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Abstract. The maximum cardinality of a frequent set as well as the
minimum cardinality of an infrequent set are important characteristic
numbers in frequent (item) set mining. Gunopulos et al. [10] have shown
that finding a maximum frequent set is NP-hard. In this paper I show
that the minimization problem is also NP-hard. As a next step I in-
vestigate whether these problems can be approximated. While a simple
greedy algorithm turns out to approximate a minimum infrequent set
within a logarithmic factor one can show that there is no such algorithm
for the maximization problem.

1 Introduction

Finding sets of items that appear concurrently in at least a specified number
of records in a given database is an important task in data mining. This so-
called frequency criterion for sets is used as an additional condition for different
interestingness predicates. Examples are association rules [2], correlations [5], or
emerging patterns [7].

Algorithms usually perform an exhaustive enumeration of the family of fre-
quent sets or of a reduced family like closed frequent sets or maximal frequent
sets. Such an exhaustive enumeration tends to be very time-consuming because
both, the search space and the output size, can be exponential in the size of
the input database. The running time as well as the semantic significance of the
produced output depend on the user-specified frequency parameter. Thus it is
of great value to know as much as possible about the results of an exponential
time pattern mining algorithm prior to its application. This knowledge can be
used to readjust the frequency parameter and thus improve performance and
semantic value of the mining algorithm.

For that purpose frequent sets of maximum cardinality resp. infrequent sets
of minimum cardinality can be used. Many mining algorithms tend to run expo-
nentially long in the cardinality of a longest pattern, i.e. the size of a maximum
frequent set and for level-wise algorithms the size of a minimum infrequent set
determines the level where pruning starts. So knowing either of the two would
allow to upper bound the running time resp. skip initial search levels. In terms
of result quality both indicate whether the chosen frequency threshold provides
a significant gain of information for the resulting patterns. If for instance the
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minimum cardinality of an infrequent set is 18 in a database containing 20 items
this is an indication for a weak parameter choice.

On the one hand, both optimization problems are NP-hard. For the max-
imization problem this was shown by Gunopulos et al. in [10]. For the mini-
mization problem this is shown in Section 3 of this paper. On the other hand,
computing approximate solutions would suffice for the described motivations. In
this paper I show that not even a reasonable approximation algorithm for a max-
imum frequent set is likely to exist based on recent results from computational
complexity [12], while for a minimum infrequent set a simple greedy algorithm
reaches a logarithmic approximation factor. By another recent complexity re-
sult [8] this factor cannot be improved substantially. Note that in contrast to
approaches that aim at approximating the set of all frequent sets (like in [1]) we
consider different problems each aiming to compute only one set. To the best
of my knowledge this is the first investigation on the approximability of these
problems.

The rest of the paper is organized as follows: Section 2 introduces basic def-
initions and notations. In Section 3, the two optimization problems are defined
formally and their NP-hardness is discussed. Section 4 points out the hardness
of approximating the maximization problem, while Section 5 proves the logarith-
mic performance of the greedy algorithm for the minimization problem. Finally,
Section 6 concludes with a summary and ideas for possible future work.

2 Preliminaries

A hypergraph is a triple (V, H, μ) with V a finite set called ground set,
H ⊆ 2V a family whose elements are called hyperedges, and μ : H → N a
mapping representing the multiplicity of each hyperedge. So H can be seen as
a multiset, and thus we mean by its cardinality |H| the sum

∑
H∈H μ(H). For

the purpose of computational problems we assume a hypergraph to be given as
incidence matrix, and thus define size((V, H, μ)) = |V ||H| as the input size. If
μ(H) = 1 for all H ∈ H we omit μ and (V, H) is called proper.

A graph is a hypergraph G = (V, E) with |e| = 2 for all e ∈ E. The elements
of V are called vertices, and the elements of E are called edges1. G is called
bipartite if V can be partitioned into V1, V2 such that all edges are of the form
{v, w} with v ∈ V1 and w ∈ V2. A graph of this form is denoted by (V1, V2, E).
A set of vertices X = X1 ∪ X2 with X1 ⊆ V1, X2 ⊆ V2 is denoted by (X1, X2)
and is called a bipartite clique if for all x1 ∈ X1 and all x2 ∈ X2 there is an
edge {x1, x2} ∈ E. It is called balanced if |X1| = |X2|. The size of a balanced
bipartite clique (X1, X2) is |X1| = |X2|.

An optimization problem is a computational problem formally given by
a 4-tuple P = (X, (Sx)x∈X , c, goal) with a set of instances X , a set of feasible
solutions Sx for all instances, a target function c :

⋃
x∈X Sx → N, and goal ∈

{min, max}. The task is then, given an instance x ∈ X , compute a feasible
1 In this paper we do not consider graphs with parallel edges or loops, i.e. edges with

only one element.
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solution y ∈ Sx with c(y) = goal{c(y′) : y′ ∈ Sx}. If goal = min, P is called a
minimization problem. If goal = max, P is called a maximization problem.

As examples consider the following two well known NP-hard optimization
problems (see [9]):

max balanced clique is the following maximization problem: Given a bi-
partite graph G, compute a balanced bipartite clique in G of maximum
cardinality. Here the instances are bipartite graphs, the feasible solutions for
a graph G are balanced bipartite cliques in G, and the target function maps
a balanced bipartite clique (X, Y ) to its size |X |.

min set cover is the following minimization problem: Given a hypergraph
(V, H) with

⋃
H = V , compute a family H′ ⊆ H of minimum cardinality

covering V , i.e.,
⋃

H′ = V .

Let P = (X, (Sx)x∈X , c, goal) be an optimization problem. A deterministic
algorithm A for P can be thought of as a mapping from the instances X to
the set of all possible outputs

⋃
x∈X Sx. Then A is called an α-approximation

algorithm for P with α : X → R≥1 if for all x ∈ X with goal{c(y) : y ∈
Sx} = OPT it holds that A(x) ∈ Sx, i.e., the algorithm produces only feasible
solutions, A runs in polynomial time, and

1
α(x)

OPT ≤ c(A(x)) ≤ α(x)OPT .

For such an algorithm we say that A approximates P within a factor of α. If
α(x) ≡ 1, A solves the problem exactly. Note that the first inequality applies
only to maximization problems, while the second applies only to minimization
problems. Since we require A to produce always feasible solutions, it holds that
A(x) ≤ OPT in case goal=max and OPT ≤ A(x) in case goal=min.

In frequent set mining (or frequent itemset mining) [2] the input is a hyper-
graph D = (I, T , μ) called dataset and a positive integer t ∈ {1, . . . , |T |} called
frequency threshold. Sometimes the elements of I are called items and the el-
ements of T are called transactions. For X ⊆ I the support set of X is defined
as

T [X ] = {T ∈ T : X ⊆ T } .

X is called t-frequent in D if |T [X ] | ≥ t.

3 Problems and Hardness of Exact Solutions

We are now ready to give a formal definition of the problems of interest: Given
a hypergraph (I, T , μ) and a frequency threshold t ∈ {1, . . . , |T |} we define

max frequent set as the maximization problem to compute a t-frequent set
X ⊆ I of maximum cardinality and

min infrequent set as the minimization problem to compute a set X ⊆ I of
minimum cardinality that is not t-frequent.
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Remark 1. In Section 1 we only discussed the use of the maximum resp. the
minimum cardinality of a frequent resp. infrequent set. Here we require the con-
struction of an actual set in each problem. However, these two tasks are polyno-
mially equivalent. In particular a maximum frequent set can be constructed by
iteratively trying to remove an element and then checking whether the maximum
cardinality has changed.

Next we recall the construction used in [10] to prove hardness of max frequent

set. In Section 4 we will reuse this construction, which is a transformation from
the NP-hard max balanced clique problem to max frequent set that uses
a canonical correspondence between hypergraphs and bipartite graphs:

For a given bipartite graph G = (V, U, E) construct a hypergraph D =
(V, T , μ) with

T = {Γ (u) : u ∈ U}
μ : T 	→ |{u ∈ U : Γ (u) = T }|

where Γ (u) denotes the set of all neighbors of u, i.e., Γ (u) = {v ∈ V : {v, u} ∈
E}. Note that size(D) ≤ size(G). Furthermore, the maximum cardinality of a
balanced bipartite clique in G is the maximum t such that there is a t-frequent
set X in D with |X | ≥ t, which can easily be computed from D with an algorithm
solving max frequent set. This implies:

Theorem 1 (Gunopulos et al. [10]). max frequent set is NP-hard.

To analyze min infrequent set we define the following generalized version of
min set cover:

min general set cover is the following minimization problem: Given a
hypergraph (V, H) and a positive integer p ∈ {0, . . . , |V | − 1}, compute a
minimum family of hyperedges H′ covering at least |V | − p elements of V ,
i.e., |V \

⋃
H′| ≤ p.

min general set cover contains the NP-hard problem min set cover as
a special case (p = 0), and thus it is itself NP-hard. Moreover, we have the
following equivalence:

Theorem 2. min infrequent set is polynomially equivalent to min general

set cover.

Proof. Construct a polynomial transformation f from min general set cover

to min infrequent set by transposing the given incidence matrix and changing
0-entries to 1-entries and vice versa. The frequency parameter t is set to p + 1.
Note that because of the parameter ranges of t and p this mapping is bijective.
For an instance ((V, H), p) this results in:

f : ((V, H), p) 	→ ((H, V , μ), p + 1)

V = {H \ H [{v}] : v ∈ V }
μ : H′ 	→ |{v ∈ V : H′ = H \ H [{v}]}| .
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Fig. 1. Construction used to proof Theorem 2. Here the hypergraphs are drawn as
bipartite graphs (see proof of Theorem 1) with hyperedges on the left side and ground
set on the right side. The marked set is 2-infrequent in the left hypergraph and covers
all but 1 element in the right.

So the original hyperedges act as items and every element v of the original ground
set becomes a hyperedge, that contains all the sets, which v is not an element
of (in the original min general set cover instance). Now we claim that an
(p+1)-infrequent set in (H, V) corresponds to a set of hyperedges covering at
least all but p elements of (V, H) and vice versa (see Fig. 1). For a subset H′ ⊆ H
it holds that

H′ (p+1)-infrequent in (H, V) ⇔ |V [H′] | < p + 1
⇔ |{v ∈ V : H \ H [{v}] ⊇ H′}| < p + 1
⇔ |{v ∈ V : ∀H ∈ H′ v /∈ H}| < p + 1

⇔ |V \
⋃

H′| < p + 1

⇔ H′ covers at least all but p elements .

So an infrequent set of size k corresponds to a subfamily of size k covering
sufficient many elements and vice versa. Furthermore, f is a bijection implying
polynomial equivalence. �

This implies the main result of this section completing our problem introduction:

Corollary 3. min infrequent set is NP-hard.

4 Hardness of Approximating a Maximum Frequent Set

Since max frequent set is NP-hard, the next step is to ask for an approxima-
tion algorithm. Proving negative results for the approximation of hard problems
has been very successful in recent years. New results have in common that they
use so called ‘probabilistically checkable proofs’ [4] as a characterization of NP.
As indicated by the proof of Theorem 1 the following result proved by Khot [12]
for max balanced clique is of particular importance for our purpose:
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Unless there are probabilistic algorithms with an arbitrary small exponential
time complexity for all problems in NP there is no polynomial approximation
scheme for max balanced clique, i.e., the infimum of all constants k such that
there is a k-approximation algorithm for max balanced clique is bounded
away from 1. It was known before that such a result, once achieved, can be
boosted via derandomized graph products (introduced in [3]). So that the result
of Khot implies in fact:

Theorem 4 (Khot [12]). Unless for all ε > 0 and all decision problems in
NP there is a probabilistic algorithm A accepting a YES-instance resp. rejecting
a NO-instance of size n with probability at least 2/3 in time 2nε

the following
holds: There is a constant δBC > 0 such that there is no algorithm approximating
max balanced clique within a factor of size(x)δBC for instances x.

Now suppose there is an algorithm A approximating max frequent set within
a factor of α(size(x)) for instances x. Then one can construct a hypergraph D
from a given bipartite graph G as for Theorem 1 and find tAPX the maximum
t ∈ {1, . . . , |T |} for which |A(D, t)| ≥ t by running A at most |T | times. Let
(X, Y ) be a maximum balanced bipartite clique in G = (V, U, E) with size tOPT.
Any set of transactions corresponding to a subset Y ′ ⊆ Y contains the tOPT items
corresponding to X—in particular those with |Y ′| = tOPT/α(size(D)) = t∗.
This implies for the maximum cardinality of a t∗-frequent set in D, denoted as
mfs(D, t∗),

mfs(D, t∗) ≥ tOPT ⇒ |A(D, t∗)| ≥ tOPT/α(size(D)) = t∗ .

But then tAPX ≥ t∗ = tOPT/α(size(D)) ≥ tOPT/α(size(G)), because the trans-
formed instance is of equal or smaller size. Since all necessary computations can
be performed in polynomial time, we have a polynomial algorithm approximat-
ing max balanced clique within a factor of α(size(x)) for instances x and
hence

Corollary 5. Under the same assumptions as in Theorem 4 with the same con-
stant δBC > 0 there is no algorithm approximating max frequent set within
a factor of size(x)δBC for instances x.

Although stronger than P �= NP the stated complexity assumption is still widely
believed and thus we have a strong indication that there is no algorithm for max

frequent set with a reasonable approximation factor.

5 Greedy Approximation of a Minimum Infrequent Set

The transformation in Theorem 2 maps instances of min general set cover to
instances of min infrequent set with the same optimum value and vice versa
and there is also a bijection between feasible solutions. So an approximation
algorithm for either one of the two problems will grant the same approximation
factor for the other. To analyze the approximability of the two problems we will
use another related coverage problem:
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max coverage is the following maximization problem: Given a hypergraph
(V, H) and a positive integer k, compute a family H′ ⊆ H of k hyperedges
covering a maximum number of elements.

Using the known fact that the approximation ratio of the greedy algorithm for
this problem is (1−e−1) (see for instance [6]), one can analyze the approximation
performance of the greedy approach for min general set cover.

Theorem 6. min general set cover can be approximated in polynomial time
within a factor of �ln(|V | − p)�+1 for instances ((V, H), p).

Proof. The following algorithm uses the greedy algorithm G for max coverage,
to achieve the desired approximation rate for min general set cover. Denote
with n the number of elements |V | and with gsc(V, H, p) the minimum cardinality
of a hyperedge set covering at least n − p elements.

1. i ← 1, S ← ∅, V1 ← V, H1 ← H
2. while |Vi| > p do
3. ki ← min{j : |

⋃
G(Vi, Hi, j)| ≥ e1−i(1 − 1

e )(|V | − p)}
4. HΔ ← G(Vi, Hi, ki)

S ← S ∪ HΔ, Hi+1 ← Hi \ HΔ, Vi+1 ← Vi \
⋃

HΔ

5. i ← i + 1
6. return S

Obviously S covers at least n−p elements after termination. We claim that also
|S| ≤ (�ln(n − p)�+1) gsc(V, H, p). To see this, we first analyze the number of
iterations and then the number of hyperedges added to the S in every iteration.
(i) The algorithm terminates after at most �ln(n − p)�+1 iterations.
Proof of (i):
First show |Vi| ≤ p+e1−i(n−p) by induction on i. For i = 1 this is true, because
|V | = |V1| = n. Now assume that |Vi| ≤ p + e1−i(n − p) for a given i. In line 3
ki is chosen such that at least e1−i(1 − e−1)(n − p) elements will be covered. So

|Vi+1| ≤ p +
1

ei−1 (n − p) − e − 1
ei

(n − p) = p +
1
ei

(n − p) .

Since the algorithm terminates when |Vi| ≤ p (and |Vi| cannot be fractional), it
is for the number of iterations t:

t ≤ min{i ∈ N : ei > n − p} = �ln(n − p)�+1

(i)�
(ii)For all iterations i it is ki ≤ gsc(V, H, p).
Proof of (ii):
By definition there is an optimum cover O ⊆ H with

|
⋃

O| ≥ n − p and |O| = gsc(V, H, p) .

So O covers all but p elements. Let mc(V ′, H′, k) denote the maximum number
of elements one can cover with k hyperedges in (V ′, H′). Since in iteration i it is
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Algorithm 1. (�ln(|T | − t)�+1)-approximation for min infrequent set

Require: Dataset D = (I, T , μ) and frequency threshold t
Ensure: X infrequent and |X| ≤ (�ln(|T | − t)�+1)OPT, with OPT the minimum

cardinality of a set that is not t-frequent in D

1. X ← ∅
2. while |T | ≥ t do
3. i ← i ∈ I with |T [{i}] | = min{|T [{i′}] | : i′ ∈ I}
4. X ← X ∪ {i}
5. I ← I \ {i}
6. T ← T [{i}]
7. return X

|Vi| ≤ p + e1−i(n − p), |O| elements can still cover at least e1−i(n − p) elements.
It follows

mc(Vi, Hi, gsc(V, H, p)) ≥ e1−i(n − p)

⇒|
⋃

G(Vi, Hi, gsc(V, H, p))| ≥ (1 − 1
e
)e1−i(n − p)

and because ki is selected in line 3 as the minimum number satisfying this

⇒ki ≤ gsc(V, H, p) .

(ii)�
Since ki sets are added to S in every iteration i, it follows from (i) and (ii)
that |S| ≤ (�ln(n − p)�+1)gsc(V, H, p). The polynomial running time is obvious,
because the polynomial time greedy algorithm is called in every iteration at most
|H| times. �

Remark 2. The formulation of the algorithm in the above proof was tailor-made
for the surrounding analysis. In fact it only selects remaining hyperedges covering
a maximum number of remaining elements and thus the simple greedy strategy
stopping, when all but p elements are covered, will select the same hyperedges
or possibly even some less.

Algorithm 1 takes this into account and incorporates the transformation be-
tween min infrequent set and min general set cover. Note that this
transformation switches the roles of ground set and hyperedges so that the re-
sulting approximation factor does not depend on the number of items but on
the number of transactions. This constitutes the following result:

Corollary 7. min infrequent set can be approximated within a factor of
�ln(|T | − t)�+1 for instances (I, T , μ), t.

The approximation ratio achieved above is close to optimal. Otherwise, since
min general set cover contains min set cover as a special case for p = 0,
a better ratio would imply the existence of subexponential time algorithms with
extremely small exponents for every problem in NP by the following theorem:
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Theorem 8 (Feige [8]). For all ε > 0 there is no algorithm approximating min

set cover within a factor of (1 − ε) ln |V | for instances (V, H), unless for all
problems in NP there is an algorithm running in time nO(log log n) for instances
of size n.

6 Discussion

In this paper, we have analyzed the algorithmical tasks to approximate a max-
imum frequent resp. a minimum infrequent set. This investigation is motivated
by the need for an efficient parameter evaluation procedure that can be ap-
plied before a possibly exponential time pattern mining algorithm. We turned
to approximation algorithms because both problems are NP-hard. In case of the
maximization problem this was well-known. In case of the minimization problem
we proved this hardness by showing it to be equivalent to a generalized version
of the min set cover problem.

Using recent results from computational complexity we have argued that a non-
trivial approximation algorithm for max frequent set is unlikely to exist. For
min infrequent set we gave a polynomial time greedy algorithm, which was
proven to compute an infrequent set of cardinality smaller than �ln(m − t)�+1
times the minimum cardinality of an infrequent set for instances with frequency
threshold t and m transactions. Slav́ık proved in [14] that the approximation
ratio of the greedy algorithm for min set cover can in fact be bounded by
ln n − ln lnn + 0.79. It is likely that his tight analysis can be transfered to min

general set cover, which is a task for possible future work. The fact that the
approximation factor depends on the number of transactions and not on the num-
ber of items indicates that the algorithm is useful for gene expression data [13],
which can contain up to 100,000 items but typically only about 1000 transactions.
In general, knowing the approximation factor allows valuable conclusions. If the
cardinality of the returned set is c this implies that all sets of cardinality smaller
than c/(�ln(m − t)�+1) are frequent. In turn, this provides a lower bound on the
number of frequent sets and for level-wise algorithms determines an earliest level
where pruning can occur so that search need not to be started before this level.

Other important characteristics that can be used for parameter evaluation are
the number of frequent resp. closed or maximal frequent sets resulting from a
given parameter, all of which are hard counting problems [15,10]. It is an inter-
esting question whether the positive results from computing the permanent of a
0-1 matrix can be transfered to those problems. For 0-1-permanent the exis-
tence of a fully polynomial randomized approximation scheme has been shown
[11]. Another question is, how quick parameter evaluation can be done in other
domains with similar problems as frequent set mining (exponential output size
and even greater search space). Examples for such domains are pattern mining
tasks with structured data like sequences or graphs.

Acknowledgments. I would like to thank Prof. Bhaskar DasGupta who
pointed me towards the maximum coverage approach.
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