
V. Corruble, M. Takeda, and E. Suzuki (Eds.): DS 2007, LNAI 4755, pp. 78–90, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Partially Dynamic Clustering Algorithm for Data
Insertion and Removal

Haytham Elghazel, Hamamache Kheddouci, Véronique Deslandres,
and Alain Dussauchoy

LIESP Laboratory, Lyon 1 University, 43 Bd du 11 novembre 1918,
 69622 Villeurbanne cedex, France

{elghazel,hkheddou,deslandres,dussauchoy}@bat710.univ-lyon1.fr

Abstract. We consider the problem of dynamic clustering which has been
addressed in many contexts and applications including dynamic information
retrieval, Web documents classification, etc. The goal is to efficiently maintain
homogenous and well-separated clusters as new data are inserted or existing
data are removed. We propose a framework called dynamic b-coloring
clustering based solely on pairwise dissimilarities among all pairs of data and
on cluster dominance. In experiments on benchmark data sets, we show
improvements in the performance of clustering solution in terms of quality and
computational complexity.

Keywords: Dynamic clustering, graph b-coloring, dissimilarity, dominance.

1 Introduction

Cluster analysis is one of the most important aspects in the data mining process for
discovering groups and identifying interesting distributions or patterns over the
considered data sets [1]. Clustering algorithms are widely used in many areas
including information retrieval, image segmentation and so on.

In [2] a new partitioning clustering scheme is introduced. It is based on the b-
coloring of graph [3]. This technique consists in coloring the vertices of a graph G with
the maximum number of colors such that (i) no two adjacent vertices (vertices joined by
an weighted edge representing the dissimilarity between objects) have the same color
(proper coloring), and (ii) for each color c, there exist at least one vertex with this color
which is adjacent (has a sufficient dissimilarity degree) to all other colors. This vertex is
called dominating vertex, there can have many within the same class. This specific
vertex reflects the properties of the class and also guarantees that the class has a distinct
separation from all other classes of the partitioning. The b-coloring based clustering
method in [2] enables to build a fine partition of the data set (numeric or symbolic) in
clusters when the number of clusters is not specified in advance.

In dynamic information environments, such as the World Wide Web, it is usually
desirable to apply adaptive methods for document organization such as clustering.
Incremental clustering methods are of great interest in particular when we examine
their ability to cope with a high rate of dataset update. In this paper, we consider the
problem of online clustering in the form of data insertion and removal. The difference

 A Partially Dynamic Clustering Algorithm for Data Insertion and Removal 79

between these learning approaches and the traditional ones in particular is the ability
to process instances as they are added (new data) or deleted (outmoded or inefficient
data) from the data collection, eventually with an updating of existing clusters without
having to frequently performing complete re-clustering.

In the dynamic setting, instances arrive or leave one by one, and we need to deal with
an arriving or removed data before seeing any future instances. Problems faced by such
algorithms include how to find the appropriate cluster to assign for a new object, how to
deal with deletion of an existing object, and how to reassign objects to other clusters

Many algorithms are proposed to investigate the dynamic clustering problem. The
Single-Pass clustering algorithm basically processes instances sequentially, and
compares each instance to all existing clusters. If the dissimilarity between the
instance and any cluster1 is above a certain threshold, then the instance is added to the
closest cluster; otherwise it forms its own cluster. The k-Nearest Neighbor clustering
[4] algorithm computes for each new instance its dissimilarity to every other instance,
and chooses the top k instances. The new instance is assigned to the most frequent
class label among the k nearest training.

 In this paper, a dynamic algorithm is proposed for the b-coloring based clustering
approach presented in [2]. It depends only on pairwise dissimilarities among all pairs
of data and on dominance property of vertices.

The paper is structured as follows: in Section 2, the b-coloring technique is
introduced in broad outline. Section 3 is devoted to the dynamic algorithm. Some
experiments using relevant benchmarks data set are shown in Section 4. Further works
and applications linked with dynamic clustering will be proposed in conclusion.

2 Clustering with Graph b-Coloring

In this section, we briefly introduce the b-coloring based clustering approach and we
refer the reader to [2] for more details.

When the dissimilarities among all pairs of data to be clustered {x1,...,xn} are specified,
these can be summarized as a weighed dissimilarity matrix D in which each element D(xi;
xj) stores the corresponding dissimilarity. Based on D, the data can also be conceived as a
weighted linkage graph G = (V, E), where V = {v1,v2,...,vn} is the vertex set which
correspond to the data (vertex vi for data xi), and E = V × V is the edge set which
correspond to a pair of vertices (vi; vj) weighted by their dissimilarities D(vi; vj). It must be
noticed that the possibility of a complete graph would not be interested for clustering
problem because in such a case, the b-coloring algorithm would provide the trivial
partition where each cluster is a singleton. Hence, our algorithm starts from a subgraph
(non complete graph) from the original graph. The subgraph is a superior threshold graph
which is commonly used in graph theory. Let G>θ=(V,E>θ) be the superior threshold graph
associated with threshold value θ chosen among the dissimilarity matrix D. In other
words, G>θ is given by V={v1,...,vn} as vertex set and {(vi,vj)| D(vi,vj) >θ} as edge set.

The data to be clustered are now depicted by a non-complete edge-weighted graph
G>θ=(V,E>θ). In order to divide the vertex set V into a partition

1 The dissimilarity between an instance x and a cluster C is the average of dissimilarities

between x and instances of C.

80 H. Elghazel et al.

P={C1,C2,..,Ck} where for ∀ Ci,Cj ∈ P, Ci ∩ Cj=∅ for i≠j (when the number of
clusters k is not pre-defined), our b-coloring based clustering algorithm performed on
the graph G>θ consists of two steps: 1) generate an initial coloring of vertices using a
maximum number of colors, and 2) removing each color that has no dominating
vertices yet using a greedy algorithm. Step 2 is performed until the coloring is stable,
i.e. each color of G>θ has at least one dominating vertex.

Let illustrate the b-coloring algorithm on one example. {A,B,C,D,E,F,G,H,I} is the
data set to analyse for which dissimilarity matrix D is given in table 1. Figure 1 shows
the superior threshold graph for θ =0.15. Therefore here, the b-coloring of G>0.15 (cf.
Fig.2) gives four classes, namely: C1={B}, C2={A,D}, C3={C,E,G,H,I} and C4={F}.
Bold characters show dominating vertices.

The clustering algorithm is iterative and performs multiple runs, each of them
increasing the value of the dissimilarity threshold θ. Once all threshold values passed,
the algorithm provides the optimal partitioning (corresponding to one threshold value
θo) which maximizes Dunn's generalized index (DunnG) [5]. DunnG is designed to
offer a compromise between the intercluster separation and the intracluster cohesion.
So, it is the more appropriated to partition data set in compact and well-separated
clusters. As an illustration, successive threshold graphs are constructed for each
threshold θ selected from the dissimilarity Table 1, and our approach is used to give
the b-coloring partition of each graph. The value of the Dunn's generalized index is
computed for the obtained partitions. We conclude that the partition θ=0.15 has the
maximal DunnG among other ones with different θ.

Table 1. Dissimilarity matrix

vi A B C D E F G H I
A 0
B 0.20 0
C 0.10 0.30 0
D 0.10 0.20 0.25 0
E 0.20 0.20 0.10 0.40 0
F 0.20 0.20 0.20 0.25 0.65 0
G 0.15 0.10 0.15 0.10 0.10 0.75 0
H 0.10 0.20 0.10 0.10 0.05 0.05 0.05 0
I 0.40 0.075 0.15 0.15 0.15 0.15 0.15 0.15 0

Fig. 1. Superior threshold graph G>0.15 (θ
=0.15)

Fig. 2. b-coloring of graph G>0.15 : four classes
are identified

 A Partially Dynamic Clustering Algorithm for Data Insertion and Removal 81

3 Online b-Coloring Based Clustering Algorithm

We now present the online clustering algorithm based on the above scheme (the b-
coloring based clustering). The algorithm works incrementally by receiving a new
document or removing existing data. The principle is; once the best partition (associated
to the optimal threshold θo) returned from the b-coloring based-clustering algorithm,
working to assign new instances to their respective clusters as they arrive or to rearrange
the partition when existing instances leave the system. Let suppose the data set
X={x1,...,xn} depicted by the optimal threshold graph G=(V,E) and divided into
P={C1,C2,..,Ck} The adding of new instance xn+1 transforms the vertex set V on
V∪{vn+1} and the edge set E on E∪{(vi,vn+1)| vi∈V and D(vi,vn+1) >θo}. The deletion
of one instance xm∈X transforms the vertex set V on V-{vm} and the edge set E on E-
{(vi,vm)| vi∈V and D(vi,vm) >θo}. The main problem is to find the appropriate color to
assign for vn+1 (i.e. in the case of insertion) or to rearrange the coloring of G (i.e. in
the case of deletion) which is constrained to incrementally maintain the b-coloring of
G and the clustering performances in terms of quality (DunnG value) and runtime.

Assuming that the vertices of G are colored, the following notations will be used:

• ∆: the maximum degree of G.
• c(vi): the color (integer value) of the vertex vi in G.
• N(vi): the neighborhood of vertex vi in G.
• Nc(vi): the neighborhood colors of vertex vi.
• Dom(vi): the dominance of vi. Dom(vi)=1 if vi is one dominant vertex of c(vi)

and 0 otherwise.
• k: the current number of colors (clusters) in G.

3.1 Adding a New Instance xn+1

When a new instance xn+1 is introduced which corresponds to the vertex and edges
adding in G, the following update operations on G are allowed:

• vn+1 is assigned to one of the existing k colors of G.
• vn+1 forms its own color.
• The insertion of vn+1 in G launches the merge of some colors in G.

As mentioned above, our dynamic algorithm relies only on the knowledge of the
dissimilarity matrix and the dominating vertices of each color. Under this hypothesis,
the following scenarios are to be considered:

3.1.1 Scenario 1: vn+1 Is Adjacent to at Least One Dominating Vertex of Each
Color

When the neighborhood of vn+1 contains at least one dominating vertex from each k
colors, vn+1 forms its own color (k+1)th. Otherwise, the next Scenario 2 is performed.

Proposition 1. After the creation of the new (k+1)th color, the coloring of G is a b-
coloring.

Proof. ∀Ch∈P={C1,C2,..,Ck} ∃v∈(Ch∩N(vn+1)) such that Dom(v)=1. Thus,
Dom(vn+1)=1 and the vertex v remains dominating of its color c(v) (i.e. Dom(v)=1).
Consequently, ∀ Ch∈P={C1,C2,..,Ck,Ck+1} ∃ v∈Ch such that Dom(v)=1: the coloring
of G using k+1 colors is a b-coloring.

82 H. Elghazel et al.

In order to improve the quality of the new partition P={C1,C2,..,Ck,Ck+1} in terms
of DunnG value, the color of some vertices can be changed providing that the coloring
of G remains a b-coloring. For that, the following definitions are introduced:

Definition 1. A vertex vs is called "supporting vertex" if vs is the only vertex colored
with c(vs) in the neighborhood (N(vd)) of one dominating vertex vd. Thus, vs cannot be
re-colored.

Definition 2. A vertex vc is called "critical vertex" if vc is a dominating or a
supporting vertex. Thus, vc cannot be re-colored.

Definition 3. A vertex v is called "free vertex regarding a color C" if v is a non
critical vertex and C is not in the neighborhood colors of v (i.e. C∉Nc(v)). Thus, the
color C can be assigned to v.

In order to evaluate the efficiency in the color change for one free vertex v regarding
one color C, we compute the dissimilarity degree from the vertex v to the color C
which is defined as the average dissimilarity from v to all vertices colored with C
(eq.(1)). If this latter is lower to the dissimilarity degree from v to its current color, the
color C is assigned to v.

∑
∈

=
Cy

yvD
C

Cvd),(
1

),(
 (1)

Due to this re-coloring, the intraclass dissimilarity can decrease which can
maximally increase DunnG by decreasing its numerator.

Suppose that the vertex v was initially assigned to c(v) and re-colored with C.
Since, the re-coloring of v causes to change the dissimilarity values d(vi, c(v)) and
d(vi,C) for each vertex vi of G. Furthermore, although naive calculation of d(vi, c(v))
and d(vi,C) takes O(n2), it can also be reduced to O(n) using their old values as
defined in the following equations:

1

),(),(
),(

+
+

=
C

vvDCvdC
Cvd ii

old

i
new

(2)

1)(

),())(,()(
))(,(

−
−

=
vc

vvDvcvdvc
vcvd ii

old

i
new (3)

Procedure Scenario 1()
BEGIN
c(vn+1):=k+1 ;
For each free vertex vi regarding the color k+1 do
If (d(vi,k+1)<d(vi,c(vi)) then

for each vertex vj from G do
Update(d(vj,k+1);// using eq.(2)
Update (d(vj,c(vi));// using eq.(3)

Enddo
c(vi):=k+1;

EndIf
Enddo
find_dominating();
END.

 A Partially Dynamic Clustering Algorithm for Data Insertion and Removal 83

Therefore, after the re-coloring of every free vertex vi regarding the color k, the
method find_dominating() of order O(n) tries to identify the new dominating vertices
in G.

Proposition 2. The procedure Scenario 1() runs in O(n2).
Proof. After the coloring of vn+1 using the (k+1)th color, the algorithm for Scenario 1
verifies if the color of each free vertex vi regarding the color k+1 (at most n) can be
changed by (k+1). In this case, for each vertex vj from G we update the dissimilarities
d(vj,k+1) and d(vj,c(vi)) using the formulas eq.(2,3) in O(n). Therefore, Scenario 1
uses at most (n*n) instructions, and the complexity is O(n2).

Fig. 3. Optimal Partition of {A,B,D,F,H,I}
on 3 clusters for θ=0.15. "*" is used to
denote the dominating vertices.

Fig. 4. Insertion of vertex C using Scenario 1:
the neighborhood of C contains at least one
dominating vertex of each color

3.1.2 Scenario 2: Neighborhood of vn+1 Has No Dominating Vertex of m Colors
The neighborhood of vn+1 does not contain any dominating vertex from m colors
among the k current colors. These colors are called "available to receive vn+1". Two
cases are then considered:

 Scenario 2.1 : m1 colors (m1≤ m) are not present in vn+1 neighborhood
colors

The neighborhood colors of vn+1 does not contain m1 among the m current colors (cf.
Fig.5). This means that there is no significant dissimilarity between vertex vn+1 and
these m1 colors. Among m1 colors, the one having the smaller dissimilarity with vn+1

will color it. Otherwise, the Scenario 2.2 is performed.

Procedure Scenario 2.1()
BEGIN

H := {h | h∉Nc(vn+1)};
c(vn+1):= {C| d(vn+1,C)=minh∈H(d(vn+1,h))};
For each vertex vi from G do

Update(d(vi, c(vn+1)) ;// using eq.(2)
Enddo
For each vertex vi ∈ N(vn+1) do

test_dominance(vi) ;
Enddo
END.

0.25

0.2

0.4
0.2

0.2

0.2 0.2 B

D

F

A
H

I

*

*

*

* H

0.2 0.25

0.3

0.25

0.2

0.4
0.2

0.2

0.20.2 B

D

F

A

I

*

*

*

C*

84 H. Elghazel et al.

After the insertion of vn+1 in the selected color (among m1), some vertices from
the neighborhood of vn+1 became dominating vertices. These vertices needed only
one neighbor within the selected color to become dominating. In order to verify this
situation, we need to recall the method test_dominance(vertex) which is in order
O(1).

Proposition 3. The procedure Scenario 2.1() performs in O(n).
Proof. After the coloring of vn+1 using the selected color, the procedure Scenario 2.1()
tries to update the dissimilarity d(vi,c(vn+1)) for each vertex vi from G using the
formula eq.(2) (O(n)). Afterward, it verifies the dominance property of the neighbors
of vn+1 (at most ∆) using test_dominance method (O(1)). Therefore, the procedure
Scenario 2.1() uses at most (∆+n*1) instructions, and the complexity is O(n).

Fig. 5. Insertion of vertex E using Scenario 2.1: the color of C does not belong to the
neighborhood colors of E. Consequently, the color of C is assigned to E.

 Scenario 2.2: vn+1 is neighbor to at least one vertex in each m colors.

Contrary to the previous scenario, vn+1 has at least one non dominating vertex per
color in its neighborhood. We distinguish here the two following complementary
sub-cases:

o Scenario 2.2.1 : number of colors m=1

If m=1 that is only one color C available to receive vn+1, we assign this color C to
vn+1. Since this assignment generates a non proper coloring of G due to the presence
of some neighbors of vn+1 in C, the colors of these vertices must be changed. For each
vertex vi among the latter the transformation is feasible because it is non dominating.
As our objective is to find a partition such that the sum of vertex dissimilarities within
each class is minimized, the color whose dissimilarity with vi is minimal (eq.(1)) will
be selected if there is a choice between many colors for vi.

Procedure Scenario 2.2.1()
BEGIN
c(vn+1):= C;// C the color available to receive vn+1
For each vertex vi from G do
Update(d(vi, c(vn+1)) ;// using eq.(2)
Enddo
For each vertex vi ∈ N(vn+1) such that c(vi)=C fo

H := {h | h∉Nc(vi)};
k := {color| d(vi,color)=minh∈H(d(vi,h))};

0.65
* 0.4

0.2 0.2 0.2 0.25

0.3

0.25 0.2

0.4
0.2

0.2

0.2 0.2
B

D

F

A
H

I

*

*

*

C*

E *

 A Partially Dynamic Clustering Algorithm for Data Insertion and Removal 85

For each vertex vj from G do
Update (d(vj,k);// using eq.(2)
Update (d(vj,c(vi));// using eq.(3)

Enddo
c(vi):=k ;

Enddo
For each vertex vi ∈ N(vn+1) do

test_dominance(vi) ;
Enddo
END.

Proposition 4. The new coloring given from Scenario 2.2.1 is a b-coloring.

Proof. ∀vi one vertex from G such that c(vi)=C and vi∈N(vn+1) we have Dom(vi)=0.
By the dominance property, ∃ h∈{1,2,..,k} such that Ch≠C and Ch∉Nc(vi). Therefore,
the color Ch will be assigned to vi which guarantees proper coloring. In addition, ∀
h∈{1,2,..,k} such that Ch≠C, ∃ v∈(Ch∩N(vn+1)) having Dom(v)=1. Thus, v remains a
dominating vertex of its color (i.e. Dom(v)=1) and likewise for vn+1 (i.e. Dom(vn+1)=1
in its color C). Consequently, there is at least one dominating vertex for each color
(∀Ch ∈ P={C1,C2,..,Ck} ∃ v such that c(v)=Ch and Dom(v)=1): the dominance
property is satisfied in P. The coloring of G is a b-coloring.

Proposition 5. The procedure Scenario 2.2.1() performs in O(n∆).
Proof. When the color C is assigned to vn+1, the neighbor vertices of vn+1 colored with
C (at most ∆) change their colors which require the updates of the dissimilarities
values in O(n). Afterward, the dominance property of the neighbors of vn+1 (at most
∆) is verified using the test_dominance method (O(1)). Therefore, the procedure
Scenario 2.2.1() uses at most (∆*n+∆*1) instructions, and the complexity is O(n∆).

o Scenario 2.2.2 : number of colors m>1

In this case, several colors are available to receive vn+1 (m>1). The following
definition of color transformation is required:

Definition 4. A color C among the m candidate colors to receive vn+1 is called
"transformation subject" if its transformation does not violates the b-coloring
constraints for the (m-1) remaining colors. In other words, the color C is a non
transformation subject if it exists at least one color C’ (among m) such that all the
neighbors in C for the dominating vertices of C’ are in the neighborhood of vn+1.

Example: As an illustration, the figure 6 shows two colors C1 and C2 available to
receive the vertex F (m=2). The unique neighbor in C1 to the dominating vertex of C2
(the vertex B) is the vertex A (called a supporting vertex) which belong to the
neighborhood of F. Thus, the color C1 is a non transformation subject. In fact, if the
color C1 is affected to the vertex F, the vertex A (dissimilar to F) must be re-colored.
Due to this transformation, the color C2 is removed from the neighborhood colors of
B which becomes a non dominating vertex and the color C2 without dominating
vertices. Consequently, the transformation of C1 is forbidden. Contrary to C1, C2 is a
transformation subject and it is hence available to receive F.

86 H. Elghazel et al.

Fig. 6. A transformation subject colors identification

This shows that a color can undergo some transformations when a new vertex is
presented (exclusion of vertices, change of dominating). Only the colors maintaining
the b-coloring constraints are transformable. A relevant stage in the incremental
approach will consist to identifying the number (m2 among m) of transformation
subject colors. The following sub-cases are then considered:

 Scenario 2.2.2.1 : one color as a transformation subject
In this case, only one color (m2=1) is identified as a transformation subject.

Therefore, the vertex vn+1 is assigned to this color and its transformation is allowed
alike the previous Scenario 2.2.1.

 Scenario 2.2.2.2 : m2>1 colors as a transformation subject
The actual scenario considers the presence of a number m2 (1<m2≤m)

transformation subject colors. The color whose dissimilarity with vn+1 is minimal
(eq.(1)) will be selected to receive it. Since the neighbor vertices of vn+1 in these m2
colors must change their colors behind the inclusion of vn+1, these vertices do not
contributes to compute the dissimilarity values. Once the color available to receive
vn+1 being selected, we transform it alike the previous Scenario 2.2.1.

 Scenario 2.2.2.3 : no color as a transformation subject

If any color is selected as transformation subject among the m colors, vn+1 forms its
own color (k+1)th it becomes its dominating vertex (i.e. Dom(vn+1)=1). Due to this
transformation, the m colors becomes without dominating vertices. Regarding this
problem, we define a procedure which tries to find a b-coloring of G where all colors
are dominating. The idea is the following: each non dominating color C among the m
no subject transformation colors can be changed. In fact, after removing C from the
graph G, for each vertex vi colored with C (i.e. c(vi)=C), a new color is assigned to vi
which is different from those of its neighborhood. As our objective is to find a
partition such that the sum of vertex dissimilarities within each class is minimized, the
color whose distance with vi is minimal will be selected if there is a choice between
many colors for vi. Before starting again with another non dominating color C’ the
procedure verifies if the remaining colors have now a dominating vertex (in such a
case, these colors are identified as a dominating color).

Discussion

In order to process new data instances as they are arrived, the learning algorithm has
two steps: initialization and cluster update. It initially adopts the b-coloring partition
associated to the optimal dissimilarity threshold θo and works to update it. In the
initialization step it is better if we have a sample of the data set that is significant

F

B* D

E C*

A

C1 C2

 A Partially Dynamic Clustering Algorithm for Data Insertion and Removal 87

overall the feature space as that we can get a significant clustering, but we can work
as well with a normal data set. If the data set used for initialization step does not
reflect the true clusters structure, the online approach allows an eventual updating of
existing clusters by re-coloring certain instances. Due to this re-assignment strategy,
the intraclass dissimilarity, an increasing monotonous function of threshold θ, can
decrease by improving the partition quality and monotonically decreasing the optimal
dissimilarity threshold θo during the incremental process.

For more improving the partition quality, we propose an additional operation to
optimize the groups of existing clusters called color merging. Typically, two colors
are merged when the dissimilarity between them is below the optimal
dissimilarity threshold θo. Consequently, the optimal threshold θo can increase
although the b-coloring constraints are violated. To solve this problem, the procedure
used in Scenario 2.2.2.3 to find a b-coloring of G is applied for every color without
dominating vertices.

3.2 Removal of an Existing Instance vm

When an instance xm is introduced which corresponds to the vertex and edges
deleting in G, we must rearrange the coloring of G in order to maintain the b-
coloring properties and a high quality clustering. Likewise to the previous
scenarios, our idea is based only on the knowledge of the dissimilarity matrix and
the dominating vertices of each color. Under this hypothesis, the following
scenarios are to be considered:

3.2.1 Scenario 3: vm Is the Sole Dominating Vertex of Its Color c(vi)
In this case, vm is the only one dominating vertex of its color. Therefore, by
removing vm, the color c(vm) becomes without dominating vertices and the coloring
of G is not a b-coloring. Consequently, the colors of the remaining vertices of c(vm)
must be changed. For each vertex vi among the latter, the transformation is feasible
because it is non dominating. As our objective is to find a partition such that the
sum of vertex dissimilarities within each class is minimized, the color whose
dissimilarity with vi is minimal (eq.(1)) will be selected if there is a choice between
many colors for vi. In the opposite case of this scenario, the following Scenario 4 is
performed.

3.2.2 Scenario 4: vm Is a Supporting Vertex of All Dominating Vertices from at
Least One Color

In this situation, vm is the sole vertex colored with c(vm) in the neighborhood of all
dominating vertices from at least one color C. As a result, the deletion of vm, pushes
these vertices to become non dominating and C without dominating vertices. To solve
this problem, the procedure used in Scenario 2.2.2.3 to find a b-coloring of G is
applied for every color C without dominating vertices.

If vm does not verify any of the previous Scenarios 3 and 4, the dynamic algorithm
process the deletion of vm without any rearrangement and the new coloring of G is a
b-coloring.

88 H. Elghazel et al.

4 Experimental Results

Experiments have been made using three relevant benchmark data sets chosen from
UCI database [6]. The first data set (Zoo data) is a collection of 100 animals with 17
features (1 quantitative, 1 nominal and 15 boolean). The second data set (Auto import
data) consists of 193 instances of cars with 24 features (14 quantitative and 10
nominal) and the third data set (Tic-tac-toe data) contains 958 instances, each
described by 9 categorical attributes.

In order to examine the effectiveness of the online b-coloring algorithm, the
experimental methodology in conducted as follows: for each data set, the b-coloring
partition id firstly generated upon a data sample (which contains 50 instances for Zoo,
100 for Auto import and 700 for tic-tac-toe) from the original data sets; then the
partition is updated by adding sequentially the remaining points and the value of
Dunng index is computed as more instances are included.

For an interesting assess of the results gained on these data set, our algorithm was
compared against original b-coloring, Single-Pass2 and k-NN (k=5). The original b-
coloring consists in performing complete re-clustering using b-coloring clustering
algorithm [2].

We note that the Euclidian distance is applied to define the dissimilarity level
between two instances characterized with m features af (f∈{1...m}) as given by the
following formula:

() 21

1

2 /
m

f f

f,jf,if
jij,i m

a,ag
)x,x(Dd ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== ∑

=

 (4)

where mf is the normalized coefficient for the attribute af and gf is the comparative
dissimilarity function between the two attribute values ai,f and aj,f corresponding
respectively to the instances xi and xj.

For numeric attributes, gf is:

For categorical attributes, gf is:

fj,fi,fj,fi,f aaaag −=),(
⎪⎩

⎪
⎨
⎧

=

≠
=

fj,fi,

fj,fi,

fj,fi,f aa iff

aa iff
aag

0

1
),((5)

The figures 7, 8 and 9 show the evolution of Dunng values according to the number
of instances. The curves comparisons of the different clustering algorithms show the
performance of the online b-coloring algorithm. It appears clearly that the online
algorithm achieves better results than k-NN (k=5) and more significant results than
Single-Pass. It appears that the incremental algorithm slightly improves the
performance of the original b-coloring algorithm (except the runtime profit)
especially due to the efficiency of the re-assignment strategy (re-coloring) which
improves the partition quality in terms of Dunng value. Finally, one can see that
similar experiments may be done for removal instances.

2 The dissimilarity threshold used in the Single-Pass algorithm is the optimal threshold θo.

 A Partially Dynamic Clustering Algorithm for Data Insertion and Removal 89

Fig. 7. Performances on Zoo Fig. 8. Performances on Auto Import

Fig. 9. Performances on tic-tac-toe

5 Conclusion

We proposed a dynamic version for the b-coloring based clustering approach which
relies only on dissimilarity matrix and cluster dominating vertices in order to cluster
new data as they are added to the data collection or to rearrange a partition when an
existing data is removed. A real advantage of this method is that it performs a dynamic
classification that correctly satisfies the b-coloring properties and the clustering
performances in terms of quality (DunnG value) and runtime, when the number of
clusters is not pre-defined and without any exception on the type of data. The results
obtained over three UCI data sets have illustrated the efficiency of our algorithm to
generate good results than Single-Pass and k-NN algorithms.

There are many interesting issues to pursue: (1) leading additional experiments on
a larger medical data set where a patient stay typology is required and an inlet patient

90 H. Elghazel et al.

stay is regular and has to be incorporate to the typology, (2) extending the incremental
concept to add or remove simultaneously sets of instances, and (3) to define some
operators which permit to combine easily different clusterings constructing on
different data.

References

[1] Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing
Surveys 31, 264–323 (1999)

[2] Elghazel, H., et al.: A new clustering approach for symbolic data and its validation:
Application to the healthcare data. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G.
(eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 473–482. Springer, Heidelberg (2006)

[3] Irving, W., Manlove, D.F.: The b-chromatic number of a graph. Discrete Applied
Mathematics 91, 127–141 (1999)

[4] Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on
Information Theory 13(1), 21–27 (1967)

[5] Kalyani, M., Sushmita, M.: Clustering and its validation in a symbolic framework. Pattern
Recognition Letters 24(14), 2367–2376 (2003)

[6] Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. University
of California, Irvine, Dept. of Information and Computer Sciences (1998),
http://www.ics.uci.edu/ mlearn/MLRepository.html

	A Partially Dynamic Clustering Algorithm for Data Insertion and Removal
	Introduction
	Clustering with Graph b-Coloring
	Online $\b-Coloring$ Based Clustering Algorithm
	Adding a New Instance x_n+1
	Removal of an Existing Instance v_m

	Experimental Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

