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Abstract. Recently, an efficient method of database analysis using
Zero-suppressed Binary Decision Diagrams (ZBDDs) has been proposed.
BDDs are a graph-based representation of Boolean functions, now widely
used in system design and verification. Here we focus on ZBDDs, a special
type of BDDs, which are suitable for handling large-scale combinatorial
itemsets in frequent itemset mining. In general, it is well-known that
the size of ZBDDs greatly depends on variable ordering; however, in the
specific cases of applying ZBDDs to data mining, the effect of variable
ordering has not been studied well. In this paper, we present a theoretical
study on ZBDD variable ordering for representing frequent itemsets. We
show two instances of databases we composed, where the ZBDD sizes
are exponentially sensitive to the variable ordering. We also show that
there is a case where the ZBDD size must be exponential in any vari-
able ordering. Our theoretical results are helpful for developing a good
heuristic method of variable ordering.

1 Introduction

Discovering useful knowledge from large-scale databases has attracted a consid-
erable attention during the last decade. Frequent pattern mining is one of the
fundamental problems for knowledge discovery. Since the pioneering paper by
Agrawal et al.[1], various algorithms have been proposed to solve the frequent
pattern mining problem (cf., e.g., [11,5]).

Recently, we have attacked the problem of efficiently generating the frequent
patterns in a transactiondatabase by using a data structure calledZero-suppressed
Binary Decision Diagrams (abbr. ZBDDs), see [7,8]. ZBDDs are a special case of
Binary Decision Diagrams (abbr. BDDs)[2]. Using ZBDDs one can implicitly enu-
merate sets of combinations. Moreover, one can then perform efficiently various
operations including the discovery and analysis of frequent patterns.

In general, it is well-known that the size of ZBDDs greatly depends on variable
ordering, however, in the specific cases of applying ZBDDs to data mining, the
effect of variable ordering has not been studied well. In this paper, we present a
theoretical study on ZBDD variable ordering for representing frequent itemsets.
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We show two instances of databases we composed, where the ZBDD sizes are
exponentially sensitive to the variable ordering. We also show that there is a
case where the ZBDD size must be exponential in any variable ordering.

2 Database Representation Using ZBDDs

In this section, we first describe the database representation to be discussed. Here
we consider databases of the following type. Let M �= ∅ be any set. We refer to
the elements of M as to items. In our examples below, we use M = {a, b, c}.
Then the set of all possible combinations is the power set ℘(M) of M . Any
subset C ⊆ ℘(M) is said to be a set of combinations. The elements of a set of
combinations are sets of items, e.g., {a, c}. To simplify notation, we write ac
instead of {a, c} and we refer to the elements of a set of combinations as to
tuples. A transaction database is just a list of tuples.

2.1 BDDs and ZBDDs

A Binary Decision Diagram (BDD) is a graph representation for a Boolean
function. An Example is shown in Fig. 1 for F (a, b, c) = abc ∨ abc.

Given a variable ordering (in our example a, b, c), one can use Bryant’s
algorithm[2] to construct the BDD for any given Boolean function. For many
Boolean functions appearing in practice this algorithm is quite efficient and the re-
sulting BDDs are much more efficient representations than binary decision trees.

BDDs were originally invented to represent Boolean functions. But we can
also map a set of combinations into Boolean space of n variables, where n is
the cardinality of the item set M (see Fig. 2). So, one could also use BDDs to
represent sets of combinations. However, one can even obtain a more efficient
representation by using Zero-suppressed BDDs (ZBDDs)[7].

If there are many similar combinations then the subgraphs are shared resulting
in a smaller representation. In addition, ZBDDs have a special type of node
deletion rule. As shown in Fig. 3, All nodes whose 1-edge directly points to the

Fig. 1. Binary Decision Tree, BDDs and ZBDDs
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a b c F → S
0 0 0 0
0 0 1 0
0 1 0 1 → b
0 1 1 0
1 0 0 0
1 0 1 1 → ac
1 1 0 0
1 1 1 0

As a Boolean function:
F = abc ∨ abc

As a set of combinations:
S = {ac, b}

Fig. 2. Correspondence of Boolean functions and sets of combinations

Fig. 3. BDD and ZBDD reduction rule

0-terminal node are deleted. Because of this, the nodes of items that do not
appear in any sets of combinations are automatically deleted as shown in Fig.1.
This ZBDD reduction rule is extremely effective if we handle a set of sparse
combinations. If the average appearance ratio of each item is 1%, ZBDDs are
possibly more compact than ordinary BDDs, up to 100 times.

ZBDD representation has another good property that each path from the root
node to the 1-terminal node corresponds to each combination in the set. Namely,
the number of such paths in the ZBDD equals to the number of combinations
in the set. This beautiful property indicates that, even if there are no equivalent
nodes to be shared, the ZBDD structure explicitly stores all items of each com-
bination, as well as using an explicit linear linked list data structure. In other
words, (the order of) ZBDD size never exceeds the explicit representation. If
more nodes are shared, the ZBDD is more compact than linear list.

2.2 ZBDD-Based Representation for Frequent Itemsets

Frequent itemset mining (or frequent pattern mining) is the problem of enumer-
ating all possible subsets of itemset M (also called patterns) which appear more
than or equal to α times in the database, for given α. Since their introduction by
Agrawal et al.[1], many papers have been published about new algorithms and
improvements for solving such mining problems[4,5,11]. Recently, graph-based
methods, such as FP-growth[5], have received a great deal of attention, because
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they can quickly manipulate large-scale itemset data by constructing compact
graph structures in main memory.

The ZBDD-based method is a similar approach to handling sets of combina-
tions in main memory but is more efficient because ZBDD is a kind of DAG for
representing itemsets, while FP-growth uses a tree representation for the same
objects. In general, DAGs can be more compact than trees.

Recently, our research group has developed an efficient algorithm ZBDD-
growth[9] to generate ZBDDs compactly representing all frequent itemsets for
given databases. Our method is not only enumerating/listing the frequent pat-
terns but also efficiently analyzing the huge size of mining results by using ZBDD
operations. For example, extracting all patterns including a certain items, or
computing the intersection/union/difference set for given two sets of patterns.
The computation time of those operations does not directly depend on the num-
ber of patterns but almost linear to the (compressed) ZBDD size. It is an im-
portant advantage of using ZBDDs.

3 Variable Ordering of ZBDDs for Representing Frequent
Itemsets

As described above, it is possible for us to represent histograms of frequent
pattern sets compactly by using the ZBDD data structure. However, the ZBDD
size is quite sensitive with respect to the underlying ordering of the variables. So,
it is important to find a good variable ordering such that the resulting ZBDD
size is close to the smallest size possible.

3.1 Properties of Variable Ordering in Ordinary BDDs

In the field of logic VLSI circuit design, many researchers have dealt with the
problem of finding good variable orderings for BDDs. For ordinary BDDs, two
features of the variable ordering are known that affect the size of the resulting
BDDs [3].

(1) Pairs of inputs having the local computability property had better be kept
close to one another in the ordering.

(2) Inputs having a strong controllability to the output had better be located
at higher order.

As a typical example where the local computability dominates the BDD size,
the following AND-OR two-level logic function is known.

x1x2 ∨ x3x4 ∨ x5x6 ∨ · · ·x2n−1x2n

This function can be represented by only 2n BDD nodes with the variable or-
der: x1, x2, x3, x4, . . . , x2n, where each pair of variables in the same product
term are kept together, while we need (2n+1 − 2) BDD nodes with the order:
x1, x3, . . . , x2n−1, x2, x4, . . . , x2n, where those pairs are kept away from each
other. (see Fig. 4.)
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Fig. 4. Effect of BDD variable ordering for the AND-OR two-level logic function

On the other hand, the data-selector function is known as another example
where the output controllability dominates the BDD size. For example, 8-bit
data-selector with three control inputs and eight data inputs has the function
that one of the data input is just selected by the 3-bit binary code of control
inputs. In this case, the function can be represented by a linear size of BDDs
when the control inputs are higher than data inputs, but the BDD becomes an
exponential size in the reversal order. (see Fig. 5.)

As shown the above, each of the both properties may have an exponen-
tial impact to the BDD size. Although one should try to come up with or-
derings obeying these two features, it may be difficult to do so, since these
requirements are sometimes contradictory. The problem of finding the opti-
mal variable ordering for BDDs is known to be NP-complete [10]. In addi-
tion, there exist functions which always require an exponential number of BDD
nodes for any variable ordering, so in such cases, variable ordering will be
useless.

3.2 Consideration on ZBDDs Representing Frequent Patterns

Now we consider the effect of variable ordering for the ZBDDs representing fre-
quent itemsets. For the sake of simple discussion, first we assume the minimum
frequency α = 1, namely, we consider the ZBDD enumerating all possible pat-
terns which appear at least once in the database. In this case, each tuple with
k items generates 2k patterns, and the total number of patterns may become
O(2n) when n is the size of database description. Thus, the ZBDD size may
become exponential in the worst case.

The ZBDD of all patterns in the given database can be generated by comput-
ing the union of P (Tk) for all tuples T1, T2, . . . , Tm in the database, where P (Tk)
means the sets of all patterns included in a tuple Tk. Here we can observe the fol-
lowing property. If an item x appears in a tuple Tk, the patterns in P (Tk) may
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Fig. 5. Effect of BDD variable ordering for the data-selector function

or may not include x, therefore, the item x contributes to double the number of
patterns in P (Tk). On the other hand, if x does not appear in Tk, the patterns in
P (Tk) never include x, and thus the item x does not contribute to increase the
patterns.

Let us consider the analogy with the process of generating an ordinary BDD
for a given logic expression. When an input variable x appears in a product
term Tk in the logic expression, the variable x should be true to satisfy Tk, so
the variable x does not contribute to increase the satisfiable solutions for the logic
of Tk. On the other hand, if x does not appear in Tk, the value of x may be false
or true, both possible to satisfy Tk, so the number of solutions becomes twice.

Consequently, we can observe the completely opposite effects between the
two facts that a variable appears in a term of the logic expression, and that an
item appears in a tuple of the database. This observation indicates that we may
discuss the effect of ZBDD variable ordering by looking the missing items in a
tuple as well as the variables appearing in the logic expressions.

3.3 An Instance Dominated by Local Computability

Based on the above consideration, we made an artificial database where the
property of local computability dominates the ZBDD size, as follows.

T1 a2 a3 a4 · · · an b2 b3 b4 · · · bn

T2 a1 a3 a4 · · · an b1 b3 b4 · · · bn

T3 a1 a2 a4 · · · an b1 b2 b4 · · · bn

...
...

...
...

...
...

...
...

...
Tn a1 a2 a3 · · · an−1 b1 b2 b3 · · · bn−1
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Table 1. Experimental results for the databases dominated by local computability

Order1: a1 b1 a2 b2 . . . an bn

Order2: a1 a2 . . . an b1 b2 . . . bn

n ZBDD size (order1) ZBDD size (order2) Total patterns
3 10 16 37
4 15 39 175
5 20 86 781
6 25 181 3,367
7 25 372 14,197
8 30 755 58,975
9 35 1,522 242,461
10 40 3,057 989,527
11 45 6,128 4,017,157
12 50 12,271 16,245,775

This database consists of the tuples Tk (k = 1, ..., n) each of which has almost
all items a1 a2 ... an b1 b2 ... bn but only one pair of items ak and bk are
missing. If we consider the opposite property of item appearance, this database
corresponds to the AND-OR two-level logic expression shown in Section 3.1, and
we can expect that the pairs of two items missing from the same tuple have the
property of local computability.

To confirm our consideration, we generated the ZBDDs representing all pat-
terns included in the database. Table 1 shows the ZBDD size of the two different
variable orders, and the two ZBDDs for n = 8 are shown in Fig. 6. The re-
sult obviously shows an exponential difference between the two ordering. It is

Fig. 6. ZBDDs for the instance dominated by local computability (n = 8)
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intuitively explained as follows. In the order2, the items a1 to ak are ordered
in the higher positions, but there is no opportunity to share the ZBDD nodes
only by the item a’s information without b’s, so just a binary tree are generated
for the first n stages and thus at least (2n − 1) nodes are generated. On the
other hand, when we use the other order such that ak and bk are kept closer, the
ZBDD nodes can be shared by using combinatorial information of ak and bk on
each stage, thus the ZBDD size becomes O(n).

3.4 An Instance Dominated by Output Controllability

Based on the above consideration, we made an artificial database where the prop-
erty of output controllability dominates the ZBDD size. The following database
corresponds to the 8-bit data-selector function, shown in Section 3.1.

T0 x1 x2 x3 x4 x5 x6 x7 y0 y2 y4

T1 x0 x2 x3 x4 x5 x6 x7 y0 y2 y5

T2 x0 x1 x3 x4 x5 x6 x7 y0 y3 y4

T3 x0 x1 x2 x4 x5 x6 x7 y0 y3 y5

T4 x0 x1 x2 x3 x5 x6 x7 y1 y2 y4

T5 x0 x1 x2 x3 x4 x6 x7 y1 y2 y5

T6 x0 x1 x2 x3 x4 x5 x7 y1 y3 y4

T7 x0 x1 x2 x3 x4 x5 x6 y1 y3 y5

This database has the items x0 x1 . . . xn−1 as the data inputs and
y0 y1 . . . ym (m = 2�log2 n�) as the control inputs. The control inputs have

Fig. 7. ZBDDs for the instance dominated by output controllability (n = 8)



A Theoretical Study on Variable Ordering of Zero-Suppressed BDDs 147

Table 2. Experimental results for the databases dominated by output controllability

n (number of x’s) ZBDD size(y’s higher) ZBDD size(x’s higher) Total patterns
8 126 579 5,023
12 339 5,117 227,295
16 650 137,444 4,159,487
20 1,151 2,435,284 161,496,559

the pair-wise structure as (y0, y1), (y2, y3), . . ., each of which represents a digit of
binary coded number. Either of odd or even numbered y appears on each tuple
Tk in the database, to represent the value 0/1 of the binary code for k. The
tuple Tk also includes all items x0 to xn except xk. With the opposite property
of item appearance, we can consider that this database selects one of the data
input xk according to the binary coded number specified by the control inputs,
as well as the data-selector function shown in Section 3.1.

Figure 7 shows ZBDDs for the instance of n = 8 with two different variable
orders. We can observe that the ZBDD will become a polynomial size when
the control inputs y’s are higher than data inputs x’s, but it will become an
exponential size in the reversal order. It is explained as follows. If we first assign
a set of values into all the items y’s, the rest of patterns of x’s are related only to
one or two tuples in the database, so each ZBDD subgraph for items x’s becomes
a beautiful array structure with n nodes. A pair of (yi, yi+1) may cause three
patterns: only yi appears, only yi+1 appears, or both absent, so, the upper part
of ZBDD for y’s become a ternary tree for the �log2 n�-bit of binary code. The
total ZBDD nodes are bounded by O(n · 3log2 n) ≈ O(n2.7).

On the other hand, when we use the reversal order such that x’s are higher
than y’s, there is no opportunity to share the ZBDD nodes only by x’s informa-
tion without y’s, so just a binary tree are generated for the first n stages and
thus at least (2n − 1) nodes are required.

To confirm our consideration, we generated the ZBDDs representing all pat-
terns included in the database. Table 2 shows the ZBDD size of the two different
variable orders. The result obviously shows an exponential difference between the
two orders. Thus, we can see that there exists an example where the property of
output controllability has an exponential impact for the ZBDD size.

3.5 A Case of Generating Exponential ZBDD in Any Variable
Ordering

Based on the above observation, we can show that there exists a database where
the ZBDD representing the set of patterns must be an exponential size in any
variable ordering. The “data-selector” database, shown in the last section, con-
sists of the two sorts of items x’s and y’s. We must put the y’s higher than x’s to
avoid exponential explosion of ZBDD size. Now, let us define N as the total num-
ber of items (= n+2�log2 n�), then we make N copies of the databases with the
N different variable orders by rotating the items one by one, as shown in Fig. 8,
and finally we merge the all N blocks into one database. If we generate a ZBDD
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Fig. 8. N copies of “data-selector” databases with the rotated variable orders

for the sets of all patterns in this database, any variable ordering cannot avoid a
bad variable order, because, at least one of the blocks, more than n

2�log2 n� items

of x’s become higher than y’s. So, we need at least O(2
n

2�log2 n� ) ZBDD nodes
for representing the patterns for the block of the bad variable order. Since the
given database has a polynomial size O(N3), we can conclude that this database
requires an exponential size of ZBDD in any variable ordering.

3.6 Effect of the Minimum Frequency Threshold

In the above discussions, we assume the minimum frequency threshold α = 1, it
means that the ZBDDs represent the sets of all possible patterns included in the
databases. However, in the real applications, we specify a larger α to reduce the
number of frequent patterns into a feasible amount, and the size of the ZBDD is
also reduced. If the number of frequent patterns are not exponential for a given
large α, then the ZBDD size never become exponential, and in such cases, the
variable ordering does not have an exponential effect to the ZBDD size.

Table 3 is the experimental result for the same database as shown in Section3.3
with a different threshold α = n/2, namely, representing the set of frequent

Table 3. Same database as Table 1 with the different threshold α = n/2

Order1: a1 b1 a2 b2 . . . an bn

Order2: a1 a2 . . . an b1 b2 . . . bn

n ZBDD size (order1) ZBDD size (order2) Total patterns
3 8 8 67
4 16 30 106
5 22 47 781
6 33 142 694
7 42 222 1,156
8 56 616 7,459
9 68 969 12,896
10 85 2,564 81,922
11 100 4,074 143,980
12 120 10,503 912,718
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patterns which appears at more than half tuples in the database. The result
shows that the variable ordering still has an exponential impact to the ZBDD
size when α = n/2. In this example, we expect that as long as we specify an α
proportional to n (i.e. α = c · n, 0 < c < 1), the similar exponential impact will
be observed.

4 Conclusion

In this paper, we presented a theoretical study on ZBDD variable ordering for
representing frequent itemsets. We composed two instances of databases where
the ZBDD sizes are exponentially sensitive to the variable ordering, and we dis-
cussed why such a remarkable difference occurs. In addition, we also showed that
there is a case where the ZBDD size must be exponential in any variable order-
ing. These discussions clarify the property of variable ordering when we apply
the ZBDD-based data structure to data mining problems. Recently, we proposed
a heuristic variable ordering method[6] that finds a good variable order before
generating ZBDDs, by using the structural information of the given database.
Such a heuristic method is developed based on the theoretical results discussed
in this paper.
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