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Abstract. Abductive inference has long been associated with the logic
of scientific discovery and automated abduction is now being used in real
scientific tasks. But few methods can exploit the full potential of clausal
logic and abduce non-ground explanations with indefinite answers. This
paper shows how the consequence finding method of Skip Ordered Linear
(SOL) resolution can overcome the limitations of existing systems by
proposing a method that is sound and complete for finding minimal
abductive solutions under a variety of pruning mechanisms. Its utility is
shown with an example based on metabolic network modelling.

1 Introduction

The importance of abductive inference in scientific discovery was recognised
by C.S. Peirce over a century ago. He saw abduction as a form of reasoning,
from known effects to possible causes, which underlies the process of hypotheses
formation [6]. Recent advances in Artificial Intelligence have shown that (some
aspects of) abductive logic can be automated and exploited in real domains like
diagnosis [10, 4] and bioinformatics [21, 17]. The benefit of logic-based methods
is their ability to use prior background knowledge and return meaningful testable
hypotheses. For example, in [12], abduction was used to infer functional genomic
hypotheses that were experimentally tested by a ‘Robot Scientist’. The abductive
reasoning used in these tasks all follow a simple but very useful logical pattern:
given a theory T , a goal G, and a set of possible assumptions A, find a minimal
consistent subset of A which can be added to T in order to ensure that (some
instance of) G is satisfied.

In general, T , G and the elements of A are arbitrary first order formulae
and an abductive solution consists of two parts: a set of formulae Δ, called
an explanation, stating which assumptions in A should be added to T ; and a
set of substitutions Θ, called an answer, stating which instances of the free
variables in G are satisfied. By utilising standard normalisation techniques, it
suffices to consider the case when T is clausal theory, G is a conjunction of
literals, and A is a set of literals called abducibles. But, existing approaches for
abduction typically impose additional restrictions that rule out the possibility of
unrestricted abductive reasoning in full clausal logic. In particular, most insist
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that either the goal or abducibles should be ground, and most only allow Horn
clauses to appear in the theory.

The restrictions imposed by existing abductive systems reflect certain issues
arising in non-Horn logic. Many use input resolution methods, which are not
complete in general and cannot handle indefinite answers [20]. Moreover, non-
ground abducibles complicate the relationship between variables in the query and
explanation. Finally, the possibility of non-ground explanations and indefinite
answers makes it harder to compare alternative solutions and define appropriate
notions of minimality. A great deal of recent work in abduction has focussed on
the framework of logic programming [11], which uses Negation as Failure (NAF)
to avoid the need for non-Horn reasoning. But these approaches inherit a number
of more serious logical concerns regarding the semantics of NAF, the difficulty
of floundering, and the complexity of reasoning in a non-monotonic formalism
where standard pruning strategies are inapplicable.

This paper gives a sound and complete method for finding minimal abductive
answers in full clausal (classical) logic that overcomes the syntactic restrictions of
existing systems. By treating abduction as a form of conditional query answering,
we propose a semantics for abduction and minimality that correctly handles
indefinite answers and non-ground explanations. We present a proof procedure,
based on the clausal consequence finding approach of Skip Ordered Linear (SOL)
resolution [7], which includes a rule for ‘skipping’ or assuming literals during a
proof. To do this, we introduce a method for lifting a previous limitation on
the language bias for specifying skipped literals that would otherwise prevent us
from using arbitrary sets of abducibles. Previous results ensure our approach is
sound and complete under a combination of efficient pruning strategies [8, 9].

The paper is structured as follows. Section 2 gives the relevant notation and
background material on abduction, consequence finding and SOL. Section 3
formalises the semantics of minimal abduction in full clausal logic. Section 4
presents our abductive procedure. Section 5 compares our approach with related
work. The paper concludes with a summary and directions for future work.

2 Background

2.1 Notation and Terminology

This paper assumes a first-order language L (without equality) containing the
connectives ∧ , ∨ , ¬ , ← , → , ↔ , logical constants �, ⊥, and quantifiers ∀, ∃.
It also assumes standard first-order entailment |= and equivalence ≡ relations
whose semantics is purely classical (and not restricted to Herbrand models).
The term ‘iff’ abbreviates ‘if and only if’ and the term ‘wrt’ abbreviates ‘with
respect to’. A literal L is either an atom A or its negation ¬A. The complement
of L, denoted L, is defined as ¬A (resp. A) if L = A (resp. ¬A). A maximally
general literal is one, e.g., p(X, Y, Z), whose arguments are distinct variables. If
S is a set of literals then

∧
L∈S L (resp.

∨
L∈S L) denotes the conjunction (resp.

disjunction) of the literals in S and is defined as � (resp. ⊥) when S is empty.
A clause C is a disjunction of literals L1 ∨ . . . ∨ Lm that, for convenience, will
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often be identified with the set {Li|1 ≤ i ≤ m} of its disjuncts. As usual, any
free variables are implicitly universally quantified at the front of the clause. A
clause is Horn iff it has at most one positive literal and is full otherwise. A clause
is a tautology iff it contains a literal L and its complement L. The empty clause
is denoted �. A variable binding is an expression of the form X/t where X is a
variable and t is a term. In this case, we say that X is bound to t. A substitution is
a set of variable bindings for distinct variables. The application of a substitution
σ to an expression E is written Eσ and denotes the expression obtained from E
by (simultaneously) replacing each free variable X by the corresponding term t
for each binding X/t in σ. For any (set of) expressions E, let Inst(E) denote the
set of all instances of (members of) E. A clause D subsumes C, written D ≥ C,
iff D has no more literals than C and there is a substitution θ such that Dθ ⊆ C.
Moreover D properly subsumes C, written D > C, iff D ≥ C and C �≥ D. A
theory T is a conjunction of clauses C1 ∧ . . . ∧ Cn that, for convenience, will
often be identified with the set {Ci|1 ≤ i ≤ n} of its conjuncts. A theory is Horn
iff all of its clauses are Horn and is full otherwise. For any theory T , let μ(T )
denote the theory obtained from T by removing all clauses properly subsumed by
another clause in T , and let Th(T ) denote the set of all clauses logically entailed
by T . A goal G is a conjunction of literals. An underscore ‘ ’ is sometimes used
to denote an anonymous variable.

2.2 Abduction

Abduction is an established AI technique for hypothetical reasoning [11]. In
essence, abduction computes the conditions under which a goal G follows from a
given theory T . Implicitly, G is understood as an existentially quantified query
asking “is some instance of G satisfied in an extension of T ”? If so, then the
abductive computation should succeed, returning a set of assumptions Δ which
must be added to T and a substitution σ stating which instances of the free
variables in G are entailed. The assumptions in Δ are usually restricted to the
instances of a set A of literals, called abducibles. Intuitively, these are literals
whose truth is not specified in the intended domain: e.g., potential faults in a
diagnosis task and possible actions in a planning problem. Each explanation Δ
is implicitly understood as an existentially quantified conjunction that should be
consistent with T and should be minimal in the sense of not containing atoms
which could be removed to leave a smaller explanation Δ′. These notions are
typically formalised in the literature as shown in Definition 1 below.1

Definition 1 (Naive Abduction). Let T be a theory, G be a goal, and A be
a set of literals. A (naive) abductive solution (for G wrt T and A) consists of
a set of literals Δ ⊆ Inst(A) (called an explanation) and a substitution σ for
G (called an answer) such that (i) T ∧ Δ |= Gσ and (ii) T ∧ Δ �|= ⊥. The
explanation Δ is minimal iff there is no other explanation Δ′ such that Δ′ ⊂ Δ.
1 Analogous characterisations are obtained for logic program formalisms by replacing

classical entailment with some appropriate completion or preferred model semantics.
For convenience, we assume integrity constraints IC are included in the theory T .
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2.3 Consequence Finding

Consequence finding is a general reasoning technique for computing the logical
theorems entailed by a set of axioms [7]. Since the deductive closure of a logical
theory may be infinite, it is generally infeasible or undesirable to compute all
possible consequences. It is often more useful to consider a refinement of this
task where it is required to compute the clausal consequences of a given theory
that satisfy a given vocabulary and are minimal with respect to subsumption. If
the vocabulary is specified by a form of language bias called a production field,
the resulting consequences are known as characteristic clauses [7]. A production
field P is a pair 〈L, Cond〉, where L is a set of literals and Cond is a certain
condition to be satisfied. When Cond is not specified, P is just written as 〈L〉.
A clause C is said to belong to P = 〈L, Cond〉 iff (i) every literal in C is an
instance of a literal in L and (ii) C satisfies Cond. A production field P is stable
iff, for any two clauses C and D such that C ≥ D, the clause D belongs to P
only if C belongs to P . If LP denotes the set of clauses that belong to P , then
the characteristic clauses of a theory T with respect to P are the set of clauses
Carc(T, P ) = μ(Th(T ) ∩ LP ). The importance of these notions lies in the fact
that many reasoning tasks, such as abduction, induction, and theorem proving,
can be reduced to the computation of characteristic clauses [7].

2.4 SOL Resolution

Characteristic clauses can be computed a procedure called SOL resolution [7],
which can be seen as extending the Model Elimination [14] calculus with a rule
for ‘skipping’ literals. Intuitively, skipped literals represent assumptions that are
needed for a proof to succeed. As explained in [7], this feature is needed to
ensure the completeness of SOL for consequence finding. SOL deductions are
defined using the notion of a structured clause, which is a pair 〈A, B〉 consisting
of two clauses A and B, where the latter may contain so-called framed literals
of the form L denoting previously resolved upon literals. SOL deductions are
formalised in Definition 2, which is recalled from [8].

Definition 2 (SOL Deduction). Let T be a theory, S be a clause, and P be
a production field. An SOL deduction of S from T and P (of length n) is a
sequence of structured clauses D0, . . . , Dn satisfying rules 1-6 below.

1. D0 = 〈�, C〉 for some clause C ∈ T .
2. Dn = 〈S, �〉.
3. For each Di = 〈Ai, Bi〉 clause Ai ∪ Bi is not a tautology.
4. For each Di = 〈Ai, Bi〉 clause Bi is not subsumed by any Bj with the empty

substitution, where Dj = 〈Aj , Bj〉 is a previous structured clause with j < i.
5. For each Di = 〈Ai, Bi〉 clause Ai belongs to P .
6. Di+1 = 〈Ai+1, Bi+1〉 is obtained from Di = 〈Ai, Bi〉 as follows:

(a) let L be the left-most literal of Bi. Then Ai+1 and Ri+1 are obtained by
applying one of the rules:
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i. Skip: if Ai ∪ {L} belongs to P , then Ai+1 = Ai ∪ {L} and Ri+1 is
the clause obtained by removing L from Bi.

ii. Resolve: if there is a clause Ei from T ∪ {C} such that ¬K ∈ Ei

and L and K have a most general unifier θ, then Ai+1 = Aiθ and
Ri+1 is the clause obtained by concatenating Eiθ and Biθ, framing
Lθ, and removing ¬Kθ.

iii. Factoring: Ai or Bi contains an unframed literal K such that L and
K have a most general unifier θ, then Ai+1 = Aiθ and Ri+1 is
obtained from Biθ by deleting Lθ.

iv. Reduction: Bi contains a framed literal ¬K , and L and K have a
most general unifier θ, then Ai+1 = Aiθ and Ri+1 is obtained from
Biθ by deleting Lθ.

(b) Bi+1 is obtained from Ri+1 by deleting every framed literal not preceded
by an unframed literal in the remainder (truncation).

It has been shown Carc(T, P ) is equal to the set of subsume-minimal clauses
derivable by SOL from T and P [7]. Moreover, an efficient implementation of
SOL has been developed [16] that uses several pruning mechanisms [9] to further
constrain SOL deductions. These include mandatory rules native to SOL, such as
merge and regularity for skipped literals, as well as some generic theorem proving
methods, such as order preserving reduction, lemma matching, and local failure
caching. It has been shown that these pruning strategies do not compromise the
completeness of SOL if the production field P is stable [9].

3 Full Clausal Abduction

This section shows full clausal abduction can be efficiently realised by SOL
resolution. Section 3.1 presents a semantics for abduction that correctly handles
non-ground abducibles and disjunctive answers. It then shows how computing
minimal abductive solutions can be reduced to the computation of characteristic
clauses. Section 3.2 explains why unstable production fields arise in abductive
problems and how this leads to the incompleteness of SOL. It then shows how
to overcome this limitation by means of an efficient program transformation.

3.1 Semantics

The naive formulation of abduction in Definition 1 is only satisfactory when G
and Δ are ground. Even though the implicit existential quantification on G and
Δ correctly specifies if the goal should succeed, it does not adequately constrain
the returned solutions. First, just like the answers returned by standard Prolog
systems [13], every instance of the computed answer Gσ should be entailed by T
(and Δ). Otherwise it suffices to simply take σ=∅. Second, as in other non-Horn
extensions of Prolog [20], it is necessary to return a set of answer substitutions to
account for indefinite answers. For example, the goal q(X) should succeed from
the theory q(a) ∨ q(b) with answer {{X/a}, {X/b}}, indicating that X must be
bound to either a or b in any model of T .
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All of these issues are resolved in Definition 3 below, which gives a general
clausal formalisation of abduction.2 In effect, this formulation treats abduction
as a type of conditional query answering [3, 8] with the explanation Δ denoting
the assumptions under which the answer σ is valid. Intuitively, in order for
〈Δ, Θ〉 to solve G wrt T , condition (i) states that the conjunction of assumed
literals L in Δ must imply the disjunction of answers obtained by applying each
substitution σ in Θ to G. All variables are universally quantified at the front
of the implication. Analogously, the consistency condition (ii) can be viewed as
saying that Δ should not be an explanation for the contradictory goal G = ⊥.

Definition 3 (General Abduction). Let T be a theory, G be a goal, and A
be a set of (abducible) literals. An abductive solution (for G wrt T and A) is a
pair 〈Δ, Θ〉 consisting of a set of literals Δ ⊆ Inst(A) (called an explanation)
and a set of substitutions Θ for G (called an answer) such that

(i) T |= ∀
(∧

L∈Δ L →
∨

σ∈Θ Gσ
)

and (ii) T �|= ∀
(∧

L∈Δ L → ⊥
)

Example 1. Let T , G and A be as defined below. Theory T says there is a
metabolic pathway from X to Z if there is a reaction from X to Y and a path-
way from Y to Z; or if there is a reaction from X to Z. It also says there is a
reaction from a to either b or c; and a reaction from either b or c to d; but no
reaction from c to b. Goal G asks “from which metabolites U is there a pathway
to d”? Abducibles A allow all instances of the predicate reaction to be assumed.

T =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

¬reaction(X, Y ) ∨ ¬pathway(Y, Z) ∨ pathway(X, Z)
¬reaction(Y, Z) ∨ pathway(Y, Z)
reaction(a, b) ∨ reaction(a, c)
reaction(b, d) ∨ reaction(c, d)
¬reaction(c, b)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

G =
{

pathway(U, d)
}

A =
{

reaction(V, W )
}

From the 4th clause in T , there is a pathway from b or c to d: i.e., 〈Δ=∅, Θ=
{{U/b}, {U/c}}〉 is a solution. Moreover, there is a pathway from b to d if we
assume a reaction from b to c: i.e., 〈Δ={reaction(b, c)}, Θ={{U/b}}〉 is also a
solution. But, 〈Δ = {reaction(c, b)}, Θ = {{U/c}}〉 is not valid as it contradicts
the 5th clause in T . However, there is a pathway from a to d given reactions from
both b and c to d: i.e., 〈Δ = {reaction(b, c), reaction(b, d)}, Θ = {{U/a}}〉 is a
solution. Similarly, we have 〈Δ = {reaction(a, b), reaction(a, c)}, Θ = {{U/a}}〉.
In general, there is a pathway from any X to d if there is a reaction from X
to d: i.e., we have 〈Δ = {reaction(X, d)}, Θ = {{U/X}}〉. Additionally, there is
a pathway X or b to d if there is a reaction from X to c: i.e., we have 〈Δ =
{reaction(X, c)}, Θ = {{U/X}, {U/b}}〉. In this case, Definition 3 is satisfied
since (i) T |= ∀X

(
reaction(X, c) → pathway(X, d) ∨ pathway(b, d)

)
, and (ii)

T �|= ∀X
(
reaction(X, c) → ⊥

)
as it is consistent to let X =a, for example.

2 We assume that all instances of the abducible literals in A can be added to Δ and
we assume Θ only binds variables in G. If G is ground, we can always set Θ = {∅}.
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While the view of abduction presented above imposes the correct semantics
on Δ and Θ, this pathway example shows that, in general, a large number of
solutions are possible. It is therefore desirable to introduce a minimality criterion
for eliminating redundant hypotheses. A simple subsumption test, formalised in
Definition 5, can be used based on the notion of a solution clause, given in
Definition 4.3 This clause contains the complement of each abducible in Δ and
an answer literal [5], with predicate φ, for each substitution in Θ. An abductive
solution 〈Δ, Θ〉 can then be defined as minimal iff its solution clause is not
strictly subsumed by the solution clause of another solution 〈Δ′, Θ′〉.

Definition 4 (Solution Clause). Given a theory T , goal G, and abducibles A,
let Δ ⊆ Inst(A) be a set of literals, and let Θ be a set of substitutions for G. Let
X1, . . . , Xn be the variables in G, and let φ be a predicate not appearing in G, T
or A. A solution clause for 〈Δ, Θ〉, denoted Soln(Δ, Θ), is a clause of the form:

Soln(Δ, Θ) =
∨

L∈Δ L ∨
∨

σ∈Θ φ(X1, . . . , Xn)σ.

Definition 5 (Minimal Solution). Let T be a theory, G be goal, and A be a
set of literals. A minimal solution for G wrt T and A is an abductive solution
〈Δ, Θ〉 (for G wrt T and A) for which there is no other abductive answer 〈Δ′, Θ′〉
(for G wrt T and A) such that Soln(Δ′, Θ′) > Soln(Δ, Θ).

Example 2. All of the solutions mentioned in Example 1 are minimal except
〈Δ = {reaction(a, b), reaction(a, c)}, Θ = {{U/a}}〉 — as its solution clause
Soln(Δ, Θ) = ¬reaction(a, b) ∨ ¬reaction(a, c) ∨ φ(a) is subsumed by the solu-
tion clause Soln(Δ′, Θ′) = ¬reaction(X, b) ∨ ¬reaction(X, c) ∨ φ(X) of the min-
imal solution 〈Δ′ = {reaction(X1, b), reaction(X1, c)}, Θ′ = {{U/X1}}〉. There
are infinitely many other minimal solutions of the form 〈Δn ={reaction(X1, X2),
. . . , reaction(Xn−1, Xn), reaction(Xn, b), reaction(Xn, c)}, Θn ={{U/X1}}〉.

Proposition 1 shows that the solution clause Soln(Δ, Θ) of any abductive so-
lution 〈Δ, Θ〉 can be deduced from the theory T augmented with a so-called
answer clause. As formalised in Definition 6, the answer clause Ansr(G) of a
goal G is composed of the complement of each literal in G and an answer literal,
with predicate φ and arguments corresponding to the variables in G. Thus, in
Example 1, Ansr(G) is the clause ¬pathway(U, d) ∨ φ(U).

Definition 6 (Answer Clause). Let G be a goal with the variables X1, . . . , Xn.
An answer clause for G, denoted Ansr(G), is a clause of the form:

Ansr(G) =
∨

L∈G L ∨ φ(X1, . . . , Xn).

Proposition 1. Let T be a theory, G be a goal, and A be a set of literals. Let
Δ ⊆ Inst(A) be a set of literals, and Θ be a set of substitutions for G. Then
〈Δ, Θ〉 is an abductive solution for G wrt T and A iff

(i) T ∧ Ansr(G) |= Soln(Δ, Θ) and (ii) T ∧ Ansr(G) �|= Soln(Δ, ∅)
3 We assume the variables X1, . . . , Xn are always written in some standard order and

we assume that the predicate φ does not appear in T , G or A.
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3.2 Proof Procedure

Proposition 1 shows that the computation of abductive solutions can be reduced
to a consequence finding problem by adding an answer clause to the theory
and searching for any solution clauses that are entailed (i). This can be done
using a production field containing the answer literal and the complement of
every abducible. In this case, subsume minimal consequences, i.e., characteristic
clauses, correspond to minimal solutions and thus can be computed by SOL
resolution. Moreover, Proposition 1 also shows that inconsistent explanations
can be avoided by simply rejecting solution clauses with no answer literals (ii).

Example 3. Let T , G and A be as defined in Example 1 and apply the method
suggested above. First form the answer clause Ansr(G)=¬pathway(U, d) ∨ φ(U)
and the production field P = 〈{¬reaction( , ), φ( )}〉. Then search for all SOL
deductions from T ∧ Ansr(G) and P . One such deduction is shown below. For
clarity, each step is annotated with its index and predicates are abbreviated.
The deduction starts with Ansr(G). Referring to Definition 2, clauses 2,3,4,5
& 10 are obtained by resolution; 7,9 & 12 are obtained by truncation; 8 is
obtained by reduction; while 6 & 13 are obtained by skipping. The derived clause
¬r(c, d) ∨ ¬r(b, d) ∨ φ(a) gives the abductive solution Δ = {r(c, d), r(b, d)} and
Θ = {{U/a}}. Similar deductions yield the other minimal solutions. Note that
the inconsistent explanation Δ = {reaction(c, b)} is easily recognised by the lack
of answer literals in its solution clause.

1〈 � , ¬p(U, d) ∨ φ(U) 〉
2〈 � , ¬r(U, Y ) ∨ ¬p(Y, d) ∨ ¬p(U, d) ∨ φ(U) 〉

3〈 � , r(a, c) ∨ ¬r(a, b) ∨ ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉

4〈 � , ¬p(c, Z) ∨ p(a, Z) ∨ r(a, c) ∨ ¬r(a, b) ∨ ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉

5〈 �, ¬r(c, Z) ∨ ¬p(c, Z) ∨ p(a, Z) ∨ r(a, c) ∨ ¬r(a, b) ∨ ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉

6〈 ¬r(c, Z) , ¬p(c, Z) ∨ p(a,Z) ∨ r(a, c) ∨ ¬r(a, b) ∨ ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉

7〈 ¬r(c, Z) , p(a,Z) ∨ r(a, c) ∨ ¬r(a, b) ∨ ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉

8〈 ¬r(c, d) , r(a, c) ∨ ¬r(a, b) ∨ ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉

9〈 ¬r(c, d) , ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉

10〈 ¬r(c, d) , ¬r(b, d) ∨ ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉

11〈 ¬r(c, d) ∨ ¬r(b, d) , ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉
12〈 ¬r(c, d) ∨ ¬r(b, d) , φ(a) 〉
13〈 ¬r(c, d) ∨ ¬r(b, d) ∨ φ(a) , � 〉
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Example 3 shows SOL can be used for abductive query answering. But, a
potential flaw is that the completeness of SOL is only true for stable production
fields. This holds only if all abducibles are maximally general literals, which, in
practice, will not be the case. For instance, suppose that we only wish to assume
the existence of reactions that produce d. The most efficient way to do this is
by using the abducibles A′ =

{
reaction(V, d)

}
. But the new production field

P ′ = 〈{¬reaction( , d), φ( )}〉 is not stable as ¬reaction(X, Y ) does not belong
to P ′ even though it subsumes a clause ¬reaction(X, d) that does.

However, using an unstable production field results in a loss of completeness.
In particular the explanation Δ = {reaction(c, d), reaction(b, d)} is no longer
computed even though it falls within the given language bias. Under this new
production field P ′, the SOL deduction shown in Example 3 is invalid, as it
becomes impossible to apply the skip operation after step 5. While it is possible,
in this particular case, to construct a deduction by postponing the skip until
after the reduction binding Z to d between steps 7 and 8, such re-orderings are
not considered as they would dramatically increase the search space.

Fortunately, completeness is restored by the procedure in Definition 9 which
uses a transformation formalised in Definition 7. For each literal L in A, a
bridge clause is added to T which contains L and the negation of an atom
pL(X1, . . . , Xn), which becomes a new abducible in place of L. The predicate pL

is a new predicate symbol which, just like an answer literal, represents any bind-
ings to the variables Xi in L.4 This transformation ensures all abducibles are
maximally general and that abductive solutions to the transformed and original
problems are isomorphic by simply propagating the bindings from pL back to L.

Definition 7 (Bridge Theory). Let A be a set of literals. A bridge theory for
A, denoted Brdg(A) is a theory of the form

Brdg(A) =
∧

L∈A ¬pL(X1, . . . , Xn) ∨ L

where X1, . . . , Xn are the variables in L, and where pL is a new predicate symbol.

Definition 8 (SOL Procedure). Let T be a theory, P be a production field,
and k be a positive integer. SOL(T, P, k) denotes the set of clauses S for which
there exists an SOL deduction (from T and P ) of length n ≤ k.

Definition 9 (Abduce Procedure). Given a theory T , goal G, literals A, and
integer k, let Abduce(T, G, A, k) denote the set S computed as follows:

1. Let B be the theory T ∪ Ansr(G) ∪ Brdg(A)
2. Let N be the answer literal φ(X1, . . . , Xn) appearing in Ansr(G)
3. Let M be the set of bridge literals ¬pL(X1, . . . , Xm) appearing in Brdg(A)
4. Let P be the production field 〈{N} ∪ M〉
5. Let Q be the set of clauses obtained from SOL(B, P, k) by replacing each

bridge literal of the form pL(t1, . . . , tm) with the literal L{X1/t1, . . . , Xm/tm}
6. Let S be the set of solutions 〈Δ, Θ〉 such that Ansr(Δ, Θ) ∈ μQ and Θ �= ∅
4 A new (predicate) proposition pL is used for each (non-) ground abducible L.
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The soundness and completeness result in Proposition 2 follows immediately
from analogous results on the soundness and completeness of SOL for minimal
conditional answers under stable production fields [8]. Note that minimality is
ensured by applying the μ operator in step 6 after the computed bindings are
transferred back to the original abducibles in step 5. Note also how consistency
is ensured by removing in step 6 any explanations with an empty answer. Finally
note that the transformation needed to ensure a stable production field is very
efficient, resulting in the addition of only one theory clause for each abducible
and incurring just one additional resolution step per abduced literal.

Proposition 2. Let T be a theory, G be a goal, and A be a set of literals. 〈Δ, Θ〉
is a minimal solution of G wrt T and A iff there exists an integer k such that
〈Δ, Θ〉 ∈ Abduce(T, G, A, n) for all n ≥ k.

This formulation reflects the fact that, in practice, some bound k must be im-
posed on the depth of SOL derivations. A minimal solution is a solution that
is computed at some depth k and not later subsumed by another solution of
higher depth. While the existence of k is guaranteed, it follows from previous
work [8] that its value may be undecidable. This is due to the undecidability
of (consistency and) minimality checking. In practice, the procedure can only
return those solutions that are minimal with respect to the depth bound k. But
this is true of any abductive procedure and is often good enough in practice.

Returning to the previous example, the abducibles A′ =
{

reaction(V, d)
}

result in the bridge theory {¬pr(V ) ∨ reaction(V, d)} and production field
〈{¬pr( ), φ( )}〉. The literal ¬reaction(c, Z), selected at step 5 of the earlier
derivation now resolves with the bridge clause to leave the goal ¬pr(Z) which
can be skipped. The SOL derivation, which proceeds just as before, results in
the clause ¬pr(c) ∨ ¬pr(b) ∨ φ(a), which is subsequently replaced by the clause
¬reaction(c, d) ∨ ¬reaction(b, d) ∨ φ(a). Thus, our transformation overcomes
the restriction of SOL to stable production fields and ensures the completeness
of our abductive procedure for computing minimal solutions.

4 Related Work

Several other procedures have been proposed for abductive reasoning. Poole [18]
describes a method for compiling full clausal abductive problems into Prolog.
This approach handles indefinite answers, but only returns ground explanations.
Kakas et al. [11] review several procedures for abductive logic programs. Some
of these include constraint solvers, which allow the computation of non-ground
explanations, but none of them compute indefinite answers. Mayer and Pirri [15]
propose a general first-order abductive proof procedure, based on the tableaux
and sequent calculi, which uses dynamic Skolemisation and anti-Skolemisation
to avoid a conversion to clausal form. Their approach is complete for finding
entailment-minimal explanations, but does not return answer substitutions and
does not exploit the many resolution pruning strategies used by SOL.
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Abductive reasoning is closely related to conditional query answering, which
could, in principle, be used to implement abduction [2]. Baumgartner et al. [1]
give a calculus for conditional answer computation, but this is incomplete for
finding minimal solutions [8]. Demolombe [3] gives a calculus for computing
minimal conditional answers, but this does not support function symbols or
indefinite answers. Iwanuma and Inoue [8] show SOL resolution is complete
for minimal answer computation, but only under the assumption of a stable
production field and without addressing the issue of consistency.

In effect, the approach introduced in this paper overcomes the restriction of
SOL resolution to stable production fields and can potentially be built directly
into SOL so that other applications can benefit from this generalisation. We have
also developed a slightly extended transformation that allows abducibles to be
annotated with goals in order to impose typing and validity constraints on the
terms in abduced literals, e.g., A = {reaction(U, V ) : node(U), node(V )}. These
goal literals are simply added to the bridge clause along with the abducible and
thereby afford a finer degree of control over the abductive bias.

5 Conclusions

This paper presented a proof procedure and semantics for full clausal abduction
that caters for indefinite answers and non-ground abducibles. Viewing abduction
as a form of conditional query answering, it showed how the consequence finding
approach of SOL resolution can be used to overcome the syntactic restrictions
imposed by other systems. In so doing, it revealed the significance of a stability
restriction underlying all previous work on SOL, and gave an efficient program
transformation to overcome this assumption. The approach was illustrated on
a small example motivated by metabolic pathway analysis which also showed
the potential utility of logical abduction in Discovery Science. In this example,
non-Horn clauses were used to represent incomplete knowledge and non-ground
solutions were used to suggest possible refinements of the initial knowledge by
inferring the presence of missing nodes and arcs. While our approach is not yet
mature enough to tackle real scientific discovery tasks, we intend to validate our
methodology more fully on a more realistic model of biochemical networks. We
are also developing an extension of our method to allow the induction of general
laws from examples and a background theory. This extended approach, called
Hybrid Abductive Inductive Learning [19], uses abductive explanations returned
by (a simplified version of) our procedure to seed the formation of a ground unit
theory that is subsequently generalised by an inductive search procedure. In this
way we eventually hope to utilise our abductive method in the process scientific
knowledge discovery.
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