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Abstract. We consider the problem of dynamic clustering which has been 
addressed in many contexts and applications including dynamic information 
retrieval, Web documents classification, etc. The goal is to efficiently maintain 
homogenous and well-separated clusters as new data are inserted or existing 
data are removed. We propose a framework called dynamic b-coloring 
clustering based solely on pairwise dissimilarities among all pairs of data and 
on cluster dominance. In experiments on benchmark data sets, we show 
improvements in the performance of clustering solution in terms of quality and 
computational complexity. 
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1   Introduction 

Cluster analysis is one of the most important aspects in the data mining process for 
discovering groups and identifying interesting distributions or patterns over the 
considered data sets [1]. Clustering algorithms are widely used in many areas 
including information retrieval, image segmentation and so on. 

In [2] a new partitioning clustering scheme is introduced. It is based on the b-
coloring of graph [3]. This technique consists in coloring the vertices of a graph G with 
the maximum number of colors such that (i) no two adjacent vertices (vertices joined by 
an weighted edge representing the dissimilarity between objects) have the same color 
(proper coloring), and (ii) for each color c, there exist at least one vertex with this color 
which is adjacent (has a sufficient dissimilarity degree) to all other colors. This vertex is 
called dominating vertex, there can have many within the same class. This specific 
vertex reflects the properties of the class and also guarantees that the class has a distinct 
separation from all other classes of the partitioning. The b-coloring based clustering 
method in [2] enables to build a fine partition of the data set (numeric or symbolic) in 
clusters when the number of clusters is not specified in advance.  

In dynamic information environments, such as the World Wide Web, it is usually 
desirable to apply adaptive methods for document organization such as clustering. 
Incremental clustering methods are of great interest in particular when we examine 
their ability to cope with a high rate of dataset update. In this paper, we consider the 
problem of online clustering in the form of data insertion and removal. The difference 
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between these learning approaches and the traditional ones in particular is the ability 
to process instances as they are added (new data) or deleted (outmoded or inefficient 
data) from the data collection, eventually with an updating of existing clusters without 
having to frequently performing complete re-clustering. 

In the dynamic setting, instances arrive or leave one by one, and we need to deal with 
an arriving or removed data before seeing any future instances. Problems faced by such 
algorithms include how to find the appropriate cluster to assign for a new object, how to 
deal with deletion of an existing object, and how to reassign objects to other clusters  

Many algorithms are proposed to investigate the dynamic clustering problem. The 
Single-Pass clustering algorithm basically processes instances sequentially, and 
compares each instance to all existing clusters. If the dissimilarity between the 
instance and any cluster1 is above a certain threshold, then the instance is added to the 
closest cluster; otherwise it forms its own cluster. The k-Nearest Neighbor clustering 
[4] algorithm computes for each new instance its dissimilarity to every other instance, 
and chooses the top k instances. The new instance is assigned to the most frequent 
class label among the k nearest training. 

 In this paper, a dynamic algorithm is proposed for the b-coloring based clustering 
approach presented in [2]. It depends only on pairwise dissimilarities among all pairs 
of data and on dominance property of vertices.  

The paper is structured as follows: in Section 2, the b-coloring technique is 
introduced in broad outline. Section 3 is devoted to the dynamic algorithm. Some 
experiments using relevant benchmarks data set are shown in Section 4. Further works 
and applications linked with dynamic clustering will be proposed in conclusion. 

2   Clustering with Graph b-Coloring 

In this section, we briefly introduce the b-coloring based clustering approach and we 
refer the reader to [2] for more details. 

When the dissimilarities among all pairs of data to be clustered {x1,...,xn} are specified, 
these can be summarized as a weighed dissimilarity matrix D in which each element D(xi; 
xj) stores the corresponding dissimilarity. Based on D, the data can also be conceived as a 
weighted linkage graph G = (V, E), where V = {v1,v2,...,vn} is the vertex set which 
correspond to the data (vertex vi for data xi), and E = V × V is the edge set which 
correspond to a pair of vertices (vi; vj) weighted by their dissimilarities D(vi; vj). It must be 
noticed that the possibility of a complete graph would not be interested for clustering 
problem because in such a case, the b-coloring algorithm would provide the trivial 
partition where each cluster is a singleton. Hence, our algorithm starts from a subgraph 
(non complete graph) from the original graph. The subgraph is a superior threshold graph 
which is commonly used in graph theory. Let G>θ=(V,E>θ) be the superior threshold graph 
associated with threshold value θ chosen among the dissimilarity matrix D. In other 
words, G>θ is given by V={v1,...,vn} as vertex set and {(vi,vj)| D(vi,vj) >θ} as edge set. 

The data to be clustered are now depicted by a non-complete edge-weighted graph 
G>θ=(V,E>θ). In order to divide the vertex set V into a partition 

                                                           
1 The dissimilarity between an instance x and a cluster C is the average of dissimilarities 

between x and instances of C. 



80 H. Elghazel et al. 

P={C1,C2,..,Ck} where for ∀ Ci,Cj ∈ P, Ci ∩ Cj=∅ for i≠j (when the number of 
clusters k is not pre-defined), our b-coloring based clustering algorithm performed on 
the graph G>θ consists of two steps: 1) generate an initial coloring of vertices using a 
maximum number of colors, and 2) removing each color that has no dominating 
vertices yet using a greedy algorithm. Step 2 is performed until the coloring is stable, 
i.e. each color of G>θ has at least one dominating vertex. 

Let illustrate the b-coloring algorithm on one example. {A,B,C,D,E,F,G,H,I} is the 
data set to analyse for which dissimilarity matrix D is given in table 1. Figure 1 shows 
the superior threshold graph for θ =0.15. Therefore here, the b-coloring of G>0.15 (cf. 
Fig.2) gives four classes, namely: C1={B}, C2={A,D}, C3={C,E,G,H,I} and C4={F}. 
Bold characters show dominating vertices.  

The clustering algorithm is iterative and performs multiple runs, each of them 
increasing the value of the dissimilarity threshold θ. Once all threshold values passed, 
the algorithm provides the optimal partitioning (corresponding to one threshold value 
θo) which maximizes Dunn's generalized index (DunnG) [5]. DunnG is designed to 
offer a compromise between the intercluster separation and the intracluster cohesion. 
So, it is the more appropriated to partition data set in compact and well-separated 
clusters. As an illustration, successive threshold graphs are constructed for each 
threshold θ selected from the dissimilarity Table 1, and our approach is used to give 
the b-coloring partition of each graph. The value of the Dunn's generalized index is 
computed for the obtained partitions. We conclude that the partition θ=0.15 has the 
maximal DunnG among other ones with different θ.  

Table 1. Dissimilarity matrix 

vi A B C D E F G H I 
A 0         
B 0.20 0        
C 0.10 0.30 0       
D 0.10 0.20 0.25 0      
E 0.20 0.20 0.10 0.40 0     
F 0.20 0.20 0.20 0.25 0.65 0    
G 0.15 0.10 0.15 0.10 0.10 0.75 0   
H 0.10 0.20 0.10 0.10 0.05 0.05 0.05 0  
I 0.40 0.075 0.15 0.15 0.15 0.15 0.15 0.15 0 

 
 

 

Fig. 1. Superior threshold graph G>0.15 (θ 
=0.15) 

Fig. 2. b-coloring of graph G>0.15 : four classes 
are identified 



 A Partially Dynamic Clustering Algorithm for Data Insertion and Removal 81 

3   Online b-Coloring Based Clustering Algorithm 

We now present the online clustering algorithm based on the above scheme (the b-
coloring based clustering). The algorithm works incrementally by receiving a new 
document or removing existing data. The principle is; once the best partition (associated 
to the optimal threshold θo) returned from the b-coloring based-clustering algorithm, 
working to assign new instances to their respective clusters as they arrive or to rearrange 
the partition when existing instances leave the system. Let suppose the data set 
X={x1,...,xn} depicted by the optimal threshold graph G=(V,E) and divided into 
P={C1,C2,..,Ck} The adding of new instance xn+1 transforms the vertex set V on 
V∪{vn+1} and the edge set E on E∪{(vi,vn+1)| vi∈V and D(vi,vn+1) >θo}. The deletion 
of one instance xm∈X transforms the vertex set V on V-{vm} and the edge set E on E-
{(vi,vm)| vi∈V and D(vi,vm) >θo}. The main problem is to find the appropriate color to 
assign for vn+1 (i.e. in the case of insertion) or to rearrange the coloring of G (i.e. in 
the case of deletion) which is constrained to incrementally maintain the b-coloring of 
G and the clustering performances in terms of quality (DunnG value) and runtime.  

Assuming that the vertices of G are colored, the following notations will be used: 

• ∆: the maximum degree of G. 
• c(vi): the color (integer value) of the vertex vi in G. 
• N(vi): the neighborhood of vertex vi in G. 
• Nc(vi): the neighborhood colors of vertex vi. 
• Dom(vi): the dominance of vi. Dom(vi)=1 if vi is one dominant vertex of c(vi) 

and 0 otherwise. 
• k: the current number of colors (clusters) in G. 

3.1   Adding a New Instance xn+1  

When a new instance xn+1 is introduced which corresponds to the vertex and edges 
adding in G, the following update operations on G are allowed: 

• vn+1 is assigned to one of the existing k colors of G. 
• vn+1 forms its own color. 
• The insertion of vn+1 in G launches the merge of some colors in G. 

As mentioned above, our dynamic algorithm relies only on the knowledge of the 
dissimilarity matrix and the dominating vertices of each color. Under this hypothesis, 
the following scenarios are to be considered: 

3.1.1   Scenario 1:  vn+1 Is Adjacent to at Least One Dominating Vertex of Each 
Color 

When the neighborhood of vn+1 contains at least one dominating vertex from each k 
colors, vn+1 forms its own color (k+1)th. Otherwise, the next Scenario 2 is performed. 

Proposition 1. After the creation of the new (k+1)th color, the coloring of G is a b-
coloring. 

Proof. ∀Ch∈P={C1,C2,..,Ck} ∃v∈(Ch∩N(vn+1)) such that Dom(v)=1. Thus, 
Dom(vn+1)=1 and the vertex v remains dominating of its color c(v) (i.e. Dom(v)=1). 
Consequently, ∀ Ch∈P={C1,C2,..,Ck,Ck+1} ∃ v∈Ch such that Dom(v)=1: the coloring 
of G using k+1 colors is a b-coloring. 
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In order to improve the quality of the new partition P={C1,C2,..,Ck,Ck+1} in terms 
of DunnG value, the color of some vertices can be changed providing that the coloring 
of G remains a b-coloring. For that, the following definitions are introduced: 

Definition 1. A vertex vs is called "supporting vertex" if vs is the only vertex colored 
with c(vs) in the neighborhood (N(vd)) of one dominating vertex vd. Thus, vs cannot be 
re-colored. 

Definition 2. A vertex vc is called "critical vertex" if vc is a dominating or a 
supporting vertex. Thus, vc cannot be re-colored. 

Definition 3. A vertex v is called "free vertex regarding a color C" if v is a non 
critical vertex and C is not in the neighborhood colors of v (i.e. C∉Nc(v)). Thus, the 
color C can be assigned to v. 

In order to evaluate the efficiency in the color change for one free vertex v regarding 
one color C, we compute the dissimilarity degree from the vertex v to the color C 
which is defined as the average dissimilarity from v to all vertices colored with C 
(eq.(1)). If this latter is lower to the dissimilarity degree from v to its current color, the 
color C is assigned to v.  
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Procedure Scenario 1() 
BEGIN 
c(vn+1):=k+1 ; 
For each free vertex vi regarding the color k+1 do 
If (d(vi,k+1)<d(vi,c(vi)) then  

for each vertex vj from G do 
Update(d(vj,k+1);// using eq.(2)  
Update (d(vj,c(vi));// using eq.(3) 

Enddo 
c(vi):=k+1; 

EndIf 
Enddo 
find_dominating(); 
END. 
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Therefore, after the re-coloring of every free vertex vi regarding the color k, the 
method find_dominating() of order O(n) tries to identify the new dominating vertices 
in G. 

Proposition 2. The procedure Scenario 1() runs in O(n2). 
Proof. After the coloring of vn+1 using the (k+1)th color, the algorithm for Scenario 1 
verifies if the color of each free vertex vi regarding the color k+1  (at most n) can be 
changed by (k+1). In this case, for each vertex vj from G we update the dissimilarities 
d(vj,k+1) and d(vj,c(vi)) using the formulas eq.(2,3) in O(n). Therefore, Scenario 1 
uses at most (n*n) instructions, and the complexity is O(n2). 

 
 
 
 
 
 
 
 
 

 

Fig. 3. Optimal Partition of {A,B,D,F,H,I} 
on 3 clusters for θ=0.15. "*" is used to 
denote the dominating vertices.  

Fig. 4. Insertion of vertex C using Scenario 1: 
the neighborhood of C contains at least one 
dominating vertex of each color 

3.1.2   Scenario 2: Neighborhood of vn+1 Has No Dominating Vertex of m Colors 
The neighborhood of vn+1 does not contain any dominating vertex from m colors 
among the k current colors. These colors are called "available to receive vn+1". Two 
cases are then considered: 

 Scenario 2.1 : m1 colors (m1≤ m) are not present in  vn+1 neighborhood 
colors  

The neighborhood colors of vn+1 does not contain m1 among the m current colors (cf. 
Fig.5). This means that there is no significant dissimilarity between vertex vn+1 and 
these m1 colors. Among m1 colors, the one having the smaller dissimilarity with vn+1 

will color it. Otherwise, the Scenario 2.2 is performed.  

Procedure Scenario 2.1() 
BEGIN 

H := {h | h∉Nc(vn+1)}; 
c(vn+1):= {C| d(vn+1,C)=minh∈H(d(vn+1,h))};  
For each vertex vi from G do 

Update(d(vi, c(vn+1)) ;// using eq.(2) 
Enddo 
For each vertex vi ∈ N(vn+1) do 

test_dominance(vi) ; 
Enddo 
END. 
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After the insertion of vn+1 in the selected color (among m1), some vertices from 
the neighborhood of vn+1 became dominating vertices. These vertices needed only 
one neighbor within the selected color to become dominating. In order to verify this 
situation, we need to recall the method test_dominance(vertex) which is in order 
O(1). 

Proposition 3. The procedure Scenario 2.1() performs in O(n). 
Proof. After the coloring of vn+1 using the selected color, the procedure Scenario 2.1() 
tries to update the dissimilarity d(vi,c(vn+1)) for each vertex vi from G using the 
formula eq.(2) (O(n)). Afterward, it verifies the dominance property of the neighbors 
of vn+1 (at most ∆) using test_dominance method (O(1)). Therefore, the procedure 
Scenario 2.1() uses at most (∆+n*1) instructions, and the complexity is O(n). 

 
 
 
 
 
 
 
 

 

Fig. 5. Insertion of vertex E using Scenario 2.1: the color of C does not belong to the 
neighborhood colors of E. Consequently, the color of C is assigned to E. 

 Scenario 2.2: vn+1 is neighbor to at least one vertex in each m colors. 

Contrary to the previous scenario, vn+1 has at least one non dominating vertex per 
color in its neighborhood. We distinguish here the two following complementary 
sub-cases: 

o Scenario 2.2.1 : number of colors m=1 

If m=1 that is only one color C available to receive vn+1, we assign this color C to 
vn+1. Since this assignment generates a non proper coloring of G due to the presence 
of some neighbors of vn+1 in C, the colors of these vertices must be changed. For each 
vertex vi among the latter the transformation is feasible because it is non dominating. 
As our objective is to find a partition such that the sum of vertex dissimilarities within 
each class is minimized, the color whose dissimilarity with vi is minimal (eq.(1)) will 
be selected if there is a choice between many colors for vi.  

Procedure Scenario 2.2.1() 
BEGIN 
c(vn+1):= C;// C the color available to receive vn+1 
For each vertex vi from G do 
Update(d(vi, c(vn+1)) ;// using eq.(2) 
Enddo 
For each vertex vi ∈ N(vn+1) such that c(vi)=C fo 

H := {h | h∉Nc(vi)}; 
k := {color| d(vi,color)=minh∈H(d(vi,h))};  
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For each vertex vj from G do 
Update (d(vj,k);// using eq.(2) 
Update (d(vj,c(vi));// using eq.(3) 

Enddo 
c(vi):=k ; 

Enddo 
For each vertex vi ∈ N(vn+1) do 

test_dominance(vi) ; 
Enddo 
END. 

Proposition 4. The new coloring given from Scenario 2.2.1 is a b-coloring. 

Proof. ∀vi one vertex from G such that c(vi)=C and vi∈N(vn+1) we have Dom(vi)=0. 
By the dominance property, ∃ h∈{1,2,..,k} such that Ch≠C and Ch∉Nc(vi). Therefore, 
the color Ch will be assigned to vi which guarantees proper coloring. In addition, ∀ 
h∈{1,2,..,k} such that Ch≠C, ∃ v∈(Ch∩N(vn+1)) having Dom(v)=1. Thus, v remains a 
dominating vertex of its color (i.e. Dom(v)=1) and likewise for vn+1 (i.e. Dom(vn+1)=1 
in its color C). Consequently, there is at least one dominating vertex for each color 
(∀Ch ∈ P={C1,C2,..,Ck} ∃ v such that c(v)=Ch and Dom(v)=1): the dominance 
property is satisfied in P.  The coloring of G is a b-coloring. 

Proposition 5. The procedure Scenario 2.2.1() performs in O(n∆). 
Proof. When the color C is assigned to vn+1, the neighbor vertices of vn+1 colored with 
C (at most ∆) change their colors which require the updates of the dissimilarities 
values in O(n). Afterward, the dominance property of the neighbors of vn+1 (at most 
∆) is verified using the test_dominance method (O(1)). Therefore, the procedure 
Scenario 2.2.1() uses at most (∆*n+∆*1) instructions, and the complexity is O(n∆). 

o Scenario 2.2.2 : number of colors m>1 

In this case, several colors are available to receive vn+1 (m>1). The following 
definition of color transformation is required: 

Definition 4. A color C among the m candidate colors to receive vn+1 is called 
"transformation subject" if its transformation does not violates the b-coloring 
constraints for the (m-1) remaining colors. In other words, the color C is a non 
transformation subject if it exists at least one color C’ (among m) such that all the 
neighbors in C for the dominating vertices of C’ are in the neighborhood of vn+1. 

Example: As an illustration, the figure 6 shows two colors C1 and C2 available to 
receive the vertex F (m=2). The unique neighbor in C1 to the dominating vertex of C2 
(the vertex B) is the vertex A (called a supporting vertex) which belong to the 
neighborhood of F. Thus, the color C1 is a non transformation subject. In fact, if the 
color C1 is affected to the vertex F, the vertex A (dissimilar to F) must be re-colored. 
Due to this transformation, the color C2 is removed from the neighborhood colors of 
B which becomes a non dominating vertex and the color C2 without dominating 
vertices. Consequently, the transformation of C1 is forbidden. Contrary to C1, C2 is a 
transformation subject and it is hence available to receive F. 
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Fig. 6. A transformation subject colors identification 

This shows that a color can undergo some transformations when a new vertex is 
presented (exclusion of vertices, change of dominating). Only the colors maintaining 
the b-coloring constraints are transformable. A relevant stage in the incremental 
approach will consist to identifying the number (m2 among m) of transformation 
subject colors. The following sub-cases are then considered: 

 Scenario 2.2.2.1 : one color as a transformation subject 
In this case, only one color (m2=1) is identified as a transformation subject. 

Therefore, the vertex vn+1 is assigned to this color and its transformation is allowed 
alike the previous Scenario 2.2.1. 

 Scenario 2.2.2.2 : m2>1 colors as a transformation subject 
The actual scenario considers the presence of a number m2 (1<m2≤m) 

transformation subject colors. The color whose dissimilarity with vn+1 is minimal 
(eq.(1)) will be selected to receive it. Since the neighbor vertices of vn+1 in these m2 
colors must change their colors behind the inclusion of vn+1, these vertices do not 
contributes to compute the dissimilarity values. Once the color available to receive 
vn+1 being selected, we transform it alike the previous Scenario 2.2.1. 

 Scenario 2.2.2.3 : no color as a transformation subject 

If any color is selected as transformation subject among the m colors, vn+1 forms its 
own color (k+1)th it becomes its dominating vertex  (i.e. Dom(vn+1)=1). Due to this 
transformation, the m colors becomes without dominating vertices. Regarding this 
problem, we define a procedure which tries to find a b-coloring of G where all colors 
are dominating. The idea is the following: each non dominating color C among the m 
no subject transformation colors can be changed. In fact, after removing C from the 
graph G, for each vertex vi colored with C (i.e. c(vi)=C), a new color is assigned to vi 
which is different from those of its neighborhood. As our objective is to find a 
partition such that the sum of vertex dissimilarities within each class is minimized, the 
color whose distance with vi is minimal will be selected if there is a choice between 
many colors for vi. Before starting again with another non dominating color C’ the 
procedure verifies if the remaining colors have now a dominating vertex (in such a 
case, these colors are identified as a dominating color).  

Discussion 

In order to process new data instances as they are arrived, the learning algorithm has 
two steps: initialization and cluster update. It initially adopts the b-coloring partition 
associated to the optimal dissimilarity threshold θo and works to update it. In the 
initialization step it is better if we have a sample of the data set that is significant 
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overall the feature space as that we can get a significant clustering, but we can work 
as well with a normal data set. If the data set used for initialization step does not 
reflect the true clusters structure, the online approach allows an eventual updating of 
existing clusters by re-coloring certain instances. Due to this re-assignment strategy, 
the intraclass dissimilarity, an increasing monotonous function of threshold θ, can 
decrease by improving the partition quality and monotonically decreasing the optimal 
dissimilarity threshold θo during the incremental process. 

For more improving the partition quality, we propose an additional operation to 
optimize the groups of existing clusters called color merging. Typically, two colors 
are merged when the dissimilarity between them is below the optimal 
dissimilarity threshold θo. Consequently, the optimal threshold θo can increase 
although the b-coloring constraints are violated. To solve this problem, the procedure 
used in Scenario 2.2.2.3 to find a b-coloring of G is applied for every color without 
dominating vertices. 

3.2   Removal of an Existing Instance vm  

When an instance xm is introduced which corresponds to the vertex and edges 
deleting in G, we must rearrange the coloring of G in order to maintain the b-
coloring properties and a high quality clustering. Likewise to the previous 
scenarios, our idea is based only on the knowledge of the dissimilarity matrix and 
the dominating vertices of each color. Under this hypothesis, the following 
scenarios are to be considered: 

3.2.1   Scenario 3:  vm Is the Sole Dominating Vertex of Its Color c(vi) 
In this case, vm is the only one dominating vertex of its color. Therefore, by 
removing vm, the color c(vm) becomes without dominating vertices and the coloring 
of G is not a b-coloring. Consequently, the colors of the remaining vertices of c(vm) 
must be changed. For each vertex vi among the latter, the transformation is feasible 
because it is non dominating. As our objective is to find a partition such that the 
sum of vertex dissimilarities within each class is minimized, the color whose 
dissimilarity with vi is minimal (eq.(1)) will be selected if there is a choice between 
many colors for vi. In the opposite case of this scenario, the following Scenario 4 is 
performed.  

3.2.2   Scenario 4:  vm Is a Supporting Vertex of All Dominating Vertices from at 
Least One Color 

In this situation, vm is the sole vertex colored with c(vm) in the neighborhood of all 
dominating vertices from at least one color C. As a result, the deletion of vm, pushes 
these vertices to become non dominating and C without dominating vertices. To solve 
this problem, the procedure used in Scenario 2.2.2.3 to find a b-coloring of G is 
applied for every color C without dominating vertices.  

If vm does not verify any of the previous Scenarios 3 and 4, the dynamic algorithm 
process the deletion of vm without any rearrangement and the new coloring of G is a 
b-coloring. 
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4   Experimental Results 

Experiments have been made using three relevant benchmark data sets chosen from 
UCI database [6]. The first data set (Zoo data) is a collection of 100 animals with 17 
features (1 quantitative, 1 nominal and 15 boolean). The second data set (Auto import 
data) consists of 193 instances of cars with 24 features (14 quantitative and 10 
nominal) and the third data set (Tic-tac-toe data) contains 958 instances, each 
described by 9 categorical attributes. 

In order to examine the effectiveness of the online b-coloring algorithm, the 
experimental methodology in conducted as follows: for each data set, the b-coloring 
partition id firstly generated upon a data sample (which contains 50 instances for Zoo, 
100 for Auto import and 700 for tic-tac-toe) from the original data sets; then the 
partition is updated by adding sequentially the remaining points and the value of 
Dunng index is computed as more instances are included. 

For an interesting assess of the results gained on these data set, our algorithm was 
compared against original b-coloring, Single-Pass2 and k-NN (k=5). The original b-
coloring consists in performing complete re-clustering using b-coloring clustering 
algorithm [2].  

We note that the Euclidian distance is applied to define the dissimilarity level 
between two instances characterized with m features af (f∈{1...m}) as given by the 
following formula:  
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where mf is the normalized coefficient for the attribute af and gf is the comparative 
dissimilarity function between the two attribute values ai,f and aj,f corresponding 
respectively to the instances xi and xj. 

For numeric attributes, gf is:
 

For categorical attributes, gf is: 
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The figures 7, 8 and 9 show the evolution of Dunng values according to the number 
of instances. The curves comparisons of the different clustering algorithms show the 
performance of the online b-coloring algorithm. It appears clearly that the online 
algorithm achieves better results than k-NN (k=5) and more significant results than 
Single-Pass. It appears that the incremental algorithm slightly improves the 
performance of the original b-coloring algorithm (except the runtime profit) 
especially due to the efficiency of the re-assignment strategy (re-coloring) which 
improves the partition quality in terms of Dunng value. Finally, one can see that 
similar experiments may be done for removal instances.  

                                                           
2 The dissimilarity threshold used in the Single-Pass algorithm is the optimal threshold θo. 
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Fig. 7. Performances on Zoo Fig. 8. Performances on Auto Import 

 

Fig. 9. Performances on tic-tac-toe 

5   Conclusion 

We proposed a dynamic version for the b-coloring based clustering approach which 
relies only on dissimilarity matrix and cluster dominating vertices in order to cluster 
new data as they are added to the data collection or to rearrange a partition when an 
existing data is removed. A real advantage of this method is that it performs a dynamic 
classification that correctly satisfies the b-coloring properties and the clustering 
performances in terms of quality (DunnG value) and runtime, when the number of 
clusters is not pre-defined and without any exception on the type of data. The results 
obtained over three UCI data sets have illustrated the efficiency of our algorithm to 
generate good results than Single-Pass and k-NN algorithms. 

There are many interesting issues to pursue: (1) leading additional experiments on 
a larger medical data set where a patient stay typology is required and an inlet patient 
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stay is regular and has to be incorporate to the typology, (2) extending the incremental 
concept to add or remove simultaneously sets of instances, and (3) to define some 
operators which permit to combine easily different clusterings constructing on 
different data. 
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