwise, even if one or both flows are unsplittable and given pathwise.

Convex Combinations of Single Source Unsplittable Flows 399

2.2 The Algorithm

In the following we shortly sketch the idea of the algorithm first and give a more de-
tailed characterization of it later on: We want to round each demand to the two nearest
(upper and lower) values of the form dmax/2�, for some � ∈ N, and then send these
rounded demands unsplittably. A convex combination of the final unsplittable flows
(with rounded demands) will yield our original flow. The largest value we need to con-
sider for � is

L :=
⌈
log

dmax

dmin

⌉
,

since dmax/2L is the largest fraction dmax/2� (� ∈ N) that is at most dmin. (Thus,
dmax/2L is the smallest demand obtained from rounding all demands to (dmax/2�)-
integrality, for some � ∈ N).

We start by making the input flow (dmax/2L)-integral. This is done by augmenting
flow on cycles and terminal paths. The particular augmenting structure and the incre-
ment of flow are chosen such that after augmentation the flow on at least one additional
arc is (dmax/2L)-integral. Augmentation on a cycle does not change the demands,
whereas augmentations on terminal paths yield changes of demands to (dmax/2L)-
integrality. We always augment in both directions of an augmenting structure and thus
obtain two new flows in each step such that the “parent” flow is a convex combination
of the two. Depending on the direction in which flow is augmented on a path, demands
are rounded up or down. (See Figure 1 for an illustration of the algorithm.) Considering
the two direct descendants of a “parent” flow, which result from a change of flow in
either direction of an augmenting structure, we simply construct a binary tree of flows
in which the descendants of a flow f can be used to form a convex combination of f .
The leaves of this tree finally form the desired convex combination of unsplittable flows
for the root flow f init.

When a flow is (dmax/2L)-integral, demands of value dmax/2L can be satisfied un-
splittably. For this reason, we want to prevent such demands and corresponding flow
carrying paths from further changes. Thus, for each sink ti with demand dmax/2L, we
decrease the current flow along a corresponding flow carrying s-ti-path by dmax/2L.
These paths with the flow values are stored for all subsequent flows. After the decre-
ment, all demands are at least dmax/2L−1 and we turn to make the (remaining) flow
(dmax/2L−1)-integral. We proceed in this manner until the (remaining) flow is dmax-
integral. Then all (remaining) demands equal dmax and are served unsplittably.

For the sake of simple presentation and analysis of the algorithm, we give a recursive
description of it in Algorithm 1. The initial call to start the recursive algorithm is given
by DECOMP(D,f init,∅,1) where f init is the single source multicommodity flow in the
digraph D that we want to write as a convex combination of unsplittable flows. The
third parameter is a set of paths with corresponding flow values. If (P, φ) is in this set,
it means that all subsequent flows route φ units of flow along path P . The last parameter
indicates the weight of the flow that is to be decomposed. For the initial flow this weight
equals 1.

A call of DECOMP(D,f init,∅,1) effects the following: In each step of the recursion,
it first updates the input flow f by iteratively deleting demands dmax/2�, for � ∈ N,
if f is (dmax/2�)-integral. The related flow carrying paths are added to the current

400 M. Martens, F. Salazar, and M. Skutella

ssss

sss

2

666

4

4

4

1010

10101010

101010

0

0

0

0

0

0

0

5

5

5

5

5

5

5

5

5

5

5

5

5
5

55

5

5

5

5

5

5

5

5
5

5

5

5
5

1
4

3
41

11

1

1

1
4 · 1

5 = 1
20

1
4 · 4

5 = 4
20

3
4 · 1

5 = 3
20

3
4 · 4

5 = 12
20

Fig. 1. Steps of the algorithm to 5-integrality. We start with the flow in the upper left corner
and read from left to right first. Since dmax/2L equals 5, we need to make the flow 5-integral.
The dashed arcs indicate the augmenting structure that is used. Since we augment flow in either
direction of an augmenting structure, each non-5-integral flow produces two new flows that are
separated from their “parents” by a vertical line. We consider the first flow. If we use the indicated
augmenting structure clockwise, we may augment by 3. Then the arc with flow value 2 becomes
5-integral. Using the augmenting structure counterclockwise, we may augment by 1. Then the
unit of flow on the arc with flow value 1 recedes. The number below each flow indicates its
weight in the convex combination.

unsplittable flow given by P . Afterwards it decomposes the (remaining) flow f into a
convex combination of two new flows f1 and f2 that result from a single augmentation
in both directions of a suitable augmenting structure. Further steps of the recursion
decompose f1 and f2 into convex combinations of unsplittable flows.

The augmentation itself works as follows. Let us assume that the flow f that remains
after the update is (dmax/2�)- but not (dmax/2�−1)-integral, for some � ∈ {1, . . . , L}.
Then we consider the subgraph D̃ of D that consists of all arcs a ∈ A whose flow
values f(a) are not (dmax/2�−1)-integral. Starting from an arbitrary arc we follow an
undirected path (in either direction) until there is no more incident arc or we get to a
node which has already been visited. The first criterion results in a terminal path, the
second one in a cycle. (We prove this later on in Lemma 2.) For the resulting augmenting
structure C we augment by the minimum δ of gaps between flow values and the next
lower multiples of dmax/2�−1 for arcs that are used by C in backward direction and of
gaps between flow values and the next upper multiples of dmax/2�−1 for arcs that are
used by C in forward direction. Defining C− as the backward arcs in C and C+ as the
forward arcs in C we can write δ as follows.

δ = min{ min
a∈C−

r�−1
f (a), min

a∈C+

dmax

2�−1
− r�−1

f (a)}

Convex Combinations of Single Source Unsplittable Flows 401

Algorithm 1. DECOMP(D,f ,P ,w)
Input: A digraph D = (V, A), a single source multicommodity flow f in D with source s,

a set P of paths from s to pairwise distinct nodes t in D with corresponding flow
values, and a positive weight w ∈ (0, 1]. The maximum (minimum) demand, that f
satisfies, is dmax (dmin).

Output: A set of unsplittable flows with weights that sum up to w yielding a conic
combination of w(f + fP), where fP denotes the flow that is given by P .

for i =
⌈
log dmax

dmin

⌉
downto 0 do

if f is (dmax/2i)-integral then
for each sink t having demand d = dmax/2i in f do

Determine an arbitrary flow carrying s-t-path P in D.
Set f(a) := f(a) − d for all a ∈ P .
Set P ′ := P ∪ {(P, d)}.

end
end

end
if f ≡ 0 then

return (P ′, w).
end

Set � := min{min{j ∈ N|f is (dmax/2j)-integral},
⌈
log dmax

dmin

⌉
+ 1}.

Let C ⊆ A be an augmenting structure with r�−1
f (a) �= 0 ∀ a ∈ C.

Set C+ := {a ∈ C | C traverses a in forward direction},
C− := {a ∈ C | C traverses a in backward direction}.

Set δ1 := min{ min
a∈C−

r�−1
f (a), min

a∈C+

dmax

2�−1 − r�−1
f (a)},

δ2 := min{ min
a∈C+

r�−1
f (a), min

a∈C−
dmax

2�−1 − r�−1
f (a)}.

For a ∈ A \ C set f1(a) := f(a) and f2(a) := f(a).
For a ∈ C+ set f1(a) := f(a) + δ1 and f2(a) := f(a) − δ2.
For a ∈ C− set f1(a) := f(a) − δ1 and f2(a) := f(a) + δ2.
Set w1 := δ2

δ1+δ2
w and w2 := δ1

δ1+δ2
w.

return DECOMP(D,f1,P ′,w1) ∪ DECOMP(D,f2,P ′,w2).

Now let f1 and f2 be the flows resulting from augmenting along C and its “counter-
part”, i.e., C in the opposite direction. Let δ1 and δ2 be the corresponding augmentation
values. Then the weight of fi (for i = 1, 2) is given by the weight of f multiplied with
δ3−i/(δ1 + δ2).

3 Analysis of the Algorithm

In Section 3.1 we show that the flows and weights returned by DECOMP(D,f init,∅,1)
yield a convex combination for f init. Further, the produced flows are unsplittable and
all its demands are of the form dmax/2�, for some � ∈ {0, . . . , 	log(dmax/dmin)
}. To
prove Theorem 1 we have to show as well that, on each arc a ∈ A, the final flows send
at most the initial flow f init(a) plus an additive dmax. This is done in Section 3.2.

402 M. Martens, F. Salazar, and M. Skutella

3.1 Correctness of the Algorithm

It is easy to see that the following lemma is true. A detailed proof is omitted due to
space limitations.

Lemma 1. For each DECOMP(D,f ,P ,w) that is triggered by DECOMP(D,f init,∅,1)
it holds that

1. f is a single source multicommodity flow in D,
2. P is a set of paths from the source of f to pairwise distinct nodes t in D with

corresponding flow values, and
3. w ∈ (0, 1].

Lemma 1 shows that the algorithm is well-defined. The following lemma is necessary
to prove that our algorithm terminates. It follows immediately from flow conservation.

Lemma 2. If a flow f in D is not (dmax/2�)-integral, for some � ∈ N, then there exists
an augmenting structure C ⊆ A with r�

f (a) �= 0, for all a ∈ C.

The definition of δ1 and δ2 and the augmentation rule imply that if f is not decreased
in the for-loop of DECOMP(D,f ,P ,w), the flows f1 and f2 are “more integral” than f .

Lemma 3. For any flow f that is augmented in Algorithm 1 and its corresponding
value � as defined in the algorithm, it holds that f1 and f2 each have at least one more
arc than f whose flow value is (dmax/2�−1)-integral.

Before we turn to proving that the flows/weights returned by DECOMP(D,f ,P ,w)
yield a conic combination of wf , we show that the procedure indeed terminates and
outputs unsplittable flows whose demands are of the form dmax/2�, for some � ∈
{0, . . . , 	log(dmax/dmin)
}.

Corollary 1. DECOMP(D,f ,P ,w) terminates. The output is a set of unsplittable flows
whose demands are of the form dmax/2�, for some � ∈ {0, . . . , 	log(dmax/dmin)
}.

Proof. We proved that the flows f1 and f2 resulting from DECOMP(D,f ,P ,w) have
fewer positive demands than f or are “more integral”. The first property eventually
results in a decrement of the input flow to the zero flow. In every recursive call of
Algorithm 1 in which the number of positive demands is not decreased for the respective
input, the flow value on at least one of its arcs changes to a “higher” integrality. After
at most |A| steps we therefore change from (dmax/2�)-integrality to (dmax/2�−1)-
integrality for some � ∈ {1, . . . , L} (or respectively from the initial state to (dmax/2L)-
integrality). At this point demands of value (dmax/2�−1) and corresponding flow are
deleted in the for-loop. If no such demands exist, we go to “higher” integralities and
delete demands at the latest when the flow is dmax-integral. Therefore, at some point
all demands are deleted and the algorithm terminates.

It follows from the preceding analysis that all paths in the final P ′ connect the source
in f with pairwise distinct sinks. Thus, P ′ yields an unsplittable flow. It follows directly
from the specification of the algorithm that all demands served by P ′ are of the form
dmax/2�, for some � ∈ {0, . . . , 	log(dmax/dmin)
}.

Convex Combinations of Single Source Unsplittable Flows 403

In the following we use fP to denote the flow that is given by some set P of paths with
corresponding flow values. We prove the following helpful lemma in order to show that
DECOMP(D,f ,P ,w) returns the specified output.

Lemma 4. Consider DECOMP(D,f ,P ,w). It holds that

w(f + fP) = w1(f1 + fP′) + w2(f2 + fP′) (2)

and w1 + w2 = w.

Proof. The second part of the lemma follows immediately from the definition of w1

and w2. Equation (2) can be proven as follows. For all arcs a ∈ A that are not in the
augmenting structure C that leads from f to f1 and f2, it holds that f1(a) = f2(a) =
f(a) − (fP′(a) − fP(a)). Since w1 + w2 = w, equation (2) follows immediately.

Now consider an arc a ∈ C+. It holds that f1(a) = f(a) − (fP′(a) − fP(a)) + δ1

and f2(a) = f(a) − (fP′(a) − fP(a)) − δ2. Using w1 + w2 = w, it follows that
w1f1(a)+w2f2(a) = wf(a)+wfP (a)−w1fP′(a)−w2fP′(a). The proof is analogous
for a ∈ C−.

The following corollary demonstrates that the output of DECOMP(D,f ,P ,w) is correct.
With this result we are finished proving the correctness of the algorithm as described
in Section 2. To prove our main result we still need to show that all unsplittable flows
that are returned by DECOMP(D,f init,∅,1) have congestion at most 2. This is done in
Theorem 2 in Section 3.2.

Corollary 2. The flows and weights returned by DECOMP(D,f ,P ,w) yield a conic
combination of w(f + fP) whose weights sum up to w.

The proof of Corollary 2 uses induction on the depth of recursion and Lemma 4. It is
omitted due to space limitations. The next corollary follows immediately.

Corollary 3. The flows and weights returned by DECOMP(D,f init,∅,1) yield a convex
combination of f .

3.2 Upper Bound on the Congestion

Together with the algorithm from Section 2 and its analysis in Section 3.1 the following
theorem is the last component to prove Theorem 1.

Theorem 2. For a single source multicommodity flow f init in D = (V, A) and any arc
a ∈ A, it holds that the flow along a in any flow produced by DECOMP(D,f init,∅,1)
exceeds f init(a) by at most an additive dmax.

Proof. Consider the progression of the input flow while DECOMP(D,f init,∅,1) is run-
ning. Let f0 be a flow that occurs on the way to (dmax/2L)-integrality of the input flow.
Further, let P0 be the current unsplittable flow while f0 is considered in the algorithm.

By the choice of δ1 and δ2, it holds for all a ∈ A that

f0(a) + fP0(a) ≤ f init(a) +
dmax

2L
−

(
f init(a) mod

dmax

2L

)
, (3)

404 M. Martens, F. Salazar, and M. Skutella

because once the flow on a is (dmax/2L)-integral, i.e., rounded to at most the next
multiple of dmax/2L, it is not changed again on the way to (dmax/2L)-integrality.

After (dmax/2L)-integrality was reached, the input flow is iteratively augmented to
(dmax/2L−�)-integrality for gradually increasing � ∈ {1, . . . , L}. Let f � be a flow that
occurs while DECOMP(D,f init,∅,1) is running and that is (dmax/2L−�)-integral, but
not (dmax/2L−�−1)-integral. Further, let f �−1 be any ancestor of f �, i.e., any of the
flows that (indirectly) caused the creation of f �, that is (dmax/2L−�+1)-integral. Again
let P� and P�−1 be the corresponding unsplittable flows.

In analogy with (3), it follows from the choice of δ1 and δ2 that for all a ∈ A

f �(a) + fP�(a) ≤ f �−1(a) + fP�−1(a) +
dmax

2L−�
− dmax

2L−�+1
.

We can prove an analogous equation if some integrality step is omitted, i.e., if there
is no ancestor of f � that is (dmax/2L−�+1)-integral. Let �′ be the largest integer that
is smaller than � and for which an ancestor of f � exists that is (dmax/2L−�′

)-integral.
Then it holds that f �(a) + fP�(a) ≤ f �′

(a) + fP�′ (a) + dmax/2L−� − dmax/2L−�′
.

We obtain iteratively, for all � ∈ {0, . . . , L}, that

f �(a) + fP�(a) ≤ f init(a) +
dmax

2L−�
−

(
f init(a) mod

dmax

2L

)
. (4)

Now consider the point when the flow f is changed to f ′ ≡ 0 in the for-loop. Let P
and P ′ be the corresponding unsplittable flows. Then P ′ is one of the output flows of
the algorithm. Since dmax is the maximum demand in f , it follows that f is dmax-
integral. With (4) we have fP′(a) = f(a) + fP(a) ≤ f init(a) + dmax − (f init(a)
mod dmax

2L) ≤ f init(a) + dmax.
Note that it even holds, for all a ∈ A, that fP′(a) < f init(a) + dmax. To obtain

this result, we have to regard that f0(a) + fP0(a) ≤ f init(a), if f init(a) is (dmax/2L)-
integral.

If we assume f init to be feasible, the next result follows immediately.

Corollary 4. If a single source multicommodity flow f init in D = (V, A) obeys arc
capacities u : A → R

+ and the balance condition is met, then all flows produced by
DECOMP(D,f init,∅,1) have congestion at most 2.

We close this section with an example showing that our result is tight (see also [4] for
similar results).

Lemma 5. There exists a network and a feasible fractional single source multicom-
modity flow f init such that in each convex combination of unsplittable flows forming
f init there is at least one flow with congestion arbitrarily close to 2.

Proof. Consider a network with source s, sinks t1, t2 with demands 1 for both com-
modities, and one additional node v. The arcs in the network with their initial flow
values are (s, v) with f init((s, v)) = 1 + ε, (s, t2) with f init((s, t2)) = 1 − ε, (v, t1)
with f init((v, t1)) = 1, and (v, t2) with f init((v, t2)) = ε. The capacity of arc a is the
maximum of f init(a) and 1. ε is an arbitrary positive number smaller than 1.

Convex Combinations of Single Source Unsplittable Flows 405

Consider arc (s, v). Obviously we have to route commodity 1 on it in each unsplit-
table flow that participates in a convex combination forming f init. But there must also
be at least one unsplittable flow that routes commodity 2 on this arc. Thus, we obtain a
flow value of 2 on it and a congestion of 2/(1 + ε).

4 Some Preliminary Computational Results

We have shown that it is possible to write any (splittable) single source multicommodity
flow f init as a convex combination of unsplittable flows obeying condition (1). The de-
mands satisfied by the unsplittable flows that we construct for this convex combination
slightly differ from the ones in the original flow.

Using our algorithm, we want to empirically confirm Conjecture 2. In principle,
we would like to do the following: Consider all unsplittable flows computed by the
algorithm; turn them into unsplittable flows satisfying the original demands di, i =
1, . . . , K , by simply routing exactly di units of flow along the chosen s-ti-paths (in-
stead of the rounded demand values); omit all unsplittable flows which, after this mod-
ification, no longer obey condition (1) (notice that this can easily happen already for
simple examples); check whether f init is contained in the convex hull of the remaining
unsplittable flows.

The main problem with this approach is the huge size of the binary tree computed by
our algorithm. Already for relatively small instances the algorithm does not terminate
in reasonable time due to the exponential growth of the computed binary tree. It is
therefore not realistic to try to compute all unsplittable flows corresponding to leaf
nodes of that tree. Instead, we have to thin out the tree and only compute a subset of
leafs of reasonable size. Of course, this subset should still have the property that f init is
contained in the convex hull of unsplittable flows given by the subset.

More precisely, we proceed as follows. We start to compute the binary tree in
breadth-first manner. When we arrive at a layer of the tree containing “too many” nodes,
we omit some of them and only maintain a subset of “reasonable size”. By construction
the flow f init at the root node is a convex combination of the flows corresponding to the
nodes of the tree in any fixed layer. It follows from Carathéodory’s theorem that f init

can be written as a convex combination of a subset containing at most |A| + 1 flows. It
is therefore possible to keep the width of the tree bounded by O(|A|) and still maintain
the property that f init is a convex combination of the flows in any fixed layer. In our
implementation, we simply use CPLEX to find suitable subsets of flows when we arrive
at a layer of the tree that contains “too many” nodes. Since the depth of the tree is poly-
nomially bounded, we can even find a representation of f init as a convex combination
of unsplittable flows in polynomial time and thus strengthen Theorem 1 as follows.

Theorem 3. A convex combination as described in Theorem 1 can be obtained in poly-
nomial time.

For the purpose of our empirical study it is not advisable to reduce the width of each
layer of the tree as far as possible (i.e., to width |A| + 1). This decreases our chance
to find sufficiently many “good” unsplittable flows in the end that contain f init in their
convex hull. Therefore the challenge is to decide for each layer of the tree which flows
to keep and which to omit in order to keep the width of the tree small. We have ex-

406 M. Martens, F. Salazar, and M. Skutella

perimented with several different strategies but have not found the ideal strategy yet.
However, for most instances that we consider our choice of flows is suitable in the
sense that the resulting unsplittable flows meet the congestion requirement.

For the empirical tests we use 14 test instances that were also considered by Du
and Kolliopoulos [5] for their empirical evaluation of approximation algorithms. The
instances come from the following generators: noigen, satgen, rangen, and genrmf. A
complete description of every generator can be found in [5]. We have tested different
ways to choose the flows that we keep in our convex combinations. So far, for half of the
14 instances we were able to compute an appropriate set of unsplittable flows of additive
congestion at most dmax. For another three instances the multiplicative congestion of
the unsplittable flows does not exceed 2, while for the remaining four instances we have
not found an appropriate set of unsplittable flows yet. We are currently still working on
finding better heuristics to choose the flows to be kept in each layer of the tree.

References

1. Andrews, M., Zhang, L.: Hardness of the undirected congestion minimization problem. In:
Proceedings of 37th Annual ACM Symposium on Theory of Computing, pp. 284–293. ACM
Press, New York (2005)

2. Azar, Y., Regev, O.: Strongly polynomial algorithms for the unsplittable flow problem. In:
Proceedings of the 8th Conference on Integer Programming and Combinatorial Optimization,
pp. 15–29 (2001)

3. Chuzhoy, J., Naor, J.: New hardness results for congestion minimization and machine
scheduling. In: Proceedings of the 36th Annual ACM Symposium on Theory of Comput-
ing, pp. 28–34. ACM Press, New York (2004)

4. Dinitz, Y., Garg, N., Goemans, M.X.: On the single source unsplittable flow problem. Com-
binatorica 19, 17–41 (1999)

5. Du, J., Kolliopoulos, S.: Implementing approximation algorithms for the single-source un-
splittable flow problem. Journal of Experimental Algorithmics 10, 2–3 (2005)

6. Goemans, M.X.: Cited as personal communication from (January 2000) [14, Section 7]
7. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-optimal

hardness results and approximation algorithms for edge-disjoint paths and related problems.
In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pp. 19–28.
ACM Press, New York (1999)

8. Kleinberg, J.M.: Approximation Algorithms for Disjoint Path Problems. PhD thesis, Mas-
sachusetts Institute of Technology (May 1996)

9. Kolliopoulos, S.G., Stein, C.: Approximation algorithms for single-source unsplittable flow.
SIAM Journal on Computing 31, 919–946 (2002)

10. Kolman, P., Scheideler, C.: Improved bounds for the unsplittable flow problem. In: Proceed-
ings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 184–193.
ACM Press, New York (2002)

11. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling unrelated
parallel machines. Mathematical Programming 46, 259–271 (1990)

12. Raghavan, P.: Probabilistic construction of deterministic algorithms: approximating packing
integer programs. Journal of Computer and System Sciences 37, 130–143 (1988)

13. Raghavan, P., Thompson, C.D.: Randomized rounding: A technique for provably good algo-
rithms and algorithmic proofs. Combinatorica 7, 365–374 (1987)

14. Skutella, M.: Approximating the single source unsplittable min-cost flow problem. Mathe-
matical Programming 91, 493–514 (2002)

Farthest-Polygon Voronoi Diagrams�

Otfried Cheong1, Hazel Everett2, Marc Glisse2, Joachim Gudmundsson3,
Samuel Hornus1, Sylvain Lazard2, Mira Lee1, and Hyeon-Suk Na4

1 Dept. of Computer Science, KAIST, Daejeon, Korea
{otfried,hornus,mira}@tclab.kaist.ac.kr

2 LORIA – INRIA Lorraine, Université Nancy 2, Nancy, France
Firstname.Name@loria.fr

3 National ICT Australia Ltd.��, Sydney, Australia
joachim.gudmundsson@nicta.com.au

4 School of Computing, Soongsil University, Seoul, Korea
hsnaa@ssu.ac.kr

Abstract. Given a family of k disjoint connected polygonal sites of total
complexity n, we consider the farthest-site Voronoi diagram of these sites,
where the distance to a site is the distance to a closest point on it. We
show that the complexity of this diagram is O(n), and give an O(n log3 n)
time algorithm to compute it.

1 Introduction

Consider a family S of geometric objects (called “sites”) in the plane. The
farthest-site Voronoi diagram of S subdivides the plane into regions, each re-
gion associated with one site P ∈ S, and containing those points x ∈ R

2 for
which P is the farthest among the sites of S.

While closest-site Voronoi diagrams have been studied extensively [1], their
farthest-site cousins have received somewhat less attention. The case of (possi-
bly intersecting) line segment sites was only solved recently by Aurenhammer
et al. [2]; they gave an O(n log n) time algorithm to compute the diagram for n
line segments.

Farthest-site Voronoi diagrams have a number of important applications. Per-
haps the most well-known one is the problem of finding a smallest disk that in-
tersects all the sites. This disk can be computed in linear time once the diagram
is known, since its center is a vertex or lies on an edge of the diagram. Other
applications are finding the largest gap to be bridged between sites, or building
a data structure to quickly report the site farthest from a given query point.

We are here interested in the case of complex sites with non-constant descrip-
tion complexity. This setting was perhaps first considered by Abellanas et al. [3]:
� This research was supported by the French-Korean Science and Technology Amica-

ble Relationships program (STAR), and the Brain Korea 21 Project, the School of
Information Technology, KAIST, 2007.

�� National ICT Australia is funded through the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian Research Council.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 407–418, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

408 O. Cheong et al.

P1

P2

P1 P1

(a) (b) (c) (d)

Fig. 1. (a) The bisector of two polygons can be a closed curve. (b) The medial axis
M(P1). (c) The Voronoi region R(P1). (d) The farthest-polygon Voronoi diagram
F({P1, P2}).

their sites are finite point sets, and so the distance to a site is the distance to the
nearest point of that site. Put differently, they consider n points colored with k
different colors, and their farthest color Voronoi diagram subdivides the plane
depending on which color is farthest away. The motivation for this problem is
the one mentioned above, namely to find a smallest disk that contains a point
of each color—this is a facility location problem where the goal is to find a posi-
tion that is as close as possible to each of k different types of facilities (such as
schools, post offices, supermarkets, etc.). In a companion paper [4] the authors
study other color-spanning objects.

The farthest color Voronoi diagram is easily seen to be the projection of the
upper envelope of the k Voronoi surfaces corresponding to the k color classes.
Huttenlocher et al. [5] show that this upper envelope has complexity Θ(nk) for
n points, and can be computed in time O(nk log n) (see also the book by Sharir
and Agarwal [6, Section 8.7]).

Van Kreveld and Schlechter [7] consider the farthest-site Voronoi diagram for
a family of disjoint simple polygons. Again, they are interested in finding the
center of the smallest disk intersecting or touching all polygons, which they then
apply to the cartographic problem of labeling groups of islands. Their algorithm
is based on the claim that this farthest-polygon Voronoi diagram is an instance
of the abstract farthest-site Voronoi diagram defined by Mehlhorn et al. [8]—but
this claim is false, since the bisector of two disjoint simple polygons can be a
closed curve, see Fig. 1(a). In particular, Voronoi regions can be bounded (which
is impossible for regions in abstract farthest-site Voronoi diagrams).

Note that the farthest-polygon Voronoi diagram can again be expressed as
the upper envelope of k Voronoi surfaces—but this does not seem to lead to
anything stronger than near-quadratic complexity and time bounds. We show in
this paper that in fact the complexity of the farthest-polygon Voronoi diagram
of k disjoint simple polygons of total complexity n is O(n), independent of the
number of polygons.

Farthest-Polygon Voronoi Diagrams 409

We give a divide-and-conquer algorithm with running time O(n log3 n) to
compute the farthest-polygon Voronoi diagram. Our key idea is to build point
location data structures for the partial diagrams already computed, and to use
parametric search on these data structures to find suitable starting vertices for
the merging step. This idea may find applications to the computation of other
complicated Voronoi diagrams. Our algorithm implies an O(n log3 n) algorithm
to compute the smallest disk touching or intersecting all the input polygons.

We note that for a family of disjoint convex polygons, finding the smallest
disk touching all of them is much easier, and can be solved in time O(n) (where
n is the total complexity of the polygons) [9].

2 Definition of Farthest-Polygon Voronoi Diagrams

We consider a family S of k pairwise-disjoint polygonal sites of total complex-
ity n. Here, a polygonal site of complexity m is the union of m line segments,
whose interiors are pairwise disjoint, but whose union is connected. (In other
words, the corners1 and edges of a polygonal site form a one-dimensional con-
nected simplicial complex in the plane.) In particular, the boundary of a simple
polygon is a polygonal site and we can model a polygon with h holes using its
h + 1 boundaries and connecting them with at most h additional edges. For a
point x ∈ R

2, the distance d(x, P) between x and a site P ∈ S is the distance
from x to the closest point on P .

We assume that the family S is in general position, that is, no disk touches
four edges, and no two edges are parallel.

The features of a site P are its corners and edges. For a site P ∈ S, we define
the function ΨP : R

2 �→ R as ΨP (x) = d(x, P). The graph of ΨP is a Voronoi
surface, it is the lower envelope of circular cones for each corner of P and of
rectangular wedges for each edge of P . The orthogonal projection of this surface
on the plane induces a subdivision of the plane, the medial axis M(P) of P .
Each cell C of this subdivision corresponds to a feature w of P , it is the set of
all points x ∈ R

2 such that w is or contains the unique closest point on P to x.
Here, edges of P are considered relatively open, so the cell of a corner is disjoint
from the cells of its incident edges. The boundaries between cells are the arcs
and vertices of the medial axis. Since the medial axis of P is the closest-site
Voronoi diagram of P ’s features, it can be computed in time O(m log m), where
m is the complexity of P [10].

A pocket of P is a connected component of CH(P) \ P , where CH(P) is
the convex hull of P . The medial axis M(P) contains exactly one tree for each
pocket of P . If a pocket shares an edge with CH(P) that is not an edge of P , then
its medial axis tree contains exactly one infinite arc. (There can be additional
infinite arcs for each corner of an edge of P that appear on the convex hull).

We now consider the function Φ : R
2 �→ R defined as Φ(x) = maxP∈S ΨP (x).

The graph of Φ is the upper envelope of the surfaces ΨP , for P ∈ S. The surface
Φ consists of conical and planar patches from the Voronoi surfaces ΨP , and the
1 We reserve the word “vertex” for vertices of the Voronoi diagram.

410 O. Cheong et al.

arcs separating such patches are either arcs of a Voronoi surface ΨP (we call
these medial axis arcs), or intersection curves of two Voronoi surfaces ΨP and
ΨQ (we call these pure arcs). The vertices of Φ are of one of the following three
types:

• Vertices of one Voronoi surface ΨP . We call these medial axis vertices.
• Intersections of an arc of ΨP with a patch of another surface ΨQ. We call

these mixed vertices.
• Intersections of patches of three Voronoi surfaces ΨP , ΨQ, ΨR. We call these

pure vertices.

The projection of the surface Φ onto the plane is the farthest-polygon Voronoi
diagram F(S) of S. It is a subdivision of the plane into cells, arcs, and vertices.
For a point x ∈ R

2, let us define D(x) = DS(x) as the smallest disk centered
at x that intersects all sites P ∈ S. By definition, there is always at least one
site that touches D(x) without intersecting its interior, and the radius of D(x) is
equal to Φ(x). By our general position assumption, only the following five cases
can occur:

• If D(x) touches one site P in only one feature w, and all other sites intersect
the interior of D(x), then x lies in a cell of F(S), and the cell belongs to the
feature w of P .

• If D(x) touches one site P in two or three features, and all other sites intersect
the interior of D(x), then x lies on a medial axis arc or medial axis vertex
of F(S), and is incident to cells belonging to different features of P .

• If D(x) touches one feature w of site P , one feature u of site Q, and all other
sites intersect the interior of D(x), then x lies on a pure arc separating cells
belonging to features w and u.

• If D(x) touches two features of site P and one feature of site Q, and all other
sites intersect the interior of D(x), then x is a mixed vertex incident to a
medial axis arc of P .

• If D(x) touches one feature each of three sites P , Q, and R, and all other
sites intersect the interior of D(x), then x is a pure vertex.

Put differently, vertices of F(S) are points x ∈ R
2 where D(x) touches three

distinct features of sites. If all three features are on the same site, the vertex is
a medial axis vertex. If the three features are on three distinct sites, then the
vertex is a pure vertex. In the remaining case, if two features are on a site P ,
and the third feature is on a different site Q, the vertex is a mixed vertex.

Consider now an arc α of F(S). If we let x move along α, then Φ(x)—which
is the radius of D(x)—changes continuously. Since the arc is defined by two
features (corners or edges), Φ(x) cannot assume a local maximum in the interior
of α, but it can assume a local minimum. We denote the location of such a local
minimum a pseudo-vertex of F(S). After introducing pseudo-vertices, Φ(x) is a
monotone function on each arc, and we can thus orient all arcs in the direction
of increasing Φ(x).

Fig. 2 illustrates all different vertex types, including the two types of pseudo-
vertices of degree two (types (c) and (f)).

Farthest-Polygon Voronoi Diagrams 411

g

a

f

b c d e

ih

Fig. 2. The different types of vertices in the farthest-polygon Voronoi diagram. Pure
arcs are shown solid, medial axis arcs dashed. The arrows indicate the direction of
increasing Φ(x).

Since the local shape of F(S) around a vertex v is determined solely by the
features defining the vertex, in each configuration we can uniquely determine
the orientation of the incident arcs. Fig. 2 shows the orientation of these arcs
in each case. This orientation plays a crucial role in the next section, where we
show that the complexity of the diagram, that is, the total number of vertices,
is only O(n).

In addition to the nine types of vertices discussed above, we need to consider
vertices at infinity, that is, we consider the semi-infinite arcs of F(S) to have a
degree-one vertex at their end. For a vertex v at infinity, the “disk” D(v) is a
halfplane, and we have two cases:

• If D(v) touches one site P in two features, and all other sites intersect the
interior of D(v), then D(v) is the “infinite” endpoint of a medial axis arc,
and we consider it a medial axis vertex at infinity.

• If D(v) touches two distinct sites, and all other sites intersect its interior,
then D(v) is the “infinite” endpoint of a pure edge, and we consider it a pure
vertex at infinity.

Finally, let us define the Voronoi region of a site P ∈ S. The Voronoi region
R(P) of P is simply the union of all cells, medial axis arcs, and medial axis
vertices of F(S) belonging to features of P . Voronoi regions are not necessar-
ily connected, in fact, a single Voronoi region can have up to k − 1 connected
components.

3 Complexity Bound

Consider again Fig. 2. Let us call a vertex a source if it has more outgoing pure
arcs than incoming pure arcs, and a sink if it has more incoming pure arcs than
outgoing pure arcs. As shown in the figure, all finite pure vertices are sources.

412 O. Cheong et al.

The pure vertices at infinity are sinks. The only other sinks are the mixed vertices
of type (g) and (h). Note that mixed vertices of type (i) are neither sources nor
sinks.

We can now partition the pure arcs of F(S) into disjoint directed paths. Each
such path starts at a source, and ends at a sink. This implies that we can bound
the number of sources by twice the number of sinks, as at most two paths can
end in a sink.

We show in the following that the number of pure vertices at infinity is at
most 2k − 2, and that the number of mixed vertices is O(n). Since the total
number of vertices of all medial axes M(P), for P ∈ S, is O(n), this implies the
main theorem of this section:

Theorem 1. The complexity of the farthest-polygon Voronoi diagram of a fam-
ily of disjoint polygonal sites of total complexity n is O(n).

We first discuss the number of vertices at infinity.

Lemma 1. The number of pure vertices at infinity of F(S) is at most 2k − 2.
The total number of vertices at infinity of F(S) is O(n).

Proof. For two sites P, Q ∈ S, consider the diagram F({P, Q}). A pure vertex
at infinity corresponds to an edge of CH(P ∪Q) supported by a corner of P and
a corner of Q. But CH(P ∪ Q) can have at most two such edges, since P and
Q are disjoint and both are connected, and so F({P, Q}) has at most two pure
vertices at infinity.

Consider now again F(S), and let σ(S) denote the sequence of sites whose
Voronoi regions appear at infinity in circular order, starting and ending at the
same region. We claim that σ(S) is a Davenport-Schinzel sequence of order 2,
and has therefore length at most 2k−1 [6]. Indeed, σ(S) has by definition no two
consecutive identical symbols. Assume now that there are two sites P and Q such
that the subsequence PQPQ appears in σ(S). If we delete all other sites, then
σ({P, Q}) would still need to contain the subsequence PQPQ, and therefore
F({P, Q}) would contain at least three pure vertices at infinity, a contradiction
to the observation above.

It now suffices to observe that the pure vertices at infinity are exactly the
transitions between consecutive Voronoi regions, and their number is at most
2k − 2. All remaining vertices at infinity are medial axis vertices. Since the total
complexity of all M(P), for P ∈ S, is O(n), the bound follows. ��

It remains to show that the total number of mixed vertices is O(n). Consider a
site P ∈ S of complexity m. Its medial axis M(P) has complexity O(m), and we
can consider M(P) as a graph embedded in R

2\P . It consists of a collection of
trees. In Lemma 3 below we show that for each tree T of M(P) the intersection
T ∩ R(P) is a connected subtree. Since the mixed vertices on T are exactly the
finite leaves of this subtree, this implies that the number of mixed vertices on
M(P) is O(m). Summing over all P ∈ S then proves that the number of mixed
vertices of F(S) is O(n).

Farthest-Polygon Voronoi Diagrams 413

It remains to prove Lemma 3. We need another notation: for a point x ∈ R
2

and a site P , let DP (x) denote the largest disk centered at x whose interior does
not intersect P (and which is therefore touching P). Note that a point x ∈ M(P)
is in R(P) if and only if DS(x) = DP (x), which is true if and only if all other
sites intersect the interior of DP (x).

Lemma 2. Let γ be a path in M(P), let Q ∈ S \ {P} be another site, and let
γQ be the set of points x ∈ γ where DP (x) intersects Q. Then γQ is a connected
subset of γ, that is, a subpath.

Proof. We can assume γ to be a maximal path in T , connecting a corner w of P
with another corner u (or possibly going to infinity). Assume for a contradiction
that there are points x, y, z on γ in this order such that x, z ∈ γQ, but y 	∈ γQ.

The disk DP (y) separates one connected component of R
2 \ P into two com-

ponents A and B. The two endpoints of γ must lie in different components, say
w ∈ A and u ∈ B.

We first argue that any disk D that does not intersect P cannot contain
points in both A and B. Indeed, the boundary of D would have to intersect the
boundary of DP (y) in four points, a contradiction.

The disk DP (z) touches P on the boundary of B, and so it contains a point
in B—which implies that it cannot contain a point in A. Since DP (y) does not
intersect Q and Q is connected, this implies that Q is entirely contained in B.
On the other hand, the disk DP (x) touches P on the boundary of A, and by
our claim that means that it cannot intersect B. That implies that DP (x) ∩ Q
is empty, and the claim follows. ��
The following lemma is an easy consequence of Lemma 2.

Lemma 3. Let T be a tree of M(P). Then T ∩ R(P) is a connected subtree
of T .

4 Computing the Voronoi Diagram

The proof of Theorem 1 suggests an algorithm for computing the diagram by
tracing the paths considered there. This is roughly equivalent to computing the
surface Φ by sweeping a horizontal plane downwards, and maintaining the part
of Φ above this plane. This is essentially the approach used by Aurenhammer
et al. [2] for the computation of farthest-segment Voronoi diagrams. It does not
seem to work for our diagram because of the mixed vertices of type (h), where
Φ has a local maximum.

We instead offer a divide-and-conquer algorithm.

Theorem 2. The farthest-polygon Voronoi diagram F(S) of a family S of dis-
joint polygonal sites of total complexity n can be computed in expected time
O(n log3 n).

Proof. Let S = {P1, . . . , Pk}, and let ni be the complexity of Pi. If k = 1,
then F(S) is simply the medial axis M(P1), which can be computed in time
O(n log n) [10]. Otherwise, we split S into two disjoint families S1, S2 as follows:

414 O. Cheong et al.

• If there is a site Pi with complexity ni � n/2, then S1 = {Pi} and S2 =
S \ {Pi}.

• Otherwise there must be an index j such that n/4 �
∑j

i=1 ni � 3n/4. We
let S1 = {P1, . . . , Pj} and S2 = {Pj+1, . . . , Pk}.

We recursively compute F(S1) and F(S2). We show below that we can then merge
these two diagrams to obtain F(S) in time O(n log2 n), proving the theorem. ��
It remains to discuss the merging step. We are given a family S of disjoint
polygonal sites of total complexity n, and we are given F(S1) and F(S2), where
S = S1 ∪ S2 is a disjoint partition of S.

Consider the diagram F(S) to be computed. We color the Voronoi regions of
F(S) defined by sites in S1 red, and the Voronoi regions defined by sites in S2

blue. A pure arc of F(S) is red if it separates two red regions, and blue if it
separates two blue regions. The remaining pure arcs, which separate a red and
a blue region, are called purple. A vertex of F(S) is purple if it is incident to
a purple arc. We observe that by our general position assumption, every finite
purple vertex is incident to exactly two purple arcs, and so the purple arcs form
a collection of open and closed chains, see Fig. 2.

Merging F(S1) and F(S2) can be done in linear time once all purple arcs are
known. In fact, the diagram F(S) consists of those portions of F(S1) lying in
the red regions of F(S), and those portions of F(S2) lying in the blue regions
of F(S).

We show below that if we have a starting vertex on every purple chain, then we
can trace the purple chains in total time O(n). For the open chains, we can use
the purple vertices at infinity as starting vertices, as these are easy to compute.
For the closed purple chains, we make use of the following lemma:

Lemma 4. Any closed purple chain contains a mixed vertex.

Proof. A closed purple chain is a compact set in the plane, and so Φ(x) assumes
a maximum in some point x on this curve. But Φ can assume a local maximum
only in mixed vertices of type (g) and (h), see Fig. 2. ��
It remains to discuss the following three steps: (a) Computing the pure vertices
at infinity; (b) Computing the mixed vertices; (c) Tracing the purple chains.
Computing the pure vertices at infinity is relatively easy, making use of the
same Davenport-Schinzel arguments used in Lemma 1, and we omit the details
in this extended abstract.

4.1 Tracing the Purple Chains

We first need to discuss a monotonicity property of cells of F(S). Let C be a cell
of F(S) belonging to feature w of site P . For a point x ∈ C, let x∗ be the point
on w closest to x. Let fx be a directed line segment starting at x and extending
in direction

−−→
x∗x until we reach M(P) (a semi- infinite segment if this does not

happen). We call fx the fiber of x. We note that if w is an edge, then all fibers
of C are parallel and normal to w; if w is a corner then all fibers are supported
by lines through w.

Farthest-Polygon Voronoi Diagrams 415

Lemma 5. For any x ∈ C, the fiber fx lies entirely in C (and therefore in
R(P)).

Proof. The disk D(x) touches P in x∗ only, and its interior intersects all other
sites. When we move a point y from x along fx, the disk D centered at y through
x∗ keeps containing D(x), and it therefore still intersects all other sites. This
implies that y ∈ C as long as D does not intersect P in another point. This does
not happen until we reach M(P). ��
An immediate consequence is that cells are “monotone”, this follows easily from
Lemma 5.

Lemma 6. Let C be a cell belonging to feature w. If w is a corner, then any
line through w intersects C in a segment. If w is an edge, then any line normal
to w intersects C in a segment.

Lemma 6 implies that the boundary of a cell C belonging to a feature w consists
of two chains monotone with respect to w (that is, monotone in the direction of
an edge, and rotationally monotone around a corner). The lower chain is closer
to the feature and consists of pure arcs only, the upper chain consists of medial
axis arcs only.

An important consequence of Lemma 5 for tracing the purple chains is the
following:

Lemma 7. Let fx be a fiber of a cell C in F(S1) or F(S2). Then fx is intersected
by at most one purple arc of F(S).

Proof. Assume for the contrary that two purple arcs intersect fx in points p and
q, where q lies on fp. Then there is a point p′ on fx very close to p such that
p′ ∈ R(P) in F(S), where C belongs to site P . But then the fiber fp′ lies in
R(P) in F(S), and cannot intersect a purple arc at q. ��
Lemma 7 allows us to trace purple chains very easily. Once we have located a
starting vertex in both F(S1) and F(S2), we trace the chain through both dia-
grams at the same time. We observe that every time it intersects a cell boundary
in F(S1) or F(S2), we have indeed found a vertex of the purple chain, so the total
number of such intersections is only O(n).

When we enter a cell C along a purple arc, we simply follow the arc through
the cell as it intersects the fibers of C. We consider the upper and lower chain
of C at the same time, and trace the cells of F(S1) and F(S2) in parallel. This
allows us to charge the cost of tracing to those features of the two cells incident
to the fibers the purple chain actually intersects. Since no fiber is intersected by
more than one purple arc, the total tracing time is O(n).

4.2 Computing the Mixed Vertices

This is the hardest part of the algorithm. We start by computing the randomized2

point-location data structure of Mulmuley [12] (see also [13, Chapter 6]) for the
2 This is the only use of randomization in our algorithm. It can probably be avoided

by using the point location data structure of Edelsbrunner et al. [11] instead.

416 O. Cheong et al.

two given Voronoi diagrams F(S1) and F(S2). This data structure only needs
two primitive operations:

• For a given point p in the plane, determine whether the query point x lies
left or right of p; and

• For an x-monotone line segment or parabola arc γ, determine whether the
query point lies above or below γ.

Both cases can be summarized as follows: Given a comparator γ, determine on
which side of γ the query point x lies. The comparator can be either a line or a
parabola arc.

We compute the mixed vertices lying on each medial axis M(P) separately.
For each tree T of M(P), the intersection T ∩ R(P) is a connected subtree
by Lemma 3. We can determine the inner vertices of this subtree easily, by
performing a point location operation for each vertex v of T in F(S1) and F(S2).
This tells us which site is farthest from v—and v lies in R(P) if and only if this
is the site P . Let I be the set of vertices of T that lie in R(P). We now need to
consider two cases.

If I is non-empty, then every arc α of T incident to one vertex in I and one
vertex not in I must contain exactly one mixed vertex x∗ by Lemma 3. We
locate this vertex x∗ by using parametric search along the arc α [14]. The idea is
to execute two point location queries in F(S1) and F(S2) using x∗ as the query
point. Each query executes a sequence of primitive operations, where we compare
the (unknown) location of x∗ with a comparator γ (a line or a parabola arc).
This primitive operation can be implemented by intersecting α with γ, resulting
in a set of at most four points. In O(log n) time, we can test for each of these
points whether it lies in R(P). This tells us between which of these points the
unknown mixed vertex x∗ lies, and we can answer the primitive operation.

It follows that we can execute the two point location queries in time O(log2 n),
and we obtain the cells C1 and C2 of F(S1) and F(S2) containing x∗. The mixed
vertex x∗ lies on the bisector of the features w1 and w2 to which these two cells
belong (one of them is necessarily a feature of P). We compute the intersection
of this bisector with α to obtain x∗.

It remains to consider the case where I is empty, that is, no vertex of T lies
in R(P). Nevertheless, the region R(P) may intersect a single arc α of T , and
there are then two mixed vertices on α that we need to find. We first need to
identify the arcs of T where this could happen.

Let p and q be two points on the same arc α of M(P). We define the cylinder
C(p, q) of the pair (p, q) as

C(p, q) =
⋃

x∈pq

DP (x) \ DP (p),

where the union is taken over all points x on the arc α between p and q, see
Fig. 3. We define a condition G(p, q) as follows: Let Q be a site farthest from p,
and let w be a feature of Q closest to p. Then G(p, q) is true if w ∈ C(p, q) or if
Q intersects DP (q). We omit the easy proof of the following lemma:

Farthest-Polygon Voronoi Diagrams 417

p

q

p′

q′

P P

C(p, q)q

p

C(q, p)

p

q

P

P

R(P)

(a) (b) (c)

Fig. 3. (a) pq is a sub-arc of M(P). p′q′ is the intersection of pq with R(P). We also
have p′q′ = M(P) ∩ R(P). (b) The cylinder C(p, q) of the pair (p, q) in (a). (c) The
cylinder C(q, p) of the pair (q, p) for a parabola arc.

Lemma 8. Let p, q be points on the same arc α of M(P), such that neither p
nor q lie in R(P). If α intersects R(P) between p and q, then G(p, q) and G(q, p)
both hold.

Let us call an arc α connecting vertices p and q of T a candidate arc if G(p, q)
and G(q, p) both hold.

Lemma 9. If α is a candidate arc of a tree T of M(P), then all points in
T ∩ R(P) lie on α.

Proof. Let α connecting p and q be a candidate arc. Since G(p, q) holds, there is
a site Q 	= P such that Q does not intersect DS(p), but does intersect C(p, q). In
particular, there must be a point x ∈ α such that Q intersects DS(x) ⊃ DP (x).
Let now y be a point on T such that the path from q to y goes through α. By
Lemma 2, Q cannot intersect DP (y), and so y 	∈ R(P).

Symmetrically, since G(q, p) holds, we find that any point z ∈ T such that
the path from p to z goes through α cannot be in R(P), and so any point of
T ∩ R(P) must lie on α. ��
Lemma 9 implies immediately that if there are two candidate arcs, then T ∩R(P)
is empty, and there are no mixed vertices on T .

Since we have point-location data structures for F(S1) and F(S2), we can test
the condition G(p, q) in time O(log n) for a given arc α in M(P) and two points
p, q ∈ α. This allows to identify all candidate arcs in O(m log n) time, where m
is the complexity of T . If there is zero or more than one candidate arcs, we can
stop immediately, as there are no mixed vertices on T .

We briefly sketch how to handle the case of the presence of a single candidate
arc α. We apply parametric search guided by our predicate G(·, ·). This leads
either to the conclusion that R(P) is empty, or to the discovery of a point inside

418 O. Cheong et al.

α ∩ R(P), which we can plug in the previous method (when I is not empty) to
find the two mixed vertices on α.

Acknowledgments

We thank the participants of the 8th Korean Workshop on Computational Ge-
ometry, organized by Tetsuo Asano at JAIST, Kanazawa, Japan, Aug. 1–6, 2005.

References

1. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.R., Urrutia, J.,(eds).
Handbook of Computational Geometry. pp. 201–290. Elsevier Science Publishers
B.V. North-Holland, Amsterdam (2000)

2. Aurenhammer, F., Drysdale, R.L.S., Krasser, H.: Farthest line segment Voronoi
diagrams. Information Processing Letters 100, 220–225 (2006)

3. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B.,
Sacristán, V.: The farthest color Voronoi diagram and related problems. In: Ab-
stracts 17th European Workshop Comput. Geom., pp. 113–116. Freie Universität,
Berlin (2001)

4. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B.,
Sacristán, V.: Smallest color-spanning objects. In: Meyer auf der Heide, F. (ed.)
ESA 2001. LNCS, vol. 2161, pp. 278–289. Springer, Heidelberg (2001)

5. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces
and its applications. Discrete Comput. Geom. 9, 267–291 (1993)

6. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric
Applications. Cambridge University Press, New York (1995)

7. van Kreveld, M., Schlechter, T.: Automated label placement for groups of islands.
In: Proc. of the 22nd International Cartographic Conference (2005)

8. Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site abstract Voronoi diagrams. Int.
J. Comput. Geom. & Appl. 11(6), 583–616 (2001)

9. Jadhav, S., Mukhopadhyay, A., Bhattacharya, B.K.: An optimal algorithm for the
intersection radius of a set of convex polygons. J. Algorithms 20, 244–267 (1996)

10. Fortune, S.J.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–
174 (1987)

11. Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone
subdivision. SIAM Journal on Computing 15(2) (1986)

12. Mulmuley, K.: A fast planar partition algorithm, I. J. Symbolic Comput. 10(3-4),
253–280 (1990)

13. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Ge-
ometry: Algorithms and Applications, 2nd edn. Springer, Berlin, Germany (2000)

14. Megiddo, N.: Applying parallel computation algorithms in the design of serial al-
gorithms. J. ACM 30(4), 852–865 (1983)

Equitable Revisited

Wolfgang Bein1,�, Lawrence L. Larmore1,�, and John Noga2

1 Center for the Advanced Study of Algorithms, School of Computer Science,
University of Nevada Las Vegas, Nevada 89154, USA

bein@cs.unlv.edu, larmore@cs.unlv.edu
2 Computer Science Department, California State University,

Northridge, CA 91330-8281, USA
jnoga@csun.edu

Abstract. The randomized k-paging algorithm Equitable given by
Achlioptas et al. is Hk-competitive and uses O(k2 log k) memory. This
competitive ratio is best possible. The randomized algorithm RMark

given by Fiat et al. is (2Hk − 1)-competitive, but only uses O(k) mem-
ory. Borodin and El Yaniv [6] list as an open question whether there exists
an Hk-competitive randomized algorithm which requires O(k) memory
for k-paging. In this paper we answer this question in the affirmative by
giving a modification of Equitable.

Keywords: Design of Algorithms, Online Algorithms, Paging, Random-
ization.

1 Introduction

In the k-paging problem we consider a two-level memory system, consisting
of fast memory, also referred as the cache, which can hold k memory units
commonly called pages, and an area of slow memory capable of holding a much
larger number of pages. If a page is needed in fast memory this is called a page
request. Such a request causes a hit if the page is already in the cache at the time
of the request. In the case of a miss (i.e. when the page is not in the cache) the
requested page must be brought into the cache while a page in the cache must be
evicted to make room for the new page. We assume that the total cost of copying
a new page and ejecting a page is one, and all other costs are zero. Thus, given a
sequence of requests, �, the cost of an algorithm A on � will be denoted costA(�)
and is simply the number of misses algorithm A incurs on �. An online paging
algorithm must make decisions about such evictions as the request sequence of
pages is presented to the algorithm. Online algorithms are analyzed in terms of
competitiveness , a measure of the performance that compares the decision made
online with the optimal offline solution for the same problem, where the lowest
� Research of these authors supported by NSF grant CCR-0312093 and UNLV sab-

batical leave (Bein).

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 419–426, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

420 W. Bein, L.L. Larmore, and J. Noga

possible competitiveness is best. We say that a randomized online algorithm A
for the k-paging problem is C-competitive if there is a constant K such that,
given any request sequence �, costA(�) ≤ C · costopt(�) + K, where costopt(�)
is the optimal cost for sequence � and costA(�) is the (expected) cost of the
randomized algorithm.

For paging the optimal cost can be computed using Belady’s algorithm [5],
which replaces the page whose next request is latest. We also refer to this algo-
rithm as OPT. A closely related concept is that of a work function which, when
given a configuration, returns the minimum cost of serving the request sequence
and ending in this configuration. In the case of paging a configuration is simply
the set of k pages which are in the cache. Koutsoupias and Papadimitriou [8,9]
give a complete characterization of the work function for paging.

We note that the competitive ratio is one aspect of an online algorithm, the
memory requirement is another. It is typical to measure the memory require-
ment of an algorithm by the maximum number of pages remembered by the
algorithm: any paging algorithm knows which k pages are currently in the cache
and beyond that, an algorithm might store information about pages which are
not currently in the cache. Those pages are called bookmarks. Thus the total
memory requirement of a paging algorithm is k plus the number of bookmarks.
We mention that if an online algorithm for the problem permits no bookmarks,
it is called trackless , see [3].

It is well known that the deterministic competitiveness of the k-paging prob-
lem is k, which can be achieved by the trackless algorithm LRU [11]. The ran-
domized competitiveness of the k-paging problem is known to be Hk =

∑k
i=1 1/i.

The lower bound result is due to [7]. The same paper also gives a (2Hk − 1)-
competitive algorithm called RMark which uses only O(k) memory; this algo-
rithm is also trackless. An algorithm with best possible competitive ratio of Hk

was first described in [10]; however their algorithm, Partition, is unbounded in
its memory requirement. Later, [1] constructed another algorithm, Equitable,
with best possible ratio Hk and a bounded memory requirement of O(k2 log k)
pages. The technique of decreasing memory used in [1] is called forgiveness. Un-
der certain conditions, the algorithm simply assumes that OPT’s cache is in a
given configuration, despite the fact that it may not be. Informally speaking,
the trick is that by this time the algorithm has enough “savings” to cover the
cost of this “mistake.” On the other hand Bein and Larmore [3] have shown
that it is not possible for a trackless algorithm to achieve Hk-competitiveness if
k = 2. Borodin and El-Yaniv list in [6] the open question whether there exists
an Hk-competitive randomized algorithm which requires only O(k) memory.

In this paper we answer this question in the affirmative. In the next section
we review Equitable as needed for our paper. In section 3 we improve this
technique so that the algorithm (still a version of Equitable) makes a forgive-
ness step sooner, and is never required to remember more than 3k pages. The
basic idea is to not just forgive to one configuration but to use a rather more
elaborate scheme.

Equitable Revisited 421

2 Equitable

We assume that the reader is familiar with the definitions and notation of [1]
although some definitions and results of that paper will be stated here for clar-
ity and self-containedness. We remind the reader that many randomized online
algorithms are given in a so-called distributional form, as is the algorithm Equi-

table of [1]. For randomized online algorithms against an oblivious adversary,
the distribution model is equivalent to the more standard behavioral model (see
e.g. [6]). For the k-cache problem, a distributional algorithm is essentially a state
transition diagram, where each state is a probabilistic distribution of configu-
rations. More precisely, a configuration is an unordered k-tuple of pages, which
represents a possible cache configuration, and we denote by Sk be the set of
all possible cache configurations. A transition from one state to the next is a
deterministic transition to a new distribution. The cost of a move can be defined
by the transport distance between the distributions.

In analyzing the competitiveness of online algorithms it is often useful to know
the optimal solution for each request sequence. To this end, the work function,
ω� : Sk → N, associated with a sequence of requests � is defined as follows:
ω�(S) is the minimum cost of servicing � while ending in S. Note that if the last
request r does not belong to S one can define ω�(S) = 1+minS∈Sk ω�(S+r−x).
Note also that the optimal cost of servicing request sequence � is min(ω�). The
superscript � is usually dropped if it is clear from the context.

Given work function ω and request r, one can obtain the work function after
service of request r – denoted as (ω∧r) – in the following way: (ω∧r)(S) =
1 + minS∈Sk ωt(S + r − x) if r /∈ S and simply (ω∧r)(S) = ω(S) if r ∈ S.

Let T be a set of configurations. We say that a work function is coned-up from
T , if for every configuration S there is a T ∈ T such that ω(S) = ω(T)+ ||S, T ||,
where the last term denotes the cost of changing the cache S to the cache T ,
namely the number of pages in S which are not in T . If T is a singleton, we call
ω a cone.

In this paper (as in [1]) it is convenient to normalize work functions in the fol-
lowing way: If minS∈Sk {ω(S)} = offset > 0 we lower the function by subtracting
the constant offset and then storing that value; such functions are called offset
functions. A notation system for offset functions was introduced by Koutsoupias
and Papadimitriou [8,9]; we briefly summarize that concept here. To define any
offset function, suppose ∅ = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sk are sets of pages, and let
mi = |Si|. An offset function ω is then defined as follows:

1. We say that S ∈ Sk is in the support of ω, which we call supp(ω), if and
only if |S ∩ Si| ≥ i for all 1 ≤ i ≤ k. We have ω(S) = 0 for all S ∈ supp(ω).

2. For any T ∈ Sk, ω(T) = minS∈supp(ω) ||S, T ||.
For convenience we also define Li = Si − Si−1, called layers. We write either
S1|S2| . . . |Sk| or equivalently L1|L2| . . . |Lk| to represent an offset function. If
the initial set of pages in the cache is {s1, s2, . . . , sk} then Si = {s1, s2, . . . , si}.
Given an offset function S1|S2| . . . |Sk| the offset function resulting from a re-
quest to a page r is

422 W. Bein, L.L. Larmore, and J. Noga

{r}|S2 + r|S3 + r| . . . |Sk + r| if r /∈ Sk,
{r}|S1 + r|S2 + r| . . . |Si−1 + r|Si+1|Si+2| . . . |Sk| if r ∈ Si and i < k,
{r}|S1 + r|S2 + r| . . . |Sk−1 + r| if r ∈ Sk,

where the offset is increased by one in the first case. We will call requests of
the first type new requests and requests of the second type lazy. We refer to Sk

as the set of active pages . Thus, any algorithm which is based upon the offset
function must use at least mk − k bookmarks, and we say that the algorithm
has to “keep track of” these pages.

The concept of forgiveness is defined as replacing the current work function
ω with another function ω′ where ω(S) ≥ ω′(S) for all S ∈ Sk. Note that if
the algorithm makes a forgiveness step, the resulting function is no longer an
accurate calculation of optimal cost but instead an underestimate. By a slight
abuse of terminology we also refer to this estimate as an offset function.

As mentioned above, the algorithm Equitable is defined using the distribu-
tional model. It is a stable distribution algorithm, i.e., its distribution depends
only on the offset function and not on any other information that could be com-
puted from the sequence of requests thus far. If ω is the current offset function,
the distribution πω will be by the procedure below. (We will omit the superscript
ω from functions when the current offset function is clear from context).

1. For any S /∈ supp(ω), π(S) = 0.
2. For any S ∈ supp(ω), π(S) > 0. The following random process selects a

member of supp(ω):
– Initialize S to be the empty set.
– Let T = Sk.
– Execute the following loop until |S| = k:

(a) Select x ∈ T uniformly at random.
(b) Delete x from T .
(c) If S + x is a subset of any member of supp(ω) let S = S + x.

– For any S ∈ supp(ω), define π(S) to be the probability that S is selected
in the previous procedure.

For an offset function ω and page x, define pω
x as the probability that the

page x is in the set S selected in the previous procedure. Equivalently let px =∑
{S∈Sk|x∈S} π(S) which is the probability that x is in the cache. Note that if

px > 0 then x ∈ Sk. Proofs of the following observations can be found in [1].

Observation 1. If x ∈ Li and y ∈ Lj, where i ≤ j, then px ≥ py. If i = j then
px = py.

Observation 2. For any offset function, all sequences of lazy requests ending
when |Sk| = k have the same cost for Equitable.

We define the function Φ as the cost Equitable incurs on a sequence of lazy
requests ending when |Sk| = k.

Equitable Revisited 423

3 Forgiveness Revisited

For any given offset function the algorithm Equitable2 will maintain the same
distribution as Equitable. The difference between the algorithms is the for-
giveness step. If |Sk| = 3k and r /∈ Sk is requested then Equitable2 moves
to offset function {r}|L1|L2| . . . |Lk−1| and charges OPT zero. One way to view
this step is that the requested page is moved into Lk prior to being requested.
The motivation for this choice is that when the set of active pages is large, a
request in Lk and a request outside Sk have nearly the same cost to Equitable

(if |Sk| = 3k then a page in Lk will have cost between 2/3 and 1). If we can
show that the small additional cost to the online algorithm can be covered, why
not move the requested page into Lk, have it requested, and thereby reduce the
size of the set of active pages?

Most of the notation of [1] is used, but the definition of Ψ is different. Recall
that mi = |Si| and define Ψ = Ψ(ω) as follows:

Ψ =
k∑

i=2

(mi

i
+ Hi−1 − Hmi−1 − 1

)
.

Similar to [1] we wish to show that for every request

cost + ΔΦ + ΔΨ ≤ Hk · costopt

where cost denotes the expected cost to the algorithm at that step and costopt

is the optimal cost at that step.
In the discussion below, unprimed variables denote the values before a given

request. Primed variables are the values after that request. Recall that mi ≥ i.

Lemma 1. On a lazy request r ∈ Lj, cost + ΔΦ + ΔΨ ≤ Hk · costopt.

Proof. Since Φ is the cost for Equitable to serve a lazy sequence of requests
ending in a cone, on a lazy request cost+ΔΦ = 0. For a lazy request costopt = 0
by definition. So it suffices to show that ΔΨ < 0. We have

ΔΨ =
k∑

i=2

(
m′i
i

− Hm′
i−1 − mi

i
+ Hmi−1

)

=
j∑

i=2

(
mi−1 + 1 − mi

i
− Hmi−1 + Hmi−1

)

=
j∑

i=2

⎛

⎝mi−1 + 1 − mi

i
+

mi−1∑

�=mi−1+1

1
�

⎞

⎠

≤
j∑

i=2

⎛

⎝mi−1 + 1 − mi

i
+

mi−1∑

�=mi−1+1

1
i

⎞

⎠

= 0.

424 W. Bein, L.L. Larmore, and J. Noga

Lemma 2. On a request r /∈ Sk, if forgiveness does not occur, then ΔΦ ≤∑k
i=2

1
mi

.

Proof. If k = 1 then Φ = Φ′ = 0 which shows that the lemma is true for k = 1.
Assume k > 1 and that the lemma is true for k − 1.

For every page s
= r, ps ≥ p′s. Since pr = 0 and p′r = 1,
∑

s∈Sk
ps − p′s = 1,

there must be an item x ∈ Sk for which px − p′x ≤ 1/mk. Without loss of
generality, x /∈ S1 because every item y ∈ S2 will have py − p′y ≤ px − p′x. Let
this page x ∈ Sj be the first item in the lazy request sequence which defines Φ
and Φ′. Define the following offset functions:

ω = S1|S2| . . . |Sk|
ω′ = r|S2 + r| . . . |Sk + r|

ω ∧ x = x|S1 + x|S2 + x| . . . |Sj−1 + x|Sj+1| . . . |Sk|
ω′ ∧ x = x|xr|S2 + r + x| . . . |Sj−1 + r + x|Sj+1 + r| . . . |Sk + r|
ωdropx = S1|S2| . . . |Sj−1|Sj+1| . . . |Sk|
ω′dropx = r|S2 + r| . . . |Sj−1 + r|Sj+1 + r| . . . |Sk + r|.

Now we notice that

ΔΦ ≤ 1
mk

+ Φ(ω′ ∧ x) − Φ(ω ∧ x)

=
1

mk
+ Φ(ω′dropx) − Φ(ωdropx)

≤ 1
mk

+
k−1∑

i=2

1
mi

=
k∑

i=2

1
mi

where the third line follows from the inductive hypothesis.

Lemma 3. On a request r /∈ Sk, if forgiveness does not occur, then

cost + ΔΦ + ΔΨ ≤ Hk · costopt.
Proof. Since r /∈ Sk, m′i = m′i + 1. Given lemma 2, it follows that

cost + ΔΦ + ΔΨ ≤ 1 +
k∑

i=2

1
mi

+
k∑

i=2

(
m′i
i

− Hm′
i−1 − mi

i
+ Hmi−1

)

= 1 +
k∑

i=2

1
mi

+
k∑

i=2

(
mi + 1

i
− Hmi − mi

i
+ Hmi−1

)

=
k∑

i=1

1
i

= Hk · costopt.

Equitable Revisited 425

Lemma 4. On a request outside Sk when forgiveness occurs.

cost + ΔΦ + ΔΨ ≤ 0.

Proof. A forgiveness step occurs when Sk = 3k and a page r /∈ Sk is requested.
The forgiveness step can be seen as placing r in Lk and then requesting r. We can
easily compute ΔΨ during a forgiveness step. However, it is easier to compute
cost + ΔΦ when r is added to Lk and on the request separately.

When r is placed into Lk the distribution must be adjusted and the lazy
potential changes. The transportation cost necessary to adjust the distribution
is p′r. Since the cost on all lazy sequences is the same, we can compute the change
in potential by considering the sequence which begins with a page x ∈ Lk. From
Observation 1 cost + ΔΦ = px − p′x + p′r = px ≤ k/mk.

When r is requested cost + ΔΦ = 0 because Φ is the lazy potential. So it
suffices to show that k/mk + ΔΨ is no more than 0. We have

cost + ΔΦ + ΔΨ ≤ k

mk
+

k∑

i=2

(
m′i
i

− Hm′
i−1 − mi

i
+ Hmi−1

)

=
1
3

+
k∑

i=2

(
mi−1 + 1 − mi

i
− Hmi−1 + Hmi−1

)

≤ 1
3

+
(

k − mk

k
− Hk−1 + Hmk−1

)

≤ −5
3

+ H3k−1 − Hk−1

≤ 0.

The second inequality above holds because the ΔΨ is decreasing in m� for all
� < k. So the worst case occurs when m� = �.

Theorem 1. Equitable2 is an Hk-competitive, O(k) memory, randomized al-
gorithm for the k-paging problem.

Proof. Since we perform a forgiveness step when the set of active pages has
size 3k and a new page is requested, the set of pages we keep track of is never
greater than 3k. Lemmas 1, 3, and 4 show that cost+ΔΦ+ΔΨ ≤ Hk ·costopt on
every request type. Noting that Φ+Ψ is initially 0 and never negative, summing
over every request shows that Equitable(�) ≤ Hk·OPT(�) for any request
sequence �.

4 Conclusion

We have given an Hk-competitive randomized online algorithm for the k-paging
problem which keeps track of only 3k pages. For large k, Lemma 4 can be
improved to αk where α ≈ 2.2572 satisfies α2 − α − α log(α) = 1.

426 W. Bein, L.L. Larmore, and J. Noga

Bein et al. [2,4] show (using a different method than is used here) that for
the 2-paging problem three pages suffice. For k = 3, the technique used in this
paper can be used to calculate that 7 pages suffice. We also note that we have
not proven 3k to be the minimum number of pages needed for any particular k.
In fact, we conjecture that a stronger result holds than the upper bound from
this paper:

Conjecture 1. There exists a randomized online algorithm for paging which is
Hk-competitive and uses o(k) bookmarks (i.e. k + o(k) memory).

References

1. Achlioptas, D., Chrobak, M., Noga, J.: Competitive analysis of randomized paging
algorithms. Theoret. Comput. Sci. 234, 203–218 (2000)

2. Bein, W., Fleischer, R., Larmore, L.L.: Limited bookmark randomized online al-
gorithms for the paging problem. Inform. Process. Lett. 76, 155–162 (2000)

3. Bein, W., Larmore, L.L.: Trackless online algorithms for the server problem. In-
form. Process. Lett. 74, 73–79 (2000)

4. Bein, W., Larmore, L.L., Reischuk, R.: Knowledge state algorithms: Randomization
with limited information(2007) Arxiv: archive.org/cs/0701142

5. Belady, L.A.: A study of replacement algorithms for virtual storage computers.
IBM Syst. J. 5, 78–101 (1966)

6. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

7. Fiat, A., Karp, R., Luby, M., McGeoch, L.A., Sleator, D., Young, N.E.: Competitive
paging algorithms. J. Algorithms 12, 685–699 (1991)

8. Koutsoupias, E., Papadimitriou, C.: Beyond competitive analysis. In: Proc. 35th
Symp. Foundations of Computer Science (FOCS), pp. 394–400. IEEE, Los Alamitos
(1994)

9. Koutsoupias, E., Papadimitriou, C.: Beyond competitive analysis. SIAM J. Com-
put. 30, 300–317 (2000)

10. McGeoch, L., Sleator, D.: A strongly competitive randomized paging algorithm.
Algorithmica 6(6), 816–825 (1991)

11. Sleator, D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28, 202–208 (1985)

Online Scheduling of Equal-Length Jobs on

Parallel Machines

Jihuan Ding1,2, Tomáš Ebenlendr3, Jǐŕı Sgall3, and Guochuan Zhang1

1 Dept. of Mathematics, Zhejiang Univ., Hangzhou 310027, China
{dingjh,zgc}@zju.edu.cn

2 College of Operations Research and Management Science, Qufu Normal Univ.,
Rizhao 276826, China

dingjihuan@hotmail.com
3 Institute of Mathematics, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic

{ebik,sgall}@math.cas.cz

Abstract. We study on-line scheduling of equal-length jobs on paral-
lel machines. Our main result is an algorithm with competitive ratio
decreasing to e/(e − 1) ≈ 1.58 as the number of machine increases.
For m ≥ 3, this is the first algorithm better than 2-competitive greedy
algorithm.

Our algorithm has an additional property called immediate decision:
at each time, it is immediately decided for each newly released job if
it will be scheduled, and if so, then also the time interval and machine
where it is scheduled is fixed and cannot be changed later. We show that
for two machines, no deterministic algorithm with immediate decision is
better than 1.8-competitive; this lower bound shows that our algorithm
is optimal for m = 2 in this restricted model. We give some additional
lower bounds for algorithms with immediate decision.

1 Introduction

We study a problem in the area of real-time scheduling. We are given an input
sequence of jobs with equal processing times p. Each job has its release time
and deadline, specifying the time window in which it needs to be scheduled; all
the parameters are integers. The desired output is a nonpreemptive schedule
on m identical machines, possibly only for a subset of the jobs on input. Each
scheduled job must be executed between its release time and deadline, and dif-
ferent jobs cannot overlap if they are scheduled on the same machine. The term
“nonpreemptive” means that each job must be executed without interruptions,
in a contiguous interval of length p. The objective is to maximize the number of
completed jobs.

In the online version, each job is released at its release time, and its deadline
is revealed at this time, too. The number of jobs and future release times are
unknown. At each time step when some machine is available (it just completed
a job or was idle), we have to decide whether to start some jobs, and if so, to
choose which ones, based only on the information about the jobs released so far.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 427–438, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

428 J. Ding et al.

An online algorithm is called c-competitive if on every input instance it schedules
at least 1/c as many jobs as the optimum schedule.

This type of problems is extensively studied. In addition to the results men-
tioned below, there is a vast literature on real-time scheduling of jobs with ar-
bitrary (not equal) processing times, weights, and so on. In these more general
variants, often preemption is necessary to achieve reasonable competitive ratio,
and still the ratio depends on various parameters.

For our problem with equal jobs and non-preemptive scheduling, it is known
that a greedy algorithm performs reasonably well, namely it is 2-competitive
for any number of machines. Note that in this type of problems it is usual and
natural that more machines make performance better, as it is possible to keep in
some time interval some fraction of the total capacity of the machines available
for later arriving jobs. Nevertheless, for this very basic problem, no non-trivial
algorithm was known for m ≥ 3 before this work.

1.1 Previous Results

Most of the previous results deal only with the case of a single machine. In
this case, it is known that a greedy algorithm is 2-competitive for this prob-
lem [2], and that this is optimal for deterministic algorithms [5]. There exists a
5/3-competitive randomized algorithm [3] and no better than 4/3-competitive
randomized algorithm exists [5].

For two machines, independently Goldwasser and Pedigo [7] and Ding and
Zhang [4] designed 1.5-competitive deterministic algorithms, and this competi-
tive ratio is optimal. Their algorithms and analysis are fairly complicated, and
it seems that this is necessary, as very precise timing is needed to obtain the
optimal competitive ratio.

For more machines, 2-competitive greedy algorithm is known, which is an easy
generalization of the single machine result. To our best knowledge, no better
algorithms for m ≥ 3, deterministic or randomized, were known prior to our
work. A lower bound of 6/5 is known [4], using the same idea as the lower
bound of 4/3 for randomized algorithms on a single machine. For deterministic
algorithms, it actually gives a slightly higher lower bound, but it still approaches
6/5 for large m.

In the offline case, it is known that the problem is polynomially solvable for
any fixed number of machines [1]. The complexity with the number of machines
as the part of the input is still open.

1.2 Our Results

Our main result is algorithm BestFit with competitive ratio decreasing to
e/(e − 1) ≈ 1.582 for large m. The exact ratio for m machines is

Rm =
1

1 −
(

m
m+1

)m .

Online Scheduling of Equal-Length Jobs on Parallel Machines 429

For m = 2, this competitive ratio is 1.8. Compared to the known algorithms for
m = 2, both the algorithm and its analysis are very simple; the proof uses a
charging scheme extending the analysis of the greedy algorithm for m = 1.

Immediate decision. Our algorithm has an additional property introduced in [4]
which is called immediate decision: At each time t, it is immediately decided for
each newly released job j (i.e., with rj = t) if it will be scheduled, and if so, then
also the time interval and machine where it is scheduled are fixed and cannot be
changed later.

The second main contribution of our paper is a study of the power of the
restricted model with immediate decision. We give several lower bounds showing
that this restriction is quite severe.

For m = 2, we show that no deterministic algorithm with immediate deci-
sion is better than 1.8-competitive. Thus our algorithm BestFit is optimal for
m = 2 in this restricted model. This shows that immediate decision is a strong
requirement, as for m = 2 the optimal competitive ratio in the unrestricted
model is 1.5 smaller.

We also give a simple lower bound of 4/3 for arbitrary m with immediate
decision, which holds even for randomized algorithms.

Finally, we give some lower bounds for jobs with small processing times. With
immediate decision for m = 2, we prove that deterministic algorithms are at
least 1.6-competitive for p = 1 and 5/3-competitive for p = 2. The previously
mentioned lower bound of 1.8 holds for any p ≥ 3.

Scheduling with immediate decision is somewhat similar to the model of jobs
arriving one by one, also called list scheduling, with an additional restriction
that the jobs are ordered according to their release times. The models are the
same for instances with all the release times distinct. In a model with continuous
time, it is possible to slightly perturb the release times and deadlines, and the
models are thus equivalent. For large p, our model with discrete time approaches
the continuous time model and thus also the model of jobs arriving one by one
consistently with the release times.

The requirement of immediate decision should also be compared with the no-
tion of immediate notification introduced in [6]. Immediate notification requires
that upon release of each job, we immediately decide (i.e., notify the user) if
the job will be completed or not; however, its exact timing and the choice of a
machine may depend on subsequent jobs. It seems to be the case that in all cases
studied so far, it is possible to provide immediate notification without changing
the performance of the algorithms. In contrast, our results show that this is no
longer the case when the requirement is strengthened from immediate notifica-
tion to immediate decision. Then the competitive ratio must increase at least in
the case of two machines.

1.3 Preliminaries

Each job is described by a pair of numbers (rj , dj) denoting its release time
and deadline, respectively. All the release times, deadlines and starting times

430 J. Ding et al.

of jobs are assumed integral, as is usual in scheduling literature. Saying that
a job is running at time t is equivalent to saying that it is running in time
interval [t, t + 1). (However, we note that our algorithm and proofs work also
for continuous time and non-integral rj , dj . The choice of the discrete model is
mainly a matter of taste and tradition in the literature).

Given a particular schedule, Sj denotes the starting time of job j. Each sched-
uled job needs to be scheduled so that rj ≤ Sj ≤ dj − p. Let C(Mi) denote the
completion time of machine Mi, i.e., the first time t such that no job is scheduled
to run on machine Mi at or after t.

In the online problem, each job is released at time rj . However, in the more
complicated lower bounds using adversary arguments, it is often convenient to
say that at time t, based on the previous actions of the algorithm, we release some
set of jobs, possibly including (rj , dj) with rj > t. This should be interpreted
so that we commit to releasing such job(s) and we actually reveal them to the
algorithm only at time rj .

2 The Algorithm

We now present our algorithm. It simply tries to schedule each job without any
idle time on the most full machine where it can be completed by its deadline.
So, for example, a sequence of jobs with huge deadlines is scheduled on a single
machine, leaving all other machines available for future jobs.

Algorithm BestFit.
At each time t, as an invariant, each machine Mi is committed to execute
jobs from t until its completion time C(Mi) with no idle time inserted.
A machine Mi is called feasible for job j if C(Mi) ≤ dj − p.

At time t, consider the newly released jobs one by one. If no feasible
machine for job j exists, the job is rejected. Otherwise j is scheduled on
a machine with largest C(Mi), among all the feasible machines; job j is
then scheduled to start execution at time C(Mi).

For the analysis it is important to keep track of the order in which the jobs
have been considered by the algorithm. We refer to this moment as to the deci-
sion. So, we have a linear ordering of jobs given by which job was decided earlier,
which extends the ordering by release times. Also, a schedule at the time when
a job was decided refers to the schedule at its release time, just before BestFit

processed this job and fixed its schedule. Thus this schedule contains exactly all
the jobs decided before the current one, possibly including some of the jobs with
the same release time.

Before we present the proof for general m, we sketch the simplest case m = 2.
To prove that the algorithm is 1.8-competitive, we present a charging scheme.

Consider a schedule A generated by the algorithm and an arbitrary (offline,
adversarial) schedule Z. The charging scheme assigns each job in Z to some jobs
in A. The assignment is allowed to be fractional, i.e., some fractions of a job in
Z may be assigned to different jobs in A, assuming the total of these fractions

Online Scheduling of Equal-Length Jobs on Parallel Machines 431

is 1. We then show that each job in A is charged at most 1.8, which completes
the proof.

The charging scheme is defined as follows: Let t be the starting time of some
job i in Z. If at time t, both machines in A are idle, then job i is charged 1 to
itself in A. If at t one machine is busy in A, then i is charged 0.4 to the job
running on that machine in A and 0.6 to itself in A. In both previous cases,
charging to i is well-defined: Job i has to be scheduled in A, since there exists
a feasible machine for i, namely the machine which is running no job at time t
in the final schedule, and thus was also feasible for i at when BestFit decided
i. Finally, if both machines are busy at t in A, then i is charged to the two jobs
running in A at time t so that 0.4 is charged to the job that was decided first
by the algorithm and 0.6 is charged to the other job. If job j is scheduled on a
machine with the larger completion time at the time when BestFit decided j,
then at any time when it is running in A j is the first job decided of the two
currently running; thus j is charged at most 2 ∗ 0.4 + 1 = 1.8 from the two jobs
started during its execution in Z and from itself. If job j is scheduled on the
other machine in A, then the first machine is busy at all times when j can start
in Z and thus j is charged at most 2 ∗ 0.6 + 0.6 = 1.8.

The instance showing that BestFit is no better than 1.8-competitive for
m = 2 and p ≥ 3 consists of these jobs: 3 jobs (0, 6p+2), scheduled by BestFit

on the first machine from time 0 to 3p; 2 jobs (1, 3p+2), scheduled on the second
machine from time 1 to 2p + 1; and finally 4 jobs (2, 2p + 2) that are rejected.
The optimum schedules all 9 jobs (essentially in the reverse order).

Now we are ready to present the full proof for a general m.

Theorem 1. The competitive ratio of the algorithm BestFit is

Rm =
1

1 −
(

m
m+1

)m .

For m → ∞, Rm decreases to e/(e − 1) ≈ 1.582; R2 = 1.8, and R3 = 64/37 ≈
1.730.

Proof. Let

Yk = (m + 1)k−1mm−k and Xk =
Yk

(m + 1)m − mm
.

Note that Yk and Xk both increase with k and X1 + · · · + Xm = 1.
The upper bound is proved by a charging scheme. Consider a schedule A

generated by the algorithm and an arbitrary schedule Z. Let i be a job in schedule
Z and t its starting time in Z. Let j1, . . . , jk be all the jobs running (or just
started) at time t in the schedule A, in the order they were decided by BestFit.
We charge the total of 1 of job i in Z to jobs j1, . . . , jk, and i in the schedule A
so that we charge the amount of Xα to each jα, α = 1, . . . , k and the amount of
Xk+1 + · · · +Xm to i. Charging to i is well-defined: If k < m then i is scheduled
in A, as there exists a feasible machine for it at the time when it is considered,

432 J. Ding et al.

namely the machine which is running no job at time t in A. Otherwise, if k = m,
the amount to be charged to i is 0. We observe that the total charged is always
equal to X1 + · · · + Xm = 1, and thus the definition of the charging scheme is
sound.

To prove that the algorithm is Rm-competitive, it remains to show that each
job in A is charged at most the amount of Rm; then the competitive ratio Rm

follows by summing over all jobs. Suppose that some job j is scheduled on a
machine with the kth largest C(Mi) (since the first k − 1 machines are not
feasible). Then at any time from rj up to (and including) dj − p at least k − 1
machines are executing jobs decided before j. Thus j may be charged at most
Xk + · · · + Xm from itself. Furthermore, at any time j is running in A, it is at
most kth job decided by BestFit. It follows that the charge to j from each of
the at most m other jobs started in Z while A is running j is at most Xi for some
i ≤ k, and this is at most Xk due to monotonicity of Xi’s. The total charge to j
is at most mXk + Xk + · · · + Xm. We claim that mXk + Xk + · · · + Xm = Rm,
for any k: We have mXk + Xk = mXk+1 for any k < m, thus all the values are
equal, and the last value is mXm + Xm = Rm. This completes the proof of the
desired competitive ratio.

An instance showing that BestFit is no better than Rm-competitive is this:
Let p > m. First we present Ym jobs (0, 2Ymp+m). Then, for each k = m−1, m−
2, . . . , 1, we have Yk jobs (m − k, Yk+1p + m). Finally, mY1 jobs (m, Y1p + m)
arrive.

It can be verified that the algorithm first schedules all Ym jobs with rj = 0
on one machine, then all Ym−1 jobs with rj = 1 on the next machine, and so
on, and it rejects the mY1 jobs with rj = m. On the other hand, the optimal
solution is idle until time m, then schedules the mY1 jobs with rj = m, then
schedules the Y1 jobs with rj = m − 1, and so on, completing all the jobs. The
ratio is equal to Rm. �	

3 The Lower Bounds for Immediate Decision

If the instance starts by a modest number of jobs with a very large deadline,
BestFit schedules them on one machine close to time 0. Apparently this gives
a big advantage to the adversary, who can then focus on the region where these
jobs are scheduled. It would seem reasonable to try to improve the performance
by spreading these jobs somehow uniformly over the whole feasible time interval.
However, perhaps surprisingly, for m = 2, we can prove that no such strategy
helps and in fact BestFit is an optimal algorithm with immediate decision.

In the lower bound proof for m = 2, we try to force the algorithm to schedule
the first jobs so that both processors are busy at some time steps. Then we
release pairs of tight jobs that must be rejected. Typically, we create two such
problematic times after scheduling of 5 jobs. This results in two additional pairs,
i.e., a total of 9 jobs of which the algorithm schedules only 5. The optimum always
schedules all the jobs. The first jobs have a very long feasible intervals, so in an
optimal schedule they can always be moved so that they do not conflict with

Online Scheduling of Equal-Length Jobs on Parallel Machines 433

any other jobs. The optimal schedule of tight jobs is determined, so it remains
to verify in each case that the remaining jobs can be scheduled without conflicts
with the tight jobs. The number of cases is relatively high also due to the fact
that some of the jobs may be rejected.

Theorem 2. Let A be a deterministic algorithm with immediate decision for
m = 2 machines and p ≥ 4. Then A is no better than 1.8-competitive.

Proof. We start by releasing three jobs (0, 100p). Now we wait for the algorithm
to decide the schedule of these jobs. Note that this means that time advances to
1 and we cannot release more jobs with rj = 0. We note that optimal schedule
can always schedule these jobs so that they do not overlap with a feasible time
interval of any other job. Thus in the rest of the proof it is sufficient to verify
that the other jobs can be scheduled. First we analyze the case of all three jobs
accepted. We renumber them so that their start times are S1 ≤ S2 ≤ S3.

1. There exist two times t2 > t1 ≥ p, where two jobs are running. This includes
the case of two jobs overlapping for more than one time step.
[In this case the algorithm essentially gives up.]

We release two tight jobs (t1 − p+1, t1 +1) and two tight jobs (t2, t2 + p).
This is possible since t1 −p+1 ≥ 1. The algorithm has to reject all four new
jobs. The optimal schedule schedules all seven jobs, since t2 ≥ t1 + 1. Thus
the competitive ratio is no better than 7/3.

2. We have S3 −S2 ≤ 2p−1 and S2 ≥ p. Since the previous case does not hold,
we also have S3 − S2 ≥ p − 1.
[This case matches the behavior of BestFit.]

We release two jobs, 4 and 5, with (rj , dj) = (S3 −p−2, S3 +2p−1). This
is possible as S3 − p − 2 ≥ S2 − 3 ≥ 1.

If any of jobs 4 and 5 gets scheduled, then it overlaps the schedule of jobs
2 or 3.

Depending on the schedule of jobs 4 and 5, we schedule two pairs of tight
jobs, choosing from pairs with (rj , dj) equal to (S3 − p − 1, S3 − 1), (S3 −
1, S3 + p − 1), or (S3 + p − 1, S3 + 2p − 1). We choose the pairs as follows.
(a) If the algorithm scheduled both jobs 4 and 5, it can be verified that two

of the slots for the tight jobs contain a time when both machines are
busy. Release these two pairs.

(b) If the algorithm schedules only one of jobs 4 and 5, there will be one
slot for the tight jobs containing a time when both machines are busy.
Release this pair and an arbitrary additional pair.

(c) If the algorithm rejects both jobs 4 and 5, release arbitrary two pairs.
In every case it can be checked that the algorithm schedules at most 5 of
the total 9 jobs. Also, the optimum schedules all jobs, as 4 and 5 can be
scheduled in the unused slot for tight jobs.

3. We have S3 − S2 ≥ 2p and S2 ≥ p.
[This case is most interesting, as it kills attempts at algorithms that try to
spread the jobs with long feasible intervals.]

434 J. Ding et al.

We release job 4 with (r4, d4) = (S2 − 2, S2 + 2p − 1). Depending on its
schedule, we release two tight jobs 5 and 6 as follows: if S4 ≤ S2 − 1, then
they are (S2 − 1, S2 + p − 1), otherwise (S2 + p − 1, S2 + 2p − 1) (including
the case when job 4 is rejected). The algorithm can schedule only one job of
4, 5, and 6.

We continue similarly by job 7 with (r7, d7) = (S3 − 2, S3 + 2p − 1).
Depending on its schedule, we release two tight jobs 8 and 9 as follows: if
S7 ≤ S3−1, then they are (S3−1, S3+p−1), otherwise (S3+p−1, S3+2p−1)
(including the case when job 7 is rejected). The algorithm can schedule only
one job of 7, 8, and 9.

Note that r7 ≥ d4 − 1. This guarantees that the optimum can schedule
both jobs 4 and 7, no matter which tight jobs are released.

Overall, the competitive ratio is at least 9/5.
4. It remains to handle the case when S2 < p.

[It is not very smart if the algorithm overlaps the jobs at the very begin-
ning, but it seems that unfortunately we need to handle this case separately,
revisiting some of the previous cases.]

We release two tight jobs 4 and 5 with a slot (1, p+1), which get rejected,
and two jobs 6 and 7 with (rj , dj) = (1, 100p). Out of the four jobs 1, 2, 4,
and 5, the algorithm schedules only two.

If there is a time t ≥ p + 1 when both machines are busy, we conclude the
proof by another pair of tight jobs. Similarly, if one of the jobs 6 and 7 is
rejected, release a pair of tight jobs with rj ≥ p + 1 overlapping job 3.

Otherwise, renumber jobs 3, 6, and 7 to 1, 2, and 3, subtract t from all
times, and iterate the case of three released and scheduled jobs once more.
Since the three jobs do not overlap, we end up in case 2 or 3. It can be
easily verified that the optimum can schedule all the jobs from the first and
second iterations together. The ratio is at least 9/5 for the second iteration,
so including the 4 jobs in the first iteration, the overall ratio is strictly worse
than 9/5.

Now it remains to analyze the case that algorithm rejected some of the first
three jobs. If the algorithm rejects at least two jobs then the ratio is at least 3.

If the algorithm rejects one job, renumber the jobs so that S1 ≤ S2 and 3
is rejected. If S2 < 3, release two tight jobs (1, p + 1), and the ratio is 5/2. If
S2 ≥ 3, we release job 4 with (r4, d4) = (S2 − 2, S2 + 2p − 1). Depending on its
schedule, we release two tight jobs 5 and 6 as follows: if S4 ≤ S2 − 1, then they
are (S2 − 1, S2 + p − 1), otherwise (S2 + p − 1, S2 + 2p − 1) (including the case
when job 4 is rejected). The algorithm can schedule only one job of 4, 5, and 6.
Thus it schedules only 3 jobs, while the optimum schedules all 6. �	

For an arbitrary m, we prove a lower bound of 4/3 even for randomized algo-
rithms. This is an easy adaptation of the standard bounds for a single machine.

Theorem 3. Let A be an algorithm (possibly randomized) with immediate de-
cision for m machines and p ≥ 2. Then A is no better than 4/3-competitive.

Online Scheduling of Equal-Length Jobs on Parallel Machines 435

Proof. Release m jobs (0, 2p + 1). If the expected number of jobs that start at
time 0 or 1 is at least m/2, release m jobs (1, p + 1). Otherwise, release m jobs
(p, 2p). In both cases, the algorithm schedules at most 3m/2 jobs, while the
optimum is 2m. �	

4 Jobs with a Small Length

The previous lower bounds hold only for sufficiently large p. It is an interesting
question what happens for smaller values of p, in particular for unit jobs, i.e.,
p = 1. Note that without the requirement of immediate decision, for p = 1,
it is easy to generate an optimal schedule online for any number of machines:
Always schedule the m jobs with the smallest deadlines among those which are
still feasible.

With immediate decision for m = 2, we prove that deterministic algorithms
are at least 1.6-competitive for p = 1 and 5/3-competitive for p = 2. Finally, for
p = 3, we revisit the proof of Theorem 2 and show that by handling one case
more carefully we obtain the same lower bound of 1.8 as for p ≥ 4.

For the case of unit jobs, we need an auxiliary lemma.

Lemma 1. Suppose we have a discrete interval I = [1..N], non-negative integral
weights wi, i ∈ I, such that

∑
i∈I wi = N/2, and an arbitrary number k ≤ n.

Then there exist three disjoint subintervals I1, I2, I3 of I, each with total weight∑
i∈Iα

wi ≥ |Iα|/2, with total length |I1| + |I2| + |I3| = k, such that in addition
I1 contains 1 and I3 contains N .

Proof. If there exists an interval I2 of length k with weight at least k/2, we set
I1 = I3 = ∅ and we are done. Otherwise by averaging there exists two intervals
[1..i] and [i′..N], with total length k and total weight at least k/2. Thus one of
these intervals has weight at least half of its length. W.l.o.g. assume that the
interval [1..i] has weight at least i/2. Since the interval [1..k] has weight less
than k/2, it follows that for some j, i ≤ j < k, the interval [1..j] has weight
exactly j/2. Then we apply the lemma recursively on the interval I − [1..j] and
with k − j in place of k. We merge the interval [1..j] with I1 resulting from the
recursive application. �	
Theorem 4. Let A be a deterministic algorithm with immediate decision for
m = 2 and p = 1. Then A is no better than 1.6-competitive.

Proof. Let M be large. In the first phase, we release 2M jobs (0, 4M). If some
job is not scheduled, we assign it to any time arbitrarily but so that at no time
two jobs are scheduled or assigned.

We apply Lemma 1 to the interval [0..4M − 1] and k = 3M with the weights
equal to the number of jobs scheduled at or assigned to the given time. It follows
that there exist three intervals [ti, t′i), i = 1, 2, 3, such that denoting Ti = t′i − ti
their lengths, their total length is T1 + T2 + T3 = 3M and each interval contains
at least Ti/2 jobs. Denote ni the number of jobs scheduled in [ti, t′i) or assigned
to a time in [ti, t′i).

436 J. Ding et al.

Next, in the second phase, for each interval i = 1, 2, 3, we release max{3Ti/2−
ni − 2, 0} jobs (ti + 1, t′i). Note that there are at most Ti new jobs. Assign all
unscheduled jobs and reassign all the jobs from the first phase assigned originally
to this interval to times in this interval arbitrarily but so that at no time two
jobs are scheduled or assigned. (It may be necessary to reassign some job from
the first phase, since the algorithm schedules a job to the same time).

As there are total 3Ti/2−2 jobs in the interval [ti, t′i) from the first two phases,
there are at least Ti/2 − 2 times when two jobs are scheduled or assigned. For
exactly Ti/2 − 4 of such times t > ti + 1 release two tight jobs (t, t + 1) in the
third phase. (We have to omit the first two times in each interval, since after
observing the assignment of the jobs from the second phase released at ti +1 we
cannot use them).

The optimum can schedule all the jobs: The tight jobs take less than Ti/2
times in each interval, and the at most Ti jobs from the second phase can be
scheduled in the remaining available Ti/2 times in the interval. The jobs from
the first phase exactly fit outside the three chosen intervals.

In the first two phases, there are at most 2M + T1 + T2 + T3 = 5M jobs
which may be scheduled by the algorithm. In the third phase, there are exactly
2(T1/2 + T2/2 + T3/2)− 24 = 3M − 24 jobs, all rejected by the algorithm. Thus
the competitive ratio is at least (8M − 24)/5M , which is arbitrarily close to 1.6
for large M . �	
Theorem 5. Let A be a deterministic algorithm with immediate decision for
m = 2 machines and p = 2. Then A is no better than 5/3-competitive.

Proof. First, we release M jobs (0, 100M), for a large M . Next we search the
current schedule from beginning to end for times where both machines are busy.
We start at time 1, as we are not allowed to release other jobs with rj = 0.
Whenever we find such time t, we release two jobs (t, t + 2). We group them
with the two jobs scheduled at t and also with the last job scheduled before t,
if it is not included in the previous group. So we have groups of at most 5 jobs,
such that the algorithm rejects two jobs in each group. We continue the search
at time t + 2.

Now no two remaining jobs (i.e., those not in any group) overlap in the sched-
ule. Moreover for each remaining job j, we released no tight job overlapping with
the interval [Sj , Sj + 4).

Next, we examine the remaining jobs again from beginning of the schedule to
end. We skip the first job as it may be scheduled at time 0 or 1 (this is why we
need M large). Suppose that we are examining job j.

If there is no remaining job scheduled in time [Sj , Sj +4), we release two jobs
(Sj − 1, Sj + 4). Then, if one of them is scheduled and starts at time Sj + 1 or
earlier, we release two tight jobs (Sj , Sj +2); otherwise we release two tight jobs
(Sj + p, Sj + p + 2). We create a group of j and these four jobs. The algorithm
schedules at most 3 out of this group of 5 jobs.

Otherwise, there is some job j′ with Sj′ ≤ Sj + 3. We release only one job
(Sj−1, Sj+4). Again we continue with two tight jobs (Sj , Sj+2) or (Sj+2, Sj+4),
so that the algorithm can schedule only one of the three new jobs. Again j, j′

Online Scheduling of Equal-Length Jobs on Parallel Machines 437

and these three jobs form a new group. We skip j′ and continue examining the
following jobs.

Now we have all jobs but the first one in groups of 5. Each group has at most
3 jobs scheduled by A. In an optimal schedule, all tight jobs can be scheduled,
then all jobs with dj = rj + 5 can be scheduled with Sj = rj + 1 or Sj = rj + 3.
Finally, there is plenty of room for the remaining jobs (released at time 0). Thus
any optimal schedule schedules all the jobs.

For M large enough, this proves that no algorithm is (5/3 − ε)-competitive
for ε > 0. �	
Theorem 6. Let A be a deterministic algorithm with immediate decision for
m = 2 machines and p ≥ 3. Then A is no better than 1.8-competitive.

Proof. We need to revisit the proof for p ≥ 4. All cases but 2 can be analyzed
exactly same way. Case 2 must be handled more carefully. If the algorithm does
not reject any job among 1, 2, 3, and S2 = 3, S3 = 5 we cannot follow the case 2
as we would need to release a job with r4 = 0. In this case we release six jobs
(1, 10). Algorithm can accept only two of them, so overall it schedules only 5 out
of 9 jobs. �	

5 Conclusions, Open Problems, Acknowledgments

The main open problem in this area remains to design optimal or at least good
algorithms for the unrestricted model and m > 2. Despite the good progress we
have been able to achieve using algorithms with immediate decision, one would
expect that also for m > 2, the best algorithms will use the flexibility of the
unrestricted model. However, no such algorithms are known.

We know that for m = 2, immediate decision increases the optimal competitive
ratio and our new algorithm is optimal in the restricted model. For m ≥ 3 we
would expect the same to be true, but we have no lower bounds. It would be
also interesting to prove more in the case of unit jobs, either for m = 2 or for
larger m.

Finally, virtually nothing is known about randomized algorithms for m ≥ 2.
We are grateful to anonymous referees for many comments that helped us to

improve the presentation of this paper. T. Ebenlendr and J. Sgall were partially
supported by Institutional Research Plan No. AV0Z10190503, by Inst. for Theor.
Comp. Sci., Prague (project 1M0545 of MŠMT ČR), and grant 201/05/0124 of
GA ČR. G. Zhang was partially supported by NSFC (60573020).

References

1. Baptiste, P., Brucker, P., Knust, S., Timkovsky, V.: Ten notes on equal-execution-
time scheduling. 4OR 2, 111–127 (2004)

2. Baruah, S.K., Haritsa, J., Sharma, N.: On-line scheduling to maximize task com-
pletions. J. Comb. Math. Comb. Comput. 39, 65–78 (2001) (A preliminary version
appeared. Proc. 15th Real-Time Systems Symp., IEEE, pp. 228–236 (1994))

438 J. Ding et al.

3. Chrobak, M., Jawor, W., Sgall, J., Tichý, T.: Online scheduling of equal-length jobs:
Randomization and restarts help. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella,
D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 358–370. Springer, Heidelberg (2004)

4. Ding, J., Zhang, G.: Online scheduling with hard deadlines on parallel machines. In:
Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 32–42. Springer,
Heidelberg (2006)

5. Goldman, S.A., Parwatikar, J., Suri, S.: Online scheduling with hard deadlines. J.
Algorithms 34, 370–389 (2000)

6. Goldwasser, M.H., Kerbikov, B.: Admission control with immediate notification. J.
Sched. 6, 269–285 (2003)

7. Goldwasser, M.H., Pedigo, M.: Online, non-preemptive scheduling of equal-length
jobs on two identical machines. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS,
vol. 4059, pp. 113–123. Springer, Heidelberg (2006)

k-Anonymization with Minimal Loss of

Information

Aristides Gionis1 and Tamir Tassa2

1 Yahoo! Research, Barcelona, Spain
gionis@yahoo-inc.com

2 Division of Computer Science, The Open University, Ra’anana, Israel
tamirta@openu.ac.il

Abstract. The technique of k-anonymization allows the releasing of
databases that contain personal information while ensuring some degree
of individual privacy. Anonymization is usually performed by generalizing
database entries. We formally study the concept of generalization, and
propose two information-theoretic measures for capturing the amount of
information that is lost during the anonymization process. Those mea-
sures are more general and more accurate than those proposed in [19]
and [1]. We study the problem of achieving k-anonymity with minimal
loss of information. We prove that it is NP-hard and study polynomial
approximations for the optimal solution. Our first algorithm gives an
approximation guarantee of O(ln k) – an improvement over the best-
known O(k)-approximation of [1]. As the running time of the algorithm
is O(n2k), we also show how to adapt the algorithm of [1] in order to
obtain an O(k)-approximation algorithm that is polynomial in both n
and k.

1 Introduction

Consider a database that holds information on individuals in some population
U = {u1, . . . , un}. Each individual is described by a collection of r public at-
tributes (also known as quasi-identifiers), A1, . . . , Ar, and s private attributes,
Z1, . . . , Zs. Each of the attributes consists of several possible values: Aj = {aj,� :
1 ≤ � ≤ mj}, 1 ≤ j ≤ r, and Zj = {zj,� : 1 ≤ � ≤ nj}, 1 ≤ j ≤ s. For example,
if Aj is gender then Aj = {M, F}, while if it is the age of the individual, it is
a bounded nonnegative natural number. The public database holds all publicly
available information on the individuals in U ; it takes the form,

D = {R1, . . . , Rn} , where Ri ∈ A1 × · · · × Ar , 1 ≤ i ≤ n .

The corresponding private database holds the private information,

D′ = {S1, . . . , Sn} , where Si ∈ Z1 × · · · × Zs , 1 ≤ i ≤ n .

The complete database is the concatenation of those two databases, D‖D′ =
{R1‖S1, . . . , Rn‖Sn}. We refer hereinafter to the tuples Ri and Si, 1 ≤ i ≤ n, as

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 439–450, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

440 A. Gionis and T. Tassa

(public or private) records. The j-th component of the record Ri (namely, the
(i, j)-th entry in the database D) will be denoted hereinafter by Ri(j).

Such databases may be of interest to the general public even though they hold
information on individuals. The goal is to reveal information in order to allow
data mining, while respecting the privacy of the individuals that are represented
in the database. Many approaches were suggested for playing this delicate game
that requires finding the right path between data hiding and data disclosure.
Such approaches include query auditing [10,16,17], output perturbation [6,10,11],
secure multi-party computation [2,13,14,18,24], and data sanitization [3,4,5,7,12].
One of the recent approaches, proposed by Samarati and Sweeney [20,21,22] is k-
anonymization. The main idea in this approach is to suppress or generalize some
of the public data in the database so that each of the public records becomes
indistinguishable from at least k−1 additional records. Consequently, the private
data may be linked to sets of individuals of size no less than k, whence the privacy
of the individuals is protected to some extent.

The problem that we study here is the problem of k-anonymization with
minimal loss of information: Given a public database D, and acceptable gen-
eralization rules for each of its attributes, find its ”nearest” k-anonymization;
namely, find a k-anonymization of D that conceals a minimum amount of in-
formation. Meyerson and Williams [19] introduced this problem and studied it
under the assumption that database entries may be either left intact or totally
suppressed. In that setting, the goal is to achieve k-anonymity while minimizing
the number of suppressed entries. They showed that the problem is NP-hard
and devised two approximation algorithms for that problem: One that runs in
time O(n2k) and achieves an approximation ratio of O(k ln k); and another that
has a fully polynomial running time (namely, it depends polynomially on both
n and k) and guarantees an approximation ratio of O(k ln n). Aggarwal et al.
[1] extended the setting of suppressions-only by allowing more general rules for
generalizing database entries towards achieving k-anonymity. They proposed a
way of penalizing each such action of generalizing a database entry and showed
that the problem of achieving k-anonymity in that setting with minimal penalty
is NP-hard. They then devised an approximation algorithm for that problem
that guarantees an approximation ratio of O(k).

In this study we extend the framework of k-anonymization to include any
type of generalization operators and define two measures of loss of information
that are both more general and more accurate than the measure that was used
in [1] (the measure that was used in [19] is a special case of the one that was
used in [1]). We call these measures the entropy measure and the monotone en-
tropy measure. We show that the problem of k-anonymization with minimal loss
of data (measured by either of those measures) is NP-hard. We then proceed
to describe an approximation algorithm with an approximation guarantee of
O(ln k)—a significant improvement over the previous best result of O(k). The
algorithm applies to both of our measures, as well as the measures that were
used in [19] and [1]. We note that Meyerson and Williams [19] hypothesized
that k-anonymization cannot be approximated, in polynomial time, with an

k-Anonymization with Minimal Loss of Information 441

approximation factor that is o(ln k). What enabled this significant improvement
was our novel approach to this approximation problem. The approximation al-
gorithms in both [19] and [1] were based on the so-called graph representation. In
[1] it was shown that using the graph representation it is impossible to achieve
an approximation ratio that is better than Θ(k). We were able to offer the
significantly better O(ln k) approximation ratio by breaking out of the graph
representation framework and using a hypergraph approach instead.

The paper is organized as follows: In Section 2 we give a precise definition of
what is generalization, and we describe and illustrate several natural types of
generalization. In Section 3 we define and discuss our two measures of loss of
information. In Section 4 we define the problem of k-anonymization with minimal
loss of information and state its NP-hardness with respect to both measures of
loss of information. In Section 5 we present an algorithm that approximates
optimal k-anonymity with approximation ratio of O(ln k), for the entropy and
monotone entropy measures. The running time of that algorithm is O(n2k). We
then proceed to describe how to adapt the approximation algorithm of [1] to
achieve an O(k)-approximation ratio with respect to our measures, in time that
is polynomial in both n and k.

Due to lack of space, all proofs are omitted from this version and may be
found in the full version of this paper.

2 Generalization

The basic technique for obtaining k-anonymization is by means of generalization.
By generalization we refer to the act of replacing the values that appear in the
database with subsets of values, so that entry Ri(j), 1 ≤ i ≤ n, 1 ≤ j ≤ r, which
is an element of Aj , is replaced by a subset of Aj that includes that element.

Definition 1. Let Aj , 1 ≤ j ≤ r, be finite sets and let Aj ⊆ P(Aj) be a
collection of subsets of Aj. A mapping g : A1 ×· · ·×Ar → A1 ×· · ·×Ar is called
a generalization if for every (b1, . . . , br) ∈ A1 × · · · × Ar and (B1, . . . , Br) =
g(b1, . . . , br), it holds that bj ∈ Bj, 1 ≤ j ≤ r.

We illustrate the concept of generalization by several examples of natural gen-
eralization operators.

Generalization by suppression. Assume that Aj = Aj∪{Aj} for all 1 ≤ j ≤ r
and that g either leaves entries unchanged or replaces them by the entire set
of attribute values, i.e., g(b1, . . . , br) = (b1, . . . , br), where bj ∈ {bj, ∗}, and *
denotes an element outside

⋃
1≤j≤r Aj . In that case we refer to g as generalization

by suppression.

Generalization by hierarchical clustering trees. Aggarwal et al. [1] consid-
ered a setting in which for every attribute Aj there is a corresponding balanced
tree, T (Aj), that describes a hierarchical clustering of Aj . Each node of T (Aj)
represents a subset of Aj , the root of the tree is the entire set Aj , the descendants
of each node represent a partition of the subset that corresponds to the ancestor

442 A. Gionis and T. Tassa

node, and the leaves correspond to the singleton subsets. Given such a balanced
tree, they considered generalization operators that may replace an entry Ri(j)
with any of the ancestors of Ri(j) in T (Aj). Generalization by suppression is a
special case of generalization by clustering trees where all trees are of height 2.

Some of our results require that the collection of subsets Aj , 1 ≤ j ≤ r, satisfy
the following natural property.

Definition 2. Given an attribute A = {a1, . . . , am}, a corresponding collection
of subsets A is called proper if (i) it includes all singleton subsets {ai}, 1 ≤ i ≤
m, (ii) it includes the entire set A, and (iii) it is a laminar collection in the
sense that B1 ∩ B2 ∈ {∅, B1, B2} for all B1, B2 ∈ A.

So far we spoke of generalizations of records. We now turn to speak of general-
izations of an entire database.

Definition 3. Let D = {R1, . . . , Rn} be a database having public attributes
A1, . . . , Ar, let A1, . . . , Ar be corresponding collections of subsets, and let gi :
A1×· · ·×Ar → A1×· · ·×Ar be generalization operators. Denoting Ri := gi(Ri),
1 ≤ i ≤ n, the database g(D) := {R1, . . . , Rn} is called a generalization of D.

We conclude this section with the following definition of a partial order on the
set of generalized records:

Definition 4. Define a relation � on A1 × · · · × Ar as follows: If R, R′ ∈ A1 ×
· · · × Ar then R � R′ if and only if R(j) ⊆ R′(j) for all 1 ≤ j ≤ r.

3 Measures of Loss of Information

3.1 Previously Used Measures

The quality of a k-anonymization of a given database is typically measured by the
amount of information that is lost due to generalization. Meyerson and Williams
[19] concentrated on the case of generalization by suppression. Their measure of
loss of information was the number of generalized entries (namely, *s) in the
k-anonymized database. Aggarwal et al. [1] considered generalizations by hier-
archical clustering trees and proposed to penalize by r/�j each generalization of
an entry Ri(j) to a subset residing at the r-th level of the hierarchical clustering
tree T (Aj), the height of which is �j . The tree measure is a generalization of the
measure proposed by Meyerson and Williams.

We find the tree measure quite arbitrary. For example, if one attribute is
gender and another attribute is age, the loss of information by concealing the
gender is much less than that incurred by concealing the age. Also, the levels of
the trees T (Aj) need not be equally-spaced in terms of information loss.

3.2 The Entropy Measure

Following [9] and [23], we suggest to use the standard measure of information,
namely entropy, in order to assess more accurately the amount of information
that is lost by anonymization.

k-Anonymization with Minimal Loss of Information 443

The public database D = {R1, . . . , Rn} induces a probability distribution for
each of the public attributes. Let Xj , 1 ≤ j ≤ r, denote hereinafter the value of
the attribute Aj in a randomly selected record from D. Then

Pr(Xj = a) =
#{1 ≤ i ≤ n : Ri(j) = a}

n
.

Let Bj be a subset of Aj . Then the conditional entropy H(Xj|Bj) is defined as

H(Xj |Bj) = −
∑

b∈Bj

Pr(Xj = b|Xj ∈ Bj) log2 Pr(Xj = b|Xj ∈ Bj) .

Note that if Bj = Aj then H(Xj |Bj) = H(Xj) while in the other extreme case
where Bj consists of one element, we have zero uncertainty, H(Xj|Bj) = 0. This
allows us to define the following cost function of a generalization operator:

Definition 5. Let D = {R1, . . . , Rn} be a database having public attributes
A1, . . . , Ar, and let Xj be the random variable that equals the value of the j-
th attribute Aj , 1 ≤ j ≤ r, in a randomly selected record from D. Then if
g(D) = {R1, . . . , Rn} is a generalization of D,

Πe(D, g(D)) =
n∑

i=1

r∑

j=1

H(Xj |Ri(j)) (1)

is the entropy measure of the loss of information caused by generalizing D into
g(D).

The Non-monotonicity of the Entropy Measure. A natural property that
one might expect from any measure of loss of information is monotonicity:

Definition 6. Let D = {R1, . . . , Rn} be a database and let Π be any measure of
loss of information. Then Π is called monotone if Π(D, g(D)) ≤ Π(D, g′(D))
for any two D-generalizations, g(D) and g′(D), where g(D)i � g′(D)i for all
1 ≤ i ≤ n.

The tree measure is clearly monotone. The entropy measure Πe, on the other
hand, is not always monotone. The non-monotonicity of the entropy measure
may always be rectified, in the sense that for any collection of subsets of a given
attribute, A, it is always possible to find a partial collection, Â ⊆ A, so that
the entropy measure is monotone on Â. Due to lack of space, we postpone the
discussion of the non-monotonicity of the entropy measure to the full version of
this paper. There we exemplify it, discuss it, and show how to rectify it.

3.3 The Monotone Entropy Measure

Here we introduce the monotone entropy measure, a simple variant of the entropy
measure that respects monotonicity.

444 A. Gionis and T. Tassa

Definition 7. Let D = {R1, . . . , Rn} be a database having public attributes
A1, . . . , Ar, and let Xj be the random variable that equals the value of the j-
th attribute Aj , 1 ≤ j ≤ r, in a randomly selected record from D. Then if
g(D) = {R1, . . . , Rn} is a generalization of D,

Πme(D, g(D)) =
n∑

i=1

r∑

j=1

Pr(Ri(j)) · H(Xj |Ri(j)) (2)

is the monotone entropy measure of the loss of information caused by generalizing
D into g(D).

Comparing (2) to (1), we see that each of the conditional entropies is multiplied
by the corresponding probability. The monotone entropy measure coincides with
the entropy measure when considering generalization by suppressions only. How-
ever, when the collections of subsets Aj include also intermediate subsets, the
entropy that is associated with such a subset is multiplied by the probability of
the subset. Since this multiplier increases as the subset includes more elements,
the monotone entropy measure penalizes generalizations more than the entropy
measure does.

Lemma 1. The monotone entropy measure is monotone.

4 k-Anonymization with Minimal Loss of Data

We are now ready to define the concepts of k-anonymization and the correspond-
ing problem of k-anonymization with minimal loss of information.

Definition 8. A k-anonymization of a database D = {R1, . . . , Rn} is a gen-
eralization g(D) = {R1, . . . , Rn} where for all 1 ≤ i ≤ n there exist indices
1 ≤ i1 < i2 < · · · < ik−1 ≤ n, all of which are different from i, such that
Ri = Ri1 = · · · = Rik−1 .

k-anonymization: Let D = {R1, . . . , Rn} be a database having public at-
tributes Aj , 1 ≤ j ≤ r. Given collections of attribute values, Aj ⊆ P(Aj),
1 ≤ j ≤ r, and a measure of information loss Π , find a k-anonymization
g(D) = {R1, . . . , Rn}, where Ri ∈ A1 × · · · × Ar, 1 ≤ i ≤ n, that minimizes
Π(D, g(D)).

The following theorem is an adaptation of [19, Theorem 3.1].

Theorem 1. The problem of k-anonymization with generalization by sup-
pression, where the measure of loss of information is the entropy measure (1),
Π = Πe, or the monotone entropy measure (2), Π = Πme, is NP-hard for
k ≥ 3, if |Aj | ≥ k + 1 for all 1 ≤ j ≤ r.

5 Approximating Optimal k-Anonymity

In this section we describe two approximation algorithms for the problem of
k-anonymization with minimal loss of information. We assume here that all col-
lections of subsets are proper. The first algorithm, described in Sections 5.1-5.3,

k-Anonymization with Minimal Loss of Information 445

achieves an approximation ratio of O(ln k)—a significant improvement with re-
spect to the best known O(k)-approximation algorithm [1]. As that algorithm
runs in time O(n2k), we show in Section 5.4 that the O(k)-approximation al-
gorithm of [1] that runs in time O(kn2) may be used also for approximating
optimal k-anonymity when using the entropy and monotone entropy measures.
The question of the existence of a fully polynomial approximation algorithm
with an o(k)-approximation ratio remains open.

5.1 The Generalization Cost of Subsets

Any k-anonymization of D defines a clustering (namely, a partition) of D where
each cluster consists of all records that were replaced by the same generalized
record. In order to lose a minimal amount of information, all records in the same
cluster are replaced with the minimal generalized record that generalizes all of
them. To that end we define the closure of a set of records.1

Definition 9. Let A1, . . . , Ar be attributes with corresponding collections of sub-
sets A1, . . . Ar that are all proper. Then given M ⊆ A1 × · · · × Ar, its closure is
defined as

M = min
�

{
C ∈ A1 × · · · × Ar : R � C for all R ∈ M

}
.

Definition 10. Let D = {R1, . . . , Rn} be a database with attributes A1, . . . , Ar,
having proper collections of subsets A1, . . . Ar. Let Xj be the value of the attribute
Aj in a randomly selected record from D. Then given a subset of records, M ⊆ D,
its generalization cost by the entropy measure is,

d(M) = de(M) =
r∑

j=1

H(Xj |M j) , (3)

while its generalization cost by the monotone entropy measure is,

d(M) = dme(M) =
r∑

j=1

Pr(M j) · H(Xj|M j) . (4)

The generalization cost of M is therefore the amount of information that we lose
for each record R ∈ M if we replace it by the minimal generalized record M .

We noted earlier that the entropy measure is not necessarily monotone. How-
ever, as explained in the full version, this problem rarely occurs. In addition, as
we show there, we may always avoid it by narrowing down the collections Aj ,
1 ≤ j ≤ r, until the entropy measure becomes monotone with respect to them.
For the sake of simplicity, we assume monotonicity hereinafter. Namely,

M ⊆ M ′ ⊆ A1 × · · · × Ar implies that d(M) ≤ d(M ′) . (5)
1 In our discussion, a set actually means a multiset; namely, it may include repeated

elements.

446 A. Gionis and T. Tassa

If we use the generalization cost by the monotone entropy measure, d(M) =
dme(M), then (5) always holds.

The notion of the generalization cost of a set of records is related to the notion
of the diameter of such a set, as defined in [19]. The diameter of a set of records
M ⊆ A1 × · · · × Ar was defined as

diam(M) = max
R,R′∈M

δ(R, R′), δ(R, R′) := |{1 ≤ j ≤ r : R(j) = R′(j)}| . (6)

In other words, if the two records R and R′ were to be generalized by means of
suppression, dist(R, R′) equals the minimal number of attributes that would be
suppressed in each of the two records in order to make them identical.

Our notions of generalization cost, (3) and (4), and the notion of the diameter,
(6), are functions that associate a size to a given set of records. Our notions,
though, of generalization cost, improve that of the diameter as follows:

1. The generalization costs, (3) and (4), generalize the definition of the diam-
eter, (6), in the sense that they apply to any type of generalization (the
definition of the diameter is restricted to generalization by suppression).

2. The notions of the generalization cost use the more accurate entropy and
monotone entropy measures (the definition of the diameter only counts the
number of suppressed entries).

3. Most importantly, while the size of a set of records that is defined in (6) is a
diameter (namely, it is based on pairwise distances), the size that is defined
in (3) and (4) is a volume. All three notions offer measures for the amount of
information that is lost if the entire set of records, M , is to be anonymized
in the same way. But while the diameter does this only by looking at pairs
of records in M , the generalization costs do this by looking simultaneously
at all records in M and computing the information loss that their closure
entails. This simple difference turns out to be very important, as we show
below.

Before moving on, we state the following basic lemma that plays a significant
role in our analysis.

Lemma 2. Assume that all collections of subsets, Aj, 1 ≤ j ≤ r, are proper.
Then the generalization costs d(·), (3) and (4), are sub-additive in the sense that
for all S, T ⊆ A1 × · · · × Ar,

S ∩ T = ∅ implies that d(S ∪ T) ≤ d(S) + d(T) . (7)

5.2 Covers, Clusterings, k-Anonymizations and Their
Generalization Cost

As noted earlier, any k-anonymization of D defines a clustering of D. Without
loss of generality, we may assume that all clusters are of sizes between k and
2k−1; indeed, owing to monotonicity, any cluster of size greater than 2k may be
split into clusters of sizes in the range [k, 2k − 1] without increasing the amount
of information loss due to k-anonymization. Let:

k-Anonymization with Minimal Loss of Information 447

1. G be the family of all k-anonymizations of D, where the corresponding clus-
ters are of sizes in the range [k, 2k − 1].

2. Γ be the family of all covers of D by subsets of sizes in the range [k, 2k − 1].
3. Γ 0 ⊂ Γ be the family of all covers in Γ that are clusterings (or partitions);

namely, all covers in Γ consisting of non-intersecting subsets.

There is a natural one-to-one correspondence between G and Γ 0.
Hereinafter, Π denotes either the entropy measure of loss of information,

Π = Πe, or the monotone entropy measure of loss of information, Π = Πme.
The corresponding generalization cost is then denoted by d(·) (namely, d(·) = de
if Π = Πe and d(·) = dme if Π = Πme).

Given a cover γ ∈ Γ , we define its generalization cost as d(γ) =
∑

S∈γ d(S).

Theorem 2. Let γ̂ be a cover that achieves minimal generalization cost d(·)
in Γ . Let g ∈ G be a k-anonymization and let γ0 ∈ Γ 0 be its corresponding
clustering. Then

Π(D, g(D)) ≤ 2d(γ0)
d(γ̂)

· OPT (D), (8)

where
OPT (D) := min

g∈G
Π(D, g(D)). (9)

5.3 Approximating Optimal k-Anonymization

Our approximation algorithm follows the algorithm of [19]. It has two phases,
as described hereinafter.

Phase 1: Producing a cover. Let γ̂ be a cover that minimizes d(·) in Γ . In the
first phase of the algorithm we execute the greedy algorithm for approximating
the weighted set cover problem [15].

1. Set C to be the collection of all subsets of D with cardinality in the range
[k, 2k − 1].

2. Set γ = ∅ and E = ∅.
3. While E = D do:

– For each S ∈ C compute the ratio r(S) = d(S)/|S ∩ (D \ E)|.
– Choose S that minimizes r(S).
– E = E ∪ S, γ = γ ∪ {S}, C = C \ {S}.

4. Output γ.

Since the greedy algorithm for the weighted set cover problem has logarith-
mic approximation guarantee (see, e.g., [8]), the result of that phase is a cover
γ ∈ Γ for which d(γ) ≤ (1 + ln 2k)d(γ̂).

Phase 2: Translating the cover into a k-anonymization. In the second phase we
translate the cover γ ∈ Γ to a clustering γ0 ∈ Γ 0 and then to its corresponding
k-anonymization g ∈ G. The translation procedure works as follows:

1. Input: γ = {S1, . . . , St}, a cover of D = {R1, . . . , Rn}.
2. Set γ0 = γ.

448 A. Gionis and T. Tassa

3. Repeat until the cover γ0 has no intersecting subsets:
– Let Sj , S� ∈ γ0 be such that Sj ∩S� = ∅ and let R be a record in D that

belongs to Sj ∩ S�.
– If |Sj | > k set Sj = Sj \ {R}.
– Else, if |S�| > k set S� = S� \ {R}.
– Else (namely, if |Sj | = |S�| = k) remove S� from γ0 and set Sj = Sj ∪S�.

4. Output the following k-anonymization: For i = 1, . . . , n, look for Sj ∈ γ0

such that Ri ∈ Sj and then set g(D)i = Sj .

Theorem 3. The k-anonymization g that is produced by the above described
algorithm satisfies

Π(D, g(D)) ≤ 2(1 + ln 2k) · OPT (D) , (10)

where OPT (D) is the cost of an optimal k-anonymization, (9).

The corresponding result in [19] is Theorem 4.1 there, according to which the
approximation algorithm achieves an approximation factor of 3k · (1 + ln 2k).
Aggarwal et al. proposed an improved approximation algorithm that achieves
an O(k) approximation factor [1, Theorem 5]. The approximation algorithms
in both [19] and [1] were based on the so-called graph representation. In that
approach, the records of D are viewed as nodes of a complete graph, where the
weight of each edge (Ri, Rj) is the generalization cost of the set {Ri, Rj}. Both
algorithms work with such a graph representation and find the approximate k-
anonymization based only on the information that is encoded in that graph.
Such an approach is limited since it uses only the distances between pairs of
nodes. In [1] it was shown that using the graph representation it is impossible
to achieve an approximation ratio that is better than Θ(k).

We were able to offer the significantly better O(ln k) approximation ratio by
breaking out of the graph representation framework. As explained in Section 5.1,
our cost function d(·) is defined for sets of records, rather than pairs of records.
Hence, it represents volume rather than a diameter. This upgrade from the graph
representation to a hypergraph representation enabled the improvement from a
linear approximation ratio to a logarithmic one.

It should be noted that our improved approximation algorithm works also with
the tree measure, if we modify the definition of the generalization cost, Definition
10, to be consistent with that measure. Such a modified generalization cost is
clearly monotone, (5), and sub-additive, (7), whence all of our claims hold also
for that cost. The algorithm described in this section runs in time O(n2k). The
exponential dependence of the running time on k is due to the fact that we
examine all subsets of records of D with cardinalities between k and 2k − 1.

5.4 A Fully Polynomial Approximating Algorithm

Here we describe briefly (due to space limitations) the algorithm of Aggarwal et
al. [1], and concentrate on the necessary modifications that are required in order
to make it work for our entropy measure.

k-Anonymization with Minimal Loss of Information 449

The algorithm starts by considering the graph representation G = (V, E) of
the database D. This is a complete weighted graph, where V =D={R1, . . . , Rn},
and the edge ei,j = {Ri, Rj} ∈ E has weight w(ei,j) = d({Ri, Rj}), where d(·)
is the generalization cost by the entropy measure, (3). Let F = {T1, . . . , Ts} be
a spanning forest of G. If all trees in that forest are of size at least k then that
forest induces a k-anonymization of D, denoted gF (namely, all records in the
tree T� are replaced by the closure of that tree, T�). The charge of each node with
respect to gF is defined as c(Ri, gF) = d(Tj(i)), where d(·) is the generalization
cost by the measure Π (that could be either the entropy measure, Πe, or the
monotone entropy measure, Πme). The generalization cost of gF is then

Π(D, gF(D)) =
n∑

i=1

c(Ri, gF) . (11)

Theorem 4. Let OPT = OPT (D) be the cost of an optimal k-anonymization
of D with respect to the measure of loss of information, Π, and let L be an
integer such that L ≥ k. Let F = {T1, . . . , Ts} be a spanning forest of G whose
total weight is at most OPT and in which each of the trees is of size in the range
[k, L]. Then the corresponding k-anonymization, gF , is an L-approximation for
the optimal k-anonymization, i.e.,

Π(D, gF(D)) ≤ L · OPT .

The algorithm then proceeds in two stages:

Stage 1: Create a spanning forest F = {T1, . . . , Ts} whose total weight is at
most OPT (the cost of an optimal k-anonymization) and in which all trees
are of size at least k.

Stage 2: Compute a decomposition of this forest such that each component
has size in the range [k, L] for L = max{2k − 1, 3k − 5}.

Both stages are described in detail in [1]. In view of Theorem 4, this algorithm
achieves an approximation ratio of O(k). Its analysis, to a large extent, is in-
dependent of the underlying measure of loss of information that determines the
weight of the edges. Furthermore, it is a fully polynomial algorithm whose run-
ning time is O(kn2).

Acknowledgements. The authors thank Jacob Goldberger who proposed the
monotone entropy measure as a modification of the entropy measure that re-
spects monotonicity.

References

1. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D.,
Zhu, A.: Anonymizing tables. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS,
vol. 3363. Springer, Heidelberg (2004)

2. Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the kth-ranked ele-
ment. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027.
Springer, Heidelberg (2004)

450 A. Gionis and T. Tassa

3. Agrawal, D., Aggarwal, C.: On the design and quantification of privacy preserving
data mining lgorithms. In: PODS (2001)

4. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: SIGMOD (2000)
5. Agrawal, R., Srikant, R., Thomas, D.: Privacy preserving OLAP. In: SIGMOD

(2005)
6. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: The SuLQ frame-

work. In: PODS (2005)
7. Chawla, S., Dwork, C., McSherry, F., Smith, A., Wee, H.: Toward privacy in public

databases. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378. Springer, Heidelberg
(2005)

8. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Op-
erations Research 4(3), 233–235 (1979)

9. DeWaal, A.G., Willenborg, L.C.R.J.: Information loss through global recoding and
local suppression. Netherlands Official Statistics, Special issue on SDC 14, 17–20
(1999)

10. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: PODS
(2003)

11. Dwork, C., Nissim, K.: Privacy-preserving data mining on vertically partitioned
databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152. Springer,
Heidelberg (2004)

12. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy pre-
serving data mining. In: PODS (2003)

13. Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027.
Springer, Heidelberg (2004)

14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC (1987)

15. Johnson, D.S.: Approximation algorithms for combinatorial problems. JCSS 9,
256–278 (1974)

16. Kenthapadi, K., Mishra, N., Nissim, K.: Simulatable auditing. In: PODS (2005)
17. Kleinberg, J., Papadimitriou, C., Raghavan, P.: Auditing boolean attributes.

JCSS 6, 244–253 (2003)
18. Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptol-

ogy 15(3), 177–206 (2002)
19. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: PODS

(2004)
20. Samarati, P.: Protecting respondent’s privacy in microdata release. TKDE 13,

1010–1027 (2001)
21. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing

information (abstract). In: PODS (1998)
22. Sweeney, L.: k-Anonymity: A model for protecting privacy. International Journal

on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)
23. Willenborg, L., DeWaal, T.: Elements of Statistical Disclosure Control. Springer,

Heidelberg (2001)
24. Yao, A.: How to generate and exchange secrets. In: FOCS (1986)

A Quasi-PTAS for Profit-Maximizing Pricing on

Line Graphs�

Khaled Elbassioni1, René Sitters2, and Yan Zhang3

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
elbassio@mpi-inf.mpg.de

2 Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

r.sitters@tue.nl
3 Department of Computer Science and Engineering,

Hong Kong University of Science and Technology, Hong Kong, China
cszy@cse.ust.hk

Abstract. We consider the problem of pricing items so as to maximize
the profit made from selling these items. An instance is given by a set E of n
items and a set of m clients, where each client is specified by one subset of E
(the bundle of items he/she wants to buy), and a budget (valuation), which
is the maximum price he is willing to pay for that subset. We restrict our
attention to the model where the subsets can be arranged such that they
form intervals of a line graph. Assuming an unlimited supply of any item,
this problem is known as the highway problem and so far only an O(log n)-
approximation algorithm is known. We show that a PTAS is likely to ex-
ist by presenting a quasi-polynomial time approximation scheme. We also
combine our ideas with a recently developed quasi-PTAS for the unsplit-
table flow problem on line graphs to extend this approximation scheme to
the limited supply version of the pricing problem.

1 Introduction

Suppose you have a set of items to sell and you have complete information of
your possible clients, i.e., you know what each client wants to buy and how much
he (she) is willing to pay for this. How do you set your prices such that your
total profit is maximized? If you price the items cheap, then many people will
buy from you but, of course, at a low price. If you price too high, then only few
people are willing to pay the price. This kind of pricing problems appear more
and more in pricing mechanisms over the Internet. The seller collects statistical
data and adjusts the prices online depending on the set of potential buyers.
Recently, a number of papers appeared on the computational complexity of
these problems [1,2,4,5,6,7,8,9].

Pricing problems of this type are generally very hard to solve because of their
non-linear nature: each client will either buy the whole bundle of items he is
� The work of the third author was partially supported by Hong Kong RGC CERG

grant HKUST6312/04E.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 451–462, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

452 K. Elbassioni, R. Sitters, and Y. Zhang

interested in, or not buy at all; there is no solution in between (i.e. the client is
not interested in buying a strict subset of the bundle). We restrict our attention
to the so called single minded clients, i.e., each client is only interested in a
single subset of the items. If there is an unlimited supply of any item, then the
client will buy his preferred subset if and only if the total price of the items
in the subset is no more than his budget (such a pricing is said to be envy-
free since, given the pricing, no client would prefer to be assigned a different
bundle). Guruswami et al. [8] show that this problem is already APX-hard if all
budgets are equal to one and each client wants to buy a single pair of items.
They also give an O(log n + log m)-approximation algorithm, where n and m
are, respectively, the numbers of items and clients. Efficient (approximation)
algorithms are known for several variants in which constraints are placed on the
numbers in the input. For example, Hartline and Koltun [9] give a PTAS for
the case when the number of items is constant, and Balcan and Blum [2] give
an O(k)-approximation algorithm under the restriction that the bundle of any
client contains at most k items.

In this paper we do not impose any restriction on the sizes, prices, capacities
or budgets but only restrict the system of subsets (bundles). More precisely, we
assume that the subsets can be arranged such that they form intervals of a line
graph. This special case is known as the highway problem, and recently Bal-
can and Blum [2] gave an O(log n)-approximation algorithm improving over the
O(log n + log m) algorithm for the general problem, and an O(1)-approximation
when all intervals are of almost the same length. NP -hardness of the highway
problem was shown by Briest and Krysta [4], and Guruswami et al. [8] gave a
polynomial-time exact algorithm for the case when all budgets are bounded by a
constant, and a pseudo-polynomial-time algorithm for the case when all intervals
are of constant length and all budgets are integral.

In Section 5 we consider the capacitated variant in which there is only a
limited supply of any item. Hence, we have to set prices as well as to find a
subset of the clients such that the supply constraints are satisfied. This problem
has some similarities with the unsplittable flow problem on line graphs for which
a quasi-PTAS was developed only recently by Bansal et al [3]. To solve the
limited supply case, we consider the following generalization which may be of
independent interest: Assume that there are capacities on the edges. Assume
further that each buyer I wants to route a demand of ρ(I) along the interval
I, and has budget B(I). If a buyer can route his demand, he will purchase the
path, provided its price is within his budget. Then the question is how to price
the edges such that the total routed demand on each edge, from buyers that
can afford to route their demands, does not exceed the capacity of the edge
and the total profit is maximized1. The limited supply version of the highway
problem corresponds to the case with unit demands. Just as the quasi-PTAS
for the unsplittable flow problem [3], the technique used here is standard for

1 Note, however, that the resulting pricing may not be envy-free in this case, since
some of the clients who can afford to purchase their paths, may not be able to do so
because there might not be enough capacity on the edges.

A Quasi-PTAS for Profit-Maximizing Pricing on Line Graphs 453

deriving polynomial time approximation schemes: first rounding, then restricting
the search space further, and finally applying dynamic programming. However,
for both problems the second step is non-trivial. In the dynamic programming we
do not enumerate directly over all possible (rounded) price vectors but, instead,
over systems of linear inequalities on the price vectors. For each consistent set
of inequalities we can easily derive the value of the solution with a feasible price
vector.

2 The Setting

Let V = {0, 1, . . . , n} and E = {e1, . . . , en}, with ei = {i− 1, i}, for i = 1, . . . , n.
We assume that we are given a (multi)set of intervals (bundles) I = {I1, . . . , Im},
defined on the set of edges (items) E, where Ij = [sj , tj]

def= {{sj, sj + 1}, {sj +
1, sj + 2} . . . , {tj − 1, tj}} ⊆ E. For I ∈ I, we denote by B(I) ∈ R+ the budget
of interval I. In the highway problem, denoted henceforth by Hp, the objective
is to assign a price p(e) ∈ R+ for each edge e ∈ E, and to find a subset J ⊆ I,
so as to maximize ∑

I∈J
p(I) (1)

subject to the budget constraints

p(I) ≤ B(I), for all I ∈ J , (2)

where, p(I) =
∑

e∈I p(e). When the number of copies of each edge e ∈ E,
available for purchase, is limited by a given number, the problem will be called
the capacitated highway problem. As mentioned in the introduction, this version
of the problem can be cast as an instance of the following more general problem,
which we call the unsplittable flow pricing problem and denote by Ufp: Let
c(e) ∈ R+, be the available supply or capacity of edge e, and ρ(I) be the demand
of interval I ∈ I. The requirement is to assign a price p(e) ∈ R+ for each edge
e ∈ E, and to find a subset J ⊆ I, so as to maximize (1) subject to (2) and the
capacity constraints

∑

I∈J :e∈I

ρ(I) ≤ c(e), for all e ∈ E. (3)

In the following sections, we denote by p∗ : E �→ R+ the optimal set of prices
and by Opt ⊆ I the set of intervals purchased in the optimum solution. It is
easy to see that specifying any one of these two sets completely determines the
other, and thus any of the two is enough to completely describe the optimal
solution. For a subset of intervals I ′ ⊆ I, and a price function p : E �→ R+, we
denote by p(I ′) =

∑
I∈I′ p(I) the total price of intervals in I ′. Similar notation

will be also used for the function ρ(·).
For an edge e = {u − 1, u} ∈ E and a (multi)set of intervals I on E, denote

respectively by IL(e), IR(e), and I[e] the subsets of intervals of I that lie to the
left of e, lie to the right of e, and span e, that is

454 K. Elbassioni, R. Sitters, and Y. Zhang

IL(e) = {[s, t] ∈ I : t ≤ u − 1},

IR(e) = {[s, t] ∈ I : s ≥ u},

I[e] = {[s, t] ∈ I : s ≤ u − 1 < u ≤ t}.

Denote by EL(e) and ER(e) the sets of edges that lie to the left and right of
edge e ∈ E, respectively:

EL(e) = {{x−1, x} ∈ E : x ≤ u−1} and ER(e) = {{x−1, x} ∈ I : x−1 ≥ u}.

3 Rounding the Instance

Let ε > 0 be a given constant. We may assume without loss of generality that for
every vertex u ∈ V , there is an interval I ∈ I beginning at that point (otherwise
we can merge indistinguishable edges). In particular, n ≤ 2m can be assumed.
Denote by Bmax = max{B(I) : I ∈ I} the maximum budget in the instance.
Clearly, Bmax ≤ p∗(Opt) since we can assign a price of Bmax/|Imax| for every
edge of the interval of maximum budget Imax, where |Imax| is the length of Imax.

Consider an optimal price function p∗. We obtain a new price function p′ by
rounding down p∗(e), for each e ∈ E, to the closest multiple of εBmax/(nm).
Then the total reduction in profit is p∗(Opt) − p′(Opt) ≤ εBmax ≤ εp∗(Opt),
i.e. p′(Opt) ≥ (1 − ε)p∗(Opt). Now we scale all budgets and prices in p′ by
nm(1 + ε)/(Bmaxε) (this does not change the optimal solution), and assume,
at the loss of factor of (1 − ε) of the optimal, that all prices belong to the
set {0, 1 + ε, 2(1 + ε), . . . , P (1 + ε)}, where P

def= mn
ε . Note that we still have

p′(I) ≤ B(I) for all I ∈ Opt.
By dividing the prices further by (1+ε), we obtain a set of prices p̃ : E �→ R+,

for which can also assume that every interval I ∈ Opt has p̃(I) = p′(I)/(1 +
ε) ≤ B(I)/(1 + ε). The total profit of such solution is p̃(Opt) ≥ 1−ε

1+εOpt ≥
(1 − 2ε)Opt. We summarize the above facts in the following proposition.

Proposition 1. Let p∗ be an optimal solution for a given instance of Hp, and
ε > 0 be a given constant. Then there exists a pricing p̃ : E �→ R+ for which

(i) p̃(e) ∈ {0, 1, . . . , P}, for every e ∈ E, where P = nm/ε,
(ii) p̃(I) ≤ B(I)

1+ε , for every I ∈ Opt, and
(iii) p̃(Opt) ≥ (1 − 2ε)p∗(Opt).

We shall call any pricing p̃, satisfying the conditions of Proposition 1, an ε-
optimal pricing.

4 The Highway Problem

In this case, we assume that c(e) = ∞ for all e ∈ E. Given a price function
p : E �→ R+ and an edge e∗ = {u∗ − 1, u∗} ∈ E, the accumulative price at
any edge e = {x − 1, x} ∈ E with respect to e∗ is defined as p([x − 1, u∗]) if

A Quasi-PTAS for Profit-Maximizing Pricing on Line Graphs 455

e is to the left of e∗ (i.e. if x ≤ u∗ − 1) and p([u∗, x]) if e is to the right of e∗

(i.e. if x − 1 ≥ u∗). Obviously, starting from e∗, these accumulative prices form
monotonically increasing functions to the left and right of e∗.

In this section we prove the following statement.

Theorem 1. There is a quasi-polynomial time approximation scheme for the
highway problem.

Our QPTAS is based essentially on the same divide and conquer strategy used
in [3]. It starts by picking an edge in the middle and guesses the points at which
the ε-optimal accumulative prices increase by factors of (1 + ε) relative to that
middle edge. Having guessed such ”increment points”, the algorithm picks a
superset of the optimal set of intervals containing the middle edge, then recurses
independently on the two subproblems to the left and right of the middle edge.
In the following, we fix k = 	log(nP)/ log(1 + ε)
+1.

Definition 1. (ε-Relative pricings) Let e∗ = [u∗ − 1, u∗] ∈ E be a given
edge of E, and 1 ≤ k1, k2 ≤ k be given integers. A selection of k1 + k2 + 2 points
u1, . . . , uk1 , uk1+1, u

′
1, . . . , u

′
k2

, u′k2+1 ∈ V , and k1 + k2 + 2 values p1, . . . , pk1 ,
pk1+1, p′1, . . . , p′k2

, p′k2+1 ∈ {0, 1, . . . , P}, such that

1. uk1+1 ≤ uk1 < uk1−1 < · · · < u1 ≤ u∗ < u′1 < u′2 < · · · < u′k2
≤ uk2+1,

2. pj ≥ (1 + ε)pj−1, for j = 2, . . . , k1, and p′j ≥ (1 + ε)p′j−1, for j = 2, . . . , k2,
3. pk1+1 ≥ pk1 and p′k2+1 ≥ p′k2

.

is said to be an ε-relative pricing of E w.r.t. e∗, denoted by (u∗, u1, . . . , uk1+1,
u′1, . . . , u

′
k2+1, p1, . . . , pk1+1, p

′
2, . . . , p

′
k2+1).

See Figure 1 for an example. The total number of possible ε-relative pricings
with respect to a given edge e∗ ∈ E is at most

L = [n(1 + P)]2k+2 =
(

n +
n2m

ε

)2�log n2m/ε
log(1+ε) �+4

, (4)

which is mO(log(m)) for every fixed ε > 0.
Let R = (u∗, u1, . . . , uk1+1, u

′
1, . . . , u

′
k2+1, p1, . . . , pk1+1, p

′
2, . . . , p

′
k2+1) be an ε-

relative pricing w.r.t. an edge e∗. Given an interval I = [s, t] ∈ I, with e∗ ∈ I, we
associate a value v(I, R) to I, defined with respect to R as follows. Let j(I), l(I)
be respectively the smallest and largest indices such that eij(I) , e

′
il(I)

∈ I, i.e.
j(I) = min{i : ui − 1 ≥ s} and l(I) = max{i : u′i ≤ t} (see Figure 1). Then, for
I ∈ I, define

v(I, R) = pj(I) + p′l(I).

(If either j(I) or l(I) does not exist, the corresponding value pj(I) or p′l(I) is set to
0.) For a subset of intervals I′ ⊆ I, we define as usual, v(I ′, R) =

∑
I∈I′ v(I, R).

Definition 2. (Consistent pricings) Let R = (u∗, u1, . . . , uk1+1, u
′
1, . . . , u

′
k2+1,

p1, . . . , pk1+1, p′2, . . . , p′k2+1) be an ε-relative pricing of E w.r.t. an edge e∗ ∈ E,
and p : E �→ R+ be a price function. We say that p and R are consistent if

456 K. Elbassioni, R. Sitters, and Y. Zhang

(C1) p([uj − 1, u∗]) = pj for j = 1, . . . , k1 + 1, and p([u∗, u′j]) = p′j for j =
1, . . . , k2 + 1,

(C2) p([uj , u
∗]) ≤ (1+ε)pj−1 for j = 2, . . . , k1+1, and p([u∗, u′j−1]) ≤ (1+ε)p′j−1

for j = 2, . . . , k2 + 1.

It follows that for any ε-relative pricing R w.r.t. an edge e∗ ∈ E and any q :
E �→ R+ with which R is consistent, we have

v(I, R) ≤ q(I) ≤ (1 + ε)v(I, R) for all I ∈ I[e∗]. (5)

This property will be used crucially in our analysis.

Lemma 1. Let p : E �→ R+ be a pricing for a given instance of Hp and e∗ =
[u∗ − 1, u∗] be an arbitrary edge. Then there exists an ε-relative pricing of E
w.r.t. e∗, that is consistent with p.

Proof. Assume that E = {{0, 1}, {1, 2}, . . . , {n− 1, n}}. We define a selection as
follows (see Figure 1). Let u1 = max{u ≤ u∗ : p([u − 1, u]) > 0}, u′1 = min{u >
u∗ : p([u − 1, u]) > 0}, and set p1 = p([u1 − 1, u1]) and p′1 = p([u′1 − 1, u′1]).
For j = 2, 3, . . ., let uj = max{u ≤ uj−1 : p([u − 1, u∗]) > (1 + ε)pj−1}, and
set pj = p([uj − 1, u∗]). The highest index j for which this iteration can be
done will the value of k1. Similarly, we define k2, and for j = 2, . . . , k2, let
u′j = min{u > u′j−1 : p([u∗, u]) > (1 + ε)p′j−1} and set p′j = p([u∗, u′j]). Since
nP ≥ pk1 ≥ (1+ε)k1−1p1 ≥ (1+ε)k1−1, we get k1 ≤ k. Similarly, k2 ≤ k. Finally,
we let uk1+1 = 1, uk2+1 = n, pk1+1 = p([0, u∗]) and p′k2+1 = p([u∗, n]). ��
With every ε-relative pricing R, we can associate a system of linear inequalities,
denoted by S(R), on a set of E variables {p(e) : e ∈ E}, consisting of the
constraints (C1) and (C2) together with the non-negativity constraints p(e) ≥ 0.
For two systems of inequalities S1, S2, we denote by S1 ∧S2 the system obtained
by combining their inequalities.

u∗u∗
− 1u1u2u2 − 1u3 u1 − 1u3 − 1 u′

1
− 1 u′

1
u′

2
− 1 u′

2
u′

3
u′

4
u′

4
− 1u′

3
− 1

p1

p3

p′
4

p′
2

p′
1

p2p′
3

s t

l(I)j(I)

I = [s, t]

Fig. 1. ε-relative pricings w.r.t. to [u∗ − 1, u∗]: To the left is the plot of p([u − 1, u∗])
for u < u∗, and to the right is the one for p([u∗, u]) for for u ≥ u∗. The indices j(I)
and l(I) for a given interval I = [s, t] are also shown.

A Quasi-PTAS for Profit-Maximizing Pricing on Line Graphs 457

The algorithm is shown in Figure 2. It is initially called with an empty S.
The procedure iterates over all ε-relative pricings R, consistent with S, w.r.t.
to the middle edge e∗, then recurses on the subsets of intervals to the left and
right of e∗. In line 4, we always insure that S(R) ∧ S is defined on variables
{p(e) : e ∈ EL(e∗)}. Similarly, in line 5, we always insure that S(R)∧S is defined
on variables {p(e) : e ∈ ER(e∗)}. This is necessary for the induction proof in
Lemma 3 below to work, and can be maintained as follows. Assume at some
iteration that e∗ = {u∗−1, u∗} and E = {{i, i+1}, {i+1, i+2}, . . . , {r −1, r}}.
By the way we defined ε-relative pricings, we note that the following invariant
holds throughout the algorithm:

(I) Every constraint in S is defined on an interval starting at {i, i+1}, or ending
at {r − 1, r}.

This is trivially true initially, and can be shown by induction for any iteration:
(i) all the constrains of the form (C1) or (C2) defined on an edge of EL(e∗)
are of the form p([u, u∗]) ≤ w (or p([u, u∗]) = w), where u ∈ e ∈ EL(e∗) and
w ∈ R+. Note that S(R) implies a constraint of the form p(e∗) = q for some
q ∈ R+, and thus any constraint p([u, u∗]) ≤ w can be reduced to the equivalent
one p([u, u∗ − 1]) ≤ w − q. (ii) Any constraint in S of the form p([i, u]) ≤ w,
where u > u∗ and w ∈ R+, can be safely removed since S(R) ∧ S is feasible
and S(R) already contains the constraint p([i, u∗]) = w′, for some w′ ≤ w. (iii)
S(R) contains also the constraint p([u∗, r]) = w, for some w ∈ R+, and thus any
constraint of S the form p([u, r]) ≤ w′, where u < u∗ and w′ ≥ w + q can be
replaced by p([u, u∗−1] ≤ w′−w−q. Thus we conclude that the (new equivalent)
system S∧S(R) satisfies the invariant on EL(e∗). A similar reasoning also shows
the invariant is satisfied on ER(e∗).

When the procedure returns, we get two price functions p1 : EL(e∗) �→ R+

and p2 : ER(e∗) �→ R+. Let q be the value assigned to e∗ by S(R). We define a
price function p : E �→ R+ on E as follows

p(e) =

⎧
⎨

⎩

p1(e), if e ∈ EL(e∗)
p2(e), if e ∈ ER(e∗)
q, If e = e∗,

(6)

the procedure also returns a set of intervals which can be purchased under the
returned price function p.

Lemma 2. Algorithm HP runs in quasi-polynomial time in m, for any fixed
ε > 0.

Proof. The number of possible ε-relative pricing is at most L, given in (4). This
gives the recurrence

T (m) ≤ poly(m) + 2L · T (
m

2
).

for the running time. Thus T (m) ≤ Llog m+1 poly(m) and the lemma follows. ��
Lemma 3. Algorithm HP returns a price function p and a set of intervals J
such that p(J) ≥ (1 − 3ε)p∗(Opt), for any ε > 0.

458 K. Elbassioni, R. Sitters, and Y. Zhang

Algorithm HP(I, E, S):
Input: A subset of intervals I defined on E, and a feasible system of inequalities S
Output: A price function p : E �→ R+ and a subset J ⊆ I s.t. p(I) ≤ B(I) ∀I ∈ J

1. if |I| = 0, then return (p, ∅), where p is any feasible solution of S
2. let e∗ be an edge of E such that |IL(e∗)| ≤ m/2 and |IR(e∗)| ≤ m/2
3. for every ε-relative pricing R w.r.t. e∗ for which S ∧ S(R) is feasible do
4. (p1, J1) ← HP(IL(e∗), E′

L(e∗), S ∧ S(R))
5. (p2, J2) ← HP(IR(e∗), E′

R(e∗), S ∧ S(R))
6. let p be the price function defined by (6)
7. K ← {I ∈ I[e∗] : v(I,R) ≤ B(I)/(1 + ε)}
8. J ← K ∪ J1 ∪ J2

9. record (p, J)
10. return the recorded solution with largest p(J) value

Fig. 2. The dynamic program for computing ε-approximate prices

Proof. Fix an optimal solution Opt and an optimal price p∗, and let p̃ be an
ε-optimal price. We prove by induction the following statement:

(H) Let (I, E, S) be the input to the algorithm and let J ′ ⊆ I and p′ : E �→ R+

be such that p′(I) ≤ B(I)/(1+ε) for all I ∈ J ′, and p′ satisfies S. Then the
algorithm returns a pricing p : E �→ R+ and a subset J ⊆ I such that (i)
p satisfies S, (ii) p(I) ≤ B(I) for all I ∈ J , and (iii) p(J) ≥ p′(J ′)/(1+ ε).

This can be used to prove the statement of theorem by setting J ′ ← Opt and
p′ ← p̃. Then it will follow by (H) and Proposition 1 that the algorithm returns
a subset of intervals J and a pricing p such that all intervals in J are purchased,
and their total price is at least p̃(Opt)/(1 + ε) ≥ (1 − 3ε)p∗(Opt).

Now we prove (H). Let e∗ be the middle edge. By Lemma 1, there is an ε-relative
pricing R w.r.t e∗, consistent with p′. Note that the algorithm only considers
pricings consistent with S. One such pricing that will be eventually considered
is R. Let us focus on the corresponding iteration of the loop beginning at line 3,
and let K be the set identified in line 7 of this iteration. Since R is consistent with
p′, we get by (5) that v(I, R) ≤ p′(I) ≤ B(I)/(1 + ε) for all I ∈ J ′[e∗], implying
that J ′[e∗] ⊆ K. On the other hand, by (5) also we have v(I, R) ≥ p′(I)/(1 + ε)
for all I ∈ K ⊆ I[e∗]. Thus

v(K, R) ≥ p′(K)
1 + ε

≥ p′(J [e∗])
1 + ε

.

Note that the restrictions of p′ to EL(e∗) and ER(e∗) together with S ∧ S(R)
satisfy the preconditions of (H), with respect to J ′L(e∗) and J ′R(e∗), respectively.
By induction, the algorithm returns two subsets of intervals J1 ⊆ IL(e∗) and
J2 ⊆ IR(e∗), and two pricing functions p1 : EL(e∗) �→ R+ and p2 : ER(e∗) �→
R+, both satisfying with S ∧ S(R), such that p1(I) ≤ B(I) for all I ∈ J1 and
p2(I) ≤ B(I) for all I ∈ J2, and

p1(J1) ≥ p′(J ′L(e∗))/(1 + ε) and p2(J2) ≥ p′(J ′R(e∗))/(1 + ε).

A Quasi-PTAS for Profit-Maximizing Pricing on Line Graphs 459

Let J = K ∪ J1 ∪ J2 and p be the function defined by (6). Then p satisfies
S ∧ S(R) by construction, and p(I) ≤ B(I) for all I ∈ J1 ∪ J2. Moreover, for
any I ∈ K we have p(I) ≤ (1 + ε)v(I, R) ≤ B(I), by (5) and the definition of K.
Thus p and J satisfy (i), (ii), and moreover,

p(J) = p(K) + p1(J1) + p2(J2) ≥ v(K, R) + p1(J1) + p2(J2)

≥ p′(J ′[e∗]) + p′(J ′L[e∗]) + p(J ′R[e∗])
1 + ε

=
p′(J ′)
1 + ε

. (7)

Finally, we note that any solution (p, J) returned by the algorithm must satisfy
(i) and (ii). This is obvious for (i) since only pricings consistent with S are
considered (see line 3). For (ii), this follows by induction for the two sets J1 and
J2 computed by the algorithm, and by the definition of K and the fact that p
is consistent with R. Thus the solution returned by the algorithm has value at
least (7). ��

5 The Unsplittable Flow Pricing Problem

In this section we show that there is a quasi-polynomial time approximation
scheme for Ufp on line graphs, provided that the demands and capacities are
integers bounded by a quasi-polynomial in the number of intervals. As a corollary,
there is a quasi-polynomial time approximation scheme for the pricing problem
on line graphs with limited supply.

We combine the method described in the previous section with the technique
of [3]. We assume that the demands and capacities are integers bounded by
L′ = 2polylog(m). By rescaling, we can assume, at the loss of a factor of (1 − ε)
of the optimum, that B(I) ∈ [1, nm/ε] and ρ(I) ∈ [1/L′, 1], for all I ∈ I. Let
Q = 1+�logmaxI{B(I)/ρ(I)}� = polylog(m). Given an edge e∗ and an ε-relative
pricing R w.r.t. e∗, we partition the intervals of I into at most Q classes according
to the value of v(I, R)/ρ(I): for q ∈ [Q], Iq,R = {I ∈ I : 2q−1 ≤ v(I,R)

ρ(I) ≤ 2q}.
We recall the following definition from [3].

Definition 3. (ε-Restricted profiles) Let e = {u − 1, u} be an edge of E, and
h, ε ∈ R+, with 1/ε ∈ Z+. Let x1, . . . , x1/ε and y1, . . . , y1/ε be start points of
edges in E, such that

x1 ≤ x2 ≤ · · · ≤ x1/ε ≤ u − 1 < u ≤ y1/ε ≤ · · · ≤ y2 ≤ y1.

Then the vector (�1, . . . , �n), where

�i =

⎧
⎨

⎩

0, for i ≤ x1 and i > y1

jεh, for xj < i ≤ xj+1 and yj+1 < i ≤ yj

h, for x1/ε < i ≤ y1/ε,

is said to be an ε-restricted profile with peak e and height h, denoted by RPε(e; h;
x1, . . . , x1/ε; y1, . . . , y1/ε).

460 K. Elbassioni, R. Sitters, and Y. Zhang

The total number of ε-restricted profiles, with a given peak and height is at most
n2/ε.

For J ⊆ I and any edge e ∈ E, the total demands of J [e] define a profile
prof(J [e]) ∈ R

E , defined by:

prof(J [e])e′ = ρ(J [e] ∩ J [e′]) def=
∑

I∈J [e]∩J [e′]

ρ(I), for e′ ∈ E.

The following two lemmas state that any such profile can be sufficiently accu-
rately approximated by an ε-restricted profile, in polynomial time (see Figure 3),
provided that the demands are sufficiently small.

x4x1 y2y3 = y4x2 = x3 y1

h

Fig. 3. A profile and its restriction

Lemma 4 ([3]). Let e∗ ∈ E be an edge, R be an ε-relative pricing w.r.t. e∗,
and J ⊆ Iq,R[e∗] be a subset of class q intervals spanning e∗, such that ρ(I) ≤ δ
for all I ∈ J and some δ ∈ R+. Let h be the largest integer multiple of 1/2q

that does not exceed ρ(J). Then there exists an ε-restricted profile π with peak
e∗ and height h and a subset J ′ ⊆ J , such that

(i) prof(J ′) ≤ π ≤ prof(J), and
(ii) v(J , R) − v(J ′, R) ≤ 2q+1(εh + δ).

Lemma 5 ([3]). Let e∗ be an edge, R an ε-relative pricing w.r.t. e∗, and J ⊆
Iq,R[e∗] be a subset of class q intervals such that ρ(I) ≤ δ for all I ∈ J . Let
π be a restricted profile, and J ∗ be a subset of J such that prof(J ∗) ≤ π and
v(J ∗, R) is maximized. Then we can find in polynomial time a subset J ′ ⊆ J
such that prof(J ′) ≤ π and v(J ∗, R) − v(J ′, R) ≤ 2q+1δ/ε.

Remark 1. If ρ(I) = 1 for all I ∈ J , then a subset satisfying the conditions
in Lemma 5 with v(J ′, R) = v(J ∗, R) can be found by a greedy procedure as
follows. Consider the intervals in J in increasing order of their v(·, R) values,
and let J ′ be a maximal set of intervals such that prof(J ′) ≤ π. Then it is easy
to see that v(J ′, R) ≥ v(J ∗, R).

The algorithm is an extension of HP and is given in Figure 4 below. It resembles
very much the algorithm in [3], with the additional incorporation of ε-relative
pricings. Without loss of generality we can assume that c(e) < ∞ for all e ∈ E

A Quasi-PTAS for Profit-Maximizing Pricing on Line Graphs 461

Algorithm UFP(I, E, S , c):
Input: A subset of intervals I defined on E, a feasible system of linear inequalities S ,

and a capacity vector c = (c(e) : e ∈ E)
Output: A price function p : E �→ R+ and a subset J ⊆ R+ s.t. p(I) ≤ B(I) ∀I ∈ J

and ρ(J [e]) ≤ c(e) ∀e ∈ E

1. if |I| = 0, then return (p, ∅), where p is any feasible solution of S
2. let e∗ be an edge of E such that |IL(e∗)| ≤ m/2 and |IR(e∗)| ≤ m/2
3. for every ε-relative pricing R w.r.t. e∗ for which S ∧ S(R) is feasible do
4. foreach q ∈ [Q], set Iq = {I ∈ Iq,R[e∗] : v(I, R) ≤ B(I)/(1 + ε)}
5. foreach Q-tuple (A1, . . . , AQ) with each Aq ⊆ Iq and |Aq | ≤ 1/ε2 do
6. A ←

⋃Q
q=1 Aq

7. if ρ(A) ≤ c(e) ∀e ∈ E then
8. foreach e ∈ E, set c′(e) ← c(e) − ρ(A[e])

9. foreach (h1, . . . , hQ) ∈ R
Q
+ with each hq an integer multiple of 1/2q and∑Q

q=1 hq ≤ c′(e) do
10. foreach Q-tuple (π1, . . . , πQ) with each πq an ε-restricted profile with

peak e∗ and height hq , s.t.
∑Q

q=1 πq ≤ c′ do
11. foreach q ∈ [Q], set Bq ← {I ∈ Iq \ Aq : ρ(I) ≤ ε2(hq + 1/2q + ρ(Aq))}
12. foreach q ∈ [Q], let Kq ←PACK(Bq, πq , R)

13. K ←
⋃Q

q=1 Kq

14. foreach e ∈ E, set c′′(e) ← c′(e) − ρ(B[e])
15. (p1, J1) ← UFP(IL(e∗), EL(e∗), S ∧ S(R), c′′)
16. (p2, J2) ← UFP(IR(e∗), ER(e∗), S ∧ S(R), c′′)
17. let p be the price function defined by (6)
18. J ← A ∪ K ∪ J1 ∪ J2

19. record (p,J)
20.return the recorded solution with largest p(J) value

Fig. 4. The dynamic program for computing ε-approximate prices for the capacitated
version

by setting ce ← min{ce, ρ(I[e])}. For a subset of intervals J , a restricted profile
π, and a relative pricing R, we use PACK(J , π, R) to denote a procedure that
returns a subset with the guarantees of Lemma 5.

The algorithm proceeds as before, by considering the middle edge e∗. It parti-
tions the set of candidate intervals crossing e∗ in a given class q ∈ [Q] into those
with large demands Aq, and those with small demands Bq. The number of large
demands crossing e∗ is small (less than 1/ε2) and hence they can be guessed by
enumerating over all of them. For each such guess of large demands, the profile
of the small demands crossing e∗ can be approximated by an ε-restricted profile
using Lemmas 4 and 5. Again, among these profiles, we enumerate over the ones
whose total demand requirement does not exceed the residual capacity left after
routing the large demands (see [3] for more details).

Lemma 6. Algorithm UFP runs in quasi-polynomial time in m, for any fixed
ε > 0.

462 K. Elbassioni, R. Sitters, and Y. Zhang

Lemma 7. Algorithm UFP returns a solution of value at least (1−23ε)p∗(Opt),
for any 0 < ε < 1.

Theorem 2. There is a quasi-polynomial time approximation scheme for Ufp

on line graphs, provided that the demands and capacities are integers bounded by
a quasi-polynomial in the number of intervals.

Corollary 1. There is a quasi-polynomial time approximation scheme for the
pricing problem on line graphs with limited supply.

References

1. Aggarwal, G., Hartline, J.D.: Knapsack auctions. In: SODA ’06: Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algorithm, pp. 1083–1092.
ACM Press, New York, USA (2006)

2. Balcan, M.F., Blum, A.: Approximation algorithms and online mechanisms for item
pricing. In: EC ’06: Proceedings of the 7th ACM conference on Electronic commerce,
pp. 29–35. ACM Press, New York, USA (2006)

3. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplit-
table flow on line graphs. In: STOC ’06: Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pp. 721–729. ACM Press, New York,
USA (2006)

4. Briest, P., Krysta, P.: Single-minded unlimited supply pricing on sparse instances.
In: SODA ’06: Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, pp. 1093–1102. ACM Press, New York, USA (2006)

5. Briest, P., Krysta.: Buying cheap is expensive: Hardness of non-parametric multi-
product pricing, Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms,
ACM-SIAM (2007)

6. Demaine, E.D., Hajiaghayi, M.T., Feige, U., Salavatipour, M.R.: Combination can
be hard: approximability of the unique coverage problem. In: SODA ’06: Proceedings
of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pp. 162–
171. ACM Press, New York, USA (2006)

7. Glynn, P.W., Van Roy, B., Rusmevichientong, P.: A nonparametric approach to
multi-product pricing. Operations Research 54

8. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry,
F.: On profit-maximizing envy-free pricing, SODA ’05: Proceedings of the sixteenth
annual ACM-SIAM symposium on Discrete algorithms (Philadelphia, PA, USA),
Society for Industrial and Applied Mathematics, pp. 1164–1173 (2005)

9. Hartline, J.D., Koltun, V.: Near-optimal pricing in near-linear time. In: Dehne, F.,
López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 422–431.
Springer, Heidelberg (2005)

Improved Upper Bounds on the Competitive

Ratio for Online Realtime Scheduling

Koji Kobayashi1 and Kazuya Okamoto2

1 Graduate School of Informatics, Kyoto University
kobaya@net.ist.i.kyoto-u.ac.jp

2 Graduate School of Informatics, Kyoto University
okia@kuis.kyoto-u.ac.jp

Abstract. We study a variant of online scheduling problems, the on-
line realtime scheduling. It can be defined on a complete graph, where
each node represents a communication agent, and a communication be-
tween two agents can be considered as an edge. An input is a sequence
of communication jobs, each of which requires two specified agents to
communicate during specified time period. Each agent can participate
in at most one communication job. The task of an online algorithm is
to schedule jobs so that the sum of the profits of completed commu-
nication jobs is maximized. In this paper, we improve the competitive
ratio of the General Shelf based Max Matching (GSMM) algorithm
from 6 + 4

√
2(≈ 11.66) to 2

√
6 + 6(≈ 10.90). We also prove that this

ratio is optimal for GSMM . In addition, we study the case where each
job has no slack time, namely, it must be either started immediately or
rejected at its release time, and show the competitive ratio of GSMM
is 2

√
6 + 5(≈ 9.90).

1 Introduction

In parallel and distributed environments, the following communication schedul-
ing problem sometimes arises. There are agents, with communication lines be-
tween pairs of agents. To perform some task, two agents must communicate for
some time span, which is called a communication job. Each communication job
has its own profit and its own deadline. Such communication jobs arrive online,
which may require one agent to serve two or more jobs simultaneously. However,
each agent can participate in at most one job at the same time. Our goal is to
schedule jobs so that the sum of the profits of completed jobs is maximized.

Lee et al.[9] formulated this problem as an online problem on a graph, called
online realtime scheduling, in the following way: We have a graph where each
node is considered as an agent, and each edge represents a communication line
between two associated agents. An input is a sequence of communication jobs.
Each communication job J is specified by an edge e = (v1, v2), a release time r,
a profit v, a processing time p (also, called length), and a deadline d. This means
that this job requires a communication between agents v1 and v2, time needed
for communication is p, and the communication should be performed between
time r and d. For a job to be completed, it must be assigned to an edge during

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 463–474, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

464 K. Kobayashi and K. Okamoto

time p without interruption. A release time is usually the same to the time when
the job is given. The task of an online algorithm is to schedule the assignment
of jobs to edges so that at any time, each node receives at most one job. A job is
called accepted if the communication is completed. When a job, say J1, arrives at
an edge whose endpoint is already occupied by another job, say J2, an algorithm
can preempt J2 and assign J1. It can later re-schedule J2, but in that case, J2

must be assigned to its destination edge for the processing time required for J2,
namely, the task already performed for J2 before J1 arrives would be aborted.
d−r−p denotes the slack time of J , namely, if this job is not started within this
time period, then it cannot be completed by the deadline. If a job has no slack
time, an algorithm must decide to schedule or reject it immediately. The profit
of an algorithm is the sum of the profits of all accepted jobs. The performance
of an online algorithm is evaluated by the competitive analysis [2,11]. If, for any
input σ, the profit of an online algorithm ALG is at least 1/c of that of an
optimal offline algorithm for σ, then we say that ALG is c-competitive.

Lee et al. [9] have considered this problem on a complete graph. They con-
sidered a restricted case where the profit is equal to the length for any com-
munication job. They showed that for unit jobs case (i.e., length of any job is
1) with any slack time, a simple greedy algorithm is 2-competitive [9], and no
online algorithm can be better than 1.5-competitive. They also considered the
more general case such that parameters can take any real values. They showed
that for any jobs with any slack time, the General Shelf based Max Matching
(GSMM) algorithm is (6 + 4

√
2 ≈ 11.66)-competitive and no online algorithm

can have competitive ratio better than 8 − ε for any positive constant ε. This
can be applied to the case where each job has no slack time.

Our Contribution. In this paper, we give detailed analysis for GSMM , and
improve the upper bound on the competitive ratio of GSMM from 6 + 4

√
2(≈

11.66) to 2
√

6 + 6(≈ 10.90). We also give a matching lower bound example
showing that the competitive ratio of GSMM is no better than 2

√
6+6. For the

case where each arriving job has no slack time, we show the competitive ratio of
GSMM is 2

√
6 + 5(≈ 9.90).

Let us briefly explain an idea of the analysis. Let EX be the set of jobs which
optimal offline algorithm (OPT) accepts but GSMM does not. We want to
bound the sum of the values of jobs in EX . For this purpose, we will show that
when OPT starts any job I ∈ EX , GSMM schedules some job J instead, and
the value of job I can be bounded using the value of job J .

Related Results. Online realtime scheduling treated in [9] and this paper is
defined on a complete graph, but in general, it can be considered on arbitrary
graphs. Guez et al. [6] consider the problem on a bipartite graph. In this model,
one node set denotes the senders, the other set the receivers, and a simultaneous
transmission of messages is a bipartite matching. The conflict constraint, namely,
the restriction that each node can serve at most one job simultaneously, was first
introduced in [7].

Improved Upper Bounds on the Competitive Ratio 465

The problem where jobs arrive at not edges but nodes is the most basic
realtime scheduling problem, and a great amount of study have been done up
to the present (e.g., Baruah et al. [1], Woeginger [12], and Koren and Shasha
[8]). There are a lot of variants of this problem, according to the availability of
preemption, existence of slack time, and the profit of each job. (We say that a
job J has no slack time if J can be accepted only when J is started at its release
time.) In the case where a value of each job is equal to the length of a job,
preemption is allowed, and there is no slack time, Baruah et al. [1] and Woeginger
[12] showed that no online algorithm can be better than 4-competitive, and
Baruah et al. [1] gave a 4-competitive online algorithm [1]. If the value and the
length of job may be different, an upper bound (

√
k +1)2 is presented [1], where

k is the ratio between the maximum and the minimum length of jobs. Later,
Koren and Shasha gave a lower bound which matches this upper bound [8].
[3,4,5] study the model where preemption is not allowed and each job can have
arbitrary slack time. Existence of slack time helps not only an online algorithm
but also an optimal one [5].

2 Preliminaries

In this section, we formally define a problem studied in this paper, and General
Shelf based Max Matching (GSMM) algorithm introduced in [9].

2.1 Online Realtime Scheduling

We have a complete graph G = (V, E). A job J is specified by a 3-tuple J =
(r, p, d), where r is the release time, p is the processing time (length) and d is
the deadline. An input is a sequence of jobs, each of which arrives (or occurs)
at an edge e ∈ E. The task of an online algorithm is to schedule jobs at any
time, so that no endpoint node participate in more than one jobs, namely, at
any time, a set of scheduled jobs forms a matching in G. A job J is accepted if
it is scheduled to its destination edge without interruption for time p between
its release time r and deadline d; otherwise it is rejected. We suppose that a job
J1 is already assigned to an edge, say e1 = (v1, v2). When another J2 arrives
at an edge e2 = (v1, v3), an algorithm can assign J2 to e2 by preempting J1. In
that case, we say that J1 is preempted. J1 can be later assigned to e1 and can
be accepted, but in that case, J1 must be assigned to e1 during the length of J1,
which means that the task already performed by e1 before J2 arrives is aborted.
Let s = d − r − p be the slack time of J . We study the case where each job
has slack time in Sec. 3 and Sec. 4, and no slack time in Sec. 5. The value an
algorithm ALG obtains for an input σ, denoted by VALG(σ), is the sum of the
lengths of jobs accepted by ALG. If VA(σ) ≥ VOPT (σ)/c for an arbitrary input
σ, we say that A is c-competitive, where OPT is an optimal offline algorithm for
σ. Without loss of generality, we can assume that OPT never preempts jobs.

466 K. Kobayashi and K. Okamoto

2.2 General Shelf Based Max Matching (GSMM) Algorithm

We give some notations. For a job J , let p(J), d(J) and r(J) denote the length,
the deadline and the release time of J , respectively. For a set of jobs K, define
p(K) =

∑
j∈K p(j), namely, the sum of the lengths of all jobs in K. A job J is

available at time t if it can be started at time t and accepted in the future, i.e.
d(J) ≥ t + p(J) and r(J) ≤ t hold.

GSMM is defined as follows: It executes computation at time t when a new
job arrives or some job is accepted. GSMM takes a positive number k(≥ 2) as
a parameter. M denotes the set of scheduled jobs (namely, those jobs assigned
to its destination edge and currently executed jobs) at time t, e.g., M is empty
at the beginning.

General Shelf based Max Matching (GSMM(k))
Step 1: Let S be the set of jobs which have already arrived at time t, namely,

S = {J |r(J) ≤ t}.
Step 2: Remove jobs accepted before t from S .
Step 3: Remove unavailable jobs from S .
Step 4: Give each job J a weight wt(J) at time t in the following way:

If J ∈ M , wt(J) = kp(J), and otherwise wt(J) = p(J).
Step 5: Constitute a weighted (multi)graph G′ = (V ′, E′) as follows:

V ′ is V , the same to the nodes of G, and E′ is the set of jobs in S .
The weight of J ∈ E′ is wt(J).

Compute a maximum matching X in G′, and schedule jobs in X,
namely, set M = X.

As one can see, GSMM tries to schedule jobs whose profits are large. However,
it gives weights, parameterized by k, to currently scheduled jobs.

3 2
√

6 + 6 Upper Bound

For analysis, we give some definitions. Recall that our problem is defined on a
complete graph G = (V, E). We assume that nodes in V are specified by numbers
from 1 to |V |. For a job J , e(J) ∈ E denotes the edge which J arrives at. Let
e(J) = (u, v) such that u < v. Then we write v1(J) = u and v2(J) = v, namely,
v1(J) and v2(J) represent the smaller and the larger nodes of the edge J arrives
at, respectively. A job J conflicts with a job I at time t if both of them are
available at t and the edges J and I destined share a common endpoint, namely,
vj(J) = vi(I) for ∃i, ∃j ∈ {1, 2}. In particular, a job conflicts with itself. A job J
j-conflicts (j = 1, 2) with I at time t if J conflicts with I at t and vj(J) = vi(I)
for some i.

Improved Upper Bounds on the Competitive Ratio 467

3.1 Overview of the Analysis

If EX denotes the set of jobs which OPT accepts but GSMM(k) rejects,
VOPT (σ) ≤ VGSMM(k)(σ)+p(EX) for any input σ. In the following subsections,
we evaluate the upper bound of p(EX) to estimate the competitive ratio of
GSMM(k). We show below the outline of the proof.

Let us classify jobs started by GSMM(k) at time t into two categories: Let At

be the set of jobs which are scheduled between [t, t + p(J)) and hence accepted.
Let Pt be the set of jobs preempted at time t′ ∈ (t, t+p(J)). Now, let T be the set
of times when GSMM(k) newly starts a job. Then, VGSMM(k)(σ) =

∑
t∈T p(At)

holds.
In Sec. 3.2, we show that p(EX) ≤ (2k +2)

∑
t∈T p(At)+ (k +2)

∑
t∈T p(Pt),

and in Sec. 3.3, we prove that
∑

t∈T p(Pt) ≤ 1
k−1

∑
t∈T p(At) holds. Therefore,

VOPT (σ) ≤ p(EX) + VGSMM(k)(σ) ≤ (2k + 2 + k+2
k−1 + 1)VGSMM(k)(σ), which

implies that the competitive ratio of GSMM(k) is at most 2k+2+ k+2
k−1 +1. We

have that 2k + 2 + k+2
k−1 + 1 = 2

√
6 + 6 when k = 1 +

√
6/2. Hence, we have the

following theorem:

Theorem 3.1. The competitive ratio of GSMM(1+
√

6/2) is at most 2
√

6+6.

3.2 Evaluating p(EX) with p(At) and p(Pt)

In this section, for a job I ∈ EX started at time t by OPT , we will show that
GSMM(k) surely schedules a job which conflicts with I at time t.

Lemma 3.2. Let I be a job in EX, and suppose that OPT starts I at time t.
Then, there exists a job J which GSMM(k) schedules at time t and conflicts
with I at time t.

Proof. Recall that OPT never preempts a job. So, I is eventually accepted by
OPT . Hence, I is available at time t. Also, observe that by the definition of
GSMM , the set of scheduled jobs by GSMM constitutes a maximal matching
in the graph defined by all available jobs. However, if there is no job which
GSMM schedules and conflicting with I at t, it contradicts the maximality.
This completes the proof.

We give some more definitions. Let I ∈ EX and suppose that OPT starts I at
time t. Using Lemma 3.2, we can guarantee the existence of jobs being scheduled
by GSMM(k) at t and conflicting with I at t. The number of such jobs may
1 or 2. (1) If there is only one such job, say J , we say that J covers the whole
length (namely, p(I)) of I. (2) If there are two such jobs, say J and J ′, then
we say that J covers p(J)

p(J)+p(J′) -fraction of the length of I in chronological order,

namely, p(I) p(J)
p(J)+p(J′) . Note that in this case J ′ covers p(I) p(J′)

p(J)+p(J′) of I, and
the sum of the lengths J and J ′ cover is equal to p(I), the whole length of I.
For a job J scheduled by GSMM(k), let C(J) denotes the sum of the lengths
of jobs which J covers (note that J may cover more than one jobs). For a set of
jobs K, let C(K) =

∑
J∈K C(J).

468 K. Kobayashi and K. Okamoto

Lemma 3.3
p(EX) =

∑

t∈T
C(At) +

∑

t∈T
C(Pt).

Proof. Let I be an arbitrary job in EX . By definition, I is certainly covered by
one or two jobs scheduled by GSMM . Therefore, we have the lemma.

In order to evaluate the length which a job J ∈ Pt ∪ At covers, we will consider
the property of the job started by GSMM(k) in place of a preempted job.

Lemma 3.4. Let J ∈ Pt be a job scheduled by GSMM(k) between t and t′.
Then, there exists a job J̃ which is started by GSMM(k) and conflicts with J
at t′ such that p(J) ≤ p(J̃).

Proof. Note that t′ is the time when GSMM(k) preempts J . Since J ∈ Pt,
GSMM(k) starts another job J ′ by preempting J . We consider three cases
according to the nodes at which J conflicts with J ′ at t′:

Case 1. J 1-conflicts and 2-conflicts with J ′

In this case, GSMM(k) preempts J and newly schedules J ′ at the same edge.
So, by the definition of GSMM(k), kp(J) ≤ p(J ′) and hence J ′ is the job which
we want as J̃ .

Case 2. J only 1-conflicts with J ′

If p(J) ≤ p(J ′), then J ′ satisfies our condition. Otherwise, there exists J ′′ which
is 2-conflicted with J such that kp(J) ≤ p(J ′) + p(J ′′) at time t′. By this in-
equality and the fact that p(J) > p(J ′), we have that (k − 1)p(J) < p(J ′′). By
this inequality and the assumption that k ≥ 2, p(J) < p(J ′′). Hence J ′′ is J̃
which we want to show the existence.

Case 3. J only 2-conflicts with J ′

Similar to the proof of Case 2, and hence omitted.

For any J ∈ Pt scheduled by GSMM(k) between t and t′, there exists a job
J̃ started by GSMM(k) and conflicting with J at t′ such that p(J) ≤ p(J̃) by
Lemma 3.4. We denote this J̃ by N(J, t).

In the following, we use the following convenience. Let I ∈ EX be a job
accepted by OPT , and suppose that it is scheduled between t1 and t2 by OPT
and covered by a job J ∈ Pt. We may consider dividing I into I1 and I2 at time
t′ ∈ [t1, t2), so that OPT accepts both I1 and I2 instead of I and schedules
I1 and I2 between [t1, t′) and [t′, t2), respectively. Then, when a job N(J, t)is
started at time t′, we divide the fraction of length of a job I covered by J into
I1 and I2 at t′. Then, we I2 denote S(J, t, I).

Lemma 3.5. Let J̃ be a job N(J, t). We suppose that the fraction of length of
a job I (say, I ′) is covered by J and I ′ is divided into I1 and I2 = S(J, t, I) at
t′. Then, the length of S(J, t, I) is at most kp(J̃).

Improved Upper Bounds on the Competitive Ratio 469

Fig. 1. Example of dividing

Proof. By Lemma 3.4, p(J) ≤ p(J̃). Since GSMM(k) does not preempt J and
schedule I, p(I ′) ≤ kp(J). Therefore, we have that p(I2) < p(I ′) ≤ kp(J) ≤
kp(J̃).

By Lemma 3.5, the S(J, t, I) from any job I ∈ EX and the job J ∈ Pt which
covers the fraction of the length of I can be dealt similarly to other jobs in EX .
Next, we evaluate the upper bound of C(J) for a job J ∈ At, namely, a job J
accepted by GSMM(k).

Lemma 3.6. For any t and for any J such that J ∈ At, C(J) ≤ (2k + 2)p(J).

Proof. Assume that J is scheduled by GSMM(k) between t0 and t1. We estimate
the total length of jobs covered by J . Let J1, J2, . . . , J� be jobs covered by J
that 1-conflict with J in this order. Then the total length J covers these jobs
is

∑�
j=1 p(Jj). We consider two cases (i) J� is accepted by OPT at or before

t1, and (ii) J� is accepted by OPT after t1. In case (i), J1 is scheduled at or
after t0, and J� ends before t1. Hence

∑�
j=1 p(Jj) ≤ t1 − t0 = p(J). In case

(ii), we can show that
∑�−1

j=1 p(Jj) ≤ p(J) by the same argument. We then
show that p(J�) ≤ kp(J). First, consider the case that J� is covered by only J .
Then, clearly p(J�) ≤ kp(J) since otherwise, GSMM must have scheduled J�

instead of J . Next, consider the case that J� is covered by two jobs J and J ′.
Then p(J�) ≤ k(p(J) + p(J ′)) since otherwise, GSMM must have scheduled J�

instead of J and J ′. So, the length J covers J� is p(J�)
p(J)

p(J)+p(J′) ≤ k(p(J) +

p(J ′)) p(J)
p(J)+p(J′) = kp(J). So, in case (ii),

∑�
j=1 p(Jj) ≤ (k + 1)p(J). Now, we

have proved that in either (i) and (ii),
∑�

j=1 p(Jj) ≤ (k + 1)p(J).
We can do a similar argument to show that the sum of the covered length of

jobs that 2-conflict with J is at most (k+1)p(J). Hence, the total length covered
by J is at most 2(k + 1)p(J).

Then, we evaluate the upper bound of C(J) for a job J ∈ Pt, namely, a job J
preempted by GSMM(k).

470 K. Kobayashi and K. Okamoto

Lemma 3.7. For any t and for any J ∈ Pt, C(J) ≤ (k + 2)p(J).

Proof. Let J ∈ Pt0 be a job scheduled by GSMM(k) between [t0, t1). By
Lemma 3.4, there exists a job J ′ started by GSMM(k) at time t1 conflicted
with J such that p(J ′) ≥ p(J). Without loss of generality, we assume that J
1-conflicts with J ′ at time t1.

We consider the following two cases: (1) There exists I ∈ EX such that I is
started between t0 and t1 by OPT , and accepted after t1, and 1-conflicting with
J , and (2) otherwise.

We first consider the easier case, Case (2). Since we can consider similarly to
the proof of Lemma 3.6, the total length J covers jobs accepted by OPT at or
before t1 is at most 2p(J) and the length J covers a job accepted by OPT is at
most kp(J). since we think only of a node v2(J). Hence, C(J) ≤ (k + 2)p(J).

Next, we consider the case (1). We divide I into I1 and I2 at time t1. Hence,
J covers the length of I1 scheduled between [t′0, t1) and J ′ covers the length of
I2 scheduled between [t1, t′1). Since the total length J covers jobs accepted by
OPT at or before t1 is at most 2p(J) and the length J covers a job accepted
by OPT is at most kp(J) since we think only of v2(J). Therefore, we have that
C(J) ≤ (k + 2)p(J) holds again, which completes the proof.

The following corollaries are immediate from Lemmas 3.6 and 3.7.

Corollary 3.8. C(At) ≤ (2k + 2)p(At).

Corollary 3.9. C(Pt) ≤ (k + 2)p(Pt).

We have finally the following lemma:

Lemma 3.10. p(EX) ≤ (2k + 2)
∑

t∈T p(At) + (k + 2)
∑

t∈T p(Pt).

Proof. Immediate from Lemma 3.3, Corollary 3.8 and Corollary 3.9.

3.3 Bounding p(Pt) Using p(At)

Finally, in this section, we bound
∑

t∈T p(Pt) using
∑

t∈T p(At). Let P ′t denote
the set of jobs which are scheduled by GSMM(k) and preempted at time t.

Lemma 3.11.
∑

t∈T p(Pt) ≤ 1
k−1

∑
t∈T p(At).

Proof. First, note that for any time t, kp(P ′t) ≤ p(Pt) + p(At) since GSMM(k)
newly starts jobs in Pt ∪ At by preempting jobs in P ′t . By summing up this
inequality for all t ∈ T , we have

∑

t∈T
kp(P ′t) ≤

∑

t∈T
p(Pt) +

∑

t∈T
p(At).

Now, for any job J preempted by GSMM(k), suppose that GSMM(k) starts
J at t1 and preempts it at t2. Then, J contributes to both Pt1 and P ′t2 , and

Improved Upper Bounds on the Competitive Ratio 471

t2 ∈ T since at least one job is started whenever a job is preempted. Thus,∑
t∈T p(P ′t) =

∑
t∈T p(Pt), and hence we have that

∑

t∈T
p(Pt) ≤ 1

k − 1

∑

t∈T
p(At),

which completes the proof.

4 Tight Lower Bound of GSMM(k)

In this section, we prove that the competitive ratio of GSMM(k) is not better
than 2

√
6 + 6 for any k, which matches the upper bound given by the previous

section.

Theorem 4.1. For any positive constant ε, the competitive ratio of GSMM(k)
is at least 2

√
6 + 6 − ε.

Proof. Let F be an arbitrary positive integer. We consider the complete graph
with 3F + 5 vertices. The input σ, giving a lower bound example, consists of
4F + 5 jobs which is summarized in the following table.

Jobs Jj , J ′j , J ′′j , J ′′′j (j = 0, 1, . . . , F) and J̃ arrive according to the following
table, where σ′j , σ′′j , σ′′′j , σ̃, εj , ε′j , ε′′j and ε′′′j are sufficiently small constants such
that σ′′′j > 0, σ′′j > σ′j > 0, ε′′j > ε′′′j > ε′j > εj > 0, σ̃ > 0 and

∑F
j=0(σ

′
j + σ′′j +

σ′′′j + ε′j + ε′′j)+ σ̃ = εp(JF) for any j. Finally, let L be a positive value such that

L > maxj{σ′′
j +ε′′

j

kj } and L > maxj{ σ′′′
j

kj+1 }
arriving jobs release time length smaller larger slack time

node node
J0 0 L 1 2 0

Jj+1 r(Jj) kp(Jj) 1 j + 3 0 (j = 0, . . . , F − 2)

(j = 0, . . . , F − 1) +p(Jj) − εj ∞ (j = F − 1)

J̃ r(JF) kp(JF) − σ̃ 1 3F + 5 0
+p(JF) − εF

J ′j (j = 0, . . . , F) r(Jj) + σ′j p(Jj) 1 F + j + 3 0
−σ′j − ε′j

J ′′j (j = 0, . . . , F) r(Jj) + σ′′j p(Jj) j + 2 2F 0
−σ′′j − ε′′j +j+4

J ′′′j (j = 0, . . . , F) r(Jj) kp(Jj) − σ′′′j j + 2 2F 0
+p(Jj) − ε′′′j +j + 4

Then, by the definition of GSMM(k), it cannot start J ′j , J ′′j , J ′′′j and J̃ , and
preempts Jj−1 in starting Jj . Hence, GSMM(k) accepts only JF . On the other
hand, OPT accepts J ′j , J ′′j ,J ′′′j for all j and J̃ . Hence, we have that

472 K. Kobayashi and K. Okamoto

VOPT (σ)
VGSMM(k)(σ)

=

⎛

⎝kp(JF) + p(JF) +
F∑

j=0

(2 + k)p(Jj) − εp(JF)

⎞

⎠ 1
p(JF)

=

⎛

⎝kp(JF) + p(JF) +
F∑

j=0

(2 + k)
p(JF)
kF−j

− εp(JF)

⎞

⎠ 1
p(JF)

=

⎛

⎝(k + 1)p(JF) +
F∑

j=0

(2 + k)
p(JF)
kF−j

− εp(JF)

⎞

⎠ 1
p(JF)

= k + 1 + (k + 2)
k − 1

kF

k − 1
− ε

F→∞−→ k + 1 + (k + 2)
k

k − 1
− ε.

Therefore, the competitive ratio of GSMM(k) is at least k+1+(k+2) k
k−1−ε ≥

2
√

6 + 6 − ε.

Fig. 2. A part of input sequence

5 The Case Without Slack Time

In this section, we study the case where each job has no slack time, namely, it
must be either started immediately or rejected at its release time. In online job
scheduling, this case has been studied in [4].

Improved Upper Bounds on the Competitive Ratio 473

5.1 Overview of the Analysis

Let us classify jobs accepted by OPT or GSMM(k) into three categories: A
job only accepted by OPT is called an o-extra job. A job only accepted by
GSMM(k) is called a g-extra job. A job accepted by both OPT and GSMM(k)
is called a common job. Let GEt and CM t be the set of g-extra jobs and
common jobs started by GSMM(k) at time t, respectively. Note that EX de-
notes the set of o-extra jobs and At = GEt ∪ CM t. Then, it is easy to see
that VOPT (σ) =

∑
t∈T p(CM t) + p(EX) and VGSMM(k)(σ) =

∑
t∈T (p(CM t) +

p(GEt)) for any σ. In the next section, in order to improve an upper bound, we
show p(EX) ≤ (2k+2)

∑
t∈T p(GEt)+ k+2

k−1

∑
t∈T (p(CM t)+p(GEt)). Therefore,

VOPT (σ) =
∑

t∈T p(CM t)+ p(EX) ≤ ∑
t∈T p(CM t)+ (2k + 2)

∑
t∈T p(GEt)+

k+2
k−1

∑
t∈T (p(CM t) + p(GEt)) ≤ (2k + 2 + k+2

k−1)VGSMM(k)(σ) holds. We have
that 2k + 2 + k+2

k−1 = 2
√

6 + 5 ≈ 9.90 when k = 1 +
√

6/2. Hence, we have the
following theorem:

Theorem 5.1. The competitive ratio of GSMM(1+
√

6/2) is at most 2
√

6+5.

If we change the slack time of JF into 0 in the lower bound example in Sec. 4,
we obtain a lower bound of GSMM(k) in this case.

Theorem 5.2. For any positive constant ε, the competitive ratio of GSMM(k)
is at least 2

√
6 + 5 − ε.

5.2 Evaluating p(EX) with p(GE) and p(CM)

The following lemma is immediate from Corollary 3.8.

Lemma 5.3
C(GEt) ≤ (2k + 2)p(GEt).

Proof. Using Corollary 3.8, C(At) ≤ (2k + 2)p(At) holds. Since GEt ⊆ At,
C(GEt) ≤ (2k + 2)p(GEt).

Next, we estimate C(CM t).

Lemma 5.4
C(CM t) = 0.

Proof. By the definition of CM t, for any job J ∈ CM t, OPT schedules J at
time t when J is scheduled by GSMM(k). As a result, J does not conflict with
any job in EX .

Therefore, we have the following lemma.

Lemma 5.5

p(EX) ≤ (2k + 2)
∑

t∈T
p(GEt) +

k + 2
k − 1

∑

t∈T
(p(CM t) + p(GEt)).

Proof. Using Lemma 3.3, Lemma 5.3, Lemma 5.4 and Corollary 3.9, p(EX) ≤
(2k+2)

∑
t∈T p(GEt)+(k+2)

∑
t∈T p(Pt) holds. By Lemma 3.11, we have shown

that the statement is true.

474 K. Kobayashi and K. Okamoto

Acknowledgement

We thank Associate Professor Shuichi Miyazaki for a lot of advice in this
research.

References

1. Baruah, S., Koren, G., Mao, D., Mishra, B., Raghunathan, A., Rosier, L., Shasha,
D., Wang, F.: On the competitiveness of on-line real-time task scheduling. Journal
of Real-Time Systems 4(2), 125–144 (1992)

2. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

3. Dolev, S., Kesselman, A.: Non-Preemptive Real-Time Scheduling of Multimedia
Tasks. Journal of Real-Time Systems 17(1), 23–39 (1999)

4. Goldman, S., Parwatikar, J., Suri, S.: Online scheduling with hard deadlines. Jour-
nal of Algorithms 34(2), 370–389 (2000)

5. Goldwasser, M.: Patience is a virtue: the effect of slack on competitiveness for
admission control. Journal of Scheduling 6(3), 183–211 (2003)

6. Guez, D., Kesselman, A., Rosén, A.: Packet-mode policies for input-queued
switches. In: Proc. SPAA 2004, pp. 93–102 (2004)

7. Irani, S., Leung, V.: Scheduling with conflicts and applications to traffic signal
control. In: Proc. SODA 1996, pp. 85–94 (1996)

8. Koren, G., Shasha, D.: Dover: an optimal on-line scheduling algorithm for over-
loaded uniprocessor real-time systems. SIAM J. Comput. 24(2), 318–339 (1995)

9. Lee, J.H., Chwa, K.Y.: Online scheduling of parallel communications with individ-
ual deadlines. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS,
vol. 1741, pp. 383–392. Springer, Heidelberg (1999)

10. Lipton, R.J., Tomkins, A.: Online interval scheduling. In: Proc. SODA 1994, pp.
302–311 (1994)

11. Sleator, D., Tarjan, R.: Amortized efficiency of list update and paging rules. CACM
28, 202–208 (1985)

12. Woeginger, G.J.: On-line scheduling of jobs with fixed start and end times. Theo-
retical Computer Science 130(1), 5–16 (1994)

Bundle Pricing with Comparable Items

Alexander Grigoriev1, Joyce van Loon1,�, Maxim Sviridenko2,
Marc Uetz1, and Tjark Vredeveld1

1 Maastricht University, Quantitative Economics,
P.O. Box 616, NL–6200 MD Maastricht, The Netherlands

{a.grigoriev,j.vanloon,m.uetz,t.vredeveld}@ke.unimaas.nl
2 IBM T.J. Watson Research Center,

P.O. Box 218, Yorktown Heigths, NY 10598, USA
sviri@us.ibm.com

Abstract. We consider a revenue maximization problem where we are
selling a set of items, each available in a certain quantity, to a set of
bidders. Each bidder is interested in one or several bundles of items. We
assume the bidders’ valuations for each of these bundles to be known.
Whenever bundle prices are determined by the sum of single item prices,
this algorithmic problem was recently shown to be inapproximable to
within a semi-logarithmic factor. We consider two scenarios for deter-
mining bundle prices that allow to break this inapproximability barrier.
Both scenarios are motivated by problems where items are different, yet
comparable. First, we consider classical single item prices with an addi-
tional monotonicity constraint, enforcing that larger bundles are at least
as expensive as smaller ones. We show that the problem remains strongly
NP-hard, and we derive a PTAS. Second, motivated by real-life cases, we
introduce the notion of affine price functions, and derive fixed-parameter
polynomial time algorithms.

1 Introduction

Consider the situation that we want to sell a set of items to a set of bidders.
Every bidder places bids on subsets, or bundles of items, and each bidder would
like to receive one or more of these bundles (OR-bids). Bidders have valuations
for each of their bundles. The valuation is the maximum amount a bidder is
willing to pay for a particular bundle. We assume that the bundles and the
valuations are known. Hence we are faced with a purely algorithmic problem,
in contrast to a mechanism design problem where the valuations are private
information to the bidders. We have a certain amount of copies of each item
available, and this amount may be limited or unlimited, for example non-digital
or digital goods. We need to determine two things, namely which of the bidders
receive which of their requested bundles, and how much each of them needs
to pay. The goal is to maximize the total revenue received from the bidders. A
� Supported by METEOR, the Maastricht Research School of Economics of Techno-

logy and Organizations.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 475–486, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

476 A. Grigoriev et al.

general economic constraint on the possible prices, adopted in this paper as well,
is that of envy-freeness. It requires that no bidder is left envious in the sense
that she could afford a bundle, but doesn’t receive it1. This is the general setting
for the pricing problems studied in this paper.

In a sequence of recent papers [1,2,4,5,8,9,10], several algorithms and complex-
ity results have been derived for such price optimization problems. The pricing
model that is assumed in all these papers is the problem with single item prices,
where each item is assigned an anonymous price, and bundle prices are defined
by the sum of the respective item prices. We contribute to this line of research
in two different directions.

First, we consider the single item prices model. We introduce a monotonicity
constraint that allows us to derive results that break the semi-logarithmic inap-
proximability barrier known for the general case [5]. We impose the condition
that the price of any bundle of size k must not exceed the price of a set of size
k + 1 or larger, for any k. This condition implies that (most of) the items for
sale are comparable in the sense that the prices do not differ too much.

Second, we propose a model for determining bundle prices that actually gener-
alizes the single item prices problem. We derive fixed-parameter polynomial time
algorithms for that model. We assume that the bundle prices are determined on
the basis of arbitrary affine functions, defined on a joint set of variables. Let
us give an illustrating example: For each bundle j, there is an individual fixed
cost aj that the bidder needs to pay when purchasing that bundle. All items
are identical and the seller just needs to determine one per-item price, say x.
The price for any bundle j of size kj is then given by aj + kjx. Notice that the
price paid for any bundle is an affine function that depends on the size of the
requested bundle. In general, the affine pricing model allows for many more pric-
ing scenarios relevant in practice, e.g. groups of customers with different price
functions, quantity discounts, etc. See Section 3 for a brief discussion.

Before we elaborate on related work and our contribution, let us define the
pricing settings more formally.

1.1 Model

Let I = {1, . . . , m} denote the set of comparable items for sale, and let J =
{1, . . . , n} denote the set of bids placed by all bidders. Each bid j ∈ J is on
exactly one subset of items Ij ⊆ I. In line with notation in auction literature,
we call the set Ij also a bundle. Every bidder has a positive valuation for each of
her bundles, that is, every bundle Ij corresponding to bid j ∈ J , has a positive
valuation bj which is the maximum amount its bidder is willing to pay for bundle
Ij . We may assume w.l.o.g. that bj ≥ 1 for j ∈ J . The valuations are assumed
to be known to the seller. Let ci denote the available number of copies of item
i ∈ I. We consider both the case of unlimited availability of items, that is,
ci ≥ n for all items i ∈ I, and the case of limited availability of items.
1 More generally, envy-freeness requires that in an allocation, the bundle allocated to

a bidder belongs to her demand set, which is the set of all allocations that maximize
the bidder’s utility [11].

Bundle Pricing with Comparable Items 477

A bid is a winning bid if it is assigned to the bidder, and a losing bid otherwise.
The set of winning bids is denoted by W ⊆ J . A solution to the problem is a
price p(j) for the bundle Ij corresponding to bid j ∈ J . Later we will be more
specific about further restrictions on the prices. A solution is called feasible if
the bundles of all winning bids can be afforded by the respective bidder (that
is, the price of the bundle corresponding to a bid is at most its valuation), and
if no item is oversold. A solution is envy-free if in addition, for all losing bids
the respective bundle is priced higher than the valuation of the corresponding
bid. Let us summarize the above discussion in a definition for the generic pricing
problem that we address in the paper.

Definition 1. A feasible and envy-free solution to a pricing problem consists
of a price p(j) for the bundle Ij, for all bids j ∈ J , and a set of winning bids
W ⊆ J that are assigned to their bidders such that

1. the bundle of every winning bid j is affordable for the bidder, that is p(j) ≤ bj

for all j ∈ W ,
2. the bundle of every losing bid j is too expensive for the bidder, that is p(j) >

bj for all j ∈ J \ W ,
3. no item is oversold, that is

∑
j∈W |{i} ∩ Ij | ≤ ci for all items i ∈ I.

The objective is to find a solution that maximizes the total revenue of the seller,
that is, we want to maximize

∑
j∈W p(j).

We consider two different models for the computation of prices. The first pricing
model that we consider is the single item prices model, where we have to deter-
mine item prices for all items i ∈ I. To be in line with previous papers on the
same topic, let pi denote the price of item i, and the price of bundle Ij ⊆ I is
p(j) =

∑
i∈Ij

pi, for all j ∈ J . Given that several inapproximability results exist
for this model [5,8,9], we introduce a monotonicity constraint on the set of item
prices. Specifically, we impose that the following holds true for any two subsets
of items I ′ and I ′′.

p(I ′) ≤ p(I ′′) whenever |I ′| < |I ′′| . (1)

The condition has a meaningful economic interpretation in a lot of settings where
items are different yet comparable, as it only requires that larger bundles are
at least as expensive as smaller ones. It yields that (most) item prices are of
the same order of magnitude. We show how this monotonicity constraint can be
exploited to derive results that break the inapproximability barrier known for
the general unconstrained case.

In practice, bundle prices are often not determined by the sum of individual
item prices, but rather by a function based on a few bundle characteristics.
Therefore, we propose the second model, in fact generalizing the single item
prices problem, see Proposition 1. Here, the price of bundle Ij is determined by
an affine function in some dimension K as follows.

p(j) = aj0 + aj1x1 + · · · + ajKxK , j ∈ J . (2)

478 A. Grigoriev et al.

The coefficients ajk, k = 0, . . . , K, are arbitrary coefficients that are given for
all bids j ∈ J . These coefficients may, in general, depend on both the bundle
Ij and on the bidder that places bid j. Thus it may be the case that simi-
lar bundles have different prices. The pricing problem consists of determining
revenue-maximizing values for the (nonnegative) variables xk, k = 1, . . . , K. We
postpone the discussion of this model to Section 3.

In the remainder of this paper, we denote by a ρ-approximation algorithm
an algorithm that produces a solution with value at least 1/ρ times the optimal
solution value. A PTAS is a family of (1 + ε)-approximation algorithms, for any
ε > 0.

1.2 Related Work

The problem mainly addressed in the literature is the one with unlimited avail-
ability of items, single item prices, and the requirement that the solution is
envy-free [1,2,4,5,9,10]. For this problem the maximum revenue is hard to ap-
proximate to within a semi-logarithmic factor in the number of bids n [5]. In
particular, it is unlikely that a constant approximation algorithm exists. For the
same problem, Hartline and Koltun [10] present an approximation scheme with
almost linear running time, given that the number of distinct items is constant.
Moreover, given that each bidder is interested in bundles of at most k items, Bal-
can and Blum [2] derive an O(k)-approximation. Finally, there exist two fully
polynomial time approximation schemes [2,4] for the problem where the bundles
are nested, that is, for any two bundles Ij and Ij′ it holds that Ij ⊆ Ij′ , Ij′ ⊆ Ij

or Ij ∩ Ij′ = ∅.

1.3 Our Results

For the revenue maximization problem with single item prices, we derive
strong NP-hardness even if prices need to fulfill the monotonicity constraint.
Moreover, we derive a PTAS for that problem, with a time complexity of
O(nm8/ε(log B))8/ε), where B = maxj bj .

For the revenue maximization problem with affine price functions, we propose
an algorithm with a time complexity of O((K3+nK)(n+K)K). Here, parameter
K is the dimension in which the affine price functions live. In particular, for
K = 1 this is O(n2). A similar result (with slightly different time complexity)
holds for the case of limited availability of items. For the same problem with non-
constant K, and unlimited availability of items, the maximum revenue is hard to
approximate to within a semi-logarithmic factor in the number of bids n. This
follows directly from the corresponding result by Demaine et al. [5], as we can
show that the problem with single item prices is a special case. In addition, for
the same pricing problem with limited availability of items, we prove that it is
even NP-complete to approximate the maximum revenue to within a factor of
n1−ε of optimum, where n is the number of bids.

A special case of single item pricing is the so-called highway pricing problem as
suggested in [9]. There the bundles are subpaths of a simple path. We show that

Bundle Pricing with Comparable Items 479

this problem remains NP-hard even under the monotonicity assumption, and we
derive a simple O(log B)-approximation algorithm, where B = maxj∈J bj .

2 Single Item Pricing with Monotonicity Constraint

In single item pricing, we need to assign an (anonymous) item price pi for each
item i ∈ I, and bundle prices p(j) are defined as the sum of the prices of the
requested items, p(j) =

∑
i∈Ij

pi, for all j ∈ J . As before, the item prices need
to yield a feasible and envy-free solution, and we wish to maximize the total
revenue, which can be written as

∑
j∈W

∑
i∈Ij

pi. Notice that in case of unlimited
availability of items both feasibility and envy-freeness is in fact no issue – yet
finding optimal prices is hard [5]. For this reason we introduce a monotonicity
constraint : p(I ′) ≤ p(I ′′) if |I ′| < |I ′′|, for any two subsets of items I ′ and I ′′.

2.1 Complexity

Theorem 1. The revenue maximization problem with single item prices and
unlimited availability of items is strongly NP-hard, even if the prices need to
satisfy the monotonicity constraint.

Proof. We use a reduction from the strongly NP-hard problem
IndependetSet [6]. Let G = (V, E) be a graph in which we want to
find a maximum cardinality set of vertices that are pairwise non-adjacent.
Let M be an integer that is large enough. For every vertex v ∈ V we create
a vertex-item, and for every edge e ∈ E we introduce an edge-item, that is,
I = V ∪ E. For every item i ∈ I, there are M + 2 bids placed on the bundle
consisting of only this item. One of these bids has valuation M , and the others
have the same valuation M + 1. Moreover, for every edge e = {u, v} ∈ E, there
are four more bids. One bid is on bundle {u, e}, one bid on bundle {v, e}, and
two bids are on bundle {u, v}. These four bids each have valuation 2M + 1.

We claim that there exists an independent set of size s in G if and only if
there is a solution for the revenue maximization problem with revenue f + s,
where f is a function of M , |V | and |E|. To prove this claim, we show that in
any optimal solution all items are priced either at M or at M + 1. Moreover,
vertex-items are priced at M + 1 if and only if the corresponding vertex belongs
to the independent set. Details of the proof are included in the full version of
this paper. 	

2.2 Approximation Scheme

In order to derive a PTAS for the problem with single item prices and mono-
tonicity constraint, we restrict the prices to powers of (1 + δ) for some δ > 0.
Assume, without loss of generality, that p1 ≤ p2 ≤ . . . ≤ pm, then by the mono-
tonicity constraint, we know 2p2 ≥ p1 +p2 ≥ pm. Similarly, 3p3 ≥ p1 +p2 +p3 ≥
pm−1 + pm ≥ 2pm−1, etc.

480 A. Grigoriev et al.

Lemma 1. Suppose p1 ≤ p2 ≤ . . . ≤ pm. Any pricing of the items satisfying the
monotonicity constraint also satisfies

k pk ≥ (k − 1)pm−k+2, k = 2, . . . ,
⌈m

2

⌉
. (3)

The idea for the PTAS is now the following. Except for a constant number of
the cheapest and most expensive items, all items have prices in roughly the same
range. Therefore we can price all except a constant number of items uniformly
with the same price, without loosing too much in terms of the total revenue. We
therefore enumerate over all possible uniform prices for the bulk of the items,
and over all possible combinations of prices for the remaining (constant number
of) items.

Theorem 2. The pricing problem with unlimited availability of items, single
item prices and monotonicity constraint admits a PTAS. The time complexity is
O(nm8/ε(log B)8/ε), where ε is the precision of the PTAS and B = maxj bj.

Proof. Given an instance of the pricing problem and an ε > 0, let δ = ε/4, and
for convenience assume that 1/δ is integral. Assume that we know the order
of prices, say p1 ≤ · · · ≤ pm, in an optimum solution. Define the subsets of
items S = {i ∈ I : i ≤ 1

δ }, M = {i ∈ I : 1 + 1
δ ≤ i ≤ m + 1 − 1

δ } and
L = {i ∈ I : i ≥ m + 2 − 1

δ }. Note that M = ∅ if ε ≤ 8/(m + 1), in which case
the number of items is in O(1/ε). We round down the prices of all items in S
and L to powers of (1+ δ). Moreover, we price all items in M uniformly at price
p1+1/δ, rounded down to a power of (1+ δ). Let us call the new prices p′, and let
us call p′M the price of items in M . First observe that the order of prices does not
change. We next argue that we do not loose too much by this rounding. Clearly,
since we only round down, the set of winning bids can only increase. Moreover,
we loose at most a factor (1+ δ) on items in S and L. Finally, consider the items
in M . By (3), we have

(
1 +

1
δ

)
p1+1/δ ≥ 1

δ
pm+1−1/δ .

In other words, the price for the most expensive item in M differs from the
cheapest item in M by a factor at most (1 + δ). Hence, on items in M we loose
a factor at most (1 + δ)2.

Now we have a structured solution, but it may violate the monotonicity con-
straint. We claim that any such violation can be restored by one more rounding
operation, if necessary: We just round down the price of all items priced p′M
or higher by another factor (1 + δ). For contradiction, after this last rounding
consider two violating sets I ′ and I ′′ with |I ′| < |I ′′| and p′(I ′) > p′(I ′′), and
w.l.o.g. |I ′| = �, and |I ′′| = � + 1. Due to the ordering of prices, we then also
have that p′({1, . . . , � + 1}) < p′({m, m − 1, . . . , m − � + 1}). As long as there
are items from M in both sets, we redefine � = � − 1, and we keep violating
the monotonicity constraint. But now, all items in {1, . . . , �} have been rounded
down by a factor at most (1+ δ), and all items in {m, m−1, . . . , m− �+1} have

Bundle Pricing with Comparable Items 481

been rounded down by a factor at least (1+δ). This contradicts the monotonicity
constraint of the optimal solution that we started with.

The PTAS now consists of enumerating all possible structured solutions, which
is sufficient to obtain a feasible solution that differs from the optimal solution
by a factor at most (1 + δ)3 < (1 + ε). There are

(
m

−1+2/δ

)
possible choices for

S ∪L. Since all prices are powers of (1+δ), there are log B possible prices. Given
that all items in M have the same price, there are at most (log B)2/δ structured
solutions for each choice of S ∪ L. Computation of the revenue for any such
solution takes O(nm) time. This together with δ = ε/4 yields the claimed time
complexity, where the constant hidden in the O-notation depends on ε. 	

3 Pricing with Affine Price Functions

For this section, we address revenue maximization problems with bundle prices
p(j) that are determined via affine price functions p(j) = aj0 + aj1x1 + · · · +
ajKxK , one affine function per bid j ∈ J , as defined in (2).

Let us discuss examples to motivate this model. If we let K = 1 and define
aj1 = |Ij | for all bids j, the bundle prices are determined by affine functions
that depend only on the size of the bundles. The optimization problem is to
determine the per-item price x1, which is identical for all items. Fixed costs per
bid j are incorporated by letting aj0 �= 0. Bidder-dependent characteristics are
easily incorporated as well, for example cost reductions of αt% for certain types
t of customers, e.g. letting aj2 = −αtaj1. Another meaningful interpretation
is this: There are K different item types i = 1, . . . , K for which we need to
determine the per-item prices xi, and any bid j is specified by the number of
requested items of type i, aji, and the total valuation bj. In fact, one motivation
for this model is phone contracts, where x1 represents the monthly subscription
fee (aj1 = 1 for all j), x2 is the price per SMS and x3 is the price per minute for
phone calls. Here, the coefficients aj2 and aj3 describe typical average usages for
different types j of customers.

We distinguish between unlimited and limited availability of items.

3.1 Unlimited Availability of Items

Our algorithm is polynomial as long as K, the dimension of the affine price
functions is constant. It simply enumerates all vertices of the linear arrangement
defined by the valuation constraints. Here, the valuation constraints are given by
p(j) ≤ bj for every winning bid j. More precisely, suppose that we know which
of the bids are winning bids in an optimum solution, say W ⊆ J . Then we know
that the variables x1, . . . , xK have to fulfill the |W | inequalities

aj0 + aj1x1 + · · · + ajKxK ≤ bj , j ∈ W .

Denote by P the polyhedron defined by these |W | inequalities. For an optimum
solution x = (x1, . . . , xK), at least one of these inequalities must be tight, because
otherwise the bundles corresponding to the same set of winning bids could be

482 A. Grigoriev et al.

priced even higher. Assume that W ′ ⊆ W are the bids for which the above
inequalities are tight, and note that W ′ is nonempty. Then the system

aj0 + aj1x1 + · · · + ajKxK = bj , j ∈ W ′

defines a (nonempty) face F of the polyhedron P . By definition, any point x ∈ F
defines an optimal solution. Clearly, at most K inequalities are required to com-
pletely characterize the face F . Moreover, we have exactly dim(F) free variables
in the optimal solution x. In other words, the same total revenue can be obtained
by fixing the dim(F) free variables among x1, . . . , xK to 0. Hence, an optimal
solution can be obtained by considering all solutions x that are characterized by
K linearly independent constraints out of the following n + K constraints.

aj0 + aj1x1 + · · · + ajKxK = bj , j ∈ J , (4)
xk = 0 , k = 1, . . . , K . (5)

This insight can be used to define a simple algorithm that solves the revenue
maximization problem in polynomial time, as long as K is constant.

Algorithm 1. Revenue maximization with affine price functions
Input: Instance with affine price functions as defined in (2).

For all candidate solutions x = (x1, . . . , xK) that fulfill K linearly independent
constraints out of the n + K constraints (4) and (5) do:

–Let p(j) = aj0 + aj1x1 + · · · + ajKxK , j ∈ J , be the bundle prices.
–Let W := {j ∈ J : p(j) ≤ bj} be the set of winning bids.
–Let Π =

∑
j∈W p(j) be the total revenue.

Output: Maximum among all values Π , with optimal parameters x1, . . . , xK ,
and set of winning bids W .

Theorem 3. Algorithm 1 solves the revenue maximization problem with affine
price functions and unlimited availability of items in O((K3 + nK)(n + K)K)
time.

Proof. Correctness of the algorithm immediately follows from the preceding dis-
cussion. We need to consider

(
n+K

K

) ∈ O((n + K)K) systems of K constraints
each. In each of these iterations, we need to solve a linear system in K variables
and K constraints, which takes O(K3) time. Computation of the bundle prices,
winning bids, and the objective value takes O(nK) time. The claimed time com-
plexity follows. 	

In contrast, if the dimension K of the price functions is not constant, the problem
is much harder. In fact, if K is not constant, the single item prices problem is
just a special case of the problem with affine price functions: Let K = m, and let
aji = 1 whenever item i is contained in bundle Ij and aji = 0 otherwise. Then,
each item price corresponds to one variable xi, and we immediately obtain the
following.

Bundle Pricing with Comparable Items 483

Proposition 1. The model with affine price functions generalizes the model
with single item prices. Hence, the semi-logarithmic inapproximability result by
Demaine et al. [5] also holds for pricing problems with affine price functions.

3.2 Limited Availability of Items

First we claim that Algorithm 1 can as well be used to solve the problem when
the availability of items is limited. Indeed, the only thing we additionally need to
check for any of the candidate solutions is feasibility: We have to verify whether
none of the items is oversold, and if yes, we do not consider the candidate so-
lution. Also note that any candidate solution is envy-free by definition. Clearly,
this feasibility check can be done in O(nm) time per candidate solution.

Corollary 1. Algorithm 1, augmented with a feasibility check, solves the revenue
maximization problem with affine price functions and limited availability of items
in O((K3 + nK + nm)(n + K)K) time.

On the negative side, it turns out that the problem with limited availability of
the items seems even harder to approximate.

Theorem 4. Consider the revenue maximization problem with affine price func-
tions and limited availability of items. For any ε > 0, it is NP-hard to approxi-
mate the maximum revenue to within a factor n1−ε. This result holds even if all
bids have a valuation of one, the availability of each item is one, and each item
is requested in at most two bids.

Proof. We use an approximation preserving reduction from IndependetSet.
Given is a graph G = (V, E), we want to find a maximum cardinality subset
V ′ ⊆ V such that no two vertices in V ′ are adjacent. Zuckerman [12] showed
that it is NP-hard to approximate the maximum independent set to within a
factor |V |1−ε, for any ε > 0.

We construct the following instance of the pricing problem. Each vertex v ∈ V
corresponds to a bid and each edge e ∈ E corresponds to an item. Each bid v is
on a bundle containing all edges incident to v, and has valuation bv = 1. Each
item e is available once (ce = 1). Let the price functions be p(v) = 1 + xv, for
all bundles Iv corresponding to bid v ∈ V .

We claim that an independent set of cardinality s exists in G if and only if
there exists a pricing for the above defined instance with total revenue s. Suppose
V ′ ⊆ V is an independent set in G, |V ′| = s. Then let xv = 0 for all v ∈ V ′,
and xv > 0 otherwise. This way the set of winning bids equals the independent
set V ′, and therefore no item is oversold. No bidder is envious, as the price of
a bundle corresponding to a losing bid exceeds its valuation, and we extract a
total revenue of s.

Conversely, assume a solution to the pricing problem with total revenue s.
Since only one copy of any item is available, the set of winning bids must define
an independent set in G. As the maximum revenue from any bidder’s bid is 1,
there exists an independent set of size s in G. 	

484 A. Grigoriev et al.

4 Highway Problem with Monotonicity Constraint

A particularly intriguing special case of the single item prices problem is the
‘highway problem’ as introduced by Guruswami et al. [9]. Here, the items are
edges of a simple path, and the bundles corresponding to bids requested by
bidders are subpaths. The problem is NP-hard [4] by a simple transformation
from Partition, and a log(m)-approximation exists [2]. In this setting, it is
natural to assume that the monotonicity constraint holds for any two subpaths
only, but not necessarily for arbitrary subsets of items. For this problem we
obtain the following results.

Theorem 5. The highway problem with monotonicity constraint is NP-hard.

The proof of this theorem is deferred to the full version of this paper. Notice
that we cannot apply the PTAS from Theorem 2, as this crucially requires the
monotonicity constraint for arbitrary subsets of items. Nevertheless, we derive an
O(log B)-approximation algorithm for the highway pricing problem with mono-
tonicity constraint, where B = maxj bj . To this end, we present approximation
guarantees for two special cases first.

Lemma 2. The highway pricing problem with monotonicity constraint in which
all bundles have size at least two is approximable within a factor of 3 by optimal
uniform pricing.

Proof. Consider an optimal solution with revenue opt and let p∗max be the high-
est item price in this solution. We claim that pricing all items at p∗max/3, yields
a revenue of at least opt/3. Clearly, an optimal uniform pricing is at least as
good as the uniform p∗max/3 pricing.

First, we show that any winning bid j ∈ W in the optimal pricing remains
a winning bid for the uniform pricing at level p∗max/3. Let |Ij | = �. Then the
valuation for bid j is at least bj ≥ ��/2p∗max, as by the monotonicity constraint
the total price of any two consecutive items in an optimal solution is at least
p∗max and the bidder who placed bid j can afford the corresponding bundle Ij . In
the uniform p∗max/3 pricing, the total bundle price is �p∗max/3, which is at most
��/2p∗max, for � ≥ 2. In an optimal pricing, bundle Ij corresponding to bid j is
priced at most at �p∗max, whereas in our uniform pricing, we get �p∗max/3. Hence,
pricing all items p∗max/3 yields a revenue of at least opt/3. 	

The above lemma shows that whenever all bundles contain at least two items,
we have a constant approximation. Now, we consider only instances in which
bundles consist of exactly one item. Moreover, we restrict ourselves to instances
in which bj/bk ≤ 2, for any two bids j and k.

Property 1. Consider the highway pricing problem with monotonicity constraint,
restricted to instances in which each bid is on a bundle with exactly one item
and for any two bids j, k, it holds true that bj/bk ≤ 2. Pricing each item at
minj bj yields a revenue of at least opt/2.

Bundle Pricing with Comparable Items 485

Theorem 6. The best uniform pricing yields a solution with revenue at least
opt/(3+2 log2 B) for the highway pricing problem with monotonicity constraint,
where B = maxj bj. Moreover, the time needed to find this solution is O(n2m).

Proof. Consider an optimum solution satisfying the monotonicity constraint, and
let optL denote the revenue of bidders whose bids are on bundles of size at least
two and let optr denote the revenue of bidders whose bids are on bundles of
size one with valuation 2r−1 ≤ bj < 2r (r = 1, . . . , �log2 B� + 1) in this solution.
Then opt = optL +

∑
r optr.

Moreover, let appL denote the revenue obtained by the best uniform pricing
and appr denote the revenue obtained by the best uniform pricing strategy for
the bidders with bids in Jr = {j ∈ J : |Ij | = 1 and 2r−1 ≤ bj < 2r }. By Prop-
erty 1, we have that appr ≥ optr/2 and thus maxr appr ≥ ∑

r optr/(2 log2 B).
Moreover, from Lemma 2, it follows that appL ≥ optL/3. Hence, the solution
found yields a revenue of

max{appL,appr : r = 1, . . . , �log2 B� + 1} ≥ opt/(3 + 2 log2 B).

To see the claim on the time complexity, note that to find sufficiently good
uniform pricing, we need to consider at most O(n) different prices. For each
price, we need to compute the set of winning bids and the revenue obtained on
this price, which can be done in O(nm) time. So, the best uniform price can be
computed in O(n2m) time. 	

5 Conclusion

This paper studies purely algorithmic, or omniscient pricing problems, reflected
by the fact that we assume bidders’ valuations bj to be known. Even more
challenging are problems where valuations are private information, and incentive-
compatible mechanisms are sought, that is, mechanisms that induce bidders to
truthfully report their valuations. To that end, one might ask if previous ideas
on the design of (random sampling) mechanisms, e.g. by Goldberg et al. [7] or
Balcan et al. [3], can be applied. Particularly the latter paper suggests a general
approach for reducing incentive-compatible mechanism design problems to the
underlying algorithmic pricing problems. Among them, combinatorial auctions
with single-minded bidders (the model considered in this paper). We leave this
on the agenda for future research; complications might lay in the monotonicity
constraint that we impose on the pricing function, respectively the general form
of the affine price functions.

Acknowledgements

We thank the anonymous referees for some inspiring and helpful remarks.

486 A. Grigoriev et al.

References

1. Aggarwal, G., Feder, T., Motwani, R., Zhu, A.: Algorithms for multi-product pric-
ing. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 72–83. Springer, Heidelberg (2004)

2. Balcan, M.F., Blum, A.: Approximation algorithms and online mechanisms for
item pricing. In: Proc. 7th ACM Conf. Electronic Commerce, pp. 29–35. ACM,
New York (2006)

3. Balcan, M.F., Blum, A., Hartline, J.D., Mansour, Y.: Mechanism design via ma-
chine learning. In: Proc. 46th IEEE Found. Comp. Sci., FOCS 2005, pp. 605–614
(2005)

4. Briest, P., Krysta, P.: Single-minded unlimited supply pricing on sparse instances.
In: Proc. 17th ACM-SIAM Symp. Discr. Alg., SODA 2006, pp. 1093–1102 (2006)

5. Demaine, E.D., Feige, U., Hajiaghayi, M.T., Salavatipour, M.R.: Combination can
be hard: Approximability of the unique coverage problem. In: Proc. 17th ACM-
SIAM Symp. Discr. Alg., SODA 2006, pp. 162–171 (2006)

6. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of np-completeness. W. H. Freeman, New York (1979)

7. Goldberg, A.V., Hartline, J.D., Karlin, A.R., Saks, M., Wright, A.: Competitive
auctions. Games and Economic Behavior 55, 242–269 (2006)

8. Grigoriev, A., van Loon, J., Sitters, R., Uetz, M.: How to sell a graph: Guidelines
for graph retailers. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 125–136.
Springer, Heidelberg (2006)

9. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry, F.:
On profit-maximizing envy-free pricing. In: Proc. 16th ACM-SIAM Symp. Discr.
Alg., SODA 2005, pp. 1164–1173 (2005)

10. Hartline, J.D., Koltun, V.: Near-optimal pricing in near-linear time. In: Dehne,
F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 422–431.
Springer, Heidelberg (2005)

11. Walras, L.: Elements of pure economics. Allen and Unwin, London (1954)
12. Zuckerman, D.: Linear degree extractors and the inapproximability of max

clique and chromatic number, ECCC Report TR05-100 (2005), http://www.eccc.
uni-trier.de/eccc/

http://www.eccc.uni-trier.de/eccc/
http://www.eccc.uni-trier.de/eccc/

Approximating Interval Scheduling Problems

with Bounded Profits

Israel Beniaminy1, Zeev Nutov2, and Meir Ovadia

1 ClickSoftware Technologies
israel@clicksoftware.com

2 The Open University of Israel, Raanana, Israel
nutov@openu.ac.il, meiro@cadance.com

Abstract. We consider the Generalized Scheduling Within Intervals
(GSWI) problem: given a set J of jobs and a set I of intervals, where each
job j ∈ J has in interval I ∈ I length (processing time) �j,I and profit
pj,I , find the highest-profit feasible schedule. The best approximation
ratio known for GSWI is (1/2−ε). We give a (1−1/e−ε)-approximation
scheme for GSWI with bounded profits, based on the work by Chuzhoy,
Rabani, and Ostrovsky [4] for the {0, 1}-profit case. We also consider the
Scheduling Within Intervals (SWI) problem, which is a particular case
of GSWI where for every j ∈ J there is a unique interval I = Ij ∈ I
with pj,I > 0. We prove that SWI is (weakly) NP-hard even if the stretch
factor (the maximum ratio of job’s interval size to its processing time)
is arbitrarily small, and give a polynomial-time algorithm for bounded
profits and stretch factor < 2.

1 Introduction

We consider the following problem:

Generalized Scheduling Within Intervals (GSWI):

Instance: A set J of jobs and a set I of intervals, where each job j ∈ J has in
interval I ∈ I length �j,I and profit pj,I , and each interval I ∈ I is
given by [rI , dI).

Objective: Find a maximum profit feasible schedule.

More precisely, a schedule S consists of a subset J ′ ⊆ J of jobs, and for
every j ∈ J ′: an assignment to an interval I(j) ∈ I and a start time sj , so that
[sj , sj + �j,I(j)) ⊆ I(j). A schedule is feasible if the intervals [sj , sj + �j,I(j)),
j ∈ J ′, are pairwise disjoint. The profit of such schedule is p(S) =

∑
j∈J′ pj,I(j).

We sometimes use S to denote only the corresponding set J ′ of jobs, if this does
not cause ambiguity. Throughout this paper we assume that all the problem
parameters are integers. Let n = |J |, m = |I|, and let P = maxj,I pj,I .

GSWI and related problems have been used to model many applications of
scheduling problems, including service and delivery, project planning, communica-
tion scheduling, space-mission-planning and optimization of production lines, c.f.,
[2,1,3,6]. The following three particular cases of GSWI were studied extensively.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 487–497, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

488 I. Beniaminy, Z. Nutov, and M. Ovadia

• Max-Profit Generalized Assignment (MAX-GAP):
the intervals in I are pairwise disjoint.

• Scheduling Within Intervals (SWI):
for every j ∈ J exactly one interval I ∈ I has pj,I > 0.

• Job Interval Selection Problem (JISP):
for every pair j ∈ J, I ∈ I, either pj,I = 0 or �j,I = |I|.

Each one of these particular cases is strongly NP-hard [7]. Bar-Noy et al. [2]
gave an approximation scheme for SWI (in fact, also for GSWI) with ratio of
1/2 − ε, see also [1], and a faster algorithm due to Berman and DasGupta [3].
MAX-GAP admits a (1−1/e)-approximation algorithm [6], see also [8]. Recently,
Feige and Vondrak [5] showed that MAX-GAP admits a ratio better than (1−1/e).
However, MAX-GAP is much ”easier” than GSWI and the algorithm in [6,8,5] do
not extend even to very special instances (e.g., {0, 1} profits and unit lengths)
of SWI/JISP. Chuzhoy, Rabani, and Ostrovsky [4] considered JISP with {0, 1}-
profits, and gave for this case a randomized approximation scheme with ratio
(1−1/e−ε). We extend this result to arbitrary bounded profits. Our algorithm for
GSWI uses as a subroutine an arbitrary constant ratio approximation algorithm
SC for GSWI; let 1/α be its approximation ratio and Q = Q(n, m) its running
time (e.g., the algorithm of [3] with α = 3 has running time Q(n, m) = O(n2m)).
A packing-type linear program is of the form max{p · y : yA ≤ b, y ≥ 0}, where
A is an n′ × m′ {0, 1}-matrix, and b is an m′ {0, 1} vector. We assume that the
time required to solve such program is L(n′, m′).

Theorem 1. GSWI admits a (1 − 1/e − ε)-approximation algorithm for any
ε > 0 and constant P = maxj,I pj,I . The running time of the algorithm is
O(n · Q(n, m) · ln(P/ε) + (nm)q+1

L((nm)q+1
, n)), where q = 6kk ln k+3 for k =

�(P +2α+1)/ε� = O(P/ε), and L(n′, m′) is the time required to solve a packing
type linear program with n′ variables and m′ constraints.

For P = 1 we get the algorithm of [4]. The running time, although polynomial
for any ε > 0, is not practical. We leave an open question whether the time
complexity can be reduced to be polynomial in the input size and 1/ε, or whether
GSWI admits a (1 − 1/e)-approximation algorithm. Such a better algorithm is
known for MAX-GAP, but is not known even for the {0, 1}-profit JISP/SWI.

Recall that in SWI every job j ∈ J can be scheduled in a unique interval Ij ∈ I
(as j has profit 0 in the other intervals); let j have length �j and profit pj in Ij .
Note that GSWI includes the ”multiple machine” version of SWI. We consider
SWI with bounded profits and small stretch factor, which is maxj∈J |Ij |/�j. For-
mally, let θ-SWI be the restriction of SWI to instances with maxj∈J |Ij |/�j < θ,
where θ > 1. Berman and DasGupta [3] gave a pseudo-polynomial algorithm
for θ-SWI with running time O(θTn log log T) and with approximation ratio
1/2 + 1/(2a+2 − 4 − 2a), where T = maxj dj and a is the largest integer strictly
smaller than θ; this was used to derive an approximation scheme with ratio
(1/2 − ε) + 1/(2a+2 − 4 − 2a) and running time O(n2/ε). For 2-SWI a = 1 and
thus the approximation ratio is 1 − ε (in [2] and in [3] 2-SWI was mistakenly
mentioned to be in P, but this is so only for bounded profits). We prove:

Approximating Interval Scheduling Problems with Bounded Profits 489

Theorem 2. θ-SWI is NP-hard for any θ > 1 even if pj = �j for every job
j ∈ J and all the time windows have the same length. 2-SWI can be solved in
O(min{nP , rnr log n}) time, where P =

∑
j∈J pj and r is the number of distinct

profits.

Theorems 1 and 2 are proved in Sections 2 and 3, respectively.

2 Proof of Theorem 1

Our algorithm extends the algorithm of [4] for {0, 1}-profit JISP/SWI, to GSWI
with any profits bounded by a constant P . Here is a high-level description of the
algorithm. Let [0, T) be the timeline, namely, the smallest interval that contains
all the intervals in I. The algorithm has two phases. In Phase I, the algorithm
computes a partition B of [0, T) into blocks (intervals) and:

(i) A schedule SI within a subset BI ⊆ B of blocks (no job intersects a boundary
of a block);

(ii) Subsets JII ⊆ J \ SI of jobs and BII ⊆ B \ BI of blocks.

The computed partition B has the property that the restriction ”no job in-
tersects a boundary of a block in B” decreases the optimum by a small amount
(if ε is small). We also have an upper bound on the profit of jobs from JII

scheduled by any optimal solution within any block in BII . In Phase II, the
algorithm schedules jobs from JII within blocks of BII using an LP-relaxation
created by enumerating all feasible schedules in each such block. LP-rounding
gives a feasible schedule with expected approximation ratio (1 − 1/e), and the
algorithm is derandomized using the method of conditional expectations. The
main differences between our algorithm and that of [4] is that in Phase I our
algorithm partitions the timeline according to the profit of jobs we can schedule
in each block, and that at Phase II we use a more general linear program.

Formally, let OPTB(J) be any optimal schedule of jobs from J under the
constraint that no job’s schedule intersects the boundary of a block from B, and
let optB(J) = p(OPTB(J)) be its profit; for brevity OPT(J) = OPT{[0,T]}(J)
and opt(J) = p(OPT(J)). Given a set J ′ of jobs and a block B, let SC(J ′, B) be
any 1/α-approximation algorithm for scheduling jobs from J ′ within the block B,
and let us denote by Q = Q(n, m) its running time. As was mentioned, we may
substitute α = 3 and Q(n, m) = O(n2m). Given ε > 0 let k = �(P + 2α + 1)/ε�.
We prove:

Lemma 1. GSWI admits an algorithm that for any ε > 0 computes in time
O(n ·Q(n, m) · ln(P/ε)) a partition B of [0, T) into at most nε blocks, a schedule
SI within a subset BI ⊆ B of blocks, and subsets JII ⊆ J \ SI of jobs and
BII ⊆ B \ BI of blocks such that:

(i) p(SI) + optBII (JII) ≥ (1 − ε)opt(J).
(ii) In each block B ∈ BII, any optimal solution schedules at most 2α · kk ln k+3

jobs from JII .

490 I. Beniaminy, Z. Nutov, and M. Ovadia

An instance of GSWI is (B, q)-restricted, where B is a set of pairwise disjoint
blocks in [0, T) and q is an integer, if there exists an optimal solution that
schedules all its jobs within the blocks of B with at most q jobs per block.

Lemma 2. (B, q)-restricted GSWI admits a (1 − 1/e)-approximation algorithm
with running time O(|B|(nm)q · L(|B|(nm)q, n + |B|)).
Lemmas 1, 2 easily imply Theorem 1. Execute the algorithm as in Lemma 1 to
compute BI , BII , SI , JII as in the lemma. Then apply Lemma 2 on the (BII , q)-
restricted GSWI instance with q = 2α·kk ln k+3 and the set of jobs JII to compute
a schedule SII . The running time is as claimed. Clearly, SI ∪ SII is a feasible
solution, since SII ⊆ J \ SI and since no block in BI intersects a block in BII .
The approximation ratio is as claimed since:

p(SI) + p(SII) ≥ p(SI) + (1 − 1/e)optBII (JII)
≥ (1 − 1/e)

(
p(SI) + optBII (JII)

)

≥ (1 − 1/e)(1 − ε)opt(J) ≥ (1 − 1/e − ε)opt(J) .

2.1 Proof of Lemma 1

In the following procedure PartitionTimeLine, in iteration i, Bi is the set of
blocks partitioning the timeline [0, T) and Si is the schedule (or the set of jobs
scheduled) within the blocks of Bi; only these jobs are available for scheduling in
the next iteration. Eventually, the algorithm returns a partition B of [0, T) into
blocks, a schedule SI within a subset BI ⊆ B of blocks, and subsets JII ⊆ J \SI

of jobs and BII ⊆ B \ BI of blocks.

Procedure PartitionTimeLine(J ,ε)
Initialization: i ← 1; B0 ← {[0, T)}; S0 ← J ; k ← �(P + 2α + 1)/ε�.
Loop

Si ← ∅, Bi ← Bi−1

For every block B ∈ Bi in ascending time order do:
If p(SC(Si−1 \ Si, B)) ≥ ki+2 then do:

- Si ← Si ∪ SC(Si−1 \ Si, B);
- In ascending time order, scan the jobs scheduled by SC in B and
partition B into blocks, each with largest possible profit ≤ ki+2, and
add this partition to Bi.

EndFor
Termination Condition 1: If i = �k ln k� then do:

SI ← ∅; BI ← ∅;
JII ← J \ Si; BII ← Bi; STOP.

Termination Condition 2: If p(Si) ≥ (1 − 1/k)p(Si−1) then do:
SI ← Si;
BI ← the blocks in Bi containing jobs from SI ;
JII ← J \ Si−1; BII ← Bi−1 \ BI ; STOP.

Else (Termination Conditions 1,2 do not apply) i ← i + 1.
EndLoop

Approximating Interval Scheduling Problems with Bounded Profits 491

The following statement uses only the fact that the number of iterations in
PartitionTimeLine is �k ln k� ≤ k2, and it is independent of the algorithm SC

used.

Lemma 3. |B| ≤ |OPT(J)|/k holds for the partition B produced by Partition-

TimeLine. Thus optB(J) ≥ (1 − P/k)opt(J).

Proof. The number of new blocks created in iteration i is at most p(Si)/ki+2 ≤
p(Si)/k3. Each new block eliminates at most one job from OPT. Since all jobs
in Si can be scheduled, and every job in OPT(J) has profit at least 1 we have
|OPT(J)| ≥ |Si|. The maximum number of iterations is �k ln k�. Therefore, the
number of jobs eliminated from the optimal solution by all iterations is at most

�k ln k�∑

i=1

|Si|
k3

≤ �k ln k�
k3

|OPT(J)| ≤ 1
k

|OPT(J)| .

The second statement follows from the first since every job has profit at most
P .

In the rest of this section we prove the following lemma, that implies Lemma 1:

Lemma 4. In each block B ∈ Bi computed by any iteration i of Partition-

TimeLine, OPT(J) schedules jobs with at most total profit αki+2 from Si−1\Si.

Proof. Consider two cases. In one case, block B may have been present in Bi−1

and unmodified by iteration i. This could happen only if SC(Si−1 \ Si, B) could
not schedule jobs with total profits more than ki+2 in B. In the second case,
block B was created by subdividing a block from Bi−1 into blocks containing
jobs with profit at most ki+2 by SC. In both cases, all the jobs from Si−1 \ Si

were available for scheduling when SC started processing block B and SC gives
1/α-approximation.

Lemma 5. p(SI) + optBII (JII) ≥ (1 − ε)opt(J).

Proof. Consider the two termination conditions of PartitionTimeLine.

Termination Condition 1: PartitionTimeLine terminated after �k ln k� ite-
rations, and JII = J \ Si = J \ S�k ln k�. For all iterations 1 ≤ i < �k ln k�, the
Termination Condition 2 was not satisfied, and thus p(Si) < (1 − 1/k)p(Si−1) .
Therefore

p(S�k ln k�) ≤ (1 − 1/k)�k ln k�
p(S1) ≤ p(S1)/k ≤ opt(J)/k .

In this case, BII = B. By Lemma 3, optBII (J) ≥ (1 − P/k)opt(J). Thus

optBII (JII)≥optBII (J)−p(S�k ln k�)≥(1−P/k)opt(J)−opt(J)/k≥(1−ε)opt(J) .

Termination Condition 2: PartitionTimeLine terminated at iteration i <
�k ln k�, because the condition p(Si) ≥ (1 − 1/k)p(Si−1) was satisfied. In this

492 I. Beniaminy, Z. Nutov, and M. Ovadia

case, SI = Si, JII = J \ Si−1, BI includes all the blocks containing jobs from
SI , and BII = Bi−1 \ BI . Thus:

optBII (JII) ≥ optBi−1
(JII) − optBI (JII) =

= optBi−1
(J \ Si−1) − optBI (JII) ≥

≥ optBi−1
(J) − p(Si−1) − optBI (JII).

From which we get:

p(SI) + optBII (JII) ≥ optBi−1
(J) − (p(Si−1) − p(Si)) − optBI (JII). (1)

We bound each term in (1) separately. By Lemma 3, optBi−1
(J) ≥ (1 −

P/k)opt(J). Since Termination Condition 2 applied, p(Si) ≥ (1 − 1/k)p(Si−1),
and (p(Si−1) − p(Si)) ≤ p(Si−1)/k ≤ opt(J)/k.

To bound optBI (JII), note that BI is non-empty only if PartitionTimeLine

was terminated due to Termination Condition 2. In that case, JII = J \ Si−1 =⋃r−1
j=1(Sj−1 \ Sj), where r is the number of iterations performed by Partition-

TimeLine. Since each block in BI is contained within blocks produced in each
iteration, it follows from Lemma 4 that the profit of jobs from JII scheduled by
OPT(J) in each block B ∈ BI is at most

∑r−1
i=1 αki+2 ≤ 2αkr+1. From the oper-

ation of PartitionTimeLine, jobs with total profit at least kr+2 from SI were
scheduled in each block B ∈ BI . Therefore, optBI (JII) ≤ 2α

k p(SI) ≤ 2α
k opt(J).

Substituting these bounds into (1) gives:

p(SI) + optBII (JII) ≥ (1 − P/k)opt(J) − opt(J)/k − 2α · opt(J)/k

= (1 − ε)opt(J) .

Lemma 6. In each block B ∈ BII, OPT(J) schedules at most 2α · kk ln k+3 jobs
from JII .

Proof. Each job in JII was removed from the schedule during one of the it-
erations. Thus, JII =

⋃r
i=1(Si−1 \ Si), where r is the number of iterations

performed by PartitionTimeLine. Since each block in BI is contained within
blocks produced in each interation, it follows from Lemma 4 that the total prof-
its of jobs from JII scheduled by OPT(J) in each block B ∈ BII is at most∑r

i=1 αki+2 ≤ 2αkr+2 ≤ 2αkklnk+3 (recall that the maximum number of itera-
tions is �k ln k�).
To complete the proof of Lemma 1 it remains to show that PartitionTimeLine

runs in time O(n · Q(n, m) · ln(P/ε)). This is so since the loop has at most
�k ln k� iterations, and in each iteration the dominating time is O(Q(n, m)|B|)
for executing SC at most |B| times, and |B| ≤ nε.

The proof of Lemma 1 is complete.

2.2 Proof of Lemma 2

The first step for proving Lemma 2 is defining a linear program whose integer
solutions are feasible schedules. Then, we solve the program, and use randomized

Approximating Interval Scheduling Problems with Bounded Profits 493

rounding to obtain a feasible schedule with expected approximation ratio 1 −
1/e. Finally, the algorithm is derandomized using the method of conditional
expectations.

Let S = S(J, I) be the set of all sequences (j1, . . . , jt, I1, . . . , It) of t distinct
jobs in J and t (not necessarily distinct) intervals in I, 0 ≤ t ≤ q. Clearly,
|S| <

∑q
i=1 nimi ≤ 2(nm)q. Given B ∈ B, any (feasible) schedule S of t ≤ q

jobs within B defines a unique sequence (j1, . . . , jt, I1, . . . , It) ∈ S, where each
ji is processed in Ii and after ji−1. Given such a sequence we can find a feasible
schedule within B defining it or determine that such does not exist in time
O(t) = O(q) time, by attempting to schedule every job within the corresponding
interval in the sequence. This attempt is done by taking each job from the
sequence in turn, and placing it within B as early as possible given the job’s
interval and avoiding overlap with jobs already scheduled during this attempt.
Clearly, any two schedules within B defining the same sequences have the same
profits, thus we identify any feasible schedule S within B with the sequence it
defines. The profit p(S,B) of (S, B) ∈ S × B is the profit of some schedule that S
defines within B, if such schedule exists, and p(S,B) = 0 otherwise (that is, if no
schedule within B defining S exists). Let R = {(S, B) ∈ S × B : p(S,B) > 0} and
let SB = {S ∈ S : p(S,B) > 0}. For (S, B) ∈ R and ji ∈ S let p(S,B)(ji) = pji,Ii .
For every (S, B) ∈ R introduce a variable y(S,B) which may be interpreted as
the “amount of S selected in the block B”. Then integer feasible solutions to
the following linear program correspond to feasible schedules within the blocks
of B.

max
∑

(S,B)∈R y(S,B) · p(S,B) (2)

s.t.
∑

(S,B)∈R,j∈S y(S,B) ≤ 1 ∀j ∈ J
∑

S∈SB
y(S,B) = 1 ∀B ∈ B

y(S,B) ≥ 0 ∀(S, B) ∈ R

Note that this LP has |R| ≤ 2|B|(nm)q variables and n+ |B| constraints (that
are not just non-negativity constraints). We will apply a standard randomized
rounding on y to obtain an integral feasible solution ỹ to (2). The rounding
procedure is as follows.

1. For each block B choose randomly with distribution y(S,B) a unique schedule
SB assigned to block B at this stage (possibly SB = ∅).

2. For every job j assigned to more than one block, remove j from all schedules
containing it, except from one that has maximum p(S,B)(j).

Let ỹ be an integral solution derived from y by such randomized rounding, and
let ν̃ =

∑
(S,B)∈R ỹ(S,B) · p(S,B) be the (random variable corresponding to the)

profit of the schedule specified by ỹ, and let ν be the optimal value of (2). We will
prove that the expected value of ν̃ is at least (1 − 1/e)ν. The proof is similar to
the proof of [6, Theorem 2.1] where MAX-GAP was considered and is presented
here only for completeness of exposition. We use the following statement from [6]:

494 I. Beniaminy, Z. Nutov, and M. Ovadia

Lemma 7 ([6], Lemma 2.1). Let y1, . . . , y� be a sequence of non-negative reals
so that

∑�
i=1 yi ≤ 1 and let p1 ≥ p2 ≥ · · · ≥ p� ≥ 0. Then

p1y1 + p2(1 − y1)y2 + · · · + p�

[
t−1∏

i=1

(1 − yi)

]
y� ≥ (1 − (1 − 1/�)�)

�∑

i=1

piyi .

Lemma 8. The expected value of ν̃ is at least (1 − 1/e)ν.

Proof. Let j ∈ J . Sort the profits p(S,B)(j), (S, B) ∈ R, in a decreasing order

p(S1,B1)(j) ≥ p(S2,B2)(j) ≥ · · · ≥ p(S�,B�)(j) .

For simplicity, denote pi = p(S1,B1)(j) and yi = y(Si,Bi). Let ν(j) =
∑�

i=1 piyi be
the ”profit of j” in LP (2), and note that ν =

∑
j∈J ν(j). Let ν̃(j) be the (random

variable corresponding to the) profit from job j in the schedule computed by the
algorithm. By the linearity of expectation, it would be sufficient to prove that
for every j ∈ J the expected value of ν̃(j) is at least (1 − 1/e)ν(j). This follows
from Lemma 7, since the expected value of ν̃(j) is:

p1y1+p2(1−y1)y2+· · ·+p�[
t−1∏

i=1

(1−yi)]y� ≥(1−(1 − 1/�)�)
�∑

i=1

piyi ≥(1−1/e)ν(j) .

The algorithm can be derandomized using the method of conditional probabil-
ities. We state the algorithm for the analysis of the time complexity, but omit
the proof of its validity, as it is identical to the one in [8] where MAX-GAP was
considered. Given B′ ⊆ B and J ′ ⊆ J let ν(J ′, B′) denote the optimal value of
(2) with J replaced by J ′ and B by B′. The algorithm is as follows.

Initialization: J ′ ← J , B′ ← B.
For every B ∈ B do:

Schedule in B a set SB ⊆ J ′ of jobs that maximizes p(S,B)+ν(J ′\S, B′\{B});
J ′ ← J ′ \ SB, B ← B′ \ {B}.

EndFor

To complete the proof of the Lemma 2 it remains to show the time complexity.
The time required to compute the profits p(S,B) is O(q|B|(nm)q), O(q) time
per variable. We assume that this time is dominated by the time required to
solve the linear program (2), which is O (L(|B|(nm)q, n + |B|)). This is the time
complexity of the randomized version. The time complexity of the deterministic
version is O(|B|(nm)q · L(|B|(nm)q

, n + |B|)), as claimed.

The proof of Lemma 2, and thus also of Theorem 1, is complete.

3 Proof of Theorem 2

We reduce the following NP-complete problem [7] to θ-SWI.

Approximating Interval Scheduling Problems with Bounded Profits 495

Subset-Sum
Instance: A set A = {a1, . . . , an} of positive integers, and another integer B.
Question: Is there A′ ⊆ A such that the integers in A′ sum to exactly B?

The reduction is as follows. Let 1 < α < min{2, θ} be arbitrary. Let K =
B · �1/(α − 1)�, and let T = nK + B. For each j = 1, . . . , n there are two jobs
j− and j+ each having the same single interval Ij = [(j − 1)K, jK + B), and
processing time �j− = K and �j+ = K + aj , respectively. The profit of each job
equals to its processing time, and set T = nK + B.

Since |Ij | = K + B and �j+ , �j− ≥ K for each j, the stretch factor of the
obtained instance of SWI is at most (K + B)/K = 1 + �1/(α − 1)�−1 ≤ α < θ.
Thus we obtain a θ-SWI instance.

Lemma 9. The answer to Subset-Sum is YES if, and only if, the SWI instance
can achieve a total profit of T .

Proof.
The if part.
Let S be a feasible set of jobs that achieves a total profit of T . We claim that then
for each j exactly one of j−, j+ is in S. To see this note that for each 1 ≤ j ≤ n:

(i) at most one of j−, j+ is in S, since |Ij | = K + B < 2K + aj = �j− + �j+ ;
(ii) at least one of j−, j+ is in S, since each time window Ij contains the non-

empty sub-interval [(j − 1)K + B, jK) that is disjoint to all the other time
windows.

For j = 1, . . . , n let bj be the boolean variable with bj = 1 if j+ ∈ S and
bj = 0 otherwise (that is, if j− ∈ S). The total profit of the jobs in S is exactly∑n

j=1(K + bjaj) = nK +
∑n

j=1 bjaj . Comparing this to the total profit T =
nK + B, we get

∑n
j=1 bjaj = B. This defines a solution to the Subset-Sum

instance.
The only if part.
Let A′ ⊆ A such that A′ sums to B. We will show a solution to the SWI instance
that achieves a profit of T . Let bj = 1 if aj ∈ A′ and bj = 0 otherwise. Create
the following solution S to SWI. For each j = 1, . . . , n do: if bj = 1 add the job
j+ to S, with the start time (j − 1)K +

∑
i<j biai; otherwise, add the job j− to

S, with the same start time. It is easy to verify that this is a feasible solution to
SWI with a total profit of T . �
The following dynamic-programming algorithm computes an optimal solution
for 2-SWI. Define the latest start of job j as tj = dj − �j. The jobs are sorted
in order of non-decreasing tj , breaking ties arbitrarily, so assume t1 ≤ t2 ≤
· · · ≤ tn. For 1 ≤ i ≤ n and 0 ≤ p ≤ ∑

j pj = P define D[i, p] as the minimal
ending time of a feasible schedule S ⊆ {1, . . . , i} with total profit exactly p;
D[i, p] = ∞ if no such feasible S exists. The optimal profit eventually equals to
max{p : D[n, p] < ∞}.

496 I. Beniaminy, Z. Nutov, and M. Ovadia

The table D can be computed using the following recurrence. Set D[1, p] =
r1 + �1 if p = p1 and r1 + �1 ≤ d1, and D[1, p] = ∞ otherwise. Let 2 ≤ i ≤ n. If
pi+1 > p set D[i, p] = D[i − 1, p]. For pi+1 ≤ p set

si = max {D[i − 1, p − pi], ri} .

If si + �i > di set D[i, p] = D[i − 1, p]. Otherwise,

D[i, p] = min{si + �i, D[i − 1, p]}.

Lemma 10. The table D is computed correctly in O(min{nP , rnr log n}) time,
where P =

∑
j pj.

Proof. Note that if sj < si are feasible start times of jobs i, j, then tj < ti.
Indeed, for θ-SWI, tj < sj + (θ − 1)�j ≤ si + (θ − 1)�j ≤ ti + (θ − 1)�j. In
particular, for θ = 2 we have tj < ti. Clearly, every entry is computed using
previous entries. Any feasible solution defines a sequence of jobs according to
their starting times. By the above, any such sequence must be a subsequence of
the latest start sequence. Therefore, the step of computing D[i, p] from previous
entries requires examining just two options: whether or not to append job i to
the constructed schedule. The decision is made by choosing the earliest-finishing
one from these two options. The initial sorting of jobs requires O(n log n) time.
The number of entries in the table D is O(nP), and each entry is computed in
constant time. The time bound O(n log n + nP) = O(nP) follows.

For the O(rnr log n) time bound, we compute all possible profits Π = {p(S) :
S ⊆ J} of subsets of the items (assuming any set of items can be chosen) and
sort these profits in an increasing order. This can be done in O(rnr log n) time,
as follows. Let p1, . . . pr be the possible distinct item profits, and let ni be the
number of items in J of profit pi. Then |Π | ≤ (n1 + 1)(n2 + 1) · · · (nr + 1) ≤
(n/(r + 1))r = O(nr), and Π can be computed in O(rnr) time. Thus the total
time required including sorting is O(rnr + nr log(nr)) = O(rnr log n). Then we
use the same dynamic programming algorithm, but define and fill in the table
only the relevant entries. The number of entries in the table is O(nr), and each
entry is computed in constant time.

The proof of Theorem 2 is complete.

Remark: A standard profit-truncation algorithm may be utilized to give a FP-
TAS for 2-SWI with running time O(n2/ε), which is the same as the one of [3].
This FPTAS is based on algorithm pseudo-polynomial in P , while the one of [3]
is based on an algorithm pseudopolynomial in T = maxj∈J dj . It remains open
whether θ-SWI is APX-hard for any θ > 2.

4 Conclusions and Open Problems

In this paper we gave a (1 − 1/e − ε)-approximation scheme for GSWI with
bounded profits, while showing that SWI with small stretch factor are NP-hard.
One open problem is obtaining a ratio better than 1/2 for arbitrary profits.
Another open problem is whether SWI with {0, 1}-profits (or JISP) admits a
better ratio than (1 − 1/e).

Approximating Interval Scheduling Problems with Bounded Profits 497

Acknowledgment. We thank anonymous referees for useful comments.

References

1. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Shieber, B.: A unified approach
to approximating resource allocation and scheduling. J. of the ACM 48(5), 1069–
1090 (2001)

2. Bar-Noy, A., Guha, S., Naor, S., Schieber, B.: Approximating the throughput of
multiple machines in real-time scheduling. SIAM J.Comput. 31(2), 331–352 (2001)

3. Berman, P., DasGupta, B.: Multi-phase algorithms for throughput maximization
for real-time scheduling. J. Comb. Optim. 4(3), 307–323 (2000)

4. Chuzhoy, J., Ostrovski, R., Rabani, Y.: FOCS, pp. 348–356 (2001)
5. Feige, U., Vondrák, J.: Approximation algorithms for allocation problems: Improving

the factor of 1 − 1/e. In: FOCS, pp. 667–676 (2006)
6. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approxima-

tion algorithms for maximum general assignment problems. In: SODA, pp. 611–620
(2006)

7. Garey, M.R., Johnson, D.S.: W. H. Freeman, San-Francisco (1979)
8. Nutov, Z., Beniaminy, I., Yuster, R.: A (1 − 1/e)-approximation algorithm for the

generalized assignment problem. Oper. Res. Lett. 34(3), 283–288 (2006)

Pricing Tree Access Networks with Connected
Backbones

Vineet Goyal1,�, Anupam Gupta2, Stefano Leonardi3,��, and R. Ravi4,���

1 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA
vineet@cmu.edu

2 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
anupamg@andrew.cmu.edu

3 Dipartimento di Informatica e Sistemistica, University of Rome “La Sapienza”,
Via Salaria 113, 00198 Rome, Italy
leon@dis.uniroma1.it

4 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA
ravi@cmu.edu

Abstract. Consider the following network subscription pricing problem. We are
given a graph G = (V, E) with a root r, and potential customers are companies
headquartered at r with locations at a subset of nodes. Every customer requires
a network connecting its locations to r. The network provider can build this net-
work with a combination of backbone edges (consisting of high capacity cables)
that can route any subset of the customers, and access edges that can route only
a single customer’s traffic. The backbone edges cost M times that of the access
edges. Our goal is to devise a group-strategyproof pricing mechanism for the
network provider, i.e., one in which truth-telling is the optimal strategy for the
customers, even in the presence of coalitions. We give a pricing mechanism that
is 2-competitive and O(1)-budget-balanced.

As a means to obtaining this pricing mechanism, we present the first primal-
dual 8-approximation algorithm for this problem. Since the two-stage Stochastic
Steiner tree problem can be reduced to the underlying network design, we get a
primal-dual algorithm for the stochastic problem as well. Finally, as a byproduct
of our techniques, we also provide bounds on the inefficiency of our mechanism.

1 Introduction

Consider the following connected backbone for tree access network (CBTAN) design
problem: given an undirected graph G = (V, E) with metric costs c(e) on the edges,
and a root r, we want to build a network to connect a set of l possible customers U . The
ith customer is specified by a set Si ⊆ V of terminals. A solution to the problem is a set
of connected backbone edges E0 containing the root r and a set of access networks Ei

� Supported in part by NSF ITR grant CCR-0122581 (The ALADDIN project) and NSF grant
CCF-0430751.

�� Part of this work was done while visiting the School of Computer Science at Carnegie Mellon
University.

��� Corresponding author.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 498–509, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Pricing Tree Access Networks with Connected Backbones 499

one for each customer i such that E0 ∪ Ei contains a Steiner tree connecting Si ∪ {r}
for all i. Backbone edges E0 are a factor M costlier than the access edges Ei. The total
cost to connect any subset U ′ ⊆ U of customers is Mc(E0) +

∑
i∈U ′ c(Ei). Note that

the objective of minimizing the total network cost naturally trades off backbone and
access network costs.

CBTAN is equivalent to the two-stage stochastic Steiner tree problem (StocST) stud-
ied in [IKMM04, GPRS04, GRS04], where the customers correspond to scenarios and
the backbone network corresponds to the first-stage tree. The key to the equivalence is
the fact that in StocST, an edge bought in the second stage in scenario s is weighted
by ps · σ, where ps is the probability of scenario s and σ is the inflation factor in the
second stage. By setting M = 1

ps·σ , we can infer the equivalence. In line with this anal-
ogy, we refer to customers as scenarios. Also, we refer to the nodes connected by the
backbone edges E0 to the root r as backbone nodes or facilities. Our problem general-
izes the problem of network design for information networks defined by Hayrapetyan
et al. [HST05] by imposing connection between facilities. The single-commodity rent-
or-buy (SROB) network design problem [SK04, GKR03, PT03] can also be derived
from our problem if every scenario is a single terminal.

In this paper, we are interested in a game-theoretic extension of the problem that is
perhaps best described as a subscription pricing problem: suppose we have a set U of
l customers, where customer i’s ultimate goal is to connect the set Si to the root r, and
she derives a (privately-held) utility ui ≥ 0 from being connected to the root. We can
sell subscriptions to the potential customers such that a subscription-holding customer
is guaranteed connectivity of her set to the root. The goal is to price these subscriptions
for potential customers in such a way that the sale of these subscriptions to some subset
of customers yields enough money (up to constant factors) to pay for the cost of the
network serving these subscription-holding customers. Note that the backbone edges
built by the algorithm depends on the subset of customers accepted.

Formally, we are interested in finding a cost-sharing mechanism that determines
group-strategyproof subscription prices ξi for each customer i in U . A mechanism is
group-strategyproof if reporting one’s true utility ui as the bid is a dominant strategy
for each customer, and the customers should have no incentive to indulge in strategic
behavior even when they are allowed to collude. The mechanism solicits bids {bi}i∈U

from all customers and commits to serve the customers in U iff ξi ≤ bi, i ∈ U . If there
is a customer whose bid is less than her subscription price (as determined by the mech-
anism), the process is repeated after removing all the customers whose bid is lower than
their subscription price.

Of course, making the subscriptions free would ensure truthfulness; to avoid such
degenerate solutions, we would like to ensure other desirable properties. E.g., a mech-
anism is budget balanced if the actual cost C(S) of servicing the customers in S is
at most the sum of the subscription costs for the customers in S—i.e., we recoup
our costs by selling the subscriptions. (In this paper, we focus on α-budget balance,
where we only recover a 1/α fraction of C(S); hence budget-balance is the same as
1-budget-balance.) A mechanism is β-competitive if the sum of subscription costs to
the customers in S does not exceed β times the cost of an optimal solution for S.
A mechanism is called efficient if it selects a set S of customers that maximizes the

500 V. Goyal et al.

efficiency u(S) − C(S). A mechanism that selects an empty set of customers and re-
turns an empty solution is both budget-balanced and competitive but not efficient. Thus,
efficiency is an important property for a mechanism.

Classical results in economics [GKL76, Rob79] state that budget balance and effi-
ciency cannot be simultaneously achieved by any mechanism. Moreover, Feigenbaum
et al. [FPS01] recently showed that there is no group-strategyproof mechanism that al-
ways recovers a constant fraction of the maximum efficiency and a constant fraction
of the incurred cost even for the simple fixed-tree multicast problem. In light of these
impossibility results, previous work on mechanism design usually focused on a proper
subset of the above desiderata. One class of such mechanisms are based on a frame-
work of Moulin and Shenker [MS01], who show that given an α-budget balanced and
cross-monotone cost sharing method for the underlying problem, the natural Moulin
mechanism [Mou99] satisfies both α-budget balance and group-strategyproofness.
Cross-monotoneity imposes that the cost-share computed by the mechanism for each
player only decreases if more players join the game. (Formal definitions are deferred
to Section 2.) Moulin and Shenker’s framework has recently been applied to game-
theoretic variants of numerous classical optimization problems, and we will also seek
cross-monotone cost-shares for our network design problem to solve the subscription
pricing problem.

Contributions. Our main result is the following:

Theorem 1.1. There is a cross-monotone cost sharing scheme for CBTAN that is 2-
competitive and 41-budget-balanced.

As in several previous papers giving cost-shares, we derive these cost shares from a
primal-dual algorithm for the CBTAN problem. We obtain the first primal-dual algo-
rithm for CBTAN and StocST that achieves an 8-approximation for these problems.
Due to lack of space, we defer the description of the algorithm for the full version of
the paper.

The duals generated in such a primal-dual algorithm naturally give us cost-shares
that are competitive and approximately budget-balanced. However, they are not cross-
monotone and hence, we have to work harder to achieve this property. We are able to
extend the results of Pál and Tardos on SROB network design [PT03] to obtain cross-
monotone cost shares for this more general setting; the details of this process (and hence
the proof of the above theorem) appear in Section 3.

Roughgarden and Sundararajan [RS06] introduced an alternative measure of effi-
ciency that can be approximated at the same time of budget balance. In Section 4, we
present results on the approximated efficiency achieved by our mechanism.

Related Work. Approximation algorithms for a variant of the CBTAN problem where
the access network involves direct edges to the backbone nodes have been well-studied
in [RS99, GKK+01, SK04, KM00]. Other variants where no connectivity is sought
among the backbone nodes are studied in [AZ02].

The Stochastic Steiner Tree problem [IKMM04, GPRS04, GRS04] is equivalent to
CBTAN and constant-factor approximations based on randomized selection strategies
are known; however, no primal-dual algorithms were known for the problem.

Pricing Tree Access Networks with Connected Backbones 501

See Moulin and Shenker [MS01] for a study of group-strategyproof mechanisms and
how to use cross-monotone cost sharing methods to design such mechanisms using the
Moulin mechanism [Mou99]. This work has given game-theoretic variants of problems
like fixed-tree multicast [AFK+04, FKSS03, FPS01], facility location [PT03], submod-
ular cost-sharing [MS01], Steiner trees [JV01, KSK96], single-source rent-or-buy net-
work design [PT03, LS04, GST04], and Steiner forests [KLS05]. Lower bounds on
the budget balance that can be achieved by cross-monotone cost shares, are given in
[IMM05, KLSvZ05].

2 Preliminaries on Cost Sharing Methods

A cost sharing method ξ for a problem Π is an algorithm that, given any subset S ⊆ U
of players demanding service, computes a solution for the set S; moreover, it computes
a non-negative cost share ξi(S) for each player i ∈ S. The following properties of
cost-sharing methods will be useful.

Definition 2.1. We say that the cost sharing method ξ is β-budget balanced if for every
subset S ⊆ U ,

1
β

· C(S) ≤
∑

i∈S

ξi(S) ≤ C(S).

A cost sharing method ξ is cross-monotone [MS01] if for any two sets S and T such
that S ⊆ T and any player i ∈ S we have ξi(S) ≥ ξi(T); i.e., the cost shares of a
player never increase if more players enter the game.

Moulin and Shenker [MS01] showed that, given a cost sharing method ξ that is bud-
get balanced and cross-monotone for the underlying problem, the following cost shar-
ing mechanism M(ξ) (henceforth known as the Moulin mechanism) satisfies budget-
balance and group-strategyproofness: initially, let S → U . If for each player i ∈ S the
cost share ξi(S) is at most her bid bi, we stop. Otherwise, remove from S all players
whose cost shares are larger than their bids, and repeat. Eventually, let ξi(S) be the
costs that are charged to players in the final set S.

3 A Cross-Monotone Cost-Sharing Scheme for CBTAN

In this section, we develop a cross-monotone cost-sharing method that is competitive
and budget balanced for CBTAN. The algorithm in this section can be perceived as a
substantial extension of the primal-dual algorithm, where instead of running one primal-
dual process, we run an extra dual process called, as in [PT03], the ghost process—this
is a monotone process used to generate the cost shares; the heart of the argument is
in relating the real and ghost processes to each other and arguing that the cost shares
generated by the ghost process are enough to pay for the actual network created.

3.1 The Real and Ghost Processes

Note that if the we fix the set of connected backbone edges E0, we can obtain a good
approximation to the access edges for each customer or scenario (say, by using a MST

502 V. Goyal et al.

heuristic to connect to the backbone) to complete the solution. Thus, the problem es-
sentially reduces to finding a low cost set of backbone edges such that there is a low
cost of completion (set of access edges) for each scenario. Recall that the nodes con-
nected to the root by the backbone edges are referred to as facilities or backbone nodes.
Finding the set of backbone edges is equivalent to finding the set of facilities that are
connected to the root by the backbone edges. The access edges of each scenario will
form a Steiner forest on the terminals of the scenario, each tree of the forest containing
at least one backbone node. Thus, we would consider the CBTAN problem as one of
finding facilities that are connected to the root through the backbone edges.

We describe a ghost process, which is similar to the dual ascent schema of [AKR95],
to construct the solution and cost shares for all the scenarios. It is similar in spirit to the
idea of ghost process developed by Pál and Tardos in [PT03] for SROB, where the ghost
of each terminal j is a ball with center j and growing uniformly to infinity. However,
unlike the mechanism for SROB where each scenario terminal has a direct connection
to some open facility, our ghost process has to assign cost share for building Steiner
tree connections to open facilities. This is done by integrating the ghost process with l
separate dual ascent Steiner forest processes [AKR95]. For simplicity, we maintain l+1
different copies (G0, G1, . . . , Gl) of the graph G. Copies G1, . . . , Gl correspond to the
l scenarios and copy G0 corresponds to the open facilities. Initially, every singleton
terminal of scenario i is an active component in the copy Gi.

During the course of the algorithm, we would open some locations in G0 as tenta-
tive facilities after M or more dual ascent processes in the other copies have made the
location tight (in their respective dual packing constraints). Such a location is a feasible
location to open a facility as it has clustered M different scenario demands. For sim-
plicity, we assume that a facility can be opened anywhere along an edge. We can easily
remove this assumption at no additional cost.

We open a real facility at a tentative location j only if there is no real open facility
within a distance 4tj from j, where tj is the time when j was declared tentatively open.
We define a corresponding ghost process in copy G0 of the graph, where we run a dual
ascent process on tentatively open facilities. Each tentatively open facility p becomes
an active component in G0 at the instant it is declared open, say tp.

Definition 3.1 (Tentative Facility Moats). We call the components in G0, the tentative
facility moats. The ghost of a tentatively open facility p opened at time tp is defined for
any time t ≥ tp as a ball B(p, t− tp) of radius t − tp around vertex p. Tentative facility
moats in G0 are therefore the union of ghost components of different radii.

Definition 3.2 ((Ghost) Scenario Moats). In each scenario graph Gi, at any time t,
we define a collection of active subsets also called ghost scenario moats or just scenario
moats. Every terminal in each scenario starts a ghost moat which includes all nodes in
a ball B(v, t) of radius t around vertex v at time t ≥ 0. As time progresses, such a ghost
moat can eventually collide with (i) either another ghost of scenario i (in Gi), or (ii)
a tentatively facility moat (in G0), to merge into a single active ghost moat. The set of
scenario moats of scenario i at time t is the set of disjoint active subsets of scenario i
in Gi.

Pricing Tree Access Networks with Connected Backbones 503

Definition 3.3 (Dark and Lit Moats). We call a scenario moat dark if it does not
contain any open facility (tentative or real) and lit if it contains at least one tentatively
or real open facility.

Initially all the scenario moats are dark. The ghost process results in one of the following
events:

Events in the Ghost Process

1. Two dark scenario moats C and C′ intersect in some copy Gi of the graph. The two
moats merge to form a new dark scenario moat C ∪ C′.

2. For some location j ∈ V , at least M scenario moats of different scenarios (i.e. M
moats in different copies of the graph) contain j for the first time.
(a) Declare j as a tentatively open facility. The singleton terminal j becomes an

active component in G0.
(b) All the scenario moats containing j are declared “lit”.
(c) If there is no real open facility within a distance 4tj (tj is the current time)

from j, then open a real facility at j.
3. A lit scenario moat C intersects a dark or a lit moat C′ in some copy Gi of the

graph. The two moats merge to form a new lit moat.
4. A scenario moat C (dark or lit) of some scenario i �= 0 intersects a tentative facility

moat F in G0. Declare the scenario moat C lit if it was dark and merge C with F .
Thus, the new lit moat in Gi is C ∪ F .

We continue this ghost process until every scenario moat contains the root. The ghost
process described above lets us decide the cost shares for each terminal and also deter-
mines where to open real facilities.

Network Design Algorithm
• Build a Steiner forest Ei for each scenario i, that connects terminals in scenario i

to closest real facilities (for each component).
• Build a Steiner tree (of backbone edges) over the real facilities connecting them to

the root.

3.2 Defining the Cost Shares

We now describe the cost shares that are collected by terminals of all the scenarios
during the ghost process. We assign two kinds of cost shares to every terminal: (a) one
when it is a part of a dark scenario moat, and (b) another when it becomes a part of a
lit scenario moat. Let us define the two cost shares for a terminal j in scenario i. Let
Cj(t) be the scenario moat containing j at time t and t1j be the first time instant when
j is contained in a lit scenario moat and let t2j be the time when the moat containing j

reaches the root. Thus, the cost share for j till t1j is defined as:

f1
j =

∫ t1j

t=0

1
|Cj(t)|dt

Here |Cj(t)| denotes the number of terminals in the scenario moat Cj(t) that divide
up the cost share accumulated as dual by this growing moat. For t ≥ t1j , j is in a lit
moat Cj(t).

504 V. Goyal et al.

Definition 3.4. We say that the moat Cj(t) contributes to a tentative facility moat M
if there exists a terminal k ∈ Cj(t) which is at a distance at most t from the moat M.

Note that Cj(t) could possibly contribute to many facility moats. Suppose Cj(t) con-
tributes to moats M1, . . . , Ml and let n(Mi) be the number of different scenarios
contributing to moat Mi at time t. Also, let nCj(t) = maxi=1,2,...,l n(Mi). The cost
share for the terminal j is:

f2
j =

∫ t2j

t=t1j

M

|Cj(t)| · nCj(t)
dt

3.3 Properties of the Cost Shares

We need to prove that the cost shares defined above are competitive, cross-monotone
and budget balanced. To prove competitiveness, we construct a feasible dual for the
CBTAN problem from the cost shares of the terminals. Since a feasible dual is a lower
bound on the optimum cost, it proves that cost shares are competitive (approximately).
The cross-monotoneity property follows from the description of the ghost process. The
crucial part is proving that cost shares are budget-balanced. In other words, the cost
shares of the terminals can pay for the cost of the network constructed by our algo-
rithm. Charging the cost of access networks (Steiner forest Ei) for each scenario to the
cost shares collected by the terminals of that scenario is not very difficult and follows
standard primal-dual arguments [AKR95]. However, proving that the total cost shares
of all terminals are sufficient to pay for the Steiner tree over the real facilities is chal-
lenging and requires new ideas and charging techniques. In the following lemmas, we
will prove the desired properties for the cost shares. Due to lack of space, some of the
proofs have been deferred to the full version.

Lemma 3.1. The cost shares (f1
j +f2

j of terminal j) defined by the dual ascent process

are 2-competitive i.e.
∑l

k=1

∑
j∈Sk

(f1
j + f2

j) ≤ 2OPT, where OPT is the optimal cost
for the CBTAN problem.

Proof. It is sufficient to prove that the total cost shares of all the terminals is at most
two times the optimal solution. We will show that half times the cost shares form a
feasible dual. Consider a moat C at time t of scenario i. If C is a dark scenario moat
at time t, the dual βC,i increases at a rate half, i.e. d

dtβC,i = 1
2 . If C is a lit scenario

moat at time t, then d
dtβC,i = M

2nC(t)
. Here, we assume that there are locations at each

point along every edge and dt is an infinitesimal amount of time. Clearly, the individual
scenario constraint for edge packing is never violated. Consider the dual constraint
that bounds the cumulative packing of edge e by M · ce. When an edge e is dark, i.e.
no tentative facility has been opened on any location on e, each scenario moat, that e
crosses, collects cost share at a rate 1. Thus, the total dual collected by moats which e

crosses during the time it was dark is at most (M−1)ce

2 , because at most M −1 scenarios
components can cross e while it is dark. When it becomes lit, the total dual collected
by all moats that e crosses after this instant of time is at most Mce

2 . Thus, the above

constraint is not violated by the scaled dual. Thus, we have that
∑

j∈V

f1
j +f2

j

2 ≤ OPT
or that

∑
j∈V (f1

j + f2
j) ≤ 2OPT.

Pricing Tree Access Networks with Connected Backbones 505

Lemma 3.2. The cost share f1
j + f2

j for any terminal j is cross-monotone.

Budget balance. The proof of budget balance proceeds in two parts. In the first part, we
prove that the cost shares f1 of terminals are enough to connect terminals of a scenario
to a real open facility. This is proved via a standard argument in the following lemma.

Lemma 3.3. For any scenario i, we can build a Steiner forest over terminals in Si

such that each Steiner component is connected to some open facility and the cost of the
Steiner forest is at most 8

∑
j∈Si

f1
j .

In the second part, we prove that the cost shares can pay for building a Steiner tree over
the open facilities. This is the more difficult part of the proof and is proved over the
following series of lemmas. For the sake of the analysis, we consider the Steiner tree
algorithm over real facilities being run in parallel to the ghost process.

Note that after a scenario moat becomes lit, it collects cost share at a rate that is less
than 1. This may not be sufficient to pay for Steiner connections between real facility
moats, whose cost is M times the cost of the connection. In this case, however, we
argue that the cost share collected by the scenario moats at a time t′ ≤ t is sufficient to
pay for the share requested by real facility moats at time 5t.

We charge the cost of the Steiner connections between real facility moats to a merge
tree over the dark and the lit moats of each scenario. The merge tree is a virtual tree
which we construct during the ghost process. Each edge e in the merge tree has an
association fraction f(e) which is decided during the ghost process. f(e) is the fraction
of the cost of e which can be paid by the cost shares of the terminals within a constant
factor.

Merge Tree. To construct the merge tree for scenario i, we consider a slightly modified
view of the ghost process in copy Gi of the graph corresponding to scenario i. Suppose
a lit moat M intersects with a tentative facility moat F at time t in the ghost process.
Recall that we merge M and F to form a new lit moat M in the ghost process. In the
modified view, we call the tentative facility moat F at time t, a hole H in Gi.

Claim. Consider a moat M in scenario i at time t. Any location j ∈ M is at a distance
of at most t from a scenario terminal v ∈ M or a hole H ⊂ M created during the ghost
process.

The merge tree for scenario i is constructed as follows:

1. Suppose a moat M1 merges with a tentative facility moat F at time t at location j.
There exists a terminal v1 ∈ M1 or a hole H1 ⊂ M1 which is at a distance t from
j (wlog say v1). In the merge tree MT (i), we construct an edge e between v1 and
j. The fraction f(e) associated with e is the rate at which M1 collects cost share at
time t.

2. Suppose two moats M1 and M2 of scenario i merge at location j at time t. We can
assume wlog that j is at a distance t from some terminal v1 ∈ M1 and some hole
H2 ⊂ M2. In the merge tree MT (i) we construct an edge e between v1 and closest
location h ∈ H2. The fraction f(e) associated with the edge is the maximum of the
rates at which M1 and M2 collect cost shares at time t.

506 V. Goyal et al.

Lemma 3.4. The total cost share collected by the terminals of a scenario i is at least a
fraction 1/4 of the total cost of MT (i).

Recall that the dual ascent process for Steiner tree on the real open facilities continues
in assumed to run in parallel to the ghost process. The following notation will be used
in the remainder of the proof.

Definition 3.5. The following components will be crucial to the following discussion:

• Ghost component: A tentative facility moat at time t and all the terminals of differ-
ent scenarios which are within distance t of the moat.

• Set of contributors of real facility moat Mt at time t: set of scenario terminals
which are within a distance of max{t, tp} from a real facility p in moat Mt (where
tp is the opening time of facility p).

• Real component: a real facility moat Mt at time t and its set of contributors.

The following lemma is a natural consequence of the condition for opening real
facilities.

Lemma 3.5. Any scenario terminal v is contained in one real component at any time.

The next lemma, similar in spirit to the one in [PT03], helps in relating the cost shares
collected by the set of contributors to the cost of the Steiner tree over open facilities.

Lemma 3.6. The set of terminals contained in a ghost component at time t will be
contained in the same real component at time 5t.

We can now prove that the cost shares collected by the scenario moats are enough
to pay for the Steiner tree over real facilities. Recall that for any real open facility
p there is no other real open facility within a distance 4tp from p, where tp is the
time when p is declared open in the ghost process. Let Mp denote the real component
containing p. Until time tp, facility p is the only open facility in Mp. So, the terminals
within a distance of tp from p form the contributor set for Mp at any time t ≤ tp. The
following lemma proves that we can charge the cost of growing real components in the
time interval [0, tp] to the first-stage cost shares of the set of contributors of the real
component containing facility p at time tp.

Lemma 3.7. Consider a real open facility p and suppose Mp is the real component
containing p till time tp. The cost shares collected by the set of contributors of moat
Mp can pay for its growth till time tp.

The following lemma proves that the cost shares can continue to pay for the growth of
real facility moats after the time facilities got opened in the ghost process.

Lemma 3.8. Consider a real component R at time 5t. Suppose 5t > tp for all real
facilities p ∈ R. The demanding rate of R at time 5t can be satisfied by the cost shares
collected by its set of contributors at some time t′ ≤ t.

Pricing Tree Access Networks with Connected Backbones 507

Proof. Consider a real component R at time 5t > tp, ∀p ∈ R. There are at least M
contributing scenarios in R. Let T R

i be the terminals of scenario i in the set of contribu-
tors of R at time 5t. If there is an active scenario moat M at time t in the ghost process
of scenario i such that the terminals of M are contained in T R

i , then (Lemma 3.6) the
rate at which M collects cost shares at time t is at most the contribution requested from
R to scenario i at time 5t.

Thus, we can assume that every active scenario moat of scenario i at time t that
contains terminals of T R

i is not contained in R. Among the moats containing terminals
of T R

i , consider the moat M′ that contained a terminal u ∈ T R
i and v /∈ T R

i earliest,
say at time tf . There exist a path from u to v using the edges of the merge tree and
holes. Suppose the path P(u, v) = 〈u = u0, x1, y1, u1, x2, y2, u2, . . . , xs, ys, us = v〉,
where ui, i = 1, . . . , s is a scenario terminal and xi, yi are locations on the boundary of
hole Hi ⊂ M′.

We claim that for all j = 1, . . . , s, either both xj , yj ∈ R or both xj , yj /∈ R. This
is because at time tf both vertices xj , yj were part of some tentative facility moat and
thus were contained in the same ghost component. Thus, at time 5t > 5t′ both vertices
must be contained in the same real component (due to Lemma 3.6). Thus, there must
be an edge (uj−1, xj) or (yj , uj) that crosses R (wlog say (uj−1, xj)). Thus, we can
charge the demand of R at time 5t from scenario i to the fractional cost of (uj−1, xj).
The fraction f(uj−1, xj) corresponding to the edge is greater than the demanding rate
of R due to Lemma 3.6.

It is also clear that two different real components R and R′ cannot charge to the same
portion of an edge of the merge tree of scenario i.

The charge to cost shares for the Steiner forest on the scenario terminals is 8f1

(Lemma 3.3); the cost of the portion of the Steiner tree on the open facilities p charged
until time tp is 8f1 (Lemma 3.7). Finally, the remaining portion of the tree costs charge
to 5 · 4(f1 + f2) + 5(f1 + f2) by Lemma 3.8. This gives the following theorem.

Theorem 3.1. The above cost-sharing scheme is 2-competitive, cross-monotone and
41-budget balanced.

4 Cost Shares for CBTAN with Approximate Efficiency

In the previous section, we defined cost-shares for the CBTAN problem that were cross-
monotone, and (approximately) budget-balanced. In addition to these two properties,
one may also want the cost-shares to give rise to Moulin mechanisms that result in high
social welfare.

Definition 4.1. Suppose each player i ∈ U has a private utility ui. For a set S ⊆ U ,
define u(S) =

∑
i∈S ui. Define the social cost Π(S) of a set S ⊆ U as Π(S) =

u(U \ S) + C(S). The Moulin mechanism M(ξ) is said to be α-approximate [RS06] if

Π(SM) ≤ α · Π(S) ∀S ⊆ U.

where SM is the final set of players computed by the Moulin mechanism M(ξ) on U .

508 V. Goyal et al.

We can also prove the following theorem:

Theorem 4.1. There exist O(1)-budget-balanced cross-monotone cost-shares which
are also O(log2 k)-approximate; i.e., their inefficiency is at most O(log2 k) times the
inefficiency of any cost-sharing mechanism.

This result extends the recent result of Roughgarden and Sundararajan [RS], who
presented a cross-monotone cost-sharing scheme for the Single-Source Rent-or-Buy
(SSRoB) problem with an approximate efficiency of O(log2 k). We end by noting that
while we can define these cost-shares which are cross-monotone and even have a better
budget balance factor than the cost shares defined in section 3, we do not yet have an
efficient algorithm to compute these cost shares.

References

[AFK+04] Archer, A., Feigenbaum, J., Krishnamurthy, A., Sami, R., Shenker, S.: Approxima-
tion and collusion in multicast cost sharing. Games and Economic Behavior 47(1),
36–71 (2004)

[AKR95] Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approximation algorithm for
the generalized Steiner problem on networks (Preliminary version in 23rd STOC,
1991). SIAM J. Comput. 24(3), 440–456 (1995)

[AZ02] Andrews, M., Zhang, L.: Approximation algorithms for access network design (Pre-
liminary version in 39th FOCS, 1998). Algorithmica 34(2), 197–215 (2002)

[FKSS03] Feigenbaum, J., Krishnamurthy, A., Sami, R., Shenker, S.: Hardness results for mul-
ticast cost-sharing. Theoretical Computer Science 304, 215–236 (2003)

[FPS01] Feigenbaum, J., Papadimitriou, C.H., Shenker, S.: Sharing the cost of multicast trans-
missions (Special issue on internet algorithms). J. Comput. System Sci. 63(1), 21–41
(2001)

[GKK+01] Gupta, A., Kumar, A., Kleinberg, J., Rastogi, R., Yener, B.: Provisioning a Virtual
Private Network: A network design problem for multicommodity flow. In: Proceed-
ings of the 33rd ACM Symposium on the Theory of Computing (STOC), pp. 389–
398. ACM Press, New York (2001)

[GKL76] Green, J., Kohlberg, E., Laffont, J.J.: Partial equilibrium approach to the free rider
problem. Journal of Public Economics 6, 375–394 (1976)

[GKR03] Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algo-
rithms for network design. In: Proceedings of the 35th ACM Symposium on the
Theory of Computing (STOC), pp. 365–372. ACM Press, New York (2003)

[GPRS04] Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: Approximation algo-
rithms for stochastic optimization problems. In: Proceedings of the 36th ACM Sym-
posium on the Theory of Computing (STOC), pp. 417–426. ACM Press, New York
(2004)

[GRS04] Gupta, A., Ravi, R., Sinha, A.: An edge in time saves nine: LP rounding approxima-
tion algorithms for stochastic network design. In: Proceedings of the 45th Sympo-
sium on the Foundations of Computer Science (FOCS), pp. 218–227 (2004)

[GST04] Gupta, A., Srinivasan, A., Tardos, É.: Cost-sharing mechanisms for network design.
In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and AP-
PROX 2004. LNCS, vol. 3122, pp. 139–150. Springer, Heidelberg (2004)

[HST05] Hayrapetyan, A., Swamy, C., Tardos, É.: Network design for information net-
works. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 933–942. ACM Press, New York (2005)

Pricing Tree Access Networks with Connected Backbones 509

[IKMM04] Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.: On the costs and benefits of
procrastination: Approximation algorithms for stochastic combinatorial optimiza-
tion problems. In: Proceedings of the 15th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 684–693. ACM Press, New York (2004)

[IMM05] Immorlica, N., Mahdian, M., Mirrokni, V.S.: Limitations of cross-monotonic cost
sharing schemes. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 602–611. ACM Press, New York (2005)

[JV01] Jain, K., Vazirani, V.: Applications of approximation algorithms to cooperative
games. In: Proceedings of the 33rd Annual ACM Symposium on the Theory of Com-
puting (STOC), pp. 364–372. ACM Press, New York (2001)

[KLS05] Könemann, J., Leonardi, S., Schäfer, G.: A group-strategyproof mechanism for
Steiner forests. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 612–619. ACM Press, New York (2005)

[KLSvZ05] Könemann, J., Leonardi, S., Schäfer, G., van Zwam, S.: From primal-dual to cost
shares and back: a stronger LP relaxation for the Steiner forest problem. In: Caires,
L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 930–942. Springer, Heidelberg (2005)

[KM00] Karger, D.R., Minkoff, M.: Building Steiner trees with incomplete global knowl-
edge. In: Proceedings of the 41th Symposium on the Foundations of Computer Sci-
ence (FOCS), pp. 613–623 (2000)

[KSK96] Kent, K.J., Skorin-Kapov, D.: Population monotonic cost allocations on MSTs. In:
Proceedings of the 6th International Conference on Operational Research (Rovinj,
1996). Croatian Oper. Res. Soc., Zagreb, pp. 43–48 (1996)

[LS04] Leonardi, S., Schäfer, G.: Cross-monotonic cost sharing methods for connected fa-
cility location games. Theor. Comput. Sci. 326(1-3), 431–442 (2004)

[Mou99] Moulin, H.: Incremental cost sharing: Characterization by coalition strategy-
proofness. Social Choice and Welfare 16, 279–320 (1999)

[MS01] Moulin, H., Shenker, S.: Strategyproof sharing of submodular costs: budget balance
versus efficiency. Econom. Theory 18(3), 511–533 (2001)

[PT03] Pál, M., Tardos, É.: Group strategyproof mechanisms via primal-dual algorithms.
In: Proceedings of the 44th Symposium on the Foundations of Computer Science
(FOCS), pp. 584–593 (2003)

[Rob79] Roberts, K.: The characterization of implementable choice rules. In: Laffont, J.J.
(ed.) Aggregation and Revelation of Preferences, North-Holland, Amsterdam (1979)

[RS] Roughgarden, T., Sundararajan, M.: Approximately efficient cost-sharing mecha-
nisms. (Unpublished manuscript)

[RS99] Ravi, R., Salman, F.S.: Approximation algorithms for the traveling purchaser prob-
lem and its variants in network design. In: Nešetřil, J. (ed.) ESA 1999. LNCS,
vol. 1643, pp. 29–40. Springer, Heidelberg (1999)

[RS06] Roughgarden, T., Sundararajan, M.: New trade-offs in cost-sharing mechanisms. In:
STOC (2006)

[SK04] Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location prob-
lems. Algorithmica 40(4), 245–269 (2004)

Distance Coloring

Alexa Sharp

Cornell University, Ithaca, NY 14853
asharp@cs.cornell.edu

Abstract. Given a graph G = (V, E), a (d, k)-coloring is a function from
the vertices V to colors {1, 2, . . . , k} such that any two vertices within
distance d of each other are assigned different colors. We determine the
complexity of the (d, k)-coloring problem for all d and k, and enumerate
some interesting properties of (d, k)-colorable graphs. Our main result
is the discovery of a dichotomy between polynomial and NP-hard in-
stances: for fixed d ≥ 2, the distance coloring problem is polynomial
time for k ≤ � 3d

2 � and NP-hard for k > � 3d
2 �.

Keywords: Graph coloring, power graphs, complexity threshold.

1 Introduction

The classic k-coloring problem tries to assign a color from 1 to k to each vertex
in a graph such that no two adjacent vertices share the same color [1]. The
k-coloring problem, along with many variations and generalizations, is well-
studied in both computer science and mathematics [2,3,4,5,6]. Its applications
range from frequency assignment [7] to circuit board testing [8], among others.

The distance (d, k)-coloring problem is a generalization of k-coloring that
tries to assign a color from 1 to k to each vertex such that no two vertices within
distance d of each other share the same color. Clearly, k-coloring is a special case
of (d, k)-coloring with d = 1. Conversely, (d, k)-coloring a graph G is equivalent
to k-coloring Gd, the dth power graph of G. (The graph Gd has the same vertex
set as G and an edge between two vertices if and only if they are within distance d
of each other in G.) In this way (d, k)-coloring is also a special case of k-coloring.

Although k-coloring is NP-complete for k ≥ 3 and polynomial-time for k ≤ 2
[1], the complexity of (d, k)-coloring is not so straightforward. It is NP-complete
for large k [9,10]; other special cases have been studied in depth, such as cubic
graphs [11], planar graphs [12], and trees [13,14]. However, there are many values
of d and k for which (d, k)-coloring is polynomial-time; the dichotomy between
polynomial and NP-hard instances is the subject of this paper. The results are
not only of theoretical interest, but also of practical use in applications with
underlying structures that fit the power graph model. For example, we may
want to assign k frequencies to a set of radio stations, but require that any two
stations within distance d of each other use different frequencies.

The main result is significant, as it classifies the complexity of all instances
of (d, k)-coloring for d ≥ 2: determining whether a graph is (d, k)-colorable is

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 510–521, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Distance Coloring 511

polynomial-time for k ≤ � 3d
2 �, but NP-hard for k > � 3d

2 �. Moreover, (d, k)-
coloring on trees is solvable in polynomial time.

This paper presents many opportunities for future work; further improvements
on these results, as well as their implications to generalized graph decompositions
and complexity are explored in [15].

2 Preliminaries

Given a graph G = (V, E) and integers d ≥ 1 and k ≥ d + 1, the goal of (d, k)
coloring is to find an assignment of k colors to the vertices of G such that no two
vertices within distance d of each other share the same color. More precisely, we
want a function f : V → {1, 2, . . . , k} such that d(u, v) ≤ d ⇒ f(u) �= f(v). We
say G is (d, k)-colorable if such a function exists, and call the function itself a
(d, k)-coloring. The standard k-coloring problem is the special case when d = 1.

Observe that each connected component of G can be colored independently;
moreover, any component of size less than or equal to k can be (d, k)-colored by
assigning a distinct color to each vertex. Thus in this paper we assume that G
is connected and has at least k + 1 vertices.

Definition 1. For a vertex v and integer r, let Gr
v ⊆ G be the subgraph of

radius r around v, that is, the subgraph induced by {w | d(w, v) ≤ r}.
Definition 2. For a subgraph G′ ⊆ G, the diameter of G′, denoted diam(G′),
is the maximum shortest path distance between any two vertices of G′, that is,
diam(G′) = max{d(u, v) | u, v ∈ G′}.
Definition 3. Given a connected graph G = (V, E), the set V ′ ⊆ V is a cutset
if the subgraph induced by V \ V ′ is no longer connected.

Definition 4. Given a graph G of size at least k+1, a graph G′ = (V ′, E′) ⊆ G
is a forbidden (d, k) subgraph if diam(G′) ≤ min{d, |V ′| − (k − d) − 1}.

2.1 Properties of (d, k)-Colorable Graphs

Theorem 1. If G contains a forbidden (d, k) subgraph then it is not (d, k)-
colorable.

Proof. Suppose G′ = (V ′, E′) is a subgraph of G with diam(G′) ≤ min{d, |V ′|−
(k−d)−1}. Let G′′ be a connected graph induced by V ′ and max{0, k+1−|V ′|}
vertices of V \V ′; G′′ has ≥ k+1 vertices and diameter at most d, which precludes
a (d, k)-coloring. ��
Corollary 1. If there is a vertex v ∈ G such that |Gr

v| ≥ (k − d) + 2r + 1 for
any 1 ≤ r ≤ �d

2� then G cannot be (d, k)-colored.

Proof. The diameter of Gr
v is at most 2r ≤ d. But 2r = (k − d + 2r + 1) − (k −

d) − 1 ≤ |Gr
v| − (k − d) − 1 and Theorem 1 completes the proof. ��

512 A. Sharp

v

(a)

v

(b)

v

(c)

Fig. 1. Examples of Corollary 1 for (6, 9)-coloring. The graphs of 1(a), 1(b) cannot be
(6, 9)-colored because |G3

v| = 10; the graph of 1(c) is (6, 9)-colorable because |Gr
v| ≤

2r + 3 for all r ≤ 3.

Theorem 2. Given a (d, k)-colorable graph G with k ≤ � 3d
2 �, if Gk−d

v is a strict
subgraph of G for some v ∈ G, then Gk−d

v contains a cutset of size ≤ 2 discon-
necting v from G \ Gk−d

v .

Proof. First observe that any vertex y ∈ G \ Gk−d
v is connected to v through

at least one vertex of each Gi
v \ Gi−1

v for 1 ≤ i ≤ k − d. We will show there is
1 ≤ i ≤ k − d such that |Gi

v \ Gi−1
v | ≤ 2. Then the removal of Gi

v \ Gi−1
v , of at

most two vertices, would disconnect y from v.
By way of contradiction, suppose |Gi

v \ Gi−1
v | ≥ 3 for all 1 ≤ i ≤ k − d. Then

|G0
v| = 1 implies |Gi

v| ≥ 3i + 1. Hence |Gk−d
v | ≥ 2(k − d) + (k − d) + 1, and G is

not (d, k)-colorable by Corollary 1, a contradiction. ��
Lemma 1. Let P be a path of length 0 ≤ p ≤ �d

2�, with left and right endpoints
vL and vR, respectively, in a (d, k)-colorable graph G, k ≤ � 3d

2 �. Suppose there
exist disjoint subgraphs PL, PR in G \ P such that PL ∪ {vL}, PR ∪ {vR} are
connected and |PL|, |PR| ≥ �d

2�; let O be the non-P vertices connected to P in
the graph G \ (PL ∪ PR). Then |O| ≤ k − d − 1.

Proof. See Appendix for the proof and an illustration of the notation. ��

3 Negative Complexity Results

We know that (1, k)-coloring is NP-hard for k ≥ 3; we now use the results of
Section 2 to show that for d ≥ 2, (d, k)-coloring is NP-hard for k > � 3d

2 �.
Theorem 3. The (d, k)-coloring problem is NP-hard for d ≥ 2, k > � 3d

2 �.
Theorem 3 follows via a reduction from (1, k)-coloring (k-COL). Given a graph
G that we wish to k-color, we construct a graph G′ such that G is k-colorable
if and only if G′ is (d, k)-colorable. The building block of this reduction is a
triangle gadget GΔ, which is shown in Figure 2.

Distance Coloring 513

x y

z

�d

2
�

k − � 3d

2
� − 1

�d

2
�

�d

2
��d

2
�

�d

2
�

�d

2
�

(a)

x y

z

�d

2
�

k − � 3d

2
� − 1

�d

2
�

�d

2
�

(b)

Fig. 2. 2(a) and 2(b) show Theorem 3’s GΔ gadget for odd and even d, respectively

v

u

w

t

e

f
g

(a)

ue

ve wf

uf

tg

ug

2k
4 − 1 2k

4 − 1

(b)

Fig. 3. 3(a) An instance G of k-COL. 3(b) A subgraph of the graph G′ constructed
from G in Theorem 3.

Lemma 2. If GΔ is (d, k)-colorable then x, y and z have the same color.

Proof. The k − 1 vertices in GΔ \ {x, y, z} are within distance d of each other,
and use k − 1 distinct colors. The vertices x, y and z are within distance d of all
these k − 1 colors, but distance d + 1 from each other. If GΔ is (d, k)-colorable
then x, y and z are colored the same. ��
Reduction from k-COL. Given an instance G = (V, E) of k-COL, create the
graph G′ = (V ′, E′) as follows. For each vertex u ∈ V , create gadget Gu ⊆ G′ by
concatenating deg(u) ·2k4 copies of GΔ, overlapping the x and y vertices, always
leaving the z vertices open. Every 2k4th z vertex is reserved for use as follows:
for each edge e = (u, v) ∈ G, create an edge (ue, ve) ∈ G′ where ue and ve are
reserved z vertices of Gu and Gv, respectively; an example of this reduction is
shown in Figure 3. Note that G′ is polysize, as |GΔ| = k + 2 and it is copied∑

u∈V deg(u) · 2k4 times.

Lemma 3. If G′ is (d, k)-colorable then ue, uf ∈ G′ have the same color for all
edges e, f incident to u ∈ G.

Proof. By Lemma 2 we know that Gu’s x, y and z vertices must be the same
color. The vertices ue and uf are simply z vertices, and the result follows. ��
Lemma 4. If G′ is (d, k)-colorable then for edge e = (u, v) ∈ G, ue, ve ∈ G′ are
different colors.

Proof. If e = (u, v) ∈ G then (ue, ve) ∈ G′. Thus d(ue, ve) ≤ d and ue, ve are
different colors in G′. ��

514 A. Sharp

Lemma 5. If G′ is (d, k)-colorable then G is k-colorable.

Proof. If G′ has a (d, k)-coloring C then create a k-coloring D of G by setting
D(u) = C(ue) for any e incident to u. Since C(ue) = C(uf) for all e, f incident
to u by Lemma 3, D is well-defined. Moreover, D(u) �= D(v) for (u, v) ∈ G by
Lemma 4, and D uses at most k colors. ��

Lemma 6. If G is k-colorable then G′ is (d, k)-colorable.

The proof of Lemma 6 requires some additional framework. Consider the colors
of the vertices of GΔ \{x, y, z}, labeled as in figure 4(a). If we use the coloring of
this GΔ to color an adjacent GΔ as shown in Figures 4(b) or 4(c) then we will
have defined a symmetry group based on the colors of GΔ \ {x, y, z}; the base
set is A = {a1, a2, . . . , ak−1} and we have two elements σ, π : A → A, where σ is
the shift operator (a1 a2 · · · ak−1) and τ is the adjacent transposition operator
(a1 a2)(a3)(a4) · · · (ak−1).

Lemma 7. Applying either the shift σ or the transposition τ to the colors of
GΔ yields a valid coloring.

Proof. The vertices of the same color in adjacent GΔs are at least distance d+1
apart. ��

Lemma 8. Any adjacent transposition π = (aj aj+1) can be generated from k
compositions of σ and τ .

Proof. Use the shift σ j − 1 times, transpose with τ once, then shift again
(k − 1) − (j − 1) times. The only elements transposed are j and j + 1; the
remaining elements shift k − 1 times and hence are unchanged. ��

Lemma 9. Any transposition π = (ai aj) can be generated from ≤ 2k composi-
tions of adjacent transpositions.

Proof. Without loss of generality, suppose i < j. Then

(aiaj) = (aj−1aj)(aj−2aj−1) · · · (aiai+1)(ai+1ai+2) · · · (aj−2aj−1)(aj−1aj),

which uses 2(j − i) − 1 ≤ 2k transpositions, as required. ��

Lemma 10. Any cycle π = (π1 π2 · · · πp) can be generated from ≤ p composi-
tions of transpositions.

Proof. Note that (π1 π2 · · · πp) = (π1 πp)(π1 πp−1) · · · (π1 π3)(π1 π2). ��

Lemma 11. Any permutation on k elements can be generated from ≤ 2k4 com-
positions of the shift σ and the adjacent transposition τ .

Distance Coloring 515

x ya1

a2

a3

a4

a5

ad+2ad+3

z

ak−1

a
k−�

d

2
�

a
k−�

d

2
�+1

a
2�

d

2
�

a
2�

d

2
�+1ad+1

(a)

shift σ

x ya1

a2

a3

a4

a5

ad+2ad+3

z

ak−1

a
k−�

d

2
�

a
k−�

d

2
�+1

a
2�

d

2
�

a
2�

d

2
�+1ad+1

y

a1

a2

a3

a4

a5

ad+2ad+3

z

ak−1
a

k−�

d

2
�

a
k−�

d

2
�+1

a
2�

d

2
�

a
2�

d

2
�+1

ad+1

(b)

x ya1

a2

a3

a4

a5

ad+2ad+3

z

ak−1

a
k−�

d

2
�

a
k−�

d

2
�+1

a
2�

d

2
�

a
2�

d

2
�+1ad+1

y

a1

a2a3

a4

a5

ad+2ad+3

z

ak−1

a
k−�

d

2
�

a
k−�

d

2
�+1

a
2�

d

2
�

a
2�

d

2
�+1ad+1

adjacent transposition τ

(c)

Fig. 4. 4(a) The set A for the basis of the permutation group for odd d. The same
labeling can be used for even d, ignoring the center vertex. 4(b) The shift operator σ.
4(c) The adjacent transposition operator τ .

Proof. First note that any permutation on A can be generated by at most k
cycles of length k. By Lemmas 8-10 we have that

k cycles of length k are generated by ≤ k2 transpositions,
which are generated by ≤ 2k3 adjacent transpositions,
which are generated by ≤ 2k4 compositions of σ and τ.

Thus any permutation is generated by ≤ 2k4 compositions of σ and τ . ��

516 A. Sharp

Proof of Lemma 6. Given a k-coloring D of G we show how to (d, k)-color the
gadgets of G′. First, for each vertex u ∈ G, color all of Gu’s x, y and z vertices
with the color D(u). This is feasible because these vertices are distance d + 1
apart, and their color is different from all neighboring gadgets’ x, y, z colors.
Next, for each vertex u ∈ G, color the GΔ’s directly connected to Gv for some
v �= u ∈ G. Now the remaining uncolored GΔ gadgets in Gu are chains of 2k4−1
GΔs between two colored GΔs. We know from Lemma 11 that there is some
chain of at most 2k4 compositions of σ and τ that lead from any one coloring
of GΔ to the next, and each composition corresponds to a valid coloring of each
GΔ. Thus we know there is a sequence of colorings getting us from one GΔ to
the one distance 2k4 away, and G′ can thus be (d, k) colored. ��
Proof of Theorem 3. The polynomial reduction constructs a graph G′ that is
(d, k)-colorable if and only if G is k-colorable, by Lemmas 5 and 6. Therefore
(d, k)-coloring is NP-complete for d ≥ 2 and k ≥ � 3d

2 � + 1. ��

4 Positive Complexity Results

Thus (d, k)-coloring is NP-hard for d ≥ 2, k > � 3d
2 �; we now show that the

remaining parameters lead to polynomial-time solutions.

4.1 (d, d + 1)-Coloring

Theorem 4. The (d, d + 1)-coloring problem is polynomial-time solvable.

Proof. A graph is (1, 2)-colorable if and only if it is bipartite. For d ≥ 2, if G
contains a vertex of degree 3 or greater, then it is not (d, d + 1)-colorable by
Corollary 1. Otherwise, G is a path or cycle. If it is a cycle but its length is not
a multiple of (d + 1) then it is not (d, d + 1)-colorable. Otherwise G is a path
or a cycle whose length is a multiple of (d + 1). In either case, cycle through
the colors 1, 2, . . . , (d + 1), which ensures that vertices within distance d of each
other are colored differently. ��

4.2 (d, k)-Coloring for k ≤ �3d
2 �

We describe an algorithm polynomial in |G| that either produces a (d, k)-coloring
of G or declares that no such coloring exists. The algorithm finds a bounded tree-
width tree decomposition of G [16], then colors the graph using known coloring
algorithms for bounded tree-width graphs [17,18].

Definition 5. A tree decomposition of G = (V, E) is a triple (T, F, X) consist-
ing of an undirected tree (T, F) and a map X : T → 2V associating a subset
Xi ⊆ V with each i ∈ T such that

I. V =
⋃

i∈T Xi;
II. for all edges (u, v) ∈ E, there exists i ∈ T such that u, v ∈ Xi;

III. if j lies on the path between i and k in (T, F), then Xi ∩ Xk ⊆ Xj.

Distance Coloring 517

Definition 6. The width of (T, F, X) is maxi{|Xi| − 1}.
Definition 7. A path decomposition (T, F, X) is a tree decomposition in which
the graph (T, F) is a simple path.

We first try to compute a path decomposition of the graph G. Let P be a simple
path of length ≥ d + 1 in G, and let s be a center vertex; if no such path
exists then diam(G) ≤ d and G is not (d, k)-colorable. Otherwise, perform a
breadth-first search on G starting from s to get level sets L0, L1, . . . , Lm, where
Li consists of the set of vertices of distance i from the root s. The level graph
H is the graph consisting of vertices V and directed edges from Li to Li+1,
ignoring edges between vertices on the same level. We take Lj = ∅ for j > m.
For 0 ≤ i ≤ max{0, m − d}, let

Xi
def
=

i+d⋃

j=i

Lj . (1)

Lemma 12. If G is (d, k)-colorable, then |Xi| ≤ 5d.

Proof. Label the right side of P as s = sR
0 , sR

1 , . . . , sR
mR

and the left side of P

as s = sL
0 , sL

1 , . . . , sL
mL

such that sR
i , sL

i ∈ Li (where mL, mR ≥ �d
2� because

�(P) ≥ d + 1). For 0 ≤ i ≤ m, let T R
i , T L

i be the subgraphs of the level graph
rooted at sR

i , sL
i , respectively, consisting of all vertices reachable from sR

i , sL
i by

a (directed) path in H . Let T L = H \T R
1 , T R = H \T L

1 . Note that H = T L∪T R.
See Figure 5.

s
R

1
s

R

2
s

R

mR

s
L

mL
s

L

1
s

L

2

s
R

0
= s = s

L

0

T
R

T
L

Fig. 5. Notation used in Lemma 12

To obtain the result for |Xi|, we bound |Xi ∩ T R| and |Xi ∩ T L| separately,
showing |Xi ∩ T R|, |Xi ∩ T L| ≤ � 5d

2 �. The arguments are identical except for
notation, so without loss of generality we argue only the former.

518 A. Sharp

s
R

i
s

R

j s
R

min{mR,i+d}
s

R

�

�
d

2
�

Xi ∩ T
R

Fig. 6. The above inequalities shown pictorially. The light gray triangle is Xi ∩ T R
j .

The dark gray triangles are Xi ∩ (T R
i \T R

j). The small white triangle is Xi ∩ (T R
� \T R

i).

For |Xi ∩ T R|, let j = min{mR, i + d} − �d
2� and � = max{0, i − (k − d)} (see

Figure 6). Then j ≥ 0 and � ≤ i ≤ mR − �d
2�, and

|Xi ∩ T R| = |Xi ∩ T R
i | + |Xi ∩ (T R \ T R

i)| (2)
= |Xi ∩ T R

j | + |Xi ∩ (T R
i \ T R

j)| + |Xi ∩ (T R \ T R
i)| (3)

≤ |Xi ∩ T R
j | + |Xi ∩ (T R

i \ T R
j)| + |Xi ∩ (T R

� \ T R
i)|, (4)

where the last inequality follows because any vertex v ∈ (Xi ∩ T R) \ T R
� is at

least distance i − � + 1 ≥ (k − d) from its connection point on P , which has
�d

2� and �d
2� vertices of P on either side of it; this forms a forbidden subgraph,

therefore no such v exists since G is (d, k)-colorable.
For |Xi ∩ T R

j |, note that there are �d
2� vertices of P \ T R

j within �d
2� of sR

j .
Either G is not (d, k)-colorable or there are ≤ k − �d

2� ≤ d vertices in T R
j within

distance �d
2� of sR

j ; since T R
j ∩ Xi is precisely this set of vertices, |T R

j ∩ Xi| ≤ d.
For |Xi ∩ (T R

i \ T R
j)|, consider the interval of length p = j − i ≤ �d

2� from sR
i

to sR
j . There are at least �d

2� vertices in P \ T R
i and P ∩ T R

j , respectively, thus
by Lemma 1, either G is not (d, k)-colorable or |(T R

i \ T R
j) \ P | ≤ k − d − 1, and

|Xi ∩ (T R
i \ T R

j)| ≤ k − d − 1 + p + 1 ≤ k − �d
2� ≤ d.

For |Xi ∩ (T R
� \ T R

i)| consider the interval sR
� to sR

i of length p = i − � ≤ �d
2�.

There are ≥ �d
2� vertices in P \T R

� and P ∩T R
i , respectively, and either G is not

(d, k)-colorable, or |T R
� \ T R

i \ P | ≤ k − d − 1, and |Xi ∩ (T R
� \ T R

i)| ≤ �d
2�.

Thus |Xi ∩ T R| ≤ � 5d
2 �, and |Xi ∩ H | = |Xi| ≤ 5d, as required. ��

Theorem 5. For fixed constants d, k with k ≤ � 3d
2 �, there is an O(n) algorithm

for finding a (d, k)-coloring of G if one exists.

Proof. We use the algorithm of Section 4.2 to either find a path decomposition
(T, F, X) of G of width at most 5d or determine that G is not (d, k)-colorable.
Assume the former. Then (T, F, X) is also a path decomposition of the dth power
graph Gd. The algorithms of [17,18] can determine the (1, k)-colorability of Gd

in linear time, and a (1, k)-coloring of Gd is precisely a (d, k)-coloring of G. ��

Distance Coloring 519

5 Coloring on Trees

Although it is already known that (d, k)-coloring trees is polynomial-time solv-
able [13], the results of this paper lead to a nice combinatorial method to achieve
the same result. This does not require d or k to be fixed.

Algorithm to Find a (d, k)-coloring for a Tree T .

1. If d = 1 and k ≥ 2 then we (1, 2)-color T , a bipartite graph.
2. Otherwise, perform a breadth-first search on T , starting from a leaf node s

to get level sets L0, L1, . . . , Lm, where Li consists of the set of vertices of
distance i from the root s.

3. For i = 0, 1, 2, . . . , m, color the vertices of Li in some arbitrary order by
assigning v ∈ Li the lowest color not yet used in Gd

v.
4. If we need more than k colors then T is not (d, k)-colorable, otherwise return

the assigned coloring.

Lemma 13. The algorithm returns a coloring of T if and only if T is (d, k)-
colorable.

Proof. [⇒] Consider a coloring found by the algorithm; it uses at most k colors.
Moreover, no two vertices within distance d of each other are assigned the same
color. Indeed, consider any two vertices u and v such that d(u, v) ≤ d, and
suppose u preceded v in the algorithm. Then when v is considered, u’s color is
excluded from consideration; consequently, the algorithm will not assign v the
color that it used for u.

[⇐] Suppose T is (d, k)-colorable. Consider one of the vertices v, and suppose
there are t vertices already colored within distance d of v. Then these t vertices
along with v are within distance d of each other by properties of the BFS tree,
and hence t+1 ≤ k necessarily. It follows that this set of t vertices uses ≤ t ≤ k−1
colors, and so there is a color that can be assigned to v without exceeding the
allotted k colors. ��
This work was supported by NSF grant CCF-0635028. Any views and conclusions
expressed herein are those of the author and do not necessarily represent the
official policies or endorsements of the National Science Foundation or the United
States government.

Acknowledgments. I would like to thank Dexter Kozen for his many useful
comments and insights, as well as the anonymous reviewers for their helpful
suggestions.

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

2. Bondy, J., Murty, U.: Graph Theory with Applications. MacMillan Press Ltd, NYC
(1978)

520 A. Sharp

3. Fiorini, S., Wilson, R.J: Edge-colourings of graphs. In: Beineke, L.W., Wilson, R.J.
(eds.) Selected Topics in Graph Theory, pp. 103–126. Academic Press, Inc, London
(1978)

4. Bollobás, B., Harris, A.J.: List-colourings of graphs. Graphs and Combinatorics 1,
115–127 (1985)

5. Wilson, B.: Line-distinguishing and harmonious colourings. In: Nelson, R., Wilson,
R.J. (eds.) Longman Scientific & Technical, Longman house, Burnt Mill, Harlow,
Essex, UK. Graph Colourings. Pitman Research Notes in Mathematics Series, pp.
115–133 (1990)

6. Chetwynd, A.: Total colourings of graphs. In: Nelson, R., Wilson, R.J., (eds.)Graph
Colourings. Pitman Research Notes in Mathematics Series. Longman Scientific &
Technical, Longman house, Burnt Mill, Harlow, Essex, UK, pp. 65–77 (1990)

7. Gamst, A.: Some lower bounds for a class of frequency assignment problems. IEEE
Trans. Veh. Technol. VT-35, 8–14 (1986)

8. Garey, M.R., Johnson, D.S., So, H.C: An application of graph coloring to printed
circuit testing. IEEE Transactions on Circuits and Systems CAS-23, 591–598 (1976)

9. Lin, Y.-L., Skiena, S.S.: Algorithms for square roots of graphs. SIAM J. Discret.
Math. 8, 99–118 (1995)

10. McCormic, S.T.: Optimal approximation of sparse hessians and its equivalence to
a graph coloring problem. Math. Programming 26, 153–171 (1983)

11. Heggernes, P., Telle, J.A.: Partitioning graphs into generalized dominating sets.
Nordic J. of Computing 5, 128–142 (1998)

12. Agnarsson, G., Halldórsson, M.M.: Coloring powers of planar graphs. In: Pro-
ceedings of the 11th annual ACM-SIAM symposium on Discrete algorithms, pp.
654–662. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA
(2000)

13. Bertossi, A.A., Pinotti, M.C., Rizzi, R.: Channel assignment on strongly-simplicial
graphs. In: IPDPS ’03: Proceedings of the 17th International Symposium on Paral-
lel and Distributed Processing, p. 222. IEEE Computer Society Press, Los Alamitos
(2003)

14. Agnarsson, G., Greenlow, R., Halldórsson, M.: On powers of chordal graphs and
their colorings. Congressus Numerantium 100, 41–65 (2000)

15. Kozen, D., Sharp, A.: On distance coloring. Technical Report cul.cis/TR2007-2084,
Cornell University (2007)

16. Robertson, N., Seymour, P.D.: Graph minors. ii. algorithmic aspects of tree-width.
J. Algorithms 7, 309–322 (1986)

17. Andrzejak, A.: An algorithm for the tutte polynomials of graphs of bounded
treewidth. Discrete Math. 190, 39–54 (1998)

18. Noble, S.D.: Evaluating the tutte polynomial for graphs of bounded tree-width.
Comb. Probab. Comput. 7, 307–321 (1998)

Appendix

Lemma 14. Let P be a path of length 0 ≤ p ≤ �d
2�, with left and right endpoints

vL and vR, respectively, in a (d, k)-colorable graph G, k ≤ � 3d
2 �. Suppose there

exist disjoint subgraphs PL, PR in G \ P such that PL ∪ {vL}, PR ∪ {vR} are
connected and |PL|, |PR| ≥ �d

2�; let O be the non-P vertices connected to P in
the graph G \ (PL ∪ PR). Then |O| ≤ k − d − 1.

Distance Coloring 521

PRPL

O2O1

O

vL = v0 vR = vpv1 v2 v3

Fig. 7. Notation for Lemma 14

Proof. Label P as vL = v0, v1, . . . , vp = vR. Let O0, O1, . . . , Op be a partition of
O such that the induced subgraph Oi ∪ {vi} is connected for all 0 ≤ i ≤ p. See
Figure 7.

Note that |Oi| ≤ k − d − 1 ≤ �d
2� − 1 for all i ≥ 0 otherwise G

� d
2 �

vi would be a
forbidden subgraph and G not (d, k)-colorable by Theorem 1. Let

dL = max{2�d

2
� − max

i≥0
{|Oi| + i, �d

2
�}, max

i≥0
{|Oi| − i}} ≥ �d

2
� − p . (5)

Consider the subgraph G′ consisting of P , the dL ≤ �d
2� closest vertices of PL

to vL and the 2�d
2� − p − dL ≤ �d

2� closest vertices of PR to vR; G′ consists of
2�d

2�+1 vertices within distance 2�d
2� of each other. The vertices of O are within

dL + maxj≥0{|Oj | + j} of the G′ ∩ PL vertices, where

dL + max
j≥0

{|Oj | + j} = max{2�d

2
� − max

i≥0
{|Oi| + i, �d

2
�} + max

j≥0
{|Oj| + j}, (6)

max
i≥0

{|Oi| − i} + max
j≥0

{|Oj | + j}} (7)

≤ max{2�d

2
�, max

i≥0,j �=i
{2|Oi|, |Oi| + |Oj | + p}} (8)

≤ max{2�d

2
�, |O| + p} . (9)

Similarly, the vertices of O are within 2�d
2� − p − dL + maxj≥0{|Oj| + p − j} of

the G′ ∩ PR vertices, where

2�d

2
� − dL + max

j≥0
{|Oj| − j} = 2�d

2
� − max{2�d

2
� − max

i≥0
{|Oi| + i, �d

2
�} (10)

− max
j≥0

{|Oj| − j}, 0} (11)

≤ 2�d

2
� . (12)

Lastly, the vertices of O are at most distance p + |O| from each other. Thus we
have 2�d

2�+1+ |O| vertices within distance ≤ max{2�d
2�, |O|+ p} of each other,

and hence |O| ≤ k − d − 1 otherwise there is a forbidden subgraph. ��

An O(log2 k)-Competitive Algorithm for Metric
Bipartite Matching

Nikhil Bansal1, Niv Buchbinder2, Anupam Gupta3, and Joseph (Seffi) Naor4

1 IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
2 Computer Science Department, Technion, Haifa, Israel

3 Department of Computer Science Carnegie Mellon University
4 Microsoft Research, Redmond, WA. On leave from the CS Dept., Technion, Haifa, Israel

Abstract. We consider the online metric matching problem. In this problem,
we are given a graph with edge weights satisfying the triangle inequality, and k
vertices that are designated as the right side of the matching. Over time up to k
requests arrive at an arbitrary subset of vertices in the graph and each vertex must
be matched to a right side vertex immediately upon arrival. A vertex cannot be
rematched to another vertex once it is matched. The goal is to minimize the total
weight of the matching.

We give a O(log2 k) competitive randomized algorithm for the problem. This
improves upon the best known guarantee of O(log3 k) due to Meyerson, Nanavati
and Poplawski [19]. It is well known that no deterministic algorithm can have
a competitive less than 2k − 1, and that no randomized algorithm can have a
competitive ratio of less than ln k.

1 Introduction

Matching is one of the most fundamental and well-studied optimization problems and it
has played a major role in the development of the theory of algorithms; see, e.g., [22] for
the history as well as many details and algorithms. In this paper, we consider an online
version of the matching problem which was first introduced by Khuller, Mitchell and
Vazirani [14], and independently by Kalyanasundaram and Pruhs [9]. In this version,
the input consists of an edge-weighted graph with k vertices designated as right-hand
side vertices, or “servers”. At each step, a new request vertex is designated as a left-side
vertex or “client”, appears and must be immediately matched to an available right-hand
side vertex. The goal is to minimize the total cost of the matching.

It is easily seen that no online algorithm can be competitive if the edge-weights are
allowed to be arbitrary, and hence a natural restriction is to consider the case when the
edge-weights correspond to distances in a metric space and hence satisfy the triangle in-
equality. We call this problem the online metric matching problem . The problem arises
naturally in many settings: for example, consider k fire stations, each of which can han-
dle exactly one fire; when a new fire starts, an available fire station must be assigned
to it immediately. Both Khuller, Mitchell and Vazirani [14], and Kalyanasundaram and
Pruhs [9] gave 2k−1 competitive deterministic algorithms for the online metric match-
ing problem (and showed that no better deterministic algorithm is possible even for the
star graph). Moreover, Kalyanasundaram and Pruhs also showed that the natural greedy
algorithm that matches a request to its closest available point is (2k − 1)-competitive,

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 522–533, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An O(log2 k)-Competitive Algorithm for Metric Bipartite Matching 523

and this bound is tight. The online metric matching problem was subsequently stud-
ied for special metric spaces, and also in models with resource augmentation; see
Section 1.2 for more details and several other lines of related work.

It is not difficult to give a tight Θ(log k)-competitive randomized solution to the online
metric matching problem on the star graph, which is also the bad example in the determin-
istic case (see, e.g.,Section 3.1 for both upper and lower bounds). Hence, a natural ques-
tion is whether randomization could help obtain an exponential improvement for general
metric spaces. In a recent breakthrough, Meyerson, Nanavati and Poplawski [19] give
a randomized algorithm with an O(log3 k)-competitive ratio for general metrics; this is
the first algorithm with a performance sublinear in k for general metric spaces. Their
approach is to first use results on approximating general metrics by tree metrics [2,3,6]
to obtain an online metric matching problem instance on a class of trees called O(log k)-
HSTs—these are trees where the edge lengths increase by a factor of O(log k) as one
goes from the leaves to the root. Then, they solve the online metric matching problem
on these HSTs with a competitive ratio of O(log k); since they lose O(log2 k) in the re-
duction to the HSTs, the ultimate competitive ratio obtained is O(log3 k). In the rest of
this paper, we refer to the algorithm from [19] as the MNP Algorithm.

One natural approach to improve the competitive ratio is to show that the MNP Al-
gorithm also works on α-HSTs for α = O(1); this would immediately remove one
of the logarithmic terms from the competitive ratio. However, [19] sketch an example
where running MNP on an α-HST with α = o(log k) would result in an extremely poor
competitive ratio; We discuss this issue further in Section 3.2.

1.1 Our Results

Given that the MNP algorithm cannot be directly improved, we devise a new algorithm
that proves our main technical result:

Theorem 1 (Upper Bound for 2-HSTs). There is an O(log k)-competitive algorithm
for the online metric matching problem problem on 2-HSTs.

Using standard results on approximating general metric spaces by HSTs (see Section 2),
the above theorem immediately implies the following result on arbitrary metric spaces.

Corollary 1 (Upper Bound for Arbitrary Metrics). There is an O(log2 k)-competitive
algorithm for the online metric matching problem problem on arbitrary metric spaces.

Our Techniques. Let us briefly discuss our techniques, as the proof of Theorem 1
requires a few conceptual steps. The first step shows that the natural greedy offline
algorithm that repeatedly matches the closest (request,server) pair is optimal for HSTs.
(This is not immediate, since the greedy algorithm is known to be bad even for a set of
points on the line [21].) This analysis of the greedy algorithm allows us to lower bound
the optimal cost of an instance.

The next step shows that we can imagine working in a more flexible model, where
(some) server reassignments are permitted. In particular, if client c is previously assigned
to server s (incurring a cost of d(c, s)) and a client c′ arrives, we are allowed to assign
c′ to s, and to reassign c to some s′ incurring an additional cost of d(c, s′) + d(c′, s)),
as long as the new server (i.e., s′) for c is no closer to it than the old one (i.e., s). Given

524 N. Bansal et al.

an online algorithm that works in this (restricted) reassignment model, we show how
to get an online algorithm in the (no reassignment) original model with no greater cost.
Finally, we give an online algorithm in this restricted-reassignment model which termi-
nates with the greedy assignment, and where the total expected cost incurred during all
the reassignments is at most O(log k) times the greedy cost, giving us the theorem.

1.2 Related Work

Apart from the initial work of Khuller, Mitchell and Vazirani [14], and Kalyanasun-
daram and Pruhs [9] on the online metric matching problem, there are several bodies of
work related to our paper.

Special Metrics. The online metric matching problem has been studied for the case of
special metrics as well. For example, the case of a line metric arises naturally at ski
shops that have skis of various heights. As the skiers arrive one-by-one, the goal is to
match skiers to skis such that the total mismatch between the length of the desired skis
and the actual skis is minimized. The line case also generalizes the well-known “cow-
path” problem [1]. Koutsoupias and Nanavati [15] showed that the Generalized Work
Function algorithm of [10] is not constant competitive for the line metric. Fuchs et
al. [7] showed a lower bound of 9.001 for the line metric, which implies that it is strictly
harder than the cowpath problem. Kalyanasundaram and Pruhs [11] also considered the
problem for general metrics when the adversary is allowed only half as many servers
as the online servers. Recently, Chung, Pruhs and Uthaisombut [5] considered the case
when the online algorithm is allowed one extra server at each point where the adversary
has a server: somewhat surprisingly, they gave a deterministic algorithm that achieves
a competitive ratio of polylog(k). Many variations of the problem have also been in-
vestigated: e.g., the minimum online bottleneck matching, the maximization version of
the problem, and the case where the points are uniformly distributed on a disk in the
Euclidean plane; for these, we refer the reader to the survey by Kalyanasundaram and
Pruhs [10] and the references therein.

The k-Server Problem. The online metric matching problem is similar to the well-
studied k-server problem introduced by Manasse, McGeoch and Sleator [17]: indeed,
it can be viewed as a restricted case of the k-server problem where the location of the
servers is fixed and not allowed to change. The methods used to give lower and upper
bounds for the online matching problem, particularly on the uniform metric, are closely
related to the results for k-server. Moreover, techniques used for the k-server problems,
most notably work-function algorithms, have also been studied for the online metric
matching problem [16,15]. Throughout this paper, we will adopt the k-server view of
the problem: given an underlying metric space and k “servers” with fixed locations, find
the minimum cost matching between the servers and the requests arriving online.

Offline Heuristics. The metric case of the matching problem has also been studied
offline in the context of finding fast and simple heuristics. Reingold and Tarjan [21]
showed that greedily matching the closest (request, server) pair, and recursing on the
remaining instance gave an O(klog 3

2)-approximation to the min-cost matching, and
that this bound was tight. A more sophisticated algorithm achieving an approximation
bound of O(log k) was given by Plaisted [20]. Finally, Goemans and Williamson [8]

An O(log2 k)-Competitive Algorithm for Metric Bipartite Matching 525

constructed a primal-dual algorithm that achieves an 2 − 2/n-approximation for the
minimum-weight perfect matching problem.

The Online Bipartite Matching Problem. A different (and equally natural) version of
the bipartite matching problem was proposed by Karp, Vazirani and Vazirani [13]. In
their version of the problem, the right side of the bipartite graph is given in advance and
the vertices on the left side (along with their incident edges) are revealed sequentially.
Upon arrival, each vertex on the left-hand side must be matched to a right-hand side
vertex (if possible); moreover, these decisions are irrevocable. Karp et al. considered
the unweighted case of the problem, where the goal is to match as many vertices as
possible, and gave an optimal (1 − 1/e)-competitive randomized algorithm. Note that
in this version of the problem triangle inequality does not hold. A generalization to the
online b-matching was considered in [12], and several extensions have recently been
considered in the context of allocating ad-auctions in electronic markets [18,4].

2 Preliminaries

The metric matching problem is formally defined as follows. We are given a metric
space (V, d). In addition, we are given a set of requests R ⊆ V where |R| = k, and a
set of servers S ⊆ V with |S| = k; the sets R and S do not have to be disjoint. The
objective is to find a minimum cost bipartite matching between the requests in R and
the servers in S. In the online version of the problem, we know in advance the metric
space and the server set S; however, the set R of requests arrive one-by-one in an online
fashion. Upon arrival, a request must be immediately and irrevocably matched to some
unmatched server in S; changing the assignment of a previously-matched request or
server is not allowed. Let R = {r1, r2, . . . , rk} be the set of requests according to their
arrival order and let S = {s1, s2, . . . , sk} be the set of servers.

Hierarchically Well-Separated Trees (HSTs). Our results, as well as the previous
results of [19], use a special type of tree metrics called HSTs. (See Figure 1 for an
illustration).

Definition 1 (HSTs). Given a parameter α ≥ 1, an α-Hierarchically Well-Separated
Tree (α-HST) is a rooted tree T = (V, E) along with a length function d on the edges
which satisfies the following properties:

1. For each node v, all the children of v are at the same distance from v.
2. For any node v, if p(v) is the parent of v and c(v) is any child of v, then d(p(v), v) =

α · d(v, c(v)).
3. Each leaf has the same distance to its parent.

We view an α-HST as a leveled tree, where all the leaves are at the same level, and
the edge-lengths increase geometrically by a factor of α as we go up the tree from the
leaves to the root.

Let H be an α-HST with n leaves. For each leaf node i (that can be either request
node or a server node), let T (i, �) be the set of leaf nodes that are in the sub-tree of height
� that contains node i. Let N(i, �) be the leaf nodes that are in the sub-tree T (i, �) and
not in sub-tree T (i, � − 1). The distance of node i from each node in N(i, �) is exactly

2 (α�−1)
α−1 . It is easy to verify that for each node i, the sets N(i, �) induce a partition of

526 N. Bansal et al.

α
2

α

1

N(r,0) N(r,1) N(r,2) N(r,3)

α
2

α

1

L(r) =3 L(s) =3

(a) (b)

Fig. 1. Figure (a) shows an α-HST. For a request r it illustrates the set of nodes N(r, ·). If request
r is matched to server s as in Figure (b), then L(r) = L(s) = 3.

the servers with respect to the node i. Given a matching in which request r is matched
with server s we define L(r) to be the level � for which s ∈ N(r, �). Similarly, let L(s)
be the level for which r ∈ N(s, �). If server s is not matched yet we define L(s) = ∞.
(The definitions are illustrated in Figure 1).

Reducing from General Metrics to HSTs. The results of [6] imply that given any
metric (V, d) on n points, there is a probability distribution on α-HST’s with the fol-
lowing properties: (a) For each HST T in the support of the distribution, the leaves of
T correspond to the nodes of V , and the distance in the tree dT (u, v) ≥ d(u, v) for all
u, v ∈ V , and (b) the expected distance E[dT (u, v)] between two nodes u, v ∈ V is at
most O(α log n)d(u, v), where the expectation is taken over the random choice of the
HST T . Furthermore, one can sample from this distribution in polynomial time.

Using this result, a β-competitive randomized algorithm for our problem on an
α-HST directly implies an O(αβ log n)-competitive randomized algorithm on the orig-
inal metric. Note that a-priori, the number of nodes n in the metric space can be much
larger than k. However, we can still replace log n by log k following an idea of Mey-
erson et al. [19]: we construct the HST only for the submetric induced on the k server
nodes. Now, whenever a request arrives at some point p, we pretend that it has arrived
at the server s(p) closest to it, and handle it accordingly. Using the triangle inequality
and the fact that d(p, s(p)) summed over all requests is a lower bound on the optimum
solution, can change the competitive ratio by at most a constant factor.

3 Previous Algorithms

In this section we describe several basic results and arguments, which will crucially be
used in the rest of the paper. We also describe the randomized greedy algorithm which
is the basis of the previous O(log3 k) result of [19]. We show that the analysis is in fact
tight, and hence a different algorithm is necessary to obtain a better result.

3.1 The Uniform Metric

We begin by describing the Θ(log k) lower and upper bounds for the uniform metric.
Recall that the uniform metric consists of a set of points such that any two points are
at unit distance from each other. For the lower bound, consider the uniform metric on

An O(log2 k)-Competitive Algorithm for Metric Bipartite Matching 527

k + 1 points labeled 0, 1, . . . , k, and suppose that points 1, 2, . . . , k (i.e., all except
0) contain one server each. The adversary places the first request at point 0. At each
subsequent step for the next k−1 steps, the adversary requests a point that has not been
requested thus far and is most likely to have a matched server. Note that just before the
ith request is made (for i ≥ 2), there are (k− i+2) unrequested points each containing
a server, and one of these servers has already been matched. Hence the probability that
the server at the requested point is already matched is at least 1/(k − i + 2). Summing
over all the requests, the expected cost incurred by any online algorithm is at least
1 +

∑k
i=2 1/(k − i + 2) = Hk = Ω(log k). The offline algorithm on the other hand

only incurs a cost of 1.
We now show a matching upper bound. For a uniform metric (on, say n ≥ k points),

each request is either collocated with a server, or else it is at unit distance from it.
Consider the following algorithm inspired by the above lower bound: when a request
arrives, if there a collocated server still available, we match the request to it; otherwise
we choose an available server at unit distance uniformly at random and match the re-
quest to it. Consider an instance where u of the arriving requests are not collocated
with a server (i.e., lie outside the set S). Clearly, the optimum offline algorithm has cost
u; moreover, the online algorithm also pays cost for each such non-collocated request.
Now consider the requests that arrive at points collocated with a server. Just before the
ith such request arrives, suppose there have already been ui non-collocated requests.
The crucial observation is that all the previous i − 1 server locations where collocated
requests arrived have already been matched (either to some collocated request or one of
the ui requests). Morever, for each of the remaining k − i + 1 server locations, each of
them is unavailable with probability exactly ui/(k−i+1), which is at most u/(k−i+1).
Hence, the ith request has an expected cost of at most u/(k − i + 1); summing up over
the non-collocated and the collocated requests, the total expected cost incurred is

u +
∑k−u

i=1
u

k−i+1 ≤ u + uHk = O(u log k).

3.2 The Randomized Greedy Algorithm

Meyerson et al. [19] considered the following simple randomized greedy algorithm:
whenever a request arrives, match it to the nearest unmatched server. If there are several
unmatched servers that qualify, choose one of these unmatched servers uniformly at
random. In general metrics this approach can yield a competitive ratio as bad as 2k −
1 [9]. However, this algorithm performs quite well on α-HST metrics with large enough
value of α. Specifically, Meyerson et al. analysed this algorithm on an α-HST with
α ≥ 2 ln k + 1, and proved it is O(log k)-competitive. This immediately implied an
O(α log2 k) = O(log3 k) competitive algorithm for general metrics.

An appealing approach to improve the competitive factor is to try to remove the
requirement that α ≥ 2 lnk+1. Meyerson et al. showed that α = Ω(log k) is necessary
for the randomized greedy algorithm to work. Specifically, it is possible to prove the
following Lemma:

Lemma 1 ([19]). For any constant �, there exists an � level α-HST and an input in-
stance with optimal cost O(α�−1), such that the MNP Algorithm incurs
a cost of Ω(

∑�−1
i=0 (log k)i+1α�−i−1).

528 N. Bansal et al.

We remark that it is easily checked that if α = o(log k), then the online cost is substan-
tially larger than the offline cost. A close inspection of the lower bound example reveals
that the lower levels have a disproportionately higher contribution to the online cost as
compared with the offline algorithm. The main problem is that the MNP algorithm in-
curs too much cost in the lower levels until it realizes that there are no available servers
in a subtree and that it needs to find a server outside the subtree. The lower bound
example motivates a different approach that is used by our new constructed algorithm.

4 An O(log k) Algorithm for 2-HST’s

In this section we present a simple online algorithm which is O(log k)-competitive on
an α-HST, for any constant value of α. For simplicity we set α = 2. Our algorithm
has three conceptual steps. First, in Section 4.1 we describe a simple offline algorithm
that computes an optimal matching on an HST. In Section 4.2 we define a restricted
reassignment online model which is easier to handle. We then prove that we can obtain
an online algorithm with no reassignments from any online algorithm in the restricted
reassignment model without compromising the competitive ratio. Finally, in Section
4.3, we design a simple online algorithm in the restricted reassignment model and prove
that it is O(log k)-competitive.

4.1 An Offline Algorithm

In this section we design a simple offline algorithm that computes an optimal solution
on an HST metric. This algorithm is essentially the greedy approach that matches the
closest request-server pair, and then recurses on the remaining instance. Reingold and
Tarjan [21] proved that this approach leads to a very poor θ(klog 3

2)-approximation in
general metrics. However, we show here that this greedy approach leads to an optimal
solution in the special case of HST metrics.

1. Let R and S be the current sets of unmatched requests and unmatched servers,
respectively. Initially, R and S contain all requests and servers.

2. Iterate on the levels from level � = 0 and up until the highest level.
3. Iterate on the requests r ∈ R in any order.
4. For each request r, if N(r, �) ∩ S �= ∅ match r to any server in N(r, �) ∩ S

and remove r and s from R and S, respectively. Otherwise, continue to the
next request in R.

We refer to this algorithm as the Generic Algorithm, since it considers the requests
in arbitrary order, and the server it chooses for each request r from the set N(r, �) ∩ S
is also arbitrary. Thus, the algorithm is flexible with respect to these choices, meaning
that the output of the algorithm is not unique. This property of the algorithm will be
very important in the sequel. We say that a matching M is feasible with respect to the
Generic Algorithm if there exists a run of the algorithm that can generate M . The next
Lemma proves that the algorithm outputs an optimal matching on any HST metric.

Lemma 2. The Generic Algorithm generates an optimal matching on an HST metric.

An O(log2 k)-Competitive Algorithm for Metric Bipartite Matching 529

Proof. Consider a subtree Ti rooted at a node i at height �. Let R(i) and S(i) be the
number of requests and the number of servers in Ti respectively. Clearly, any solution
must match at least E(i) = max(0, R(i) − S(i)) requests belonging to Ti to servers
that lie outside Ti. These requests must incur a cost of 2α� · E(i) when going up from
level � to level � + 1 (node i’s parent) and then coming down from level � + 1 back to
level �. Thus, the optimum cost OPT(T) on the whole HST is at least

∑
i∈T 2α�(i)E(i),

where the summation is over all nodes i of T , and �(i) denotes the level of i.
Now consider the behavior of our Generic Algorithm. When it first considers level

�, in each subtree Ti rooted at level �, no server in Ti can be occupied by a request
outside Ti. Moreover, at Step (3), the unsatisfied requests in Ti are matched within Ti

as much as possible. Thus, exactly E(i) requests remain unmatched in Ti after level � is
processed, and hence, by the same reasoning as above, the matching produced has cost
exactly

∑
i∈T 2α�(i)E(i).

4.2 A Restricted Reassignment Online Model

In this section we define a different online model and prove that it suffices to design
a competitive online algorithm for this modified model. We refer to the new model
as the restricted reassignment online model; as the name suggests, this model allows
some reassignment of previously arrived requests. Specifically, in the new model we
are allowed to reassign a previously matched request rp with the following restriction:
if, currently, rp is matched to a server belonging to N(rp, �) for some value �, then
the algorithm is allowed to reassign rp only to a server belonging to N(rp, �

′), where
�′ ≥ �. The online algorithm in the restricted reassignment model pays the cost of all
reassignments performed, and not just the cost of the final matching computed.

We claim that any online algorithm in the restricted reassignment model can be trans-
formed to an online algorithm in the original model (where no reassignments are al-
lowed) with no additional cost. This is done by a very simple method. First, we can
assume without loss of generality that the algorithm in the new model is lazy and does
not reassign requests unnecessarily. That is, it only reassigns a request if a currently
occupied server by it must be used to match another request. Consider a move of the
algorithm, where r is matched to s1 that was previously matched to r1. Request r1 is
then matched to server s2 which was previously matched to r2, and so on, until request
rt which was previously matched to st is reassigned to a vacant server st+1. The change
in the matching is viewed in the following:

s1 ← r1, s2 ← r2, . . . , st ← rt︸ ︷︷ ︸ ⇒ r → s1, r1 → s2, . . . , rt−1 → rt, rt → st+1︸ ︷︷ ︸
The original matching The matching after the reassignment process

The cost of reassigning the requests in the new model is d(r, s1)+
∑t

i=1 d(ri, si+1).
An algorithm in an online model with no reassignments would simulate this move by
simply matching r directly to st+1, paying a cost of d(r, st+1). The following lemma
shows that the total cost of this algorithm with no reassignments is no more than the
cost incurred in the restricted reassignment model.

Lemma 3. In any iteration of the algorithm: d(r, st+1) ≤ d(r, s1) +
∑t

i=1 d(ri, si+1)

530 N. Bansal et al.

Proof. The claim follows directly from the restrictions on the reassignments in the new
model. Assume that ri was matched to a server si in level �. Thus, ri and si both belong
to the tree T (ri, �). By the restriction on the reassignments, ri cannot be reassigned to a
server in T (ri, �−1). Thus, the path from ri to server si+1 passes through the root of the
tree T (ri, �). Therefore, the path from si (that is, in the sub-tree T (ri, �)) to si+1 is at
most d(ri, si+1). Thus, we get that for any i ∈ {1, 2, . . . , t}, d(si, si+1) ≤ d(ri, si+1).
Using the triangle inequality we get that:

d(r, st+1) ≤ d(r, s1) +
∑t

i=1 d(si, si+1) ≤ d(r, s1) +
∑t−1

i=1 d(ri, si+1)

4.3 An O(log k)-Competitive Algorithm in the Restricted Reassignment Model

In this section we present an O(log k)-competitive algorithm for the online metric
matching in the restricted reassignment model. The algorithm is as follows:

Initially, set L(s) = ∞ for all servers in S.
When request r arrives, set L(r) = 0:

1. Find the lowest level � ≥ L(r) in which there exists a server s ∈ N(r, �) ∩ S
such that L(s) > �.

2. Choose uniformly at random a server s among the servers in N(r, �) ∩ S for
which L(s) > �.

3. Match r to s (and set L(r) = L(s) = �).
4. If s was previously matched to another request r′, then reassign r′ using the

same procedure (return to Step (1) with r′).

Note that Step (1) above ensures that for each request r, its level L(r) can only
increase during the execution of the algorithm. Thus, the algorithm satisfies the re-
quirement of the restricted reassignment model. Suppose the arrival of a new request r
causes the reassignment of requests r1, r2, . . . , rp. Then, the number of reassignments
is at most the height of the HST, since for all i < p, L(ri) < L(ri+1). Also, by the
condition in Step (1) above, the level L(s) of each server s can only decrease during
the execution of the algorithm. The next lemma shows that the final solution produced
by the algorithm is optimal (without taking into account the cost of reassignments).

Lemma 4. The final matching produced by the online algorithm is optimal.

Proof. We show that the solution produced by the online algorithm is feasible with
respect to the offline Generic Algorithm of Section 4.1. Thus, by Lemma 2 the solution
is optimal.

Consider the final matching produced upon termination of the online algorithm. Let
Ri ⊆ R be the set of requests such that L(r) = i. We show how to obtain the final
online solution using the Generic Algorithm. In the first round we match all the servers
in R0 to the servers that are used by the online algorithm. In the second round we match
the requests in R1 to the servers used by the online algorithm, and so on. It suffices to
show that this corresponds to a feasible run of the Generic Algorithm. To this end, it
is enough to show that for any i, after having matched the subset Ri, we cannot match

any request r ∈ R \
(⋃i

j=0 Ri

)
to servers in level i with respect to r.

An O(log2 k)-Competitive Algorithm for Metric Bipartite Matching 531

Assuming that this is not true, then after having matched the requests in Ri, there still
exists an unmatched request r that can be matched with a server s ∈ N(r, i). Consider
the online iteration in which request r had L(r) ≤ i and was matched (or reassigned) to
a server in a level higher than i. Such an iteration must exist as L(r) starts from zero and
the request r is eventually matched to a level higher than i. Moreover, in this iteration,
L(s) > i, since upon termination of the algorithm L(s) > i (none of the requests from
the subset

⋃i
j=1 Rj is matched to s), and the level L(s) of each server can only decrease

during the execution of the algorithm. Therefore, at this iteration, request r could have
been matched with a server in level i (with respect to r). This contradicts the fact that
in that iteration request r chose to be matched with a server with a level strictly larger
than i.

Lemma 5. The expected cost of the reassignments of a request r which is matched upon
termination of the online algorithm to a server s (at distance d(r, s)) is O(log k)d(r, s).

Proof. Consider a request r which is matched upon termination of the online algo-
rithm to a server s at level L(r) = L(s). During the execution of the algorithm, L(r)
is monotonically non-decreasing. Consider a level �, 0 ≤ � ≤ L(r). We prove that
the expected number of times r is matched (or reassigned) to servers in N(r, �) is
O(log N(r, �)) = O(log k). The intuition is the following. During the execution of
the algorithm, request r can cause a reassignment of request r′ only if r′ is matched to
a server s′ which is strictly closer to r (i.e. s′ ∈ N(�, r), s′ ∈ N(�′, r′) and � < �′). In
this case we say that r is stronger than r′. Request r′ then chooses a new server which
is at least at the same distance from r′ as s′ and is not occupied by any request which
is at least as strong as r′. The set of servers satisfying the latter condition is the feasible
set for r′ and its size is monotonically (strictly) decreasing over the execution of the
algorithm. The main observation is that r′ always chooses uniformly at random a new
server from the set of feasible servers. Thus, the probability that the next request which
is stronger than r′ will cause another reassignment of r′ is at most the inverse of the
size of the set of feasible servers for r′. This gives us the harmonic number as an upper
bound on the expected number of reassignments, similarly to the uniform metric case.

Formally, fix any sequence of requests. Assume that at some time during the online
algorithm request r is matched to a server in N(r, �) (if there is no such iteration then
we are done). Next, define the set W ⊆ N(r, �) of feasible matchings for request r to
be the set of servers in N(r, �) for which L(s) > �. The size of W can only decrease
throughout the execution of the algorithm. Next, consider the arrival order of requests
which are at least as strong as r and are matched to servers in W (until either request r
is matched to a higher level or until the end of the execution). If some request having
the same strength as r arrives the probability that it causes a reassignment of r is zero.
Otherwise, since in each reassignment, the request r chooses uniformly at random a
server among the remaining servers in W , the probability that such a request causes
r to be reassigned is at most 1

|W | , where |W | is the current size of the set of feasible
servers for r. In either case the size of W decreases by 1 after each such arrival. Since
initially |W | ≤ |N(r, �)| (similarly to the uniform metric), it follows that the expected
number of reassignments until r is matched to a higher level, or is matched to its final
server, is O(HN(r,�)) = O(log |N(r, �)|) = O(log k).

532 N. Bansal et al.

Since the metric is a 2-HST, the cost of each reassignment of request r in level i
costs 2(2i − 1). Therefore, the total expected cost of reassigning request r is at most:
O(log k)

∑L(r)
i=0 2(2i−1) = O(log k)2L(r) = O(log k)d(r, s), where the last inequality

follows since d(r, s) = 2(2L(r) − 1).

Theorem 2. The online algorithm is O(log k) competitive on HST’s.

Proof. By linearity of expectation and Lemma 5 the total expected cost of the algorithm
is O(log k) times the final cost of the solution of the online algorithm. By Lemma 4
the final solution is optimal and thus the total expected cost of the algorithm is actually
O(log k) times the optimum. Finally, by Lemma 3 we can translate this algorithm easily
to the model with no reassignments without increasing the cost.

5 Conclusion

In this paper, we designed an algorithm for the online metric matching problem which is
O(log k)-competitive on 2-HST’s, and thus O(log2 k)-competitive for general metrics.
The main open question is to design an algorithm with competitive ratio O(log k), or
to improve the known lower bound. The analysis of such an algorithm cannot proceed
along the same lines as we pursue, since approximating general metrics by an HST
incurs a loss of Ω(log k) in the worst case, and moreover, there is an Ω(log k) lower
bound for the online metric matching problem even on HSTs.

Interestingly, the claims in Sections 4.2 and 4.3 can be extended easily to general
metrics, which implies that our algorithm is O(log k)-competitive for those metrics on
which the greedy approach of Section 4.1 generates a constant factor approximation.
However, since the lower bound of Reingold and Tarjan [21] shows the existence of
metrics for which the greedy approach produces an Ω(klog 3

2)-approximate solution,
applying our algorithm directly on such metrics might be as bad as Ω(klog 3

2 log k)-
competitive. Nonetheless, a possible direction to obtain an O(log k)-competitive algo-
rithm for general metrics might be to combine our techniques in Sections 4.2 and 4.3
with a different offline heuristic, that results in an O(1)-approximation. It is some-
what strange to look for an O(1)-approximation for a problem that is in polynomi-
ally solvable. However, such an algorithm that takes advantage of the metric properties
of the graph might be a key ingredient. A possible starting point can be the “hyper-
greedy” heuristic of Supowit, Plaisted, and Reingold [23] that achieves an O(log k)-
approximation to the offline metric matching problem, or the 2 − 2/n primal dual ap-
proximation algorithm of Goemans and Williamson [8].

References

1. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J: Searching in the plane. Information and
Computation 106(2), 234–252 (1993)

2. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic applications.
In: IEEE Symposium on Foundations of Computer Science, pp. 184–193. IEEE Computer
Society Press, Los Alamitos (1996)

An O(log2 k)-Competitive Algorithm for Metric Bipartite Matching 533

3. Bartal, Y.: On approximating arbitrary metrics by tree metrics. In: STOC: ACM Symposium
on Theory of Computing (STOC), ACM Press, New York (1998)

4. SBuchbinder, N., Jain, K., Naor, J.: The adauctions problem and extensions. In: ESA (to
appear 2007)

5. Chung, C., Pruhs, K., Uthaisombut, P.: The online transportation problem: On the exponential
boost of one extra server. Under submission

6. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics
by tree metrics. In: STOC ’03: Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, pp. 448–455. ACM Press, New York (2003)

7. Fuchs, B., Hochstattler, W., Kern, W.: Online matching on a line. Theoretical Computer
Science, 251–264 (2005)

8. Goemans, M.X., Williamson, D.P.: A General Approximation Technique for Constrained
Forest Problems. SIAM Journal on Computing 24, 296–317 (1995)

9. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3), 478–488
(1993)

10. Kalyanasundaram, B., Pruhs, K.: Online network optimization problems, 1998. In: Fiat, A.,
Woeginger, G. (eds.) Online Algorithms. LNCS, vol. 1442, Springer, Heidelberg (1998)

11. Kalyanasundaram, B., Pruhs, K.: The online transportation problem. SIAM J. Discrete
Math. 13(3), 370–383 (2000)

12. Kalyanasundaram, B., Pruhs, K.: An optimal deterministic algorithm for online b -matching.
Theoretical Computer Science 233(1–2), 319–325 (2000)

13. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for online bipartite match-
ing. In: In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pp.
352–358. ACM Press, New York (1990)

14. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipartite match-
ing and stable marriages. Theor. Comput. Sci. 127(2), 255–267 (1994)

15. Koutsoupias, E., Nanavati, A.: The online matching problem on a line. In: Solis-Oba, R.,
Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 179–191. Springer, Heidelberg (2004)

16. Koutsoupias, E., Papadimitriou, C.: On the k-server conjecture. Journal of the ACM 42(5),
971–983 (1995)

17. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for online problems.
In: STOC: ACM Symposium on Theory of Computing, pp. 322–333. ACM Press, New York
(1988)

18. Mehta, A., Saberi, A., Vazirani, U.V., Vazirani, V.V.: Adwords and generalized on-line
matching. In: IEEE Symposium on Foundations of Computer Science, pp. 264–273. IEEE
Computer Society Press, Los Alamitos (2005)

19. Meyerson, A., Nanavati, A., Poplawski, L.: Randomized online algorithms for minimum
metric bipartite matching. In: SODA ’06: Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pp. 954–959. ACM Press, New York (2006)

20. Plaisted, D.A.: Heuristic matching for graphs satisfying the triangle inequality. J. Algo-
rithms 5(2), 163–179 (1984)

21. Reingold, E.M., Tarjan, R.E.: On a greedy heuristic for complete matching. SIAM Journal
on Computing 10(4), 676–681 (1981)

22. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. Algorithms and Com-
binatorics, vol. 24. Springer, Berlin (2003)

23. Supowit, K.J., Reingold, E.M., Plaisted, D.A.: The travelling salesman problem and mini-
mum matching in the unit square. SIAM J. Comput. 12(1), 144–156 (1983)

To Fill or Not to Fill: The Gas Station Problem�

(Extended Abstract)

Samir Khuller, Azarakhsh Malekian, and Julián Mestre

Department of Computer Science.
University of Maryland, College Park, MD 20742, USA

{samir,malekian,jmestre}@cs.umd.edu

Abstract. In this paper we study several routing problems that gener-
alize shortest paths and the Traveling Salesman Problem. We consider
a more general model that incorporates the actual cost in terms of gas
prices. We have a vehicle with a given tank capacity. We assume that
at each vertex gas may be purchased at a certain price. The objective
is to find the cheapest route to go from s to t, or the cheapest tour
visiting a given set of locations. Surprisingly, the problem of find the
cheapest way to go from s to t can be solved in polynomial time and
is not NP-complete. For most other versions however, the problem is
NP-complete and we develop polynomial time approximation algorithms
for these versions.

1 Introduction

Optimization problems related to computing the shortest (or cheapest) tour
visiting a set of locations, or that of computing the shortest path between a
pair of locations are pervasive in Computer Science and Operations Research.
Typically, the measures that we optimize are in terms of “distance” traveled,
or time spent (or in some cases, a combination of the two). There are literally
thousands of papers dealing with problems related to shortest-path and tour
problems.

In this paper, we consider a more general model that incorporates the actual
cost in terms of gas prices. We have a vehicle with a given tank capacity of U .
In fact, we will assume that U is the distance the vehicle may travel on a full
tank of gas (this can easily be obtained by taking the product of the tank size
and the mileage per gas unit of the vehicle). Moreover, we may assume that we
start with some given amount of gas μ (≤ U) in the tank. We assume that at
each vertex v gas may be purchased at a price of c(v). This price is the cost of
gas per mile. For example if gas costs $3.40 per gallon and the vehicle can travel
for 17 miles per gallon, then the cost per mile is 20 cents.

At each gas station we may fill up some amount of gas to “extend” the range
of the vehicle by a certain amount. Moreover, since gas prices vary, the cost
depends on where we purchase gas from.
� Research supported by NSF grant CCF-0430650. Full version available at
http://www.cs.umd.edu/∼samir/grant/esa07.ps

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 534–545, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

To Fill or Not to Fill: The Gas Station Problem 535

In addition to fluctuating gas prices, there is significant variance in the price
of gas between gas stations in different areas. For example, in the Washington
DC area alone, the variance in gas prices between gas stations in different areas
(on the same day) can be by as much as 20%. Due to different state taxes, gas
prices in adjacent states also vary. Finally, one may ask: why do we expect such
information to be available? In fact, there are a collection of web sites [1,2] that
currently list gas prices in an area specified by zip code. So it is reasonable to
assume that information about gas prices is available. What we are interested in
are algorithms that will let us compute solutions to some basic problems, given
this information.

In this general framework, we are interested in a collection of basic questions.

1. (The gas station problem) Given a start node s and a target node t, how
do we go from s to t in the cheapest possible way if we start at s with μs

amount of gas? In addition we consider the variation in which we are willing
to stop to get gas at most Δ times1. Another generalization we study is
the sequence gas station problem. Here, we want to find the cheapest route
that visits a set of p locations in a specified order (for example by a delivery
vehicle).

2. (The fixed-path gas station problem) An interesting special case is when
we fix the path along which we would like to travel. Our goal is to find an
optimal set of refill stops along the path.

3. (The uniform cost tour gas station problem) Given a collection of cities T ,
and a set of gas stations S at which we are willing to purchase gas, find
the shortest tour that visits T . We have to ensure that we never run out of
gas. Clearly this problem generalizes the Traveling Salesman Problem. The
problem gets more interesting when S �= T , and we address this case. This
models the situation when a large transportation company has a deal with a
certain gas company, and their vehicles may fill up gas at any station of this
company at a pre-negotiated price. Here we assume that gas prices are the
same at each gas station. This could also model a situation where some gas
stations with very high prices are simply dropped from consideration, and
the set S is simply the set of gas stations that we are willing to use.

4. (The tour gas station problem) This is the same as the previous problem,
except that the prices at different stations can vary.

Of all the above problems, only the tour problems are NP -hard. For the
first two we develop polynomial time algorithms, and for the tour problems we
develop approximation algorithms.

We now give a short summary of the results in the paper:

1. (The gas station problem) For the basic gas station problem, our algorithm
runs in time O(Δn2 log n) and computes an optimal solution. If we want

1 This restriction makes sense, because in some situations where the gas prices are
decreasing as we approach our destination, the cheapest solution may involve an
arbitrarily large number of stops, since we only fill up enough gas to make it to a
cheaper station further down the path.

536 S. Khuller, A. Malekian, and J. Mestre

to visit a sequence of p cities we can find an optimal solution in time
O(Δ(np)2 log(np)). In addition, we develop a second algorithm for the all-
pairs version that runs in time O(n3Δ2). This method is better than repeat-
ing the fixed-destination algorithm n times when Δ < log n.

2. (The fixed-path gas station problem) For the fixed-path version with an
unbounded number of stops, we develop a fast O(n log n) time algorithm.
Due to space constraints this is described in the full version of the paper.

3. (The uniform cost tour gas station problem) Since this problem is NP -hard,
we focus on polynomial time approximation algorithms. We assume that
every city has a gas station within a distance of αU

2 for some α < 1. This
assumption is reasonable since in any case, every city has to have a gas station
within distance U

2 , otherwise there is no way to visit it. A similar assumption
is made in the work on distance constrained vehicle routing problem [13].
We develop an approximation algorithm with an approximation factor of
3
2 (1+α

1−α). We also consider a special case, namely when there is only one
gas station. This is the same as having a central depot, and requiring the
vehicle to return to the depot after traveling a maximum distance of U .
For this special case, we develop an algorithm with factor O(ln 1

1−α) and
this improves the bound of 3

2(1−α) given by Li et al. [13] for the distance
constrained vehicle routing problem.

4. (The tour gas station problem) For the tour problem with arbitrary prices,
we can use the following scheme: sort all the gas prices in non-decreasing
order c1 ≤ c2 ≤ . . . cn. Now guess a range of prices [ci . . . cj] one is willing
to pay, and let βij = cj

ci
. Let Sij include all the gas stations v such that

ci ≤ c(v) ≤ cj . We can run the algorithm for the uniform cost tour gas
station problem with set Sij and cities T . This will yield a tour T [i,j]. We
observe that the cost of the tour T [i,j] is at most O(βij

1−α) times the cost of
an optimal solution, since its possible that we always pay a factor βij more
than the optimal solution, at each station where we fill gas. Taking the best
solution over all O(n2) possible choices gives a valid solution to the tour gas
station problem.

1.1 Related Work

The problems of computing shortest paths and the shortest TSP tour are clearly
the most relevant ones here and are widely studied, and discussed in several
books [12,17].

One closely related problem is the Orienteering problem [4,5,10,7]. In this
problem the goal is to compute a path of a fixed length L that visits as many
locations as possible, starting from a specified vertex. For this problem, a factor
3 approximation has been given recently by Bansal et al. [6]. (In fact, they can
fix the starting and ending vertices.) This algorithm is used as subroutine for
developing a bicriteria bound for Deadline TSP. By using the 3 approximation
for the Orienteering problem, we develop an O(log |T |) approximation for the
single gas station tour problem. This is not surprising, since we would like to
cover all the locations by finding walks of length at most U .

To Fill or Not to Fill: The Gas Station Problem 537

There has been some recent work by Nagarajan and Ravi [16] on minimum
vehicle routing that is closely related to the single gas station tour problem. In
this problem, a designated root vertex (depot) and a deadline D are given and
the goal is to use the minimum number of vehicles from the root so that each
location is met by at least one of the vehicles, and each vehicle traverses length
at most D. (In their definition, vehicles do not have to go back to the root.)
They give a 4-approximation for the case where locations are in a tree and an
O(log D) approximation for graphs with integer weights.

Another closely related piece of work is by Arkin et al. [3] where tree and tour
covers of bounded length are computed. What makes their problem easier is that
there is no specified root node, or a set of gas stations one of which should be
included in any bounded length tree or tour. Several pieces of work deal with
vehicle routing problems [14,15,9] with multiple vehicles, where the objective is
to bound the total cost of the solution, or to minimize the longest tour. However
these problems are significantly easier to develop approximation algorithms for.

2 The Gas Station Problem

The input to our problem consists of a complete graph G = (V, E) with edge
lengths d : E → R+, gas costs c : V → R+ and a tank capacity U . (Equivalently,
if we are not given a complete graph we can define duv to be the distance between
u and v in G.) Our goal is to go from a source s to a destination t in the
cheapest possible way using at most Δ stops to fill gas. For ease of exposition we
concentrate on the case where we start from s with an empty tank. The case in
which we start with μs units of gas can be reduced to the former as follows. Add
a new node s′ such that ds′s = U − μs and c(s′) = 0. The problem of starting
from s with μs units of gas and that of starting from s′ with an empty tank
using one additional stop are equivalent.

We would also like to note that our strategy yields a solution where the gas
tank will be empty when one reaches a location where gas can be filled cheaply.
In practice, this is not safe and one might run out of gas (for example if one gets
stuck in traffic). For that reason we suggest defining U to be smaller than the
actual tank capacity so that we always have some “reserve” capacity.

In this section we develop an O(Δn2 log n) time algorithm for the gas station
problem. In addition, when Δ = n we show how to solve the problem in O(n3)
time for general graphs, and O(n log n) time for the case where G is a fixed path.

One interesting generalization of the problem is the sequence gas station prob-
lem where we are given a sequence s1, s2, . . . , sp of vertices that we must visit
in the specified order. This variant can be reduced to the s-t version in an ap-
propriately defined graph.

2.1 The Gas Station Problem Using Δ Stops

We will solve the gas station problem using the following dynamic program (DP)
formulation:

A(u, q, g) = Minimum cost of going from u to t using q refill stops, starting
with g units of gas. We consider u to be one of the q stops.

538 S. Khuller, A. Malekian, and J. Mestre

The main difficulty in dealing with the problem stems from the fact that, in
principle, we need to consider every value of g ∈ [0, U]. One way to avoid this
is to discretize the values g can take. Unfortunately this only yields a pseudo-
polynomial time algorithm. To get around this we need to take a closer look at
the structure of the optimal solution.

Lemma 1. Let s = u1, u2, . . . , ul be the refill stops of an optimal solution using
at most Δ stops. The following is an optimal strategy for deciding how much gas
to fill at each stop: At ul fill just enough to reach t with an empty tank; for j < l

i) If c(uj) < c(uj+1) then at uj fill up the tank.
ii) If c(uj) ≥ c(uj+1) then at uj fill just enough gas to reach uj+1.

Proof. If c(uj) < c(uj+1) and the optimal solution does not fill up at uj then we
can increase the amount filled at uj and decrease the amount filled at uj+1. This
improves the cost of the solution, which contradicts the optimality assumption.
Similarly, if c(uj) ≥ c(uj+1) then we can decrease the amount filled at uj and
increase the amount filled at uj+1 (without increasing the overall cost of the
solution) until the condition is met. ��
Consider a refill stop u �= s in the optimal solution. Let w be the stop right
before u. Lemma 1 implies that if c(w) > c(u), we reach u with an empty tank,
otherwise we reach u with U − dwu gas. Therefore, in our DP formulation we
need to keep track of at most n different values of gas for u. Let GV (u) be the
set of such values, namely

GV (u) = {U − dwu | w ∈ V and c(w) < c(u) and dwu ≤ U} ∪ {0}

The following recurrence allows us to compute A(u, q, g) for any g ∈ GV (u):

A(u, 1, g) =
{

(dut − g) c(u) if g ≤ dut ≤ U
∞ otherwise

A(u, q, g) = min
v s.t.

duv≤U

{
A(v, q−1, 0) + (duv − g) c(u) | c(v) ≤ c(u) ∧ g ≤ duv

A(v, q−1, U − duv) + (U − g) c(u) | c(v) > c(u)

}

The cost of the optimal solution is min1≤l≤Δ A(s, l, 0). The naive way of filling
the table takes O(Δn3) time. However, this can be done more efficiently.

Theorem 1. There is an O(Δn2 log n) time algorithm for the gas station prob-
lem with Δ stops.

Instead of spending O(n) time computing a single entry of the table, we spend
O(log n) amortized time per entry. More precisely, for fixed u ∈ V and 1 < q ≤ Δ
we show how to compute all entries of the form A(u, q, ∗) in O(n log n) time using
entries of the form A(∗, q−1, ∗). Theorem 1 follows immediately.

The DP recursion for A(u, q, g) finds the minimum, over all v such that duv ≤
U , of terms that corresponds to the cost of going from u to t through v. Split

To Fill or Not to Fill: The Gas Station Problem 539

each of these terms into two parts based on whether they depend on g or not.
Thus we have an independent part, which is either A(v, q − 1, 0) + duv c(u) or
A(v, q − 1, U − duv) + Uc(u); and a dependent part, −g c(u).

Our procedure begins by sorting the independent part of every term. Note
that the minimum of these corresponds to the entry for g = 0. As we increase g,
the terms decrease uniformly. Thus, to compute the table entry for g > 0 just
subtract g c(u) from the smallest independent part available. The only caveat is
that the term corresponding to a vertex v such that c(v) ≤ c(u) should not be
considered any more once g > duv, we say such a term expires after g > duv. Since
the independent terms are sorted, once the smallest independent term expires we
can walk down the sorted list to find the next vertex which has not yet expired.
The procedure is dominated by the time spent sorting the independent terms
which takes O(n log n) time.

Theorem 2. When Δ = n the problem can be solved in O(n3) time.

We can reduce the problem to a shortest path question on a new graph H . The
vertices of H are pairs (u, g), where u ∈ V and g ∈ GV (u). The edges of H and
their weight w(·) are defined by the DP recurrence. Namely, for every u, v ∈ V
and g ∈ GV (u) such that duv ≤ U we have w

(
(u, q), (v, 0)

)
= (duv −g) c(u) if

c(v) ≤ c(u) and g ≤ duv, or w
(
(u, q), (v, U −duv

)
= (U −g) c(u) if c(v) > c(u).

Our objective is to find a shortest path from (s, 0) to (t, 0). Note that H has
at most n2 vertices and at most n3 edges. Using Dijkstra’s algorithm [8] the
theorem follows.

2.2 Faster Algorithm for the All-Pairs Version

Consider the case in which we wish to solve the problem for all starting nodes
i, with μi amount of gas in the tank initially. Using the method described in
the previous section, we get a running time of O(n3Δ log n) since we run the
algorithm for each possible destination. We will show that for Δ < log n we can
improve this and get a bound of O(n3Δ2).

Add new nodes i′ such that di′i = U − μi and c(i′) = 0. If we start at i with
μi units of gas, it is the same as starting from i′ where gas is free. We fill up
the tank to capacity U , and then by the time we reach i we will have exactly μi

units of gas in the tank. (Since gas is free at any node i′ in any optimal solution
we fill up the tank to capacity U). This will use one extra stop.

We define B(i, h, p) as the minimum cost solution to go from i to h (destina-
tion), with p stops to get gas, given that we start with an empty tank at i. Since
we start with an empty tank, we have to fill up gas at the starting point (and
this is included as one of the stops). Clearly, we will also reach h (destination)
with an empty tank, assuming that there is no trivial solution, such as one that
arrives at the destination with no fill-ups on the way.

Our goal is to compute B(i′, h, Δ+1) which is a minimum cost solution to go
from i′ to h with at most Δ stops in-between. Note that the first fill-up is the
one that takes place at node i′, after that we stop at most Δ times.

540 S. Khuller, A. Malekian, and J. Mestre

We will now show how to compute B(i, h, p). There are two options:

– If the gas price at the first stop after i (e.g. k) is cheaper than c(i) then we
will reach that station with an empty tank after filling dik units of gas at i
(as long as dik ≤ U):

B(i, h, p) = B(k, h, p − 1) + dikc(i)

– If the first place where the cost of gas decreases from the previous stop is
the q + 1st stop and the price is in increasing order in the first q stops then

B(i, h, p) = C(i, k, q) + B(k, h, p − q)

We define C(i, k, q) as the minimum cost way of going from i to k with at
most q stops to get gas, such that we start at i with an empty tank (and get
gas at i, which counts as a stop) and finally reach k with an empty tank.
In addition, the price of gas in intermediate stations is in increasing order
except for the last stop.

We define B(h, h, p) = 0. For i �= h let B(i, h, 1) = c(i) dih if dih ≤ U , and
B(i, h, 1) = ∞ otherwise. In general:

B(i, h, p) = min

{
min

1≤k≤n
1<q≤p

C(i, k, q) + B(k, h, p−q), min
1≤k≤n

s.t.dik≤U

B(k, h, p−1) + dik c(i)

}

If we are able to compute C(i, k, q) efficiently then B(i, h, p) can be computed.
There are n2Δ states in the dynamic program, and each one can be computed in
time O(nΔ). This yields a running time of O(n3Δ2). We will see that the time
required to compute C(i, k, q) is O(n3Δ) for all relevant choices of i, k, q.

Suppose that in going from i to k we stop at i1 = i, . . . , iq, iq+1 = k . Note
that c(i1) ≤ c(i2) ≤ . . . ≤ c(iq), however c(iq) > c(iq+1). In fact, at i1 we will
get U amount of gas. When we reach ij for 1 < j < q, we will get dij−1ij units
of gas (the amount that we consumed since the previous fill-up) at a cost of
c(ij) per unit of gas. The amount of gas we will get at iq is just enough to
reach k with an empty tank. Now we can see that the total cost is equal to
Uc(i1) + di1i2c(i2) + . . . + diq−2iq−1c(iq−1) + (diq−1iq + diqk − U)c(iq). Note that
the last term is not negative, since we could not reach k from iq−1 even with a
full tank at iq−1, without stopping to get a small amount of gas.

We compute C(i, k, q) as follows. First note that if dik ≤ U then the answer
is dikc(i). Otherwise we build a directed graph G′ = (V ∪ VD, E ∪ ED), where
V is the set of vertices, and VD = {i′|i ∈ V }.

We define E: add a directed edge from i ∈ V to j for each vertex j ∈ V \ {i}
such that dij ≤ U and c(i) ≤ c(j). The weight of this edge is dijc(j).

We define ED as follows: add a directed edge from each j ∈ V to k′ for each
vertex k′ ∈ VD \ {j′} such that U < djk ≤ 2U . The weight of this edge is

min
{
(djz + dzk − U)c(z) | c(j), c(k) < c(z) and djz , dzk ≤ U

}

To Fill or Not to Fill: The Gas Station Problem 541

Now we can express C(i, k, q) as Sp(i, k′, q) + Uc(i) where Sp(i, k′, q) is the
shortest path from i to k′ in the graph G′ using at most q edges.

To see why it is true, we can see that for any given order of stops between
i and k (where the gas price is in increasing order in consecutive stops), the
minimum cost is equal to the weight of the path in G′ that starts from i, goes
to the second stop in the given order (e.g., i2) and then traverses the vertices of
V in the same order and from the second last stop goes to k′. It is also possible
that q = 2 and the path goes directly from i = i1 to k in this case, and i2 is the
choice for z that achieves the minimum cost for the edge (i, k′).

For any given path P in G′ between i and k′, if the weight of the path is WP

we can find a feasible plan for filling the tank at the stations so that the cost
is equal to WP + Uc(i). It is enough to fill up the tank at the stations that are
in the path, except the last one in which the tank is filled to only the required
level to reach k. We can conclude that C(i, k, q) is equal to Sp(i, k′, q) + Uc(i).

The running time for finding the shortest path between all pairs of nodes with
different number of stops (at most Δ) can be computed in O(n3Δ) by dynamic
programming [11]. If we precompute C(i, k, q) the running time for computing
B(i′, h, Δ + 1) is O(n3Δ2) assuming we start at i with μi amount of gas. So in
general the running time is O(n3Δ2).

3 The Uniform Cost Tour Gas Station Problem

In this section we study a variant of the gas station problem where we must visit
a set of cities T in arbitrary order. We consider the case where gas costs the
same at every gas station, but some cities may not have a gas station.

More formally, the input to our problem consists of a complete undirected
graph G = (V, E) with edge lengths d : E → R+, a set of cities T ⊆ V , a set of
gas stations S ⊆ V , and tank capacity U for our vehicle. The objective is to find
a minimum length tour that visits all cities in T , and possibly some gas stations
in S. We are allowed to visit a location multiple times if necessary. We require
any segment of the tour of length U to contain at least one gas station, this
ensures we never run out of gas. We call this the uniform cost tour gas station
problem. We assume that we start with an empty tank at a gas-station.

The problem is NP -hard as it generalizes the well-known traveling salesman
problem: just set the tank capacity to the largest distance between any two cities
and let T = S. In fact, there is a closer connection between the two problems: If
every city has a gas station, i.e., T ⊆ S, we can reduce the gas station problem
to the TSP. Consider a TSP instance on T under metric � : T × T → R+, where
�xy is the minimum cost of going between cities x and y starting with an empty
tank (this can be computed by standard techniques). Since the cost of gas is the
same everywhere, a TSP tour can be turned into a driving plan that visits all
cities with the same cost and vice-versa. Let OPT denote an optimal solution,
and c(OPT) its cost.

As mentioned earlier, we can use the algorithm for the uniform cost case to
derive an approximation algorithm for the general case by paying a factor β

542 S. Khuller, A. Malekian, and J. Mestre

in the approximation ratio. Here β is the ratio of the maximum price that an
optimal solution pays for buying a unit of gas, to the minimum price it pays for
buying a unit of gas (in practice this ranges from 1 to 1.2).

Unfortunately this reduction to the TSP breaks down when cities are not
guaranteed to have a gas station. Consider going from x to y, where x does not
have a gas station. The distance between x and y will depend on how much gas
we have at x, which in turn depends on which city was visited before x and what
route we took to get there.

An interesting case of the tour gas station problem is that of an instance with
a single gas station. This is also known as the distance constrained vehicle rout-
ing problem and was studied by Li et al. [13] who gave a 3

2(1−α) approximation
algorithm, where the distance from the gas station to the most distant city is
αU

2 , for some α < 1. We improve this by providing an O(log 1
1−α) approxima-

tion algorithm Without making any assumptions on α we show that a greedy
algorithm that finds bounded length tours visiting the most cities at a time is
a O(log |T |)-factor approximation. The proof of these claims appear in the full
version of this paper.

For the general case we make the assumption that every city has a gas station
at distance at most αU

2 . This assumption is reasonable, because if a city has
no gas station within distance U

2 , there is no way to visit it. We show a 3(1+α)
2(1−α)

approximation for this problem. Note that when α = 0, this gives the same
bound as the Christofides method for the TSP.

3.1 The Tour Gas Station Problem

For each city x ∈ T let g(x) ∈ S be the closest gas station to x, and let dx be the
distance from x to g(x). We assume that every city has a gas station at distance
at most αU

2 ; in order words, dx ≤ αU
2 for all x ∈ T .

Recall that it is assumed that the price of the gas is the same at all the gas
stations. We define a new distance function for the distance between each pair of
cities. The distance � is defined as follows: For each pair of cities x and y, �xy is
the length of the shortest traversal to go from x to y starting with U −dx amount
of gas and reaching y with dy amount of gas. If dxy ≤ U −dx −dy then we can go
directly from x to y, and �xy = dxy. Otherwise, we can compute this as follows.
Create a graph whose vertex set is S, the set of gas stations. To this graph add x
and y. We now add edges from x to all gas stations within distance U − dx from
x. Similarly we add edges from y to all gas stations within distance U − dy to
y. Between all pairs of gas stations, we add an edge if the distance between the
pair of gas stations is at most U . All edges have length equal to the distance
between their end points. The length of the shortest path in this graph from x to
y will be �xy. Note that the shortest path (in general) will start at x and then go
through a series of gas stations before reaching y. This path yields a valid plan
to drive from x to y without running out of gas, once we reach x with U − dx

units of gas. When we reach y, we have enough gas to go to gy. Also note that
�xy = �yx since the path is essentially “reversible”.

To Fill or Not to Fill: The Gas Station Problem 543

gas station

indirect edge

refill trip

direct edge

city

x0
i xk

i

. . .

x1
i x2

i x3
i x4

i xk+1
i

Fig. 1. Decomposition of the solution into strands

We assume here that all distances are Euclidean. Note that from x, we can
only go to B and not A since we start from x with U − dx units of gas. From B,
we cannot go to D since the distance between B and D is more than U , even
though the path through D to y would be shorter. From C we go to E since
going through F will give a longer path, since from F we cannot go to y directly.

Note that the function � may not satisfy triangle inequality. To see this, sup-
pose we have three cities x, y, z. Let dxy = dyz = U

2 . Let dx = dy = dz = U
4 and

dxz = U . We first observe that �xy = �yz = U
2 . However, if we compute �xz, we

cannot go from x to z directly since we only have 3
4U units of gas when we start

at x and need to reach z with U
4 units of gas. So we have to visit gy along the

way, and thus �xz = 3
2U .

The algorithm is as follows:

1. Create a new graph G′, with a vertex for each city. For each pair of cities
x, y compute �xy as shown earlier.

2. Find the minimum spanning tree in (G′, �). Also find a minimum weight
perfect matching M on the odd degree vertices in the MST. Combine the
MST and M to find an Euler tour T .

3. Start traversing the Eulerian tour. Add refill trips whenever needed. (Details
on this follow).

It can be shown that the total length of the MST is less than the optimal
solution cost. Suppose x1, . . . , xn is the order in which the optimal solution
visits the cities. Clearly, the cost of going from xi to xi+1 in the optimal solution
is at least �xixi+1 . Since the collection of edges (xi, xi+1) forms a spanning tree,
we can be conclude that the weight of the �(MST) ≤ c(OPT). Next we show
that the cost of M is at most c(OPT)

2 . Suppose the odd degree vertices are in
the optimal solution in the order o1, . . . , ok. We can see that �oioi+1 is at most
equal to the distance we travel in the optimal solution to go from oi to oi+1. So
the cost of minimum weighted matching on the odd degree vertices is at most
c(OPT)

2 . So the total cost of the Eulerian tour T is at most 3c(OPT)
2 .

Now we need to transform the Eulerian tour into a feasible plan. First, every
edge (x, y) in T is replaced with the actual plan to drive from x to y that we
found when computing �xy. If dxy ≤ U −dx −dy the plan is simply to go straight
from x to y, we call these direct edges. Otherwise the plan must involve stopping
along the way in one or more gas stations, we call these indirect edges. Notice
that the cost of this plan is exactly that of the Eulerian tour T . Unfortunately,
as we will see below this plan need not be feasible.

544 S. Khuller, A. Malekian, and J. Mestre

Define a strand, to be a sequence of consecutive cities in the tour connected
by direct edges. If a city is connected with two indirect edges, then it forms a
strand by itself. Suppose the ith strand has cities x1

i , . . . , x
k
i . To this we add x0

i

(xk+1
i), the last (first) gas station in the indirect edge connecting x1

i (xk
i) with

the rest of the tour. Each strand now starts and ends with a gas station. We can
view the tour as a decomposition into strands as shown in Fig. 1. Note that if the
distance between x0

i and xk+1
i is more than U the overall plan is not feasible. To

fix we add for every city a refill trip to its closest gas station and then greedily
try to remove them, while maintaining feasibility, until we get a minimal set of
refill trips. Let us bound the extra cost these trips incur.

Lemma 2. Let Li be the length of the ith strand. Then the total distance traveled
on the refill trips of cities in the strand is at most 2α

1−αLi.

Proof. Assume there are qi refill trips in this strand. Label the cities with refill
trips to their nearest gas stations xj1

i , . . . , x
jqi

i . Also label x0
i as xj0

i and xk
i as

x
jqi+1

i . Note that �(T (xjp

i , x
jp+2
i)) ≥ (1 − α)U (otherwise the refill trip at x

jp+1
i

can be dropped). This gives us:

2Li >
∑

0≤p≤qi−1

�(T (xjp

i , x
jp+2
i)) ≥ qi(1 − α)U =⇒ qi ≤ 2Li

(1 − α)U

The length of each refill trip no more than αU . Therefore, the total length of
the refill trips is at most αUqi, and the lemma follows. ��

The cost of the solution is the total length of the strands (which is the length
of the tour) plus the total cost of the refill trips. (Note that without loss of
generality we can assume that our tour always starts from a gas station. For the
case with only direct edges, there is exactly one strand, starting and ending at
the first city with the gas station).

In other words, the total cost of the solution is:

�(T) +
∑

i

αUqi ≤
(

1 +
2α

1 − α

)
�(T) ≤

(
1 + α

1 − α

)
3
2

c(OPT).

Theorem 3. There is a 3 (1+α)
2 (1−α) -approximation for the tour gas station problem.

4 Conclusion

Current problems of interest are to explore improvements in the approximation
factors for the special cases of Euclidean metrics, and planar graphs. In addi-
tion we would also like to develop faster algorithms for the single source and
destination case, perhaps at the cost of sacrificing optimality of the solution.

To Fill or Not to Fill: The Gas Station Problem 545

References

1. http://www.gasbuddy.com/
2. http://www.aaa.com/
3. Arkin, E.M., Hassin, R., Levin, A.: Approximations for minimum and min-max

vehicle routing problems. Journal of Algorithms 59(1), 1–18 (2006)
4. Arkin, E.M., Mitchell, J.S.B., Narasimhan, G.: Resource-constrained geometric

network optimization. In: Proceedings of the 14th Annual Symposium on Compu-
tational Geometry (SoCG), pp. 307–316 (1998)

5. Awerbuch, B., Azar, Y., Blum, A., Vempala, S.: New approximation guarantees
for minimum-weight k-trees and prize-collecting salesmen. SIAM Journal on Com-
puting 28(1), 254–262 (1998)

6. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation algorithms for
deadline-TSP and vehicle routing with time-windows. In: Proceedings of the 36th
annual ACM symposium on Theory of computing (STOC), pp. 166–174 (2004)

7. Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Approx-
imation algorithms for orienteering and discounted-reward TSP. In: Proceedings of
the 44rd Annual IEEE Symposium on Foundations of Computer Science (FOCS),
p. 46 (2003)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
M.I.T. Press and McGraw-Hill (2001)

9. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some
routing problems. SIAM Journal on Computing 7(2), 178–193 (1978)

10. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Research Lo-
gistics 34, 307–318 (1987)

11. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Dover Publi-
cations, Mineola, NY (2001)

12. Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R., Shmoys, D.B.: The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons,
Chichester (1985)

13. Li, C.-L., Simchi-Levi, D., Desrochers, M.: On the distance constrained vehicle
routing problem. Operations Research 40(4), 790–799 (1992)

14. Haimovich, A.G.R.K.M.: Bounds and heuristics for capacitated routing problems.
Mathematics of Operations Research 10(4), 527–542 (1985)

15. Haimovich, L.S.M., Rinnoooy Kan, A.G.: Analysis of heuristics for vehicle routing
problems. Vehicle Routing: Methods and Studies, pp. 47–61 (1988)

16. Nagarajan, V., Ravi, R.: Minimum vehicle routing with a common deadline. In:
Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM
2006. LNCS, vol. 4110, pp. 212–223. Springer, Heidelberg (2006)

17. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization. Dover Publica-
tions, Inc, Mineola, NY (1998)

http://www.gasbuddy.com/
http://www.aaa.com/

Online Bandwidth Allocation�

Michal Forǐsek1, Branislav Katreniak1, Jana Katreniaková1,
Rastislav Královič1, Richard Královič1,2, Vladimı́r Koutný1, Dana Pardubská1,

Tomáš Plachetka1, and Branislav Rovan1

1 Dept. of Computer Science, Comenius University,
Mlynská dolina, 84248 Bratislava, Slovakia

2 Dept. of Computer Science, ETH Zürich, Switzerland

Abstract. The paper investigates a version of the resource allocation
problem arising in the wireless networking, namely in the OVSF code
reallocation process. In this setting a complete binary tree of a given
height n is considered, together with a sequence of requests which have
to be served in an online manner. The requests are of two types: an
insertion request requires to allocate a complete subtree of a given height,
and a deletion request frees a given allocated subtree. In order to serve an
insertion request it might be necessary to move some already allocated
subtrees to other locations in order to free a large enough subtree. We are
interested in the worst case average number of such reallocations needed
to serve a request.

In [4] the authors delivered bounds on the competitive ratio of online
algorithm solving this problem, and showed that the ratio is between 1.5
and O(n). We partially answer their question about the exact value by
giving an O(1)-competitive online algorithm.

In [3], authors use the same model in the context of memory manage-
ment systems, and analyze the number of reallocations needed to serve
a request in the worst case. In this setting, our result is a corresponding
amortized analysis.

1 Introduction and Motivation

Universal Mobile Telecommunications System (UMTS) is one of the third-gen-
eration (3G) mobile phone technologies that uses W-CDMA as the underlying
standard, and is standardized by the 3GPP [8]. The W-CDMA (Wideband Code
Division Multiple Access) is a wideband spread-spectrum 3G mobile telecommu-
nication air interface that utilizes code division multiple access. The main idea
behind the W-CDMA is to use physical properties of interference: if two trans-
mitted signals at a point are in phase, they will “add up” to give twice the
amplitude of each signal, but if they are out of phase, they will “subtract” and
give a signal that is the difference of the amplitudes. Hence, the signal received
by a particular station is the sum (component-wise) of the respective transmit-
ted vectors of all senders in the area. In the W-CDMA, every sender s is given
� The research has been supported by grant APVV-0433-06 and VEGA 1/3106/06.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 546–557, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Online Bandwidth Allocation 547

a chip code v. Let us represent the data to be sent by a vector of ±1. When s
wants to send a data vector d = (d1, . . . , dn), di ∈ {1, −1}, it sends instead a
sequence d1 ·v, d2 · v, . . . , dn ·v, i.e. n-times the chip code modified by the data.
For example, consider a sender with a chip code (1, −1) that wants to send data
(1, −1, 1); then the actually transmitted signal is (1, −1, −1, 1, 1, −1). The signal
received by a station is then a sum of all transmitted signals. Clearly, if the chip
codes are orthogonal, it is possible to uniquely decode all the signals.

1, 1, 1, 1, 1, 1, 1, 1

1, 1, 1, 1,-1,-1,-1,-1

1, 1,-1,-1,-1,-1, 1, 1

1, 1,-1,-1, 1, 1,-1,-1

1,-1, 1,-1, 1,-1, 1,-1

1,-1, 1,-1,-1, 1,-1, 1

1,-1,-1, 1, 1,-1,-1, 1

1,-1,-1, 1,-1, 1, 1,-1

1,-1, 1,-1

1, 1,-1,-1

1, 1, 1, 1

1,-1,-1, 1

1

1,-1

1, 1

Fig. 1. An OVSF tree

One commonly used method of implementing the chip code allocation is Or-
thogonal Variable Spreading Factor Codes (OVSF). Consider a complete binary
tree, where the root is labeled by (1) , the left son of a vertex with label α is
labeled (α, α) and the right son is labeled (α, −α) (see Figure 1).

If a sender station enters the system, it is given a chip code from the tree in
such a way that there is at most one assigned code from each root-to-leaf path.
It can be shown [7, 1] that this construction fulfills the orthogonality property
even with codes of different lengths.

Clearly, a code at level l in the tree has length 2l, and a sender using this
code will use a fraction of 1/2l of the overall bandwidth. When users enter the
system, they request a code of a given length. It is irrelevant which particu-
lar code is assigned to which user, the length is the only thing that matters.
When users connect to and disconnect from a given base station, i.e. request
and release codes, the tree can become fragmented. It may happen that no code
at the requested level is available, even though there is enough bandwidth (see
Figure 2).

This problem can be solved by changing the chip codes of some already reg-
istered users, i.e. reallocating the vertices of the tree. Since the cost of a real-
location dominates this operation, the number of reallocations should be kept
minimal. In [4] the authors considered the problem of minimizing the number of
reallocations over a given sequence of requests and showed that it is NP-hard to
generate an optimal allocation schedule. In this paper, we show that the online

548 M. Forǐsek et al.

level 1

level 0

level 2

Fig. 2. No code at level 2 can be allocated although there is enough free bandwidth.
Full circles represent allocated vectors.

version proposed in [4] can be solved in amortized complexity O(1) reallocations
per request. Due to space restrictions some technical parts have been omitted
from this paper, and can be found in the technical report [5].

2 Problem Definition

Consider a complete binary tree T = (V, E) of height n with leaves at level 0
and the root at level n. A request vector is a vector r = (r0, . . . , rn) ∈ N

n+1,
where ri represents the number of users that request a code at level i. A code
assignment of a particular request vector r is a subset of vertices F ⊂ V , such
that every path from a leaf to the root contains at most one vertex from F , and
there are exactly ri vertices at level i in F .

The input consists of a sequence of requests of two types: insertion and dele-
tion. Let rt be the request vector and Ft its corresponding code assignment after
t requests. The algorithm has to process the next request in the following way:

A) insertion request at a vertex at level i.
The algorithm must output a new code assignment Ft+1 satisfying the re-
quest vector rt+1 = (r0, . . . , ri + 1, . . . , rn)1

B’) deletion request of a particular vertex v ∈ Ft.
Let v be at level i. The new request vector is rt+1 = (r0, . . . , ri − 1, . . . , rn),
and the new code assignment is Ft+1 = Ft \ {v}.

During each step, the number of reassignments is |Ft+1 \ Ft|. For a given
sequence of requests R1, . . . , Rm, we are interested in the amortized number of

reassignments per request, i.e. the quantity 1
m

m−1∑

t=0

|Ft+1 \ Ft|.
Note that there is no harm in allowing the reallocations within the deletion

requests. In a deletion request the algorithm remembers the moves it would
perform, and performs them in the next insertion request; in case of consecutive
deletion requests it is enough to maintain a mapping between the actual vertices

1 We may assume, without loss of generality, that there is enough bandwidth to satisfy
each request.

Online Bandwidth Allocation 549

in F and their “virtual” positions. This leads to a reformulation of a deletion
request – instead of deleting the particular vertex v at level i, algorithm is allowed
to delete some vertex at level i instead:

B) deletion request of a vertex at level i.
The algorithm is required to produce a new code assignment Ft+1 satisfying
the request vector rt+1 = (r0, . . . , ri − 1, . . . , rn).

This definition bears resemblance to memory allocation problems studied in
the operating systems community, in particular to the binary buddy system mem-
ory allocation strategy introduced in [6]. In this strategy, requests to allocate and
deallocate memory blocks of sizes 2l are served. The system maintains a list of
free blocks of sizes of 2k. When allocating a block of size 2l in a situation where
no block of this size is free, some bigger block is recursively split into two halves
called buddies. When a block whose buddy is free is deallocated, both buddies
are recursively recombined into a bigger block.

The properties of binary buddy system have been extensively studied in the
literature (see e.g. [2] and references therein). However, the bulk of this re-
search is focused on cases without reallocation of memory blocks. E.g. [2] shows
how to implement the buddy system in amortized constant time per alloca-
tion/deallocation request, but in a model where reallocation is not allowed. As
the restriction of not allowing reallocations makes the model substantially differ-
ent, the results in [2] can not be directly applied to the model with reallocations
allowed.

A binary buddy system with memory block reallocations has been studied
in [3]. This paper analyzes both the number of reallocated blocks and the number
of reallocated bytes per request; the analysis of the number of reallocated blocks
is in fact the very same model that is used in our paper. However, only the worst
case scenario of simple greedy algorithms is analyzed in [3] and presented results
are quite pessimistic: s − 1 blocks have to be reallocated in worst case when
allocating a block of size s. There are stronger results presented in [3], but all of
them require a significant amount of auxiliary memory.

3 The Algorithm

In this section we propose an online algorithm that processes the sequence of
insertion/deletion requests according to the rules A) and B). The goal is to keep
the amortized number of reallocations per request constant. We start with some
notions and notations.

If we order the leaves from left to right and label them with numbers 0, . . . ,
2n − 1, there is an interval of the form Iu =

〈
i2l, (i + 1)2l − 1

〉
assigned to

each tree vertex u of level l. We call such an interval a place of level l, and
say that Iu begins at position i2l. For a given code assignment F , a place Iu

corresponding to a vertex u is called an empty (or free) place if neither u nor any
vertex from the subtree rooted at u is in F . For u ∈ F the corresponding place
Iu is an occupied place, and we say that there is a pebble of level l located on

550 M. Forǐsek et al.

Iu (or, alternatively there is a pebble of level l at position i2l). Since in a code
assignment F , every path from a leaf to the root contains at most one vertex,
we can view the code assignment F as a sequence of disjoint places which are
either empty or occupied by pebble (see Figure 3). While the free places in this
decomposition are not uniquely defined, we shall overlook this ambiguity, as we
will argue either about a particular place or about the overall size of free places
(called also free bandwidth).

We say that a pebble (or place) of level l has size 2l. The left (right) neighbor
of a pebble is a pebble placed on the next occupied place to the left (right). Anal-
ogously we talk about a left (right) neighbor of a free place. We denote pebbles
by capital letters A, B, . . . , X , and their corresponding sizes by a, b, . . . , x. The
notion of a vertex and the corresponding place are used interchangeably.

The key idea of our algorithm is to maintain a well defined structure in the
sequence of pebbles. An obvious approach would be to keep the sequence sorted
– i.e. the pebbles of lower levels always preceding the pebbles of higher levels
with only the smallest necessary free places between them. It is easy to see that
the addition to and deletion from such a structured sequence can be done with
at most O(n) reallocations.2 Unfortunately, it is also not difficult to see that
there is a sequence of requests such that this approach needs amortized O(n)
reallocations per request (see [4]). The problem is that a too strictly defined
structure needs too much “housekeeping” operations.

To overcome this problem we will keep the maintained structure less rigid. The
pebbles are colored and kept so that the black pebbles form a sorted sequence
according to the previous rule. There are several restrictions imposed on white
pebbles. Informally, if there is a free place in the black sequence, a single white
pebble can be placed at the beginning of this place. Moreover, all white pebbles
form an increasing sequence. When moved, the pebble can change its color.

Formally, the structure of the sequence of pebbles is described by the following
invariants.

C: Pebble A is black, if there is no bigger pebble before A, otherwise it is white.
P1: The free bandwidth before any pebble X is strictly less than x.
P2: There is always at least one black pebble between any two white pebbles.
P3: There is no white pebble between two black pebbles of the same size.

A sequence of pebbles and free places satisfying C, P1–P3 will be called a
valid situation. The key observation about valid situations is that in a valid sit-
uation it is always possible to process an insertion request without reallocations:

Lemma 1. Consider a valid situation, and an insertion request of size a = 2l.
If there is a free bandwidth of at least a, then there is also a free place of size a.

2 The addition request is processed by placing the pebble of level l at the end of
sequence of pebbles of this level. If this place is already occupied by some pebble B,
B is removed and reinserted. Since there are at most n different levels, and the levels
of reinserted pebbles are increasing, the whole process ends after O(n) iterations.
The deletion works in a similar fashion.

Online Bandwidth Allocation 551

Fig. 3. A code assignment seen as a sequence of black and white pebbles

The algorithm is designed to maintain the valid situations over the whole
computation, so all requests can be processed without reallocations. However,
while processing a request, the intermediate situation might temporarily become
not valid. The key to an effective algorithm is to develop a post-processing phase
in each request that restores the validity using only a few reallocations. We show
that in the case of insertion requests, a constant number of reallocations in each
request is sufficient. In the deletion requests, however, a more involved accounting
argument is used to show that the average number of reallocations per request
in a worst-case execution remains constant.

Last notion connected to a structure of pebbles is that of closing position.

Definition 1. The closing position of level l (of size x) is the position after
the last black pebble of level l (of size x) if such a pebble exists. Otherwise, the
closing position of level l is the position of the first pebble of higher level (size
bigger than x).

3.1 Procedure Insert

We assume that whenever the procedure Insert is called, it is to process a new
request of size a in a valid situation in which there is a free bandwidth of size at
least a. First, a free place of size a is found, and a pebble is put on this place.
If the sequence is no longer valid after this operation, the algorithm reassigns a
constant number of pebbles in order to restore the invariants. The procedure is
listed as Algorithm 1, and its analysis is given in the following theorem:

Theorem 1. Consider a valid situation, and an insertion request of size a. If
there is a free bandwidth of size at least a, procedure Insert correctly processes
the request. Moreover, the output situation is valid, and only a constant number
of pebbles has been reassigned within the execution.

Sketch of proof. Here, we present an overall structure of the proof with a number
of unproven claims. The complete version can be found in [5].

Consider an insertion request of size a, and suppose the invariants C, P1–P3
hold. Let P be the first free place of size a; Lemma 1 ensures existence of such
place. If P does not have a left neighbor (i.e. there is no other pebble present)
or its left neighbor B is black, then the algorithm puts the pebble A on P and
the situation remains valid.

From now on suppose that P has a white left neighbor B, and denote the
potential right neighbor of P by Z. However, there exists a left neighbor C of

552 M. Forǐsek et al.

Algorithm 1. Procedure Insert: inserts a pebble A of size a into a valid situ-
ation in which the free bandwidth of size ≥ a is guaranteed

1: let P be the first free place of size a
2: let B be the left neighbor of P
3: if B does not exist or B is black

then
4: put A on P
5: return
6: end if
7:
8: let C be the left neighbor of B
9: if c < a then

10: put A on P
11: return
12: else if c = a then
13: remove B
14: put A just after C
15: put B just after A
16: return
17: end if
18:

19: remove B
20: if a < b then
21: rename A and B so that A

is the bigger pebble
22: end if
23:
24: let D be the pebble at the closing

position of size a.
25: if D is white then
26: let E be D’s right neighbor
27: remove D, E
28: put A at D’s original position
29: put B after A
30: put D after B
31: put E at B’s original position
32: else if D is black then
33: remove D
34: put A at D’s original position
35: put B after A, put D after C
36: end if

B, such that C is black and c > b. We distinguish three sub-cases: c < a, c = a,
and c > a. When c < a, the possible right neighbor Z is black and its size is
bigger than a. Therefore the black pebble A might be put on P resulting in a
valid situation (line 10). If c = a, the sequence of lines 13–16 is executed: first,
white pebble B is temporarily removed. Since there has been no other pebble
between A and C, and a = c, the place of size a immediately following C is now
free and black A is placed immediately after C. Since b < c = a, the place of size
b immediately following A is now free, so white B can be put there. Finally, if
c > a, the algorithm temporarily removes B3, and calls the pebble at the closing
position of size a by D (there must be a pebble present). The proof is concluded
by considering two final sub-cases based on whether D is white or black. In the
first case, the action is depicted on Figure 4. In case of black D the situation is
as follows from Figure 5. ��

3.2 Procedure Delete

The deletion request requires to remove one pebble of a specified level. In our
approach, the last (rightmost) pebble A of the requested level is chosen (see
Procedure Delete, Algorithm 2). However, this action may violate the invari-
ants P1–P3. To remedy this, the algorithm uses several iterations to “push the
problem” to the right. The main “problem” in this case is the free place caused

3 Assume w.l.o.g. that a ≥ b, see [5].

Online Bandwidth Allocation 553

D
E

C

B P

Z

C
Z

D
A B

E

X

X

Fig. 4. An example of executing lines 26–31 of procedure Insert

C

Z

A
B

D

D

C

B

Z

P

Fig. 5. An example of executing lines 33–35 of procedure Insert

by removing A. The “pushing” is done by selecting a suitable pebble X to the
right of A, removing it, and using it to fill in the gap. A new iteration then
starts to fix the problem at X ’s original place. The suitable candidate is found
as follows: from all pebbles to the right of A, the smallest one is taken; if there
are more pebbles of the smallest size available, the rightmost one is chosen. The
correctness is proved by showing that this procedure is well defined, and that
after a finite number of iterations, a valid situation is obtained (the full proof
can be found in [5]):

Theorem 2. Consider a valid situation, and a deletion request of size a. Pro-
cedure Delete correctly processes the request, resulting in a valid situation.

Sketch of proof. Let us number the iterations of the while loop by t = 1, 2,
Let the t-th iteration starts with the configuration of pebbles and free places Γt,
and a position it; it selects a pebble Xt of size xt starting at jt, moves it to it,
swaps it with its white neighbor if necessary, and sets it+1 := jt.

554 M. Forǐsek et al.

Algorithm 2. Procedure Delete removes the last pebble of level l

1: let A be the last pebble of level l, and i be the starting position of A
2: remove A
3: while there are any pebbles to the right of i do
4: let x be the size of the smallest pebble to the right of i
5: if there is a free place of size x starting at i then
6: let X be the rightmost pebble of size x
7: let j be the starting position of X
8: move X to i
9: if X has white left neighbor Q, and Q has a left neighbor W of size x then

10: swap X and Q � W is black, w ≤ x
11: end if
12: let i:=j
13: else
14: exit
15: end if
16: end while

it

Yt Pt+1

jt = it+1

Xt

Pt

Fig. 6. One iteration of the while loop in procedure Delete

Denote by Pt the free place of size at starting at it such that a1 = a, and the
size at+1 is determined as follows: let Γ ′t be obtained from Γt by putting a new
pebble At on Pt. If the color of Xt in Γ ′t is black, then at+1 := xt, otherwise
at+1 := yt, where Yt is Xt’s left neighbor. It can be shown that this definition is
correct, i.e. that Pt+1 is indeed free. To do so, the following claim will be show
by induction on t:

For every iteration t of the while loop, the corresponding Γ ′t is a valid situation

For t = 1 the iteration starts just after A was removed from a valid situation
Γ and replaced by A1 with a1 = a, so the basis of induction follows.

For the inductive step, consider the t-th iteration. The algorithm either stops or
enters the next iteration. We prove that in the latter case Γ ′t+1 is valid, provided
Γ ′t was valid. We distinguish two cases:

– if xt < at, it is possible to prove that there are neither white pebbles nor
free places between it and jt, from which the invariants readily follow;

– if xt ≥ at, then the swap on line 10 never happens, and it is again possible
to argue the validity of the resulting situation.

Online Bandwidth Allocation 555

A separate analysis of the last iteration concludes the proof of the theorem: the
algorithm stops either when there are no pebbles to the right of it, or when the
selected pebble Xt does not fit to position it. In both cases it is possible to show
that the resulting situation is valid. ��

4 Complexity

This section is devoted to the analysis of the average number of reassignments
per request needed in the worst-case computation. Obviously, Insert requires at
most constant number of reallocations. The situation with Delete is more com-
plicated. We develop an accounting scheme that ensures a linear (in the number
of requests) number of iterations of the while loop over the whole computation.
To this end, we introduce the notion of coins: each request pays a constant num-
ber of coins to the accounting system, and each individual iteration of the while
loop in Delete spends one coin from the system.

Each request is associated with a constant number of coins which can be put
on some places. We show that it is possible to put the coins in such a way that
each iteration of the loop in Delete can be paid by an existing coin. In our coin
placement strategy we shall maintain the following additional invariant:

P4: Consider a free place P such that there are some pebbles to the right of
P . Let X be the smallest pebble to the right of P . Then there are at least
�2p/x� coins on P .

From now on we shall consider situations with some coins placed in some
places, and we show how to manage the coins so that there is always enough
cash to pay for each iteration in Delete. The following two lemmas present the
accounting strategy for Insert and Delete:

Lemma 2. Let us suppose that procedure Insert was called from a situation
in which invariants P1– P4 hold. Then it is possible to add a constant number
of coins and reallocate the existing ones in such a way that invariants P1– P4
remain valid.

Proof. It has already been proven that invariants P1– P3 are preserved by
procedure Insert, so it is sufficient to show how to add a constant number of
coins in order to satisfy P4. During procedure Insert, only a constant number
of pebbles are touched – i.e. added or reassigned. Let Γ be the situation before
Insert and Γ ′ be the situation after Insert finished. Let P be a free place in
Γ ′ and X be the smallest pebble to the right of P . We distinguish two cases:
Case 1: X was touched during Insert

If p < x/2, no pebbles are required on P , so let us suppose that p ≥ x/2. However,
since Γ ′ is valid, the free bandwidth before X is less than x, so p = x/2, and
there is only one pebble required in P ; this pebble will be placed on P and
charged to X . Obviously, for each touched pebble X , there may be only one free
place of size x/2 to the left (because of P1), so every touched pebble will be
charged at most one coin using in total constant number of coins.

556 M. Forǐsek et al.

Case 2: X was not touched during Insert

If P was free in Γ the required amount of �2p/x� coins was already present on
P in Γ , so let us suppose that P was not free in Γ . That means that P became
free in the course of Insert when some pebbles were reallocated. Using similar
arguments as in the previous case we argue that p = x/2. However, during
Insert only a constant number of free places of a given size could be created,
so it is affordable to put one coin on each of them. ��
Lemma 3. Let us suppose that procedure Delete was called from a situation
in which invariants P1– P4 hold. Then it is possible to add a constant num-
ber of coins, remove one coin per iteration of the main loop, and reallocate the
remaining coins in such a way that invariants P1– P4 remain valid.

Sketch of proof. Let us suppose that there is at least one full iteration of the
main loop. Recall the notation from the proof of Theorem 2, i.e. we number the
iterations of the main loop, and Γt is the configuration at the beginning of t-th
iteration. Moreover, Γ ′t is obtained from Γt by putting a new pebble At on Pt.
It follows from the proof of the theorem that Γ ′t is always a valid situation. We
use induction on t to show that the following can be maintained:

For every iteration t > 1 of the while loop, the corresponding Γ ′t satisfies P1–
P4, all pebbles to the right of it have size at least at, and one extra coin lays
on At. Moreover, if some pebble to the right of it has the size at, then two extra
coins lay on At.

We omit the details about the induction basis, and proceed with the inductive
step. In order to prove the claim for Γ ′t+1, consider the situation at the end of
the t-th iteration when the algorithm enters the (t + 1)-st one. Γ ′t+1 is obtained
from Γ ′t by removing At, moving Xt to it, and placing At+1 on it+1 = jt. Note
that in this case xt ≥ at, so there is no swap. It is possible to show that all
pebbles to the right of it+1 have size at least at+1, and that there is no free place
between it and jt in Γ ′t+1. Since for the free places before it and after jt, P4
remains valid, we argue that P4 holds in Γ ′t+1.

Now we show how to find two free coins – one to pay for the current iteration,
and one to be placed on At+1. If xt = at, there are two coins placed on At.
Otherwise (i.e. in case that xt > at) one coin comes from the deletion of At and
the other can be found as follows. Since Xt was placed on it, and xt > at, there
must have been a free place P of size xt/2 in Γ ′t . Moreover, Xt was to the right
of P , and so there must have been at least one coin on P . In Γ ′t+1, P is covered
by Xt, so the coin can be used.

The last thing to show is to find a second free coin in case that there exists
some pebble Q to the right of At+1 of size q = at+1. In this case Xt is white in
Γ ′t – otherwise at+1 = xt would hold and there would be no pebble of size xt

to the right of Xt. Hence xt ≤ at+1/2 and At+1 in Γ ′t+1 covers a place of size
at+1/2 that has been free in Γ ′t . According to P4 there is a coin on this place in
Γ ′t ; this coin can be used.

The proof of the theorem is concluded by considering the last iteration. Let
Γ ′tfin

be the last situation. The final situation is obtained from Γ ′tfin
by removing

Online Bandwidth Allocation 557

Atfin
. We show that P4 holds. The only free place that could violate P4 is the

one remained after Atfin
, however, there was a coin on Atfin

, and all pebbles to
the right (if any) are bigger than atfin

. ��

5 Conclusion

We have presented an online algorithm for bandwidth allocation in wireless net-
works, which can be used to perform the OVSF code reallocation with the amor-
tized complexity of O(1) reallocations per request. This is an improvement over
the previous best known result achieving the competitive ratio of O(n). More-
over, the constant in our algorithm is small enough to be of practical relevance.

On the other hand, no attempt has been made at minimizing this constant.
With the best known lower bound of 1.5 it would be worthwhile to close the gap
even further.

References

1. Adachi, F., Sawahashi, M., Okawa, K.: Tree structured generation of orthogonal
spreading codes with different lengths for the forward link of DS-CDMA mobile
radio. IEE Electronic Letters 33(1), 27–28 (1997)

2. Brodal, G.S., Demaine, E.D., Munro, J.I.: Fast allocation and deallocation with an
improved buddy system. Acta Informatica 41(4–5), 273–291 (2005)

3. Defoe, D.C., Cholleti, S.R., Cytron, R.K.: Upper bound for defragmenting buddy
heaps. In: LCTES ’05: Proceedings of the 2005 ACM SIGPLAN/SIGBED conference
on Languages, compilers, and tools for embedded systems, pp. 222–229. ACM Press,
New York, USA (2005)

4. Erlebach, T., Jacob, R., Mihalák, M., Nunkesser, M., Szabó, G., Widmayer, P.:
An algorithmic view on OVSF code assignment. In: Diekert, V., Habib, M. (eds.)
STACS 2004. LNCS, vol. 2996, pp. 270–281. Springer, Heidelberg (2004)

5. Forǐsek, M., Katreniak, B., Katreniaková, J., Královič, R., Královič, R., Koutný, V.,
Pardubská, D., Plachetka, T., Rovan, B.: Online bandwidth allocation. Technical
report, arXiv:cs/0701153v1 (2007)

6. Knowlton, K.C.: A fast storage allocator. Communications of ACM 8(10), 623–624
(1965)

7. Minn, T., Siu, K.-Y.: Dynamic assignment of orthogonal variable-spreading-factor
codes in W-CDMA. IEEE Journal on Selected Areas in Communications 18(8),
1429–1440 (2000)

8. Wikipedia. Universal mobile telecommunications system. Available at: From
Wikipedia, the free encyclopedia [Online; accessed 23. March (2006)], http://en.
wikipedia.org/wiki/Umts

http://en.wikipedia.org/wiki/Umts
http://en.wikipedia.org/wiki/Umts

Two’s Company, Three’s a Crowd: Stable Family and
Threesome Roommates Problems

Chien-Chung Huang

Dartmouth College
villars@cs.dartmouth.edu

Abstract. We investigate Knuth’s eleventh open question on stable matchings. In
the stable family problem, sets of women, men, and dogs are given, all of whom
state their preferences among the other two groups. The goal is to organize them
into family units, so that no three of them have incentive to desert their assigned
family members to join in a new family. A similar problem, called the threesome
roommates problem, assumes that a group of persons, each with their preferences
among the combinations of two others, are to be partitioned into triples. Similarly,
the goal is to make sure that no three persons want to break up with their assigned
roommates.

Ng and Hirschberg were the first to investigate these two problems. In their
formulation, each participant provides a strictly-ordered list of all combinations.
They proved that under this scheme, both problems are NP-complete. Their paper
reviewers pointed out that their reduction exploits inconsistent preference lists
and they wonder whether these two problems remain NP-complete if preferences
are required to be consistent. We answer in the affirmative.

In order to give these two problems a broader outlook, we also consider the
possibility that participants can express indifference, on the condition that
the preference consistency has to be maintained. As an example, we propose a
scheme in which all participants submit two (or just one in the roommates case)
lists ranking the other two groups separately. The order of the combinations is de-
cided by the sum of their ordinal numbers. Combinations are tied when the sums
are equal. By introducing indifference, a hierarchy of stabilities can be defined.
We prove that all stability definitions lead to NP-completeness for existence of a
stable matching.

1 Problem Definition

Knuth proposed twelve open questions on the stable matching problem [9]. The
eleventh question asks whether the well-studied stable marriage problem [3] can be
generalized to the case of three parties, women, men, and dogs. In this paper, we call
this problem the stable family problem and refer generically to all participants in this
problem as “players.” Roughly speaking, given sets of women, men, and dogs, all of
whom state their preferences among the other two groups, the goal is to organize them
into family units so that there is no blocking triple: three players each preferring one
another to their assigned family members. A problem in a similar vein, which we call
the threesome roommates problem, assumes that 3n students are to be assigned to the
dormitory bedrooms in some college. They state their preferences of the combinations

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 558–569, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Two’s Company, Three’s a Crowd 559

of two other persons. The goal is to partition them into sets of size 3. Such a partition
(matching) is said to be stable if no three persons each prefer the others to their assigned
roommates.

As Knuth does not specify any precise definition of “preference” and “blocking
triples,” one can conceive a number of ways to define the two problems. One possi-
ble formulation is that each player submits a strictly-ordered preference list, ranking
all possible combinations that she/he/it can get in a matching. We call such a scheme
strictly-ordered-complete-list (SOCL) scheme. In this setting, Ng and Hirschberg [10]
proved that both problems are NP-complete.

At the end of their paper, Ng and Hirschberg mentioned that their reviewers pointed
out their reduction allows preference to be inconsistent. For example, man m might
rank (w1, d1) higher than (w2, d1), but he also ranks (w2, d2) higher than (w1, d2). In
other words, he does not consistently prefer woman w1 over woman w2 (nor the other
way around). Independently, Subramanian [11] gave an alternative NP-completeness
proof for stable family, but his reduction also uses inconsistent lists.

The reviewers of Ng and Hirschberg wondered whether these two problems remain
NP-complete if inconsistency is disallowed. To answer this open question and to mo-
tivate some variants problems we will define, we introduce the notion of preference
posets and simple lists. In stable family, assuming that each player has two simple lists
in which two different types of players are ranked separately, a preference poset is a
product poset of the two simple lists. In such a poset, the combination (w1, d1) pre-
cedes another combination (w2, d2) only if w1 ranks at least as high as w2 and d1 at
least as high as d2 in the simple lists. If neither combination precedes the other, they
are incomparable. Similarly, in threesome roommates, the preference poset is the prod-
uct poset of the one simple list with itself. By this notion, the question raised by the
reviewers of Ng and Hirschberg can be rephrased as follows. Under the SOCL scheme,
if every player has to submit a preference list which is a linear extension of her/his/its
preference poset, are the stable family and the threesome roommates still NP-complete?
We answer in the affirmative.

In an attempt to give these two problems a broader outlook, we then allow players
to express indifference by giving full preference lists containing ties. In particular, to
capture the spirit of maintaining consistency in the preferences, we stipulate that the full
list must be a relaxed linear extension of a preference poset: strict precedence order in
the poset has to be observed in the relaxed linear extension; only incomparable elements
in the poset can be tied.

We propose the following scheme to make the above concept concrete. Suppose that
a player submits two simple lists (or just one in the roommates case). We create a full
list, ranking the combinations based on the sums of their ordinal numbers. For example,
for man m, the combination of his rank-2 woman and rank-5 dog is as good as that of
his rank-4 woman and rank-3 dog; while both of them are inferior to the combination of
his top-ranked woman and his top-ranked dog. We call such a scheme precedence-by-
ordinal-number (PON) scheme. The PON scheme produces full preference lists which
are relaxed linear extensions of preference posets. Also, one can envisage an even more
flexible scheme. For example, instead of giving “ranks,” the players can provide “rat-
ings” of other players. The order of the combinations can be decided by the sum of the

560 C.-C. Huang

ratings; two combinations are tied only when the sums of their ratings are equivalent.
Setting theoretical concerns aside for a moment, the above schemes are probably more
practicable when n is large, because a player only has to provide lists of Θ(n) length,
while under the SOCL scheme, they have to give strictly ordered lists of size Θ(n2).

By allowing indifference, we can define 4 different types of blocking triples and,
based on them, build up a hierarchy of stabilities. (This hierarchy is similar to that
constructed by Irving in the context of 2-party stable matchings [7]).

– Weak Stable Matching: a blocking triple is one in which all three players of the
blocking triple strictly prefer the other two members in the triple over their assigned
family members (roommates).

– Strong Stable Matching: a blocking triple is one in which at least two players of
the blocking triple strictly prefer the other two players in the triple to their assigned
family members (roommates), while the remaining player can be indifferent or also
strictly prefer the other two players in the triple.

– Super Stable Matching: a blocking triple is one in which at least one player of
the blocking triple strictly prefers the other two players in the triple to her/his/its
assigned family members (roommates), while the remaining players can be indif-
ferent or also strictly prefer the other two players in the triple.

– Ultra Stable Matching: a blocking triple is one in which all three players in the
triple are at least indifferent to the others.

Note that if ties are not allowed in the full preference lists, i.e., the SOCL scheme,
then blocking triples can only be of degree 3. Thus there can be only one type of sta-
bility. For presentational reason, in this case, we refer to the stability under the SOCL
scheme as the weak stability.

Our Results and Paper Roadmap. We will prove in the paper that, if full prefer-
ence lists are (relaxed) linear extensions of preference posets, the problem of deciding
whether weak/strong/super/ultra stable matchings exist is NP-complete in both the sta-
ble family problem and the threesome roommates problem. Our reduction techniques
are inspired by Ng and Hirschberg’s, although the consistency requirement in the pref-
erences makes our construction more involved. In presenting our result, instead of di-
rectly answering the open question posed by Ng and Hirschberg’s reviewers by studying
weak-stability, we make a detour to first study strong/super/ultra stability. Introducing
them first helps us to explain our intuition behind the more complex reduction for the
former problem.

As is well-known, the stable marriage and the stable roommates problems can
be solved in O(n2) time, by the Gale-Shapley algorithm [3] and by the Irving algo-
rithm [6], respectively. Unfortunately, our results, along with Ng and Hirschberg and
Subramanian’s, indicate that attempts to efficiently solve the stable matching problem
in generalized cases of three (or more) parties are unlikely to be fruitful. This is not
surprising, as in theoretical computer science, the fine line between P and NP is often
drawn between the numbers two and three.

We organize the paper as follows. In Section 2, we present necessary notation;
Section 3 proves the NP-completeness of strong/super/ultra stable matchings in the sta-
ble family problem under the PON scheme; Section 4 presents a reduction to transform

Two’s Company, Three’s a Crowd 561

a stable family problem to a threesome roommate problem, thus establishing the NP-
completeness of strong/super/ultra stable matchings in the latter; Section 5 considers
the SOCL scheme and proves the NP-completeness of (weak) stable matchings, thereby
answering the open question posed by the anonymous reviewers of Ng and Hirschberg.
Section 6 concludes and discusses related issues. Due to space constraint, we omit some
proofs. See [5] for full details.

2 Preliminaries

We use M, W , D to indicate the sets of men, women, and dogs in stable family; the
students in threesome roommates are denoted as R. In stable family, Lg(p) denotes the
simple list of player p on the players of type g ∈ {M, W , D}. For example LW(m) is
the simple list of man m among women W . In threesome roommates, we simply write
L(m), where m ∈ R, dropping the subscript.

In general, we use the notation � to denote the precedence order (in either posets
or in linear lists). For example, supposing that pi ranks higher than pj in the list l, we
write pi �l pj . In a poset Q, two elements qi, qj either one precedes the other, which we
write qi �Q qj or qj �Q qi, or they are incomparable, which is expressed as qi||Qqj .
The notation � is also used to express explicitly the order of players in simple lists. For
example, we write L(p) = q � r � · · · to show that player p prefers player q to player
r. Note also that the notation · · · denotes the remaining players in arbitrary order. We
use the notation rp(q) to indicate the rank of q on player p’s simple list.

We say a blocking triple is of degree i, if i players strictly prefer the triple while the
remaining 3−i players are indifferent. Unless stated otherwise, in the article, when we
say some triple “blocks,” it is always a blocking triple of degree 3.

A preference poset constructed from lists l1 and l2 is written as l1 × l2. To be precise,
given lists l1 and l2 and the poset l1 × l2, supposing that {pi, pj}, {pi′ , pj′} ∈ l1 × l2,
then {pi, pj} �l1×l2 {pi′ , pj′} only if (1) pi �l1 pi′ , pj = pj′ , or (2) pj �l2 pj′ , pi =
pi′ , or (3) pi �l1 pi′ , pj �l2 pj′ . The notation π(X) means an arbitrary permutation
of elements in the set X . Eπ(l1 × l2) is an arbitrary linear extension of the preference
poset l1 × l2.

3 Reducing Three-Dimensional Matching to Stable Family

In this section, we focus on the NP-completeness of strong stable matching under the
PON scheme. Similar results hold for super stable and ultra stable matchings by a
straightforward argument and will be discussed at the end of this section.

Our reduction is from the three-dimensional matching problem, one of the 21
NP-complete problems in Karp’s seminal paper [8]. The problem instance is given in
the form Υ = (M, W , D, T), where T ⊆ M × W × D. The goal is to decide whether
a perfect matching M ⊆ T exists. This problem remains NP-complete even if every
player in M ∪ W ∪ D appears exactly 2 or 3 times in the triples of T [4].

We first explain the intuition behind our reduction. Supposing that man mi appears in
three triples (mi, wia, dia), (mi, wib, dib), (mi, wic, dic) in T , we create three dopple-
gangers, mi1, mi2, mi3 in the derived stable family problem instance Υ ′. We also create

562 C.-C. Huang

four garbage collectors, wg
i1, d

g
i1, w

g
i2, d

g
i2. Each doppleganger mij puts a woman-dog

pair, with whom man mi shares a triple, and the garbage collectors on top of his two
simple lists. The goal of our design is that in a stable matching, exactly one dopple-
ganger will be matched to a woman-dog pair with whom mi shares a triple in T , while
the other two dopplegangers will be matched to garbage collectors. In the case that there
are only two triples in T containing man mi, we artificially make a copy of one of the
triples, making the total number of triples three, and treat him as described above.

Now, we will refer to the set of dopplegangers as M1, M2, M3, the set of garbage
collectors as Wg

1 , Wg
2 , Dg

1 , Dg
2 and the original set of real women and real dogs as W , D.

Collectively, we refer to them as X = M1∪M2∪M3∪Wg
1 ∪Wg

2 ∪W ∪Dg
1 ∪Dg

2 ∪D.
To realize our plan, we introduce two gadgets. The first is three sets of “dummy

players”: m#
1 , w#

1 , d#
1 , m#

2 , w#
2 , d#

2 , m#
3 , w#

3 , d#
3 . Their preferences are such that they

must be matched to one another in a stable matching. To be precise, for j ∈ {1, 2, 3},

– LW(m#
j) = w#

j � · · · , LD(m#
j) = d#

j � · · ·
– LM(w#

j) = m#
j � · · · , LD(w#

j) = d#
j � · · ·

– LM(d#
j) = m#

j � · · · , LW(d#
j) = w#

j � · · ·

These nine dummy players are used to “pad” the preference lists of other players.
Their purpose will be clear shortly.

Another gadget we need is a set of “guard players” for each doppleganger in M1 ∪
M2 ∪M3. They will make sure that in a stable matching, a doppleganger mij will only
get a woman-dog pair with whom mi shares a triple in T or those garbage collectors.
As an example, consider the doppleganger mi1. He has six associated guard players,
m�1

i1 , w�1
i1 , d�1

i1 , m�2
i1 , w�2

i1 , d�2
i1 and their preferences are summarized below:

– LW(mi1) = wg
i2 � wg

i1 � wia � w�1
i1 � w�2

i1 � w#
1 � w#

2 � w#
3 � · · · ,

LD(mi1) = dg
i2 � dg

i1 � dia � d�2
i1 � d�1

i1 � d#
1 � d#

2 � d#
3 � · · ·

– LW(m�1
i1) = w�1

i1 � · · · , LD(m�1
i1) = d�1

i1 � · · ·
LW(m�2

i1) = w�2
i1 � · · · , LD(m�2

i1) = d�2
i1 � · · ·

– LM(w�1
i1) = mi1 � m�1

i1 � · · · , LD(w�1
i1) = d�1

i1 � d#
1 � · · ·

LM(w�2
i1) = mi1 � m�2

i1 � · · · , LD(w�2
i1) = d�2

i1 � d#
1 � · · ·

– LM(d�1
i1) = mi1 � m�1

i1 � · · · , LW(d�1
i1) = w�1

i1 � w#
1 � · · ·

LM(d�2
i1) = mi1 � m�2

i1 � · · · , LW(d�2
i1) = w�2

i1 � w#
1 � · · ·

The following case analysis proves that, in a stable matching M ′, mi1 will get only
players from the set {wg

i1, w
g
i2, wia, dg

i1, d
g
i2, dia}.

– Suppose that mi1 gets two players ranking below w�1
i1 and d�1

i1 respectively. It can be
observed that for both w�1

i1 , d�1
i1 , the best man is mi1. Therefore, they would prefer

mi1 and so does he them, inducing a blocking triple to M ′, a contradiction.
– Suppose that mi1 gets a woman w ∈ {wia, wg

i1, w
g
i2} and a dog d ranking below

d�1
i1 . In this case, we can be sure that d cannot be d#

1 or d#
2 or d#

3 , since their
preferences guarantee that they will only be matched to other dummy players. So,
rmi1(w)+rmi1 (d) ≥ 10, while rmi1(w

�1
i1)+rmi1(d

�1
i1) = 9, causing (mi1, w

�1
i1 , d�1

i1)

Two’s Company, Three’s a Crowd 563

to become a blocking triple. This example explains why we need to pad the simple
lists of mi1 with dummy players.
The case that mi1 gets a dog d ∈ {dia, dg

i1, d
g
i2} and a woman w ranking lower than

w�2
i1 follows analogous arguments; (mi1, w

g
i2, d

g
i2) will become a blocking triple.

– Suppose that mi1 gets only one of the players from the set {w�1
i1 , w�2

i1 , d�1
i1 , d�2

i1}.
Without loss of generality, we assume that (mi1, w

�1
i1 , dφ), dφ �= d�1

i1 , is part of the
matching. For woman w�1

i1 , dog dφ cannot be the dummy player d#
1 . Therefore,

rw�1
i1

(mi1) + rw�1
i1

(dφ) ≥ 4 > 3 = rw�1
i1

(m�1
i1) + rw�1

i1
(d�1

i1). Similarly for d�1
i1 ,

rd�1
i1

(m�1
i1) + rd�1

i1
(w�1

i1) = 3, which is better than whatever combination it can get.

Therefore, we have that (m�1
i1 , w�1

i1 , d�1
i1) constitutes a blocking triple to M ′. This

example shows why we need to pad the preference of w�1
i1 , d�1

i1 (and also w�2
i1 , d�2

i1)
with dummy players.

– Suppose that mi1 gets w�1
i1 and d�1

i1 . Note that w�1
i1 � w�2

i1 and d�2
i1 � d�1

i1 . There-
fore, mi1 is indifferent to the combinations of w�2

i1 and d�2
i1 , since rmi1(w

�1
i1) +

rmi1(d�1
i1) = 9 = rmi1(w�2

i1) + rmi1(d�2
i1). Additionally, w�2

i1 , d�2
i1 strictly prefer

mi1. Hence (mi1, w
�2
i1 , d�2

i1) constitutes a blocking triple of degree 2 to M ′. This
explains why we need two sets of guard players to guarantee that the doppleganger
will “behave” in a stable matching.
The case that mi1 gets w�2

i1 and d�2
i1 follows analogous arguments.

The other two dopplegangers mi2, mi3 also have six associated guard players for
each; they, along with their associated guard players, have similar preferences to guar-
antee that mi2 and mi3 will only get garbage collectors or the woman-dog pairs with
whom mi shares triples. The only difference in the lists is that mi2 and mi3 replace
wia, dia with wib, dib, and with wic, dic, respectively, in their simple lists. For a sum-
mary of the simple lists of members in the set X , see Table 1. It should be noted
that wg

i1, d
g
i1 (and also wg

i2, d
g
i2) rank the three dopplegangers in reverse order. This

trick guarantees that the dopplegangers will not form blocking triples with the garbage
collectors, defeating our purpose. For example, suppose (mi1, wia, dia) is part of the
matching, we want to avoid (mi1, w

g
i1, d

g
i1) to becoming a blocking triple. It can be

easily verified that if wg
i1 and dg

i1 are matched to mi2 or mi3, such a blocking triple will
not be formed.

Finally, garbage collectors also use dummy players to pad their simple lists, to
avoid the awkward situation that some doppleganger is matched to a real woman and a
garbage collector dog (or a real dog and a garbage collector woman). How this arrange-
ment works will be clear in the proof below.

Lemma 1. Suppose a stable matching M ′ exists in the derived stable family problem
instance Υ ′. The following facts hold in M ′:

– Fact A: The three sets of dummy players are matched to one another.
– Fact B: For each doppleganger mij ∈ M1 ∪ M2 ∪ M3, the ranks of his family

members in M ′ are at least as high as 3 in his simple lists.
– Fact C: The six associated guard players of each doppleganger mij ∈ M1 ∪M2 ∪

M3 are matched to one another.

564 C.-C. Huang

Table 1. The simple lists of all players in the set X = M1 ∪M2 ∪M3 ∪Wg
1 ∪Wg

2 ∪W ∪Dg
1 ∪

Dg
2 ∪ D. We assume that there exist three triples (mi, wia, dia), (mi, wib, dib), (mi, wic, dic)

in T .

Player Simple Lists
mi1 ∈ M1 LW(mi1)=wg

i2 � wg
i1 � wia � w�1

i1 � w�2
i1 � w#

1 � w#
2 � w#

3 � · · ·
LD(mi1) = dg

i2 � dg
i1 � dia � d�2

i1 � d�1
i1 � d#

1 � d#
2 � d#

3 � · · ·
mi2 ∈ M1 LW(mi2)=wg

i2 � wg
i1 � wib � w�1

i2 � w�2
i2 � w#

1 � w#
2 � w#

3 � · · ·
LD(mi2) = dg

i2 � dg
i1 � dib � d�2

i2 � d�1
i2 � d#

1 � d#
2 � d#

3 � · · ·
mi3 ∈ M1 LW(mi3)=wg

i2 � wg
i1 � wic � w�1

i3 � w�2
i3 � w#

1 � w#
2 � w#

3 � · · ·
LD(mi3) = dg

i2 � dg
i1 � dic � d�2

i3 � d�1
i3 � d#

1 � d#
2 � d#

3 � · · ·
wg

i1 ∈ Wg
1 LM(wg

i1) = mi1 � mi2 � mi3 � · · ·
LD(wg

i1) = dg
i1 � d#

1 � d#
2 � d#

3 � · · ·
dg

i1 ∈ Dg
1 LM(dg

i1) = mi3 � mi2 � mi1 � · · ·
LW(dg

i1) = wg
i1 � w#

1 � w#
2 � w#

3 � · · ·
wg

i2 ∈ Wg
2 LM(wg

i2) = mi1 � mi2 � mi3 � · · ·
LD(wg

i2) = dg
i2 � d#

1 � d#
2 � d#

3 � · · ·
dg

i2 ∈ Dg
2 LM(dg

i2) = mi3 � mi2 � mi1 � · · ·
LW(dg

i2) = wg
i2 � w#

1 � w#
2 � w#

3 � · · ·
w ∈ W LM(w) = · · ·

LD(w) = · · ·
d ∈ D LM(d) = · · ·

LW(d) = · · ·

Proof. Fact A follows directly from construction. Fact B is true as we have argued in
the case analysis before. Fact C is true because if the guard players are not matched to
one another, they will block M ′, unless w�1

ij , d�1
ij or w�2

ij , d�2
ij are matched to mij in M ′,

but this is impossible because of Fact B. �	
Lemma 2. Suppose a stable matching M ′ exists in the derived stable family problem
instance Υ ′. Consider the garbage collectors wg

i1, d
g
i1, w

g
i2, d

g
i2 created for man mi ∈

M. We must have that wg
i1, d

g
i1 belong to the same triple t1 and that wg

i2, d
g
i2 belong

to the same triple t2 in M ′. Moreover, in t1 and t2, the man player must be one of the
dopplegangers mi1, mi2 and mi3.

Proof. We will prove this lemma by progressively establishing the following facts.

Fact D: wg
i2 and dg

i2 must belong to the same triple t2 in M ′.

Proof: For a contradiction, suppose that wg
i2 and dg

i2 are in different triples in M ′. We
claim that (mi1, w

g
i2, d

g
i2) forms a blocking triple. It is obvious that mi1 and wg

i2 prefer
such a triple. Now let the man and woman partners of dg

i2 be mφ and wφ �= wg
i2; then

by Fact A in Lemma 1, rdg
i2

(w) ≥ 5. We have that rdg
i2

(mi1) + rdg
i2

(wg
i2) = 4 < 6 ≤

rdg
i2

(mφ) + rdg
i2

(wφ). So dg
i2 will also prefer mi1 and wg

i2, forming a blocking triple
with them to M ′. This proof also shows why we need to pad the preferences of the
garbage collectors.

Two’s Company, Three’s a Crowd 565

Fact E: wg
i1 and dg

i1 must belong to the same triple t1 in M ′.

Proof: For a contradiction, suppose that (mφ1, wg
i1, d

φ1) and (mφ2, wφ2, dg
i1) are triples

in M ′. There exists at least one doppleganger in {mi1, mi2, mi3} preferring the combi-
nation of wg

i1 and dg
i1 (since at most one doppleganger can be matched to wg

i2 and dg
i2).

Let such a doppleganger be mij . Then by Fact A in Lemma 1, rwg
i1

(mij)+rwg
i1

(dg
i1) ≤

4 < 6 ≤ rwg
i1

(mφ1) + rwg
i1

(dφ2); and similarly, rdg
i1

(mij) + rdg
i1

(wg
i1) ≤ 4 < 6 ≤

rdg
i1

(mφ2) + rdg
i1

(wφ2), implying that (mij , w
g
i1, d

g
i1) blocks M ′.

Fact F: wg
i2 and dg

i2 must be matched to one of the dopplegangers of mi in M ′, and so
are wg

i1 and dg
i1.

Proof: If wg
i2 and dg

i2 are not matched to a doppleganger of mi, then any dopple-
ganger mij will prefer the combination of them over his family members, causing
(mij , w

g
i2, d

g
i2) to block M ′. A similar argument applies to the case of wg

i1 and dg
i1,

giving the lemma. �	
By the previous two lemmas, we have established the correctness of the reduction on
one side.

Lemma 3. (Sufficiency) If there exists a stable matching M ′ in the derived stable
family problem instance Υ ′, there exists a perfect matching M in the original three-
dimensional matching instance Υ .

To show the necessity, we need to prove one more lemma.

Lemma 4. In a matching M ′ in the derived stable family problem instance Υ ′, sup-
pose that dummy players are matched to one another. Suppose further that the garbage
collectors of mi are matched to two of the dopplegangers of mi, while the remaining
doppleganger mij is matched to a real woman and a real dog with whom mi shares
a triple in T in the original three-dimensional matching instance Υ . Then there is no
blocking triple in which the dopplegangers mi1, mi2, and mi3 are involved.

Proof. We assume that (mi1, w
g
i2, d

g
i2), (mi2, w

g
i1, d

g
i1), (mi3, wic, dic) ∈ M ′. Other

cases follow analogous arguments. We claim that there does not exist a blocking triple of
the form (mij , w

g
i1, d

φ1), (mij , w
g
i2, d

φ2), (mij , w
φ3, dg

i1), and (mij , w
φ4, dg

i2) where
dφ1 �= dg

i1, dφ2 �= dg
i2, wφ3 �= wg

i1, and wφ4 �= wg
i2. We only argue the first case. Since

dφ1 �∈ {d#
1 , d#

2 , d#
3 }, we have rwg

i1
(dφ1) ≥ 5 > 3 = rwg

i1
(dg

i1)+rwg
i1

(mi2). Therefore,
wg

i1 has no incentive to join the combination of mij and dφ1.
Now we only need to consider the three remaining potential blocking triples:

(mi2, w
g
i2, d

g
i2), (mi3, w

g
i2, d

g
i2), (mi3, w

g
i1, d

g
i1). It can be easily verified that they do

not block M ′ because the orders of the three dopplegangers in the simple lists of wg
i1

and dg
i1 (and also wg

i2 and dg
i2) are reversed. �	

Lemma 5. (Necessity) Suppose that there is a perfect matching M in the original three-
dimensional matching instance Υ . There also exists a stable matching M ′ in the derived
stable family problem instance Υ ′.

566 C.-C. Huang

Proof. We build a stable matching M ′ in Υ ′ as follows. Let the dummy players
{m#

j , w#
j , d#

j }, 1 ≤ j ≤ 3, be matched to one another. Given any doppleganger mij ,

let his guard players {m�1
ij , w�1

ij , d�1
ij }, {m�2

ij , w�2
ij , d�2

ij } be matched to one another as
well. Furthermore, suppose that (mi, wix, dix) ∈ M . Let the doppleganger who lists
wix and dix above his guard players be matched to wix and dix, while the other two
dopplegangers be matched to the garbage collectors. By this construction, it can be seen
that none of the guard players and dummy players will be part of a blocking triple. This,
combined with Lemma 4, completes the proof. �	
Suppose that in the given three-dimensional matching instance Υ , |M| = |W| = |D| =
n. Then in the derived instance Υ ′, we use in all 3n dopplegangers, 18n guard players,
4n garbage collectors, 2n real women and real dogs, and 9 dummy players. Their pref-
erences (in the form of simple lists) can be generated in O(n2) time. Therefore, this
is a polynomial-time reduction. Also, given any matching, we definitely can check its
stability in O(n3) time. Combining the two facts with Lemma 3 and Lemma 5, we can
conclude:

Theorem 1. It is NP-complete to decide whether strong stable matchings exist under
the PON scheme. Therefore, the question of deciding existence of strong stable matching
is also NP-complete when the full preference lists are consistent, i.e., when they are
relaxed linear extensions of preference posets.

Super Stability and Ultra Stability. It can be observed that throughout the proof, all
arguments involving blocking triples use those of degree 3. The only exception is the
occasion that we argue that a doppleganger cannot be matched to his guard players in
a stable matching. To recall, supposing that (mij , w

�1
ij , d�1

ij) is part of a matching, then
(mij , w

�2
ij , d�2

ij) is a blocking triple of degree 2. (Or if the latter is part of the match-
ing, the former is a blocking triple of degree 2). Therefore, our reduction only uses
blocking triples of degree 2 or 3; both are still blocking triples with regard to super
stability and ultra stability. Moreover, when we argue the strong-stability of matchings
in the reduction, we never allow blocking triples of degree 0 or degree 1 to exist. There-
fore, essentially, our reduction has also established the NP-completeness of super stable
matchings and ultra stable matchings.

4 Threesome Roommates with Relaxed Linear Extensions of
Preference Posets

In this section, we exhibit a reduction of stable family to threesome roommates, thereby
establishing the NP-completeness of strong/super/ultra stable matchings in the latter
problem. Instead of the PON scheme, we use the more general scheme in which any
relaxed linear extension of preference posets is allowed. We choose to use this scheme
because the involved reduction technique has a different flavor. Nonetheless, we do have
another reduction for the PON scheme. See [5] for details.

Let an instance of stable family problem be Υ = (M, W , D, Ψ), where Ψ represents
the preferences of the players in M ∪ W ∪ D. We create an instance of threesome

Two’s Company, Three’s a Crowd 567

roommates Υ ′ = (R′, Ψ ′) by copying all players in M ∪ W ∪ D into R′. Regarding
the preferences in Ψ ′, we first build up the simple lists of all players.

– Suppose m ∈ M, L(m) = LW(m) � LD(m) � π(M − {m}).
– Suppose w ∈ W , L(w) = LD(w) � LM(w) � π(W − {w}).
– Suppose d ∈ D, L(d) = LM(d) � LW(d) � π(D − {d}).

In words, a man lists all women and then all dogs, based respectively on their original
order in his simple lists in Ψ . He then attaches other fellow men in arbitrary order to the
end of his list. Women and dogs have analogous arrangements in their simple lists.

Having constructed the simple lists, we still need to build consistent relaxed linear
extensions. We will exploit the following lemma, whose proof can be found in the full
version [5].

Lemma 6. Let l be a strictly-ordered list. Suppose that l is decomposed into nonempty
contiguous sublists (l1, l2, · · · , lk) such that (1)

⋃k
i=1 li = l, (2) if e �li f , then e �l f ,

and (3) if e ∈ li, f ∈ lj , i < j, then e �l f . Then there exists a linear extension of l × l
such that all combinations drawn from {li, lj} precede all pairs drawn from {li′ , lj′},
provided that i ≤ j, i′ ≤ j′ and one of the following conditions holds (1) i < i′, (2)
i = i′, j < j′.

By Lemma 6, we can construct the linear extensions as follows:

– Consider m ∈ M and assume that W = LW(m), D = LD(m), N = π(M −
{m}). His relaxed linear extension is: Eπ(W × W) � X � Eπ(W × N) �
Eπ(D × D) � Eπ(D × N) � Eπ(N × N), where X is the original relaxed linear
extension of man m’s preference poset given in Ψ .

– Consider w ∈ W and assume that D = LD(w), N = LM(w), W = π(W −{w}).
Her relaxed linear extension is: Eπ(D×D) � Y � Eπ(D×W) � Eπ(N ×N) �
Eπ(N × W) � Eπ(W × W), where Y is the original relaxed linear extension of
woman w’s preference poset given in Ψ .

– Consider d ∈ D and assume that N = LM(d), W = LW(d), D = π(D −{d}). Its
relaxed linear extension is: Eπ(N × N) � Z � Eπ(N × D) � Eπ(W × W) �
Eπ(W × D) � Eπ(D × D), where Z is the original relaxed linear extension of
dog d’s preference poset given in Ψ .

To prove that the reduction from Υ to Υ ′ is valid, we will rely heavily on the follow-
ing technical lemma.

Lemma 7. In the derived instance Υ ′, if a stable matching M ′ exists, every triple in
M ′ must contain a man, a woman, and a dog. Moreover, suppose that in a matching
M ′′ in Υ ′ in which each player gets two other types of players as roommates, then a
blocking triple cannot contain two (or three) players of the same type.

Proof. For the first part, we argue case by case.

1. If {m, wi, wj} ∈ M ′, there exists another man m′ who can get neither a woman-
woman combination nor a woman-dog combination. By construction, m′ would

568 C.-C. Huang

prefer any woman-dog combination to his assigned roommates in M ′. Similarly,
there exists a dog d′ who gets another fellow dog in M ′. Such a dog would prefer
a man-woman combination to its assigned roommates in M ′. Finally, woman wi

and wj would prefer a dog-man combination. Therefore, both {m′, wi, d
′} and

{m′, wj , d
′} block M ′, a contradiction.

2. If {m, mi, mj} ∈ M ′, then there exists a woman w who gets a fellow woman in
M ′ and a dog d who gets a fellow dog in M ′. Thus, woman w would prefer a dog-
man combination and dog d would prefer a man-woman combination. Therefore,
{m, w, d}, {mi, w, d}, {mj, w, d} block M ′, a contradiction.

3. All other cases can be argued similarly.

For the second part, suppose that matching M ′′ has the stated property. Given any
man m, by our construction, if there is a blocking triple containing m and in which there
are two players of the same type, the only possibility of a blocking triple is {m, wi, wj}.
However, neither wi nor wj would prefer such a triple, because in our construction, for
a woman, a dog-man combination is better than a man-woman combination. The other
potential blocking triples not involving men follow analogous arguments, thus giving
us the lemma. �	
It is straightforward to use Lemma 7 to prove our reduction is a valid one.

Theorem 2. Deciding whether strong/super/ultra stable matchings exist in the three-
some roommates problem is NP-complete when full preference lists are consistent, i.e.,
when they are relaxed linear extension of preference posets.

5 Weak Stability Under the SOCL Scheme

Due to space constraint, we can only state our results and leave the details to the full
version [5].

Theorem 3. It is NP-complete to decide whether weak stable matchings exist under
the SOCL scheme, for both the stable family and the threesome roommates problems.
Hence, it is also NP-complete to decide whether a weak stable matching exists when
consistent preferences are allowed to contain ties: i.e. the full preferences are relaxed
linear extensions of preference posets.

6 Conclusion and Related Problems

In this paper, we answer the open question of whether the stable family and the three-
some roommates problems are NP-complete if all players have to provide consistent
preference lists. We introduce a scheme in which players can express indifference on
the precondition that their preferences have to be consistent. Under this scheme, a vari-
ety of stabilities are defined and we prove that all lead to NP-complete problems.

Since we have proved that the general cases of stable family and threesome room-
mates are NP-complete, a natural question to ask is whether there are special cases that
allow polynomial time solutions. Actually, examples of the two problems that can be
solved efficiently do exist.

Two’s Company, Three’s a Crowd 569

Consider the following scheme. Every player submits two simple lists. A man evalu-
ates combinations first by the woman he gets, then by the dog; a woman first by the man
she gets, then by the dog; a dog first by the man it gets, then by the woman. (Note the
asymmetry). It is not hard to see that we can apply the Gale-Shapley algorithm twice
to get a weak stable matching: letting the men propose to women and then propose
to dogs. Women and dogs make the decision of acceptance or rejection based on their
simple lists of men [2]. Merging the two matchings will give a stable matching in the
stable family problem.

However, even a little twist can make the above scheme hard to solve. Suppose a
man decides first based on the woman he gets and then the dog; a woman first based on
the dog she gets and then on the man; a dog decides first based on the man it gets then
on the woman. The Gale-Shapley algorithm no longer works [1].

Interestingly, the above scheme is reminiscent of another open problem allegedly
originated by Knuth. Suppose that a man has only a simple list for women; a woman
has only a simple list for dogs; a dog has only a simple list for men. This problem is
called circular stable matching. Its complexity is still unknown.

Acknowledgements

I thank my adviser Peter Winkler for many helpful suggestions. I am also indebted to
the anonymous reviewers for their detailed comments.

References

1. Boros, E., Gurvich, V., Jaslar, S., Krasner, D.: Stable matchings in three-sided systems with
cyclic preferences. Discrete Mathematics 289(1-3), 1–10 (2004)

2. Danilov, V.I.: Existence of stable matchings in some three-sided systems. Mathematical So-
cial Science 46(2), 145–148 (2003)

3. Gale, D., Shapley, L.: College admissions and the stability of marriage. American Mathe-
matical Monthly 69(1), 9–15 (1962)

4. Garey, M., Johnson, D.: Computers and Intractablility. Freeman, San Francisco (1979)
5. Huang, C.-C.: Two’s company, three’s a crowd: Stable family and threesome roommates

problems. Technical Report TR2007-598, Computer Science Department, Dartmouth Col-
lege (2007)

6. Irving, R.: An efficient algorithm for the stable room-mates problem. Journal of Algo-
rithms 6, 577–595 (1985)

7. Irving, R.: Stable marriage and indifference. Discrete Applied Mathematics 48, 261–272
(1994)

8. Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer Compu-
tations, pp. 85–103 (1972)

9. Knuth, D.: Mariages stables et leurs relations avec d’autre problèmes combinatoires. Les
Presses de l’université de Montréal (1976)

10. Ng, C., Hirschberg, D.: Three-dimensional stable matching problems. SIAM Journal on Dis-
crete Mathematics 4(2), 245–252 (1991)

11. Subramanian, A.: A new approach to stable matching problems. SIAM Journal on Comput-
ing 23(4), 671–700 (1994)

On the Complexity of Sequential Rectangle

Placement in IEEE 802.16/WiMAX Systems

Amos Israeli1, Dror Rawitz2,�, and Oran Sharon1

1 Department of Computer Science, Netanya Academic College, Netanya 42100, Israel
{amos,oran}@netanya.ac.il

2 School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
rawitz@eng.tau.ac.il

Abstract. We study the problem of scheduling transmissions on the
Downlink of IEEE 802.16/WiMAX systems that use the OFDMA tech-
nology. These transmissions are scheduled using a matrix whose dimen-
sions are frequency and time, where every matrix cell is a time slot on
some carrier channel. The IEEE 802.16 standard mandates that (i) ev-
ery transmission occupies a rectangular set of cells, and (ii) transmissions
must be scheduled according to a given order. We show that if the num-
ber of cells required by a transmission is not limited (up to the matrix
size), the problem of maximizing matrix utilization is very hard to ap-
proximate. On the positive side we show that if the number of cells of
every transmission is limited to some constant fraction of the matrix area,
the problem can be approximated to within a constant factor. As far as
we know this is the first paper that considers this sequential rectangle
placement problem.

1 Introduction

Background and motivation. The IEEE 802.16/WiMAX system [1] is an emerg-
ing standard for Wireless Local Loop (WLL) systems [2] that are designed to
enable residential and business subscribers Broadband Wireless Access (BWA)
to core networks, e.g., the public telephone network and the Internet. An IEEE
802.16 system consists of a Base Station (BS) and Subscriber Systems (SSs) as
depicted in Fig. 1. The wireless link from the BS to the SSs (from the SSs to
the BS, respectively) is called the Downlink (Uplink, respectively). One of the
options to realize the physical layer in 802.16 is Orthogonal Frequency Division
Multiplexing Access (OFDMA), which is a form of multicarrier modulation. In
OFDMA, the transmission bandwidth on the Downlink is divided into several
subchannels that are used by the BS to transmit to the SSs in parallel. The
transmission time over each subchannel is further divided into time slots. A
predefined number of slots from all the subchannels together are grouped into
periods called Subframes. The same holds respectively on the Uplink.

� Part of the work on this paper was done while the author was a postdoc at the
Caesarea Rothschild Institute, University of Haifa.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 570–581, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Complexity of Sequential Rectangle Placement 571

Station

Downlink

Uplink

Base

Subscriber
System

System
Subscriber

Fig. 1. The physical architecture of an 802.16 system

subchannel

Time

Frequency

Time slot
in one
subchannel

Fig. 2. The Downlink time/frequency matrix in OFDMA

Notice that the Downlink subframe is actually a time/frequency matrix, which
for the sake of brevity is called from now on simply the matrix. The matrix’ fre-
quency dimension is equal to the number of the OFDMA subchannels, while the
time dimension is equal to the number of time slots in each Downlink subframe.
An example of a matrix is given in Fig. 2.

In each time slot the BS may transmit some fixed number of bits in some
subchannel. We refer to such a time slot (in some subchannel) as a cell. Each
individual transmission of the BS to some SS is called a packet. In order to
transmit packets on the Downlink, each packet should be assigned a set of matrix
cells on which the packet will be transmitted, and all sets must be disjoint. Every
SS listens for some predefined number of time slots on predefined subchannels
in order to receive packets destined to itself. These time slots and subchannels
can change from one Downlink subframe to another.

The assignment packets to sets of matrix cells should follow some require-
ments: for each packet transmitted on the Downlink, the IEEE 802.16 standard
mandates that the set of scheduling matrix cells allocated for the packet trans-
mission must be rectangular. Further, an IEEE 802.16 system is intended to
support various “high level” protocols, such as ATM and IP. Thus, the system
is supposed to have QoS capabilities for, e.g., ATM VCs. This means that the
BS should be able to transmit packets according to some scheduling disciplines
that guarantee delay bounds, such as Delay-Earliest-Due-Date [3] in which every
packet is assigned a deadline for its transmission, and packets are transmitted

572 A. Israeli, D. Rawitz, and O. Sharon

according to these deadlines: those with earlier deadlines are transmitted first. In
addition, it is also important to preserve FIFO order among transmitted pack-
ets in some data streams, e.g., in TCP connections. Keeping the relative order
among packets in such connections is necessary in order to avoid a false acti-
vation of Fast Retransmit / Fast Recovery algorithms, which may cause lower
transmissions rates and reduced throughputs [4].

To summarize, the BS needs to schedule its packets for transmission on the
Downlink matrix according to the following requirements: (i) packets must be
transmitted in a given rigid order, e.g., FIFO, and (ii) every packet transmission
requires a rectangular set of matrix cells.

Allocation of rectangular cell sets for each packet is a resource management
problem for which the 802.16 standard specifies no algorithm. Any vendor that
implements an 802.16 system is expected to implement its own allocating algo-
rithm. In this paper we investigate the complexity of this problem and develop
an algorithm adhering to the aforementioned two requirements.

Problem definition. We investigate the sequential rectangle placement problem
(srp, for short), in which the input consists of:

Matrix: The (scheduling) matrix is given by its dimensions: L × H . Without
loss of generality we assume that L ≥ H . We also define S

�= L · H .
Jobs: The input sequence of jobs N = J1, J2, . . . , Jn. Each job Ji is associated

with a size ri ∈ N and a non-negative weight wi.

A solution is a placement which is an assignment of a rectangular set of matrix
cells for each job in some prefix of N , where the number of matrix cells assigned
for Ji is not smaller than ri, and all rectangles are non-intersecting. We assume,
without loss of generality, that the sum of all the job sizes is at most L×H . The
goal of the sequential rectangle placement problem is to find a placement of the
longest possible prefix of jobs of the input sequence. In other words, our goal is
to find a placement for the jobs J1, . . . , Jt, where t is as high as possible.

Given a placement of the prefix J1, . . . , Jt, the sum
∑t

i=1 wj is referred to as
the weight of the placement. We evaluate the placement by its weight. In the
sequel we prove that srp is NP-hard, and in general is also hard to approximate.
Therefore, we turn to look for approximation algorithms for some special cases.
We consider two weight functions: the unit weight function, wi = 1 for every
job Ji, and the proportional weight function, wi = ri for every job Ji. In the
unit weight function the weight of the placement is simply the number of jobs
that were placed on the matrix, while in the second the weight of the placement
is the total area that is occupied by the placed jobs. The motivation for these
two weight functions is as follows. In the unit weight function we count the
number of served jobs, which is important in order to serve as many clients
in the system as possible. In the proportional weight function we evaluate the
amount of transmission resources we use (cells in the transmission matrix). This
weight function is important because the wireless transmission resource is a very
scarce resource that must be used as efficiently as possible [5].

On the Complexity of Sequential Rectangle Placement 573

A bounding rectangle of job Ji is a rectangular set of cells whose area is at least
ri, and that does not contain any proper sub rectangle whose area is at least ri.
That is, a bounding rectangle is a rectangle of length Li and height Hi such that
(1) ri ≤ LiHi, (2) ri > Li(Hi − 1), and (3) ri > (Li − 1)Hi. Henceforth, we
assume without loss of generality that a rectangle that is reserved for a job is
a bounding rectangle. Notice that a bounding rectangle can be larger than the
job size. For instance, a bounding rectangle for a job of size 5 can be of size 6,
with length 3 and height 2. In this example, the bounding rectangle occupies one
additional cell above the minimal number of matrix cells needed for placing this
job. Thus, it wastes resources because free cells in a bounding rectangle cannot be
used by other jobs [1]. On the other hand, the somewhat weakened requirement
to use bounding rectangles yields some additional freedom in rectangle shaping,
e.g., in the above example we are not restricted to a rectangle of dimensions 5×1
and can also use a rectangle of dimensions 3 × 2.

Related work. As far as we know this is the first paper to consider srp. However,
the following rectangle packing problem was considered by several studies: Given
a set of rectangles Ri = (ai, bi), for i = 1, . . . , n, where ai and bi are the length
and height of Ri, and a larger rectangle R = (a, b). Each rectangles has a profit
pi. The goal is to pack a subset of the rectangles into R such that the total profit
of packed rectangles is maximized. The packed rectangles may not overlap. This
problem in NP-hard since it contains knapsack as the special case in which
ai = a for every i. Constant factor approximation algorithms for this problem
were given in [6,7], and a PTAS that packs the rectangles into a rectangle that
is slightly bigger than R was presented in [8].

Note that srp is very different from this rectangle packing problem. First, in
srp the requirement that the output placement is computed for a prefix of the in-
put job sequence is crucial, while in the latter problem the input is an unordered
set and the only optimized parameter is the total weight of the successfully
placed rectangles. Furthermore, although in some studies of the rectangle pack-
ing problem, the given rectangles may be rotated (see, e.g., [6]) the dimensions
of the rectangles are predetermined, while in srp the input consists of requests
for areas only.

Our results. We present both negative and positive results. On the negative side
we prove that srp is very hard to approximate. Specifically, we show that it is
NP-hard to approximate srp within a factor of O(n1−ε) even when restricted
to the case of unit weights. We also show that it is NP-hard to approximate
srp within a factor of

√
S−1
2 or within a factor of cn2 for some constant c,

even when restricted to the case of proportional weights. The full version of
the paper contains two other hardness results. It is shown that srp is NP-hard
even when ri ≤ 1+ε

n · S for every i, for any constant ε > 0. Moreover, we show
that for this special case of srp (with arbitrary weights) there cannot exist an
r-approximation algorithm for any r, unless P=NP. All our hardness results
are obtained using reductions from the well known NP-hard partition problem
(partition) [9].

574 A. Israeli, D. Rawitz, and O. Sharon

On the positive side we present an O(n log n log H) time approximation algo-
rithm for srp with proportional weights for the special case where ri ≤ βS for
some β ∈ (0, 1). The approximation ratio of the algorithm is 1− log H

H −β −ε, for
every ε > 0. Since log H

H ≤ 1
2 , the approximation ratio is not worse than 1

2 −β−ε,
for every ε > 0. Our algorithm works as follows. First, it divides the range of
job sizes into O(log H) subranges. For each such size subrange, the jobs in this
subrange are further divided into jobs sets such that each set holds O(

√
L) jobs.

The jobs in each such set are placed on a separate set of matrix rows. Further-
more, they are placed such that the unused area for each set is relatively small.
For each prefix of the input job sequence, the algorithm uses Binary Search to
compute the minimal number of matrix rows on which the prefix jobs can be
placed. The algorithm uses Binary Search once again to determine the maximal
prefix whose jobs can be placed on H matrix rows. In the analysis of our al-
gorithm we compare the solution obtained by the algorithm to the area of the
matrix, S, which is an upper bound on the weight of an optimal solution.

2 Hardness Results

We present four hardness results. We show that it is NP-hard to approximate
srp within a factor of O(n1−ε) even for the case of unit weights. We also show
that it is NP-hard to approximate srp within a factor of

√
S−1
2 or within a factor

of cn2 for some constant c, even in the case of proportional weights. The full
version of the paper contains two other hardness results. It is shown that srp is
NP-hard even when ri ≤ 1+ε

n · S for every i, for any constant ε > 0. Moreover,
we show that for this special case of srp there cannot exist an r-approximation
algorithm for any r, unless P=NP.

We present a reduction from partition to srp. Intuitively, given a partition

instance the reduction works as follows. First, it creates m jobs whose sizes are
inflated versions of the partition numbers. It produces a square matrix whose
length (or height) is a bit more than half of the sum of the inflated numbers.
Then, it adds a huge job whose dimensions are (L − 1) × (H − 1). The role of
this job is to make sure that the other jobs use only one row and one column.
The last set of jobs contains jobs of size one.

Reduction 1. Let (x1, . . . , xm) be a partition instance, and denote B
�=

1
2

∑m
j=1 xi. (Henceforth we assume that B is integral.) We construct an instance

(r1, . . . , rn, L, H) as follows. First, let m′ be an even integer. (The exact value
of m′ will be determined later.) We define b = m′(B + 1

2) and L = H = b + 1.
Also, let n = 2 + m + m′, and let rj = m′ · xj for every 1 ≤ j ≤ m, rm+1 = b2,
and rj = 1 for every m + 2 ≤ j ≤ n. We refer to jobs J1, . . . , Jm as medium
jobs and to jobs Jm+2, . . . , Jn as small jobs.

Note that the reduction is polynomial in case m′ = O(mk) for some constant k.

Observation 1.
∑n

j=1 rj = L · H.

We show that if (x1, . . . , xm) belongs to partition then all jobs can be placed.
Otherwise, we will not be able to place more than m jobs.

On the Complexity of Sequential Rectangle Placement 575

Jm+1

Fig. 3. Example of placement of Jm+1

Lemma 1. (x1, . . . , xm) ∈ partition if and only if the jobs J1, . . . , Jn can be
placed on an L×H matrix. Furthermore, if (x1, . . . , xm) �∈ partition then jobs
J1, . . . , Jm+1 cannot be placed on the matrix.

Proof. First, observe that since rm+1 = b2, job Jm+1 must be placed in such a
way that leaves one empty column and one empty row, if it is placed in an L×H
matrix. Hence, every other job must be placed as a rectangle of either length 1
or height 1. It follows that, if job Jm+1 is placed on the matrix then the only
freedom we have in deciding how to place a job Jj �= Jm+1 is whether to place
it in the empty row or in the empty column. (See example in Fig. 3).

If (x1, . . . , xm) ∈ partition then there exists a subset I ∈ {1, . . . , m} such
that

∑
i∈I xi = B. Hence, we can place the medium jobs on the matrix as follows.

If j ∈ I we place the job in a rectangle of length rj and height 1 in the empty
row of the matrix, and otherwise we place the job in a rectangle of length 1 and
height rj in the empty column of the matrix. We can place all the medium jobs
in I (not in I) in a row (column) since B < b. The small jobs can be placed in
the remaining space due to Obs. 1. It follows that if (x1, . . . , xm) ∈ partition,
then all jobs can be placed on the matrix.

Now, for the other direction, let (x1, . . . , xm) �∈ partition and assume that
jobs J1, . . . , Jm+1 are placed in the matrix. Denote by S1 the set of medium jobs
whose rectangle is placed in the empty row (the row that is left empty after
the placement of job Jm+1), and denote by S2 the set of medium jobs whose
rectangle is placed in the empty column. We now claim that it follows that∑

j∈S1
xj =

∑
j∈S2

xj = B. Notice that if this is not the case then | ∑j∈S1
xj −∑

j∈S2
xj | ≥ 2, and therefore | ∑j∈S1

rj − ∑
j∈S2

rj | ≥ 2m′. Without loss of
generality let

∑
j∈S1

rj >
∑

j∈S2
rj . Hence, since

∑m
j=1 rj = m′ · 2B we get that∑

j∈S1
rj ≥ m′ · B + m′ = m′(B + 1) and

∑
j∈S2

rj ≤ m′ · B − m′ = m′(B − 1).
It follows that

∑
j∈S1

rj > m′(B + 1
2) + 1 = b + 1 = L, a contradiction. ��

The lemma directly implies that srp is NP-hard. Next, we show that this prob-
lem is also very hard to approximate. In the sequel we denote the optimum of
an srp instance by opt.

Theorem 1. It is NP-hard to approximate srp within a factor of
√

S−1
2 or

within a factor of cn2 for some constant c, even for the restricted case of pro-
portional weights.

576 A. Israeli, D. Rawitz, and O. Sharon

Proof. We use Reduction 1 by letting m′ be the first even number that is greater
than or equal to m. By Lemma 1 if (x1, . . . , xm) ∈ partition then all jobs can
be placed, and the weight of the placement is (b + 1)2. On the other hand, if
(x1, . . . , xm) �∈ partition, then the weight of any placement is at most (b +
1)2 − b2 = 2b + 1. Hence, for instances that are generated by Reduction 1 with
proportional weights, distinguishing between instances for which opt = (b + 1)2

and instances for which opt ≤ 2b is NP-hard.
Suppose that there is a polynomial algorithm that computes b

2 -approximate
solutions for srp. Then, we can use it on instances of Reduction 1 to determine
whether opt = (b + 1)2 and thus solve partition. If opt = (b + 1)2 then the
algorithm computes a placement whose weight is at least 2b + 4. Otherwise, the
algorithm computes a placement of weight at most 2b. We therefore conclude
that there cannot exist a b

2 -approximation algorithm for srp, unless P=NP.
It remains to relate b

2 to area of the matrix S and to the number of jobs n.
Since b =

√
S − 1 it follows that it is NP-hard to approximate srp within a

factor of
√

S−1
2 . By definition b = m′(B + 1

2), hence b
2 ≥ m

2 (B + 1
2). Since B ≥ m

and n = Θ(m), it follows that there exists a constant c such that b
2 ≥ cn2. ��

Theorem 2. It is NP-hard to approximate srp within a factor of O(n1−ε) for
every ε > 0, even for the restricted case of unit weights.

Proof. For a given ε, we use Reduction 1 by setting k =
⌈

2
ε

⌉
and letting m′

be the first even number that is greater than or equal to mk. The reduction is
polynomial since k is a constant. In Lemma 1 we showed that if (x1, . . . , xm) ∈
partition then all n = m + m′ + 2 jobs can be placed on the matrix, and
that otherwise at most m jobs can be placed on the matrix. Thus, for instances
that are generated by Reduction 1 with unit weights, distinguishing between
instances for which opt = n and instances for which opt ≤ m is NP-hard.

Suppose that there is a polynomial algorithm that computes O(mk−2)-
approximate solutions for srp. Then, we can use it on the instances of Re-
duction 1 to determine whether opt = Θ(mk) and thus solve partition. If
opt = Θ(mk) then the algorithm computes a placement that places Ω(m2)
jobs. Otherwise, the algorithm outputs a placement containing at most m jobs.
We conclude that there cannot exist an O(mk−2)-approximation algorithm for
srp, unless P=NP. It remains to relate mk−2 to the instance size n:

mk−2 = Θ(n
k−2

k) = Θ(n1− 2
k) = Ω(n1− 2

�2/ε�) = Ω(n1−ε)

and we are done. ��

3 An Algorithm for SRP with Proportional Weights

In this section we develop an approximation algorithm for srp with proportional
weights. For the special case in which ri ≤ β ·S for every job Ji where β ∈ (0, 1),
the algorithm achieves an approximation ratio of 1− log H

H −β −ε, for any ε > 0.

On the Complexity of Sequential Rectangle Placement 577

Definitions and Notation. Before presenting the algorithm, we introduce
some notation. The placement computed by our algorithm is row oriented.

Definition 1. A job placement of a job set JS is called row oriented if the
following conditions hold:

1. The set JS is divided into some disjoint subsets {JSi}k
i=1.

2. The jobs in each job set JSi are placed on a set of consecutive matrix rows
dedicated to JSi. The rows occupied by distinct job sets are distinct.

3. For any job set JSi, and for any job Jk ∈ JSi, the base of the bounding
rectangle of Jk is placed on the first row dedicated to JSi and the height of
the bounding rectangle is equal to the number of rows dedicated to JSi.

LetP be a roworiented placement and let JSi be a job set ofP . The number of rows
required by JSi, denoted by rows(JSi), is the minimal number of rows on which
all jobs of JSi can be placed adhering to Def. 1. The number of rows required by P ,
denoted by rows(P), is the total number of rows required by the job sets of P .

Our algorithm maintains a collection of disjoint job sets, where the sizes of all
jobs in each set are within a certain range. The ranges for the job sets depend
on L and H , the matrix dimensions, and are defined as follows.

Definition 2. We divide the jobs into three types1:

– Small jobs: A job Jk is called small if rk ≤ 2
√

L.
– Medium jobs: A job Jk is called medium if 2

√
L < rk ≤ H

2

√
L. For each i,

2 ≤ i ≤ log H−1, a medium job is called i-medium if 2i−1
√

L < rk ≤ 2i
√

L.2

– Large jobs: A job Jk is called large if rk > H
2 · √L.

We consider row oriented placements in which for each type of a job set, the
number of rows required by the set is limited.

Definition 3. A row oriented placement P is called bounded if the jobs sets in
P follow Def. 2 and the number of rows required by each job set is bounded as
follows:

– Small jobs: A job set of small jobs can have at most one row.
– Medium jobs: A job set of i-medium jobs (2 ≤ i ≤ log H − 1) can have at

most 2i rows.
– Large jobs: A job set of large jobs can have at most 2H rows. (Note that

the value 2H is used for intermediate computations. The output placement
P satisfies: rows(P) ≤ H.)

The maximal number of matrix rows allowed for JSi is denoted by max(JSi).

The Algorithm. We present an algorithm called Placement that uses a pro-
cedure called Prefix. We first describe the procedure and then describe the
algorithm. Procedure Prefix gets as input the matrix dimensions, L and H ,
1 The distinction between job sizes is different from the one that was made in Sect. 2.
2 We assume that log H is integral for reasons of clarity.

578 A. Israeli, D. Rawitz, and O. Sharon

and a finite sequence of jobs, Nf , and computes a row oriented placement Pf .
Placement Pf computed by Procedure Prefix includes all jobs in Nf , while
rows(Pf) may exceed H . A job set of Pf can be either open or closed, where
jobs can be added only to open job sets. At any given time during execution of
Procedure Prefix there exists a single open job set for every range of job sizes,
specified by Def. 2. Therefore, at any given time, the number of non-empty open
sets is at most log H .

Procedure Prefix works as follows:

1. Divide Nf into log H disjoint sets according to Def. 2.
2. Open a job set MS

1 of one matrix row and place small jobs from Nf , one
after the other, in MS

1 . If the single row of MS
1 is depleted, close MS

1 , add
it to Pf and start a new job set, MS

2 , with a single row. Continue in this
fashion until all small jobs in Nf are placed. Add the last set, whose row
may not be full, to Pf .

3. For each i, where 2 ≤ i ≤ log H − 1, open a job set M i
1 of 2i matrix rows

and place i-medium jobs from Nf , one after the other, to M i
1. This is done

in the following fashion: sequentially start accumulating the sum
∑

j

⌈ rj

2i

⌉
,

where j runs over the sequence of i-medium jobs, until (and not including)
the job that causes the sum to exceed L. At this point, the jobs in M i

1 are
determined, it is closed and rows(M i

1) is set to be max(M i
1) = 2i. Open

a new job set M i
2 for i-medium jobs with 2i rows. Continue in this fashion

until all i-medium jobs in Nf are divided into job sets, all of which, except
perhaps the last one, are closed.

4. Open a single job set, ML, of 2H rows, for large jobs, place all large jobs
of Nf in ML, and add it to Pf . Notice that since the sum of the sizes of all
the jobs in the input is bounded by L · H , a set of area 2H · L is sufficient
to accommodate all the large jobs in the input sequence.

5. For each open job set of i-medium jobs, M i
k, use binary search to compute

rows(M i
k). In each iteration we simply set a tentative value for rows(M i

k)
and check whether this value is sufficient to place all jobs in M i

k. When this
process ends, the right value for rows(M i

k) is known, and M i
k is added to

Pf . Use the same process to compute rows(ML).
6. Compute the total number of rows required for Pf .

Given the above description of Procedure Prefix, Algorithm Placement
works as follows. First, it finds, using binary search on the input sequence of
n jobs, what is the maximum number of jobs that can be placed on the matrix.
Every placement trial is done by Procedure Prefix. Let J1, . . . , Jt be longest pre-
fix of the input job sequence for which rows(P) ≤ H , where P is the placement
computed by Procedure Prefix. The algorithm returns the placement P .

Analysis. We start the analysis by bounding the running time of the algorithm.

Theorem 3. The running time of Algorithm Placement is O(n · log n · logH).

Proof. We first deal with Procedure Prefix. Assume that it is executed with
input sequence of n′ jobs. The running time of all stages of the procedure apart

On the Complexity of Sequential Rectangle Placement 579

from the fifth stage is O(n′). It remains to bound the complexity of computing
the number of rows required for the sets of medium and large jobs. Let Jj be
an i-medium job that is placed in job set M i

k (a large job that is placed in ML,
respectively). During the fifth stage, Jj is considered at most log 2i times due
to the binary search for rows(M i

k). It follows that the time complexity of com-
puting rows(M i

k) is O(|M i
k| · log 2i) = O(|M i

k| log H). A similar argument shows
that the time complexity of computing rows(ML) is O(|ML| log H). Hence the
total running time of the fifth stage is O(n′ log H).

Since the complexity of the procedure is O(n′ log H), and since the procedure
is invoked O(log n) times with an input sequence of size n′ ≤ n, the complexity
of the algorithm is O(n · log n · log H). ��
Assume that Procedure Prefix succeeded in placing jobs J1, . . . , Jt, but failed to
place jobs J1, . . . , Jt+1. We compute the wasted matrix space of the placement
P of jobs J1, . . . , Jt. Observe that the space wasted by the P comprised of two
parts. First, there is the space that is wasted within the rows that P uses. The
second part is the space that P does not use because this part is not large enough
to accommodate Jt+1. We first bound the wasted space due to open job sets and
due to closed job sets. Then, we calculate the overall wasted space within the
rows that P uses. Afterwards, we bound the space that is not used by P . We
show that the total wasted space is at most (log H

H + 3√
L

+ β) · S.

Lemma 2. Let M be a job set of medium or large jobs. Then, |M | ≤ 2
√

L.

Proof. First, assume that M is a set of i-medium jobs. By Def. 3, the number
of rows in M is at most 2i. Since the size of the smallest job in M is at least
2i−1

√
L, the length of the base of each job in M is at least 2i−1·√L

2i ≥
√

L
2 . Since

the base of the bounding rectangle of each job resides on the first matrix row
dedicated to M , the number of jobs in M is not greater than 	 L√

L/2

 ≤ 2

√
L.

Assume that M is the (single) set of large jobs. Since the sum of the sizes of
the jobs in the input is at most L ·H , and the size of a large job is at least H

2

√
L,

there can be at most 2
√

L large jobs. ��
Let Aw(M) be the wasted area caused by a job set M . We first bound the waste
in open sets.

Lemma 3. Let M be an open set in P . Then, Aw(M) < L+2
√

L(rows(M)−1).

Proof. If rows(M) = 1 then we are done. Hence, the lemma is immediate for
small jobs. Assume that M is either i-medium or large and that rows(M) > 1.
Since the jobs in M do not fit in rows(M) − 1 rows it follows that

∑
Jj∈M [rj + (rows(M) − 2)] > L · (rows(M) − 1)

where rows(M) − 2 is the maximum wasted space per job, if we use only
rows(M) − 1 rows. Hence,

Aw(M) = L · rows(M) − ∑
Jj∈M rj < L + |M |(rows(M) − 2) .

|M | ≤ 2
√

L by Lemma 2, hence Aw(M) < L + 2
√

L(rows(M) − 1). ��

580 A. Israeli, D. Rawitz, and O. Sharon

Next, we bound the waste in closed sets.

Lemma 4. Let M be a closed set. Then, Aw(M) ≤ rows(M) · 3
√

L.

Proof. The lemma is immediate for small jobs. Also, notice that there is no closed
set of large jobs. Assume that M consists of i-medium jobs and recall that by
the algorithm, rows(M) = max(M). Let Jq be the job that was rejected from
M just before M was closed. Hence,

∑
Jj∈M [rj + (max(M) − 1)] + rq > max(M) · L

where max(M) − 1 is the maximum wasted space per job. Thus,

Aw(M) = max(M) · L − ∑
Jj∈M rj < (max(M) − 1) · |M | + rq

Since |M | ≤ 2
√

L by Lemma 2, and since rq ≤ 2i
√

L = max(M)
√

L, we get that
Aw(M) < rows(M) · 2√

L + rows(M) · √L < rows(M) · 3√
L as required. ��

Lemma 5. The waste within rows used by P is at most L log H+3
√

Lrows(P).

Proof. By Lemma 3, the wasted space incurred by the open set M i of i-medium
jobs, or by the open set of large jobs, ML, is at most L+2

√
L · (rows(M i)−1).

Hence, the total wasted space incurred by open job sets is at most:
∑log H

i=1 [L + 2 · √
L · (rows(M i) − 1)] < L · log H + open(P) · 2√

L

where open(P) denotes that number of rows dedicated to open sets.
By Lemma 4, the wasted space incurred by each closed job set M of P is at

most rows(M) · 3
√

L. Thus, the total wasted space incurred by all closed job
sets is at most:

∑
M rows(M) · 3√

L ≤ closed(P) · 3√
L

where the summation is taken over all closed sets and closed(P) denotes that
number of rows dedicated to close sets.

Since rows(P) = open(P) + closed(P), it follows that

Aw(P) < L·logH+open(P)·3
√

L+closed(P)·3
√

L < L·logH+3
√

L·rows(P)

The lemma follows. ��
Theorem 4. Let L ≥ 9. Then, the wasted space of the solution computed by
Algorithm Placement is at most L logH + 3H

√
L + β · S.

Proof. Consider the invocation of Procedure Prefix on J1, . . . , Jt+1 and let P ′

be the computed placement of this invocation. Clearly, rows(P ′) > H . By
lemma 5, the space wasted by P ′ satisfies:

Aw(P ′) = L · rows(P ′) − ∑t+1
j=1 rj < L · log H + 3

√
L · rows(P ′)

On the Complexity of Sequential Rectangle Placement 581

Hence, the total matrix space wasted by P satisfies:

Aw(P) = L · H − ∑t
j=1 rj

= L · rows(P ′) − L · (rows(P ′) − H) − ∑t+1
j=1 rj + rt+1

< L logH + 3
√

L · rows(P ′) − L · (rows(P ′) − H) + rt+1

= L logH + 3H
√

L + 3
√

L(rows(P ′) − H) − L(rows(P ′) − H) + rt+1

= L logH + 3H
√

L + (rows(P ′) − H) · (3
√

L − L) + rt+1

If L ≥ 9 it follows that Aw(P) < L logH + 3H
√

L + β · S. ��
Corollary 1. Let L ≥ 9. Then, the approximation ratio of Algorithm Place-
ment is 1 − log H

H − 3√
L

− β.

Proof. Let opt be the area of the matrix that is covered by an optimal place-
ment, and let alg be the area covered by P . Then by Theorem 4 it follows that
alg

opt
≥ S−Aw(P)

S > S−L log H−3H
√

L−β·S
S ≥ 1 − log H

H − 3√
L

− β. ��

Since L ≥ H we can solve the problem exactly for small L’s using exhaustive
search. Hence, the approximation ratio is in fact 1− log H

H −β − ε, for any ε > 0.
Notice that log H

H ≤ 1
2 , thus the ratio is not worse than 1

2 − β − ε, for any ε > 0.

Acknowledgment. We thank Yaron Alpert for introducing the problem to us.

References

1. IEEE Standard for Local and Metropolitan Area Networks: IEEE 802.16e, Part 16:
Air Interface for Fixed and Mobile Broadband Wireless Access Ssytems (2005)

2. Nordboten, A.: LMDS systems and their application. IEEE Communications Mag-
azine 38(6), 150–154 (2000)

3. Ferrari, D., Verma, D.C.: A scheme for real-time channel establishment in wide-area
networks. IEEE Journal on Selected Areas in Communications 8(3), 368–379 (1990)

4. Allman, M., Paxson, V., Stevens, W.: TCP congestion control. RFC 2581 (1999)
5. Nicopolitidis, P., Obaidat, M.S., Papadimitriou, G.I., Pomportsis, A.S.: Wireless

Networks. John Wiley & Sons Ltd, Chichester (2003)
6. Jansen, K., Zhang, G.: On rectangle packing: Maximizing benefits. In: 15th Annual

ACM-SIAM Symposium on Discrete Algorithms, pp. 204–213. ACM Press, New
York (2004)

7. Jansen, K., Zhang, G.: Maximizing the number of packed rectangles. In: Hagerup,
T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 362–371. Springer, Hei-
delberg (2004)

8. Fishkin, A.V., Gerber, O., Jansen, K., Solis-Oba, R.: Packing weighted rectan-
gles into a square. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS,
vol. 3618, pp. 352–363. Springer, Heidelberg (2005)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

Shorter Implicit Representation for Planar

Graphs and Bounded Treewidth Graphs

Cyril Gavoille� and Arnaud Labourel

LaBRI, Université de Bordeaux, France
{gavoille,labourel}@labri.fr

Abstract. Implicit representation of graphs is a coding of the structure
of graphs using distinct labels so that adjacency between any two vertices
can be decided by inspecting their labels alone. All previous implicit rep-
resentations of planar graphs were based on the classical three forests de-
composition technique (a.k.a. Schnyder’s trees), yielding asymptotically
to a 3 log n-bit1 label representation where n is the number of vertices of
the graph.

We propose a new implicit representation of planar graphs using
asymptotically 2 log n-bit labels. As a byproduct we have an explicit
construction of a graph with n2+o(1) vertices containing all n-vertex pla-
nar graphs as induced subgraph, the best previous size of such induced-
universal graph was O(n3).

More generally, for graphs excluding a fixed minor, we construct a
2 log n + O(log log n) implicit representation. For treewidth-k graphs we
give a log n + O(k log log(n/k)) implicit representation, improving the
O(k log n) representation of Kannan, Naor and Rudich [18] (STOC ’88).

Our representations for planar and treewidth-k graphs are easy to
implement, all the labels can be constructed in O(n log n) time, and
support constant time adjacency testing.

1 Introduction

How to represent a graph in memory is a basic and fundamental data structure
question. The two basic ways are adjacency matrices and adjacency lists. The
latter representation is space efficient for sparse graphs, but adjacency queries
require searching in the list, whereas matrices allow fast queries to the price of
a super-linear space. Another technique, called implicit representation or adja-
cency labeling scheme, consists in assigning distinct labels to each vertex such
that adjacency queries can be computed alone from the labels of the two involved
vertices without any extra information source. So the graph can be manipulated
by keeping only its labels in memory, any other global information on the graph
(like its matrix) can be removed. The goal is to minimize the maximum length
of a label associated with a vertex while keeping fast adjacency queries.

� Both authors are supported by the ANR-projects GEOCOMP and GRAAL.
1 All logarithms are in base two.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 582–593, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Shorter Implicit Representation for Planar Graphs 583

The notion of adjacency labeling scheme is closely related to that of induced-
universal graphs, introduced by [12] for VLSI circuit design. A graph U is said to
be induced-universal for a given graph family F, if every graph of F is isomorphic
to some induced subgraph of U. Kannan, Naor and Rudich [18] established that
there is an adjacency labeling scheme with labels of k bits for F if and only if there
exists an induced-universal graph with 2k vertices. Therefore, the combinatorial
problem of constructing a small induced-universal graph for F is equivalent in
designing a labeling scheme with short labels for every graph of F, any result
on one of the problems transferring on the other. For instance, the best known
induced-universal graph for the class of n-node forests, namely n · 2O(log∗ n), is
actually derived from a labeling scheme with log n + O(log∗ n)-bit2 labels [3].

We note that a labeling scheme transfers to an effective construction of the
corresponding induced-universal graph: the vertex-set of the universal graph is
the set of all possible labels, and an edge is added if the adjacency test between
the two corresponding vertices/labels is positive. However, converting a small
induced-universal graph into a compact labeling scheme does not give, in general,
any efficient representation in term of computation of all the labels for a graph
and adjacency testing time.

1.1 Related Works

Motivated by applications in XML search engines, and distributed applications
as peer-to-peer overlay networks or network routing, several queries on dis-
tributed data-structures have been investigated recently. In this framework, dis-
tributed data-structure can be seen as a label assigned to each node such that
queries can be answered by inspecting the labels only, without any other source
of information. For instance, address-based routing in trees [13,19,25], distance
queries for interval and permutation graphs [5,14], sibling and ancestry in rooted
trees [1], etc. have O(log n)-bit distributed data-structures.

Representation of graphs with short labels, introduced by Breuer [8], have
been investigated by Kannan, Naor and Rudich [18]. They construct adjacency
labeling schemes for several families of graphs including treewidth3-k and ar-
boricity4-α graphs using respectively O(k log n)-bit and (α+1) logn-bit labels. In
particular, this latter scheme gives an induced-universal graph for trees (α = 1)
of size O(n2), and combined with the linear time Schnyder’s tree decomposi-
tion [24], this leads to the first effective 4 log n-bit labeling for planar graphs
(α = 3).

The size of the induced-universal graph for trees was later improved in a
non-trivial way to O(n log n) by Chung [9]. This transfers to a non-constructive
adjacency labeling with labels of log n+ log log n+O(1) bits for trees, and more
generally of α log n + O(α log log n) bits for arboricity-α graphs. This result has
2 log∗ n denotes the number of times log should be iterated to get a constant.
3 The original result was stated for c-decomposable graphs which are exactly the

graphs of treewidth k = Θ(c).
4 Which is the smallest number of forests in which the edge-set of the graph can be

partitioned.

584 C. Gavoille and A. Labourel

been further improved by the use of an efficient labeling scheme to α log n +
O(log∗ n) bits [3], complemented with a α log n − O(α2) lower bound. This best
to date result yields to an adjacency labeling scheme for trees of log n+O(log∗ n).
For planar graphs, the resulting 3 log n + O(log∗ n)-bit labeling can be slightly
improved by observing that: 1) planar graphs can be decomposed into three
forests those one is spanning and of bounded degree [17]; and 2) adjacency in
bounded degree forests can be done efficiently in log n+O(1) [7]. Thus, a vertex
can store its label in the bounded degree forest plus the label of its parent in
each of the two other forests, leading to a 3 logn + O(1) labeling with constant
time adjacency. This converts into an induced-universal graph of size O(n3).

Finally, we remark that the best up to date planar representation essentially
uses the three forests decomposition.

1.2 Our Contributions

1. Surpassing the three forests decomposition of planar graph, we propose a
new 2 logn+O(log log n) bit adjacency labeling scheme supporting constant
query time.

2. More generally, for graphs excluding a fixed graph H as minor5 (e.g., planar
graphs exclude K5), we propose a 2 log n + O(h log log(n/h)) bit labeling
scheme where h is a constant only depending on H .

3. For treewidth-k graphs, a subclass of graphs excluding Kk+2-minor, we im-
prove the label length to log n+O(k log log(n/k)) supporting adjacency test-
ing in constant time (independent of k).

4. We also show that every adjacency labeling scheme for treewidth-k graphs
requires labels of log n+Ω(k) bits, proving that the linearity dependency on
k in the second order term of our scheme is necessary.

5. All these results transfer also to effective construction of smaller induced-
universal graphs of size n2+o(1) for minor-free graphs, and of n1+o(1) for
bounded treewidth graphs, previous bounds were O(n3) for planar graphs
and nO(k) for treewidth-k graphs.

1.3 Techniques

In fact our results on planar and minor-free graphs are derived from our (1 +
o(1)) log n-bit label scheme for bounded treewidth graphs using suitable edge-
partitions. Although planar graphs can be decomposed into three treewidth-1
graphs (forests), they can also be decomposed, in linear time as well, in two
bounded treewidth graphs as follows: 1) partition the vertices into layers Li at
distance i from an arbitrary vertex; 2) the graph Hi, i > 0, induced by the
edge {u, v} with u, v ∈ Li or with u ∈ Li and v ∈ Li−1 has bounded treewidth
(actually at most three from [11]); 3) the two graphs composed as the union of
the Hi’s for respectively odd and even i are therefore of bounded treewidth since
no edges lie between Hi and Hi+2.
5 That are graphs for which H can be obtained by edge contractions and taking

subgraphs.

Shorter Implicit Representation for Planar Graphs 585

From the above discussion, a λ-bit labeling for treewidth-k graphs yields a
2λ-bit labeling scheme for planar graphs, because it suffices to assign to each
vertex the label for each subgraph and to test adjacency in the two subgraphs.
Actually, it has been recently proved that planar graphs can be edge-partitioned
into two outerplanars [16] (that are of treewidth two), and in linear time [17].
It has been proved a similar result for graphs excluding a fixed minor [10]: they
can be edge-partitioned into two subgraphs of treewidth only depending on the
excluded minor.

Therefore, our log n + O(log log n) labeling scheme for bounded treewidth
graphs implies a 2 log n + O(log log n) not only for planar graphs but also for all
minor-free graphs (including bounded genus graphs for instance). All previous
schemes were based on the bounded arboricity of bounded treewidth or minor-
free graphs. Unfortunately, arboricity-α graphs require labels of at least α log n−
O(α2) bits from the lower bound of [3], and outerplanar graphs (which exclude
K4) have already arboricity two. So there is no advantage of decomposing a graph
into low arboricity subgraphs, unlike decomposing into low treewidth subgraphs:
2 treewidth-2 graphs is better than 3 treewidth-1 graphs.

From the above discussion, we detail our scheme only for treewidth-k graphs.
A graph has treewidth k if and only if it is a subgraph of a chordal (or trian-
gulated) graph6 of maximum clique size k + 1. Chordal graphs, and therefore
treewidth-k graphs, have a natural clique tree structure, and they can also be
defined as graphs having a Robertson-Seymour’s tree-decomposition [23] in sub-
graphs of at most k + 1 vertices, called bags. Informally, the set of bags forms a
cover of the graph (each vertex and edge belongs to at least one bag), and they
must be one-to-one mapped to the nodes of a tree T such that the set of bags
containing a given vertex of the graph induces a connected component of T .

Let us first observe that an efficient labeling scheme on trees (like the one
of [3]) does not transfer to a labeling scheme for graphs having some “good”
tree-decomposition because bags may intersect in a non trivial way.

The next section present our labeling scheme. Due to lack of space the lower
bound appears in the full version.

2 A Simple Adjacency Labeling Scheme

In this section we prove the main result of this paper that is:

Theorem 1. The family of n-vertex treewidth-k graphs enjoys an adjacency
labeling scheme with labels of log n + O(k log log(n/k)) bits, and with a constant
adjacency query time. Moreover, for every fixed k, all the labels of such a graph
can be computed in O(n log n) time.

The construction of the labels relies on finding a chordal supergraph with min-
imum maximal clique (i.e., k + 1), whose the associated decision problem is
NP-complete [4]. For each fixed k, linear time algorithms are known [6]. We

6 I.e., a graph whose the length of the longest induced cycle is at most three.

586 C. Gavoille and A. Labourel

also note that for trees, outerplanar and series-parallel graphs (i.e., for k � 2)
efficient and simple algorithms exist, and our compact representation for planar
graph is based on outerplanar graphs only.

As said previously, the results for the 2 logn + O(log log n) bit labeling for
planar graphs, and more generally minor-free graphs, and the small induced-
universal graphs, are simple corollaries of Theorem 1.

2.1 Preliminaries

Our scheme relies on the chordal representation: every treewidth-k graph is
the spanning subgraph of a chordal graph, called triangulation, whose maximal
cliques have no more than k + 1 vertices. Chordal graphs of maximum clique
size k + 1 have two important properties. Firstly, there exists a clique whose
its removal leaves the graph with connected components at most half the size
of the original graph [15]. Secondly, there is an elimination ordering scheme of
the vertices, called simplicial elimination scheme, such that the neighborhood of
each just removed vertex is a clique in the remaining graph. Our scheme strongly
relies on graphs having these both properties we formalize hereafter.

A graph G is s-separable if every subgraph H has a half-separator of size at
most s, i.e., a subset of at most s vertices whose removal leaves H in connected
components of at most |V (H)|/2 vertices. A graph is k-clique orientable if its
edges can be oriented such that the out-neighborhood of every vertex induces a
clique of size at most k. Such an orientation is called a k-clique orientation.

Definition 1. A (k, s)-triangulation is a graph that is k-clique orientable and
s-separable. A (k, s)-graph is a subgraph of a (k, s)-triangulation.

Fig. 1. A (1, 2)-triangulation, a (1, 2)-triangulation, and a (1, 2)-triangulation

According to this definition, treewidth-k are (k, k + 1)-graphs, since their tri-
angulations are (k +1)-separable and the simplicial elimination scheme provides
a k-clique orientation. However, forests are (1, 1)-graphs whereas they are of
treewidth one. Cycles (treewidth 2) are 1-clique orientable and 2-separable, and
thus are (1, 2)-graphs (they are also (1, 2)-triangulations, see Fig. 1). We can
also check that cliques of k vertices are (�k/2� , �k/2�)-graphs whereas they are
of treewidth k − 1. So, (k, k + 1)-graphs are a strictly wider family of graphs
than treewidth-k graphs.

A k-complex of a graph G is a subgraph K isomorphic to depth-1 tree with
at most k leaves. Its root, denoted by root(K), is the non-leaf node of K. Two
complexes K and K ′ of G are said adjacent if root(K) �= root(K ′), and if either

Shorter Implicit Representation for Planar Graphs 587

root(K) ∈ V (K ′) or root(K ′) ∈ V (K). Clearly, if two complexes are adjacent,
then their roots are adjacent in G.

With each vertex u of a (k, s)-graph G one can associate a k-complex Ku of
root u such that each edge of G is covered by exactly one k-complex, as follows:
Ku is formed by u and its neighbors in G that are out-neighbors in the (k, s)-
triangulation of G. Then, there is a trivial adjacency labeling scheme consisting
in labeling u by a coding V (Ku). It is clear that u and v are adjacent if and only
if their associated complexes Ku and Kv are. This trivially yields to labels of
(k + 1) �log n� bits. We shall see that a much better implementation (or coding)
of complexes can be achieved using the fact that, in the triangulation of G, Ku

is a clique.
For this purpose we need a particular partition of the vertices of G.

Definition 2. A bidecomposition of a graph G is a rooted binary tree T where
nodes, called parts, form a partition of V (G) such that the parts of the endpoints
of every edge of G are related7 in T .

The part of T containing vertex u is denoted by Tu. A straightforward observa-
tion from the definition of T is that the parts of all the vertices of a subgraph
K are pairwise related if K is a clique.

2.2 Finding a Suitable Bidecomposition

Lemma 1. Let G̃ be an s-separable graph of n vertices. Then, G̃ has a bidecom-
position such that the parts of depth h have at most s �log(2n/s) − h� vertices.

Moreover, such a bidecomposition can be computed in O(sn log(n/s)) time if
we assume that a half-separator of size s for any subgraph of G̃ can be computed
in time linear in the size of the subgraph.

Proof. Let G̃ be an s-separable graph with n vertices. Since every subgraph of
an s-separable graph is also s-separable, we essentially need to construct the
root of the willing bidecomposition T , i.e., to prove the result for depth h = 0,
and repeat recursively the process on the remaining subgraphs. In the following,
the root of the bidecomposition is called biseparator.

The root B of T (the biseparator) and the partition (V1, V2) of V (G̃) \ B
are computed thanks to the following simple procedure called Biseparator

(Algorithm 1), where Half-Separator(H, s) is a subroutine computing a half-
separator of size at most s for the graph H .

At each iteration of the while-main of Biseparator the size of H is divided
by at least two since all the resulting components of H \ S are removed from H ,
and the remaining largest component is of size at most |V (H)|/2. So, there is at
most log(n/s) iterations.

At each step the size of B increases by at most s vertices, and the final step
(last statement) adds at most s vertices to B. Therefore, |B| � s·�log(n/s)�+s =
s · �log(2n/s) − h� with h = 0.

7 Two nodes of a rooted tree are related if one is ancestor of the other.

588 C. Gavoille and A. Labourel

Algorithm 1. Biseparator

Input : an s-separable graph G̃

Output: A biseparator B for G̃ and the associated vertex partition (V1, V2)

H := G̃; V1 := V2 := B := ∅

while |V (H)| > s do
S := Half-Separator(H,s); H := H \ S; B := B ∪ S
forall connected component C of H except the greatest do

H := H \ C;
if |V1| > |V2| then V2 := V2 ∪ V (C) else V1 := V1 ∪ V (C)

B := B ∪ H

In order to insure the correctness of the bidecomposition, we show the follow-
ing loop invariant.

(P) : |V1|, |V2| � n/2 and V (H) ∪ V1 ∪ V2 ∪ B = V (G̃)

It is straightforward to verify that (P) is true at the beginning of the main loop.
Let us show that (P) remains true at the end of the imbricated loop. The loop
invariant clearly remains true after computation of the half-separator and the
statement H := H \ S and B := B ∪ S. Assume w.l.o.g. that |V1| � |V2|. We
have V (H) ∪ V1 ∪ V2 ⊆ V (G̃) since (P) is true. We obtain the following relation
for the size of the sets.

|V (H)| + |V1| + |V2| � n

|V (H)| � n − |V1| − |V2| � n − 2|V2| (|V1| � |V2|)
|V (H)|/2 � n/2 − |V2|

|V (C)| � n/2 − |V2| (there is yet another larger component in H)
|V (C)| + |V2| � n/2

The property (P) remains true at the end of the imbricated loop. The property
(P) is loop invariant and so is true at the end of the main loop. We have that
|V1|, |V2| � n/2. Moreover, there is no edge linking vertices of V1 to vertices of
V2 since what we add to V1 or V2 is a full connected component of H .

The bidecomposition T of G̃ is obtained by applying recursively the process
on the graphs induced by V1 and V2. We then link to B (the root of T) the
resulting bidecompositions if there are non-empty.

Since the size of V1 and V2 are � n/2, by induction, the size of their bisep-
arators (so parts of depth h = 1 in T) would be at most s · �log(2(n/2)/s))� =
s · �log(2n/s) − 1�. More generally, for an arbitrary depth h � 0, the parts are
of size s · ⌊

log(2(n/2h)/s))
⌋

= s · �log(2n/s) − h� as claimed.
Before computing the time complexity, let us observe that every subgraph

H of G̃ has O(s|V (H)|) edges. Indeed, it is known [22] that every s-separable
graph has treewidth at most 4s. Moreover, treewidth-k n-vertex graphs have no
more than kn edges, due to the simplicial elimination scheme of their minimal
triangulation. It follows that H has at most 4s|V (H)| edges.

Shorter Implicit Representation for Planar Graphs 589

Let us show now that it takes a linear time to compute the biseparator B, the
root of T . At each iteration of the main loop, a separator of H is computed in
O(|V (H)| + |E(H)|) time by assumption. The updates of V1, V2, and H are also
determined in O(|V (H)| + |E(H)|). We have seen that |E(H)| � 4s|V (H)|. At
the i-th iteration of the main loop, |V (H)| � n/2i. So, the i-th iteration takes
O(|V (H)| + |E(H)|) = O(sn/2i) time. The time for computing the biseparator
is therefore

∑log(n/s)
i=0 O(sn/2j) � c · sn for some constant c > 0.

In total, the bidecomposition T is computed recursively in time t(n) � c ·sn+
2t(n/2) if n > s, and t(n) = O(1) in if n � s, which is t(n) = O(sn log(n/s)).
�

2.3 The Labels

Let us fix a (k, s)-graph G with n vertices. So G has a spanning (k, s)-
triangulation G̃ that is s-separable. Let T be a bidecomposition for G̃ satisfying
Lemma 1. For every vertex u of G, let Ku be a complex rooted at u obtained
by adding to u every incident edge leading to a neighbors of u in G that is an
out-neighbor in G̃. By construction, V (Ku) induces a clique of at most k + 1
vertices in G̃. Hence, the parts of each vertex of Ku are pairwise related in T .

We define the function β(h) =
∑h

i=0 s �log(2n/s) − i�. Intuitively, β(h) repre-
sents the maximum number of vertices of G contained in the parts of a branch8

of T of length h + 1. We have also β(h) = s(h + 1)(�log(2n/s)� − h/2).
Let X be a part of T at depth h. Te root of T is at depth h = 0. By Lemma 1,

|X | � β(h) − β(h − 1). We denote by path(X) the binary word defining the
unique path from the root of T to X . The length of path(X) is |path(X)| = h.
We associated with each u ∈ X , its rank, a unique integer rank(u) ∈ [0, |X |), and
its position, defined by pos(u) = rank(u) + β(h − 1). The apex of u is the vertex
au of Ku with maximum position, i.e., such that pos(au) = maxv∈V (Ku) pos(v).

Observe that the positions are relative to a branch of T : every pair of vertices
whose parts are on the same branch have distinct positions, and thus the parts
of any two vertices having the same positions cannot be related.

Let u be a vertex of G, and let au be the apex of Ku in T . The label of vertex
u is defined by the following quadruple:

label(u) = (path(Tau), rank(au), Pu, ru)

where Pu = {pos(v) | v ∈ V (Ku), v �= au} and ru = | {p ∈ Pu | p < pos(u)} |.
Roughly speaking, Pu is the set of positions of all the vertices of Ku but its
apex, and ru is the rank of the root of Ku in Pu. So ru = 0 if pos(u) is the
smallest position in Pu; ru = |Pu| if u = au is the apex itself.

Let pos(Ku) = {pos(v) | v ∈ V (Ku)}. It is not difficult to see that the complex
Ku is uniquely defined by the pair (pos(Ku), path(Tau)), i.e., the set of its posi-
tions and the path leading to its apex. Indeed, as said previously, vertices lying on
the same branch of T have pairwise distinct positions, and vertices lying on differ-
ent branches can be identified from the path of their apices (that must therefore
differ). The set pos(Ku) is not a field of label(u), Pu misses pos(au). However,
8 A path that leads to the root of T .

590 C. Gavoille and A. Labourel

0

0 10

0

0 1

10

1

T

u

au

Fig. 2. A bidecomposition with a complex Ku of root u and apex au

it can be computed since pos(au) = rank(au) + β(|path(Tau)|). It follows that
label(u) is a (one-to-one) coding of Ku. In particular, label(u) �= label(v) since
Ku �= Kv for distinct vertices u �= v.

Lemma 2. The labels are of log n + 2k log log(n/s) + O(k log(s/k)) bits.

Proof. We assume that n, k, s are given. Let w = �log(2n/s)�, and let h =
|path(Tau)|. The binary word path(Tau) is of length exactly h, and rank(au) ∈
[0, β(h) − β(h − 1)). We have β(h) − β(h − 1) = s �log(2n/s) − h� = s(w − h).

We write rank(au) = x · (w − h) + y where x ∈ [0, s) and y ∈ [0, w − h):
x = �rank(au)/(w − h)� and y = rank(au) mod (w − h). We represent the two
first fields path(Tau), rank(au) by the binary string9:

S = 0y ◦ 1 ◦ σx ◦ path(Tau)

where σx denotes the standard binary representation of x on �log s� bits. Given
S (but ignoring h), one can extract, y and σx, thus path(Tau), h, and rank(au) =
x·(w−h)+y. The length of S is |S| � (w−h−1)+1+�log s�+h = w+�log s� =
�log(2n/s)� + �log s� � log n + O(1). All the positions in Pu range in [0, β(h)).
It follows that there are at most

(β(h)
|Pu|

)
�

(
β(h)

k

)
possible ways to select the set

Pu having at most k positions. This can be coded with log
(
β(h)

k

)
+ O(1) bits.

Finally, ru ∈ [0, |Pu|], thus there are k + 1 possible values. This can be coded
with �log(k + 1)� bits. In total, the length of label(u) is at most:

|label(u)| � log n + log
(

β(h)
k

)
+ O(log k) (1)

9 We denote by ◦ the word concatenation.

Shorter Implicit Representation for Planar Graphs 591

By Lemma 1, the size of the parts in T of depth log(n/s) are of size at most
s ·(log(2n/s)− log(n/s)) = s. From the while-condition in Algorithm Bisepara-

tor, if |V (H)| � s, then the input graph is not separated at all, implying that
the part is actually a leaf of T . Therefore h � log(n/s).

We have β(h) � β(log(n/s)) � (log(n/s) + 1) · s · log(2n/s)) = s · log2(2n/s).
Thus log

(
β(h)

k

)
� k log(β(h)/k) + O(k) � k log(s/k · log2(2n/s)) + O(k) �

2k log log(n/s) + O(k log(s/k)). Plugging this latter bound in Eq. (1), we get
the desired result.
�
So, for treewidth-k graphs, that are (k, k + 1)-graphs, we obtain labels of
length roughly log n + 2k log log(n/k). For (1, 1)-graphs (forests), this is log n +
2 log log n. Actually, a finer analysis shows that for trees the label length is no
more than log n + 2 log log n + 2 for every n � 5, a competitive bound with the
log n + 4 log log n scheme of [3].

We finally observe that our scheme support parent and sibling queries in
rooted trees since we associate with each node a coding of itself and its parent.
The label length is log n+O(log log n) which is not optimal for parent but optimal
for sibling queries due to the lower bound of log n + Ω(log log n) of [2].

2.4 Adjacency Test

Let u and v be two vertices of G. We denote by M = β(h) where h is the length
of the longest common prefix between path(Tau) and path(Tav). The proof of
the next result appears in the full version.

Lemma 3. The vertices u and v are adjacent if and only if label(u) �= label(v)
and if either pos(u) ∈ pos(Kv) ∩ [0, M) or pos(v) ∈ pos(Ku) ∩ [0, M).

We now briefly explain how to implement the adjacency test given by Lemma 3
to perform in constant time under the standard Ω(log n)-bit word RAM com-
puter model. First we observe that β(h) can be computed in constant time
using its closed formula: β(h) = s(h + 1)(�s log(2n/s)� − h/2). Thus M can be
computed in constant time, because the length of the common prefix between
two O(log n)-bit words can be computed using constant number of MSB10, bi-
nary masks, and shifting operations. Now, to test if pos(v) ∈ pos(Ku), we
can test if pos(v) = pos(au) or if pos(v) ∈ Pu. The position of the apex is
pos(au) = rank(au) + β(|path(Tau)|). The position of u can be also determined
from label(u), since pos(u) is pos(au) if ru = |Pu|, or the ru-th element of
Pu. It follows that testing if label(u) �= label(v) can be done by checking that
(pos(u), path(Tau)) �= (pos(v), path(Tav)). Finally, computing pos(u) and test-
ing whether pos(u) ∈ Pv rely on membership and select query in an integer
subset Pu ⊂ {0, . . . , β(h)}.

Using a compact static dictionary, one can implement such queries in constant
time using a data-structure of (1 + o(1)) log

(β(h)
|Pu|

)
) bits [21]. We have already

seen in the proof of Lemma 2 that log
(
β(h)

k

)
� 2k log log(n/s) + O(k log(s/k)).

10 Most Significant Bit, or integer log function.

592 C. Gavoille and A. Labourel

Lemma 4. The family of n-vertex (k, s)-graphs enjoys an adjacency labeling
scheme with label of log n + (2k + o(1)) log log(n/s) bits, and with a constant
adjacency query time.

We prove Theorem 1 by plugging s = k+1 and combining all lemmas, and using
the fact that a (k, k + 1)-triangulation for treewidth-k graphs can be computed
in linear time for fixed k [6].

3 Concluding Remarks and Open Problems

We have proposed a new implicit representation for planar graphs, and more
generally to graphs excluding a fixed minor, with asymptotically 2 logn bits per
vertex. Improving this bound would require a totally different approach, since
decomposing into two or more subgraphs inevitably leads to a c log n represen-
tation with c � 2.

From the lower bound side, the number ψ(n, H) of n-vertex labeled H-minor-
free graphs is n!·2hn+o(n), where h depends only on H [20]. Therefore, the trivial
information-theoretic lower bound for adjacency is 1

n log ψ(n, H) ∼ log n+h bits
for at least one label. This leads to the natural question we propose as open
problem:

Conjecture. The family of H-minor-free graphs supports an adjacency labeling
scheme with log n + h bit labels where h = h(H).

Proving a labeling scheme of log n+O(k) for treewidth-k graphs would be already
very interesting, since not only if would match our lower bound of log n + Ω(k),
but also prove an optimal bound for trees (up to an additive constant) which is
still open.

References

1. Abiteboul, S., Alstrup, S., Kaplan, H., Milo, T., Rauhe, T.: Compact labeling
schemes for ancestor queries. SIAM J. on Computing 35, 1295 (2006)

2. Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees.
SIAM J. on Discrete Mathematics 19, 448–462 (2005)

3. Alstrup, S., Rauhe, T.: Small induced-universal graphs and compact implicit graph
representations. In: 43rd Annual IEEE Symp. on Foundations of Computer Science
(FOCS), nov, pp. 53–62. IEEE Computer Society Press, Los Alamitos (2002)

4. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. on Algeb. and Disc. Meth. 8, 277–284 (1987)

5. Bazzaro, F., Gavoille, C.: Localized and compact data-structure for compara-
bility graphs. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827,
pp. 1122–1131. Springer, Heidelberg (2005)

6. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. on Computing 25(6), 1305–1317 (1996)

7. Bonichon, N., Gavoille, C., Labourel, A.: Short labels by traversal and jumping. In:
Flocchini, P., Gkasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 143–156.
Springer, Heidelberg (2006)

Shorter Implicit Representation for Planar Graphs 593

8. Breuer, M.A.: Coding the vertexes of a graph. IEEE Transactions on Information
Theory IT-12, 148–153 (1966)

9. Chung, F.R.K.: Universal graphs and induced-universal graphs. J. of Graph The-
ory 14, 443–454 (1990)

10. DeVos, M., Ding, G., Oporowski, B., Sanders, D.P., Reed, B., Seymour, P.D.,
Vertigan, D.: Excluding any graph as a minor allows a low tree-width 2-coloring.
J. of Combinatorial Theory, Series B 91(1), 25–41 (2004)

11. Elmallah, E.S., Colbourn, C.J.: Partitioning the edges of a planar graph into two
partial k-trees. Congressus Numerantium 66, 69–80 (1988)

12. Erdös, P., Gerencsér, L., Máté, A.: Problems of graph theory concerning optimal
design. In: Colloq. Math. Soc. Janos Bolyai 4: Combinatorial theory and its appli-
cations, vol. 1, pp. 317–325. North-Holland, Amsterdam (1970)

13. Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van
Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg
(2001)

14. Gavoille, C., Paul, C.: Optimal distance labeling schemes for interval and circular-
arc graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832,
pp. 254–265. Springer, Heidelberg (2003)

15. Gilbert, J.R., Rose, D.J., Edenbrandt, A.: A separator theorem for chordal graphs.
SIAM J. on Algebraic and Discrete Methods 5, 306–313 (1984)

16. Gonçalves, D.: Edge partition of planar graphs into two outerplanar graphs. In:
37th Annual ACM Symp. on Theory of Computing (STOC), pp. 504–512. ACM
Press, New York (2005)

17. Étude de différents problèmes de partition de graphes, PhD thesis, Université Bor-
deaux 1, Talence, France, Dec (2006)

18. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. In: 20th Annual
ACM Symp. on Theory of Computing (STOC), pp. 334–343. ACM Press, New York
(1988)

19. Korman, A., Peleg, D.: Compact separator decompositions and routing in dynamics
trees. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
LNCS, vol. 4596. Springer, Heidelberg (2007)

20. Norine, S., Robertson, N., Thomas, R., Wollan, P.: Proper minor-closed families
are small. J. of Combinatorial Theory, Series B 96(5), 754–757 (2006)

21. Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM
J. on Computing 31(2), 353–363 (2001)

22. Reed, B.: Finding approximate separators and computing treewidth quickly. In:
24th Annual ACM Symp. on Theory of Comp (STOC), pp. 221–228. ACM Press,
New York (1992)

23. Robertson, N., Seymour, P.D.: Graph minors. III. planar tree-width. J. of Combi-
natorial Theory, Series B 36, 49–64 (1984)

24. Schnyder, W.: Embedding planar graphs on the grid. In: 1st Symp. on Discrete
Algorithms (SODA), pp. 138–148. ACM Press, New York (1990)

25. Thorup, M., Zwick, U.: Compact routing schemes. In: 13th Annual ACM Symp. on
Parallel Algorithms and Architectures (SPAA), pp. 1–10. ACM Press, New York
(2001)

Dynamic Plane Transitive Closure

Krzysztof Diks1 and Piotr Sankowski1,2

1 Institute of Informatics, Warsaw University, Warsaw, Poland
2 Dipartimento di Informatica e Sistemistica,

University of Rome “La Sapienza”, Rome, Italy

Abstract. In this paper we study the problem of transitive closure in
dynamic directed plane graphs. We show a dynamic algorithm supporting
updates and queries in worst-case Õ(

√
n) time1. This is the first known

algorithm for this problem with almost linear update time and query
time product.

1 Introduction

The transitive closure problem is one of the most fundamental graph problems.
The question if there is a path in the graph from one vertex to another is the
simplest question one can ask. Although it has been extensively studied there
are still many open problems left and the new one emerge, e.g., the complexity
of the problem for sparse graphs seems to be not fully understood [18]. More-
over, even more interesting questions arise in the case of the dynamic transitive
closure problem, which has attracted a lot of attention in recent years, e.g., the
fully dynamic algorithms for general graphs have been presented in the following
papers [4,6,8,7,1,13,12,14,15], whereas the only fully dynamic algorithm for the
planar graphs has been presented in [16]. The algorithm of Subramanian [16]
is based on sparse certificates for reachability information in planar graphs and
supports updates and queries in Õ(n

2
3) amortized time. It should be noted that

this algorithm was obtained before the presentation of any of the dynamic algo-
rithm for general graphs. Furthermore, the fastest known algorithm for general
graphs that supports updates and queries in O(n1.5) worst-case time [15] works
much slower than the algorithms developed for planar graphs, whereas the fastest
algorithm for sparse graphs works in O(n) query and O(n log n) amortized up-
date time [14]. Moreover, one should note that a naive graph search gives an
O(1) update and O(n) query time algorithm, which beats both of these general
graph approaches.

Here we improve over the result of Subramanian [16] by showing the algo-
rithm supporting updates and queries in Õ(n

1
2) worst-case time, but for a more

restricted class of plane graphs, i.e., we assume that the embedding of the graph
during edge updates cannot change. This is a rather weak assumption because
in possible applications the embedding of the planar graph should fixed because

1 Õ denotes the so-called “soft O” notation, i.e. f(n) = Õ(g(n)) iff f(n) =
O(g(n) logk n) for some constant k.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 594–604, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dynamic Plane Transitive Closure 595

the nodes might correspond to existing locations. From the other side it is known
that the reachability information in much more restricted class of graphs, i.e.,
plane directed acyclic graphs (DAGs) with one source and one sink, can be
maintained in Õ(1) time [5].

Our algorithm is based on sparse reachability oracles, i.e., data structures
that can answer reachability queries fast and in the same time have small size.
The first example of such a data structure was given by Subramanian [16] who
has shown that reachability information about k vertices located on a constant
number of faces can be encoded into a graph of size O(k log k). This idea has been
ingeniously extended by Thorup [17] who has shown that all the reachability
information in a planar graph can be represented by a data structure of size
O(n log n) that can answer queries in constant time. The main idea of both
algorithms is separating directed path technique (see Lemma 1). We simplify
slightly the construction of the sparse certificates and use some previously not
used properties of the planar graphs, i.e., Monge property for the paths. This
allows us to show how to compute the union of two sparse reachability certificates
in time proportional to their size. This operation is essential to combine the
reachability certificates with the separator techniques [10,11] in dynamic setting.
Using both techniques we are able to present a data structure that support
updates and queries in Õ(n

1
2) worst-case time.

The data structures of Subramanian [16,9] and Thorup [17] can be adopted to
maintain information on approximate distances in planar graphs as well. In our
case it is also possible to use the same extension and obtain a dynamic algorithm
for maintaining approximate distances in planar graph. The algorithm supports
update and query operations in Õ(ε−1√n) worst-case time. However, due to the
space limitations the details of this algorithms will be included in the full version
of the paper.

The paper is organized as follows. In the next section we introduce the notion
of the sparse certificates and show how they can be constructed. In Section 2 we
show how to compute the union of two sparse certificates. In the next section we
present the decomposition technique based on separators. The decomposition
together with the union operation is the main of the dynamic algorithm for
transitive closure presented in Section 5. The final conclusions and open problems
are contained in Section 6.

2 Sparse Reachability Certificates

In this section we show how to construct small certificates for the reachability
information in planar graphs, which is inspired by the construction from [16]
and [17]. Let G = (V, E) be a directed planar graph and let S ⊆ V be a set of
k vertices lying on a boundary of face f . We would like to construct data struc-
ture of size Õ(|S|) that would allow us to answer queries about the reachability
only between the vertices of S in Õ(1) time. The main idea of the path-detour
technique uses the next lemma in order to construct a set of separating paths.
In the next section we show how to represent the reachability information when

596 K. Diks and P. Sankowski

the vertices in S lay on a constant number of faces. In Section 5 we present how
this data structure can be used to represent all the reachability information.

Lemma 1 (Subramanian ’93). One can construct in O(|V | + |E|) time two
paths π1, π2 in G such that the set S is divided in G − π1 − π2 into two parts
S1 and S2 neither having more than 3

4 ’ths of the nodes of S and there exist sets
Q1 ⊆ S1 and Q2 ⊆ S2 such that there is no path between S1 − Q1 and S2 − Q2,
and such that:

– every path between Q1 and S2 intersects the path π1,
– every path between Q2 and S1 intersects the path π2.

Proof. Consider the following procedure:

– We number the nodes clockwise along the face f and divide them into four
equal continuous subsets A1, A2, A3 and A4.

– If there is a path p from A1 to A3 or from A2 to A4 we use it to divide S
into S1 and S2, and we set π1 = p, π2 = ∅, Q1 = S1 and Q2 = ∅.

– We set ai, for i = 1, 2, to be the lowest numbered node in A2i−1 such that
there exists a path from or to some node bi in A2i and we set πi to be this
path. If there is no such path we set πi = ∅.

– The set S1 includes the nodes from a1 to a2 not including a2, the set Q1

includes the nodes of S1 starting from b1, whereas the set S2 includes the
nodes a2 to a1 not including a1 and Q2 includes the nodes of S2 starting
from b2.

First of all note that there is no path between S1 − Q1 and S2 − Q2 because
either S1 − Q1 is empty or there is no path from A1 to A3 or from A2 to A4.
Additionally, it follows from the constructions that the paths between Q1 and
S2 have to intersect the path π1 and similarly the paths between Q2 and S1 have
to intersect the path π2.

In order to find the nodes ai one has to collapse the nodes of A2i into a single
super node s and perform a DFS on the normal and reversed graph. In such a
way we find all nodes from A2i−1 that have a path to or from A2 and we just
need to chose the one with the smallest number. This takes O(|V | + |E|) time
and the lemma follows.

We will now show that all the paths intersecting a directed path can be sparsely
represented. The following lemma was proven by Subramanian [16]. However,
here we give different proof that includes the construction of our extended oracle.

Lemma 2. Let S1 and S2 be defined as in Lemma 1, then there exists a data
structure of size O(k) that can answer queries about the reachability from S1 to
S2 in constant time can be constructed in O(|E| + |V |) time.

Proof. Let us start by representing the information about the paths from Q1 to
S2. For the path π1 we maintain an ordered list Lπ1 of the nodes in Q1 ∪ S2.
Now for each x ∈ Q1 we find the first vertex xπ1 on π1 that is reachable from x,

Dynamic Plane Transitive Closure 597

whereas for each x ∈ S2 we find the last vertex xπ1 on π1 from which x can be
reached. The order of the vertices in L is determined by the order of vertices xπ1

on π1. Let us denote by ordLπ1
(x) the position of x in Lπ1 . Note now that y ∈ S2

is reachable from x ∈ Q1 iff ordLπ1
(x) ≤ ordLπ1

(y). In order to determine the
vertices xπ1 for the set Q1 we simply run the DFS procedure for reversed edges
starting at the vertices on πq in their order. In this way we can determine for
each s ∈ π1 all the vertices x ∈ Q1 such that xπ1 = s. The vertices xπ1 for the
set S2 can be determined in the same way by considering the graph with normal
direction of edges. In order to describe the paths from Q2 to S1 we construct
the list Lπ2 in the same way.

In the Subramanians data structure the sparse certificates are stored as graphs,
i.e., for each vertex x he adds the edge (x, xπ1) to the sparse certificate. However,
note that the ordered lists Lπ1 , Lπ2 determine the reachability from S1 to S2 even
without the knowledge of the paths π1 and π2. This allows us for the following
observation.

Corollary 1. If there exist paths π1, π2, sets S1, S2, Q1 and Q2 satisfying
Lemma 1, than there exist lists Lπ1 , Lπ2 such that:

– there exists a path from x ∈ Q1 to y ∈ S2 iff ordLπ1
(x) ≤ ordLπ1

(y),
– there exists a path from x ∈ Q2 to y ∈ S1 iff ordLπ2

(x) ≤ ordLπ2
(y),

where the inequality is false if x or y is not included in the list.

Lemma 3 (Subramanian ’93). Let S1 and S2 be defined as in Lemma 1 and
let Vi be the set of the vertices of the graph G such that x ∈ Vi if and only if
there is a directed path in G − π1 − π2 from u ∈ Si to v ∈ Si passing through x,
then the sets Vi can be constructed in O(|V | + |E|) time and V1 ∩ V2 = ∅.
Proof. Let x ∈ V1 ∩ V2 then from definition of Vi there would be a path from
u ∈ S1 to v ∈ S2 passing through x, that does not intersect π1 and π2. This
contradicts Lemma 1.

Now in order to determine Vi we combine the nodes in Si into a single node
s and find the set of vertices in G − π1 − π2 that can be reached from s and can
reach s.

Theorem 1. Let G = (V, E) be a directed planar graph and let S be a set of
nodes lying on the boundary of a face f . In O(n log n) time we can construct a
data structure X of size O(k log k) that can answer the reliability queries about
the vertices in S in O(log k) time.

Proof. The data structure X can be constructed in the following way:

1. we find two paths π1, π2 in G as given in Lemma 1,
2. we sparsify the information about the reachibility between S1 and S2 using

the path π1 and π2 by applying Lemma 2 twice,
3. we divide the vertices of the graph G into two parts V1 and V2 using Lemma 3,

598 K. Diks and P. Sankowski

4. we construct subgraphs G1, G2 induced by the set of vertices S1, S2 and
compute recursively the reachability certificates in G1 and G2,

5. finally we union the three certificates to get the final certificate for S in G.

It is easy to see that the recursive calls take O(n log n) time and that the
constructed size of the data structure is O(k log k). In the obtained data structure
for each vertex in x ∈ S we maintain the position of x on O(log k) lists. In order
to answer the query if there is a path from x to y, we need to check whether
there exists a list on which x precedes y and this takes O(log k) time.

The data structure satisfying the above theorem is called a sparse certificate. We
can easily transform the sparse certificate X into a graph GX that represents all
the information stored in X . However, the obtained graph GX is not planar.

Corollary 2. The data structure X from Theorem 1 can be transformed into
a graph GX = (VX , EX), S ⊆ VX , |EX | = O(|S| log |S|) representing correctly
reachability information in X in |X | time.

Proof. We simply transform each sorted list into directed paths and add edges
from the vertices of S to the corresponding vertices on the paths.

3 Union of Sparse Certificates

Now we know how the reachability information in planar graphs can be presented
and we are ready to show how a union of two certificates can be efficiently
computed. Let G1 = (V1, E1) and G2 = (V2, E2) be a division of G = (V, E) in
to two subgraphs, i.e., V1 ∪V2 = V , E1 ∪E2 = E and E1 ∩E2 = ∅. Let Pi be the
set of the nodes lying on the outer face fi of Gi. Let us assume that P1 ∪P2 	= ∅
and let S be the set of nodes lying on the outer face of G1 ∪ G2. Of course we
have S ⊆ P1 ∪ P2. Now let us assume that we are given sparse certificates X1

and X2 for P1 in G1 and respectively P2 in G2. Now we want to compute the
certificate X for S in G.

Lemma 4. One can construct the sets S1, S2, Q1, Q2 such there exist paths π1,
π2 satisfying Lemma 1 in O(|X1| + |X2|) time.

Proof. Note that in the proof of Lemma 1 we only need to run several DFS
procedures. Instead of running them on the graph G we can run them on the
union of the graph GX1 and GX2 obtained from Corollary 2. In such a way
we get the sets S1, S2, Q1 and Q2, but the paths we get come from the sparse
certificates. Hence we cannot construct them explicitly as it might take too much
time, but we know that they exist.

In order to construct sparse certificates we use recursion and divide the sparse
certificates into smaller pieces. The algorithm is included in the proof of the
following lemma.

Lemma 5. A data structure of size O(|S|) that answers queries about the reach-
ability from Q1 to S2 in constant time can be constructed in Õ(|X1|+ |X2|) time.

Dynamic Plane Transitive Closure 599

Proof. Our goal is to construct a list Lπ1 as given in the proof of Lemma 2.
However, now we know only that the path π1 exists and we know its direction.
Let us assume that it is going upwards. We can construct the list using recursion
in the following way:

1. we choose a vertex v dividing Q1 into two continuous sets Q′1 and Q′′1 of
equal size — v is not included in Q′1 nor Q′′1 and Q′1 lays below Q′′1 .

2. let us find the lowest vertex w ∈ S2 reachable from v and denote the path
from v to w by ρ,

3. divide S2 using w into two continuous sets S′2 and S′′2 — w is not included
in S′2 nor S′′2 and S′2 lays below S′′2 ,

4. divide X1 into X ′1 and X ′′1 along the path ρ,
5. divide X2 into X ′2 and X ′′2 along the path ρ,
6. recursively find list L′π1

for the sets Q′1 and S′2 using X ′1 and X ′2,
7. recursively find list L′′π1

for the sets Q′′1 and S′′2 using X ′′1 and X ′′2 ,
8. set Lπ1 = L′π1

· (v, w) · L′′π1
, where · is the concatenation operation.

Let us start by explaining how the certificates Xi are divided along the path ρ.
We follow the path ρ in GX and whenever it crosses a list Lπ we split Lπ into
two disjoint parts. The one below ρ is included into X ′i and the one above ρ is
included into X ′′i . Note that X ′1 ∪ X ′2 correctly describes all the paths from Q′1
to S′2 because if any of such paths crosses ρ it must cross it an even number of
times, so instead of going with this path we can shortcut with the path ρ. The
paths not going from S′1 to S′2 may not be correctly described but we do not use
them in the recursion.

The correctness of the algorithm follows from the observation that any path
from Q′1 to S′′2 has to cross one of the paths π1 or ρ before their intersection.
Hence all vertices in Q′1 can reach exactly the same vertices in S′′2 as v does.
Furthermore, there is no path from Q′′1 to S′2, because if there were any it would
cross the path ρ, and the vertex w would not be the lowest one. Knowing this
we can place the list L′π1

before the elements (v, w) and the list L′′π1
.

Now let us look on the running time of the above algorithm. Note that there
are at most log |Q1| levels of recursion, because each time Q1 is divided into two
equal size sets. Moreover, in each recursion level the total work is bounded by
the size of X1 and X2 at the beginning, because X1 and X2 are split into disjoint
parts so the total size of the pieces on each level cannot increase. Hence the total
work in the recursion is bounded by O(log |Q1|(|X1| + |X2|)) = Õ(|X1| + |X2|).
Having the above lemma we are ready to show how an union of two sparse
certificates can be computed.

Theorem 2. Let G1 and G2 be a division of G in to two subgraphs. Let Pi be the
sets of the nodes lying on the outer face fi of Gi. Let us assume that P1 ∪P2 	= ∅
and let S be the set of nodes lying on the outer face of G1 ∪ G2. Let X1 and
X2 be sparse certificates for P1 in G1 and respectively for P2 in G2. The sparse
certificate X for S in G can be constructed in Õ(|X1| + |X2|) time.

600 K. Diks and P. Sankowski

Proof. The sparse certificate X can be constructed in the following way:

1. we find the sets S1, S2, Q1 and Q2 as given in Lemma 4,
2. we sparsify the information about the reachability between S1 and S2 using

the path π1 and π2 and applying twice the Lemma 5,
3. we divide the sparse certificate X1 into X1,1 and X1,2 using the sets S1 and

S2,
4. we divide the sparse certificate X2 into X2,1 and X2,2 using the sets S1 and

S2,
5. we union recursively the reachability certificates X1,1 and X2,1 in order to

obtain the certificate for S1,
6. we union recursively the reachability certificates X1,2 and X2,2 in order to

obtain the certificate for S2,
7. finally we union the three certificates to get the final certificate for S in G.

The division of the sparse certificate Xi into Xi,1 and Xi,2 using the sets S1 and
S2 can be done by looking on every list Lπ and splitting it according with the
sets S1 and S2. It follows from Lemma 1 and Lemma 4 that there are at most
O(log(|X1|+ |X2|)) levels of recursion. Whereas from Lemma 5 we get that each
recursion level takes Õ(|X1| + |X2|) time. Hence the theorem follows.

4 Planar Graph Decomposition

A decomposition of a graph G = (V, E) is a set of subsets P1, . . . , Pk such that
P1 ∪ . . . ∪ Pk = V and such that for e ∈ E there is exactly one Pi containing
e. A node v ∈ Pi is a border node of Pi if there exists w ∈ Pj for i 	= j, such
that (v, w) ∈ E. A subgraph of G induced by Pi is called a piece. If a piece is
decomposed once again the set of its border nodes is formed by the set of original
border nodes and the border nodes introduced by the new decomposition. Given
an embedding of a piece we say that a hole in it is a bounded face composed of
border nodes. We assume that we are given the following recursive decomposition
of the planar graph.

Theorem 3 (Fakcharoenphol and Rao [3]). There exist a recursive decom-
position where at each level a piece with n nodes and r border nodes is divided
into two subpieces such that each subpiece has no more than 2

3n nodes and at
most 2

3r+c
√

n border nodes, for some constant c. The decomposition stops when
each piece contains one edge. Moreover, each piece contains at most a constant
number h of holes.

In the case of some interesting classes of graphs, e.g., grids graphs, we have h = 0
and the theorems from previous section can be applied directly. However when
h 	= 0 we have to deal with the problem rather in a standard way, see [16,9,3].
For each of the h holes we apply Theorem 2 separately in order to describe the
reachability information between the vertices of the hole. Whereas in order to
describe the reachability information between different holes we have to modify
slightly the data structure. It can be achieved by observing that for each pair

Dynamic Plane Transitive Closure 601

of holes one can find a set of three separating paths. Let us assume that we are
dealing with vertices laying on face f and g. We find a path ρ going from f to g,
if there is no such path we are done, because there is no path between f and g.
Now we can union f , g and ρ and deal with them as with a single face in order to
apply Lemma 4. In such a way we obtain a set of three separating paths instead
of two. Using these paths we can construct a sparse certificate representing the
reachability between f and g. Because there are h(h−1)

2 possible pairs of holes
and because h is constant the running time of the algorithm increases only by a
constant factor when we consider holes in the decomposition.

5 Dynamic Maintenance of Sparse Certificates

In this section we use the ideas presented in the previous section in order to con-
struct dynamic algorithms. Here we assume that we are working with a plane
dynamic graph, where the embedding of the graph does not change, i.e., we as-
sume that the relative position of the vertices does not change. Our dynamic
data structure is constructed in a very simple way. We take the recursive de-
composition given by Theorem 3 and starting from the lowest level pieces we
compute the sparse certificates for every piece by unioning sparse certificates for
subpieces with use of Theorem 2. This takes all together Õ(n) time. Now let us
present how queries and updates can be realized.

Let us assume that we want to insert an edge (v, w). We can note that be-
cause the graph remains plane the edge can be inserted only inside an embedded
face of the graph. Hence such an operation cannot increase the number of holes
in any piece, e.g., by dividing a hole into two, because holes have to contain
some other piece inside and never are faces in the original graph. The insertion
of the edge changes only the reachability information for pieces it is complectly
included. Hence we do as follows, for every piece P such that v ∈ P but w /∈ P
we add v as a border node and recompute the reachability information in P by
unioning the certificates for the subpieces. Similarly we add w as a border node
to the subpieces such that w ∈ P but v /∈ P . Now for every piece such that
v ∈ P and w ∈ P we recompute the reachability information again by unioning
the certificates for the subpieces. Moreover, after every

√
n operations we recom-

pute the structure from the scratch. When an edge (v, w) has to be removed it
is enough to process every piece P such that v ∈ P and w ∈ P and recompute
the reachability information for P by unioning the certificates for the subpieces.

Note that every insert operation can increase the number of border nodes by
one in some piece. Hence after

√
n operation a piece can have at most O(

√
n)

border nodes, so each operation on it takes at most Õ(
√

n) time. Additionally,
note that in the decomposition there are at most O(log n) levels so v and w can
be contained in at most O(log n) pieces. Hence the insert and delete operation
need Õ(

√
n) amortized time including the cost of the recomputation of the whole

structure every
√

n steps. This bound can be made worst-case by using the global
rebuilding technique in which we keep two copies of the data structure. One is
used for answering queries when the second one is being recomputed.

602 K. Diks and P. Sankowski

Let us assume that we want to check if w can be reached from v. Let us
denote by Pv and Pw the sets of pieces of the decomposition that include v or w
respectively. For every piece in Pv ∪ Pw we take a sparse certificate and build a
graph representing it using Corollary 2. Next we union all of the obtained graphs
in order to obtain a skeletal graph Gv,w.

Lemma 6. There is a path in Gv,w from v to w if and only if there is a path
from v to w in G.

Proof. First of all note that each vertex becomes a border node at some level of
the decomposition. Hence v and w are the vertices in Gv,w. Now consider any
path p from v to w in G. There must be a piece P in Pv that includes whole
the path p. Moreover, the same piece is included in Pw as well. Now we can
recursively divide P according to the given decomposition into subpieces and
obtain the set of border nodes of the pieces in Pv ∪ Pu crossed by p. Note that
according to Theorem 1 the reachability information between the border nodes
is correctly represented. Hence if there is a path in G from v to w, then there is
a corresponding path in Gv,w. Now let us assume that there is no path from v
to w in G, then trivially there is no path in Gv,w, because Gv,w contains only a
subset of the paths contained in G.

The above lemma states that the queries can be correctly processed. Now let us
consider the running time needed to answer a query. As argued before we know
that each of the pieces can contain at most O(

√
n) border nodes and the vertices

v and w can be contained in O(log n) pieces. Hence the size of the graph Gv,w

is Õ(
√

n) and the queries can be realized in Õ(
√

n) time. As a consequence we
obtain the following theorem.

Theorem 4. There exists an dynamic algorithm for directed plane graphs sup-
porting updates and reachability queries in Õ(

√
n) worst-case time.

Remark 1. The actual update time of the algorithm is O(
√

n log3 n). Two log n
factors are accumulated from Lemma 5 and Theorem 2, whereas the third fac-
tor is the result of the graph decomposition given above. The query time is
O(

√
n log2), because this is the size of the graph that represents reachability

between two vertices.

6 Conclusions and Open Problems

We have presented a first algorithm for dynamic transitive closure in directed
plane graphs supporting updates and queries in Õ(

√
n) worst case time. The

algorithm can be as well used for maintaining ε approximate distances in undi-
rected planar graphs in Õ(ε−1

√
n) worst-case time. However, the details of this

algorithm due to space limitations are postponed to the full version of the pa-
per. It seems that the presented result reaches the limits set by the separator
techniques, i.e., in the current approach in each operation we need to process
the separator of size Θ(

√
n). However, the results for plane DAGs suggest that

Dynamic Plane Transitive Closure 603

breaking this limit might be possible. Nevertheless, the most interesting open
problem is the question whether the technique can be generalized to planar
graphs. Note that the information whether a dynamic graph is planar can be
maintained in Õ(

√
n) time [2].

Acknowledgements

This work was partially supported by the EU within the 6th Framework Pro-
gramme under contract no. 001907 “Dynamically Evolving, Large Scale Infor-
mation Systems” (DELIS), by the Future and Emerging Technologies Unit of
EC (IST priority - 6th FP) under contract no. FP6-021235-2 ARRIVAL), and
by the Polish Ministry of Science KBN grant N206 005 32/0807.

References

1. Demetrescu, C., Italiano, G.F.: Fully Dynamic Transitive Closure: Breaking
Through the O(n2) Barrier. In: Proceedings of 41th annual IEEE Symposium on
Foundations of Computer Science, pp. 381–389. IEEE Computer Society Press, Los
Alamitos (2000)

2. Eppstein, D., Galil, Z., Italiano, G.F., Spencer, T.H.: Separator based sparsification
for dynamic planar graph algorithms. In: STOC ’93: Proceedings of the twenty-
fifth annual ACM symposium on Theory of computing, pp. 208–217. ACM Press,
New York, USA (1993)

3. Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths,
and near linear time. J. Comput. Syst. Sci. 72(5), 868–889 (2006)

4. Henzinger, M.R., King, V.: Fully Dynamic Biconnectivity and Transitive Closure.
In: Proceedings 36th annual IEEE Symposiumon Foundations of Computer Sci-
ence, pp. 664–672 (1995)

5. Husfeldt, T.: Fully dynamic transitive closure in plane dags with one source and
one sink. In: European Symposium on Algorithms, pp. 199–212 (1995)

6. Khanna, S., Motwani, R., Wilson, R.H.: On Certificates and Lookahead on Dy-
namic Graph Problems. In: Proceedings 7th annual ACM-SIAM Symposiumon on
Discrete Algorithms, pp. 222–231 (1996)

7. King, V.: Fully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths and
Transitive Closure in Digraphs. In: Proceedings of 40th annual IEEE Symposium
on Foundations of Computer Science, pp. 81–91. IEEE Computer Society Press,
Los Alamitos (1999)

8. King, V., Sagert, G.: A Fully Dynamic Algorithm for Maintaining the Transitive
Closure. In: Proceedings of the thirty-first annual ACM Symposium on Theory of
Computing, pp. 492–498. ACM Press, New York (1999)

9. Klein, P.N., Subramanian, S.: A fully dynamic approximation scheme for all-pairs
shortest paths in planar graphs. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.)
WADS 1993. LNCS, vol. 709, pp. 442–451. Springer, Heidelberg (1993)

10. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Applied
Math., 177–189 (1979)

11. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs.
In: STOC ’84: Proceedings of the sixteenth annual ACM symposium on Theory of
computing, pp. 376–382. ACM Press, New York (1984)

604 K. Diks and P. Sankowski

12. Roditty, L.: A Faster and Simpler Fully Dynamic Transitive Closure. In: Proceed-
ings of the fourteenth annual ACM-SIAM Symposium on Discrete Algorithms.
Society for Industrial and Applied Mathematics, pp. 404–412. ACM Press, New
York (2003)

13. Roditty, L., Zwick, U.: Improved Dynamic Reachability Algorithms for Directed
Graphs. In: Proceedings of the 43rd Symposium on Foundations of Computer Sci-
ence, p. 679. IEEE Computer Society Press, Los Alamitos (2002)

14. Roditty, L., Zwick, U.: A Fully Dynamic Reachability Algorithm for Directed
Graphs with an Almost Linear Update Time. In: Proceeding of the 36th annual
ACM Symposium on Theory of Computing, pp. 184–191. ACM Press, New York
(2004)

15. Sankowski, P.: Dynamic transitive closure via dynamic matrix inverse. In: Proceed-
ings of the 45th annual IEEE Symposium on Foundations of Computer Science,
pp. 248–255. IEEE Computer Society Press, Los Alamitos (2004)

16. Subramanian, S.: A fully dynamic data structure for reachability in planar di-
graphs. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 372–383. Springer,
Heidelberg (1993)

17. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM 51(6), 993–1024 (2004)

18. Yuster, R., Zwick, U.: Fast sparse matrix multiplication. ACM Trans. Algo-
rithms 1(1), 2–13 (2005)

Small Stretch Spanners in the Streaming Model:

New Algorithms and Experiments�

Giorgio Ausiello1, Camil Demetrescu1, Paolo G. Franciosa2,
Giuseppe F. Italiano3, and Andrea Ribichini1

1 Dipartimento di Informatica e Sistemistica, Sapienza Università di Roma,
via Ariosto 25, I-00185 Roma, Italy

{ausiello,demetres,ribichini}@dis.uniroma1.it
2 Dipartimento di Statistica, Probabilità e Statistiche Applicate,

Sapienza Università di Roma, piazzale Aldo Moro 5, I-00185 Roma, Italy
paolo.franciosa@uniroma1.it

3 Dipartimento di Informatica, Sistemi e Produzione,
Università di Roma “Tor Vergata”, via del Politecnico 1, 00133 Roma, Italy

italiano@disp.uniroma2.it

Abstract. We present deterministic algorithms for computing small
stretch spanners in the streaming model. An (α, β)-spanner of a graph
G with n vertices is a subgraph S ⊆ G such that for each pair of vertices
the distance in S is at most α times the distance in G plus β. We assume
that the graph is given as a stream of edges in arbitrary order, that the
number of vertices and the number of edges are not known in advance
and that only one pass over the data is allowed. In this model, we show
how to compute a (k, k − 1)-spanner of an unweighted undirected graph,
for k = 2, 3, in O(1) amortized processing time per edge/vertex. The
computed (k, k − 1)-spanners have O(n1+1/k) edges and our algorithms
use only O(n1+1/k) words of memory space. In case only Θ(n) internal
memory is available, our algorithms can be adapted to store some of
the data structures in external memory. We complement our theoretical
analysis with an experimental study that suggests that our approach can
be of practical value.

1 Introduction

Graph spanners arise in many applications, including communication networks,
computational biology, computational geometry, robotics and distributed com-
puting ([3,5,10,11,13,14,15,18,19,20,21,22]). Given α ≥ 1 and β ≥ 0, an (α, β)-
spanner of a graph G is a subgraph S of G such that for each pair of vertices
the distance in S is at most α times the distance in G plus β. A spanner with
β = 0 is called multiplicative, while a spanner with α = 1 is called additive.

� Partially supported by the Italian Ministry of University and Research under
Project MAINSTREAM “Algorithms for Massive Information Structures and Data
Streams”.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 605–617, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

606 G. Ausiello et al.

Baswana et al. [8] presented a deterministic O(m + n) time algorithm to
compute a (k, k − 1)-spanner of size O(k · n1+1/k) of an unweighted graph with
n vertices and m edges. In the same paper it is shown that any graph has a
(1, 6)-spanner having O(n4/3) edges, which can be computed in O(mn) worst-
case time. For weighted graphs, a randomized O(m + n) time algorithm that
computes a multiplicative (2k − 1)-spanner of size O(k · n1+1/k) has been given
by Baswana and Sen [9]; a derandomization of this algorithm, still running in
O(m + n) worst case time, has been proposed by Roditty et al. [23].

In the dynamic setting, where edges may be added to or deleted from the
original graph, few algorithms for updating multiplicative spanners have been
proposed in the case of unweighted graphs. In [4], a 3-spanner and a 5-spanner are
maintained under an intermixed sequence of Ω(n) edge insertions and deletions
in O(Δ) amortized time per operation, where Δ is the maximum degree of the
original graph. The maintained 3-spanner has O(n3/2) edges, while the 5-spanner
has O(n4/3) edges. A faster randomized dynamic algorithm for general stretch
factor k has been later given by Baswana [6]: a (2k − 1)-spanner of expected
size O(k · n1+1/k) can be maintained in Õ(m

n1+1/k) amortized expected time for
each edge insertion/deletion. In the case of k = 2, 3 (3- and 5-spanners), the
amortized expected time of the randomized algorithm becomes constant.

In the last years, some attention has been devoted to the computation of graph
spanners in the streaming model. In this model, it is assumed that the input data
is scanned as a sequence of values in arbitrary order and that the storage available
is smaller than the input size. Thus, the algorithm is not allowed to randomly
access the input. The complexity of a streaming algorithm is measured in terms
of the number of passes over the input sequence (in the more restricted case,
only one pass is allowed), the amount of internal storage used (always smaller
than the input size) and the time needed to process the input.

In [17], Feigenbaum et al. presented a randomized algorithm for computing a
multiplicative (2k + 1)-spanner of an unweighted graph. If only one pass on the
edges is allowed, the spanner has expected size O(k · n1+1/k), each edge is pro-
cessed in expected O(k2 ·n1/k log n) time, using O(k·n1+1/k log n) memory words.
Note that the size/stretch tradeoff of this algorithm is not optimal, since it always
exists a (2k − 1)-spanner with the same asymptotic size as the (2k + 1)-spanner
computed by [17]. This result has been recently improved by Baswana [7], who
gives optimal (expected) size/stretch tradeoffs for multiplicative spanners in the
streaming model: a (2k − 1)-spanner of expected size O(k · n1+1/k) can be com-
puted by a single pass over the edges in overall O(m+n) time, using O(k·n1+1/k)
memory space. However, both the algorithms in [7] and in [17], in order to apply
successfully their randomization technique, need to know in advance the total
number of vertices n in the graph. Similar results are given in [7] for computing
spanners of weighted graphs in the StreamSort model of Aggarwal et al. [2], in
which it is assumed that intermediate streams of data can be written, sorted
and read again by the algorithm.

Our Results. In this paper we show that, in the more restricted streaming model
in which only one pass over the data is allowed, it is possible to compute de-

Small Stretch Spanners in the Streaming Model 607

terministically, for k = 2, 3, an optimal size (k, k − 1)-spanner (i.e., containing
O(n1+1/k) edges in the worst case) in O(1) amortized processing time per edge.
Our algorithms use O(n1+1/k) memory space in the worst case, and do not need
to know in advance either the total number n of vertices or the total number m
of edges of the graph. At any stage, the algorithms are able to compute on-line
a (k, k −1)-spanner of the graph scanned so far, within the same time and space
bounds. In case only Θ(n) internal memory is available, our algorithms can be
also adapted to store some of the data structures in external memory. In the
well known external memory model of [24], the same spanners can be computed
using O(n1+1/k/B) external memory blocks, each of size B words. In this case,
each edge is processed in O(1) amortized time, plus O(1/B) amortized block
transfers. Our algorithms use simple data structures, are deterministic and rely
on a relaxation of the deterministic clustering scheme introduced in [4].

We complement the theoretical analysis with a computational study in which
our algorithm is compared to the randomized streaming algorithm for multiplica-
tive (2k−1)-spanners by Baswana [7] and to an off-line algorithm by Zwick [25].
Our experiments show that streaming algorithms can be very efficient in prac-
tice, as the size and the stretch of the spanners produced are much smaller than
the theoretical bounds. Moreover, our experimental findings suggest that small
values of k seem to be the case of interest in practice, and that our algorithm
tends to produce spanners of better quality than Baswana’s algorithm, while
still using a comparable amount of time and space resources.

2 Clustering and Induced Spanners

Let G = (V, E) be an undirected graph, with V being the set of vertices and E
the set of edges. We assume that the graph is given as a stream of edges and
vertices (with edge (x, y) appearing after vertices x and y), that the number of
vertices and edges are not known in advance and that only one pass over the data
is allowed. We denote by m the current number of scanned edges and by n the
current number of discovered vertices. The distance distG(u, v) from u to v in G
is given by the minimum length of a path in G from u to v (or +∞ if there is no
such path). Given α ≥ 1 and β ≥ 0, an (α, β)-spanner of G is a graph S = (V, E′)
with E′ ⊆ E such that for any u, v ∈ V , distS(u, v) ≤ α · distG(u, v) + β. An
(α, 0)-spanner is called a multiplicative spanner, or more simply an α-spanner,
while a (1, β)-spanner is called an additive spanner.

Our algorithms are based on a relaxation of the clustering schema introduced
in [4]. We denote as the neighborhood of a vertex x the set N(x) = {x} ∪
{y | (x, y) ∈ E}. Given a set of vertices x1, x2, . . . , xk, a clustering is a family
of mutually disjoint sets C(x1), C(x2), . . ., C(xk), with C(xi) ⊆ N(xi) for 1 ≤
i ≤ k. Each set C(xi) is called cluster, and xi is referred to as its center. Note
that the center xi of a cluster C(xi) does not belong necessarily to C(xi), but
may belong to a different cluster. A vertex is called clustered if it belongs to a
cluster, and free otherwise; if y is clustered, Cl(y) denotes the cluster containing
y, while center(y) denotes the center of Cl(y). Starting from a clustering Γ of

608 G. Ausiello et al.

a graph G = (V, E), we define a CC-subgraph on Γ as the subgraph S = (V, E′),
where E′ as the union of the following edge sets:

– cluster edges: all edges (x, y) such that x is a center and y ∈ C(x);
– CC-bridge edges: for each pair of clusters Ci, Cj , with i �= j, one arbitrary

edge (x, y) ∈ E (if one exists) such that (x, y) is not a cluster edge, x ∈ Ci

and y ∈ Cj . We say that edge (x, y) connects clusters Ci and Cj ;
– free edges: all edges (x, y) ∈ E such that at either x or y is a free vertex.

The name CC-subgraph derives from the fact that bridges connect pairs of clus-
ters. It is possible to prove that a CC-subgraph is a (3,2)-spanner of G.

By choosing a different set of bridge edges it is possible to obtain a (2,1)-
spanner: we define a CV-subgraph on Γ S = (V, E′′) by choosing E′′ as the
union of cluster edges and free edges as above, but instead of CC-bridge edges
we choose the following edge set:

– CV-bridge edges: for each cluster C and each clustered vertex x ∈ C′ �= C,
one arbitrary edge (x, y) ∈ E (if one exists) such that (x, y) is not a cluster
edge and y ∈ C. We say that edge (x, y) connects x to cluster C.

Theorem 1. Given a graph G = (V, E) and a clustering Γ , any CC-subgraph
S = (V, E′) on Γ is a (3,2)-spanner of G, and any CV-subgraph S = (V, E′′) on
Γ is a (2,1)-spanner of G.

3 The Algorithm

We first describe the algorithm for constructing a (3,2)-spanner: the construction
of a (2,1)-spanner follows the same lines. In order to build a (3,2)-spanner we
maintain the following information. For each vertex x we store:

– a flag indicating whether x is clustered or free. In case it is clustered we also
store the label Cl(x) and the label of center(x);

– a set of edges F (x), that contains the set of free edges (x, y) leading to each
free vertex y ∈ N(x). In set F (x) we may possibly have also some edge (x, z)
such that z is no longer free. We maintain the value |F (x)|;

– if x is the center of a cluster C, the list of vertices belonging to C.

Bridge edges are stored in a matrix Bridge, whose entry Bridge[i, j] contains
the bridge connecting clusters Ci and Cj . Obviously, Bridge[i, j] is empty in the
case (Ci ×Cj)∩E = ∅, but it is also possible that Bridge[i, j] is empty if there is
some edge in a set F (x) that connects Ci and Cj . For sake of efficiency, we need
to bound the number of clusters. Thus, we create a cluster only if it contains
at least n1/3 vertices, where n is the number of vertices currently known to the
algorithm. This implies that clusters created in the first steps of the edge stream
processing can be very small, while clusters created later must be larger.

An edge (x, y) is processed as shown in Procedure CC-EdgeProcess (see
Figure 1). We first check whether edge (x, y) connects two clusters that are

Small Stretch Spanners in the Streaming Model 609

not yet connected by a CC-bridge, and update matrix Bridge accordingly. In
case (x, y) joins a center x and a free vertex y, we add y to C(x). Otherwise, if
y is free, we add (x, y) to the set F (x) of edges that connect x to (possibly) free
vertices. When this set becomes too large, we scan F (x) checking whether the
other endpoint of each edge is still free: if we find at least n1/3 free vertices a new
cluster centered at x is created. When vertices are included in a new cluster, as
in Lines 3 (resp. 4) of Procedure CC-EdgeProcess, we do not update set F (y)
for all y ∈ N(z) (resp. for all y ∈ N(x)). This means that sets F (·) may contain
edges whose endpoints are no longer free. For this reason, the condition in Line 1
of Procedure CC-EdgeProcess does not ensure that a new cluster centered on x
can be created. So, we clean up set F (x) and count the effective number of free
vertices in N(x) any time we try to create a new cluster.

It is possible to show that the (3,2)-spanner can be updated in constant amor-
tized time per edge scanned.

Theorem 2. Each edge is processed by Procedure CC-EdgeProcess in O(1)
amortized time.

Procedure CC-EdgeProcess
input: edge (x, y)

if both x and y are clustered then
if Cl(x) �= Cl(y) and there is no bridge between Cl(x) and Cl(y) then

store (x, y) into Bridge as the bridge connecting Cl(x) and Cl(y)
else edge (x, y) is discarded

if x is a center and y is free (or analogously y is a center and x is free) then
add y to C(x) and mark y as clustered
add (x, y) to the set of cluster edges

if y is free then
add (x, y) to F (x)

1. if |F (x)| ≥ 2 · n1/3 then
2. foreach edge (x, z) ∈ F (x) {clean up set F (x)}

if z is not free then
remove (x, z) from F (x)
if x clustered and ¬∃ bridge between Cl(x) and Cl(z) then

store (x, z) as the bridge connecting Cl(x) and Cl(z)

if |F (x)| ≥ n1/3 then {a new cluster centered on x can be created }
3. create a new cluster C, centered on x, containing

all z s.t. (x, z) ∈ F (x) and mark all those z as clustered
if x is free then

4. add x to C and mark x as clustered
else store one of the cluster edges (x, z) into Bridge

as the bridge connecting Cl(x) and C
if x is free then same as above, with x and y swapped

Fig. 1. Procedure CC-EdgeProcess

610 G. Ausiello et al.

As far as the worst-case time per operation is concerned, we can show the fol-
lowing result:

Theorem 3. Each edge is processed by Procedure CC-EdgeProcess in O(n1/3)
worst case time.

The algorithm proposed computes a (3,2)-spanner of optimal size, as shown by
the following theorem.

Theorem 4. The (3,2)-spanner computed by Procedure CC-EdgeProcess has
O(n4/3) edges.

The above theorem relies on the fact the number of clusters is always O(n2/3).
The algorithm needs to maintain in memory all current spanner edges, plus the
matrix Bridge, that stores bridges between all pairs of clusters. Thus we can
state the following:

Theorem 5. Algorithm CC-EdgeProcess needs overall O(n4/3) space.

The construction of a (2,1)-spanner follows the same lines of the algorithm above,
but we maintain bridges between each cluster and each clustered vertex, namely
CV-bridge edges, instead of bridges between pairs of clusters, i.e., CC-bridge
edges. Moreover, clusters are created containing at least n1/2 (instead of n1/3)
vertices. The following theorem holds:

Theorem 6. Given a graph G, it is possible to compute a (2,1)-spanner of G
with O(n3/2) edges by doing a single pass on the edges in total space O(n3/2).
Each edge is processed in O(1) amortized time. The worst-case time required per
processed edge is O(n1/2).

The algorithms described for (k, k − 1)-spanners, k = 2, 3, need a total of
O(n1+1/k) space. In the case of very large graphs, this value could exceed the size
of the internal memory. If the size of the internal memory is Θ(n) (semi-external
memory model), it is possible to modify the algorithms, so that they maintain
only O(n) information in internal memory, while all data structures requiring
larger space are maintained in external memory. We refer to the well known
external memory model of [24], in which data is organized on external memory
in blocks, each of size B, and the algorithm performance is evaluated in terms
of the number of I/O operations, i.e., block transfers between external memory
and main memory. The only data structures that may require space Ω(n) are
sets F (·) and the matrix Bridge. We store each set F (·) in F |(·)|/B blocks, that
are scanned and updated in Lines 2 and 3. Each scan requires O(n1/k/B) I/Os,
and the total number of I/Os during the whole sequence of edge processing is
O(m/B) (in the realistic assumption that n1/k > B). In order to efficiently up-
date and query the matrix Bridge we proceed as follows. Any time we are going
to discard an edge (x, y), we must check whether Cl(x) and Cl(y) are already
connected by a CC-bridge. We do not need to answer the query in real-time, since
this test does not affect the behaviour of the algorithm. So, we append (x, y) to a
set Bridgetemp of potential CC-bridges to be processed; items in Bridgetemp are
written in any order in blocks on external memory. When Bridgetemp contains

Small Stretch Spanners in the Streaming Model 611

more than n4/3 edges, we lexicographically sort Bridgetemp according to the pair
of cluster labels of the endpoints (by two passes of radix sort) and check each
candidate bridge against the sorted set of items in matrix Bridge, obtaining the
updated (sorted) version of Bridge. All this process requires O(n4/3/B) I/Os,
and is performed each Ω(n4/3) edges. We can thus state the following results:

Theorem 7. Given an unweighted graph G, a (k, k − 1)-spanner of G with
O(n1+1/k) edges, for k = 2, 3, can be computed in the data streaming model by
a single pass using O(n) internal memory and O(n1+1/k/B) external memory
blocks, assuming n1/k > B, requiring:

– O(1) amortized time in internal memory plus O(1/B) amortized I/O’s to
process each edge;

– O(n1/k) worst-case time in internal memory plus O(n1/k/B) worst case
I/O’s to process each edge.

4 Experiments

In this section, we compare experimentally the algorithm for constructing a
(3,2)-spanner described in Section 3 with the randomized streaming algorithm
for (2k − 1)-spanners by Baswana [7], for k ≥ 2: this algorithm was a natural
choice since it has the best theoretical performances known so far and it is likely
to outperform previous results also in practice due to its simpler data structures.
Our goal is to study the differences between the two techniques in terms of both
quality of solutions and time/space requirements. To assess the performance of
the two algorithms, we have also considered an off-line method for constructing
a (2k − 1)-spanner of an unweighted graph suggested by Zwick [25]. Since this
algorithm is able to access edges in any order, we expect that it could build
spanners of better quality (with respect to size and/or average stretch) than
those computed by any streaming algorithm, and so we use it as a benchmark
in our experiments.

Experimental Setup. We ran our experiments on a PC equipped with a 3 GHz
Intel Pentium 4 dual core processor, 2 MB L2 cache, 2 GB RAM, using a 50
GB Ext3 partition on a 250 GB IDE hard disk running Linux Mandriva 2007
kernel 2.6.17. All algorithms were coded in C using a uniform programming
style and common data structures. Programs were compiled with gcc 4.1.1
with optimization flag -O4. The performance measures we considered are:

– Estimates of average stretch, stretch variance, and maximum stretch:
stretches are measured as the ratio between distances in the spanner and
in the original graph on a sample of vertex pairs: from 100 random sources
to all other vertices. These estimates proved to be very close to the exact
values obtained by running an all-pairs shortest paths implementation, but
much faster to compute.

– Spanner size: number of edges in the spanner computed by the algorithm.

612 G. Ausiello et al.

– Running time: total time in seconds required to compute a spanner (over the
whole stream).

– Memory footprint: peak amount of memory in megabytes required by the
algorithm during its execution.

Each measured value reported in our charts was obtained as the average of at
least three independent trials on the same data point. In our experiments, we
considered the following synthetic graph families:

– Power Law graphs: small world graphs based on the recursive matrix (R-
MAT) model [12].

– Random graphs: based on the Erdős-Rényi Gn,p model [16].
– Clustered graphs: graphs made of clusters connected to form a line. Each

cluster is a random Gn,p graph. These graphs tend to have higher diameter
than the power law and random graphs.

Graphs were presented to the algorithms as an on-line stream of edges in random
order. Since we observed similar trends of the algorithm performances on all the
test sets we considered, in this extended abstract we only report the results for
power law graphs, which are especially relevant in applications. Our experimental
package, including the instance generators, the complete C source codes of our
implementations, and additional charts summarizing the results for other classes
of input graphs not reported in this paper can be found at [1].

The Algorithm by Ausiello, Franciosa, and Italiano (AFI). In our implementa-
tion, we modified the original algorithm of Figure 1 (which we denote by AFI)
by parameterizing it with a user-defined clustering threshold c that replaces the
adaptive n1/3 value used by the algorithm as a threshold to form clusters, where
n is the current number of vertices encountered in the stream. As we will see,
this allows us to produce spanners of different size and stretch, leading to a
more flexible algorithm in practice. The charts of Figure 2 show how spanner
size, average stretch, running time, and memory footprint depend upon the clus-
tering threshold on a power law graph with n = 8, 192 and m = 13, 003, 600.
Observe that the number of edges in the spanner initially drops down with the
clustering threshold c, reaches a minimum around c = 50, and then grows up
again for higher values of c. Intuitively, this can be explained by the fact that
for small values of c the algorithm forms many clusters, and therefore there will
be many CC-bridge edges. On the other hand, if the threshold is high there
will be many free vertices, and sets F (·) can be larger. The running time and
the memory footprint follow the same trend, while the smaller the spanner, the
higher the stretch factor. Notice that the value of the clustering threshold that
minimizes the spanner size minimizes also the running time and the space usage.
Interestingly, while this optimal value may depend upon n and m, the adaptive
choice of c = n1/3 made in the original algorithm, plotted as dashed horizontal
lines in the charts of Figure 2, seems to be very close to it. We also notice that
the spanner size can be much smaller in practice than the theoretical bound

Small Stretch Spanners in the Streaming Model 613

(a) (b)

(c) (d)

Fig. 2. Analysis of algorithm AFI on a power law graph with n = 8, 192 and m =
13, 003, 600 for different values of the clustering threshold: (a) number of edges in the
spanner; (b) average stretch estimate; (c) running time in seconds; (d) memory peak
in megabytes

k · n1+1/k as shown in Figure 2 (a), suggesting that multiplicative factors in
AFI’s O(n1+1/k) bound on the number of spanner edges can be small.

The Algorithm by Baswana (B). We analyze experimentally a very recent ran-
domized streaming algorithm by Baswana [7], which computes a (2k−1)-spanner
of expected size O(k · n1+1/k) in one pass in O(m + n) total time, using O(k ·
n1+1/k) memory space. We denote this algorithm by B.

In Figure 3 we show how spanner size, average stretch, running time, and
memory footprint depend upon parameter k on a power law graph with n =
8, 192 and m = 13, 003, 600. We first notice that the number of edges in the
spanner follows the theoretical trend of k · n1+1/k for small values of k, but it
quickly gets flattened out for k > 10. Similarly to what we have seen for AFI, the
smaller the spanner, the higher the average stretch. However, differently from
AFI, the running time is minimized for the value of k that maximizes the spanner
size, i.e., k = 2. Notice that, while increasing k beyond 100 does not yield any
spanner size or stretch benefits, it raises the memory consumption considerably.
On all test sets we considered, the algorithm seems to be of practical value only
for small values of k.

614 G. Ausiello et al.

(a) (b)

(c) (d)

Fig. 3. Analysis of algorithm B on a power law graph with n = 8, 192 and m =
13, 003, 600 for different values of k: (a) number of edges in the spanner; (b) average
stretch estimate; (c) running time in seconds; (d) memory peak in megabytes

The Algorithm by Zwick (Z). We now describe a simple off-line algorithm due to
Zwick [25], which we denote by Z. Given an unweighted undirected graph with
n vertices and m edges, it computes in O(m + n) time a (2k − 1)-spanner with
n1+1/k edges for any integer k ≥ 2. We use this algorithm as a benchmark in
the performance analysis of AFI and B. Let Ni(v) be the vertices that are at
distance exactly i from v. The algorithm works by alternating two phases. In
the first phase, it chooses an arbitrary vertex v, starts from N0(v) = {v}, and
computes Ni(v) for i = 1, 2, 3, . . ., by finding all unreached vertices that are one
hop away from a vertex in Ni−1(v), until |Ni(v)| ≤ n1/k · |Ni−1(v)|. This must
happen for some i ≤ k, as otherwise |Nk(v)| > n, which is impossible. In the
second phase, the algorithm builds a shortest path tree from v to all vertices at
distance at most i from v, and adds the edges of this tree to the spanner. Then
it removes from the graph the vertices at distance at most (i − 1) from v, and
all edges touching them. Note that when an edge is removed there is a path of
length at most (2k − 1) in the spanner passing through v. These two phases are
repeated until no vertices remain. It is easy to see that the total running time is
linear, and that the subgraph constructed is a (2k − 1)-spanner of the original
graph having O(n1+1/k) edges.

Small Stretch Spanners in the Streaming Model 615

Fig. 4. Comparison of algorithms AFI, B, and Z on a power law graph with n = 8, 192
and m = 13, 003, 600 for the values of k (for B and Z) and of the clustering threshold
(for AFI) that yield the smallest spanner (left) and the smallest stretch (right)

Fig. 5. Comparison of the solution quality achieved by algorithms AFI, B, and Z on a
power law graph with n = 8, 192 and m = 13, 003, 600 (left) and on a power law graph
with n = 262, 144 and m = 13, 927, 365 (right) for different values of k (for B and Z)
and of the clustering threshold (for AFI)

Discussion. Figure 4 shows an overall comparison of algorithms AFI, B, and Z
on a power law graph with n = 8, 192 and m = 13, 003, 600 for two choices
of parameters k (for B, and Z) and c (for AFI): the setting that minimizes the
spanner size (chart on the left hand side) and the setting that minimizes the
stretch factor (chart on the right hand side). We first observe that in both cases,
B found much larger spanners than AFI, yielding however slightly better average
stretches. To minimize the spanner size, AFI was faster and used less memory
than B. Conversely, to minimize the stretch, B was faster and used less memory
than AFI. Both algorithms used substantially less memory than Z, which needs
to keep the whole graph in internal memory. They were also able to find spanners
with smaller stretch than Z, and this is somewhat surprising given that Z is an
off-line algorithm.

Figure 5 focuses on the quality of the spanners found by AFI, B, and Z on two
power law graphs with different edge densities. The charts plot size and stretch

616 G. Ausiello et al.

of the spanners that can be achieved by considering the full range of parameters
k and c. Ideally, we would like to find a spanner with the smallest stretch and
the smallest size simultaneously. In the case of the graph with n = 8, 192 and
m = 13, 003, 600, Z yielded the best spanners, and AFI found spanners of better
quality than B (chart on the left hand side). For the sparser power law graph with
n = 262, 144 and m = 13, 927, 365 (chart on the right hand side) the differences
between the algorithms were instead negligible.

In summary, our experiments seem to suggest that:

– Algorithms AFI and B are likely to be very efficient in practice, as they find
spanners of size and stretch much smaller than the theoretical bounds, and
are competitive with off-line algorithms.

– Setting large values of k in B does not produce sparser spanners in all test
sets we have considered, so small values of k, for which AFI was designed,
seem to be the case of interest in practice.

– AFI, in addition to being deterministic and not requiring prior knowledge of
the number of vertices in the graph, seems to have the additional benefit of
producing spanners of better quality than B, while still using a comparable
amount of time and space resources.

References

1. Experimental package. See: http://www.dis.uniroma1.it/∼ribichini/spanner/
2. Aggarwal, G., Datar, M., Rajagopalan, S., Ruhl, M.: On the streaming model

augmented with sorting primitive. In: FOCS’04, pp. 540–549 (2004)
3. Althofer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of

weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)
4. Ausiello, G., Franciosa, P.G., Italiano, G.F.: Small stretch spanners on dynamic

graphs. Journal of Graph Algorithms and Applications 10(2), 365–385 (2006)
5. Awerbuch, B.: Complexity of network synchroniz. JACM 32(4), 804–823 (1985)
6. Baswana, S.: Dynamic algorithms for graph spanners. In: Azar, Y., Erlebach, T.

(eds.) ESA 2006. LNCS, vol. 4168, pp. 76–87. Springer, Heidelberg (2006)
7. Baswana, S.: Faster streaming algorithms for graph spanners: (2006),

http://www.citebase.org/abstract?id=oaiarXiv.org:cs/0611023
8. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: New constructions of (α, β)-

spanners and purely additive spanners. In: SODA’05, pp. 672–681 (2005)
9. Baswana, S., Sen, S.: A simple linear time algorithm for computing (2k−1)-spanner

of O(n1+1/k) size for weighted graphs. In: Baeten, J.C.M., Lenstra, J.K., Parrow,
J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 384–396. Springer,
Heidelberg (2003)

10. Cai, L.: NP-completeness of minimum spanner problems. Discr. Appl. Math. and
Combinat. Operations Res. and Comp. Science 48(2), 187–194 (1994)

11. Cai, L., Keil, J.M.: Degree-bounded spanners. Par. Proc. Lett. 3, 457–468 (1993)
12. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive model for graph

mining. In: 4th SIAM International Conference on Data Mining (2004)
13. Chew, L.P.: There are planar graphs almost as good as the complete graph. Journal

of Computer and System Sciences 39(2), 205–219 (1989)

http://www.dis.uniroma1.it/~ribichini/spanner/
http://www.citebase.org/abstract?id=oaiarXiv.org:cs/0611023

Small Stretch Spanners in the Streaming Model 617

14. Das, G., Joseph, D.: Which triangulations approximate the complete graph? In:
Djidjev, H.N. (ed.) Optimal Algorithms. LNCS, vol. 401, pp. 168–192. Springer,
Heidelberg (1989)

15. Dobkin, D., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good as
complete graphs. Discrete & Computational Geometry 5, 399–407 (1990)

16. Erdős, P., Rényi, A.: On random graphs. P. Math. Debrecen 6, 290–291 (1959)
17. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in

the streaming model: the value of space. In: SODA’05, pp. 745–754 (2005)
18. Liestman, A.L., Shermer, T.: Grid spanners. Networks 23, 122–133 (1993)
19. Liestman, A.L., Shermer, T.: Additive graph spanners. Networks, 23, 343–364

(1993)
20. Peleg, D., Shäffer, A.: Graph spanners. J. Graph Theory 13, 99–116 (1989)
21. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM Journal

on Computing 18(4), 740–747 (1989)
22. Richards, D., Liestman, A.L.: Degree-constrained pyramid spanners. JPDC: Jour-

nal of Parallel and Distributed Computing 25, 1–6 (1995)
23. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate dis-

tance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidel-
berg (2005)

24. Vitter, J.S.: External memory algorithms and data structures: dealing with massive
data. ACM Computing Surveys 33(2), 209–271 (2001)

25. Zwick, U.: Personal communication

Estimating Clustering Indexes in Data Streams�

Luciana S. Buriol1, Gereon Frahling2, Stefano Leonardi3, and Christian Sohler4

1 Federal University of Rio Grande do Sul, Porto Alegre, Brazil
buriol@inf.ufrgs.br

2 Google Research, New York, United States
gereon@google.com

3 University of Rome “La Sapienza”, Rome, Italy
Stefano.Leonardi@dis.uniroma1.it

4 Heinz Nixdorf Institute and University of Paderborn, Paderborn, Germany
csohler@upb.de

Abstract. We present random sampling algorithms that with probability at least
1 − δ compute a (1 ± ε)-approximation of the clustering coefficient and of the
number of bipartite clique subgraphs of a graph given as an incidence stream of
edges. The space used by our algorithm to estimate the clustering coefficient is
inversely related to the clustering coefficient of the network itself. The space used
by our algorithm to compute the number K3,3 of bipartite cliques is proportional
to the ratio between the number of K1,3 and K3,3 in the graph.

Since the space complexity depends only on the structure of the input graph
and not on the number of nodes, our algorithms scale very well with increasing
graph size. Therefore they provide a basic tool to analyze the structure of dense
clusters in large graphs and have many applications in the discovery of web com-
munities, the analysis of the structure of large social networks and the probing of
frequent patterns in large graphs.

We implemented both algorithms and evaluated their performance on net-
works from different application domains and of different size; The largest in-
stance is a webgraph consisting of more than 135 million nodes and 1 billion
edges. Both algorithms compute accurate results in reasonable time on the tested
instances.

1 Introduction

The analysis of the structure of large networks often requires the computation of
network indexes based on the number of certain small subgraphs. Much attention has
recently been devoted to the structural analysis of networks arising in information sys-
tems; Physical telecommunication connections, overlay networks, and software systems
are some examples. The observation of certain dense subgraphs in the webgraph, the
graph formed by web pages and hyperlinked connections, has also been considered in
the attempt of tracing the emergence of hidden cyber-communities [12]. The counted
subgraphs are typically dense bipartite cliques of small size that are interpreted as cores

� This work was partially supported by the EU within the 6th Framework Programme under con-
tract 001907 “Dynamically Evolving, Large Scale Information Systems” (DELIS) and DFG
project So 514/1-1.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 618–632, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Estimating Clustering Indexes in Data Streams 619

of web communities: The vertices in the left partition of the bipartite clique are con-
sidered as member pages pointing to a set of centers/authorities for the community.
A large number of these subgraphs has been observed in large crawls of the Web by
Kumar et al. [12] and by Laura et al. [14]. A stochastic model of graphs that resembles
the structure of the Web [13], called the copying model, uses these dense subgraphs
as building blocks of the process of network formation of the Webgraph. Counting the
number of such subgraphs therefore provides deeper insight into the construction pro-
cess of large graphs and can provide justifications for different construction models.

Another network index widely used in the analysis of complex network structures
is the clustering coefficient [18]. It is defined as the normalized sum of the fraction of
neighbor pairs of a vertex that are connected. It measures the degree at which clusters
decompose into communities [6]. See Section 3 for an exact definition of the clustering
coefficient.

Estimating the value of network indexes in large graphs is a challenging computa-
tional task. Current state of the art methods are either computationally unfeasible on
large data sets or do not provide guarantees on the accuracy of the estimation. The best
known methods for the solution of the simplest non trivial version of this problem, i.e.
counting the number of triangles in a graph, use matrix multiplication [4]. Even on
graphs of medium size this is not computationally feasible because of both the time
complexity and the main memory usage required to store the whole graph. Schank and
Wagner [17] gave an extensive experimental study of algorithms counting and listing
triangles and computing the clustering coefficient in small and medium size graphs.
Their algorithms work in main memory and report results for graphs up to 668 thou-
sand nodes.

A natural way to address massive data sets consisting of more than 100 million nodes
is the data stream model [10,15]. In this model data arrives in a stream, one item at a
time, and the algorithms are required to use very little space and per-item processing
time. Data stream algorithms are able to sequentially read the data from secondary
memory storage devices and avoid slow random access to the data. Even massive data
sets which do not fit on any available storage device could be handled.

Data stream algorithms have been proposed for various problems. Examples are the
computation of frequency moments [1], histograms [9], or Wavelet transforms [8]. The
large body of work on data stream algorithms contrasts with a lack of efficient solutions
of natural graph problems in the streaming model of computation [10]. Bar-Yossef, Ku-
mar and Sivakumar [19] gave a first solution for counting triangles in the data stream
model. They considered both the “adjacency stream model” where the graph is pre-
sented as a sequence of edges in arbitrary order and the “incidence stream” model
where they consider only bounded-degree graphs and all edges incident to a vertex
are presented successively. Their algorithms provide an ε approximation with probabil-
ity 1 − δ using a number of memory cells in some cases smaller than a naive sampling
technique algorithm. The algorithms are obtained through a so called ”list” efficient
reduction to the problem of computing frequency moments [1]. Subsequently, more al-
gorithms to count triangles have been developed for the adjacency stream model [11,2],
and the incidence stream model [2].

620 L.S. Buriol et al.

Schank and Wagner [17] gave an algorithm, which returns with probability 1 − δ a
(1 ± ε)-approximation on the clustering coefficient CG of a graph G when the graph
is given as an incidence stream. It needs two passes over the data and O(log 1

δ · 1
ε2·CG

)
memory cells. We will recap the algorithm in Section 4.

2 Our Results

In this paper we present random sampling data stream algorithms to compute the clus-
tering coefficient and the number of bipartite cliques in graphs given as an incidence
stream.

We improve the 2-pass streaming algorithm of [17] to estimate the clustering co-
efficient CG. Our new algorithm only requires one pass over the stream of edges. Al-
though the memory needed by our improved algorithm is slightly larger
(O(log(1/δ)·log(|V |)

ε2CG
· log 1

εδCG
) memory cells compared to O(log 1

δ · 1
ε2·CG

) mem-
ory cells needed by the 2-pass algorithm), our technique enables the application of
the algorithm in real streaming scenarios. Distributed crawlers collecting Web pages
and their links could perform structural analysis of the Webgraph online while trans-
fering the data to storage devices. Our new algorithm is also applicable to graphs
which are too large to be stored at all.

We also provide a data stream algorithm that computes a (1±ε)- approximation of the
number of K3,3 (bipartite cliques having three nodes in each partition) in a graph given
as an incidence stream ordered by destination nodes with outdegree bounded by Δ.

The algorithm needs O
(
log(|V |) · K3,1·Δ2 ln(1

δ)

K3,3·ε2
)

memory cells. Previous techniques to

count subgraphs [11,2] could only be applied to the estimation of subgraphs containing
a star (triangles or complete cliques Ki for example). Our algorithm is based on a new
sampling technique, which can be extended to estimate the number of bipartite cliques
Ki,j for arbitrary i and j. Since the space complexities of our algorithms depend only
on the structure of the input graph (and not on it’s size), they can be used to estimate
these structural properties even for large webgraph crawls.

We present optimized implementations of the algorithms and tests on networks in-
cluding large web-graphs, graphs of the largest online encyclopedia Wikipidia [3], and
graphs of collaborations between actors and authors. Our results show that for all net-
works a relatively small number of memory cells already suffices to provide good ap-
proximations of the clustering coefficient and the number of bipartite cliques.

2.1 Structure of the Paper

We present in Section 4 the algorithm to estimate the clustering coefficient and in
Section 5 the algorithm to count K3,3 cliques. Section 6 introduces the optimized im-
plementations of the algorithms which are tested on real data sets in Section 7.

3 Preliminaries

Let G = (V, E) denote a directed graph without self-loops. We assume that G is
given as a stream of incidence lists, one incidence list L(v) for each node v ∈ V .

Estimating Clustering Indexes in Data Streams 621

The incidence list L(v) of a node v consists of all edges that are directed to v, i.e. all
edges e ∈ E of the form e = [u, v〉 for some u ∈ V . The incidence lists can appear in
arbitrary order in the stream. We also do not assume a particular order of the edges of
an incidence list. When we consider undirected graphs, we simply assume that every
edge is represented by two undirected edges, appearing in the incidence lists of both
nodes.

There are natural motivations for the model of incidence lists. Big graphs as the
webgraph are often retrieved by crawlers who essentially produce streams of incidence
lists. Furthermore even a stream of all known edges in the webgraph can be transformed
into a stream of incidence lists by one round of a parallel computing environment such
as Googles MapReduce (the complete process is described in [5]).

Definition of Clustering Coefficient. Let G = (V, E) be an undirected graph. For every
vertex v ∈ V let N (v) denote its neighborhood, i.e. N (v) = {u ∈ V : ∃(u, v) ∈ E}.
The clustering coefficient Cv of a vertex v ∈ V of G is defined as the probability that a
random pair of its neighbors is connected by an edge, i.e.

Cv :=

∣∣{(u, w) ∈ E : u ∈ N (v) and w ∈ N (v)
}∣∣

(|N (v)|
2

) .

In case of |N (v)| < 2 we define Cv := 0. The clustering coefficient CG of G is the
average clustering coefficient of its vertices.

4 Approximating the Clustering Coefficient

In this section we recapitulate how to approximate the Clustering Coefficient using an
algorithm from [17], which we state only for the unweighted case.

APPROXCLUSTERINGCOEFFICIENT(G,s)
sample s vertices w1, . . . , ws uniformly at random
for i = 1 to s do

sample a random pair (u, v), u �= v, of points uniformly from N (wi)
if (u, v) ∈ E then set Xi ← 1
else set Xi ← 0

Output X := 1
s

·
∑s

i=1 Xi

It is easy to see that the algorithm can be implemented in two passes over the data.
One pass to select the random vertices and the random pairs of neighbors and another
pass to check for each pair of neighbors whether they are connected by an edge. For
sake of completeness we give an analysis of the algorithm below. We first show that the
expected value of Xi is exactly CG. We have for each i ∈ {1, . . . , s}:

622 L.S. Buriol et al.

E[Xi] =
1
n

·
∑

v∈V

E[Xi | wi = v] =
1
n

·
∑

v∈V

Cv = CG.

Then we use the fact that for 0 − 1 random variables we have

Var[Xi] ≤ E[X2
i] = E[Xi] = CG.

Now we analyze the variance of X . Since the Xi are mutually independent we get

Var[X] = Var[
1
s

·
s∑

i=1

Xi] =
1
s2

·
s∑

i=1

Var[Xi] ≤ CG

s
.

Finally, we can apply Chebyshev inequality. This gives us

Pr
[∣∣X − E[X]

∣∣ ≥ ε · E[X]
] ≤ Var[X]

(ε · E[X])2
≤ CG

s · ε2 · C2
G

=
1

s · ε2 · CG
.

If s ≥ 3
ε2·CG

then with probability 2/3 the algorithm APPROXCLUSTERINGCOEFFI-
CIENT approximates the clustering coefficient of G within a relative error of (1 ± ε).
A standard success amplification technique (running the algorithm Θ(log 1

δ) times and
returning the median of all results) leads to the following corollary, which follows im-
mediately from [17][Theorem 1].

Corollary 1. There is a 2-pass streaming algorithm which with probability 1−δ returns
a (1 ± ε)-approximation on the clustering coefficient CG of a graph G when the graph
is given as a incidence stream. It needs O(log 1

δ · 1
ε2·CG

) memory cells.

4.1 A One-Pass Algorithm

In this section we show that it is possible to reduce both passes of the algorithm above to
one pass over the incidence stream. Again we sample a vertex w uniformly at random,
pick two of its neighbors uniformly at random, and check whether these neighbors are
connected by an edge.

To pick two random neighbors of w we use random hash functions in a way some-
what similar to random sampling in dynamic data streams [7]. We will require a guess
2j of the degree of w for each value of j ∈ {0, . . . , �logn�}. For each guess we pick
a random hash function hj : V → {1, ..., 2j}. Since we can count the degree of w
while passing over the data stream, we can at the end of our algorithm pick the right
value of j (having approximately 2j = degree(w)) and forget all other values of j. For
the right value of j the hash function will map with constant probability exactly two
vertices from the neighborhood N (w) of w to the value 1, i.e. |h−1

j (1) ∩ N (w)| =
2. Conditioned on this event, these two vertices are distributed uniformly at random
among N (w). They will be our two sampled vertices. The algorithm outputs a ran-
dom variable X having expected value CG. In case we do not have exactly two neigh-
bors of w mapped to 1 by h, it outputs an error (⊥). We assume fully random hash
functions.

Estimating Clustering Indexes in Data Streams 623

In the algorithm uj, vj are random variables for the first and second neighbor x of w
having hj(x) = 1. The variable Xj denotes the output value for j = �log d�, where d
is the degree of w.

ONEPASSCLUSTERINGCOEFFICIENT

sample a vertex w uniformly at random
for j = 1 to �log V � do

Xj ← ⊥; uj ← ⊥; vj ← ⊥
hj ← random hash function h : V → {1, ..., 2j}

for each incidence list L(x) in the stream do
for j = 1 to �log V � do

if hj(x) = 1 and w ∈ L(x) then // (x ∈ N (w) will be sampled)
if uj = ⊥ then uj ← x // (x is first sampled neighbor of w)
else

if vj = ⊥ then
vj = x // (x is second sampled neighbor of w)
if uj ∈ L(x) then Xj ← 1 // (check, if there is edge between uj and vj)
else Xj ← 0

else Xj ← ⊥ // (|h−1 ∩ N (w)| > 2)
if x = w then d ← |L(x)| // (set the degree of w to the right value)
if d < 2 then output 0
if d ≥ 2 then output X�log d�

Theorem 1. With probability 1
44 the algorithm ONEPASSCLUSTERINGCOEFFICIENT

does not output ⊥. If it does not output ⊥ it outputs a 0 − 1 random variable X having
expected value E[X] = CG.

Proof. Let d be the degree of node w and d̃ = 2�log d�. We have d ≤ d̃ ≤ 2 · d. Let
be h := h�log d�, u := u�log d�, and v := v�log d�. At the end the algorithm chooses
the result X�log d�. The algorithm outputs X �= ⊥ iff exactly 2 nodes adjacent to w are
hashed to 1 by h. In that case these two nodes are chosen uniformly at random. The
first of these nodes is stored in variable u, the second in variable v. Finally X�log d�
is set to one iff the incidence list of v contains node u, so iff w, u, and v form a
triangle.

It remains to show that with probability 1/44 exactly two neighbouring nodes are
hashed to 1 by h. There are d nodes adjacent to w, each one is hashed to 1 by h with
probability 1

d̃
. Let x1, ..., xd be the neighbouring nodes of w. If d < 2 the algorithm

always outputs the correct value X = 0. For d ≥ 2 we obtain:

Pr
[|{x ∈ N (w)|h(x) = 1}| = 2

]

=
d−1∑

i=1

1
d̃

· Pr
[∀x∈{x1,...,xi−1}h(x) �= 1 ∧ |{x ∈ {xi+1, ..., xd}|h(x) = 1}| = 1

]

=
d−1∑

i=1

1
d̃

·
(

1 − 1
d̃

)i−1

·
d∑

j=i+1

1
d̃

·
(

1 − 1
d̃

)d−i−1

=
1
d̃2

(
1 − 1

d̃

)d−2

·
d−1∑

i=1

(d − i)

=
1
d̃2

· d(d − 1)
2

·
(

1 − 1
d̃

)d−2

≥ d(d − 1)
8d2

·
(

1 − 1
d

)d

≥ 1
8

(
1 − 1

d

)
· 1
e

≥ 1
16e

≥ 1
44

624 L.S. Buriol et al.

To approximate the clustering coefficient in one pass we start s · r instances of
ONEPASSCLUSTERINGCOEFFICIENT for s = Θ(log 1

δ · 1
ε2·CG

) and r = log 2s
δ

/
log 44

43 .
We devide the instances into s groups of r instances.

Fix one group. We bound the probability that all instances in the group return ⊥:
For each instance the probability to return ⊥ is bounded by 43/44, therefore we have
a probability of at most (43

44)r = δ
2s for the event that all instances of the group return

⊥. If this is the case for one of our groups, our algorithm fails. Since we have s groups,
each of them failing with probability at most δ

2s , our algorithm fails with probability at
most δ

2 by the union bound.
We now consider the case that all groups have at least one instance reporting a value

0 or 1. This case happens with probability at least 1 − δ
2 . We take the result of the first

non-failing instance of each group. Then we have s independent {0, 1}-variables, each
one having expected value CG. Therefore we can proceed exactly as in the two-pass
case (Θ(log 1

δ) times averaging 3
ε2·CG

results and taking the median of these averaged
results). As shown in the two-pass case this leads to a (1 ± ε)-approximation with
probability 1 − δ.

Theorem 2. There is a 1-pass streaming algorithm which returns with probability 1−δ
a (1 ± ε)-approxi-mation of the clustering coefficient CG of a graph G when the
graph is given as an incidence stream. It uses O(log(1/δ)·log(|V |)

ε2CG
· log 1

εδCG
) memory

cells. �

5 Counting K3,3

In this section we consider the problem to estimate the number of complete bipartite
subgraphs K3,3 in a directed graph G of bounded outdegree Δ. We assume that the
graph is given as a stream of incidence lists ordered by destination nodes (as described
in the Preliminaries). Let K3,3 denote the number of K3,3 subgraphs and K3,1 denote
the number of K3,1 subgraphs. We first assume that we have a method to choose a K3,1

uniformly at random.

K3,3COUNTING

Choose a K3,1 uniformly at random from all K3,1 in G.
Let the three edges of the K3,1 be [a, u〉, [b, u〉 and [c, u〉
Pass over the stream and stop when all 3 edges of the K3,1 are read
Select x1, x2 uniformly at random from {a, b, c}
Select k1, k2 uniformly at random from {1, 2, . . . Δ}
if k1 = k2 ∧ x1 = x2 then output β = 0
Continue to pass over the stream.
Select the k1-th outgoing edge of x1 (counting from the stop). Call this edge [x1, v〉.
Select the k2-th outgoing edge of x2 (counting from the stop). Call this edge [x2, w〉.
Once [x1, v〉 has been selected: check, if [a, v〉,[b, v〉,[c, v〉 are present in the remaining stream
Once [x2, w〉 has been selected: check, if [a, w〉,[b, w〉,[c, w〉 are present in the remaining stream
if both is the case then output β = 1 else output β = 0.

Estimating Clustering Indexes in Data Streams 625

Lemma 1. Algorithm K3,3COUNTING outputs a random value β having expected
value

E[β] =
2 · K3,3

9 · Δ2 · K3,1

Proof. Let K = (A, B, C, U, V, W) be an arbitrary fixed K3,3 with edges directed
from A,B,C to U ,V and W . Let XK denote the indicator random variable for the event
that β = 1 with witness K . We would like to determine the probability for XK = 1.
W.l.o.g., let U be the vertex being first within the incidence list, V , W occurring after U
within the stream. Also, w.l.o.g. let us assume that [A, V 〉 is the first edge in the stream
among the edges from {A, B, C} to V and let X ∈ {A, B, C} be the node such that
[X, W 〉 is the first edge among the edges from {A, B, C} to W in the stream. We have
XK = 1, if the following events occur:

– A, B, C, U are chosen as K3,1 with U being the destination node (otherwise we
can not detect the edges to U).

– edges [A, V 〉 and [X, W 〉 are selected by the algorithm (only then we have a chance
to see the remaining edges of the K3,3 in the remainder of the stream).

The probability of the first event is 1/K3,1. Conditioned on the first event the proba-
bility to choose {v, w} = {V, W} is 2/Δ2: each edge [x1, .〉 appearing after [x1, U〉 in
the stream has a probability of 1/Δ to be chosen by the algorithm. We know that [x1, V 〉
and [x1, W 〉 appear after [x1, U〉 in the stream. Therefore each of these two edges has a
probability of 1/Δ to be chosen. By a similar argument we have independently a proba-
bility of 1/Δ to choose the edge [x2, V 〉 resp. [x2, W 〉. We select the nodes V and W if
we either select [x1, V 〉 and [x2, W 〉 or [x1, W 〉 and [x2, V 〉. Therefore the probability
to choose {v, w} = {V, W} and w is 2/Δ2.

Assume now that we have chosen A, B, C, U as the K3,1 and the edges [x1, V 〉 and
[x2, W 〉. This assumption is satisfied with probability 2/(Δ2 ·K3,1), independent of the
choice of x1 and x2. The probability for x1 = A and x2 = X is 1/9, since x1 and x2

are chosen uniformly from {A, B, C}. Therefore the probability to detect the K3,3 and
to set XK = 1 is 2/(9 · Δ2 · K3,1). Since we fixed the K3,3, the probability to detect
an arbitrary K3,3 this way is then 2·K3,3

9·Δ2·K3,1
.

To complete the description of the algorithm, we show how we can choose a K3,1

uniformly from the stream in the first step of our algorithm. This is done using a similar
method as choosing the length-2-paths in an algorithm to count the number of triangles
in a graph[2]. We start O(log n) different instances of the algorithm below in parallel.
Each instance corresponds to a guess 2j, 1 ≤ j ≤ 4 log n of the number of K3,1 in the

graph. We also count the number K3,1 =
∑|V |

i=1 di · (di − 1) · (di − 2)/6. In the end
we can choose an instance whose guess is at most a factor 2 away from the number of
K3,1. So from now on let us assume we know the number of K3,1 (up to a factor 2). We
will extend the method UNIFORMTWOPATH from [2]. Let f(x) =

(
x
3

)
. The algorithm

is as follows.

626 L.S. Buriol et al.

UNIFORMK3,1

Select value k uniformly from the set {1, . . . , K3,1}.
For each node v in the incidence stream do:

If k > 0 then
Set h ←

⌈
f−1(k)

⌉

Set k2 ← k − f(h − 1)

Set i ←
⌈√

2k2 + 1
4 + 1

2

⌉

Set j ← i − i2−i
2 + k2 − 1

Pass over the complete incidence list of node v.
If incidence list of v contains more than j edges then

a ← the hth node in the incidence list of v
b ← the ith node in the incidence list of v
c ← the jth node in the incidence list of v
u ← v

end if
d ← degree of node v

k ← k − d·(d−1)·(d−2)
6

end if
end do
return edges (a, u),(b, u) and (c, u)

The idea of the algorithm above is to enumerate the K3,1’s that are incident to one
node v in a way that all K3,1 whose edges belong to the first i edges incident to v are
enumerated before those using an edge which appears later in the stream. We select the
kth K3,1 with respect to that enumeration order. Given a number k we can compute
a triple (h, i, j) telling us to select the h-th, i-th, and j-th edge incident to the current
vertex. If the current vertex has less than j edges, we know that the node v is incident
to less than k K3,1 subgraphs. We simply subtract the number of K3,1 choices for this
vertex from k and start with our new k and the next vertex.

Equivalent to the algorithms of Section 4 we can run the algorithm K3,3COUNTING

in parallel Θ(log 1
δ · Δ2

ε2·K3,3
) times. We devide the instances into Θ(log 1

δ) groups of

size 27·Δ2·K3,1
ε2·2·K3,3

, take the average result of each group and return the median of these
group values. The returned value is with probability 1 − δ a (1 ± ε)-approximation of
the value 2·K3,3

9·Δ2·K3,1
. Since we can in parallel count the value K3,1, a multiplication of

the median with 9·Δ2·K3,1
2 will yield a (1 ± ε)-approximation of the number of K3,3

with probability 1 − δ.

Theorem 3. There is a 1-pass streaming algorithm which returns with probability 1−δ
a (1±ε)-approxi-mation of the number of K3,3 subgraphs of a graph G when the graph
is given as an incidence stream ordered by destination nodes with outdegree bounded

by Δ. It uses O
(
log(|V |) · log(1

δ) · K3,1·Δ2

K3,3·ε2
)

memory cells. ��

Estimating Clustering Indexes in Data Streams 627

6 Implementation of the Data Stream Algorithms

In this section we describe several optimization steps used in the implementation of the
algorithms to count K3,3’s and to estimate the clustering coefficient.

First, we use some memory blocks in order to improve I/O efficiency. Instead of
reading single edges consecutively from the hard disk, a large amount of edges is read
at once and stored in a main memory block of fixed size. This also allows to distinguish
between processing time and reading time.

Our algorithms consist of s instances passing in parallel over the stream of edges.
Instead of feeding each edge to each of the s instances we use optimized hashing ap-
proaches. Each instance describes a set of possible edges or nodes that it is interested in.
These sets of interesting edges are then inserted into a hashtable. After reading an edge
our algorithm can then quickly identify the different instances which are interested in
that particular edge (resp. the end nodes of the edge).

We use simple hash functions to implement the hash table. For hashtables storing
edges (i.e. two indices u and v) we use hash functions h of the form h(u, v) = rnd1 ·
u + rnd2 · v mod 2s, where rnd1 and rnd2 are two randomly generated numbers
between one and s (sample set size). For hashtables storing single nodes we use hash
functions h of the form h(u) = rnd1 ·u mod 2s. The size of the hash tables is 2·s. Our
hashtables do not provide theoretical guarantees on the lookup time. We nevertheless
chose them because they provide very fast hashing time in all our experiments.

The implementations of the one pass algorithm to estimate the clustering coefficient
and the two pass algorithm to count K3,3’s are described in the next subsections.

6.1 One Pass Algorithm to Estimate the Clustering Coefficient

To simplify the implementation we store the incidence list of a single node in main
memory. The memory consumption for this operation is negligible, since all our input
instances are sparse graphs.

The hashing function is implemented as described above. We chose this particular
set of hash functions because they are extremely fast and provide good approximations
(see results).

6.2 Two Pass Algorithm to Count K3,3’s

We implemented a 2-pass algorithm to count K3,3’s. Our implementation assumes the
following input encoding of a directed input graph: The file contains n lists, one for
each node v. The first lines of the list specify the indegree and outdegree of v. The
following lines provide a list of edges pointing to v.

The first pass serves the purpose of counting the number of K3,1’s in the graph. This
way we avoid the evaluation of the algorithm for a logarithmic number of guesses. Our
algorithm can easily be extended to a one-pass algorithm using the guessing technique
described in detail in Section 5, but the time would increase considerable due to the
need of one run of the algorithm for each guess of number of K3,1’s. For this reason,
we decided to implement the two passes algorithm instead.

628 L.S. Buriol et al.

In the second pass we uniformly select s random K3,1 subgraphs of the graph: We
first sample a random index k between 1 and the number of K3,1’s and retrieve the k-th
K3,1 from the stream using the algorithm UNIFORMk3,1 (presented in Section 5).

After the selection of the K3,1’s we select uniformly at random two vertices x1, x2

from a, b, c and two numbers k1, k2 in {1, 2, . . . , Δ}. It remains to detect the vertices
w and v, and to check the existence of 6 different edges per instance. This can both be
done using the hashing technique described above to speed up the detection of vertices
and edges which are interesting for one of s parallel instances.

7 Computational Experiments

This section presents the computational experiments performed by running the 1-pass
algorithm to estimate the clustering coefficient of a graph and the 2-pass algorithm to
count the number of K3,3’s.

The codes were written in C/C++ and compiled with the gcc compiler version 3.2.2,
using the -O3 optimization option. The experiments were performed on a 2.4 GHz In-
tel Pentium IV computer with 512 MB of RAM, running Linux. Due to space require-
ments, the experiments for the webgraph were performed on a 2.8 GHz Intel Pentium
IV computer with 1 GB of RAM, running Linux. The implementations are available by
e-mail request.

CPU times were measured with the system functiongetrusage. The time for read-
ing the graphs is not included in the reported running times.

7.1 Datasets

The datasets are divided into three subsets. The first set contains a large webgraph
instance. It consists of 135 million nodes and 1 billion edges and is obtained from
a graph extracted in 2001 by the WebBase project at Stanford [16]. We removed the
frontier nodes, i.e, the nodes that have indegree equal to one and outdegree equal to
zero.

The second set of instances contains the input graphs of the experiments of [17]. The
instances are:

– actor2004 and actor2004: Based on the Internet Movie Database. In these
instances, two actors (nodes) are connected if they ever stared together in a movie.

– authors: Based on the Computer Science Bibliography at the University of Trier.
– google-2002: Based on the 2002 Google contest.
– itdk0304: The network of Internet routers (nodes) and their connections (edges)

collected by the Cooperative Association for Internet Data Analysis (CAIDA).

The third set of instances represents the link structure of Wikipedia, as of an old
dump of June 13, 2004 [3]. Wikipedia is nowadays the largest online encyclopedia,
available in more than 200 languages. In these graphs, each article is a node and each
hyperlink between nodes is a directed arc. A graph is extracted from each language. The
experiments were performed on the graphs wikiEN, wikiDE, wikiFR, wikiES,
wikiIT and wikiPT, extracted from the English, German, French, Spanish, Italian
and Portuguese languages.

Estimating Clustering Indexes in Data Streams 629

Table 1. Basic properties of the graphs. The columns correspond to the number of nodes (|V |),
number of arcs (|E|), minimum degree of a node (min), average degree of the nodes (avg), and
maximum degree of a node (max).

graph dimensions degree
Graph |V| |E| min avg max

WebGraph 135,765,866 1,186,742,657 1 15.91 7,885,507
actor2004 667,609 27,581,275 1 82.63 4,605

google-2002 394,510 480,259 1 2.43 1,160
actor2002 382,219 15,038,083 1 78.69 3,96

authors 307,971 831,557 1 5.40 248
itdk0304 192,244 609,066 1 6.34 1,071
wikiEN 327,914 4,811,393 1 29.35 47,123
wikiDE 114,809 1,907,891 1 33.24 5,962
wikiFR 41,745 577,781 1 27.68 7,651
wikiES 25,684 246,316 1 19.18 2,973
wikiIT 12,758 134,342 1 21.06 1,793
wikiPT 8,071 42,083 1 10.43 2,317

Table 2. Results for estimating the cluster coefficient in digraphs, considering sample set sizes
of 300, 1500, and 3000 for all graphs. For each instance and sample size, the table presents
results for the estimated clustering coefficient c̃c and the corresponding running time measured in
seconds (Time(s)). Moreover, we run an own implementation to calculate the exact clustering
coefficient (cc∗) on all graphs of feasible size.

Graph s=300 s=1500 s=3000
c̃c Time(s) c̃c Time(s) c̃c Time(s) cc*

webgraph 0.31 11,380.18 - - - - -
actor2004 0.77 41.94 0.76 381.00 0.77 817.33 0.76

google-2002 0.03 1.56 0.05 9.05 0.05 25.32 0.05
actor2002 0.74 34.11 0.75 305.27 0.78 669.48 0.78

authors 0.58 2.94 0.52 21.92 0.58 47.44 0.60
itdk0304 0.11 1.73 0.15 13.60 0.15 37.94 0.16
wikiEN 0.21 16.32 0.21 16.32 0.26 276.17 0.27
wikiDE 0.21 16.54 0.20 101.59 0.22 234.82 0.24
wikiFR 0.29 7.80 0.28 77.31 0.28 163.88 0.29
wikiES 0.23 6.07 0.24 50.69 0.28 163.88 0.27
wikiIT 0.27 8.23 0.25 49.72 0.27 113.33 0.30
wikiPT 0.40 3.68 0.36 23.53 0.38 48.76 0.37

Table 1 presents basic properties of these graphs. All of them are sparse. The dimen-
sions vary from less than ten thousand nodes to more than 135 million nodes, and from
less than 100 thousand edges to over one billion edges.

7.2 Clustering Coefficient Computation

Table 2 presents results for the one pass algorithm to estimate the clustering coefficient
of a graph. For directed graphs we replaced all directed edges by undirected edges and

630 L.S. Buriol et al.

Table 3. Results for estimating the number of K3,3 in a digraph, considering sample set sizes of
100,000 and 1,000,000. For each run, the table presents the number of K3,3’s estimated by the
algorithm (K̃3,3) and the corresponding running time measured in seconds (Time(s)).

Graph s=100,000 s=1,000,000

K̃3,3 Time(s) K̃3,3 Time(s)
Webgraph 7,880,146,700,948,425 218.38 7,593,595,911,823,028 253.96

7,880,146,700,948,425 219.26 6,017,566,571,633,343 254.48
6,447,392,755,321,438 230.89 7,808,509,003,667,075 311.46

actor2004 5138977070 4.54 5253176561 8.75
4838452096 4.67 5481575542 9.99
5199082066 4.75 5346339303 9.20

google-2002 8859112 1.19 4724860 5.98
0 1.13 4134252 6.04

8859112 1.12 5315467 6.28
actor2002 138317076 1.39 188762127 8.74

154589673 1.32 174116790 7.47
162725972 1.35 180625828 7.18

authors 27783122 1.40 31638738 6.79
35154154 1.26 31978940 6.79
27783122 1.35 30334632 6.87

itdk0304 2550135420 1.30 2370936715 9.98
2653519288 1.33 2284783492 10.71
2067677368 1.58 2426074778 9.94

wikiEN 0 1.86 0 8.63
0 1.90 1663312320 8.59
0 1.83 831656160 8.68

wikiDE 0 1.34 408172513 8.21
1530646924 1.17 612258770 8.14

0 1.29 510215641 8.26
wikiFR 293980344 0.85 88194104 8.32

293980344 0.86 146990172 8.31
0 0.83 176388206 8.21

wikiES 163764410 0.75 223811360 7.50
327528819 0.65 234728987 7.52
191058478 0.71 259293648 7.45

wikiIT 62773047 0.68 43941133 7.38
41848698 0.69 43941133 7.39
20924349 0.67 35571394 7.47

wikiPT 1582891085 0.81 1559913634 9.02
1442473328 0.79 1529277032 8.92
1442473328 0.80 1589273710 9.02

generated the complete adjacency list for each node. We ran the algorithm on each
graph with three different sample sizes (s = 300 and s = 1500, and s = 3000).

Unfortunatelly we could not compare our results with the results presented by [17],
since they used a slightly different definition of clustering coefficient, resulting in a cc∗
different from our.

Estimating Clustering Indexes in Data Streams 631

For most of the graphs, the data stream algorithm was able to find an estimated
clustering coefficient very close to the exact one represented by cc* in the table. Most
of the time was spent in the operation of searching nodes in an adjacency list (there are
two such operations in the algorithm).

On the webgraph we were not able to compute the exact clustering coefficient. Hav-
ing the good approximations of all other instances in mind, we expect the approximation
guarantee to be around 2%.

7.3 K3,3 Computation

Table 3 presents results for the two pass algorithm to estimate the number of K3,3’s
of a directed graph. As it is common in this kind of computation [12,14], we removed
nodes having an indegree of more than 50. In [12] the authors concluded that pages with
indegree higher than 50 are presumably referenced for a variety of reasons not having
to do with any single emerging community. On average 15% of the nodes and 42% of
the edges were removed.

Using a sample size of 1,000,000 almost all runs were able to find K3,3’s in the
sample set. The number of samples that detect a K3,3 varies considerably among the
instances. Considering a sample size of 1,000,000, hundreds and thousands of K3,3’s
were found in almost all instances. This indicates that there are strongly related com-
munities in the respective graphs. Exceptions are some instances from the third set
(some wiki graphs), and google-2002. We observe that in all instances for which
a non-zero number of K3,3’s are found in all the runs, the values reported with sample
size 100, 000 are very close to those reported for sample size 1, 000, 000. The variation
among the results for a fixed instance and sample size is directly related to the number
of K3,3’s found in each run. In some cases, only a few K3,3’s were found, and so the
results are sensible a small variations in this number. Running times are very short in
all runs, even for a sample size of 1,000,000. The hashing tricks described in Section 6
seem to lead to a very small dependency of the runtime on the sample size s.

Acknowledgements

We thank Thomas Schank and Dorothea Wagner for five of the intances they have used
in their paper [17]. We also thank A. Broder and S. Muthukrishnan for helpful discus-
sions and Debora Donato for helping to organize the webgraph files.

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency
moments

2. Buriol, L., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Counting trian-
gles in data streams. In: Proceedings of the ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS 06 (2006)

3. Buriol, L.S., Castillo, C., Donato, D., Leonardi, S., Millozzi, S.: Temporal evolution of the
wikigraph. In: Proceedings of Web Intelligence, IEEE Computer Society Press, Hong Kong
(2006)

632 L.S. Buriol et al.

4. Coppersmith, D., Winograd, S.: Matrix multiplication via arith- metic progressions. Journal
of Symbolic Computation 3(9), 251–280 (1990)

5. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: Pro-
ceedings of the 6th Symposium on Operating System Design and Implementation (2004)

6. Eubank, S., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Wang, N.: Structural and algorith-
mic aspects of massive social networks. In: SODA ’04: Proceedings of the fifteenth annual
ACM-SIAM symposium on Discrete algorithms, pp. 718–727. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (2004)

7. Sohler, C., Frahling, G., Indyk, P.: Sampling in dynamic data streams and applications. In:
21st Annual Symposium on Computational Geometry, pp. 142–149. ACM Press, New York
(2005)

8. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Surfing wavelets on streams: One-
pass summaries for approximate aggregate queries. In: VLDB, pp79–88 (2001)

9. Guha, S., Koudas, N., Shim, K.: Data-streams and histograms. ACM Symposium on Theory
of Computing, 471–475 (2001)

10. Henzinger, M., Raghavan, P., Rajagopalan, S.: Computing on data streams (1998)
11. Jowhari, H., Ghodsi, M.: New streaming algorithms for counting triangles in graphs. In:

Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 710–716. Springer, Heidelberg (2005)
12. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for emerging cyber

communities. In: Proc. of the 8th WWW Conference, pp. 403–416 (1999)
13. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Random

graph models for the web graph. In: FOCS, pp. 57–65 (2000)
14. Laura, L., Leonardi, S., Millozzi, S., Sybeyn, J.F.: Algorithms and experiments for the web-

graph. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, Springer, Heidel-
berg (2002)

15. Muthukrishnan, S.: Computing on data streams (2005)
16. The Standord WebBase Project, http://www-diglib.stanford.edu/˜testbed/

doc2/webbase/
17. Schank, T., Wagner, D.: Finding, counting and listing all triangles in large graphs, an ex-

perimental study. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 606–609.
Springer, Heidelberg (2005)

18. Watts, D.J., Strogatz, S.H.: Collective dynamics of small- world networks. Nature 393, 440–
442 (1998)

19. Sivakumar, D., Bar-Yosseff, Z., Kumar, R.: Reductions in streaming algorithms, with an
application to counting triangles in graphs. In: Proceedings of the thirteenth annual ACM-
SIAM symposium on Discrete algorithms, pp. 623–632. ACM Press, New York (2002)

http://www-diglib.stanford.edu/~testbed/doc2/webbase/
http://www-diglib.stanford.edu/~testbed/doc2/webbase/

Complete, Exact and Efficient Implementation

for Computing the Adjacency Graph of an
Arrangement of Quadrics�

Laurent Dupont1, Michael Hemmer2, Sylvain Petitjean1, and Elmar Schömer2

1 LORIA, Nancy, France
{laurent.dupont,sylvain.petitjean}@loria.fr

2 Johannes Gutenberg-Universität, Institut für Informatik, Mainz, Germany
{hemmer,schoemer}@informatik.uni-mainz.de

Abstract. We present a complete, exact and efficient implementation to
compute the adjacency graph of an arrangement of quadrics, i.e. surfaces
of algebraic degree 2. This is a major step towards the computation of
the full 3D arrangement. We enhanced an implementation for an exact
parameterization of the intersection curves of two quadrics, such that
we can compute the exact parameter value for intersection points and
from that the adjacency graph of the arrangement. Our implementation
is complete in the sense that it can handle all kinds of inputs including
all degenerate ones, i.e. singularities or tangential intersection points. It
is exact in that it always computes the mathematically correct result. It
is efficient measured in running times, i.e. it compares favorably to the
only previous implementation.

1 Introduction

Quadric surfaces are the simplest curved surfaces. They play an important role
in solid modeling and in the design of mechanical parts. Unfortunately, when
dealing with curved objects, including quadric surfaces, all Cad systems still
suffer from approximation and rounding errors due to the use of fast but inexact
floating point arithmetic. As a consequence, all of these systems are neither exact
nor complete. On the other hand, computer algebra introduced very general
methods, e.g. the cylindrical algebraic decomposition presented by Collins [1],
which are exact and complete in principle but cause unacceptable runtimes.

However, in recent years, there has been substantial effort to join the three
goals (exactness, completeness and efficiency) for dealing with curved objects.
In particular the problem of computing the arrangement of quadric surfaces
has been studied extensively. Wolpert et al. [2] presented an exact and efficient
technique to compute a cell in an arrangement of quadric surfaces. Mourrain et
al. [3] presented an approach for sweeping an arrangement of quadrics in 3D,
but an implementation is still missing. Finally Berberich et al. [4] developed and
� Project co-funded by the European Commission within FP6 (2002–2006) under con-

tract No. IST-006413.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 633–644, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

634 L. Dupont et al.

implemented a method for computing the arrangement of curves on the surface
of one quadric induced by all the other quadrics. By contrast with our method,
it is based on the computation of the planar arrangement of the projected in-
tersection curves. We will compare our method to this projection approach in
Section 6.3.

We now sketch our overall algorithm for computing the adjacency graph. The
first step is to compute the exact parameterization of all appearing intersection
curves as it is presented by Dupont et al. [5], which we recall tersely in Section 2.
In the next step we unify representations of identical intersection curves, as
discussed in Section 3. Thereafter, for each intersection curve we compute the
exact parameter values of the intersection points with the other quadrics, as
discussed in Section 4. This is a major ingredient to our approach, since this
gives the possibility to sort intersection points along each intersection curve.
However, each intersection point has several representations, one parameter value
for each curve it lies one. Therefore, it is necessary to identify the different
representations of each intersection point, which is discussed in Section 5. From
that it is possible to compute the adjacency graph connecting all vertices of the
arrangement with their neighbors. Section 6 presents implementation details and
benchmarks in particular with respect to the projection approach. The paper
closes with Section 7 on conclusions and further work, i.e. sketching what is
needed to compute the complete 3D arrangement.

2 Intersecting Two Quadrics

In this section, we recall definitions and the main results on the exact parame-
terization of the intersection of quadrics as presented in Dupont et al. [5].

2.1 Definitions and Notations

We work in projective space P
3, the set of quadruplets X = (x0, x1, x2, x3) �=

(0, 0, 0, 0) with the equivalence relation (x0, x1, x2, x3) ∼ (λx0, λx1, λx2, λx3) for
all λ �= 0. A quadric surface is defined in P

3 by an implicit equation of degree 2:∑
0�i�j�3 αijxixj = 0. Since this equation can also be expressed as XTQX = 0,

with Q a 4 × 4 symmetric matrix, we associate the quadric to this matrix Q.
An essential notion for parameterizing intersections is the pencil(Q1, Q2) =

{λQ1 +μQ2 | (λ, μ) ∈ P
1} of two quadric surfaces, since the intersection curve of

two quadrics can be identified by the corresponding pencil and vice versa. The
different possible variants of intersection curves can in a first step be separated by
the root pattern of the characteristic polynomial of the pencil: det(λQ1 + μQ2).

2.2 Generic Case

In this case, det(λQ1 + μQ2) has only simple real roots (and so is square-free)
and the intersection curve is a smooth quartic curve of genus 1. To compute the

Complete, Exact and Efficient Implementation 635

Table 1. Maximal degree of algebraic extension for the different algebraic components.
In case of extension of degree 4, the extension can be irreducible or the direct sum of 2
extensions of degree 2 (2 × 2). In most cases, the algebraic degree of the parameteriza-
tions computed is optimal (one cannot do better). In the remaining cases, this degree
is near-optimal, i.e. at most one square root away from the optimal.

component
maximal algebraic
degree of extension

degree for the
entire intersection

optimality

regular quartic 2 2 1 possible extra square-root

nodal quartic 2 2 1 possible extra square-root

cuspidal quartic 1 1 optimal

cubic 1 1 optimal

conic 4 (2 × 2) 4 1 possible extra square-root

line 4 24 optimal

point 4 (2 × 2) 4 optimal

parameterization Dupont et al. [5] chose a ruled quadric QR ∈ pencil(Q1, Q2)
(assumed different from Q1 w.l.o.g.) such that it has a parameterization1

XR(ξ, τ) ∈ [Q(
√

δ)[ξ, τ]]4, with (ξ, τ) ∈ P
1 × P

1 and where [Q(
√

δ)[ξ, τ]]4 is the
vector space of dimension 4 of bivariate polynomials with coefficients in an alge-
braic extension of degree 2. Moreover, XR has the nice property that every coor-
dinate is bilinear in ξ and τ . Then XR is plugged into the implicit equation of
Q1 to obtain the biquadratic implicit equation f := XR

TQ1XR ∈ Q(
√

δ)[ξ, τ]
of the intersection curve within the parameter space of XR:

f(ξ, τ) = a2τ
2 + a1τ + a0, (ai)i=0,1,2 ∈ Q(

√
δ)[ξ]. (1)

Since f is quadratic in τ (but also in ξ which implies that the ai are quadratic),
solving for τ yields:

τε(ξ) =
(
−a1 + ε

√
Δ, 2a0

)
, (2)

where ε = ±1 and Δ = a2
1 − 4a0a2 ∈ Q(

√
δ)[ξ] is of degree 4. Using this within

the parameterization XR of QR, the final parameterization of the intersection
curve of Q1 and Q2 is defined as:

Xε(ξ) = XR(ξ, τε(ξ)) ∈ [Q(
√

δ)[ξ,
√

Δ]]4.

Therefore, the parameterization consists of two arcs, a positive arc Xε=1 and a
negative arc Xε=−1, each defined within the domain D = {ξ ∈ P

1 | Δ(ξ) � 0}.

1 For example, the parameterization of x2
0+x2

1 −x2
2−δx2

3 = 0, with δ ∈ Q, is X(ξ, τ) =(
ξ + τ, ξτ − 1, ξ − τ, (ξτ + 1)/

√
δ
)T

, with (ξ, τ) ∈ P
1 × P

1. Note here that for the

sake of simplicity we use an “affine-like” notation, where we should strictly speak
about ξ = (u, v) ∈ P

1, τ = (s, t) ∈ P
1, and the exact “projective” expression of

parameterization X(ξ, τ) =
(
ut + vs, us − vt, ut − vs, (us + vt)/

√
δ
)T

.

636 L. Dupont et al.

2.3 Singular Case

In case det(λQ1 + μQ2) is not square-free, additional invariants (type – real
or complex – and multiplicity of the roots, projective type of the associated
quadrics, ...) are computed to give a complete case distinction along the different
algebraic components the intersection curve might consist of. Beside the nodal
quartic or cuspidal quartic, the curve might consist of combinations of lines,
conics and cubics2, such that the accumulated algebraic degree never exceeds 4.

In all singular cases Dupont et al. [5] give a polynomial parameterization of
each algebraic component. Note that the parameterizations may be defined in
an algebraic extension, an overview is given in Table 1.

3 Matching Algebraic Component

It is clear that we should represent each algebraic component only once. There-
fore, we need to detect equal algebraic components, which was not discussed
in [5]. Obviously, we need only to compare algebraic components of the same
nature. For quartics (nodal, cuspidal or smooth) the situation is easy, since a
quartic unambiguously defines its pencil. Hence, it suffices to compare the as-
sociated pencils. In the case of cubics, non-equivalent pencils may contain the
same cubic. However, each pencil contains up to one cubic only. Hence, we plug
the parameterization of one cubic into the pencil of the second and the cubics
are equal iff the result vanishes. For conics we have to take into account that
each associated pencil may contain up to two conics. However, in case of unequal
pencils only one conic may be contained in both pencils and we follow the same
approach as for the cubics. In case of equal pencils containing two conics we
can guarantee an identical parameterization of the conics by construction, see
Dupont et al. [5, Part II].

In the case of lines, we have to compare lines defined in an algebraic extension
of similar degree only, since the degree is guaranteed to be optimal (see Table 1).
In case of degree one and two, we compare the lines via Plücker Coordinates [6]
using explicit arithmetic3. In case of a degree 4 extension we can guarantee a
unique representation of the line by construction due to the fact that the pencil
is uniquely defined by the line and its three algebraic conjugates.

In the case of lines defined in a degree 3 extension the situation is more
complicated, since the pencil is not unique due to the fourth rational line. More-
over, we want to avoid Plücker Coordinates since this involves arithmetic4 with
algebraic numbers of degree 3. Therefore, we first use the fact that all lines in a
triple intersect in a common rational point. If the rational points associated with
each triple are equal, we compute for each triple the three intersection points
with a rational plane. Then we compute approximations of the points using in-
terval arithmetic with increasing precision until we detect inequality or get a
2 It may also consist of isolated points, real part of a complex component.
3 For instance, leda::rational or NiX::Sqrt extension (Section 6).
4 We could use e.g. leda::real or CORE::Expr here, but in case of equality the num-

bers have to be refined until the separation bound is reached, which is too expensive.

Complete, Exact and Efficient Implementation 637

one-to-one matching among the points of the triples, see also Section 5. In order
to detect equality, we project the intersection curves of the two pencils along a
certain direction. Each resultant is a bivariate polynomial of degree 4, represent-
ing the projection of the four lines in the respective pencil. Since we know the
rational line of each pencil, we can divide each resultant by the respective linear
factor and compare the primitive parts of the remaining polynomials. Note that
we still can not state equality of the triples, since the lines could still differ due
to a scaling along the chosen direction. Therefore, we have to repeat this process
along a different, linear independent direction.

4 Intersection with a Third Quadric

When the intersection C12 = Q1 ∩ Q2 of the first two quadrics is singular, the
computation of the intersection of C12 with a third quadric Q3 is straightfor-
ward. Indeed, in this case, each algebraic component of C12 has a polynomial
parameterization X(ξ) of minimal degree. Therefore, it is enough to plug X(ξ)
into the equation of the third quadric and solve the resulting univariate polyno-
mial h(ξ) = X(ξ)TQ3X(ξ). Since X(ξ) is a proper parameterization of minimal
degree, h has minimal degree and its real roots are in one-to-one correspondence
with the intersection points of Q1 ∩ Q2 ∩ Q3 on the given component of C12.

The situation is slightly more involved when the intersection is generic, i.e.
a smooth quartic, due to the fact that the parameterization is no longer poly-
nomial. We focus on this case in this section.

4.1 Intersecting a Smooth Quartic with a Third Quadric

Recall that for a smooth quartic C12 = Q1 ∩ Q2 the parameterization splits
into two arcs, Xε=1 and Xε=−1. To compute its intersection points with a third
quadric Q3, we switch to the parameter space of the chosen ruled quadric QR ∈
pencil(Q1, Q2). Stated simply, the algorithm below is based on the fact that

Q1 ∩ Q2 ∩ Q3 = Q1 ∩ QR ∩ Q3 = (QR ∩ Q1) ∩ (QR ∩ Q3).

Let again f(ξ, τ) be the implicit equation of C12 as defined in (1) and τε(ξ) be
its parameterization as defined in (2). In symmetry to f , we denote the implicit
equation representing QR ∩ Q3 by:

g(ξ, τ) = XR
TQ3XR = b2τ

2 + b1τ + b0, (bi)i=0,1,2 ∈ Q(
√

δ)[ξ]. (3)

Moreover, we denote resultantτ(f, g) by:

res = s2
02 − s01s12, sij = aibj − ajbi ∈ Q(

√
δ)[ξ]. (4)

If QR ∩ Q1 = QR ∩ Q3, res is the zero polynomial. Otherwise, res is of degree 8
and its roots are the parameter values of the 8 intersection points of the three
quadrics, multiplicities counted. However, it remains to discard the complex
intersection points and to determine the correct arc for the real intersection
points. This is embodied in Theorem 1.

638 L. Dupont et al.

Theorem 1 (Description of Points on Arcs). Let f , τε, g and res �= 0 be
defined as in Equations (1), (2), (3) and (4) respectively. And let ξ0 denote one
of the real roots (if any) of res.

There are 3 cases:

1. Δ(ξ0) < 0: ξ0 corresponds to complex intersection points.
2. Δ(ξ0) = 0: ξ0 corresponds to a real endpoint of both arcs.
3. Δ(ξ0) > 0:

– If s01(ξ0) �= 0, then ξ0 corresponds to one real intersection point on arc
Xε(ξ), with ε = −sign(s01)sign(2a0s02 − a1s01)|ξ0 .

– If s01(ξ0) = 0, then ξ0 corresponds to two real points, one on each arc.

Proof. Since the two first statements are trivial we focus on the third. When
Δ(ξ0) > 0 it should be clear the intersection has at least one real point, since
Δ is the discriminant in τ of the bi-degree (2, 2) equation f . Now, the most
important observation is that g(ξ, τε(ξ)) can be written as:

g(ξ, τε(ξ)) = 2(2a0s02 − a1s01 + ε · s01

√
Δ), (5)

and that this expression is independent of ε iff s01(ξ0) = 0. Thus if s01(ξ0) �= 0
we just solve for ε. Otherwise it is clear that both choices for ε yield a valid
solution. ��
Remark 1. It is easy to see that it is possible to determine the multiplicities of the
intersection points by investigating derivatives of Equation (5). However, since
this result is not needed for our algorithm it has been omitted in Theorem 1.

4.2 Intersection Algorithm

We first compute the possible ξ values and their multiplicity by Algorithm 1.

Algorithm 1. Let C12 be the smooth quartic intersection curve of the quadrics Q1

and Q2, let f(ξ, τ) be the corresponding implicit equation within the parameter space

of QR ∈ pencil(Q1, Q2). Compute possible parameter values of intersection points with

a third quadric Q3 �∈ pencil(Q1, Q2).

g(ξ, τ) := XR
TQ3XR {QR ∩ Q3}

res(ξ) := resultantτ (f, g) {of degree 8}
{compute the square-free factorization of res, by Yun’s algorithm [7]}
Sqf(f) := {(fac0, m0), . . . , (fack, mk)} with

∏k
i=0 facmi

i = res
for all faci ∈ Sqf(f) do

compute all real roots of faci using the Bit-Stream Descartes algorithm [8]
output all real roots of faci with their corresponding multiplicity mi

end for

In the next step we compute the arc(s) to which each pair (ξj , mj) belongs
according to Theorem 1. Note that we only discuss Δ(ξj) > 0 and omit the

Complete, Exact and Efficient Implementation 639

other cases. If s01(ξj) �= 0,5 we can evaluate −sign(s01)sign(2a0s02 − a1s01)
at ξj using interval arithmetic with increasing precision until we can report an
unambiguous sign, and therefore assign the value to the correct arc. Otherwise,
i.e. s01(ξj) = 0, we report both arcs.

5 Matching Intersection Points

We will now focus on how to compare two intersection points, as they have been
defined in Section 4. This problem actually consists of two parts. The first part
is to compare and sort points along a curve, but this reduces to comparing the
exact parameter values using Algebraic real, see Section 6.

The second part comes from the fact that an intersection point lies on at least
three quadrics. These three quadrics induce three intersection curves each going
through that intersection point. Thus each intersection point has at least three
representations, one for each algebraic component it lies on, and the task is to
match these representations efficiently. Our solution is presented in Algorithm 2.

Algorithm 2. Let C12 and C13 be the intersection curves Q1 ∩ Q2 and Q1 ∩ Q3,
respectively. Moreover, let seq12 = {p1

12, . . . , p
m
12} and seq13 = {p1

13, . . . , p
m
13} be the

sequence of intersection points on the curves C12 (representing C12 ∩ Q3) and C13

(representing C13 ∩ Q2), respectively, where m is the total number of points. Compute
the permutation σ that matches the points in seq12 with those in seq13.

precision := 53 {start with double precision}
σ := {} {start with the empty permutation}
while seq12 and seq13 are not empty do

for all intersection points left in the game do
pre-compute a bounding box using interval arithmetic with the given precision

end for
if a BBOX(pi

12) intersects one BBOX(pj
13) only then

add (i, j) to σ
remove pi

12 from seq12 and pj
13 from seq13

end if
precision ∗ = 2 {double the precision}

end while
return σ {termination is guaranteed due to the increasing precision and the fact
that each point appears exactly once in each sequence}

6 Implementation and Benchmarks

The software consists of two parts. The first part is an adaptor to the software
Qi [9] which provides the exact parameterization of an intersection curve of
two quadrics. The second part, which is the focus of this paper, provides the
5 Note that having the multiplicity mj of the parameter values helps to avoid unnec-

essary exact calculations, i.e. mj = 1 implies s01(ξj) �= 0.

640 L. Dupont et al.

computation of the intersection of such a curve with a third quadric. It is im-
plemented within the Exacus project [10]. The design of Exacus follows the
generic programming paradigm with C++ templates similar to well-established
design principles, for example, in the Stl [11] and in Cgal [12]. We can parame-
terize our implementations on such a small scale as number types and arithmetic
operations. For more on content, design, and implementation of Exacus see [10].

6.1 Implementation Details

In order to give a certain background for the benchmarks in Sec. 6.3 we now
discuss the most important types and methods used within our implementation.

Sqrt extension: As discussed in Section 2 the parameterization of an intersec-
tion curve is in general defined over an algebraic extension. As a consequence,
all exact arithmetic operations are carried out within these extensions.

In the rare case of algebraically conjugate lines in which the algebraic exten-
sion is of degree up to 4, we use leda::real or CORE::Expr. For the other cases,
we introduced a special class template Sqrt extension<NT,ROOT>. An object of
this type stores two coefficients a1 and a2 of type NT and the extension root
of type ROOT representing the value a1 + a2

√
root. Note that both NT and ROOT

can themselves be an instance of Sqrt extension, yielding a nested extension,
which is needed in the case of conics.

The type has been designed such that only values from the same extensions
are interoperable. From there, it is possible to keep the representation of objects
very simple. In particular, it avoids the overhead of other more general imple-
mentations based on expression trees, such as leda::real or CORE::Expr, i.e.
it can be used as coefficient type within gcd computations and allows the use of
modular filters, as discussed in [13].

Square-Free Factorization: For polynomials over integer coefficients we use
Yun’s algorithm [7] to compute the square-free factorization. For gcd computa-
tions we use the subresultant algorithm as presented in [14]. For polynomials
over an algebraic extension of degree 2 the situation significantly changes. While
each irreducible polynomial in Z[x] is still irreducible in Q[x], this is not true
for polynomials in Z[

√
δ][x] with respect to Q[

√
δ][x].6 Therefore, we modified

Yun’s algorithm, such that it calls gcd utcf, a function that computes the gcd
up to a constant factor in Z[

√
δ][x].

Root Isolation: For each square-free factor we compute isolating intervals. For
polynomials in an algebraic extension of degree 2 we use a method presented
by Eigenwillig et al. [8]: the coefficients of the polynomial are converted to (po-
tentially infinite) bit-streams and a variant of the well-known Descartes method
(i.e., a method based on Descartes’ Rule of Signs, see [15]) is used to determine
the isolating intervals of the real roots. This method performs far better than
the original Descartes method on polynomials in Z[

√
δ][x] since the bit-stream

6 As an example take: 2x2 + 2
√

2x + 1, which is irreducible in Z[
√

2][x], but factors
into 1/2(2x +

√
2)2 in Q[

√
2][x].

Complete, Exact and Efficient Implementation 641

approach reduces the overhead caused by the square root. For polynomials in
Z[x] we use the original Descartes Method [15].
Algebraic real: This class has been introduced to represent x-coordinates
within planar arrangement computations of algebraic curves. Therefore, it has
been designed to provide efficient comparisons, but arithmetic operations are not
supported. The class template Algebraic real stores an algebraic number in
the form of a square-free polynomial and an interval isolating exactly one root.
Template parameters are the coefficient type of the polynomial and the bound-
ary type of the isolating interval. For the approach presented in this paper it has
been revised in order to support Sqrt extension as coefficient type as well. For
a more detailed discussion, in particular on general optimizations, see [13].

6.2 The Projection Approach

We next discuss the projection approach by Berberich et al. [4] briefly, since we
will compare to it in Section 6.3. The idea is to split the computation of the 3D
arrangement into two steps. In the first step, for each quadric Qi of a given set
{Q1, . . . , Qn}, the 2D arrangement induced by the other quadrics on the surface
of Qi is computed. In the second step, the plan is to use these arrangements in
order to deduce the complete 3D arrangement. Although only the first step is
presented in Berberich et al. [4], we consider this as a very promising approach.

For each quadric Qi, two planar arrangements are computed, one for the
lower and one for the upper part of Qi. All intersection curves Qi ∩Qj , j �= i are
projected onto the xy-plane by a resultant computation, which results in curves
of algebraic degree 4. Then each curve is split into arcs with respect to the lower
and upper part of Qi. Thereafter, the two planar arrangements are computed
separately by a variant of the Bentley-Ottmann sweep-line algorithm [16].

Although the projected curves are of algebraic degree 4, the coordinates of
the event points are of algebraic degree 8 only, since they can be deduced by a
multi-resultant computation using the three involved quadrics. Thus in general
the basic operations, such as root isolation or gcd computation, are performed
over univariate polynomials of degree up to 8 with integer coefficients. The main
disadvantage of the approach is that in case of covertical events on the same
curve a shear of the coordinate system must take place and everything has to be
recomputed with respect to the new coordinate system. Moreover, it does not
provide an explicit parameterization of the appearing intersection curves.

6.3 Benchmarks

We have not analyzed the worst case in the bit-complexity model, since we argue
that our algorithms are adaptive in the bit-complexity and a worst-case analysis
would not be representative. Instead, we want to show that our parameterization
method is practical, i.e. efficient, for computing arrangements. In particular we
want to analyze the competitiveness of our approach with respect to the pro-
jection approach. Since both approaches were implemented within the Exacus

project, we were able to benchmark them in parallel.

642 L. Dupont et al.

 0

 50

 100

 150

 200

 250

 300

 10 20 30 40 50 60 70 80 90 100

tim
e

[s
ec

]

bit-length of quadrics

by parameterization
by projection

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 20 40 60 80 100 120 140 160

to
ta

l t
im

e
[s

ec
]

number of quadrics

deg by parameterization
deg by projection

Fig. 1. To the left, parameterization approach compared to the projection approach
on the random instances (rnd). To the right, parameterization approach compared to
the projection approach on the degenerate instances (deg).

To analyze the generic, smooth quartic case, we generated random instances
(rnd) with growing coefficient size. Each instance contains 50 quadrics with ran-
dom coefficients of the respective length. In order to avoid empty quadrics or in-
tersections, each quadric is guaranteed to intersect the [−100, 100]3 cube at least
once. The second set with degenerated instances (deg) is taken from Berberich
et al. [4]. These instances have been generated by interpolation. In order to
achieve degenerate situations, several quadrics share values for partial derivatives
and higher-order derivatives at common intersection points. The coefficients of
the set need 73 bits on average.

For the projection approach the two planar arrangements on the first quadric
are computed. To be symmetric, we therefore compute all intersection curves
and intersection points on the first quadric only. Moreover, we sort all points
along their curve and match them with their corresponding representations on
the other curves. The benchmarks were measured on a Pentium(R) M processor
1.7 GHz with 512 kB cache under Linux and the GNU C++ compiler v4.1 with
optimizations (-O2) and disabled assertions (-DNDEBUG).

The right plot in Figure 1 shows that for the degenerate instances the pro-
jection approach performs better than the parameterization approach. This is
due to the fact that for the degenerate situations it is not possible to avoid the
computation of very expensive gcds, as is the case for equal algebraic numbers
(e.g. equal intersection points) or non-square-free resultants (e.g. tangential in-
tersection points). These computations can not be avoided by both approaches.
However, in our case this is much more expensive for two reasons. First, the
intersection curves are represented in the parameter space of the chosen quadric
QR, which introduces a considerable amount of extra bits into the representa-
tion, e.g., the coefficient size in the resultant polynomial for 50 bit-quadrics is
around 4,500 bits while the size of the corresponding polynomial in the pro-
jection approach is only around 1,000 bits. Second, we can not apply the more
efficient algorithms for square-free factorization and gcd computation used in
the projection approach, since nearly all of our polynomials are defined over an
algebraic extension of degree 2. This hinders the performance of our method

Complete, Exact and Efficient Implementation 643

greatly. Indeed, for the degenerate instances, the time for the gcd computation
contributes about 80% to the total runtime of the parameterization approach.

However, for the random instances the left plot in Figure 1 shows that the
parameterization approach is significantly faster than the projection approach.
This shows that, for the generic case, we have been able to widely decouple our
approach from the bit-size of the input.

7 Conclusions and Future Work

Both approaches to the quadrics arrangement problem have their own strengths
and weaknesses. Due to the use of interval arithmetic and the bit-stream algo-
rithm our approach is fast in the generic case. On the other hand, it introduces
more bits, which makes it slower in degenerate situations. However, in the be-
ginning we had to face the same picture for the generic cases as well. The im-
provement was caused by the introduction of the bit-stream algorithm within
the root isolation process, which gave a tremendous speed up for our approach,
while for the projection approach the runtime stagnated. In the same way, the
consistent use of interval arithmetic within our approach resulted in a signifi-
cant speed up. We expect, that doing the same for the projection approach is
considerably harder, since there is no parameterization available. Moreover, we
plan to introduce modular gcd algorithms into Exacus, as they are presented
e.g. in [17,18]. The use of modular arithmetic is promising and should result, in
degenerate cases, in a significant speed up of gcd computations on polynomials
over one-root number fields. We hope to improve our approach for these cases
as much as we did for the generic case.

We are confident that our approach will be finally ahead of the projection
approach, with the additional advantage of exact parameterizations of the ap-
pearing intersection curves.

With respect to further work it remains to compute the full 3D arrangement.
Based on the adjacency graph of the quadric arrangement, the respective al-
gorithm will explore the local neighborhood of each intersection point to build
the faces and cells of the arrangement. This could be done by computing the
arrangement of conics on a sufficiently small cube around each vertex. The ar-
rangement itself could be stored in a variant of a structure used to represent the
so-called Selective Nef Complex as presented in [19]. This structure is a vertex
oriented structure that stores the local neighborhood around each vertex in a
so-called Sphere Map.

References

1. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical alge-
braic decomposition. In: Proc. 2nd GI Conf. on Automata Theory and Formal
Languages. LNCS, vol. 6, pp. 134–183. Springer, Berlin (1975) Reprinted with
corrections. in: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and
Cylindrical Algebraic Decomposition, pp. 85–121. Springer, Heidelberg (1998)

644 L. Dupont et al.

2. Schömer, E., Wolpert, N.: An exact and efficient approach for computing a cell in an
arrangement of quadrics (Special Issue on Robust Geometric Applications and their
Implementations). Computational Geometry: Theory and Applications 33, 65–97
(2006)

3. Mourrain, B., Técourt, J.-P., Teillaud, M.: Sweeping of an arrangement of quadrics
in 3D (Special issue, 19th European Workshop on Computational Geometry).
Computational Geometry: Theory and Applications 30, 145–164 (2005)

4. Berberich, E., Hemmer, M., Kettner, L., Schömer, E., Wolpert, N.: An exact,
complete and efficient implementation for computing planar maps of quadric in-
tersection curves. In: SCG ’05: Proceedings of the twenty-first annual symposium
on Computational geometry, pp. 99–106. ACM Press, New York, USA (2005)

5. Dupont, L., Lazard, D., Lazard, S., Petitjean, S.: Near-optimal parameterization of
the intersection of quadrics, parts I+II+III (accepted). J. Symbolic Computation
(2007)

6. Stolfi, J.: Oriented Projective Geometry: A Framework for Geometric Computa-
tions. Academic Press, New York (1991)

7. Yun, D.Y.Y.: On square-free decomposition algorithms. In: SYMSAC ’76:
Proceedings of the third ACM symposium on Symbolic and algebraic computa-
tion, pp. 26–35. ACM Press, New York, USA (1976)

8. Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert,
N.: A descartes algorithm for polynomials with bit-stream coefficients. In: Ganzha,
V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718,
pp. 138–149. Springer, Heidelberg (2005)

9. Lazard, S., Pearanda, L.M., Petitjean, S.: Intersecting quadrics : An efficient
and exact implementation. In: ACM Symposium on Computational Geometry -
SoCG’2004, Brooklyn, NY, ACM Press, New York (2004)

10. Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Kettner, L., Mehlhorn, K.,
Reichel, J., Schmitt, S., Schömer, E., Wolpert, N.: EXACUS: Efficient and ex-
act algorithms for curves and surfaces. In: 13th Annual European Symposium on
Algorithms, pp. 155–166. Springer, Heidelberg (2005)

11. Austern,M.H.: Generic Programming and theSTL.Addison-Wesley,Reading (1998)
12. Brönnimann, H., Kettner, L., Schirra, S., Veltkamp, R.: Applications of the generic

programming paradigm in the design of CGAL. In: Jazayeri, M., Musser, D.R.,
Loos, R.G.K. (eds.) Generic Programming. LNCS, vol. 1766, pp. 206–217. Springer,
Heidelberg (2000)

13. Hemmer, M., Kettner, L., Schömer, E.: Effects of a modular filter on geometric
applications. Technical Report ECG-TR-363111-01, MPI Saarbrücken (2004)

14. Brown, W.S.: The subresultant PRS algorithm. ACM Trans. Math. Softw. 4(3),
237–249 (1978)

15. Collins, G.E., Akritas, A.-G.: Polynomial real root isolation using Descartes’ rule
of sign. In: SYMSAC, pp. 272–275 (1976)

16. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput. C-28(9), 643–647 (1979)

17. Brown, W.S.: On euclid’s algorithm and the computation of polynomial greatest
common divisors. J. ACM 18, 478–504 (1971)

18. Langemyr, S.M.L.: The computation of polynomial GCD’s over an algebraic num-
ber field. J. Symbolic Computation 8, 429–448 (1989)

19. Granados, M., Hachenberger, P., Hert, S., Kettner, L., Mehlhorn, K., Seel, M.:
Boolean operations on 3D selective nef complexes: Data structure, algorithms, and
implementation. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832,
pp. 654–666. Springer, Heidelberg (2003)

Sweeping and Maintaining Two-Dimensional

Arrangements on Surfaces: A First Step�

Eric Berberich1, Efi Fogel2, Dan Halperin2, Kurt Mehlhorn1, and Ron Wein2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
{eric,mehlhorn}@mpi-inf.mpg.de

2 School of Computer Science, Tel-Aviv University, Israel
{efif,danha,wein}@tau.ac.il

Abstract. We introduce a general framework for sweeping a set of
curves embedded on a two-dimensional parametric surface. We can han-
dle planes, cylinders, spheres, tori, and surfaces homeomorphic to them.
A major goal of our work is to maximize code reuse by generalizing the
prevalent sweep-line paradigm and its implementation so that it can be
employed on a large class of surfaces and curves embedded on them.
We have realized our approach as a prototypical Cgal package. We
present experimental results for two concrete adaptations of the frame-
work: (i) arrangements of arcs of great circles embedded on a sphere,
and (ii) arrangements of intersection curves between quadric surfaces
embedded on a quadric.

1 Introduction

We are given a surface S in IR3 and a set C of curves embedded on this surface.
The curves divide S into a finite number of cells of dimension 0 (vertices), 1
(edges) and 2 (faces). This subdivision is the arrangement A(C) induced by C
on the surface S. Arrangements are widely used in computational geometry and
have many theoretical and practical applications; see, e.g., [1,9,10].

Cgal (http://www.cgal.org), the Computational Geometry Algorithms Li-
brary aims at a generic and robust, yet efficient, implementation of widely used
geometric data structures and algorithms. Until recently, the Cgal arrangement
package has dealt only with bounded curves in the xy-plane. This forced users
to clip unbounded curves before inserting them into the arrangement; it was the
user’s responsibility to clip without loss of information. However, this solution
is generally inconvenient and outright insufficient for some applications. For ex-
ample, representing the minimization diagram defined by the lower envelope of
unbounded surfaces in IR3 [13] generally requires more than one unbounded face,
whereas an arrangement of bounded clipped curves contains a single unbounded
face.
� This work has been supported in part by the IST Programme of the EU as Shared-

cost RTD (FET Open) Project under Contract No IST-006413 (ACS - Algorithms
for Complex Shapes), by the Israel Science Foundation (grant no. 236/06), and by
the Hermann Minkowski–Minerva Center for Geometry at Tel Aviv University.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 645–656, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

646 E. Berberich et al.

Using the algorithmic principles described in this paper, we have enhanced
the arrangement package included in the latest release of Cgal (Version 3.3)
to handle unbounded planar curves as well. A more generic version of the pack-
age, which handles arrangements embedded on surfaces, is implemented as a
prototypical Cgal package.

Related Work: Effective algorithms for manipulating arrangements of curves
have been a topic of considerable interest in recent years with an emphasis on
exactness and efficiency of implementation [9]. Mehlhorn and Seel [12] propose a
general framework for extending the sweep-line algorithm to handle unbounded
curves; however, their implementation can only handle lines in the plane. Ar-
rangements on spheres are covered by Andrade and Stolfi [2], Halperin and Shel-
ton [11], and recently Cazals and Loriot [7]. Cazals and Loriot have developed
a software package that can sweep over a sphere and compute exact arrange-
ments of circles on it. Fogel and Halperin [8] exchanged the single arrangement
of arcs of great circles on the sphere with six arrangements of linear segments in
the plane that correspond to the six faces of a cube circumscribing the sphere.
Their approach requires stitching arrangements of adjacent faces. Our approach
avoids this overhead. Berberich et al. [6] construct arrangements of quadrics by
considering the planar arrangements of their projected intersection curves. Their
approach requires a postprocessing step (which, however, is not implemented),
while our approach avoids the need for a postprocessing step.

Paper Outline: In Section 2 we review the Bentley–Ottmann sweep and its im-
plementation in Cgal. We generalize the algorithm in Section 3 to a class of
parametric surfaces. After describing the theoretical framework we discuss im-
plementation details in Section 4: in particular, how to encapsulate the topology
of the surface into a so-called topology-traits class. In Section 5 we give experi-
mental results, and present future-work directions in Section 6.

2 The Bentley–Ottmann Sweep

Recall that the main idea behind the Bentley–Ottmann sweep-line algorithm [3]
(and its generalization in [14]) is to sweep over the plane containing a set of
bounded curves with a vertical line starting from x = −∞ toward x = +∞,
while maintaining the set of x-monotone curves that intersect this line. These
curves are ordered according to the y-coordinate of their intersection with the
vertical line and stored in a balanced search tree named the status structure. The
content of the status structure changes only at a finite number of events. The
event points are sorted in ascending xy-lexicographic order and stored in an event
queue. This event queue is initialized with all curve endpoints, and is updated
dynamically during the sweep process as new intersection points are discovered.
The main sweep process involves the handling of events, namely the insertion
of a new curve into the status structure, the removal of a curve that reaches its
endpoint, or maintaining the order of intersecting curves. In either case, curves
that become adjacent in the status structure are checked for intersections to the

Sweeping and Maintaining Two-Dimensional Arrangements on Surfaces 647

right of the sweep line (having lexicographically greater coordinates) and any
such intersection is inserted into the event structure. For our generalization, we
call this the main sweep procedure. It is preceded by a preprocessing step that
subdivides, if necessary, the input curves into x-monotone subcurves.

The Cgal implementation of the sweep procedure is generic and independent
of the type of curves it handles. All steps of the algorithm are controlled by
a small number of geometric primitives, such as comparing two points in xy-
lexicographic order, computing intersection points, etc. These primitives are en-
capsulated in a so-called geometry-traits class; see [15] for the full documentation
of this concept. Different geometry-traits classes are provided in the arrangement
package to handle various families of curves, such as line segments, conic arcs, etc.

The canonical output of the sweep-line algorithm consists of the order in which
events are processed along with their adjacency information (which events are con-
nected by a curve segment). The implementation in Cgal’s arrangement pack-
age elegantly decouples the “bare sweep” procedure from the construction of the
actual output using sweep-line visitors [16]. For example, we use a visitor to con-
vert the canonical output of the sweep procedure into a doubly-connected edge-list
(Dcel) representing the arrangement induced by the set of input curves.

3 Sweeping Surfaces

We generalize the sweep to surfaces such as half-planes, cylinders, spheres, tori,
etc. and surfaces homeomorphic to these. We describe our generalization in two
steps, aiming for an implementation that can handle all these surfaces with max-
imal code reuse. We capture the geometry of our surfaces through parameteri-
zation. A parameterized surface S is defined by a function fS : IP → IR3, where
IP = U × V is a rectangular two-dimensional parameter space and fS is a con-
tinuous function. We allow U = [umin, umax], U = [umin, +∞), U = (−∞, umax],
or U = (−∞, +∞), and similarly for V . Intervals that are open at finite end-
points bring no additional power and we therefore do not discuss them here. For
example, the standard planar sweep corresponds to U = V = (−∞, +∞), and
fS(u, v) = (u, v, 0). The unit sphere is parameterized via IP = [−π, π] × [−π

2 , π
2]

and fS(u, v) = (cosu cos v, sinu cos v, sin v).
A curve is defined as a function γ : D → IP with (i) D is an open, half-open, or

closed interval with endpoints 0 and 1; (ii) γ is continuous and injective, except
for closed curves where γ(0) = γ(1); (iii) if 0 �∈ D, the arc has no start point, and
emanates “from infinity”. It holds limt→0+ ‖γ(t)‖ = ∞ (we have a similar condi-
tion if 1 �∈ D) and we assume that these limits exist. A sweepable curve must, in
addition, be weakly u-monotone — that is, if t1 < t2 then γ(t1) precedes γ(t2) in
lexicographic uv-ordering. Consider for example the equator curve on the sphere
as parameterized above. This curve is given by γ(t) = (π(2t−1), 0), for t ∈ [0, 1].

We do not assume that either surfaces or curves are given through their pa-
rameterization. We use the language of parameterization in our definitions. The
algorithm can learn about curves and points only through a well-defined set of
geometric predicates provided by the geometry-traits class.

648 E. Berberich et al.

In terms of the standard sweep algorithm, it is convenient to view our sweep
as taking place in the parameter space, where we sweep a vertical line from
umin to umax. This is equivalent to sweeping a curve (the image of the vertical
line u = u0 under fS) over the input surface S. Typically, the desired output is
embedded on S (e.g., the arrangement induced on S) so one may find it more
convenient to view the sweep as taking place over S.

3.1 Bijective Parameterizations and Boundary Events

Recall that the standard Bentley–Ottmann sweep starts by a preprocessing step,
which subdivides all input curves into x-monotone subcurves, and initializes
the event queue with all their endpoints. When generalizing the algorithm for
unbounded curves, we face the problem that these curves do not have finite
endpoints. We overcome this difficulty by extending the definition of a curve-
end, so it may either be a finite endpoint, or represent an unbounded entity
in case of a curve that approaches a rim in the parameter space with one of
its ends. We say that the curve-end 〈γ, 0〉 approaches the west (east) rim if
limt→0+ γ(t) = (−∞, v0) ((+∞, v0), respectively), for some v0 ∈ IR∪{−∞, +∞},
and that it approaches the south (north) rim if limt→0+ γ(t) = (u0, ±∞) for some
u0 ∈ IR. Thus, in the processing step we associate an event with the two ends of
each u-monotone curve γ : D → IP. The first (second) event is associated with
a finite endpoint if 0 ∈ D (1 ∈ D), and with an unbounded curve-end 〈γ, 0〉
(〈γ, 1〉) if 0 �∈ D (1 �∈ D).

In the standard sweep-line procedure, the order of events in the event queue
is defined by the xy-lexicographic order of the event points. Here we augment
the comparison procedure for two events to handle those events associated with
unbounded curve-ends as well. This is done by subdividing the procedure into
separate cases, most of which can be handled in a straightforward manner. For
example, it is clear that an event approaching the “west rim” is smaller than
any event associated with a finite point. When we compare two curve-ends ap-
proaching the west rim, we consider the intersection of relevant curves with a
vertical line u = u0 for small enough u0 and return the v-order of these points
(“small enough” means that the result does not depend on the choice of u0).
Analogous rules apply to the other situations; see Figure 1(a) for an illustration
and [15] for the documentation of the full concept. Note that the rest of the
sweep process remains unchanged. In Section 4 we describe how to construct a
Dcel that represents an arrangement of unbounded curves.

3.2 Removing Non-injectivity on the Boundaries

So far we have discussed a simple plane-sweep, with fS being the identity
mapping. When considering more general surfaces, we must handle situations
where the parameterization fS is not necessarily bijective, so some points in
S may have multiple pre-images. If we consider the example of the sphere
given in the beginning of this section, then fS(−π, v) = fS(+π, v) for all v,
while fS(u, −π

2) = (0, 0, −1) and fS(u, π
2) = (0, 0, 1) for all u. The function

Sweeping and Maintaining Two-Dimensional Arrangements on Surfaces 649

h1

�2

�1
h2

p

cr
2

cr
1 c�

2

c�
1

p
c2

c1

(a) (b) (c)

Fig. 1. Comparing sweep events: (a) The order of the events is: left end of �1, left
end of �2, left end of h1, right end of h1, intersection of �1 and �2, left end of h2,
right end of h2, right end of �2, and right end of �1. (b) Comparing near the curve of
identification: c�

2 < c�
1 right of the point p and cr

2 > cr
1 to the left of p. (c) Comparing

near a contraction point: c1 < c2.

v
→ fS(−π, v) is a meridian on the sphere, analogous to the “international date
line”, and the points (0, 0, ±1) are the south and the north poles, respectively.
The “date line” is induced by the non-injectivity of fS: as a result, a closed curve
on the surface, such as the equator on the sphere, is the image of a non-closed
curve in parameter space. The poles also pose a problem: observe that they lie
on the sweep line during the entire sweep.

In order to model cylinders, tori, spheres, paraboloids, and surfaces homeo-
morphic to them, we relax the requirements for the surface parameterizations.
First, we require bijectivity only in the interior of IP and allow non-injectivity
on the boundary (denoted ∂IP). More precisely, we require that fS(u1, v1) =
fS(u2, v2) and (u1, v1) �= (u2, v2) imply (u1, v1) ∈ ∂IP and (u2, v2) ∈ ∂IP. On the
boundary, we allow injectivity in a controlled way:

• Contraction of a side of the parameter space is possible if this side is closed.
For example, if umin ∈ U and the west rim is contracted, we have ∀v ∈
V, fS(umin, v) = p0 for some fixed point p0 ∈ IR3, so the entire west rim
is mapped to the same point p0 on S. We call such a point a contraction
point. For the sphere, we have contraction at the south and north rims of
the parameter space, inducing the south and north poles, respectively.

• Identification couples opposite sides of the domain IP and requires each of
them to be closed. For instance, the west and east rims of IP are identified
if they define the same curve on S, i.e., ∀v ∈ V, fS(umin, v) = fS(umax, v).
Such a curve is called a curve of identification. In our running example of a
parameterized sphere, we identify the west and the east rim of the parameter
space, and the “international date line” is our curve of identification. A torus
is modelled by identifying the two pairs of opposite rims. A paraboloid or
cone can be modelled by identifying the vertical sides of IP and contracting
one of the horizontal sides to a point.

650 E. Berberich et al.

v6

v7

v8
f1

f2

f3

f4
f5

f6

f7

f8

v4vsw vse

f̃
vnev5vnw

v1

v2

v3

f1

f3
f6

f8

vinf

f2

f4
f5

f7

(a) (b)

Fig. 2. Possible Dcel representations of an arrangement of four lines in the plane

We simulate a sweep over S̃ = fS(IP \ ∂IP) in the interior of the parameter
space. For this, we extend the definition of a sweepable curve to be a u-monotone
curve whose interior is disjoint from the boundaries of IP. Isolated points and
curves on ∂IP can be viewed as any of its pre-images. In the preprocessing stage
we split the input curves accordingly. In the example shown in Figure 1(b), both
input curves c1 and c2 cross the line of identification, so each of them is split
into two non-closed curved having its endpoints on the two copies of the line
of identification. Note that any point lying in S̃ has a unique pre-image in IP,
and a regular event is generated for it. For curves incident to the boundaries of
IP we generate events associated with 〈γ, 0〉 or with 〈γ, 1〉 to indicate γ’s ends.
As in the unbounded case, we are able to derive the correct order of events
using the distinction between normal events that are associated with points on
S̃ and events that occur on the boundaries of the parameter space. The same
set of additional geometric predicates — namely, comparison of curve-ends on
the boundary — is required; see [5] for more details. Similar to the unbounded
case, we compare such curve ends in an ε-environment of the boundary; see the
examples depicted in Figure 1(b) and (c).

The sweep proceeds exactly as the standard Bentley–Ottmann sweep does.
Note however that if we have k sweepable curves incident to a point in S \ S̃
(namely a contraction point or a point on the curve of identification), we handle
k separate events that relate to this point. In the next section we explain how
we “tie all the loose ends” left out by the sweep procedure and construct a
well-defined Dcel that represents an arrangement of curves on S.

4 Topology-Traits Classes

As mentioned above, we use a sweep-line visitor to process the topological in-
formation gathered in the course of the sweep (the “canonical ouput”), and
construct a Dcel that represents the arrangement of the input curves. While
in the case of an arrangement of bounded planar curves the Dcel structure is
unique and well-defined (see, e.g., [16]), already for unbounded curves in the

Sweeping and Maintaining Two-Dimensional Arrangements on Surfaces 651

plane we have a choice of representations, in particular for the representation
of the unbounded faces. Figure 2(a) demonstrates one possibility, where we use
an implicit bounding rectangle embedded in the Dcel structure using fictitious
edges that are not associated with any concrete planar curve (this is the repre-
sentation used in Cgal Version 3.3 [15]). An alternative representation is shown
in Figure 2(b). It uses a single vertex at infinity, such that all edges that represent
unbounded curves are incident to this vertex. Both alternatives are legitimate
and each could be more suitable than the other in different situations.

Our implementation aims for flexibility and modularity. For example, we want
to give the user the choice between different Dcel-representations as just dis-
cussed, and we want to encapsulate the geometric and topological information
into a compact interface.

In addition to the geometry-traits class, which encapsulates the geometry of
the curves that induce the arrangement (see Section 2), we introduce the con-
cept of a topology-traits class, which encapsulates the topology of the surface
on which the arrangement is embedded. The topology-traits class determines
the underlying Dcel representation of the arrangement. In this traits class it
is specified whether identifications or contractions take place and whether the
parameter space is bounded or unbounded; see [5] for the exact details. Recall
that there may be multiple events incident to the same point on the surface
boundary. The sweep-line visitor uses the topology-traits class to determine the
Dcel feature that corresponds to a curve-end incident to the boundary, so that
all these curves will eventually coincide with a single vertex.

For example, if we sweep over the cylinder depicted in Figure 1(b), a vertex w
is created on the curve of identification when we insert c�

1 into the arrangement.
The topology-traits class keeps track of this vertex, so it will associate w as the
minimal end of c�

2 and as the maximal end of cr
1 and cr

2. Similarly, in the example
shown in Figure 1(c), the north pole will eventually be represented as a single
Dcel vertex, with c1 and c2 incident to it.

We have implemented four topology classes and the corresponding geometry
classes: bounded curves in the plane, unbounded curves in the plane, arcs of great
circles on a sphere, and intersection curves of quadrics on a quadric. The design of
the specialized spherical-topology traits-class pretty much follows the examples
we gave throughout the last two sections. We next discuss the topology-traits
class for quadric surfaces in more depth.

Example: Arrangements of Intersection Curves on a Quadric

A quadratic surface, quadric for short, is an algebraic surface defined by the zero
set of a trivariate polynomial of degree 2: Q(x, y, z) ∈ Q[x, y, z].We present an
implementation of the two-dimensional arrangement embedded on a base quadric
Q0, induced by intersections of quadrics Q1, . . . Qn with Q0. Our implementation
handles all degeneracies, and is exact as long as the underlying operations are
carried out using exact algebraic number types. We mention that some quadrics
(e.g., hyperboloids of two sheets, hyperbolic cones) comprise two connected com-
ponent. For simplicity, we consider each such component as a separate surface.

652 E. Berberich et al.

Non xy-functional quadratic surfaces can be subdivided into two xy-functional
surfaces (z = f(x, y)) by a single continuous curve (e.g., the equator subdivides
a sphere into two xy-monotone hemispheres), given by sil(Q) = gcd

(Q, ∂Q
∂z

)
.

The projection of such a curve onto the xy-plane is called a silhouette curve.
The projection of an intersection curve between two quadrics onto the xy-plane
is a planar algebraic curve of degree at most 4, which can be be subdivided
into sweepable curves by intersecting it with sil(Q0). The interior of each such
sweepable curve can then be uniquely assigned to the lower part or to the upper
part of the base quadric Q0. Further details can be found in [6].

In our current implementation we only allow ellipsoids, elliptic cylinders, and
elliptic paraboloids for the embedding surface Q0, as these types are nicely pa-
rameterizable by IP = [l, r] × [0, 2π), with l, r ∈ IR ∪ {±∞}, using fS(u, v) =
(u, y(v), r(u, y(v), − sin v)). We define y(v) = ymin + (sin v

2)(ymax − ymin), where
[ymin, ymax] denotes the y-range of the ellipse that Q0 induces on the plane x = u.
The function r(x, y, s) returns the minimal (s ≤ 0) or maximal (s > 0) value
of RQ,x,y := {z | Q(x, y, z) = 0}, |RQ,x,y| ≤ 2. For Q0, we detect open bound-
aries or contraction points in u and a curve of identification in v. Note that the
quadrics Q1, . . . , Qn intersecting the base quadric Q0 can be arbitrary.

We partition the parameter space of v into two ranges
V1 := [0, π] and V2 := (π, 2π). Given a point p(u, v) on the
base surface Q0, the level of p is � ∈ {1, 2} if v ∈ V� (see
the lightly shaded area in the figure to the right, which illus-
trates this partitioning for an arrangement on a paraboloid).
Our geometry-traits class represents a sweepable intersection
curve by its projected curve, the level of its projected curve
(that needs to be unique in the interior), and its two end-
points. A point pi = (ui, vi) is represented by its projection
(xi, yi) onto the xy-plane and its level �i. Given two points
p1 and p2, their lexicographic order in parameter space is first
given by the order of x1 = u1 and x2 = u2, and if x1 = x2 we infer the v-order
from (y1, �1), (y2, �2): if �1 < �2 then p1 < p2, else if �1 = �2, then their v-order
is identical to their y-order if �1 = 1, and opposite to the their y-order if �1 = 2.

The topology of an arrangement embedded on a base quadric Q0 requires
special handling. The initialization of the Dcel consists of the creation of a single
face, which can be bounded or unbounded depending on Q0. For the west and
east rim of IP, two boundary vertices, named vleft and vright, are used to record
incidences to either points of contraction or to open boundaries. For an ellipsoid
both represent points of contraction; for a paraboloid we have one vertex that
corresponds to a contraction point and another that represents the unbounded
side; for a cylinder, both vertices represent open (unbounded) boundaries. The
south and north rims of the parameter space are identified. The topology-traits
class maintains a sequence of vertices that lie on the curve of identification, sorted
by their u-order. This sequence enables the easy identification of different events
that correspond to the same point along this curve. We note that comparisons

Sweeping and Maintaining Two-Dimensional Arrangements on Surfaces 653

Tetrahedron Octahedron Icosahedron DP — Dioct. Pyramid

PH — Pentagonal TI — Truncated GS4 — Geodesic El16 — Ellipsoid
Hexecontahedron Icosidodecahedron Sphere (level 4) like polyhedron

Fig. 3. Gaussian maps of various polyhedra

that require geometric knowledge are forwarded to the geometry-traits class,
which in turn is implemented using the QuadriX library of Exacus [4].

5 Experimental Results

5.1 Arrangements of Great Arcs on Spheres

We demonstrate the usage of arrangements of arcs of great circles on the unit
sphere through the construction of the Gaussian map [8] of convex polyhedra,
polytopes for short. The geometry-traits class defines the point type to be a
direction in IR3, representing the place where the a vector emanating from the
origin in the relevant direction pierces the sphere. An arc of a great circle is
represented by its two endpoints, and by the plane that contains the endpoint
directions and goes through the origin. The orientation of the plane determines
which one of the two great arcs defined by the endpoints is considered. This
representation enables an exact yet efficient implementation of all geometric
operations required by the geometry-traits class using exact rational arithmetic,
as normalizing directions and planes is completely avoided.

The overlay of the Gaussian maps of two polytopes P and Q identifies all the
pairs of features of P and Q respectively that have common supporting planes, as
they occupy the same space on the unit sphere, thus, identifying all the pairwise
features that contribute to the boundary of the Minkowski sum of P and Q,
namely P ⊕ Q = {p + q | p ∈ P, q ∈ Q}.

We have created a large database of models of polytopes. The table below
lists, for a small subset of our polytope collection, the number of features in the

654 E. Berberich et al.

Tetra. ⊕ Cube DP ⊕ ODP PH ⊕ TI El16 ⊕ OEl16

Fig. 4. Gaussian maps of the Minkowski sums

arrangement of arcs of great circles embedded on a sphere that represents the
Gaussian map of each polytope. Recall that the number of vertices (V), edges
Object V E F t
Tetrahedron 4 6 4 0.01
Octahedron 6 12 6 0.01
Icosahedron 20 30 12 0.02
DP 17 32 17 0.06
PH 60 150 92 0.13
TI 62 180 120 0.33
GS4 500 750 252 0.56
El16 512 992 482 0.93

(E), and faces (F) of the Gaussian map is equal
to the number of facets, the number of edges,
and the number of vertices in the primal repre-
sentation, respectively. The table also lists the
time in seconds (t) it takes to construct the ar-
rangement once the intermediate polyhedron is
in place, on a Pentium PC clocked at 1.7 GHz.

We have also conducted a few experiments that construct the Minkowski

Object 1 Object 2 V E F t
Tetra. Cube 14 28 16 0.09
DP ODP 131 130 132 0.63
PH TI 248 293 340 2.09
El16 OEl16 2260 2290 2322 17.07

sums of pairs of various polyhedra in
our collection. This demonstrates the
successful overlay of pairs of arrange-
ments on a sphere. The table on the
right lists the number of features (V,
E, F) in the arrangement that represents the Gaussian map of the Minkowski
sum and the time in seconds (t) it takes to construct the arrangement once
the Gaussian maps of the summands are in place. The prefix O before an object
name indicates an orthogonal polyhedron. These performance results are prelim-
inary. We expect the time consumption to reduce significantly once all filtering
steps are applied.

5.2 Arrangements on Quadrics

As we mentioned before, our implementation of the
quadrics-traits classes is complete, and can handle all
kind of degeneracies in a robust manner. The figure
on the right shows the arrangement induced by 23
ellipsoids in degenerate position on a base ellipsoid.
This highly degenerate arrangement is successfully con-
structed by our software.

We also measured the performance when comput-
ing the arrangement on given base quadrics induced by
intersections with other quadrics. As base quadrics we created a random ellipsoid,
a random cylinder, and a random paraboloid. These quadrics are intersected by

Sweeping and Maintaining Two-Dimensional Arrangements on Surfaces 655

two different families of random quadrics. The first family consists of sets with up
to 200 intersecting generic quadrics, sets of the other family include up to 200 el-
lipsoids intersecting each of the base quadrics. The coefficients of all quadrics are
10-bit integers. All performance checks are executed on a 3.0 GHz Pentium IV
machine with 2 MB of cache, with the exact arithmetic number types provided
by Leda (Version 4.4.1).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 200 100 50 25
S

ec
on

ds

Number of Quadrics

Ellipsoid (q)
Cylinder (q)

Paraboloid (q)
Ellipsoid (e)
Cylinder (e)

Paraboloid (e)

Table 1 shows the number of ar-
rangement features, as well as time
consumption in seconds for selected
instances. The figure on the right il-
lustrates the average running time on
up to 5 instances containing sets of el-
lipsoids (e) and general quadrics (q) of
different sizes intersecting different base
quadrics. Growth is super linear in the
number of quadrics, as one expects.

Clearly, the more complex the ar-
rangement, the more time is required to compute it. To give a better feeling
for the relative time consumption, we indicate the time spent for each pair of
half-edges in the Dcel of the computed arrangement. This time varies in the
narrow range between 2.5 ms and 6.0 ms. Other parameters have significant ef-
fect on the running time as well, for example the bit-size of the coefficients of
the intersection curves.

Table 1. Performance measures for arrangements induced on three base quadrics by
intersections with 50 or 200 quadrics (q), or ellipsoids (e)

Base Ellipsoid Cylinder Paraboloid
Data V E F t V E F t V E F t
q50 5722 10442 4722 28.3 1714 3082 1370 12.5 5992 10934 4944 29.3
q200 79532 155176 75646 399.8 27849 54062 26214 189.9 82914 161788 78874 418.3
e50 870 1526 658 7.2 1812 3252 1442 14.4 666 1092 428 6.6
e200 10330 19742 9414 74.6 24528 47396 22870 175.8 9172 17358 8189 68.8

6 Conclusions and Future Work

We describe a general framework, together with a generic software package, for
computing and maintaining 2D arrangements of arbitrary curves embedded on
a class of parametric surfaces. We pay special attention to code reuse, which
allows the development of traits classes for handling new families of curves and
new surface topologies in a straightforward manner. Such developments benefit
from a highly efficient code base for the main arrangement-related algorithms.

Single- vs. Multi-domain Surfaces: In this work we focus on the single domain
case, namely our parameter space is represented by a single rectangle: IP = U×V ,
as described in Section 3. Our major future goal is to extend the framework
to handle general smooth surfaces, which can be conveniently represented by a
collection of domains, each of which supported by a rectangular parameter space.

656 E. Berberich et al.

The individual parameter spaces are glued together according to the topology
of the surface and therefore will naturally be described in, and handled by, an
extension of the topology-traits concept introduced in this paper.

References

1. Agarwal, P.K., Sharir, M.: Arrangements and their applications. In: Sack, J.-R.,
Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 49–119. Elsevier,
Amsterdam (2000)

2. Andrade, M.V.A., Stolfi, J.: Exact algorithms for circles on the sphere. Internat.
J. Comput. Geom. Appl. 11(3), 267–290 (2001)

3. Bentley, J.L., Ottmann, T.: Algorithms for reporting and counting geometric in-
tersections. IEEE Trans. Computers 28(9), 643–647 (1979)

4. Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Kettner, L., Mehlhorn, K.,
Reichel, J., Schmitt, S., Schömer, E., Wolpert, N.: Exacus: Efficient and exact
algorithms for curves and surfaces. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005.
LNCS, vol. 3669, pp. 155–166. Springer, Heidelberg (2005)

5. Berberich, E., Fogel, E., Halperin, D., Mehlhorn, K., Wein, R.: A general framework
for processing a set of curves defined on a continuous 2D parametric surface (2007),
http://www.cs.tau.ac.il/cgal/Projects/arr on surf.php

6. Berberich, E., Hemmer, M., Kettner, L., Schömer, E., Wolpert, N.: An exact, com-
plete and efficient implementation for computing planar maps of quadric intersec-
tion curves. In: Proc. 21st SCG, pp. 99–106 (2005)

7. Cazals, F., Loriot, S.: Computing the exact arrangement of circles on a sphere, with
applications in structural biology. Technical Report 6049, Inria Sophia-Antipolis
(2006)

8. Fogel, E., Halperin, D.: Exact and efficient construction of Minkowski sums of
convex polyhedra with applications. In: Proc. 8th ALENEX (2006)

9. Fogel, E., Halperin, D., Kettner, L., Teillaud, M., Wein, R., Wolpert, N.: Arrange-
ments. In: Boissonnat, J.-D., Teillaud, M. (eds.) Effective Computational Geometry
for Curves and Surfaces, ch. 1, pp. 1–66. Springer, Heidelberg (2006)

10. Halperin, D.: Arrangements (chapter 24). In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, 2nd edn., ch. 24, pp. 529–562.
Chapman & Hall/CRC (2004)

11. Halperin, D., Shelton, C.R.: A perturbation scheme for spherical arrangements
with application to molecular modeling. Comput. Geom. Theory Appl. 10, 273–
287 (1998)

12. Mehlhorn, K., Seel, M.: Infimaximal frames: A technique for making lines look like
segments. J. Comput. Geom. Appl. 13(3), 241–255 (2003)

13. Meyerovitch, M.: Robust, generic and efficient construction of envelopes of surfaces
in three-dimensional space. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, pp. 792–803. Springer, Heidelberg (2006)

14. Snoeyink, J., Hershberger, J.: Sweeping arrangements of curves. In: Proc. 5th SCG,
pp. 354–363 (1989)

15. Wein, R., Fogel, E., Zukerman, B., Halperin, D.: 2D arrangements. In: Cgal-
3.3 User and Reference Manual (2007), http://www.cgal.org/Manual/3.3/
doc html/cgal manual/Arrangement 2/Chapter main.html

16. Wein, R., Fogel, E., Zukerman, B., Halperin, D.: Advanced programming
techniques applied to Cgal’s arrangement package. Comput. Geom. Theory
Appl. 38(1–2), 37–63 (2007)

http://www.cs.tau.ac.il/cgal/Projects/arr_on_surf.php
http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/Arrangement_2/Chapter_main.html
http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/Arrangement_2/Chapter_main.html

Fast and Compact Oracles for

Approximate Distances in Planar Graphs

Laurent Flindt Muller1 and Martin Zachariasen2

1 Transvision, Vermundsgade 40D, DK-2100 Copenhagen, Denmark
laurent.flindt.muller@gmail.com

2 Department of Computer Science, University of Copenhagen,
Universitetsparken 1, DK-2100 Copenhagen, Denmark

martinz@diku.dk

Abstract. We present an experimental evaluation of an approximate
distance oracle recently suggested by Thorup [1] for undirected pla-
nar graphs. The oracle uses the existence of graph separators for pla-
nar graphs, discovered by Lipton and Tarjan [2], in order to divide the
graph into smaller subgraphs. For a planar graph with n nodes, the
algorithmic variant considered uses O(n(log n)3/ε) preprocessing time
and O(n(log n)2/ε) space to answer factor (1 + ε) distance queries in
O((log n)2/ε) time. By performing experiments on randomly generated
planar graphs and on planar graphs derived from real world road net-
works, we investigate some key characteristics of the oracle, such as pre-
processing time, query time, precision, and characteristics related to the
underlying data structure, including space consumption. For graphs with
one million nodes, the average query time is less than 20μs.

1 Introduction

Computation of shortest path distances in road networks has applications in
traffic simulation and logistics optimization. Often a huge number of distances
are needed, rather than actual shortest paths. A distance oracle is a data struc-
ture with an accompanying algorithm that can answer distance queries quickly
(preferably in constant time) by preprocessing the graph and storing additional
information [3]. For real world applications the preprocessing time and the space
consumption both have to be near-linear in the size of the graph.

There has recently been a significant development in the practical construction
of distance oracles that can answer (exact) distance queries quickly in arbitrary
directed graphs. One approach is to identify so-called landmarks for which the
distances to all other nodes are precomputed; these computed distances can then
be used to speed up Dijkstra’s algorithm using goal directed search [4]. Another
technique uses the notion of reach [5], which is a measure of how far away the
endpoints of any shortest path through a given node can be. Reach-based pruning
is, like the use of landmarks, a highly effective method to speed-up Dijkstra’s
algorithm [6].

Sanders and Schultes [7,8] presented a technique that exploits the hierarchy
inherent in road networks. In the preprocessing phase the method constructs

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 657–668, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

658 L.F. Muller and M. Zachariasen

a multilevel network in which exact shortest path queries subsequently can be
answered quickly. Combined with the notion of transit nodes [9,10], distance
queries in road networks with several million nodes can typically be answered in
less than 10μs.

Real world road networks are almost planar (with exceptions such as bridges
and no-left-turns). Furthermore, the edge weights are essentially symmetric,
so assuming that road networks are undirected planar graphs does not lead
to particularly large errors — at least for long range distance queries. For
undirected planar graphs, Fakcharoenphol and Rao [11] gave a distance ora-
cle with O(n log3 n) preprocessing time that answers (exact) distance queries in
O(

√
n log2 n) time, and it appears to be hard to improve this query time bound

significantly using label-based methods [12].
If we settle for an approximate distance oracle that can answer distance queries

within a factor (1 + ε) of the true distance (for any ε > 0), much better results
exist for undirected planar graphs. Klein [13] and Thorup [1] have indepen-
dently suggested O(n(log n)/ε)-space approximate distance oracles answering
factor (1 + ε) distance queries in O(1/ε) time. Both methods use the existence
of graph separators for planar graphs, proved by Lipton and Tarjan [2], in order
to divide the graph into smaller subgraphs. Then, for each node in the graph,
the distances to a subset of the separator nodes are computed in a preprocessing
step; these distances make it possible to answer approximate distance queries
very quickly for any pair of nodes. The oracle given by Klein [13] has appar-
ently been implemented as part of a commercial product, but to the best of our
knowledge no publicly available experimental results are known.

The purpose of our paper is to perform an experimental study of a (simple)
variant of the Thorup-oracle. In a sense we attempt to close part of the gap
between theory and practice in distance oracles: The worst-case bounds for the
highly effective practical algorithms [9,10] virtually give no insight into the prac-
tical behavior of the algorithms, and on the other hand, no experimental results
are available for the theoretically superior algorithms of Thorup and Klein.

For a planar graph with n nodes, the algorithmic variant considered in our pa-
per uses O(n(log n)3/ε) preprocessing time and O(n(log n)2/ε) space to answer
factor (1 + ε) distance queries in O((log n)2/ε) time. We have performed experi-
ments on randomly generated planar graphs and on planar graphs derived from
real world road networks. Key characteristics of the oracle, such as preprocessing
time, query time, precision, and characteristics related to the underlying data
structure, including space consumption, are studied. For graphs with one million
nodes, the average query time is less than 20μs. Although our query times are
similar to the query times of the best practical algorithms, this comes at the
cost of non-exact distances, and higher preprocessing and space consumption.

The paper is organized as follows. In Section 2 we present the approximate
distance oracle of Thorup and discuss some important algorithmic and imple-
mentation details. In Section 3 we discuss our experimental setup, including the
selection of test instances. Our experimental results are presented and discussed
in Section 4, and concluding remarks are given in Section 5.

Fast and Compact Oracles for Approximate Distances in Planar Graphs 659

2 Approximate Distance Oracle

We now give an overview of the theoretical foundations of the oracle. We start by
introducing the notion of a graph separator and describe how such a separator
can be used to answer distance queries. Then we go on to describe ε-covers and
finally describe the oracle itself. Basic graph terminology is used [2,14]; recall
that a graph is called planar if its edges and nodes can be embedded in the plane
such that no two edges cross or overlap.

2.1 Graph Separators

A set of nodes C in a graph G is called a graph separator if the removal of C
from G results in G being split into components, the size of each being at most
some constant fraction of the size of G (where the size refers to the number of
nodes in the graph). To be of interest C must be “small”.

Lipton and Tarjan [2] proved that it is possible to construct a graph separator
for any planar graph in linear time. The construction essentially consists of
finding a (rooted) shortest path tree of the graph and then selecting two root
paths which separate the graph into components of size no greater than 2/3
the original size. Thorup [1] showed that this construction can be extended to
selecting three root paths, where each component has size no greater than 1/2
the original size. We call such root paths separator paths.

Assume that we have two nodes u and v lying in two different components,
resulting from the removal of a separator path Q. The observation is that any
(shortest) path between u and v must cross a node in Q. Assume that we at
some previous stage had computed distances from u and v to each node in Q.
Now finding the distance between u and v is a simple task of running through
the nodes of Q finding the minimum combined distance (see figure 1). This is
in essence the idea behind the oracle. For each node u, we construct a set S(u)
consisting of separator paths, such that given any other node v the intersection
S(u) ∩ S(v) consists of separator paths which, if removed from G, separate u
from v. Thus a shortest path from u to v must cross a node in one of these
paths. For each node u the distances to nodes in the separator paths in S(u) are
precomputed. Computing the distance between u and v then consists of finding
the intersection S(u) ∩ S(v), then finding the minimum distance across each
separator path in this intersection and finally returning the overall minimum
distance.

2.2 ε-Covers

The most expensive part of the algorithm sketched above is precomputing dis-
tances from each node to nodes in the separator paths. In order to reduce this
number of nodes, Thorup introduces the notion of ε-covers.

Let G = (V, E) be a planar graph and let Q be a shortest path in G. A
connection from v ∈ V to Q is a pair in {v} × V (Q). The length l(v, a) of
a connection (v, a) is equal to the distance δ(v, a) between v and a in G. We

660 L.F. Muller and M. Zachariasen

3

7

5

2

2

2
4

5 2

2

3

1
2

2
3

9
5

4

2 1

8

3

4
3

1
3

5
3

2

3

4

7

5
v

u

Q

2

8
8

10

10

11

17
14

10

5

7

7

13

Fig. 1. Shows how a separator path can be used to compute the distance between two
nodes u and v. The large nodes are the separator nodes and the topmost number is
the distance from u, while the bottommost number is the distance from v. The min
distance between u and v in the example is 15.

13

15

20u

v

7

10

9
Q

a

x

v
l (v,a)

(v,x)

(a,x)

δ
δ

Q

Fig. 2. Connections within the ε-covers C(Q, u) and C(Q, v) (left). Illustration of a
connection (v, a) that ε-covers another connection (v, x) (right).

denote a set of connections from v to Q by C(Q, v) (see figure 2, left). When
computing distances across Q, only these connections are allowed to be used.

Let ε > 0. We say that a set C(Q, v) of connections from v to Q ε-covers Q,
if there for any node x ∈ V (Q) is a connection (v, a) ∈ C(Q, v) such that (see
figure 2, right): l(v, a) + δ(a, x) ≤ ε · l(v, a) + δ(v, x).

Thorup showed that for any node v and shortest path Q, there exists an
ε-cover of size O(1

ε) [1]. It is further shown that given two nodes u and v, and
some separator path Q, the (minimum) distance between u and v across Q can
be approximated within a factor (1 + ε) by using only the connections from
C(Q, u) and C(Q, v).

2.3 Oracle

The preprocessing stage of the oracle proceeds as follows: Given a connected,
undirected planar graph G, find up to three separator paths, Q1, Q2, Q3, sepa-
rating G into components of at most half the size. For each node v in G, construct
the ε-cover C(Qi, v), i = 1, 2, 3. Proceed recursively on each of the components
resulting from removing Q1, Q2, Q3 from the graph. When the preprocessing ter-
minates, we have for each node constructed a set of ε-covers, which can be used
to answer distance queries. For each connection (u, a) in these ε-covers we store
the distance from u to a and the distance from the first node in the separator
path to a.

Fast and Compact Oracles for Approximate Distances in Planar Graphs 661

Consider two nodes u and v. At some point of the recursion these nodes get
separated. When this happens, all ε-covers for u and v constructed so far have
been coverings of the same set of separator paths: If C(Qi1 , u), . . . , C(Qik

, u) and
C(Qj1 , v), . . . , C(Qjl

, v) are the ε-covers constructed, then k = l and Qim = Qjm

for m = 1, . . . , k. These are exactly the ε-covers which have to be checked in order
to determine the distance between u and v. We call this number of ε-covers the
separation index of u and v.

When the preprocessing is done, query-answering proceeds as follows: Given
two nodes u and v, find the separation index k. For i = 1, . . . , k find the minimum
distance across Qi using the pair C(Qi, u), C(Qi, v). Return the overall minimum
distance found.

There are a number of implementation details which affect the overall time-
complexity. When building ε-covers, any algorithm for finding shortest paths in
(planar) graphs can be used. One should bear in mind that this algorithm will
be called often and the hidden constants should be small. We employ Dijkstra’s
algorithm [14], since this is a simple and fast algorithm. On planar graphs it has
a time-complexity of O(n log n), where n is the number of nodes, and this results
in a time-complexity of O(n(log n)3/ε) for the preprocessing stage.

Another detail is how to find the separation index when answering distance
queries; in order to find this index, each recursion is given a strictly increasing
number. Each node maintains a list of recursion numbers representing the re-
cursions in which it has participated. With each recursion number is stored the
total number of separator paths generated in that recursion, plus all previous
recursions in which the node has participated. In order to find the separation
index of two nodes u and v one needs to find the last common recursion number.
This marks the point where u and v got separated. We call this number the sep-
aration number (when we have found the separation number, we also have the
separation index). Given two lists of recursion numbers we use binary search to
find the separation number. Since there are at most O(log n) separation numbers
for each node, this search has time-complexity O(log log n).

A final detail is the size of the ε-covers. The construction to produce ε-covers
of constant size is a two step process. First covers of size O(log |V (Q)|/ε) are
constructed, where Q is a separator path. Then the size of these covers is reduced
to O(1/ε). This last step is not performed in our implementation. The reason
is, as we shall see later, that the covers produced by the first step alone are
already small (around 11 connections in each cover for ε = 0.01 and one million
nodes). Moreover, in order to achieve ε-covers of size O(1/ε), one needs to run
the oracle with ε′ = ε/2, which increases the running time and the size of the
ε-covers produced in the first step (and hence also the second step). We expect
that for the sizes of graphs considered, the constant in front of 1/ε does not differ
enough from the value log |V (Q)| to justify the extra running time. This results
in a O((log n)2/ε) time-complexity for answering queries (O(log n) ε-covers must
be checked and each ε-cover contains O(log n/ε) connections).

662 L.F. Muller and M. Zachariasen

3 Experimental Setup

To examine the performance of the oracle, we have looked at two classes of
graphs: (i) Graphs derived from real world road networks of the United States
(made publicly available for the 9th Dimacs Implementation Challenge [15]).
The graphs considered are planar and connected, and have the sizes: 321, 270
(BAY), 435, 666 (COL) and 1,070,376 (FLA). (We were unable to perform ex-
periments on larger graphs due to memory constraints.) In the following, we call
this class of graphs real-world instances. (ii) Randomly generated connected pla-
nar graphs generated using the random planar graph() function in LEDA [16].
Edge lengths corresponds to Euclidean distances, with a random variance of up
to 10%. We expect this choice of edge lengths more closely reflects real world
road graphs, as compared to random or exact Euclidean lengths. In the following,
we call this class of graphs near-Euclidean instances.

When presenting query-times and precision, results have been divided into
four groups. Each group corresponds to queries where the distance falls within
a certain percentage range of the graph diameter, corresponding to 0%-25%,
25%-50%, 50%-75% and 75%-100% of the diameter. The size of each group of
queries is capped at 1000 and filled up as follows: First the oracle is run with
ε = 0.05. Then random queries are generated and answered using this oracle. If
the distance returned falls within the range of an unfilled group, then the exact
distance is found using Dijkstra’s algorithm. The process stops when all groups
are filled or when 200.000 queries have been made.

The tests have been run on a machine running Gentoo Base System version
1.12.6. The compiler used is GCC 3.4.6 with optimization flag -O. The machine
has 2 GB of main memory and two Intel Pentium 4 CPU 3GHz processors.

4 Results and Discussion

In the following we present our results for the two classes of graphs. For each
instance the preprocessing stage has been run a number of times (around 5) and
the average taken. For each run ε has been set to 0.10, 0.05 and 0.01. We also
examine the effect of setting ε = 0, but due to memory constraints results are
in this case only presented for the near-Euclidean graphs.

In order to keep memory-consumption low, ε-covers are regularly flushed to
disk and in order to keep disc-usage low, the outputted files are compressed. The
measured time includes these overheads.

In order to examine the query stage, the range groups described above are
used. Again, the queries have been run repeatedly and the average taken.

4.1 Real-World Graphs

Figure 3 (left) shows the total CPU-time spent in the preprocessing stage when
ε is varied. For the FLA instance, the preprocessing time varies from around
4000s for ε = 0.10 to around 9000s for ε = 0.01. The bulk of this time (around
90%) is spent constructing ε-covers.

Fast and Compact Oracles for Approximate Distances in Planar Graphs 663

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 300 400 500 600 700 800 900 1000 1100

T
im

e
(s

ec
s)

Vertices (x1000)

Total times

epsilon = 0.01 epsilon = 0.05 epsilon = 0.10

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9 10

N
on

-e
xa

ct
 r

es
ul

ts
 (

%
)

Percentage by which exact distance is exceeded

Distribution of the returned distances for epsilon 0.10

0%-25% 25%-50% 50%-75% 75%-100%

Fig. 3. Total time spent in the preprocessing stage (left) and distribution of distances
returned for the FLA instance (ε = 0.10), for the four ranges (right) for real-world
graphs. (Note that there are only three data points for each ε-value, and that the
points are connected only in order to improve readability).

Figure 4 shows the query-times for the first and the last range group (the
results for the remaining two look very similar). The value of ε has a considerable
effect. Query-times are below 7μs for ε = 0.10, and increase to 20μs for ε = 0.01.
Generally finding shorter distances takes longer time. One explanation for this is
that nodes that lie far apart get separated earlier, and thus fewer ε-covers need
to be checked in order to answer a query.

 4

 6

 8

 10

 12

 14

 16

 18

 300 400 500 600 700 800 900 1000 1100

T
im

e
(m

ic
ro

se
co

nd
s)

Vertices (x1000)

Average querytimes (0%-25% of diameter)

epsilon = 0.01 epsilon = 0.05 epsilon = 0.10

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 300 400 500 600 700 800 900 1000 1100

T
im

e
(m

ic
ro

se
co

nd
s)

Vertices (x1000)

Average querytimes (75%-100% of diameter)

epsilon = 0.01 epsilon = 0.05 epsilon = 0.10

Fig. 4. Average query-times for distances lying in the interval 0%-25% (left) and 75%-
100% (right) of the diameter (real-world)

We now investigate the precision of the oracle, by examining the results for
the FLA instance with ε = 0.10. Figure 3 (right) shows the results for the four
range groups. The numbers indicate how many percent of the 1000 distances
were approximated within 1%, 2%, 3% etc, of the true distance. Only non-exact
distance are displayed. As can be seen, the further the nodes lie from each other,
the more accurate the distances returned are. Those distances that are not exact
tend to be very close to the exact distance. The average error is less than 1%,
so even with ε = 0.10 one obtains very good approximations.

664 L.F. Muller and M. Zachariasen

We now look at some of the characteristics of the oracle. Figure 5 (left) shows
the average number of connections in each ε-cover when ε is varied. These ε-covers
are on average surprisingly small. For the FLA instance with ε = 0.01, there are
11 connections per ε-cover and for ε = 0.10, there are 5. We remind the reader
that the bound on the size of these covers is O(log V (Q)/ε), where Q is the
separator path. As mentioned earlier, since the ε-covers are already so small, we
do not expect that using an algorithm with a better bound on the size will have
any dramatic effect on the query-time.

 4

 5

 6

 7

 8

 9

 10

 11

 300 400 500 600 700 800 900 1000 1100

C
on

ne
ct

io
ns

Vertices (x1000)

Number of connections per epsilon cover

epsilon = 0.01 epsilon = 0.05 epsilon = 0.10

 18.5

 19

 19.5

 20

 20.5

 21

 300 400 500 600 700 800 900 1000 1100

E
ps

ilo
n

co
ve

rs

Vertices (x1000)

Number of epsilon covers per vertex

Fig. 5. Average number of ε-covers for each node (left) and average number of connec-
tions in each ε-cover (right) for real-world graphs

Figure 5 (right) shows the average number of ε-covers for each node (this
number is independent of ε). This number lies between 18 and 21, so on average
around 200 connections have to be examined in order to answer a query for
ε = 0.01.

The total number of connections constructed during preprocessing gives an
indication of the memory consumption of the oracle. In the current implemen-
tation, one connection consists of two floats, which is 8 bytes in total. The total
number of connections for the FLA instance with ε = 0.01 is around 250 million,
which results in a memory consumption of about 2GB. The number of connec-
tions is strongly affected by ε. When ε is increased to 0.10 for the same instance,
the number of connections drops to just under 100 million.

4.2 Near-Euclidean Graphs

In this section we look at the class of near-Euclidean graphs. There are some
notable differences compared to the previous section. Figure 6 (left) shows the
CPU-time spent in the preprocessing stage when ε is varied. The preprocessing
time is within the same order of magnitude as for the real-world instances, but
varying ε has less effect.

In order to examine the query-times, we proceed as for the real world graphs.
In figure 7 the results for the first and the last range group are shown (the
remaining two look very similar) On this class of graphs query-times are lower

Fast and Compact Oracles for Approximate Distances in Planar Graphs 665

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
s)

Vertices (x1000)

Total times

epsilon = 0.00
epsilon = 0.01

epsilon = 0.05
epsilon = 0.10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10

N
on

-e
xa

ct
 r

es
ul

ts
 (

%
)

Percentage by which exact distance is exceeded

Distribution of the returned distances for epsilon 0.10

0%-25% 25%-50% 50%-75% 75%-100%

Fig. 6. Total time spent in the preprocessing stage (left) and distribution of distances
returned for the instance with 1 million nodes (ε = 0.10), for the four ranges (right)
(near-Euclidean graphs)

 1

 2

 3

 4

 5

 6

 7

 8

 200 300 400 500 600 700 800 900 1000

T
im

e
(m

ic
ro

se
co

nd
s)

Vertices (x1000)

Average querytimes (0%-25% of diameter)

epsilon = 0.00
epsilon = 0.01

epsilon = 0.05
epsilon = 0.10

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 200 300 400 500 600 700 800 900 1000

T
im

e
(m

ic
ro

se
co

nd
s)

Vertices (x1000)

Average querytimes (75%-100% of diameter)

epsilon = 0.00
epsilon = 0.01

epsilon = 0.05
epsilon = 0.10

Fig. 7. The average query-times for distances lying in the interval 0%-25% (left) and
75%-100% (right) of the diameter (near-Euclidean graphs)

and range from around 2μs for ε = 0.10 to around 3μs for ε = 0.01 and increase
to about 7μs for ε = 0. The reason for the lower query-times will become clear
later. On these instances, there is no noticeable difference w.r.t. range groups.

As for the real-world instances, we examine the precision of the oracle. Figure 6
(right) shows the results for the largest instance and for ε = 0.10. The distances
are even closer to the exact distance than for the real-world instances. In fact
all distances in the three last groups lies within 0.5% of the exact distance.

Figure 8 (left) shows the average number of connections in each ε-cover when
ε is varied. These are only about half the size of the covers produced for the
real-world instances. Varying ε only has a minor effect on the size, which for the
largest instance ranges from 3 for ε = 0.10 to 6.5 for ε = 0.

Figure 8 (right) shows the average number of ε-covers for each node. This
number (between 17 and 23) is about the same as for the previous class. Together
with the smaller ε-covers, this explains why we on this class see faster query-
times than before. We believe that the ε-covers are smaller because the edge
lengths are closer to fulfilling the triangle-inequality, and therefore it is easier
for a connection to cover another.

666 L.F. Muller and M. Zachariasen

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 200 300 400 500 600 700 800 900 1000

C
on

ne
ct

io
ns

Vertices (x1000)

Number of connections per epsilon cover

epsilon = 0.00
epsilon = 0.01

epsilon = 0.05
epsilon = 0.10

 17

 17.5

 18

 18.5

 19

 19.5

 20

 20.5

 21

 21.5

 22

 22.5

 200 300 400 500 600 700 800 900 1000

E
ps

ilo
n

co
ve

rs

Vertices (x1000)

Number of epsilon covers per vertex

Fig. 8. Average number of connections in each ε-cover (left). Average number of ε-
covers for each node for near-Euclidean graphs (right).

The total number of connections constructed is about half as large as for the
real-world instances. This is as expected, since the ε-covers are about half the
size. The number is still affected by ε and for the largest instance it ranges from
around 60 million connections for ε = 0.10 to around 110 million connections for
ε = 0.01 and 140 million for ε = 0.

4.3 Comparison to an Alternative Oracle

We make a brief comparison to an alternative algorithmic variation of the
Thorup-oracle. In the variant examined this far, the number of separator paths to
check when answering a query is O(log n). Thorup [1] describes another variant,
where this number is O(1).

In this variant, alternating between two types of recursions, one can ensure
that at most 12 separator paths needs to checked when answering a query, i.e.,
|S(u) ∩ S(v)| ≤ 12 for all u, v.

There are, however, certain drawbacks. The alternation between two types
of recursions results in a doubling of the total number of connections having to
be made, thus one should also expect a doubling of the space consumption and
an increase of the total running time. Considering that memory consumption
already is a major issue, this doubling is unfortunate.

Despite this we have made an implementation of this variant, hoping that it
would result in a significant improvement of the query-time. Regrettably, this is
not the case, as the query-times observed are within the same order of magnitude
as the previous variant, while the preprocessing-time and memory consumption
grew as expected. For the FLA instance (ε = 0.05) the preprocessing time grew
from 5000s to 16000s, while the total number of connections grew from 150
million to 275 million.

A closer inspection of the number of ε-covers for each node gives a good
insight as to the reason for not seeing any improvement in query-times. Looking
at figure 5 (left) the average number of ε-covers for each node lies around 21
for the FLA instance. Thus on average 21 ε-covers need to be checked. It is this

Fast and Compact Oracles for Approximate Distances in Planar Graphs 667

number which is reduced to at most 12. The constructed ε-covers are of the same
sizes, so one should not expect any significant gain for the query-times.

For the real-world instances considered (and near-Euclidean) the number of
ε-covers for each node rises rather slowly with graph size (from around 18 for
BAY to around 21 for FLA). So the reduction to size 12 would only begin to be
noticeable for very large graphs.

For the graph sizes considered, we do not find that the rather limited improve-
ment in query-time warrants the extra running time and space consumption.

5 Conclusion

In this paper we presented an experimental evaluation of an oracle recently sug-
gested by Thorup [1]. For the examined class of real-world road network graphs,
the observed query-times were less than 20μs (ε = 0.01). The preprocessing
time associated with the largest instance (one million nodes) was around 9000s
and the memory needed to hold the generated connections was about 2GB for
ε = 0.01.

For the examined class of randomly generated near-Euclidean graphs, even
faster query-times below 3μs were observed (still with ε = 0.01). For the largest
instance (with one million nodes) the preprocessing time was faster, around
7000s, and memory consumption was about 1GB for ε = 0.01. For this class
of graphs, we also examined the effect of setting ε = 0 (exact distance). This
did not worsen the preprocessing time (around 8000s), query-time (below 6.5μs)
and memory consumption (around 1.2GB for all connections) as much as could
have been feared, which is interesting.

When examining the precision of the returned distances, we observed that
these tend to lie very close to the exact distances, even for ε = 0.10. This
suggests that in practice one could set ε to a relatively large number and still
get good approximations.

The strongest merit of this oracle is its fast query-times and guaranteed
bounds. This though, comes at the expense of approximate (but near-optimal)
distances, and a preprocessing time and memory consumption, which is rather
large. Other recent approaches, such as transit node based algorithms [9,10]
achieve similar results on road networks, but without sacrificing exactness. When
compared to these approaches, the results for the oracle considered do not appear
to be competitive.

Whether the preprocessing time and memory consumption may be improved
is not yet clear. One way to reduce the former would be to experiment with
other shortest path algorithms when constructing ε-covers. An improvement here
would lead to a reduction in preprocessing time. In order to reduce the latter,
one has to reduce the total number of connections needed (or reduce the space
needed for each connection). Both Thorup [1] and Klein [13] show that it is
possible to construct ε-covers of constant size. Further examination of the effect
of this on the total number of connections is needed, but as argued in section 2.3
we do not expect the effect to be dramatic.

668 L.F. Muller and M. Zachariasen

References

1. Thorup, M.: Compact Oracles for Reachability and Approximate Distances in Pla-
nar Digraphs. Journal of the ACM 51, 993–1024 (2004)

2. Lipton, R.J., Tarjan, R.E.: A Separator Theorem for Planar Graphs. SIAM Journal
on Applied Mathematics 36, 177–189 (1979)

3. Thorup, M., Zwick, U.: Approximate Distance Oracles. Journal of the ACM 52,
1–24 (2005)

4. Goldberg, A.V., Harrelson, C.: Computing the Shortest Path: A∗ Meets Graph
Theory. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 156–165. ACM Press, New York (2005)

5. Gutman, R.: Reach-Based Routing: A New Approach to Shortest Path Algorithms
Optimized for Road Networks. In: Proceedings 6th Workshop on Algorithm Engi-
neering and Experiments (ALENEX), pp. 100–111 (2004)

6. Goldberg, A.V., Kaplan, H., Werneck, R.: Reach for A∗: Efficient Point-to-Point
Shortest Path Algorithms. In: Workshop on Algorithm Engineering and Experi-
ments (2006)

7. Sanders, P., Schultes, D.: Highway Hierachies Hasten Exact Shortest Path Queries.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579.
Springer, Heidelberg (2005)

8. Sanders, P., Schultes, D.: Engineering Highway Hierachies. In: Azar, Y., Erlebach,
T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)

9. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast Routing in Road Networks with
Transit Nodes. Science 316, 566 (2007)

10. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Con-
stant Time Shortest-Path Queries in Road Networks. In: Proc. 9th Workshop on
Algorithm Engineering and Experimentation (ALENEX) (2007)

11. Fakcharoenphol, J., Rao, S.: Planar Graphs, Negative Weight Edges, Shortest
Paths, and Near Linear Time. In: Proceedings of 42nd IEEE Symposium on Foun-
dations of Computer Science, pp. 232–241. IEEE Computer Society Press, Los
Alamitos (2001)

12. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance Labeling in Graphs. Journal
of Algorithms 53, 85–112 (2004)

13. Klein, P.: Preprocessing an Undirected Planar Network to Enable Fast Approxi-
mate Distance Queries. In: Proceedings of the thirteenth annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 820–827. ACM Press, New York (2002)

14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2001)

15. Demetrescu, C., Goldberg, A.V., Johnson, D.: 9th DIMACS Implementation Chal-
lenge (2006), http://www.dis.uniroma1.it/∼challenge9/

16. GMBH, A.S.S.: LEDA 5.2 (2007), http://www.algorithmic-solutions.com/

http://www.dis.uniroma1.it/~challenge9/
http://www.algorithmic-solutions.com/

Exact Minkowksi Sums of Polyhedra and

Exact and Efficient Decomposition of Polyhedra
in Convex Pieces

Peter Hachenberger�

Department of Computing Science,
TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

phachenb@win.tue.nl

Abstract. We present the first exact and robust implementation of the
3D Minkowski sum of two non-convex polyhedra. Our implementation
decomposes the two polyhedra into convex pieces, performs pairwise
Minkowski sums on the convex pieces, and constructs their union. We
achieve exactness and the handling of all degeneracies by building upon
3D Nef polyhedra as provided by Cgal. The implementation also sup-
ports open and closed polyhedra. This allows the handling of degenerate
scenarios like the tight passage problem in robot motion planning.

The bottleneck of our approach is the union step. We address effi-
ciency by optimizing this step by two means: we implement an efficient
decomposition that yields a small amount of convex pieces, and develop,
test and optimize multiple strategies for uniting the partial sums by con-
secutive binary union operations.

The decomposition that we implemented as part of the Minkowski sum
is interesting in its own right. It is the first robust implementation of a
decomposition of polyhedra into convex pieces that yields at most O(r2)
pieces, where r is the number of edges whose adjacent facets comprise
an angle of more than 180 degrees with respect to the interior of the
polyhedron.

1 Introduction

The Minkowski sum of two point sets P and Q in R
d, denoted by P ⊕Q, is defined

as the set {p + q : p ∈ S1, q ∈ S2}. Minkowski sums are used in a wide range
of applications such as robot motion planning [15], computer-aided design and
manufacturing [8], penetration depth computation [14], offset computation [17],
morphing [13], and mathematical morphological operations [18].

In several applications (e.g. in GIS or imaging) one deals with Minkowski
sums of two-dimensional objects, and several implementations exist. When the
two objects are non-convex polygons, two approaches are commonly used. The
first approach computes the convolution of the boundary of two polygons [10].

� This work was partially supported by the Netherlands’ Organisation for Scientific
Research (NWO) under project no. 639.023.301.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 669–680, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

670 P. Hachenberger

The other approach decomposes both polygons into convex pieces, computes
the pairwise Minkowski sums of the pieces, and unites the pairwise sums. Both
approaches have also been studied and implemented in combination with exact
geometric computation [1,20]. The Library for Efficient Data Types and Algo-
rithms (Leda)1 offers an exact implementation based upon the first method.
The Computational Geometry Algorithm Library (Cgal))2 offers exact imple-
mentations of both methods.

There are also many applications, however, that require the computation of
the Minkowski sums of three-dimensional objects. Examples can be found in
CAD/CAM, assembly planning, and motion planning. Implementations of the
3D Minkowski sum exist, but they are neither exact nor robust. The most ef-
ficient such implementation is probably by Varadhan and Manocha [19]. It is
based upon the convex decomposition approach as described above for the two-
dimensional case. They guarantee the correct topology of the result, but are
limited to manifold boundaries. Although many input objects are commonly
two-manifolds, this limitation seems to be a major robustness issue, because the
primitives of the union step, i.e., the Minkowski sum of two convex pieces, are
not allowed to touch tangentially. Thus, at the moment there is no implementa-
tion available that is robust (that is, can deal with all possible degenerate cases),
nor is there an implementation that is exact. This is the goal of our work: to
provide a solution for the computation of Minkowski sums of 3D polyhedra that
can handle all degenerate cases and is exact.

We present the first exact implementation of the Minkowski sum of two non-
convex polyhedra. Our implementation is based on the convex decomposition
approach. For the union step we use 3D Nef polyhedra [11] as provided by Cgal,
which provide exact and efficient Boolean operations and handle all degenera-
cies. Our solution handles regularized solids with open or closed boundary. As a
consequence, it can also be applied to degenerate scenarios like the tight passage
problem in robot motion planning.

In addition to exactness, we also emphasize efficiency. We mostly concentrate
on optimizing the time needed by the union of the pairwise Minkowski sums of
convex pieces, which is the bottleneck of the used approach. For reducing the
runtime of the union it is essential to have a decomposition that yields a low
number of convex pieces. The decomposition into a minimum number of convex
pieces is known to be NP-hard [16]. More than 20 years ago Chazelle proposed a
decomposition method, which generates O(r2) convex pieces in O(nr3) time and
O(nr2) space, where n is the complexity of the polyhedron and r is the num-
ber of reflex edges—edges, whose adjacent facets form an angle larger than 180
degrees with respect to the interior of the polyhedron. However, no robust im-
plementation of this algorithm is known. Most of the practical methods perform
surface decomposition or tetrahedral volumetric decomposition [5,7,12]. These
methods generate O(n) convex pieces of constant complexity.

1 <http://www.algorithmic-solutions.com>
2 <http://www.cgal.org>

Exact Minkowksi Sums of Polyhedra and Exact and Efficient Decomposition 671

As part of our Minkowski sum, we present the first robust implementation
of a decomposition of a non-convex 3D polyhedron into O(r2) convex pieces.
We use Chazelle’s main idea of inserting facets that resolve reflex edges. On the
other hand, we construct the facets by a completely different method. Apart
from the technical differences, we keep the actual amount of convex pieces low
by scheduling the construction of the facets in an opportune way.

To optimize the union step itself, we develop different union strategies. The
union of multiple polyhedra is done by consecutive binary union operations.
Here, the order of these unions is essential for the runtime. Our union strategies
use different heuristics to minimize the complexity of the intermediate results
and to reduce the total amount of memory usage. We compare the efficiency of
the heuristics experimentally.

The paper is organized as follows. In Section 2 we discuss how to efficiently
decompose a non-convex polyhedron into convex pieces. The Minkowski sum
of convex 3D polyhedra is discussed in Section 3. Section 4 compares multiple
union strategies and refines the most promising. Also, we perform one larger
experiments to get an idea of the performance. In Section 5, we briefly discuss
the handling of tight passage problems. Finally, a conclusion is given in Section 6.

2 Decomposing a Polyhedron into Convex Pieces

The problem of partitioning a polyhedron into convex pieces is more complex
than its two-dimensional counterpart. In general it is not possible to decompose
a polyhedron into simplices, i.e., into tetrahedra, without introducing Steiner
points [16]. The decomposition of a polyhedron into a minimum number of con-
vex pieces is known to be NP-hard [16].

A basic decomposition method was introduced and analyzed by Chazelle [4].
The idea is to remove each reflex edge, i.e., each edge whose adjacent facets have
an angle larger than 180 degree with respect to the interior of the polyhedron,
by inserting an additional facet that cuts the angle into two parts smaller than
180 degrees. Chazelle showed that a polyhedron with input complexity n and r
reflex edges, can be decomposed into O(r2) convex pieces in O(nr3) time and
O(nr2) space. He also provided an example for which the bound of O(r2) convex
sub-polyhedra is tight.

We follow the common decomposition approach of inserting only vertical
facets usually denoted as walls. A wall W (e) of some non-vertical edge e is a
connected subset of the vertical plane pe that supports e. Walls were first defined
by Aronov and Sharir [2]. Because their definition was given for a decomposition
of the three-dimensional space with respect to a set of triangles we adapt their
definition to our problem as follows: Let A(pe) be the planar arrangement of
the intersection of the polyhedron (including previously erected walls) with the
vertical plane pe through e. Then, the wall of W (e) consists of all faces of A(pe)
that are incident to e and inside the polyhedron. The left graphic of Figure 1
illustrates the planar arrangement A(pe) and the wall W (e).

672 P. Hachenberger

e

A(pe)

FW(e)

e

SW(e)

Fig. 1. Left : The flood wall FW (e) consists of all facets adjacent to e in the planar
arrangement A(pe) of the intersection of the polyhedron and the vertical plane pe

through e. The arrangement A(pe) may also contain previously inserted walls (dashed
lines). Right : A sight wall SW (e) covers all points that can be connected to e by a
vertical edge without intersections.

Later de Berg, Guibas, and Halperin defined a vertical wall as the set of all
points that can be connected to e via a vertical segment that does not intersect
a face, edge, or vertex [6]. Adapting their definition to our setting, we consider
points that can be connected to e via a vertical segment that completely lies
within the polyhedron. The right graphic of Figure 1 illustrates the definition.
To distinguish the two wall types, we further-on refer to the walls as defined
in [2] as flood walls and to the walls as defined in [6] as sight walls.

The convex decomposition by vertical walls, also denoted as vertical decom-
position, works in two steps. In the first step, vertical walls are erected for all
non-vertical reflex edges. As a consequence, the decomposed volume becomes
subdivided into cylindrical cells. In the second step, walls parallel to the yz-
plane resolve the vertical reflex edges. Figure 2 illustrates the two steps of the
vertical decomposition. Our decomposition deviates from the common approach
to reduce the number of sub-polyhedra.

Using sight walls in the first phase often yields fewer, and never yields more
pieces than using flood walls. This becomes clear if we consider the construction of
two flood walls of reflex edges e and e′. Let us assume that FW (e), if built first, seals
a pocket in the boundary of the polyhedron. But if another flood wall FW (e′) is
built before, it may intersect e and therefore split the pocket into two halves. Both
halves of the pocket will later be sealed separately by the walls constructed for the
two halves of e. Thus, depending on the building order of the flood walls, such a
pocket can be decomposed into multiple pieces, although fewer pieces (or even one
piece) are sufficient. Using sight walls instead, no SW (e′) splits the pocket into two
halves; vertical segments cannot intersect such a pocket.

Because the reflex edges in the second phase are vertical, the definition of
sight walls cannot be applied to these edges. Also, there is no unique vertical

Exact Minkowksi Sums of Polyhedra and Exact and Efficient Decomposition 673

Fig. 2. Vertical decomposition based on the insertion of walls (viewed from the top). In
the first step, the polyhedron is decomposed into xy-monotone sub-cells. Then, further
vertical walls are inserted to subdivide the cells into convex sub-cells.

supporting plane that defines the flood wall of a reflex edge. The procedure of
vertical decomposition suggests to create y-vertical flood walls. We deviate from
this procedure to reduce the number of walls and therefore the number of sub-
polyhedra. An y-vertical flood wall divides a volume into two or three parts.
Instead, we insert a flood wall along one of the two facets adjacent to the reflex
edge. This way, resolving a y-vertical reflex edge splits exactly one volume into
two parts.

In the second step of the decomposition, walls can be built easily. Given a
reflex edge e, let pe be the plane in which we intend to build the wall W (e), and
let c be the cylindrical cell that will be decomposed by it. Then, W (e) can be
created by walking along the intersection of c with pe and adding the incidences
of the new facets to each encountered item. In the first step, the boundary of
a wall is more complex. The boundary of W (e) may not only consist of e and
intersections with c, but also of intersections with other walls. If the walls are
built in random order it is not guaranteed that those intersections exist when
constructing a wall. Therefore, we cannot just walk along the boundary. To allow
using the walk, we schedule the construction of the walls in such a way that all
boundary parts of a wall exist in the moment of its construction. To do this, we
must resolve mutually and cyclic dependencies.

The wall W (e) of a reflex edge e may consist of two parts—of points below
and points above e. We refer to these two parts as the lower wall W−(e) and
upper wall W+(e). Often, the lower wall W−(e) is part of the boundary of some
upper wall W+(e′), or vice versa. Therefore, the lower and the upper walls are
created in two separate sessions.

Starting with the lower parts, we want to sort the reflex edges, and thereby
schedule their construction, from bottom to top. In general, the edges of a
polyhedron—and the same holds for the reflex edges of a polyhedron—can not
be sorted along a given direction. There can always be cyclic dependencies as
illustrated by Figure 3. But, as we will see in the following, it is possible to
resolve the dependencies.

We sort the reflex edges by their lower endpoints. As a result, every pair of re-
flex edges has one of three relations. If (a) they do not overlap vertically, the sort-
ing schedules the edges well. The same holds, if they overlap vertically, but their

674 P. Hachenberger

Fig. 3. Variation of Schönhardt polyhedron with a quadratic base viewed from the
side and from the top. The diagonals of the sides are reflex edges, which are circular
dependent on one another.

projection onto the xy-plane does not intersect. If (b) they overlap vertically and
their projections onto thexy-plane intersect internally, the lowerwall of one of them
may be part of the other’s boundary. Let’s assume such an edge pair e and e′, where
W−(e) is part of the boundary of W−(e′). If e has the smaller lower endpoint the
schedule works nicely; otherwise the walk cannot proceed along W−(e′)’s bound-
ary because W−(e) is missing. If (c) they share a common endpoint, the lower walls
share a boundary edge. Their construction is mutually dependent.

To solve the problems described above, we cut some reflex edges into two
or more parts and insert vertical edges from the endpoints of all reflex edges
to the bottom of the polyhedron. The inserted vertical edges exactly resemble
the common boundary parts of walls with common endpoints and therefore
resolve the problem described in (c). Before inserting the vertical edges, we
search the sorted list of reflex edges for situation (b). If we find an edge e part
of the boundary of W (e′), but e′ is scheduled before e, then we cut e at the
intersection point vi with the vertical plane pe′ supporting e′ and put the two
edge halves at their proper positions into the sorted set. Later a vertical edge
will also be inserted between vi and the bottom of the polyhedron. It exactly
resembles the intersection between W−(e) and W+(e′). Note that the split of
a reflex edge performed to resolve (b) can be unnecessary if e cannot be seen
from e′. However, such a split does not introduce an additional convex piece.
The upper walls can be handled in the same way as the lower walls.

In the second step of the decomposition, no wall intersects a reflex edge or
introduces new reflex edges. Also there are no mutual and cyclic dependencies.
Since we use multiple directions, the supporting planes usually intersect and
therefore the decomposition is not unique. But the number of sub-polyhedra is
constant among all orders of wall creation.

Like the decomposition of Chazelle [4], our decomposition clearly yields at
most O(r2) polyhedra. The wall of a non-vertical reflex edge e can intersect
with each other reflex edge at most once. This does not change if other walls
cut e into multiple parts, because all sub-walls have the same supporting plane
as W (e). Therefore the first step generates at most O(r2) cylindrical cells and
O(r2) vertical reflex edges. Then, each vertical reflex edge exactly splits one cell

Exact Minkowksi Sums of Polyhedra and Exact and Efficient Decomposition 675

into two. The worst case runtime of our implementation is worse than Chazelle’s
since we use kd-tree based ray shooting for the insertion of the vertical edges
and for the walk along the boundary.

3 The Minkowski Sum of Convex Polyhedra

The Minkowski sum of two convex polyhedra is also a convex polyhedron. Fur-
thermore, it is well known that each vertex vP⊕Q of the Minkowski sum P ⊕Q is
the vector sum of vertices vP in P and vQ in Q [15]. Hence, a trivial solution for
the Minkowski sum of two convex polyhedra P and Q computes the convex hull
of all vector sums of vertex pairs of P and Q. This algorithm performs a convex
hull computation on pq vertices, where p and q are the number of vertices in P
and Q. Thus, using Cgal’s convex hull 3 function the trivial algorithm runs
in O(pq log(pq)) time.

A more efficient solution can be obtained by using normal diagrams. Each
convex polyhedron P has a unique dual representation NP called the Gaussian
diagram or normal diagram. It is a subdivision of the sphere into vertices, edges
and faces, such that the outward-directed normal directions of all planes sup-
porting some item of P constitute an item of NP . For a facet of P there is exactly
one plane supporting it. Thus, its dual item is the single point on the sphere with
the same normal direction as the supporting plane. The normal directions of the
planes supporting an edge eP of P form a great arc on the sphere. The endpoints
of the great arc are dual items of the facets incident to eP . A face fn on NP is the
dual item of a vertex vp of P . fn is bound by a convex cycle of edges and vertices,
which are the dual items of the edges and facets incident to vp. The order of the
edges and vertices around fn coincides with the order of dual items around vp.

The faces of NP⊕Q are intersections of faces of NP and NQ. What is more,
the dual face of vP⊕Q is the intersection of the dual faces of vP and vQ with
vP + vQ = vP⊕Q. As a consequence, the overlay of NP and NQ is the normal
diagram of the Minkowski sum P ⊕Q. Also, the exact point set of P⊕Q can easily
be obtained by storing the primal vertices with their respective dual face and
computing the vector sums for each face in the overlay. Thus, using the overlay
of normal diagrams improves on the trivial algorithm in two points. First, the
construction of P ⊕ Q operates on the exact set of vertices, which might be far
smaller than pq. However, in the worst case, P ⊕Q still has O(pq) vertices. And
second, the incidence structure of NP⊕Q allows us to construct P ⊕Q from it in
time linear to P ⊕ Q.

With Nef polyhedra embedded on the sphere [11] as provided by Cgal, we
already have a tool that can be used to realize normal diagrams, and for which
we also have an overlay algorithm that can be reused for the Minkowski sum.
The overlay algorithm also allows to store arbitrary data with each vertex, edge,
and face, and to propagate this data properly during the overlay. Therefore, the
missing operations are the two conversions between a convex three-dimensional
polyhedron and its normal diagram. Both functions are easy to implement.

676 P. Hachenberger

Spherical Nef polyhedra are not the most efficient solution for the overlay
of normal diagrams. Asymptotically, there is no essentially superior solution,
but the Cubical Gaussian Map of Fogel and Halperin is clearly faster [9]. The
binary operations on spherical Nef polyhedra can handle more complex overlays
than those of normal diagrams, which are always convex arrangements; they
never include nested faces or lower dimensional features. Therefore, our overlay
algorithm is obviously more costly than needed. Apart from that, the spherical
predicates are too expensive.

For the runtime experiments of this paper, the spherical Nef polyhedra are
sufficient, since the runtime of computing the Minkowski sum of the convex
parts is always much smaller than the union of these partial solutions. For a fu-
ture release of our implementation of non-convex Minkowski sum computations,
we plan to exploit other efficient implementations of algorithms that compute
Minkowski sums of convex polyhedra such as the one based on Cubical Gaussian
Maps [9], or the one based on Arrangement on Surfaces [3].

4 Uniting a Set of Polyhedra

The union of the Minkowski sums of the convex sub-polyhedra is done by mul-
tiple binary union operations of 3D Nef polyhedra. Since the complexity of the
binary union operation depends on the complexities of both input and the result
polyhedron in equal shares, it is essential not to perform the binary operations in
arbitrary order. The trivial method for instance maintains one Nef polyhedron
holding the current intermediate result. It starts with an empty polyhedron and
adds the polyhedra one by one. This method performs very badly, since most of
the union operations involve at least one big polyhedron, namely the interme-
diate result. Experiments showed that examples that can be computed in less
than 10 minutes with efficient methods, run for more than a day with the trivial
approach. Clever methods unite small polyhedra first, and try to keep interme-
diate results as small as possible. Since we cannot foresee the optimal order, we
develop and test different strategies.

Our first method performs in a greedy fashion. It maintains the set of all un-
handled primitives and intermediate results, and unites the two smallest poly-
hedra in each step. This can be realised by a priority queue. The priority of a
polyhedron is its size measured by the number of its vertices. The priority queue
is initialized with all pairwise Minkowski sums of the convex pieces. Then, re-
peatedly the two smallest polyhedra are extracted from the queue, and their
union is inserted into the queue. The method terminates with the result left as
the final remaining element in the queue.

Our second strategy tries to unite neighboring polyhedra to reduce the size of
the intermediate results. For this purpose, we put the primitives into a queue and
sort the queue by the lexicographically smallest vertex of the primitives. In order
to unite polyhedra of the same complexity, we proceed similar to the priority
queue approach. We extract and unite the first two polyhedra, and append their
result to the end of the queue. The neighboring relation used for the sorting is

Exact Minkowksi Sums of Polyhedra and Exact and Efficient Decomposition 677

Fig. 4. Example Minkowski sums. Top: cup and cup ⊕ sphere. Bottom: spoon, star,
and spoon ⊕ star.

Table 1. Models used in the experiments

cube ball1 ball2 star spoon mushroom cup

facets 6 128 1000 24 336 448 1000
parts 1 1 1 5 186 255 774

maintained throughout the whole union process. Sorting the polyhedra by their
lexicographically smallest vertex does not specify how we compare two such
vertices in the sorting function. We test three comparison types: lexicographical
comparison of the coordinates, comparison of the L1 distance from a point in a
corner of the scenery, and comparison of the L2 distance from the origin.

Performing larger examples, it becomes obvious that memory is major issue in
either of the above strategies. The queue-based approach can be adapted, such
that no more than log p

2 need to be stored, where p is the number of primitives.
Instead of a queue we maintain a stack. The primitives are computed and inserted
to the stack one by one. After pushing the ith primitive onto the stack, we �log i�
times pop and unite the respective top two items and push the result back on
the stack. Note that every binary union (besides the ones after the insertion of
the final primitive) combines two polyhedra that are unions of the same number
of primitives. Although we construct primitives just before they are pushed on
the stack, we also want to sort the set of primitives in advance. For this purpose,
we additionally store all normal diagrams and a sorted list of all ordered pairs
of pointers to the normal diagrams that schedules the creation of the primitives.
The list is sorted by the sum of the smallest vertices of the respective sub-
polyhedra. Again we test the same three comparison types.

Table 2 summarizes the tests of the strategies. The stack strategy proved to
be superior to the others. This becomes clearer the larger the examples get. The
difference between the comparison types is very small. Lexicographical compar-
isons show the best result. The last line of the table shows the runtime of a much
bigger example.

678 P. Hachenberger

Table 2. Performance of the different union strategies, the decomposition and the
Minkowski sum of the convex pieces. For each model the number of facets and the
number of convex sub-polyhedra are listed. The runtimes are given in seconds.

priority queue stack convex convex
model1 model2

queue lexi L1 L2 lexi L1 L2 decomp sum

mushroom cube 170 151 151 152 147 147 149 43 14
mushroom ball1 608 529 534 545 408 415 423 43 102

spoon star 963 930 921 925 755 726 732 43 84

cup ball2 8497 415 939

5 Tight Passages

Computing the Minkowski sum of a tight passage scenario requires the handling
of open polyhedra. A Nef polyhedron stores set selections marks for every vertex,
edge, facet, and volume, which indicate whether the respective item is part of
the polyhedron. In case of an open polyhedron the marks of the boundary items
are unselected. These selection marks can additionally be stored in the normal
diagram. During the overlay operation the marks are transferred in the following
way. Given normal diagrams NP and NQ, we consider intersecting items iP and
iQ. Their intersection forms item iP⊕Q in the overlay NP ⊕NQ. Then, the selec-
tion mark stored with iP⊕Q can be computed as iP ∧iQ. This means for instance,
that a vertex vP⊕Q = vP + vQ of P ⊕ Q is selected iff vP and vQ are selected.

If we allow arbitrary selection mark for the input, i.e., each boundary part may
have a different mark, the computation of the Minkowski sum becomes more com-
plicated. The reason is, that each side of a convex sub-polyhedron may consist of
several facets, some of which are boundary parts of the input and some of which are
walls inserted by the decomposition. The selection marks of these facets can differ.
As a consequence, the selection marks cannot be handled as described above.

Fortunately, we don’t need arbitrary selection marks to handle tight pas-
sages. It is only necessary to allow polyhedra that are either open or closed,
i.e., all selection marks of boundary items are either selected or unselected. In
this situation it suffices to ignore the selection marks of the walls. If the side
of a sub-polyhedron consists of original facets and walls, we use the uniform
mark of the original facets; if there are only walls, we can assign an arbitrary
mark. Naturally, the walls must be selected because they represent a point set
inside a polyhedron. Thus, not selecting a wall yields an unselected facet in a
convex Minkowski sum pr1 that should be selected. On the other hand, this wall
is adjacent to another sub-polyhedron. Because of the adjacency and because
of the convexity of primitives, the convex Minkowski sums computed on this
other sub-polyhedron must generate a primitive pr2 that overlaps pr1 such that
the wrongly unselected facet is in the interior of pr1. The final result of the
Minkowski sum operation will not contain any of these facets.

Figure 5 shows a tight passage scenario solved with our implementation.

Exact Minkowksi Sums of Polyhedra and Exact and Efficient Decomposition 679

Fig. 5. A maze whose corridors have unit width, and the Minkowski sum of a unit
cube and the maze

6 Conclusion

We have presented an exact implementation of the Minkowski sum of non-convex
3D polyhedra. Our implementation also supports open and closed polyhedra,
which allows to solve extreme scenarios like tight passage problems.

As part of our Minkowski sum, we have also presented the first robust decom-
position of non-convex 3D polyhedra into O(r2) convex pieces, where r is the
number of reflex edges.

As part of future work, we want to further improve the efficiency of our
implementation and release it as part of Cgal. We plan two major points of im-
provement. First, we want to improve the second step of the decomposition by
adapting polygon decomposition methods for the decomposition of the cylindri-
cal cells. Those methods would sometimes resolve two vertical reflex edges with
one wall and therefore generate fewer convex pieces. As a second step, we plan
to replace our solution for the convex Minkowski sums by a faster approach.

Acknowledgements

The author likes to thank Lutz Kettner for stimulating the work of this paper.
I thank Efi Fogel for helping me repeat the comparison of theirs and out im-
plementation of the Minkowski sum on convex polyhedra. Furthermore, I thank
Liangjun Zhang and Dinesh Manocha for providing 3D models, such that I could
repeat two of the experiments in [19]. Also, I would like to thank Mark de Berg
for valuable discussions on the presented topic.

References

1. Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for efficient con-
struction of Minkowski sums. Comp. Geom.: Theory and Appl. 21, 39–61 (2002)

2. Aronov, B., Sharir, M.: Triangles in space or building (and analyzing) castles in the
air. In: SCG ’88: Proceedings of the fourth annual symposium on Computational
geometry, pp. 381–391. ACM Press, New York, USA (1988)

680 P. Hachenberger

3. Berberich, E., Fogel, E., Halperin, D., Wein, R.: Sweeping over curves and main-
taining two-dimensional arrangements on surfaces. In: Proc. 23rd Workshop on
Computational Geometry (EWCG’07), pp. 223–226 (2007)

4. Chazelle, B.: Convex partitions of polyhedra: a lower bound and worst-case optimal
algorithm. SIAM Journal on Computing 13(3), 488–507 (1984)

5. Chazelle, B., Dobkin, D., Shouraboura, N., Tal, A.: Strategies for polyhedral surface
decomposition: an experimental study.Comput.Geom.TheoryAppl. 7(5-6), 327–342
(1997)

6. de Berg, M., Guibas, L.J., Halperin, D.: Vertical decompositions for triangles in 3-
space. In: SCG ’94: Proceedings of the tenth annual symposium on Computational
geometry, pp. 1–10. ACM Press, New York, USA (1994)

7. Ehmann, S.A., Lin, M.C.: Accurate and fast proximity queries between polyhedra
using convex surface decomposition. In: Comp. Graph. Forum (Proc. Eurographics
2001), vol. 20(3), pp. 500–510 (2001)

8. Elber, G., Kim, M.-S.: Special Issue of Computer Aided Design: Offsets, Sweeps
and Minkowski Sums, vol. 31 (1999)

9. Fogel, E., Halperin, D.: Exact and efficient construction of Minkowski sums of
convex polyhedra with applications. In: 7th Workshop on Algorithm Engineering
and Experiments (ALENEX 06) (to appear 2006)

10. Guibas, L.J., Ramshaw, L., Stolfi, J.: A kinetic framework for computational ge-
ometry. In: 24th Symp. on Found. of Comp. Sci (FOCS), pp. 100–111 (1983)

11. Hachenberger, P., Kettner, L., Mehlhorn, K.: Boolean operations on 3D selective
Nef complexes: Data structure, algorithms, optimized implementation and experi-
ments. Comp. Geometry: Theory and Applications 38(1–2), 64–99 (2007)

12. Joe, B.: A software package for the generation of meshes using geometric algorithms.
Advances in Engineering Software and Workstations 13(5–6), 325–331 (1991)

13. Kaul, A., Rossignac, J.: Solid-interpolating deformations: Construction and ani-
mation of pips. Computers & Graphics 16(1), 107–115 (1992)

14. Kim, Y.J., O., M.A., Lin, M.C., Manocha, D.: Fast penetration depth computation
using rasterization hardware and hierarchical refinement. In: Proc. of Workshop on
Algorithmic Foundations of Robotics (2002)

15. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell,
MA, USA (1991)

16. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, Inc.,
New York, USA (1987)

17. Rossignac, J.R., Requicha, A. A.G.: Offsetting operations in solid modelling. Com-
put. Aided Geom. Des. 3(2), 129–148 (1986)

18. Rössl, C., Kobbelt, L., Seidel, H.-P.: Extraction of feature lines on triangulated
surfaces using morphological operators. In: Proc. of the 2000 AAAI Symp. (2000)

19. Varadhan, G., Manocha, D.: Accurate Minkowski sum approximation of polyhedral
models. In: Proc. Comp. Graphics and Appl., 12th Pacific Conf. on (PG’04), pp.
392–401. IEEE Computer Society Press, Los Alamitos (2004)

20. Wein, R.: Exact and efficient construction of planar Minkowski sums using the
convolution method. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,
pp. 829–840. Springer, Heidelberg (2006)

A New ILP Formulation for 2-Root-Connected

Prize-Collecting Steiner Networks

Markus Chimani, Maria Kandyba�, and Petra Mutzel��

Department of Computer Science, University of Dortmund, Germany
{markus.chimani,maria.kandyba,petra.mutzel}@cs.uni-dortmund.de

Abstract. We consider the real-world problem of extending a given in-
frastructure network in order to connect new customers. By representing
the infrastructure by a single root node, this problem can be formulated
as a 2-root-connected prize-collecting Steiner network problem in which
certain customer nodes require two node-disjoint paths to the root, and
other customers only a simple path. Herein, we present a novel ILP ap-
proach to solve this problem to optimality based on directed cuts. This
formulation becomes possible by exploiting a certain orientability of the
given graph. To our knowledge, this is the first time that such an argu-
ment is used for a problem with node-disjointness constraints. We prove
that this formulation is stronger than the well-known undirected cut ap-
proach. Our experiments show its efficiency over the other formulations
presented for this problem, i.e., the undirected cut approach and a for-
mulation based on multi-commodity flow.

1 Introduction

Extending already existing fiber-optics networks by connecting new customers
is an important topic in the design of telecommunication networks. Thereby, we
have an existing infrastructure network I, a set of potential new customers C
and a set of potential new route-segments for laying the fiber cables. As each
new customer v will generate a certain assessable profit p(v) ∈ R

+ and each
route-segment e has a certain laying cost c(v) ∈ R

+, the main task is to connect
a subset of C with I such that the overall profit is maximized. In this paper we
consider the real world problem [1], where some of the customers, if added to
the network, require two node-disjoint connections to I to increase reliability.
We denote these customers with the set C2, and the other customers with C1.

By representing the infrastructure network by a single root node r (for the
details of such transformation see, e.g., [2]), we obtain a rooted Prize-Collecting
Steiner Network problem where certain nodes are required to be (nodewise)
2-connected with the root. Formally, we are given an undirected graph

� Supported by the German Research Foundation (DFG) through the Collaborative
Research Center “Computational Intelligence” (SFB 531).

�� Partially supported by the Austrian Research Promotion Agency (FFG) under grant
811378 (NetQuest project).

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 681–692, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

682 M. Chimani, M. Kandyba, and P. Mutzel

G = (V, E), a root node r ∈ V , a set of customer nodes C = C1∪̇C2 ⊂ V ,
a prize function p : V → R

+, and a cost function c : E → R
+. Find a subgraph

N = (VN , EN) of G with r ∈ VN which minimizes
∑

e∈EN
c(e) − ∑

v∈VN
p(v)

and satisfies the following connectivity property: for every node v ∈ Ck ∩ VN

(k ∈ {1, 2}), N contains at least k node-disjoint paths connecting v to r.
We call such a problem a 2-Root-connected Prize-Collecting Steiner Network

problem (2RPCSN). If we require all customers to be included into the solution
network, the resulting problem is called 2-Root-connected Steiner Network prob-
lem (2RSN). Both 2RPCSN and 2RSN are NP-hard, as they contain the Steiner
tree problem as a special case. While our paper centers on the investigation
of 2RPCSN, all results clearly also hold for 2RSN. Furthermore, our approach
can be used for the relaxed version where C2 customers are only required to be
2-edge-connected with the root.

2RPCSN was already studied in [18,19], where two different ILP formulations
for this problem were suggested: one based on multi-commodity flow, similar
to [13], the other one using undirected cut inequalities1. In this paper, we tran-
form 2RPCSN into the problem of finding an optimal subgraph in a related di-
rected graph and give a new ILP formulation which uses directed cut inequalities.
To our knowledge, our formulation is the first which applies such an approach
to a node-disjoint connectivity problem, cf. Section 1.1. Furthermore, we study
the polyhedral properties of our ILP and show that our formulation is stronger
than the undirected cut formulation. We solve 2RPCSN using this new formu-
lation within a Branch-and-Cut framework, utilizing an LP-based heuristic also
presented herein. Our experimental results in Section 3 show that our approach
is superior to those of [18,19] for nearly all test instances.

1.1 Basics and Related Work

For a set W ⊂ V of an undirected graph G = (V, E) we denote the set of edges
which separate W from V \ W by δG(W) = {{u, v} ∈ E | u ∈ W, v ∈ V \ W}.
For a directed graph G′, we distinguish between δ−G′(W) and δ+

G′(W), i.e., the
set of cut edges having a source or a target node in W , respectively. We may
drop the index specifying the graph, if the graph is clear from the context.

2RSN is a special class of survivable network design problems (SNDP) [16];
see, e.g., [9,20] for surveys. In [17] the following variant of SNDP is consid-
ered: each node v of the given graph is associated with a nonnegative integer
rv ∈ {0, . . . , k}. For each pair of nodes u, v ∈ V the connectivity requirement
is then defined by ruv = min{ru, rv}, i.e., there should be at least ruv edge-
or node-disjoint paths between those nodes. These problems are called kECON
and kNCON, respectively. In general, 2RSN and 2NCON are not equivalent,
cf. Fig. 1(a).

For kECON and kNCON, Grötschel, Monma, and Stoer [7] described integer
linear programs and investigated their polyhedral structure. The central idea

1 Although the paper’s title uses the term “directed cut”, it turns out to be equivalent
to the traditional undirected approach discussed in Section 2.3.

A New ILP Formulation 683

(a) This network is infea-
sible for 2NCON, but fea-
sible for 2RSN.

(b) This orientation satisfies the properties of Rob-
bins’ proof, but there are no two node-disjoint paths
between the root and the C2 customer.

Fig. 1. The root node is denoted by the black circle, C1 and C2 customers are denoted
by simple and double circles, respectively

is to express the connectivity requirements by undirected cuts: for every non-
empty set of nodes W ⊂ V the number of edges in δ(W) should be at least
max{ruv | u ∈ W, v ∈ V \W}. Wagner et al. [19] formulated their ILP for 2RSN
and 2RPCSN using basically the same idea.

An orientation of an undirected graph G is a directed graph G′ which is
obtained by transforming each edge of G into a directed edge. Robbins [15] (for
the special case of k = 1) and Nash-Williams [14] showed that for any graph
G there exists an orientation G′ with the following property: for every pair
of nodes u, v which is 2k-connected in G, there exist k pairwise edge-disjoint
directed paths (u → v) and k pairwise edge-disjoint directed paths (v → u)
in G′.

This fact has been exploited by Chopra [5] for solving 2ECON via directed
graphs, who proved his formulation to be superior to the undirected formulation.
Goemans [6] and Stoer [17] extended this formulation to kECON for the case that
all connectivity requirements are 0, 1, or even; later Magnanti and Raghavan [13]
extended it for general k. It has been an open problem [17] if a similar orien-
tation technique can be used for kNCON-type problems, i.e., when we require
node-disjointness. Considering 2RSN and 2RPCSN, where we require nodewise
2-connectedness with a special root node, we will show that this is indeed the
case.

Note that the above described approaches considered Steiner networks, and
did not consider the prize-collecting variants. If C2 = ∅, 2RPCSN becomes
a Rooted Prize-Collecting Steiner Tree (RPCST) problem which has been in-
vestigated, e.g., by [10,11]. Therein, the authors presented several ILP models,
including a directed cut approach, which turned out to be the most
successful one.

2 Investigating 2RPCSN

2.1 Transformation into a Directed Problem

The central idea of our formulation is that we can transform the undirected
2RPCSN problem (G=(V, E), r, c, p) into a directed variant (G′ = (V, A), r, c′, p)
as follows: for each edge {u, v} ∈ E there are two directed edges (u, v) and (v, u)
in A, with c′((u, v)) = c′((v, u)) = c({u, v}). An optimal solution of this directed

684 M. Chimani, M. Kandyba, and P. Mutzel

problem (D2RPCSN) is a subgraph D = (VD ⊆ V, AD ⊆ A) with r ∈ VD, which
minimizes

∑
e∈AD

c′(e) − ∑
v∈VD

p(v) and satisfies:

(D1) For each edge {u, v} ∈ E, AD may include at most one of the arcs (u, v)
and (v, u).

(D2) For each customer node v ∈ C1 ∩ VD there is a directed path (r → v) in
D.

(D3) For each customer node v ∈ C2 ∩ VD there is a path (r → v) and a path
(v → r) in D, which are node-disjoint.

We show that D2RPCSN is equivalent to 2RPCSN. Clearly, every feasible
solution of D2RPCSN can be interpreted as a feasible solution of 2RPCSN with
the same objective value straightforwardly. Hence we have to focus on the reverse
transformation from 2RPCSN to D2RPCSN. As we can see for the single C2

node in Figure 1(b), the existence of node-disjoint paths does not follow from
the orientability theorem [15] exploited by Chopra [5]. However note that, in this
example, a reorientation of the 3-cycle containing this customer would result in
a valid orientation for D2RPCSN.

Theorem 1. Any optimal solution for 2RPCSN can be transformed into a cor-
responding feasible solution for D2RPCSN with the same objective value.

Proof. Let N = (VN , EN) be an optimal solution for 2RPCSN. We will show
that there exists an orientation D of N which is a feasible solution for the
corresponding D2RPCSN problem.

We first shrink N by orienting all attached trees, i.e., we iteratively find an
edge {u, v} where v has degree 1; we orient the edge from u to v, and remove
it temporarily. The remaining graph structure of undirected edges consists of
one or more at least 2-connected components attached to r. It is clear that
by orienting each one of them separately, we obtain a valid orientation for the
complete structure. Hence we can restrict ourselves to a 2-connected undirected
graph B = (VB , EB) which contains r.

We use � : VB → R ∪ {undefined} as a labeling function; initially we have
�(v) := undefined for all v ∈ VB. We start by identifying a simple cycle Z
in B containing r, and orient its edges consistently in one of the two possible
directions. We then label each node on Z with increasing fractional numbers
between 0 and 1, according to this orientation, starting with �(r) := 0. Hence,
all edges of Z (except its last edge ê) are oriented from the smaller towards the
larger label number. We will now orient the remaining undirected edges in such
a way that this invariant is valid for all oriented edges:

We define an augmenting path P = (a → b) as a simple path of unoriented
edges where only the disjoint start and end nodes are labeled, and �(a) < �(b).

To orient B, we repeatedly find an augmenting path P = (a → b) and orient
it from a to b, labeling all inner nodes with increasing numbers greater than
�(a) but smaller than �(b); these labels are to be unique over all labelings so
far. By this construction, we guarantee that each labeled node has at least one
incoming and one outgoing edge. Furthermore, each oriented edge is oriented

A New ILP Formulation 685

from the smaller towards the larger label number. Hence, each oriented path
will always contain monotonously increasing label numbers (with the exception
of ê). This means that any directed circle starting from r and going through any
labeled node v will be simple, and we therefore have node-disjoint paths (r → v)
and (v → r).

It remains to show that every edge gets oriented by this process. Assume that
at some point there is at least one unoriented edge e left, but we cannot find any
augmenting path. Clearly, e has to be part of some shortest path Q = (c → d)
of unoriented edges with labeled nodes c and d. Since neither Q nor its reversal
is an augmenting path, we have �(c) = �(d) and therefore c = d, i.e., Q is a
cycle of unoriented edges, and none of its nodes except for c are labeled. Since
B is 2-connected, there has to be an additional unoriented path from some node
q ∈ Q to some labeled node p (p, q 	= c). But then, the path (p → q → c) (or
its reversal) would be an augmenting path, which is a contradiction. Hence, the
above algorithm correctly orients any optimal solution of 2RPCSN.
�

2.2 ILP for D2RPCSN

To model D2RPCSN on G′ we introduce two sets of binary variables

xe, yv ∈ {0, 1} ∀e ∈ A, ∀v ∈ V.

The variables are 1, if the corresponding node or edge is in the solution network
D, and 0 otherwise. We therefore obtain the objective funtion:

min
∑

e∈A

c′(e) · xe −
∑

v∈V

p(v) · yv. (1)

In a feasible solution of D2RPCSN, at most one of the edges corresponding to an
undirected edge {u, v} can be selected. Furthermore, selecting an edge requires
both incident nodes to be selected as well:

xuv + xvu ≤ yv ∀v ∈ V, ∀(v, u) ∈ A. (2)

The forward-cut constraints are traditional cut-constraints requiring the selected
customer nodes to be reachable from the root.

∑

e∈δ+(S)

xe ≥ yv ∀S ⊆ V \ {r}, ∀v ∈ S ∩ C. (3)

For customers requiring 2-connectedness we have analogous backward-cut con-
straints: ∑

e∈δ−(S)

xe ≥ yv ∀S ⊆ V \ {r}, ∀v ∈ S ∩ C2. (4)

Finally, we have to assure that the 2-connected customer nodes are connected
via node-disjoint forward- and backward-paths, i.e., we require each node w to be
part of at most one of these paths. This is equivalent to require that at least one

686 M. Chimani, M. Kandyba, and P. Mutzel

of these paths does not contain w. Let G′w denote the graph G′ without the node
w and its incident edges. Then we have ∀S1, S2 ⊆ V \{r}, ∀v ∈ S1∩S2∩C2, ∀w ∈
V \ {r, v}: ∑

e∈δ+
G′

w
(S1)

xe +
∑

e∈δ−
G′

w
(S2)

xe ≥ yv. (5)

2.3 Polyhedral Comparison

We compare our ILP formulation to the common and straightforward formu-
lation of 2RPCSN based on the undirected graph and undirected cuts. This
formulation was, e.g., used in [19], although in a slightly more redundant form.
Thereby, we have the characteristic vector z ∈ {0, 1}|E| specifying the selected
edges, and the vector y analogous to the definition in Section 2.2. We then have:

min
∑

e∈E

c(e) · ze −
∑

v∈V

p(v) · yv (6)

∑

e∈δ(S)

ze ≥ yv ∀S ⊆ V \ {r}, ∀v ∈ S ∩ C1 (7)

∑

e∈δ(S)

ze ≥ 2yv ∀S ⊆ V \ {r}, ∀v ∈ S ∩ C2 (8)

∑

e∈δGw (S)

ze ≥ yv ∀S ⊆ V \ {r}, ∀v ∈ S ∩ C2, ∀w ∈ V \ {r, v} (9)

ze, yv ∈ {0, 1} ∀e ∈ E, ∀v ∈ V (10)

Let us consider any 2RPCSN problem and its corresponding D2RPCSN
counterpart. For corresponding solutions, we clearly have the projection zuv =
xuv + xvu.

Let PU and PD be the polyhedrons corresponding to feasible LP relaxations,
i.e., feasible solutions for the ILP without integrality constraints, for 2RPCSN
and D2RPCSN, respectively. We show that PD ⊂ PU , i.e., the lower bounds
obtained by the LP relaxations of our new formulation will in general be tighter
than for the undirected formulation. The proof technique is based on [5,7], but
had to be extended for the prize-collecting setting.

Observation 1. PD 	= PU .

Proof. Consider a triangle graph with the root node and two high-profit C1

customer nodes. For 2RPCSN the fractional solution of 0.5 on all edges will
satisfy all edge constraints. For D2RPCSN any solution corresponding to this
undirected solution would be infeasible.
�
Theorem 2. The directed cut formulation is stronger than the undirected cut
formulation. I.e., PD ⊂ PU .

A New ILP Formulation 687

Proof. Due to Observation 1, it is enough to show PD ⊆ PU . Hence, we have to
show that the undirected cut inequalities can be generated from their directed
counterparts, based on zuv = xuv + xvu.

Consider any set S ⊆ V \ {r}. For v ∈ C2 ∩ S we have:
∑

(u,v)∈δ+(S)

xuv +
∑

(v,u)∈δ−(S)

xvu =
∑

{u,v}∈δ(S)

xuv + xvu =
∑

{u,v}∈δ(S)

zuv ≥ 2yv.

For v ∈ C1 ∩ S we have:
∑

{u,v}∈δ(S)

zuv =
∑

{u,v}∈δ(S)

xuv + xvu =
∑

(u,v)∈δ+(S)

xuv +
∑

(v,u)∈δ−(S)

xvu ≥ yv.

Analogously, we generate the undirected node-disjointness inequalities for any
node v ∈ S ∩ C2 and w ∈ V \ {r, v}:

∑

{u,v}
∈δGw (S)

zuv =
∑

{u,v}
∈δGw (S)

xuv + xvu =
∑

(u,v)

∈δ+

G
′
w

(S)

xuv +
∑

(v,u)

∈δ−
G

′
w

(S)

xvu ≥ yv.
�

2.4 Polynomial Separation and Branch-and-Cut

Based on our D2RPCSN ILP formulation, we developed a Branch-and-Cut code.
For a general description of the Branch-and-Cut scheme see, e.g., [21]. Generally,
such algorithms start with solving the LP relaxation, i.e., the ILP without the
integrality property, only considering a certain subset of all constraints. Given
the fractional solution of this partial LP, we perform a separation routine, i.e.,
identify constraints of the full constraint set which the current solution violates.
We then add these constraints to our current LP and reiterate these steps. If
at some point we cannot find any violated constraints, we have to resort to
branching, i.e., we generate two disjoint subproblems, e.g., by fixing a variable
to 0 or 1. By using the LP relaxation as a lower bound, and our heuristic solution
(cf. Section 2.5) as an upper bound, we can prune irrelevant subproblems.

In our case, we start with the constraints (2) and the subset of the constraints
(3) for |S| = 1. In the optimal solution, the root is the only node which may
have only outgoing but no incoming edges. Analogously, no node, except for C1

customers, will ever have only incoming edges. Although such flow-preservation
constraints do not strengthen the formulation, adding them to the initial con-
straint set can help to increase the efficiency of our Branch-and-Cut approach.
In our experiments we added all constraints of the second type for the ClgM and
ClgM+ instances, cf. Section 3.

The cut constraints (3) can be separated in polynomial time via the traditional
max-flow separation scheme: after obtaining some LP relaxation for our partial
ILP, we compute the maximum flow from r to each v ∈ C in G using the
edge values of the current solution as capacities. If the resulting value is less
then yv, we extract one or more of the induced minimum r-v-cuts and add the

688 M. Chimani, M. Kandyba, and P. Mutzel

corresponding constraint(s) to our ILP model. The cut constraints (4) can be
separated analogously.

If there are no violated constraints of type (3) or (4), we solve the separation
problem for the constraints of type (5) in an analogous way: for each node v ∈ C2

and for each node w ∈ V , w 	= v we compute both the v-r and r-v maximal
flows in G′w. If the sum of these flows is less than yv, we add the corresponding
inequalities. Actually, we do not need to perform the separation routine for each
node w: let us consider an integer solution where the constraints (3) and (4)
are valid, i.e., we have edge-disjoint paths (r → v) and (v → r) for any v ∈ C2.
Assume these paths have a common node w, then there are at least two incoming
and two outgoing edges at w. More general, this means that in our fractional
solution, we have to consider only nodes w satisfying

∑
e∈δ−(w) xe > 1 and∑

e∈δ+(w) xe > 1.

2.5 Primal Heuristic

A fractional solution of an LP relaxation is used to construct a feasible solution,
thus obtaining upper bounds for the optimal solution. We proceed in three steps
(see [4] for details):

Construct a Steiner tree. Interpreting all customers as C1 customers, we can use
the LP-based heuristic by Ljubic [10] which computes a Steiner tree T based on
the values of x and y.

Assure 2-connectivity. We iteratively extend T to assure 2-connectivity with
the root: for each customer v ∈ C2 we temporarily remove the unique path
Pv = (r → v) in the original tree T and compute a shortest path from v to any
node already selected in our current solution. By adding this path, we obtain two
node-disjoint paths between v and r. Since thereby all nodes of Pv also become
2-connected, we have to perform this operation only for the C2 customers which
do not have any further C2 customers in their subtrees of T .

Shrinking. In general, S can be further improved by local optimizations. We
know that S consists of one or more non-trivial 2-connected components, which
have only the root node in common. All other components of the graph form
trees, which are attached to some 2-connected component. As described in [21],
the rooted PCST problem can be solved in linear time, when applied to trees.
We use this algorithm to optimize all attached trees, using the attachment node
as its root. For the next step, these root nodes will be treated as C1 customers
with corresponding prizes. For every block B of S we compute its core graph B̃,
where every chain of edges only containing nodes v ∈ V \ (C2 ∪ {r}) is replaced
by a single edge. We remove an edge e from B̃ if all connectivity requirements
are still satisfied for B̃ − e. Let Pe be the path in B corresponding to e. We can
decide in linear time which edges and C1 nodes of Pe are worth to connect and
which are not, and modify or remove the path accordingly.

Use within Branch-and-Cut. We run this heuristic after every 10th computation
of an LP-relaxation. Furthermore, we use the heuristic to generate an initial

A New ILP Formulation 689

solution, choosing yv := 1 for all v ∈ C and using c(.) as edge costs for the initial
Steiner tree T .

3 Experiments

We implemented our Branch-and-Cut algorithm in C++, using CPLEX 9.0 and
LEDA 5.0.1. The tests were run on a 2.4 GHz AMD Opteron with 2GB of
RAM per process. For the experiments we used three different sets of instances
presented in [1], and compared the results of our directed cut (DC) approach
with those of the multi-commodity flow (MCF) and undirected cut (UC) for-
mulations, which were partially published in [18,19]2. As it was the case in
these publications, we applied a time limit of 2 hours per problem instance. See
Figure 2 for diagrams corresponding to the experiments described below: gener-
ally, the vertical axis shows the required CPU time in seconds on a logarithmic
scale, whereas the horizontal axis corresponds to the instances (in lexicograph-
ical order). When an instance could not be solved to provable optimality, there
is no corresponding data point for the according formulation.

Table 1. Median/average CPU time for the grid instances. The percentage of successful
instances is given in brackets if not 100%.

nodes 100 400 900 1600 2500
UC 9.36/41.3 3834/4021 (33.3%) (0%) (0%) (0%)

MCF 5.15/25.6 1161/2638 (56.7%) (0%) (0%) (0%)

DC 0.10/0.25 20.0/28.6 214/423 1615/1840 1856/2238 (73.3%)

Grid Instances. We used the artificial grid instances with 100, 400, 900, 1600,
2500 nodes [1]. There are two different infrastructure layings I per graph size;
for each such I, there are 15 instances with different sets of customer nodes. The
instances have 5–13 C1 and 3–8 C2 customers. Our algorithm is able to solve
all of these instances to optimality, except for 8 instances with 2500 nodes. The
largest instances solvable by the previous approaches contained 400 nodes and
the running times are much longer, cf. Table 1 and Figure 2(a). Interestingly,
our approach required no branching for the instances with 900–2500 nodes.

PCSTLib+. This set of instances is based on the instances of PCSTLib [8],
also used, e.g., in [3,10,12], and were extended in [1] for 2RPCSN. We used the
instances of the groups K and P ; each contains graphs with 100, 200, and 400
nodes. The set K consists of random geometric instances which were designed
to have a structure similar to street maps. While, for the K instances, 15%–27%
percent of the nodes are customers, the P instances have 34%–50% customers;
in all instances there are roughly twice as many C1 nodes as C2 nodes. As
2 The algorithms by Wagner et al. were run by Wagner on a stronger Intel Xeon

3.6GHz with CPLEX 10.0.1 and LEDA 5.1.

690 M. Chimani, M. Kandyba, and P. Mutzel

1

10

100

1000

10000

C
PU

 ti
m

e

UC MCF DC

(a) Grid instances with 400 nodes

0,1

1

10

100

1000

10000

C
PU

 ti
m

e

UC
MCF
DC

K instances P instances

(b) PCSTLib+ instances

0,1

1

10

100

C
PU

 ti
m

e

UC MCF DC

(c) ClgS instances

0,1

1

10

100

1000

4 7 10 8 11 6 4 5 10 8 10 15 12 22 17 8

9 9 12 14 13 13 17 16 10 13 15 13 13 20 24 20

C
PU

 ti
m

e

UC MCF DC

|C2|

|C1|

(d) ClgS+ instances

Fig. 2. Diagrams comparing the undirected cut (UC) and the multi-commodity flow
(MFC) approach to our directed cut (DC) formulation

shown in Figure 2(b), we solve all P and K instances to optimality, except for
a single K instance with 400 nodes. MCF can solve most K instances with 100
nodes, but no larger instances. It solves only a single 100 node P instance, which
seems to be due to the high number of customers. This is the only case, where
UC is comparable and sometimes even stronger than MCF, but still it is much
weaker than DC. These modified PCSTLib instances are the only ones, where
DC regularly has to branch, requiring 24 branch nodes on average (the median
is 2).

Cologne Instances. These instances use the real-world access net data of the
city district Cologne-Ossendorf. For our experiments we took the small (ClgS)
and medium (ClgM) sets of instances [1]: 20 instances with 190 nodes and 377
edges, and 25 instances with 1757 nodes and 3877 edges, respectively. Since
these instances have a quite small number of customers (3–6 C1 and 2–3 C2

customers), we generated additional sets of instances for both sizes by choosing
additional customers, resulting in 16 ClgS+ and 6 ClgM+ instances.

Figure 2(c) gives the results for ClgS and shows that MCF and DC are com-
petitive and both clearly outperform the undirected cut approach. As soon as

A New ILP Formulation 691

there are more customers, as it is the case for ClgS+ depicted in Figure 2(d),
DC is again superior to two both other approaches.

For the ClgM instances with very few customers, MCF is stronger than the
others, being able to solve 14 instances, whereas DC solves 9. DC only solves
5 when we run it without the flow-preservation constraints, and UC does not
solve any instance. This seems to be due to the fact that in these instances
the solutions contain very long paths between the customer nodes, giving the
flow formulation an advantage over the cut approaches. This is supported by
the observed gain by using the flow-preservation constraints. When there are
more customers, which is the case for ClgM+, the average path length is reduced
and DC becomes dominant again: while MCF and UC are unable to solve any
instance, DC can solve 1. Furthermore, after two hours, DC obtains better lower
bounds than MCF and UC in 4 out of 6 cases, and always has a better feasible
solution.

4 Additional Remarks

In [18,19], the 2RPCSN problem is also considered with a special relaxation for
the C2 customers: these customers are not required to be 2-connected with the
root, but to be near to a node with such a property. Therefore, each edge e has
a certain distance d(e), and each selected C2 customer v is allowed to have a
connection path of length up to k(v), if it itself is not 2-connected. Analogously
to [19], we can add these constraints to our ILP, using additional y′ variables
and backward-cuts to decide whether a (non-C2) node is 2-connected. Anyhow,
we recommend to only start with the constraints

∑

w∈N(v)

y′(w) ≥ y(v) ∀v ∈ C2 (11)

where N(v) is the set of nodes in the neighborhood of v, i.e., there exists a
path of length at most k(v) to each of them in G. Although this constraint is
not sufficient, it allows us to introduce a column-generation scheme, where the
stricter constraints and corresponding variables for a C2 node are only introduced
if the above constraint does not lead to a short enough connection path.

Acknowledgments. We are deeply indepted to Ivana Ljubic for gratefully al-
lowing us to use her PCST Branch-and-Cut code [10] as a basis of our implemen-
tation and for helpful discussions. We also thank Daniel Wagner for conducting
additional experiments with his undirected cut and multi-commodity flow im-
plementations [18,19] for our comparison, and the anonymous reviewer for a hint
to simplify our orientability proof.

References

1. Bachhiesl, P.: The OPT- and the SST-problems for real world access network design
– basic definitions and test instances. Working Report NetQuest 01/2005, Carinthia
Tech Institute, Klagenfurt, Austria (2005)

692 M. Chimani, M. Kandyba, and P. Mutzel

2. Bachhiesl, P.: The OPT- standard problem, solvers, and results. Working Report
NetQuest 02/2005, Carinthia Tech Institute, Klagenfurt, Austria (2005)

3. Canuto, S.A., Resende, M.G.C., Ribeiro, C.C.: Local search with perturbations for
the prize-collecting steiner tree problem in graphs. Networks 38(1), 50–58 (2001)

4. Chimani, M., Kandyba, M., Mutzel, P.: A new ILP formulation for a 2-connected
prize collecting steiner network problem (tr). Technical Report TR07-1-001, Chair
for Algorithm Engineering, Dep. of CS, University Dortmund (2007)

5. Chopra, S.: The equivalent subgraph and directed cut polyhedra on series-parallel
graphs. SIAM J. Discrete Math. 5(4), 475–490 (1992)

6. Goemans, M.X.: Analysis of linear programming relaxations for a class of connec-
tivity problems. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA (1990)

7. Grötschel, M., Monma, C.L., Stoer, M.: Polyhedral Approaches to Network Surviv-
ability. In: Reliability of Computer and Communication Networks, Proc. Workshop
1989. Discrete Mathematics and Theoretical Computer Science, vol. 5, pp. 121–141.
American Mathematical Society (1991)

8. Johnson, D.S., Minkoff, M., Phillips, S.: The prize-collecting steiner tree problem:
Theory and practice. In: Proceedings of 11th ACM-SIAM Symposium on Distcrete
Algorithms, San Fransisco, CA, pp. 760–769 (2000)

9. Kerivin, H., Mahjoub, A.R.: Design of survivable networks: A survey. net-
works 46(1), 1–21 (2005)

10. Ljubic, I.: Exact and Memetic Algorithms for Two Network Design Problems. PhD
thesis, Technische Universität Wien (2004)

11. Ljubic, I., Weiskircher, R., Pferschy, U., Klau, G., Mutzel, P., Fischetti, M.: An
algorithmic framework for the exact solution of the prize-collecting steiner tree
problem. Mathematical Programming, Series B 105(2–3), 427–449 (2006)

12. Lucena, A., Resende, M.G.C.: Strong lower bounds for the prize-collecting steiner
problem in graphs. Discrete Applied Mathematics 141(1-3), 277–294 (2003)

13. Magnanti, T.L., Raghavan, S.: Strong formulations for network design problems
with connectivity requirements. Networks 45(2), 61–79 (2005)

14. Nash-Williams, C.: On orientations, connectivity and odd-vertex pairings in finite
graphs. Canad. J. Math. 12, 555–567 (1960)

15. Robbins, H.E.: A theorem on graphs with an application to a problem of traffic
control. American Mathematical Monthly 46, 281–283 (1939)

16. Steiglitz, K., Weigner, P., Kleitman, D.J.: The design of minimum-cost survivable
networks. IEEE Trans Circuit Theory 16, 455–460 (1969)

17. Stoer, M.: Design of Survivable Networks. Lecture Notes in Mathematics, vol. 1531.
Springer, Heidelberg (1992)

18. Wagner, D., Raidl, G.R., Pferschy, U., Mutzel, P., Bachhiesl, P.: A multi-
commodity flow approach for the design of the last mile in real-world fiber optic
networks. In: Operations Research Proceedings 2006, Springer, Heidelberg (2006)

19. Wagner, D., Raidl, G.R., Pferschy, U., Mutzel, P., Bachhiesl, P.: A Directed Cut for
the Design of the Last Mile in Real-World Fiber Optic Networks. In: Proceedings
of the International Network Optimization Conference 2007 (2007)

20. Winter, P.: Steiner problem in networks: A survey. networks 17(2), 129–167 (1987)
21. Wolsey, L.A.: Integer Programming. Wiley-Interscience, New York, USA (1998)

Algorithms to Separate {0, 1
2}-Chvátal-Gomory Cuts�

Arie M.C.A. Koster1, Adrian Zymolka2, and Manuel Kutschka3

1 University of Warwick, Centre for Discrete Mathematics and its Applications (DIMAP),
Coventry CV4 7AL, United Kingdom

Arie.Koster@wbs.ac.uk
2 atesio GmbH, Sophie-Taeuber-Arp-Weg 27, D-12205 Berlin, Germany

zymolka@atesio.de
3 Zuse Institute Berlin (ZIB), Takustr. 7, D-14195 Berlin, Germany

kutschka@zib.de

Abstract. Chvátal-Gomory cuts are among the most well-known classes of cut-
ting planes for general integer linear programs (ILPs). In case the constraint mul-
tipliers are either 0 or 1

2 , such cuts are known as {0, 1
2}-cuts. It has been proven

by Caprara and Fischetti [7] that separation of {0, 1
2}-cuts is NP-hard.

In this paper, we study ways to separate {0, 1
2}-cuts effectively in practice. We

propose a range of preprocessing rules to reduce the size of the separation prob-
lem. The core of the preprocessing builds a Gaussian elimination-like procedure.
To separate the most violated {0, 1

2}-cut, we formulate the (reduced) problem as
integer linear program and develop some simple heuristic separation routines.

Computational experiments on benchmark instances show that the combina-
tion of preprocessing with exact and/or heuristic separation is a very vital idea to
generate strong generic cutting planes for integer linear programs and to reduce
the overall computation times of state-of-the-art ILP-solvers.

1 Introduction

Each pure integer linear program (ILP) can be written in its standard minimization form
⎧
⎪⎪⎨

⎪⎪⎩

min cT x
s.t. Ax ≤ b

x ≥ 0
x ∈ Z

n

(1)

with integer matrix A ∈ Z
m×n, an integer right hand side b ∈ Z

m, and arbitrary
objective values c ∈ R

n (here m is the number of rows and n the number of columns of
A). Upper bound constraints for single variables are included in the coefficient matrix.

We assume without loss of generality that each row in A has relatively prime coef-
ficients, since otherwise the row can be simplified by dividing all coefficients and the
right hand side with the greatest common divisor among the coefficients (after division,

� Most of the research has been carried out while the first and second author were at Zuse Insti-
tute Berlin (ZIB). The first author has been supported by the DFG research group “Algorithms,
Structure, Randomness” (Grant number GR 883/9-3, GR 883/9-4) during that time.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 693–704, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

694 A.M.C.A. Koster, A. Zymolka, and M. Kutschka

a fractional right hand side can be rounded down). Associated with the program (1), we
define the integer solution set X = {x ∈ Z

n | Ax ≤ b, x ≥ 0}, its convex hull poly-
hedron PIP = conv(X) and the linear relaxation polyhedron PLP = {x ∈ R

n | Ax ≤
b, x ≥ 0}.

Given a system Ax ≤ b, an undominated Chvátal-Gomory (CG) cut is defined by
⌊
uT A

⌋
x ≤ ⌊

uT b
⌋

(2)

with u ∈ [0, 1)m and �.� denotes the component-wise rouding. By the integrality of
x ∈ X , (2) is valid for PIP . Gomory [14,15] showed that if PIP �= PLP , there exists for
every fractional vertex x∗ ∈ PLP a CG cut (2) that is violated, i.e.,

⌊
uT A

⌋
x∗ >

⌊
uT b

⌋
,

see also [10]. Caprara and Fischetti [7] introduced {0, 1
2}-cuts for those CG cuts that

are derived by u ∈ {0, 1
2}m. For several combinatorial optimization problems it is

known that problem-specific classes of facet-defining inequalities are {0, 1
2}-cuts with

particular properties, e.g., the blossom inequalities of the matching polytope (describing
this polytope completely) [11], (odd-valued) odd hole inequalities of the stable (multi-
)set polytope [17,18,20], or the Möbius ladder inequalities of the linear ordering poly-
tope [12].

For {0, 1
2}-cuts, we consider the following separation problem:

{0, 1
2}-SEP

Given: The program (1) and a fractional solution x∗ ∈ PLP .
Find: A weight vector u ∈ {0, 1

2}m such that
⌊
uT A

⌋
x∗ >

⌊
uT b

⌋
or a proof

that none exists.

Theorem 1 (Caprara and Fischetti [7]). {0, 1
2}-SEP is NP-complete.

Consequently, Caprara and Fischetti [7] concentrate on polynomial-time solvable cases
of {0, 1

2}-SEP. In particular, they show that if A is an integer matrix with at most two
odd coefficients per row, {0, 1

2}-SEP is polynomial-time solvable. They propose there-
fore to weaken A to a matrix with the described property. In [4], a computational study
is presented to reveal the strength of this heuristic approach for {0, 1

2}-SEP. They re-
strict cuts to have

⌊
uT A

⌋
= uT A, i.e., a rounding of the left hand side is avoided.

Caprara and Fischetti [8] propose a number of reduction rules to limit the size of the
separation problem.

Contribution. This paper reports on our study to separate general {0, 1
2}-cuts

effectively, despite its NP-completeness. We recall that the 0 and 1
2 coefficients of the

vector u allow to reduce the size of {0, 1
2}-SEP considerably by an extended set of pre-

processing steps, ranging from obvious observations to a sophisticated procedure based
on Gaussian elimination to eliminate rows and columns. After preprocessing, violated
{0, 1

2}-cuts can often be indicated directly as single rows of the reduced problem. Our
computational experiments show that this is a very vital idea generating many violated
{0, 1

2}-cuts with small effort.
Independently from the preprocessing, an ILP is formulated to find the most violated

{0, 1
2}-cut. This auxiliary ILP can be solved either for the original separation problem

or the reduced one. In a computational study we show that the exact separation can be
sped up by a factor of at least 10 if preprocessing is performed first.

Algorithms to Separate {0, 1
2}-Chvátal-Gomory Cuts 695

The effect of the separation of {0, 1
2}-cuts on the performance of state-of-the-art ILP

solvers is documented in a further computational study. It shows that by exact separation
the number of branch&cut nodes is reduced by 20% on average at the cost of increased
overall computation times due to the auxiliary ILP that has to be solved. Moreover,
it is unclear whether the most violated {0, 1

2}-cut is also the one that strengthens the
formulation the most. Therefore, we additionally propose a heuristic routine (after pre-
processing) to find violated {0, 1

2}-cuts that are likely to strengthen the formulation.
Computational experiments show that in such a way the overall computation times can
be sped up by 20% for moderately sized instances.

Recently, Fischetti and Lodi [13] followed independently a similar integer program-
ming approach as to optimize over the first Chvátal closure, i.e., the polytope derived
by adding all inequalities (2) with u ∈ [0, 1)m. In contrast to their approach, we can
exploit the addressed preprocessing techniques for {0, 1

2}-SEP as to reduce the problem
size. By this, we can optimize more effectively over the first Chvátal closure in case the
{0, 1

2}-cuts are the only undominated CG cuts, e.g., for the matching polytope.

Outline. The rest of the paper is organized as follow. This section is completed with
some further notation used in this paper. Section 2 is dedicated to preprocessing for
{0, 1

2}-SEP, whereas exact and heuristic separation algorithms for {0, 1
2}-SEP are pre-

sented in Section 3. In Section 4 we report on the results of the computational studies
on the effectiveness of the developed ideas and algorithms. The paper is closed with
concluding remarks in Section 5.

Notation. Let ej denote a unit vector of appropriate size with j-th coefficient equal to
one, whereas 1 (0) denotes the all one (zero) vector and 1lI(i) the indicator function
being 1 if i ∈ I and 0 otherwise. With modulo applied component-wise, we define
Ā = A mod 2 and b̄ = b mod 2. Moreover, for a fractional solution x∗ ∈ PLP , we
set s = b − Ax∗ ≥ 0 as slack vector. The violation of (2) for a vector u ∈ {0, 1

2}m and
fractional solution x∗ ∈ PLP is denoted by z(u, x∗) :=

⌊
uT A

⌋
x∗ − ⌊

uT b
⌋
.

2 Preprocessing {0, 1
2}-SEP

To find a separating {0, 1
2}-cut, we seek for a weight vector u such that z(u, x∗) > 0.

The next lemma restates this task.

Lemma 1. Let x∗ ∈ PLP be a fractional solution. There exists a vector u ∈ {0, 1
2}m

such that z(u, x∗) > 0 if and only if there exists a binary vector v ∈ {0, 1}m such that
vT b̄ is odd and

vT s + (vT Ā mod 2)x∗ < 1 (3)

holds.

Proof. The violation z(u, x∗) can be rewritten as follows:

z(u, x∗) =
⌊
uT A

⌋
x∗ − ⌊

uT b
⌋

= 1
2

(
(2u)T b mod 2

) − uT s − 1
2

(
(2u)T A mod 2

)
x∗

v:=2u= 1
2

(
(vT b̄ mod 2) − vT s − (vT Ā mod 2)x∗

)

696 A.M.C.A. Koster, A. Zymolka, and M. Kutschka

Since Ā, b̄, s, and v = 2u are all non-negative, the only way to obtain a positive vi-
olation z(u, x∗) consists in vT b̄ mod 2 ≡ 1 and vT s + (vT Ā mod 2)x∗ < vT b̄
mod 2 ≡ 1. 	

Note that both conditions in Lemma 1 are independent of the actual values of coeffi-
cients and right hand sides, but take into account only their parities, i.e., whether they
are even or odd. The vector v indicates the original inequalities to combine with weight
1
2 such that the right hand side is in fact rounded down, and this strengthening (by 1

2)
is not compensated by the collected slacks together with the necessary rounding of the
fractional left hand side coefficients.

In order to simplify the restated task, the system (Ā, b̄, s) and x∗ can be prepro-
cessed by a series of transformations and problem size reductions, see also Caprara and
Fischetti [8]. The following observations are helpful in this regard:

Lemma 2. The reductions below do not influence the set of undominated {0, 1
2}-cuts

for the original system (and can be assumed to be carried out for the follow ups):

(i) All columns in Ā corresponding to variables x∗i = 0 can be removed.
(ii) Zero rows in (Ā, b̄) can be removed.

(iii) Zero columns in Ā can be removed.
(iv) Identical columns in Ā can be replaced by a single representative with associated

variable value as sum of the merged variables.
(v) Any unit vector column āi = ej , 1 ≤ j ≤ m, in Ā can be removed provided that

x∗i is added to the slack sj of row j.
(vi) Any row 1 ≤ j ≤ m with slack sj ≥ 1 can be removed.

(vii) Rows identical in (Ā, b̄) can be eliminated except for one with smallest slack
value.

For the proof we refer to [19]. As a result, we obtain a reduced system which is equiva-
lent for the separation. For notational convenience, we continue to use m and n for the
(reduced) numbers of rows and columns, respectively. Moreover, we assume through-
out the sequel that for any arising interim system, all of these reductions are applied as
well.

So far, any row of the system (Ā, b̄, s) represents a single original inequality. A
further reduction in problem size can be obtained by row combinations according to
rules specified below. For this, we associate with each row j of (Ā, b̄, s) an index set
Rj holding the indices of original inequalities currently combined for this row. These
index sets are initialized by Rj = {j}.

We consider a basic operation performed on the rows of (Ā, b̄, s): the addition of one
row to another one, where the coefficients of Ā and b̄ are added in modulo 2 arithmetic,
the coefficients of s in normal arithmetic, and the symmetric difference is taken for the
associated index sets. So, adding row i to row j gives a new row j with the following
values: ājk := āik + ājk mod 2 ∀k, b̄j := b̄i + b̄j mod 2, sj := si + sj , and
Rj := Ri � Rj , where X � Y = (X ∪ Y) \ (X ∩ Y) for sets X, Y .

Using this operation, the system (Ā, b̄, s) can be further transformed ad might then
allow for additional application of reduction rules from Lemma 2. Except for this, we
are particularly interested in rows with zero coefficients and non-zero right hand side.

Algorithms to Separate {0, 1
2}-Chvátal-Gomory Cuts 697

Lemma 3. Let j be the index of a zero row in Ā with b̄j = 1. If sj < 1, then the weight
vector u defined by ui = 1

2 for all i ∈ Rj and 0 otherwise, defines a violated {0, 1
2}-cut

on the original system (A, b, s)

Proof. Let v = ej . Then vT b̄ = 1 and the left hand side of (3) equals sj < 1, and thus
by Lemma 1 a violated {0, 1

2}-cut inequality is found. By construction, the index set
Rj defines exactly the original inequalities to be combined. 	

Notice that adding a row i with slack zero twice to any other row j results in the original
row j. Such rows play a key role in the next reduction rule.

Proposition 1. Let i be the index of a row and k the index of a column of Ā such that
āik = 1 and si = 0. Then column k can be removed from Ā provided that row i is
added to all other rows j with ājk = 1 and the slack of row i is set to si := x∗k.

Sketch of Proof. We have to assure that the solutions before and after the removal of
column k incur the same violation. Consider the corresponding set of rows before/after
a reduction. If row i is contained an odd number of times in the set after reduction, it
either is part of the set before reduction and added to an even number of rows, or it
is not part of the set before reduction, but added to an odd number of rows of the set
before reduction. A case analysis reveals that the same violation is found by setting the
slack of row i to x∗k. The full proof can be found in [19].

In case a zero row in Ā is constructed by (repeated) application of Proposition 1, we
either have a row with b̄j = 0 and Lemma 2 (ii) can be applied to remove the row as
well, or b̄j = 1, and, by Lemma 3, the row describes a {0, 1

2}-cut with violation 1 − sj .
If in addition sj = 0, the violation is maximal. By Lemma 1 on the other hand, a {0, 1

2}-
cut with maximal violation can be only combined from rows with slack zero and parity
sum zero (modulo 2) for all columns k with x∗k > 0. Since the above procedure can be
applied as long as there are rows with slack zero, it provides a polynomial-time exact
algorithm for maximally violated {0, 1

2}-cuts. Caprara et al. [9] observed the same in
the more general context of mod-k-cuts.

Further, a zero row j in Ā with b̄j = 1 and sj = 0 can be very helpful in generating
further violated {0, 1

2}-cuts: Any other row i with b̄i = 0 and si < 1 can be turned
into a violated {0, 1

2}-cut by adding row j. This way, a zero row with right hand side
1 is generated, whereas the slack remains the same. Only in case Ri ∩ Rj = ∅, the
{0, 1

2}-cut is dominated by the one identified by row j. Therefore if such a row j exists,
the condition uT b = 1 can be neglected in the search for further violated cuts.

Corollary 1. Let i be the index of a row and k the index of a column of Ā such that
āik = 1, si = 0, and x∗k ≥ 1. Then both row i and column k can be removed from Ā
provided that row i is added to all other rows j with ājk = 1.

Proof. After application of Proposition 1, si = x∗k > 1 and thus Lemma 2 (vi) can be
applied to remove row i. 	

The above holds in particular for tight upper bound constraints from the original system.
If b̄i = 0, only the index sets Rj have to be updated. If b̄i = 1, b̄j have to be adapted
additionally. Corollary 1 further indicates that it is benefical to perform Proposition 1 on

698 A.M.C.A. Koster, A. Zymolka, and M. Kutschka

columns with large x∗k . Altogether, the combination of Lemma 2 and Proposition 1 pro-
vides an algorithmic framework for preprocessing the system (Ā, b̄, s) and generation
of maximally violated {0, 1

2}-cuts.

3 Separation Algorithms

3.1 Exact Separation

With or without preprocessing, the separation problem {0, 1
2}-SEP can be described by

a system (Ā, b̄, s) and a fractional solution x∗ ∈ PLP . The exact separation problem
can be modeled by an auxiliary integer linear program which maximizes the violation.
By Lemma 1, {0, 1

2}-SEP can be restated as the search for a binary weight vector v ∈
{0, 1}m such that vT b̄ mod 2 = 1 and (3) is satisfied. These weights are used as binary
variables vi in the formulation.

Condition (3) requires to determine uT Ā mod 2 ∈ {0, 1}n. To this end, the vari-
ables yi ∈ {0, 1} for all i = 1, . . . , n are introduced to express whether the i-th vari-
able’s coefficient becomes odd in the indicated inequality sum or not. To model the
modulo 2 computations, we further need auxiliary integer variables r = (ri)i=1,...,n ∈
Z

n
+ for all columns i = 1, . . . , n, as well as an additional q ∈ Z+ for the right hand

side. The separation problem then reads:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẑ = min sT v + (x∗)T y
s.t. b̄T v − 2q = 1

ĀT v − 2r − y = 0
v ∈ {0, 1}m

y ∈ {0, 1}n

r ∈ Z
n
+

q ∈ Z+

(4)

The optimum value ẑ of (4) indicates whether a violated cut has been found or not.
If ẑ ≥ 1, this is not the case. If 0 ≤ ẑ < 1, 1 − ẑ equals twice the violation z(u, x∗)
of the cut generated by combining the original inequalities which are obtained from
symmetric difference by those sets Rj with vj = 1 in the optimum solution.

To guide the search to highly violated {0, 1
2}-cuts, we can add an inequality

sT v + (x∗)T y ≤ 1 − ε (5)

to (4) where ε ∈ (0, 1]. In this way only cuts with a violation of at least 1
2ε are found.

3.2 Heuristic Search

After the above described reductions, the auxiliary ILP might stay, nevertheless, large
for larger ILPs. Hence the search for violated {0, 1

2}-cuts might still be time-consuming.
A fast alternative is to enumerate all possible combinations of k or less rows of (Ā, b̄)
that yield a violated {0, 1

2}-cut with 0 < k ≤ m: First, we check if any single row of
(Ā, b̄) results in a violated {0, 1

2}-cut. If none of them is violated, we test all combina-
tions of two rows for violation. This process is continued to combinations of k rows,

Algorithms to Separate {0, 1
2}-Chvátal-Gomory Cuts 699

if all combinations up to k − 1 rows are not violated or the number of detected vio-
lated cuts does not exceed a given limit. Surprisingly, k = 1 yielded the best results,
cf. Section 4.

4 Computational Results

Framework. We implemented our preprocessing and separation algorithms as addi-
tional separator within the branch&cut framework SCIP v0.90 [1,2] using CPLEX
10.01 [16] as underlying LP solver. All of SCIP’s standard modules (e.g. separators,
heuristics) are kept if not stated differently. SCIP’s parameters are set to their default
values except for a global time limit of 1 hour per instance and avoidance of restarts
during solving.

If not stated differently, our separator is called only in the root node like SCIP’s
standard separators. To investigate the added value of {0, 1

2}-cut separation more ac-
curately our separator is called before SCIP’s separators (Gomory, Strong Chvátal-
Gomory, Complemented MIR [2]) and cut generating constraint handlers (knapsack,
linear). At default, SCIP’s separators and constraint handlers are called to separate cuts
if and only if our separator does not find a violated cut anymore.

Instead of adding violated {0, 1
2}-cuts directly to the LP, they are stored in a pool

from which only the best cuts are selected and added to the LP. We tested several meth-
ods to rate the cuts in the pool but we restrict to two methods in the following. The
first one is to rate cuts by their violation (i.e., cuts with large violation are better than
those with small violation). The second one is similar: Cuts are rated by non-increasing
efficacy which is defined as its violation divided by the Euclidian norm of its coeffi-
cients (i.e., cuts are better the higher the “average” violation is). The best up to p cuts
are transferred to SCIP (with p given as input parameter) which uses further criteria
like the parallelism to the objective and other cuts to select the best among all violated
inequalities found.

All computations are done on a computer with 3.6 Ghz CPU, 3.7 GB RAM and
Linux as operating system. Our computational study includes all pure integer (i.e., non-
mixed) instances from MIPLIB 3.0 [6] and MIPLIB 2003 [3] as well as the 2-matching-
relaxations of TSP instances from the TSPLIB [5] that also have been studied in [13].

Speed-Up by Preprocessing. We implemented the preprocessing methods suggested
in Section 2 in the following order: Removing columns whose corresponding vari-
ables (a) are zero in the current LP solution (Lemma 2 (i)) or (b) have a tight vari-
able bound constraint, (c) removing rows with slack at least 1 (Lemma 2 (vi)), (d)
removing columns by repeatedly applying Proposition 1, and (e) removing unit vector
columns (Lemma 2 (v)). Next we check for empty rows of the preprocessed matrix with
a nonzero right hand side (i.e., b̄j = 1). Such a row directly yields a {0, 1

2}-cut. It is (f)
deleted from the matrix and if the corresponding cut is violated with violation at least
ε, it is added to the pool because every further combination of rows containing such a
row cannot yield a stronger cut. Finally, (g) we erase identical rows except for one with
the lowest slack value (Lemma 2 (vii)).

Whenever a zero column, a zero row, or a row with slack at least 1 results from a
preprocessing step, it is removed from (Ā, b̄) immediately (e.g., zero rows that result

700 A.M.C.A. Koster, A. Zymolka, and M. Kutschka

(a) MIPLIB instances (b) TSPLIB instances

Fig. 1. Efficiency of preprocessing: reduction percentage in number of rows averaged over all
applications of the separator

from Proposition 1 are removed from (Ā, b̄) and yield a reduction in the number of
rows).

To test the effect of preprocessing, we ran all instances with separation of {0, 1
2}-

cuts at all nodes of the branch&cut tree without a minimum violation (i.e., ε = 0). The
steps (a)-(c) reduce the size of Ā significantly, e.g., considering the MIPLIB instances,
on average 83.2% in number of rows (ranging from 46.96% (stein27) to 99.9% (nw04))
and can be applied without greater effort. Considering the 2-matching relaxations of
the TSPLIB instances this reduction is even more effective, namely 99.5% of the size
of Ā is eliminated (on average). Hence, these steps should certainly be applied and
we focus on the further reductions. Figure 1 shows the effect of the steps (d), (e), (f)
and (g), using the number of rows as a measure for the problem size. All reduction
values are given relative to the number of rows of Ā after applying steps (a)-(c) and are
averaged over all times they are applied within the branch&cut. Hence a value of 0%
means that no further reduction beside the steps (a)-(c) can be achieved and a value of
100% corresponds to a reduction resulting in an empty pair (Ā, b̄). The instances are
sorted according to non-decreasing total reduction. Figure 1 shows that on average a
reduction of about 14.6% of the remaining size (after applying (a)-(c)) is achieved by
applying Proposition 1 (step (d)), 1.26% by removing unit vector columns (step (e)),
1.5% by removing empty rows that yield a violated cut (see above) and finally 40.7%
can be achieved by removing identical rows which arise from applying the previous
preprocessing methods (in particular within step (d) and (e)).

Moreover the total reduction in number of rows of (Ā, b̄) (including the steps (a)-(c))
is increased to 95.5% on average (ranging from 70.0% (stein27) to 99.9% (air03)) for
the MIPLIB instances, respectively to 99.9% on average for the 2-matching relaxation
of the TSPLIB instances.

This reduction of almost 100% of the size of Ā yields an enormous speed-up in the
solving time of the auxiliary ILP (4) as shown in Figure 2. Here the CPU times needed
to solve (4) with and without preprocessing (i.e. steps (d) to (g)) are displayed averaged
over all auxiliary ILPs within the branch&cut, with a time limit of 10s (i.e., no further

Algorithms to Separate {0, 1
2}-Chvátal-Gomory Cuts 701

(a) MIPLIB instances (b) TSPLIB instances

Fig. 2. Efficiency of preprocessing: speed-up in solving the auxiliary ILP

nodes of the auxiliary branch&cut are solved as soon as the time limit is exceeded).
Note that solving times are given in seconds and we use a logarithmic scale for them.
The instances are sorted according non-decreasing average solving time of the auxiliary
ILP without preprocessing.

Figure 2 shows that applying the preprocessing steps (d) to (g) reduces the solving
time of the auxiliary ILP significantly. Assuming a solving time of 10s for those in-
stances that reach the time limit, for 33% of the MIPLIB instances solving the auxiliary
ILP can be sped up by a factor of at least 100. On average over all MIPLIB instances
this factor exceeds 38. Considering the 2-matching relaxations, the solving time is sped
up by a factor of at least 30 for all instances and exceeds 270 on average. Note that
increasing the time limit would yield even higher speed-up factors.

Effect of Separation. To identify the effect of {0, 1
2}-cut separation, two natural key val-

ues are available for comparison: the number of nodes of the branch&cut tree and the
overall CPU time. Since the 2-matching polytope is completely described by the model
inequalities and all {0, 1

2}-cuts (in fact only the blossom inequalities suffice [11]), no
branching is needed for these instances if the {0, 1

2}-cuts are separated exactly. Experi-
ments documented in [19] have shown that we are able to solve 80% of the 2-matching
relaxations of the TSP instances with less cuts than Fischetti and Lodi [13] need with
their more general Chvátal-Gomory cut separation. Here, we consider the pure integer
problems from MIBLIB that can be solved within 1 hour with SCIP’s default settings.
We first compare on the number of branch&cut nodes needed with and without {0, 1

2}-
cut separation. For this, we use the following settings: {0, 1

2}-cuts are separated exactly
using the auxiliary ILP (4). The separator is called in every node of the branch&cut tree
up to a depth of 15. Note that not only violated cuts obtained from the optimal solution
of the auxiliary ILP, but also from earlier (non-optimal) solutions are added to the pool.
In addition, we apply a simple postprocessing: All single rows whose corresponding
variables are zero in the auxiliary ILP solutions (i.e., rows that are not part of the most
violated {0, 1

2}-cut yet) are checked. If one of these rows yields a violated {0, 1
2}-cut, it

is added to the pool as well. This way, the number of branch&cut nodes needed to solve
a problem can be reduced by 26% on average (ranging from a reduction by 84% to an
increase by 157%) at the cost of a higher overall solving time: an increase by 158% on

702 A.M.C.A. Koster, A. Zymolka, and M. Kutschka

Fig. 3. Efficiency of separation: ratio of branch&cut nodes without and with {0, 1
2}-cuts [bars]

and absolute numbers without [line with markers]

average over all instances (primary induced by fast instances with solving times of less
than a minute). The results are shown in Figure 3.

Since the computation of an optimal solution to the auxiliary ILP (4) is time con-
suming and results in few violated cuts , such an approach is not suitable for integration
in general purpose ILP solvers. Therefore, we finally perform a CPU time comparison:

(i) SCIP default
(ii) SCIP with our implementation as additional separator using the auxiliary ILP (4)

to separate {0, 1
2}-cuts exactly at the root only (cut&branch). Like in the test

we used to compare on the branch&cut nodes, not only violated cuts obtained
from the optimal solution of the auxiliary ILP, but also from earlier (non-optimal)
solutions and from single rows not part of the most violated {0, 1

2}-cut are added
to the pool.

(iii) SCIP with our separator using the heuristic described in Section 3.2 to separate
{0, 1

2}-cuts at the root node only. Results of (ii) showed us that almost all added
{0, 1

2}-cuts are generated from a relative small number of rows of Ā: on average
only 2 or less “preprocessed” rows. The “original” rows (i.e., rows in A) im-
plied by the preprocessing exceeds 10 on average and goes up to as high as 351
(mzzv11). Inspired by this observation we studied several settings for k. Based on
the results of this study we set k = 1, i.e., we check all single rows of (Ā, b̄) if
they yield a violated {0, 1

2}-cut.

In all cases we restrict on those {0, 1
2}-cuts with violation greater than 0.35 (i.e., ε = 0.7

in (5)) to avoid the generation of many weak cuts. Hence not all violated {0, 1
2}-cuts

are separated. We add all violated {0, 1
2}-cuts from preprocessing to the pool and addi-

tionally up to 100 violated {0, 1
2}-cuts found by the procedures of case (ii) respectively

(iii). The p = 100 best (w.r.t. their efficacy) cuts of the pool are added to SCIP which
decides if they enter the LP (as it does for all its standard separators, as well).

Figure 4 shows the relative solving times of cases (ii) and (iii) w.r.t. case (i), e.g.,
a value of 0.8 means that solving the instance takes only 80% time compared to SCIP
default (case (i)). There are two bars for each instance, the first one refers to case (ii), the

Algorithms to Separate {0, 1
2}-Chvátal-Gomory Cuts 703

Fig. 4. Efficiency of separation: quotient of solving times of cases (ii) and (iii) w.r.t. case (i) with
a split in SCIP and separation time [bars], as well as absolute solving time of case (i) [line with
markers]

second one to case (iii). Each bar is divided into two parts: the lower black part shows
the fraction of the solving time spent by SCIP methods and the upper grey part shows
the fraction spent within the {0, 1

2}-cuts separator. The black boxes refer to the second
y-axis on the right hand side which displays the absolute solving times of SCIP default
(case (i)) in seconds, according to which the instances are non-decreasingly sorted.

From Figure 4, we conclude that our heuristic approach (case (iii)) performs mostly
faster than the exact approach (case (ii)) (with a few exceptions like mzzv11 or
fast0507). In particular, the more difficult instances in case (i) with solving times of
more than 10 seconds (i.e., instances air03 and on) can often be solved faster. A slowed-
down instance like nw04 might be sped up by a faster implementation of our separator,
reducing the additional time. Finally we observe that our heuristic approach (case (iii))
reduces the solving time by 7% averaged over all instances (geometric mean), and by
21% averaged over the instances with absolute solving time greater than 10 seconds in
case (i).

5 Conclusion

In this paper, we have developed algorithms to separate {0, 1
2}-Chvátal-Gomory cuts in

general integer programs, despite the NP-completeness of the problem. Preprocessing
rules turned out to be an indispensable part of such algorithms as they do not only reduce
the size of the remaining separation problem but in many cases also provide violated
inequalities directly, canceling the need for further processing. Separating the most vio-
lated {0, 1

2}-cut yields a substantial reduction of the number of branch&cut nodes to be
searched until optimality can be proven, whereas heuristic separation achieved the best
time performance. The savings in computation time have already aroused the interest
of both commercial and academic developers of integer programming solvers.

The developed algorithms are at present only applicable to pure integer programs,
i.e., without continuous variables. The extension of the separation procedure to general
mixed integer programming problems remains as an important further research direc-
tion as these would enhance ILP-solvers further.

704 A.M.C.A. Koster, A. Zymolka, and M. Kutschka

References

1. Achterberg, T.: SCIP – a framework to integrate constraint and mixed integer pro-
gramming. ZIB-Report 04–19, Zuse Institute Berlin (2004), http://www.zib.de/
Publications/abstracts/ZR-04-19/

2. Achterberg, T., Berthold, T., Koch, T., Martin, A., Wolter, K.: SCIP (Solving Constraint
Integer Programs) (2006), http://scip.zib.de/

3. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003 (2003), http://miplib.zib.de
4. Andreello, G., Caprara, A., Fischetti, M.: Embedding cuts in a branch&cut framework: a

computational study with {0, 1
2}-cuts. Technical report, University of Padova (2003)

5. Bixby, R., Reinelt, G.: TSPLIB, http://elib.zib.de/pub/mp-testdata/tsp/
tsplib/tsplib.html

6. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: MIPLIB 3.0, http://www.
caam.rice.edu/˜bixby/miplib/miplib.html

7. Caprara, A., Fischetti, M.: {0, 1/2}-Chvátal-Gomory cuts. Mathematical Programming 74,
221–235 (1996)

8. Caprara, A., Fischetti, M.: Odd cut-sets, odd cycles, and 0 − 1/2 Chvátal-Gomory cuts.
Ricerca Operativa 26, 51–80 (1996)

9. Caprara, A., Fischetti, M., Letchford, A.N.: On the separation of maximally violated mod-k
cuts. Mathematical Programming 87, 37–56 (2000)

10. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math-
ematics 4, 305–337 (1973)

11. Edmonds, J., Johnson, E.L.: Matching: a well-solved class of integer linear programs. In:
Guy, R.K., Hanani, H., Sauer, N. (eds.) Combinatorial Structures and Their Applications, pp.
80–92. Gordon and Breach, New York (1970)

12. Fiorini, S.: {0, 1
2}-cuts and the linear ordering problem: Surfaces that define facets. SIAM

Journal on Discrete Mathematics 20(4), 893–912 (2006)
13. Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. Math. Program-

ming 110(1), 3–20 (2007)
14. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bulletin of

the American Mathematical Society 64, 275–278 (1958)
15. Gomory, R.E.: An algorithm for integer solutions to linear programs. In: Graves, R.L., Wolfe,

P. (eds.) Recent Advances in Mathematical Programming, pp. 269–302. McGraw-Hill, New
York (1963)

16. ILOG. CPLEX version 10.0 (2006), http://www.ilog.com/products/cplex
17. Koster, A.M.C.A., Zymolka, A.: Stable Multi-Sets. Mathematical Methods of Operations

Research 56(1), 45–65 (2002)
18. Koster, A.M.C.A., Zymolka, A.: On cycles and the stable multi-set polytope. Discrete Opti-

mization 2(3), 241–255 (2005)
19. Koster, A.M.C.A., Zymolka, A., Kutschka, M.: Algorithms to separate {0, 1

2}-
Chvátal-Gomory cuts. ZIB-Report 07–10, Zuse Institute Berlin (2007), http://www.
zib.de/Publications/abstracts/ZR-07-10/

20. Padberg, M.: On the facial structure of set packing polyhedra. Mathematical Programming 5,
199–215 (1973)

http://www.zib.de/Publications/abstracts/ZR-04-19/
http://www.zib.de/Publications/abstracts/ZR-04-19/
http://scip.zib.de/
http://miplib.zib.de
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
http://www.caam.rice.edu/~bixby/miplib/miplib.html
http://www.caam.rice.edu/~bixby/miplib/miplib.html
http://www.ilog.com/products/cplex
http://www.zib.de/Publications/abstracts/ZR-07-10/
http://www.zib.de/Publications/abstracts/ZR-07-10/

Fast Lowest Common Ancestor Computations in Dags

Stefan Eckhardt, Andreas Michael Mühling, and Johannes Nowak

Fakultät für Informatik, Technische Universität München,
Boltzmannstraße 3, D-85748 Garching, Germany

{eckhardt,muehling,nowakj}@in.tum.de

Abstract. This work studies lowest common ancestor computations in directed
acyclic graphs. We present fast algorithms for solving the ALL-PAIRS REPRE-
SENTATIVE LCA and ALL-PAIRS ALL LCA problems with expected running
time of O(n2 log n) and O(n3 log log n) respectively, where the expectation is
taken over a distribution of input graphs. The speed-ups over recently developed
methods are achieved by applying transitive reduction on the input dags. The al-
gorithms are experimentally evaluated against previous approaches demonstrat-
ing a significant improvement. On the purely theoretical side, we improve the
upper bound for ALL-PAIRS ALL LCA to O(n3.3399). We give first fully dy-
namic algorithms for both ALL-PAIRS REPRESENTATIVE LCA and ALL-PAIRS

ALL LCA. Here, the non-trivial update complexities are O(n2.5) and O(n3) re-
spectively, with constant query times.

1 Introduction

Causality systems or other kinds of entity dependencies are naturally modeled by di-
rected acyclic graphs (dags). Thinking of causal relations among a set of events, natural
questions come up, such as: which event entails two given events? What is the last event
which entails two given events? Transferring these questions to dags, answers are found
by computing common ancestors (CAs), i.e., vertices that reach via some path each of
the given vertices, and computing lowest common ancestors (LCAs), i.e., those com-
mon ancestors that do not reach any other common ancestor of the two given vertices.

Although LCA algorithms for general dags are indispensable computational prim-
itives, they have been found an independent subject of studies only recently [7,6,19].
There is a lot of sophisticated work devoted to LCA computations for the special case
of trees (see, e.g., [15,22,6]), but due to the limited expressive power of trees they are
often applicable only in restrictive or over-simplified settings. There are numerous ap-
plications for LCA queries in dags, e.g., object inheritance in programming languages,
lattice operations for complex systems, lowest common ancestor queries in phyloge-
netic networks, or queries concerning customer-provider relationships in the Internet.
For a more detailed description of possible applications, we refer to [6,5]. The algorith-
mic variants studied in this paper are: ALL-PAIRS REPRESENTATIVE LCA : Compute
one (representative) LCA for each pair of vertices, and ALL-PAIRS ALL LCA : Com-
pute the set of all LCAs for each pair of vertices.

Related Work. LCA algorithms have been extensively studied in the context of trees
with most of the research rooted in [1,24]. The first asymptotically optimal algorithm

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 705–716, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

706 S. Eckhardt, A.M. Mühling, and J. Nowak

for the all-pairs LCA problem in trees, with linear preprocessing time and constant
query time, was given in [15]. The same asymptotics was reached using a simpler and
parallelizable algorithm in [22]. Recently, a reduction to range minimum queries has
been used to obtain a further simplification[6]. More algorithmic variants can be found
in, e.g., [8,26,25,9].

In the more general case of dags, a pair of nodes may have more than one LCA,
which leads to the distinction of representative versus all LCA solutions. In early re-
search both versions still coincide by considering dags with each pair having at most
one LCA. Extending the work on LCAs in trees, in [20], an algorithm was described
with linear preprocessing and constant query time for the LCA problem on arbitrar-
ily directed trees (or, causal polytrees). Another solution was given in [2], where the
representative problem in the context of object inheritance lattices was studied. The ap-
proach in [2], which is based on poset embeddings into boolean lattices yielded O(n3)
preprocessing and O(log n) query time on lower semi-lattices.

The representative LCA problem on general dags has been studied recently in
[7,6,19,5]. The works rely on fast matrix multiplications (currently the fastest known
algorithm needs O(nω) operations, with ω < 2.376 [11]) to achieve Õ(n

ω+3
2) [6]1 and

Õ(n2+ 1
4−ω) [19] preprocessing time on dags with n nodes and m edges. Recently, in [5]

and independently [12], the upper bound of the representative LCA problem has been
improved to O(n2+μ) by applying rectangular matrix multiplication [10].2 For sparse
dags, in [19,5], O(nm) algorithms have been presented as well. The authors of [5] study
variants of the representative LCA problem, namely (L)CA computations in weighted
dags and the ALL-PAIRS ALL LCA problem. For the latter problem, an upper bound of
O(n3+μ) is shown, as well as algorithms with scaling properties. In [6], a short exper-
imental study of the performance of ALL-PAIRS REPRESENTATIVE LCA algorithms
is presented. It is demonstrated, that on random dags, a suboptimal but simple O(n3)
algorithm based on range minimum queries (RMQ) and ancestor lists performs best.

Results. We summarize the technical contributions of this paper. Most of the proofs are
omitted due to space limitations and can be found in the full version of the paper [13].

1. We present fast algorithms for solving the ALL-PAIRS REPRESENTATIVE LCA and
ALL-PAIRS ALL LCA problems with expected running time of O(n2 log n) and
O(n3 log log n) respectively. Here, the expectation is taken over a distribution of
all possible input dags, i.e., the algorithms are not randomized. We use the term
expected running time in this sense throughout this work. The speed-up over recently
developed methods is achieved by applying transitive reduction on the input dags.

2. We improve the recently shown upper bound for ALL-PAIRS ALL LCA from
O(n3+μ) to O(nω(2,1,1)). This result is achieved by applying matrix multiplica-
tion to computing boolean witness matrices W (v) for each vertex v ∈ V , where
W (v)[x, y] = 1 indicates that v is a CA, but not an LCA of (x, y).

1 Throughout this work, we use Õ(f(n)) for O (f(n) · polylog(n)).
2 Throughout this work, ω(x, y, z) is the exponent of the algebraic matrix multiplication of

a nx × ny with a ny × nz matrix. Let μ be such that ω(1, μ, 1) = 1 + 2μ is satisfied.
The fastest known algorithms for rectangular matrix multiplication imply μ < 0.575 and
ω(2, 1, 1) < 3.3399.

Fast Lowest Common Ancestor Computations in Dags 707

3. We give first fully dynamic algorithms for both ALL-PAIRS REPRESENTATIVE

LCA and ALL-PAIRS ALL LCA . Here, the non-trivial update complexities are
O(n2.5) and O(n3) respectively, with constant query times. The dynamic algo-
rithms are based on a technique which reduces the matrix multiplications in the
static solutions to transitive closure computations in corresponding dags.

4. We study LCA computations experimentally. We demonstrate that simplicity and
the transitive reduction technique are fundamental to practically efficient algo-
rithms. Furthermore, we evaluate the running time of several ALL-PAIRS REP-
RESENTATIVE LCA and ALL-PAIRS ALL LCA algorithms in different settings.

2 Fast LCA Algorithms

Let G = (V, E) be a directed graph. Throughout this work we denote by n the number
of vertices and by m the number of edges. G is a directed acyclic graph (dag) if and
only if G contains no cycles. Let Gclo = (V, Eclo) denote the transitive closure of G,
i.e., the graph having an edge (u, v) if v is reachable from u over some directed path
in G. Similarly, let Gred = (V, Ered) be the transitive reduction of G, i.e., the smallest
graph G′ such that Gclo = G′clo. Throughout this work, let | Ered | = mred.

A dag G = (V, E) imposes a partial ordering on the vertex set. Let N be a bijec-
tion from V into {1, . . . , n}. N is said to be a topological ordering if N(u) < N(v)
whenever v is reachable from u in G. We refer to a vertex z which has the maximal
topological number N(z) among all vertices in a set as the rightmost vertex.

Let G = (V, E) be a dag and x, y, z ∈ V . The vertex z is a common ancestor (CA) of
x and y if both x and y are reachable from z, i.e., (z, x) and (z, y) are in the transitive
closure of G. By CA(x, y), we denote the set of all CAs of x and y. A vertex z is a
lowest common ancestor (LCA) of x and y if and only if z ∈ CA(x, y) and for each
z′ ∈ V with (z, z′) ∈ Eclo we have z′ �∈ CA(x, y). LCA(x, y) denotes the set of all
LCAs of x and y.

The algorithms we present in this section are based on the algorithms described in
[5]. The following lemma is fundamental to the speed-ups that lead to practically fast
algorithms.

Lemma 1. For all x, y, z ∈ V , it holds that z = LCAG(x, y) if and only if z =
LCAGred(x, y).

The above lemma implies that LCA computations in a dag G can be restricted to the
graph Gred. Observe, however, that this does not directly apply to LCA problems in-
volving distances [5]. The restriction to the transitive reduction turns out to be of critical
importance when designing practically fast algorithms for ALL-PAIRS REPRESENTA-
TIVE LCA and ALL-PAIRS ALL LCA.

The All-Pairs Representative LCA Problem. In [5], a dynamic programming algo-
rithm which solves ALL-PAIRS REPRESENTATIVE LCA in worst case time O(nm) is
given. Applying Lemma 1 yields Algorithm APRLCA.

Theorem 2. Algorithm APRLCA solves ALL-PAIRS REPRESENTATIVE LCA in time
O(n mred).

708 S. Eckhardt, A.M. Mühling, and J. Nowak

Although the modified algorithm offers no theoretical advantage in the worst case, its
superior practical performance can be explained by considering the expected value of
the parameter mred on random dags. In this section we consider random dags [4] in the
Gn,p model, i.e., each possible edge in the graph is chosen independently with equal
probability p. The following lemma is due to Simon [23].

Lemma 3. Let G = (V, E) be a random dag in the Gn,p model. Let mred be a random
variable denoting the number of edges in the transitive reduction of G. Then

E[mred] = O(n log n)

Corollary 4. Let G = (V, E) be a random dag in the Gn,p model. Then, the expected
running time of Algorithm APRLCA on G is O(n2 log n).

The All-Pairs All LCA Problem. We improve the algorithms for ALL-PAIRS ALL

LCA presented in [5] by applying Lemma 1.
Algorithm APA1 is quite natural. First, it computes the transitive closure of G in

O(nm). Then, for every vertex z and every pair (x, y) it determines if z is an LCA of
(x, y) in time O(out-deg(z)). If z is a CA of (x, y), but none of its children, then z is
an LCA of (x, y). Checking whether a given vertex is a CA of a vertex pair can be done
by simple transitive closure look-up. The total running time of the original algorithm is
O(n2m).

Theorem 5. The time needed by Algorithm APA1 to solve ALL-PAIRS ALL LCA on
G = (V, E) is bounded by O(n2 mred). Let G = (V, E) be a random dag in the Gn,p

model. Then, Algorithm APA1 solves ALL-PAIRS ALL LCA on G in expected time
O(n3 log n).

Applying Lemma 1 to Algorithm 2 in [5] yields Algorithm APA2. Like algorithm
APRLCA it is based on dynamic programming. The LCA sets are iteratively con-
structed by merging already determined LCA sets. In the merging steps, all those ver-
tices that are predecessors of some other vertices in the set are discarded. In [5], it is
shown that the merging operation can be performed in time O(min{n, k2}), where k
is the maximum cardinality of any LCA set. This finding allows for scaling with the
maximal LCA sets. Moreover, it is possible to decide on-line which merging strategy is
to be preferred. Observe, however, that even for sparse dags with m = O(n), the total
size of the LCA sets can be Ω(n3) [5].

Theorem 6. The time needed by Algorithm APA2 to solve ALL-PAIRS ALL LCA on
G = (V, E) is bounded by O(n mred min{n, k2}), where k is the maximum LCA set.
Let G = (V, E) be a random dag in the Gn,p model. Then, Algorithm APA2 solves the
ALL-PAIRS ALL LCA problem in expected time O(n2 log n min{n, k2}).

Algorithm APA3 is achieved by applying Lemma 1 on Algorithm 4 in [5]. It is based on
the following idea. suppose we are given a vertex z and want to determine all pairs (x, y)
for which z is an LCA. To this end, we employ an ALL-PAIRS REPRESENTATIVE LCA
algorithm on G using a topological ordering that maximizes N(z). Since ALL-PAIRS

REPRESENTATIVE LCA algorithms return rightmost LCAs, this approach guarantees

Fast Lowest Common Ancestor Computations in Dags 709

that z is returned for the appropriate pairs. This can even be improved by maximizing
the topological numberings of vertices on a path simultaneously. For more details, we
refer to [5].

Theorem 7. The time needed by Algorithm APA3 to solve ALL-PAIRS ALL LCA on
G = (V, E) is bounded by O(n mred w), where w is the size of path cover. Let G =
(V, E) be a random dag in the Gn,p model. Then, Algorithm APA3 solves ALL-PAIRS

ALL LCA in expected time O(n3) for log2 n/n ≤ p < 1 and expected running time
O(n3 log log n) for 0 < p < log2 n/n.

Proof. The running time of algorithm APA3 is bounded by O(n mred w), where w is
the width of the path cover of G. To analyze the expected running on a random dag, we
use the following lemma [23]:

Lemma 8. Let G = (V, E) be a random dag in the Gn,p model. Then, there exists an
algorithm that computes a path cover of G of width w and the transitive reduction of G
in time O(w mred). Moreover

E[w mred] =
{

O(n2) for log2 n/n ≤ p < 1
O(n2 log log n) otherwise

Algorithm B in [23] with running time O(n+m) yields a path cover of size w satisfying
the conditions of the above lemma. Hence, the theorem follows. ��

3 Theoretical Improvements

Improved Upper Bounds for ALL-PAIRS ALL LCA. We start by considering the
following problem which we call ONE-VERTEX ALL-PAIRS LCA . Given a dag G and
a vertex v, find all pairs (x, y) such that v is an LCA of (x, y). Clearly, from a ONE-
VERTEX ALL-PAIRS LCA solution for each v ∈ V , a solution to ALL-PAIRS ALL

LCA can be derived in O(n3).
ONE-VERTEX ALL-PAIRS LCA reduces to the following. Find all pairs (x′, y′) such

that v is a CA of (x′, y′). Then, test for each such pair, if there exists a witness, i.e., a
successor of v that is also a CA of this pair, or not. To this end, it is enough to consider
the children of v in G.

A solution to this problem works as follows. We initialize an n×n matrix C(v), such
that C(v)[x, y] = 1 if and only if v is a CA of (x, y). Obviously, this can be done in
time O(n2) with knowledge of the transitive closure. Let A(v) be an n × n matrix such
that A(v)[x, z] = 1 if and only if x is reachable from z and z is a direct child of v, i.e.,
(v, z) ∈ E. Let A(v)[x, z] = 0 otherwise. This can be thought of as the transpose of the
transitive closure restricted to the rows indexed with children of v, all other entries set
to zero. Let A be the adjacency matrix corresponding to Gclo. Let W (v) = A(v) · A be
the witness matrix of v.

Lemma 9. Let W (v) be the witness matrix of vertex v. Then, v is an LCA of (x, y) if
and only if W (v)[x, y] = 0 and C(v)[x, y] = 1.

Hence, ONE-VERTEX ALL-PAIRS LCA can be solved in time O(nω). This approach
leads immediately to an O(n1+ω) algorithm for ALL-PAIRS ALL LCA . Fast rectan-
gular matrix multiplication yields even a stronger upper bound. We can compute the

710 S. Eckhardt, A.M. Mühling, and J. Nowak

witness matrices W (v) for vertices v ∈ V in one step by multiplying an n2 × n and an
n × n matrix in time O(nω(2,1,1)).

⎛

⎜⎜⎜⎝

A(v1)

A(v2)

...
A(vn)

⎞

⎟⎟⎟⎠ · A =

⎛

⎜⎜⎜⎝

W (v1)

W (v2)

...
W (vn)

⎞

⎟⎟⎟⎠ (1)

Theorem 10. ALL-PAIRS ALL LCA can be solved in time O(nω(2,1,1)).

Proof. The algorithm works as follows:

1. Compute the transitive closure of G
2. Compute the common ancestor matrices C(v) for all v ∈ V . Since Gclo is known,

this can be achieved in time O(n3).
3. Compute the witness matrices W (v) for all v ∈ V using Equation (1). This takes

time O(nω(2,1,1)). Currently, upper bounds for rectangular matrix multiplication
imply ω(2, 1, 1) < 3.3399.

4. Let L(v) = C(v) − W (v) for each v ∈ V . Then, for each pair (x, y), all LCAs
can be read from the entries L(v)[x, y] for each v. This step takes a total of O(n3)
time. ��

Dynamic Algorithms for ALL-PAIRS REPRESENTATIVE LCA. We show how to
solve the fully dynamic ALL-PAIRS REPRESENTATIVE LCA problem with update time
O(n2.5) and query time O(1). We consider vertex-centered updates, that is, given a ver-
tex v, edges incident to v can be arbitrarily added or deleted in one update step. The
approach is based on the matrix multiplication-based static ALL-PAIRS REPRESENTA-
TIVE LCA solution in [5]. The static algorithm is based on rectangular matrix multipli-
cations which serve as CA existence computations. To this end, the vertices are divided
into l = n1−r sets V 1, . . . , V l of size nr for some r ∈ [0, 1]. To ease exposition, we
assume in the sequel that nr and n1−r are integers. For each vertex set V i one rectan-
gular matrix product of an n×nr and an nr ×n matrix is computed in order to identify
all pairs for which a CA in the set V i exists. The rightmost LCAs are then searched in
the vertex set with the largest index i. In order to improve the upper bound for vertex-
centered updates, we reduce the rectangular matrix multiplications to transitive closure
computations in dags G1, . . . , Gl. The reduction has the following properties:

1. The adjacency matrices of the dags Gi
clo correspond to the results of the rectangular

matrix products in the static solution.
2. Vertex-centered updates incur at most a constant amount of vertex-centered updates

in each of the dags Gi.

Each of the transitive closures of the dags Gi can be updated in time O(n2) using recent
results [21].

Theorem 11. There exists an algorithm for dynamic ALL-PAIRS REPRESENTATIVE

LCA with O(n1−r+ω + n2+r) initialization, O(n1−r+2 + n2+r) update, and O(1)
query time.

Optimizing r for updates, we get O(n2.876) initialization, O(n2.5) update, and O(1)
query time.

Fast Lowest Common Ancestor Computations in Dags 711

Dynamic Algorithms for ALL-PAIRS ALL LCA. For ALL-PAIRS ALL LCA we
achieve O(n1+ω) initialization, O(n3) update and O(1) query time for fully dynamic
vertex-centered updates. Here, the key is to speed up witness computations in the
dynamic setting. Again, the dynamic speed-up is achieved by using transitive clo-
sure computations instead of matrix products for the witness matrix computations. The
application of the reduction technique described above to ALL-PAIRS ALL LCA is
straightforward.

Theorem 12. There exists an algorithm for dynamic ALL-PAIRS REPRESENTATIVE

LCA with O(n3.376) initialization, O(n3) update, and O(1) query time.

Observe that O(n3) update time is optimal in the worst case, since a single update can
change up to Θ(n3) entries.

4 Experiments

Implementation.3 We have implemented Algorithms APRLCA, APA1, APA2, and
APA3 described in Section 2 in C++. For comparison with two of the algorithms that
were subject to the experimental study in [6], we adapted the code provided by the au-
thors to fit in our C++ framework. The third algorithm tested in [6] was ruled out due
to its inferior performance. This finding is in accordance with the results of the study
presented in [6]. RMQuery is based on combining ancestor lists for each of the vertices
with LCA queries on a spanning tree of G. The running time of the algorithm is O(n3),
but as a result of the experimental study in [6], it is efficient in practice. TCQuery is
based on transitive closure queries. It computes Gclo first and then chooses the right-
most CA of a pair (x, y) by comparing the corresponding rows of the adjacency matrix
of Gclo. The running time of the algorithm is Θ(n3).

Additionally, we implemented the two transitive closure algorithms described in
[23]: the algorithm of Goralćı́ková and Koubek[14](GK) with expected running time
of O(n2 log n) and the algorithm of Simon [23] (Simon) with expected running time
of O(n2 log log n). Our preprocessing routines are complemented by the greedy algo-
rithm for computing a path cover of G with running time O(n + m)[23]. Both of the
transitive closure algorithms naturally compute the transitive reduction and are used to
accomplish both tasks. Approaches based on fast algebraic matrix multiplication were
excluded from this study. These methods are widely believed to be not efficient in prac-
tice. The tests were done on a system with an Athlon XP 3000+ clocked at 2.154 GHz
with 2 GB RAM and running on Linux.

Test Data. We tested the algorithms on three families of dags:

– Gn,p random dags: In order to mirror random dags of varying density we use
the parameter p to control the expected number of edges in the dag. In all of our
experiments we considered sparse (E[m] = Θ(n)), medium (E[m] = Θ(n log n)),
and dense

(
E[m] = Θ(n2)

)
graphs.

– Power law random dags: Modeling real world data often leads to graphs in which
the degrees of the vertices satisfy the power law. That is, the number of vertices of

3 Our implementations and the used test data is available at http://wwwmayr.informatik.
tu-muenchen.de/personen/nowakj/lca/

712 S. Eckhardt, A.M. Mühling, and J. Nowak

degree k is proportional to k−α for some constant α > 1. This is also true for dags,
e.g., a citation graph compiled from crawling scientific literature obey a power law
with α ≈ 1.7 [3]. There are numerous examples of large-scale networks which fall
into the category of power law graphs. We generated random dags in which the
out-degrees of the vertices have expected degrees following a power law slightly
adapting the Chung-Law model [3]. First, target out-degrees of the vertices are gen-
erated according to the power law. Suppose that the vertices are sorted in decreasing
order according to their target degrees. Then, for each vertex pair (i, j), i < j, an
edge is added with probability degi/(n − i), where degi is the target degree of i.
We generated dags for α = 2 and α = 1.5, representing common exponents.

– Real-world data sets: Our real-world data sets include the Internet dag, the ci-
tation dag, and phylogenetic networks. The Internet dag is derived from business
relationships of autonomous systems (ASes) in the Internet. Our data set is obtained
from observable BGP routes. From these routes an acyclic AS graph is inferred with
the method proposed in [18]. We use the same data set as in [16], where a detailed
description of the data collection and postprocessing steps can be found. The fi-
nal dag has 22,218 vertices and 57,413 edges. The citation dag is compiled from
Citeseer’s OAI publicly available records4. Similar graphs have been studied and
analyzed extensively in the past, see [3] and references therein. Computing LCAs in
such dags may provide valuable information, e.g., which papers are original to two
or more papers on a particular topic. The dag has 716,772 vertices and 1,331,948
edges. The data provided by CiteSeer is automatically obtained by crawling the
web and not free of errors. We first parsed the documents and created a citation
graph, where an edge (x, y) was added whenever y references x. We then manually
cleaned the data by ordering the vertices according to their timestamps (which are
part of the data) and deleting edges that are not consistent with the partial order
imposed by the timestamps. We considered two phylogenetic networks for which
the data sets are included as examples in the SplitsTree4 [17] package. The first net-
work represents evolutionary relationships of a set of mammals. It has 498 vertices
and 889 edges. The second network represents evolutionary relationships between
a single protein, namely myosin, a protein involved in muscle contraction, in dif-
ferent organisms. The network has 5462 vertices and 10,321 edges.

The Internet dag and the citation dag had to be sampled in order to be processed
by our algorithms. We were interested in dense subgraphs in order to evaluate the
effect of the transitive reduction in real-world dags. To achieve this, we sampled
the graphs by performing breadth first searches starting at high-degree vertices. To
sample a graph of size n, we choose the dag which is induced by the first n visited
vertices. The sampling imposes a bias towards dense subgraphs. However, most
of the instances generated are still sparse in the sense that the average degree of
the vertices is a small constant, e.g., less than 5 in the case of the citation graph
samples.

Although the effect of the transitive reduction on sparse dags is small, our
O(nm) dynamic programming approach is naturally by far the best choice for such
dags.

4 http://citeseer.ist.psu.edu/oai.html

Fast Lowest Common Ancestor Computations in Dags 713

Results. Due to space limitations, we cannot present all experimental data in this work.
The full set of results is given in [13].

Transitive Reduction: We first compared the two methods for creating the transitive re-
duction of a dag. Simon clearly outperforms GK on medium and dense dags. Moreover,
the space requirement for GK is significantly larger than for Simon imposing a limiting
factor on large problem instances. Consequently, this method was used to create the
transitive reductions in all further experiments.

We also compared the effect of the transitive reduction in our real world data sets
with comparable Gn,p dags, i.e., dags having the same number of vertices and same
expected number of edges. Interestingly, the effect seems to be larger in the real world
data sets. This may imply that—at least in sparse dags—the benefit of using transitive
reduction as an algorithmic speed-up is even greater in non-random dags.

All-Pairs Representative LCA: We compared the performance of Algorithm
APRLCA with the two methods presented in [6]. Separately, we tested the result of us-
ing transitive reduction with the RMQuery algorithm. The effect is very small compared
to APRLCA, but improves the running time slightly. Subsequently, transitive reduction

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

120

140

160

180

200

Vertices

T
im

e
[s

]

RMQuery

TCQuery

APRLCA

(a) Performance of APR-algorithms on power law dags with
α = 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

100

200

300

400

500

600

700

800

900

1000

Vertices

T
im

e
[s

]

APRLCA

RMQuery

TCQuery

(b) Performance of APR-algorithms on the Internet dag
samples

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4

Vertices

T
im

e
pe

r
ve

rt
ex

 [s
]

APRLCA

(c) APRLCA as time per vertex on dense dags

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

9
x 10

−5

Vertices

T
im

e
pe

r
ve

rt
ex

 p
ai

r

RMQuery

TCQuery

APRLCA

(d) TCQuery and RMQuery measured as time per vertex pair
on dense dags

Fig. 1. Evaluation of APR-algorithms

714 S. Eckhardt, A.M. Mühling, and J. Nowak

Table 1. Experimental results on phylogenetic networks

n m mred t(TR) avg#LCAs t(RMQuery) t(TCQuery) t(APRLCA) t(APA1) t(APA2) t(APA3*) t(APA3)
Mammals 498 889 847 0.01 1.52574 0.88 1.17 0.02 1.38 1.34 8.7 1.741
Myosin 5462 10321 9997 1.09 1.14211 1159.96 545.623 4.56 1142.27 589.466 1976.1 1540.261

is used for APRLCA and RMQuery, whereas, TCQuery clearly does not benefit from
transitive reduction.

A sample of the results can be seen in Figure 1. The dynamic programming algorithm
with transitive reduction proves to be the algorithm of choice. The benefits of using
the transitive reduction increase significantly at higher densities. On the other hand,
APRLCA with running time O(nm) is naturally the best choice on sparse dags clearly
outperforming RMQuery and TCQuery. Experimental results on all families of dags
support this finding. The full set of experimental data can be found in [13].

We measured the running times of APRLCA, RMQuery, and TCQuery, as time per
vertex, i.e., dividing the running times by n, and again RMQuery and TCQuery as time
per vertex pair, i.e., dividing the times by n(n − 1)/2. As a result, we conclude that the
asymptotic improvement of APRLCA over the two other methods is roughly a factor of
n. In particular, Figure 1(d) indicates that both algorithms have a cubic running time.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

Vertices

T
im

e
[s

]

APALCA 1

APALCA 2

APALCA 3*

APALCA 3

(a) Performance of APA-algorithms on dense Gn,p dags

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

1000

2000

3000

4000

5000

6000

Vertices

T
im

e
[s

]

APALCA 1

APALCA 2

APALCA 3

(b) Performance of APA-algorithms on the Internet dag
samples

500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vertices

T
im

e
pe

r
ve

rt
ex

 [s
]

APALCA 1

APALCA 2

APALCA 3*

APALCA 3

(c) APA-algorithms on medium Gn,p dags as time per ver-
tex

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Vertices

T
im

e
pe

r
ve

rt
ex

 [s
]

APALCA 1

APALCA 2

APALCA 3*

APALCA 3

(d) APA-algorithms on power law dags (α = 1.5) as time
per vertex

Fig. 2. Evaluation of APA-algorithms

Fast Lowest Common Ancestor Computations in Dags 715

The effect of the transitive reduction on the very sparse phylogenetic networks is
very small, see Table 1. For ALL-PAIRS REPRESENTATIVE LCA , the number of edges
should be roughly halved by the transitive reduction in order to justify the additional
expenses for computing the transitive reduction.

All-Pairs All LCA: In addition to APA1, APA2, and APA3, we considered the perfor-
mance of algorithm APA3*, which is essentially APA3 without using a path cover.
The comparison of APA3 and APA3* enables direct evaluation of the effect of using a
path cover. The large output complexity of the problem limits the tests to considerably
smaller graphs, i.e., n ≤ 5000. Moreover, on hard problem instances, i.e., instances
having large LCA sets, the restriction on the number of vertices is even larger.

A sample of the results is given in Figure 2. APA2 is the best choice on Gn,p dags,
whereas APA1 leads on power law dags and the real world data sets. Although APA3 has
the best guaranteed expected running time, the overhead caused by the more complicated
data structures does not pay off for the considered problem sizes. The good performance
of APA2 can be explained by the fact that the LCA sets are usually small. The average
number of LCAs for a pair is less then 2 in most of our experiments, especially on large,
dense dags. Our results suggest that in most cases we can bound the number of LCAs
for each pair by a constant. This implies an O(n2 log log n) running time of APA2. This
is also supported by plotting the running times of the APA-algorithms per vertex. The
effects of using a path cover to maximize the topological number of several vertices in
one step over maximizing only a single vertex can be estimated by comparing APA3 and
APA3*. While on sparse graphs, the additional cost of computing and maintaining the
cover does not pay off, the effects on medium and dense dags are considerable.

Interestingly, medium sized dags turn out to be the most difficult problem instances
both in terms of running time and output size. We evaluated the the maximal and average
size of the LCA sets in dependence of the dag densities. We conjecture that the values
peak out in Gn,p dags for p ≈ polylog(n)/n which is supported by our experimental
findings. In power law dags, the values roughly peak out at α = 1.5. This may explain
the relatively inferior performance of APA2 on these dags.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: On finding lowest common ancestors in trees. SIAM
J. Comput. 5(1), 115–132 (1976)

2. Aı̈t-Kaci, H., Boyer, R.S., Lincoln, P., Nasr, R.: Efficient implementation of lattice opera-
tions. ACM Trans. Prog. Lang. Syst. 11(1), 115–146 (1989)

3. An, Y., Janssen, J., Milios, E.E.: Characterizing and mining the citation graph of the computer
science literature. Knowl. Inf. Syst. 6(6), 664–678 (2004)

4. Barak, A.B., Erdős, P.: On the maximal number of strongly independent vertices in a random
directed acyclic graph. SIAM J. on Algebraic and Discrete Methods 5(4), 508–514 (1984)

5. Baumgart, M., Eckhardt, S., Griebsch, J., Kosub, S., Nowak, J.: All-pairs common-ancestor
problems in weighted directed acyclic graphs. In: Proc. ESCAPE’07. LNCS, vol. 4614, pp.
282–293. Springer, Heidelberg (2007)

6. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest common
ancestors in trees and directed acyclic graphs. J. Algorithms 57(2), 75–94 (2005)

716 S. Eckhardt, A.M. Mühling, and J. Nowak

7. Bender, M.A., Pemmasani, G., Skiena, S., Sumazin, P.: Finding least common ancestors in
directed acyclic graphs. In: Proc. SODA’01, pp. 845–854 (2001)

8. Berkman, O., Vishkin, U.: Finding level-ancestors in trees. J. Comput. Syst. Sci. 48(2), 214–
230 (1994)

9. Cole, R., Hariharan, R.: Dynamic LCA queries on trees. SIAM J. Comput. 34(4), 894–923
(2005)

10. Coppersmith, D.: Rectangular matrix multiplication revisited. J. Complexity 13(1), 42–49
(1997)

11. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of
Symbolic Computation 9(3), 251–280 (1990)

12. Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common ances-
tors in directed acyclic graphs. ECCC (111) (2006)

13. Eckhardt, S., Mühling, A.M., Nowak, J.: Fast lca computations in directed acyclic graphs.
Technical Report TUM-I0707, Inst. f. Informatik, TU München (2006)

14. Goralćı́ková, A., Koubek, V.: A reduct-and-closure algorithm for graphs. In: Becvar, J.
(ed.) Mathematical Foundations of Computer Science 1979. LNCS, vol. 74, pp. 301–307.
Springer, Heidelberg (1979)

15. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Com-
put. 13(2), 338–355 (1984)

16. Hummel, B., Kosub, S.: Acyclic type-of-relationship problems on the internet: An experi-
mental analysis. Technical report, Inst. f. Informatik, TU München (2007)

17. Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Mol.
Biol. Evol. 23(2), 254–267 (2006)

18. Kosub, S., Maaß, M.G., Täubig, H.: Acyclic type-of-relationship problems on the internet. In:
Erlebach, T. (ed.) CAAN 2006. LNCS, vol. 4235, pp. 98–111. Springer, Heidelberg (2006)

19. Kowaluk, M., Lingas, A.: LCA queries in directed acyclic graphs. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
241–248. Springer, Heidelberg (2005)

20. Nykänen, M., Ukkonen, E.: Finding lowest common ancestors in arbitrarily directed trees.
Inf. Process. Lett. 50(1), 307–310 (1994)

21. Sankowski, P.: Dynamic transitive closure via dynamic matrix inverse (extended abstract).
In: Proc. FOCS’04, pp. 509–517 (2004)

22. Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and paral-
lelization. SIAM J. Comput. 17(6), 1253–1262 (1988)

23. Simon, K.: An improved algorithm for transitive closure on acyclic digraphs. Theor. Comput.
Sci. 58, 325–346 (1988)

24. Tarjan, R.E.: Applications of path compression on balanced trees. J. ACM 26(4), 690–715
(1979)

25. Wang, B.-F., Tsai, J.-N., Chuang, Y.-C.: The lowest common ancestor problem on a tree with
an unfixed root. Information Sciences 119(1–2), 125–130 (1999)

26. Wen, Z.: New algorithms for the LCA problem and the binary tree reconstruction problem.
Inf. Process. Lett. 51(1), 11–16 (1994)

A Practical Efficient Fptas

for the 0-1 Multi-objective Knapsack Problem

Cristina Bazgan, Hadrien Hugot, and Daniel Vanderpooten

LAMSADE, Université Paris Dauphine, Place Du Maréchal De Lattre de Tassigny,
75 775 Paris Cedex 16, France

{bazgan,hugot,vdp}@lamsade.dauphine.fr

Abstract. In the present work, we are interested in the practical be-
havior of a new fptas to solve the approximation version of the 0-1 multi-
objective knapsack problem. Nevertheless, our methodology focuses on
very general techniques (such as dominance relations in dynamic pro-
gramming) and thus may be applicable in the implementation of fptas
for other problems as well. Extensive numerical experiments on various
types of instances establish that our method performs very well both in
terms of CPU time and size of solved instances. We point out some rea-
sons for the good practical performance of our algorithm. A comparison
with an exact method is also performed.

Keywords: Multi-objective knapsack problem, approximation, dynamic
programming, dominance relations, combinatorial optimization.

1 Introduction

In multi-objective combinatorial optimization, a major challenge is to generate
either the set of efficient solutions, that have the property that no improvement
on any objective is possible without sacrificing on at least another objective, or
the set of non-dominated criterion vectors corresponding to their image in the
criterion space. The reader can refer to [1] about multi-objective combinatorial
optimization. However, even for moderately-sized problems, it is usually compu-
tationally prohibitive to identify the efficient set for two major reasons. First, the
number of efficient solutions can be very large. This occurs notably when solv-
ing intractable instances of combinatorial multi-objective problems, for which
the number of efficient solutions is not polynomial in the size of these instances
(see, e.g., [1] about the intractability of multi-objective problems). Second, for
most multi-objective problems, deciding whether a given solution is dominated
is NP-hard, even if the underlying single-objective problem can be solved in a
polynomial time.

To handle these two difficulties, researchers have been interested in develop-
ing approximation algorithms with provable guarantee such as fully polynomial
approximation schemes (fptas). Indeed, an fptas guarantees to compute, for a
given accuracy ε > 0, in a running time that is polynomial both in the size of
the input and in 1/ε, an (1+ε)-approximation, that is a subset of solutions such
that, for each efficient solution, this subset contains a solution that is at most

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 717–728, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

718 C. Bazgan, H. Hugot, and D. Vanderpooten

at a factor (1 + ε) on all objective values. This is made possible since it has
been pointed out in [2], that, under certain general assumptions, there always
exists an (1 + ε)-approximation, with any given accuracy ε > 0, whose size is
polynomial both in the size of the instance and in 1/ε. Thus using an fptas for
solving a multi-objective problem has two main advantages: on the one hand
it provides us with an efficient algorithm to compute an approximation with a
guaranteed accuracy and on the other hand it computes an approximation of
reasonable size. Nevertheless, in this stream, researchers are usually motivated
by the theoretical question of proving or disproving the existence of an fptas
for a given problem. Thus, practical implementations of fptas are cruelly lacking
and most of the schemes proposed in the literature are not effective in practice.

We consider in this paper the 0-1 multi-objective knapsack problem which has
been shown to admit an fptas in [3,4,5]. Our perspective, however, is to propose
another fptas focusing on its practical behavior. The main idea of our approach,
based on dynamic programming, relies on the use of several complementary
dominance relations to discard partial solutions. In a previous work [6], such
techniques have been proved to be extremely effective to solve the exact version
of this problem. Extensive numerical experiments on various types of instances
are reported and establish that our method performs very well both in terms of
CPU time and size of solved instances (up to 20000 items in less than 1 hour in
the bi-objective case). We compare our approach with the exact method of [6],
which is the most effective exact method currently known. In our experiments,
we point out some reasons for the good practical performance of our algorithm
that may be applicable to other fptas. Indeed, since our methodology focuses on
very general techniques (such as dominance relations in dynamic programming),
it may be applicable in the implementation of fptas for other problems as well.

This paper is organized as follows. In section 2, we review basic concepts about
multi-objective optimization and approximation, and formally define the 0-1
multi-objective knapsack problem. Section 3 presents the dynamic programming
approach using dominance relations. Section 4 is devoted to the presentation of
the dominance relations. Computational experiments and results are described
in section 5. Conclusions are provided in a final section.

2 Preliminaries

We first recall that, given � a binary relation defined on a finite set A, B ⊆ A
is a covering (or dominating) set of A with respect to � if and only if for all
a ∈ A\B there exists b ∈ B such that b�a, and B ⊆ A is an independent (or
stable) set with respect to � if and only if for all b, b′ ∈ B, b �= b′, not(b�b′).

2.1 Multi-objective Optimization and Approximation

Consider a multi-objective optimization problem with p criteria or objectives
where X denotes the finite set of feasible solutions. Each solution x ∈ X is
represented in the criterion space by its corresponding criterion vector f(x) =
(f1(x), . . . , fp(x)). We assume that each criterion has to be maximized.

A Practical Efficient Fptas for the 0-1 Multi-objective Knapsack Problem 719

From these p criteria, the dominance relation defined on X , denoted by Δ,
states that a feasible solution x dominates a feasible solution x′, xΔx′, if and
only if fi(x) ≥ fi(x′) for i = 1, . . . , p. We denote by Δ the asymmetric part
of Δ. A solution x is efficient if and only if there is no other feasible solution
x′ ∈ X such that x′Δ x, and its corresponding criterion vector is said to be
non-dominated. The set of non-dominated criterion vectors is denoted by ND .
A set of efficient solutions is said to be reduced if it contains only one solution
corresponding to each non-dominated criterion vector. Observe that X ′ ⊆ X is
a reduced efficient set if and only if it is a covering and independent set with
respect to Δ.

For any constant ε ≥ 0, the relation Δε, called ε-dominance, defined on X ,
states that for all x, x′ ∈ X, xΔεx

′ if and only if fi(x)(1 + ε) ≥ fi(x′) for i =
1, . . . , p. For any constant ε ≥ 0, an (1 + ε)-approximation is a covering set
of X with respect to Δε. Any (1 + ε)-approximation which does not contain
solutions that dominate each other, i.e. which is independent with respect to Δ,
is a reduced (1 + ε)-approximation. In the following, for a given reduced (1 + ε)-
approximation, NDε denotes the image in the criterion space of this reduced
(1 + ε)-approximation.

2.2 The 0-1 Multi-objective Knapsack Problem

An instance of the 0-1 multi-objective knapsack problem consists of an integer
capacity W > 0 and n items. Each item k has a positive integer weight wk and
p non negative integer profits vk

1 , . . . , vk
p (k = 1, . . . , n). A feasible solution is

represented by a vector x = (x1, . . . , xn) of binary decision variables xk, such
that xk = 1 if item k is included in the solution and 0 otherwise, which satisfies
the capacity constraint

∑n
k=1 wkxk ≤ W . The value of a feasible solution x ∈ X

on the ith objective is fi(x) =
∑n

k=1 vk
i xk (i = 1, . . . , p). For any instance of this

problem, we consider two versions: the exact version which aims at determining
a reduced efficient set, and the approximation version which aims at determining
a reduced (1 + ε)-approximation.

3 Dynamic Programming for the Approximation Version

We first describe the sequential process used in Dynamic Programming (DP)
and introduce some basic concepts of DP (section 3.1). Then, we present the
concept of dominance relations for solving the approximation version by a DP
approach (section 3.2).

3.1 Sequential Process and Basic Concepts of DP

The sequential process used in DP consists of n phases. At any phase k we
generate the set of states Sk which represents all the feasible solutions made
up of items belonging exclusively to the k first items (k = 1, . . . , n). A state
sk = (sk

1 , . . . , sk
p, sk

p+1) ∈ Sk represents a feasible solution of value sk
i on the

ith objective (i = 1, . . . , p) and of weight sk
p+1. Thus, we have Sk = Sk−1 ∪

{(sk−1
1 + vk

1 , . . . , sk−1
p + vk

p , sk−1
p+1 + wk) : sk−1

p+1 + wk ≤ W, sk−1 ∈ Sk−1} for k =

720 C. Bazgan, H. Hugot, and D. Vanderpooten

1, . . . , n where the initial set of states S0 contains only the state s0 = (0, . . . , 0)
corresponding to the empty knapsack. In the following, we identify a state and
a corresponding feasible solution. Thus, relations defined on X are also valid on
Sk, and we have skΔs̃k if and only if sk

i ≥ s̃k
i , i = 1, . . . , p and skΔεs̃

k if and
only if sk

i (1 + ε) ≥ s̃k
i , i = 1, . . . , p.

Definition 1 (Completion, extension, restriction). For any state sk ∈ Sk

(k ≤ n), a completion of sk is any, possibly empty, subset J ⊆ {k+1, . . . , n} such
that sk

p+1 +
∑

j∈J wj ≤ W . We assume that any state sn ∈ Sn admits the empty
set as unique completion. A state sn ∈ Sn is an extension of sk ∈ Sk (k ≤ n)
if and only if there exists a completion J of sk such that sn

i = sk
i +

∑
j∈J vj

i for
i = 1, . . . , p and sn

p+1 = sk
p+1 +

∑
j∈J wj. The set of extensions of sk is denoted

by Ext(sk) (k ≤ n). Finally, sk ∈ Sk (k ≤ n) is a restriction at phase k of state
sn ∈ Sn if and only if sn is an extension of sk.

3.2 Families of Dominance Relations in Dynamic Programming

The efficiency of DP depends crucially on the possibility of reducing the set of
states at each phase. In the context of the approximation version, a family of
dominance relations between states for Δε is used to discard states at any phase.
Each dominance relation of this family is specific to a phase. Indeed, we share
out the total error ε between the phases by the mean of an error function and
associate to each dominance relation of the family a proportion of this error.

Definition 2 (Error function). The function e : {1, . . . , n} → R is an error
function if and only if

∑n
k=1 e(k) ≤ 1 and e(k) ≥ 0, k = 1, . . . , n.

In this way, families of dominance relations between states for Δε are defined as
follows.

Definition 3 (Families of dominance relations between states for Δε).
For any ε ≥ 0 and any error function e, a family of relations Dk on Sk, k =
1, . . . , n, is a family of dominance relations for Δε if for all sk, s̃k ∈ Sk,

skDks̃k ⇒ ∀s̃n ∈ Ext(s̃k), ∃sn ∈ Ext(sk), sn
i (1 + ε)e(k) ≥ s̃n

i , i = 1, . . . , p (1)

When ε = 0, Definition 3 collapses to the classical definition of dominance rela-
tions used in the context of the exact version: a relation Dk on Sk, k = 1, . . . , n,
is a dominance relation for Δ if for all sk, s̃k ∈ Sk,

skDks̃k ⇒ ∀s̃n ∈ Ext(s̃k), ∃sn ∈ Ext(sk), snΔs̃n (2)

Even if dominance relations can be non-transitive, in order to be efficient in the
implementation, we consider only transitive dominance relations. We introduce
now the way of using families of transitive dominance relations for Δε in DP
approach (see Algorithm 1). At each phase k, Algorithm 1 generates a subset of
states Ck ⊆ Sk. This is achieved by first creating from Ck−1 a temporary subset
T k ⊆ Sk. Then, we apply transitive dominance relation Dk to each state of T k

A Practical Efficient Fptas for the 0-1 Multi-objective Knapsack Problem 721

Algorithm 1. Computing a reduced (1 + ε)-approximation
C0 ← {(0, . . . , 0)};1
for k← 1 to n do2

T k ← Ck−1 ∪ {(sk−1
1 + vk

1 , . . . , sk−1
p + vk

p , sk−1
p+1 + wk)|sk−1

p+1 + wk ≤ W, sk−1 ∈ Ck−1};3
/* Assume that T k = {sk(1), . . . , sk(r)} */

Ck ← {sk(1)};4
for i← 2 to r do5

/* Assume that Ck = {s̃k(1), . . . , s̃k(�i)} */
dominated ← false ; dominates ← false ; j ← 1;6
while j ≤ �i and not(dominated) and not(dominates) do7

if s̃k(j)Dksk(i) then dominated ← true8
else if sk(i)Dks̃k(j) then Ck ← Ck\{s̃k(j)} ; dominates ← true;9
j ← j + 1;10

if not(dominated) then11
while j ≤ �i do12

if sk(i)Dk s̃k(j) then Ck ← Ck\{s̃k(j)};13
j ← j + 1;14

Ck ← Ck ∪ {sk(i)};15

return Cn;16

in order to check if it is not dominated by any state already in Ck (in which
case it is added to Ck) and if it dominates states already in Ck (which are then
removed from Ck).

The following results characterize the set Ck obtained at the end of each phase
k and establish the validity of Algorithm 1.

Proposition 1. For any transitive relation Dk on Sk, the set Ck obtained at
the end of phase k in Algorithm 1 is a covering and independent set of T k with
respect to Dk (k = 1, . . . , n).

Theorem 1. For any family of transitive dominance relations D1, . . . , Dn for
Δε, Algorithm 1 returns Cn a covering set of Sn with respect to Δε. Moreover,
if Δ ⊆ Dn, Cn is a reduced (1 + ε)-approximation.

Algorithm 1 can be significantly simplified by generating states of T k = {sk(1),
. . . , sk(r)} according to any topological order based on the asymmetric part of
Dk. Thus, we have either sk(i)Dksk(j) or not(sk(j)Dksk(i)) for all i < j (1 ≤
i,j ≤ r) and step 9 and loop 12-14 can be omitted.

Remark that when ε = 0, we have Δε = Δ, and thus Cn is a covering set of
X with respect to Δ. Moreover, in this case, if Δ ⊆ Dn, Cn corresponds to a
reduced efficient set.

4 Dominance Relations

We first present the family of dominance relations for Δε used in our approach
that can provide an fptas in certain cases (section 4.1). Then, we present two
complementary dominance relations for Δ (section 4.2) and give a brief explana-
tion of the way of applying them together with the family of dominance relations
for Δε (section 4.3).

722 C. Bazgan, H. Hugot, and D. Vanderpooten

4.1 Family of Dominance Relations for Δε

To solve the exact version of the 0-1 multi-objective knapsack problem, we
showed in a previous work [6] that a powerful dominance relation for Δ is the
relation Dk

Δ that is a generalization to the multi-objective case of the dominance
relation usually attributed to Weingartner and Ness [7]. Relation Dk

Δ is defined
on Sk for k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
Δs̃k ⇔

{
skΔs̃k and
sk

p+1 ≤ s̃k
p+1 if k < n

To solve the approximation version of the 0-1 multi-objective knapsack prob-
lem, we generalize relations Dk

Δ (k = 1, . . . , n) to obtain the family of dominance
relations Dk

Δε
(k = 1, . . . , n) for Δε that is based on a partition of the criterion

space into hyper-rectangles. For a constant ε > 0 and an error function e, at each
phase k we partition each positive criterion range [1, Ui], where Ui is an upper
bound on the value of the feasible solutions on the ith criterion (i = 1, . . . , p),
into disjoints intervals of length (1 + ε)e(k) (k = 1, . . . , n). When e(k) = 0, we
obtain the following degenerate intervals: [1, 1], [2, 2], . . . , [Ui, Ui] (i = 1, . . . , p).
When e(k) �= 0, we obtain the following intervals: [1; (1+ε)e(k)[, [(1+ε)e(k); (1+
ε)2e(k)[, . . . , [(1 + ε)(�

k
i−1)e(k); (1 + ε)�k

i e(k)[where �k
i =

⌊
log Ui

e(k) log(1+ε)

⌋
+ 1 (i =

1, . . . , p). In both cases, we add the interval [0, 0]. The number of the interval in
which belongs the value of a state sk on the ith criterion (i = 1, . . . , p) in this
partition is:

Bi(sk, e(k)) =

{
sk

i if e(k) = 0 or sk
i = 0⌊

log sk
i

e(k) log(1+ε)

⌋
+ 1 otherwise

From these partitions, we can define for any ε > 0 and any error function e,
relations Dk

Δε
on Sk for k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
Δε

s̃k ⇔
{

Bi(sk, e(k)) ≥ Bi(s̃k, e(k)) i = 1, . . . , p, and
sk

p+1 ≤ s̃k
p+1 if k < n

The following proposition shows that Dk
Δε

is indeed a family of dominance
relations for Δε and gives additional properties of Dk

Δε
.

Proposition 2. For any ε > 0 and any error function e, we have:

(a) Dk
Δε

, k = 1, . . . , n, is a family of dominance relations for Δε,
(b) for any k ∈ {1, . . . , n}, Dk

Δε
is transitive,

(c) for any k ∈ {1, . . . , n}, Dk
Δε

⊇ Dk
Δ and Dk

Δε
= Dk

Δ if e(k) = 0.

As a consequence of (c) we have Δ ⊆ Dn
Δε

and thus Algorithm 1 using the
family of relations Dk

Δε
, k = 1, . . . , n, computes a reduced (1+ε)-approximation

(see Theorem 1). Relation Dk
Δε

is a powerful relation since a state can possibly

A Practical Efficient Fptas for the 0-1 Multi-objective Knapsack Problem 723

dominate all other states of larger weight. This relation requires at most p + 1
tests to be established between two states.

Observe that, even if the authors of [5] do not explicitly mention the use of
a family of dominance relations for Δε, their approach could be restated within
Algorithm 1 by using the following family of relations Dk

E defined on Sk by:

for all sk, s̃k ∈ Sk, skDk
E s̃k ⇔

{
Bi(sk, 1/n) = Bi(s̃k, 1/n), i = 1, . . . , p, and
sk

p+1 ≤ s̃k
p+1

Remark that Dk
E ⊆ Dk

Δε
for e(k) = 1/n (k = 1, . . . , n). This relation, which is

quite sufficient to establish the existence of an fptas, has two main disadvantages
for an efficient implementation. First, it is very poor since it compares only states
lying in the same hyper-rectangle. Therefore, even if two states sk, s̃k are such that
skDk

Δs̃k, we keep both of them in Ck provided that they are not in the same hyper-
rectangle. Secondly, by applying a constant error of (1 + ε)1/n at each phase, the
total error of 1 + ε is shared out equitably among all the phases. During the first
phases, since the values of the states are small, the hyper-rectangles in which the
states belong usually have a length smaller than 1 on all dimensions. In this case,
the advantage of the partition is canceled out since only states with same values
could be in relation Dk

E . Thus, the error allocated to these phases is wasted.
For a given ε > 0, the running time of Algorithm 1 using relation Dk

Δε
depends

crucially on the error function e. In order to guarantee that Algorithm 1 is
polynomial both in the size of the instance and in 1/ε, we have to add some
conditions on the error function aiming at limiting the number of phases with
an error equals to 0.

Definition 4 (Polynomial error function). The error function e is a poly-
nomial error function if for k = 1, . . . , n, e(k) = 1/g(k), if k is a multiple of t,
0 otherwise, where t is a strictly positive integer in O(log n) and where, for any
k = 1, . . . , n, 0 < g(k) ≤ cnd for some positive fixed constants c, d.

The following theorem establishes the complexity of Algorithm 1 using the family
of dominance relations Dk

Δε
.

Theorem 2. For any ε > 0 and any polynomial error function e, Algorithm 1,
using the family of dominance relations Dk

Δε
, is polynomial both in the size of

the instance and in 1/ε.

Hence, by Theorems 1 and 2 we have that, for any ε > 0 and any polynomial
error function e, Algorithm 1 using the family of dominance relations Dk

Δε
is an

fptas that produces a reduced (1 + ε)-approximation.

4.2 Complementary Dominance Relations with Respect to Δ

Since each dominance relation focuses on specific considerations, it is then desir-
able to make use of complementary dominance relations. Moreover, when decid-
ing to use a dominance relation, a tradeoff must be made between its potential
ability of discarding many states and the time it requires to be checked. We

724 C. Bazgan, H. Hugot, and D. Vanderpooten

present now two other complementary dominance relations for Δ. The first one,
Dk

r , is very easy to establish and the second one, Dk
b , although more difficult to

establish, is considered owing to its complementarity with Dk
r and Dk

Δε
.

Relation Dk
r is based on the following observation. When the residual ca-

pacity associated to a state sk of phase k is greater than or equal to the sum
of the weights of the remaining items (items k + 1, . . . , n), the only comple-
tion of sk that can possibly lead to an efficient solution is the full completion
J = {k + 1, . . . , n}. It is then unnecessary to generate extensions of sk that do
not contain all the remaining items. We define thus the dominance relation Dk

r

on Sk for k=1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
r s̃k ⇔

⎧
⎨

⎩

s̃k ∈ Sk−1,
sk = (s̃k

1 + vk
1 , . . . , s̃k

p + vk
p , s̃k

p+1 + wk), and
s̃k

p+1 ≤ W − ∑n
j=k wj

This dominance relation is quite poor, since at each phase k it can only appear
between a state that does not contain item k and its extension that contains
item k. Nevertheless, it is very easy to check since, once the residual capacity
W − ∑n

j=k wj is computed, relation Dk
r requires only one test to be established

between two states.
Dominance relation Dk

b is based on the comparison between extensions of a
state and an upper bound of all the extensions of another state. In our context,
a criterion vector u = (u1, . . . , up) is an upper bound for a state sk ∈ Sk if and
only if for all sn ∈ Ext(sk) we have ui ≥ sn

i , i = 1, . . . , p.
We can derive a general type of dominance relations as follows: considering

two states sk, s̃k ∈ Sk, if there exists a completion J of sk and an upper bound
ũ for s̃k such that sk

i +
∑

j∈J vj
i ≥ ũi, i = 1, . . . , p, then sk dominates s̃k.

This type of dominance relations can be implemented only for specific comple-
tions and upper bounds. In our experiments, we just consider two specific com-
pletions J ′ and J ′′ defined as follows. Let Oi be an order induced by considering
items according to decreasing order of ratios vk

i /wk (i = 1, . . . , p). Let r�
i be the

rank or position of item � in order Oi. Let Omax be an order according to increas-
ing values of the maximum rank of items in the p orders Oi (i = 1, . . . , p) and
Osum be an order according to increasing values of the sum of the ranks of items
in the p orders Oi (i = 1, . . . , p). After relabeling items k +1, . . . , n according to
Omax, completion J ′ is obtained by inserting sequentially the remaining items
into the solution provided that the capacity constraint is respected. J ′′ is defined
similarly by relabeling items according to Osum. To compute u, we use the upper
bound presented in [8, Th 2.2] computed independently for each criterion value.

Finally, we define Dk
b a particular dominance relation of this general type for

k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
b s̃k ⇔

⎧
⎨

⎩

sk
i +

∑
j∈J′ vj

i ≥ ũi, i = 1, . . . , p

or
sk

i +
∑

j∈J′′ vj
i ≥ ũi, i = 1, . . . , p

where ũ = (ũ1, . . . , ũp) is the upper bound, according to [8, Th 2.2] for s̃k.

A Practical Efficient Fptas for the 0-1 Multi-objective Knapsack Problem 725

Dk
b is harder to check than relations Dk

r , Dk
Δ and Dk

Δε
since it requires much

more tests and state-dependent information.

4.3 Use of Multiple Dominance Relations

In order to be efficient, we will use the dominance relations Dk
r , Dk

Δε
, and Dk

b

at each phase. As underlined in the previous subsection, dominance relations
require more or less computational effort to be checked. Moreover, even if they
are partly complementary, it often happens that several relations are valid for a
same pair of states. It is thus natural to apply first dominance relations which
can be checked easily (such as Dk

r and Dk
Δε

) and then test on a reduced set of
states dominance relations requiring a larger computation time (such as Dk

b).

5 Computational Experiments and Results

5.1 Experimental Design

All experiments presented here were performed on a bi-Xeon 3.4GHz with
3072Mb RAM. All algorithms are written in C++. In the bi-objective case
(p = 2), the following types of instances were considered:

A) Random instances: vk
1 ∈R [1, 1000], vk

2 ∈R [1, 1000] and wk ∈R [1, 1000]
B) Unconflicting instances, where vk

1 is positively correlated with vk
2 : vk

1 ∈R

[111, 1000] and vk
2 ∈R [vk

1 − 100, vk
1 + 100], and wk ∈R [1, 1000]

C) Conflicting instances, where vk
1 and vk

2 are negatively correlated: vk
1 ∈R

[1, 1000], vk
2 ∈R [max{900−vk

1 ; 1}, min{1100−vk
1 ; 1000}], and wk ∈R [1, 1000]

D) Conflicting instances with correlated weight, where vk
1 and vk

2 are negatively
correlated, and wk is positively correlated with vk

1 and vk
2 : vk

1 ∈R [1, 1000],
vk
2 ∈R [max{900 − vk

1 ; 1}, min{1100 − vk
1 ; 1000}], and wk ∈R [vk

1 + vk
2 −

200; vk
1 + vk

2 + 200].

where ∈R [a, b] denotes uniformly random generated in [a, b]. For all these in-
stances, we set W = �1/2

∑n
k=1 wk�.

Most of the time in the literature, experiments are made on instances of type
A. Sometimes, other instances such as those of type B, which were introduced in
[9], are studied. However, instances of type B should be viewed as quasi single-
criterion instances since they involve two non conflicting criteria. Nevertheless, in
a bi-objective context, considering conflicting criteria is a more appropriate way of
modeling real-world situations. For this reason, we introduced instances of types C
and D for which criterion values of items are conflicting. In instances of type D, wk

is positively correlated with vk
1 and vk

2 . These instances were introduced in order to
verify if positively correlated weight/values instances are harder than uncorrelated
weight/values instances as in the single-criterion context [8,10].

For each type of instances and each value of n presented in this study, 10
different instances were generated. In the following, we denote by pTn a p criteria
instance of type T with n items. For example, 2A100 denotes a bi-objective
instance of type A with 100 items.

726 C. Bazgan, H. Hugot, and D. Vanderpooten

In the experiment, we give also, in some tables, the results obtained in [6] by
using relations Dk

r , Dk
Δ and Dk

b aiming at solving the exact version of the 0-1
multi-objective knapsack problem. These results are denoted by exact method.

In the experiment, the approximation method, respectively the exact method,
computes only NDε, respectively ND . Standard bookkeeping techniques, not
considered here, may be used to produce associated solutions.

5.2 Results

We first try to determine the best error function to use in relation Dk
Δε

. In
Table 1 we compare the CPU time in seconds and the size of NDε obtained for
these three polynomial error functions:

– e1(k) = 1/(�n/t�) if k is a multiple of t, 0 otherwise
– e2(k) = 2k/t

�n/t	(�n/t	+1) if k is a multiple of t, 0 otherwise

– e3(k) = 6(k/t)2

�n/t	(�n/t	+1)(2�n/t	+1) if k is a multiple of t, 0 otherwise

where t, which is a strictly positive integer in O(log n), expresses the frequency
of the application of the error. Table 1 shows clearly that the error function has
a significant impact on the CPU time and that error function e2 is significantly
better for all types of instances. Thus, in the following, we will use only error
function e2. Observe also that the size of NDε is always extremely smaller than
the number of non-dominated criterion vectors.

Second, we show the impact of the frequency t in the error function e2. Table 2
shows that our approach is always faster by setting the frequency t = �log n�.
Observe that the cardinality of NDε is inversely proportional to the frequency
t. For example the increase of a factor 3 of the frequency (from t = �log n� to
�3 logn�) leads to a decrease of about a factor 3 of the size of NDε.

Lastly, we present, in Table 3, the performance of our approach on large size
instances. The largest instances solved here are those of type B with 20000 items
and the instances with the largest reduced (1 + ε)-approximation are those of
type D with 900 items. Observe that the average maximum cardinality of Ck,
which is a good indicator of the memory storage needed to solve the instances,
can be very huge. This explains why we can only solve instances of type D up
to 900 items.

Table 1. Impact of different error functions in our approach

type avg. time in s. avg. |NDε| exact method [6]
e1 e2 e3 e1 e2 e3 avg t. in s. avg. |ND|

2A-400 51.775 34.347 50.022 332.1 199.8 134.3 307.093 4631.8
2B-1000 0.238 0.180 0.299 1.0 1.0 1.0 8.812 157.0
2C-300 74.308 50.265 68.974 615.3 326.4 227.5 373.097 1130.7
2D-150 65.144 47.398 67.758 703.0 384.3 263.1 265.058 3418.5

ε = 0.1 and frequency t = 1

A Practical Efficient Fptas for the 0-1 Multi-objective Knapsack Problem 727

Table 2. Impact of the frequency in the error function e2

avg. time in s. avg. |NDε| exact method [6]
type t = 1 �log n	 �2 log n	 �3 log n	 t = 1 �log n	 �2 log n	 �3 log n	 avg. t. in s. avg. |ND|

2A-400 34.347 4.536 5.441 7.664 199.8 31.3 16.1 11.9 307.093 4631.8
2B-1000 0.180 0.120 0.406 1.009 1.0 1.3 1.1 1.0 8.812 157.0
2C-300 50.265 7.511 8.084 11.618 326.4 53.6 27.3 18.8 373.097 1130.7
2D-150 47.398 10.874 11.935 16.156 384.3 70.1 35.8 26.4 265.058 3418.5

ε = 0.1 and error function e2

Table 3. Results of our approach on large size instances

type n
time in s. |NDε| avg.

min avg. max min avg. max maxk{|Ck|}

A

100 0.024 0.042 0.072 6 10.1 15 2456.7
1000 88.121 94.050 103.402 65 68.5 76 321327.6
2000 896.640 1030.813 1398.060 111 123.9 132 1489132.4
2500 1635.230 1917.072 2081.410 127 138.6 147 2585169.9

B

1000 0.084 0.118 0.144 1 1.3 2 5596.4
10000 245.572 269.731 318.808 2 3.3 4 1160906.4
20000 2424.700 2816.606 3166.580 4 5.3 7 5424849.6

C
100 0.140 0.210 0.316 21 25.3 32 9964.2

1000 378.135 419.595 471.269 139 150.2 162 923939.4
2000 3679.770 4296.847 4749.160 255 272.0 285 4256900.6

D
100 1.948 2.356 2.828 50 52.9 57 93507.9
500 605.837 640.026 681.286 185 196.4 203 3034228.2
900 4154.610 4689.373 5177.200 297 313.0 329 10276196.8

ε = 0.1, error function e2 and frequency t = �log n	

Table 4. Comparison between the exact method presented in [6] and the approximation
method

type n
exact method [6] approximation method

avg. t. in s. avg. |ND| avg. t. in s. avg. |NDε| avg. error

A
100 0.328 159.3 0.042 (÷ 8) 10.1 (÷ 16) 0.0159
700 5447.921 4814.8 32.275 (÷ 169) 49.5 (÷ 97) 0.0060

B
1000 8.812 157.0 0.118 (÷ 75) 1.3 (÷ 121) 0.0041
4000 6773.264 1542.3 11.220 (÷ 604) 1.8 (÷ 857) 0.0023

C
100 2.869 558.2 0.210 (÷ 14) 25.3 (÷ 22) 0.0178
500 4547.978 7112.1 44.368 (÷ 103) 88.3 (÷ 81) 0.0064

D
100 40.866 1765.4 2.356 (÷ 17) 52.9 (÷ 33) 0.0183
250 3383.545 8154.7 62.970 (÷ 54) 110.9 (÷ 74) 0.0098

Approximation: ε = 0.1, e2 and frequency t = �log n	
The decrease factors of the avg. CPU time and of the size of the returned set,
corresponding respectively to avg. t. in s. of exact method / avg. t. in s. of
approximation method and |ND|/|NDε|, are given into brackets

5.3 Comparison with an Exact Method

The results of a comparative study between the exact method presented in [6]
and our approximation method using relations Dk

r , Dk
Δε

, and Dk
b are presented

in Table 4. We have selected the method presented in [6] since, as shown in this
paper, it is the most effective method currently known.

The two methods have been compared on the same instances and the same
computer. Table 4 presents results for instances of type A, B, C, and D for
increasing size of n for instances that can be solved by the exact method. We give
for each series the “average error” that refers to the measured error a posteriori

728 C. Bazgan, H. Hugot, and D. Vanderpooten

which is the smallest value of ε such that the returned set is indeed a reduced
(1 + ε)-approximation.

Considering the CPU time, the approximation method, of course, is always
faster than the exact method (up to more than 600 times faster for instances
2B4000). Observe that, although the cardinality of NDε is very small with regard
to the cardinality of ND , the quality of the reduced (1+ε)-approximation is very
good since for an error a priori ε = 0.1, the error a posteriori varies from 0.0023
to 0.0183.

6 Conclusion

The purpose of this work was to design a practically efficient fptas, based on a
dynamic programming algorithm, for solving the approximation version of the
0-1 multi-objective knapsack problem. We showed indeed that by using several
complementary dominance relations, and sharing the error appropriately among
the phases, we obtain an fptas which is experimentally extremely efficient.

While we focused in this paper on the 0-1 multi-objective knapsack problem,
we could envisage in future research to apply dominance relations based on
similar ideas to the approximation version of other multi-objective problems
which admit dynamic programming formulations, such as the multi-objective
shortest path problem or multi-objective scheduling problems.

References

1. Ehrgott, M.: Multicriteria optimization. LNEMS 491. Springer, Berlin (2005)
2. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and

optimal access of web sources. In: IEEE Symposium on Foundations of Computer
Science, pp. 86–92 (2000)

3. Safer, H.M., Orlin, J.B.: Fast approximation schemes for multi-criteria combinato-
rial optimization. Working Paper 3756-95, Sloan School (1995)

4. Safer, H.M., Orlin, J.B.: Fast approximation schemes for multi-criteria flow, knap-
sack, and scheduling problems. Working Paper 3757-95, Sloan School (1995)

5. Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multiobjective knapsack
problems. Management Science 48(12), 1603–1612 (2002)

6. Bazgan, C., Hugot, H., Vanderpooten, D.: An efficient implementation for the 0-1
multi-objective knapsack problem. In: Demetrescu, C. (ed.) WEA 2007. LNCS,
vol. 4525, pp. 406–419. Springer, Heidelberg (2007)

7. Weignartner, H., Ness, D.: Methods for the solution of the multi-dimensional 0/1
knapsack problem. Operations Research 15(1), 83–103 (1967)

8. Martello, S., Toth, P.: Knapsack Problems. Wiley, New York (1990)
9. Captivo, M.E., Climaco, J., Figueira, J., Martins, E., Santos, J.L.: Solving bicrite-

ria 0-1 knapsack problems using a labeling algorithm. Computers and Operations
Research 30(12), 1865–1886 (2003)

10. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)

Solutions to Real-World Instances of

PSPACE-Complete Stacking

Felix G. König, Macro Lübbecke, Rolf Möhring, Guido Schäfer�,
and Ines Spenke�

Technische Universität Berlin, Institut für Mathematik, MA 6-1
Straße des 17. Juni 136, 10623 Berlin, Germany

{fkoenig,m.luebbecke,moehring,schaefer,spenke}@math.tu-berlin.de

Abstract. We investigate a complex stacking problem that stems from
storage planning of steel slabs in integrated steel production. Besides
the practical importance of such stacking tasks, they are appealing from
a theoretical point of view. We show that already a simple version of
our stacking problem is PSPACE-complete. Thus, fast algorithms for
computing provably good solutions as they are required for practical
purposes raise various algorithmic challenges. We describe an algorithm
that computes solutions within 5/4 of optimality for all our real-world
test instances. The basic idea is a search in an exponential state space
that is guided by a state-valuation function. The algorithm is extremely
fast and solves practical instances within a few seconds. We assess the
quality of our solutions by computing instance-dependent lower bounds
from a combinatorial relaxation formulated as mixed integer program.
To the best of our knowledge, this is the first approach that provides
quality guarantees for such problems.

1 Introduction

In this paper, we investigate a dynamic stacking problem that has applications
in many production processes with intermediate storage for bulky items. Our
work is motivated by a cooperation with PSI-BT [14], a software company that
develops planning software for logistics and production processes in steel plants.
A crucial task in such a plant is the transportation and intermediate storage
of steel slabs over time, which is the prototype of the general stacking problem
considered here. It similarly occurs in other settings such as the shunting of rail
cars or container stowage.

We keep our problem formulation general enough to provide a concise, theo-
retically interesting problem class, but still specific enough to be applicable to
different industrial scenarios.

In practice, many different constraints like precedence relations, time windows,
stack heights, etc. have to be respected, and it is not surprising that the literature
abounds with heuristics.
� Supported by the DFG Research Center Matheon “Mathematics for key

technologies.”

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 729–740, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

730 F.G. König et al.

However, no general and versatile problem formulation like ours has been
presented before, let alone, solutions to them of proven quality.

From a computer science point of view, our problem is related to motion
planning and sorting with networks of stacks. The Towers of Hanoi puzzle is just
a very simple instance of our model. More interestingly, there are similarities to
the much more complex block sliding puzzles. Many of these puzzles are known
to be PSPACE-complete [8]. We show that this is true also for our stacking
problem, which rules out the existence of efficient algorithms in general.

Nevertheless, using ideas from dynamic programming and mixed integer pro-
gramming, well-established techniques from discrete optimization, we compute
solutions to all our real-world instances within 5/4 of an optimum.

Motivation. In integrated steel production, steel is casted in a 24/7 operation
in slabs, bars of up to 12 meters length and 30 tons weight. These are rolled
to sheet metal in a following batch process. Each slab is assigned to a customer
order before it is even casted, and is, thus, individual. The rolling at later points
in time is in a given order which (also because of technical reasons) typically
differs considerably from the casting sequence. In between, slabs are brought by
cranes to a storage area where they are piled up on stacks (for up to several
days). If slabs are needed much later (several weeks), they may leave the so-
called hot-buffer and can be temporarily stored in a much larger cold-buffer. In
both cases, the number of stacks and their height is limited.

In the hot-buffer, ideally, slabs should be stored in such a way that they are
readily available according to the planned batch sequence of the rolling process
(each batch may request several dozens of slabs in a given order). This conflicts
with the limited space, the casting sequence, and the complicating fact, that
slabs exiting a strand caster have to be moved away within tight time windows.
Time is less crucial in the cold-buffer, but the system inherent non-conformity of
input and output sequences becomes much more visible. Obviously, the buffers
constitute a major bottleneck, and a high productivity is desired.

Our Contribution. The stacking problem we describe captures practical sta-
cking processes accurately, yet it defines a general and versatile problem type.
We show that it is PSPACE-complete, even in a quite basic version. It is there-
fore unlikely that there exists an efficient algorithm to compute solutions of a
proven quality for this problem.

We define a state graph for practical stacking problems and develop a state-
valuation function which guides a partial exploration of this typically exponential
graph on all feasible stackings. The result is a kind of dynamic programming
algorithm which computes good solutions for real-world stacking instances fast.

The power of this approach is that it provides sufficient flexibility to model
all constraints that are relevant from a practical point of view and at the same
time also allows us to use different techniques and heuristics to speed-up the
state space exploration. We also report on the effect of a rollout strategy [2],
which gives slightly improved solutions at the expense of a considerable increase
in running time.

Solutions to Real-World Instances of PSPACE-Complete Stacking 731

This is the first time that a proof of the solution’s quality for a stacking
problem of this versatility is given. We do so by computing an instance-dependent
lower bound using a mixed integer program. On our industrial data we obtain
solutions that are less than 25% off optimum, usually considerably better.

Related Work. Practical stacking problems have been addressed in the litera-
ture a lot, like in steel production [7,13], container terminals [5,12], in the very
general area of generic planning problems [6], and several more. All of these pa-
pers significantly simplify the problems, in particular the precedence constraints
implied by stacking. Methodologies applied range from simulated annealing [7],
simulations [5], genetic algorithms [13], state space evaluations [3,10], but, to the
best of our knowledge, no principally exact approaches have been suggested.

2 Problem Definition and Hardness Results

We formally describe the stacking problem, omitting a few practically relevant
details; we comment on these where appropriate. Let [n] := {1, . . . , n}.

Incoming items. We have a set I := [n] of incoming items that arrive on m
parallel inputs over time. Each item i ∈ I is associated with a time window
[ri, di] ⊆ R

+; ri is the release time and di the due time of item i. An item i must
be removed from the input within its time window. We may either move it to
one of the k buffer stacks or directly to one of the target stacks defined below.
We assume that at any time at most one item is available at every input.

Buffer stacks. Let S := {S1, . . . , Sk} be a set of k buffer stacks. Stack S ∈ S
can hold up to h(S) items. We write i �S j iff i lies, not necessarily directly, on
top of j in S. We use the same notation for the target stacks defined below. An
allocation of items to stacks C := (S1, . . . , Sk) with their respective positions is
called a configuration. The initial configuration C0 need not be empty. The set
of items that are allocated to the buffer stacks in C0 is denoted by J . The entire
set of items is thus V := I ∪ J .

Stacking constraints. Items may not be placed arbitrarily on top of each other.
We model stacking restrictions by a conflict graph. Let G := (V, A) be a directed
graph with vertex set V and arc set A. Item i ∈ V cannot be placed directly on
top of item j iff (i, j) ∈ A. We call a configuration C = (S1, . . . , Sk) feasible if
every buffer stack S ∈ S contains at most h(S) items and for all i, j ∈ V such
that i lies directly on top of j, we have (i, j) /∈ A. We assume that the initial
configuration C0 is feasible.

Target stacks. We are given a set T := {T1, T2, . . . , T�} of target stacks. Each
target stack Ti ∈ T specifies an order (from first to last) in which the respective
items have to be collected. Every item i ∈ V occurs in at most one target stack;
define ti ∈ T as i’s target stack and let ti := ∅ if no such target stack exists.
Items for no more than w target stacks may be collected in parallel, capturing
the notion of limited space in the exit area of the buffer.

732 F.G. König et al.

Once we have started collecting items for a target stack, we may only move
away, or dispose, this target stack when all of its items have been collected.
Additionally, the order in which we dispose target stacks must obey precedence
constraints defined by a partial order ≺T on T : if T1 ≺T T2 for target stacks
T1, T2 ∈ T then T2 can only be disposed after T1 is disposed.

Moves and objective. We have four possible kinds of moves; (a) an item can be
moved from an input to a buffer stack, (b) from an input to its target stack (a
direct move), (c) from the top of a buffer stack to the top of another buffer stack
(this is called restacking), and (d) from the top of a buffer stack to a target
stack.

A move is feasible if it respects all the conditions like time windows,
height bounds, stacking conflicts, accessibility of target stacks, etc. defined above.
Transport times are known, but important for feasibility only, since they are
small as compared to pickup and drop-off times for items. Thus, our goal is to
build all target stacks with a minimum number of feasible moves, starting from
the initial configuration C0. Naturally, this includes determining the exact or-
der in which target stacks are started and disposed. The feasibility version asks
whether some feasible sequence of moves exists to build all target stacks.

Theorem 1. The stacking problem is in PSPACE.

Proof. We exploit Savitch’s Theorem [11] which states the equivalence between
the complexity classes PSPACE and NPSPACE. We can represent any config-
uration of the stacking problem in polynomial space. Moreover, all possible
moves from a given configuration can be computed in polynomial time. We can
therefore perform a nondeterministic search using only polynomial space: In each
step we choose one of the possible moves nondeterministically and only keep track
of the current state. Savitch’s Theorem states that any such nondeterministic
PSPACE algorithm can be transformed into a deterministic one. ��
We show that the feasibility version of the stacking problem is PSPACE-com-
plete using the nondeterministic constraint logic model of computation (NCL)
introduced by Hearn and Demaine [8]. The NCL model is an alternative view on
the complexity class PSPACE. It does not need to adopt a two-player view (like
in reductions from quantified boolean formulas), and is thus much better
suited to our problem.

More formally, we are given an undirected graph Ĝ = (N̂ , Ê) with non-nega-
tive integer weights on the edges and integral minimum inflow constraints for the
nodes. A configuration of Ĝ corresponds to an orientation of the edges such that
for every node the sum of the weights of all incoming edges is at least the mini-
mum inflow constraint of that node. A move from one configuration to another
corresponds to the reversal of a single edge such that all inflow constraints re-
main satisfied. We consider the decision problem whether, starting from a given
initial configuration Ĉ0, there exists a sequence of moves such that a designated
edge can be reversed. This problem is referred to as configuration-to-edge.
It is PSPACE-complete even if Ĝ is a planar and/or graph, i.e., consists of the
very simple or and and nodes only, depicted in Fig. 1 (a) and (b).

Solutions to Real-World Instances of PSPACE-Complete Stacking 733

u
a

bc

(a)

u
a

bc

(b)

a, b, c

S2
uS1

u

(c)

Fig. 1. Illustration of an or (a) and and (b) node. Bold edges have weight two, light
edges have weight one; the minimum inflow constraint is two. For the or node, one
edge can be directed outward iff at least one of the other two edges is directed inward.
For the and node, edge a may be directed outward iff b and c are directed inward. The
gadget for both nodes is depicted in (c).

Theorem 2. The feasibility version of the stacking problem is PSPACE-
complete, even if there are no incoming items, each buffer stack can hold at
most three items, and only one item is requested at a target stack.

Proof. We present a polynomial-time reduction from configuration-to-edge

with an and/or graph Ĝ = (N̂ , Ê) to our stacking problem. To this end, we
construct and and or gadgets that consist of two buffer stacks each. Abusing
notation slightly, we have one item e ∈ I for every edge e ∈ Ê, and every buffer
stack S ∈ S can hold at most two or three items. We consider an edge e directed
outward a node u iff item e is placed on the buffer stacks corresponding to u.

Consider an or node u ∈ N̂ , see Fig. 1(a). Our or gadget consists of two
buffer stacks S1

u and S2
u on which only the items a, b or c can be placed, see

Fig. 1(c). We enforce this restriction by placing dummy items z1
u and z2

u at the
bottom of S1

u and S2
u, respectively, and adding arcs (x, z1

u) and (x, z2
u) for all

x /∈ {a, b, c} to our stacking conflict graph. Imposing a height constraint of two,
we can place at most two items in {a, b, c} on these stacks. Edge x ∈ {a, b, c} is
directed outward of u iff x is placed on S1

u or S2
u, that is, at least one edge must

be directed inward. Clearly, this gadget implements an or node.
Next consider an and node u ∈ N̂ , with incident edges a, b and c, see Fig. 1(b).

Our and gadget again consists of two buffer stacks S1
u and S2

u. Again with the
help of dummy items, we enforce the following placement restrictions. There are
two helper items ha and hb which can be placed on top of each other, and at the
bottom of S1

u or S2
u. The heavy item a can be placed only at the bottom of S1

u or
S2

u. The light items a and b can be placed only at their corresponding helper item
ha and hb, respectively. A height bound of three on S1

u and S2
u now guarantees

that edge a can be directed outward only, if edges b and c are directed inward.
One easily checks that exactly all feasible edge configurations are represented by
a feasible item configuration, so this gadget implements an and node.

For some initial configuration Ĉ0 and a designated edge e ∈ Ê, configu-

ration-to-edge now reduces to the decision problem whether, starting from
the buffer stack configuration corresponding to Ĉ0, there exists a sequence of
moves such that the item e can eventually be moved. This decision problem can
be simulated by letting the dummy item that is hidden by e in the initial buffer
stack configuration be the only item that is requested at the target stack. ��

734 F.G. König et al.

In the PSPACE-completeness proof above we exploit crucially that complex
restacking operations may be necessary in order to access a particular item. The
key ingredients seem to be that we start with a non-empty initial configuration
and that every item has only a very limited number of buffer stacks onto which it
can be placed, i.e., the stacking conflict graph is rather dense. The next theorem
shows that the problem remains hard even if we remove these assumptions.

Theorem 3. The problem of deciding whether a given target sequence can be
built without any restacking operations is NP-hard if all buffer stacks have a
uniform height bound of h ≥ 6, even if we start with empty buffer stacks and
there are no conflicts between items.

Proof. We reduce mutual exclusion scheduling [9] for permutation graphs
to our stacking problem. In this problem, we are given a permutation graph
Ĝ(Π) = (N̂ , Ê) of n nodes and a positive integer h. Jansen [9] proved that for
every fixed h ≥ 6, the decision problem whether there exists a partition of N̂
into t independent sets of size at most h is NP-hard.

Let Π = 〈π1, . . . , πn〉 be the permutation of 〈1, . . . , n〉 that defines the permu-
tation graph Ĝ(Π). We define an instance of our stacking problem as follows:
Items appear at the input in the order 〈π1, . . . , πn, n + 1〉 and are requested at
the target stack in the order T = 〈n + 1, n, . . . , 1〉. The buffer stacks are empty
initially and have the same height bound h. It is not difficult to verify that the
target stack T can be built without any restacking operations, i.e., using 2n + 1
moves, iff N̂ can be partitioned into t = k independent sets of size at most h. ��

3 Guided Graph Search

We use graph terminology to specify the state space which is searched for a
solution to the stacking problem: We associate a node with each possible
buffer configuration C and define the neighborhood of a node as the set of all
configurations that can be constructed from C by one feasible move. The notion
of feasibility of a move includes that after the move it must still be possible to
remove all items from the inputs respecting their time windows. The due time
to remove items from their respective input in order to be able to feasibly serve
all inputs can be determined by a simple backward-calculation.

Note that the actual nodes of the state graph do not only consist of a buffer
configuration C but also comprise a time stamp t and a notion of progress made.
This progress includes the items already moved from the inputs, say A, and the
set of target stacks for which items are currently being collected Ω. We call
Σ := (C, t, A, Ω) a state; every state corresponds to exactly one node in the
state graph.

Obviously, it is impossible to generate even only a significant part of the state
graph—already the number of possible buffer configurations is huge. Thus we
use a valuation function on the buffer states to tell us which parts of the graph
are “interesting”. This approach is related to the idea of approximate cost-to-go
functions in dynamic programming [1].

Solutions to Real-World Instances of PSPACE-Complete Stacking 735

The definition of a proper valuation function depends on the nature of the
instances to be solved. We give two examples in Sections 3.1 and 3.2. The first
one yields an optimal algorithm for the Towers of Hanoi problem. The latter one
leads to good solutions for instances of our real-world application and may well
be suitable for other applications involving the storage of items on stacks.

The power of this approach is two-fold: On the problem formulation side, all
constraints regarding the structure of the stacks, travel times and the necessity
to respect time windows when removing items from the inputs can easily be
modeled by modifying the rules with which a node’s neighborhood is created;
on the solution side, different techniques can be used for the exploration of the
graph allowing fine-tuning of the algorithm towards speed, robustness, precision,
flexibility or other goals.

3.1 The Towers of Hanoi Example

We formulate the Towers of Hanoi problem as a stacking problem and solve
it optimally by our algorithm using a suitable valuation function. In this case,
there are no arriving items and no constraints for the number and height of the
stacks; only stacking constraints have to be respected.

There are n discs 0, 1, . . . , n − 1 with diameters d(0) > d(1) > · · · > d(n − 1)
and a larger disc may never be stacked on a smaller one. In the beginning, all
discs are stacked feasibly on S1 and the goal is to stack all of them feasibly on
S3 by only moving one disc at a time.

Then following iterative algorithm leads to the unique optimal solution [15].
First, arrange the three stacks S1 (source), S2, and S3 (target) into a triangle
with S1 on the left, S2 on top and S3 on the right. Apply two rules:

(R1) If n is even, move even discs clockwise and odd discs counter-clockwise
only; if n is odd, do it vice versa.

(R2) In move k, starting at 1, move the disc corresponding to the power of the
right-most (i.e., least-significant) 1-bit in the binary representation of k.

These two rules imply the following two facts; we omit their proofs.

(F1) In the unique optimal solution, a disc i is never moved to a non-empty
stack S�, such that the difference between i and the top-most disc j in S�

is even.
(F2) In the unique optimal solution, a disc is only moved to an empty stack if

every other feasible move violates Fact (F1).

We use (F1) and (F2) to define a valuation function. Let e(C) be the number
of empty stacks in a configuration C and v(S�) = 1 if the difference between the
two topmost discs in stack S� is even, and 0 otherwise. Let w > 1 be an arbitrary
number making e(C) a tie-breaker enforcing Fact (F2).

valhanoi(C) := w ·
(

3∑

�=1

v(S�)

)
− e(C) (1)

736 F.G. König et al.

Let C1 and C2 be two neighbored configurations in the unique optimal sequence
of moves. Then valhanoi(C2) is the unique minimum among all valhanoi(C),
where C is reached from C1 by a feasible move. Applying our greedy graph
search we thus obtain the unique optimal sequence of moves.

It is easy to see that time and space required by our search are of the same
order as the known lower bounds (see [4]) of Θ(2n) and Θ(n), respectively.

3.2 The Application-Driven Greedy Approach

Given a buffer configuration C = (S1, . . . , Sk) and the set of target stacks T to
be compiled, there is a natural lower bound on the number of moves needed: We
count one move for each item that will be moved from a buffer to a target stack
plus one move for each item which has to be moved out of the way; we will call
the latter the number of false positions in C.

In order to know more precisely which items must be “moved out of the way”,
we determine in a preprocessing step a linear extension <T of the partial order
≺T in which we will begin collecting items for target stacks. This is done by
a simple heuristic, which first orders all target stacks according to the latest
release time of one of their items, and then ensures Ti <T Tj for all Ti, Tj with
Ti ≺T Tj by delaying Tj until directly after Ti in <T if necessary. Now assume
without loss of generality that T1 <T T2 <T . . .

We now define the following partial precedence order on the items: For two
items i, j, we write i ≺ j iff ti <T tj and {ti, tj} �⊆ Ω, or ti = tj and j �ti i.
The number of false positions for item i on stack S is then

false(i, S) := |{j ∈ S : j �S i ∧ i ≺ j}| . (2)

From any configuration C without false positions, we can build all required
target stacks without a single restacking operation. Thus, we define a valuation
function which deems those buffer configurations interesting which have few false
positions.

We introduce a valuation functions valapp on states Σ = (C, t, A, Ω):

valapp(Σ) :=
|T |∑

θ=γ

dγ−θ · valapp
θ (Σ), (3)

where where γ is the smallest index of a target stack not yet disposed and d ≤ 1 is
some discount factor determining how fast the weight of false positions decreases
for target stacks to be compiled in the future,

valapp
θ (Σ) :=

k∑

�=1

∑

i∈S�∩Tθ

false(i, S�) ∀θ = γ, . . . , |T | (4)

accounts for the total number of false positions for items in Tθ.
Note that the sum of all false position in a configuration constitutes a lower

bound on the number of necessary moves only with respect to <T . Theoretically,

Solutions to Real-World Instances of PSPACE-Complete Stacking 737

starting to collect items for target stacks in a different order may lead to a better
solution. Yet we have found that the number of false positions computed with
respect to ≺T only is too weak of a bound to be of any help in the state space
search.

In view of some uncertainty in related processes and the strict bounds on
computation time prescribed by the slab stacking application, the most impor-
tant features of the used algorithm are speed and the ability to react to changes
in data. The latter can naturally be achieved by defining the state of the buffer
after a change in data as a new initial state and rerunning the algorithm, making
the speed of the algorithm an even more important goal for practical purposes.

Thus, a fast greedy variant of the graph search procedure is used, which in
each current node of the state graph computes the valuation function for all
neighboring nodes and picks the one with best value. To break ties, we prefer
moves which take less time and try to maintain as many unused stacks in the
buffer as possible. Somewhat surprisingly, this simple and extremely fast search
strategy leads to good solutions to practical instances, as described in Section 5.

An additional parameter, the lookahead f , is introduced to speed up the cal-
culation of the valuation function for each buffer state, especially for instances
where data is available for many future target stacks: Instead of considering all
values valapp

θ in (3), we only take the first f + 1 values into account; i.e., we
replace |T | by γ + f in (3). The effects of different choices for f for the practical
instances are described in Section 5.

Note that this valuation function favors buffer states in which items can be
moved to a target stack, but does not yet encourage the algorithm to actually
do so. Thus, we introduce an additional rule for the choice of a neighbor, always
preferring a state which moves an item to a target stack over one that does not.
The order in which the algorithm starts to build the target stacks is computed
in a preprocessing step by the following simple rule: Build those target stacks
first, for which all items have arrived at the buffer the earliest while respecting
precedence constraints on the target stacks where necessary.

In Section 5, we also report on the effects of combining our greedy algorithm
with a rollout strategy [2]. Due to space limitations, we only sketch the basic idea
here: If we have reached a state Σ in our state graph, we run the greedy algo-
rithm from each neighboring state and then continue with the state that returns
the mimimum number of moves. Clearly, this approach entails computational
overhead, but may improve the solution quality.

4 Lower Bounds from a Combinatorial Relaxation

In order to assess the quality of our solutions we compute lower bounds on the
optimal number of moves per instance. If the initial configuration is non-empty,
one may count how many items on top of an item are needed later and thus have
to be moved away. This bound is used for the cold-buffer instances below.

A more elaborate technique is needed for the hot-buffer instances. We
formulate a mixed integer program (MIP) and derive a bound from its linear

738 F.G. König et al.

programming (LP) relaxation. However, an MIP which captures the stacking

problem in full detail is far from being computationally tractable. In fact, in
order to represent an exponential solution one would have to work explicitly with
an exponential number of variables.

Instead, we devise a non-obvious but surprisingly useful combinatorial relax-
ation of the problem, which is mainly based on the time windows at the inputs:
We assume a sufficiently large number k ≥ n of stacks. This implies that we
need not take care of infeasible buffer configurations because each item can use
its own stack. As a consequence, we disregard the concept of stacks and con-
flicts at all, except for target stacks. The objective is to maximize the number of
direct moves from the inputs to the target stacks. For this relaxation, the MIP
computes a best possible linear extension <T of the partial order ≺T in which
to begin collecting items for target stacks.

Even though the MIP is deprived the essential stacking character, it turns out
that the LP relaxation gives a good lower bound in practice, see the hot-buffer
instances in Section 5.

5 Computational Results

We tested two different sets of industrial instances supplied by PSI-BT: hot-
buffer instances with few buffer stacks and tight time windows and cold-buffer
instances with many more buffer stacks, but without incoming items. In both
cases, all target stacks need to be built with a minimum number of moves. All
experiments were performed on a standard PC running Linux.

Hot-buffer instances. The time horizon for these instances is up to 12 hours. All
instances have 3 strand caster inputs, 3 target stacks can be built in parallel.
The number of buffer stacks varies between 14 and 16. The crane can transport
one item at a time. The numbers of needed moves are stated in Table 1.

Table 1. Solution quality for the hot-buffer instances of the greedy algorithm (and
rollout enhancement). LB refers to the MIP lower bound described in Section 4.

v1 v2a v2b v3
LB 325 496 251 732

greedy 362 561 264 794
gap (%) 10.2 11.6 4.9 7.8

rollout 359 538 260 785
gap (%) 9.5 7.8 3.5 6.8

The runtime for the greedy algorithm is less than 0.1 seconds per move. The
optimality gap is below 12% and can be improved to less than 10% using a
rollout strategy. An optimal integer solution to the MIP was computed using
the commercial solver CPLEX 10.1 within some minutes to a few hours. No
integer solution was found for instances v3 and we used the LP bound instead.

Solutions to Real-World Instances of PSPACE-Complete Stacking 739

Unfortunately, no data about the crane transports that are nowadays per-
formed by the manual operators is available. However, the steel plant states that
at least about half of all transports are restacking operations, while in our solu-
tions they account to less than 20%. This suggests the buffer performance could
be greatly improved by the implementation of our algorithm in practice.

Cold-buffer instances. All instances have 50 buffer stacks, and 5 target stacks
can be built simultaneously. There are no incoming items and therefore our
MIP lower bound does not apply. The crane can transport several items, up to
a maximum weight limit, simultaneously. Again, numbers of needed moves are
given in Table 2.

Table 2. Solution quality for the cold-buffer instances of the greedy algorithm (and
rollout enhancement). LB is the simple lower bound counting false positions.

aa1 aa2 aa3 aa4 ab1 ab2 ab3 ab4 ab5 ab6 ab7 ab8 ab9 ab10
LB 30 52 109 109 105 111 108 103 104 103 110 110 113 104

greedy 36 64 128 126 131 135 126 125 119 126 129 130 129 118
gap (%) 20.0 23.1 17.4 15.6 24.8 21.6 16.7 21.4 14.4 22.3 17.3 18.2 14.2 13.5

rollout 34 60 119 120 124 125 117 114 115 113 122 122 120 113
gap (%) 13.3 15.4 9.2 10.1 18.1 12.6 8.3 10.7 10.6 9.7 10.9 10.9 6.2 8.7

For these instances, more than 50% of the overall moves are restacking moves.
Our algorithm needs less than 3 seconds per move. The solution quality is below
25%, despite the large share of restacking moves.

In all our experiments, the computational overhead produced by the rollout
strategy was enourmous (increase in runtime by a factor of more than 1000),
while the gain in quality is marginal—the application of this method in practice
is therefore not conceivable.

6 Discussion

A major difficulty in developing better lower bounds is to capture the problem-
inherent restacking operations.

The Towers of Hanoi example shows that exponentially many restacking op-
erations may be needed; also our PSPACE-completeness proof relies crucially
on these operations. On the other hand, in our practical instances we observed
only a rather small number of restacking moves. It would be very interesting to
characterize the hardness of an instance by means of its “restacking complexity”.
Yet, in an ongoing work, we have experienced that such a characterization is not
obvious at all, even for two buffer stacks only.

One may argue that a solution quality of 25% off optimum is rather weak.
Three comments are in order here. First, we conjecture that the quality of the
computed solutions is much better than what we are able to prove. Second, in the
area of approximation algorithms, an approximation factor of 5/4 is considered

740 F.G. König et al.

to be very good for a problem that does certainly not admit a PTAS. Third, in
recent years we have witnessed tremendous advances in the area of computational
combinatorial optimization, in particular mixed integer programming. We believe
that striving for close-to-optimal solutions is a necessary and fruitful step in
advancing the field even further.

We hope that our results encourage further investigations concerning the ap-
plicability of discrete optimization to PSPACE-complete problems. The practical
relevance of these approaches in industry is evident. In fact, a prototype imple-
mentation of our algorithm is used to evaluate the buffer performance of two
steel plants already. Animated visualizations of our stacking plans were shown
to several practitioners, who were quite impressed by the low share of restacking
operations and the anticipation of slabs needed on target stacks in the future.

References

1. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific
(1996)

2. Bertsekas, D.P., Tsitsiklis, J.N., Wu, C.: Rollout algorithms for combinatorial op-
timization. Journal of Heuristics 3(3), 245–262 (1997)

3. Bonet, B., Loerincs, G., Geffner, H.: A robust and fast action selection mechanism
for planning. In: Proceedings of the 14th National Conference on AI, pp. 714–719
(1997)

4. Cull, P., Ecklund, E.F.: Towers of hanoi and analysis of algorithms. The American
Mathematical Monthly 90, 407–420 (1985)

5. Dekker, R., Voogd, P., van Asperen, E.: Advanced methods for container stacking.
OR Spectrum 28, 563–586 (2006)

6. Fox, M., Long, D.: Progress in AI planning research and application. CEPIS 3,
10–25 (2002)

7. Hansen, J., Clausen, J.: Crane scheduling for a plate storage. Technical Report 1,
Informatics and Mathematical Modelling, Technical University of Denmark (2002)

8. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theoretical Computer Science 343(1–2), 72–96 (2005)

9. Jansen, K.: The mutual exclusion scheduling problem for permutation and compa-
rability graphs. Information and Computation 180, 71–81 (2003)

10. McDermott, D.: A heuristic estimator for means ends analysis in planning. In:
Proceedings of the 3rd International Conference on Artificial Intelligence Planning
Systems, pp. 142–149 (1996)

11. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences 4(2), 177–192 (1970)

12. Steenken, D., Voß, S., Stahlbock, R.: Container terminal operation and operations
research - a classification and literature review. OR Spectrum 26, 3–49 (2004)

13. Tang, L., Liu, J., Rong, A., Yang, Z.: Modelling and a genetic algorithm solu-
tion to the slab stack shuffling problem in implementing steel rolling schedulings.
International Journal of Production Research 40(7), 1583–1595 (2002)

14. http://www.psi-bt.com
15. Walsh, T.: The towers of hanoi revisited, moving the rings by counting the moves.

Information Processing Letters 15(2), 64–67 (1982)

http://www.psi-bt.com

Non-clairvoyant Batch Sets Scheduling:

Fairness Is Fair Enough

Julien Robert1 and Nicolas Schabanel2

1 École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
http://perso.ens-lyon.fr/julien.robert

2 CNRS Centro de Modelamiento Matemático, Blanco Encalada 2120 Piso 7,
Santiago de Chile

http://www.cmm.uchile.fr/∼schabanel

Abstract. In real systems, such as operating systems, the scheduler is
often unaware of the remaining work in each job or of the ability of
the job to take advantage of more resources. In this paper, we adopt
the setting for non-clairvoyance of [3,2]. Based on the particular case of
malleable jobs, it is generally assumed in the literature that “Equi never
starves a job since it allocates to every job the same amount of processing
power”. We provide an analysis of the competitiveness of Equi for the
makespan objective which shows that under this more general setting
this statement is at the same time true and false: false, because, some
jobs may be stretched by a factor as large as, but no more than, lnn

ln ln n

with respect to the optimal, where n is the size of the largest set; true,
because no algorithm can achieve a better competitive ratio up to a
constant factor.

In this paper, we extend the results in [2,11] to the batch scheduling
of sets of jobs that go through arbitrary phases: user request all
together at time 0, for the execution of a set of jobs and is served when
the last job completes. We prove that the algorithm Equi◦Equi is
(2 +

√
3 + o(1)) ln n

ln ln n
-competitive, where n is the maximum size of a

set, which is optimal up to a constant factor. We provide experimental
evidences that this algorithm may have the same asymptotic competitive
ratio Θ(lnn

ln ln n
) (independent of the number of requests) for the flowtime

objective when requests have release dates, if it is given sufficiently large
extra processing power with respect to the optimum.

Keywords: Online scheduling, Non-clairvoyant algorithm, Batch
scheduling, Fairness, Equi-partition, Makespan and Overall Set Com-
pletion Time minimization.

1 Introduction

Scheduling questions arise naturally in many different areas among which oper-
ating system design, compiling, memory management, communication network,
parallel machines, clusters management,... In real systems, the characteristics of
the jobs to schedule (such as release time, processing time,...) are often unknown

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 741–753, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

742 J. Robert and N. Schabanel

and/or unpredictable beforehand. In particular, the scheduler, such as in an op-
erating system, is typically unaware of the remaining work in each job or of the
ability of the job to take advantage of more resources. Such systems are referred
as non-clairvoyant.

Several settings have been proposed to model non-clairvoyance, in which jobs
are fully parallelizable but their amount of work is unknown before their com-
pletion [9,6,7,5,8,1]. In this paper, we consider the very general setting for non-
clairvoyance proposed by Edmonds [3,2]. Jobs go through a sequence of different
phases, each consisting of a certain quantity of work with a speed-up function
that quantifies how it takes advantage of the number of processors it receives. For
example, during a fully parallel phase, the speed-up function increases linearly
with the number of processors received.

Surprisingly, in this setting, even if the scheduler is unaware of the charac-
teristics of the phases, some policies achieve constant factor approximation of
the optimal flowtime. More precisely, in [3], the author shows that the Equi
policy, introduced in the 1980’s by [12] and implemented in a lot of real systems
(by time-multiplexing), achieves a competitive ratio of (2+

√
3) for overall com-

pletion time minimization when all the jobs arrive at time 0. [2] shows that in
this setting no non-clairvoyant scheduler can achieve a competitive ratio better
than Ω(

√
n) when jobs arrive at arbitrary time and shows that Equi achieves

a constant factor approximation of the optimal flowtime if it receives slightly
more than twice as much resources as the optimal clairvoyant schedule it is
compared to.

Our Contribution. Based on the particular case of malleable jobs, it is generally
assumed in the literature that “Equi never starves a job” since it allocates to
every job the same amount of processing power. We provide an analysis of the
competitiveness of Equi for the makespan objective (Theorem 1) which shows
that this statement is at the same time true and false: false, because, as opposed
to the analysis of Equi for the flowtime objective in [3,2] where only the fully
parallel phases count, for the makespan minimization, these phases may arbi-
trarily delay sequential work and thus stretch the makespan by a factor as large
as, but no more than, ln n

ln lnn with respect to the optimum (Proposition 1); true,
because Equi is as fair as can be since no algorithm can achieve a better com-
petitive ratio up to a constant factor (Proposition 2). Furthermore, experiments
in Section 5 tend to show that this worst case result may also be the typical
behavior of Equi on random instances.

Non-clairvoyant competitiveness has been shown to be a powerful tool to
analyze online strategies in various domains (for instance, [4,11]). In this paper,
we aim to extend the non-clairvoyance toolbox by extending the results in [2] and
[11] to the batch scheduling of sets of jobs, that go through arbitrary phases:
each user sends, all at once, at time 0, a request for the execution of a set of jobs
and is served when the last job completes. We prove that the natural algorithm
Equi◦Equi achieves a competitive ratio of (2 +

√
3 + o(1)) ln n

ln ln n (Theorem 2),
where n is the maximum size of a set, which is optimal up to a constant factor.
We provide experimental evidences (Section 5) that this algorithm may have

Non-clairvoyant Batch Sets Scheduling: Fairness Is Fair Enough 743

the same asymptotic competitive ratio Θ(ln n
ln ln n) (independent of the number

of requests) for the flowtime objective when requests have release dates, if it is
given sufficiently large extra processing power with respect to the optimum.

Besides its theoretical interest, this setting corresponds to the case where sev-
eral users send sets of unrelated calculations to a cluster farm that proceeds
the user requests by batches, for instance because a full hardware check is per-
formed between each pair of consecutive batches. As a byproduct of our analysis,
we extend the reduction shown by Edmonds in [2, Lemma 1], by showing (The-
orem 3) that one only needs to consider jobs consisting of sequential or parallel
work whatever the objective function is (flowtime, makespan, overall set comple-
tion time, stretch, energy consumption,...) in order to treat the very wide range
of non-decreasing sublinear speed-up functions all at once.

2 Non-clairvoyant Batch Sets Scheduling

The Model. We consider a collection S = {S1, . . . , Sm} of sets Si =
{Ji,1, . . . , Ji,ni} of ni jobs, each of them arriving at time zero. A schedule Sp

on p processors is a set of piecewise constant functions1 ρij : t �→ ρt
ij where ρt

ij

is the amount of processors allotted to job Jij at time t; (ρt
ij) are arbitrary non-

negative real numbers, such that at any time:
∑

i,j ρt
ij � p. Following the defini-

tion introduced by [3], each job Jij goes through a series of phases J1
ij , . . . , J

qij

ij

with different degree of parallelism; the amount of work in each phase Jk
ij is wk

ij ;
at time t, during its k-th phase, job Jij progresses at a rate given by a speed-up
function Γ k

ij(ρ
t
ij) of the amount ρt

ij of processors allotted to Jij , that is to say
that the amount of work accomplished between t and t + dt during phase Jk

ij

is Γ k
ij(ρ

t
ij)dt. Let tkij denote the completion time of the k-th phase of Jij , i.e.

tkij is the first time t′ such that
∫ t′

tk−1
ij

Γ k
ij(ρ

t
ij) dt = wk

ij (with t0ij = 0). Job Jij is

completed at time cij = t
qij

ij . A schedule is valid if all jobs eventually complete,
i.e., cij < ∞ for all i, j. Set Si is completed at time ci = maxj=1..ni cij .

The Problem. The overall completion time of the jobs in a schedule Sp

is: CompletionTime(Sp) =
∑

i,j cij . The makespan of the jobs in Sp is:
Makespan(Sp) = maxi,j cij . The overall set completion time of the sets in Sp

is: SetCT(Sp) =
∑m

i=1 ci. Note that: if the input collection S consists of a single
set S1, the overall set completion time of a schedule Sp is simply the makespan
of the jobs in S1; and if S is a collection of singleton sets Si = {Ji 1}, the over-
all set completion time of Sp is simply the overall completion time of the jobs.
The overall set completion time allows then to measure a continuous range of
objective functions from makespan to overall completion time. Our goal is to
minimize the overall set completion time of a collection of sets of jobs arriving
at time 0.
1 Requiring the functions (ρij) to be piecewise constant is not restrictive since any

finite set of reasonable (i.e., Riemann integrable) functions can be uniformly approx-
imated from below within an arbitrary precision by piecewise constant functions. In
particular, all of our results hold if ρij are piecewise continuous functions.

744 J. Robert and N. Schabanel

We denote by OPTp(S) (or simply OPTp or OPT if the context is clear)
the optimal overall set completion time of a valid schedule on p processors for
collection S: OPTp = infall schedules Sp SetCT(Sp).

Speed-Up Functions. As in [2], we make the following reasonable assump-
tions on the speed-up functions. In the following, we consider that each speed-
up function is non-decreasing and sub-linear (i.e., such that for all i, j, k,

ρ < ρ′ ⇒ Γ k
ij(ρ)

ρ � Γ k
ij(ρ

′)

ρ′). These assumptions are usually verified (at least
desirable...) in practice: non-decreasing means that giving more processors can-
not deteriorate the performances; sub-linear means that a job makes a better
use of fewer processors: this is typically true when parallelism does not take too
much advantage of local caches. As shown in [2], two types of speed-up functions
will be of particular interest here:

– the sequential phase, where Γ (ρ) = 1 for all ρ � 0 (the job progresses at
constant speed even if no processor is allotted to it, similarly to an idle
period); and

– the fully parallel phase, where Γ (ρ) = ρ for all ρ � 0.

Two classes of instances will be useful in the following. We denote by (Par-Seq)∗

the class of all instances in which each phase of each job is either sequential or
fully parallel, and by Par-Seq the class of all instances in which each job consists
of a fully parallel phase followed by a sequential phase. Given a (Par-Seq)∗ job J ,
we denote by par(J) (resp., seq(J)) the sum of the fully parallel (resp., sequential)
works over all the phases of J . Given a set Si = {Ji,1, . . . , Ji,ni} of (Par-Seq)∗

jobs, we denote by par(Si) =
∑n

j=1 par(Jij) and seq(Si) = maxj=1,...,ni seq(Jij).

Non-clairvoyant Scheduling. As in [3,2], we consider that the scheduler knows
nothing about the progress of each job and is only informed that a job is com-
pleted at the time of its completion. In particular, it is not aware of the different
phases that the job goes through (neither of the amount of work nor of the
speed-up function). It follows that even if all the job sets arrive at time 0, the
scheduler has to design an online strategy to adapt its allocation on-the-fly to
the overall progress of the jobs.

We say that a given scheduler Ap is c-competitive if it computes a schedule
Ap(S) whose overall set completion time is at most c times the optimal clairvoy-
ant overall set completion time (that is aware of the characteristics of the phases
of each job), i.e., such that SetCT(Ap(S)) � c ·OPTp(S) for all instances S. Due
to the overwhelming advantage granted to the optimum which knows all the hid-
den characteristics of the jobs, it is sometimes necessary for obtaining relevant
informations on an non-clairvoyant algorithm to limit the power of the optimum
by reducing its resources. We say that a scheduler Ap is s-speed c-competitive if it
computes a schedule Asp(S) on sp processors whose overall set completion time
is at most c times the optimal overall set completion time on only p processors,
i.e., such that SetCT(Asp(S)) � c · OPTp(S) for all instances S.

We analyse twonon-clairvoyant schedulers, namelyEquiandEqui ◦ Equi, and
show that they have an optimal competitive ratio up to constant multiplicative

Non-clairvoyant Batch Sets Scheduling: Fairness Is Fair Enough 745

factors. The following two theorems are our main results and are proved in Propo-
sitions 1, 2 and 3.

Theorem 1 (Makespan minimization). Equi is a (1+o(1)) ln n
ln ln n -competitive

non-clairvoyant algorithm for the makespan minimization of a set of n jobs ar-
riving at time t = 0. Furthermore, no non-clairvoyant deterministic (resp. ran-
domized) algorithm is s-speed c-competitive for any s = o(ln n

ln ln n) and c < ln n
2 ln ln n

(resp. c < lnn
4 ln ln n).

Theorem 2 (Main result). Equi◦Equi is a (2+
√

3+o(1)) ln n
ln ln n -competitive non-

clairvoyant algorithm for the overall set completion time minimization of a col-
lection of sets of jobs arriving at time t = 0, where n is the maximum cardinality
of the sets. (Clearly the lower bound on competitive ratio given above holds as
well for this problem).

3 Reduction to (Par-Seq)∗ Instances

In [2], Edmonds shows that for the flowtime objective function, one can reduce
the analysis of the competitiveness of non-clairvoyants algorithm to the instances
composed of a sequence of infinitesimal sequential or parallel work. It turns out
that as shown in Theorem 3 below, his reduction is far more general and applies
to any reasonable objective function (including makespan, overall set completion
time, stretch, energy consumption,...), and furthermore reduces the analysis to
instances where jobs are composed of a finite sequence of positive sequential
or fully parallel work, i.e., to true (Par-Seq)∗ instances. It follows that for any
non-clairvoyant scheduling problem, it is enough to analyse the competitiveness
of a non-clairvoyant algorithm on (Par-Seq)∗ instances. Sequential and parallel
phases are both unrealistic in practise (sequential phases that progress at a
constant rate even if they receive no processors are not less legitimate than fully
parallel phases which do not exist for real either). Nevertheless, these are much
easier to handle in competitive analysis.

Consider a collection of n jobs J1, . . . , Jn where Ji consists of a sequence
of phases J1

i , . . . , Jqi

i of work w1
i , . . . , w

qi

i with speed-up functions Γ 1
i , . . . , Γ qi

i .
Consider a speed s > 0. Let Asp be an arbitrary non-clairvoyant scheduler on sp
processors, and Op a valid schedule of J1, . . . , Jn on p processors. The principle,
see [2], is to remap the phases of the jobs within the two schedules Asp(J) and
Op as follows: each time Asp allots more processors to some phase of a job than
Op, this phase is substituted by a sequential phase and thus Asp allots these
resources pointlessly; and reciprocally, each time Asp allots less processors to
some other phase of a job than Op, we substitute this phase by a parallel phase.
We adjust the substituted sequential and parallel works so that they fit exactly
in the schedule computed by Asp, which implies, as Asp is non-clairvoyant, that
Asp will compute the exact same schedule as before; and since the instance
is made easier to Op, the optimum can only decrease. This ensures that the
competitive ratio of Asp on any instance is upper bounded by the competitive
ratio on (Par-Seq)∗ jobs.

746 J. Robert and N. Schabanel

Note that [2] implicitly assumed that the algorithm is monotonic (i.e., its
flowtime increases if some phase gets more work, which is the case of Equi),
while the present reduction to (Par-Seq)∗ instances applies to any algorithm and
furthermore to settings with release dates, precedences constraints, or any other
type of constraints, since Lemma 1 simply consists in remapping the phases of the
jobs within two valid schedules that already satisfy these additional constraints.

Lemma 1 (Reduction to (Par-Seq)∗ instances). There exists a collection of
(Par-Seq)∗ jobs J ′1, . . . , J

′
n such that Op[J ′/J] is a valid schedule of J ′1, . . . , J

′
n and

Asp(J ′) = Asp(J)[J ′/J], where S[J ′/J] denotes the schedule obtained by schedul-
ing job J ′i instead of Ji in a schedule S.

Proof. The present proof only simplifies the proof originally given in [2] in the
following ways: the jobs J ′1, . . . , J

′
n consist of a finite number of phases (and

are thus a valid finitely described instance), and the schedules computed by
algorithm Asp on instances J ′1, . . . , J

′
n and J1, . . . , Jn are identical, which avoids

to consider infinitely many schedules to construct J ′ from J .
Consider the two schedules Asp(J) and Op. Consider job J1 (the construction

of J ′i is identical for Ji, i � 2). Let ρA(t) and ρO(t) be the number of processors
allotted over time to J1 by Asp(J) and Op respectively. Let ϕ(t) be the time
t′ at which the portion of work of J1 executed in Op at time t, is executed in
Asp(J). Let Γt′ be the speed-up function of the portion of work of J1 executed in
Asp(J) at time t′. By construction, for all t, the same portion of work dw of J1 is
executed between t and t+dt in Op and between ϕ(t) and ϕ(t+dt) = ϕ(t)+dϕ(t)
in Asp(J) with the same speed-up function Γϕ(t), thus: dw = Γϕ(t)(ρO(t)) dt =

Γϕ(t)(ρA(ϕ(t))) dϕ(t); it follows that ϕ’s derivative is ϕ′(t) = Γϕ(t)(ρO(t))

Γϕ(t)(ρA(ϕ(t))) (� 0,
ϕ is an increasing function). ρA(ϕ(t)) and ρO(t) are (by definition) piecewise
constant functions. Let t1 = 0 < t2 < · · · < t� such that ρA(ϕ(t)) and ρO(t) are
constant on each time interval [tk, tk+1) and zero beyond t�; let t′k = ϕ(tk), ρA(t′)
is constant on each time interval (t′k, t′k+1); let ρk

A = ρA(t′k) and ρk
O = ρO(tk).

By construction, the portion of work of J1 executed by Asp(J) between times t′k
and t′k+1, is executed by Op between times tk and tk+1. J ′1 consists of a sequence
of (� − 1) phases, sequential or fully parallel depending on the relative amount
of processors ρk

O and ρk
A alloted by Op and Asp(J) to J1 during time intervals

[tk, tk+1] and [t′k, t′k+1] respectively. The k-th phase of J ′1 is defined as follows:

– If ρk
O � ρk

A, the k-th phase of J ′1 is a sequential work of wk = t′k+1 − t′k.
– If ρk

O > ρk
A, the k-th phase of J ′1 is a fully parallel work of wk = ρk

A·(t′k+1−t′k).

The k-th phase of J ′1 is designed to fit exactly in the overall amount of proces-
sors allotted by Asp to J1 during [t′k, t′k+1]; thus, since Asp is non-clairvoyant,
Asp(J ′) = Asp(J)[J ′/J]. Let now verify that the k-th phase of J ′1 fits in the
overall amount of processors allotted by Op to J1 during [tk, tk+1].

– If ρk
O � ρk

A, wk =
∫ t′

k+1

t′
k

dt′ =
∫ tk+1

tk
ϕ′(t)dt =

∫ tk+1

tk

Γϕ(t)(ρ
k
O)

Γϕ(t)(ρ
k
A)

dt �
∫ tk+1

tk
dt =

tk+1 − tk since the Γϕ(t) are non-decreasing functions.

Non-clairvoyant Batch Sets Scheduling: Fairness Is Fair Enough 747

– If ρk
O > ρk

A, wk = ρk
A

∫ t′
k+1

t′
k

dt′ = ρk
A

∫ tk+1

tk

Γϕ(t)(ρ
k
O)

Γϕ(t)(ρ
k
A)

dt � ρk
A

∫ tk+1

tk

ρk
O

ρk
A

dt =

ρk
O · (tk+1 − tk), since the Γϕ(t) are sub-linear functions.

It follows that in both cases, the k-th phase of J ′1 can be completed in the space
allotted to J1 in Op during [tk, tk+1]. �

Consider an arbitrary non-clairvoyant scheduling problem where the goal is to
minimize an objective function F over the set of all valid schedules of an instance
of jobs J1, . . . , Jn. Assume that F is monotonic in the sense that if S and S[J ′/J]
are valid schedules of J and J ′ respectively, then F (S[J ′/J]) � F (S), which
means essentially that wasting resources (allocating more resources than needed
or allocating processors after the completion of a job) costs no more than using
them: putting a larger thing into a box costs at least as much as putting a
smaller thing into the same box. Note that all standard objective functions are
monotonic: flowtime, makespan, overall completion time, overall set completion
time, stretch, energy consumption, etc. Then,

Theorem 3. Any non-clairvoyant algorithm AF for a monotonic objective func-
tion F that is s-speed c-competitive over (Par-Seq)∗ instances, is also s-speed
c-competitive over all instances of jobs going through phases with arbitrary non-
decreasing sublinear speed-up functions.

Proof. Consider a non-(Par-Seq)∗ instance J = {J1, . . . , Jn}. Denote
by OPTF

p (J) the optimal cost for J , i.e., OPTF
p (J) = inf{F (S) :

S is a valid schedule of J on p processors}. Consider an arbitrary small ε > 0
and O a valid schedule of J such that F (O) � OPTF

p (J)+ ε (note that we do not
need that an optimal schedule exists). Let J ′ be the (Par-Seq)∗ instance given
by Lemma 1 from J , AF

sp, and O. Since AF
sp(J ′) = AF

sp(J)[J ′/J], F (AF
sp(J)) =

F (AF
sp(J ′)). But AF

sp is s-speed c-competitive for J ′, so: F (AF
sp(J)) � c ·

OPTF
p (J ′) � c · F (O[J ′/J]) � c · F (O) � c OPTF

p (J) + c ε, as O[J ′/J] is a
valid schedule of J ′ and F is monotonic. Decreasing ε to zero completes the
proof. �

We shall from now on consider only (Par-Seq)∗ instances.

4 Fairness Is Fair Enough

4.1 The Single Set Case

In this section, we focus on the case where the collection S consists of a unique
set S1 = {J1, . . . , Jn}. The problem consists thus in minimizing the makespan of
the set of jobs S1. This problem is interesting on its own and, as far as we know,
no competitive non-clairvoyant algorithm was known. Furthermore, the analysis
that follows is one of the keys to the main result of the next section.

748 J. Robert and N. Schabanel

Equi Algorithm. Equi is the classic operating system approach to non-
clairvoyant scheduling. It consists in giving an equal amount of processors to
each uncompleted job (operating systems approximate this strategy by a pre-
emptive round robin policy). Formally, given p processors, if N(t) denotes the
number of uncompleted jobs at time t, Equi allots ρt

i = p/N(t) processors to
each uncompleted job Ji at time t.

Analysis of Equi for makespan minimization. Thanks to Theorem 3, we
focus on a (Par-Seq)∗ instance S = {J1, . . . , Jm}. By rescaling the parallel work
in each job, we can assume w.l.o.g. that p = 1. Let us define the Par-Seq instance
S′ = {J ′1, ..., J ′n} where each J ′i consists of a fully parallel phase of work par(Ji)
followed by a sequential phase of work seq(Ji). Observe that:

Lemma 2. Makespan(Equi(S′)) � Makespan(Equi(S)).

Proof. Since all the jobs arrive at time 0, the number of uncompleted jobs is a
non-increasing function of time. It follows that the amount of processors alloted
by Equi to a given job is a non-decreasing function of time. Thus, moving all
the parallel work to the front, can only delay the completion of the jobs since
less processors will then be allocated to each given piece of parallel work. �

Now, every job consists of a parallel phase followed by a sequential phase of
length at most seq(S′). The key to the analysis is to observe that: if more than
a proportion α of jobs are in a parallel phase, then the overall parallel work
progresses at a rate at least α; and if more than a proportion (1 − α) of jobs
are in a sequential phase then after seq(S′) time, these jobs are completed and
the number of jobs decrease by a factor α. It follows that the parallel work is
at most dilated by some factor 1/α and the sequential phases get extended by
some logarithmic factor. We thus obtain the following competitive ratio:

Proposition 1. Equi is (1 + o(1)) lnn
ln ln n -competitive for the makespan mini-

mization problem.

Proof. Consider the schedule Equi(S′) and let T = Makespan(Equi(S′)). We
write [0, T] as the disjoint union of two sets A and Ā. Set α = (ln lnn)2

ln n . Recall
that N(t) is the number of uncompleted jobs at time t. Let st be the number
of uncompleted jobs in a sequential phase at time t. Set A is the set of all the
instants where the fraction of jobs in a sequential phase is larger than α, and
Ā is its complementary set: i.e., A = {0 � t � T : st � (1 − α)N(t)} and
Ā = {0 � t � T : st < (1 − α)N(t)}. Clearly, T = |A| + |Ā|, with |X | =

∫
X dt.

We now bound |A| and |Ā| independently.
At any time t in Ā, the total amount of parallel work completed between t

and t + dt is at least α dt. Since the total amount of parallel work is par(S′), we
get

∫
Ā

α dt � par(S′). Thus, |Ā| � par(S′)/α.
Now, let t1 < · · · < tq with tk ∈ A for all k, such that the time in-

tervals I1 = [t1, t1 + seq(S′)), . . . , Iq = [tq, tq + seq(S′)) form a collection
of non-overlapping intervals of length seq(S′) that covers A. Once the se-
quential phase of a Par-Seq job has begun at or before time t, the job

Non-clairvoyant Batch Sets Scheduling: Fairness Is Fair Enough 749

.

.

.

.

.

.

.

.

.

.

.

.

A fraction 1/L
of the Jobs are in
a parallel phase
of total work all
together 1/L

A fraction 1-1/L
of the Jobs are
in a sequential

phase and
 completes
afterwards

t=0 t=1 t=2 t=L. . .

n jobs
are alive

n/L jobs
are alive

L jobs
are alive

n/L2 jobs
are alive

. . .

t=3

1 job
is alive

t=L+1

represents
a parallel
phase

represents
a sequential
phase

Fig. 1. Worst case instance designed by the mean adversary

completes before time t + seq(S′). Since at time tk, at least (1 − α) · N(tk)
jobs are in a sequential phase, at time tk+1 � tk + seq(S′), we have thus:
N(tk+1) � αN(tk). It follows that N(tk) � αk · n. Since N(tq) � 1,
q � ln n

ln(1/α) . But A is covered by q time intervals of length seq(S′), so: |A| �
ln n

ln(1/α) seq(S′). Finally, Makespan(Equi(S)) � Makespan(Equi(S′)) = T �
1
α par(S′) + lnn

ln(1/α) seq(S′) � (1 + o(1)) ln n
ln ln n max(par(S′), seq(S′)) =

(1 + o(1)) ln n
ln lnn max(par(S), seq(S)) � (1 + o(1)) ln n

ln lnnOPT(S). �

Equi is asymptotically optimal up to a factor 2. The following lemma
shows that Equi is asymptotically optimal in the worst case. Note that increasing
the number of processors by a factor s does not improve the competitive ratio
of any deterministic or randomized algorithm as long as s = o(ln n

ln ln n), i.e., the
competitive ratio does not improve even if the number of processors increases
(not too fast) with the number of jobs. Figure 1 presents the worst case instance
used below.

Proposition 2 (Lower bound for any non-clairvoyant algorithm). No
non-clairvoyant algorithm A has a competitive ratio less than γD = ln n

2 ln ln n if A

is deterministic, and γR = ln n
4 ln ln n if A is randomized.

Furthermore, no non-clairvoyant algorithm A is s-speed c-competitive for any
speed s = o(ln

ln ln n) if c < γD and A is deterministic, or c < γR if A is random-
ized.

Proof. Consider the execution of an algorithm As given s processors on the
following instance (see Fig. 1). At time 0, n = (s�)� jobs are given. Since the al-
gorithm is non-clairvoyant, we set the phase afterwards. At time 1, we renumber
the jobs J1, . . . , Jn by non-decreasing processing power received between t = 0
and t = 1 in As. Between time t = 0 and t = 1, we set the jobs J(s�)�−1+1, . . . , Jn

(i.e., the last fraction 1 − 1/(s�) of the (s�)� jobs) to be in a sequential phase of
work 1 and say that all of them complete at time 1; each Jj of the J1, . . . , J(s�)�−1

are set in a parallel phase of work
∫ 1

0
ρt

j dt each between time 0 and 1, where ρt
j is

the amount of processors alloted to Ji at time t. The processing power received
by the last 1 − 1/(s�) fraction of jobs between t = 0 and t = 1 is at least s − 1/�

750 J. Robert and N. Schabanel

and thus, the total parallel work assigned to the jobs between 0 and 1 is at
most 1/�. At time 1 only remains the jobs J1, . . . , J(s�)�−1 that just have finished
their first parallel phase. We continue recursively as follows until time t = �: at
integer time t = i < �, (s�)�−i jobs are still uncompleted; between time t = i
and t = i + 1, the fraction 1 − 1/(s�) of the (s�)�−i jobs that received the most
processing power are set in a sequential phase of work 1 and all of them complete
at time i + 1; each job Jj of the other 1/(s�) fraction is set in a parallel phase of
work

∫ i+1

i
ρt

j dt each; At time i + 1 only remains the (s�)�−i/(s�) = (s�)�−(i+1)

jobs that just have finished their i-th parallel phase. At time t = �, there only
remains one job which completes at time �+1 after a sequential phase of work 1.
It follows that for this instance, As achieves a makespan of �+1. But, the amount
of parallel work executed within each time interval [i, i + 1] for i = 0, ..., � − 1,
is at most 1/�. It follows that an optimal (clairvoyant) scheduler on 1 processor
can complete all the parallel work in one time unit and then finish the remaining
sequential work before time 2. But n = (s�)�, � > lnn

ln ln n , which concludes the
proof. (The proof for randomized algorithms, based on Yao’s principle [13,10],
is omitted due to space constraints). �

4.2 Non-clairvoyant Batch Set Scheduling

We now go back to the general problem. Consider a collection S = {S1, . . . , Sm}
of m sets Si = {Ji,1, . . . , Ji,ni} of ni (Par-Seq)∗ jobs, each of them arriving at
time zero. The goal is to minimize the overall set completion time of the sets.

Equi◦Equi Algorithm. We consider the Equi◦Equi strategy which splits evenly
the amount of processors given to each set among the uncompleted jobs within
that set. Formally, let N(t) be the number of uncompleted sets at time t, and
Ni(t) the number of uncompleted jobs in each uncompleted set Si at time t.
At time t, Equi◦Equi on p processors allots to each uncompleted job Jij an
amount of processors ρt

ij = p
N(t)·Ni(t)

. The following section shows that indeed
the competitive ratio of this strategy is asymptotically optimal (up to a constant
multiplicative factor).

Competitiveness of Equi◦Equi. Scaling by a factor p each sequential work,
again we assume w.l.o.g. that p = 1. Consider the Par-Seq instance S′ =
{S′1, . . . , S′m} where S′i = {J ′i,1, . . . , J

′
i,ni

} and each job J ′ij consists of a fully
parallel phase of work par(Jij) followed by a sequential phase of work seq(Jij).
Following the proof of Lemma 2, we get:

Lemma 3. SetCT(Equi ◦ Equi(S′)) � SetCT(Equi ◦ Equi(S)).

The next lemmas are the keys to the result. They reduce the analysis of
Equi◦Equi to the analysis of the overall completion time of Equi for a col-
lection of jobs, which is known from [3] to be (2 +

√
3)-competitive when all the

jobs arrive at time 0. Let n = maxi=1,...,m ni be the maximum size of a set Si,
and let α = (ln ln n)2

ln n . The principle is to reduce the analysis of sets of jobs to the
analysis of single (Par-Seq)∗ jobs as follows. Consider the lifetime of a set, each

Non-clairvoyant Batch Sets Scheduling: Fairness Is Fair Enough 751

time a proportion more than α of the jobs are in a parallel phase within the set,
we create a parallel phase; and each time a proportion more than (1 − α) of the
jobs are in sequential phase, we create a sequential phase. For the same raison
as before, the overall parallel work gets dilated by at most 1/α while the overall
sequential work is extended by at most a logarithmic factor.

Lemma 4. There exists a (Par-Seq)∗ instance J = {J1, . . . , Jm}
of Non-Clairvoyant Batch Job Scheduling, such that: Equi(J) =
Equi ◦ Equi(S′)[J/S′], par(Ji) � 1

α par(S′i), and seq(Ji) � lnn
ln(1/α) seq(S′i),

where S[J/S′] denotes the schedule where Ji receives at any time the total
amount of processors alloted to the jobs J ′ij of S′i in schedule S.

Proof. Let E = Equi ◦ Equi(S′). Let us construct J1 (the construction of Ji,
i � 2, is identical). Consider the jobs J ′1,1, . . . , J

′
1,n1

of S′1 in the schedule E.
Let t1 = 0 < · · · < tq = c′1 (where c′1 denotes the completion time of S′1 in E),
such that during each time interval [tk, tk+1), each job J ′1,j remains in the same
phase; during [tk, tk+1), the number of jobs of S′1 in a sequential (resp. fully
parallel) phase is constant, say sk (resp. N1(tk) − sk). J1 has (q − 1) phases:
– if sk � (1−α)N1(tk), the k-th phase of J1 is sequential of work wk = tk+1−tk.
– if sk < (1 − α)N1(tk), the k-th phase of J1 is fully parallel of work

wk =
∫ tk+1

tk

1
N(t)dt.

J1 is designed to fit exactly in the space alloted to S′1 in E, thus Equi(J) =
E[J/S′]. We now have to bound the total parallel and total sequential works in
J1. Let K = {k : sk � (1 − α)N1(tk)} and K̄ = {1, . . . , q − 1} � K; by con-
struction, seq(J1) =

∑
k∈K wk and par(J1) =

∑
k∈K̄ wk. For each t ∈ [tk, tk+1)

with k ∈ K̄, the amount of parallel work of jobs in S′1 between t and t + dt

is at least αN1(t)
N(t)·N1(t)

dt = α
N(t) dt. It follows that the amount of parallel work

of jobs in S′1 scheduled in E during [tk, tk+1) is at least α
∫ tk+1

tk

1
N(t)dt = α wk.

Thus, par(S′1) �
∑

k∈K̄ α wk = α par(J1), which is the claimed bound. Now, let
A = ∪k∈K [tk, tk+1), we have |A| = seq(J1). Since the bound on the size of A in
proof of Proposition 1 relies on a counting argument (and is thus independent
of the amount of processors given to the set) and the jobs in S′1 are Par-Seq,
the same argument applies and |A| � ln n1

ln(1/α) seq(S′1) � ln n
ln(1/α) seq(S′1), which

conclude the proof. �

Let J ′ = {J ′1, . . . , J
′
m} be the Par-Seq instance of Batch Job Scheduling where

each job J ′i consists of a fully parallel work of par(Ji) followed by a sequential
work of seq(Ji). Again, as the amount of processors alloted by Equi to each
job is a non-decreasing function of time, pushing parallel work upfront can only
make it worse, thus: Equi(J) � Equi(J ′).

We can now conclude on the competitiveness of Equi ◦ Equi since Equi is
proved to be (2 +

√
3)-competitive for instance J ′ in [3, Theorem 3.1].

Proposition 3. Equi◦Equi is (2+
√

3+o(1)) ln n
ln lnn -competitive for the overall set

completion time minimization problem.

752 J. Robert and N. Schabanel

5 Experimental Study of Equi and Equi◦Equi

Fig. 2(a) presents the empirical overall and maximum competitive ratio of Equi
for the Makespan objective on random stream-lined instances [2]: for each n, a
set of n jobs, of 5n phases of unit work each, is requested at time 0; for all i,
the type of the i-th phase of the n jobs are defined as follows: a job is chosen
uniformly at random and its i-th phase is set to parallel, and the i-th phases of
all the other jobs are all sequential. It appears that the empirical competitive
ratio measured for Equi on this random instance appears to be asymptotically
∼ .7 ln n

ln ln n . The worst case ratio proven in Proposition 2 seems thus to be the
typical behavior of Equi.

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 10 100 1000

 0.6

 0.8

 1

 1.2

 1.4

M
ak

es
pa

n(
E

Q
U

I)
 /

O
P

T

Number of jobs

Maximum makespan/OPT
Average makespan/OPT
Average makespan/OPT/(ln(n)/(ln(ln(n))))
Maximum makespan/OPT/(ln(n)/(ln(ln(n))))

 2

 2.5

 3

 3.5

 4

 4.5

 10 100 1000 10000

A
ve

ra
ge

 S
et

 C
T

(E
Q

U
I)

 /
O

P
T

Number of requests

Worst case instance with 200 jobs per request
Worst case instance with 100 jobs per request
Worst case instance with 50 jobs per request
Worst case instance with 30 jobs per request
Worst case instance with 10 jobs per request

 2.5

 3

 3.5

 4

 4.5

 10 100 1000

 0.6

 0.8

 1

 1.2

 1.4

A
ve

ra
ge

 S
et

 C
T

(E
Q

U
I)

 /
O

P
T

Number of jobs per request

Empirical competitive ratio
Empirical competitive ratio/((ln(n)/ln(ln(n))))

Fig. 2. From left to right: a) Makespan of Equi on random stream-lined instances; b)
Average Set Flowtime of Equi◦Equi on a stream of worst case instances for Makespan
on 2 processors; c) Worst empirical competitive ratio for Equi ◦ Equi2 w.r.t. OPT1

Fig. 2(b) and (c) present the competitive ratio of Equi◦Equi for the Average
Set Flowtime objective (the average flowtime of each set of jobs) with 2 proces-
sors with respect to the optimal with 1 processor, on the following instance:
at each time step t = 0..10 000, we request an instance of the worst case type
described in Fig. 1 with n jobs, n ∈ {10, 30, 50, 100, 200}. Fig. 2(c) shows that
the empirical competitive ratio seems to tend asymptotically to ∼ ln n

ln ln n as time
grows. It seems thus that the competitive ratio of Equi◦Equi is independent of
the number of requests for the Average Set Flowtime objective as well.

References

1. Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J.(eds.): Handbook on
Scheduling: Models and Methods for Advanced Planning, chapter Online Schedul-
ing. International Handbooks on Information Systems. Springer, Heidelberg (2007),
at http://www.cs.pitt.edu/∼kirk/papers/index.html

2. Edmonds, J.: Scheduling in the dark. In: Proc. of the 31st ACM Symp. on Theory
of Computing (STOC), pp. 179–188. ACM Press, New York (1999)

3. Edmonds, J., Chinn, D.D., Brecht, T., Deng, X.: Non-clairvoyant multiproces-
sor scheduling of jobs with changing execution characteristics. J. Scheduling 6(3),
231–250 (2003)

http://www.cs.pitt.edu/~kirk/papers/index.html

Non-clairvoyant Batch Sets Scheduling: Fairness Is Fair Enough 753

4. Edmonds, J., Pruhs, K.: Broadcast scheduling: when fairness is fine. In: Proc. of
the 13th annual ACM-SIAM symposium on Discrete algorithms (SODA 2002),
Philadelphia, PA, USA, pp. 421–430. ACM Press, New York (2002)

5. Feldmann, A., Kao, M.-Y., Sgall, J., Teng, S.-H.: Optimal online scheduling of par-
allel jobs with dependencies. J. of Combinatorial Optimization 1, 393–411 (1998)

6. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell System Techni-
cal Journal 45, 1563–1581 (1966)

7. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics 17, 263–269 (1969)

8. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J.
ACM 47(4), 617–643 (2000)

9. Motwani, R., Philipps, S., Torng, E.: Non-clairvoyant scheduling. Theoretical Com-
puter Science 130, 17–47 (1994)

10. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

11. Robert, J., Schabanel, N.: Pull-based data broadcast with dependencies: Be fair to
users, not to items. In: Proc. of Symp. on Discrete Algorithms (SODA) (2007)

12. Tucker, A., Gupta, A.: Process control and scheduling issues for mulitprogrammed
shared memory multiprocessors. In: Proc. of the 12th ACM Symp. on Op. Syst.
Principles, pp. 159–166. ACM Press, New York (1989)

13. Yao, A.: Probabilistic computations: Towards a unified measure of complexity. In:
Proc. of 17th Symp. on Fond. of Computer Science (FOCS), pp. 222–227 (1977)

An Experimental Study of New and Known

Online Packet Buffering Algorithms�

Susanne Albers and Tobias Jacobs

University of Freiburg, Georges Köhler Allee 79, 79110 Freiburg, Germany
{salbers,jacobs}@informatik.uni-freiburg.de

Abstract. We present the first experimental study of online packet
buffering algorithms for network switches. We consider a basic scenario
in which m queues of size B have to be maintained so as to maxi-
mize the packet throughput. For this model various online algorithms
with competitive factors ranging between 2 and 1.5 were developed in
the literature. We first develop a new 2-competitive online algorithm,
called HSFOD , which is especially designed to perform well under real-
world conditions. In our experimental study we have implemented all
the proposed algorithms, including HSFOD , and tested them on packet
traces from benchmark libraries. We have evaluated the experimentally
observed competitiveness, the running times, memory requirements and
actual packet throughput of the strategies. The tests were executed for
varying values of m and B as well as varying switch speeds. It shows
that greedy-like strategies and HSFOD perform best in practice.

1 Introduction

Over the past five years the algorithms community has witnessed tremendous
research interest in packet buffering algorithms. Given a network router or switch
that is equipped with packet buffers of limited capacity, the general goal is to
design strategies for serving these buffers so as to maximize the total packet
throughput. While packet buffering policies have been investigated in the applied
computer science and, in particular, networking communities for many years,
only seminal papers by Aiello et al. [1] and Kesselman et al. [8] have initiated
theoretical and algorithmic studies. These studies and those presented since aim
at analyzing existing algorithms and at designing new strategies with a provably
good performance.

Packet buffering is an online problem in that data packets arrive over time
and, at any time, future packet arrivals are unknown. Results from queueing the-
ory cannot be applied directly as network traffic exhibits so-called self-similar
properties, cf. [6,14]. Therefore, algorithmic research resorts to competitive anal-
ysis [12], comparing an online algorithm A to an optimal offline algorithm OPT
that knows the entire packet arrival sequence in advance. Algorithm A is called
c-competitive if, for all packet arrival sequences, the throughput achieved by A

� Work supported by the German Research Foundation, projects AL 464/4-1 and 4-2.

L. Arge, M. Hoffmann, and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 754–765, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Experimental Study of Online Packet Buffering Algorithms 755

is at least 1/c times that of OPT. In the above-mentioned algorithmic body of
work, various packet buffering problems were investigated. The following nat-
ural questions arise: Do the competitive analyses give meaningful results? Are
the proposed new algorithms interesting from a practical point of view? Does
optimizing the worst-case behaviour also improve the practical performance? So
far, these issues were not addressed.

In this paper we present the first experimental study of online packet buffering
algorithms. We consider a scenario that is very basic and has been investigated
the most among the proposed models, see [2,3,4,8,10]. Specifically, we are given
m packet buffers, each of which is associated with an input port of a switch.
Each buffer is organized as a queue and can simultaneously store up to B data
packets. The capacity B is also referred to as the size of the buffer. Time is
assumed to be discrete. Each time step consists of two phases, namely a packet
arrival phase and a packet transmission phase. At any time, in the packet arrival
phase, new packets may arrive at the buffers. Let bi be the number of packets
currently stored in buffer i, and let ai be the number of newly arriving packets
at that buffer. If ai + bi ≤ B, then all new packets can be accepted; otherwise
ai + bi − B packets must be dropped. Furthermore, at any time, in the packet
transmission phase, an algorithm can select one non-empty buffer and transfer
the packet at the head of that queue to the output port. We assume w.l.o.g. that
the packet arrival phase precedes the transmission phase. The goal is to maximize
the throughput, i.e. the total number of transferred packets. We emphasize that
we consider all packets to be equally important, i.e. all of them have the same
value. The scenario we study here arises, for instance, in input-queued (IQ)
switches which represent the dominant switch architecture today.

Known algorithms: The most simple and natural packet buffering algorithm
is the Greedy policy: At any time serve the queue currently storing the largest
number of packets. Unfortunately, Greedy has essentially the worst possible com-
petitive ratio. It is easy to show [2,4] that any work conserving algorithm, which
at any time serves an arbitrary non-empty buffer, is 2-competitive. Obviously,
Greedy belongs to the class of work conserving strategies. It was shown in [2]
that the competitive ratio of Greedy is not smaller than 2−1/B, no matter how
ties are broken. Thus Greedy has a competitiveness of exactly 2, for arbitrary
buffer sizes. The first deterministic algorithm that achieved a competitive ra-
tio below 2 was devised in [2]. The proposed Semi Greedy algorithm deviates
from standard Greedy when the buffer occupancy is low and has a competitive
performance of 17/9 ≈ 1.89. The deterministic strategy with the smallest com-
petitive ratio known is the Waterlevel algorithm [3] with a competitiveness of

e
e−1 (1+ �Hm+1�

B), where Hm is the m-th Harmonic number. This ratio is optimal
for large B, as no deterministic algorithm can have a competitive ratio smaller
than e/(e − 1) ≈ 1.58, see [2]. As for randomized strategies, a Random Schedule
algorithm [4] achieves a competitive ratio of e/(e − 1) while a Random Permu-
tation algorithm is 1.5-competitive [10]. These performance ratios hold against
oblivious adversaries and are close to the best lower bound of 1.46, see [2].
The five algorithms just mentioned comprise all online strategies known in the

756 S. Albers and T. Jacobs

literature for our packet buffering problem. As for the offline problem, a poly-
nomial time algorithm computing optimal solutions was given in [2].

Contributions of this paper: We first introduce a new online packet buffering
algorithm called HSFOD. It is based on the idea to estimate the packet arrival
rate for each port. In each time step the algorithm transmits a packet from a
non-empty queue that, according to these arrival rates, encounters packet loss
earliest in the future assuming buffers would not be served anymore. This new
strategy is presented in Section 2. We prove that it is 2-competitive.

The major part of this paper is devoted to an extensive experimental study
of the packet buffering problem under consideration. The main purpose of our
experiments is to determine the experimentally observed competitiveness of all
the proposed online algorithms and to establish a relative performance rank-
ing among the strategies. As the name suggests, the experimentally observed
competitiveness is the ratio of the throughput of an online algorithm to that
of an optimal solution as it shows in experimental tests. Additionally, we wish
to evaluate the running times and memory requirements of the algorithms as
some of the strategies are quite involved and need auxiliary data structures. Fi-
nally, we are interested in the actual throughput in terms of the total number
of successfully transmitted packets.

We have tested the algorithms on real-world traces. We selected traces from
the Internet Traffic Archive [7], which is a moderated trace repository sponsored
by ACM SIGCOMM. In our experiments we have studied varying port numbers
m as well as varying buffers sizes B. Furthermore, we have investigated the
influence of varying the speed of a switch, i.e. the frequency with which it can
forward packets. We have adjusted this parameter relative to the given data
traces. For instance, a speed of value 1 indicates that the average packet arrival
frequency is equal to the frequency with which packets can be transmitted.

In Section 3 we present a concise description of the five previously known
online buffering algorithms as well as the optimal offline strategy. For all the
proposed strategies, including HSFOD, we describe how the given pseudo-code
was indeed implemented and discuss runtime issues as well as extra space re-
quirements of the strategies. We implemented the data model and the algorithms
using the Java programming language. The test environment is described in
Section 4. A detailed presentation of the results follows in Section 5. One of the
most important findings is that the experimentally observed competitiveness is
much lower than the theoretical bounds. Typically, the online algorithms are at
most 3% worse than an optimal offline algorithm. In fact, HSFOD shows the
best performance, having a gap of less and 0.1%. We remark here that HSFOD
was designed after we had implemented and evaluated the previously known al-
gorithms. Hence it can be viewed as a result of an algorithm engineering process.
Furthermore, the theoretical competitive ratios are no proper indication of how
the algorithms perform in practice. The randomized algorithms, despite their
low theoretical competitiveness, do not perform better than the deterministic
ones. From a practical point of view Greedy, HSFOD and Semi Greedy are the
algorithms of choice.

An Experimental Study of Online Packet Buffering Algorithms 757

2 The New Algorithm HSFOD

The new strategy we introduce estimates future packet arrival rates by keeping
track of past arrival patterns. Based on these arrival rates, the algorithm mimics
the optimal offline algorithm SFOD [2] which at each point of time transmits a
packet from a non-empty queue that would overflow earliest in the future if no
queues were served.

Algorithm HSFOD: For each input port the algorithm maintains a weighted
moving average estimating the packet arrival rate. Let ri(t) be the rate at time
t for port i, 1 ≤ i ≤ m. Then ri(t) = α · ri(t − 1) + (1 − α) · ai(t), where
ai(t) is the number of packets that have just arrived at port i, and α ∈ (0, 1)
is some fixed constant. We set ri(0) = 0 initially. The overflow time for each
port i is calculated as tovi (t) = (B − bi(t))/ri(t), where bi(t) is the number of
packets currently stored in buffer i. Note that ri(t) and tovi (t) are allowed to
take fractional values. At any time the algorithm serves the buffer that has the
smallest overflow time; ties may be broken arbitrarily.

Theorem 1. The competitive ratio of HSFOD is exactly equal to 2.

The proof is given in the full paper. HSFOD depends on a parameter 0 < α < 1
that weights past and current packet arrivals. Experimental evaluations show
that HSFOD achieves the best practical performance for values of α in the
range 0.995 ≤ α ≤ 0.997. Again, details are given in the full paper. We set α to
0.997 in the experiments described in the following sections.

3 The Implemented Algorithms

We describe implementation issues for all the known strategies that we have
evaluated experimentally. Due to space constraints we only consider the online
algorithms here. As the optimal offline algorithm SFOD is just used for compar-
ison, we omit its discussion in this extended abstract.

As we consider a scenario where all packets have the same value, unless oth-
erwise stated, the algorithms apply a greedy admission policy: At any time t
and for any of the m buffers, whenever new data packets arrive, an algorithm
accepts as many packets as possible subject to the constraint that a buffer can
only store up to B packets simultaneously. Thus the algorithms only specify
which buffer to serve in each time step. We will use the terms buffer and queue
interchangeably and use qi to refer to the i-th buffer/queue. Let the load of a
queue be the number of packets currently stored in it.

3.1 Deterministic Online Algorithms

Algorithm Greedy: In each time step serve the queue currently having the
maximum load; ties may be broken arbitrarily.

Algorithm Semi Greedy: In each time step execute the first of the following
three rules that applies to the current buffer configuration. (1) If there is a

758 S. Albers and T. Jacobs

queue buffering more than �B/2� packets, serve the queue currently having the
maximum load. (2) If there is a queue the hitherto maximum load of which is less
than B, then among these queues serve the one currently having the maximum
load. (3) Serve the queue currently having the maximum load. Whenever all
queues become empty, the hitherto maximum load is reset to 0 for all queues.

In our implementation of Greedy and Semi Greedy we use auxiliary heap data
structures to determine the queues having the maximum load. Ties are broken
by choosing the queue with the smallest index.

We next give a condensed presentation of the Waterlevel strategy. In the
original paper [3] the description was more general. Waterlevel is quite involved
and consists of a cascade of four algorithms that simulate each other. At the
bottom level there is a fractional Waterlevel algorithm, denoted by FWL, that
processes fractional amounts of packets. For any time step t and for any queue
qi, let P i

t be the set of the last B packets that have arrived at qi until (and
including) time t. Set Pt = ∪m

i=1P
i
t . Furthermore, let xp

t be the extent to which
packet p is transmitted by FWL during time t. Intuitively, FWL tries to serve
the available packets as evenly as possible.

Algorithm FWL: At any time t, for any packet p ∈ Pt match an extent of
xp

t = max{h − sp
t , 0}, where h is the maximum number such that

∑
p∈Pt

xp
t ≤ 1.

We describe an efficient implementation of FWL. At any time t and for any
packet p ∈ Pt, the algorithm has to determine the extent to which p is served. At
any time we maintain a doubly-linked list L of all the sp

t values, p ∈ Pt, sorted in
increasing order. For each entry in the list we store a vector of length m indicating
how many packets in qi, 1 ≤ i ≤ m, currently take that value. The values in L
together with the total number of packets taking a certain value give rise to a
waterlevel profile. Each level of the profile represents a value in L. The width of
a level corresponds to the total number of packets p ∈ Pt having a service extent
sp

t equal to that level. In each time step at which new data packets arrive, we
have to update L. This is done by first adding a waterlevel of height s = 0 at the
head of L, storing for each queue qi the number ni of newly arrived packets. If,
for queue qi, the previous load li plus ni exceeds B, then we have to discard the
oldest n′i = li + ni − B packets from qi. This corresponds to a proper update of
Pt. Algorithm FWL ensures that packets residing longer in qi have larger service
extents. Thus, starting at the tail of L, we discard for any qi the oldest n′i packets.
This is done by simply decreasing the number of packets from qi that contribute
to a waterlevel until a total number of n′i has been discarded. The computation
of the xp

t values amounts to filling water of volume 1 into the waterlevel profile.
More specifically, we repeatedly have to find out which adjacent waterlevels to
merge. Each merge operation can be performed in O(m) time. Simultaneously,
while raising waterlevels, we keep track of the extents X i

t to which packets from
qi are being served.

The goal of the following steps is to discretize FWL. This is done by admitting
only full, integral packets to the buffers and by transmitting only full, integral
packets. In order to guarantee the same throughput as FWL one employs slightly
larger buffers. The implementation of the following steps is straightforward.

An Experimental Study of Online Packet Buffering Algorithms 759

Algorithm FWL’: Work with queues of size B + 1 and run a simulation of
FWL on queues of size B. At any time t, in the packet arrival phase, accept as
many packets as possible subject to the constraint that only complete packets
may be accepted. In the transmission phase, at any time t, transmit a total
amount of X i

t from queue qi, where X i
t is the total amount transferred by FWL

from queue qi. If
∑m

i=1 X i
t < 1, then transmit an amount of 1 − ∑m

i=1 X i
t from

arbitrary non-empty queues as long as there are such.

Algorithm D(FWL’): Work with queues of size B+1+�Hm�. Run a simulation
of FWL’ with queues of size B +1. At any time t and for any queue qi, let Si be
the total number of packets transmitted from queue qi by D(FWL’) before time
t and let S′i be the total amount of packets from queue qi transmitted by FWL’
up to (and including) time t. Transmit a packet from the queue for which the
residual service extent S′i − Si is largest.

Algorithm Waterlevel: Work with queues of size B. Run a simulation of
D(FWL’). In each time step, accept a packet if D(FWL’) accepts it and the cor-
responding queue is not full. Transmit packets as D(FWL’) if the corresponding
queue is not empty.

Finally, our new algorithm HSFOD was already described in Section 2. After
each packet arrival phase, for each port, the packet arrival rate has to be updated.
This takes linear time.

3.2 Randomized Algorithms

We first present the algorithm Random Schedule. In addition to the m packet
queues the algorithm maintains m auxiliary queues, each of size B, which are
initially empty. Over time the auxiliary queues will contain real numbers from
the range (0, 1), which serve as priorities. These priorities may be labeled as
either marked or unmarked. In the following, q1, . . . , qm will refer to the original
packet queues and Q1, . . . , Qm to the auxiliary queues.

Algorithm Random Schedule: At any time execute the following two steps.
(1) For any new packet admitted to a queue qi, choose a real number uniformly
at random from (0, 1) and append it to Qi. If Qi was full prior to this operation,
then first delete the element at the head of Qi. The newly inserted number is
labeled unmarked. (2) In the transmission phase, check if the Q1, . . . , Qm store
unmarked numbers. If so, let Qi be the queue storing the largest unmarked
number; ties may be broken arbitrarily. Change the label of that number to
marked and transmit a data packet from queue qi. Otherwise, if there are no
unmarked numbers, transmit a packet from an arbitrary non-empty queue.

We remark that Random Schedule uses a considerable amount of Θ(mB)
extra space to store the auxiliary queues Q1, . . . , Qm. In our implementation we
maintain a priority queue based on standard heaps that stores the unmarked
numbers from Q1, . . . , Qm. Whenever a new data packet is admitted to a packet
buffer qi, we have to insert a number into the priority queue. This operation
may be preceded by a delete operation if a number first has to be removed from

760 S. Albers and T. Jacobs

the head of Qi. Executing a deletemax operation, we can determine which of the
packet buffers to serve. All the operations may take up to O(log(mB)) time.

The second randomized switching algorithm known is called Random Permu-
tation. The basic approach of the algorithm is to reduce the packet switching
problem with m buffers of size B to one with mB buffers of size 1. To this
end, a packet buffer qi of size B is associated with a set Qi = {qi,0, . . . , qi,B−1}
of B buffers of size 1. A packet arrival sequence σ for the problem with size B
buffers is transformed into a sequence σ̃ for unit-size buffers by applying a Round
Robin policy. More specifically, the j-th packet ever arriving at qi is mapped to
qi,j mod B in Qi. Random Permutation at any time runs a simulation of the
following algorithm SimRP for m′ = mB buffers of size 1.

Algorithm SimRP(m′): The algorithm is specified for m′ buffers for size 1.
Initially, choose a permutation π uniformly at random from the permutations on
{1, . . . , m′}. In each step transmit the packet from the non-empty queue whose
index occurs first in π.

Algorithm Random Permutation: Given a online packet arrival sequence
σ for buffer size B, run a simulation of SimRP(mB) on σ̃. At any time, if
SimRP(mB) serves a buffer from Qi, transmit a packet from qi. If the buffers
of SimRP(mB) are all empty, transmit a packet from an arbitrary non-empty
queue if there is one.

Obviously, the algorithm needs a large amount of Θ(mB) extra space to run
SimRP(mB). Using a priority queue that stores non-empty buffers of capacity 1,
we can determine in O(log(mB)) time which queue to serve.

4 The Test Environment

We have tested the online packet buffering algorithms on real-world traces from
the Internet Traffic Archive [7], a moderated trace repository maintained by
ACM SIGCOMM. We have performed extensive tests with seven traces. A first
set of four traces monitors wide-area traffic between Digital Equipment Corpo-
ration (DEC) and the rest of the world. A second set of three traces monitors
wide-area traffic between the Lawrence Berkeley Laboratory (LBL) and the rest
of the world. Only the TCP traffic was considered. The traces were gathered in
1994 and 1995, respectively, over a time horizon of one to two hours and consist
of 1.3 to 3.8 million data packets each. Despite being a number of years old, these
traces still represent standard benchmarks when marking experimental tests and
are recommended for such studies, see e.g. the text book by Krishnamurthy and
Rexford [9] or [13]. In the various traces the information relevant to us is, for
any data packet, the arrival time and the sending host address.

As indicated in the introduction themain goal of our experiments is to determine
the experimentally observed competitiveness of the online switching algorithms
and to establish a relative performance ranking among the strategies. Furthermore,
we are interested in the algorithms’ running times and memory requirements. As
for the running time of a strategy, we evaluated the average time it takes the al-

An Experimental Study of Online Packet Buffering Algorithms 761

gorithm to determine which queue to serve (total running time summed over all
time steps/#time steps). As for extra space requirements, we have evaluated, for
any of the algorithms, the maximum amount of memory needed by auxiliary data
structures employed by that algorithms. Finally in our tests, we have evaluated the
actual throughput in terms of the number of data packets transferred.

In our experiments we have studied varying port numbers m as well as vary-
ing buffers sizes B. In order to be able to investigate varying values of m, we
have to map sending host addresses (e.g. about 3000 in DEC-PKT-1) to port
number numbers in the range {0, . . . , m − 1}. We chose a mapping that maps
each sending host address to a port number chosen uniformly at random from
{0, . . . , m−1}. We would like to point out that such a mapping does not lead to
balanced traffic at the ports as some hosts generate a large number of packets.
In our traces, under the random mapping, we observe highly non-uniform packet
arrival patterns where 10 to 15% of the ports receive ten times as many pack-
ets as each of the other ports. This is consistent with the fact that web traffic
with respect to packets’ source (and destination) addresses is distributed non-
uniformly, exhibiting essentially a power-law structure [5,13]. Typically, 10% of
the hosts account for 90% of the traffic. However, this fact does not allow a di-
rect conclusion on the distribution of sending hosts among the input ports of a
switch. This distribution strongly depends on the network topology. So, alterna-
tively, a power-law governed assignment of hosts to ports is not more reasonable
than our uniform distribution.

Another important parameter in the experimental tests is the speed of the
switch, i.e. how fast the switch can transfer packets. Here we consider speed val-
ues relative to the data volume of a given trace. For a trace data set D, let fD =
(#packets in D)/(length of time horizon of D) be the average packet arrival rate
in D. Speed s indicates that the switch forwards data packets with frequency sfD.
Thus, intuitively, a speed 1 switch can forward the data exactly as fast as it ar-
rives on the average. If the speed is low, inevitably, buffers tend to be highly pop-
ulated. If the speed is high, buffers are only lightly loaded. In summary, each of
our experiments is specified by the following parameters: (a) switching algorithm
A; (b) trace data set D; (c) number m of buffers; (d) buffer size B; (e) speed s.

5 Experimental Results

We have done extensive tests with all the network traces mentioned in Section 4.
A first, very positive finding is that the results are consistent for all the traces.
The phenomena reported in this section, unless otherwise stated, have occurred
for all the data sets. Due to space limitations, in this paper we only present the
results for trace DEC-PKT-1. A zip-file containing the plots for all the traces
can be downloaded at http://www.informatik.uni-freiburg.de/~jacobs/.
In the following subsections we report on the competitiveness, running time
and memory requirements of the algorithms as parameters m, B and s vary. It
turned out that a variation of the speed s gives the most interesting results and
we therefore start with a description of this issue.

762 S. Albers and T. Jacobs

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 0.6 0.8 1 1.2 1.4 1.6 1.8

co
m

pe
tit

iv
e

ra
tio

speed

dec-pkt-1.tcp

Greedy
Semi Greedy

Waterlevel
Random Schedule

Random Permutation
HSFOD

Fig. 1. Comp. ratio, m = 30 & B = 100

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 4.5e-05

 0.6 0.8 1 1.2 1.4 1.6 1.8

ru
nt

im
e

speed

dec-pkt-1.tcp

Greedy
Semi Greedy

Waterlevel
Random Schedule

Random Permutation
HSFOD

Fig. 2. Run time, m = 30 & B = 100

5.1 Varying the Speed s

Figure 1 depicts the experimentally observed competitiveness for varying s. We
consider in this presentation a basic setting with m = 30 and B = 100. These
parameters are chosen relative to the size of DEC-PKT-1, which consists of 2.1
million packets. More precisely, we wish to simulate the algorithms for sufficiently
large m and time steps with considerable packet traffic. Furthermore, switch
simulations in the literature usually also work with m = 8 to m = 32 ports,
see e.g. [11,15]. Our basic setting of m and B is not critical. As we will see, the
observed phenomena occur for other parameter settings (smaller/larger m and
smaller/larger B) as well.

An important result of our study is that the experimentally observed com-
petitiveness of all the algorithms ranges between 1.0 and 1.035 and hence is
considerably lower than the theoretical bounds. This is not surprising because
competitive analysis is a strong worst-case performance measure. It is aston-
ishing, though, that the gap is so high. Remarkably, Greedy, Semi Greedy and
Waterlevel have an experimental competitiveness that is always below 1.002, i.e.
they are never 0.2% worse than an optimal solution. HSFOD exhibits an even
better competitiveness of less than 1.001 for all values of s. Furthermore, inter-
estingly, the curves for Greedy, Semi Greedy and Waterlevel are almost identical
and indistinguishable in the plot. The three algorithms have essentially the same
performance: For instance, the difference in the number of transferred packets
is less than 1000 when the total throughput of each of the three strategies is
about 2 million packets. All the algorithms have the highest ratios for values of
s around 1. On other traces, the peak sometimes occurs at s ≈ 1.1. Thus, the
worst case occurs when the average packet arrival rate is equal to the rate with
which the switch can forward packets and packet scheduling decisions matter.
For small and large values of s, the experimental competitiveness tends to 1.
This is due to the fact that buffers tend to be either heavily populated (small s)
or lightly populated (large s) and all the algorithms transfer essentially an op-
timum number of packets. Another important result is that the theoretical and
experimentally observed competitive ratios are unrelated. In particular, in the

An Experimental Study of Online Packet Buffering Algorithms 763

experiments the randomized strategies, which have low theoretical competitive
ratios, do perform considerably worse than the deterministic algorithms.

Figure 2 shows the running times of the algorithms, i.e. the average time in sec-
onds it takes an algorithm to perform 1 time step (update auxiliary data structures
to account for incoming packets and determine the queue to be served). We evalu-
ate the running times for varying s because the buffer occupancy depends on s and
the latter occupancy can affect the running time. Uniformly over all algorithms
we observe decreasing running times for increasing values of s. The reason is that,
for large s, buffers tend to be empty and the algorithms need less time to handle
one time step. Greedy and Semi Greedy are the fastest algorithms, Semi-Greedy
being only slightly slower than Greedy. HSFOD , Random Schedule, Random Per-
mutation and Waterlevel have considerably higher running times. Waterlevel is
the slowest strategy with running times that are more than twice as high as that of
Greedy. A shown in Figure 2, the algorithms need 20 to 40 milliseconds to perform
one time step. These times would be lower in a switch hardware implementation;
our runtime tests just represent a comparative study of the algorithms.

As for the extra memory requirements of the algorithms, the numbers are stable
for varying s. The important finding here is that the amounts of extra space differ
vastly among the strategies. As to be expected, HSFOD, Greedy and Semi Greedy
have small requirements. HSFOD uses no more than 500 bytes, while Greedy and
Semi Greedy, using priority queues, allocate 1000 to 1300 bytes. Waterlevel has
space requirements that are twice as high. Huge amounts of extra space (80.000 to
100.000bytes) are requiredbyRandomSchedule andRandom Permutation. Recall
that these algorithms need space for auxiliary queues and mB unit-size buffers.

5.2 Varying the Buffer Size

In a next set of experiments we study the effect of varying the buffer size B.
We investigate this effect for the critical speed s = 1.0 where the observed
competitive ratios are highest. Figure 3 shows that the buffer size has essentially
no effect on the competitiveness; only the randomized strategies show a slight
fluctuation. This supports our statement that our initial setting m = 30 and B =
100 plays no particular role. Again, HSFOD outperforms all the other algorithms
and the performance of Greedy, Semi Greedy and Waterlevel is almost identical.
In Figure 4 we observe that the running times, too, are stable. The only exception
is Random Schedule. The maintenance of its auxiliary queues takes more time as
B increases. As for the required space, as was to be expected, the deterministic
strategies have fixed demands as the size of the auxiliary data structures depends
only on m. Random Schedule and Random Permutation experience a linear
increase as the auxiliary data structures depend on mB. The increase is about
20 bytes per additional buffer cell.

5.3 Varying the Number of Ports

Next we analyze the effect of varying the number m of ports, focusing again
on the most critical speed s = 1.0. We consider a fixed product of mB, which

764 S. Albers and T. Jacobs

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 50 100 150 200 250 300 350 400 450 500

co
m

pe
tit

iv
e

ra
tio

buffer size

dec-pkt-1.tcp

Greedy
Semi Greedy

Waterlevel
Random Schedule

Random Permutation
HSFOD

Fig. 3. Comp. ratio, m = 30 & s = 1.0

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 4.5e-05

 50 100 150 200 250 300 350 400 450 500

ru
nt

im
e

buffer size

dec-pkt-1.tcp

Greedy
Semi Greedy

Waterlevel
Random Schedule

Random Permutation
HSFOD

Fig. 4. Run time, m = 30 & s = 1.0

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 10 20 30 40 50 60 70 80 90 100

co
m

pe
tit

iv
e

ra
tio

number of ports

dec-pkt-1.tcp

Greedy
Semi Greedy

Waterlevel
Random Schedule

Random Permutation
HSFOD

Fig. 5. Comp. ratio, mB = 3000 & s = 1.0

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 4.5e-05

 5e-05

 5.5e-05

 10 20 30 40 50 60 70 80 90 100

ru
nt

im
e

number of ports

dec-pkt-1.tcp

Greedy
Semi Greedy

Waterlevel
Random Schedule

Random Permutation
HSFOD

Fig. 6. Run time, mB = 3000 & s = 1.0

is equal to mB = 3000 for our initial parameters. The reason is the following:
Varying m while fixing B would investigate the effect to giving a switch more
total buffer space, an issue that was already studied in Section 5.2.

Interestingly, the algorithms perform well in our new scenario. All determin-
istic algorithms show a very slight increase in experimental competitiveness, see
Figure 5. The increase is more pronounced in the case of Random Schedule and
Random Permutation. The general increase in competitiveness is due to the fact
that for a larger number of ports, online algorithms have a higher chance of
serving the “wrong” port. Figure 6 reveals a weakness of HSFOD ; its running
time increases linearly with m. The same holds for Waterlevel , although the
gradient is smaller here. For all the other strategies the running times are stable.
As for the memory requirements, as was to be expected, the deterministic al-
gorithms have slightly increasing demands (about 4 bytes per additional port).
The demands are fixed for Random Schedule and Waterlevel as the sizes of the
auxiliary data structures are linear in mB.

5.4 The Absolute Throughput

Finally, we analyze the actual throughput of the algorithms, i.e. the total number
of successfully transferred data packets. The corresponding plots appear in the

An Experimental Study of Online Packet Buffering Algorithms 765

full paper. We observe an almost linear increase in throughput as s increases,
leading to the maximum possible throughput at s = 1.2. At our critical speed
s = 1 we varied again B and m. As B increases, the throughput improves.
Increasing the number m of ports while fixing the total amount of memory
available in the switch, SFOD , HSFOD, Greedy, Semi Greedy and Waterlevel
experience almost no performance loss. On the other hand, Random Permutation
and Random Schedule experience a loss in throughput.

References

1. Aiello, W., Mansour, Y., Rajagopolan, S., Rosén, A.: Competitive queue policies
for differentiated services. In: Proc. INFOCOM, pp. 431–440 (2000)

2. Albers, S., Schmidt, M.: On the performance of greedy algorithms in packet buffer-
ing. In: Proc. 36th ACM Symp. on Theory of Computing, pp. 35–44 (2004)

3. Azar, Y., Litichevskey, A.: Maximizing throughput in multi-queue switches. In:
Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 53–64. Springer,
Heidelberg (2004)

4. Azar, Y., Richter, Y.: Management of multi-queue switches in QoS networks. In:
Proc. 35th ACM Symp. on Theory of Computing, pp. 82–89 (2003)

5. Elhanany, I., Chiou, D., Tabatabaee, V., Noro, R., Poursepanj, A.: The network
processing forum switch fabric benchmark specifications: An overview. IEEE Net-
work, 5–9 (2005)

6. Embrechts, P., Maejima, M.: Selfsimilar Processes. Princeton Univ. Press, Prince-
ton (2002)

7. The Internet traffic archive, http://ita.ee.lbl.gov
8. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,

M.: Buffer overflow management in QoS switches. In: Proc. 31st ACM Symp. on
Theory of Computing, pp. 520–529 (2001)

9. Krishnamurthy, B., Rexford, J.: Web Protocols and Practice. Addison-Wesley, Lon-
don, UK (2001)

10. Schmidt, M.: Packet buffering: Randomization beats deterministic algorithms. In:
Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, Springer, Heidelberg
(2005)

11. Sukhtankar, S., Hecht, D., Rosen, W.: A novel switch architecture for high-
performance computing and signal processing networks. In: Proc. 3rd IEEE Inter-
national Symposium on Network Computing and Applications, pp. 215–222 (2004)

12. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Comm. of the ACM 28, 202–208 (1985)

13. Williamson, C.: Internet traffic measurements. IEEE Internet Computing 5, 70–74
(2001)

14. Willinger, W., Taqqu, M.S., Erramilli, A.: A bibliographical guide to self-similar
traffic and performance modeling for modern high-speed networks. In: Kelly, F.P.,
Zachary, S., Ziedins, I. (eds.) Stochastic Networks Theory and Applications, pp.
339–366. Oxford Science Press, Oxford (1996)

15. Yang, M., Zheng, S.Q.: An efficient scheduling algorithm for CIOQ switches with
space-division multiplexing expansion. In: Proc. 22nd Annual Joint Conference of
the IEEE Computer and Communications Societies (IEEE INFOCOM) (2003)

http://ita.ee.lbl.gov

Author Index

Albers, Susanne 754
Alon, Noga 175
Amir, Amihood 99
Ausiello, Giorgio 605

Bansal, Nikhil 522
Baptiste, Philippe 136
Bar-Noy, Amotz 111
Bar-Yehuda, Reuven 335
Bazgan, Cristina 717
Bein, Wolfgang 419
Beniaminy, Israel 487
Berberich, Eric 645
Berenbrink, Petra 29, 41
Brodal, Gerth Stølting 347
Buchbinder, Niv 253, 522
Buriol, Luciana S. 618

Chan, Chi-Yuan 123
Cheong, Otfried 407
Chimani, Markus 681
Chrobak, Marek 136
Clifford, Raphaël 151

De Santis, Emilio 206
Demetrescu, Camil 605
Diks, Krzysztof 594
Ding, Jihuan 427
Dupont, Laurent 633
Dürr, Christoph 17, 136

Ebenlendr, Tomáš 427
Eckhardt, Stefan 705
Efremenko, Klim 151
Elbassioni, Khaled 451
Everett, Hazel 407

Fagerberg, Rolf 347
Finocchi, Irene 347
Flysher, Guy 335
Fogel, Efi 645
Forǐsek, Michal 546
Fotakis, Dimitris 299
Frahling, Gereon 618
Fraigniaud, Pierre 2

Franceschini, Gianni 194
Franciosa, Paolo G. 605
Friedetzky, Tom 41

Gavoille, Cyril 582
Gionis, Aristides 439
Glisse, Marc 407
Golynski, Alexander 371
Goyal, Vineet 498
Grandoni, Fabrizio 206, 347
Grigoriev, Alexander 475
Grossi, Roberto 371
Gudmundsson, Joachim 407
Gupta, Ankur 371
Gupta, Anupam 241, 498, 522

Hachenberger, Peter 669
Hajiaghayi, MohammadTaghi 241
Hajirasouliha, Iman 41
Halperin, Dan 645
Hartman, Tzvika 99
Hemmer, Michael 633
Hliněný, Petr 163
Hoefer, Martin 63
Hon, Wing-Kai 123
Hornus, Samuel 407
Hu, Zengjian 41
Huang, Chien-Chung 558
Hugot, Hadrien 717

Israeli, Amos 570
Italiano, Giuseppe F. 347, 605

Jacobs, Tobias 754
Jain, Kamal 253
Jørgensen, Allan Grønlund 347

Kalyanaraman, Shankar 323
Kammer, Frank 359
Kandyba, Maria 681
Kapah, Oren 99
Kaplan, Haim 287
Katreniak, Branislav 546
Katreniaková, Jana 546
Khuller, Samir 534

768 Author Index

Klukowska, Joanna 111
Kobayashi, Koji 463
König, Felix G. 729
Koster, Arie M.C.A. 693
Koutný, Vladimı́r 546
Kowaluk, Miros�law 265
Královič, Rastislav 546
Královič, Richard 546
Kutschka, Manuel 693

Labourel, Arnaud 582
Lando, Yuval 87
Larmore, Lawrence L. 419
Lazard, Sylvain 407
Lee, Mira 407
Leonardi, Stefano 498, 618
Levy, Avivit 99
Lingas, Andrzej 265
Lorenz, Julian 275
Lübbecke, Macro 729

Malekian, Azarakhsh 534
Mareš, Martin 187
Martens, Maren 395
Mehlhorn, Kurt 645
Mestre, Julián 335, 534
Möhring, Rolf 729
Mølhave, Thomas 347
Moruz, Gabriel 347
Mühling, Andreas Michael 705
Muller, Laurent Flindt 657
Muthukrishnan, S. 194
Mutzel, Petra 681

Na, Hyeon-Suk 407
Nagarajan, Viswanath 241
Naor, Joseph (Seffi) 253, 522
Noga, John 419
Nowak, Johannes 705
Nutov, Zeev 87, 487

Okamoto, Kazuya 463
Oum, Sang-il 163
Ovadia, Meir 487

Panagiotou, Konstantinos 275
Panconesi, Alessandro 206
Panigrahy, Rina 53
Papadimitriou, Christos H. 1
Pardubská, Dana 546

Pǎtraşcu, Mihai 194
Pawlewicz, Jakub 218
Pemmaraju, Sriram V. 311
Petitjean, Sylvain 633
Pirwani, Imran A. 311
Plachetka, Tomáš 546
Porat, Ely 99, 151
Puerto, Justo 230

Raman, Rajeev 371
Rao, Satti Srinivasa 371
Ravi, R. 241, 498
Rawitz, Dror 335, 570
Ribichini, Andrea 605
Robert, Julien 741
Rodriguez-Chia, Antonio M. 230
Rothschild, Amir 151
Rovan, Branislav 546
Rubin, Natan 287

Salazar, Fernanda 395
Sankowski, Piotr 594
Schabanel, Nicolas 741
Schäfer, Guido 729
Schömer, Elmar 633
Schulte, Oliver 29
Sgall, Jǐŕı 427
Sharir, Micha 12, 287
Sharon, Oran 570
Sharp, Alexa 510
Sitters, René 451
Skutella, Martin 395
Sohler, Christian 618
Souza, Alexander 63
Spenke, Ines 729
Steger, Angelika 275
Straka, Milan 187
Sviridenko, Maxim 475
Szegedy, Mario 75

Tamir, Arie 230
Tassa, Tamir 439
Thang, Nguyen Kim 17
Thomas, Dilys 53
Thorup, Mikkel 75, 383

Uetz, Marc 475
Umans, Christopher 323

Author Index 769

van Loon, Joyce 475

Vanderpooten, Daniel 717

Vredeveld, Tjark 475

Wang, Biing-Feng 123

Wein, Ron 645

Yu, Hung-I 123
Yuster, Raphael 175

Zachariasen, Martin 657
Zhang, Guochuan 427
Zhang, Yan 451
Zymolka, Adrian 693

	Title Page
	Preface
	Organization
	Table of Contents
	Nash Equilibria: Where We Stand
	Small Worlds as Navigable Augmented Networks: Model, Analysis, and Validation
	Greedy Routing in Augmented Meshes
	Modeling Milgram Experiment
	Extension of the Model
	Lower Bounds

	Graphs with Polylogarithmic Greedy Diameter
	Universal Augmentation Schemes
	Validating the Augmented Graph Model
	Further Works

	Arrangements in Geometry: Recent Advances and Challenges
	Nash Equilibria in Voronoi Games on Graphs
	Introduction
	The Game
	Example: The Cycle Graph
	Existence of a Nash Equilibrium is NP-Hard
	Social Cost Discrepancy
	Open Problems

	Evolutionary Equilibrium in Bayesian Routing Games: Specialization and Niche Formation
	Introduction
	New Results
	Known Results

	Basic Models and Concepts
	Bayesian Parallel Links Games
	Population Games and Evolutionary Stability for the Parallel Links Game

	Link Group Uniqueness of Symmetric Nash Equilibria
	Characterization of Evolutionary Stability
	Uniqueness and Structure of Evolutionary Stable Strategies

	Convergence to Equilibria in Distributed, Selfish Reallocation Processes with Weighted Tasks
	Introduction
	Related Work
	Model
	New Results

	The Reallocation Model with Weighted Tasks
	Notation and Preliminary Results
	Convergence to Nash Equilibrium
	Lower Bound for the Convergence Time

	Uniform Case
	Convergence to Nash Equilibrium
	Lower Bounds

	Finding Frequent Elements in Non-bursty Streams
	Introduction
	Contributions
	Algorithm
	Algorithm Without Assuming Knowledge of $F_2(\rho)$

	Tradeoffs and Average-Case Equilibria in Selfish Routing
	Introduction
	Model and Notation
	Our Contribution

	Total Latency Cost
	Traffic Model
	Fluctuations Model
	Algorithmic Perspective

	Maximum Latency Cost
	Traffic and Fluctuations Model
	Coordination Mechanisms

	Open Problems

	On the Variance of Subset Sum Estimation
	Introduction
	Proof of the Basic Theorem
	Near-Optimal Schemes
	Extensions

	On Minimum Power Connectivity Problems
	Introduction
	Preliminaries
	Problems Considered
	Previous Work
	Results in This Paper
	Notation

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Arbitrary Costs
	Symmetric Costs

	Conclusion

	On the Cost of Interchange Rearrangement in Strings
	Introduction
	Unit Cost Model
	The ℓ_1-Cost Model
	I-Type Cost Models
	D-Type Cost Models

	Finding Mobile Data: Efficiency vs. Location Inaccuracy
	Introduction
	Relative Order
	Bins
	Size Bins
	Threshold Bins
	Optimal Solution Bins

	Performance Analysis
	Open Problems

	A Faster Query Algorithm for the Text Fingerprinting Problem
	Introduction
	Notation and Preliminaries
	The Fingerprint Tree
	The Preprocessing Phase
	The Definition of Fingerprint Tree and Its Searching Algorithm

	The Improved Query Algorithm
	The Definition of the Lexi-String Trie
	Answering the Queries

	The Construction of the LS Trie
	Further Improvement

	Polynomial Time Algorithms for Minimum Energy Scheduling
	Introduction
	Preliminaries
	Minimizing the Number of Gaps for Unit Jobs
	Minimizing the Number of Gaps for Arbitrary Jobs
	Minimizing the Energy
	Final Comments

	k-Mismatch with Don’t Cares
	Introduction
	Related Work and Previous Results
	Our Results
	Problem Definition and Preliminaries
	Randomised k-Mismatch
	A Randomised Algorithm for the k-Mismatch Problem

	Deterministic k-Mismatch with Don't Cares
	Conclusion

	Finding Branch-Decompositions and Rank-Decompositions
	Introduction
	Definitions
	Titanic Partitions and Gadgets
	Branch-Decompositions of Represented Partitioned Matroids
	Faster Algorithm for Branch-Decompositions
	Finding a Rank-Decomposition of a Graph

	Fast Algorithms for Maximum Subset Matching and All-Pairs Shortest Paths in Graphs with a (Not So) Small Vertex Cover
	Introduction
	Fast (Sparse) Rectangular Matrix Multiplication
	Maximum Subset Matching
	All Pairs Shortest Paths in Graphs with an s-Vertex Cover
	Concluding Remarks

	Linear-Time Ranking of Permutations
	Introduction
	Ranking Permutations
	Word-Encoded Sets
	Ranking k-Permutations
	Concluding Remarks

	Radix Sorting with No Extra Space
	Introduction
	Stable Sorting for Modifiable Keys
	Unstable Sorting for Read-Only Keys
	Simulating Auxiliary Bits
	Simulating Auxiliary Memory for Permuting
	The Reduced Problem
	The Naive Approach
	The Pseudo Pointers
	The Optimal Solution
	Discussion: Stability and Read-Only Keys

	Reducing Space in any RAM Sorting Algorithm

	Fast Low Degree Connectivity of Ad-Hoc Networks Via Percolation
	Introduction
	The Algorithms
	Overview
	Preliminaries

	Emergence of a Giant Component
	Uniqueness of the Giant Component
	Expected and Maximum Degree

	Order Statistics in the Farey Sequences in Sublinear Time
	Introduction
	Computing Order Statistics in the Farey Sequences
	An $O(n^2)$ Time Algorithm
	Reduction to the Rank Problem
	Solution to the Rank Problem

	Computing $\sum_{i=1}^n\bigl\lfloor\frac{a}{b}i\bigr\rfloor$
	Case $n\geq b$
	Case $a \geq b$
	Inverting $\frac{a}{b}$
	Final Algorithm

	Summary and Remarks

	New Results on Minimax Regret Single Facility Ordered Median Location Problems on Networks
	Introduction
	Notation
	The Minimax Regret Ordered Median Problem
	Specific Models
	Minimax regret convex ordered median problem
	The Case of Interval Weights and Order Constraints

	Dial a Ride from k-Forest
	Introduction
	The k-Forest Problem
	The Dial-a-Ride Problem
	Related Work

	The k-Forest Problem
	An $O(\sqrt{k})$ Approximation Algorithm
	An $O(\sqrt{n})$ Approximation Algorithm
	Approximation Algorithm for k-Forest

	Application to Dial-a-Ride Problems
	References

	Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue
	Introduction
	Results and Techniques
	Comparison to Previous Results

	Preliminaries
	The Basic Primal-Dual Online Algorithm
	Multiple Slots

	Incorporating Stochastic Information
	Bounded Degree Setting
	Risk Management

	Unique Lowest Common Ancestors in Dags Are Almost as Easy as Matrix Multiplication
	Introduction
	Preliminaries
	A Fast Algorithm for Unique lca in Dags
	Lowest Common Ancestors in Dags of Small Path Coverage
	Final Remarks

	Optimal Algorithms for k-Search with Application in Option Pricing
	Introduction
	k-Search Problem
	Application to Robust Valuation of Lookback Options

	Deterministic Search
	Randomized Search
	Lower Bound for Randomized k-Max-Search
	Randomized k-Min-Search

	Robust Valuation of Lookback Options
	Upper Bounds for the Price of Lookback Options
	Comparison to Pricing in Black-Scholes Model

	Linear Data Structures for Fast Ray-Shooting Amidst Convex Polyhedra
	Introduction
	Ray-Shooting from a Line: Disjoint Polyhedra
	Ray-Shooting from a Line: Handling Intersecting Polyhedra

	Stackelberg Strategies for Atomic Congestion Games
	Introduction
	Model, Definitions, and Notation
	Stackelberg Strategies for Linear Congestion Games
	Largest Latency First for Congestion Games on Parallel Links

	Good Quality Virtual Realization of Unit Ball Graphs
	Introduction
	Results and Techniques

	Constructing a Growth-Restricted Approximation
	Volume Respecting Embedding of Growth-Restricted Graphs
	Good Quality Embeddings of UBGs
	Constant Quality Embedding in Constant Dimensions
	O$(log^{2.5} n)$ Quality Embedding in the Plane

	Algorithms for Playing Games with Limited Randomness
	Introduction
	Preliminaries
	Sparsifying Nash Equilibria Deterministically
	Limited Randomness in Repeated Games
	Unbalanced Games
	Finding Sparse ϵ-Equilibria in Low-Rank Games
	An Example of Games with Known Low-Rank Tensor Decomposition

	Conclusion

	Approximation of Partial Capacitated Vertex Cover
	Introduction
	Preliminaries
	Partial Capacitated Covering with Separable Demands
	Analysis of Algorithm PCVC
	The Recursion Ends with the Empty Assignment
	The Recursion Ends with a Medium or Large Edge
	Proof of Theorem 2

	Optimal Resilient Dynamic Dictionaries
	Introduction
	A Simple Randomized Resilient Dictionary
	An Optimal Static Dictionary
	A Dynamic Dictionary
	A Lower Bound

	Determining the Smallest k Such That G Is k-Outerplanar
	Introduction
	Ideas of the Algorithm
	Peelings and Induced Graphs
	The Outerplanarity Index for Biconnected Graphs
	The Outerplanarity Index for General Graphs

	On the Size of Succinct Indices
	Introduction
	Compressed Bit Vector
	Partition into Chunks
	Supporting $rank$ on S
	Supporting $select$ on S

	Compressed Dense FIDs
	Informative Encodings
	Compressed Dense FIDs Via Informative Encodings

	Representing Balanced Parenthesis Sequences
	Lower Bound
	Upper Bound

	Compact Oracles for Approximate Distances Around Obstacles in the Plane
	Introduction
	Borrowed Framework and Techniques
	An Approximate Distance Oracle for Obstacle Corners
	Efficient Construction

	Convex Combinations of Single Source Unsplittable Flows
	Introduction
	Constructing the Convex Combination
	Preliminaries
	The Algorithm

	Analysis of the Algorithm
	Correctness of the Algorithm
	Upper Bound on the Congestion

	Some Preliminary Computational Results

	Farthest-Polygon Voronoi Diagrams
	Introduction
	Definition of Farthest-Polygon Voronoi Diagrams
	Complexity Bound
	Computing the Voronoi Diagram
	Tracing the Purple Chains
	Computing the Mixed Vertices

	Equitable Revisited
	Introduction
	$Equitable$
	Forgiveness Revisited
	Conclusion

	Online Scheduling of Equal-Length Jobs on Parallel Machines
	Introduction
	Previous Results
	Our Results
	Preliminaries

	The Algorithm
	The Lower Bounds for Immediate Decision
	Jobs with a Small Length
	Conclusions, Open Problems, Acknowledgments

	k-Anonymization with Minimal Loss of Information
	Introduction
	Generalization
	Measures of Loss of Information
	Previously Used Measures
	The Entropy Measure
	The Monotone Entropy Measure

	k-Anonymization with Minimal Loss of Data
	Approximating Optimal k-Anonymity
	The Generalization Cost of Subsets
	Covers, Clusterings, k-Anonymizations and Their Generalization Cost
	Approximating Optimal k-Anonymization
	A Fully Polynomial Approximating Algorithm

	A Quasi-PTAS for Profit-Maximizing Pricing on Line Graphs
	Introduction
	The Setting
	Rounding the Instance
	The Highway Problem
	The Unsplittable Flow Pricing Problem
	References

	Improved Upper Bounds on the Competitive Ratio for Online Realtime Scheduling
	Introduction
	Preliminaries
	Online Realtime Scheduling
	General Shelf Based Max Matching (GSMM) Algorithm

	$2 \sqrt{6} + 6$ Upper Bound
	Overview of the Analysis
	Evaluating p(EX) with p(At) and p(Pt)
	Bounding p(Pt) Using p(At)

	Tight Lower Bound of GSMM(k)
	The Case Without Slack Time
	Overview of the Analysis
	Evaluating p(EX) with p(GE) and p(CM)

	References

	Bundle Pricing with Comparable Items
	Introduction
	Model
	Related Work
	Our Results

	Single Item Pricing with Monotonicity Constraint
	Complexity
	Approximation Scheme

	Pricing with Affine Price Functions
	Unlimited Availability of Items
	Limited Availability of Items

	Highway Problem with Monotonicity Constraint
	Conclusion
	References

	Approximating Interval Scheduling Problems with Bounded Profits
	Introduction
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2

	Proof of Theorem 2
	Conclusions and Open Problems
	References

	Pricing Tree Access Networks with Connected Backbones
	Introduction
	Preliminaries on Cost Sharing Methods
	A Cross-Monotone Cost-Sharing Scheme for CBTAN
	The Real and Ghost Processes
	Defining the Cost Shares
	Properties of the Cost Shares

	Cost Shares for CBTAN with Approximate Efficiency
	References

	Distance Coloring
	Introduction
	Preliminaries
	Properties of (d,k)-Colorable Graphs

	Negative Complexity Results
	Positive Complexity Results
	(d, d+1)-Coloring
	(d,k)-Coloring for $k \leq \lfloor \frac{3d}{2} \rfloor$

	Coloring on Trees
	References

	An O(log^2 k)-Competitive Algorithm for Metric Bipartite Matching
	Introduction
	Our Results
	Related Work

	Preliminaries
	Previous Algorithms
	The Uniform Metric
	The Randomized Greedy Algorithm

	An O(logk) Algorithm for 2-HST's
	An Offline Algorithm
	A Restricted Reassignment Online Model
	An O(logk)-Competitive Algorithm in the Restricted Reassignment Model

	Conclusion
	References

	To Fill or Not to Fill: The Gas Station Problem
	Introduction
	Related Work

	The Gas Station Problem
	The Gas Station Problem Using Δ Stops
	Faster Algorithm for the All-Pairs Version

	The Uniform Cost Tour Gas Station Problem
	The Tour Gas Station Problem

	Conclusion
	References

	Online Bandwidth Allocation
	Introduction and Motivation
	Problem Definition
	The Algorithm
	Procedure $INSERT$
	Procedure $DETETE$

	Complexity
	Conclusion
	References

	Two’s Company, Three’s a Crowd: Stable Family and Threesome Roommates Problems
	Problem Definition
	Preliminaries
	Reducing Three-Dimensional Matching to Stable Family
	Threesome Roommates with Relaxed Linear Extensions of Preference Posets
	Weak Stability Under the SOCL Scheme
	Conclusion and Related Problems
	References

	On the Complexity of Sequential Rectangle Placement in IEEE 802.16/WiMAX Systems
	Introduction
	Hardness Results
	An Algorithm for SRP with Proportional Weights
	References

	Shorter Implicit Representation for Planar Graphs and Bounded Treewidth Graphs
	Introduction
	Related Works
	Our Contributions
	Techniques

	A Simple Adjacency Labeling Scheme
	Preliminaries
	Finding a Suitable Bidecomposition
	The Labels
	Adjacency Test

	Concluding Remarks and Open Problems
	References

	Dynamic Plane Transitive Closure
	Introduction
	Sparse Reachability Certificates
	Union of Sparse Certificates
	Planar Graph Decomposition
	Dynamic Maintenance of Sparse Certificates
	Conclusions and Open Problems
	References

	Small Stretch Spanners in the Streaming Model: New Algorithms and Experiments
	Introduction
	Clustering and Induced Spanners
	The Algorithm
	Experiments
	References

	Estimating Clustering Indexes in Data Streams
	Introduction
	Our Results
	Structure of the Paper

	Preliminaries
	Approximating the Clustering Coefficient
	A One-Pass Algorithm

	Counting K_3,3
	Implementation of the Data Stream Algorithms
	One Pass Algorithm to Estimate the Clustering Coefficient
	Two Pass Algorithm to Count K_3,3's

	Computational Experiments
	Datasets
	Clustering Coefficient Computation
	K_3,3 Computation

	References

	Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics
	Introduction
	Intersecting Two Quadrics
	Definitions and Notations
	Generic Case
	Singular Case

	Matching Algebraic Component
	Intersection with a Third Quadric
	Intersecting a Smooth Quartic with a Third Quadric
	Intersection Algorithm

	Matching Intersection Points
	Implementation and Benchmarks
	Implementation Details
	The Projection Approach
	Benchmarks

	Conclusions and Future Work
	References

	Sweeping and Maintaining Two-Dimensional Arrangements on Surfaces: A First Step
	Introduction
	The Bentley--Ottmann Sweep
	Sweeping Surfaces
	Bijective Parameterizations and Boundary Events
	Removing Non-injectivity on the Boundaries

	Topology-Traits Classes
	Experimental Results
	Arrangements of Great Arcs on Spheres
	Arrangements on Quadrics

	Conclusions and Future Work
	References

	Fast and Compact Oracles for Approximate Distances in Planar Graphs
	Introduction
	Approximate Distance Oracle
	Graph Separators
	ϵ-Covers
	Oracle

	Experimental Setup
	Results and Discussion
	Real-World Graphs
	Near-Euclidean Graphs
	Comparison to an Alternative Oracle

	Conclusion
	References

	Exact Minkowksi Sums of Polyhedra and Exact and Efficient Decomposition of Polyhedra in Convex Pieces
	Introduction
	Decomposing a Polyhedron into Convex Pieces
	The Minkowski Sum of Convex Polyhedra
	Uniting a Set of Polyhedra
	Tight Passages
	Conclusion
	References

	A New ILP Formulation for 2-Root-Connected Prize-Collecting Steiner Networks
	Introduction
	Basics and Related Work

	Investigating 2RPCSN
	Transformation into a Directed Problem
	ILP for D2RPCSN
	Polyhedral Comparison
	Polynomial Separation and Branch-and-Cut
	Primal Heuristic

	Experiments
	Additional Remarks
	References

	Algorithms to Separate \zerohalfset-Chv{\'a}tal-Gomory Cuts
	Introduction
	Preprocessing \zerohalfset-sep
	Separation Algorithms
	Exact Separation
	Heuristic Search

	Computational Results
	Conclusion
	References

	Fast Lowest Common Ancestor Computations in Dags
	Introduction
	Fast LCA Algorithms
	Theoretical Improvements
	Experiments
	References

	A Practical Efficient Fptas for the 0-1 Multi-objective Knapsack Problem
	Introduction
	Preliminaries
	Multi-objective Optimization and Approximation
	The 0-1 Multi-objective Knapsack Problem

	Dynamic Programming for the Approximation Version
	Sequential Process and Basic Concepts of DP
	Families of Dominance Relations in Dynamic Programming

	Dominance Relations
	Family of Dominance Relations for $\DelE\$
	Complementary Dominance Relations with Respect to $\DelE\$
	Use of Multiple Dominance Relations

	Computational Experiments and Results
	Experimental Design
	Results
	Comparison with an Exact Method

	Conclusion
	References

	Solutions to Real-World Instances of PSPACE-Complete Stacking
	Introduction
	Problem Definition and Hardness Results
	Guided Graph Search
	The Towers of Hanoi Example
	The Application-Driven Greedy Approach

	Lower Bounds from a Combinatorial Relaxation
	Computational Results
	Discussion
	References

	Non-clairvoyant Batch Sets Scheduling: Fairness Is Fair Enough
	Introduction
	Non-clairvoyant Batch Sets Scheduling
	Reduction to (Par-Seq)* Instances
	Fairness Is Fair Enough
	The Single Set Case
	Non-clairvoyant Batch Set Scheduling

	Experimental Study of Equi and EquiEqui
	References

	An Experimental Study of New and Known Online Packet Buffering Algorithms
	Introduction
	The New Algorithm HSFOD
	The Implemented Algorithms
	Deterministic Online Algorithms
	Randomized Algorithms

	The Test Environment
	Experimental Results
	Varying the Speed s
	Varying the Buffer Size
	Varying the Number of Ports
	The Absolute Throughput

	References

	Author Index

