

Lecture Notes in Computer Science 4652
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Dimitrios Georgakopoulos Norbert Ritter
Boualem Benatallah Christian Zirpins
George Feuerlicht Marten Schoenherr
Hamid R. Motahari-Nezhad (Eds.)

Service-Oriented Computing
ICSOC 2006

4th International Conference
Chicago, IL, USA, December 4-7, 2006
Workshops Proceedings

13

Volume Editors

Dimitrios Georgakopoulos
Telcordia, Austin, TX 78701, USA
E-mail: dimitris@research.telcordia.com

Norbert Ritter
University of Kaiserslautern, Germany
E-mail: ritter@informatik.uni-kl.de

Boualem Benatallah
University of New South Wales, Sydney NSW 2052, Australia
E-mail: boualem@cse.unsw.edu.au

Christian Zirpins
University of Hamburg, Germany
E-mail: Zirpins@informatik.uni-hamburg.de

George Feuerlicht
University of Technology, Sydney, NSW 2007, Australia
E-mail: jiri@it.uts.edu.au

Marten Schoenherr
Technical University Berlin, Germany
E-mail: MSchoenherr@sysedv.tu-berlin.de

Hamid R. Motahari-Nezhad
The University of New South Wales (UNSW), Australia,
E-mail: hamidm@cse.unsw.edu.au

Library of Congress Control Number: Applied for

CR Subject Classification (1998): C.2, D.2, D.4, H.4, H.3, K.4.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-75491-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75491-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12170272 06/3180 5 4 3 2 1 0

Preface

Service-oriented computing is a cross-disciplinary paradigm for distributed computing
that enables the development of networks of collaborating applications distributed
within and across organizational boundaries. Service-oriented computing fundamen-
tally changes the way software applications are designed, architected, delivered and
consumed. The ICSOC conference series covers the entire spectrum from theoretical
results to empirical evaluations and industrial solutions. Due to its broad scope and its
dedicated community, ICSOC is currently recognized as one of the leading confer-
ences in the service-oriented computing area.

The 4th International Conference on Service-Oriented Computing (ICSOC 2006)
and associated workshops followed on the success of three previous events in Amster-
dam, The Netherlands (2005), New York City, USA (2004) and Trento, Italy (2003).

ICSOC 2006 solicited the submission of workshop proposals on any of the confer-
ence topics including: Business Service Modeling, Service Assembly, Service
Management, SOA Runtime, Quality of Service, and Grid Services. Particularly,
workshops on key research challenges with the following properties were encouraged:

 Multidisciplinary: involve synergy between different scientific communities
and research disciplines

 Domain specific: focus on complete service-oriented solutions for specific
application domains, e.g., healthcare, telecommunications, government and
public sector, military, etc.

 Operationally extreme: focus on solutions intended/designed for specific op-
erational environments/requirements, e.g., providing 24x7 services, support-
ing communities of mobile/partially connected services, etc.

 Collaborative: promote collaboration between academic institutions, indus-
try, and communities of users

Out of six workshop submissions (not including the separately organized PhD sym-

posium), the following two met the specified criteria best and were selected as ICSOC
2006 workshops:

 2nd International Workshop on Engineering Service-Oriented Applications:
Design and Composition (WESOA 2006),

 Modeling the SOA – Business Perspective and Model Mapping
(SOAM 2006).

Both ICSOC 2006 workshops were held as one-day workshops on December 4,

2006, i.e., the day before the major conference program of ICSOC 2006 started. This
volume contains separate descriptions of both workshops as well as all high-quality
paper contributions to these two workshops. In order to reflect the natural concern of
scientific workshops as well as to ensure the indispensable high quality of papers to be
included into the proceedings it was decided to provide post-workshop proceedings.

 Preface

VI

Thus, besides the regular reviewing process performed by the two workshop Program
Committees in order to invite workshop contributions there was a second quality as-
surance process performed after the workshops ensuring that all original reviewer
comments as well as comments given during the respective workshop were taken into
account in order to further improve the papers. This way, as we think, high-quality
post-workshop proceedings can be provided in this volume, which we hope all readers
will find very interesting and stimulating!

The excellent contributions you will find in this volume reflect the hard work of
numerous people involved in preparing, organizing and conducting the workshops and
observing high-quality standards. Since a great amount of this work was performed by
the Organization Committees of the two workshops, we want to thank all members of
the two teams. As representatives we want to mention Christian Zirpins and George
Feuerlicht from the WESO 2006 team as well as Marten Schoenherr from the SOAM
2006 team. We also want to acknowledge the contributions of all Program Committee
members of the two workshops. A special thanks goes to ICSOC 2006 Local Ar-
rangements Chair Julie Wulf for being continuously supportive and prompt in re-
sponding to all kinds of requests. Further we want to thank the ICSOC 2006 General
Chairs, Ian Foster and Carlo Ghezzi, for their support. Last but not least we would like
to acknowledge the contributions of Hamid R. Motahari-Nezhad in putting together
this volume.

May 2007 Dimitrios Georgakopoulos

Norbert Ritter
 Boualem Benatallah

Organization

ICSOC 2006 Workshop Chairs

Dimitrios Georgakopoulos, Telcordia, USA
Norbert Ritter, Hamburg University, Germany

WESO 2006 Organizers

George Feuerlicht, Sydney University of Technology, Australia
Christian Zirpins, University College London, UK
Guadalupe Ortiz Bellot, University of Extremadura, Spain
Yen-Jao Chung, IBM T.J. Watson Research Center, USA
Winfried Lamersdorf, University of Hamburg, Germany
Wolfgang Emmerich, University College London, UK

SOAM 2006 Organizers

Marten Schönherr, Technical University Berlin, Germany
Maximilian Ahrens, Deutsche Telekom Laboratories, Germany

ICSOC 2006 Publication Chair

Boualem Benatallah, The University of New South Wales, Australia

2nd International Workshop on Engineering Service-
Oriented Applications: Design and Composition

George Feuerlicht1, Christian Zirpins2, Guadalupe Ortiz Bellot3, Yen-Jao Chung4,
Winfried Lamersdorf5, and Wolfgang Emmerich2

1Sydney University of Technology, Australia
Jiri@it.uts.edu.au

2University College London, UK
C.Zirpins|W.Emmerich@cs.ucl.ac.uk

3University of Extremadura, Spain
GOBellot@unex.es

4IBM T.J. Watson Research Center, USA
JYChung@us.ibm.com

5University of Hamburg, Germany
Lamersdorf@informatik.uni-hamburg.de

1 Workshop Goals and Contents

Growing acceptance of service-oriented computing and an increasing number of
large-scale Web service projects raise an urgent need for the research community and
industry practitioners to develop comprehensive methodologies that support the entire
software development lifecycle (SDLC) of service-oriented applications. To ensure
that resulting services are stable, reusable and extendable, such methodologies must
be based on sound engineering principles and guide developers through the analysis,
design, implementation and deployment phases of the service-oriented SDLC.

A key challenge that needs to be addressed involves the unification of service
design and composition methods. Service-oriented design needs to determine what
constitutes a service component and decide about the appropriate level of service
granularity. It is equally important to correctly define the assembly of complex
composite services over multiple levels of abstraction, and to use these aggregated
services to construct application systems. The current lack of agreement about basic
principles that should guide service design and composition makes it difficult for
comprehensive service-oriented SDLC-methodologies to emerge.

Both service design and service composition are active research areas at present.
However, the problem areas overlap and can benefit from interchange of ideas and
unification of approaches. To reflect on dependencies and synergies between service
design and service composition, the WESOA 2006 workshop aimed to discuss unified
design and composition methods for reusable service components. Moreover, we
sought a multidisciplinary perspective to address the challenges of service design and
composition in the context of various domains and to bring together researchers and
practitioners for exchange of ideas.

Our call for papers led to 32 submissions. Each paper was comprehensively
reviewed by at least 3 reviewers, resulting in acceptance of 11 papers for presentation
and publication. This corresponds to an acceptance rate of 34%. The outcome is a rich
variety of work revolving around design and composition of services. A number of

X Organization

authors tackled service-oriented SDLC at the level of business processes (Schaffner et
al.) and business services (Werth et al.). QoS-aware design of service composition is
another common concern discussed in the context of requirements specification
(Baligand et al.), prediction (Wu et al.), dynamic verification (Rouached et al.) and a
reliability study (Wassermann et al.). Other papers dealt with AI topics including
formal semantics (Küster et al.) and effect-based reasoning (Wang et al.) as well as
data engineering approaches (Feuerlicht). Of particular interest are case studies on
service-oriented software systems development for asset management (Pathak et al.)
and online auctions (Benyoucef et al.).

2 Workshop Organization

WESOA 2006 was organized by an international group of researchers listed as the
authors of this article. The event would not have been possible without the invaluable
contribution of the international Program Committee. We would therefore like to
thank the Program Committee members that include the following experts:

• Marco Aiello (University of Trento, Itlay)
• Djamal Benslimane (LIRIS, France)
• Andrew Blair (Biz Integration, Australia)
• Paul Brebner (CSIRO Canberra, Australia)
• Mark Cameron (CSIRO ICT Centre, Australia)
• Jen-Yao Chung (IBM T.J. Watson Research Center, USA)
• Vincenzo D’andrea (University of Trento, Itlay)
• Schahram Dustdar (Technical University of Vienna, Austria)
• Wolfgang Emmerich (University College London, UK)
• Opher Etzion (IBM Haifa Research Center, Israel)
• George Feuerlicht (Sydney University of Technology, Australia)
• Howard Foster (Imperial College London, UK)
• Ian Gorton (UNSW NICTA, Australia)
• Paul Greenfield (CSIRO, Australia)
• Roy Gronmo (SINTEF ICT, Norway)
• John Grundy (University of Auckland, New Zealand)
• Manfred Hauswirth (DERI Galway, Ireland)
• Juan Hernandez (University of Extremadura, Spain)
• Cai Hong (IBM China Research, China)
• Winfried Lamersdorf (University of Hamburg, Germany)
• Yinsheng Li (Fudan University, China)
• Mark Little (Arjuna, USA)
• Zheng Lu (University of Wollongong, Australia)
• Heiko Ludwig (IBM Research, USA)
• E. Michael Maximilien (IBM Almaden Research, USA)
• Massimo Mecella (University of Rome La Sapienza, Italy)
• Harald Meyer (HPI Potsdam, Germany)
• Daniel Moldt (University of Hamburg, Germany)

 Organization XI

• Josef Noll (Telenor, Norway)
• Guadalupe Ortiz Bellot (University of Extremadura, Spain)
• Mike Papazoglou (Tilburg University, The Netherlands)
• Greg Pavlik (Oracle, USA)
• Thomas Risse (Fraunhofer Society, Germany)
• Colette Rolland (University of Paris, France)
• Dumitru Roman (DERI Innsbruck, Austria)
• Subbu N. Subramanian (Tavant Technologies, USA)
• Willem-Jan van den Heuvel (Tilburg University, The Netherlands)
• Bruno Wassermann (University College London, UK)
• Jim Webber (ThoughtWorks, Australia)
• Andreas Wombacher (University of Twente, The Netherlands)
• Aoying Zhou (Fudan University, China)
• Christian Zirpins (University College London, UK)

Finally, we would like to thank the ICSOC organizers, especially the Workshop

Chairs Dimitrios Georgakopoulos and Norbert Ritter, the Publication Chair Boualem
Benatallah and the Local Arrangements Chair Julie Wulf, for their guidance and
support.

Ist International Workshop on Modeling Service-
Oriented Architectures: Business Perspective and Model

Mapping

Marten Schönherr1 and Maximilian Ahrens2

1Faculty of Computer Science and Electrical Engineering,
Technical University Berlin, Germany

mschoenherr@sysedv.tu-berlin.de
2 Deutsche Telekom Laboratories, Berlin, Germany

maximilian.ahrens@telekom.de

1 Workshop Topics and Objectives

In the last few years both scientists and practitioners have been discussing the issue of
service-oriented architectures (SOA). Recently, vendors of enterprise information
systems presented first releases of their service-enabled system architectures. From
the business perspective the paradigm of service orientation promises more flexibility
by aligning business requirements and information technology functionalities.

Modeling the business processes is the first step in formalizing (functional and non-
functional) service requirements. There are many methodologies, notations and tools
for business process modeling but few which consider the full stack of service
orientation specifics. BPEL as an executable model and the dominant standard in the
SOA modeling discipline does not cover all aspects of business process modeling. For
modeling business processes using notations apart from BPEL, the process models
have to be mapped to executable formal models which are necessary to orchestrate
services to fulfill defined business requirements. Therefore, different modeling
notations need to be combined to fulfill the requirements of a holistic SOA approach.
Further aspects such as service life-cycles, roles and service management issues need
to be considered.

Main objectives of the workshop were the identification and definition of necessary
modeling issues, the introduction of innovative solutions or enhancements for those
modeling aspects that are currently not properly supported, and the examination of all
aspects of (model) mappings between different SOA model(ing aspect)s. These topics
are relevant for research as well as industry practitioners. Thus, the workshop invited
important multi-disciplinary contributions in order to start a substantial discussion and
finally generate a lasting contact between academic and industrial researchers.

As a result of a double-blind review and an acceptance rate of 40%, the workshop
publishes six papers on different issues mentioned above: Modeling of Service
Composition (Jaeger), An Approach for QoS Prediction of BPEL Processes (Wu), a
Pattern-Based Approach to Business Process Modeling and Implementation in Web
Services (Brahe et al.), An Extension of the UN/CEFACT Modeling Methodology
and Core Components for Intra-Organizational Service Orchestration (Offermann et

XIV Organization

al.), An Integration of Semantic Business Policy into Web Service Composition Meng
et al.), and A Model-Driven Approach of Service Domain Analysis(Aier et al.).

2 Workshop Organization

The workshop was organized by the authors of this article. We would like to thank the
following Program Committee members:

• Maximilian Ahrens (Deutsche Telekom Laboratories Berlin, Germany)
• Stephan Aier (IWI-HSG, University of St. Gallen, Switzerland)
• Udo Bub (Deutsche Telekom Laboratories, Germany)
• Jens Dietrich (OSCI, UNCEFACT, Germany)
• Dirk Draheim (SCCH, Austria)
• Mathias Ekstedt (KTH, Sweden)
• Michael Elhadad (Ben Gurion University, Israel)
• Marten Schoenherr (Berlin University of Technology, Germany)
• Johannes Siedersleben (T-Systems International, Germany)
• Gerald Weber (University of Auckland, New Zealand)

We would like to thank the Workshop Chairs Dimitrios Georgakopoulos and
Norbert Ritter, the Publication Chair Boualem Benatallah and the Local
Arrangements Chair Julie Wulf.

Table of Contents

Part I: Second International Workshop on
Engineering Service-Oriented Applications:
Design and Composition

Managing SOA Through Business Services – A Business-Oriented
Approach to Service-Oriented Architectures . 3

Dirk Werth, Katrina Leyking, Florian Dreifus, Jörg Ziemann, and
Andreas Martin

Reliable Scientific Service Compositions . 14
Bruno Wassermann and Wolfgang Emmerich

A Service-Oriented Architecture for Electric Power Transmission
System Asset Management . 26

Jyotishman Pathak, Yuan Li, Vasant Honavar, and James McCalley

A Language for Quality of Service Requirements Specification in Web
Services Orchestrations . 38

Fabien Baligand, Didier Le Botlan, Thomas Ledoux, and
Pierre Combes

A Semi-automated Orchestration Tool for Service-Based Business
Processes . 50

Jan Schaffner, Harald Meyer, and Cafer Tosun

Web Service Composition: An Approach Using Effect-Based
Reasoning . 62

Puwei Wang and Zhi Jin

Analysis of Composite Web Services Using Logging Facilities 74
Mohsen Rouached and Claude Godart

QoS Prediction for Composite Web Services with Transactions 86
Jiangxia Wu and Fangchun Yang

Service Aggregation Using Relational Operations on Interface
Parameters . 95

George Feuerlicht

A BPEL Based Implementation of Online Auctions 104
Morad Benyoucef and Ronald Pringadi

Dynamic Binding for BPEL Processes – A Lightweight Approach to
Integrate Semantics into Web Services . 116

Ulrich Küster and Birgitta König-Ries

XVI Table of Contents

Part II: First International Workshop on Modeling
Service-Oriented Architectures: Business
Perspective and Model Mapping

A Model-Driven Approach for QoS Prediction of BPEL Processes 131
Jiangxia Wu and Fangchun Yang

Modelling of Service Compositions: Relations to Business Process and
Workflow Modelling . 141

Michael C. Jaeger

Extending the UN/CEFACT Modeling Methodology and Core
Components for Intra-organizational Service Orchestration 154

Philipp Offermann, Christian Schröpfer, and Maximilian Ahrens

A Pattern-Based Approach to Business Process Modeling and
Implementation in Web Services . 166

Steen Brahe and Behzad Bordbar

Integrating Semantic Business Policy into Web Service Composition 178
Xu Meng and Chen Junliang

Model Driven Service Domain Analysis . 190
Stephan Aier and Marten Schönherr

Author Index . 201

Part I

Second International Workshop on
Engineering Service-Oriented

Applications:
Design and Composition

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 3–13, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Managing SOA Through Business Services – A Business-
Oriented Approach to Service-Oriented Architectures

Dirk Werth, Katrina Leyking, Florian Dreifus, Jörg Ziemann,

and Andreas Martin

Institute for Information Systems (IWi)
at the German Institute for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3, Geb. D3 2
66123 Saarbrücken

Germany
{werth,leyking,dreifus,ziemann,a.martin}@iwi.dfki.de

Abstract. The idea of more flexible, modular system structures thanks to web
service interfaces feed expectations towards a novel degree of business agility.
However, the challenge of the information system community consists in
developing methods and techniques to vest service-orientation with business
concepts that deploy a SOA according to organizational requirements. This
paper tackles this challenge by introducing Business Service Management as an
interdisciplinary discipline for business-driven deployment of SOA. It
approaches this ambitious objective by utilizing business processes as semi-
formalized representations of an enterprise’s characteristics and requirements
towards IT.

Keywords: Business Process, Business process management, Business
Services, Service-oriented Architectures, Web Services.

1 Introduction

The current omnipresence of service-oriented architectures (SOA) could lead one to
believe in the rise of a new software paradigm that will revolutionize IT landscapes
especially in business environments. The idea of more flexible, modular system
structures through web service interfaces feed expectations towards a novel degree of
business agility. The dream of leveraging and integrating system resources on demand
based on market requirements has been dreamed by business already multiple times.
SOA shares the concept of flexible, business-driven system architectures with
previous approaches such as business components or business objects. Thus, the
legitimate question comes up what distinguishes SOA from them. Why should
service-orientation become the envisioned panacea for bridging the gap between IT
and business which all other concepts failed to be? Whether the SOA vision will turn
out as short-dated fad or as durable step towards plug-and-play software architectures
is not only a matter of technological progress but also of its seamless applicability to
real business situations. In fact, SOA will primarily add complexity to managerial
tasks instead of disburden them. Introducing SOA brings about novel unprecedented

4 D. Werth et al.

challenges for the manageability of the IT landscape. The common business goal of
efficient and transparent processes over the whole value chain becomes much fuzzier
and very difficult to accomplish. In order to reconcile the conflictive objectives of
flexibility promised by a SOA and manageability targeted by business (process)
management, a rigorous approach to reduce complexity from service-orientation is
needed. Thus, the challenge of the information system community consists in
developing methods and techniques to vest service-orientation with business concepts
that deploy a SOA according to organizational requirements [1]. This paper tackles
this challenge by introducing Business Service Management as a mediating discipline
for business-driven deployment of SOA. It approaches this ambitious objective by
utilizing business processes as semi-formalized representations of an enterprise’s
characteristics and requirements towards IT and web services as representatives for
the IT application landscape. Due to ever accelerating developments on the market,
business processes are all but stable entities. They are subject to changes in the
product portfolio, redefinition of core competencies, most innovative production
techniques, etc. On the other hand, companies must not only deal with agility of their
markets but also manage their constantly aging IT infrastructure characterized by
heterogeneity, distribution, and out-dated technology. We define Business Services as
the ultimately durable layer between rapidly changing business requirements
represented by business processes and steadily evolving system landscape that ought
to meet these requirements. The goal is to have a set of business-oriented building
blocks that embody core functionalities, executed via composite web services, to be
flexibly reused and combined to processes. The paper will finish by indicating the
most urgent research questions to consolidate the new discipline of business service
management in the context of business process management.

2 On the Relation Between Business Process and Service
Orientation

2.1 Business Process Management

In order to design, analyze and control organizational structures as well as business
activities companies nowadays are increasingly following the process orientation
paradigm [2]. A business process is a “continuous series of enterprise tasks,
undertaken for the purpose of creating output” [3]. In line with these efforts Business
Process Management (BPM) is widely-used as a framework for having formal and
repeatable proceedings in place. Various approaches to adopt BPM in companies have
emerged in recent years. Besides approaches such as the Zachman Framework or
PROMET the architecture of Integrated Information Systems (ARIS) is accepted as a
standard framework for business process (re-)engineering throughout the community.
Beyond notation and modeling dimensions the ARIS House of Business Engineering
provides an overall BPM methodology which supports the entire BPM life cycle
combining process design, process control, workflow control and process application
implementation [4]. Generally speaking, concepts of business process management
can be identified as requirements engineering approaches that take the needs of the
business domain and relate them to implemented information technology (IT).

 Managing SOA Through Business Services 5

Therefore, IT plays an important role in the context of BPM .It allows the automation
of business processes, leading to higher productivity and quality gains. Nowadays,
there are of-the-shelf products for almost common business process Applications such
as Enterprise Resource Planning (ERP) or Customer Relationship Management
(CRM), emerged and offered by software vendors in the nineties, perform the task of
supporting business processes. They combine and provide modeled and automated
processes for companies of various industries following best practices. However,
since applications such as the ERP or the CRM are focusing on selected divisions of a
company and therefore using independent databases, the exchange of information
within a company gets very difficult and between companies sometimes impossible.
In this context the term silo emerged for enterprise applications, reflecting the fact
that the application might be full up with valuable data, but that data is divided by
technological walls. At the time when enterprise application emerged, most markets
companies acted on were steady and competition was manageable; hence the problem
of data exchange and communication between applications was neglected.
Companies’ primary intention was to utilize the productivity gains associated with the
use of IT. If any action was taken to tackle the problem of transferring data between
applications proprietary solutions, using Application Programming Interfaces for
example, were applied, resulting in inflexible, costly and unstable stovepipe
connections between applications. However, hardening markets and increasing
competition coming along with new business models such as process networks or the
real time enterprise as well as utilized productivity gains of IT in the context of BPM,
confront IT with increasing demand on its interoperability and flexibility. In times of
collaborative business [5] and real time enterprises processes have to be modeled and
implemented across borders within the company (i.e. across divisions) as well as
across the companies’ external borders (i.e. to partners, suppliers and customers), in a
flexible and manageable way [6]. Despite notable progress in Workflow Systems and
Enterprise Application Integration (EAI) products as well as agreed and widely used
industry standards for data exchange (e.g. RosettaNet), integrating applications along
end-to-end business processes has remained the major challenge regarding an
integrated BPM approach. In order to satisfy the demand of business of such an
integrated BPM approach a successor of the widespread client server architecture is
needed. In this context Service Oriented Architecture is discussed as the most recent
and promising approach to satisfy the demand of an application architecture which
allows the implementation of end-to-end processes in a flexible and agile way [7].

2.2 Service-Oriented Architectures

The Service-oriented Architecture aims at developing Applications Systems easily
adoptable to business requirements. Therefore, in a SOA components are developed
based rather on organizational criteria than on technical criteria, e.g. a SOA
component should rather resemble business functions than for example a fine grained
module that establishes a Database connection. SOA components are commonly
implemented in form of Web Services that a service provider offers via a network.
According to the SOA idea, the service provider is also supposed to publish the
Service in a central service registry and to describe functional characteristics of the
Web Service, not only its technical interface which is described by the Web Service

6 D. Werth et al.

Description Language (WSDL). Since business functions can be expected to have
fewer and less detailed parameters than technical modules, it implies a coarse
granularity of SOA Web Service. This, and the fact that Web Services are late bound
(e.g. it is only decided at runtime which Web Service is to be invoked), results in a
loose coupling of the SOA components. Apart from having components that are being
distributed, loosely coupled and easy to discover, an important further characteristic
of a SOA is process orientation [13, 8]. This is realized on the one hand side by
providing process components (e.g. Web Services) that might be (re-) composed in
various sequences, on the other hand by providing process description standards that
compose the Web Service into a process. Note, that thus the process flow is separated
from programming code contained in single modules. The most prominent example
for a Web Service Business Process standard is BPEL. Most of the SOA
characteristics mentioned are not new but represent classical software engineering
requirements, e.g. the concept of modularization and information hiding was proposed
as early as 1972 [9]. But due to internet technology and vendor independent standards
(e.g. XML, WSDL, SOAP, HTTP) today these concepts have a better chance to be
realized. For example, a comparable technology to Web Service flows as realized by
BPEL, formerly Workflow-Management-Systems were used to separate business
process from business components. Nonetheless, workflow standards were vendor
dependent, thus components could only be used in the scope of a proprietary
workflow systems. Today, the vendor independent standard WSDL allows for an
invocation of Web Service across boundaries of different workflow-engines (now also
called orchestration engines) and possibly also of different organizations.

Nonetheless, SOA development is still a relatively young discipline with few
practical experiences and various challenges remain. For example, methods are
needed to ensure that SOA processes are compliant with conceptual processes as
designed by business analysts. Though first approaches exist to transform EPC to
BPEL [10], they have to be refined and put on a broader conceptual basis.

3 Business Service Management Bridging the Concepts

3.1 Business Services

In order to leverage service-oriented architectures for flexible enterprise systems
driven by business requirements, it does not suffice to compose IT-driven web
services into processes and run them on an Enterprise Service Bus. This would only
entail a not so new form of system integration, instead of bridging the gap between
business and IT as it was propagated for SOA. To reach the very SOA vision, one
must rather think how business requirements can be possibly seamlessly transferred.
As outline above, BPM can be identified as a requirements engineering approach in
the business domain but highly related to information technology. Thus, it provides a
solid starting point for IT development in general and SOA development in particular.
Business processes as defined above serve as the very business context needed for
web services and service processes to form a truly business-driven service-oriented
architecture. Service orientation of an organization means that functions and
subprocesses needed by numerous organizational units are provided by a single unit

 Managing SOA Through Business Services 7

towards multiple units in order to reduce costs and complexity. We define such
functions as business services. Due to their close relationships to functions of business
processes they can be derived from business process models and rely on web service
interfaces. Thus, business services act as an abstraction layer between business and
IT. However, due to their content and design directives, they belong to the business
layer, that is defined and reworked by business users (in contrast IT people is in
charge of the technical layer). Figure 1 illustrates this relationship.

Prozess A Prozess B Prozess C Prozess D

Business
Service A

Business
Service B

Business
Service C

Business
Service D

B
u

si
n

es
s

L
ay

er

Web
Service A

Web
Service B

Web
Service C

Web
Service D

Application A Application B Application C Application D T
ec

h
n

ic
al

 L
ay

er

Fig. 1. Business services acting as mediation layer

Business Services are specified through their business relevant inputs and outputs
but their internal operating is not visible to the outside i.e. the consuming world.
Inputs and outputs can also be considered to be products that are either composed to
more complex products or a single product of the types service, goods or information.
Organizational units consume and provide products. In this context, they are
responsible for creating certain business services and/or using them. Functions are
business activities that are hierarchically structured, supported by information systems
and – as a logically and timely ordered set – form a business process. As outlined
above business services execute processes and functions. For quality reasons, the
usage of a business service is subject to so-called service-level-agreements (SLA) that
determine exact quality targets for its execution. From a technical point of view, each
business service is assigned to a WSDL-operation, i.e. an operation of a Web Service
described in a WSDL file. Though, due to its additional business semantics it goes
beyond a web service. An excerpt from the information model of business services is
presented in figure 2.

Given this close connection between business processes on the one hand side and
web services on the other, business services are the very building blocks propagated by
the SOA paradigm that flexibly implement a company’s business strategy. However, as

8 D. Werth et al.

Fig. 2. Information model for business services

an additional layer of such functional modules (business services) between business
processes and IT complexity rises and risks to give way to chaos and complexity instead
of transparency. To counter this risk, a coherent concept to manage the business service
layer based on business processes and IT resources is needed.

3.2 Process-Driven Business Service Management

Embedded in the business process logic on the one hand and in the SOA interfaces on
the other hand, the business service layer must be understood as linkage between both.
The challenge resides in the way business services are identified, described, composed,
maintained, and controlled. The former being the currently most intricate issue since
business services must be tailored in such a way that they comply with business process
requirements as well as SOA postulations such as reusability, effectiveness,
sustainability, transactionality, etc. and meet corresponding business needs. In order to
ensure business effectiveness of these business services, the data structure proposed
embeds their semantics in a business process context while linking it to technical
entities of Web Service languages like WSDL and BPEL. Beyond the design of
business services, there is the need for methodologies to manage business services
during their run time, i.e. to deploy them to tackle new business challenges along new

 Managing SOA Through Business Services 9

business processes, to compose them to form new services, to communicate their
semantics towards all stakeholders, to align them vertically with given system
functionalities and horizontally across departments and business units. This is vital for
ripping off the potential of service outsourcing pictured by service-orientation: Only
clearly, i.e. from a business perspective described services (business services) can be
offered to external customers or bought in from external providers. Business service
management aims to administer the alignment between business and IT. Hereby the
concept of business services incorporates the interdependences between business
strategies expressed in business processes and IT infrastructures. It connects business-
driven web services dynamically with underlying software systems and business-level
processes. Business service management is made up of a set of activities that can be
ordered as figure 3 outlines. One can roughly distinguish four phases: Analysis, Design,
Execution, and Controlling. In the analysis phase three steps are necessary. The business
foundation of all subsequent tasks is formed by a business process analysis that defines
semi-formalized representations of an enterprise from a business domain view.
Secondly, the IT view on an enterprise with the running application systems, their
components and responsible organizational units are examined to explore the system
landscape in place. Having analyzed both business and IT constraints, this information
is evaluated and scoped with regard to their quality and ability to be transformed into
business services. In the subsequent phase, the design phase, these parts of the new
business layer, the business services and their interactions, are identified and described.
Therefore various (semi-)automatic algorithms are applied to the input data to find good
candidates of EPC parts, organizational units and IT components that possibly form
together a new business service.

To confirm these business service candidates, they must be aligned vertically, i.e.
between business activities and IT functionalities, as well as horizontally, i.e. across

Fig. 3. The lifecycle of business services

10 D. Werth et al.

organizational units that are to use them. Finally the newly defined services are
composed to a BPEL process on the basis of business processes to support the course
of business in the enterprise. The conceptual analysis and design phases (build-time)
are followed by the execution and controlling phases (run-time). The execution phase
establishes the connection between the business services and underlying technical
web services (described in WSDL) that again access system functionalities via
communication protocols such as SOAP. Hence, the SOA implementation is initiated
but not finalized before having implemented a whole SOA infrastructure including
Enterprise Service Bus which is responsible for instantiating and executing the
services. Last but not least, the final phase, the controlling phase, of the business
service management lifecycle controls the success of the business services definitions
measured against business objectives. Different run-time attributes are extracted from
the operating SOA, aggregated to key performance indicators and used to reconvene
with the initial analysis to redesign the business service definitions and improve their
fit to upcoming business requirements and new information systems.

4 Tool-Support

In real business environments, a concept as presented in this paper cannot be used
without a comprehensive tool support. The very fact that there are hundreds or
thousands of processes and services to be managed underlines the need for an IT
solution.

Fig. 4. Technical architecture of Toscana

To deploy our concept in practical scenarios we are going to develop a toolkit that
can support all lifecycle tasks of business service management. This toolkit for
business service management is called TOSCANA. The technical architecture of
Toscana is shown in figure 4. It follows a classical 3 tier architecture pattern.

 Managing SOA Through Business Services 11

However, as we initially explained within the concept of business service
management, BSM acts as the intermediator between BPM and SOA. Consequently,
Toscana is not an insolated application, but it is intended to intensively interact with
business process management systems on the one hand and with service management
application on the other. Therefore, we try to prototypically connect Toscana to the
ARIS Toolset (world marked leader in business process modeling) and to the Oracle
Web Service Manager (commercial SOA management suite).

5 Related Work

The approach presented in this paper originates in two major fields of the information
systems discipline: Business Process Management and IT Management. As this paper
will reveal, the abstract service construct is very much related to existing concepts of
business process management. As software functionality, a service features a very
functional nature with input being transformed into output. Thus it corresponds to the
artefacts of activities, functions, or actions as they have been used in enterprise
modelling for decades (e.g. [4], [11]). Analogously to these artefacts, services may be
composed to processes. Such service processes again can be offered as – more coarse-
grained – services. Thus, it is vital to understand the central role of business process
management for service-oriented architectures.

This goes hand in hand with the notion of SOA not so much being based on new
technological design principles but rather on the vision to accomplish a business-
driven design of IT resources. Thus, Pullier and Taylor [12] consider the effectiveness
of service design depending more on business processes than on technology.
Accordingly, they define service quality based on reusability of resources “that serve
the needs of processes”. Frankel [13] considers Web Services in the context of
enterprise architecture and defines the notion of business services as “composed from
lower level, finer-grained business functions and information entities.” Krafzig et al.
[14] shifts the focus of enterprise SOA on taking advantage of business logic and data
maintained in many applications, databases and legacy systems in order to flexibly
adapt IT systems to changes in business requirements. Krafzig et al. also emphasize
the importance of mapping services directly to business entities, promoting SOA as a
mean for enterprise integration on a business not so much on a technical level. Hagel
III [15] also calls for web services that deliver “mission critical functionality” and are
based on shared meaning not only on shared formats. Understanding that business-
relevant service design is not the only requirement for a business-centric SOA, he
develops a Service Grid consisting on Service Management, Resource Knowledge
Management and Transport Management. Unfortunately, Hagel III’s thoughts never
get any specific but remain sketchy. Nevertheless, his and other authors’ recognition
of managerial perspectives on a SOA is the basis for our Business Service
Management approach.

On the industrial side, there are multiple approaches on service management.
However, most of them are technically motivated and aiming to manage an IT-
infrastructure based on WebServices (e.g. [14], [16], [17]). They provide functionalities
to assess, store and query service resp. interface specifications (mostly on data level) in

12 D. Werth et al.

order to ensure a certain quality of service and to simplify the maintenance of the it-
environment. The approach of SAP is going beyond [18]. It tries to leverage the
technical service descriptions on a business level. However, in contrast to this business-
driven approach, it is also technology driven. SAP relies on their BAPI specifications,
describing interfaces to the R/3 ERP system and it is extending these interfaces to
describe business activities. Due to this procedure, the services are fully aligned with the
IT-systems, but may strongly differ from the business operations and strategic
objectives.

6 Conclusion

We have presented business service management as an approach to leverage the
beneficial characteristics of web services and service-oriented architectures in order to
flexibly align business strategy and supporting information technology. Business
processes have been chosen as the very context representing business requirements
for SOA, i.e. an enterprise’s static and dynamic structuring and its activities. The
lifecycle of business service management includes the interdependent tasks that are to
be performed in order to align business process and SOA via business services. Being
a cycle, it emphasizes the fact that automating business processes through services
leads to a continuous improvement of both business processes and information
technology: The former is subject to optimization due to previous performance and
subject to change due to external economical influences. The later also needs to
evolve continuously given ongoing innovations in software, hardware, and services
and ever increasing quality requirements. Given these freely flowing economical and
technological variables, the layer of business services is to provide the very stability
and transparency needed. As business success depends on the quality of business
services, their design and maintenance must be thoroughly managed. We consider
research questions how to identify and tailor business services most optimally most
decisive for success or failure of the enterprise SOA. Upcoming research therefore
must focus on the design phase of business service management. At the moment a
prototype is being developed to demonstrate feasibility and advantages of the business
service management idea, especially focusing on the analysis and design phase. It is
designed as a wizard to support the equally business analysts and IT specialists. By
integrating the approach into business process management concepts, we propagate a
comprehensive solution that bridges the gap between existing business management
and the upcoming challenge of SOA administration.

This concept was developed at the Competence Centre Business Integration
(CCBI), Institute for Information Systems (IWi) at the German Research Center for
Artificial Intelligence (DFKI), Saarbruecken. It addresses current research problems
in the area of process integration and networked businesses by bringing together the
business-oriented and the IT-views. The work is performed by clustering national and
international funded research projects (esp. ArKoS, ATHENA, INTEROP, P2E2,
VIDE), intending the development of solutions for a better interoperability in business
networks.

 Managing SOA Through Business Services 13

References

1. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing. Communications of
the ACM 46(10), 25–28 (2003)

2. Davenport, T.H.: Process Innovation. Reengineering Work through Information
Technology. Harvard Business School Press, Boston (1993)

3. Hammer, M., Champy, J.: Reengineering the Corporation. A Manifesto for Business
Revolution. Collins Business Essentials, New York (1993)

4. Scheer, A.-W.: Business Process frameworks, 3rd edn. Springer, Heidelberg (1999)
5. Röhricht, J., Schlögel, C.: cBusiness: Erfolgreiche Internetstrategien durch Collaborative

Business am Beispiel mySAP.com. Addison-Wesley, München (2001)
6. Werth, D.: Kollaborative Geschäftsprozesse. Logos, Berlin (2006)
7. Leymann, F., Roller, D., Schmidt, M.: Web Services and Business Process Management.

IBM Systems Journal 41(2) (2003)
8. Vanderhaeghen, D., Kahl, T., Werth, D., Loos, P.: Service- and Process-Matching – An

Approach towards Interoperability Design and Implementation of Business Networks. In:
Doumeingts, G., Müller, J., Morel, G., Vallespir, B. (eds.) Enterprise Interoperability: New
Challenges and Approaches, pp. 187–198. Springer, Heidelberg (2007)

9. Parnas, D.L.: On the Criteria to be used in Decomposing Systems in Module.
Communications of the ACM 15(12), 1053–1058 (1972)

10. Ziemann, J., Mendling, J.: Transformation of EPCs to BPEL – A Pragmatic Approach. In:
7th International Conference on the Modern Information Technology in the Innovation
Processes of the Industrial Enterprises, Genoa (2005)

11. White, S.A.: Business Process Modeling Notation. Business Process Management
Initiative, Version 1.0 (2004), http://www.bpmi.org/downloads/BPMN-V1.0.pdf

12. Pulier, E., Taylor, H.: Understanding Enterprise SOA. Manning Publications, New York
(2005)

13. Frankel, D.S.: Model Driven Architecture - Applying MDA to Enterprise Computing. John
Wiley & Sons, Chichester (2003)

14. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture Best
Practices. Prentice Hall, Englewood Cliffs (2004)

15. Hagel III, J.: Out of the Box - Strategies for Achieving Profits Today and Growth
Tomorrow through Web Services. Harvard Business School Press, Boston (2005)

16. Dostal, W., Jeckle, M., Melzer, I.: Zengler: Service-Orientierte Architekturen mit Web
Services – Konzepte, Standards, Praxis. Spektrum Akademischer Verlag (2005)

17. Bieberstein, N., Bose, S., Fiammante, M., Jones, K., Shah, R.: Service-Oriented
Architecture Compass: Business Value, Planning and Enterprise Roadmap. IBM Press,
Indianapolis (2005)

18. Woods, D., Mattern, T.: Enterprise SOA - Designing IT for Business Innovation. O’Reilly,
Sebastopol (2006)

Reliable Scientific Service Compositions�

Bruno Wassermann and Wolfgang Emmerich

University College London
Dept. of Computer Science

Software Systems Engineering Group
Gower Street, London, WC1E 6BT, UK

{b.wassermann,w.emmerich}@cs.ucl.ac.uk
http://sse.cs.ucl.ac.uk

Abstract. Distributed service oriented architectures (SOAs) are increas-
ingly used by users, who are insufficiently skilled in the art of distributed
system programming. A good example are computational scientists who
build large-scale distributed systems using service-oriented Grid comput-
ing infrastructures. Computational scientists use these infrastructure to
build scientific applications, which are composed from basic Web ser-
vices into larger orchestrations using workflow languages, such as the
Business Process Execution Language. For these users reliability of the
infrastructure is of significant importance and that has to be provided
in the presence of hardware or operational failures. The primitives avail-
able to achieve such reliability currently leave much to be desired by
users who do not necessarily have a strong education in distributed sys-
tem construction. We characterise scientific service compositions and the
environment they operate in by introducing the notion of global scien-
tific BPEL workflows. We outline the threats to the reliability of such
workflows and discuss the limited support that available specifications
and mechanisms provide to achieve reliability. Furthermore, we propose
a line of research to address the identified issues by investigating auto-
nomic mechanisms that assist computational scientists in building, exe-
cuting and maintaining reliable workflows.

1 Introduction

Achieving reliability is a key concern in the design of distributed software sys-
tems. In this paper we argue that the service-oriented Grid computing infras-
tructures that have attracted computational scientists as a new set of non-expert
users currently only provide inadequate support at both design and runtime to
cater for reliability. As we demonstrate, this gap is increased by the fact that
scientific service compositions suffer from challenging threats to their reliability.
Due to the proliferation of scientific service-oriented applications, it is important
to investigate what kind of additional support can be offered to their developers
and users.
� This research has been funded by the UK EPSRC through grants GR/R97207/01

(e-Materials) and GR/S90843/01 (OMII Managed Programme).

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 14–25, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://sse.cs.ucl.ac.uk

Reliable Scientific Service Compositions 15

If computational scientists are not provided with more effective means to
tackle issues of reliability, then this will present a serious impediment to the suc-
cessful use of service-oriented technologies in scientific computing and thereby
limit the realisation of its benefits. We therefore want to raise awareness, char-
acterise the problem, and propose a line of research to build autonomic mech-
anisms that can enable non-expert users to build and execute reliable service
compositions by handling failures automatically whenever possible and through
meaningful interaction with human users in any other cases.

The main contribution of this paper is the characterisation of scientific service
compositions and the environment they operate. We outline the ample threats
to their reliability. We do this by introducing the notion of global scientific BPEL
workflows (section 2) to get a clearer picture of what computational scientists need
to be enabled to deal with. Then, we briefly present a typical instance of a scientific
service composition and the failures it suffers from (section 3). In order to demon-
strate that current mechanisms and specifications have failed to address the issue
of reliability successfully, we review existing approaches (section 4). The second
contribution of this paper lies in a proposal outline to investigate the application
of autonomic mechanisms to achieve reliability and ways of effective interaction
between these mechanisms and human users to achieve better coverage (section 5),
before discussing closely related work (section 6).

2 Global Scientific BPEL Workflows

2.1 Scientific Workflows

Computational sciences have increasing demands on compute power, data stor-
age capacity and collaboration across organisational boundaries. These require-
ments are satisfied by modern Grids, which have evolved into service-oriented
computing environments comprised of collections of basic Web services. In order
to express scientific experiments, these basic services need to be composed into
larger orchestrations. In prior work, we have shown that the Business Process
Execution Language (BPEL) as the industry standard for Web service orches-
trations has shown to be suitable for this task and it is desirable for faster
turnaround of ideas for experiments for computational scientists to take con-
trol of their own orchestrations. Computational scientists have been enabled
to model scientific workflows through the tool offering developed by the OMII-
BPEL project [1] and [2]. In this section, we briefly characterise the key elements
of such compositions, or workflows, to identify their impact on reliability.

Scientific workflows display some interesting properties. They operate on a
large scale, both in terms of the number of operations they invoke, the degree of
parallelism, the size and number of messages they exchange with service partners
and the amount of data they handle. Consequently, and given the nature of
the computations they are designed to handle, scientific workflows are resource-
intensive and long-running, which makes them prone to resource exhaustion
(i.e. memory, threads, file descriptors,) and increases the likelihood of internal
or latent errors from various components materialising themselves as critical

16 B. Wassermann and W. Emmerich

failures. Furthermore, scientific workflows often operate and employ resources
in a wide-area setting, which introduces further issues with respect to their
stability. This state of affairs is not helped by the heterogeneity of the underlying
operating systems and hardware and the fact that resource schedulers, such as
Condor are explicitly addressing the scavenging of unused CPU cycles, which
results in termination or relocation of computation when nodes are beginning to
be used again or when nodes are actually switched off.

Computational scientists are certainly computer literate and may posses some
excellent programming skills in certain languages (most notably FORTRAN,
C and C++). However, they should by no means be regarded as experts in
distribution middleware and the underlying technologies used in service-oriented
Grid computing and BPEL enactment environments. Therefore, they will benefit
from simple to use mechanisms that provide support for ensuring the reliability
of scientific service compositions.

2.2 Global Computing

Research collaborations are increasing in size and often involve participating or-
ganisations, which are geographically widely dispersed. Wide-area distribution
enables such collaboration and increases the capacity to handle larger compu-
tational loads. Scientific workflows must integrate resources that are distributed
over wide-area settings for various reasons. First, the computations exposed by
scientific services are typically resource-intensive and their compositions require
the exchange of large numbers of SOAP messages. Provisioning all required re-
sources within a single organisation could easily become prohibitively expensive.
Second, some services and the expertise they encapsulate are developed and
maintained by individual organisations, which then make such services available
for invocation via the Internet, but may not release the source. A third instance
of resource sharing arises out of the need to pool Grid compute nodes. In such
a setting the resource managers (exposed as Web services) responsible for job
scheduling are local to the actual compute nodes and will have to be accessed
by their clients over a wide-area network.

This makes scientific workflows expressed in a service-oriented computing en-
vironment a prime example of global computing, in which the components of an
application are distributed across the Internet. Cardelli asserts that wide-area
computing systems are fully asynchronous distributed systems making several
new phenomena visible that could previously be hidden to a sufficient extent on
LANs [3]. These observables include barriers (e.g., firewall) introduced due to
the involvement of separate administrative domains and unpredictably fluctuat-
ing network conditions making long delays indistinguishable from failures. This
is the category of applications scientific service compositions are a part of.

Being an instance of global computing systems has an impact on the available
options for ensuring the reliability of scientific workflows. We cannot rely on
timeouts to determine process failures and even if we were to ignore the impos-
sibility result of reaching consensus in an asynchronous distributed system [4],
relying on mechanisms such as fault detectors may be prohibitively expensive.

Reliable Scientific Service Compositions 17

Operating System

Java Virtual Machine

Servlet Container

BPEL Engine Web Services Container

Fig. 1. Stack of high-level middleware components involved in hosting and running
BPEL workflows

Techniques primarily developed for mobile networks, such as for example proba-
bilistic broadcasts have no direct feasible application as they may rather resemble
a DDoS attack (but see [5]).

2.3 Middleware Components

Compositions need to be modelled using the tools of a buildtime in such a way
as to ensure subsequent reliable execution in a runtime. In OMII-BPEL, this
buildtime involves graphical modelling environments whose features assist users
in designing, validating, debugging and deploying a workflow in an executable
format. There is merit to briefly examine what a typical runtime consists of.

We consider middleware components as they occur in a typical Java environ-
ment, shown in Fig. 1. Distributed scientific applications may rely upon some or
all of these middleware components in order to provide correct service. However,
a considerable degree of complexity arises from the various middleware com-
ponents and their interactions with each other, which can give rise to various
failures. For example, the limitations on the number of sockets, threads or size
of memory per process imposed by the operating system can lead to conditions
causing the servlet container to crash. This then causes the subsequent failure
of one or more parts of a workflow. Or, some problem in the servlet container
preventing clients from accessing a particular resource (e.g., an XML Schema),
may, via a chain of dependencies, cause a remote service to terminate abnor-
mally. Such failures are extremely difficult to debug as none of the components
involved provides much useful information.

Each of the middleware components contributes independent failure modes
and each application may exercise different parts of these components under
varying conditions. Hence, in order to ensure the reliable execution of a com-
position, a process modeller must reason about how potential failures in the
middleware may influence their applications’ ability to provide correct service.
This may be a formidable challenge for software engineers, but presents a wholly
unacceptable burden on computational scientists.

3 Example: Failures in the Polymorph Search Workflow

Scientific workflows are subject to many different failures. These failures often
have no direct obvious cause and can have complex effects, such as cascading

18 B. Wassermann and W. Emmerich

Fig. 2. Abstract overview of the polymorph search workflow illustrating its component
sub-workflows. For simplicity, omits details of the services involved and distribution of
services and sub-workflows.

failures of components. In this section we briefly present a typical scientific BPEL
workflow and discuss some of the failures that it experiences in practice. We refer
the reader to [1] for a more detailed account of this workflow.

The domain of the polymorph search workflow is Theoretical Chemistry and
its application is the computational prediction of organic crystal structures. Its
characteristics are typical of a realistic scientific workflow. It involves massively
parallel computations, at times executing up to 7, 600 service invocations con-
currently. The individual compute jobs resulting from these invocations take
anything between two minutes and several hours to complete. The total data
volume resulting from a single polymorph search is in the region of 6 GB and
parts of this data will be exchanged among sub-workflows and other services in
a large number of SOAP messages.

In order to conquer the size and complexity of the polymorph search workflow,
it has been designed and built as several BPEL processes, which are hierarchi-
cally composed so that a main process coordinates among several sub-workflows.
An abstract overview is shown in figure 2. The invokeMolpakDmarel workflow
(top-level) starts by gathering some input data and then invokes a number of in-
stances of the invokeMolpak sub-workflow in parallel. As results become available
from this, they are fed to a large number of concurrently executing instances of
invokeDmarel. Both of these workflows make use of the gsSubmit sub-workflow,
which encapsulates the steps necessary to submit compute jobs to a Grid via the
GridSAM job submission and job monitoring services [6]. As the results of in-
dividual invokeDmarel invocations are returned, the top-level workflow submits
them to the visualizer sub-workflow. Visualizer uses a Web service hosted by
Southampton University to present molecule data in a standard tabular format
and to render results on a scatter plot.

A selection of the failures experienced with the polymorph search workflow
helps to illustrate the brittleness such compositions suffer from.

Omission failures. Some omission failures may go undetected and therefore
result in corrupted results. For example, an instance of the visualizer process
may fail due to its partner service in Southampton being temporarily unavailable,
exhaustion of disk space, etc. As the visualizer sub-workflow provides for one-
way invocation through its interface, such a failure will go undetected. A user

Reliable Scientific Service Compositions 19

would be left to manually inspect the resulting data for this omission as no part
of the system capable of resolving the issue may have become aware of it.

Cascading failures. There are various scenarios that cause cascading failures
to occur. One example for this is when an invoked service tries to reply to its
caller after the latter has failed. The invoked service will fail as well and it is easy
to see how this may lead to further cascading failures in a system of hierarchically
composed sub-workflows. Furthermore, the Web service container of the invoked
service may merely report the caller’s failure as a broken connection.

Application-specific failures. A service being faced with a compute job which
will never complete has little information available to decide how to handle this
job and will itself never terminate (unless through resource exhaustion). A user
however could in theory inspect this job and decide that it is an irrelevant outlier
and should be discarded. However, there is currently no automated mechanism
to establish this link from detection of the problem to making a human operator
attentive to it and supplying further information.

4 Existing Approaches

In this section we present a brief survey of the key facilities made available by
BPEL and various Web service specifications for handling failures.

4.1 Transactional Mechanisms

The traditional transaction model based on the four properties of atomicity, con-
sistency, isolation and durability (ACID) has been applied with great success in
database management systems (DBMS). Its success for short-lived transactions
is, to a large extent, due to the fact that it effectively handles concurrency and
failures on behalf of a programmer. It would therefore seem to also afford a con-
venient implementation of backward error recovery in the context of scientific
workflows.

However, whilst ACID transactions are necessary and useful for certain cases
in service-oriented applications, it is well known that they are of limited use in
large-scale, long-running processes [7] and advanced transactions models (ATMs)
have been devised that relax some of the properties of ACID transactions. ATMs
allow programmers to focus on business logic rather than reason about excep-
tional executions by providing runtime support for handling failures and con-
currency similar to the one afforded by ACID transactions.

Concepts from various ATMs have found application in workflow management
systems (WFMS). For example, [8] has applied the concepts developed to pre-
serve reliability in multidatabase systems [9] to WFMSs. In [8] a single work-
flow/process represents a global transaction and its individual activities represent
sub-transactions. Consequently, process modellers need to equip activities with
transactional characteristics, such as compensatable (effects can be undone), re-
triable (will eventually commit) and pivot (either commits or fails) [9]. This affords

20 B. Wassermann and W. Emmerich

the definition of a well-formed process, in which a single pivot activity is preceded
only by compensatable activities and followed by retriable activities. In case the
pivot activity fails, all previous ones can be undone, and in case it succeeds, all fol-
lowing activities are guaranteed to succeed eventually. Therefore, processes which
are structured so as to adhere to the concept of well-formedness, can then achieve
semi-atomicity, which affords preservation of the local autonomy of participants,
whilst still preserving consistency in the presence of failures.

Although these concepts solve some of the issues we identified with the use
of ACID transactions, there are a number issues when applied in our context.
First, for computational scientists, the execution characteristics of individual
activities in their workflows are far from obvious and reasoning about this is
complex. Second, the constraints imposed by the property of well-formedness
are too restrictive in practice when applied to large scientific workflows. The
primary reason for this is that scientific workflows make use of hierarchical com-
position of a number of sub-workflows in order to conquer the complexity of
large compositions during design and maintenance. Third, even if we were to re-
lax the property of well-formedness, as shown in [10] in the context of MDBMs by
introducing flexible transactions with retriable alternatives, the resulting guar-
antee of eventual reliability, that is, a guarantee that an activity will succeed at
some point in the future, may introduce considerable delays. Instead, it would
be preferable to detect and resolve an issue sooner rather than later, possibly by
notifying a human operator.

4.2 BPEL Compensation-Handling

BPEL provides process modellers with various tools to build reliable workflows.
It comes equipped with constructs to handle faults similar to the exception
handling constructs in modern programming languages. It furthermore offers
constructs to carry out compensation.

The concept of compensation as implemented in BPEL is restrictive and com-
plex. In [11] the authors identify the combination of explicit and implicit com-
pensation in BPEL as a main source of this complexity and question whether
this added complexity is actually justified by any benefits. The lack of control
for steering compensation provided to process modellers is criticised in [12]. It is
furthermore noted that there is no support for reasoning about the correctness
of an overall workflow in case compensation has been applied. It is also not the
case that services usually come equipped with compensating operations, which
is a problem in cross-organisational compositions where a developer may have
no control over another organisation’s services. In our experience, implementing
forward error recovery in BPEL is complicated by the assumptions its relevant
constructs are based on; immediate termination and backward error recovery.
This restriction is revealed in the BPEL specification, which states that the sole
aim of fault handling in BPEL is to undo the effects of an unsuccessful scope.
Yet, achieving forward error recovery whenever possible is of utmost importance
in scientific workflows and should be made as simple as possible.

Reliable Scientific Service Compositions 21

4.3 WS-Reliability

A number of specifications have been defined in order to increase the reliability
of Web services. A crucial component of reliable distributed systems is reliable
message delivery. There are two competing, but rather similar, specifications in
the area of WS-Reliability (WS-R) area ([13,14]). WS-R supports the reliable
exchange of SOAP messages between endpoints and allows applications to con-
figure parameters such as message delivery semantics and timeouts. Message
queuing systems suggest themselves as an implementation of WS-R.

Whilst the service offered by WS-R provides an important component to
maintain reliability, two issues become apparent in practice. First, the cost that
arises from maintaining message queues does not bode well for scientific work-
flows. This cost arises from persisting messages in some form of database and
includes storing additional message histories in the case exactly-once semantics
are required. During a single run, a scientific workflow may make thousands of
service invocations and may consequently send and receive in the region of tens
of thousands of SOAP messages. Second, WS-R guarantees that a message will
be delivered eventually. In a loosely-coupled, highly distributed environment in-
volving different administrative domains it becomes difficult to predict for how
long a particular set of services may be unavailable to process an incoming mes-
sage. That is, the delay introduced by the concept of eventual reliability can be
significant and an opportunity to detect and resolve a failure is missed.

In summary, we find that even though there are mechanisms to address relia-
bility, they cannot be easily applied to scientific service compositions. The main
characteristics of such compositions (long-running, resource-intensive, highly dis-
tributed) make the use of ACID transactions impractical. ATMs impose restric-
tions on the structure of workflows, which are difficult to adhere to in practice.
Due to the demand for forward error recovery whenever possible and due the
described complexity, which makes it difficult to anticipate all possible failures,
BPEL’s compensation constructs often fail to provide adequate support. The
cost incurred by WS-R may actually be prohibitive and the range of failures
encountered by scientific service compositions cannot be solved by reliable mes-
saging alone. This leads us to the question what is actually needed to enable
computational scientists to build reliable, fault-tolerant service compositions.

5 Making Reliability Useable

Making service-oriented Grid computing infrastructures directly ’programmable’
by computational scientists has a number of benefits to offer that can advance
scientific computing.

However, current mechanisms to address reliability are lacking in various re-
spects. This forces computational scientists who develop complex compositions
to engage in a lengthy, time-consuming and often frustrating process of trial-and-
error where vulnerabilities are discovered through numerous runs of a workflow
and protected against by piecemeal modifications. This process of ’design-by-
trial-and-error’ is not acceptable. The aim of our proposed research is therefore

22 B. Wassermann and W. Emmerich

to enable computational scientists to design and execute global scientific BPEL
workflows with reasonable trust that the composition will handle any failures
and progress forward to completion.

We can derive a number of key features that any reasonable solution should of-
fer. It is desirable to detect failures as soon as possible so that they can be handled
and the overall workflow is able to progress forward. This is in contrast to notifi-
cation of failures by timeouts and undoing a great deal of work in light of failures.
In cases where it may be impossible to avoid undoing already completed compu-
tations, the least amount of work that needs to be undone in order to proceed
to completion should be identified. Of course, any automated handling of failures
should be efficient and above all lead to correct behaviour of the system. Achiev-
ing correct behaviour is complicated in the case of application-specific failures.
Last but not least, it is of crucial importance to allow computational scientists to
interact with any autonomic fault handling mechanisms in an intuitive manner
so as to be able to indicate desired behaviour and possibly to increase coverage.
Amongst other things, this means that autonomic failure handling must be able
to operate satisfactorily with the least amount of input from users.

Our proposed solution for achieving our stated objective consists of three
major parts.

Failure investigation service. Failure investigation is a crucial element in
enabling clever(er) handling of failures. Our experience with scientific BPEL
workflows suggests that it may often be possible to handle otherwise fatal fail-
ures successfully, if only there was more information available to drive autonomic
failure handling mechanisms. The design and implementation of a failure inves-
tigation service pose a number of interesting questions to be addressed. One
question is what kind of infrastructure is actually needed and what kind of in-
formation such an infrastructure should provide. Another issue is to determine
what level of support can be achieved without being concerned about providing
a global view of system state.

Autonomic recovery strategies. In order to handle failures and enable for-
ward progress, autonomic recovery strategies need to monitor the various compo-
nents involved in scientific workflows and then take action to prevent the various
parts of a workflow from terminating abnormally. There are a number of compli-
cations. First, there are many components which may suffer under very different
kinds of conditions and therefore require specialised failure investigation and re-
covery. Second, given the limited degree of software engineering expertise of our
users, we cannot expect them to inform such recovery strategies through, for ex-
ample, sophisticated architectural models. This raises the question of how such
strategies should be expressed? Should they be hard-coded and added to a system
by some kind of plug-in mechanism? Or can we enable computational scientists to
inform these strategies in an intuitive manner? We are furthermore interested to
determine the coverage such strategies can achieve, how to ensure recovery lead-
ing to correct system behaviour and to find out limits of such autonomic strategies.

Reliable Scientific Service Compositions 23

Division of Responsibility. The final part of our research deals with opportu-
nities for interaction between computational scientists and autonomic recovery
strategies. There are two main elements to this. For the sake of accountability of
autonomic recovery strategies, it will be necessary to make reports available to
human users about any incidents and actions taken during a run of a workflow.
By identifying failures that cannot be addressed automatically, it will further-
more become possible to determine when human users should be involved in
decisions about which actions to take in order to handle such failures success-
fully. Autonomic strategies could then guide users in resolving issues and make
their repository of actions available to be steered by users. The question here is in
how far support for dividing responsibility between human users and autonomic
mechanisms can be used to overcome any limitations of the latter.

We believe that the combination of informed autonomic recovery strategies
and meaningful interaction with human users provides a promising avenue for
resolving some, if not many, of the reliability challenges computational scientists
are currently confronted with.

6 Related Work

There are a number of related efforts taking place at Cornell. Services to monitor
system health in support of high-availability in mission-critical Web service ap-
plications have been proposed in [15]. Astrolabe [5] has been proposed as a mon-
itoring standard applications could use to implement autonomic behaviour [16].
And finally, [17] discusses services for tracking of process group membership,
failure detection and reaching consensus.

Our work differentiates itself from these efforts in various respects. Our fail-
ure investigation service does not aim to support process group semantics or
achieve a global view of system state. We prefer to avoid the added cost and
complexity of establishing a strong notion of consistency and are instead inter-
ested to determine the capabilities and limits of mechanisms built on a simple
infrastructure that makes additional system information available on request.
In cases where achieving consensus may be required, we will investigate the use
of resolution schemes [18]. Defining our main target group to be computational
scientists means that we cannot expect them to use the features of a monitoring
service directly to implement autonomic behaviour in their workflows and that
we must limit the necessary setup and configuration activities. Another differ-
ence is our interest in investigating how the coverage achieved by such recovery
strategies can be increased through cooperation with human users.

An interesting first step in the context of scientific grid applications is rep-
resented by OPERA-G [19]. However, the autonomic behaviour OPERA-G was
able to achieve is limited. We propose to develop autonomic recovery strategies
based on a richer set of information.

The issue of accountability of autonomic computing mechanisms has been
raised in [20] and [21].

24 B. Wassermann and W. Emmerich

7 Conclusion

In this paper we discussed the notion of global scientific BPEL workflows and the
environment they operate in. The examples of typical failures of global workflows
that occur in practice and their consequences provide an insight into the variety
and complexity of failures. This helps to confirm our experience. Namely, that
tackling the threats to a scientific workflow’s reliability is a challenging task, even
for experienced software engineers. Our brief examination of existing reliability
mechanisms and language constructs lets us conclude that neither do the pro-
posed techniques address the breadth of threats effectively nor do they provide
an interface that allows for sufficiently simple interaction with computational
scientists.

For solving many of the identified issues, we proposed a solution consisting of
three main parts. We aim to build an environment that can make basic infor-
mation about failures available in order to enable informed autonomic recovery
strategies. Furthermore, we will investigate how to achieve useful interaction
between human users and these mechanisms to overcome any limitations. The
proposed research seems promising and its components raise a number of in-
teresting questions which we look forward to addressing and examining more
closely.

References

1. Emmerich, W., Butchart, B., Chen, L., Wassermann, B., Price, S.L.: Grid Service
Orchestration using the Business Process Execution Language (BPEL). J. Grid
Comp. 3(3-4), 283–304 (2005)

2. Wassermann, B., Emmerich, W., Butchart, B., Cameron, N., Chen, L., Patel, J.:
Sedna: A BPEL-based environment for visual scientific workflow modelling. In:
Taylor, I.J., Deelman, E., Gannon, D., Shields, M.S. (eds.) Workflows for eScience
- Scientific Workflows for Grids, Springer, Heidelberg (2006)

3. Cardelli, L.: Wide Area Computation. In: Wiedermann, J., van Emde Boas, P.,
Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 10–24. Springer, Heidelberg
(1999)

4. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. JACM 32(2), 374–382 (1985)
Vogels, W.: technology for distributed system data mining. (2003) 164–206

5. Renesse, R., Birman, K., Vogels, W.: Astrolabe: A robust and scalable technology
for distributed system monitoring, management, and data mining. ACM Tran.
Comp. Sys 21(2), 164–206 (2003)
Darlington, J.: submission through web services. Proc. of the UK e-Science All
Hands Meeting, EPSRC (2004) 901–905 ISBN 1-904425-21-6.

6. Lee, W., McGough, S., Newhouse, S., Darlington, J.: A standard based approach
to job submission through web services. In: Cox, S. (ed.) Proc. of the UK e-Science
All Hands Meeting, Nottingham. pp. 901–905. EPSRC (2004) ISBN 1-904425-21-6

7. Barghouti, N.S., Kaiser, G.E.: Concurrency Control in Advanced Database Appli-
cations. ACM Computing Surveys 23(3), 269–317 (1991)

8. Hagen, C., Alonso, G.: Exception handling in workflow management systems. IEEE
TSE 26(10), 943–958 (2000)

Reliable Scientific Service Compositions 25

9. Mehrotra, S., Rastogi, R., Silberschatz, A., Korth, H.: A transaction model for
multidatabase systems. In: Proc. of the 12th Intl.Conference on Distributed Com-
puting Systems, pp. 56–63. IEEE Computer Society Press, Los Alamitos (1992)

10. Zhang, A., Nodine, M., Bhargava, B., Bukhres, O.: Ensuring relaxed atomicity for
flexible transactions in multidatabase systems. In: Proc. of the 1994 ACM SIGMOD
Intl. Conference on Management of Data, pp. 67–78. ACM Press, New York (1994)

11. Butler, M., Ferreira, C., Ng, M.: Precise Modelling of Compensating Business
Transactions and its Application to BPEL. Journal of Universal Computer Sci-
ence 11(5), 712–743 (2005)

12. Greenfield, P., Fekete, A., Jang, J., Kuo, D.: Compensation is Not Enough [fault-
handlng and compensation mechanism]. In: Proc. of the 7th IEEE Intl. Enterprise
Distributed Object Computing Conference, Brisbane, Australia, pp. 232–239. IEEE
Computer Society Press, Los Alamitos (2003)

13. Evans, C., Chappell, D., Bunting, D., Tharakan, G., Shimamura, H., Durand, J.,
Mischkinsky, J., Nihei, K., Iwasa, K., Chapman, M., Shimamura, M., Kassem, N.,
Yamamoto, N., Kunisetty, S., Hashimoto, T., Rutt, T., Nomura, Y.: Web Services
Reliability (WS-Reliability 1.0) (2003)
Services Reliable Messaging Protocol (WS-ReliableMessaging). Software (2005)

14. Ferris, C. (ed.): Web Services Reliable Messaging Protocol (WS-ReliableMessaging).
BEA Systems. IBM, Microsoft Corporation, TIBCO Software (2005)

15. Birman, K., Renesse, R., Vogels, W.: Adding high availability and autonomic be-
havior to web services. In: Proc. of the 26th Intl. Conference on Software Engi-
neering, Washington, DC, pp. 17–26. IEEE Computer Society Press, Los Alamitos
(2004)

16. Birman, K., Renesse, R., Vogels, W.: Navigating in the storm: Using Astrolabe
to adaptively configure web services and their clients. Journal of Cluster Comput-
ing 9(2), 127–139 (2006)

17. Vogels, W.: Tracking Service Availability in Long Running Business Activities. In:
Gschwind, T., Aßmann, U., Nierstrasz, O. (eds.) SC 2005. LNCS, vol. 3628, pp.
395–408. Springer, Heidelberg (2005)

18. Kermarrec, A.-M., Rowstron, A., Shapiro, M., Druschel, P.: The icecube approach
to the reconciliation of divergent replicas. In: Proc. of the 20th annual ACM Sym-
posium on Principles of Distributed Computing, pp. 210–218. ACM Press, New
York (2001)

19. Bausch, W.: OPERA-G: a microkernel for computational grids. PhD thesis, ETH
Zürich (2004)

20. Anderson, S., Hartswood, M., Procter, R., Rouncefield, M., Slack, R., Soutter,
J., Voss, A.: Making autonomic computing systems accountable: the problem of
human computer interaction. In: Mař́ık, V., Štěpánková, O., Retschitzegger, W.
(eds.) DEXA 2003. LNCS, vol. 2736, pp. 718–724. Springer, Heidelberg (2003)

21. Ibrahim, M.T., Telford, R., Dini, P., Lorenz, P., Vidovic, N., Anthony, R.: Self-
adaptability and man-in-the-loop: A dilemma in autonomic computing systems. In:
Proc. of the 15th Intl. Workshop on Database and Expert Systems Applications,
Washington, DC, pp. 722–729. IEEE Computer Society Press, Los Alamitos (2004)

A Service-Oriented Architecture for Electric Power
Transmission System Asset Management�

Jyotishman Pathak1, Yuan Li2, Vasant Honavar1, and James McCalley2

1 Department of Computer Science
2 Department of Electrical & Computer Engineering

Iowa State University
Ames, IA 50011-1040 USA

{jpathak,tua,honavar,jdm}@iastate.edu

Abstract. In electric power transmission systems, the assets include transmis-
sion lines, transformers, power plants and support structures. Maintaining these
assets to reliably deliver electric energy at low prices is critical for a nation’s
growth and development. Towards this end, we describe a novel service-oriented
architecture for sensing, information integration, risk assessment, and decision-
making tasks that arise in operating modern high-voltage electric power sys-
tems. The proposed framework integrates real-time data acquisition, modeling,
and forecasting functionalities provided by relatively autonomous, loosely cou-
pled entities that constitute the power industry to determine operational policies,
maintenance schedules and facility reinforcement plans required to ensure reli-
able operation of power systems.

1 Introduction

Modern electric power systems comprising of power transmission and distribution grids
consist of a large number of distributed, autonomously managed, capital-intensive as-
sets. Such assets include power plants, transmission lines, transformers, and protection
equipment. Over the past 15 years, the investment in acquiring new assets has signifi-
cantly declined causing many such assets to be operated well beyond their intended life
with unavoidable increase in stress on the system. Typically, a single power transmis-
sion company has its own centralized control center and is responsible for maintaining
different types of equipment. The failure of critical equipment can adversely impact the
entire distribution grid and increase the likelihood of additional failures.

Avoiding catastrophic failures and ensuring reliable operation of such a complex
network of assets presents several challenges in data-driven decision making related
to the operation, maintenance and planning of assets. Specifically, decision-makers
must anticipate potential failures before they occur, identify alternative responses or
preventive measures, along with their associated costs, benefits and risks. Effective
decision-making in such a setting is critically dependent on gathering and use of in-
formation characterizing the conditional, operational and maintenance histories of the

� This research is funded in part by the NSF DDDAS-TMRP grant# 0540293 and the ISU
Center for CILD (http://www.cild.iastate.edu)

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 26–37, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.cild.iastate.edu

Power System Asset Management Using Web Services 27

assets, e.g., equipment age and time since the last inspection and maintenance. Recent
advances in sensing, communications, and database technologies have made it possi-
ble, at least in principle, for decision-makers to access operating/maintenance histories
and asset-specific real-time monitoring data, which can be used to ensure reliable and
cost-effective operation of modern power systems so as to reduce (if not eliminate) the
frequency and severity of catastrophic failures such as blackouts[1].

However, effective acquisition and use of condition data, operating and maintenance
histories, and asset-specific real-time monitoring data presents several challenges in
practice: (i) the assets that constitute a modern power system are geographically dis-
tributed (ii) the data sources differ in terms of data semantics (due to differences in
ontologies), and spatial and temporal granularity of data (iii) the development of mod-
els that use this information to reliably predict the ways the asset may deteriorate and
fail (and recommend counter-measures) requires integration of results of several types
of analysis.

Service-Oriented Architecture (SOA) [2] and Web services [3] offer a flexible and
extensible approach to integration of multiple, often autonomous, data sources and anal-
ysis procedures. The recent adoption of Web services in the power industry [4,5,6,7] and
the support for interoperability with other frameworks (e.g., SCADA) through the use
of emerging Web services standards make SOA an especially attractive framework for
designing software infrastructure to address the challenges outlined above. Against this
background, we propose a service-oriented software architecture for power systems as-
set management. The design of this architecture which is being outlined in this paper is
currently being implemented.

The rest of the paper is organized as follows: Section 2 presents an overview of the
electric power system asset management problem along with our proposed solution;
Section 3 discusses the proposed service-oriented architecture for power systems asset
management; Section 4 describes some of the modules (services) comprising the pro-
posed system; Section 5 briefly discusses related work; and Section 6 concludes with a
summary and an outline of some directions for further research.

2 Electric Power System Asset Management

In electric power systems, asset management decision problems are characterized by:
(1) strong interdependencies between physical performance of individual assets, phys-
ical performance of the overall system, and economic system performance; (2) limited
resources; (3) important uncertainties in individual component performance, system
loading conditions, and available resources; (4) multiple objectives. These problems
can be classified into one of four types which involve resource allocation with the ob-
jective to minimize cost and risk. These specific asset management decision problems
include (a) Operations, (b) Short-term maintenance selection and scheduling, (c) Long-
term maintenance planning, and (d) Facility planning. The problems differ primarily
in their time scale but are linked by a common focus on the interactions between the
equipment condition and the decisions taken. The operational decision problem of how
to meet demand in the next hour to week treats facilities available and their deterioration
levels as given (though the deterioration is not known precisely).

28 J. Pathak et al.

Fig. 1. Structure of the Asset Management Decision Problem [8]

Figure 1 illustrates the structure of the asset management problem and facilitates de-
scription of how we intend to address the problem. Essentially, our approach focuses on
the use of equipment condition measurements to estimate short-term failure probabili-
ties along with the deterioration effects of loading each piece of equipment at various
levels, and the use of such estimates to guide dispatch and unit commitment decisions.

Layer 1, The Power System: This layer consists of a continuously running model of
the Iowa power system with network data provided by local utility companies using a
commercial-grade (Areva1) Dispatcher Training Simulator (DTS) and Energy Manage-
ment Software (EMS). The DTS and EMS were developed to simulate the environment
as seen by a control center operator.

Layer 2, Condition Sensors: This layer consists of databases (one for each substation)
that capture condition data and operational and maintenance histories of equipment in
substations. Different substations may be owned by different utility companies.

Layer 3, Data Communication & Integration: This layer models communication be-
tween each substation and the respective substation server (typically through wireless
links) together with integration of data. This layer needs to provide dependable, effi-
cient and secure mechanisms for connecting the data sources with analysis mechanisms
(Layer 4).

1 http://www.areva.com

http://www.areva.com

Power System Asset Management Using Web Services 29

Layer 4, Data Processing & Transformation: This layer operates on the integrated
data from Layer 3 to produce, for each piece of equipment, an estimate of the short-term
probability of failure at any given time. The estimation of such failure probabilities
relies on deterioration models (e.g., models [9] of chemical degradation processes in
power transformer insulating materials such as oil and cellulose), driven by on-line
sensors which measure levels of certain gases in the oil, gases that are produced by
these deterioration processes.

Layer 5, Simulation & Decision: This layer utilizes the component probabilistic fail-
ure indices from Layer 4 together with short and long-term system forecasts to drive
stochastic simulation and decision models. The resulting operational policies, mainte-
nance schedules, and facility reinforcement plans will then be implemented in the power
system (as modeled by the Areva simulator).

In what follows, we describe a service-oriented software architecture for power sys-
tems asset management that realizes the framework outlined above.

3 SOA-Based Framework for Power System Asset Management

A Service-Oriented Architecture (SOA) is a component model that supports interaction
between multiple functional units, called services. A service is a software module that
has a well-defined interface specifying a set of named operations that the service pro-
vides and a set of messages that the service receives/sends, an implementation of the
interface, and if deployed, a binding to a documented network address [2]. An SOA
can be implemented using several alternative technologies including Web services [3].
A Web service is a service that defines its interface using the Web Services Descrip-
tion Language2. Such a service can be accessed using a protocol that is compliant with
the Web Services Interoperability3 standards. Web service interfaces are platform and
language independent, thereby allowing Web services running on different platforms to
interoperate.

Our framework, PSAM-s, for Power System Asset Management shown in Figure
2 employs a Web services-based SOA . The core of the framework4 is the PSAM-s
engine comprising of multiple services that are responsible for enabling interaction be-
tween the users and other services that offer specific functionality (e.g., prediction of
power transformer failure-rates). These services can be broadly categorized into inter-
nal and external services.

3.1 PSAM-s Internal Services

These are the services which are part of the PSAM-s engine. They include:

Submission Service. This service is responsible for handling job requests from the user.
Such a request would typically initiate the execution of one or more information pro-
cessing services (described in Section 3.2), and the results after the execution will be

2 http://www.w3.org/TR/wsdl
3 http://www.ws-i.org
4 In the context of PSAM-s, we use the terms “service” and “Web service” interchangeably.

http://www.w3.org/TR/wsdl
http://www.ws-i.org

30 J. Pathak et al.

Fig. 2. PSAM-s System Architecture

returned to the user as well as stored in a repository via the storage service (described
below). The submission service expects the job requests to be defined using the Web Ser-
vices Business Process Execution Language (WS-BPEL5). WS-BPEL specifies a model
and a grammar for describing the behavior of a process based on its interactions with
other processes (also called partners in WS-BPEL terminology). The interaction with the
partners happens through the Web service interfaces and the WS-BPEL process defines
the coordination, along with the state and logic necessary for the coordination, to realize
a specific goal or requirement. We assume that there exists an “integration specialist”
in PSAM-swho is responsible for assembling WS-BPEL process templates/documents
for some of the routinely requested user jobs in power system asset management (e.g.,
failure-rate prediction) that could be used by a common user (e.g., a control center op-
erator). Over time, new templates could be designed or the existing ones modified de-
pending on the user requirements.

Execution Service. Once the user submits a job request (i.e., a WS-BPEL document) to
the submission service, the job is sent to the execution service which is responsible for
executing the information processing service(s) specified in the WS-BPEL document
to fulfill the user job requirement. Usually, this document will specify a composition of
multiple services whose execution needs to be orchestrated according to a specified con-
trol flow (defined as part of the workflow). For example, executing a composite service
might involve executing an information processing service that will predict the failure-
rate indices for a particular equipment (Layer 4 in Figure 1) which in turn is used by an-
other information processing service to determine if short-term maintenance is required
for the equipment under consideration (Layer 5 in Figure 1).

5 http://www.oasis-open.org/committees/tc home.php?
wg abbrev=wsbpel

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

Power System Asset Management Using Web Services 31

Broker Service. The information processing services mentioned above use equipment
condition and historical data to determine the information needed to improve mainte-
nance scheduling. To facilitate the access to this data, we introduce a broker service that
is responsible for establishing “dynamic data links” between the information processing
and the data providing services (described in Section 3.2). The broker service enables the
information processing services dynamically access and interact with the data providing
services that are online and contain information that is of interest.

The broker service is based on the WS-Brokered Notification (WSN) specification
[10]. It implements an event-driven publish/subscribe protocol. Here, an event repre-
sents an occurrence or something that has happened, e.g., a database being updated with
new data; resulting in event-messages that are produced and consumed explicitly by the
applications. The broker service acts as an intermediary which allows potential mes-
sage publishers and consumers to interact. In our context, the message publishers cor-
respond to the data providing services and the consumers correspond to the information
processing services. Essentially, a data providing service sends an one-way notification
message to the broker whenever an event occurs (e.g., a database update). These mes-
sages are wrapped in the WSN notify message and are associated with a topic, which
corresponds to a concept (e.g., DatabaseStatus) used to categorize kinds of noti-
fication. These topics belong to the same topic namespace (a combination of an unique
uniform resource identifier and the topic name), which also contains the meta-data as-
sociated with the topics. This meta-data includes information about the type or types of
messages that the notification publisher will send on a given topic.

The notification consumers (in our case, the information processing services), are reg-
istered with the broker service that is capable of distributing the information provided
by the notification producers. Thus, the broker acts as a ‘matchmaker service’ and iden-
tifies the consumers that have registered for specific types of notifications (or topics)
and disseminates the relevant information when available (from the publisher). Since
the consumer recognizes the topic and its associated meta-data, it knows how to handle
the notification. Thus, depending on the message contained in the notification message,
the consumer (information processing services) may or may not interact (or establish a
‘data link’) with the producer (data providing services).

Monitoring Service. Once the job has been submitted, the user can monitor its status
via the monitoring service. The idea is to allow users to observe the behavior of the in-
formation processing services (during execution) for purposes such as fixing problems
or tracking usage. Essentially, the monitoring service maintains an index which auto-
matically registers all the information processing services (notification consumers) that
are registered with the broker service mentioned above. These information processing
services are WSRF-compliant [11], and thereby readily make their status and state infor-
mation available as WSRF resource properties (more details in Section 3.2). Whenever
the values of these properties change (e.g., the status of a service changing fromidle to
active), a notification is pushed via WSN [10] subscription methods to the monitoring
service. This information is provided to the user dynamically at run-time.

Storage Service. The results of the computations done by the information processing
services are stored in the storage service along with additional meta-data about the

32 J. Pathak et al.

computations themselves (i.e., the workflow-related information stating which services
were executed and in what fashion). The computation results are provided to the user,
whereas the meta-data is used by the storage service as follows: in many scenarios, the
users might be interested in executing a workflow, comprising of a set of information pro-
cessing services, multiple times in a periodic fashion. Obviously, this is a very compute-
and I/O-intensive process. Hence, when a job is first submitted by the user via the sub-
mission service, the description of the job is matched with the computational meta-data
(previously stored) by the storage service. If there is no match (i.e., this job or workflow
has not been executed yet), the job is sent to the execution service as described above.
However, if there is a match (i.e., the same job has been executed before), the storage
service communicates with the broker service to identify the relevant data providing ser-
vices that will potentially take part during the execution of the job under consideration,
and then analyzes to determine if there has been any change/update to the data repre-
sented by these services since the previous execution of the job. If not, then the results
from the previous computations are returned to the user, otherwise, computations are
executed on this new/updated data. We believe that such an optimization approach will
potentially result in saving significant time and computational power, specially for peri-
odically executed jobs. However, in principle, this approach can be substituted by more
sophisticated sampling techniques that are used to scale the performance of traditional
data-driven decision making algorithms [12].

3.2 PSAM-s External Services

These services interact with the PSAM-s internal services to do useful analysis, and in
principle, can be provided by external vendors. These external services include:

Data Providing Service. As mentioned earlier, analysis of equipment-related data play
an important role in the decision-making process, and in our framework, this data is
provided by the components in layers 2 & 3 (Figure 1). There are at least 4 types of in-
formation that is captured in these two layers: equipment data consists of “nameplate”
information including manufacturer, make, model, rated currents, voltages and powers
etc.; operating histories refer to the loading and voltage conditions, and through faults,
to which the equipment has been subjected in the past; maintenance histories records in-
spections and maintenance activities performed on each piece of equipment; and finally
condition histories are comprised of measurements providing information about the state
of the equipment with respect to one or more failure modes. For example, common con-
dition data information for a transformer includes tests on: oil (dissolved gas, moisture,
hydrogen, and furan), power factor, winding resistance, partial discharge (acoustic emis-
sions, spectral decomposition of currents), and infrared emissions.

Except the condition data, all the above data are usually collected manually and
recorded in multiple database systems distributed across the substation and corporate
headquarters of the utility companies. For our PSAM-s project, we are collaborating
with few such companies6 across the mid-western US, and Iowa in particular, for ac-
cessing these databases. At the same time, for the equipment condition data, we have

6 The company names are withheld due to confidentiality issues.

Power System Asset Management Using Web Services 33

deployed multiple sensors in one of the substation test sites in central Iowa to monitor:
(i) anomalous electrical activity within transformer via its terminals, (ii) anomalous
chemical changes within the transformer oil, and (iii) anomalous acoustic signals gen-
erated by partial discharge events within the transformer. The data collected by the sen-
sors is fed at regular intervals in multiple condition-monitoring databases maintained
at our university.

To model the various databases as data providing services, we “wrap” the databases
into WSRF-compliant [11] (Web Services Resource Framework) Web services. WSRF
provides a generic framework for modeling and accessing persistent resources (e.g.,
a database) using Web services. WSRF introduces the notion of Resource Properties
which typically reflect a part of the resource’s state and associated meta-data. For exam-
ple, one of the resource properties for PSAM-s data providing services is DBstatus,
which has sub-topics offline, online and updated, that can be assigned a value
true/false. Whenever there is a change in the value of the resource property7, an
appropriate notification associated with a particular topic is sent to the broker service
mentioned above. This information is appropriately handled by the broker to establish
“dynamic data links” between the data providing and information processing services.

Information Processing Service. The information processing services are the most im-
portant set of components inPSAM-s as they provide insights into the asset management
decision problem. Similar to the data providing services, they are also WSRF-complaint
and publish various resource properties (e.g., whether a service is idle or active)
that are monitored by the monitoring service. Furthermore, the dynamic data links (with
the data providing services) that are established by the broker service, allow the informa-
tion processing services to communicate with them in a federated fashion [13], where
the information needed (by the information processing services) to answer a query is
gathered directly from the data sources (represented by the data providing services).
There are two advantages of such an approach: (a) the information is always up-to-date
with respect to the contents of the data sources at the time the query is posted; (b) the
federated approach avoids a single point-of-failure in query answering, as opposed to a
centralized architecture (e.g., a data warehouse), where once the central data warehouse
fails, no information can be gathered. We divide the set of information processing ser-
vices modeled in PSAM-s into two categories corresponding to layers 4 & 5 in Figure
1: (i) data transforming services, and (ii) simulation & decision-making services.

The data transforming services (part of Layer 4) interact with the data providing ser-
vices to gather and utilize equipment condition information collected from inspections,
testing and monitoring, as well as maintenance history to estimate probabilities of equip-
ment failure in some specified interval of time [9]. The underlying probabilistic model
captures the deterioration in equipment state as influenced by past loading, maintenance
and environmental conditions.

The simulation & decision-making services (part of Layer 5) utilize the failure prob-
abilities determined by the data transforming services together with the short and long
term system forecasts to drive integrated stochastic simulation and decision models
[14,15]. The resulting operational policies, maintenance schedules, and facility

7 The topics offline and online cannot have similar values at the same time.

34 J. Pathak et al.

Sub−Station

PowerSystem
Resource

Equipment
Equipment
Container

Bay

Voltage LevelTransformer
Power Heat

Exchanger

Equipment
Conducting

Transformer
Winding Switch

Jumper

Fuse

Breaker

Data Providing
Services

Transformer

Dissolved Gas
Analysis

getH2Level

getCH4Level getCO2Level

getC2H2Level

(a) (b)

Fig. 3. (a) A Partial Data Ontology (b) A Partial Process Ontology

reinforcement plans are then implemented on the power system (as represented by the
Areva simulator in Figure 1). Furthermore, the decision models help discover additional
information which drive the deployment of new as well as re-deployment of existing
sensors in Layer 2.

3.3 Semantic Interoperability in PSAM-s

As noted earlier, the data providing services in PSAM-s model multiple data reposi-
tories (e.g., condition data, maintenance histories) as WSRF-compliant Web services.
Typically, these data repositories are autonomously owned and operated by different
utility companies. Consequently, the data models that underlie different data sources
often differ with respect to the choice of attributes, their values, and relations among at-
tributes (i.e., data source ontologies). Thus, effective use of this data (by the information
processing services) requires flexible approaches to bridging the syntactic and semantic
mismatches among the data sources. To address this issue in PSAM-s, we model two
different types of ontologies: data ontology and process ontology.

The data ontology provides a reference data model that will be used by the soft-
ware entities and applications, and is based on the Common Information Model (CIM)
[16]—a widely used language for enabling semantic interoperability in the electric en-
ergy management and distribution domain. The basic CIM data model comprises of
twelve different packages structuring the data model and allows representation of var-
ious power system related information (e.g., dynamic load data, flow of electricity).
In PSAM-s, all the services provide their internal data according to this data ontol-
ogy and expose CIM-compliant interfaces (based on the process ontology described be-
low) thereby allowing multiple services to exchange system data. For example, Figure
3(a) shows a partial data ontology which corresponds to the equipment class hierarchy
adopted from the CIM. Each node in this ontology corresponds to an equipment (or an
equipment category) and the edges represent sub-class/category relationships. However,

Power System Asset Management Using Web Services 35

in certain cases, it may not be possible to readily map the system’s internal data into the
common model. In such cases, we propose to use custom-adapters or mappings [13] for
the required translation.

The process ontology provides a reference functional model that focuses on the in-
terfaces that the compliant services have to provide. This ontology is also based on CIM
and specifies the functionalities that the services must deliver, where the formal defini-
tion of those functions is understood in terms of CIM semantics. The process ontology
allows us to create a standardized service interface that is insulated from the change
in the implementation of the service itself. This provides significant flexibility in terms
of system integration and pragmatic advantage in the modeling of existing large sys-
tems (e.g., SCADA) as services in PSAM-s, which are predominantly non-CIM at their
core. For example, Figure 3(b) shows a partial process ontology corresponding to the
data providing services which expose information about transformers, and in particular,
the dissolved gas concentrations in the transformer oil. Thus, any data providing ser-
vice that complies to provide this information must implement an interface that defines
functions such as getH2Level and getCH4Level to extract the hydrogen and methane
concentrations in the transformer oil, respectively.

4 Implementation Status

We have implemented an early prototype of the proposed PSAM-s framework for the
problem of power transformer failure rate estimation based on condition monitoring data
[9], a sub-problem of the larger power systems asset management problem (Figure 1).
The prototype [9] integrates power transformer data from multiple sources to train Hid-
den Markov Models [17] for predicting the failure rate of transformer oil deterioration.

A more complete implementation of the PSAM-s framework is currently underway.
A major part of this effort lies in modeling the needed data analysis services. We are cur-
rently porting our code for transformer failure rate prediction [9] to WSRF-compliant
information processing services. We are developing WSRF-compliant data providing
service models based on condition, maintenance and operational data repositories for
transformers. The development of the data and process ontologies as well as inter-
ontology mappings needed for semantic interoperability between multiple services is
also underway [13].

5 Related Work

In recent years, service-oriented architectures for solving problems in electric power
systems are beginning to receive attention in the literature. Lalanda [4] have proposed
an e-Services based software infrastructure for power distribution. This infrastructure
is based on the Open Services Gateway Initiative (OSGi) model and comprises of var-
ious components that are integrated and correlated to enable effective monitoring and
management of electrical equipment and optimization of power usage. Marin et al. [5]
have outlined an approach for adopting e-Services for power distribution. Their pro-
posal involves designing a meta model containing the business logic for services-based
power distribution which is then used to generate the code needed to realize the model,

36 J. Pathak et al.

thereby providing an increased flexibility in building the underlying software infrastruc-
ture. Morante et al. [6] have proposed a framework for power system analysis based on
Web and Grid services. Their architecture integrates a set of remotely based controlled
units responsible for acquisition of field data and dynamic loading of power equipments,
a grid computing based solution engine for on-line contingency analysis, and an inter-
face for reporting the results of analysis. Later, the authors in [6] also present a Web
services based framework for power system security assessment [7]. Here, the proposed
approach integrates multiple services such as real-time data acquisition, high perfor-
mance computational and storage services to efficiently perform complex on-line power
system security analysis.

Our work on PSAM-s, is focused on a flexible, distributed software architecture
for determining operational policies, maintenance schedules and facility reinforcement
plans for power systems assets management. The framework builds on and extends our
previous work [14,15] on the use of transformer condition data to assess probability of
failure [9]. A major focus ofPSAM-s is on integrating disparate information sources and
analysis services, drawing on our work on data integration [13] and service composition
[18] to advance the current state-of-the-art in electric power system asset management.

6 Summary and Discussion

We have described PSAM-s, a service-oriented software architecture for managing op-
erations, maintenance and planning in modern high-voltage electric power transmission
systems. The adoption of the service-oriented architecture inPSAM-s provides for inter-
operability of multiple, autonomously operated data sources and analysis services along
with the much needed flexibility and agility to respond to changes in the power trans-
mission and distribution network that call for new data sources or analysis services to
be incorporated into the system.

We have completed implementation of an initial prototype of the proposed frame-
work (focused on condition assessment and failure prediction of transformers). Work
in progress is aimed at a more complete implementation, incorporating additional data
sources and services needed to support a more comprehensive approach to power sys-
tems assets management.

Some directions for future work include: (a) development of approaches that allow
incremental update of analysis results and predictions based on new data (as opposed to
calculating the predictions from scratch); (b) better support for service selection and
composition, e.g., incorporation of non-functional attributes of the services (such as
Quality of Service) during the process of selection and establishment of dynamic data
links by the broker service, and (c) performance evaluation of PSAM-s under a range
of operational scenarios.

References

1. Pourbeik, P., Kundur, P., Taylor, C.: The Anatomy of a Power Grid Blackout - Root Causes
and Dynamics of Recent Major Blackouts. IEEE Power and Energy Magazine 4(5), 22–29
(2006)

Power System Asset Management Using Web Services 37

2. Ferguson, D., Stockton, M.: Service-Oriented Architecture: Programming Model and Product
Architecture. IBM Systems Journal 44(4), 753–780 (2005)

3. Alonso, G., Casati, F., Kuna, H., Machiraju, V.: Web Services: Concepts, Architectures and
Applications. Springer, Heidelberg (2004)

4. Lalanda, P.: An E-Services Infrastructure for Power Distribution. IEEE Internet Comput-
ing 9(3), 52–59 (2005)

5. Martin, C., Lalanda, P., Donsez, D.: A MDE Approach for Power Distribution Service De-
velopment. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 552–557. Springer, Heidelberg (2005)

6. Morante, Q., Vaccaro, A., Villacci, D., Zimeo, E.: A Web based Computational Architecture
for Power System Analysis. In: Bulk Power System Dynamics and Control - VI, pp. 240–246
(2004)

7. Morante, Q., Ranaldo, N., Zimeo, E.: Web Services Workflow for Power System Security As-
sessment. In: IEEE International Conference on e-Technology, e-Commerce and e-Service,
pp. 374–380. IEEE Computer Society Press, Los Alamitos (2005)

8. McCalley, J., Honavar, V., Ryan, S., et al.: Auto-Steered Information-Decision Processes for
Electric System Asset Management. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A.,
Dongarra, J.J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 440–447. Springer, Heidelberg (2006)

9. Pathak, J., Jiang, Y., Honavar, V., McCalley, J.: Condition Data Aggregation with Application
to Failure Rate Calculation of Power Transformers. In: 39th Annual Hawaii Intl. Conference
on System Sciences, IEEE Computer Society Press, Los Alamitos (2006)

10. Niblett, P., Graham, S.: Events and Service-Oriented Architecture: The OASIS Web Services
Notification Specifications. IBM Systems Journal 44(4), 869–886 (2005)

11. Snelling, D.: Web Services Resource Framework: Impact on OGSA and the Grid Computing
Roadmap. GridConnections 2(1), 1–7 (2004)

12. Ghoting, A., Otey, M.E., Parthasarathy, S.: LOADED: Link-Based Outlier and Anomaly
Detection in Evolving Data Sets. In: 4th IEEE International Conference on Data Mining, pp.
387–390. IEEE Computer Society Press, Los Alamitos (2004)

13. Caragea, D., Zhang, J., Bao, J., Pathak, J., Honavar, V.: Algorithms and Software for Col-
laborative Discovery from Autonomous, Semantically Heterogeneous, Distributed Informa-
tion Sources. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds.) ALT 2006. LNCS (LNAI),
vol. 4264, pp. 13–44. Springer, Heidelberg (2006)

14. Dai, Y., McCalley, J., Vittal, V.: Annual Risk Assessment for Overload Security. IEEE Trans-
actions on Power Systems 16(4), 616–623 (2001)

15. Ni, M., McCalley, J., Vittal, V., Greene, S., et al.: Software Implementation of On-Line Risk-
based Security Assessment. IEEE Transactions on Power Systems 18(3), 1165–1172 (2003)

16. McMorran, A., Ault, G., Morgan, C., Elders, I., McDonald, J.: A Common Information
Model (CIM) Toolkit Framework Implemented in Java. IEEE Transactions on Power Sys-
tems 21(1), 194–201 (2006)

17. Rabiner, L.R., Juang, B.H.: An Introduction to Hidden Markov Models. IEEE ASSP Mag-
azine 3(1), 4–15 (1986)

18. Pathak, J., Basu, S., Honavar, V.: Modeling Web Services by Iterative Reformulation of Func-
tional and Non-Functional Requirements. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 314–326. Springer, Heidelberg (2006)

� �������� �	
 ������ 	� ��
��� ����
������

��������	� � ��� ��
���� �
�����
��	��

������ ����	��
1� ��
�� �� ������2� ������ ��
���2� ��
 ���� ������1

1 ������ �����	
 � �� � ���� � ����
����� ��� �� ������� �������� ����� !!" ��! �	��#����$� ������

��������	
���	�����	�������
���
2 %&��'% (�	�)� *�+ � +� �� �#��

*�	�� ��! �#��! �� +��,�!�
�� ��� ��-��� .�!,���� � � ����� +��,�! ����$ �� ������

��������	
���	�	��
��

��������� ���/#�� %�#��,�� ���0#,��,���! #���!,�" �#
! ,	 ���#/�� ���
#�� !��/#�� #�-��!,���,���!1 � ,0#! �	�,�$,� !	��,#	�! ,	 !)��#-" !��/#��
�	
)	!#,#	�! 2
	!,�" &�*� ��������3 ��� 4���#," 	- ���/#�� 24	�3 	-
#��#/#���� !��/#��! 0�/� �
�����1 5	6�/��� ���0#,��,! !,#�� ���7 ���),��

���! ,	 !)��#-" ��� #
)��
��, 4	� #� !��/#�� �	
)	!#,#	�!1 �")#����"�
,0�" �!� ���0	� ,��0�#��� !	��,#	�! ,0�, !#��#8���,�" ������ 9�$#:#�#,"
��� ��;�#�� �	!,��<��,#/� ��/��)
��,1 %�� �))�	��0 �#
! ,	 	/���	
�
,0#! !0	�,�	
#�� :" #�,�	���#�� :	,0 � ��6 �������� ��� ,		� -	� 4	�
!)��#8��,#	� ��� #
)��
��,�,#	� #� !��/#�� �	
)	!#,#	�!1 �	�� !)��#8�
����"� 	�� �������� #! � �������,#/� �	
�#��!)��#8� �������� ,0�, ���	6!
,0� ���0#,��, ,	 !)��#-" 4	� �	�!,��#�,! ���
��0��#!
! #� =�: ���/#��
	��0�!,��,#	�!1 %�� ,		� #! ��!)	�!#:�� -	� ,0� 4	� �	�!,��#�,!)�	��!!#��
��� -	� 4	�
��0��#!
! #�>��,#	� #�,	 ,0� 	��0�!,��,#	�1 � 7�")�)��,"
	- 	�� �))�	��0 #! ,)��!��/� �	
)�,#:#�#," 6#,0 �$#!,#�� ��������! ���
!,������!1 � ,0#!)�)��� 6�)��!��, 	�� �������� ��� ,		�� �! 6��� �! ��
#���!,��,#/� !�����#	 ����#�� 6#,0
��,#)�� 4	� �	�����!1

� �������	�
��

� ��� ������ �� � ��������� ���������� ��� ��� ��� ���� ���� �� ������� �����
�������	 ������� ���� ��� ����	� ��� ��� � !"�
�������� ��
 ����
�
#
�$�
 ��������% �� � ���� �� ������ ��������	&� ��� ������� ���	 � �������
�������� �� ��������� ���� ���� �� ���� ���� '� ������� �&���� ��
 �� ��#
��� ���� ���������� �� ������� �� ���� �������% (�����& � ������)(��* �� ��
��������� ������� � �������� ���+��	 � ������% � ��& �� ����� & ��� �������#
����
� ����������� �� �� ����� ��� ������� ���� (��
�������� ���� ��� ��
����
� ���� 	��������)���� ����	����� ������� ����� ����*% �� ��� ����
����	� ������ ��������� ,-�.�/0�12 ����� �� ������� ������ (�� �� ���� ����
�������� ��
 ����
�� ��� �	�� �� � ������ (�� �����%

�

��������&� ������� � ���� ����� �������	 �����&� ��� ������� ��� �� ���#
��& ��������
% ���� ����� �� ���������& ��� �� � �������� ��������� ���� ���� ��

�� ������	�
���� �� ��� ������ ����� ���� �� ���� �� ��

� !"#�$� ���%�
&© �
�'(���)*����� +���'(,�'���-��� ���%

� �������� -	� 4���#," 	- ���/#�� ��;�#��
��,! �)��#8��,#	� ��

����	��� ������ ������� ��
�3���� ������% �� ��������� �����������������
��������� ���� �� ����
� ���� ��
����)���� ������* ���� ����	���
 ��������
����� �� ��� � ���� �������
������
 �& ������� ����������% "������� ����� ��

���	��	�� ,/�02 �� ��������� � ��� ������ ����������� ������%

���� ��������	 �������� ���� ������
�����	 ���� (�� ����% ����� � ������
����� �� �� 	������� 	����� �������� � ��� �������&% ��������� ���
 �����
�
� ����� ����� ��
�
��� ��� 	����� (�� � � ����������� ���� ���� ������
(�� �� +����� � �� �� ��� (�� �4�������� ��� ��� �����������% �� ����
��������� ����� ���� ��
��� �������& ���� ��� ���������& � ������� �������

�� ���� �����������% ��� �����
 ����� ������ �� ��� ���������& � �
�����	 �
����������� �� � �����5� �������% ��
����&���� ����� ��� �&���� �������� ���
�� ����� ���� ��� ��+6�� 5�� �� ���� �����5� (�� �4��������% ������	 ����
������&� ���������& ��
 ���� (�� ����������)���� ���
 ��������	 � �����	�
4�����	* �4���� � �����4���� �������� � ��� ���� �� ��
 � ��#7 ����
�
�
)���� ��#������&� ��#8���������&*% �&���� ��������� ���+ ����������� �� �
#

��� ���� (�� �4��������%

'� ���� ����� �� ������ � ��� ������� �����	 �� ����
� ��� �������� ����
�
�4���� ����� �� ����� & (�� �4�������� �� ��� ������ ������������% ��
���� ��
� ��
���	� � ���	��	�� ����
 9(���1��:)(�����& � ������ ���	��	�
 � �������� ������* � 9(���: � ����� ���� �������� (�� ������� �� ���
���#�����
������ � ��� ������� ������������% �

��������&� �� ������ � �����
����
 9;8(;�:);8���������� (�����& ; ������* ���� �������� (���1��
��
 ���� ��
���� �� ����������� �������
 ���� (�� �������% �� ���������
��� ����� ������� ���� � �������%

��� �����
� � ��� ���� �� �	���$�
 �� ������< ������� 0 	���� � ���
����
������ � ��� ������ (�� ��
 ������������ �� �� �� ���+ ����� ��� ��#
���� ���� ����� �� ��� ����������� � ����� ��� ������% ������� .
������� ���
������� �� ������ �� ������� ����� ���������	�� ����
����	 ���� ��� ���#
	��	� ��
 ��� ���������� �����
 �� ��� �������������� � (�� �����5�������%
������� 1 ���������� �� ������� ����	� �� ����������� ��� ����% ������� =

�������� � �����
 ��+� ����� ������� > ������
�� ��
 �������� ���� ��+%

� �	�������

��� �����	
 �� ������ �� ��� ������ �����

��� ������� �� ����� �� ����
�
� ��
��& �
����
% ���� +���� ����	 �����
����
�
� �� ����)���� ��� �����5������*� �;��)������������� ����#
���*� ��
 ?��')������
��������� ��

������&*% ���� ���� ����� ��������
��#7 ����
�
� ���� �

��� ��� ��������� ��������)���� ��#������& �
��#�

�����	*% ������	� ���� � �����
�5������� ���� ������
 ���� ����

����
�
�� ���� ����� �� �� ��������� �� ��� 4������� � ��� ��� �����
 �������
��� (�� � ��� ������%

����	
�3���� ��������� �� ��
��� ��� (�� � � ������� ����� ��+� �#
��� �� �������	 ��� ��� � ������ ����� �	������)���*% ��� �������� �� �
���������� ��������	 (�� ������� � ������� ��
 ��� ����
�% �� ��� ����

�� �1 &��#���� �, ��1

����	� ���� �� �� ����
�
 ���
�5������ ��
 ���� ���
� ���
���	��
 ��
 �����#
�����
 ��� ���� �� �����5� ��������)'�" ��� ������ ����� �	������� @� ���
������ "���	����� ���	��	�� ��� ������ ;3���	 ���	��	�� ��#�	������*%

��� ��� ������ �������	���

?���	 ������ ��� ������� �� ����
��	 ����+�� ��������� ��&
���	� ��� ����#
����
 ��� ������� �& ��������	 ����% � �������� ��& �� ������� ��� ������
����������� �� ��
���	� � �����	� ��+6�� ��
 ����� & ��� ������� �� �� �����

������ ��� ��+6��% ���� � ����������� �� �����
 �� �����������% ;������#
���� �������� �� �������$�
 ��
 ��� �����& �� ���������� � ��� ��������� ��	��
� ��� ����� ��+6��% ���� �����
 �� ���������� � ����������� ��
 ���������
����� ��� �������� ���
���	� ��� ��+6�� �� ��� ����
���� � ��� ��� ��������%

��
���	� ���� ������������� ���& ���	��	�� ���� ��	�
 ���� � ����
�

��
 ��
��& �	��
 ���	��	� ����
 9�������� ������ A�������� ���	��	� �
��� �������:)��A�1�� � ��A� � ����* ,02% ���� ���	��	� �� ����
 �� �
����� ��� � ���������)���� ����+�� ������� ���&� 6��� ����*� ����� �������	
��& �������� �� ����� & ��� ������� � ��� �����������%

��� ������	 ������

�� ��#
����&���� ����� ��� ��� � ����� �������)���� ������� ���� ��+� ���
�� ��� �����������* �� �������
 ��
�
��� ��� ��� � ��� ��������� ������
)������#�� �������*� �� ��������&� ��� �������� ���� ������ � ��� � �����
������� ����� ��� �		�	����� ����� ��� ��� � ��� ��������� ������)���#

��� �������*% @������ ���� ���������
� ��� ��+� ���� ������� ���������
�
�����
 (�� �4��������% �� ��������� ��� ��������� ��& ���� �� 	�����&
��� ��� � ���� ������������� ����� ����� &��	 (�� � ���� ���� � ����
������������ ��
 �4����	 ���� ���� ����� ������� ��
�������
 �� ����� ���
	����� ���% '� ���� ����� ���
��������
� ��� ����
� ����������& �� �

���
���� (�� �4��������% ��������� ����	 ���� �� ����� & (�� �����������
���� �� ������&� ��� ���� � ��� ����������� �� � ��B� ������ ���� ���
������ �

��� �����%

������� ��A� ���	��	�
��� ��� ����
� ����������& � (�� ����	������
��
 ����� ��� �� ������
� ��������� ������ �����&
����� (�� �4��������
��
 ��	�� �� ���� ������������% '�����
� ���& ����� & (�� ����	����� �� ���
�����	� ������ ����	 �������� �����+� ��
 ���	��	��% "�+��	 ��� ����� ���#
��+� ��+ ��	���� ���
� �� ��
� ���� ���+� 6��������& ��
 ���������&� ����

������� ����� �������	 ����� � ��� ������������ ��
 ����� �� ��#����%

� ���
�� �� ����
	� ����
������� ���	
�	�
��

��� ��	���	���

��A� �� � ���	��	� �������	 ��� �������� ��
���	� ������������% ��� ���
�����
�� �� ����������� ��� �� ���� �� � ��������� ������ ���� � ���� ���#
������ ���� ���% � ���
������� ��� �� ���������
 �� � ������ � � ���������

� �������� -	� 4���#," 	- ���/#�� ��;�#��
��,! �)��#8��,#	� �?

	��
� �� =�: ���/#��! ����,�� ��������!

����,#	��� ��!��#),#	� 4	� ��!��#),#	�

*$,����� �,��-��� =��� ���

'	
)	!#,#	�
)��
��,�,#	� &�*� ���7 	- �$)��!!#/#,"

������ �� ����� & ��� (�� ��������% @������ ���� �� � ���+ � ����������&
 � ��������� ������	 �� ����� & (�� ��B������� ��
 ���������� �� ��� �����#
������)���� ��� �������� ��& ���� �� ����� & ������&� �� ������ � ����
�����	 �4�������� ��� ���� � ��� �����������*% �� 	��� �� ����������� �
����
��������� �� ����� /%

�� ������� ���� ���+ � ����������&� �� ��� �����
� ������ 	��
������� ����
�� ����� &��	 � (�� ��������� � ��A�� � �����������	 � (��#���� ��A�
��	���� �
���	���	 � �����5� ���	��	� ��
 ���� �� � (�� �4�������� ����#
�5������ ��
 ��������� �� ��A�% ������� � +�&
������� � �� ������� ���
��� �� �� ��������� �� �
� �� ������ �������	 �� ��������� ��
 ���	��	���
�� ������ ��� �� �����
 ��A� ���	��	� � �� ��������� � ��� ��A� ��	���%
"������ ������� ���	��	�� ������ ���������& ��
 ���������&� ��
���
�
 ��
����
� �� ��������� ���	��	�� �����& 9(���1��:)(�����& � ������ �
�������� ������* � (��� � ����� � (�� �4�������� �����5������ �� ���
������ ������������% "�� �����5����&� (��� ������ �� ����� & (�� ����������
��
 ���������� �� ��� ������ ������������%

��� ������

��
���	� ��� (��� ���	��	�� �� ������
 �� � ������ � �������� ���� ����
������� �� �� �����������
�����<

� (��� �� �
�����#�����5� ���	��	�)���* ,C2% ������ �������� �� ������

�� ��� ���	��	� �������������� ���� ���� ����	 ��
�
 ���������&% ���
�#
���� � (��� �������
� �� 9(�����& � ������ ������
 �� ��� ������
;�����������:� �����������	 ���
������)���� ������& � �� ������*%

� (��� �� �
��������� ���	��	� ,/D2 �� �� ����� �� �� 	���
����% ������ ��
��� ��� ������ � ��� �������� ���
��� ��� ���
 �� ����
� � ���&
������

���� � ����������� �� ����� & (�� ��B������� ��
 ����������%

� (��� �� ��
���% ��������� � ������� �� ��� ������ � ���+��	 � ��#
	�� ����
������� ������� ����� ��������	 ��
� �����& ��
 ����������&% '�
�
� �� ������� �������� ��� (��� ���	��	� �������� ��� ��
� ���� ������
��
����)��������*� ���� � ���� �������	 ��� �������� (�� ������%

��� ���� ��	���

�������� �� ��� ����� � (��� ���	��	� �������% � �����& �������� � ���	��
(�� ������ � ��� ������ ��
 �������� � ��� � ����� ����� �� �������
 �
(�� ���������� ��
 ����������% '� (���� � �����& ��� � ����� ��	��� � �����
� ��� �����������)� ����� �������� � ���	�� �������&� �������� ���������� �

�� �1 &��#���� �, ��1

	��
� � 4	�� �������� *�,#,#�!

�������� *�,#," ����#��

!�)� �:!,���,! �6�" �� 	��0�!,��,#	� !�:!�,1 ��)��!��,! � !#���� ��,#/#,"�
2=0���3
��,#)�� ��,#/#,#�!� 	� �/�� ,0� 60	�� 	��0�!,��,#	�1

�	����� !)��#8�! 60#�0 4	� �	����� #! �����!!�� #� � !)��#8�� !�)�1
2=0�,3 ��-	���! !�)���,#	� 	- �	�����!1

)	�#�" �	�!#!,! #� �
	���� ���	
)�!!#�� 4	� �	�!,��#�,! ���
25	63
��0��#!
! #� � !�)� -	� � !)��#8� 4	� �	�����1

���� ��� ����� �����������* ��
 � �� �� � �������� (�� ������ �� �� ���
����	�����& � ��� ��
& � ��� �����&% ����� (��� ���� �� ���
 ��A�� ��� ��

��#7 ����
�
�� ���� (��� ����� ���� ����������� �� ����� ���	��	��%
����� 0 ����� �������� � ��� (��� ���	��	�%

�� ��������� ��� ��
& � ��������� �� ������
 �� �
����
 ���������% (���
������ �� ���
 ������� ����� �� ������)����	 9��� �������E��� = value:*� ��

�5�� ����������)9����+ (�������& > quantitativeRequirement:* ��
 ��
��� ����������)9��� (�����������) ����������� *:*% '� ������ ��� ��������
�� ����� & ��������� ��������� �����
 �� ��� �������� ��
�5���� �� ���� ��
�������� ���� ����
 �������� �� �� ��
)���� ���	��� � ���	���
 ���
#
���� ���
 ��������	 ��	�����*% �� ������ ��� � 5�� ������ ���� ���� ��
�5��
 ��
 �����
�
 ���� ��)���� �� ����	��� �����& ����������� ���������*%
��	�� / ���������� ��� ������� � ������ (��� ���	��	�%

����� ���������	

�����	 ���������	 ����
 ���������	����	 ����
�� ��������	��

�� ������� �	
� �������
�
� ������	����	 � ����	 �
�� ������� �	
� �	�������
�
�� ��������	��� > ���������	��	���	�	�� �
�� ������� �	
�
�������

�
� �����	������� �����	�	���� � �

�
�

���� �� 4	�� �	�#�" ��
)��,�

'� �� ���� �����	 ���� ������	� �� ������� ������� ��� �������� �� ����
��������� �� ��
�3���� � ��#�����&% ��#�����& ����
�� � 	���� � ������#
��	 ��� ������������ ��
 �4�������� � � ���	�� �����&� ������ (��� ������ ��
��� ��B������� ��
 ������� ��� ���� � � ��+6��%

��! ��	�����	�	���

��	�� 0 ����� ��� (��� ������������ ������% ���� ������ �� ������ ��
 �����
�� �� ��� ��+6�� �� �����������
 �� ��� ��A� ��	���%

� �������� -	� 4���#," 	- ���/#�� ��;�#��
��,! �)��#8��,#	� ��

���� � 4	�� �,��)��,�,#	� ��	��!!

��
���������� ����� ��� �������� �������� �� ���������� �
���	���	 ���
��+6��� ����	 ��A� ���	��	�% ���� ��� �&���� �������� ��� �� ����� & ���
��� ��������� �������� � ��� ����������% @� �������� ��� �����
 �� �������
�������
 �� ��� ����������� ��
 �����5�� (�� ��������� ����	 (��� ���	��	�%
(��� ������������ �� �� ���
 �& �� ���� ;8(;�% ��� ����� �� � ��� ��A�

������� ��
 ��� ���������
 ���% ��A�
������� �������� (�� �����������
��
 �� ��
& �� ��
����&�
 �� � ��A� ��	���% ;���
����&�
 ��� ��A� ��+#
6�� ��� �� �������
% ����� �����	� ����� �� ��
� �� ���� ��� ������� ����
������� (�� ��������� ��	��% �� ��� ���� ����	� ������ ��������	 ��
 ���
��������� �� ��� ���
��
 �& ;8(;�%

��" #$�# %������

;8(;� ���� �� ������ ��� (��� �������� �����5�
 �& ��� ��������% � ��B�
����� �������� ��
�����	 ���� �������� ����������� �� ����
 �������� �����������

���	 ��� ��������	% �� ���� ���� �����& �� �������
 ��4��������& ����
 ��
���� �
� �� ��� (���
�������% �� ���� �� ������ ���� ��
�� �� �� ����
��+�% �� �� ��������	 � (���
������� �������� �� 5�� �����%

� ����� ;8(;� ����+� �������� ����������& �� ����� ���� ��� ��
� ��������

�& � �����& �� ����	������ ��
 ���� �� �

����� � ���	�� ������% �� ��#
������� � ������& ��������� �����
 ��� �� �����
 ������ � �����& �����
������ �� �� ������% �& �����& ��������	 ���
�3���� �������� �� ��#
����� ����� �� 5	�� ��� ��� �������� �����
 �� �������
 ��� ���� ������%

� �����
 ���� �������
� �� ��
� &��	 ��� ��	���� ��A� 	��� �� ���� �
��& ���� (�� ���������� �� ����
���
 �� �����5� ������
�������
 �&

�� �1 &��#���� �, ��1

��� ����� � ��� �����&)�����������
�����*% ���� ���������� �� �����5�

�& ��� �������� ��
 �� ��B����
 ���� ��� ��A� �� 9���� ��A�: ����������%
����������&� ���� ��A� ���������� ��� ��� �����
� � ��
� ��	� � (�� ����#
������ ���� �� ��
������� (�� ���������� ���
 �� �	��� ��� �����������
������ �� ���� �� ���������� ��������	 ��#7 ����
�
�%

� ;��� ��� ��� ��+6�� �� 	������
� ;8(;� ���� ���������� �� ���� �����#
��&% ���������� �� ����
�
 �& ��� � ����� ������� ��
 ��������� �������
��
 �& (��� �����5������� ��������	 (�� �4�������� ��� ������%

� ���������� �� ����+�
 �& � ��������� �����% �� ���� ����� � ��� ����������

�5��
 �& ��� �������� ������ �� �����5�
� ;8(;� ����� ��
 ����� �� ��#
�������% '� ��� �������� ����� ;8(;� +���� ��������	 ��
 ��& ��� ���� �
��� ������ �� �������� � (�� ���������� ������	�)���� ������� ���	���
� ���������� � �����	� 4�����	* ��
 �� 	������ ��� ��� � ��� �������#
����%

� ����� ���� �� ��� ��
������ � � ��A�
������� ���� ��� �� ��
 �& ��&
��A� ��	���% A��� ��A� ���������� �� �5��
 ���� ����� ��A� �������&
��4������ ���� ��� ������� ���� 9����+�: ���������� ���� ���� �� �����#
���� ��� ������� ���������	 ��������� ��	��)���� � ������& ������� ��
�� ��������� ��� ������ �� ���������� � ��#������& ��������������
��	��*% ����� ��� ��������� ����
���� � ��� ������� �������
 �� ��� ���
� ������� ���� ��� �������& �� �� ���
 �& ��
� &��	 � ��A�
�������
��
 ������	 ��	�� ��������
 �� �� ��������� ��� �������%

� ��������
�� �	���
�

!�� &���� '��� %������ �������

�������
 �� ��	�� .� ��� 9?��� ��� ������:)?��* ������� ���������� � ���
������ �����������% '� ���� �� ���� ���� �� ��	 ������� �& ����	 ������������ ��#
�����% �& ������	 ��� ?�� ������� � ������ 	��� ��� �������� ������������ �����
�� ���� �� � ��� ������	 ��� ���� �� ��� ���� ������� �� ��� 5���
����������%

�� ��� �� ���� �� ��	�� .� ��� ?��� ��� ������ ������ �� �������
 �
�������� �������% '� �4���� ���� �
���������� ��
 �
����� �
����5������ ���#
�� �� ������% E���� ��� �4���� �� ���� �� ���
�3���� ������� �� �������% �����
������� �����	 � 6�� ����
 9;��	������:% ��� 5�� ������ ���� ���
�����
�
����5������ ����� ��
 ����� ��� ������ ����� ��������) � ��������� ����	
� ��5 ������ ����� �������� ������*% ��� �����
 ������ ��+�� ���
���������� ��
����� ��
 ����� ��� ����� �

���� ����	 ��� F����� ��	�� ������% ?��� ����#
���� � ���� ������� ��� ?�� ������ ���
� ���� �

����� �� � ������������
������ ���� ����� ��� ���� ��
 ��������
������% ��� 5��� ������� �

���
��
 ���
���������� �

��� �� ���� �� � G���� ������ ����
������ � ��� �
��� ���� �� ��� ������� �� ���
����������% A��������&� ���� ��� ����
������
��
 ��� ��� �� �����
 �� ��� ���%

��� �� ��� 	��� �� ������� � �� ������� ����	� � ������� ��������	 ����
(�� ��������< ����	����� �������& ��
 �������������� ��������% ����	�#
��� �� ��� ����� � �4����� �& �����
 ���� � ������ ��� ������% �������&

� �������� -	� 4���#," 	- ���/#�� ��;�#��
��,! �)��#8��,#	� �@

���� �� A�:�� ��#) ������� ���/#�� =	�79	6

������ �� ��� ����� � ��� ����� � ������������ �4����� ����� �����
 �� ��#
��
�
 ���� 	�������
 �� ������% �������������� �� ��� ������& � � ������ ��
���� ��
������� �� ������ � ������% �� �

��� ����� (�� ��������� ��� ����#
���� ����
 ��+� �� ����� & ���� (�� ���������� ��
 ���� (�� ���������� ��
��� ?�� �����������%

!�� ���� ��	��� �� �� ��������

;��� ��� �������� �������� ��� ����������
 ��� ��+6�� ����	 ��A�� ���
�&���� �������� ��� �� ����� �� 5�� �� ���� (�� �4��������% ����� �� ��

����&��	 ��� ������������ ��� �&���� �������� ��
� ���� ���
�������� ����

�
���� ��
 ����
���� ��� 	����� (�� � ��� �������&%

�� �
B��� �� ������� �3�� ��
 �4��������� �� ���� ���
� �� ���������
(�� ���������� ���� �� ���
 ��������	� �����	� 4�����	 ��
 ������� ��+��
��������������% ���� �� ������� ��� �� �����5�
 ����	 (��� ��������% �� �����
���������� ��
 ���������� ��	����	 � ���� (�� ������ �� � ���� ����� ��
	�����
 �� � ���� �����&% ��� �������� �������
��	 �� ��� �4�������� � ���
�������� �� ����� �� ��	�� 1%

� ��� 5�� �����& �� �����
 9'������G��������	����: ��
 ��	��� ��� ���	��
9'���+�G����: �������&% '� �����5�� ���� ��� ����	���� �����& � ���
G���� ������ �����
 �� ��� ���� = DDD �4�����H��� ��
 ����
���� �
���
 ��������	 ��������� ����	 ��� ���	���
 ���
 ���� ��	����� ���
"���&� G��	��"��� ��
 "��(���� ������� ���� ���	��� .� 0 ��
 =%

� ��� �����
 �����&� �����
 9"���	�G������������&: ���� �� ��� ��� �����#
������ �������& �� �� ��� ���� 0DD ������� �4�����% '� �����5�� ���� �
4�����	 ��������� ��� �� ���
 �� ������� ��� �������&%

� ��� ���
 �����& �3���� ��� ������& ������	� ���� ������	 ������� � ���
9;��	������:)����� �� ��� �������� ��
 ��� F����� ��	�� �������*% ���

�B �1 &��#���� �, ��1

����� !�����	�

�����	 "���	��	#����	�!����$���� ����
 "���%	#����	� ����
�� �	�&������	

�
�� !����$���� ≥ 5000 �
�
� '(���%��
(����) #��$�	(��) (����	��� �
�
� ���*�������$�+�$������,	$��	*-���*-���) �����	���%��'(���%�)

,	$����
.) /) 0�� �
�
�����	 (���$	#�����1������ ����
 !�2��3 ����
�� 1������

�
�� 1������ ≥ 200 �
�
� ��	�	�� �

�
�����	 4���$	+���	������� ����
 4���$	����	 ����
�� �	�����

�
� '(�!�%	� �
4-�4���	�) ������3� �
�
� +���	��������!�%	��'(�!�%	�� �

�
�

���� �� 4	�� �	��
��, -	� A�� %��0�!,��,#	�

��������
�5��� � ������� ��+��)���� ���� 9;8(;����: ��
 ������

9�&�����:* ��
 �����5�� ��� �������������� ��������� �� ���%

!�� ��	�����	�	��� �� ��(

�� ���
 ������ ;8(;� �������� (���
�������� ����	� 5�� �����% �� 5��
����� �� ��+�� ��� ��A�
������� � ��� ?�� �����������
�������� �� ����
�� ��� (���
������� ������	 ��� ���� ��������)'������G��������	�����
"���	�G������������& ��
 ;��	���������������* ��
 ��� ��� � ���� ��#
����)��������� F����� ��	��� ������������ ��
 G���� �������*% �����
��#
������ �� ��������
 �� ��B���� ��
 �������� ����	�����& �� ���5�
%

E���� ��� 	���
�������	 ��� ?�� ��+6�� �� ��
�5�
% � 9���
 ������#
��	 �������&: ������� ��� G���� ����+� �������& ��
 ������������ � "���&�
"��(���� ��
 G��	��"�� ����+� ����������% A��� ����+� �������& �� �������#
����
 �� � 9"����	� (�����	 �������&:% ��� ;��	������ �� �����������
 �� ��
9�������������� �������&:%

E��� ���� �������� �� ������	 ���������� �� ���� �������& � ��� ��+6��%
'� ���� �������� �� ���� �� ����	���� ��
 �������& ��������% A��� �����#
��& ������������ ���� � ����	���� ��
 � �������& �������% ������ ����������
)����+� ���������� �� ������� �������
 �� ?�� ��+6��* �� ���+�
 �� ��� �� �#
������ �����
 �� ����� ��������� ����� ��������� ����������)���
 ��������	
�������&� "����	� (�����	 �������&� ;��	� ����� ������� �������* �		�	����
�����������
 ���������� ��������% A��������&� �� ������ �� � ��������� �����+
���� �� �����
 �& � B��� ��������� �����)����� ��������� �����*%

��� ����� ����� ��������� ��
������� ��� �������& � ��� "����	� (�����
����������� �� ���� �� ���	��� � ��� ���	���
 ���
 ���� ��	����� � ��� ���

��������	 �������&% '� ���� �������� ��� ��� � ��� ��������� ������ �� ����
��� ������ ������� ��� 	�� � 	�����& � ��� ������ (��%

� �������� -	� 4���#," 	- ���/#�� ��;�#��
��,! �)��#8��,#	� ��

������&� ��� 	��� �� ���� ���
 ���+ �� ����� ��A�% ����� ��� ���
 ���#
�����	 �������& 	��� ������
 �& � ��4����� � ��� ����������< �� ����+� �������&
�� � ���
 ��������	 �� ��������� ��� ������ �� 5	�� ����� G���� ������
�����
 �� �����
 � ���� �����5� �������� � ��� ��+6��� ���� � ������ �����#
��& ����� ��� ������ ��
 ����� ��� ��������� G���� ������% "����	� 4�����	
���������� 	�� ������
 �& �� ����+� �������& �� � �����	� 4���� �� ���������
��� ������ �� �� ���� ����+� �������& � ��� ��+6��% ���� �	�
� �� ��#
 ������ ������� ����� ���� ����� ���� ���
 ������� ������ � �����	� 4������
����	 � ����� ��������� � ����� ����	������
� ��� ��	��5�����& ������ ���
��A� ��	��� �� ������% ���� ��� �������������� �������& 	��� ������
 �&
��� ����+� ����������� ������
 ����
 ��� ;��	� ������ �� �� �������������� ��#
 ��������� ��� ������% ���� ������& ������ ��B���� � ������& ��+�� ����	�
��� 5���� � ��� ��A� ��	��� ���� ��� ����������� ������ ��� ;��	� �����%
������� �� ��������� ��� ������� �� ������
 �� ��� ���� ���� �� ��� ��A�
��	���� �� ������ ������
 �� �������% ��� ��� ��A�
������� �� ���������&
	������
 ��
 ��
& �� ��
����&�
%

� ������ ����

9������ ;�����
 � �������� ������ A�������� ���	��	�:)�;1��A�* ,>2
���� �� ���	 �;�)������ ;�����
 ��	�����	* ���������� �� ��A�% ���
������ ���� 	���� �������� � ���� �������� ���� ������& ������� ��
 ���
�#
���&����
�������� �� 	������ �������% ������	� ��& �������	� �;1��A� ��
�� ��������� ���	��	� ��
 ��
� ��� ������� ���� ��������� ���� ��
��� ����
��������������
������ �� ��� ��A� ������% �� ���� ����+ ����
����&����

�������� �� ������
 ���� �� ����� �� ��������	 ���������� ��� ��������
���������� � ��� ��+6�� ��
� ����� �;1��A� �������
��� ��� ����5� �
��� ��+�� ���&
� ��� �

��� (�� ���������� �����5������% ;� ����� �� ����
��������� ����
 ���� ��� �
��������� ���	��	� �� ����� & ���������� ��

���������� ���
�3���� ������ � ���� ������������%

'� ,=2 ��� ������ ������ � �����& �������� ���	��	�� 9��#���:)��� ��#
����� ��������� ���	��	�*� ����
 �� ��#�����& ��
 �����5����&
���	��
 �
��� �4��������)����������* �����5������ �� ��� ��������� � ��� ������
������������% ���� ���	��	� �� ����� �� �� ��������� ���� ��� ��#�����& ���#
��+� ��
 ��� ������ �4���� � ���� ������� ���� � ��� ��A�
������� ��
����	��� ���� ��������	 ����������% ���� ������� �� ������ �� ��� �� ����
�� ����
�� ����������& ��������	 �4�������� �� ��A� ������������% @��#
���� ��� ������ ���& �����
��
 ������& ���������� ����	 ��#������&�����&%

9��� #���: ,//2 �������� �����
�� � ���� �� �� ������� ��� �������� �

��������� ���	��	� ����
 �� ����� ����� ��
 � 9��������& � ������: �������
)���������	 ���������� �������*� �� �

 � ��&� ������� ����������� ����� ��

����������� ������� �����% ����������� ��������� �� ��������
 �& 9���
������:
���������� ���� �� �� ���	� � ��������$��	� ���������	 ��
 ��������	 ���
�����������% ������	� ���� �������� ���	� ���������	 �������� �� (�� ����	�#
����� ��� ��� ���� ��A� �� ��� �������
 �� 4���� ����������%

�� �1 &��#���� �, ��1

,I2 �3�� �� �����
 ��A� ���� (�� ��������� �� �
� �� ����	� ���
���
������ ����	 ��� ���� ���	��	�% � ��� ��	� ����
 9�	������:� ��� ����
������
 ���� ��A� ������% �������� �����
 �� ���� �� ����� & ���� (�� ���#
������� ����� ������ (�� �������� �� ��������
 ����	� ������������� (���#
��& ��������� ��������% ������� ���� ��+ �����
� ��A�� �� �� ��� ���������
���� �	��� ��A� ��	����% "������ ����� ����������
� ���
��� ���� (��
��������� ��
 �� ��� �������� ����� ��� �� ��������� ��	�� � (�� ����������%
����� �� ������� ������ ��� ����������� ��	�� ��
 (�� ��	�� �� �� �������
�
����� �������	 6��������& ��
 ���������&%

! "��	���
�� �� #����� ����

�� 5�� �������
 � ������ ����� ��������	 ��� ������ ������������% ������	�
��������� ����� �� ������� ��� ������� ��
 �� ������� ��� (�����& � ������ �
��
���
��� �������� ���� �� ����� �� �������� � (�� �4�������� �����5������ ��
��� ������ ������������% �� ���� �&���� ��������� ���� �������� ���	��	��
��
 �����+� ��
��� ����� ��
����&���� ����% ���& ���� ���� �� ����+ ����
��� ��
�
��� ��� 	����� �������� ��+��	 �� � ������� ���+ �� 	������� (��
�������� � �� �������&%

;� �������� ���� �� ����
� ����������� � �&���� ���������� �� ���& ���
����� & ��
 ��������� (�� �4�������� �� ��
����&���� ����% ;� 5��
����������� �� � ���	��	�� �����
 9(���1��:)(�����& � ������ ���	��	� �
�������� ������*� ���� ������ ��� �������� �� ����� & (�� ���������� ��
 ����#
������ �� ���� �����������% �����
�&� � ����� �����
 9;8(;�:);8����������
(�����& ; ������*� ����
���� ����� ����������)�& ����&$��	 ���� ��� (���

������� �� ���� �� ��� �������� ���
��������* ��
 ��B���� (�� ����������
)���� ������& ����������*% (�� ���������� ��	�� �� ����������
 �& ���� ��#
 ��������� ��� ������� ���� ��� �� �����
 ��� ��A� �����������% � +�&

������� � ���
���	� � �� ������� ��� �� ��� ��
� & ��& �������	 ���	��	�
� ����
�
 �� ��� ��� ������ ���
%

�� �� �� ���� ����� � 5�� �����&�� ���� ���+��� ���� ����
�3���� (��
�������)����	����� �������& ��
 ������&* ��
 ���� �� ���� �� ��B��� ���
 ���#
�����	� �����	� 4�����	 ��
 �������������� ���������� ���� �� �����������%
������� (�� ������� �� ��+��& �� �� ���	��
 ��� �� ���� �� ���
& �����������
� �������� �� � ��� ���� ��& �� �� �����
 �� ������� �� ���� �������%

�������	��

?1 =�: !��/#�� �0	��	���)0" #�,��-��� 26!�#3 ?1� 2����3� ����������
��
���

��������

�1 &�!#��!!)�	��!! �$���,#	� �������� -	� 6�: !��/#��!� /��!#	� ?1? 2����3�
����������
�������	
���
�����������	��	�	���	���������������	�
���

�1 .������ �1� ���6#�� 51C �0� 6!�� -��
�6	�7C �)��#-"#�� ���
	�#,	�#�� !��/#�� ��/��
�����
��,! -	� 6�: !��/#��!1 �C D	����� 	- +�,6	�7 ��� �"!,�
! ������
��,�
����0 ����� /	�1 ??� �����
 ��:�#!0#�� 2����3

http://www.w3.org/TR/wsci/
http://www.w3.org/TR/wsci/
ftp://www6.software.ibm.com/software/ developer/library/ws-bpel.pdf

� �������� -	� 4���#," 	- ���/#�� ��;�#��
��,! �)��#8��,#	� ��

�1 ��0�#� �1� ���0#��>�� E1� ��"��� �1� /�� �		�!��� �1� '�!�,#� �1C ��,	
�,�� !��

	�#,	�#�� -	� 6�: !��/#��!1 �C ?�,0 � �� *** �,����,#	��� =	�7!0) 	� �#!�
,�#:�,�� �"!,�
!C %)���,#	�! ��� ������
��,� ��%�� �	�,����� '������))1
��F�?1 �)�#����� 5�#���:��� 2����3

@1 &���!#� �1� (�#���� �1� ���:��#� �1C =!�)	�#�" -	� !��/#��
	�#,	�#��1 �C &�!!����
'1� �0��� �1�'1 2��!13 �*� ���@1 �+'�� /	�1 ��??�))1 ��F��1 �)�#����� 5�#���:���
2���B3

B1 '0��8� �1� ��0
��#��� &1� 5�#G�������� �1� ��G#�#� �1C ���#�:��� !������ ��� ,���!�
��,�� 6�: !��/#�� �	
)	!#,#	�! 6#,0 �	�:)��1 �C *'%=�1 ��	����#��! 	- ,0� �,0
 *** *��)��� '	�-������ 	� =�: ���/#��!� H��#�0� �6#,G������� ����
:�� ���B�
 *** '	
)�,�� �	�#�," ���!!� �	! ���
#,	! 2���B3

�1 �# D# D#�1� �, ��1C ����"!#! 	- !��/#�����/�� �����
��, -	� 6�: !��/#��!1 ���0�#���
��)	�, 5��������?�� 2����3

�1 ����� '1.1� 5���� �1'1.1� �#����� �1'1� =��,	�� (151C *$,���#�� :�!#��!!)�	�
��!! �$���,#	� �������� -	� 6�: !��/#��! 6#,0 !��/#�� ��/�� �����
��,! �$)��!!��
#� �	
)�,�,#	��� ;���#," �,,�#:�,�1 �C 5 '�����1 *** �0#�,"�*#�0,0 5�6�## ��
,����,#	��� '	�-������ 	� �"!,�
 ��#����!� &#� !����� 5�6�##� *** '	
)�,��
�	�#�," ���!!� �	! ���
#,	! 2���@3

�1 ����#7� �1� 5���#��� D1� ��	���� �1�1C =0�� ��� 0	6 ,	 ��/��) �	
�#��!)��#8�
��������!1 �!�� ��2�3� �?BF��� 2���@3

?�1 ��,0#� �1C ��	���

#�� ��������!C �	���),! ��� �	�!,���,!1 ���#!	��=�!��" �	���

�� ��:�#!0#��� &	!,	�� �� 2?���3

??1 �0���� 41H1� &���,����0� &1� ��
�!� �1� ��7� *1%1�I1C ���-�!��/C �)��,-	�
 -	�
��)#� �	
)	!#,#	� 	- 6�: !��/#��! #� �)����,	�)��� ��/#�	�
��,1 E��&�� 2����3

?�1 �	!#�� E1� ��,��� .1� ������7� &1C =!	� � 6�: !��/#�� 	<��#��! ��������1 �C &�!!����
'1D1� �� ���#,0� �1�1� %��	6!7�� �1*1� ����#�#� &1� I���� D1 2��!13 '�#�* ���� ���
=*� ����1 �+'�� /	�1 �@?��))1 @�FB�1 �)�#����� �	��	� 2����3

A Semi-automated Orchestration Tool for Service-Based
Business Processes

Jan Schaffner1, Harald Meyer1, and Cafer Tosun2

1 Hasso-Plattner-Institute for IT-Systems-Engineering at the University of Potsdam
Prof.-Dr.-Helmert-Strasse 2-3, 14482 Potsdam, Germany

{jan.schaffner,harald.meyer}@hpi.uni-potsdam.de
2 SAP Labs, Inc.

3421 Hillview Ave, Palo Alto, CA 94304, USA
cafer.tosun@sap.com

Abstract. When creating service compositions from a very large number of
atomic service operations, it is inherently difficult for the modeler to discover
suitable operations for his particular goal. Automated service composition claims
to solve this problem, but only works if complete and correct ontologies alongside
with service descriptions are in place.

In this paper, we present a semi-automated modeling environment for Web ser-
vice compositions. At every step in the process of creating the composition, the
environment suggests the modeler a number of relevant Web services. Further-
more, the environment summarizes the problems that would prevent the
composed service from being invocable. The environment is also able to insert
composed services into the composition at suitable places, with atomic services
producing the required data artifacts to come to an invocable composition.

Our results show that this mixed initiative approach significantly eases the
creation of composed services. We validated our implementation with the lead-
ing vendor of business applications, using their processes and service repository,
which spans across multiple functional areas of enterprise computing.

1 Introduction

In recent years, the fact that handcrafted service compositions are often erroneous
has been serving as a rationale to automate the creation of Web service compositions
([1,2,3,4]). Academia has proposed systems that automatically create invocable plans
for each individual case at runtime. This opposes the idea of creating composed ser-
vices that cover as many cases as possible. The plans are produced in a fully automatic
fashion, based on domain knowledge and semantic service descriptions. While auto-
mated planners are able to reduce complexity, inflexibility and error-proneness akin
to the creation of composed services, several drawbacks can be identified: Automated
planning relies on the availability of complete formal representations of the domain
knowledge. The task of formally specifying a domain in sufficient fidelity presents a
tremendous challenge. Especially for complex domains we can legitimately assume
that complete ontologies will not be available in the near future. Incomplete domain
knowledge, however, will often result in the situation that an automated planner fails to

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 50–61, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Semi-automated Orchestration Tool for Service-Based Business Processes 51

produce a plan. Erroneous domain knowledge, moreover, can result in situations where
a planner finds wrong plans. In contrast, a human planner can draw upon his experience
within a specific domain. This experience will often compensate for missing or erro-
neous ontologies. Moreover, the fact that fully automated service composition methods
do not require a human in the loop poses an organizational and juridical impediment:
In business reality, it is required that concrete persons are responsible for a particu-
lar business process. This fact lowers the industry acceptance of automated planning
techniques; their transition from research to industry is progressing slowly.

In this paper we show that the techniques from automated planning can be used to
ease the manual creation of business processes. The incorporation of matchmaking tech-
nologies used by automated planners into a semi-automated modeling tool for creating
enterprise service compositions has several advantages. The problems manual service
composition can be reduced or eliminated by the aid of new “mixed initiative features”.
This paper is organized as follows: Section 2 presents a scenario from practice, which is
used in section 3 to show the usefulness of the proposed mixed initiative features. Sec-
tion 3 also discusses the implementation of these mixed initiative features. In section 4
we give an overview of related work in the field of semi-automated service composition
and discuss our tool from that perspective. Section 5 concludes the paper.

2 Usage Scenario: Leave Request

The following scenario is taken from Duet1, a recent software product by SAP and Mi-
crosoft. Duet extends the reach of SAP’s business processes to a large number of users
by embedding them into Microsoft’s Office environment. We extracted the process flow
among the ERP Web services Duet is built upon. We are using the process as a case
study for the semi-automated composition environment developed in Jan Schaffner’s
Master’s thesis [5]. The leave request scenario consists of two parts: First, an employee
files a leave request. Second, his manager approves or denies this request. Therefore,
the two roles “employee” and “manager” participate in the leave request process. Due
to length constraints, we limit ourselves to the part of the process in the role of the
employee. The scenario is depicted in figure 1 using the Business Process Modeling
Notation (BPMN [6]). The activities in the diagram correspond to Web service opera-
tions. To describe the semantics of the operations, we extended the BPMN syntax so
that we can depict WSMO service capabilities: The inputs that a service consumes and
the conditions over these inputs make up the “precondition”. The outputs of a service
and the relation between input and output make up the “postcondition”.

Before the employee files a leave request, he will typically try to get an overview of
his time balance and suitable dates for the leave. Duet will collect this information when
the leave request application pane is opened. Therefore, Duet will call the following four
Web service operations.

– Read Employee Time Account. This operation returns the time balance of an em-
ployee consisting of paid vacation, overtime, and sick leaves. The operation takes
an employee object uniquely representing the employee and a key date, for which
the balances are returned, as input.

1 http://www.duet.com

52 J. Schaffner, H. Meyer, and C. Tosun

Fig. 1. Leave request scenario

– Read Leave Request Configuration by Employee. This operation outputs the
leave configuration (allowed leaves such as half or full day) for a specific employee
as stored in the ERP system. The operation takes an employee object and a key date
as input.

– Find Leave Request By Employee. It might be the case that an employee has re-
cently filed other leave requests which are not yet processed. This operation returns
an employee’s pending leave requests, so that he or she can consider them together
with the time balance. The operation takes an employee object as input.

– Find Leave Request Allowed Approver by Employee. A leave request is ap-
proved by the line manager of the employee filing it. In some cases, a different
approver or no approval at all is necessary. This operation returns the employee
object corresponding to the allowed approver for the leave request. It takes an em-
ployee object as input.

The information retrieved by the four service operation described above is visual-
ized in Duet and the employee can decide on a day or a period browsing his Outlook
calendar. This yields the sequential invocation of the two following operations:

– Check Create Leave Request. Before a leave request is created in the ERP system,
it must be checked for plausibility. This operation takes the same inputs as the
operation that creates the leave request, which are an employee object, the leave
period and the leave type. If the check is successful, the operation returns a positive
result.

– Create Leave Request. After the plausibility check has been successful, this oper-
ation finally creates the leave request in the ERP system. As a result, a leave request
is created.

3 Mixed Initiative Features

In this section, we will describe three mixed initiative features which are characteristic
for semi-automated service composition. The leave request business process from the

A Semi-automated Orchestration Tool for Service-Based Business Processes 53

previous section will be constructed step by step supporting and motivating the three
features. We will then present the realization of each feature in detail. A more general
introduction of the mixed initiative features for semi-automated composition can be
found in [7].

3.1 Filter Inappropriate Services

The number of service operations that are available as building blocks for the compo-
sition can be extremely high. In the context of SAP, for example, the central repository
contains more than 1000 services. This results in a complexity that is hard to oversee.
Especially if compositions are to be realized by users from a non-technical background,
a modeling tool for service compositions should filter the set of available services. Such
filtering can be done based on semantic service descriptions.

Business Scenario. When the leave request is to be created from scratch, the tool will
first retrieve all available Web services. The modeler starts out with adding the role “em-
ployee” to the composition by selecting this role from a list of all available roles (e.g.,
“supplier”, “customer”, “manager”). Our tool then assumes the implicit availability of a
variable of the complex type “employee”, representing the person who takes part in the
business process in this role. The tool is now able to filter the list of available service
operations to those that require an employee object as an input. Our experiments have
shown that filtering all service operations that are not be invocable in the current step
of the composition is too strict. The tool therefore also presents service operations that
are nearly invocable in the sense that only one input is missing. Using this technique,
we are able to retrieve very reasonable suggestions from SAP’s service repository. The
operations in this repository are grouped around so-called enterprise services. In our
example, the modeler would therefore now expand the “Time and Leave Management”
enterprise service and select the first four operations depicted in figure 1. As there are
no dependencies between the activities, the user connects the operations using a parallel
control flow. This is shown in figure 2.

At this point, the modeler is able to retrieve more service suggestions through the
filtering mechanism by clicking on the merge node of the parallel split. Our tool will
then present a list of service operations that are invocable or nearly invocable based on
the union all postconditions of the services which are in the composition so far. The
postconditions (i.e., the output data types) of the operations are also depicted in figure
1. Amongst others, our tool will suggest the operation Check Create Leave Request as
a nearly invocable service. The modeler adds it to the composition and creates a link
between the merge node and the operation.

Realization. At each step of the composition (i.e., each change in the process by
the modeler) the state of the composition is translated into a query against our semi-
automated service composition engine, which is built on top of a WSML reasoner. In
this context, the term “state” refers to the postconditions of all service operations that
are currently in the composition. The currently selected role (e.g., “employee”) is also
added to the state. As already mentioned in the business scenario, our tool suggests
both invocable services and nearly invocable services. Therefore, two corresponding
methods are provided by our semi-automated composition engine.

54 J. Schaffner, H. Meyer, and C. Tosun

Fig. 2. Screenshot of the modeling tool

The first method returns a list of invocable service operations, alongside their pre-
and postconditions, possible roles in which they can be executed, the default role, possi-
ble variable bindings for the current state of the composition, a default variable binding
and the enterprise service they belong to. Moreover, this list is ordered by relevance
for the user in the current context. Listing 1.1 presents our algorithm for finding and
weighting invocable services for a given state in pseudo code.

1 findInvocableServicesOrdered (State state , String role)
register state with reasoner ;

3 retrieve list of registered operations from reasoner ;
for each registered operation do

5 if operation is invocable do
compute match distance for each binding ;

7 store binding with lowest match distance as default binding ;
store all other bindings , preconditions and postconditions ;

9 unregister state with reasoner ;
compute weightings based on lowest match distances ;

11 for each invocable operation do
if NFP specifying an intended roles for the operation exists

13 if NFP matches role
increase weighting by 1;

15 order operations by weighting ;
return ordered list of operations ;

Listing 1.1. Compute ordered list of invocable service operations

A Semi-automated Orchestration Tool for Service-Based Business Processes 55

The match distance in line 6 of listing 1.1 is computed based on the distance of the
data types in the variable bindings and the data types specified in the preconditions of
the operations. As an example, we consider an operation that consumes a parameter
“employee” as a precondition. Additionally to the “employee” concept there as subcon-
cept of “employee” called “manager”. Given a state with an “employee” instance the
match distance between a variable binding and the service’s precondition is 0. But if we
only have a “manager” instance, the distance between the variable binding and the pre-
condition is 1. Because the first binding has a lower match distance than the second, it is
the default binding of the operation in the current state. If a precondition requires more
than one data type, the match distance is aggregated over all variables in a binding.

The weightings for the operations (line 10 listing 1.1) are based on the match dis-
tances: For each operation, we take variable binding with the lowest match distance (i.e.,
the default binding) into account. The operation corresponding to the binding with the
highest match distance gets the lowest weighting, and so forth. To further differentiate
the relevance of the discovered services, the role of the current state of the composi-
tion is compared to the intended role of each invocable operation. An intended role is
the role for which an operation has been designed. For example, the operation Create
Leave Request is designed for the role “employee”, while it is also invocable for com-
position states with the role “manager”. If the role of the current composition state and
the intended role of an operation match, the weighting of the operation is increased.

The second method provided by our semi-automated service composition engines
discovers service operations that are nearly invocable in the current state of the compo-
sition. An operation is nearly invocable, if only one input parameter is missing. Listing
1.2 lists the pseudo code of this method. We traverse the ontology, add each concept
to the current composition state one after another, and check for invocable operations
in the modified state. Please note that there is no ranking in case the method returns
multiple nearly invocable operations. This allows for an optimization in the process of
discovering the nearly invocable services: We use the most specific subconcept for each
concept in the ontology before we search for invocable services in the modified state.
In doing so, we only have to perform this search operation for a subset of the concepts
in the ontology, which improves the response time.

3.2 Check Validity

As the human modeler has full control over the modeling, it is possible that he intro-
duces errors. It is therefore necessary to be able to check the semantic validity of the
process. As opposed to syntactic validity checking structural correctness criteria like
soundness [8], semantic validity bases on semantic descriptions for individual activi-
ties to define correctness of processes on a semantical level. However, when semantic
descriptions for the activities of process are available, we are able define correctness
criteria for processes on the semantics level. Semantic validation should be interleaved
with the actual modeling of the composed service: The user should be informed about
problems with the composition in an unobtrusive way. Such problems, which can be
seen as unresolved issues, arise from activities in the composition which violate one or

56 J. Schaffner, H. Meyer, and C. Tosun

findNearlyInvocableServices (State state)
2 operations = findInvocableServices (state);

for each concept in the ontology do
4 if concept is not marked as visited

sc = findMostSpecificConcepts (c);
6 for each concept s in sc

add s to state ;
8 register state with reasoner ;

nOps = findInvocableServices (state);
10 add nOps − operations to result ;

deregister state with reasoner ;
12 remove s from state ;

mark s as visited ;
14 return list of nearly invocable operations (result);

16 Concept[] findMostSpecificConcepts (Concept c)
if c has subconcepts

18 sc = new Concept[];
for each subconcept s of c

20 sc += findMostSpecificConcept (s);
return sc;

22 else return [c];

Listing 1.2. Compute list of nearly invocable service operations

more aspect of a set of desirable properties for well-formed workflows. According to
[9], a composition is well-formed if

– one or more activities are contributing to the composition’s overall end result,
– the inputs and preconditions of every activity are satisfied,
– every activity is either an end result or produces at least one output or effect that is

required by another activity,
– it does not contain redundant activities.

Business Scenario. As the last step, the modeler added the nearly invocable operation
Check Create Leave Request. The tool highlights operations for which problems are
tracked. As the added operation is not invocable, but nearly invocable, one input type is
missing. The tool therefore marks the operation with a red border. This can also be seen
in figure 2, where two out of four activities are highlighted. By clicking on the Check
Create Leave Request operation, the user can open a panel showing its input and output
types as inferred from the pre- and postconditions. The user sees that all input types
of the operation are currently available in the composition, except TimePointPeriod,
which is also highlighted using red color in this drill-down view. The user can also get
an overview of all current problems with the composition by looking at the agenda,
depicted in figure 3.

The missing parameter TimePointPeriod represents the date or period for which the
employee intends to request a leave. As our scenario has been taken from Duet, this

A Semi-automated Orchestration Tool for Service-Based Business Processes 57

Fig. 3. Agenda summarizing the problems with the composition

data is provided by Microsoft Outlook after a the user selects a date from the calen-
dar. In our example, the modeler therefore creates a human activity (modeling a task
such as marking a period in the calendar) that produces a TimePointPeriod output. The
modeler connects the human activity with the Check Create Leave Request operation.
The coloring of the operation and the TimePointPeriod input type in the parameter view
disappear and the issue is removed from the agenda.

Realization. Information about operations with unsatisfied inputs can be retrieved by
traversing the graph of the composition state. Listing 1.3 lists the pseudo code for ag-
gregating all available types in the composition state. The available types are compared
to the preconditions of each operation in the composition.

findUnsatisfiedInputs (State state , Role role)
2 for each operation in state do

availableTypes = {};
4 availableTypes += role;

requiredInputs = preconditions of current operation ;
6 links = links connected to incoming plugs of operation ;

for each link in links do
8 recurseLink (link);

if unsatisfiedInputs = requiredInputs − availableTypes != {}
10 store unsatisfiedInputs with current operation ;

12 recurseLink (Link link)
if link.source == start node

14 return;
if link.source is a service operation do

16 currentOperation = link.source ;
availableTypes += currentOperation.postconditions;

18 links = links connected to incoming plugs of currentOperation;
for each link in links do

20 recurseLink (link);
else return;

Listing 1.3. Compute unsatisfied inputs in the service composition

58 J. Schaffner, H. Meyer, and C. Tosun

3.3 Suggest Partial Plans

Automated planners plan according to an algorithmic planning strategy, such as for ex-
ample forward- or backward chaining of services. Human planners, in contrast, will not
always behave according to this schema when modeling composed service. Users might
have a clear idea about some specific activities that they want to have in the process,
without a global understanding how the whole will fit together as a process. For exam-
ple, they start modeling the composed service by adding some operations and chaining
them together, and then continue with a non-invocable operation that is intended to be
in a later stage of the composition. In such and similar cases, it is desirable for the user
to let the editor generate valid service chains that connect two unrelated activities.

Business Scenario. In the last step the modeler resolved a problem with the Check Cre-
ate Leave Request operation. If the user clicks on the operation to refresh the filtered list
of available services, the tool will suggest the Create Leave Request operation. From
the perspective of the user, this is the final operation. However, the modeler might not
be familiar with the fact that a specific check operation needs to be invoked in order
to create a leave request in the system. He then directly selected the Create Leave Re-
quest operation after the merge node depicted in figure 2. The modeler also creates
the human activity producing the TimePointPeriod and links it to the Create Leave Re-
quest operation. Now, the modeler tries to create a link between the merge node of the
parallel flow and Create Leave Request. The tool will detect that the set of postcondi-
tions up to the merge node does not satisfy the preconditions of Create Leave Request
(the type CheckCreateLeaveRequestResult is missing). The tool instantly queries the
semi-automated composition engine which detects that the insertion of the Check Cre-
ate Leave Request operation would satisfy this open information requirement. The user
is prompted whether or not the Check Create Leave Request should be inserted. The
modeler approves this suggestion and the composition is complete.

Realization. The suggestion of partial plans can be mapped to an automated service
composition task: given an initial state and a goal state, a composition is created that
leads from the initial state to the goal state. If we only want to suggest a partial plan to
connect two operations A and B, we can derive the initial state from the postconditions
A and its preceding services. The goal state then consists of the unfulfilled preconditions
of B. An approach from automated service composition is used to create a partial plan.
For this purpose, we are using an extended version of enforced hill-climbing as presented
in [4]. The principle of this algorithm will be briefly described in the following.

Enforced hill-climbing is an heuristic forward search algorithm in state space.
Guided by a goal distance heuristic, it starts with the initial state and consecutively
selects new services and reaches new states through the virtual invocation of selected
services until the goal state is reached. Given a state all invocable services are deter-
mined. We use findInvocableServices mentioned above but without ranking. From these
services, states are calculated using virtual invocation: Only the postconditions are ap-
plied without actually invoking the service.

For these states, goal distance estimations are calculated using an heuristic. The first
state that has a lower goal distance estimation than the current state is selected as the

A Semi-automated Orchestration Tool for Service-Based Business Processes 59

new current state. If this state satisfies the goal state, we have found a valid composition.
Otherwise, we continue until we have reached the goal state. In [4] we extended this
algorithm to deal with uncertainty and to compose parallel control flows.

4 Related Work

In the following, we give a brief overview of related work in the field of semi-automated
composition.

Sirin, Parsia and Hendler [10] present Web Service Composer. Their tool allows
creating executable compositions of Web services that are semantically specified with
OWL-S. In order to create a composed service, the user follows a backward chaining
approach. He begins with selecting a Web service that has an output producing the de-
sired result of the composition from a list of available services. Next, the user interface
presents additional lists connected to each OWL input type of the service producing
the end result. In contrast to the first composition step, these lists do not contain all
available services: They contain only those services that generate an output satisfying
the particular input type they are connected to. As a consequence, the plans constructed
with the tool are not always optimal. For example, when one service operation deliv-
ers two outputs each of which satisfies a different input of a downstream service, this
service operation occurs twice in the composed service.

IRS-III [11] includes a tool that supports a user-guided interactive composition ap-
proach by recommending component Web services according to the composition con-
text. Their approach uses the Web Services Modeling Ontology (WSMO) as the
language to describe the functionality of the Web services. Similar to Web Service
Composer, the available services are filtered at each composition step. It is not possible
to further shorten the filtered list based on nonfunctional properties. Our approach, in
contrast, interprets the intended role of a service in form of a nonfunctional property
when the weightings are assigned.

Kim, Spraragen and Gil introduce CAT (Composition Analysis Tool) [9]. At each
composition step, CAT provides a list of suggestions about what to do next. These
suggestions resolve errors and warnings, which are also displayed. The idea is that con-
sequently applying suggestions will produce a “well-formed” workflow as a result. The
authors therefore introduce a set of properties that must be satisfied by all operations in
the composition in order for the process to be well-formed. The tool does not provide
filtering functionality nor the ability to create partial plans.

PASSAT (Plan-Authoring System based on Sketches, Advice, and Templates) [12] is
an interactive tool for constructing plans. Similar to CAT, PASSAT is not directly con-
cerned with the creation of composed services, but its concepts can be mapped into the
context of service composition. PASSAT is based on hierarchical task networks (HTN)
[13]. In HTN planning, a task network is a set of tasks (or service calls) that have to
be carried out as well as constraints on the ordering of these tasks. The HTN based ap-
proach imposes top-down plan refinement as the planning strategy the user must adhere
to: The user can start by adding tasks to a plan and refine them by applying matching
HTN templates. A template consists of a set of subtasks that replace the task being re-
fined, as well as the postconditions of applying individual tasks and the entire template.

60 J. Schaffner, H. Meyer, and C. Tosun

5 Conclusion

In this paper we presented the realization of three mixed initiative features for semi-
automated service composition. We validated it in an implementation of a service
orchestration tool, as well as case study and a service repository from a large vendor
of service oriented business software. Filter inappropriate services allows for selecting
only invocable services and performs a ranking among them. Check validity allows to
check for the semantic correctness of a service composition. And, finally, with suggest
partial plans we used an approach from automated composition to fill in gaps in service
compositions. Our approach is currently the only one implementing all three mixed ini-
tiative features. The scenario shows that the ability to interleave all three features is very
valuable for the modeler. Also, when service compositions are to be created by users
without a strong technical background, usability plays a vital role. Our tool therefore
does not impose a specific planning strategy on the modeler.

In the future, we plan to further validate the usefulness of our approach with end
users. The goal is to show that these three mixed initiative features significantly im-
prove modeling quality and reduce modeling time. In our current implementation we
are facing performance issues when computing the list of nearly executable services.
We are currently working on a realization strategy incorporating the partitioning of the
ontology and distributing the computation. Finally, the area of semantic correctness is,
in contrast to the syntactic correctness of service compositions and processes, still an
open field: So far, our orchestration tool only covers unsatisfied inputs. Efforts to auto-
matically discover redundant services are currently underway.

References

1. Zeng, L., Benatallah, B., Lei, H., Ngu, A.H.H., Flaxer, D., Chang, H.: Flexible Composition
of Enterprise Web Services. Electronic Markets 13 (2003)

2. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and Monitoring
Web Service Composition. In: Bussler, C.J., Fensel, D. (eds.) AIMSA 2004. LNCS (LNAI),
vol. 3192, pp. 106–115. Springer, Heidelberg (2004)

3. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN Planning for Web Service Composi-
tion Using SHOP2. Journal of Web Semantics 1, 377–396 (2004)

4. Meyer, H., Weske, M.: Automated Service Composition using Heuristic Search. In: Dust-
dar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, pp. 81–96. Springer,
Heidelberg (2006)

5. Schaffner, J.: Supporting the Modeling of Business Processes Using Semi-Automated Web
Service Composition Techniques). Master’s thesis, Hasso-Plattner-Institute for IT Systems
Engineering, University of Potsdam, Potsdam, Germany (2006)

6. White, S.A.: Business Process Modeling Notation, Working Draft (1.0). Technical report,
The Business Process Modeling Initiative (2003)

7. Schaffner, J., Meyer, H.: Mixed Initiative Use Cases For Semi-Automated Service Compo-
sition: A Survey. In: IW-SOSE’06. Proceedings of the International Workshop on Service
Oriented Software Engineering, located at ICSE 2006, Shanghai, China, May 27–28, 2006,
ACM Press, New York (2006)

8. van der Aalst, W.M.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.) ICATPN
1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

A Semi-automated Orchestration Tool for Service-Based Business Processes 61

9. Kim, J., Spraragen, M., Gil, Y.: An Intelligent Assistant for Interactive Workflow Composi-
tion. In: IUI ’04. Proceedings of the 9th international conference on Intelligent user interface,
pp. 125–131. ACM Press, New York (2004)

10. Sirin, E., Parsia, B., Hendler, J.: Filtering and Selecting Semantic Web Services with Inter-
active Composition Techniques. IEEE Intelligent Systems 19, 42–49 (2004)

11. Hakimpour, F., Sell, D., Cabral, L., Domingue, J., Motta, E.: Semantic Web Service Com-
position in IRS-III: The Structured Approach. In: CEC 2005. 7th IEEE International Con-
ference on E-Commerce Technology, München, Germany, pp. 484–487. IEEE Computer
Society Press, Los Alamitos (2005)

12. Myers, K.L., et al.: PASSAT: A User-centric Planning Framework. In: Proceedings of the 3rd
International NASA Workshop on Planning and Scheduling for Space, Houston, TX, AAAI
Press, Stanford, California (2002)

13. Tate, A.: Generating Project Networks. In: Proceedings of the Fifth Joint Conference on
Artificial Intelligence, Cambridge, MA, pp. 888–893. Morgan Kaufmann Publishers, San
Francisco (1977)

Web Service Composition: An Approach Using
Effect-Based Reasoning

Puwei Wang1,3 and Zhi Jin1,2

1 Institute of Computing Technology, Chinese Academy of Sciences
2 Academy of Mathematics and System Sciences, Chinese Academy of Sciences

3 Graduate University of Chinese Academy of Sciences
Beijing 100080, China

wangpw@ict.ac.cn, zhijin@amss.ac.cn

Abstract. This paper proposes an ontology-based approach to compose
Web services using the effect-based reasoning. The environment ontology
is to provide formal and sharable specifications of environment entities of
Web services in a particular domain. For each environment entity, there
is a corresponding hierarchical state machine for specifying its dynamic
characteristics. Then, this approach proposes to use the effects of a Web
service on its environment entities for specifying the Web service’s ca-
pabilities and designates the effect as the traces of the state transitions
the Web service can impose on its environment entities. So, the service
composition can be conducted by the effect-based reasoning.

1 Introduction

Web services are self-contained and modular components which are autonomous
and loosely-coupled. Web service composition happens when a request can not
be satisfied by any elementary Web services. It combines some elementary Web
services to create a new and composite Web service so that the composite
Web service has the capabilities to satisfy the request. Capability descriptions of
Web services are important for enhancing the quality of the composition. There-
fore, we need an expressive external manifestation of Web services to describe
service capabilities for the composition.

This paper proposes an approach for Web service composition by using effect-
based reasoning on the environment entities. The distinct feature is to introduce
environments as the objective reference of Web service capability. In fact, envi-
ronment is a key concern in the requirements modelling and has been recognized
as the semantic basis of the meaning of the requirements. In our approach, we
view environment of a Web service to be composed of those controllable entities
(or called “environment entities”) that the Web service can impose effects on.
Our motivations are listed as follows: 1) Environment can exhibit the capabilities
of Web services while Web services’ behaviors are installed in the environment.
In requirement engineering domain, it has been argued that the meaning of re-
quirements can be depicted by the optative interaction of software system with
its environment as well as the causal relationships among these interactions [1].

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 62–73, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Web Service Composition: An Approach Using Effect-Based Reasoning 63

2) Environment entities are inherent sharable for loosely coupled Web services.
Web services are often developed by different teams, and are described in differ-
ent conceptual framework without agreement. Based on the optative interaction
of Web services with its environment entities, understanding between the Web
services are assured by instinct. 3) Dynamic composition of Web services are de-
picted based on their stable environment. Though Web services are autonomous
and evolving in their life-cycles for continual users’ demands, the environments
which exhibit their capabilities are usually stable.

Example 1. An example is embedded in this paper to illustrate our ideas. As-
sume that there are four services, ticket-selling service(TSA), ticket-delivery ser-
vice(TDS), hotel service(HOS) and bank service(BAS) respectively. There are
three sharable environment entities for the four services, ticket, hotelroom and
creditcard. Given a goal Gtravel that needs budget traveling service for travelers.
This goal can be represented as a set of desired effects on ticket, hotelroom and
creditcard. Obviously, any of the four services can not satisfy Gtravel by its own.
What we expect to do is to obtain a composition of the four services satisfying
Gtravel conducted by reasoning on ticket, hotelroom and creditcard in terms of
satisfiability of the desired effects on these environment entities.

The rest of this paper is structured as follows: Section 2 gives the definition of
the environment ontology. Section 3 defines the effect on an environment entity
and the effect-based Web service capability profile. Section 4 describes a Web
service composition conducted by the effect-based reasoning. Finally, section 5
analyzes related works and draws a conclusion.

2 Environment Ontology

Environment entities are domain-relevant, and then the conceptualization of en-
vironment entities, i.e., the environment ontology, can constitute as sharable do-
main knowledge base for Web services. We extend the general ontology structure
by attaching each environment entity a tree-like hierarchical state machine for
specifying its domain life-cycle. The environment ontology is defined as follows.

Definition 1. EnvO def= {Ent, X c, Hc, HSM, inter, res}, in which:

– Ent is a finite set of environment entities,
– X c ⊆ Ent × Ent is an ingredient relation between the environment entities,

∀e1, e2 ∈ Ent, 〈e1, e2〉 ∈ X c means that e1 is an ingredient of e2,
– Hc ⊆ Ent × Ent is a taxonomic relation between the environment entities.

∀e1, e2 ∈ Ent, 〈e1, e2〉 ∈ Hc means that e1 is a subconcept of e2,
– HSM is a finite set of tree-like hierarchical state machines (called “THSM”),
– inter ⊆ HSM × HSM is a message exchange relation between THSMs.

hsm1, hsm2 ∈ HSM, 〈hsm1, hsm2〉 ∈ inter means that hsm1 and hsm2
interact with each other by message exchange,

– res : Ent ↔ HSM is a bijective relation. ∀e ∈ Ent, there is one and only
hsm ∈ HSM, such that hsm=res(e).It is say that hsm is the THSM of e.

64 P. Wang and Z. Jin

For a THSM, its states may be ordinary states or super-states (ssuper) which can
be further subdivided into another basic state machines (Nsub). In our approach,
each state s′ in Nsub is called a child of super-state ssuper (s′ child ssuper), and
start state λ0 in Nsub is called default child of ssuper . Hierarchical skeleton is
expected to assure that hierarchical state machine has flexibility and different
granularity. Tree-like skeleton assures that each basic state machine has one and
only one super-state. A THSM (called “domain THSM”) in the environment on-
tology is designed for life-cycle description of an environment entity in a domain.
The effects of Web services then can be modeled based on the domain THSMs.

For the four elementary services in above example, their environment is spec-
ified as a simplified Budget Traveling Environment Ontology (called “BTO”).

Table 1. Budget Traveling Environment Ontology

Entity Meaning
ticket Taking travelers to their destinations. Its domain THSM is hsm(ticket)
hotelroom Housing travelers. Its domain THSM is hsm(hotelroom)
creditcard Providing a method of payment. Its domain THSM is hsm(creditcard)
merchandise Goods in business. Its domain THSM is hsm(merchandise)
itinerary Route of ticket. Its domain THSM is hsm(itierary)
Relation Meaning
〈ticket,merchandise〉 ∈ Hc

bto Ticket is a merchandise, i.e., domain THSM of ticket
inherits domain THSM of merchandise

〈itinerary, ticket〉 ∈ X c
bto Itinerary is a part of ticket, i.e., domain THSM of

itinerary is a part of domain THSM of ticket
〈hsm(ticket), hsm(creditcard)〉 ∈ interbto Ticket can be paid by credit card
〈hsm(hotelroom), hsm(creditcard)〉 ∈ interbto Hotel room can be paid by credit card

We develop an application demo for visualizing the representation of BTO
which is encoded in XML-style. Fig.1 is a screenshot for showing the domain
THSMs, hsm(ticket), hsm(hotelroom) and hsm(creditcard), and the message
exchange relation between them. They are used to represent life-cycle of environ-
ment entities ticket, hotelroom and creditcard. In the ticket’s domain THSM,
instantiated, available and sold are three super-states, which are subdivided
into three basic state machines respectively. Similarly, domain THSMs of envi-
ronment entities creditcard and hotelroom are described.

Moreover, there is a message exchange relation between hsm(ticket) and
hsm(creditcard), i.e., 〈hsm(ticket), hsm(creditcard)〉 ∈ inter, because that out-
put from creditcard’s state valid can trigger the state transition of ticket from
ordered to sold, and output from ticket’s state sold can trigger state transition
of creditcard from non-charged to charged.

Obviously, it describes that ticket can be paid by credit card. Similarly,
there also is a message exchange relation between hsm(hotelroom) and hsm
(creditcard) because that hotel room also can be paid by credit card. For
simplicity, message exchanges are only denoted as light-gray lines with double
arrowheads in Fig.1.

Web Service Composition: An Approach Using Effect-Based Reasoning 65

Fig. 1. Scereenshot of domain THSMs of ticket, hotelroom and creditcard

3 Web Service Capability Profile

With the explicit representation of the environment ontology, the capability pro-
file of a Web service can be given. We first define the effect of Web services on
their environment entities. An effect on an environment entity is described as a
triplet which contains an initial state, a target state and a set of middle states
(these middle states will be included in the trace from the initial state to the tar-
get state) of this environment entity. Let e be an environment entity. The effect
on e can be formulated as: effect(e) = e : 〈si, Sm, st〉, si, st ∈ e.State, Sm ⊆
e.State, in which si is an initial state, st is a target state and Sm is a set of middle
states (e.State is the set of states in e’s domain THSM). The traces from si to st

via Sm consist of: (1) state transition in a basic state machine, or (2) transition
from a state to its default child, or (3) transition from a state to its super-state.
For example, an effect that a simple ticket-selling service imposes on environment
entity ticket can be described as ticket : 〈available, {ordered}, sold〉. Based on

66 P. Wang and Z. Jin

the effect, we can acquire the trace from hsm(ticket) (shown in Fig.1) in BTO:
available → ordered → sold. This trace actually is the specific life-cycle descrip-
tion while the ticket-selling service imposes the effect on ticket.

A capability profile of Web service is given based on effects of the Web service.
It is defined as {Entsub, Ms, effs}, in which:

– Entsub = {e1, ..., en} is a set of environment entities that Web service can
impose effects on;

– Ms = {M(e1), ..., M(en)}. Each M(ei) is partitioned into two subsets:
Min(ei) and Mout(ei) for denoting inputs and outputs that Web service
needs and produces about the environment entity ei(i ∈ [1, n]);

– effs = {effect(e1), ..., effect(en)} is a set of effects (called “effect set”)
that Web service imposes on e1, ..., en.

Capability specification can be generated by adding rich semantics (i.e., state
transitions) automatically to the capability profile from environment ontology.

The effect-based capability profile of ticket-selling service(TSA) then can
be given. The effect set of TSA is described as {ticket:〈available, {ordered,
cancelled}, sold〉}. The following is the XML-style capability profile of TSA.

<capability Id="ticket-selling service,TSA">
<entity>BTO:ticket</entity>
<input ent="ticket">orderInfo,orderCancelInfo,accountInfo,reAvailableInfo</input>
<output ent="ticket">soldInfo</output>
<effect ent="ticket">
<initialState>available</initialState>
<middleSet>ordered,cancelled<middleSet>
<targetState>sold</targetState>

</effect>
</capability>

This capability profile describes that a service TSA which provides ticket
selling service, where users can put tickets on hold without being charged, and
they also have opportunity to cancel the pending tickets. Similarly, the capability
profiles of TDS, HOS and BAS also can be given using the same structure.

The environment ontology is a sharable knowledge base for Web services.
By traversing domain THSM of an environment entity, traces from the initial
state to the target state via a set of middle states (i.e., go through an effect
e : 〈si, Sm, st〉 on the environment entity e) triggered by a series of inputs can be
generated. These traces constitute a THSM (called “specific THSM”). Therefore,
each specific THSM is corresponding to an effect on an environment entity.

A model I = {K, interk} then is presented, in which K = {ke1, ..., ken} is a set
of specific THSMs corresponding to effect set effs={effect(e1), ..., effect(en)},
and interk contains the set of message exchange relations on K. The model
I is called the semantic schema of the effect set effs. It is viewed to be a
capability specification of Web service. This capability specification is based on
a process model and will not be entangled by implementation of Web services.
The algorithm for generating the semantic schema of the effect set based on
environment ontology is presented in our previous works [2].

Let us look at the effect sets and their semantic schemas of the four elementary
services: TSA, TDS, HOS and BAS. They are listed in Table.2.

Web Service Composition: An Approach Using Effect-Based Reasoning 67

Table 2. Elementary Effect Sets and Their Semantic Schemas

Ticket-Selling Service (TSA)
effstsa = {ticket:〈available, {ordered, cancelled}, sold〉}
Itsa = {{ktsa

ticket}, φ} Fig.2(a)
Ticket-Delivery Service (TDS)

effstds={ticket:〈sold, φ, delivered〉}
Itds = {{ktds

ticket}, φ} Fig.2(b)
Hotel Service (HOS)

effshos={hotelroom: 〈vacancy, {ordered, cancelled}, paid〉}
Ihos = {{khos

hotelroom}, φ} Fig.2(c)
Bank Service (BAS)

effsbas = {creditcard:〈valid, φ, chareged〉}
Ibas = {{kbas

creditcard}, φ} Fig.2(d)

Fig.2 is the screenshot showing the semantic schemas Itsa, Itds, Ihos, Ibas

(ktsa
ticket is denoted by tsa ticket, ktds

ticket is denoted by tds ticket, khos
hotelroom is

denoted by hos hotelroom, and kbas
creditcard is denoted by bas creditcard), which

are viewed as the capability specifications of the four elementary services.

(a) Itsa:TSA (b) Itds:TDS

(c) Ihos:HOS (d) Ibas:BAS

Fig. 2. Scereenshot of semantic schemas of the four elementary services

4 Service Composition by Effect-Based Reasoning

Web service composition is to generate a composite service that consists of a set
of elementary services to satisfy a goal. In our approach, Web service composition
is conducted by effect-based reasoning.

A goal Gtravel, which describes a desired service for providing budget traveling
agency (BTA), is given as a capability profile in XML style.

68 P. Wang and Z. Jin

<goal Id="Budget Traveling Agency,BTA">
<entity>BTO:ticket,BTO:hotelroom,BTO:creditcard</entity>
<input ent="ticket">orderInfo,orderCancelInfo,deliveryInfo,reAvailableInfo</input>
<input ent="hotelroom">orderInfo,orderCancelInfo,reVacancyInfo</input>
<output ent="ticket">deliveredInfo</output>
<output ent="hotelroom">paidInfo</output>
<ourput ent="creditcard">chargedInfo</output>
<effect ent="ticket">
<initialState>available</initialState>
<middleSet>ordered,cancelled<middleSet>
<targetState>delivered</targetState>

</effect>
<effect ent="hotelroom">
<initialState>vacancy</initialState>
<middleSet>ordered,cancelled<middleSet>
<targetState>paid</targetState>

</effect>
<effect ent="creditcard">
<initialState>valid</initialState>
<targetState>charged</targetState>

</effect>
</goal>

This goal profile describes that “A service BTA which provides ticket selling
and hotel service, where user can order ticket and hotel room, and if there is an
emergency,user can cancel the pending ticket or hotel room.” In this goal profile,
the effect set is described in Table.3.

Table 3. Desired Effect Set and Its Semantic Schema

Budget Traveling Agency (BTA)
effsbta={ticket:〈available, {ordered, cancelled}, delivered〉, creditcard:

〈valid, φ, chareged〉, hotelroom:〈vacancy, {cancelled}, paid〉}
Ibta = {{kbta

ticket, k
bta
creditcard, k

bta
hotelroom}, interbta}

Given the four elementary services W = {TSA, TDS, HOS, BAS} which are
described by the four effect sets effstsa, effstds, effshos, effsbas, a composition
of W is a semantic schema I such that I delegates all transitions in semantic
schemas Itsa, Itds, Ihos, Ibas of effstsa, effstds, effshos, effsbas. Given the goal
Gtravel which can not be satisfied by any elementary services in W , service compo-
sition to satisfy the goal Gtravel is to check whether there exists composition Ibta

of W which is the semantic schema of effsbta.
Formally, given two semantic schemas I1={{k1

e1, k
1
e2}, {〈k1

e1, k
1
e2〉}} and I2=

{{k2
e1, k2

e2}, {〈k2
e1, k

2
e2〉}}, semantic schema I which delegates all transitions in

I1 and I1 is constructed as I = {{ke1, ke2}, {〈ke1, ke2〉}}, where ke1=k1
e1 	 k2

e1
and ke2 = k1

e2 	 k2
e2 (ki

e denotes a specific THSM of an environment entity e and
	 is a composition operator). Concretely, the task to obtain desired composition
I of I1, I2 can be decomposed to two sub-tasks.

First, we compose specific THSMs in Ii(i = 1, 2) which are of same envi-
ronment entity. For example, in the two semantic schemas Itsa = {{ktsa

ticket}, φ}
(Fig.2(a)), Itds = {{ktds

ticket}, φ}(Fig.2(b)), ktsa
ticket and ktds

ticket are of same en-
vironment entity ticket, we need to check whether there exists target THSM
kbta

ticket(seeing Table.3) by composing ktsa
ticket and ktds

ticket.

Web Service Composition: An Approach Using Effect-Based Reasoning 69

Second, message exchange relations between these composed specific THSMs
are constructed according to sharable domain knowledge, i.e., environment ontol-
ogy. For example, we suppose that kbta

creditcard(seeing Table.3) is the composition
of kbas

creditcard and φ (There is not another specific THSM of creditcard except for
kbas

creditcard in elementary semantic schemas). It is described in BTO that a state
valid in kbta

creditcard can trigger a state transition from ordered to sold in kbta
ticket.

Therefore, there is a message exchange relation between kbta
ticket and kbta

creditcard.
Back to the example, we present here how to compose the semantic schemas,

Itsa, Itds, Ihos, and Ibas, of four elementary services (Ticket-Selling Service(TSA),
Ticket-Delivering Service(TDS), Hotel Service (HOS) and Bank Service(BAS),
seeing Fig.2) to obtain the desired semantic schema Ibta.

First, we present how to check whether there exists target THSM kbta
ticket by

composing elementary THSMs ktsa
ticket and ktds

ticket. In [3], D.Berardi has developed
a technique for composition of finite state machines in terms of satisfiability of
a formula of Deterministic Propositional Dynamic Logic (DPDL). We formulate
the problem on composition existency of the target THSM kbta

ticket based on the
Berardi’s formula of DPDL: The DPDL formula Φtravel, built as a conjunction of
the following formulas, is satisfiable if and only if there exists the target THSM
kbta

ticket by composing elementary THSMs ktsa
ticket and ktds

ticket.
Concretely, there is a set of atomic propositions Ptravel in Φtravel. We have

(i) one proposition sj for each state sj of kj
ticket, j ∈ {bta, tsa, tds}, which

is true if kj
ticket is in state sj ; (ii) propositions movedj , j ∈ {bta, tsa, tds},

denoting whether kj
ticket performed a state transition. And the transition from

a state to its default child state or a state to its super-state are viewed to be a
state transition. Formally, s′d child s ⇔ s′ = δ(s, τ), where τ denotes a special
input that triggers the transition from state s to its default child s′d. Moreover,
s′ child s ⇔ s = δ(s′, ς), where ς denotes another special input that triggers
the transition from child state s′ to its super-state s. And, α denotes an input
α ∈ {τ, ς} ∪ Σin ∪ Σin

1 ∪ ... ∪ Σin
n , where Σin

i denotes inputs of each elementary
THSM. The master modality [u], which states universal assertions, denotes the
closure of inputs. The modality 〈u〉 states existence assertions. Then, we have
the following formulas.

(i) Formulas capturing the target THSM kbta
ticket.

[u](ticket-availablebta → ¬ticket-orderedbta)

This kind of formulas states that kbta
ticket can never be simultaneously in the two

states ticket-availablebta and ticket-orderedbta.

[u](ticket-availablebta → 〈orderInfo〉true ∧ [orderInfo]ticket-orderedbta)
[u](ticket-soldbta → 〈τ〉true ∧ [τ]ticket-non-deliveredbta)
[u](ticket-nonbta-delivered → 〈ς〉true ∧ [ς]ticket-soldbta)

This kind of formulas encodes the state transitions that kbta
ticket can perform. The

first formula asserts that if kbta
ticket is in state ticket-availablebta and receives the

input orderInfo, it necessarily moves to state ticket-orderedbta. The second for-
mula asserts that if kbta

ticket is in state ticket-soldbta and receives the special input

70 P. Wang and Z. Jin

τ , it necessarily moves to its default child ticket-non-deliveredbta. It encodes a
transition from state ticket-soldbta to its default child ticket-non-deliveredbta.
Similarly, the third one encodes a transition from state ticket-non-deliveredbta

to its super-state ticket-soldbta.

[u](ticket-availablebta → [cancelInfo]false)
[u](ticket-orderedbta → [τ]false)
[u](ticket-orderedbta → [ς]false)

This kind of formulas encodes the state transitions that are not defined on
kbta

ticket. The first formula asserts that kbta
ticket never move when it is in state

ticket-availablebta and receives the input cancelInfo. The second formula as-
serts that ticket-orderedbta has no children. The third formula asserts that
ticket-orderedbta has no super-state.

(ii) Formulas capturing elementary THSMs (e.g., ktsa
ticket).

[u](ticket-availabletsa → ¬ticket-orderedtsa)

This kind of formulas asserts that ktsa
ticket can never be simultaneously in the two

states ticket-availabletsa and ticket-orderedtsa, which has an analogous meaning
as that relative to kbta

ticket.

[u](ticket-availabletsa → [orderInfo](movedtsa ∧ ticket-orderedtsa ∨
¬movedtsa ∧ ticket-availabletsa))

This kind of formulas asserts that in the composition, either it is ktsa
ticket that

performs the state transition and therefore it moves to state ticket-orderedtsa,
or the state transition is performed by another elementary THSM, hence, ktsa

ticket

did not move and remained in the current state ticket-availabletsa.

[u](ticket-availabletsa → [deliveryInfo]¬movedtsa)

This kind of formulas encodes the situation when a state transition is not defined.
The formula asserts that if the THSM ktsa

ticket is in state ticket-availabeltsa and
it receives an input deliveryInfo, it dose not move.

(iii) The following formulas must hold for the overall composition.

ticket-availablebta ∧ ticket-availabletsa ∧ ticket-soldtds

It asserts that THSMs kbta
ticket, k

tsa
ticket and ktds

ticket start from their start states.

[u](〈orderInfo〉true → [orderInfo](movedtsa ∨ movedtds))

This kind of formulas express that at each step at an elementary THSM moves.
The formula asserts that if input orderInfo is received, then necessarily a state
transition (movedtsa or movedtds) is executed by at least an elementary THSM.

Based on standard Tableau Algorithm [3], we construct the target THSM
kbta

ticket by composing ktsa
ticket and ktds

ticket when validating the satisfiability of for-
mula Φtravel. Because that there is only and only one kbas

ceditcard which is a specific
THSM of creditcard in the four elementary semantic schemas, kbta

creditcard just is
kbas

creditcard. Similarly, kbta
hotelroom also just is khos

hotelroom.

Web Service Composition: An Approach Using Effect-Based Reasoning 71

creditcard-validbta ↑ 〈ticket-orderedbta, accountInfo, ticket-soldbta〉
ticket-soldbta ↑ 〈creditcard-non-chargedbta, feeInfo, creditcard-charegedbta〉

Second, above two message exchanges are described in BTO about environment
entities ticket and creditcard. Therefore, 〈kbta

ticket, k
bta
creditcard〉 ∈ interbta. Simi-

larly, we also can get 〈kbta
hotelroom, kbta

creditcard〉 ∈ interbta

Finally, target Web service (BTA, its capability specification is Ibta) that sat-
isfies goal Gtravel is constructed by composing the semantic schemas of effect sets
of elementary services, i.e., TSA(Itsa), TDS(Itds), HOS(Ihos) and BAS(Ibas).
The result Ibta by composing the four elementary services is shown in Fig.3.

Fig. 3. Composition that satisfies goal Gtravel of TSA, TDS, HOS, BAS

Concretely, TSA changes environment entity ticket from state available to
state sold via a two middle states {ordered, cancelled}. At the same time,
BAS changes environment entity creditcard from state valid to state charged.
The two processes are synchronous by using two message exchanges. output
of creditcard’s state valid triggers state transition of ticket from ordered to
sold, and output of ticket’s state sold triggers state transition of creditcard
from non-charged to charged, i.e., ticket is paid by credit card. Sequentially,
TDS changes environment entity ticket from state sold to state delivered. In
the same way, HOS changes environment entity hotelroom from state vacancy
to state paid by using message exchanges with BAS. The goal Gtravel can be
satisfied.

72 P. Wang and Z. Jin

5 Related Work and Conclusion

There are some available approaches to Web service composition. For the service
composition, service description is an important issue. [4] propose an approach to
the automated composition of Web services based on a translation of OWL-S ser-
vice description [5] to situation calculus. Moreover, [6] has proposed a framework
which uses a Hierarchical Task Network planner called SHOP2 to compose Web
services. SHOP2provides algorithms for translating an OWL-S service description
to a SHOP2 domain. This kind of efforts assumes that Web service is described as
interface-based model. However, it is not enough to describe service capabilities.

The OWL-S process model [7] is also proposed for Web service composition.
Other representative composition efforts [8,9,10] use Petri net. Moreover, state
machine is popularly proposed for representing Web service. In [11], the Roman
model focuses on activities of services, and the services are represented as finite
state automata with transitions labeled by these activities. The Conversation
model [12] focuses on messages passed between Web services, and again uses
finite state automata to model the internal processing of a service. WSMO [13]
specifies internal and external choreography of Web services using abstract state
machines. This kind of efforts assumes that Web service is described as its local
behavior. It is more expressive than interface-based model to describe service
capabilities. However, it may be too tied with implementation of services.

[14,15] propose context-oriented approaches that support coordinating and
collaborating Web services. Generally, this kind of efforts emphasize the context
information in the actual execution of Web services. They also do not involve
service capability description at higher-level of abstraction.

Different from the above mentioned approaches, our approach follows the
environment-based requirements engineering to specify requirement and elemen-
tary services for composition. Instead of focusing on the interface-based model
or the process model of Web services, we give regard to effects imposed by the
services on their environment entities. The capabilities of Web services are ex-
pressed by the traces of optative interactions of the services with the environment
entities. Thus, environment entities play the role of collaborating Web services.
The main contributions of this paper include that:

– The structured effects of the sharable environment entities, which are mod-
eled by state machines, make the Web service specifications expressive and
understandable with each other;

– The effect based capability profile makes the Web service capability specifica-
tion more meticulous without exposing the Web service’s realization details;

– We present that the problem of Web service composition is characterized to
be a combination of effects of elementary services on their environment.

In our future work, a logic formalism will be given to express the constraints
on Web services. We also will improve the Description Logic-based system for
implementing more effective service composition. Moreover, the environment
ontology and capability, goal profiles will be related to current popular semantic

Web Service Composition: An Approach Using Effect-Based Reasoning 73

description language of Web services, such as OWL-S. We also will focus on how
to create and verify the capability and goal profiles.

Acknowledgment

Supported by the National Natural Science Fund for Distinguished Young Schol-
ars of China under Grant No.60625204, the Key Project of National Natural Sci-
ence Foundation of China under Grant No.60496324, the National 863 High-tech
Project of China under Grant No.2006AA01Z155, the National 973 Fundamental
Research and Development Program of China under Grant No.2002CB312004,
the Knowledge Innovation Program of Chinese Academy of Sciences and MADIS.

References

1. Jin, Z.: Revisiting the Meaning of Requirements. Journal of Computer Science and
Technology 22(1), 32–40 (2006)

2. Wang, P., Jin, Z., Liu, L.: An Approach for Specifying Capability of Web Services
based on Environment Ontology. In: ICWS 2006, pp. 365–372 (2006)

3. Berardi, D., Calvanese, D., Giacomo, G.D., et al.: Automatic Composition of E-
services That Export Their Behavior. In: Orlowska, M.E., Weerawarana, S., Papa-
zoglou, M.M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, Springer, Heidelberg
(2003)

4. McIlraith, S., Son, T.C.: Adapting Golog for Composition of Semantic Web Ser-
vices. In: KR 2002, pp. 482–496 (2002)

5. The OWL Services Coalition: OWL-S: Semantic Markup for Web Services (2004),
http://www.daml.org/services/owl-s/1.1/overview/

6. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for Web Service
composition using SHOP2. Journal of Web Semantics (2004)

7. Pistore, M., et al.: Process-Level Composition of Executable Web Services: On-
the-fly Versus Once-for-all Composition. In: Gómez-Pérez, A., Euzenat, J. (eds.)
ESWC 2005. LNCS, vol. 3532, pp. 62–77. Springer, Heidelberg (2005)

8. Narayanan, S., McIlraith, S.: Simulation, Verification and Automated Composition
of Web Services. In: WWW 2002

9. Hamadi, R., Benatallah, B.: A Petri Net-based Model for Web Service Composition.
In: ADC 2003, pp. 191–200 (2003)

10. Yu Tang, et al.: SRN: An Extended Petri-Net-Based Workflow Model for Web
Service Composition. In: ICWS 2004

11. Berardi, D., Calvanese, D., Giacomo, G.D., et al.: Automatic Composition of Tran-
sition based Semantic Web Services with Messaging. In: VLDB 2005

12. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation Specification: A New Approach to
Design and Analysis of E-Service Composition. In: WWW 2003, pp. 403–410 (2003)

13. Fensel, D., et al.: Ontology-based Choreography of WSMO Services. In: WSMO
Final Draft, http://www.wsmo.org/TR/d14/v0.4/

14. Maamar, Z., Mostefaoui, S.K., Yahyaoui, H.: Toward an Agent-Based and Context-
Oriented Approach for Web Services Composition. In: IEEE Transactions on
Knowledge and Data Engineering, May 2005, vol. 17(5), pp. 686–697 (2005)

15. Little, M., et al.: Web Services Context Specification (WS-Context) (April 2007),
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/wsctx.html

http://www.daml.org/services/owl-s/1.1/overview/
http://www.wsmo.org/TR/d14/v0.4/
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/wsctx.html

Analysis of Composite Web Services Using Logging
Facilities

Mohsen Rouached and Claude Godart

LORIA-INRIA-UMR 7503
BP 239, F-54506 Vandœuvre-les-Nancy Cedex, France

{mohsen.rouached,claude.godart}@loria.fr

Abstract. In order to fully explore Web service business opportunities while en-
suring a correct and reliable modelling and execution, analyzing and tracking
Web services interactions will enable them to be well understood and controlled.

This paper advocates a novel technique to log composite Web services and
a formal approach, based on an algebraic specification of the discrete event cal-
culus language DEC, to check behavioural properties of composite Web services
regarding their execution log. An automated induction-based theorem
prover SPIKE is used as verification back-end.

1 Introduction

Creating new services by combining a number of existing ones is becoming an attractive
way of developing value added Web services. This pattern is not new but it does pose
some new challenges which have yet to be addressed by current technologies and tools
for Web service composition.

In order to satisfy current users and to attract new customers, services providers
need to pay special attention to the quality of their services. In particular, they need
to trace executions of these services in order to ensure explainability in case of failure
or auditing, as well as to support decision-making aimed at improving the structure
and dynamics of the services. These traces of ongoing and past executions of services
provide also the information required to detect services whose executions tend to fail,
and to conduct routine or ad-hoc checks involving the executions of a service.

In the research related to Web services, several initiatives have been conducted with
the intention to provide logging facilities. Despite all these efforts, the Web service
logging activity is a highly complex task. The complexity, in general, comes from the
following sources. First, the number of services available over the Web increases dra-
matically during the recent years, and one can expect to have a huge Web service repos-
itory to be searched. Second, Web services can be created and updated on the fly, thus
the composition system needs to detect the updating at runtime and the decision should
be made based on the up to date information.

To a service composer, it is desirable to be able to verify that the composition is well
formed: for example that it does not contain any deadlocks or livelocks which would
cause the composition to not terminate under certain conditions; and that the compo-
sition uses each Web service correctly. It is possible to verify the former using formal

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 74–85, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Analysis of Composite Web Services Using Logging Facilities 75

notations and model checkers but for the latter it is necessary to precise what is meant by
correctly. One aspect of using a Web service correctly is invoking the operations in the
order in which the provider intended. However, the WSDL description of a Web service
does not specify any ordering information for the operations which are exposed by the
service. To allow a service composer to verify this aspect of correctness of the composi-
tion, we focus in this paper on defining ordering information about services’ behaviours
regarding the execution log. Indeed, we consider behavioural properties where ordering
and timing are relevant and we check whether certain properties hold or not assuming
that the information system at hand left a “footprint” in some event log.

The remainder of the paper is structured as follows. Section 2 discusses existing
Logging facilities for Web services and introduces our technique to collect composite
Web services executions. Section 3 presents an algebraic specification of the DEC lan-
guage. An illustrative example is used to illustrate our ideas. In Section 4, an overview
of SPIKE is given. The encoding of DEC in SPIKE is explained in Section 5. Us-
ing this encoding, behavioural properties are checked in Section 6. The related work is
discussed in section 7. Finally, Section 8 concludes the paper.

2 Web Service Logging

In this section we examine and formalize the logging possibilities in service-oriented ar-
chitectures.Then, we introduce our technique to log Web services executions and more
specifically the composite ones. The levels of logging vary in the richness of the in-
formation that is logged and in the additional development effort that is needed when
implementing the respective features.

2.1 Web Service Collecting Solutions and Web Log Structure

The first step in the Web service analysis process consists of gathering the relevant
Web data, which will be analyzed to provide useful information about the Web Service
behaviour. We discuss how these log records could be obtained by using existing tools
or specifying additional solutions. Then, we show that the analysis process is tightly
related to what of information provided in Web service log and depend strongly on its
richness.

Existing logging solutions provide a set of tools to capture web services logs. These
solutions remain quite “poor” to analyze advanced web service behaviours. That is why
advanced logging solutions should propose a set of developed techniques that allows
us to record the needed information to analyze more advanced behaviour. This addi-
tional information is needed in order to be able to distinguish between Web services
composition instances.

2.2 Existing Logging Solutions

There are two main sources of data for Web log collecting, corresponding to the inter-
acting two software systems: data on the Web server side and data on the client side (see
Figure 1). The existing techniques are commonly achieved by enabling the respective

76 M. Rouached and C. Godart

Web server’s logging facilities. There already exist many investigations and proposals
on Web server log and associated analysis techniques. Actually, papers on Web Usage
Mining WUM [10] describe the most weel-known means of web log collection. Ba-
sically, server logs are either stored in the Common Log Format 1 or the more recent
Combined Log Format 2. They consist primarily of various types of logs generated by
the Web server. Most of the Web servers support as a default option the Common Log
Format, which is a fairly basic form of Web server logging. The log entry recorded in
Apache Tomcat when a request is sent to a Web service ExampleService may look as
follows:

127.0.0.1 - - [15/Mar/2005:19:50:13 +0100] "POST /axis/
services/ExampleService HTTP/1.0" 200 819 "-" "Axis/1.1"

The log entry contains the requestor’s IP address, a timestamp, the request line, the
HTTP code returned by the server, i.e., 200 for OK, the size of the returned resource,
and the User-Agent, i.e., Axis/1.1. The empty element, i.e. ”-”, indicates that no referer-
information is available. Such log records allow for tracking of the service consumer,
determining which service is called how often (but not which operation of the service),
or analyzing service failure rates.

Level Logged information Logging facility
(1) Standard HTTP-server logging consumer’IP,invoked

WS,timestamp,HTTP’status code
Web server

(2) Logging of complete HTTP requests and re-
sponses

(1)+ SOAP request and re-
sponse,timestamps

HTTP listener and logger

(3) Logging at Web service container level invoked WS and operation,SOAP
request and response,timestamps

WS container, SOAP handlers

(4) Logging client activity (3)+ consumer-side activity WS container,SOAP handlers
(5) Providing for process information (4)+ workflow information (4)+ Web services

Fig. 1. Summary of logging features

However, the emerging paradigm of Web services requires richer information in or-
der to fully capture business interactions and customer electronic behaviour in this new
Web environment. Since the Web server log is derived from requests resulting from
users accessing pages, it is not tailored to capture service composition or orchestration.
That is why, we propose in the following a set of advanced logging techniques that
allows to record the additional information to analyze more advanced behaviour.

2.3 Advanced Logging Solutions

Identifying Web Service Composition Instance: Successful analysis for advanced ar-
chitectures in Web services models requires composition (choreography/orchestration)
information in the log record. Such information is not available in conventional Web
server logs. Therefore, the advanced logging solutions must provide for both a chore-
ography or orchestration identifier and a case identifier in each interaction that is logged.

1 http://httpd.apache.org/docs/logs.html
2 http://www.w3.org/TR/WD-logfile.html

Analysis of Composite Web Services Using Logging Facilities 77

A known method for debugging, is to insert logging statements into the source code
of each service in order to call another service or component, responsible for logging.
However, this solution has a main disadvantage: we do not have ownership over third
parties code and we cannot guarantee they are willing to change it on someone else
behalf. Furthermore, modifying existing applications may be time consuming and error
prone.

Since all interactions between Web services happen through the exchange of SOAP
message (over HTTP), an other alternative is to use SOAP headers that provides addi-
tional information on the message’s content concerning choreography. Basically, we
modify SOAP headers to include and gather the additional needed information captur-
ing choreography details. Those data are stored in the special <WSHeaders>. This
tag encapsulates headers attributes like:choreographyprotocol,choreograp-
hyname,choreographycase and any other tag inserted by the service to record op-
tional information; for example, the <soapenv:choreographyprotocol> tag,
may be used to register that the service was called by WS-CDL choreography protocol.
The SOAP message header may look as shown in Figure 2. Then, we use SOAP inter-
mediaries [2] which are an application located between a client and a service provider
side. These intermediaries are capable of both receiving and forwarding SOAP mes-
sages. They are located on Web services provider side and they intercept SOAP request
messages from either a Web service sender or captures SOAP response messages from
either a Web service provider. On Web service client-side, this remote agent can be im-
plemented to intercept those messages and extract the needed information. The imple-
mentation of client-side data collection methods requires user cooperation, either in en-
abling the functionality of the remote agent, or to voluntarily use and process the mod-
ified SOAP headers but without changing the Web service implementation itself (the
disadvantage of the previous solution).

Concerning orchestration log collecting, since the most Web services orchestration
are using a WSBPEL engine, which coordinates the various orchestration’s web ser-
vices, interprets and executes the grammar describing the control logic, we can extend
this engine with a sniffer that captures orchestration information, i.e., the orchestration-
ID and its instance-ID. This solution provides is centralized, but less constrained than
the previous one which collects choreography information.

Using these advanced logging facilities, we aim at taking into account Web services’
neighbors in the analysis process. The term neighbors refers to other Web services that
the examined Web service interacts with. The concerned levels deal with analyzing Web
service choreography interface (abstract process) through which it communicates with
others web services to accomplish a choreography, or discovering the set of interactions
exchanged within the context of a given choreography or composition.

Collecting Web Service Composition Instance: The focus in this section is on col-
lecting and analysing single web service composition instance. The issue of identifying
several instances has been discussed in the previous section. The exact structure of
the web logs or the event collector depends on the web service execution engine that
is used. In our experiments, where we have used the engine bpws4j 3 uses log4j4 to

3 http://alphaworks.ibm.com/tech/bpws4j
4 http://logging.apache.org/log4j

78 M. Rouached and C. Godart

< soapenv : Header >
< soapenv : choreographyprotocol

soapenv : mustUnderstand = ”0”
xsi : type = ”xsd : string” > WS − CDL

< /soapenv : choreographyprotocol >
< soapenv : choreographyname

soapenv : mustUnderstand = ”0”
xsi : type = ”xsd : string” > OTA

< /soapenv : choreographyname >
< soapenv : choreographycase

soapenv : mustUnderstand = ”0”
xsi : type = ”xsd : int” > 123

< /soapenv : choreographycase >
< /soapenv : Header >

Fig. 2. The SOAP message header

generate logging events. Log4j is an OpenSource logging API developed under the
Jakarta Apache project. It provides a robust, reliable, fully configurable, easily ex-
tendible, and easy to implement framework for logging Java applications for debugging
and monitoring purposes. The event collector (which is implemented as a remote log4j
server) sets some log4j properties of the bpws4j engine to specify level of event report-
ing (INFO, DEBUG etc.), and the destination details of the logged events. At runtime
bpws4j generates events according to the log4j properties set by the event collector.
More details about the implementation can not be presented here due to lack of space
but can be found in [11].

3 Analyzing Web Services’Behaviours

In this section, we focus on the process of analyzing Web services’behaviours regarding
their execution logs. Indeed, given an event log, we want to verify certain behavioural
properties, to provide knowledge about the context of and the reasons for discrepancies
between services ’behaviours and related instances.

3.1 Illustrative Example

As an illustrative example, we consider a scenario of a device purchase order shown in
Figure 3. This scenario models a 3-party composition, in which a supplier coordinates
with its warehouse in order to sell and ship electronic devices. The interaction starts
when a Customer communicates a purchase order to the Supplier. Supplier reacts to
this request asking the Warehouse about the availability of the ordered item. Once re-
ceived the response, Supplier decides to cancel or confirm the order, basing this choice
upon Item’s availability and Customer’s country. In the former case, the execution ter-
minates, whereas in the latter one a concurrent phase is performed: Customer sends an
order payment, while Warehouse handles the item’s shipment. When both the payment
and the shipment confirmation are received by Supplier, it delivers a final receipt to the

Analysis of Composite Web Services Using Logging Facilities 79

Fig. 3. Device purchase order

Customer. The specification of this scenario is given as follows. The events are rep-
resented in the form msgType(sender, receiver, content1, ..., contentn), where the
msgType, sender, receiver and contenti retain their intuitive meaning.

During the rest of the paper, we focus on a simple execution instance of the previ-
ously described example. In this instance, inspired by Disney characters, the criminal
bigTime (BT) beagle wants to buy a device from the online shop devOnline (DO), whose
warehouse is devWare (DW). Figure 4 contains the log of the scenario from the view-
point of devOnline; note that messages are expressed in an high level way, abstracting
from the SOAP exchange format using the technique introduced in Section 2.3. In the

message sender receiver content ts te

1.purchase order BT DO [dev] 1 2
2.isAvailable DO DW [dev] 3 9
3.inform DW DO [dev, 2] 10 11
4.accept order DO BT [dev] 12 13
5.shipment order DO DW [dev] 14 15
6.confirm shipment DW DO [dev] 16 18
7.payment BT DO [dev] 19 20
8.delivery DO BT [dev, r] 21 22

Fig. 4. A fragment of SOAP messages exchanged in the device purchase order

device purchase scenario, we can distinguish several behavioural properties that should
be respected. However, due to lack of space, we just mention the following ones. (BP1)
specifies that, when Customer sends to Supplier the purchase order, including the re-
quested Item and his/her Country, Supplier should request Item’s availability to Ware-
house. (BP2) indicates that Warehouse should respond within 6 minutes to Supplier’s
request giving the corresponding quantity Qty. The deadline is a constraint over the
variable Tqty, that represents the time which the response is sent to.

80 M. Rouached and C. Godart

3.2 Discrete Event Calculus: DEC

Given the fact that we consider behavioural properties where ordering and timing are
relevant and we adopt an event driven reasoning, the Event Calculus (EC) [8] seems to
be a solid basis to start from. EC is a temporal formalism based on a first order logic,
that can be used to specify the events that appear within a system and the effect (or
the fluents) of these events. It includes an explicit time structure that dates the system
changes caused by the occurrence of the events.

For our purpose, we have used the discrete Event Calculus (DEC) that is enough ex-
pressive to cope with the runtime analysis of composite Web services. DEC includes the
predicates Happens, Initiates, Terminates and HoldsAt, as well as some auxiliary
predicates defined in terms of these. Happens(a, t) indicates that event (or action) a
actually occurs at time-point t. Initiates(a, f, t) (resp. Terminates(a, f, t)) means
that if event a were to occur at t it would cause fluent f to be true (resp. false) im-
mediately afterwards. HoldsAt(f, t) indicates that fluent f is true at t. The auxiliary
predicate Clipped(t1, f, t2) expresses whether a fluent f was terminated during a time
interval [t1, t2]. The following four axioms capture the behaviour of fluents once initi-
ated or terminated by an event:

1. Happens(a, t1) ∧ (t1 < t2) ∧ Terminates(a, f, t2) → Clipped(t1, f, t2)
2. Happens(a, t1) ∧ (t1 < t2) ∧ Initiates(a, f, t2) → ¬Clipped(t1, f, t2)
3. Happens(a, t1) ∧ (t1 < t2) ∧ ¬Clipped(t1, f, t2) → HoldsAt(f, t2)
4. Happens(a, t1) ∧ (t1 < t2) ∧ Clipped(t1, f, t2) → ¬HoldsAt(f, t2)

Thus, the event log fragment depicted in Figure 4 can be easily translated in DEC for-
malism as follows:

L1 : Happens(purchase order(BT, DO, dev, country), 2)
L2 : Happens(isAvailable(DO, DW, dev), 3)
L3 : Happens(inform(DW, DO, dev, 3), 10)
L4 : Happens(accept order(DO, BT, dev), 12)
L5 : Happens(shipment order(DO, DW, dev, BT), 13)
L6 : Happens(confirm shipment(DW, DO, dev), 16)
L7 : Happens(payment(BT, DO, dev), 19)
L8 : Happens(delivery(DO, BT, dev, rec), 21)

In the same way, the behavioural properties can be expressed formally. For instance, the
properties introduced in Section 3.1 are described in DEC formalism as follows:

(BP1) : Happens(purchase order(cu, s, i), Tpo)∧
Happens(isAvailable(s, w, i), Tca))
=⇒ Tpo < Tca

(BP2) : Happens(isAvailable(s, w, i), Tca)∧
Happens(inform(w, s, i, Qty), Tqty))
=⇒ Tqty < Tca + 6

Analysis of Composite Web Services Using Logging Facilities 81

4 Overview of SPIKE

Theorem provers have been applied to the formal development of software. They are
based on logic-based specification languages and they provide support to the proof of
correctness properties, expressed as logical formulas. In this work, we use the SPIKE
induction prover [14]. SPIKE was chosen for the following reasons: (i) its high au-
tomation degree (to help a Web service designer), (ii) its ability on case analysis, (iii) its
refutational completeness (to find counter-examples), (iv) its incorporation of decision
procedures (to automatically eliminate arithmetic tautologies produced during the proof
attempt5) SPIKE proof method is based on cover set induction. Given a theory, SPIKE
computes in a first step induction variables where to apply induction and induction
terms which basically represent all possibles values that can be taken by the induction
variables. Typically for a nonnegative integer variable, the induction terms are 0 and
x + 1, where x is a variable.

Given a conjecture to be checked, the prover selects induction variables according
to the previous computation step, and substitute them in all possible way by induc-
tion terms. This operation generates several instances of the conjecture which are then
simplified by rules, lemmas, and induction hypotheses.

5 Encoding DEC in SPIKE

In this section, we describe a method for representing DEC in SPIKE language. In the
sequel, we assume that all formulas are universally quantified.

Data. All data information manipulated by the system is ranged over a set of sorts.
This data concerns generally the argument types of events and fluents. For instance,
the sets of customers, suppliers, items and countries are defined respectively by the
sorts Customer, Supplier, Item and Country. The sort Bool represents the boolean
values, where true and false are its constant constructors.

Events. We consider that all events of the system are of sort Event, where the event
symbols are the constructors of this sort. These constructors are free as all event symbols
are assumed distincts. For instance, the event symbol purchase order(x, y, z, t) is a
constructor of Event such that x, y, z and t are variables of sorts Customer, Supplier,
Item and Country respectively. We define also an idle event which when occuring it
lets the system unchanged. We represent it by the constant constructor Noact.

Fluents. The sort Fluent respresents the set of fluents. All fluent symbols of the
systems are the constructors of sort Fluent, that are also free. The fluent symbol
EqualItem(x, y), for example, means that the variables x and y, of sort Item, are
equal.

Time. We use the sort of natural numbers, Nat, which is reflected by constructors 0 and
successor succ(x) (meaning x + 1). We have modified the code of SPIKE in order to
enable handling of Peano numbers. For example, now we can directly write 17 instead
of s(s(...(0)...)))) as it was in the previous versions of SPIKE .

5 Like x + z > y = false ∧ z + x < y = false =⇒ x + z = y.

82 M. Rouached and C. Godart

Axioms. We express all predicates used in DEC as boolean function symbols. The sig-
natures of these function symbols and others additional functions are as follows:

Happens : Event × Nat → Bool
Initiates : Event × F luent × Nat → Bool
T erminates : Event × F luent × Nat → Bool
HoldsAt : F luent × Nat × Nat → Bool
Clipped : F luent × Nat × Nat → Bool
p : Event × nat → EventT ime
Cons : EventT ime × List → List
member : EventT ime × List → bool
Happens : EventT ime → Bool

HoldsAt and Clipped are defined within a time range. For instance, HoldsAt(f, t1, n)
is defined within the range [t1, t1 + n]. In addition, we define the functions symbols p,
Cons, and member. p is a constructor that associates an event to its occurrence time.
Cons is used to group the list of events in the constant ListEvent. This provide a
certain flexibility in the construction of the log. Then, member is a boolean function
that permits to test if an event appears in the log. After defining the p constructor,
the signature of the function associated to the predicate Happens is changed from
Happens : Event × Nat → Bool to Happens : EventT ime → Bool.

Finally, the four axioms given in Section 3.2 are expressed in conditional equations
as follows:

(A1) event 	= Noact∧Happens(p(event, t1)) = true∧Initiates(event, f, t1) = true ⇒
HoldsAt(f, t1, 0) = true

(A2) HoldsAt(f, t1, t) = true∧Clipped(f, t1+t, s(0)) = false ⇒ HoldsAt(f, t1, s(t)) =
true

(A3) event 	= Noact ∧ Happens(p(event, t1)) = true ∧ Terminates(event, f, t1) =
true ⇒ Clipped(f, t1, s(0)) = true

(A4) event 	= Noact ∧ Happens(p(event, t1 + t + s(0))) = true ∧ Terminates(event,f,
t1 + t + s(0)) = true ⇒ Clipped(f, t1, s(s(t))) = true

(A5) Happens(p(Noact, t1 + t + s(0))) = true =⇒ Clipped(f, t1, s(s(t))) =
Clipped(f, t1, t + s(0))

(A6) Happens(x) = member(x,ListEvent)
(A7) member(x,Nil) = false
(A8) x = y ⇒ member(x,Cons(y, l)) = true
(A9) x 	= y ⇒ member(x,Cons(y, l)) = member(x, l)

Log. Using the function Cons we define the log in equational form:

ListEvent = Cons(p(purchase order(BT,DO, dev, country), 2),
Cons(p(isAvailable(DO, DW, dev), 3),
Cons(p(inform(DW, DO, dev, 3), 10),
Cons(p(accept order(DO, BT, dev), 12),
Cons(p(shipment order(DO, DW, dev, BT), 13),
Cons(p(confirm shipment(DW,DO, dev), 16),
Cons(p(payment(BT,DO, dev), 19),
Cons(p(delivery(DO, BT, dev, rec), 21), Nil))))))))

Analysis of Composite Web Services Using Logging Facilities 83

Behavioural properties. In the same way, we can express the bahavioural properties
in equational form. For instance, the properties (BP1) and (BP2)given in Section 3.2,
are written as follows:

(BP1) : Happens(purchase order(x, y, i), t1) = true∧
Happens(isAvailable(y, w, i), t2) = true
=⇒ (t1 < t2) = true

(BP2) : Happens(isAvailable(s, w, i), t1) = true∧
Happens(inform(w, s, i, q), t2) = true
=⇒ (t2 < t1 + 6) = true

where t1, t2, x, y, w, q and i are variables.
Finally, we build an algebraic specification from DEC specification. Once building

this specification, we can check all behavioural properties by means the powerful de-
ductive techniques (rewriting and induction) provided by SPIKE .

6 Checking Behavioural Properties

All the generated axioms can be directly given to the prover SPIKE , which automat-
ically transforms these axioms into conditional rewrite rules. When SPIKE is called,
either the behavioural properties proof succeed, or the SPIKE ’s proof-trace is used for
extracting all scenarios which may lead to potential deviations. There are two possible
scenarios. The first scenario is meaningless because conjectures are valid but it comes
from a failed proof attempt by SPIKE . Such cases can be overcome by simply intro-
ducing new lemmas. The second one concerns cases corresponding to real deviations.
The trace of SPIKE gives all necessary informations (events, fluents and timepoints)
to understand the inconsistency origin. Consequently, these informations help designer
to detect behavioural problems in the composite Web service.

Let consider the example illustrated in this paper. SPIKE has found that (BP1)
is true and the reader can be confirm that by analyzing the log. But when submitting
(BP2), SPIKE has discovered an error. In the following, we describe how the prover
checks the behavioural property (BP2).

Firstly, SPIKE simplifies (BP2) using the axioms (A6) and (A7) introduced in Sec-
tion 5:

p(isAvailable(s, w, i), t1)∧ (1)

p(inform(w, s, i, q), t2) (2)

=⇒ (t2 < t1 + 6) = true (3)

Using the literals L2 and L3 given by the log (that replace t1 and t2 by 3 and 10
respectively), this conjecture becomes (10 < 3 + 6) = true that is always false. Con-
sequently, the prover has detected an anomaly in the log. Below, we present a fragment
of the SPIKE trace when checking property BP2.

84 M. Rouached and C. Godart

Uncaught exception: Failure("fail induction on [10973] inform (u2, u1, u3, u5)
<> purchase_order (e1, e2, e3, e4) /\\ inform (u2, u1, u3, u5) <> isAvailable (
e2, e5, e3) /\\ u2 = e5 /\\ u1 = e2 /\\ u3 = e3 /\\ u5 = 3 /\\ u6 = 10 /\\ isAva
ilable (u1, u2, u3) <> purchase_order (e1, e2, e3, e4) /\\ u1 = e2 /\\ u2 = e5 /
\\ u3 = e3 /\\ u4 = 3 => u6 < (u4 + (6)) = true ;")
while proving the following initial conjectures
[6584] Happens (p (isAvailable (u1, u2, u3), u4)) = true /\ Happens (p (inform
(u2, u1, u3, u5), u6)) = true => u6 < (u4 + (6)) = true ;
Elapsed time: 0.186 s
We failed

7 Related Work

Up to now, few works have been conducted on logging and analyzing Web services
usage information. Akkiraju et al. [1] proposed a framework blending logging facili-
ties to private Web service registries. However, no details are provided about the log
structure or how to implement it. Irani [6] proposed the use of intermediaries to collect
information about authentication, auditing and management of services through the use
of logs, but he also does not provide any detail on the log structure. Brittenham et al.
[3], from WS-I Test Tools Working Group, proposed an architecture that consists of a
message monitor and an analyzer. The monitor is used to log the messages that were
sent to and from a Web service, while the analyzer is used to validate that the Web
service interactions contained in the message log conform to a WS-I profile. However,
WS-I monitor captures in a single log file HTTP data and the whole SOAP message
content. These data are captured in their raw format making it difficult to differenti-
ate analytical information from disposable data. Capturing the whole SOAP message
brings another problem: huge amount of data, many times larger than traditional HTTP
logs.

Formal analysis and verification of Web Services in the aim of detecting anomalies
are addressed in several papers. The SPIN model-checker is used for verification [9] by
translating Web Services Flow Language (WSFL) descriptions into Promela. [7] uses
a process algebra to derive a structural operational semantics of BPEL as a formal ba-
sis for verifying properties of the specification. In [4], BPEL processes are translated
to Finite State Process (FSP) models and compiled into a Labeled Transition System
(LTS) in inferring the correctness of the Web service compositions which are specified
using message sequence charts. In [5], finite automata were augmented with (i) XML
messages and (ii) XPath expressions as the basis for verifying temporal properties of
the conversations of composite Web services.

One common pattern of the above attempts is that they adapt static verification tech-
niques and therefore violations of requirements may not be detectable. This is because
Web services that constitute a composition process may not be specified at a level of
completeness that would allow the application of static verification, and some of these
services may change dynamically at run-time causing unpredictable interactions with
other services.

Finally, for a complete overview of using the event calculus in the context of Web
services, we refer the reader to our previous work [12,11,13].

Analysis of Composite Web Services Using Logging Facilities 85

8 Conclusions

This paper has outlined a technique to log composite Web services and a methodol-
ogy, using the logging facilities, to analyze services’ behaviours. More specifically, it
permits to check whether the observed behaviour of each involved service matches the
(un)expected/(un)desirable behaviour. The methodology is also supported by a formal
representation of behavioural properties and execution logs considered as the basis for
the automatic composition of Web services. The analysis process was supported by a
novel specification of the DEC formalism. As verification back-end we used an au-
tomated induction-based theorem prover SPIKE that provide support to the proof of
correctness properties, expressed as logical formulas.

References

1. Akkiraju, R., Flaxer, D., Chang, H., Chao, T., Zhang, L., Wu, F., Jeng, J.: A framework for
enabling dynamic e-business via web service. In: Proceedings of the OOPSLA, Florida, USA
(2001)

2. Baglioni, M., Ferrara, U., Romei, A., Ruggieri, S., Turini, F.: Use soap-based intermediaries
to build chains of web service functionality (2002)

3. Brittenham, P., Clune, J., Durand, J., Kleijkers, L., Sankar, K., Seely, S., Stobie, K., Turrell,
G.: Ws-i analyzer tool functional specification.

4. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Compatibility verification for web service
choreography. In: ICWS’04. Proceedings of the IEEE International Conference on Web Ser-
vices, Washington, DC, p. 738. IEEE Computer Society Press, Los Alamitos (2004)

5. Fu, X., Bultan, T., Su, J.: Analysis of interacting bpel web services. In: WWW ’04. Proceed-
ings of the 13th international conference on World Wide Web, pp. 621–630. ACM Press,
New York (2004)

6. Irani, R.: Web services intermediaries adding value to web services (November 2001)
7. Koshina, M., van Breugel, F.: Verification of business processes for web services. Technical

report, New York University, SFUCMPT-TR-2003-06 (2003)
8. Kowalski, R., Sergot, M.J.: A logic-based calculus of events. New generation Comput-

ing 4(1), 67–95 (1986)
9. Nakajima, S.: Verification of web service flows with model-checking techniques. In: CW, pp.

378–385 (2002)
10. Punin, J., Krishnamoorthy, M., Zaki, M.: Web usage mining: Languages and algorithms. In:

Studies in Classification, Data Analysis, and Knowledge Organization, Springer, Heidelberg
(2001)

11. Rouached,M.,Gaaloul,W.,vanderAalst,W.M.P.,Bhiri,S.,Godart,C.:Webserviceminingand
verification of properties: An approach based on event calculus. In: CoopIS 2006. Proceedings
14th International Conference on Cooperative Information Systems (November 2006)

12. Rouached, M., Perrin, O., Godart, C.: A contract-based approach for monitoring collabora-
tive web services using commitments in the event calculus. In: Ngu, A.H.H., Kitsuregawa,
M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 426–
434. Springer, Heidelberg (2005)

13. Rouached, M., Perrin, O., Godart, C.: Towards formal verification of web service composi-
tion. In: Dustdar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, Springer,
Heidelberg (2006)

14. Stratulat, S.: A general framework to build contextual cover set induction provers. Journal of
Symbolic Computation 32(4), 403–445 (2001)

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 86–94, 2007.
© Springer-Verlag Berlin Heidelberg 2007

QoS Prediction for Composite Web Services
with Transactions

Jiangxia Wu and Fangchun Yang

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, 100876 Beijing, China

wujiangxia@gmail.com, fcyang@bupt.edu.cn

Abstract. Prediction of the Quality of Service (QoS) of Composite Web
Services (CWS) makes it possible to tell whether the CWS meets the non-
function requirements, and to choose the CWS with better QoS from those with
similar function. QoS prediction is based on the estimation of the execution
process of CWS. For the reliability of CWS executions, Web service transaction
has been proposed, which will affect the execution process. However, the
existing approaches have not considered the effect. Thus they have limited
accuracy when predicting the CWS with transactions. The paper proposes an
approach for QoS prediction of CWS with transactions. A specification model
is defined to specify execution processes of CWS according to the exception
handling policies of transactions. Based on the model, an algorithm is proposed.
The experiment proves that the algorithm has much lower error rate and better
feasibility than the previous approaches when predicting CWS with
transactions.

Keywords: Composite Web Service, QoS prediction, Transaction.

1 Introduction and Related Work

Web Service Composition (WSC) gives a way to assemble Web services from the
view of function requirements. To predict the Quality of Service (QoS) of Composite
Web Services (CWS) makes it possible to tell whether the CWS meet the non-function
requirements, and what’s more to choose the CWS with better QoS from those with
similar function. The existing methods for QoS prediction of CWS include the
aggregation function approach [1], the Software Architecture based approach [2], the
simulation approach [3] and the Workflow Based Approach (WBA) [4, 5, 6, 7].
Among them, the WBA has the best feasibility and accuracy.

The existing approaches are based on the estimation of the execution process of
CWS. However, none of them has considered the effect of Web service transaction
mechanism on the execution process of CWS. Thus they have limited accuracy when
estimating the CWS with transaction mechanism. A fail-aware approach has been
proposed in [8], which analyzes the effect of failure recovery on QoS of CWS, also
without considering the transaction mechanism. And the difficulty in getting the input
parameters leads to the poor feasibility of the method.

 QoS Prediction for Composite Web Services with Transactions 87

We analyze the effect of Web service transaction on the execution process of
CWS. A specification model of CWS is defined to specify possible execution
processes of a transaction according to the exception handling policies of the
transaction. On the base of the specification model we propose an algorithm to predict
the average value of QoS attributes of CWS with transactions, and the method to
estimate the occurrence probability of exceptions as part of the algorithm. The
experiment proves the algorithm has much lower error rate and better feasibility than
the approach that has not considered the transaction mechanism when predicting the
QoS of CWS with transactions.

The rest of the paper is organized as follow: The specification model of CWS is
defined in section 2. The algorithm is proposed in section 3. And section 4 discusses
the experiment and section 5 concludes the paper.

2 Specification Model of CWS

2.1 Problem Definition

To guarantee the consistency and reliability of the executions of atomic services in
WSC, Web service transaction has been proposed. Web service transaction is a set of
service invocating operations that follows the Advanced Transaction Models (ATMs)
[9] which try to relax the rigid demands of ACID attributes because ACID is practical
only in tightly coupled systems, and follow the SACReD attributes which are
Semantic Atomicity, Consistency, Resiliency and Durability [10]. To ensure the
SACReD attributes, a set of exception handling policies will be predefined to
coordinate the operations in transactions. When exceptions happen to the transaction,
the normal process will be paused and compensation for recovery will be performed
according to the exception handling policies that specify what exceptions to handle
and how to handle. That is to say, the execution process of CWS with transactions
will be affected by the exception handling policies.

An example of CWS with transactions is given in figure 1. The function of the CWS
is to order a dress online, including suit and tie. The CWS is composed of four atomic
services: OrderReceipt, SuitOrder, TieOrder and OrderResponse. The process is shown
in figure 1. As it is nonsensical for only a tie or only a suit, these two things should be
gotten at the same time, which means all or nothing. Therefore, SuitOrder and TieOrder
make a transaction, and the exception handling policies are defined as that forward
recovery through SuitOrderAlter service when SuitOrder failed and backward recovery
through SuitOrderCancel service when TieOrder failed. What should be mentioned is
that we make the assumption that failure will not happen to SuitOrder and TieOrder at
the same time, and exception handling operations will not fail.

The problem is how to predict the execution process of CWS according to the
exception handling policies of transactions, and how to compute the QoS of the
predicted execution process.

2.2 Model Definition

The aim of the model is to specify the possible execution process of a CWS with
transactions.

88 J. Wu and F. Yang

Definition 2.1 CWS Process (CWSP). CWSP specifies the order of atomic service
invocations of a CWS when no exception happened, and can be described as a
workflow: Tasks of the workflow represent service invocations, and transitions
between tasks represent the order of invocation. For example, the CWSP of dress
order CWS is showed in figure 1.

Fig. 1. The CWSP of dress order CWS

Definition 2.2 Scope. Scope is a set of tasks and their transitions which make up of a
Web service transaction. Scope can be a part of or the entire CWSP, and there may be
more than one scope in a CWSP. Scopes can be nested and obey the rules of
transaction nesting [12]. For example, the scope in figure 1 represented by S1 consists
of SuitOrder and TieOrder.

Definition 2.3 Exception Handling Policy Set (EHPS). EHPS represents the set of
exception handling policies (ehp) pre-defined for a transaction, and the EHPS of
Scope Sα is described as EHPSα = {ehpα1, ehpα2,…, ehpαn}.

ehpαi represents a policy consisting of exception event and exception handling
action, described as ehpαi= (eventαi, actionαi). eventαi specifies the activation
exception event, and actionαi specifies the exception handling operations performed
when eventαi is true and the order of the operations. eventαi can be a simple event
which is the failure of a single service invocation or a complex event which is

multiple simple events connected by “AND”. ∀ ehpαi, ehpαj
∈EHPSα, if i ≠ j, then

eventαi
≠ eventαj.

For example, the EHPS of Scope S1 in dress order CWS can be described as EHPS1
= {ehp11, ehp12}, and ehp11= (Failure (SuitOrder), Alteration (SuitOrderAlter), ehp12
= (Failure (TieOrder), Compensation (SuitOrderCancel)).

Definition 2.4 Scope Processes (SP). Let SEPSα be the set of possible execution
processes of the scope Sα, and SP of scope Sα described as SPα is the association of
elements in SEPSα connected by the composition pattern [6] of “XOR-XOR”, as the
actual execution process of the scope must be one of the elements in SEPSα.

There are two types of elements in SEPSα. One is normal process and the other is
exception process. The former represents the scope execution process when no
exception happened which is same as the scope process specified in CWSP, and is
described as sepα0. And the latter specifies the scope execution process when
exceptions happened in the scope, and is described as sepαi (i > 0).

 QoS Prediction for Composite Web Services with Transactions 89

Now we want to compute all the elements in SEPSα. Normal process sepα0 can
be specified according to the CWSP. And exception processes can be specified
according to the exception handling policies. Let EHPSα= {ehpα1, ehpα2,…, ehpαn},
in which ehpαi =（eventαi, actionαi）. Different exceptions and exception handling
actions will lead to different exception processes. And with the assumption that
only one exception happened in an execution of scope and the exception handling
operation will not fail, the n exception handling policies in EHPSα will lead to n
exception processes. And the n exception processes are described as sepα1,
sepα2,…, sepαn. sepαi (i=1,2…,n) includes two parts: Pre exception handling part
(PRE-EH) and exception handling part (EH). PRE-EH of sepαi consists of the tasks
and their transitions in the Sα which are in completed, failure or active state when
eventαi happened between them, and EH of sepαi consists of the tasks and
transitions respectively representing the operations and their order specified in
actionαi.

For example, the SEPS of scope S1 described as SEPS1= {sep10, sep11, sep12} is
showed in figure 2. And the SP of scope S1 described as SP1 is showed in figure 3.

Fig. 2. The SEPS of scope S1

Fig. 3. The SP of scope S1

3 Prediction Algorithm

Based on the specification model, we define the QoS Prediction Algorithm (QPA) to
predict the average value of QoS attributes of CWS with transactions which include
performance, cost and reputation. The attributes definition has been given in [1].

QPA is composed of three steps, which are (1) to compute the QoS attribute of
each scope in the CWSP, and (2) to transform the scopes to the tasks with equal
attribute value, and (3) to compute the attribute of the result process got from the
transformation.

90 J. Wu and F. Yang

The QoS of scope Sα is defined as the QoS of SPα, and is described as SQα. SQα can
be computed through formula (1) according to the Workflow QoS Computation
Method (WQCM) [5, 7] which gives the way to compute the average value of QoS
attributes of workflow by aggregating the attributes value of tasks in the workflow. In
formula (1), qαi and pαi (i = 0, 1, …, n) respectively represent the attribute value and
the occurrence probability of sepαi, and

0

1
n

i
i

pα
=

=∑ . For nested scopes, recursive
procedure will be used.

0

()
n

i i
i

SQ p qα
=

= ⋅∑ (1)

And pαi (i >0) is equal to the occurrence probability of the eventαi which can be
calculated as following: For the eventαi of simple event, pαi is the failure probability of
the corresponding atomic service, and for the eventαi of complex event, pαi can be

computed with the rule of P (A·B) =PA·PB. And 0
1

1
n

ip pα α= −∑ .

The failure probability of atomic services, described as p, can be computed through
p = c1·p’+c2·p’’+c3·p’’’, in which c1+c2+c3=1, and p’ represents the failure probability
given by the service provider on the interface of Web service, and p’’ represents the
failure probability got from the history statistic of service execution, and p’’’
represents the failure probability got from the history statistic of service execution in
the CWS. Weight ci reflect the similarity between the item and failure probability.
The higher the similarity, the larger the weight. In generally, the third item p’’’ has
the highest similarity. When one of the items can not be gotten, the item weight can
be set as zero.

In order to get qαi through WQCM we must get the attribute value of tasks in SPα.
The way to get the attribute of normal service invocation task is given in [5]. As the
task with exception is concerned, because the state of the exception task can not be
determined we take the normal attribute value as that of task with exception. And as
the task of exception handling operation is concerned, because the task is to invoke
the Web service with forward or backward recovery function, we can use the way in
[5] to get the its attribute value.

Scope transformation is to convert a scope to the task with equal QoS to the
scope. And those transitions terminating on tasks inside the scope, and initiating
from tasks outside the scope, should be transformed to terminate on the substitute
task. And those initiating from tasks inside the scope, and terminating on tasks
outside the scope, should be transformed to initiate from the substitute task. And the
attribute of processes resulting from transformation can be computed through
WQCM method.

For example, the performance attribute of the dress order CWS can be predicted as
following. Performance attribute is the time interval between sending the request
message and receiving the response message [1].

The performance and failure probability of each task in SP1 have been gotten
through the history statistic, and are showed in table 1.

 QoS Prediction for Composite Web Services with Transactions 91

Table 1. Performance and failure probability of tasks in SP1

 Performance(s) FailureProbability(%)
OrderReceipt 3.9 -

SuitOrder 7.7 21.2
TieOrder 5.4 15.1

OrderResponse 2.8 -
SuitOrderAlter 9.1 -

SuitOrderCancel 9.7 -

With the data on tasks, we can get qαi and pαi for the elements in SEPS1= {sep10,

sep11, sep12}, which are showed in table 2. According to formula (1), the performance
of the scope S1 is 11.1.

Table 2. pαi and qαi for SEPS1

 sep10 sep11 sep12

pαi (s) 7.7 16.8 17.4

qαi (%) 63.7 21.2 15.1

The result process of scope transformation is showed in figure 4. With WQCM, we

can get the prediction result for dress order CWS as 17.8.

Fig. 4. The result of scope transformation

4 Experiment

To prove the feasibility and accuracy of QPA, we implement the dress order CWS
with JOpera [13,14], which offers the visual interface for design and implementation
of WSC. The reason to choose JOpera is that JOpera supports exception handling
mechanism and offer the log of performance of atomic services and composite
service, and has good stability.

The performance log of 15 execution instances of dress order CWS as well as the
average are shown in table 3 and table 4. We can see the error between the estimation
and actual value of performance and failure probability of tasks. Failure (SuitOrder)
happened in instance 4, 6, 10 and 15 with the occurrence probability of 26.7%. And
Failure (TieOrder) happened in instance 9 and 11 with the occurrence probability of
13.3%.

92 J. Wu and F. Yang

Table 3. The first part of performance log and average of dress order CWS

Instance CWS OrderReceipt SuitOrder TieOrder
1 15.195 5.538 7.324 6.166

2 16.507 4.466 9.868 6.606

3 16.536 2.301 9.062 3.562

4 26.673 3.315 3.322 4.024

5 15.917 5.478 6.424 8.165

6 31.49 3.294 13.002 4.124

7 12.331 2.674 7.524 5.524

8 18.785 3.416 9.266 7.246

9 25.242 5.478 5.264 11.062

10 20.641 3.417 12.932 5.566

11 25.309 3.717 7.124 10.365

12 17.315 6.231 8.86 4.242

13 13.263 4.598 6.335 6.531

14 14.955 5.768 6.964 5.326

15 28.779 4.478 11.96 5.164

Avg 19.9 4.3 8.3 6.2

Table 4. The second part of performance log and average of dress order CWS

Instance OrderResponse SuitOrderAlter SuitOrderCancel
1 2.333 - -

2 2.173 -- -

3 5.173 - -

4 2.273 8.153 -

5 2.274 - -

6 5.221 8.283 -

7 2.133 - -

8 6.103 - -

9 2.213 - 6.489

10 3.375 9.973 -

11 4.213 - 7.014

12 2.224 - -

13 2.134 - -

14 2.223 - -

15 2.303 10.038 -

Avg 3.1 9.1 6.8

 QoS Prediction for Composite Web Services with Transactions 93

Table 5 shows the actual value of the performance of dress order CWS, the
prediction result of QPA and WBA, and the error rateη .The error rate can be

computed through e a

a

V V

V
η

−
= , in which Ve and Va respectively represent the

estimation value and actual value.

Table 5. Comparison of Prediction results

 Actual QPA WBA

Performance (s) 19.9 17.8 14.4

η (%) - 10.6 28.2

The result in table 5 shows that when predicting the QoS of CWS with

transactions, QPA has much lower error rate than WBA which has no special
handling of the transaction mechanism. Meanwhile the experiment proves the
feasibility and validity of QPA.

5 Conclusion

Prediction of the Quality of Service (QoS) of Composite Web Services (CWS) makes
it possible to tell whether the CWS meet the non-function requirements, and what’s
more to choose the CWS with better QoS from those with similar function. QoS
prediction is based on the estimation of the execution process of CWS. To predict the
QoS of CWS with transactions, we analyze the Web service transaction mechanism
and its effect on the execution process of CWS. A specification model is defined to
specify possible execution processes of a transaction according to the exception
handling policies pre-defined for the transaction. On the base of the specification
model, we proposed the QPA algorithm to predict the average value of QoS attributes
of CWS with transactions. The experiment proves that QPA has much lower error rate
than the approach that has not considered the transaction mechanism when predicting
the CWS with transactions. Meanwhile the experiment proves the feasibility and
validity of QPA.

Acknowledgment. We thank the National Basic Research Priorities Programme
(Grant No. 2003CB314806) for funding the project.

References

1. Zeng, L., Benatallah, B., Ngu, A.H.H., et al.: QoS-Aware Middleware for Web Services
Composition. Software Engineering, IEEE Transactions on 30(5), 311–327 (2004)

2. Grassi, V.: Architecture-based Reliability Prediction for Service-oriented Computing. In:
de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable Systems III.
LNCS, vol. 3549, Springer, Heidelberg (2005)

94 J. Wu and F. Yang

3. Chadrasekaran, S., Miller, J.A., Silver, G.S., et al.: Composition, performance analysis and
simulation of web services. In: Electronic Markets: The International Journal of Electronic
Commerce and Business Media (2003)

4. Cardoso, J.: Quality of Service and Semantic Composition of Workflows. PhD thesis,
Department of Computer Science, University of Georgia, Athens, GA (USA) (2002)

5. Cardoso, J., Sheth, A., Miller, J.A., et al.: Quality of service for workflows and web
service processes. Journal of Web Semantics (2004)

6. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS aggregation for service composition
using workflow patterns. In: EDOC 2004. Proceedings of the 8th International Enterprise
Distributed Object Computing Conference, Monterey, California, pp. 149–159. IEEE
Computer Society Press, Los Alamitos (2004)

7. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS aggregation in Web service
compositions. In: EEE 2005. Proceedings of the IEEE Int. Conf. on e-Technology, e-
Commerce and e-Service, pp. 181–185. IEEE Computer Society Press, Los Alamitos
(2005)

8. Lakhal, N.B., Kobayashi, T., Yokota, H.: A Failure-Aware Model for Estimating and
Analyzing the Efficiency of Web Services Compositions. In: PRDC 2005. Proceedings of
11th IEEE International Symposium on Pacific Rim Dependable Computing, IEEE
Computer Society Press, Los Alamitos (2005)

9. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques, 9th edn. Morgan
Kaufmann Publishers, San Francisco, California (2002)

10. Younas, M., Eaglestone, B., Holton, R.: A Formal Treatment of a SACReD Protocol for
Multidatabase Web Transactions. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000.
LNCS, vol. 1873, Springer, Heidelberg (2000)

11. Zeng, L., Lei, H., Jeng, J., et al.: Policy-driven exception-management for composite web
services. In: CEC 2005. the Proceedings of the 7th IEEE Int. Conf. on E-commerce
Technology, pp. 355–363. IEEE Computer Society Press, Los Alamitos (2005)

12. Papazoglou, M.P.: Web services and business transactions. In: the Proceedings of World
Wide Web, pp. 49–91. Kluwer Academic Publisher, Netherlands (2003)

13. Pautasso, C., Heinis, T., Alonso, G.: Autonomic execution of service compositions. In:
ICWS 2005. the Proceedings of 3rd IEEE Int. Conf. on Web Services, Orlando (2005)

14. Pautasso, C.: A Flexible System for Visual Service Composition. PhD thesis,
Eidgenössisch Technische Hochschule (ETH) Zürich (2004)

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 95–103, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Service Aggregation Using Relational Operations on
Interface Parameters

George Feuerlicht

Faculty of Information Technology,
University of Technology, Sydney,

P.O. Box 123 Broadway, Sydney, NSW 2007, Australia
jiri@it.uts.edu.au

Abstract. Many practitioners recommend the use of coarse-grained services
that minimize the number of messages and avoid the need to maintain state in-
formation between invocations. However, when considered from a software
engineering perspective, coarse-grained services suffer from a number of sig-
nificant drawbacks, including limited reuse and difficult composability. An im-
portant challenge for the developers of service-oriented applications is to
determine appropriate level of service granularity to ensure that services are re-
usable and at the same time have good performance characteristics. Decisions
about service granularity need to be taken in the context of a methodological
framework rather than using ad hoc heuristics. In this paper we describe a
method for service aggregation that uses relational operations over interface pa-
rameters to assemble services from low granularity atomic service operations.
We illustrate the impact of service aggregation on cohesion and coupling
using examples and discuss service granularity in the context of application
requirements.

Keywords: service design, service aggregation, relational operations.

1 Introduction

Many researchers regard SOA (Service Oriented Architecture) as a message-based
paradigm and view service-oriented applications as orchestrations of message ex-
changes that facilitate service interactions [1]. A frequently used argument in favor of
message-orientation is that coarse-grained services (i.e. services with aggregated
message payloads) avoid the need to maintain state information between service invo-
cations, simplifying recovery in the event of failure. Furthermore, it is argued that
coarse-grained services achieve performance advantages by reducing the number of
network interactions required to implement a given business function. Asynchronous
message-oriented patterns that characterize SOA alleviate many of the issues associ-
ated with synchronous, RPC-based protocols and provide an alternative approach for
the implementation of failure-resilient and highly scalable distributed applications.
However, when considered from a software engineering perspective, coarse-grained
services suffer from a number of significant drawbacks, including limited reuse and
poor composability [2].

96 G. Feuerlicht

A key determinant of service reuse is service granularity, i.e. the scope of function-
ality that individual services implement. There is an inverse relationship between
service granularity and service reusability; as the scope of functionality implemented
by a given service increases, the potential for reuse diminishes. Coarse-grained ser-
vices are associated with complex message structures that often contain embedded
business rules, context information, and instructions for processing of the message.
This is evident in various industry standard message specifications, for example, the
OTA specification (Open Travel Alliance, www.opentravel.org/) that forms the basis
for the implementation of Web Services for the travel industry. Using this specifica-
tion airline flight booking is implemented with the message pair OTA_AirBookRQ
and OTA_AirBookRS. The flight booking request document OTA_AirBookRQ is a
complex document that contains a large number of data elements (many optional) and
includes flight booking, itinerary, and traveler and payment details. Decomposing the
flight booking request into separate, lower-granularity operations such as flight en-
quiry, flight booking, and payment significantly increases potential for reuse (e.g.
payment operation can be reused for car rental, or a hotel room booking). At the same
time lower-granularity operations facilitate a more conversational interaction between
the travel agent and the airline that more closely corresponds to the requirements of
the travel booking business process. Also importantly, service granularity impacts on
the ability to evolve service-oriented applications. Once externalized, the service
interface must be maintained for the duration of the service lifetime to avoid invali-
dating existing applications that use the service. Coarse-grained services that external-
ize complex data structures exhibit high levels of data coupling and are difficult to
evolve without producing undesirable side-effects.

The main challenge for the developers of service-oriented applications is to deter-
mine appropriate level of service aggregation to ensure that services are reusable,
exhibit a high degree of mutual independence, and at the same time have good per-
formance characteristics. Decisions about service granularity play a key role in the
design of services, and need to be considered in the context of a methodological
framework. In previous publications we have described a methodological framework
for the design of services that uses top-down decomposition based on the data proper-
ties of interface parameters to maximize cohesion and minimize coupling of service
operations [2], [3], [4]. In this paper we focus on the problem of service aggregation
and extend the original design framework to include bottom-up service aggregation
that uses relational operations to combine normalized service interfaces into compos-
ite service operations. We analyze the impact of service aggregation on cohesion and
coupling and discuss service granularity in the context of application requirements.

In the following section (sections 2) we briefly summarize our method for service
design and describe how complex business functions can be decomposed into elemen-
tary service operations with normalized interfaces. Section 3 illustrates the method
using a Flight Enquiry example loosely based on the OTA specification. We then
consider the problem of service granularity and describe a technique for service ag-
gregation that uses relational operations over interface parameters to assemble higher-
level services from atomic service operations (section 4). In the concluding section 5
we briefly review related literature, and discuss the benefits of a data engineering
approach to service design identifying potential for further work.

 Service Aggregation Using Relational Operations on Interface Parameters 97

2 Service Design Method

The design method consists of two main design stages. The first stage involves top-
down decomposition with the objective of identifying elementary, reusable service
operations. We provide a brief overview of our approach to service decomposition in
this section; full description of the method is available in earlier publications [2], [3].
The second design stage is the focus of this paper and involves service aggregation
with the aim of optimizing service granularity with respect to the requirements of a
particular message interchange scenario, e.g. airline travel booking dialogue. The
level of service aggregation can be also fine-tuned to reflect performance, state man-
agement and other related considerations; such considerations are outside the scope of
this paper.

For the purpose of this analysis we adopt the Web Services model of services
where service interfaces (i.e. the signature of services) consist of port types, opera-
tions, and message types. In general, service interface can consist of a number of
operations that implement the service, but it is possible for a service interface to sup-
port only a single ProcessMessage operation [1]; this makes the design method
applicable to both RPC and message-oriented approaches. We make no a priory as-
sumptions about the implementation style (i.e. binding style, RPC or document) and
interaction model (i.e. synchronous or asynchronous) as we regard such decisions as
being orthogonal to the task of designing service interfaces. We do not consider non-
functional service requirements and focus entirely on data properties of service inter-
faces, i.e. the properties of inbound and outbound messages that implement data flows
between services and determine the level of service coupling.

To support the requirements for service reuse and evolution, services must be de-
signed to maximize cohesion and minimize coupling of service operations [4]. Maxi-
mizing cohesion requires that a module (i.e. service operation) performs a single,
atomic function. Importantly, a high level of service cohesion leads to orthogonality
of services as functional overlap is minimized, or eliminated altogether. The require-
ment for minimization of coupling dictates that service interfaces consist of individual
data parameters rather than more complex data structures such as classes or object
references [5]. In order to avoid undesirable interdependencies, services cannot share
higher level abstractions (e.g. classes) and use inheritance as the underlying reuse
mechanism. Consequently, the reuse mechanism is limited to service aggregation, i.e.
the assembly of composite services from elementary (atomic) services. Service as-
sembly is a recursive process that continues until the appropriate level of service
granularity that corresponds to a specific business requirement is reached. Further-
more, using individual data parameters rather than complex data structures as inbound
and outbound messages in service interfaces enables the application of data engineer-
ing principles to further minimize coupling between services.

During the first design stage complex business functions are progressively decom-
posed into elementary functions and then mapped to corresponding candidate service
operations. This approach is consistent with maximizing cohesion as elementary busi-
ness functions typically accomplish a single conceptual task and exhibit high levels of
cohesion. The decomposition of a high-level business function, e.g. airline flight
booking business function, can be achieved by modeling the interaction between a
travel agent and an airline using a Sequence Diagram [4]. Given the initial set of

98 G. Feuerlicht

candidate service operations, further decomposition to maximize cohesion and mini-
mize coupling can be achieved by applying data normalization to the interface data
parameters [6], [7].

3 Flight Enquiry Example

We now illustrate our service design framework using an example of the Flight En-
quiry business process based on the OTA airline availability request/response mes-
sages: OTA_Air_AvailRQ and OTA_Air_AvailRS. For the purpose of this example
we make a number of simplifying assumptions and use a subset of the OTA message
data elements to populate the service interfaces. Using the service decomposition
approach described in section 2 and assuming functional dependencies FD1-FD5
between data parameters of the relevant service interfaces, the corresponding set of
operations with normalized interfaces is shown in Table 1.

FD1: OriginLocation, DestinationLocation, DepartureDate → FlightNumber
FD2: FlightNumber → DepartureAirport, DepartureTime, ArrivalAirport, ArrivalTime
FD3: FlightNumber, DepartureDate → ArrivalDate
FD4: FlightNumber, DepartureDate, CabinType → Quantity
FD5: FlightNumber, DepartureDate, CabinType → BasicFare, BasicFareCode

Table 1. Normalized interfaces for the Flight Enquiry Service

Business Function Operation Input Parameters Output Parame-
ters

Requests for avail-
able flights for a pair
of origin and destina-
tion cities on a given
departure date.

FlightEnquiry OriginLocation, Des-
tinationLocation,
DepartureDate

FlightNumber

Request for flight
schedule information
for a given flight
number.

ScheduleEnquiry FlightNumber DepartureAirport
DepartureTime,
ArrivalAirport,
ArrivalTime

Request for arrival
information for a
given flight.

ArrivalEnquiry FlightNumber,
DepartureDate

ArrivalDate

Request for seat
availability informa-
tion for a given flight
and cabin type.

SeatEnquiry FlightNumber,
DepartureDate,
CabinType

Quantity

Request for pricing
information for a
given flight and
cabin type.

PriceEnquiry FlightNumber,
DepartureDate,
CabinType

FareBasisCode,
BaseFare

We can now implement the Flight Enquiry business process as a dialogue between

a travel agent and an airline as illustrated in Figure 1. It is not our intension to fully
model the workflow of the Flight Enquiry process as our focus is on data properties of

 Service Aggregation Using Relational Operations on Interface Parameters 99

interface parameters and on aggregation of service operations based on data parame-
ters. We simplify the dialogue by excluding alternative execution paths, for example
the termination of the booking process due to unavailability of seats on a particular
flight.

2
IN OriginLocation, DestinationLocation, DepartureDate

OUT FlightNumber(s)

Flight
Enquiry

SELECT: FlightNumber

3

FlightNumber, DepartureDate, CabinTypeIN

OUT Quantity

Seat
Enquiry

7

IN FlightNumber

OUT DepartureAirport, DepartureTime, ArrivalAirport ArrivalTime

Schedule
Enquiry

4

IN FlightNumber, DepartureDate

OUT ArrivalDate, ArrivalTime

Arrival
Enquiry

5

8

FlightNumber, DepartureDate, CabinTypeIN

OUT FareBasisCode, BaseFare

Price
Enquiry

SPECIFY: CabinType

6

SPECIFY: OriginLocation,DestinationLocation,DepartureDate 1

Fig. 1. Implementation of the Flight Enquiry process using elementary service operations

The dialogue proceeds as follows: The travel agent specifies input values for
OriginLocation, DestinationLocation, and DepartureDate parameters (1). Following
the execution of the FlightEnquiry operation (2), the travel agent selects a suitable
flight (i.e. FlightNumber) (3). The travel agent then executes the operations Sched-
uleEnquiry (4) and ArrivalEnquiry (5) and supplies the value for CabinType, e.g.
Economy (6). Finally, the travel agent executes the operations SeatEnquiry (7) and
PriceEnquiry (8) to obtain the availability and price information, respectively.

4 Service Aggregation Using Relational Operations

As is evident from the above discussion, using fully normalized service interfaces
results in fine-granularity operations with corresponding increase in the number of
runtime calls and the complexity of the interaction dialogue. While the resulting
interfaces produce a set of elementary and highly reusable services, they do not repre-
sent a practical solution. As an alternative the service designer may consider a
coarse-granularity solution, supplying all user inputs (i.e. OriginLocation,

100 G. Feuerlicht

DestinationLocation, DepartureDate, CabinType) at the beginning of the dialogue
followed by the execution a single composite FlightEnquiry operation. As noted
earlier (section 1) this leads to poor reuse and does not correspond to the inherently
conversational dialogue that characterizes the flight enquiry business process. These
fine-granularity and coarse-granularity alternatives represent two extreme design
solutions. Finding a more optimal level of service granularity requires further exami-
nation, identifying operations that are suitable candidates for aggregations.

Let us now consider combining operations using interface parameters as the basis
for service aggregation. It can be argued that the parameters of a normalized service
interface constitute a relation with output parameters fully functionally dependent on
the input parameter set, and can therefore be combined using relational operations
(i.e. relational joins and union operations).

4.1 Service Aggregation Using Join Operations

We first consider aggregation of service operations based on common interface pa-
rameters using relational joins. Consider, for example combining operations SeatEn-
quiry and PriceEnquiry over common attributes (FlightNumber, DepartureDate,
CabinType) producing a new operation SeatPriceEnquiry:

SeatEnquiry
(IN: FlightNumber,DepartureDate,CabinType,

OUT: Quantity)
PriceEnquiry

(IN: FlightNumber,DepartureDate,CabinType,
OUT: FareBasisCode, BaseFare)

SeatPriceEnquiry = SeatEnquiry NJN (FlightNumber, DepartureDate, CabinType) PriceEnquiry

where NJN denotes a natural join, producing a new interface:

SeatPriceEnquiry
(IN: FlightNumber, DepartureDate, CabinType,

OUT: Quantity, FareBasisCode, BaseFare)

This solution leads to relative loss of cohesion as the resulting operation no longer
implements a single atomic task, and in situations where it is used to perform a partial
enquiry (e.g. seat availability enquiry only) the operation returns values that are not
used by the application. The tradeoff can be justified in this instance on the basis that
both operations are frequently performed together, and that the benefits of reduced
number of operations and runtime procedure calls outweights the loss of cohesion.
Similar considerations apply to combining operations ScheduleEnquiry and Arriva-
lEnquiry into a new operation TimeTable:

ScheduleEnquiry

(IN: FlightNumber,
OUT: DepartureAirport, DepartureTime, ArrivalAirport, ArrivalTime)

ArrivalEnquiry

(IN: FlightNumber, DepartureDate,
OUT:ArrivalDate)

 Service Aggregation Using Relational Operations on Interface Parameters 101

The interface for the combined operation TimeTable can then be derived by joining
the two interfaces based on the input parameter FlightNumber:

TimeTable = ScheduleEnquiry NJN(FlightNumber)ArrivalEnquiry

TimeTable
(IN: FlightNumber, DepartureDate,

OUT:DepartureAirport, DepartureTime, ArrivalAirport, ArrivalDate, ArrivalTime)

The aggregation of the ScheduleEnquiry and ArrivalEnquiry into a single operation
TimeTable results in loss of cohesion, as the TimeTable operation is no longer strictly
atomic; however, this can be justified on the basis that the TimeTable query closely
corresponds to the requirements of the flight booking business process.

The resulting Flight Enquiry dialogue that uses the aggregated service operations is
illustrated in Figure 2, and represent a solution that closely correspond to the conver-
sational requirements of the flight booking business process. Further aggregation
could now be considered, for example combining FlightEnquiry and TimeTable op-
erations using the combination of FlightNumber, DepartureDate parameters, reducing
the number of runtime calls with a corresponding loss of functional cohesion. Con-
tinuing the process of progressive aggregation to include SeatPriceEnquiry would
result in a single, coarse granularity Flight Enquiry operation.

4.2 Service Aggregation Using Union Operations

Now consider a common requirement for combining flight availability information
from multiple airlines, for example by executing the Flight Enquiry operation for two
airlines: for KLM and BA:

FlightNumber, DepartureDate, CabinTypeIN

OUT Quantity, FareBasisCode, BaseFare

SeatPrice
Enquiry

6

2
IN OriginLocation, DestinationLocation, DepartureDate

OUT FlightNumber

Flight
Enquiry

SELECT: FlightNumber

3

IN FlightNumber, DepartureDate

OUT ArrivalDate, ArrivalTime, DepartureAirport,
DepartureTime, ArrivalAirport

Time
Table

4

SPECIFY: CabinType

5

1

SPECIFY: OriginLocation,DestinationLocation,DepartureDate

Fig. 2. Implementation of Flight Enquiry business process with aggregated service operations

102 G. Feuerlicht

FlightEnquiry
(IN: OriginLocation, DestinationLocation, DepartureDate,

OUT: FlightNumber)

This time the resulting interface is obtained using the union operation UN:

FlightEnquiry = KLM_FlightEnquiry UN BA_ FlightEnquiry

The approach for aggregating service operations based on data properties of inter-

face parameters described in this paper provides a framework for making decisions
about the level of service granularity while considering the various design tradeoffs.
The particular circumstances of a given application scenario would determine the
level of service aggregation adopted by the designer. For example, an implementation
in the context of fast and reliable local area network may use a fine-granularity solu-
tion with minimal aggregation of service operations.

5 Related Work and Conclusions

Most practitioners recommend the use of coarse-grained, message-oriented Web Ser-
vices that minimize the number of messages and avoid the need to maintain state
information between invocations. While it is evident that using fine-granularity ser-
vice operations based on existing components leads to suboptimal design, excessive
use of coarse-grained, document-centric services has its own limitations; in particular
it results in poor reuse and undesirable interdependencies between services. It is there-
fore important that decisions about the level of service aggregation are made in the
context of methodological framework, rather than based on ad hoc heuristics.

The study of service granularity is closely related to the work on services aggrega-
tion and composition. Service composition is an active research area with many di-
verse approaches being currently investigated. Industry based research views Web
Services as abstract standardized interfaces to business processes and focuses on
describing and implementing service composition using workflow specification lan-
guages such as BPEL. The Semantic Web research community takes a different ap-
proach and draws on AI planning research and run-time reasoning techniques based
on ontological definitions of service semantics. A comprehensive review and com-
parison of the two approaches to service composition is provided in [8] and [9], with
the conclusion that the Web Services composability problem remains essentially un-
solved. In addition to BPEL, other standardization efforts include Web Services Cho-
reography Interface (WSCI) and the Business Process Management Language
(BPML) each taking a different approach to orchestration and choreography [10].
However, BPEL is today established as the industry standard language for the imple-
mentation of loosely coupled asynchronous business-to-business Web Services appli-
cations that share common XML data types and documents [11].

The approach described in this paper complements existing literature on the topic
of design of services, proposing a methodological framework for making decisions
about the level of service aggregation given specific application requirements and
business process scenarios. We argue that both service aggregation and composition
can be viewed as design-time activities that combine service operations based on data

 Service Aggregation Using Relational Operations on Interface Parameters 103

properties of interface parameters. Further research is needed to understand how ser-
vice aggregation based on interface parameters can be used to achieve optimal service
granularity given a set of application requirements. Another area of research interest
concerns the application of this methodology in the more general context of services
composition.

References

[1] Webber, J., Parastatidis, S.: Realising Service Oriented Architectures Using Web Services
to be published in 2006 in Service Oriented Computing. MIT Press, Cambridge (2006)

[2] Feuerlicht, G.: Design of Service Interfaces for e-Business Applications using Data Nor-
malization Techniques. In: Journal of Information Systems and e-Business Management,
pp. 1–14. Springer, Heidelberg, ISS:1617-98 (2005)

[3] Feuerlicht, G.: Application of Data Engineering Techniques to Design of Messages Struc-
tures for Web Services. In: WDSOA’05. Proceedings of the First International Workshop
on Design of Service-Oriented Applications, Amsterdam, The Netherlands, December 12,
2005, IBM Research Report RC23819 (W0512-29) (2005)

[4] Stevens, W.P., Myers, G.J., Constantine, L.L.: Structured Design. IBM Systems Jour-
nal 38(S2&3) (1999)

[5] Myers, G.J.: Composite Structured Design, Van Nostrand Reinhold, 175 (1978) ISBN 0-
442-80584-5

[6] Codd, E.F.: Normalized Data Structure: A Brief Tutorial. In: Proceedings of 1971 ACM-
SIGFIDET Workshop on Data Description, Access and Control, San Diego, California,
November 11-12, 1971, pp. 1–17. ACM Press, New York (1971)

[7] Date, C.J., Fagin, R.: Simple Conditions for Guaranteeing Higher Normal Forms in Rela-
tional Databases. ACM Transactions on Database Systems (TODS) 17(3), 465–476
(1992)

[8] Srivastava, B., Koehler, J.: Web Service Composition - Current Solutions and Open Prob-
lems. In: ICAPS (2003)

[9] Milanovic, N., Malek, M.: Current Solutions for Web Service Composition. IEEE Internet
Computing 8(6), 51–59 (2004), http://dx.doi.org/10.1109/MIC.2004.58

[10] Peltz, C.: Web Services Orchestration and Choreography. Computer 36(10), 46–52 (2003)
[11] Pasley, J.: How BPEL and SOA Are Changing Web Services Development. IEEE Inter-

net Computing 9(3), 60–67 (2005)

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 104–115, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A BPEL Based Implementation of Online Auctions

Morad Benyoucef1 and Ronald Pringadi2

1 School of Management
2 School of Information Technology and Engineering

University of Ottawa, 136 Jean-Jacques Lussier St. Ottawa, Ontario K1N 6N5, Canada
{benyoucef@management.uottawa.ca, pringadi@site.uottawa.ca}

Abstract. Service oriented architectures have been adopted by many organiza-
tions in order to increase business automation, integrate enterprise systems, and
reach more business partners and customers. Among the business processes that
can greatly harness the advantages of web services are online auctions. This pa-
per proposes a new approach for modeling online auctions and provides guide-
lines on how to use web service orchestration to model them. Our research
involves the design of an auction server and its clients for manual as well as
automated agent-based bidding. We propose a framework for a server that is
generic enough to host various types of auctions and extensible enough for fu-
ture component additions. We report on an implementation of our framework
based on the BPEL web service orchestration language.

Keywords: online auction, process modeling, web service orchestration, BPEL.

1 Introduction

Negotiation, as defined in [1], is an iterative communication and decision making
process between two or more parties which can be represented by two or more agents
who cannot achieve their objectives through unilateral actions and who search for
consensus. Negotiation can be very intensive, time consuming, and costly; therefore,
there is a need to automate it [2]. Any negotiation conducted using computers or other
electronic devices is referred to as electronic negotiation (e-negotiation). Because of
the strong domination of auctions in the field of negotiations, some might think that e-
negotiations primarily consist of online auctions [4]. This is obviously not true. Al-
though this paper concentrates on online auctions, we believe that other negotiation
protocols (i.e., scenarios or styles) can and should be conducted electronically.

Current research on e-negotiation systems (ENS) mostly focuses on negotiating
software agents, negotiation strategies, and negotiation automation. Few initiatives
addressed the problems of designing a platform that enables these interactions. After a
thorough review of the literature on e-negotiation frameworks for servers and clients
[5] we learned that although these frameworks have several design qualities, most do
not foster reusability and extensibility. Furthermore, most frameworks fail to address
the following requirements: the design should support various negotiation protocols
[6], it has to offer high flexibility [7], and it must foster easy development and de-
ployment [8]. Moreover, we believe that it must facilitate the interactions of negotia-
tors, enable the participation of human as well as software agents, and permit the

 A BPEL Based Implementation of Online Auctions 105

seamless integration of the e-negotiation platform with different applications inside
the organization and across partner organizations.

Designing an e-negotiation platform which addresses all the requirements men-
tioned above is obviously not an easy task, especially knowing that it will involve
business-to-business (B2B) and application-to-application (A2A) integration. Accord-
ing to Basu and Kumar (2002) [9], marketplace-based architecture is a good solution
for managing inter-organizational processes such as negotiation. A marketplace-based
architecture connects companies more efficiently than a point-to-point connection
between every buyer and every supplier. Other design challenges include formalizing
the shared protocol [10], extracting the business logic from the server process, which
is needed by the clients to properly interact with the server [8], and validating the
rules of negotiation to ensure a fair and correct process.

Many companies have recently expanded their presence online. Internet based
business enables them to reach more potential customers and suppliers, provide
around the clock service, and reduce operational costs. This move has shifted the
trend of object-oriented design into a service oriented design, where software modules
are converted into web services and published over the Internet to be used as-is or to
be integrated with other applications. Because web services are XML based protocols,
they have the advantage of providing a platform-independent service which facilitates
B2B and A2A integration.

The contributions of this paper are threefold. First, we work within a new vision for
designing e-negotiation systems (servers and clients) using a service oriented approach.
We propose a design framework for auction servers and clients to be used for manual as
well as automated agent-based bidding. The framework is generic enough to host vari-
ous types of auctions and extensible enough for future component additions. The
framework is centered on modeling auctions as web service orchestrations. We deploy a
common interface for human participants to interact directly with the server, and for
software agents to be configured and controlled by their owner. Second, we report on an
implementation of our framework based on the BPEL web service orchestration lan-
guage. Third, we focus on the task of modeling auction processes as web service orches-
trations. Although in this paper we only report on the English auction, we modeled and
enacted several auction processes such as the Dutch and sealed-bid auctions as well as
negotiation processes such as the two-party negotiation. We provide modeling guide-
lines and identify common components in the models that can constitute a repository to
be used when modeling negotiation protocols.

The rest of the paper is organized as follows. Section 2 discusses auctions as a fun-
damental form of negotiation. Section 3 introduces general design considerations for
e-negotiation systems. Section 4 reports on the architecture and implementation of our
online auction framework. Section 5 is dedicated to modeling auction processes. We
discuss our modeling approach in Section 6, describe related work in Section 7, and
wrap up the paper with a conclusion in Section 8.

2 Auctions as a Form of Negotiation

Auctions are a form of negotiation [4]. Negotiation itself is divided into business
and non-business negotiation. Business negotiation includes auctions, two-party

106 M. Benyoucef and R. Pringadi

negotiation (i.e., bargaining), business procurement, brokerages, exchanges, and car-
tels [3], while non-business negotiation includes dispute resolution and voting.

There are various types of auctions, and at least five key elements can be extracted
from them [9]: (1) a deal which can be in various states such as “negotiable offer” or
“final offer”; (2) participants such as buyers, sellers, and auctioneers; (3) messages
sent by participants to modify the deal such as “new bid”; (4) process flow describing
how the state of the deal changes as a result of the messages sent by participants; and
(5) messages sent to participants as the deal changes.

Auction scenarios (also called protocols) specify the rules of the negotiation [11],
and different scenarios serve different purposes. Some of the most common scenarios
are the English auction, Vickrey auction, sealed bid auction, and Dutch auction. The
English auction is perhaps the most widely used scenario. Its popularity has grown
mainly as a result of its adoption by eBay (www.eBay.com). There were at least 75.4
million active users in the first quarter of 2006 either buying or selling items using
eBay’s English auction protocol [12]. The English auction is a process where a seller
tries to sell an item and potential buyers bid on the item. The bid increases over time.
At the end of the process, which can be triggered by a timeout or when no bids have
been received for a period of time, the highest bidder wins the item. A starting bid can
be set to ensure that bids are close to the item’s estimated value. A reserve price can
be set to protect the seller from selling below a certain price. A variation of the Eng-
lish auction is the Vickrey auction. Here, the winning bidder pays the second highest
bid, which encourages potential buyers to outbid one another. Sealed bid auctions are
held when, among other situations, it is impractical for bidders to prepare bids instan-
taneously or the bid confidentiality is important. In single round sealed bid auctions,
all bidders submit their bids by a deadline; the bids are then evaluated at this deadline.
In multi-round sealed bid auctions, there is a deadline for each round of bids. At that
deadline, either the auction is closed or a fresh round of bids is started with a new
deadline. The Dutch auction is a mechanism where the seller starts the process by
setting the price of an item. As the auction progresses, the seller lowers the price
gradually until a buyer bids on the item. If there is only one unique item, the auction
ends immediately with the bid. Otherwise, the auction continues, and the seller keeps
lowering the price and buyers making bids until the last item is sold.

3 General Design Considerations

There are two basic components of e-negotiations: protocols and strategies [13]. Pro-
tocols define the rules of interaction between negotiation agents (participants) and the
sequences of allowed offers. In general, agents must agree on the protocol before
negotiation begins. Strategies are action plans for the negotiation agents to follow in
evaluating offers and formulating counteroffers. Usually there are several strategies
for a particular protocol, and each one may produce a different outcome.

E-negotiations are further divided into unsupported, supported, and automated [1]
processes. In unsupported e-negotiations, the participants control and manage all tasks
without support or advice from a system. Supported e-negotiations involve the help of
a system for decision making. Automated e-negotiations involve software agents that
make decisions based on negotiation strategies and tactics provided by their owner.

 A BPEL Based Implementation of Online Auctions 107

Finally, at the system level, e-negotiations are divided into Negotiation Support
Systems (NSS), Negotiation Software Agents (NSA), and e-negotiation servers. NSS
are software tools that support negotiation activities such as eliciting preferences,
evaluating and comparing offers based on the elicited preferences, and recommending
strategies. NSS’s main functions are to assist users with information gathering, prob-
lem structuring and generating alternatives for decision-making activities. NSA are AI
(artificial intelligence) enabled software entities which communicate with other enti-
ties and make decisions on behalf of their owner [7]. NSA’s main concerns are about
software agents’ strategies and performance [14]. E-negotiation servers are software
systems that implement a negotiation protocol and provide a platform for participants
to interact. In the literature, negotiation servers are also referred to as negotiation
media, platforms, or negotiation-enabled e-marketplaces.

4 Architecture and Implementation

Web service orchestration is a way of composing and coordinating web services to
obtain higher-level business processes. It describes how web services interact with
each other at the message level and tracks the sequence of messages including the
business logic and execution order of the interactions [15].

There are standards available to orchestrate web services such as BPEL (Business
Process Execution Language) [16]. BPEL is designed to address the orchestration
complexity, thereby reducing time-to-market and costs and increasing the overall
efficiency and accuracy of business processes. It stands as a layer on top of WSDL.
While WSDL describes the messages’ data types, port types, allowed operations, and
partner roles, BPEL describes partner bindings, incoming and outgoing variables, and
operation logic sequences. BPEL supports common repetition (while-loop), selection
(if-then-else, select-case), error handling (try-catch), parallel processing, and Java
embedding. As a widely adopted orchestration language providing the necessary
business logic to compose complete running processes, we decided to use BPEL to
model and enact online auction processes.

4.1 Server Design

The e-negotiation server is where the online auction process is created and executed. It
can be deployed either by one of the participants or by a third party provider (i.e., facili-
tator). We believe a third party deployment is better because it provides for a common
ontology and interfaces to be shared by participants as well as transparent, optimal and
efficient processes. The server’s conceptual architecture is shown in Fig. 1.

Fig. 1. Conceptual architecture of the e-negotiation server

108 M. Benyoucef and R. Pringadi

Fig. 2. Internal design of the e-negotiation server

Table 1. XML configuration files

File Name Listing
English.xml <Auction scenario=”EnglishAuction”>

 <bidVisibility>TRUE</bidVisibility>
 <idleTime>5</idleTime>
 <deadline>15</deadline>
 <highestBidderVisibiity>
 PUBLIC</highestBidderVisibility>
 <useReservePrice>TRUE</useReservePrice>
<Auction>

Dutch.xml <Auction scenario=”DutchAuction”>
 <quantityVisibility>FALSE</quantityVisibility >
 <deadline>20</deadline>
 <multipleItem>TRUE<multipleItem>
</Auction>

As suggested in [3], there are several tasks common to all auction scenarios. These

are implemented as the following services (sub services in Fig. 1): registration and
authentication; posting; bidding; information retrieval, history log, and gateway ser-
vices which coordinate all the services. Participants have the option to interact with
the server directly or through an NSS or NSA. We designed the e-negotiation server
and the participants (sellers and buyers) as web services. To orchestrate these web
services we use the BPEL Process Manager. We visually model the auction using
JDeveloper [17]. The resulting model is compiled and deployed on the BPEL engine
(see Fig. 2). To avoid an eventual recompilation and redeployment of the model after
a minor change, we transfer additional parameters (bid visibility, idle time, auction
deadline, etc.) out of the business logic of the auction process and into an external
XML file. The template model in Fig. 2 is a collection of classes which bind together
the BPEL process model, the XML configuration file, and the database. This is
achieved using the java embedding component. The auction model is implemented
in the BPEL process flow, which will be discussed in Section 5. The XML configura-
tion files for the English and Dutch auctions are shown in Table 1. The BPEL engine
is the core component of the e-negotiation server where the execution of communica-
tion level operations with the sub services and the participants takes place. The par-
ticipants access all services offered by the server through the BPEL engine.

4.2 Client Design

We consider two types of participants: one who uses the provided interface (manual
negotiation client), and one who builds an interface and connects it to the

 A BPEL Based Implementation of Online Auctions 109

e-negotiation server for automation purposes and for employing AI techniques such as
learning and using negotiation strategies (automated negotiation client). Both clients
have the same access point which is the BPEL engine’s web service port.

Automated negotiation clients can communicate with the server and join the nego-
tiation process by accessing the BPEL engine and using the WSDL file. They can call
the services offered by the server using its operation name and passing the necessary
variables. The gateway service will ensure that all clients have valid identification and
proper access through every phase of the negotiation process.

The web service discovery does not need to be done through UDDI; instead, it can
be done through a web page that gives the location of the WSDL file and explains
how to utilize the web service. The automated negotiation clients can process the
information they get from the e-negotiation server and pass it to their NSS or NSA
using a SOAP message tunneling mechanism.

Fig. 3. Manual and automated clients

Fig. 3 shows the manual and automated clients. Every interaction between the e-
negotiation server and the clients is executed through web service ports and opera-
tions. Similar to the manual client, the automated client also connects to the server
using the same web service ports and operations interface; however, the automated
client passes the information from the server to the NSA. The NSA is implemented as
an independent component offering various strategy-oriented web services. This ap-
proach increases the reusability of the NSA. The server’s process model in Fig. 3 is
the BPEL process mentioned earlier. The java embedding components in the BPEL
process access specific negotiation attributes (XML file) and use the database.

To simplify the connection between the BPEL engine and the clients, we use the
Façade design pattern to get and set variables in the BPEL engine, and to invoke
or receive other web services (see Fig. 4). We also use the Model-View-Controller
design pattern. The model holds the logic of the process such as handling incoming or
outgoing messages, adding AI capabilities to the system, forwarding information
further to a customized NSA, and giving instructions to the Façade object. The view is
where the display is generated based on the current negotiation phases and variables.
The controller is an HTML form where the user provides input (see Fig. 4).

110 M. Benyoucef and R. Pringadi

Fig. 4. Client’s user interface

5 Modeling

Kumar and Feldman [3] proposed templates for modeling auction processes using
Finite State Machine (FSM) diagrams. By omitting details such as authentication
from the process, FSMs concentrate on the interactions between states and partici-
pants. We use these FSMs as general guidelines in our modeling. Fig. 5 shows the
FSM of the English open cry and sealed bid auctions. It starts with a Deal Template
(DT) state, followed by an OfferToSell from the seller leading to the Offer state. In
an open cry auction, a bid from a buyer produces a message notifying all buyers that
the best bid has changed; in a sealed-bid auction the best bid remains secret. Two
other events can occur in the Offer state: the seller closes the auction resulting in the
Negotiation Aborted (NA) state, or the auction ends successfully in the Deal (D) state.

Fig. 5. FSM for the English open cry and sealed bid auctions [3]

Due to the detailed nature of auction processes and the large sizes of the models we
developed, showing them in their original form (i.e., screenshots) would sacrifice
their details and sharpness. Thus we use an activity diagram notation that provides the
same functionalities as BPEL but which is more readable.

Fig. 6 presents the BPEL process description of the English auction. In the dia-
gram, we use the scope-and-expand method. A scope is a collection of activities
represented by a plus sign “(+)” that can be expanded into a subsequent activity dia-
gram. We assume that all participants have completed the registration process before
the start of the auction. The registration process does not appear in the diagram.

 A BPEL Based Implementation of Online Auctions 111

Fig. 6. BPEL diagram for the English auction

The “Scope: WaitSellerResponse” is a collection of activities that wait for a re-
sponse from a seller for a certain amount of time, ensuring that he/she has enough
time to respond. The expansion of this scope is shown in Fig. 7-a. After receiving an
item to sell message from the seller, the server will check whether the seller is regis-
tered or not. If the seller is not registered, the process does not proceed (Fig. 7-b).
Otherwise, the server executes a parallel flow to initiate the bidding phase by invok-
ing the seller so he/she can cancel the auction if he/she wishes to do so, and by
posting the item so that buyers can start bidding on it. The bidding phase is a loop
mechanism. In the English auction FSM (Fig. 5), the activities that can happen during
the bidding phase are: buyer bids (back to loop); seller cancels (out of loop); and

112 M. Benyoucef and R. Pringadi

auction reaches its deadline (out of loop). To replicate the “going-going-gone” found
in offline auctions, we introduced another variable into this phase: idle time. If there is
no incoming bid after a certain amount of time, the bidding phase ends (out of loop).
These four activities are guarded by a pick construct. The server checks for the au-
thenticity of bidders and verifies the validity of their bids (Fig. 7-c).

At the end of the bidding phase, a switch construct will decide whether the auc-
tion was successful or not. It is successful if the highestBid is more than the re-
servePrice; there is more than one incomingBid; and the seller does not cancel the
auction. An outgoing message will inform participants of the result of the auction.

Fig. 7. English auction subsequent BPEL diagrams

Finally, it should be noted that we deployed and tested several auction scenarios,
but there is not enough space in this paper to report on all of them. The English auc-
tion gives a good idea on the expressive power of BPEL and web service orchestra-
tion languages in general for modeling and enacting auction scenarios.

6 Discussion

The formalisms used to describe auction processes usually capture their most com-
mon components. In real-life situations the complexity of the auction process may
vary, but the basic concepts remain the same. BPEL process flow complexity in-
creases as we deal with sub processes such as authentication, validation of input, and
additional negotiation parameters (bid visibility, item quantity, etc.).

 A BPEL Based Implementation of Online Auctions 113

By looking at the process diagrams of various auctions, we identified the following
similarities which may constitute a basis for a repository of reusable templates.

(1) The Deal Template (DT) state (Fig. 6) consists of specific negotiation rules
which are agreed upon before the process starts. Since BPEL stands on top of WSDL,
it is easy to manage the message interactions. Every incoming or outgoing message
format has to conform to the WSDL description. In all our BPEL process diagrams,
the DT is always marked with a void invitation or initiation from the server; the seller
has to reply with an offer.

(2) The Offer state (Fig. 6) might vary slightly between different auction protocols.
However, there are unique sequences present in all our BPEL process diagrams. The
sequences are: receive which gets the offer from the seller; flow which invokes
participants and allows them to reply by sending a message to the server; and pick
which determines what events arrive first. Before the pick construct there is a while
which creates a repetitive cycle for the bidding phase.

(3) Mechanisms in scope-and-expand activities (Fig. 7) can act as reusable
components for different auction protocols. At the moment, BPEL does not support
any process modularization or component reusability; therefore, there are no BPEL
fragments that can be invoked from within the same or from different BPEL processes
[18]. But IBM and SAP are working on a sub-process extension for BPEL (BPEL-
SPE) [19]. In the meantime, there are several possible solutions that we can adopt to
address this problem. First, we can implement the reusable components as independ-
ent web services. For example, the main process calls a reusable web service such as
“IsSellerRegistered”, and the web service answers with TRUE or FALSE. However,
due to the nature of web services, this approach exposes the sub-components of the
system, thus raising a security concern. One solution could be to filter the caller’s IP
address as a precaution. Second, we can implement the reusable components as java
classes. In the BPEL process flow diagram, we can define a java embedding com-
ponent which will replace the scope-and-expand. But since this approach would
defeat the purpose of visual modeling which we seek in our framework; we prefer the
first approach. Additionally, unlike BPEL-SPE, the two approaches do not have a
synchronous connection between the main process and the sub processes. For exam-
ple, if the sub processes are terminated abruptly, the main process cannot be in-
formed; therefore, it may stall or produce errors.

7 Related Work

Kim and Segev (2005) proposed an attribute-based negotiation process composer [7],
which is a system that enables the negotiation designer to generate a set of BPEL
constructs. These constructs are useful in creating a new e-negotiation marketplace
and orchestrating its interactions in a web service environment. The system’s main
function is to customize, generate, and validate a series of constructs for BPEL proc-
esses. There is no user interface, such as dynamic web pages that can access the web
service for the participant. After the generation of the BPEL constructs, they still need
to be complied and deployed on the BPEL engine. This can become time consuming
when slight modifications are introduced. In our framework, we prefer to model the

114 M. Benyoucef and R. Pringadi

auction scenarios and store the attributes in an external XML configuration file; this
way we avoid re-compilation and re-deployment after minor changes.

Rolli and Eberhart (2005) proposed a model to describe and run Internet-based
auctions [20]. The model presents three layers: auction data, auction mechanism, and
auction participants. The authors implemented a prototype using Collaxa’s BPEL4WS
modeling editor. This editor is now part of Oracle BPEL PM [21]. The produced
models are compiled using BPEL2Java [22] then executed within a Java environment.
BPEL was used for modeling the general negotiation activities, and the modeling was
completed with Java code, which is not convenient for the negotiation designer. Inter-
actions between the platform and the participants are carried out using Java-RMI [23].
Our approach is more user-friendly and takes advantage of the modeling paradigm.

8 Conclusion

This paper presented a service oriented online auction framework that is generic
enough to support various auction protocols. To create an online auction, designers
visually model the process using a web service orchestration language such as BPEL,
possibly reusing existing components. The approach reduces the need for designers to
understand programming concepts (at least for the high level design), allowing them
to focus on the business view. Our framework promotes loose coupling and reusabil-
ity. It is easy to extend the system with additional components such as an NSA and
still use the same ports and interfaces. With standard open interfaces such as web
services, every service is platform independent. To our knowledge, this research is the
first to thoroughly test the use of web service orchestration for hosting online auc-
tions.

There are limitations inherent to web service orchestration languages. Unlike other
programming languages, BPEL is still growing. The real purpose of BPEL is to model
and orchestrate web services; therefore its expressiveness is not as effective as a real
programming language. For instance, there is only one starting point and one exit
point in a BPEL process, which makes for one monolithic process. Furthermore, al-
though BPEL provides java embedding, its Java Runtime Environment (JRE) still
lacks compatibility with existing java implementations. We did not address or imple-
ment any form of security, this issue being beyond the objectives of this paper.

This research opened new opportunities for studying the behavior of software
agents when provided with bidding strategies. We are using an implementation of our
auction framework to conduct bidding tournaments between software agents. The
separation of the auction description (the model) from the server is enabling us to be
more efficient in deploying and studying new auction scenarios.

References

1. Bichler, M., Kersten, G., Strecker, S.: Towards a Structured Design of Electronic Negotia-
tions. Group Decision and Negotiation 12, 311–335 (2003)

2. Hurwitz.com, Negotiated Trade: the Next Frontier for B2B e-commerce. Tech Report
(2000)

 A BPEL Based Implementation of Online Auctions 115

3. Kumar, M., Feldman, S.I.: Business negotiations on the Internet. IBM Research Division -
T.J. Watson Research Center (1998)

4. Kersten, G.E.: E-negotiation systems: Interaction of people and technologies to resolve
conflicts. In: UNESCAP. Third Annual Forum on Online Dispute Resolution, Melbourne,
Australia, July 5-6, 2004, pp. 5–6 (2004)

5. Pringadi, R., Benyoucef, M.: Web Service Orchestration of E-negotiation Interactions.
Working Paper #wp06-28, School of Management, University of Ottawa (2006)

6. Benyoucef, M., et al.: Towards a Generic E-Negotiation Platform. In: Kropf, P.G., Babin,
G., Plaice, J., Unger, H. (eds.) DCW 2000. LNCS, vol. 1830, pp. 95–109. Springer,
Heidelberg (2000)

7. Kim, J.B., Segev, A.: A Web Services-enabled Marketplace Architecture for Negotiation
Process Management. Decision Support Systems 40, 71–87 (2005)

8. Mathieu, P., Verrons, M.-H.: ANTS: an API for creating negotiation applications. In: 10th
ISPE International conference on concurrent engineering: research and application, Ma-
deira Island - Portugal (July 26-30, 2003)

9. Basu, A., Kumar, A.: Research commentary: workflow management issues in e-business.
Information Systems Research 13, 1–14 (2002)

10. Bartolini, C., Preist, C., Jennings, N.R.: A Generic Software Framework for Automated
Negotiation. Trusted E-Services Laboratory - HP Laboratories Bristol (2002)

11. Weinhardt, C., Gomber, P.: Agent-Mediated Off-Exchange Trading. In: Proceedings of the
32nd Hawaii Conf. on System Sciences, Maui, Hawaii, January 5-8, 1999, pp. 6–9 (1999)

12. eBay.com. eBay Announces First Quarter, Financial Results - 19 April. 2006 [cited Au-
gust 2006] (2006), Available from http://investor.ebay.com/releases.cfm?FYear=2006

13. Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A Classification Scheme for Negotia-
tion in Electronic Commerce. Group Decision and Negotiation 12(12), 31–56 (2003)

14. Rust, J., Miller, J., Palmer, R.: Behavior of trading automata in a computerized double
auction market. In: The Double Auction Market: Institutions, Theories, and Evidence, pp.
153–196. Addison Wesley, Reading (1993)

15. Peltz, C.: Web Services Orchestration. Hewlett-Packard Company (2003)
16. IBM, et al.: Business Process Execution Language for Web Services version 1.1, [cited

August 2005] (2002), Available from www.ibm.com/developerworks/library/ws-bpel
17. Oracle.com. Oracle JDeveloper 10g. [cited 2006] (2005), Available from:

www.oracle.com/technology/products/jdev/index.html
18. Trickovic, I.: Modularization and reuse in WS-BPEL. SAP Developer Network - SDN

Community Contribution Whitepaper (October 2005)
19. Kloppmann, M., et al.: WS-BPEL Extension for Sub-processes - BPEL-SPE. SAP Devel-

oper Network Whitepaper (September 2005)
20. Rolli, D., Eberhart, A.: An Auction Reference Model for Describing and Running Auc-

tions. Wirtschaftsinformatik, pp. 289–308 (2005)
21. Boulton, C.: Oracle Goes SOA with Collaxa Buy 2004 [cited 2005 August 15] (2004)

Available from: http://www.internetnews.com/bus-news/article.php/3374851
22. eclipse.org. BPEL to Java (B2J) Subproject. [cited 24 August 2006] Available from:

http://www.eclipse.org/stp/b2j/
23. sun.com. Java Remote Method Invocation (Java RMI). [cited 24 August 2006] (2006),

Available from http://java.sun.com/products/jdk/rmi/

Dynamic Binding for BPEL Processes –
A Lightweight Approach to Integrate Semantics

into Web Services

Ulrich Küster and Birgitta König-Ries

Institute of Computer Science, Friedrich-Schiller-Universität Jena
D-07743 Jena, Germany

ukuester,koenig@informatik.uni-jena.de

Abstract. The area of service oriented computing stretches between
two extremes: On the one hand industry has pushed a whole stack of
WS-* standards and tools to support the integration of distributed ser-
vices into business applications. These standards are used in production
environments and are applied successfully, e.g. in the area of enterprise
application integration. However, the expensive and labor intensive task
of putting together services and maintaining and administering the com-
posed applications has to be done manually. In contrast, academia is
busily working on numerous efforts leveraging ontology based semantics
and various AI planning techniques to automate these tasks. Yet, up to
now the developed technologies have rarely if ever been applied in indus-
try. In our opinion, this has two main reasons: there is high cost involved
in creating the necessary comprehensive ontologies and businesses are
reluctant to trust semantic technologies. In this paper we bring together
the extremes in order to combine their strengths. We show how to flexibly
integrate advanced semantic service discovery, composition and invoca-
tion technology into manually created standard BPEL processes. Our
approach leaves it to the discretion of the developer to flexibly choose
an appropriate degree of automation for the process at hand and thus
offers him complete control over the usage of semantic technology.

1 Introduction

In recent years, service orientation has evolved as a new paradigm for dis-
tributed computing. A whole stack of Web service standards and technologies has
been created [1,2] that forms the maybe most promising implementation of this
paradigm. These standards are widely used in production environments and are
applied successfully, e.g. in the area of enterprise application integration. Even
though web service technology has thus proven to be an effective way of creating
widely distributed and loosely coupled systems, the tasks of gluing together the
component services and maintaining the composition is still labor intensive and
expensive work. Furthermore, the potential of the web service technology can-
not be used to full capacity, if service compositions have to be created manually
and component services are bound statically in those compositions. To leverage

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 116–127, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dynamic Binding for BPEL Processes 117

the potential availability of thousands of services, automated composition and
dynamic discovery and binding are needed.

Academia has thus been working busily on numerous efforts providing ontol-
ogy based semantic descriptions for services. Based on these descriptions, frame-
works are designed to support dynamic service discovery and binding. Various
AI planning techniques are applied to (semi-)automatically synthesize service
compositions from available component services. Together, these techniques will
allow to synthesize an application at runtime from the currently most applica-
ble services in a fully automated fashion. This enables low-effort development of
robust, dynamically adaptable applications.

However, up to now, the developed semantic based technologies have rarely –
if ever – been applied on a large scale in industry. In our opinion, there are two
main reasons for this lack of adaptation: First, a prerequisite to using semantic
technology is the existence of comprehensive domain ontologies. For most appli-
cations, these ontologies do not yet exist. The prospect of having to create them
from scratch is rather daunting. The entrance cost for using semantic technology
may thus seem forbiddingly high. Second, maybe as a consequence of the AI hype
and comparable failure in the past, semantic technologies are regarded with a
certain degree of scepticism by many potential users. A widespread –albeit un-
founded – lack of trust into the reliability and correctness of these technologies
hinders their acceptance.

In this paper, we present an approach to bridge the gap between web ser-
vice technology used in practice and the promising semantic techniques. This
approach enables the gradual integration of semantics-based techniques into ex-
isting web service applications. Standard based, well proven web service tech-
nology offers stability and control while advanced semantic technology supports
dynamic change, adaptability and the potential to take advantage of large num-
bers of competing service providers. We show how to integrate fully automated
service discovery, composition and invocation technology into pre-existing, man-
ually created standard BPEL processes. This leaves it to the discretion of the
developer to flexibly choose any appropriate degree of automation within a given
process. For instance, a developer may decide to compose modeling intensive
tasks or tasks with high security constraints manually, while at the same time
using semantic technology for tasks that are highly dynamic or not as expensive
to model semantically. We believe that only within such a combination semantic
technologies have a chance to overcome the current gap between academia and
industry.

Throughout the remainder of the paper, we use the order management sys-
tem of COS-tec, an imaginary computer online store, as our running example.
This order management is currently implemented by a BPEL process. Figure
1 depicts a small cutout of the entire process. Process steps include receiving
the order from the customer, checking for item availability and calling a ship-
ment service. In the current BPEL-process, the latter is realized – as is typical
for such processes – by a static binding to an external shipment provider. This
static binding has a number of disadvantages: If the chosen provider becomes

118 U. Küster and B. König-Ries

temporarily or permanently unavailable, a new provider has to be searched for
and the process has to be manually adapted. Also, the chosen provider may not
be the cheapest for all types of packages. There might be considerable poten-
tial for cost reduction, by choosing the cheapest provider for each individual
package. In the current process, this is not done, since the cost for manually
comparing prices and manually binding to the appropriate provider in each case
may very well outweigh the reduction in shipment cost. Here, semantic technol-
ogy offers a solution: In our approach, the BPEL process is adapted to calling a
semantics-based middleware instead of the shipment provider. This middleware
uses a semantic description of the desired shipment to dynamically find and
bind the most appropriate shipment provider. This offers both robustness and
cost effectiveness. In the remainder of this paper, we will show that using our
approach, the effort involved in adapting the BPEL process and thus the cost of
leveraging the advantages of semantic technology is very moderate. The rest of

Fig. 1. Dynamic shipment provider discovery and binding for COS-tec’s order man-
agement BPEL process

this paper is organized as follows: In Section 2 we introduce DSD, the seman-
tic service description language used and the middleware built to support it. In
Section 3 we show how to integrate DSD service requests into BPEL processes
and how the DSD-Middleware is leveraged to execute these requests when the
process runs. In Sections 4 and 5 we evaluate our approach and compare it to
the related work and finally in Section 6 we summarize and conclude.

2 DIANE Service Descriptions

At the core of all approaches to semantic web services are ontology-based lan-
guages that enable the description of service offers and requests and algorithms

Dynamic Binding for BPEL Processes 119

that allow to compare offers and requests in order to find (and bind) the most ap-
propriate service provider for a given offer. The approaches differ in the languages
used, the constructs they allow for service descriptions, the information from
the descriptions that is taken into account when comparing offers and requests
and the degree to which they allow for automatic configuration and binding.
This paper uses our DIANE Service Description, DSD [3]. DSD is particularly
suitable for the task at hand because of its superior matchmaking capabilities
that combine expressiveness with efficient matchmaking and the ability of full
automation up to the actual invocation of a discovered service. However, the
approach presented could be implemented based on other languages that meet
the requirements identified in the evaluation section, too.

In addition to the elements usually found in ontology-based languages, i.e.
concepts, their attributes and instances, DSD comprises the following elements
geared specifically at capturing the specifics of service descriptions:

– operational elements: Services change the state of the real-world (or the
information space). Operational elements allow to express this world-altering
capacity. In the example shown in Figure 2, you’ll find the operand effect,
describing that we are looking for a service that changes the state of the
world in such a way, that something is shipped.

– aggregating elements: A service is typically able to offer not one specific ef-
fect, but a set of similar effects. A shipment service for instance will be able
to offer transport of different kinds of goods from one arbitrary destination
to another. That means, services offer to provide one out of a set of effects.
Requestors on the other hand, typically are not looking for one specific ser-
vice, but for any element of the set of services that can provide the desired
effect. Sets are depicted in DSD with a small diagonal line in the upper left
corner of a concept.

– selecting elements: While a service will offer different effects, the provider
will typically allow the requestor to configure the service to choose which of
these effects should be provided in a specific instance. In DSD, variables are
used to for this task. In our example, the requestor will specify the exact
weight, dimension and delivery address upon invocation.

– rating elements: This type of element is used in service requests only. Re-
questors will typically be willing to invoke services with slightly differing
effects. In our example, the requestor is willing to pay any price below 500
USD but would prefer lower prices over higher ones. These preferences can
be expressed by rating elements. Rating elements are a key feature of DSD.
They allow the requestor to prescribe the desired effect and also acceptable
deviations very precisely, thus maximising the likelihood of finding the most
appropriate service.

Let us summarize the service request template depicted in Figure 2: COS-
Tec is looking for a service that results in something being shipped from their
address to an address that will be specified upon request execution. Weight and
dimensions of the good to be shipped will also be filled into the request template
as input variables. As an output, COS-Tec expects the price in USD. This price

120 U. Küster and B. König-Ries

should be at most 500 USD. Available service offers will be described in a similar
fashion. During service discovery, the DSD matcher will compare available offers
with the request. For this comparison the request tree is traversed and for each
set the matcher determines whether the set in the offer is a subset of the set
in the request, thereby ensuring that the effect provided by the service is one
that the requestor really wanted. This comparison can be done quite efficiently
and results in very precise matching results. This is one of the strengths of DSD
compared with other matchmaking algorithms: Typically, they either take not
all the information avaiable in the offer into account or they are not efficient
(most of the time not even decidable).

REQUEST:
upper

request: Service

upper.profile

: ServiceProfile

presents

effect

Shipped

Address

 Price
OUT,e,1

 Double

 ~==[0,500] 0

amount currency

fromAddress

toAddress

price

PhysicalEntity

cargo

String

== "COS-tec"

name
String

== "Some Road 13"
street

String

== "1234" zipCode

City

city

String

== "Some City" name

State

== ca

state

locatedIn

Country

== usa

locatedIn

String

== "+1424242"

phoneNr

String

== "+1424243"

faxNr

String

== "mail@cos-tec.com"

email

 Address
IN,e,1

dimension

weight

Double

val unit

length

width

height

DimensionMeasure
IN,e,1

WeightMeasure
IN,e,1

WeightUnit

== pound

 LengthMeasure

 LengthMeasure

 LengthMeasure
Currency

== usd

Fig. 2. Example request for a shipment service (some details have been omitted)

3 Integrating DSD into BPEL Processes

The basic idea how to integrate the DSD-Middleware into a BPEL process
is to make it available through a web service interface. The BPEL process
can then send service requests to that interface, thereby invoking the DSD-
Middleware which will locate available offers, find the best suitable one and
call the corresponding service provider with appropriately configured parame-
ters. This architecture is shown in Figure 3. The major difficulty involved in
this approach is to provide easy to handle yet powerful and expressive map-
ping mechanisms to translate the XML-based legacy data representation of the
BPEL process into ontology based semantic request descriptions understood by

Dynamic Binding for BPEL Processes 121

BPEL Process

W
e

bs
er

vi
ce

 in
te

rf
ac

e

Matcher
Agent

DSD
Middleware

COS-tech

Binder
Agent

Request
Agent

Repository

Caller
Agent

XML

filled request
(object)

possible
offers

matching
offers

offer
input

DSD
Middleware

Offer
Agent

SOAP
Service
Handler

offer
input

filled
request

service
invocation

Shipment
provider

Fig. 3. Overview of implemented architecture

the DSD-Middleware. In the following we will first explain this mechanism and
then give some more detail about how the DSD-Middleware works.

3.1 Mapping from Legacy Data to Semantic Request Descriptions

We anticipate that for most use cases the structure of regularly occurring re-
quests like our shipment service discovery requests (compare to Figure 2) will
remain fairly stable, but parameters and variable values will change. We there-
fore decided not to build a request from scratch within the BPEL process but to
rather deploy a request template to the DSD-Middleware at design time which
will be filled with variable values at runtime. This way the creation of the request
description can be done in the editors designed for that within the DSD frame-
work and is completely separated from the existing BPEL legacy order manage-
ment. All the order management has to do and all that has to be changed in the
BPEL process is that the process needs to send the name of the request tem-
plate to use and the parameters (like address, package weight, package pickup
time...) in BPEL friendly XML format to the webservice interface of the mid-
dleware. The format of those parameters (i.e. the XML schema) may be defined
by the legacy BPEL process and the middleware therefore adapts to the existing
process and not vice versa.

The BinderAgent component of the middleware is responsible for the manage-
ment of deployed request templates. It will be called by the webservice interface,
locate the template corresponding to a given request name and transform the
given input XML parameters to ontological concepts and instances represented
as Java objects (the data format used internally by the middleware). The in-
formation how to do that transformation can be defined declaratively in the
request template’s grounding by specifying XmlDsdMapping instances as shown
in Figure 4. Each mapping identifies a variable from the request and a node
from the given XML parameters that is used to fill that variable. The node is
specified using an arbitrary XPath expression; this offers great flexibility. If the

122 U. Küster and B. König-Ries

expression evaluates to a node list instead of a single node, multiple instances of
the variable to fill will be created as necessary.

Where necessary a custom converter class and method name may be optionally
specified which will be used by the middleware to unmarshall the contents of
the node into DSD variables. The price variable for instance is filled with data
taken from the ”maximumPrice” child element of the given parameters. The
unmarshalling is provided by invoking the ”convertToPriceDescription” method
of the ”MaxPriceConverter” class.

...
mapping += anonymous XmlDsdMapping [
 variable = $price,
 dataNodePath = "maximumPrice",
 converterClassName = "MaxPriceConverter",
 converterMethodName = "convertToPriceDescription"
],
mapping += anonymous XmlDsdMapping [

 variable = $cargo,
 dataNodePath = "package"
 attributeMappings += anonymous XmlDsdAttributeMapping [
 attributePath = "weight/val",

 subNodePath = "weight"
],
 attributeMappings += anonymousXmlDsdAttributeMapping [
 attributePath = "dimension/length/val",

 subNodePath = "length"
],
 ...
],
...

Fig. 4. Excerpt from mapping definitions XML to DSD variables

Usually the deployment of such custom converter classes is not necessary.
If no custom converter class is given, two cases need to be distinguished: If the
variable to fill is of a simple type (corresponding to XML Schema’s atomic types),
standard marshalling will be used to fill it using the value from the specified
node. If the variable has a complex type, an empty variable of that type will
be initialized and XmlDsdAttributeMapping instances have to be provided that
define how its attributes will be filled. These submappings work similar to the
XmlDsdMappings but operate in the context of the variable and node specified
by the parent mapping. As XmlDsdAttributeMappings can be nested arbitrarily
deep this mechanism is flexible enough to deal with any content, including nested
lists. As shown in Figure 4 the ”cargo” variable will be filled with data from the
”package” child element of the given parameters. If multiple ”package” child
elements are found, multiple ”cargo” variables will be created. The fillings of

Dynamic Binding for BPEL Processes 123

the ”cargo” variable’s attributes are defined by the given attributeMappings.
The ”weight” attribute’s ”val” attribute for instance (compare to Figure 2) will
be filled using the data from the child element ”weight” of the node that had
been identified by the ”package” XPath expression. Since the type of the ”val”
attribute is a simple double type and no converter class is specified, standard
unmarshalling will be used. As shown in the next mapping definition, variable
attributes may be identified using concatenated paths. In this case the ”val”
attribute of the ”length” attribute of the ”dimension” attribute of the ”cargo”
variable is filled (Note that this attribute has been omitted in Figure 2 for the
sake of clarity).

3.2 Request Execution by the DSD-Middleware

Once the BinderAgent has translated the input XML to DSD variables and filled
the request template accordingly, that request is forwarded to the RequestAgent.
The RequestAgent contacts the Repository 1 in order to obtain a list of available
offer descriptions. Together with this list the request is then forwarded to the
MatcherAgent. The MatcherAgent forms the heart of the middleware. Not only
does it provide efficient semantic matching of the request against the offers, it
also configures the offers optimal with regard to the request. More details about
the matching process can be found in [3]. An important property of the Matcher-
Agent is its ability to interact with a service provider during matchmaking. In
the description of its offer a shipment service provider can, e.g., specify that
the price of a shipment may be inquired by calling a getPrice operation with
the size of the package to send as parameter. The MatcherAgent is then able to
automatically call that operation and use the dynamically provided additional
information in the matching process.

Upon completion of the matching process the MatcherAgent returns a list of
properly configured service offers to the RequestAgent, ordered by how well the
offers suit the request. In the most basic case of our shipping scenario the least
expensive service would rank highest, in more advanced scenarios preferences
concerning pickup times, speed of delivery and other properties can be included.

The RequestAgent picks the best offer and forwards it to the CallerAgent
which invokes the OfferAgent at the middleware instance running on the ser-
vice provider’s server. Based on information provided in the offer description’s
grounding the OfferAgent has to bridge the gap between the semantic descrip-
tion of the offer and its actual implementation. Different implementations (like
Java program, web service, ...) are mirrored by corresponding different types
of groundings in the offer’s service description. Depending on the type of the
grounding found in that description, the OfferAgent thus delegates the invoca-
tion to the appropriate ServiceHandler. In order to perform the service invocation
the ServiceHandler has to translate the given configured service offer description
into a service invocation. In case of a web service the input parameters of that ser-
vice have to be extracted from the configured offer description and transformed
1 The implementation of the repository is pluggable and independent from the rest of

the middleware. It is therefore not within the scope of this paper.

124 U. Küster and B. König-Ries

into an XML message the service can process. This is the complementary task
of the translation performed by the BinderAgent. Besides providing essential
information like the address of the service, the offer grounding therefore also has
to define mappings which are this time used the other way round, namely to
create XML data from DSD variables analogously to the proceeding explained
in Section 3.1. In a similar fashion the reply of the web service is transformed
back into DSD variables. These are transferred back through the middleware
and returned to the calling BinderAgent. Finally, the BinderAgent transforms
them into an XML message that is replied to COS-tec’s BPEL order manage-
ment process. Once again these transformations are performed using mapping
definitions from the offer and request’s grounding.

The system introduced in this paper has been implemented and tested. An
elaborate scenario including selection, binding and invocation of a shipping ser-
vice has been implemented in the context of the 2006 Semantic Web Services
Challenge [4].

4 Evaluation

We offer an easy and lightweight way to enable dynamic binding for the com-
ponent services used by BPEL processes. Our approach is beneficial, if several
different providers competitively offer a certain necessary functionality used by
the BPEL process (like shipment ordering, stock quote lookup, component pur-
chasing, . . .). In this case our approach enables the BPEL process to always
use (i.e. choose and invoke) the best provider on a case by case basis. Thereby
the different services do not have to adhere to a standardized protocol or data
representation to enable to be bound and invoked automatically, but of course
need to annotate or describe their service semantically using an agreed upon
language - in this case DSD. To keep the approach lightweight, only limited sup-
port is currently offered for cases where one component service would have to
be replaced by a whole workflow of other services. A discussion of this topic of
automatic composition synthesis is beyond the scope of this paper.

BPEL uses the notion of partner links, roles and partners to identify con-
versations with varying actual services. It may be necessary to ensure that the
same single partner service, once chosen, will be used in later calls to the same
role. This is somewhat contrary to the idea of dynamic binding but if necessary
can easily be ensured by giving the provider name as parameter in later calls
of the DSD-Middleware. This will effectively limit the possible matches to the
single provider registered with the given name. More flexible limitations of pos-
sible matches for dynamic bindings downstream the business process execution
can be achieved similarly. This way one could ensure that certain providers are
always (or never) used in combination.

During runtime the integrating of the DSD requests into BPEL processes in-
cludes up to four data transformations: The input from the BPEL process has
to be transformed to DSD in order to be processed by the middleware. It has
then to be transformed to a format understood by the chosen provider’s

Dynamic Binding for BPEL Processes 125

implementation to invoke the service. Finally, output data has to be trans-
formed the same way back. Although this might look like too much overhead,
it is unavoidable to overcome heterogeneities regarding data representation and
choreography between COS-tec’s legacy process on the one hand and the various
systems of many independent shipment service providers on the other hand. An
xml message issued by COS-tec cannot be used directly to communicate with a
dynamically discovered service provider since this would require a unified xml
interface for all the various potential providers.

By supporting the necessary translations through declarative specifications
within the semantic description of a service request or offer, the bulk of actual
work concerning these translations can be performed by the DSD middleware
and doesn’t have to be implemented by the participants (COS-tec or the ship-
ment service providers). Furthermore, by putting the translation rules into the
description’s groundings they are cleanly separated from other concerns and can
be easily adapted, if a participant were to change its data format. If, for instance,
one of the shipment service providers changes its data format, all it has to do
is to publish an updated version of its offer description to the repository system
used. COS-tec’s order management system could still use that provider without
any change, in fact COS-tec wouldn’t even notice a change took place!

The approach presented in this paper could in principle be realized using any
service description language that allows for a precise encoding of user preferences
in the request and provides a matching algorithm that is able not only to find the
most appropriate offer, but also to directly invoke it. While a detailed comparison
of DSD with other such languages and discovery techniques is outside the scope
of this paper, it can be found in [3]. There, we reach the conclusion that neither
WSMO nor OWL-S, the two most widespread such languages currently meet these
requirements. Extensions of these languages, however, would be a suitable basis
for this approach. In the following section we will give a short overview of the
related work that also tries to support dynamic binding for business processes.

5 Related Work

The work closest to the one presented in this paper is by Mandell and McIll-
raith [5]. They also propose to integrate dynamic service discovery and binding
into BPEL processes. Discovery and matchmaking is performed by querying a
knowledge base of DAML-S service profiles with requests expressed in the DAML
Query Language (DQL). This machinery is then made availabe to BPEL pro-
cesses through a ”Semantic Discovery Service” (SDS). Although this idea is very
similar to ours, the realization is not. The SDS is agnostic to the content of the
service descriptions and invocation messages it receives. An invocation message
of the SDS consists of two parts: The abstract service request description to
be sent to the DAML-S knowledge base and the parameters to be sent to a
discovered service. Both are simply forwarded. Thus the calling BPEL process
has not only to deal with semantic descriptions directly, it also has to output
parameters in a format that will be understood by the discovered services. This

126 U. Küster and B. König-Ries

is very different from the configurable, adaptable mappings approach presented
in this paper.

The METEOR-S project [6] aims at creating a framework to support dynamic
selection of optimal partner web services. Developers create abstract processes
that contain service templates (semantic requests). At runtime a configuration
module binds these to concrete services using semantic discovery and an exe-
cution environment handles their invocation. Unlike the previously mentioned
approach METEOR-S also deals with the problem of data mapping. Similar to
our approach, developers may specify mappings between each element of an in-
put data of a web service and the corresponding ontological concept. Compared
to our work the way how the semantic technology is integrated by METEOR-S
differs. While we provide a web service gateway to the DSD Middleware that en-
ables to replace single (or multiple) statically bound service invocations by calls
of the middleware, the METEOR-S framework takes whole abstract processes
as input to transform it into a concrete process observing global constraints and
a global optimization function. Thus, the targeted use case is somewhat differ-
ent. But more importantly, the SWRL reasoner used by METEOR-S to perform
this task is not as powerful as the DSD MatcherAgent as it lacks the ability to
express user preferences and to invoke service operations during matchmaking
to gather dynamic information (This difference applies to [5], too).

Just recently Lemcke and Drumm [7] introduced a work to show the benefits
of integrating semantic Web service technologies into business processes. Just
like this paper they use a logistics scenario and aim to support dynamic carrier
selection. However, they use a set of predefined carriers to create a single business
process for each of them at design time. At runtime they then use semantic
technology to pick and instantiate the most appropriate process. Although the
use case is the same, the focus of this work is less on discovery and binding
and more on automated mapping of in- and output parameters to support the
creation of the business processes at design time.

The work by Oberle et al. [8] makes a case for the necessity to trade of between
the high maintenance costs of the WS-* approaches and the high modeling cost
of semantic approaches. It thus suggests a compromise that explicitly does not
aim at automating anything but only the most efficient things. We share this
idea and the underlying motivation, but the resulting work aims at very different
objectives. Based on a set of use cases Oberle et al. try to identify who could
benefit to what extent from what kind of semantic modeling of web services.
Thereby they aim at examining how to support the developers of web appli-
cations by exploiting which kind of semantic information. Thus, they focus on
the usage of semantic technology during process design time, while we leverage
semantic technology at process runtime.

6 Summary and Conclusion

In this paper we have shown how existing service-oriented applications can lever-
age the advantages offered by novel semantic web service technology without

Dynamic Binding for BPEL Processes 127

compromising trust in the application or encountering unreasonable effort dur-
ing the transition.

The basic idea is to enable BPEL processes to bind to the semantics-based
DSD middleware instead of statically binding to an external service provider.
In places where the static binding is replaced by the DSD middleware binding,
predefined templates will be used to issue semantic requests. The DSD mid-
dleware then uses its semantic technology to dynamically find and invoke the
most suitable service provider from a potentially vast pool of candidates. This
dynamic binding results in a robust system that always uses the best provider of
functionality available without the need of manual intervention. Developers can
choose at which steps of a BPEL process to replace the original static binding
by the DSD-based one. This leaves the control about how much semantics to in-
troduce in the discretion of the developer. This overcomes both the widespread
lack of trust in semantic technology and the high entrance costs associated with
a complete migration to semantic technology.

The approach presented in this paper offers an opportunity for a smooth
transition from legacy web service applications to more powerful semantic web
service technology. We believe such a seamless transition to be a necessary pre-
requisite for the adaptation of semantic service technology in real-life commercial
settings.

References

1. Sprott, D., Wilkes, L., Veryard, R., Stephenson, J.: Web services roadmap. In: CBDI.
Report Series - Guiding the Transition to Web Services and SOA (2003)

2. W3C World Wide Web Consortium: (www.w3c.org)
3. Klein, M., König-Ries, B., Müssig, M.: What is needed for semantic service descrip-

tions - a proposal for suitable language constructs. International Journal on Web
and Grid Services (IJWGS) 1(3/4), 328–364 (2005)

4. Küster, U., König-Ries, B., Klein, M.: Discovery and mediation using diane service
descriptions. In: Second Workshop of the Semantic Web Service Challenge 2006,
Budva, Montenegro, June 2006 (2006)

5. Mandell, D.J., McIlraith, S.A.: Adapting BPEL4WS for the semantic web: The
bottom-up approach to web service interoperation. In: Fensel, D., Sycara, K.P.,
Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, Springer, Heidelberg (2003)

6. Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The METEOR-S ap-
proach for configuring and executing dynamic web processes. Technical Report 6-
24-05, LSDIS Lab, University of Georgia, Athens, Georgia, USA (2005)

7. Lemcke, J., Drumm, C.: Semantic business automation. In: Proceedings of the 3rd
European Semantic Web Conference’s Industry Forum, Budva, Montenegro (2006)

8. Oberle, D., Lamparter, S., Eberhart, A., Staab, S.: Semantic management of web
services. In: ICWS05. Proceedings of the 2005 IEEE International Conference on
Web Services, Orlando, Florida, IEEE Computer Society Press, Los Alamitos (2005)

www.w3c.org

Part II

First International Workshop on
Modeling Service-Oriented

Architectures:
Business Perspective and

Model Mapping

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 131–140, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Model-Driven Approach for QoS Prediction of BPEL
Processes

Jiangxia Wu and Fangchun Yang

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, 100876 Beijing, China

wujiangxia@gmail.com, fcyang@bupt.edu.cn

Abstract. Business Process Execution Language (BPEL) is one of the most
popular languages for Web service composition. To predict the QoS of
composite service processes specified in BPEL gives the way to tell whether the
process meet the non-function requirements, and to choose the process with
better QoS from those with similar function. A model-driven approach for QoS
prediction of BPEL processes is proposed in this paper, which has a two-layer
architecture: One is the prediction model specifying necessary information for
prediction and independent of specific languages, and the other is the semantic
model of specific languages such as BPEL. A set of transformation rules is
defined between the two layers so that processes specified in specific languages
can be transformed to the prediction model. A prediction algorithm is defined
based on the prediction model, and through the algorithm the average value of
process QoS attribute can be computed. The approach can be used not only to
BPEL processes but also to processes in other specifications such as BPML and
BPSS, if the mapping rules between the semantic models of these languages
and the prediction model are defined. The feasibility and good accuracy of the
approach has been proved by the experiment.

Keywords: QoS prediction, Web service composition, BPEL, model-driven.

1 Introduction and Related Work

Business Process Execution Language (BPEL) is one of the most popular languages
for Web service composition. To predict the QoS of BPEL processes gives the way to
tell whether the process meet the non-function requirements, and to choose the
process with better QoS from those with similar function. The research in QoS
prediction of Web service composition is in its infancy. Zeng introduced the
aggregation function approach for prediction [1]. The function is rather simple and
has limited accuracy. Grassi proposed the Software Architecture based approach [2]
which is based on the research of component system prediction and is concerned with
the execution environment of Web services. Therefore, it is not feasible for Web
service composition. Chadrasekaran introduced a simulation based approach [3]
which relies on specific simulation tool. And the Workflow Based Approach (WBA)
[4, 5] is proposed by Cardoso and Jaeger respectively and has better feasibility and
accuracy than others methods. However, neither of the existing methods can be used

132 J. Wu and F. Yang

for the prediction of BPEL processes, because they are not based on the semantic
concepts of BPEL.

In this paper, we propose a model-driven approach for BPEL process prediction,
which introduces a two-layer architecture: One is the prediction model specifying
necessary information on composite services for prediction and independent of
specific languages, and the other is the semantic model of specific languages such as
BPEL. A set of transformation rules is defined between the two layers so that
processes specified in specific languages can be transformed to the prediction model.
And a prediction algorithm is defined based on the prediction model, by which the
average value of QoS attributes of processes can be computed. The approach can be
used for not only BPEL processes QoS prediction but also processes specified in any
other languages such as BPML, WSCI etc., if the mapping rules between the semantic
models of these languages and the prediction model are defined. The feasibility and
good accuracy of the approach has been proved by the experiment.

The rest of the paper is organized as follows: Section 2 gives the formal definition
of the prediction model. Section 3 proposes the transformation rules between
semantic model of BPEL and the prediction model. Section 4 introduces the
prediction algorithm and the analysis of the time complexity. The experiments and
analysis are given in section 5. Finally, we conclude in section 6.

2 Prediction Model

2.1 Model-Driven Prediction

Model-Driven Architecture (MDA) is promoted by the Object Management Group
(OMG) for software development [7]. The main idea of MDA is to achieve
portability, interoperability, and reusability through an architectural separation and
transformation of concerns between the design and implementation of software. The
work described in this paper adopts the MDA strategy to predict the QoS of
composite service processes specified in BPEL.

Model-driven QoS prediction is based on a two-layer architecture shown in
figure. 1. One is the prediction model specifying necessary information on composite
services for prediction and independent of specific languages, and the other is the
semantic model of specific languages such as BPEL. A set of transformation rules is
defined between the two layers so that processes specified in specific languages can
be transformed to the prediction model. Based on the prediction model, a prediction

Fig. 1. The architecture of model-driven prediction

 A Model-Driven Approach for QoS Prediction of BPEL Processes 133

algorithm is defined to compute the average value of QoS attributes of processes
specified in the prediction model. Thus, the approach can be used to predict the
process in any languages such as BPML, BPSS etc., if the mapping rules between the
semantic model of the language and the prediction model is defined.

2.2 Model Definition

The prediction model is the abstraction of information elements necessary for QoS
prediction of a composite services process. It is independent of specific languages so
it can be used for the prediction of process in any specification including BPEL. The
model is made up of the following concept definitions.

Definition 1. Composite service process Γ . Γ is a 4-tuple with the format of (CP, T,
C, Q). It is used to represent the composite service process to be predicted. Γ can be
specified as a workflow [8]. And the tasks in workflows represent the service
invocation operations, and the transitions between tasks represent the orders between
invocation operations. The definition of the four elements of Γ is given below.

Definition 2. Composition pattern set (CP). CP represents the set of composition
patterns which constitute the composite service process. Composition pattern is the
abstraction of basic architecture of composite services [5, 6], which is composed of a
set of tasks and defines the execution order of the tasks and the completion symbol of
the pattern. There are seven types of composition patterns Sequence, Loop,
XOR_XOR, AND_AND, AND_DISC, OR_OR and OR_DISC. The definition of each
type is given in table 1. Composition patterns can be nested and sub-patterns can be
treated as the tasks of the parent-pattern.

Table 1. Definition of composition pattern types

cp Type Definition
Sequence Containing n (n>1) tasks which are executed in sequence.

Loop Containing 1 task which is executed repeatedly.

XOR_XOR
Containing n (n>1) tasks one of which is chosen and

executed, completed when the task completes.

AND_AND
Containing n (n>1) tasks which are executed concurrently,

completed when the n tasks complete.

AND_DISC
Containing n (n>1) tasks which are executed concurrently,

completed when m out of n (m<n) tasks complete.

OR_OR
Containing n (n>1) tasks s (n>s>1) of which are executed

concurrently, completed when the s tasks complete.

OR_DISC
Containing n (n>1) tasks s (n>s>1) of which are executed

concurrently, completed when t out of s (t<s) the tasks complete.

Definition 3. Task set (T). T represents the set of tasks composing the composite
service process.

Definition 4. Contain (C). C represents the relationship between composition patterns
and the nodes it contains, and C = {(cp, node) | cp∈ CP, node∈ CP ∪ T}. And

134 J. Wu and F. Yang

(cp, node)∈C, iff cp∈CP and cp contains node。Any node is contained by one and

only one pattern, that is to say, if ∃ (p1，node) ∈C and ∃ (p2，node) ∈C，then p1
= p2.

Definition 5. QoS description of tasks (Q). Q describes the QoS value of tasks, and Q
= {(t, d, v) | t ∈ T)}, in which t∈ T, and d represents the type of QoS such as
performance, cost, availability and reputation [1], and v represents the average value
of QoS.

3 Transformation

The semantic concepts of BPEL are the abstraction of the information described by
the BPEL process specification, which are organized as the metamodel of BPEL. And
the transformation rules between BPEL metamodel and the prediction model define
the mapping from the concepts in BPEL to the concepts in the general model. And
with the transformation rules BPEL processes specification can be converted into the
general model which is the input of the prediction algorithm.

The metamodel of BPEL in UML [9] is shown in figure 2, which describes the main
semantic elements of BPEL and the relationship among them. The semantic elements
concerned with the prediction are process and activity. The detail mapping rules
between the elements and the concepts in general model are described as follows.

Fig. 2. BPEL metamodel

process element described as <process> in BPEL will be transformed to a composite
service process Γ . And activity element is split into two types, one is basic activity,
the other is structured activity.

3.1 Transformation of Basic Activity

The basic activity in BPEL represents the invocation operation of element services
and is described as <invoke>, <receive> and <reply>. Basic activities will be
transformed to tasks in composite service process. <invoke> represents a
synchronized or asynchronous Web service invocation and will be mapped to a task t.
And <receive> and <reply> together represent a synchronized invocation and will be
mapped to a task t. The tasks corresponding to all basic activities in <process> make
up with the tasks set T.

 A Model-Driven Approach for QoS Prediction of BPEL Processes 135

3.2 Transformation of Structured Activity

The structured activity in BPEL specifies the order of activities contained in it, and is
described as <sequence>, <switch>, <while>, <pick>, and <flow>. The structured
activities will be transformed to composition patterns (cp) of composite service process
and the relationship between the structured activity and the activities it contains will be
transformed to the elements in C of the composite service process. The structured
activity can be nested and the nested activity can be mapped to nested cp.

<sequence> contains one or more activities that are performed sequentially, in the
order in which they are listed. It is mapped to a cp with sequence type. <switch>
contains one or more condition branches, one of which will be chosen to be executed
according to the condition. It is mapped to a cp with XOR-XOR type. <while>
represents repeated execution of a specified iterative activity until the given Boolean
no longer holds true. It is mapped to a cp with Loop type. <pick> contains one or
more event branches, one of which will be chosen to be executed according to the
event. It is mapped to a cp with XOR-XOR type. And <flow> specifies one or more
activities to be performed concurrently. It is mapped to a cp with AND-AND type. All
the cps corresponding to the structure activities in <process> make up the
composition pattern set CP.

3.3 To Get the QoS Description Q

QoS description of tasks can not be extracted directly from the BPEL process
specification. The QoS of tasks is the QoS of basic activities which is decided by the
element service being invoked. There are two ways to get the QoS of services. One is
to refer to the interface specification of services which can be located through the
porttype and operation attributes of basic activities. A method of describing service
QoS in WSDL specifications has been proposed in [10]. And the other is to get the
QoS of services through test or monitoring. A method of getting service QoS through
monitoring has been proposed in [11].

4 Prediction Algorithm

Based on the prediction model in section 2 we define the prediction algorithm to
predict the average value of the QoS of composite service processes. The QoS
attributes supported by the algorithm include performance, cost and reputation. The
algorithm is independent of the specific definition of attributes and can be used for
each attribute. In the algorithm, the QoS of processes are based on the QoS of
composition patterns calculated through the QoS aggregation formula for composition
patterns which take the QoS of the tasks in the pattern as input, and recursive
procedures are used for the calculation of nested patterns. And the QoS of the most
parent pattern is the prediction result of the process.

For each type of composition patterns and for each attribute of QoS, a QoS
aggregation formula is defined. For example, the performance QoS aggregation

formula for sequence composition pattern is defined as i
i

x∑ , and for XOR-XOR

136 J. Wu and F. Yang

pattern is i i
i

p x∑ , in which, ix represents the performance value of tasks in the

pattern and ip represents the probability of the branch including the task being

executed. The formulas for each pattern type and for the attributes of performance,
cost and reputation are given in [6].

4.1 Algorithm Definition

The algorithm inputs include the composite service process Γ and the attribute d to be
predicted. Through the algorithm the average value of the d attribute of the
process Γ can be computed.

The algorithm is made up of three steps. First, the process is composed of nested
composition patterns and we need to get the most parent composition pattern

described as cp0 and satisfying ∀ cp∈CP, (cp, cp0)∉C. Second, in order to calculate
the QoS of composite patterns, we need to get the attribute value of d of all nodes in
cp0. And then let node represent a node in cp0. When node is a task, the QoS of node
is the v in (node, d, v)∈D. And when node is a nested composition pattern, the QoS
of node can be extracted through the recursive invocation of the algorithm. Thirdly,
take the QoS value of nodes in cp0 into the aggregation formula for the attribute of d
and the pattern type of cp0 to get the QoS of the composition pattern, which is the
result of prediction.

4.2 Time Complexity

Theory 3.1. As the input is (), , ,CP T C QΓ = , the time complexity of the algorithm

is () ()O CP O T+ .

Let C P n= , mT = , and there is ()1−+= nmC . To get the most parent

composition pattern, the algorithm checks each element in C and debars those being
contained by other patterns. The worst time complexity of the procedure
is () 11 tnm ⋅−+ , in which

1t represents the constant time to deal with a single

element in C. In addition, the time of the procedure of getting the QoS of all tasks is

2tm ⋅ and of getting the QoS of all composition patterns is
3tn ⋅ , in which

2t and
3t

respectively represent the constant time of getting the QoS of a service and of
calculating an aggregation formula. As a result, the time performance of the algorithm
is () 3211 tntmtnm ⋅+⋅+⋅−+ , and the complexity is () ()mOnO + , that

is () ()O CP O T+ .

5 Experiment

To prove the feasibility and accuracy of the approach proposed in the paper, we give
an example of BPEL process prediction. First, the performance of a BPEL process is
predicted by the approach, and then the BPEL process is executed by Active BPEL to

 A Model-Driven Approach for QoS Prediction of BPEL Processes 137

get the actual average process performance, and the actual value and prediction result
are compared.

The example BPEL process specification is shown in figure 3, and the function of
the process is to perform stock quote or exchange rate consultant according to the user
request. There are four element services: Receipt, StockQuote, ExchangeQuote and
Response, and the WSDL file URLs of the element services are shown in table 2.

And the definition of Web services performance is given in [1] as the interval
between receiving the request and sending out the response, and the interval can be
measured through the execution time of services.

Fig. 3. The example BPEL process

Table 2. The WSDL file URLs of the element services in the example BPEL process

element service WSDL URL
Receipt http://www.telestar.bj.cn/spacejojo/wsdl/receipt.wsdl

StockQuote http://services.xmethods.net/soap/urn:xmethods-delayed-
quotes.wsdl

ExchangeQuote http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl
Response http://www.telestar.bj.cn/spacejojo/wsdl/response.wsdl

The performance value of the example process can be computed as follow. The
BPEL process is transformed to a corresponding prediction model according to the
rules in section 4 to get the input of the algorithm, and the result prediction model is
shown in table 3. And the performance of element services represented as the QoS
description Q in the prediction model is gotten through service test. We record the
performance data of element services in ten executions and take the average

138 J. Wu and F. Yang

performance as the value in Q. And we suppose the branches in <switch> have the
same probability to be executed. Through the prediction algorithm, we can get the
prediction result of the process performance as16.05s.

Table 3. The result prediction model transformed from the example BPEL process

Element Value

Γ (CP, T, C, Q)
T {t_receipt, t_stock, t_exchange, t_response}

CP {cp_sequence，cp_switch}

C
{(cp_sequence, t_receipt), (cp_sequence, cp_switch), (cp_sequence, t_response),

(cp_switch, t_stock), (cp_switch, t_exchange)}

Q
{(t_receipt, performance, 3.3), (t_stock, performance, 10.2), (t_exchange,

performance, 9.3), (t_response, performance, 3.0)}

Table 4. The run-time performance of the example process and the included basic activities

<switch>
instance

Process
<sequence>

Receipt
<invoke> StockQuote

<invoke>
ExchangeQuote

<invoke>

Response
<invoke>

1 16.97 3.67 - 9.32 2.54

2 15.46 3.00 - 9.05 3.13
3 18.67 3.77 - 9.06 3.34
4 17.5 3.68 10.16 - 3.33
5 18.02 3.78 10.55 - 3.42
6 19.63 3.06 10.53 - 3.47
7 19.09 3.64 10.00 - 3.47
8 15.72 2.99 - 9.30 3.04
9 16.53 3.41 - 9.78 2.99

10 16.3 3.67 - 8.95 2.91
11 16.84 3.08 10.05 - 2.89
12 16.11 3.63 - 9.79 3.35
13 18.06 3.08 10.36 - 2.96
14 16.05 3.40 - 9.31 3.31
15 17.73 3.35 10.44 - 3.36
16 15.42 3.20 10.04 - 3.47
17 16.53 3.57 - 9.68 3.11
18 16.81 2.97 10.01 - 3.33
19 15.39 2.93 - 9.26 2.89
20 16.81 3.54 10.43 - 2.91

Avg 16.98 3.36 10.24 9.35 3.18

 A Model-Driven Approach for QoS Prediction of BPEL Processes 139

And then the example process is executed by Active BPEL, which is an execution
engine of BPEL based on Java [13]. The reason to choose Active BPEL is that it
provides the log on the start and end time of the process as well as the basic activities
in the process, so that the run-time performance of the process and the basic activities
can be gotten. Active BPEL takes the process specification and the element service
WSDL file URL as the input. According to the Active BPEL logs on 20 executions of
the example process, the run-time performance of the process and the basic activities
can be calculated and the result is shown in tabel 4. The actual average process
performance can be gotten as 16.98s.

From the data in table 3 and table 4, we can see that there are errors between the
estimation and the actual performance of element services, and this is one of the
reasons leading to the error of process prediction. The process prediction error rate

can be calculated through the formula of e a

a

V V

V
η

−
= in which Ve and Va

respectively represent the prediction result and actual value. And the error rate of the
performance prediction of the example process is 5.5%, which proves the approach
has a good estimation in predicting the average QoS value of BPEL processes.

6 Conclusion

A model-driven approach for the QoS prediction of BPEL process is proposed in the
paper. It has a two-layer architecture: One is the prediction model specifying
necessary information on composite services for prediction and independent of
specific languages, and the other is the semantic model of specific languages such as
BPEL. A set of transformation rules is defined between the two layers so that
processes specified in specific languages can be transformed to the prediction model.
Based on the prediction model the prediction algorithm to predict the average value of
the QoS attributes of composite service processes is defined. And we’ve proved the
algorithm has a linear time complexity. Model-driven strategy makes it possible for
the approach to be used for the prediction of processes specified in any languages, if
the sets of mapping rules between the semantic models of the language and the
prediction model are defined. The feasibility and good accuracy of the approach in
BPEL process prediction has been proved by the experiment.

Acknowledgment. We thank the National Basic Research Priorities Programme
(Grant No. 2003CB314806) for funding the project.

References

1. Zeng, L., Benatallah, B., Ngu, A.H.H., et al.: QoS-Aware Middleware for Web Services
Composition. Software Engineering, IEEE Transactions on 30(5), 311–327 (2004)

2. Grassi, V.: Architecture-based Reliability Prediction for Service-oriented Computing. In:
de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable Systems III.
LNCS, vol. 3549, Springer, Heidelberg (2005)

140 J. Wu and F. Yang

3. Chadrasekaran, S., Miller, J.A., Silver, G.S., et al.: Composition, performance analysis and
simulation of web services. Electronic Markets: The International Journal of Electronic
Commerce and Business Media (2003)

4. Cardoso, J.: Quality of Service and Semantic Composition of Workflows. PhD thesis,
Department of Computer Science, University of Georgia, Athens, GA (USA) (2002)

5. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS aggregation for service composition
using workflow patterns. In: EDOC 2004. Proceedings of the 8th International Enterprise
Distributed Object Computing Conference, Monterey, California, IEEE Computer Society
Press, Los Alamitos (2004)

6. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS aggregation in Web service
compositions. In: EEE 2005. Proceedings of the IEEE Int. Conf. on e-Technology, e-
Commerce and e-Service, pp. 181–185. IEEE Computer Society Press, Los Alamitos
(2005)

7. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1, OMG (2003)
8. van der Aalst, W.M.P., van Hee, K.M., Houben, G.J.: Modeling workflow management

systems with high-level Petri nets. In: Proceedings of the second Workshop on Computer-
Supported Cooperative Work, Petri nets and related formalisms, pp. 31–50 (1994)

9. Mongiello, M., Castelluccia, D.: Modelling and Verification of BPEL Business Processes.
In: MBD/MOMPES 2006. Proceedings of the Fourth Workshop on Model-Based
Development of Computer-Based Systems and Third International Workshop on Model-
Based Methodologies for Pervasive and Embedded Software (2006)

10. Gouscos, D., Kalikakis, M., Georgiadis, P.: An Approach to Modeling Web Service QoS
and Provision Price. In: Proceedings of the Fourth International Conference on Web
Information Systems Engineering, pp. 121–130 (2003)

11. Liu, Y., Ngu, A.H.H., Zeng, L.: QoS Computation and Policing in Dynamic Web Service
Selection. In: Proceedings of the Thirteenth International World Wide Web Conference,
New York (2004)

12. van der Aalst, W.M.P.: Web Service Composition Languages: Old Wine in New Bottles.
In: Proceedings of the 29th EUROMICRO Conference New Waves in System Architecture
EUROMICRO (2003)

13. Stoilova, K., Stoilov, T.: Comparison of workflow software products. In: CompSysTech.
Proceedings of the International Conference on Computer Systems and Technologies
(2006)

Modelling of Service Compositions: Relations
to Business Process and Workflow Modelling

Michael C. Jaeger

Technische Universität Berlin, FG Formal Models, Logic and Programming
Sek. FR 6-10, Franklinstrasse 28/29, D-10587 Berlin, Germany

mcj@cs.tu-berlin.de

Abstract. The service oriented architecture (SOA) represents a trend
in the IT industry for the development of a flexible and unifying software
infrastructure. In an SOA, software components provide their function-
ality as a service by using uniform interface description and invocation
protocols. The provision of software components in an uniform manner
allow their efficient composition to form new complex services. Currently,
the compositions of services is a popular field of research with many on-
going efforts.

However, the sheer number of existing proposals and efforts to de-
scribe service compositions in this field have led to term Web Services
Acronym Hell (WSAH) [1] and an obvious confusion. This paper intends
to serve as an orientation for explaining what the differences between
business processes and workflow control flow languages are and why ser-
vice compositions are used in this field. It will also introduce past and
existing proposals for Web service composition languages for understand-
ing why so many different languages for modelling workflows, business
processes and compositions exist.

1 Introduction

Services in an SOA use standardised interface descriptions and uniform invo-
cation protocols. The Web services proposal by the W3C has defined such ele-
ments of an SOA by using Internet protocols for the invocation and XML-based
description formats for the description and messages in an SOA [2]. A service
composition results from combining existing services to realise a new, more com-
plex functionality. The SOA reflects the task-orientation of modern businesses
that form a business process. Using services in this setup leads to services that
fulfil individual tasks of a process. Arranging them together to a composition
provides the implementation of a process. One candidate for describing and defin-
ing compositions of Web services is the Business Process Execution Language
for Web Services (“BPEL4WS”). In the remainder of this paper, a language like
BPEL4WS is named composition language. However, in this field some problems
of understanding arise:

– The BPEL4WS proposal carries “Business Process Execution” in its name.
Is a service composition equivalent with the realisation of a business process?
What is the relation between business processes and compositions?

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 141–153, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

142 M.C. Jaeger

– Considering the definition of the Workflow Management Coalition (WfMC)
provided in their comprehensive workflow reference model saying that “a
workflow is the computerised facilitation or automation of a business process,
in whole or part” [3]: Does a service composition represent a workflow when
realising a business process? Based on this definition it seems odd why there
is a “business process execution language” used for service compositions, but
not an analogous “workflow execution language” which would be the more
consistent name with respect to the definitions of the WfMC.

– Why there are so many different composition languages? What are their
origins and in which direction will they evolve in the future?

This work intends to give a clarification and to answer the posed questions
in the following way: In Sections 2 and 3, a rough overview about business
processes, workflows and their modelling languages is given. In Sections 4 and 5,
differences between both are discussed and the main considerations why service
compositions match these two fields are introduced. And then, based on the
given clarifications, composition languages are discussed which are found most
in today’s literature in Section 5.1. After these main three parts, the paper ends
with the conclusions in Section 6.

2 Business Processes

In the mid-90s, the work of Hammer and Champy, who introduced business
process reengineering as a main strategy to improve existing businesses and or-
ganisations [4], brought the IT industry to put more efforts in the development
of software systems that facilitate the creation and management of business pro-
cesses. The basic idea of this strategy is to design a process in the most modern
and optimised way leading in a process definition without legacy artefacts. Every
business process should have a dedicated customer and thus offer a clear benefit.
In addition, a process should also have a defined process owner, who is in charge
and responsible in order to provide customers with a defined point of contact.

At that time, different organisational units where divided by their functional
responsibilities, and a process typically crossed different units. As a result, pro-
cesses performed inefficiently and in case of problems, a responsible party was
hard to identify. To overcome these lacks of efficiency, the business process
reengineering was proposed as an optimisation effort of existing activities. As
a side-effect of standardised processes, monitoring and benchmarking tasks pro-
duce results that are more suitable for comparison. And based on the defined
processes, mistaken activities or misunderstandings between involved actors are
reduced and thus the productivity is improved.

Apart from the evident advantages, analysis from the performed business
process reengineering efforts have also revealed a couple of disadvantages. Most
noticeable are that too radical changes will lead to social problems in an organi-
sation [5, p. 239]. Moreover, a strong focus on the process optimisation also runs
the risk of poor improvements on what the individual activities produce.

Modelling of Service Compositions 143

2.1 Modelling Business Processes

One motivation of modelling business processes is to achieve a clear and common
understanding between the management and the involved actors and users of
the process. For modelling processes, different graphical and textual languages
exist, which can be used to create diagrams or a description of a business process
that is ready for interpretation by software systems. Graphical representations
can be flow diagrams, block diagrams, or basic graphs. Considering a graph, a
node represents usually an activity, an event, or an entity where directed edges
represent the (causal) relations between the elements.

One early introduced graphical language for the modelling of processes is the
event-driven process chain (EPC) [6]. As its name suggests, the basic element
of an EPC is the event, which is a defined condition and thus can be the result
of a process, a function, or an external event. Contrary to events, a function is
an active element which changes a state and thus is the object between different
events. Events and functions, can be combined with combination operators, like
ANDs or XORs. EPCs are suitable for the modelling of control flows that define
the order of occurring events and executed functions. To model the data flow
of a process (or also the flow of goods) extensions are proposed that appear in
literature as so-called extended EPCs [5, p. 221].

The Business Process Management Initiative (BPMI) has introduced the Busi-
ness Process Modeling Language (BPML) as a textual language for describing
business processes [7]. The BPMI represents a non-profit organisation with the
goal to support and coordinate the activities in the field of business processes
among its members. The BPML is intended to serve as a comprehensive descrip-
tion of a business process, which also covers aspects of implementing business pro-
cesses. It consists of different elements to describe the control flow as well as the
data flow of a process. The standard textual representation used for BPML doc-
uments is XML. The BPMI has also released a graphical notation called Business
Process Modelling Notation (BPMN) to provide a set of symbols and layout con-
ventions for drawing business process models [8]. In the recent past, the BPMI has
merged their efforts with the business process modelling activities of the Object
Management Group (OMG), which represents a non-profit organisation for pursu-
ing interests in the area of object-oriented software technologies.. As a result from
this merger, the work focusses on new releases of the BPMN adopted by the OMG.

The Business Process Specification Schema (BPSS) has a slightly different fo-
cus than the BPML. The BPSS is part of the ebXML suite which supports estab-
lishing agreements to facilitate electronic businesses on an inter-organisational
level. The motivation background for this effort is to provide a specification for
helping developing countries to participate in electronic commerce without being
dependent on technologies offered by particular vendors. The ebXML is driven
by the United Nations Centre for Trade Facilitation and Electronic Business
(UN/CEFACT) and a Technical Committee at Organisation for the Advance-
ment of Structured Information Standards (OASIS). The first release that can
be traced back was submitted in 2001. At that time, compositions of services in
an SOA were not mentioned at all.

144 M.C. Jaeger

The Business Process Execution Language (BPEL), also named BPEL for
Web Services (BPEL4WS) represents another proposal for specifying business
processes. This proposal covers the modelling of processes and the description
about the involvement of concrete Web services. At the moment, a committee
at the OASIS coordinates the development of BPEL. Before, BPEL was carried
out by a joint venture of the software industry. Originally, it resulted from a
merger of the Web Services Flow Language by IBM (WSFL, [9]), which shows
influences from IBM’s MQ Series workflow software [10], and XLANG [11], which
was intended to serve as the process modelling language in Microsoft’s BizTalk
software.

Besides the mentioned EPC, BPMN, BPEL, WSFL, and XLANG, other ap-
proaches to model business processes exist. The given selection represent the
commonly mentioned proposals in papers discussing the area of service compo-
sitions. In addition, the WSFL, XLANG and BPEL4WS proposals directly cover
the realisation of processes with services by forming service compositions, which
also indicate that the border between business processes and service compositions
becomes blurred. Another popular proposal for modelling business processes is
the Unified Modelling Language (UML) from the OMG, for example by using
activity diagrams [12, cf. section 2.13.2.1]. Originally intended for “software-
intensive” systems as the foreword of the UML specification explains, this mod-
elling language is already implemented by different software products for the
development of service compositions.1

3 Workflow Management

The management of workflows has got a different origin from the management
of business processes. Workflow management systems (WFMS) were first ap-
plied for specific application cases. One of the systems mentioned as the first
steps is the so called OfficeTalk which came as a part of the Xerox Star com-
puter system [15]. The Xerox Palo Alto Research Centre (PARC) has developed
this system in the 70s to support the work with documents in a typical office
environment. This did not represent typical WFMS of today. However, Offic-
eTalk reflects the way humans would work on documents without computers – a
non-computer-supported workflow. Clearly, workflow has in this sense a strong
relation to support collaboration and document management. By covering this
application scenario, the workflow management systems brought a couple of ben-
efits. The most important advantage is the automated execution of tasks, which
do not require an interactive handling, in order to accelerate the workflow. By
the automated processing of data, the application of a WFMS anticipated that
documents are kept in the software systems by bundling different systems to-
gether. Cumbersome re-entry of data which is time-costly should be avoided.
And, when workflow management systems coordinate the work, also data can
be derived that indicates the performance of the performed processes. Clearly,
1 Examples are the Oracle BPEL Process Manager [13], or the WebSphere Integration

Developer by IBM [14].

Modelling of Service Compositions 145

this represents an analogy to the main benefits identified for the business process
reengineering.

From this early beginning, WFMS developed further to support other ap-
plication domains than the work around documents in an office. Also, WFMS
became more compatible to coordinate tasks performed by external systems. As
an example, Mahling et al. explain the evolution of the Poise system [16]: in its
first version, it represented an office information system supporting the handling
of documents, such as entering information or realising static workflows. In the
mid-80s, a subsequent development called Polymer offered a more sophisticated
concept of modelling workflows that resulted in more flexible workflows and in
a better coverage of different application scenarios. Based on that, Polyflow was
introduced in 1995 as a full-featured WFMS in the sense of the reference model
by WfMC [3].

3.1 Modelling Control Flows in Workflows

Since the development of WFMS begun, vendors have provided proprietary mod-
elling languages. Van der Aalst et al. have introduced a set of patterns that
describe structural characteristics and functional capabilities of WFMS and in-
volved languages. Their analysis covers about 15 different WFMS [17].

Besides the reference model, the WfMC has introduced the XML Process
Definition Language (XPDL, [18]). XPDL was intended to serve as a platform
independent description language that allows to share workflow descriptions be-
tween tools and execution environments of different vendors. As a consequence,
the authors have chosen the XML as its textual notation because of its wide
support among different platforms. Besides the efforts from the industry side, re-
search work covers also the modelling and specification aspect. Most approaches
consider the application of EPCs, process calculi or (high-level) Petri nets as a
foundation. Petri nets, also called Place-/Transition-Nets (P/T-Nets), are named
by its ”inventor” Carl Petri and serve as a formal language for modelling and
specifying discrete events of dynamic systems. They show a high degree of ver-
satility and are also applied to the specification of telecommunication protocols,
or used as description of logistic chains. Petri nets were introduced by Petri in
the year 1962; the ISO covers Petri nets today as a proposed standard [19].

Janssens et al. have introduced an analysis of existing workflow modelling
efforts that use Petri nets [20]. Their analysis covers 12 contributions. The main
reasons for using Petri nets for modelling workflows are that they offer a graph-
ical notation and a formally defined semantic of its elements which allow the
application of formally proven analysis techniques [20,21]. Among the contribu-
tions in this field, van der Aalst et al. have defined a Petri net variant which
they call Workflow Nets for modelling workflows [22]. Based on this work and
the patterns analysis, van der Aalst et al. have developed “Yet Another Work-
flow Language” (YAWL, [23]). This language extends the concepts of Workflow
nets to support the workflow patterns while keeping a formal foundation that
allows the anticipated verification of workflow models.

146 M.C. Jaeger

4 The Workflow Versus Business Processes Discussion

The previous two sections have introduced two fields that seem to have many
issues in common. The resulting question is what makes these two different?
The two terms business process and workflow modelling are used synonymously
sometimes, suggesting that using either the one or the other refers to historic
reasons. The two main communities who represent the workflow corner and the
business process community, i.e. the WfMC and the BPMI, have discussed this
questions in more detail. In a retro-perspective of the workflow reference model
published by the WfMC [24], the authors acknowledge the growing momentum
of business process management efforts, which have developed in parallel to the
workflow-related efforts. The WfMC explains that a difference results from the
evolution of the technologies in the workflow area. However, WFMS meet today
the requirements of business process management as well. Consequently, their
proposal sees the original reference model as the foundation for a new reference
model that covers also business process management.

Members from the BPMI promote a different view. Smith and Fingar have
initiated a discussion by publishing that a workflow represents just a process
expressed using a process calculus [25] and thus is purely concerned with pro-
cess description. According to their view, this clear focus makes workflows and
WFMS less suitable for the new requirements of today’s businesses. They ex-
plain that workflows are rather static (i.e., application dependent) and do not
support changes of the process. Their statement has received a response from
the workflow community which has motivated the two authors to publish a clar-
ification [26]. What remains is that according to the viewpoint of the BPMI, a
workflow represents just one aspect among the different fields subsumed by the
business process management: in addition to workflows, business process man-
agement systems cover the integration of different computer systems as well as
the non-computerised parts of business processes.

When it comes to the application of the terminology and the referring lan-
guages such as for looking at composition languages, a clarification must be
achieved to distinguish what is different and what is claimed to be different.
Apparently, the difference between both results from their different origins. The
underlying problems such as the expressiveness of the modelling languages, how
verifications can be applied, or which graphical modelling language is the most
efficient, appear for both directions quite similar.

5 Realising Business Processes and Workflows with
Service Compositions

The similarities between a process or workflow model and the composition of
services in an SOA are evident. Modelling business processes usually involves a
description about required activities and a specification about their execution
order; this also represents what is basically required for describing a service com-
position. Also, business processes should have a defined input and output while

Modelling of Service Compositions 147

the implementation of each task becomes secondary, what poses a similarity to
the interface-orientation of services [27,28]. Moreover, an SOA provides differ-
ent architectural characteristics which are promoted as the requirements on the
IT-infrastructure in today’s businesses [26]:

– Technology Independence. [29,30,31] The basic motivation to promote
the SOA in companies is to establish a middleware that ties together func-
tionality offered by different systems regardless of their hard- and software.
This resembles the access transparency defined by the ISO RM-ODP [32,
p. 17]. The heterogeneity of IT systems in companies is the standard in
large businesses, because different departments of an enterprise have usually
started the application of computer systems in most cases independently
from each other.

– Location Transparency. [27,30,32] By definition, services offer their in-
terface over a network. Web services uses Internet protocols for descriptions
and messaging. Service consumers can use services across the local network
or the boundaries of the local organisation. Although an organisation might
not want to invoke any service that is just available anywhere in the world,
the use of Internet protocols offers a greater level of flexibility.

– Loose Coupling. [29,30] The term loose coupling in an SOA is similar
to the understanding of dynamic typing in the field of programming lan-
guages. Usually, in an SOA, loose coupling means that a service consumer
knows what kind of service is required at design time. However, the binding
(”coupling”) to a real available service takes place at the run-time. Loose
coupling enables service consumers to revise existing bindings during the
run-time when necessary.

5.1 Modelling Service Compositions

Among the proposals for modelling service compositions, most languages provide
direct support for Web services as this represents the major SOA implementa-
tion used today. The current situation shows different composition languages
that share the same goal what resembles the situation with workflow or business
process modelling. Also, some business process modelling languages are consid-
ered to create service compositions. To provide a better orientation among these,
the following three groups are proposed:

– Abstract level languages, L1. These languages are primarily intended
to describe a composition with activities in the way that services might
realise these activities. However, concrete services are not mandatory to make
the description complete. When not mentioning available particular services,
such a description handles the activities or involved services as black boxes.

– Concrete level languages, L3. On the concrete level, the description
covers the invocation of concrete services from a technical view. Usually,
a service does not provide an atomic, stateless operation, but also provides
different operations and requires to manage a session or a state. A description

148 M.C. Jaeger

must cover states when interoperating with services as well as considering
particular operations. These languages do not focus entirely on service com-
position, because they are also concerned with the interoperation of different
parties rather than realising a process.

– Languages covering both levels, L2. Some languages are right in the
middle of both, not showing a clear process modelling focus and also not a
clear interoperation focus. An example for such a language represents BPEL
which allows the description of a business process among with an executable
description involving available Web services. Compared with L3-languages,
L2 would represent typical service composition languages.

The reader should note that this categorisation does not provide a formal basis
nor an argumentation like if concept x is found in a language z, then it belongs to
level y. This categorisation has the purpose to give an orientation. It resembles
the idea of the model-driven architecture (MDA, [38]) which is a proposal for
the model-centric development of software systems. This proposal distinguishes

Table 1. Composition Languages Overview

L Acronym Full Name, Reference
Supporting Parties, Remarks

1 XPDL XML Process Definition Language [33]
WfMC, contributing authors were from Global 360, FileNet,
Staffware/TIBCO, Prozone and Fujitsu Software

1 BPML Business Process Modelling Language [7]
BPMI, mentions only one contributing author from Intalio

1 BPSS Business Process Specification Schema [7]
(Part of the ebXML Suite) UN/CEFACT, an United Nations Body for
Electronic Trade and an OASIS TC, including members from Cyclone
Commerce, Fujitsu, SAP AG and Sun Microsystems

2 WSFL Web Services Flow Language [9]
IBM, moved into the BPEL4WS proposal

2 XLANG subtitled ”Web Services for Business Process Design” [11]
Microsoft, moved into the BPEL4WS proposal

2 BPEL4WS Business Process Execution Language for Web Services [34]
IBM, Microsoft and BEA, moved into the WS-BPEL proposal

2 WS-BPEL Web Services Business Process Execution Language [35]
An OASIS TC involving about 18 industry parties, among them BEA
Systems, IBM, Microsoft, Oracle, Sun Microsystems, SAP AG

3 WSCI Web Service Choreography Interface [36]
W3C Note submitted by BEA, Intalio, SAP AG und Sun Microsystems

3 WS-C Web Service Choreography [37]
W3C Working Group, continuing the WSCI proposal

Modelling of Service Compositions 149

2

3

1 2.0 final: Oct 20051.0: Oct 2002

1.0: Jul 2002 1.1: May 2003

1.0: May 2001

Pre-Release: Apr 2005

Work in Progress: Jun 2001

Draft: Sep 2005

wd: Jun 2002

1.0: Nov 2002

20052004200320022001 2006

1.0.1: May 2001 1.0.5: Jul 2002 2.0 draft: Apr 20051.10 "draft": Aug 2003

XPDL

BPSS

WSFL

XLANG

BPEL4WS WS-BPEL ("2.0")

2.0.3 adopted by OASIS:
Apr 2006

Final Candidate:
Sep 2006

1.0: Aug 2002 Requirements and Model (wd): Mar 2004

WSCI WS Choreography

Language (cand): Nov 2005

Language (wd):
Jun 2006

BPMNBPML

1.0 BPMI release: Nov 2004
1.0 OMG adopted:

Feb 2004

Fig. 1. Release Dates of Process Description and Service Composition Languages

(software) models at different stages of the development process. The two main
categories of models are platform-independent models (PIM) and platform-
specific models (PSM). PIMs do not contain modelling artefacts resulting from
specific technologies, platforms or standards; they represent an abstraction from
technical details. Based on these, PSMs are derived from PIMs to provide the
technical information necessary for the implementation of the software.

Table 5.1 lists a selection of composition languages with their acronyms and
their proposed categorisation. In addition, Figure 1 shows a chronological
overview about their introduction dates. The two BPEL proposals, WSFL, and
XLANG were mentioned already in Section 2.1. These candidates can be clearly
called Web service composition languages and fit into the second group.

Regarding the languages at the first level, Table 5.1 mentions XPDL, BPML,
and BPSS. These languages provide elements to support the invocation of Web
services; however, their involvement is not mandatory. The BPSS is completely
independent from particular SOA technologies. To provide the ties to concrete
SOA implementations like Web services, separate specifications called a Collab-
oration Protocol Profile (CPP) and a Collaboration Protocol Agreement (CPA)
are proposed. A BPSS document can refer to a CPP or CPA to provide a de-
scription of the involved services, for example, by referencing to a WSDL de-
scription. However, since the BPSS has a clear focus on enabling electronic trade,
it is thus not the preferred candidate for implementing business processes with
service compositions.

The Web Service Choreography Interface (WSCI) represents the foundation
for the third group. The WSCI proposal directly focusses on specifying the
required message flow between Web service requesters and providers resulting
from their offered operations [36]. Consequently, the authors of BPML mention

150 M.C. Jaeger

explicitly that WSCI and WSDL specifications are complementary to BPML [7,
section 1.2]. The WSCI has been submitted to the W3C as a technical note in
2002. In beginning of 2003, a W3C working group named Web Services Choreog-
raphy has begun its work to take the WSCI proposal as input to elaborate this
aspect further [37]. By choreography, the working group refers to the characteris-
tic of describing linkages and usage patterns between Web services. The working
group uses the term choreography in a similar manner as other proposals use
collaboration, conversation, coordination or orchestration.

When comparing the different languages and specifications, not only thier
focus but also their expressiveness is a useful criteria. Such a comparison has
already been conducted by Wohed, van der Aalst et al. They have presented a
comprehensive analysis about the structural capabilities of languages to specify
Web service compositions for BPEL4WS, XLANG, and WSFL [39,1], BPML,
and WSCI [40], and XPDL [10]. Their result is an analysis about which language
directly supports which pattern of their workflow patterns. Apart from these
languages, other proposals exist which were in previous sections. Considering
graphical notations, EPCs and the BPMN are suitable for the description of
service compositions as well. However, none of these efforts shows a noticeable
impact in this area. For this purpose the UML plays a more important role, as
research work has already indicated [41,42].

6 Conclusions

This paper has proposed a classification of composition languages and languages
for modelling business processes. The classification helps to identify different
players in the Web Services Acronym Hell (WSAH) [1]. The classification is
roughly based on separating composition languages for abstract process design
from languages for defining how to involve concrete Web services. Moreover,
it was discussed that composition languages have much in common with the
modelling of workflows. By using their workflow patterns, Wohed, van der Aalst
et al. give a detailed explanation about the capabilities of composition languages
with their problems and – more important – they also explain how previously
introduced workflow modelling languages have coped with that.

The overview has identified different parallel efforts working on composition
languages, which is still an ongoing process. Apparently, the OASIS-driven WS-
BPEL has the biggest momentum in the service composition area. It gathers
together main industry players, such as IBM, Microsoft, Oracle, SAP, and Sun
Microsystems. Besides, the WS Choreography working group shows also ongoing
activity for the definition of service compositions on a technical level.

References

1. van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Web Service Composi-
tion Languages: Old Wine in New Bottles? In: EUROMICRO’03. Proceedings of the
29th EUROMICRO Conference New Waves in System Architecture, Belek, Turkey,
September 2003, pp. 298–304. IEEE Computer Society Press, Los Alamitos (2003)

Modelling of Service Compositions 151

2. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C.,
Orchard, D.: Web Services Architecture (February 2004), http://www.w3c.org/
TR/ws-arch/

3. Hollingsworth, D.: The Workflow Reference Model. Technical Report TC00-1003,
Workflow Management Coalition, Lighthouse Point, Florida, USA (1995)

4. Hammer, M., Champy, J.: A Manifesto for Business Revolution. Harper Business
(1993)

5. Frank, H., Gronau, N., Krallman, H.: Systemanalyse im Unternehmen, 3 edn. Old-
enbourg Verlag, München, Germany (October 2000)

6. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozeßmodellierung auf der
Grundlage Ereignisgesteuerter Prozeßketten (EPK). Veröffentlichungen des Insti-
tuts für Wirtschaftsinformatik (IWi) 89, Universität des Saarlandes, Saarbrücken,
Germany (1992)

7. Assaf, A., et al.: Business Process Modeling Language (BPML). Technical Report
Version 1.0, BPMI.org (2002)

8. White, S.A.: Business Process Modeling Notation (BPMN). Technical Report
Working Draft (1.0), BPMI.org (August 2003)

9. Leymann, F.: Web Services Flow Language (WSFL 1.0). Technical re-
port, IBM Software Group (2001), http://www-4.ibm.com/software/solutions/
webser-vices/pdf/WSFL.pdf

10. van der Aalst, W.M.P.: Don’t go with the flow: Web services composition standards
exposed. In: Jan/Feb 2003 Issue of IEEE Intelligent Systems, January 2003, pp.
72–76. IEEE Computer Society Press, Los Alamitos (2003)

11. Thatte, S.: XLANG - Web Services for Business Process Design (2001),
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm

12. Object Management Group (OMG): Unified Modeling Language: Superstructure.
OMG formal document/05-07-04 (August 2005)

13. Shaffer, D., Dayton, B.: Orchestrating Web Services: The Case for a BPEL Server.
Technical report, Oracle Corporation, Redwood Shores, California, USA (June
2004)

14. Lynch, E., Venkatapathy, C.: Sustaining your Advantage with Business Process
Integration based on Service Oriented Architecture. White Paper (October 2005)

15. Johnson, J., Roberts, T.L., Verplank, W., Smith, D.C., Irby, C., Beard, M., Mackey,
K.: The Xerox Star: A Retrospective. Computer 22(9), 11–26 (1989)

16. Mahling, D.E., Craven, N., Croft, W.B.: From Office Automation to Intelligent
Workflow Systems. IEEE Intelligent Systems 10(3), 41–47 (1995)

17. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

18. Marin, M., Brunt, J., Zurek, W., Stephenson, T., Bojanic, S., Gouri, G.: Work-
flow Process Definition Interface – XML Process Definition Langauge, Version 1.0.
Technical Report WFMC-TC-1025, Workflow Management Coalition, Lighthouse
Point, Florida (October 2002)

19. ISO/IEC: ISO/IEC 15909-1: High-level Petri nets – Part 1: Concepts, Definitions
and Graphical Notation. Published Standard (December 2004)

20. Janssens, G.K., Verelst, J., Weyn, B.: Techniques for modelling workflows and their
support of reuse. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business
Process Management. LNCS, vol. 1806, pp. 1–15. Springer, Heidelberg (2000)

http://www.w3c.org/TR/ws-arch/
http://www.w3c.org/TR/ws-arch/
http://www-4.ibm.com/software/solutions/webser-vices/pdf/WSFL.pdf
http://www-4.ibm.com/software/solutions/webser-vices/pdf/WSFL.pdf
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm

152 M.C. Jaeger

21. van der Aalst, W.M.P.: Workflow Verification: Finding Control-Flow Errors Us-
ing Petri-Net-Based Techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis,
A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 161–183. Springer,
Heidelberg (2000)

22. van der Aalst, W.M.P., van Hee, K.M., Houben, G.J.: Modelling Workflow Manage-
ment Systems with high-level Petri Nets. In: De Michelis, G., Ellis, C., Memmi, G.
(eds.) Proceedings of the second Workshop on Computer-Supported Cooperative
Work, Petri nets and related formalisms, pp. 31–50 (1994)

23. van der Aalst, W.M.P., Aldred, L., Dumas, M., ter Hofstede, A.H.M.: Design and
implementation of the YAWL system. Technical Report FIT-TR-2003-07, Centre
for IT Innovation, QUT (2004), http://www.tm.tue.nl/it/research/patterns

24. Hollingsworth, D.: The Workflow Reference Model 10 Years On (extracted from
Workflow Handbook 2004). In: Workflow Management Coalition, Lighthouse Point,
Florida (February 2004)

25. Smith, H., Fingar, P.: Workflow is just a Pi Process, January 2004. Business Process
Trends, Columns and Articles (2004)

26. Smith, H., Fingar, P.: Business Process Fusion Is Inevitable. Business Process
Trends, Columns and Articles (March 2004)

27. Bolcer, G.A., Kaiser, G.: SWAP: Leveraging the Web to Manage Workflow. In:
IEEE Internet Computing, January-February 1999, pp. 85–88. IEEE Computer
Society Press, Los Alamitos (1999)

28. Dijkman, R.M., Dumas, M.: Service-Oriented Design: A Multi-Viewpoint Ap-
proach. International Journal of Cooperative Information Systems (IJCIS) 13(4),
337–368 (2004)

29. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and princi-
ples. In: IEEE Internet Computing, January and February 2005, pp. 75–81 (2005)

30. Papazoglou, M.P.: Service-Oriented Computing: Concepts, Characteristics and Di-
rections. In: WISE’03. Proceedings of the Fourth International Conference on Web
Information Systems Engineering, Roma, Italy, December 2003, pp. 3–12. IEEE
Computer Society Press, Los Alamitos (2003)

31. Yang, J.: Web Service Componentization. Communications of the ACM 46(10)
(2003)

32. ISO/IEC: ITU.TS Recommendation X.902 — ISO/IEC 10746-1: Open Distributed
Processing Reference Model - Part 1: Overview (August 1996)

33. Shapiro, R., Marin, M., Brunt, J., Zurek, W., Stephenson, T., Bojanic, S., Gouri,
G.: Process Definition Interface – XML Process Definition Language, Version 2.0.
Technical Report WFMC-TC-1025, Workflow Management Coalition, Lighthouse
Point, Florida (October 2005)

34. Tony, A., et al.: Business Process Execution Language for Web Services Ver-
sion 1.1. Technical report, BEA Systems, IBM Corp., Microsoft Corp., (2003),
http://www-106.ibm.com/developerworks/webser-vices/library/ws-bpel/

35. TC, O.W.B.: WS-BPEL Specification Editors Draft (December 2005),
http://www.oasis-open.org/committees/download.php/127 91/
wsbpel-specification-draft-May-20-2005.html

36. Assaf, A., et al.: Web Service Choreography Interface (WSCI) 1.0. Technical report,
W3C (2002), http://www.w3.org/TR/wsci

37. Burdett, D., Nickolas, K. (eds.): WS Choreography Model Overview, W3C Working
Draft 24 March 2004. Technical report, W3C (2004),
http://www.w3.org/TR/ws-chor-model/

38. Object Management Group (OMG): Model Driven Architecture. ormsc/2001-07-01
(August 2001)

http://www.tm.tue.nl/it/research/patterns
http://www-106.ibm.com/developerworks/webser-vices/library/ws-bpel/
http://www.oasis-open.org/committees/download.php/127 91/wsbpel-specification-draft-May-20-2005.html
http://www.oasis-open.org/committees/download.php/127 91/wsbpel-specification-draft-May-20-2005.html
http://www.w3.org/TR/wsci
http://www.w3.org/TR/ws-chor-model/

Modelling of Service Compositions 153

39. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.: Pattern Based
Analysis of BPEL4WS. Technical Report FIT-TR-2002-04, QUT, Queensland Uni-
versity of Technology, Queensland, Australia (2002)

40. van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Wohed, P.: Pattern
Based Analysis of BPML (and WSCI). FIT Technical Report FIT-TR-2002-05,
Queensland University of Technology, Brisbane, Australia (2002)

41. Skogan, D., Grønmo, R., Solheim, I.: Web Service Composition in UML. In:
EDOC’04. Proceedings of the 8th IEEE Intl Enterprise Distributed Object Com-
puting Conf., Monterey, California, September 2004, pp. 47–57. IEEE Computer
Society Press, Los Alamitos (2004)

42. Grønmo, R., Jaeger, M.C.: Model-Driven Methodology for Building QoS-Optimised
Web Service Compositions. In: Kutvonen, L., Alonistioti, N. (eds.) DAIS 2005.
LNCS, vol. 3543, pp. 68–82. Springer, Heidelberg (2005)

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 154–165, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Extending the UN/CEFACT Modeling Methodology and
Core Components for Intra-organizational Service

Orchestration

Philipp Offermann1, Christian Schröpfer1,
and Maximilian Ahrens2

1 Faculty of Electrical Engineering and Computer Sciences,
Technische Universität Berlin, Germany

{Philipp.Offermann, Christian.Schroepfer}@sysedv.tu-berlin.de
2 Deutsche Telekom Laboratories, Berlin, Germany

maximilian.ahrens@telekom.de

Abstract. When creating a company’s IT structure based on a service-oriented
architecture (SOA), it is necessary to first analyze the business domains and
process areas of the company, then to model the business processes to be
supported by the SOA and finally to convert the models into a service
orchestration description. Currently, few methodologies exist to support this. At
our department, we have proven that the UN/CEFACT Modeling Methodology
(UMM) can be used for intra-organizational process integration. In this article
we analyze if the UMM is sufficient for SOA, which artifacts are missing and
how the UMM could be extended. The UMM was created to model the
collaboration between different legal entities to perform collaborative business
processes. There exist methods to convert these models into executable service
choreography descriptions expressed in the Business Process Specification
Schema (BPSS) or the Business Process Execution Language (BPEL).
However, the business process models can also be used as a basis for an intra-
organizational service orchestration. By extending the UMM it is possible to
enable the automated generation of service orchestrations using Core
Components and the Business Process Modeling Notation (BPMN).

Keywords: UN/CEFACT Modeling Methodology (UMM), Core Components
(CC), Business Process Execution Language (BPEL), Business Process
Modeling Notation (BPMN), Service Orchestration, Service-Oriented
Architecture (SOA).

1 Introduction

Service-oriented architecture (SOA) is a new design paradigm for software systems
and IT governance. While the technical concepts behind the SOA are well
established, comprehensive methodologies are still rare. At our department we have
proven, using action research, that the UN/CEFACT Modeling Methodology (UMM)
can be used for intra-organizational process integration.[1] In this article we analyze if
the UMM methodology is sufficient for SOA and how it could be extended.

 Extending the UN/CEFACT Modeling Methodology and Core Components 155

1.1 Service-Oriented Architecture

Service-oriented architectures are a current trend in the IT industry. Many big
companies like IBM, Microsoft, BEA and SAP are supporting and developing
standards for or are converting their products to an SOA.[2-5] Additionally,
organizations like the World Wide Web Consortium (W3C), OASIS and the Object
Management Group (OMG) are developing and publishing standards related to
SOAs.[6-8]

The Gartner Group defines an SOA as follows: “SOA is a software architecture
that builds a topology of interfaces, interface implementations and interface calls.
SOA is a relationship of services and service consumers, both software modules large
enough to represent a complete business function. So, SOA is about reuse,
encapsulation, interfaces, and ultimately, agility.”[9]

The most common implementation environment for an SOA is Web services. A
Web service is a program that offers its functionality through a defined interface over
open protocols.[6] The difference to classical modularization of program logic is that
the functionality encapsulated by Web services is derived from the business functions
composing the business processes and not from the IT systems.[10-12]

Therefore, the concept of an SOA is not restricted to the technical side, but also
reaches out to business process management (BPM).[13] By designing services in a
way that they represent business functionality, it is possible to align the structure of
business processes with the organization of the IT infrastructure supporting these
processes.

1.2 Service Orchestration

To be able to align the IT structure with the business processes, it is necessary to
describe the sequence in which Web services are called and to make sure that this
sequence is structurally equivalent to the sequence of business functions described in
the business process model.

Different description languages, called web service orchestration languages, have
evolved to describe the sequence of Web services and make this sequence executable.
Service orchestration languages are used to support intra-organizational processes
through a central coordination, while service choreography languages support inter-
organizational processes without a central coordination.[14] Out of the service
orchestration languages, the Business Process Execution Language (BPEL) has most
support from industry and research.[15]

For representing the structure of business processes, different modeling notations
exist, e.g. Event-Process Chain (EPC), ICAM Definition Language (IDEF) and UML
Activity Diagrams. There are ways for converting these process models into
executable process description languages, e.g. UML to BPEL.[16]

Additionally, special business process modeling notations that are based on the
orchestration languages have evolved to better support the conversion from the
business process model into the executable service orchestration. One of these is the
Business Process Modeling Notation (BPMN).[8]

156 P. Offermann, C. Schröpfer, and M. Ahrens

1.3 The Missing Methodology

What has been missing until now is a methodology giving a guideline how to analyze
businesses and model its processes for orchestrating services. For achieving a perfect
alignment of the business processes with the IT structure, in a first step the business
processes have to be identified, analyzed and explicitly written down, preferable in
the form of diagrams. This process usually starts with a business domain analysis to
identify different fields of business processes before modeling the business processes
in detail. Then, several refinement layers of the business process activities have to be
modeled to describe the business process on a granularity level suitable for a support
through Web services.

Finally, the business processes described in a modeling notation have to be
converted into an executable description. This also includes binding the services to
the business activities. For finding the right Web services, the requirements have to be
included as precisely as possible in the business process models. In a first step, the
inputs and outputs of the business activities should be specified. For a more detailed
description, pre and post conditions as well as non-functional requirements can be
included too.

The UMM has been subject to thorough research at our department. It provides a
methodology that can be used for intra-organizational process integration. [1] This is
why we are interested in analyzing if the UMM is sufficient for SOA, which artifacts
are missing and how it could be extended. We will first introduce the UMM, then
show its limitations and propose extensions so that required artifacts for intra-
organizational service orchestration are created.

2 UN/CEFACT Modeling Methodology

The UN/CEFACT Modeling Methodology (UMM) provides a methodology and
models to describe inter-organizational business processes. The idea behind this is to
have a unified methodology for identifying and modeling the information exchange
between participants when executing a business to business (B2B) process that spans
different companies.[17]

2.1 The Methodology

The UMM is based on three views, the Business Domain View, the Business
Requirements View, and Business Transaction View. These views present the
different perspectives that are used at different stages of the modeling process. The
models are based on UML 1.4.2.[18]

Business Domain View. The first view in the process of modeling the business
collaboration is the Business Domain View. It takes a very high level perspective. For
this view, in a first step, business areas and process areas are identified, using
diagrams based on the UML Package Diagram. Then for every process area business
processes and stakeholders are identified, using diagrams based on the UML Use
Case Diagram.

 Extending the UN/CEFACT Modeling Methodology and Core Components 157

Fig. 1. UMM Business Process View example, from [17]

Business Requirements View. After finishing the Business Domain View, following
the methodology, the Business Requirements View has to be completed. It
differentiates three views: Business Process View, Business Entity View, and
Partnership Requirements View.

The Business Process View contains business processes. These processes are
modeled as Business Process Activity Models based on the UML Activity Diagram
notation. In the process models, entity states are used as defined in the Business
Entity View. The Business Entity View describes all entities that are used in the
Business Process Activity Models, using a diagram based on the UML Class
Diagram, and the lifecycles of the entities, using diagrams based on the UML
Statechart Diagram. An entity state can either be an Internal Business Entity State for
an entity state that is internal to a business process of a single partner, or a Shared
Business Entity State for an entity state that is shared between different partners
participating in a process. An example Business Process View is displayed in figure 1.
Based on the exchange of Shared Business Entity States, requirements for

158 P. Offermann, C. Schröpfer, and M. Ahrens

collaborations between different partners can be identified. Each transaction that
transfers information from a partner to another and optionally back will be modeled in
more detail in the Partnership Requirements View, using diagrams based on the UML
Use Case Diagram.

Business Transaction View. After modeling the “Business Requirements View”, the
“Business Transaction View” is the last stage of the methodology. It consists of three
views: Business Choreography View, Business Interaction View, and Business
Information View.

The Business Choreography View describes the flow of collaborative business
activities that have to be performed during a business process involving several
partners. The Business Interaction View describes the information exchange between
two partners to perform a single collaboration. This is where the actual interaction
between two organizations is defined. The information entities that can be exchanged
are described in the Business Information View. In the Business Information View all
Information Entities that are exchanged between the partners during a collaboration
are modeled. The Information Entities can be mapped to a more formal definition by
using Core Components.

2.2 Core Components

Core Components (CC) are, like the UMM, a UN/CEFACT standard.[19] CC are
used to semantically describe information that can be exchanged between different
business partners. The aim of CCs is to define a common set of information entities
that can be reused between different organizations. There are libraries of CC available
to semantically harmonize the information entities.[20]

Based on CC, Business Information Entities (BIE) are defined, specifying
restrictions on the CC. BIE put CC in a business context, refining the CC according to
their specific use.

CC and the UMM are integrated in the way that BIE realize the UMM information
entities.

2.3 Service Choreography

Based on the business collaborations modeled in the Business Choreography View
and concrete transactions modeled in the Business Interaction View, it is possible to
generate a service choreography for the parties involved. The Business Process
Specification Schema (BPSS) has been specially developed for this purpose.[21]

What has not yet been envisioned by the UMM is the generation of a service
orchestration for a single company. The advantage of this would be to use a single
methodology for describing the orchestration of services within a company together
with the choreography necessary for the collaboration between companies. This
limitation is due to the aim of the UMM.

2.4 Limitations of the UMM

The UMM is aimed at modeling the information exchange between different parties
involved in a business process. Until modeling the business processes and information

 Extending the UN/CEFACT Modeling Methodology and Core Components 159

flow in the Business Process View and the Business Entity View, the methodology is
general and can be used either for analyzing the business processes of a single
company or the collaboration between different partners. But starting with the
Partnership Requirements View, the methodology specializes on the collaboration of
the different parties involved. That results in very detailed diagrams about the
collaboration, down to the level of a concrete request and an optional response.

For a service orchestration, it is necessary to also specify the business processes
internal to the partners involved in more detail. Unfortunately, as the internal business
processes are not interesting for the collaboration, it is not foreseen in the
methodology to model them in any greater detail. While the UMM is sufficient for
modeling collaborative business processes, it comes to its limitations when trying to
orchestrate services. A different methodology is necessary for modeling internal
business process as a basis of a service orchestration.

3 Modeling Processes for Service Orchestration with the UMM

It would be of great advantage to use a single methodology to model the processes
inside a company as well as to model the collaboration between companies. From
such models, in addition to the service choreography, a service orchestration could be
derived. Additionally, when all the processes are modeled uniformly, it is easier to in-
or outsource parts of the process.

3.1 Using the Methodology on a Finer Granularity Level

One idea to enable service orchestration using the UMM is to use the methodology on
a finer granularity level. If, for example, the different partners involved in a business
process are not different companies, but different departments inside the same
company, the transactions analyzed in the Business Transaction View are transactions
inside the company. Still, this would result in a service choreography, only this time
inside the company and not between companies.

Fig. 2. Modeling business processes with refinements

160 P. Offermann, C. Schröpfer, and M. Ahrens

To model the information exchange necessary for every single business function, and
therefore for every single service supporting the business process, every service
would have to be interpreted as a different partner involved in the process. While this
would be possible for single services, it clearly reaches its limitation when every
service has to be modeled as a partner. On the one hand, the models in the Business
Domain View and especially in the Business Requirements View would be too
complex. On the other hand, modeling every single service as a partner would lead to
an explosion of the number of models in the Business Transaction View.

Therefore, for generating a service orchestration out of a UMM model, using the
methodology on a finer granularity level does not seem to be a feasible solution.

3.2 Using the Process Model for Service Orchestration

Another approach to generate a service orchestration is to use the process model from
the Business Process View. The Business Process Activity Model is based on UML
Activity Diagrams. These diagrams are well suited for business process modeling, and
a transformation into a service orchestration described in the BPEL exists.[16]

As a Business Process Activity, the activity used in Business Process Activity
Models, may contain another Business Process Activity Model, a refinement of
activities is possible in the UMM. This can be used to refine process models down to
a level where they can be used for service orchestration.

A service orchestration can only be generated for a control flow within a partition
(concerning only one partner). Otherwise, it would not be an orchestration but a
choreography. Additionally, modeling the activities on a level necessary for a service
orchestration is of no use for identifying the need for a collaboration. It would be a
better solution to model a process internal to a partner on the highest level as only one
activity. This is sufficient for identifying the need for a collaboration. At the same
time when refining the activity, it contains a whole process part being performed by
one partner. Hence the refinement can be used to generate a service orchestration.

Figure 2 illustrates this. On the left side, a business process with only one activity
per partner per collaboration is shown, sufficient to identify necessary collaboration.
On the right side, one activity is refined. This refinement can later be used to generate
a service orchestration description.

4 Using Core Components for Business Entities

What has been considered for the service orchestration until now is the control flow
of internal business processes. Apart from the control flow, Business Process Activity
Models describe the business entity flow and business entity states too. This
information flow can be used for orchestrating services.

4.1 Modeling the Business Entities for Service Orchestration

Information about the business entity flow is used to identify what kinds of objects
are exchanged during a collaborative business process. The concrete structure of the
information exchanged between partners is defined at a later stage in the Business
Transaction View.

 Extending the UN/CEFACT Modeling Methodology and Core Components 161

When modeling the entity flow in a business process being used as a basis for a
service orchestration, the relevant entities are information entities. In contrast to
general business processes where physical products could be exchanged, Web
services only exchange information. Therefore only the information flow has to be
modeled in the regarded business processes.

For a service orchestration, the information about the data flow can be used to
describe the services that are necessary to support the business process. It is therefore
helpful to extensively use the Internal Business Entity State, the entity stereotype used
internally in a business process, for the modeling of a service orchestration.

Unfortunately, in the UMM there is no official link between the entities modeled in
the Business Entity View that are used in the Business Process View and the entities
modeled in the Business Information View that are used in the Business Interaction
View. But only in the Business Information View the entities are specified in detail.
Therefore, a link between a Business Entities from the Business Entity View and an
Information Entity from the Business Information View should be established to
enable a more detailed description of the information exchange in the Business
Process Activity Model. This is possible as the Business Entity View and the
Business Information View are based on UML Class Diagrams. It could be
envisioned to unify the Business Entity and the Information Entity into one single
stereotype when modeling business processes for a service orchestration.

4.2 Using Core Components for a Common Semantic

The flow of information entities is relevant for a service orchestration. For modeling
this flow, entities being used as input and/or output of business activities should be
modeled using a common semantic. In the UMM, this can be realized by using Core
Components. As explained above, a Business Information Entity can realize a UMM
Information Entity. By this a common semantic is used to describe the information
exchange in the Business Transaction View. Unfortunately, the Business Transaction
View defines a choreography of information exchanges only, but doesn’t help when
creating a service orchestration.

By linking Information Entities with Business Entities as proposed above, the
semantics of the CC can be used in the Business Process View. The information flow
used for creating the service orchestration is semantically based on CC. This is useful
when trying to bind the business activities to concrete services, as input and output
parameters are described semantically.

5 Using the BPMN for Business Process Activity Models

Modeling business processes for service orchestrations, another UMM extension can
be proposed by replacing the UMM Business Process Activity Model with the
Business Process Modeling Notation.

5.1 The Business Process Modeling Notation

The Business Process Modeling Notation (BPMN) is an Object Management Group
(OMG) standard.[8] While UML Activity Diagrams were developed to describe

162 P. Offermann, C. Schröpfer, and M. Ahrens

object oriented software systems, the BPMN was developed to model business
processes.[22] At the same time, a defined mapping between the BPMN and the
BPEL exists.[8, 23]

BPMN and UML Activity Diagrams are very similar. The only pattern that can not
be modeled in UML Activity Diagrams is the Interleaved Parallel Routing
pattern.[24] As the UML and the BPMN are OMG standards, it is possible that the
two notations will be merged at some point.[24] Still, modeling business processes
with the BPMN has the advantage that due to its extended syntax complex situations
can be model much more explicitly. This results in diagrams that are much more
readable.

The BPMN can be used to model private (internal) business processes, abstract
(public) processes and collaboration (global) processes. Of interest in this article are
collaboration processes and private business processes.

Collaboration processes use at least two swim lanes. In figure 3 a collaboration
process is shown. For modeling an information exchange between different parties, a
Message Flow with a special arrow is used for message exchanges between the
parties. This clearly depicts which flows are needed in a collaboration.

In contrast to the collaboration process, a private business process uses one swim
lane only, enabling the modeling for internal business processes.

5.2 Using BPMN Instead of Business Process Activity Models

The idea is to replace the UMM Business Process Activity Model with a BPMN
model. There are four advantages:

1. Many constructs are much clearer in the BPMN than the equivalent UML Activity
Diagram notation when modeling down to a granularity level of services, as special
denotations exists e.g. for rollback and messages.[24]

2. The BPMN was developed to be transformed into a service orchestration and has a
defined mapping to the BPEL.

3. While the OMG designed UML Activity Diagrams for modeling object oriented
software systems, the BPMN is the OMG’s standard for business process
modeling. Hence one should assume that for modeling business process it is better
to use the notation that was designed for this task.

4. The collaborations between partners can be identified more easily using BPMN
because of its special message flow notation and the possibility to informally group
elements. An example for this is drawn in figure 3.

Fig. 3. Using groups for indicating collaboration in the BPMN

 Extending the UN/CEFACT Modeling Methodology and Core Components 163

Replacing the Business Activity Model by a BPMN model is straight forward as the
Business Activity Model is based on UML Activity Diagrams, which BPMN models
are very similar to. An example of the business process shown in figure 1 modeled in
the BPMN can be seen in figure 3. What is not shown in the example are the BPMN
Data Objects that would relate to the Business Entities of the Business Entity View.
By relating Business Entities to Information Entities, the BPMN Data Objects can
also be based on Core Components, making it possible to semantically annotate the
data flow in the same way as in Business Process Activity Models.

6 Summary and Outlook

It is possible to extend the UN/CEFACT Modeling Methodology to better support the
modeling and generation of service orchestration. Only few extensions are necessary.

6.1 Propositions

The following extensions of the UMM are proposed:

1. Use the UMM Business Process View model on a granularity level as high as
possible for depicting a collaborative business process. Then use refinements to
model internal business processes down to a detail level necessary for supporting
business activities by services.

2. Establish a link between UMM Business Entities and UMM Information Entities.
For a service orchestration only the information exchanged between business
activities is of interest. Thus, by establishing the link, the Business Entities can be
based on Core Components. This is also useful for a consistent semantic
description of the services necessary to support the business activities.

3. Replace the UMM Business Process Activity Model by a Business Process
Modeling Notation model. This helps specifying the internal business process,
makes it easier to transform the model into an executable service orchestration and
even facilitates the identification for necessary collaborations.

6.2 Advantages

By following these extensions of the UMM, the methodology can not only be used to
generate service choreographies, but also service orchestrations internal to a business
partner. One methodology can be used to model both aspects of a service-priented
architecture, the business and its processes as well as the service orchestration and the
service choreography. The end-to-end process starting with the business domain analysis
and ending with the orchestration and choreography description is supported by one
single methodology. This helps businesses, because knowledge of only one technique has
to exist and one set of models can be used for business and technical aspects.

6.3 Outlook

There are many points that are still open and subject to further research within this
area. The future work of the authors will focus on three of them. The most important

164 P. Offermann, C. Schröpfer, and M. Ahrens

point is evaluating the concept by conducting an empirical study on the applicability
of the proposed extensions. For this, secondly, a tool has to be created incorporating
all necessary modeling notations to support the methodology. Finally, a semantic
description of Web services to be used in conjunction with the proposed modeling
technique based on Core Components should be developed.

References

1. Dietrich, J.: Nutzung von Modellierungssprachen und -methodologien standardisierter
B2B-Architekturen für die Integration unternehmensinterner Geschäftsprozesse
(unpublished Dissertation). TU Berlin, Fachgebiet Systemeanalyse und EDV (2006)

2. International Business Machines Corporation: developerWorks : SOA and Web services
(2006), http://www-128.ibm.com/developerworks/webservices

3. Microsoft Corporation: .NET Architecture Center: Service Oriented Architecture (2006),
http://msdn.microsoft.com/architecture/soa/

4. BEA Systems: Dev2Dev Online: Service-oriented Architecture (2006),
 http://dev2dev.bea.com/soa/

5. SAP AG: SAP - Enterprise Service-Oriented Architecture: Blueprint for Service-Based
Business Solutions (2006), http://www.sap.com/platform/esa/index.epx

6. World Wide Web Consortium: Web Services Architecture (2004), http://www.w3.org/
TR/ws-arch/

7. OASIS Open: OASIS Commitees by Category: SOA (2006), http://www.oasis-open.org/
committees/tc_cat.php?cat=soa

8. Object Management Group: Business Process Modeling Notation Specification (2006),
http://www.omg.org/cgi-bin/doc?dtc/2006-02-01

9. McCoy, D., Natis, Y.: Service-Oriented Architecture: Mainstream Straight Ahead. Gartner
Research (2003)

10. Szyperski, C.: Component Oriented Programming. Springer, Heidelberg (1998)
11. Schmelzer, R.: Solving the Service Granularity Challenge (2005),

 http:// www.zapthink.com/report.html?id=ZAPFLASH-200639
12. Foody, D.: Getting web service granularity right (2005), http://www.soa-zone.com/

index.php?/ archives/ 11-Getting-web-service-granularity-right.html
13. Leymann, F., Roller, D., Schmidt, M.T.: Web services and business process management.

IBM Systems Journal 41, 198–211 (2002)
14. Newcomer, E., Lomow, G.: Understanding SOA with Web Services. Addison-Wesley,

Reading (2005)
15. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,

Roller, D., Smith, D., Trickovic, I., Weerawarana, S.: Business Process Execution
Language for Web Services Version 1.1 (2003), ftp://www6.software.ibm.com/software/
developer/library/ws-bpel.pdf

16. Skogan, D., Gronmo, R., Solheim, I.: Web service composition in UML. Enterprise
Distributed Object Computing Conference, 2004. In: EDOC 2004. Proceedings. Eighth
IEEE International, pp. 47–57 (2004)

17. UN/CEFACT: UN/CEFACT’s Modeling Methodology (UMM) (2006), http://www.
untmg.org/index.php?option=com_docman&task=view_category&Itemid=137&subcat=1
&catid=63&limitstart=0&limit=5

18. Object Management Group: Unified Modeling Language Specification Version 1.4.2
(2004), http://www.omg.org/cgi-bin/doc?formal/04-07-02

 Extending the UN/CEFACT Modeling Methodology and Core Components 165

19. UN/CEFACT: ISO\DTS 15000-5: 2006 Core Components Technical Specification 2nd
edn. UN/CEFACT Version 2.2 (2006), http://www.untmg.org/index.php?option=com_
docman&task=docclick&Itemid=137&bid=43&limitstart=0&limit=5

20. United Nations Economic Commission for Europe: Core Component Library (UN/CCL)
(2006), http://www.unece.org/cefact/codesfortrade/codes_index.htm#ccl

21. UN/CEFACT: UN/CEFACT – ebXML Business Process Specification Schema (2003),
http://www.untmg.org/index.php?option=com_docman&task=view_category&Itemid=137
&subcat=3&catid=63&limitstart=0&limit=5

22. White, S.A.: Introduction to BPMN. IBM Corporation (2004), http://www.bpmn.org/
Documents/Introduction%20to%20BPMN.pdf

23. White, S.A.: Using BPMN to Model a BPEL Process. IBM Corp., United States (2005),
http://www.bpmn.org/Documents/Mapping%20BPMN%20to%20BPEL%20Example.pdf

24. White, S.A.: Process Modeling Notations and Workflow Patterns. IBM Corp., United
States (2004),
http://www.bpmn.org/Documents/Notations%20and%20Workflow%20 Patterns.pdf

A Pattern-Based Approach to Business Process
Modeling and Implementation in Web Services

Steen Brahe1 and Behzad Bordbar2

1 Danske Bank and IT University of Copenhagen, Denmark
stbr@danskebank.dk

2 School of Computer Science, University of Birmingham, UK
b.bordbar@cs.bham.ac.uk

Abstract. There are often three groups of experts involved in the design and
implementation of business processes in a service oriented enterprise; business
analysts, solution architects and system developers. They collaborate with each
other to transform a high-level design created by a business analyst to a final exe-
cutable workflow, based on a service composition language such as the Business
Process Execution Language (BPEL). In this paper, we present a new approach to
support and semi-automate this transformation process, thus producing applica-
tions of higher quality in shorter time. The idea is to capture existing knowledge
in the enterprise, which is required for transforming models from one abstraction
level to another, as reusable, parameterized patterns. These patterns are used for
tool based model transformations of the business processes. To support our ap-
proach, we shall make use of Domain Specific Modeling Languages (DSMLs)
designed for each enterprise to capture models of a business process at different
levels of abstraction, each suitable for the use of one of the groups of experts.
The presented approach bridges the gap between business and IT by providing
customizable language-, tool- and transformation support for the different groups
of experts within the enterprise and is illustrated by an example.

1 Introduction

Information technology is undergoing a rapid change of role from being a mere provider
of support for businesses, to an active role in driving the revenue and profit [1]. There
is an ever-increasing pressure on modern enterprises to adapt to the changes in their
environment by evolving to respond to any opportunity or threat [2]. To address such
challenges, Service Oriented Architecture (SOA) has received considerable attention
as it provides the foundation for implementing business processes via composition of
(existing) services.

Using SOA and service composition requires a collaborative effort of different groups
of experts; business analysts model the process at a high conceptual level, solution ar-
chitects map such conceptual designs to architectural models, and system developers
implement architectural models in a service composition language such as Business
Process Execution Language (BPEL) [3]. However, there is a gap between business
and IT, due to different terminology, levels of granularity, varied models, approaches,
tools and method that each employ [2].

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 166–177, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Pattern-Based Approach to Business Process Modeling 167

In this paper we present a new approach to close the gaps between different model
representations of a business process by using tool-based transformations from one
model to another. The main idea of the approach is to capture knowledge required for
the transformations as reusable, parameterized patterns, which can be used to conduct
the transformations via software tools. To achieve this, we combine Model Driven De-
velopment (MDD) techniques [4] and Domain Specific Modeling Languages (DSMLs)
[5,6] fitted specifically for the enterprise. DSMLs are used to capture models of the busi-
ness process at different abstraction levels for the three groups of experts. This enables
creation of precise, machine-readable models, which are also easier to communicate.
MDD techniques are used for automatic transformations of models captured in domain
specific languages. Hence, the presented approach aims to assist the experts belonging
to each of the three groups to create precise models of the business process at their ab-
straction level and to support automatic propagation of changes in the model created by
the analyst to the model created by the architect and further to the model created by the
developer

The paper is organized as follows. Section 2 provides a brief introduction on DSML,
MDD and service composition. Section 3 presents the outline of our approach. Section
4 illustrates the approach with the help of an example of a mortgage approval process in
an imaginary bank. Section 5 evaluates the approach. Section 6 introduces a prototype
implementation and section 7 contains the conclusion.

2 Preliminaries

This section describes concepts and notions used in the rest of the paper. It introduces
the use of Domain Specific Modeling Languages, Model Driven Development, and ser-
vice composition as an implementation to support business processes.

2.1 Domain Specific Modeling Language

A general purpose process modeling language such as the Business Process Modeling
Notation (BPMN) [7] or UML activity diagrams [8] are not designed to support en-
terprises in creating models using their own vocabulary and terminology. In contrast,
a DSML created specific for an enterprise allows the experts to create models using
locally known domain concepts and to provide domain specific information to model
precisely. In this paper we shall make use of domain specific modeling languages, which
are based on UML activity diagrams and extended for a particular domain by a UML
profile [8]. A profile is constructed by using the extensibility elements: stereotypes,
tagged values, and constraints [8], which are machine readable modeling construct used
by UML tools. For example, in an activity diagram we may wish to specify, if a task is
carried out by a software system or a human agent. To do so, a profile containing the
stereotypes <<Automatic>> and <<HumanActivity>> can be applied to the activity
diagram. Such stereotypes clarify if a task is carried out by software or by a human be-
ing. A stereotype is applied to a task to indicate the task type. Using these stereotypes
or specialized task types extends activity diagrams into a new (here, rather simplistic)
language.

168 S. Brahe and B. Bordbar

Through out the paper we use the term task for the single actions or activities that
make up a business process. We use the term task type to classify various tasks. For
example, HumanActivity is a task type, which embodies tasks such as posting a letter
or assessing a risk related to a mortgage by a human actor. A domain specific process
modeling language consists of a number of task types that can be used for modeling.

2.2 Model Driven Development

In the Model Driven Development (MDD) paradigm, models are treated as primary
software artefacts, from which the implementation is created with the help of software
tools [4]. Adopting MDD in a software development process is expected to speed up
development time and improves the quality of the delivered system.

The Model Driven Architecture initiative (MDA) [9] implements the MDD approach
around a set of technologies and standards like MOF, UML and XMI. Central to the
MDA is the idea of model transformations. Defining a transformation from one kind of
model, the source model, to another kind of model, the target model, one is able to reuse
that transformation for all source models of the same type. MDA provides mechanisms
to define DSMLs and a conceptual framework for defining transformations between
different DSMLs. Models are created by using constructs from meta-models. Meta-
models are models, which formally defines the syntax of which models can be created.
A meta-model defined for a specific domain can be seen as a Domain Specific Modeling
Language. Using MDA technologies, a meta-model is defined either by using MOF, a
meta modeling language, also called a meta-meta-model [9] or by using the UML pro-
filing mechanism [8]. A transformation is a set of rules that specify mapping between
the source and the target language. Several methods exist for defining model trans-
formations ranging from complex frameworks utilizing languages as ATL and QVT
to simple Java based frameworks as SiTra. For simplicity, we describe transformation
rules in English.

2.3 Service Composition

Enterprises that adopt a Service Oriented Architecture often require combining ser-
vices to support their business processes. As a result, service composition languages,
such BPEL, are designed to allow combining and coordinate service invocations. BPEL
is an XML based-language for describing business processes and business interaction
protocols.

Research into the application of MDD techniques to the web service domain has
recently received considerable attention. A popular area of research is model transfor-
mations from platform independent languages to Web service languages, among others,
Class Diagrams to WSDL [10] and Activity diagrams to BPEL [11].

3 A Pattern Based Approach to Model Transformations

This section illustrates the outline of our method for bridging the gaps between Business
and IT using DSMLs and MDD techniques as depicted in Fig. 1.

A Pattern-Based Approach to Business Process Modeling 169

Code
Code

Generation tools

Executable model

(Developer)

Additional

Information

Automated

Transformation

Parameterised

Patterns

System model

(System analyst)

Additional

Information

Automated

Transformation

Parameterised

Patterns

Business model

(Business analyst)

Language and transformation workbench

DSML for Business analyst DSML for System analyst DSML for Developer

DSML for the enterprise

uses uses uses

Fig. 1. A pattern based approach for modeling collaboration

The analyst creates a business model of the process. The architect transforms this
model to an architectural model by applying a predefined and automatic transformation
to the business model. The transformation uses parameterized patterns to create the ar-
chitectural model. These patterns represent knowledge previously kept by the architect
of how to map business models to architectural models in the enterprise. The patterns
are parameterized, hence, the architect is asked to include values of Additional Param-
eters required by the transformation. Additional Parameters are information that are
required in the architectural model, and which is not represented in the business model.
Following the creation of the architectural model by the architect, a developer trans-
forms it to an executable model in a similar fashion. The architect and the developer
do not change generated models; instead the information they must provide to the final
implementation is given as values of additional parameters during transformation. The
transformation workbench incorporates this information into the generated models au-
tomatically. We shall now describe the approach and the use of parameterized patterns
in further details.

3.1 Parametrized Patterns

Derived from Alexander’s work on architectural patterns, and now commonplace in
software engineering [12], patterns have been embraced by the workflow and business
process community [13,14]. A pattern describes a recurring problem that occurs in a
given context, and based on a set of guiding principles, suggests a solution. In our ap-
proach, a pattern is a common architectural, or implementation solution to reoccurring
tasks of same type. For instance, a business analyst may for simplicity model a single
task in a process, but describe that it should be executed a number of times. The archi-
tectural pattern for the task is an iteration over a service invocation. Each time such a
task is modeled by the analyst, the architect creates the same kind of solution. We use
patterns to capture and describe such common solutions to tasks of the same type.

The patterns described in this paper are domain, or enterprise, specific, i.e. they are
specific to each individual enterprise. They make use of attributes and parameters re-
lated to the models. Hence, we shall use the phrase parameterized patterns [15] to
distinguish such patterns from high level patterns described in [12]. In our approach,

170 S. Brahe and B. Bordbar

a parameterized pattern includes three pieces of information; a pattern template, addi-
tional parameters and transformation rules. Pattern templates capture the overall struc-
ture of a task type in the source language represented at a lower level of abstraction and
is defined in the target language. Additional parameters specify information required
for fitting and customizing the pattern template for a specific task. Transformation rules
use values of the additional parameters and attribute values of the task to change and fit
the pattern template into the target model.

3.2 Automated Transformation with the Help of Parameterized Patterns

Fig. 2 depicts an outline of our approach for conducting model transformation between
different DSMLs using the information captured as design patterns. This results in re-
finement of a model to a lower level of abstraction as depicted in Fig. 1.

targetLs Lt

E1

E2

T1

T2

T

InstanceOf

...

Task types at

the source

S1

S2

...

Created structure

at the destination

...

Transformation

Pattern Templates

PT1, PT2, ...

Value of Additional Parameters

VoAP1, VoAP2, … added
ms mt

InstanceOf

source

Additional Parameters

AP1, AP2, ...

Fig. 2. Model transformation between DSMLs with the help of patterns

Let us consider a source DSML Ls and a target DSML language Lt. For example,
in transformation from the Business model to the System model, see Fig. 1, Ls and Lt

are DSMLs for business analysts and system analysts, respectively. Suppose that Ls

consists of a number of domain specific task types E1, E2, . . . The aim is to transform
a source model ms defined in the language Ls to a target model mt defined in the
language Lt. To achieve this, a transformation T , which contains transformation rules
for mapping tasks from Ls to tasks of Lt, is used. The transformation T consists of
a number of sub transformations Tj , responsible for the transformation of one task
type Ej in the source model to a structure Sj in the target language Lt. The global
transformation T orchestrates and coordinates which sub transformations should be
executed at the different tasks contained in the source model ms, collects all generated
structures by the sub transformations and connects the generated structures together to
the target model mt.

A sub transformation Tj captures and represents a parameterized pattern, and hence
it represents domain specific knowledge of how to represent a task type at a lower
level of abstraction in the target language Lt. This makes the sub transformations the

A Pattern-Based Approach to Business Process Modeling 171

most essential part of the transformation. The sub transformation Tj is defined by the
following elements:

1. Pattern template PTj . A model template defined in the target language Lt. The
model template represents the structure of the source task Ej transformed to Lt.

2. Additional Parameters APj . When transforming a source task Ej to a lower ab-
straction level (Lt), additional information may be required to enrich and customize
the pattern template so the structure Sj defined in the Lt can be generated.

3. Transformation rules. Rules that specify how the pattern template PTj is cus-
tomized into the structure Sj . The rules make use of Values of Additional Parameter
(V oAPj) and values of attributes at the source task Ej .

4 Example: Process Modeling in Estate Bank

In this section we shall illustrate the above approach with the help of an example of an
imaginary enterprise called Estate Bank. In contrast to a real business process, which
can be quite complex, we use a simplified process as the purpose of the example is to
illustrate our approach. Fig. 3 models a mortgage approval process inside Estate Bank.
When a customer requests for a mortgage at the bank, a risk analysis (AssessRisk) task
is executed. Based on the risk, either the loans for the mortgage is created (CreateLoans)
or the request is rejected (Reject).

AssessRisk

CreateLoans

Reject

High risk?

[No]

[yes]

Fig. 3. A mortgage approval process in Estate Bank

A business analyst defines the above model of the mortgage approval process. The
team of system architects and, subsequently, the team of developers must create an exe-
cutable system from such a model. Due to space limitation we shall only define a subset
of the modeling languages and transformations. Firstly, we describe subsets of the dif-
ferent languages used by the three groups of experts. Then, we shall define the essential
sub-transformations for a selected number of task types from the different languages.
Finally, we illustrate the transformation of the CreateLoans task in the mortgage pro-
cess from the business level to the architect level and further to the development level
by using the different sub transformations.

4.1 A DSML for Business Analysts

Consider a domain specific language LB containing three task types named HumanAc-
tivity (EB

1), Automatic (EB
2) and Bundle (EB

3). A task of type HumanActivity, as the
name suggest, is a task which is handled by a human actor. For example, the AssessRisk

172 S. Brahe and B. Bordbar

task used in Fig. 3 can be carried out by an employee at the bank, and hence the task is a
HumanActivity. An Automatic task is a task, which is executed by a computer program.
For example, the Reject task in the mortgage process is an Automatic task type as a
computer program in Estate Bank automatically is able to send a rejection letter or an
email. A Bundle task is one which is executed a number of times. For example, in the
mortgage process, creating a number of different loans with different interest rate based
on the customer request can be considered a bundle . These task types are high-level
enough to be used by the business analyst for creating business process models. For a
full-blown realistic example in a real enterprise, several additional types are required.
However, the three task types are sufficient to explain our approach.

4.2 A DSML for Solution Architects

The solution architect refines models created by the business analyst. As a result, the
DSML, called LA, used by the solution architect requires more information than the
DSML used by the business analyst. Here, we shall exemplify refinement of the task
type Bundle from the previous sections. Two of the task types used by the solution archi-
tects are Loop (EA

1) and Service (EA
2), which are used in refining the task type Bundle

from the analyst language. A task of type Loop indicates that an iteration should be
executed over a sequence of other tasks. The architect may use a Loop to indicate that a
certain service must be called a number of times, e.g. creation of several loans but with
different interest rates. A task of type Service indicates calling a specific service avail-
able for the use of Estate Bank, for instance creation of a loan with a specific interest
rate. Such services are identified by their name and version. The architect determines
which service to be executed and specifies the name and version for the service task.

4.3 A DSML for Developers

The developer uses a language similar to BPEL and WSDL. Considering these lan-
guages express the system in lower level of abstraction, the DSML, called LD, for the
developer requires more information than the one for the solution architect. The lan-
guage is not specific to Estate Bank as it is similar to the BPEL language. We present
three exemplary task types: Assign (ED

1), Invoke (ED
2) and Loop (ED

3). A task of type
Assign maps data between variables and is used to initialize input data to service invo-
cations. A task of type Invoke, similar to BPEL’s invoke, is described by a WSDL doc-
ument. A task of type Loop iterates over a sequence and can be compared with a “for”
or “while” loop in traditional programming languages. Models created in the DSML
for the developers can be compiled directly to BPEL code without any additional pa-
rameters required. The models must be defined completely, i.e. the models must be rich
enough to be “executable”.

Table 2 depicts the task type Bundle, of the DSML for the business analyst and its
refinement by the architects and developers. Whenever a business analyst models a task
as a Bundle type (EB

3), for example the task CreateLoans in the mortgage process Fig.
3, she/he must specify values of the required attributes of the task as listed in Table
1. Firstly, the description attribute clarifies the purpose of the Bundle. Secondly, the
iterations attribute, if the number is known at modeling time, specifies the number of
times the Bundle should execute.

A Pattern-Based Approach to Business Process Modeling 173

Table 1. Task types and their attributes

DSML Task type Attributes Description

Business LB Bundle EB
5 description A description of what is bundled

iterations The number of iterations if it is known

Architect LA Loop EA
1 iterations The number of iterations

knownAtBuildTime Number of iterations is known at build
time?

Service EA
2 name The name of the service to invoke

version The version of the service to invoke

Developer LD Assign ED
1 data mappings Mapping of data between variables

Invoke ED
1 wsdl Document describing the service to call

As illustrated in Table 2, the architectural pattern PT BA
3 for modeling the equivalent

to a Bundle at the architectural level is a loop task type, and inside the loop, a service
task type is present. The pattern expresses the common solution to reoccurring model
elements of type Bundle. The loop task type requires values for two attributes :

-knownAtBuildTime: Boolean. True, if the iteration numbers is known at build time
-number:= the number of times the iteration should run.
Both these attributes can be extracted from the attributes of the Bundle task, so no

additional information is required here. The service task type also requires data for two
attributes:

Service name:= The name of the service which the bundle invokes multiple times.
Service version:= The version of the service to be invoked.

Table 2. Sub transformation for Bundle task type from business to architectural level

Pattern template Add. params Rules
PT BA

3 AP BA
3

<<Loop>>

setupLoop
<<Service>>

loop
-Service name
-Service version

Set name and version at
Service attributes

These attributes cannot be extracted from the Bundle task type at the business level,
as they are information about the architecture of services in Estate Bank, so they must
be provided as additional parameters APBA

3 during the transformation. The business
analyst has only provided a description of the purpose of the task of type Bundle. The
architect uses his/her knowledge of Estate Banks services to describe which service and
what version to call and specify the attribute values of the Service task. A sub transfor-
mation T BA

3 can be defined for transformation of the Bundle task type at the business
level to the architectural level. Table 2 shows the pattern template, a textual descrip-
tion of the transformation rules and the required additional transformation parameters.

174 S. Brahe and B. Bordbar

The Bundle sub transformation generates a model structure SA
3 defined in the architect

language. This structure contains two tasks, one of type Loop, and one of type Service.
The structure can be transformed to the development level by use of two different sub
transformations, one sub transformation T AD

1 for the Loop task type and one (T AD
2) for

the Service task type.
Table 3 illustrates that a Loop task at the architectural level is transformed to an As-

sign task and a Loop task at the development level. The Service task at the architectural
level is transformed to a sequence of an Assign task followed by an Invoke task at the
development level. The two assign nodes at the development level both need additional
parameters for determining how to map data for variables to the loop node and the in-
voke task respectively. This information can be provided at modeling time, however
since the focus of the paper is on the control flow part of the models, we will not deal
with this aspect here.

The Loop node requires a conditional statement (logic) to determine when is should
terminate. This is similar to the conditional statements, for example in “if” and “while”
clauses, in conventional programming languages. The Invoke node need to know the
WSDL document defining the service to invoke. The logic and the document have to be
provided for the transformations as values of additional parameters, V oAPj .

Table 3. Sub transformation of Service and Loop task type from architect to developer level

Task type Pattern template Add. params Rules
PT AD

j AP AD
j

Service serviceToCall
<<Invoke>>

setupData
<<Assign>>

-WSDL file
Change the invoke
node to use WSDL

Loop

<<Loop>>

setupLoop
<<Assign>> loop

-logic
Set iteration num-
ber at loop

The described parameterized patterns allow the CreateLoans task, if modeled as a
Bundle type, to be transformed into code with only limited work done by the architect
and the developer. They only have to provide specific information during the transfor-
mations. The architect has to provide the service name and version of the service that in
the IT systems fulfils the requirements specified by the business analyst. The developer
has to provide a WSDL document based on the service name and version and logic for
when the loop should terminate. Based on these additional transformation parameters,
the described sub transformations in Table 2 and Table 3 handle the rest of the work of
transforming the business model to an implementation. This is illustrated in Fig. 4.

Similarly, the other tasks, AssessRisk and Reject, of the mortgage process can be
transformed by other subtransformations to an implementation. Fig. 5 illustrates the
complete mortgage process transformed to the developers DSML where also the As-
sessRisk and the Reject task has been transformed. The different Assign tasks, map1,

A Pattern-Based Approach to Business Process Modeling 175

map2, map3 and map4, are used for mapping data for service invocations; for the As-
sessRisk service which is handled by a human actor, for initializing the while loop
for creating the different loans requested by the customer, for the CreateLoan ser-
vice which create one loan and for the Reject service which sends a rejection to the
customer.

Analyst

Architect

Developer

B
u

si
n

es
s

2
A

rc
h

it
ec

t

A
rc

h
it

ec
t

2
D

ev
el

o
p

er

CreateLoans
<<Bundle>>

C
o

m
p

ile
 B

P
E

L

<<Loop>>

initiateLoop
<<Assign>>

CreateLoans

mapCreateLoan CREATELOAN
<<Assign>> <<Invoke>>

<<Loop>>
CreateLoans

<<Service>>

-name=CREATELOAN
-version=02

CREATELOAN

-wsdl=createloan.wsdl

Val of Add. Parameters

name=CREATELOAN
version=02

Val of Add. Parameters

wsdl=createloan.wsdl

<process name="MortgageApproval">
 <sequence>
 <receive partner="...">
 ...
 </receive>
 </sequence>
</process>

Fig. 4. Transformation of the CreateLoans task from analyst to architect to developer to code

map1 AssessRisk

Rejectmap2

map3
map4 CreateLoan

CreateLoans<<loop>>

<<assign>>

<<assign>>

<<assign>>

<<assign>> <<invoke>>

<<invoke>>

<<invoke>>

Fig. 5. Mortgage Approval process transformed to developer DSML

5 Discussion

As the example illustrates, the analyst and the architect are able to create precise,
machine-readable models in well known domain specific concepts by using languages
fitted specially for their needs. By using the suggested approach, i.e. having defined sub
transformations for the specific domain concepts, tools can now collect the required in-
formation for the concrete tasks in a source models, automatically transform the source
model to the target domain and finally generate the implementation code. The model

176 S. Brahe and B. Bordbar

can be transformed to an implementation, where only required additional transforma-
tion parameters have to be provided by the architect and the developer. The developer
and the architect are not required to remember or know all details about the patterns and
which additional parameters are required. For example, the tool can provide assistance
in form of wizards.

Following the gathering of information, the transformation of the task to the lower
abstraction level is carried out automatically. As a consequence, the challenge of model-
ing and implementing business processes, then becomes one of identifying and defining
domain specific concepts, DSMLs and transformations between different DSMLs. An
outcome and a possible limitation of the approach is that it is not possible to introduce
manual corrections to generated models. It is a subject to further research how manual
changes applied to generated models can survive repeatable transformations. Due to
space limitation, this paper only focuses on control flow part of the business process.
Modeling the flow of messages is equally important. For example in the mortgage ex-
ample it should be modeled which information that is provided to the process and what
information the different tasks require. Our approach can be similarly used to model
and transform the message flow of a business process.

6 Tool Implementation of the Approach

Our earlier paper [16] describes the tools ADModeler and ADSpecializer, which en-
able the creation and use of DSMLs based on UML activity diagrams and profiles. We
are currently finalizing an extension of the above workbench by a new module called
ADTransformer, a transformation engine feasible for transforming models based on
different profiles for UML activity diagrams. ADTransformer implements the concepts
of sub transformations, parameterized patters, patterns templates, transformation rules
and additional parameters. Using the three tools together one is able to define and utilize
DSMLs, and define and use transformations between different DSMLs.

7 Conclusion

This paper presents an approach for bridging the gap between business and IT by fa-
cilitating better interaction between experts involved in business process modeling and
implementation. The main idea is to capture domain knowledge related to different
groups of experts as domain specific modeling languages and reusable, parameterized
transformation patterns. Using an example, the paper demonstrates that domain specific
modeling combined with customizable model transformations can simplify the process
of modeling and implementing business processes. Using our tool-based approach will
result in shorter time to market from business process idea to implementation, higher
quality of the resulting code based on automated transformations, an assurance for what
is conceptually modeled is actually also implemented, and better interaction between
different groups of experts.

A Pattern-Based Approach to Business Process Modeling 177

References

1. Wagner, H.-T., Beimborn, D., Franke, J., Weitzel, T.: IT Business Alignment and IT Usage
in Operational Processes: A Retail Banking Case. In: HICSS’06. Proceedings of the 39th
Annual Hawaii International Conference on System Sciences, vol. 8, pp. 172–194 (2006)

2. Arsanjani, A.: Empowering the business analyst for on demand computing. IBM Systems
Journal 44, 67–80 (2005)

3. BEA, IBM, Microsoft, SAP, A., Systems, S.: Business Process Execution Language for Web
Services (BPEL4WS). Version 1.1 (2003),
http://www-128.ibm.com/developerworks/library/specification/
ws-bpel/

4. Stahl, T., Völter, M., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software Development:
Technology, Engineering, Management. Wiley, Chichester (2006)

5. Chen, K., Sztipanovits, J., Neema, S.: Toward a semantic anchoring infrastructure for
domain-specific modeling languages. In: EMSOFT ’05. Proceedings of the 5th ACM in-
ternational conference on Embedded software, pp. 35–43. ACM Press, New York (2005)

6. van Deursen, A., Klint, P., Visser, J.: Domain-Specific Languages: An Annotated Bibliogra-
phy. ACM SIGPLAN Notices 35, 26–36 (2000)

7. White, S.: Business Process Modeling Notation, Version 1.0, final adopted version (2006),
Avaiblable at http://www.bpmn.org/Documents/OMG-02-01.pdf

8. UML2.0: UML 2.0 Superstructure Specification, Final Adopted Specification (2004), avail-
able at http://www.omg.org/docs/formal/05-07-04.pdf

9. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture–Practice
and Promise. The Addison-Wesley Object Technology Series. Addison-Wesley, Reading
(2003)

10. Bezivin, J., Hammoudi, S., Lopes, D., Jouault, F.: An Experiment in Mapping Web Services
to Implementation Platforms. Technical report, LINA, University of Nantes (2004)

11. Bordbar, B., Staikopoulos, A.: On Behavioural Model Transformation in Web Services. In:
Conceptual Modelling for Advanced Application Domain (eCOMO), Shanghai, China, pp.
667–678 (2004)

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1994)

13. Eriksson, H., Penker, M.: Business Modeling with UML. Business Patterns at Work. John
Wiley & Sons, Chichester (2000)

14. van der Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Patterns. Dis-
tributed and Parallel Databases 14, 5–51 (2003)

15. MacDonald, S., Szafron, D., Schaeffer, J., Anvik, J., Bromling, S., Tan, K.: Generative design
patterns. In: IEEE International Conference on Automated Software Engineering, pp. 23–34.
IEEE Computer Society Press, Los Alamitos (2002)

16. Brahe, S., Østerbye, K.: Business Process Modeling: Defining Domain Specific Modeling
Languages by use of UML Profiles. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006.
LNCS, vol. 4066, pp. 241–255. Springer, Heidelberg (2006)

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www.bpmn.org/Documents/OMG -02-01.pdf
http://www.omg.org/docs/formal/05-07-04.pdf

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 178–189, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Integrating Semantic Business Policy into Web Service
Composition

Xu Meng and Chen Junliang

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications,

Beijing, China
xumengmoon@gmail.com, chjl@bupt.edu.cn

Abstract. Web services composition is becoming increasingly important as the
3rd part service providers are now getting ready to provide more complex
service-based applications. Accordingly it is critical to integrate the business
policy with web service composition dynamically to adapt to changing business
environments. Business policy needs to be represented explicitly, to be
understood by semantics, and to be applied automatically. To support the
business control in the interactive web service composition, this paper proposed
a SWRL-based business policy model which does the rule reasoning based on
semantics. And a business policy driven services recommend method was
present to apply this model to the web service composition, which bridges the
gap between business requirements and academic research. As a result, 3rd part
service providers can focus on the business goals to be achieved, instead of
having to create detailed control and data follows for the work at hand.

1 Introduction

Web services embody the paradigm of Service-Oriented Computing: applications
from different providers are offered as web services that can be used, composed, and
coordinated in a loosely coupled manner. One of the key challenges for contemporary
enterprises is to generate complex services using by available web services on the
Internet. The Web Service Composition (WSC) is really a business process which
determines how the composition should be structured and scheduled. We believe
business processes can be dynamically built by composing web services if they are
constructed based on and governed by business rules.

Currently, one of the feasible WSC methods is workflow based schema, just like
BPEL, which predefines the workflow of services. However, the predefined method
lacks of flexible mechanisms to satisfy the user’s personal requirements. The
interactive method presented in [1][2] is a reasonable composition solution, which
invites users to join the procedure to select the successive service. As semi-automated
composition method, it has been argued in several literatures, in which the core
algorithm is how to get the candidate services. According to the execution result of
the last service (preS), the user could select the successive service from candidate
services. When users select the successive services (sucS), they want to find the
needed service quickly, rather than search in a great deal and unrelated services.

 Integrating Semantic Business Policy into Web Service Composition 179

Our work is motivated by the requirements of integration of business process with
interactive WSC method. In the exist work of interactive WSC method, they consider
the business process rarely, however, business process is critical in the service
recommend process. Otherwise, the 3rd SP couldn’t control the service logic, so the
interactive MSC has less feasibility to be applied in reality. We have developed a
semi-automatic WSC platform which utilizes service relation [3][4] to recommend
services for users. In this paper, we proposed a solution to integrate business process
to interactive WSC, which is achieved though using of business policy and rule
inference.

There has been increasing work in designing business policy based WSC system
[5]-[8]. However, there are some challenges in developing such a system. Firstly,
business policies need be written in a language that both people and machine can
easily understand, so business rules should be combined with Semantic Web [9].
Secondly, when conflicts arise in the context of using policies, it needs an efficient
and appropriate manner to detect and resolve conflicts. Thirdly, business policy must
be integrated to the interactive WSC method to control the business logic
dynamically.

We analyze the business policy special for WSC and propose SWRL [10]-based
Business Policy Model which includes of knowledge and rules. Based on SBPM, we
present a Business Policy driven Services Recommend Method (BPSRM) to provide
the candidate services which satisfy the business requirement. Our prototype and case
analysis verify that BPSRM could integrate the business policy to WSC dynamically
and seamlessly, which allows create personal services semi-automatically and bridges
the gap between business requirements and academic research.

The remainder of this paper is organized as follows. Section 2 discusses related
works. Section 3 reviews the business rules, introduce the SBPM. In section 4, we
present the BPSRM. Section 5 briefly describes the prototype and shows the effect by
case analysis. Section 6 provides some concluding remarks and outlines the future work.

2 Related Works

There are many ongoing research efforts in the business policy related technology.
Some rule description language was used to express business rules: Defeasible Logic
was used to describe the business rule in [6], which has strong expressive power and
is executable. While the tool for maintaining rules and reasoning is absent, and it
never argued the application to web service composition. RuleML based on SCLP
was used to describe business rules in [7], and it has the characteristic that could be
extended easily. However, it never refers to web service composition, and it could
only reasoning with the condition, rather than control the service logic. Description
Logic was applied in [8] to enhance current business integration approaches, and the
semantic technology was applied in reasoning of non-function properties when
service selecting. The business policy that used in the above works only refers to the
service constraints, which is only a part of business rules. In this paper, we use the
ontology and rule technology to modeling the business policy, which could express all
business policies including service condition constraint and action enabler in focus
and could be reasoned base on semantics. We argue the action of the business policy

180 X. Meng and C. Junliang

in the service logic control, rather than just in the constraint of selection in the
services which have alike function.

In the research of integration business with WSC area, they dealt with business
policy in different way. In the workflow method, a hybrid web service composition
method [11] explicitly separates business rules from the process specification and
adds the business rules to BPEL using the aspect-oriented programming method.
PLM-flow [12] could create workflow automatically through the business rule which
were defined by template including backward-chain and forward-chain. However in
the above method, they never use the reason based on semantics. Based on semantic
reason technology, we could use the object orientated method, the rule expression has
semantics rather than just denotations. We use SWRL to modeling the business policy
supporting semantics, and proposed the business policy expression more general than
the above. So in the interactive WSC method, business policy could guide and govern
the composition procedure.

3 Business Policy Model

In the following subsections, we present a SWRL – based business policy model
(SBPM) which includes of knowledge and business rules. Business rules are defined
as SWRL rules that are executed by a rule inferring engine.

3.1 Business Policy

Business rule encompasses a collection of terms (definitions), facts (connection
between terms) and rules (computation, constraints and conditional logic) [4], which
reflect the business policy. According to [4], the business policy is shown in Table 1.

Table 1. Business policy classification

Type Rule definition Example

Inference
Tests conditions and upon

finding them true, establishes
the truth of a new face

R1: If customers are younger
than 18, they are younger

Supporting
Business Rules

Computation

Checks a condition and when
result is true, provides an

algorithm to calculate the value
of a term

R2:Today – birth date = age

Constraint
Expresses an unconditional

circumstance that must be true
or false

R3: If customers are under 18,
they cannot buy products for

adults.
Supporting

Business
Behavior

 Action
Enabler

Checks conditions and upon
finding them true initiates

some action

R4: If no fight is found, book
a train ticket.

Table 1 shows the two basic types of business rules. Supporting business tasks
enable business tasks and processes implemented with web services. Supporting
business rules such as computation and inference rules are not directly involved with
the web service composition. They provide interpretation tools for operational
business rules.

 Integrating Semantic Business Policy into Web Service Composition 181

3.2 SBPM

Business policy needs to be represented explicitly, to be understood by semantics, and
to be applied automatically. Contemporary literature on the combining of ontology
and rule primarily addresses that the rule could be constructed on the ontology to
extend the expressive power of ontology [13]. SWRL [9] combines the RuleML and
OWL [14] to overcome many limitations in Description Logic and is considerably
more powerful than either OWL DL or Horn rules alone.

Fig. 1. SWRL-based Business Policy Model

According to the business rule defined by Business Rules Group and the
classification in Table 1, a SWRL-based business policy model (SBPM) was shown in
Fig.1. SBPM includes two parts: one is Supporting Business Rules - Basic
Knowledge (BK) which defines the concept and relationships that should be used in
rules; another is Supporting Business Behavior - Business Rules (BR) which is
defined by SWRL. BR is supported by BK, and it extends the expressive capability of
BR in essence. They construct the business policy in common and SBPM could be a
repository of the reasoning system.

3.3 Business Knowledge

We have realized an interactive WSC system which mainly faces to information
providing service, and we use the GIS related services and information services as
examples in the following text.

Because there are two roles in business activity, which are the user and the
available service, we model BK as two parts: one part is user related ontology which
saves the information about user; another is service related ontology which saves the
service and relationships among them. The user related ontology includes of
knowledge that used to describe the user, which is shown in BK1.

Constraint Action
Enabler

Computation Inference

Business Rule (BR)

Basic Knowledge (BK)

User Related
Ontology

Service Related
Ontology

Supporting Business Behavior

Supporting Business Rules

182 X. Meng and C. Junliang

BK1 A snippet of user related ontology

DatatypeProperty(gender)
DatatypeProperty(age)
DatatypeProperty(name)
Class(Person)
 intersectionOf(
 restriction (name allValuseFrom(xsd:string))
 restriction (gener allValuseFrom(xsd:string))
 restriction (age allValuseFrom(xsd:integer)))
 restriction (birthDate allValuseFrom(xsd:integer))
Class(Younger)(
 subClassOf(Person))
Class(User)
 intersectionOf(
 subClassOf(Person)
 restriction (ID allValuseFrom(xsd:string))
 restriction(phoneNumber allValuseFrom(xsd:string))
 restriction(email allValuseFrom(xsd:String)))

In the service related ontology, we define each type of web service as a class
and a web service provided by a provider as an instance in the service related
ontology, and organizes services by their topic what is achieved according to the
service content. Therefore the service related ontology saves the relationships of
service causing by their topics and the occurrence of service description file (in
OWL-S). For further description, we have introduced this part in [3]. The example
is shown in BK2.

BK2 A snippet of service related ontology

ObjectProperty(hasService)
Class(Spot
 intersectionOf(
 restriction (hasService queryAddress)
 restriction (hasService queryPhoneNo)
 restriction (hasService showAroundMap)
 restriction (hasService sendMessage)
 restriction (hasService locate)))
Class(Entertainment
 intersectionOf(
 subClassOf(Spot)
 restriction (hasService queryAverage)))
Class(Cinema
 intersectionOf(
 subClassOf(Entertainment)
 restriction (hasService queryFilmInfo)
 restriction (hasService buyFilmTicket)
 restriction (hasService queryNearCinema)))
Class(sendMessage)
Class(sendMMS
 intersectionOf(
 subClassOf(sendMessage)))
Class(sendSMS
 intersectionOf(
 subClassOf(sendMessage)))

 Integrating Semantic Business Policy into Web Service Composition 183

3.4 Business Rule

Business rules are usually expressed in the form if conditions then action which
accords with the syntax of SWRL. The business rule templates use the SWRL
expression which is

antecedent => consequent, where antecedent and consequent = a1∧…∧an where ai

can be of the form C(x), P(x,y), or swrlb:buildin where C is an OWL description, P is
an OWL property, and swrlb:buildin is a SWRL built-ins [11] which support the
operation including Comparing, Boolean values, Strings, Date, Time, and et al.

For services invocation and constraints, we defiant five properties to express the
relation between user and services:

i) success(User, Service). A user has invoked this service successfully, which
means that the service has no exception when invoked.
ii) failed(User, Service). A user has invoked this service but it returned abnormally,
maybe exist some exceptions.
iii) enable(User, Service). It defines the constraints that the service could be

invoked by the user in the current state.
iv) disable(User, Service). It defines the constraints that the service couldn’t be

invoked by the user in the current state.
v) do(User, Service). Service should be executed in one step.
The detail templates of different rule types are shown in Table 2. According to the

examples of Table 1, the rules are expressed in the following.

Table 2. Business Rules Templates

 ai in antecedent ai in consequent
Inference C(x)|P(x, y)|swrlb:buildin C(x)|P(x, y)|swrlb:buildin
Computation Empty C(x)|swrlb:buildin
Constraints C(x)|P(x, y)|swrlb:buildin enable(x,y)|disable(x,y)|do(x,y)
Action enabler success(x, y)|failed(x,y) enable(x,y)|disable(x,y)|do(x,y)

BR A snippet of BR

R1:User(?x) Age(?x,?y) swrlb:smallerThan(?y,18) Younger(?x)

R2:User(?x) Today(?y) birthDate(?x,?a) age(?x,?b)
swrlb:substract(?b,?y,?a)

R3:User(?x) Adult(?x) BuyAdultCommodity(?a) disable(?x,?a)

R4:User(?x) BuyAirTicket(?y) failed(?x,?y) BuyTrainTicket(?a)
do(?x, ?a)

4 A Business Policy Driven Web Service Composition

In this section, we give details on how to realize the dynamical WSC and execution
governed by SBPM.

184 X. Meng and C. Junliang

4.1 WSC Process

Business policy driven WSC involved five major steps (see Fig.2): business policy
repository building, facts creation, rule inference, recommend candidate service and
user invocation.

Fig. 2. Business Driven Interactive WSC Process

Firstly, the 3rd part SP input the business policy to build the business policy
repository. Secondly, the WSC process begins with a user’s request and the user
context is the fact of reasoning. Thirdly, the inference engine could do the reasoning
with business policy repository and return the results about the business constraints.
Fourthly, according to the results, system gets the candidate services and provides
them to users. Lastly, the user invokes the service and the execution result is
maintained to update the fact. In the following text, we will discuss the inference face
and conflict handling in detail.

4.2 Facts and Inference

Context-sensitive technology has been introduced to web service composition [15] in
which the user context was defined as user profile and user location. In our paper, we
think that the user profile and the services list that invoked by the user in the current
session are critical for the successive service. Therefore, we extend the context with
the services list that invoked by the user. The user context constructs the reasoning
fact, which is defined as follows.

User Context is a 4-tuple <userID, preSList, PreS, F> where userID is the
identifier of a user; preSList is a set of services S invoked by the user, S is a 2-tuple
<Sname, State> where Sname is the name of service, and State is the result of service
Sname, which will be “success” or “fail”; PreS is the service S that was invoked in the
last choice; Fact is the assertion that come from preSList and preS.

SWRLJessTab [16] is a Protégé (since v3.2beta) [17] plugin intend to bridge
between Protege OWL, RACER and Jess, for reasoning with SWRL. The reasoning
results are consisted of do, enable, disable services list.

4.3 Conflict Handling

SWRL has been proposed as a standard in W3C, and it has been extensively studied,
has clear semantics, and is supported by automated reasoning techniques. But it falls

Business
Repository
Building

Business
Policy

Fact
Maintenance

Rule
Inference

User
Context

Recommend
Candidate
Services

User
Invocation

Knowledge

Fact

Services
Filtering &
Extension

Service
Invocation

Result

Candidate
Services

End

 Integrating Semantic Business Policy into Web Service Composition 185

short as an appropriate basis for our purposes in business policy on inability to deal
with rule conflict that most rule languages have. For the rule’s conflicts checking, the
primary method is to check the conflict manually, and define the priority of rules to
deal with the conflict. Whereas SWRL doesn’t support priority any, so the priority of
rules is infeasible in our model.

Rather than define the priority of rules, we proposed a simple method that define
the priority of properties. The priority of properties of service is:

P(disable) > P(do) >P(enable) where P stands for priority.
If the reasoning result has conflict such as disable(user, buyTicket) and

enable(user, buyTicket), we hold the predication disable(user, buyTicket) that has the
higher priority.

4.4 Service Recommend Algorithm

IO-matching is a relative mature approach, in which the successive service
(sucService)’s input is could feed to the previous service (preS) as an input. The core
idea of the DSAC is that it uses the IO-matching method as a basic step, then extends
and revises it by the result of service relation reasoning. BPSCM add the business
policy reasoning to DSAC to make the service logic be governed by business policy.
The concrete approach is listed as follows:

i) By using the business inference and conflict handling, we could get three lists –
doList, enableList, and disableList.
ii) After DSAC method, we could get the candidate service, which are saved in
doList.
iii) Remove the services in disabledList, add the service in enableList, and trigger the
services in doList automatically.

5 The Prototype and Case Analysis

Integrated Intelligent Service Platform (IISP) [4] realized an interactive web
service composition method – DSAC [3]. IISP used a call center agent to assistant
the user to complete the service composition procedure. The system recommends
candidate services to users by a call center agent, and after the user makes a
choice, the agent invokes the selected service and gives back the results. So the
user just dial the customer service center, an agent will service you. The basic
services of our system are: GIS related services, telecom services and integrated
information services.

5.1 Implementation of the Prototype

The working interface of agent is shown in Fig. 3, we could see the candidate services
that accord with the business policy are list in the right fuscous frame, and the agent
could help the user choose a service according to the user’s request or make clues to
the user. The user’s request could be record by agents, and the inputs and outputs are
processed by agents. For space reason, the service execution flow is not detailed here

186 X. Meng and C. Junliang

Fig. 3. Interface of IISP to agents

5.2 Case Analysis

In this scenario, we analyze a case to verify that the BPSCM could govern and guide
the process of composite service.

Case: suppose that in the business policy repository, the basic knowledge is consisted
of BK1 and BK2, and the rules include the examples in Table 1. We would like to add
the business rules shown as follows to express our business policy.

R5: if the user query the address of some spot, then system send a map around the
spot to the user by MMS.
R6: if the user is a younger, he (she) couldn’t by the ticket of cinema.
R7: if the user hasn’t subscribed the mobile service, he (she) couldn’t use the
mobile related service.
R8：If the user hasn’t subscribed the mobile service, the system recommend the
user to register for the mobile service.
Therefore, we could add the rules to business rule file (BRS) like this:

R5:User(?x)∧queryAddress(?y)∧sucess(?x,?y) ⇒
showAround(?a)∧sendAMMS(?b)∧do(?x,?a)∧do(?x,?b)
R6:User(?x)∧Younger(?x)⇒byFilmTicket(?a)
∧disable(?x, ?a)
R7:User(?x)∧haveMsgAuthorization(?x,?y)∧swrlb:equal(?y,
“no”)⇒sendMessage(?a)∧disable(?x,?a)
R8:User(?x)∧haveMsgAuthorization ?x,?y)∧swrlb:equal(?y,
“no”)⇒applyMsgAuthorization(?a)∧enable(?x,?a)

A scenario is the following: When a user named moon calls the call center, the
agent accepts the user’s request and serves him. The agent tells the user what services
he could invoke. Firstly, the user asks that “I want to query the address of XiTian

 Integrating Semantic Business Policy into Web Service Composition 187

Cinema”, then agent invokes the service queryAddress, and input the parameter
“XiTian Cinema”. Once the service queryAddress is invokded, we analysis the
process in detail.

I) Fact is shown as follows:

Individual(Today)
Value(year “2006”)
Individual(User)
Value(ID “moon”)
Value(birthday “1989”)
Value(phoneNo “13800000000”)
haveMessage(“no”)
success(“moon”, “queryAddress”)

II) After reasoning with the business rule, the new assertions are the following:

Individual(User, typeOf Person, User, Younger)//From R1
value(age “17”) //From R2
disable(“moon”, “buyFilmTicket”) //From R1,R6
do(“moon”, “showAround”) //From R5
do(“moon”, “sendAMMS”) //From R5
disable(“moon”, “sendMessage”) //From R7
enable(“moon”, “applayMsgAuthorization”) //From R8

In the BK2 there are

sendAMMS⊆sendMessage and sendASMS⊆sendMessage,
therefore we remove the assertion disable(“moon”, “sendMessage”) and add two

assertions disable(“moon”, “sendAMMS”) and disable(“moon”, “sendASMS”).
For service sendAMMS, there’s some conflict because it appears in both disableList

and doList. The rank of disableList is higher than doList, thus we remove the
do(“moon”,”sendAMMS”).

III) The comparison of DSAC and BPSCM including automate invocation and
candidate services are shown in Table 3.

Table 3. Comparison of DSAC and BPSCM

 DSAC BPSCM
Automate
Invocation

null showAroundMap

Candidate Services queryNearestRestaurant
queryNearestCinema
queryTransferInfo
buyfilemTicket
sendASMS

queryNearestRestaurant
queryNearestCinema
queryTransferInfo
applyMsgAuthorization

From the above case, we could draw a conclusion that: Firstly, SBPM has enough
expressive power to represent both business rule and knowledge that needed by the
business policies. Secondly, the reasoning power of SBPM could be integrated with
the web service composition process seamlessly and the service logic could adapt the

188 X. Meng and C. Junliang

variety of policy flexibly by BPSRM. Thirdly, SBPM is a general model to get the
constraints and restrictions coming from business policy, so it could be applied in
other web service compositions method preferably.

6 Conclusion

It is clear that current business policy driven web service composition are not capable
of dealing with the complex and entirely business policy and never refer to how to use
the business policy to guide the interactive services composition.

In this paper, we have presented a SWRL-based business policy model SBPM
which has strong expressive power to represent the business policy, and its reasoning
result could be integrated with the web service composition process dynamically. The
inferring result which is consisted of constraints and extension of services is
combined with the web service composition flexibly. A prototype was implemented
to verify our idea, and the case analysis illustrated that BPSRM could get a set of
effect candidate services which satisfy business policy for user. As a result, end user
can focus their business goals to be achieved, and the interactive WSC could be
governed by business goals. Our future work includes researching the performance of
SBPM inferring and semi-automatically constructing the ontology and extracting
business rules from documents.

Acknowledgments. The National Natural Science Foundation of China under grant
No. 60432010 and National Basic Research Priorities Program (973) under grant No.
2007CB307100 support this work. We gratefully acknowledge invaluable feedbacks
from related research communities.

References

1. Sirin, E., Parsia, B., Hendler, J.: Filtering and Selecting Semantic Web Services with
Interactive Composition Techniques. Intelligent Systems 19(4), 42–49 (2004)

2. Arpinar, I.B., Zhang, R., Boanerges, A., et al.: Ontology-driven Web service Composition
Platform. In: Proceedings of the IEEE International Conference on E-Commerce
Technology, pp. 146–152 (2004)

3. Xu, M., Meng, X.W., Chen, J.L., Mei, X.: The Research of Load Balancing for Integrated
Service Platform. Journal of Beijing University of Posts and Telecommunications, 94–97
(20065A) (in Chinese)

4. Xu, M., Chen, J., Peng, Y., Mei, X.: A Semantic Association-Based service creation
method. In: the Proceedings of Web Intelligence Conference, IEEE/WIE/ACM,
HongKong, pp. 666–669 (2006)

5. von Halle, B.: Business Rules Applied: Building Better Systems using the Business Rules
Approach. Wiley, Chichester (2001)

6. Antoniou, G., Arief, M.: Executable Declarative Business Rules and Their Use in
Electronic Commerce. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp.
6–10. Springer, Heidelberg (2003)

 Integrating Semantic Business Policy into Web Service Composition 189

7. Grosof, B.N.: Representing E-Commerce Rules via Situated Courteous Logic Programs in
RuleML. In: WITS ’01. Proceedings of the 11th Workshop on Information Technologies
and Systems (2001)

8. Trastour, D., Preist, C., Coleman, D.: Using Semantic Web Technology to Enhance
Current Business-to-Business Integration Approaches. In: Proceedings of the Seventh
IEEE International Enterprise Distributed Object Computing Conference, pp. 222–230.
IEEE Computer Society Press, Los Alamitos (2003)

9. Spreeuwenbergn, S., Gerrits, R.: Business Rules in the Semantic Web, are there any or are
they different? In: Proceedings of 2nd European Semantic Web Conference (2005)

10. Horrocks, I., Patel, P.F.: A Proposal for an OWL Rules Language. In: Proceedings of
WWW2004, New York, pp. 723–731 (2004)

11. Anis, C., Mira, M.: Hybrid Web Service Composition: Business Processes Meet Business
Rules. In: ICSOC’04. 2ed International Conference on Service Oriented Computing, pp.
30–38. ACM Press, New York (2004)

12. Zeng, L., Flaxer, D., Chang, H., Jeng, J.-J.: PLMflow–Dynamic Business Process
Composition and Execution by Rule Inference. In: Buchmann, A.P., Casati, F., Fiege, L.,
Hsu, M.-C., Shan, M.-C. (eds.) TES 2002. LNCS, vol. 2444, pp. 144–150. Springer,
Heidelberg (2002)

13. Antoniou, G., Damasio, C.V., Grosof, B., et al.: Technical report: Combining Rules and
Ontologies-A survey, http://rewerse.net/deliverables/m12/i3-d3.pdf

14. Antoniou, G., van Harmelen, F.: Web Ontology Language: OWL. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies in Information Systems, pp. 67–92. Springer, Heidelberg
(2003)

15. Maamar, Z., Mostefaoui, S.K., Mahmoud, Q.H.: Context for Personalized Web Services.
In: Proceedings of the 38th Hawaii International Conference on System Sciences, pp. 89–
98 (2005)

16. Martin, O., Holger, K., Samson, T., et al.: Supporting Rule System Interoperability on the
Semantic Web with SWRL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.)
ISWC 2005. LNCS, vol. 3729, pp. 974–986. Springer, Heidelberg (2005)

17. Protégé: http://protege.stanford.edu/

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 190–200, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Model Driven Service Domain Analysis

Stephan Aier1 and Marten Schönherr2

1 Institute of Information Management, University of St.Gallen
Mueller-Friedberg-Strasse 8, 9000 St. Gallen, Switzerland

stephan.aier@unisg.ch
2 Faculty of Computer Science and Electrical Engineering,

Technical University Berlin,
Franklinstr.28/29, 10587 Berlin, Germany

mschoenherr@sysedv.tu-berlin.de

Abstract. Currently scientists and practitioners are discussing Service Oriented
Architectures (SOA) as an approach to reconcile business requirements and IT.
The alignment of business and technology in organizations is a key challenge in
the discipline of Enterprise Architecture (EA). Therefore the contribution starts
with a discussion of SOA as an EA integration concept to synchronize business
requirements and IT architecture in an efficient way. Differentiating methodo-
logical and technological aspects of EA the paper shows the need for methods
in the field of domain analysis supporting the design of a SOA. The main con-
tribution of the paper is an algorithm based modeling tool and methodology to
support service domain clustering. Service clusters are being used for service
definition and management. Due to enormous complexity it is necessary to sup-
port architects by finding and defining appropriate clusters. For modeling inter-
dependencies in EA the paper’s focus is on business processes, information sys-
tems and interfaces. Our approach adopts network-centric algorithms used in
the field of social network analysis to define and/or identify service domain
clusters in complex scenarios. Edge remover algorithm is used to compute the
relevant model aspects. The results of our approach will be demonstrated in a
case study.

Keywords: SOA, Enterprise Architecture, Process Oriented Integration, Ser-
vice Domain Clustering.

1 Challenges of Managing Complex Enterprise Architectures

During the last decades IT has been grown a determining success factor. As a result
especially in large organizations existing IT infrastructures can be described as ex-
tremely complex and heterogeneous. Therefore interoperability is one of the main
issues developing and operating these infrastructures. As a matter of fact the conven-
tional way of using individually coded point-to-point interfaces to connect systems is
getting beyond control due to increasing overall system complexity. On the one hand
one has to consider the costs for IT operation and maintenance of up to thousands of
individual interfaces and on the other hand adaptations caused by the introduction of
new systems (or system upgrades) and/or procedural-organizational stipulations are

 Model Driven Service Domain Analysis 191

almost non-manageable due to complexity of element interdependencies. The recently
discussed prominent approach to this issue is a Service Oriented Architecture (SOA).
The paradigm of SOA is a distributed integration infrastructure [1]. One of the key
benefits is a major challenge as well—SOA’s integration level. SOA not only aims at
systems integration at a primarily technical level, but on process integration driven by
business requirements and implemented by utilizing information technology.

Such an integration approach inevitably affects organizational as well as techno-
logical questions. In an empirical study we found out, that in companies using integra-
tion technologies as SOA, a third of their applications are integrated utilizing those
integration platforms and a further third are planned to be integrated this way in the
near future [2]. To sum it up it can be said that integration technologies as SOA are
major elements of enterprise architectures (EA).

The definition of EA is a central part of this paper. The term of (enterprise) archi-
tecture is used in multiple meanings and suffers from a lack of consistent definition
appropriate to specific research domains as Business Informatics, Computer Science
or Management Science. Therefore in the following we will describe our understand-
ing of enterprise architecture and the role of integration concepts in the context given.

In a few words an architecture can be defined as an abstract and holistic concept of
structures and patterns considering planning aspects [3]. Architectures are generally
results of planning efforts and offer by definition a master plan supporting holistic
implementation for future actions. These universal characteristics can be used for
planning and designing of enterprise structures and strategies too. Furthermore an
enterprise architecture considers organizational, technical and psychosocial aspects
for planning and building Information Systems (IS) in a socio-technical manner. This
contribution particularly focuses on organizational and technical dimensions of EA.
Therefore we use the terms organizational architecture and IT architecture (Fig. 1).

integration concepts

methods & technology

enterprise architecture

organizational architecture IT architecture

information system
architecture

organizational
structure

business
processes

• EA Frameworks
• Architectural design
• Architect. Mgmt.
• IT Governance

• individual Interfaces
• hub&spoke/EAI
• SOA

Fig. 1. Enterprise Architecture, see [1]

Organizational architecture contains all non-technical elements of the EA and is
best compared with the so called instrumental understanding of organizations which
covers all general explicit regulations to define the operational and organizational

192 S. Aier and M. Schönherr

structure. Accordingly we differentiate the organizational architecture in organiza-
tional structure and business processes. On a par with the organizational architecture
is the IT architecture which contains all technical elements of the EA. In particular IT
architecture covers the IS which are described with their own architecture: the IS
architecture. Both architectures organizational and IT architecture will be considered
being equivalents but observed separately to accommodate the fact that both architec-
tures are extremely relevant for the organization’s efficiency and unfortunately do
have complex interdependencies to each other.

Scientific literature very often refers to the terms Organizational and IT Architec-
ture but uses multiple term understandings. Depending on the authors scientific back-
ground the organizational architecture contains technical concepts too [4] and the IT
architecture organizational aspects respectively. By definition SOA delivers not just
concepts for connecting IS but reconcile IS and business processes. Both integration
aspects are already considered in the technical definition of SOA which describe a
business process driven IS integration. Therefore SOA could serve as a mediator
between different elements of an EA.

After all, designing and deploying integration concepts require both—methodology
and technology. This contribution will focus on aspects of methodology (for aspects
of technology see [1]). Therefore the following section will deal with the need for and
the difficulties of managing services in a SOA. Thereafter we will show how cluster-
ing algorithms can be employed to derive services domain clusters from enterprise
architectures. Eventually we will discuss methodologies for applying the algorithms
proposed in practice.

2 The Need for Managing Service Oriented Architectures

Issues in the field of SOA have been discussed heavily the last few years. Both scien-
tists and practitioners emphasize the potential of SOA especially by reconciling busi-
ness requirements and IT infrastructures as stated in the definition of enterprise
architecture above by using integration concepts. Nevertheless there is the need for
finding a stringent terminology hence common understanding used by the majority of
the SOA community. Definitions range from a solely technology driven approach to a
new management school approach on how to run the whole enterprise. To find a sta-
ble understanding for at least this paper the following definitions shall be analyzed:

“[A service oriented architecture is] a set of components which can be in-
voked, and whose interface descriptions can be published and discov-
ered.” [5]

Gold et al. mainly consider technological aspects focusing on standardized inter-
face descriptions. Additionally McCoy and Natis taking into account aspects of stake-
holder, granularity, reuse and agility:

“SOA is a software architecture that builds a topology of interfaces, inter-
face implementations and interface calls. SOA is a relationship of services
and service consumers, both software modules large enough to represent a
complete business function. So, SOA is about reuse, encapsulation, inter-
faces, and ultimately, agility.” [6]

 Model Driven Service Domain Analysis 193

In the context of existing software systems and the introduction of SOA as a new
overall enterprise architecture integration paradigm, issues as management and opti-
mization need to be addressed too:

“SOA is the concept of service-enabling new and existing software; link-
ing internal and external service-enabled software systems; and imple-
menting an enterprise wide infrastructure to enable, manage, and optimize
services use and interaction“ [7] (see also [8, 9])

Aside from primary SOA terminology many authors have a common understanding
of secondary characteristics. Summed up these are the distributed manner of SOA, the
aspect of combining (orchestration of) rich software components (services), loose
coupling of applications using services and the standardization of interface descrip-
tions [8, 10, 11]. To summarize the relevant issues Lubinsky and Tyomkin highlight
the business process driven integration and therefore derive the following three main
aspects of a SOA [8]:

• Service descriptions
• Business Processes
• Service [Lifecycle] Management

Due to reasons of complexity especially in large organizations the solely technical
view on SOA is not sufficient to successfully implement it. Methodological aspects
need to be considered too. The differentiation between technical and methodological
issues has been discussed quite early [12-14]. This paper contributes to the methodo-
logical aspects of SOA. Concerning service management as a term which summarizes
methods to design and run SOA the following issues are relevant in the design time
hence the phase when service characteristics as granularity and reuse are considered.
Aside from basic service characteristics as mentioned, a service management defines
a service lifecycle mainly to avoid service redundancy. Due to reasons of complexity
according to business process requirements mapped to technically executable ser-
vices, a methodology needs to be introduced to support early phases in the service
lifecycle, the design time of a SOA. In the context of a SOA methodology terms as
service management, domain engineering, governance, maturity and roadmaps can be
found [15, 16]. The most generic approaches can be found in the field of domain
engineering [17, 18]. The Domain Engineering introduced by the Carnegie Mellon
SEI differentiates the following three activities [17]:

• Domain Analysis
• Domain Design
• Domain Implementation

In the context of service definition the domain analysis needs to be considered.
Output of a domain analysis is a domain model representing relevant features used for
the specific context. To derive a domain model SEI proposes to use the context analy-
sis defining the extent of a domain, the domain modeling providing a description of
the relevant issues and the architecture modeling creating the architectural artifacts
[17].

194 S. Aier and M. Schönherr

Adopting the general methodology of SEI to the requirements of a SOA especially
in the context of an architectural migration from existing IT architectures to SOA a
domain model needs to be created. A service domain can be described as a specific
modeling view that consists of modularly defined functionality which is necessary to
support business processes and the underlying basic data. Within dedicated IT pro-
jects, these requirements have to be implemented. The main characteristics of do-
mains are [19]:

• Domains encapsulate their functionality and data.
• Functionality is implemented redundancy-free, information is consistent.
• Functionality and data can be used everywhere, they can be combined to support

ever new business processes.
• New projects can build upon existing assets, investments are secured.

The following chapters describe methodologies, tools and algorithms to define ser-
vice domains based on the generic SEI approach of a domain analysis, clustering
existing enterprise architectures hence business processes, information systems and
interfaces.

3 Deriving Service Domain Clusters

For clustering enterprise architectures first of all a model of the respective architec-
ture is needed. Minimally the model should include the following elements:

• Business processes, that means the consecutive activities (tasks) and their relation-
ships,

• IT systems,
• the usage of IT systems along a process,
• and the interrelationships and interfaces among IT systems along a process.

Such an enterprise model can be considered a graph often called network, too. In
the following sections we will give a short introduction to graph theory and algo-
rithms for graph partitioning. Thereafter we will introduce our implementation of a
software system implementing those algorithms for enterprise architectures.

3.1 Graph Theory and Clustering Approaches

A graph consists of vertices V and edges E. All elements of our model (activities and
IT systems) can be considered vertices and their relations can be considered edges. If
a connection between two IT systems is used several times along a process the model
will have several edges between two vertices. These edges may also be combined into
a single edge with the weight w. In this case the graph will be called weighted graph.

A network with n vertices is represented by an nn × adjacency matrix A with ele-
ments

⎩
⎨
⎧

=
otherwise0

connected are and vertices theif1 ji
Aij (1)

 Model Driven Service Domain Analysis 195

In a weighted graph ijA represents the weight of an edge between the vertices i and

j [20].
The partitioning of such graphs into several modules is called clustering while a

cluster consists of elements that are all similar to each other in some way [21]. In our
case of an enterprise architecture similarity means that vertices have a common subset
of neighbors and are dependent from each other in some way. Typically this is a busi-
ness activity which depends on the availability of an IT system.

Clustering approaches have a certain tradition in the analysis of social networks
[22, 23]. Girvan/Newman proposed a clustering algorithm to identify communities in
social networks [24]. Such a network consists of individuals (vertices) who know
each other and thus have a relationship (edge). A community is defined by a number
of people who know each other.

Fig. 2. A network with three communities, see [24]

Based on the analysis of shortcomings of existing clustering algorithms Gir-
van/Newman developed a “betweenness” algorithm. The basic idea of their algorithm
is to remove the edges that are most in between in a network. The remaining vertices
connected to each other form the communities. Therefore they generalized Freeman’s
betweenness [25] to edges and defined the edge betweenness of an edge as the num-
ber of shortest paths between pairs of vertices that run along it. The shortest paths
between communities run along only a few edges. That it is why these edges will
have a rather high edge betweenness. By removing these edges one can separate the
communities. The algorithm valid for a weighted network is the following [20]:

1. Calculate the betweenness for all edges in the network.
2. Divide the betweenness by the weight of the respective edge.
3. Remove the edge with the highest resulting betweenness.
4. Recalculate betweennesses for all edges affected by the removal.
5. Repeat from step 3 until no edges remain.

In various papers they proved the performance of their algorithm in determining
communities in social networks [20, 24, 26].

196 S. Aier and M. Schönherr

On an abstract level the problem of identifying modules in enterprise architectures
is identical with the problem described for social networks. By applying the algorithm
on the enterprise architecture model we identify appropriate modules as candidates for
service domains in a SOA. Since one has to repeat the steps three to five for the
weighted network several times it is also possible to identify a service domain hierar-
chy and eventually services. In every run through the algorithm, already identified
modules will be further separated.

One of the important questions is when to stop the algorithm practically. Because it
obviously does not make any sense to run through the algorithm as stated until no
edges remain. This results in n modules which equals the number of vertices. So the
question is when is a “good” modularity reached? Girvan/Newman propose the modu-
larity Q as an indicator for the quality of clustering results [26].

Therefore they calculate the fraction of edges that fall within a module.

),(
2

1),(
j

ij
iij

ij ij

ij jiij
ccA

mA

ccA
∑∑

∑
= δ

δ
 (2)

Where ic is the module the vertex i belongs to. The function),(vuδ is 1 if u = v and

0 otherwise, and ∑=
ij ijAm

2

1
is the number of edges in the graph. If the degrees k of

vertices (the degree ik of a vertex i is defined by the number of vertices connected

with i) in a network are preserved but otherwise connect vertices together at random,
then the probability of an edge existing between vertices i and j is mkk ji 2/ , where ik

is the degree of vertex i. Thus the modularity Q, is given by

),(
22

1
ji

ij

ji
ij cc

m

kk
A

m
Q δ∑ ⎥

⎦

⎤
⎢
⎣

⎡
−= [26] (3)

Values for Q range between 0 and 1. A value of 0 indicates a poor clustering result
while 1 is a perfect cluster but a rather theoretical value. Usually values between 0.3
and 0.7 indicate good values for realistic examples.

3.2 EA Builder Software System

For modeling, analyzing and clustering we developed a software system called EA
Builder [27]. The software system supports modeling of business processes, organiza-
tional structures and IT systems (Fig. 3).

Contrary to a broad range of existing enterprise class modeling solutions the meta-
model of EA Builder also supports the modeling of IT systems integration on process
level—regardless whether the integration solution is implemented through a middle-
ware, SOA or classic point-to-point (P2P) interfaces.

The performance of the clustering algorithm for enterprise architecture models has
been verified on a number of specially prepared test cases discussed in [28]. In the
following figures we will demonstrate the functioning of the EA Builder software
system with the fictitious medium-sized company WMYPC (We Make Your PC).
The company sells customized computer systems starting from small multimedia

 Model Driven Service Domain Analysis 197

Fig. 3. EA model modeled in the EA Builder system; the screenshot shows an extended event
driven process chain incorporating various IT systems which again are integrated with other IT
systems along the process

Fig. 4. Screenshot of EA Builder model transformed in a graph, 3 edges removed resulting in 2
clusters

198 S. Aier and M. Schönherr

Fig. 5. Screenshot of EA Builder model transformed in a graph, 20 edges removed resulting in
5 clusters, grouped view

computers to enterprise class server systems. The processes are supported by six indi-
vidually implemented information systems and one off the shelf software product. The
aim of the test scenario was to realize an adequately complex business environment with
business processes selectively supported by heterogeneous information systems.

Figure 4 shows an example EA model transformed into a graph. After applying the
algorithm and thus removing 20 edges (figure 5) the graph is split in 5 clusters being
candidates for service domains.

The resulting clusters are the first candidates for service domains. All the elements
within a domain (cluster)—business processes and IT systems—have strong relation-
ships to each other and relatively weak relationships to elements of other domains.

4 Methodology for Building Service Domain Clusters

The classic scenario for the application of our approach is the redesign of existing
complex IT landscapes in a service oriented fashion. We call this bottom-up approach
since we derive a service architecture from an existing complex enterprise architec-
ture. This will be the scenario for the majority of organizations thinking about the
introduction of a service oriented architecture. Compared to a top-down approach this
bottom-up approach leads to a potentially smooth transition from an existing architec-
ture to the target architecture.

A frequently stated requirement is the alignment of business processes and IT sys-
tems [29, 30]. This is exactly what we achieve through our approach. Once the EA
model is transformed into a graph, we do not differentiate processes and IT systems
for the application of the clustering algorithm. This means that we do not derive
optimized process clusters or IT clusters—although this would be possible too. The

 Model Driven Service Domain Analysis 199

clusters derived reflect the actual interplay of business processes and IT systems.
Thus the resulting service domain clusters consisting of business processes and IT
systems are potentially well designed concerning Business-IT alignment.

However, the resulting clusters reflect the as-is structure of the modeled company
“only”. The as-is structure does not necessarily correspond with an existing organiza-
tion chart or IT map, since it will show the actual structure—not the supposed one.
Depending on the overall integration strategy it now has to be decided how to proceed
with this information. One possible scenario would be to define an internal integration
approach per service domain and then an additional approach for the integration of the
different domains. This results in a stable architecture with local flexibility through
encapsulated service domains. Such encapsulated domains may be desirable for a
variety of reasons—technology, business requirements, and also politics. Eventually
encapsulation leads to a better manageable complexity of enterprise architecture.

5 Conclusion

The paradigm of Service Oriented Architectures (SOA) potentially leads to more
flexible enterprise architectures and an improved Business-IT alignment. Besides
technological means, methodologies for the implementation of SOA in existing and
complex enterprise architectures are required in order to realize the benefits promised.
Building service domain models in a bottom-up approach may be a step in the right
direction. In this paper we introduced a software system—the EA Builder—which
derives service domain candidates based on the clustering of enterprise architecture
models. A key feature of our approach is the simple but as it seems effective way of
achieving a true business process oriented design by clustering business processes and
IT systems in a common network.

The artificial models, we tested our approach with so far, showed some very good
results. The next steps of improvement will need real world examples of grown com-
plex enterprise architectures to show the potential of this clustering approach.

References

1. Aier, S., Schönherr, M.: Evaluating Integration Architectures – A scenariao-based Evalua-
tion of Integration Technologies. In: Draheim, D., Weber, G. (eds.) TEAA 2005. LNCS,
vol. 3888, pp. 3–16. Springer, Heidelberg (2006)

2. Aier, S., Schönherr, M.: Sustainable Enterprise Architecture with EAI – An Empirical
Study. In: Milutinovic, V. (ed.) Proceedings of the International Conference on Advances
in Internet, Processing, Systems, and Interdisciplinary Research, IPSI-2005, MIT Cam-
bridge/IPSI, Cambridge, Boston MA (2005)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Pearson
Education Inc., Boston (2003)

4. Nadler, D.A., Gerstein, M.S., Shaw, R.B.: Organizational Architecture – Designs for
Changing Organizations. Jossey-Bass, San Francisco (1992)

5. Gold, N., Knight, C., Mohan, A., et al.: Understanding Service-Oriented Software. IEEE
Software, pp. 71–77. IEEE Computer Society Press, Los Alamitos (2004)

6. McCoy, D., Natis, Y.: Service-Oriented Architecture: Mainstream Straight Ahead Gartner
Research (2003)

200 S. Aier and M. Schönherr

7. New Rowley Group: Building a more flexible and efficient IT infrastructure – Moving
from a conceptual SOA to a service-based infrastructure (2003)

 http://www.newrowley.com/reseach.html
8. Lubblinsky, B., Tyomkin, D.: Dissecting Service-Oriented Architectures. Business Inte-

gration Journal, 52–58 (2003)
9. Roth, P.: Moving to A Service Based Architecture. Business Integration Journal, 48–50

(2003)
10. Sleeper, B., Robins, B.: The Laws of Evolution: A Pragmatic Analysis of the Emerging

Web Services Market. The Stencil Group, San Francisco (2002)
11. Weinreich, R., Sametinger, J.: Component Models and Component Services: Concepts and

Principles. In: Council, W.T., Heinemann, G.T. (eds.) Component-Based Software Engi-
neering: Putting Pieces Together, pp. 22–64. Addison Wesley, Boston (2001)

12. Hagel, J., Brown, J.S.: Your Next IT Strategy. Harvard Business Review 79, 105–113
(2001)

13. Gisolfi, D.: Web Services Architecture: Part 1- An Introduction to Dynamic e-business
(2001), http://www-106.ibm.com/developerworks/webservices/library/ws-arcl/

14. Kirtland, M.: A Platform for Web Services. Microsoft Developer Network (2001),
http://msdn.microsoft.com/library/default.asp?/en-
us/dnwebsrv/html/websvcs_platform.asp

15. IBM Corporation (2005), http://www-128.ibm.com/developerworks/webservices/library/
ws-soa-simm/

16. Sonic (2006), www.sonicsoftware.com/soamm
17. SEI (2004), http://www.sei.cmu.edu/domain-engineering/
18. Open Group (2006), http://www.opengroup.org/architecture/togaf8-doc/arch/p4/maturity/

mat.htm
19. Bath, U., Herr, M.: Implementation of a service oriented architecture at Deutsche Post

MAIL. In: Aier, S., Schönherr, M. (eds.) Enterprise Application Integration –
Serviceorientierung und nachhaltige Architekturen, Gito, Berlin pp. 279–297 (2004)

20. Newman, M.E.J.: Analysis of Weighted Networks. In: Phys. Rev. E, 70 (2004)
21. O’Madadhain, J., Fisher, D., Smyth, P., et al.: Analysis and Visualization of Network Data

using JUNG. Journal of Statistical Software (2005)
22. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cam-

bridge Univ. Press, Cambridge (1999)
23. Scott, J.: Social Network Analysis: A Handbook, 2nd edn. Sage, London (2005)
24. Girvan, M., Newman, M.E.J.: Community Structure in Social and Biological Networks.

Proceedings of the National Academy of Science 99, 7821–7826 (2002)
25. Freeman, L.C.: A Set of Measures of Centrality based upon Betweenness. Sociometry 40,

35–41 (1977)
26. Newman, M.E.J., Girvan, M.: Finding and Evaluating Community Structure in Networks.

Phys. Rev. E 69 (2004)
27. Aier, S.: Public Information on EA Builder on the Internet (2006), http://www.ea-

builder.com
28. Aier, S.: How Clustering Enterprise Architectures helps to Design Service Oriented Archi-

tectures. In: SCC’06. Proceedings of the IEEE International Conference on Services Com-
puting, Chicago, pp. 269–272. IEEE Computer Society Press, Los Alamitos (2006)

29. Duffy, J.: IT/Business Alignment: Delivering Results (2001), http://www.cio.com/analyst/
123101_idc.html

30. Luftman, J.: Measure Your Business-IT Alignment (2003), http://www.optimizemag.com/
article/showArticle.jhtml?articleId=17701026

Author Index

Ahrens, Maximilian 154
Aier, Stephan 190

Baligand, Fabien 38
Benyoucef, Morad 104
Bordbar, Behzad 166
Brahe, Steen 166

Combes, Pierre 38

Dreifus, Florian 3

Emmerich, Wolfgang 14

Feuerlicht, George 95

Godart, Claude 74

Honavar, Vasant 26

Jaeger, Michael C. 141
Jin, Zhi 62
Junliang, Chen 178

König-Ries, Birgitta 116
Küster, Ulrich 116

Le Botlan, Didier 38
Ledoux, Thomas 38

Leyking, Katrina 3
Li, Yuan 26

Martin, Andreas 3
McCalley, James 26
Meng, Xu 178
Meyer, Harald 50

Offermann, Philipp 154

Pathak, Jyotishman 26
Pringadi, Ronald 104

Rouached, Mohsen 74

Schaffner, Jan 50
Schönherr, Marten 190
Schröpfer, Christian 154

Tosun, Cafer 50

Wang, Puwei 62
Wassermann, Bruno 14
Werth, Dirk 3
Wu, Jiangxia 86, 131

Yang, Fangchun 86, 131

Ziemann, Jörg 3

	Title Page
	Preface
	Organization
	Table of Contents
	Part I Second International Workshop on Engineering Service-Oriented Applications: Design and Composition
	Managing SOA Through Business Services – A Business-Oriented Approach to Service-Oriented Architectures
	Introduction
	On the Relation Between Business Process and ServiceOrientation
	Business Process Management
	Service-Oriented Architectures

	Business Service Management Bridging the Concepts
	Business Services
	Process-Driven Business Service Management

	Tool-Support
	Related Work
	Conclusion

	Reliable Scientific Service Compositions
	Introduction
	Global Scientific BPEL Workflows
	Scientific Workflows
	Global Computing
	Middleware Components

	Example: Failures in the Polymorph Search Workflow
	Existing Approaches
	Transactional Mechanisms
	BPEL Compensation-Handling
	WS-Reliability

	Making Reliability Useable
	Related Work
	Conclusion

	A Service-Oriented Architecture for Electric Power Transmission System Asset Management
	Introduction
	Electric Power System Asset Management
	SOA-Based Framework for Power System Asset Management
	PSAM-s Internal Services
	PSAM-s External Services
	Semantic Interoperability in PSAM-s

	Implementation Status
	RelatedWork
	Summary and Discussion

	A Language for Quality of Service Requirements Specification in Web Services Orchestrations
	Introduction
	Background
	Quality of Service in Web Service World
	Web Service Composition
	Current Issues

	 Quality of Service Requirements Specification
	Motivation
	Design
	Specification
	Interpretation
	ORQOS Process

	Illustrative Scenario
	Urban Trip Planner Scenario
	Specification of QoS Concerns
	Interpretation of QoSL

	Related Works
	Conclusion and Future Works

	A Semi-automated Orchestration Tool for Service-Based Business Processes
	Introduction
	Usage Scenario: Leave Request
	Mixed Initiative Features
	Filter Inappropriate Services
	Check Validity
	Suggest Partial Plans

	Related Work
	Conclusion

	Web Service Composition: An Approach Using Effect-Based Reasoning
	Introduction
	Environment Ontology
	Web Service Capability Profile
	Service Composition by Effect-Based Reasoning
	Related Work and Conclusion

	Analysis of Composite Web Services Using Logging Facilities
	Introduction
	Web Service Logging
	Web Service Collecting Solutions and Web Log Structure
	Existing Logging Solutions
	Advanced Logging Solutions

	Analyzing Web Services 'Behaviours
	Illustrative Example
	Discrete Event Calculus: \mathcal{DEC}

	Overview of SPIKE
	Encoding \mathcal{DEC} in SPIKE
	Checking Behavioural Properties
	Related Work
	Conclusions

	QoS Prediction for Composite Web Services with Transactions
	Introduction and Related Work
	Specification Model of CWS
	Problem Definition
	Model Definition

	Prediction Algorithm
	Experiment
	Conclusion
	References

	Service Aggregation Using Relational Operations on Interface Parameters
	Introduction
	Service Design Method
	Flight Enquiry Example
	Service Aggregation Using Relational Operations
	Service Aggregation Using Join Operations
	Service Aggregation Using Union Operations

	Related Work and Conclusions
	References

	A BPEL Based Implementation of Online Auctions
	Introduction
	Auctions as a Form of Negotiation
	General Design Considerations
	Architecture and Implementation
	Server Design
	Client Design

	Modeling
	Discussion
	Related Work
	Conclusion
	References

	Dynamic Binding for BPEL Processes – A Lightweight Approach to Integrate Semantics into Web Services
	Introduction
	DIANE Service Descriptions
	Integrating DSD into BPEL Processes
	Mapping from Legacy Data to Semantic Request Descriptions
	Request Execution by the DSD-Middleware

	Evaluation
	Related Work
	Summary and Conclusion

	Part II First International Workshop on Modeling Service-Oriented Architectures: Business Perspective and Model Mapping
	A Model-Driven Approach for QoS Prediction of BPEL Processes
	Introduction and Related Work
	Prediction Model
	Model-Driven Prediction
	Model Definition

	Transformation
	Transformation of Basic Activity
	Transformation of Structured Activity
	To Get the QoS Description Q

	Prediction Algorithm
	Algorithm Definition
	Time Complexity

	Experiment
	Conclusion
	References

	Modelling of Service Compositions: Relations to Business Process and Workflow Modelling
	Introduction
	Business Processes
	Modelling Business Processes

	Workflow Management
	Modelling Control Flows in Workflows

	The Workflow Versus Business Processes Discussion
	Realising Business Processes and Workflows withService Compositions
	Modelling Service Compositions

	Conclusions

	Extending the UN/CEFACT Modeling Methodology and Core Components for Intra-organizational Service Orchestration
	Introduction
	Service-Oriented Architecture
	Service Orchestration
	The Missing Methodology

	UN/CEFACT Modeling Methodology
	The Methodology
	Core Components
	Service Choreography
	Limitations of the UMM

	Modeling Processes for Service Orchestration with the UM
	Using the Methodology on a Finer Granularity Level
	Using the Process Model for Service Orchestration

	Using Core Components for Business Entities
	Modeling the Business Entities for Service Orchestration
	Using Core Components for a Common Semantic

	Using the BPMN for Business Process Activity Models
	The Business Process Modeling Notation
	Using BPMN Instead of Business Process Activity Models

	Summary and Outlook
	Propositions
	Advantages
	Outlook

	References

	A Pattern-Based Approach to Business Process Modeling and Implementation in Web Services
	Introduction
	Preliminaries
	Domain Specific Modeling Language
	Model Driven Development
	Service Composition

	A Pattern Based Approach to Model Transformations
	Parametrized Patterns
	Automated Transformation with the Help of Parameterized Patterns

	Example: Process Modeling in Estate Bank
	A DSML for Business Analysts
	A DSML for Solution Architects
	A DSML for Developers

	Discussion
	Tool Implementation of the Approach
	Conclusion

	Integrating Semantic Business Policy into Web Service Composition
	Introduction
	Related Works
	Business Policy Model
	Business Policy
	SBPM
	Business Knowledge
	Business Rule

	A Business Policy Driven Web Service Composition
	WSC Process
	Facts and Inference
	Conflict Handling
	Service Recommend Algorithm

	The Prototype and Case Analysis
	Implementation of the Prototype
	Case Analysis

	Conclusion
	References

	Model Driven Service Domain Analysis
	Challenges of Managing Complex Enterprise Architectures
	The Need for Managing Service Oriented Architectures
	Deriving Service Domain Clusters
	Graph Theory and Clustering Approaches
	EA Builder Software System

	Methodology for Building Service Domain Clusters
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

