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Abstract. In many real-world data mining applications, accurate class
probability estimations are often required to make optimal decisions. For
example, in direct marketing, we often need to deploy different promotion
strategies to customers with different likelihood (probability) of buying
some products. When our learning task is to build a model with accurate
class probability estimations, C4.4 is the most popular one for achieving
this task because of its efficiency and effect. In this paper, we present a
locally weighted version of C4.4 to scale up its class probability estima-
tion performance by combining locally weighted learning with C4.4. We
call our improved algorithm locally weighted C4.4, simply LWC4.4. We
experimentally tested LWC4.4 using the whole 36 UCI data sets selected
by Weka, and compared it to other related algorithms: C4.4, NB, KNN,
NBTree, and LWNB. The experimental results show that LWC4.4 sig-
nificantly outperforms all the other algorithms in term of conditional log
likelihood, simply CLL. Thus, our work provides an effective algorithm
to produce accurate class probability estimation.

Keywords: class probability estimation, C4.4, locally weighted C4.4,
locally weighted learning, conditional log likelihood.

1 Introduction

Classification has been extensively studied and various learning algorithms have
be developed, such as decision tree, Bayesian network, and k-nearest-neighbor.
The predictive performance of a classifier is usually measured by its classification
accuracy on the testing instances. In fact, most classifiers, including decision
tree, Bayesian network, and k-nearest-neighbor, can also produce probability
estimations or “confidence” of the class prediction. Unfortunately, however, this
information is completely ignored in classification. This is often taken for granted
since the true probability is unknown for the test instances anyway.

In many real-world data mining applications, however, classifiers’ classification
accuracy are not enough, because they can’t express the information how “far-
off” (be it 0.45 or 0.01?) is the prediction of each instance from its target.
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For example, in direct marketing, we often need to deploy different promotion
strategies to customers with different likelihood (probability) of buying some
products. To accomplish these tasks, we need more than a mere classification
of buyers and non-buyers, namely an accurate class probability estimation of
customers in terms of their likelihood of buying. It is obvious that an accurate
probability estimation of class membership is much more desirable than just an
accurate classification in these cases.

This fact raises the question of wether is there another better criterion than
the classification accuracy to evaluate classifiers that also produce class prob-
ability estimation, if we are aiming at an accurate class probability estimation
from a classifier? Recent research show that the answer is the conditional log
likelihood, simply CLL [1,2]. Now, given a built classifier G and a set of test
instances D = {e1, e2, . . . , ei, . . . , eN}, where ei =< ai1, ai2, . . . , ain >, N is the
number of test instances, n is the number of attributes, and ci is the true (ideal)
class label of the test instance ei. Then, the conditional log likelihood CLL(G|D)
of the built classifier G on the set of test instances D is:

CLL(G|D) =
N∑

i=1

logPG(ci|ai1, ai2 . . . , ain) (1)

In this paper, we firstly conduct an extensive experiment to compare some
state-of-the-art algorithms such as C4.4 [3], NB (naive Bayes) and KNN (k-
nearest-neighbor) in terms of class probability estimation (measured by CLL).
The experimental results show that C4.4 performs significantly better than NB
and KNN. This results indicate that C4.4 is an attractive model for class proba-
bility estimation. Motivated by the success of locally weighted linear regression
and locally weighted naive Bayes [4], we present a locally weighted version of
C4.4 to scale up its class probability estimation performance by combining lo-
cally weighted learning (LWNB) [5] with C4.4. We call our improved algorithm
locally weighted C4.4, simply LWC4.4.

The rest of the paper is organized as follows. In Section 2, we summarize some
related algorithms can be used to class probability estimation. In Section 3, we
present our improved algorithm called Locally Weighted C4.4. In Section 4, we
describe the experimental setup and results in detail. In Section 5, we make a
conclusion and outline our main directions for future research.

2 Related Work

Just as discussed in section 1, many classification models such as decision tree,
Bayesian network, and k-nearest-neighbor can also be used for class probability
estimation. Now, we simply look back them in this section.

2.1 Decision Tree

Decision tree is one of the most widely used classification models. It classifies
an instance by sorting it down the tree from the root node to one leaf node,
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which provides the classification of this instance. Each node in the tree specifies
a test of one attribute of the instance, and each branch descending from that
node corresponds to one of the possible values for this attribute. An instance is
classified by starting at the root node of the tree, testing the attribute specified
by this node, then moving down the tree branch corresponding to the value of
the attribute in the given instance. This process is then repeated for the subtree
rooted at the new node. After the tree is built, a manipulation called tree pruning
is performed to scale up the classification accuracy of the learned tree.

Unfortunately, traditional decision tree algorithms, such as C4.5 [6], have been
observed to produce poor class probability estimation [7]. Aiming at this fact,
Provost and Domingos [3] presented an improved algorithm simply called C4.4
to improve C4.5’s performance on class probability estimation. In C4.4, two
techniques are used to improve C4.5’s class probability estimation:

1. Smooth class probability estimation by Laplace estimation: Assume that
there are p instances of the class at a leaf, N total instances, and C total
classes. The frequency-based estimation calculates the estimated probability
of class membership as p

N . The Laplace estimation calculates the estimated
probability of class membership as p+1

N+C .
2. Turn off pruning: Provost and Domingos show that pruning a large tree

damages the probability estimation. Thus, a simple strategy to improve the
probability estimation is to build a large tree without tree pruning.

2.2 Bayesian Network

A Bayesian network consists of a structural model and a set of conditional proba-
bilities. The structural model is a directed acyclic graph in which nodes represent
attributes and arcs represent attribute dependencies. Attribute dependencies are
quantified by conditional probabilities for each node given its parents. Bayesian
networks are often used for classification problems, in which a learner attempts to
construct a classifier from a given set of training instances with class labels. As-
sume that A1, A2,· · ·, An are n attributes (corresponding to attribute nodes in a
Bayesian network). A test instance e is represented by a vector (a1, a2, , · · · , an),
where ai is the value of Ai. Let C represent the class variable (corresponding to
the class node in a Bayesian network). We use c to represent the value that C
takes and c(e) to denote the class of e. The Bayesian network classifier repre-
sented by a Bayesian network is defined in Equation 2.

c(e) = argmax
c∈C

P (c)P (a1, a2, · · · , an|c). (2)

Assume all attributes are independent given the class. Then, the resulting
classifier is called naive Bayes, simply NB:

c(e) = argmax
c∈C

P (c)
n∏

i=1

P (ai|c). (3)
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In NB, each attribute node has the class node as its parent, but does not have
any parent from attribute nodes. Although naive Bayes is easy to construct,
the attribute conditional independence assumption made by the naive approach
harms the classification accuracy of naive Bayes when it is violated. In order to
relax this assumption effectively, an appropriate language and efficient machinery
to represent and manipulate independence assertions are needed [8]. Both are
provided by Bayesian networks [9]. Unfortunately, however, it has been proved
that learning an optimal Bayesian network is NP-hard [10]. In order to avoid the
intractable complexity for learning Bayesian networks, learning improved naive
Bayes has attracted much attention from researchers. For example, Kohavi [11]
presented an algorithm called naive Bayes tree, simply NBTree. It uses decision
trees to scale up the classification accuracy of naive Bayes. Learning an NBTree
is similar to C4.5 [6] except for its score function of evaluating split attributes.
After a tree is grown, a naive Bayes is constructed for each leaf using the data
associated with that leaf. NBTree classifies a test instance by sorting it to a leaf
and applying the naive Bayes in that leaf to assign a class label to it.

2.3 K-Nearest-Neighbor

KNN (k-nearest-neighbor) has been widely used in classification problems. KNN
is based on a distance function that measures the difference or similarity between
two instances. The standard Euclidean distance d(x, y) between two instance x
and y is often used as the distance function, defined as follows.

d(x, y) =

√√√√
n∑

i=1

(ai(x) − ai(y))2 (4)

Given a test instance x, KNN assigns the most common class of x’s k nearest
neighbors to x, as shown in Equation 5. KNN is a typical example of lazy learn-
ing, which just stores training data at training time and delays its learning until
classification time.

c(x) = argmax
c∈C

k∑

i=1

δ(c, c(yi)) (5)

where y1, y2, · · ·, yk are the k nearest neighbors of x, k is the number of the
neighbors, and δ(c, c(yi)) = 1 if c = c(yi) and δ(c, c(yi)) = 0 otherwise.

KNN uses a simple voting to produce the class probability estimation. That
is say that the class labels of instances in the neighborhood are treated equally.
So, an obvious improved method is to weight the vote of k nearest neighbors dif-
ferently according to their distance to the test instance x. The resulting classifier
is called k-nearest-neighbor with distance weighted defined as follows.

c(x) = argmax
c∈C

k∑

i=1

δ(c, c(yi))
d(yi, x)2

(6)
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Another most efficient approach is deploying a local probability-based clas-
sification model within the neighborhood of the test instance consisting of the
k nearest neighbors. Talking of the local probability-based classification mod-
els, naive Bayes is absolutely necessary. The idea of combining KNN with naive
Bayes is quite straightforward. Whenever a test instance is classified, a local
naive Bayes is trained using the k nearest neighbors of the test instance, with
which the test instance is classified. Locally weighted naive Bayes [4], simply
LWNB, is a state-of-the-art example, which implements the locally weighed ma-
nipulation using locally weighted learning [5]. In LWNB, k nearest neighbors of
a test instance are firstly found and each of them is weighted in terms of its
distance to the test instance. Then a local naive Bayes is built from the locally
weighted training instances.

3 Locally Weighted C4.4

Thinking of C4.5’s bad performance of class probability estimation, Provost and
Domingos [3] presented an improved algorithm simply called C4.4 to improve its
class probability estimation performance. In C4.4, two techniques called Laplace
correction and turning of tree pruning are used.

Locally weighted learning [5] is meta method, which has been successfully used
to improve some efficient and effective algorithms. For example, locally weighted
linear regression, which is a locally weighted version of linear regression. It uses
a local linear regression to fit to a subset of the training instances that is in the
neighborhood of the test instance. The training instances in this neighborhood
are weighted according to its distance from the test instance, with less weight
being assigned to instances that are further from the test instance. A regression
prediction is then obtained from linear regression taking the attribute values of
the test instance as input. Similar to locally weighted linear regression, Li [12]
uses locally weighted learning to improve SMOreg (a support vector machine
algorithm for Regression) for Regression.

For another example, Frank et al. [4] presented a hybrid algorithm called lo-
cally weighted naive Bayes, simply LWNB, by combining locally weighted learn-
ing with naive Bayes. When call upon to classify a test instance, LWNB firstly
finds the k nearest neighbors of this test instance. Then, LWNB assigns different
weights to different instances in the neighborhood according to its distance from
the test instance. At last, a local naive Bayes is built on these locally weighted
training instances, with which this test instance is classified.

For solving the regression problems, the linear regression algorithm is the most
popular one. Its locally weighted version demonstrates great improvement. In the
same way, naive Bayes performs well in classification [8], its improved algorithm
called locally weighted naive Bayes significantly outperforms it in terms of clas-
sification accuracy. Thus, we can draw a conclusion: a remarkable character in
applying locally weighted learning is that local models all need to be efficient
and effective. Fortunately, C4.4 exactly meets this character. These facts raise
the question of whether such a locally weighted learning can be used to improve
the class probability estimation performance of C4.4.
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Responding to this question, we present a locally weighted version of C4.4 by
combining locally weighted learning with C4.4. We call our improved algorithm
locally weighted C4.4 , simply LWC4.4. LWC4.4 use C4.4 in exactly the same way
as naive Bayes is used in locally weighted naive Bayes: a local C4.4 is built on the
subset of the training instances that is in the neighborhood of the test instance
whose probability of class membership is to be estimated. The training instances
in this neighborhood are weighted according to the inverse of its distance from
the test instance, with less weight being assigned to instances that are further
from the test instance. A class probability estimation is then obtained from C4.4
taking the attribute values of the test instance as input.

The subset of the training instances used to training each locally weighted
C4.4 are determined by a k-nearest-neighbor algorithm. A user-specified param-
eter k controls how many instances are used. So, like locally weighted linear
regression and locally weighted naive Bayes, our locally weighted C4.4 also is a
k-related algorithm. Fortunately, we get almost same experimental results with
LWNB: LWC4.4 is not particularly sensitive to the choice of value of k as long
as it is not too small. This makes it a very attractive alternative to the k-related
algorithms, which requires fine-tuning of k to achieve good results.

Although our experimental results show that LWC4.4 significantly outper-
forms the original C4.4 measured by CLL. Our improvements turn an eager
learning algorithm into a lazy learning algorithm. Like all the other lazy learn-
ing algorithms, LWC4.4 simply stores training instances and defers the effort
involved in learning until prediction time. When called upon to predict a test in-
stance, LWC4.4 constructs an C4.4 using a weighted set of training instances in
the neighborhood of the test instance. In a word, an obvious disadvantage with
LWC4.4 is that it has relatively higher time complexity. So, enhancing LWC4.4’s
efficiency is one main direction for our future research.

4 Experimental Methodology and Results

We ran our experiments on 36 UCI data sets [13] selected by Weka [14], which
represent a wide range of domains and data characteristics. In our experiments,
we adopted the following four preprocessing steps.

1. Replacing missing attribute values: We don’t handle missing attribute values.
Thus, we used the unsupervised filter named ReplaceMissingValues in Weka
to replace all missing attribute values in each data set.

2. Discretizing numeric attribute values: We don’t handle numeric attribute
values. Thus, we used the unsupervised filter named Discretize in Weka to
discretize all numeric attribute values in each data set.

3. Removing useless attributes: Apparently, if the number of values of an at-
tribute is almost equal to the number of instances in a data set, it is a useless
attribute. Thus, we used the unsupervised filter named Remove in Weka to
remove this type of attributes. In these 36 data sets, there are only three such
attributes: the attribute “Hospital Number” in the data set “colic.ORIG”,
the attribute “instance name” in the data set “splice” and the attribute
“animal” in the data set “zoo”.
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4. Sampling large data sets: For saving the time of running experiments (three
lazy algorithms are used in our experiments), we used the unsupervised filter
named Resample with the size of 20% in Weka to randomly sample each large
data set having more than 5000 instances. In these 36 data sets, there are
only three such data sets: “letter”, “mushroom”, and “waveform-5000”.

We conducted extensive experiments to compare LWC4.4 on CLL with other
related algorithms: C4.4, NB, KNN, NBTree, and LWNB. In our experiments,
the CLL score of each classifier is computed using Equation 1. We use the im-
plementation of C4.4 (J48 with Laplace smoothing but without tree pruning),
NB (NaiveBayes), KNN (IBk without distance weighting), NBTree, and LWNB
(LWL with NaiveBayes as the basic classifier) in Weka system. We use the LWL
with C4.4 as the basic classifier for the implement of LWC4.4. Besides, we set

Table 1. The detailed experimental results on CLL and standard deviation.
C4.4: C4.5 with laplace correction and without tree pruning; NB: naive Bayes; KNN:
K-Nearest-Neighbor; NBTree: naive Bayes tree; LWNB: locally weighted naive Bayes;
LWC4.4: locally weighted C4.4.

Dataset C4.4 NB KNN NBTree LWNB LWC4.4
anneal -7.72±2.17 -14.08±8.72 -8.25±3.33 -16.61±18.73 -11.95±8.13 -6.5±1.63
anneal.ORIG -22.25±4.16 -23.85±7.26 -28.34±4.13 -29.84±12.46 -22.18±6.96 -20.25±4.3
audiology -14.62±3.68 -65.71±21.12 -31.82±7.66 -87.29±33.27 -59.9±21.59 -14.47±3.47
autos -12.83±2.52 -44.52±20.45 -18.89±6.38 -31.58±12.78 -39.65±19.65 -11.5±2.82
balance-scale -52.4±3.99 -31.77±1.44 -66.96±2.28 -31.77±1.44 -31.63±1.4 -49.79±5.54
breast-cancer -18.47±3.22 -18.12±6.01 -18.05±4.99 -18.89±4.99 -18.01±6.03 -19.49±3.63
breast-w -11.23±4.59 -18.2±16.18 -9.18±5.19 -15.41±12.81 -18.21±16.23 -10.89±4.67
colic -16.84±4.29 -30.29±9.6 -18.49±4.71 -35.19±15.06 -29.61±9.35 -17.65±5.2
colic.ORIG -18.07±3.48 -20.41±5.55 -25.63±5.35 -33.22±11.57 -19.96±5.35 -18.73±3.11
credit-a -27.72±3.16 -28.52±7.77 -30.82±7.76 -32.74±12.46 -28.44±7.83 -29.26±3.67
credit-g -61.8±6.98 -52.42±7.29 -61.16±8.28 -58.95±17.18 -52.26±7.35 -63.4±6.9
diabetes -43.91±4.94 -40.86±8.11 -44.54±6.41 -40.86±8.11 -40.78±8.08 -44.29±4.98
glass -20.31±2.12 -24.16±4.21 -23.46±4.83 -33.31±10.14 -23.65±4.17 -20.21±2.03
heart-c -15.7±4.69 -13.66±5.08 -14.52±5.9 -14.73±4.39 -13.64±5.14 -16.38±4.95
heart-h -14.75±4.4 -13.69±5.2 -14.1±5.56 -14.87±5.61 -13.69±5.24 -15.14±5.2
heart-statlog -13.95±3.45 -12.17±4.52 -12.04±4.46 -15.6±5.99 -12.21±4.53 -13.87±3.87
hepatitis -5.7±2.13 -8.57±4.11 -7.43±4 -7.38±4.33 -8.55±4.08 -5.94±2.28
hypothyroid -90.86±7.72 -97.44±19.4 -133.81±29.3 -97.81±19.8 -96.61±20.2 -91.6±9.1
ionosphere -11.04±2.34 -35.01±13.73 -13.53±6.16 -24.27±12.88 -34.92±13.58 -10.65±2.51
iris -3.67±1.33 -2.56±2.77 -3.1±2.63 -2.76±2.97 -2.53±2.87 -3.53±1.41
kr-vs-kp -8.61±3.69 -93.21±8.36 -58.71±7.16 -34.67±19.94 -85.73±7.67 -7.45±4.11
labor -2.47±1.45 -0.96±1.11 -1.67±0.99 -1.63±2.95 -1.01±1.2 -2.47±1.45
letter -320.96±8.1 -564.72±52.8 -429.4±42.2 -618.49±64.8 -505.48±52.3 -294.91±6.7
lymph -7.57±3.03 -6.43±3.16 -7.05±3.21 -9.67±7.7 -6.3±3.21 -7.12±2.67
mushroom -2.53±0.87 -34.7±16.35 -0.55±0.78 -2.61±5.85 -20.64±11.49 -2.13±0.9
primary-tumor -51.58±2.82 -65.27±10.04 -94.05±11.89 -73.04±15.37 -65.98±10.48 -50.58±2.97
segment -49.66±6.05 -124.26±38.23 -56.84±7.02 -115.81±62.16 -109.49±35.34 -41.97±6.01
sick -20.57±3.31 -45.74±11.62 -26.2±3.84 -41.58±13.58 -42.21±11.12 -20.49±4.61
sonar -11.98±2.28 -20.87±12.2 -9±1.94 -34.68±23.7 -20.5±11.91 -12.21±2.1
soybean -17.84±2.47 -26.41±9.7 -15.51±4.38 -30.65±15.5 -23.74±8.92 -16.61±2.45
splice -66.6±8.6 -46.67±8.63 -178.56±18.2 -46.67±8.63 -45.69±8.82 -66.09±7.68
vehicle -53.61±2.85 -169.76±27.29 -60.78±9.34 -131.69±26.73 -160.81±24.86 -52.37±3.81
vote -7.31±4.78 -27.08±12.99 -10.03±4.48 -5.43±5.23 -24.33±11.9 -7.22±5.14
vowel -70.91±4.74 -87.41±8.91 -61.38±5.2 -42.52±11.4 -66.63±6.95 -64.9±4.94
waveform-5000 -67.31±6.21 -74.37±17.55 -69.42±8.55 -104.36±47.13 -69.95±16.39 -66.48±6.32
zoo -2.96±1.56 -1.21±1.12 -1.61±1.06 -0.96±0.89 -0.99±1.04 -2.67±1.56
Mean -34.62±3.84 -55.14±11.62 -46.25±7.21 -53.82±15.52 -50.77±11.15 -33.31±4.02
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Table 2. The compared results of two-tailed t-test on CLL with a 95%
confidence level. An entry w/t/l in the table means that the algorithm at the corre-
sponding row wins in w data sets, ties in t data sets, and loses in l data sets, compared
to the algorithm at the corresponding column.

C4.4 NB KNN NBTree LWNB
NB 4/19/13
KNN 2/23/11 13/17/6
NBTree 4/21/11 4/29/3 6/21/9
LWNB 5/19/12 19/17/0 5/19/12 5/27/4
LWC4.4 9/26/1 13/18/5 10/25/1 11/21/4 12/19/5

the weighting kernel function to the inverse of their distance in LWNB1 and
LWC4.4, the number of neighbors to 5 in KNN, 50 in LWNB and LWC4.4. The
CLL of each classifier on each data set was obtained via 10-fold cross validation.
Run with the various algorithms were carried out on the same training sets and
evaluated on the same test sets. In particular, the cross-validation folds are the
same for all the experiments on each data set. Finally, we compare each pair of
algorithms via two-tailed t-test with a 95% confidence level. According to the
statistical theory, we speak of two results for a data set as being “significantly
different” only if the probability of significant difference is at least 95%.

Table 1 shows the CLL and standard deviation of each algorithm on the test
sets of each data set, the average CLL and standard deviation are summarized
at the bottom of the table. Table 2 shows the results of two-tailed t-test with
a 95% confidence level between each pair of algorithms in terms of CLL. each
entry w/t/l in Table 2 means that the algorithm at the corresponding row wins
in w data sets, ties in t data sets, and loses in l data sets, compared to the
algorithm at the corresponding column.

The detailed results displayed in Table 1 and Table 2 show that our improved
algorithm LWC4.4 significantly outperforms all the other algorithms used to
compare measured by CLL. Now, let’s summarize the highlights as follows:

1. C4.4 significantly outperforms NB. In the 36 data sets we test, C4.4 wins in
13 data sets, only loses in 4 data sets. C4.4’s average CLL is -34.62, much
higher than that of NB (-55.14). This fact proves that C4.4 is an attractive
alternative for class probability estimation.

2. C4.4 significantly outperforms KNN. In the 36 data sets we test, C4.4 wins
in 11 data sets, only loses in 2 data sets. C4.4’s average CLL is -34.62, much
higher than that of KNN (-46.25). This fact also proves that C4.4 is an
attractive alternative for class probability estimation.

3. LWC4.4 significantly outperforms C4.4. In the 36 data sets we test, LWC4.4
wins in 9 data sets, surprisingly loses in 1 data sets. LWNB’s average CLL is
-33.31, much higher than that of C4.4 (-34.62). This fact proves that locally
weighted learning is an effective method for scaling up the class probability
estimation performance of C4.4.

4. LWC4.4 significantly outperforms other two algorithms: NBTree (11 wins
and 4 losses) and LWNB (12 wins and 5 losses). This fact is another

1 It is a little different from LWNB published in UAI 2003.
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Table 3. The detailed experimental results on AUC and standard deviation.
C4.4: C4.5 with laplace correction and without tree pruning; NB: naive Bayes; KNN:
K-Nearest-Neighbor; NBTree: naive Bayes tree; LWNB: locally weighted naive Bayes;
LWC4.4: locally weighted C4.4.

Dataset C4.4 NB KNN NBTree LWNB LWC4.4
anneal 93.78±2.9 95.9±1.3 93.66±5.92 96.45±0.28 96.1±1.2 96.1±1.31
anneal.ORIG 92.69±3.15 94.49±3.67 93.95±1.44 94.71±3.74 94.63±3.61 94.27±2.1
audiology 70.58±0.63 70.96±0.73 70.59±0.66 71.14±0.71 71.03±0.73 70.88±0.59
autos 90.73±4.52 89.18±4.93 89.29±3.84 93.93±2.68 90.77±5.1 94.1±3.3
balance-scale 63.06±6.18 84.46±4.1 65.84±2.89 84.46±4.1 84.01±4.4 62.24±5.37
breast-cancer 59.3±12.03 69.71±15.21 62.14±13.51 68.95±11.27 69.37±14.79 57.86±12.17
breast-w 97.85±1.86 99.19±0.87 98.71±1.38 99.21±0.73 99.21±0.86 98.29±1.6
colic 85.02±7.03 83.71±5.5 85.3±5.09 85.92±6.3 83.98±5.41 83.21±9.56
colic.ORIG 80.56±8.94 80.67±6.98 71.35±7.56 80.06±8.69 81.45±6.19 79.66±6.75
credit-a 89.42±3.1 92.09±3.43 91±3.14 91.48±3.52 92.22±3.41 88.24±2.89
credit-g 69.62±5 79.27±4.74 74.36±5 77.75±5.97 79.5±4.65 69.06±4.71
diabetes 75.5±5.76 82.31±5.17 77.57±3.98 82.31±5.17 82.44±5.19 75.46±5.87
glass 82.36±4.38 80.5±6.65 83.36±5.86 82.53±8.46 82.23±6.2 85.1±4.48
heart-c 83.1±1.19 84.1±0.54 83.85±0.84 83.96±0.51 84.1±0.56 83±1.24
heart-h 83.04±0.85 83.8±0.7 83.47±0.99 83.78±0.62 83.8±0.71 83.15±0.95
heart-statlog 81.36±9.15 91.3±4.19 89.79±4.36 89.66±3.42 91.06±4.24 82.76±9.13
hepatitis 82.03±14.04 88.99±8.99 83.14±12.51 88.03±8.29 88.99±8.99 81.7±12.83
hypothyroid 81.58±8.8 87.37±8.52 83.12±11.13 87.01±9.1 87.52±8.61 81.85±9.9
ionosphere 93.1±3.76 93.61±3.36 93.85±3.99 96.84±2.16 94.24±3.14 93.06±4.42
iris 97.33±2.63 98.58±2.67 97.75±3.22 98.08±2.67 98.58±2.67 99.25±1.39
kr-vs-kp 99.95±0.06 95.17±1.29 99.33±0.36 99.17±0.68 96.18±1.08 99.96±0.07
labor 74.17±31.04 98.33±5.27 92.5±7.03 100±0 98.33±5.27 88.33±31.48
letter 88.83±1.12 95.51±0.78 96.38±0.58 96.38±0.76 96.35±0.69 90.83±0.89
lymph 87.26±3.75 89.69±1.49 88.41±3.09 89.08±2.08 89.77±1.34 88.63±3.05
mushroom 99.98±0.02 99.59±0.18 99.97±0.02 99.97±0.1 99.86±0.09 100±0
primary-tumor 75.48±2.33 78.85±1.35 77.1±2.08 78.26±1.75 79.08±1.45 76.62±2.3
segment 98.85±0.32 98.51±0.46 99.01±0.16 99.09±0.43 98.73±0.39 99.36±0.2
sick 99.07±0.35 95.91±2.35 98.55±0.54 94.46±2.65 96.46±2.07 99.11±0.5
sonar 77.01±8.59 85.48±10.82 88.32±7.39 79.72±12.51 85.48±10.82 77.64±7.29
soybean 91.43±2.6 99.53±0.6 96.16±1.8 99.33±0.64 99.54±0.61 99.2±0.87
splice 98.14±0.72 99.41±0.22 96.99±0.97 99.41±0.22 99.43±0.22 98.16±0.63
vehicle 86.5±2.28 80.81±3.51 88.48±2.05 85.83±2.9 81.94±3.41 87.24±2.78
vote 96.77±2.96 96.56±2.09 97.39±1.49 98.82±1.61 96.77±1.92 98.21±1.8
vowel 91.28±2.46 95.81±0.84 97.58±0.64 98.66±0.68 97.46±0.55 93.28±2.02
waveform-5000 79.22±3.91 95.26±1.4 85.49±3.18 91.3±4.35 95.83±1.17 80.27±3.06
zoo 88.88±4.5 89.88±4.05 89.7±4.17 89.88±4.05 89.88±4.05 89.88±4.05
Mean 85.69±4.80 89.57±3.58 87.87±3.69 89.88±3.44 89.90±3.49 86.83±4.49

Table 4. The compared results of two-tailed t-test on AUC with a 95%
confidence level. An entry w/t/l in the table means that the algorithm at the corre-
sponding row wins in w data sets, ties in t data sets, and loses in l data sets, compared
to the algorithm at the corresponding column.

C4.4 NB KNN NBTree LWNB
NB 12/20/4
KNN 8/25/3 6/24/6
NBTree 13/21/2 6/30/0 11/24/1
LWNB 14/18/4 13/23/0 8/25/3 3/30/3
LWC4.4 8/28/0 5/19/12 7/23/6 2/24/10 5/19/12

evidence to prove that LWC4.4 is an effective algorithm for addressing the
class probability estimation problems.

In our experiments, we also observe the ranking performance of LWC4.4 in
term of AUC (the area under the Receiver Operating Characteristics curve)
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Table 5. The detailed experimental results on classification accuracy and
standard deviation. C4.4: C4.5 with laplace correction and without tree pruning;
NB: naive Bayes; KNN: K-Nearest-Neighbor; NBTree: naive Bayes tree; LWNB: locally
weighted naive Bayes; LWC4.4: locally weighted C4.4.

Dataset C4.4 NB KNN NBTree LWNB LWC4.4
anneal 99±0.98 94.32±2.38 96.88±2.15 98.33±1.6 95.65±2.13 99.11±0.88
anneal.ORIG 91.76±3.07 87.53±4.69 87.31±3.35 90.98±4.46 87.64±3.57 92.31±3.22
audiology 78.3±8 71.23±7.03 60.57±7.87 79.66±6.6 74.74±6.4 78.28±8.51
autos 81.45±7.48 64.83±11.18 66.29±8.28 78.12±7.02 69.17±8.96 82.9±9.22
balance-scale 69.3±4.25 91.36±1.38 83.84±4.71 91.36±1.38 91.36±1.38 72.02±4.69
breast-cancer 68.57±7.49 72.06±7.97 73.78±4.38 74.53±8.37 71.71±8.35 65.05±7.6
breast-w 92.99±3.66 97.28±1.84 94.99±2.81 96.99±1.85 97.28±1.84 92.99±3.72
colic 80.17±5.95 78.81±5.05 80.68±6.65 83.42±4.49 79.62±4.95 79.08±8.36
colic.ORIG 76.08±8.74 75.26±5.26 70.63±5.06 76.07±5.03 75.53±5.04 75.55±6.1
credit-a 83.19±3.5 84.78±4.28 85.07±3.62 85.07±3.81 85.22±4.36 80.72±4.21
credit-g 68.6±4.3 76.3±4.76 71.5±2.42 75.9±4.48 76.2±4.59 67.2±4.16
diabetes 69.54±5.12 75.4±5.85 69.14±1.84 75.4±5.85 75.4±5.38 69.8±3.85
glass 58.83±7.73 60.32±9.69 58.92±7.8 56.99±10.66 60.35±8.98 56.95±8.11
heart-c 74.26±11.46 84.14±4.16 81.41±12.65 82.16±3.66 84.14±4.16 72.59±11.54
heart-h 72.78±11 84.05±6.69 81.36±6.65 82.36±7.71 84.05±6.07 73.11±9.83
heart-statlog 75.93±8.95 83.7±5 80.74±6 82.59±6.06 83.7±5 74.44±7.29
hepatitis 81.25±11.52 83.79±8.79 84.46±6.25 83.79±9.91 83.13±8.22 79.33±11.15
hypothyroid 92.5±0.58 92.79±1.02 93.03±0.89 93.08±1 92.79±0.99 92.07±0.92
ionosphere 84.63±4.45 90.89±3.49 89.44±3.34 91.45±3.3 90.89±3.49 85.2±5.3
iris 92.67±5.84 94.67±8.2 93.33±6.29 94±7.98 95.33±8.34 92.67±5.84
kr-vs-kp 99.41±0.45 87.89±1.81 96.03±1.19 97.09±2.38 88.86±1.35 99.41±0.43
labor 77.67±15.64 93.33±11.65 91.67±11.79 91.67±11.79 93.33±11.65 79.33±15.22
letter 70.3±1.67 66.15±2.15 73.3±2.24 73.9±1.69 69.7±2.34 72.58±2.28
lymph 74.29±12.56 85.67±9.55 82.33±9.81 83.05±8.01 86.33±8.8 75.67±9.55
mushroom 99.75±0.32 93.84±2.02 99.82±0.3 99.88±0.26 95.57±2.16 99.75±0.32
primary-tumor 38.91±4.97 46.89±4.32 41.26±8.05 46.9±6.22 48.37±4.08 38.03±3.83
segment 92.86±1.39 88.92±1.95 90.74±1.61 92.51±1.77 90±2.14 93.51±1.71
sick 97.83±0.61 96.74±0.53 97.51±0.59 97.96±0.73 96.85±0.48 97.69±0.66
sonar 67.69±10.94 77.5±11.99 80.79±10.06 73.62±13.8 77.98±12.03 66.74±9.25
soybean 92.68±1.56 92.08±2.34 90.76±3.76 92.24±2.08 92.96±2.5 92.67±1.72
splice 91.57±1.37 95.36±1 79.81±2.81 95.36±1 95.42±1 90.78±1.5
vehicle 69.03±2.63 61.82±3.54 70.57±3.02 68.1±5 62.41±4.04 69.5±3.71
vote 94.96±3.83 90.14±4.17 94.03±2.69 95.41±4.03 90.6±3.93 94.95±4.41
vowel 75.66±5.18 67.07±4.21 81.31±1.73 88.59±2.74 75.56±5.08 77.47±4.37
waveform-5000 65.8±3.77 79.7±4 70.4±4.09 79.4±3.31 80.7±3.68 65.8±3.08
zoo 92.18±8.94 94.18±6.6 92.09±6.3 95.09±5.18 96.18±6.54 92.18±8.94
Mean 80.34±5.55 82.24±5.02 81.55±4.81 84.53±4.87 83.19±4.83 80.21±5.43

Table 6. The compared results of two-tailed t-test on classification accuracy
with a 95% confidence level. An entry w/t/l in the table means that the algorithm
at the corresponding row wins in w data sets, ties in t data sets, and loses in l data
sets, compared to the algorithm at the corresponding column.

C4.4 NB KNN NBTree LWNB
NB 11/15/10
KNN 4/26/6 8/23/5
NBTree 10/26/0 10/26/0 9/27/0
LWNB 11/17/8 7/29/0 7/23/6 0/28/8
LWC4.4 2/33/1 10/16/10 6/24/6 0/24/12 9/16/11

[15,16,17] shown in Table 3 and Table 4. Fortunately, LWC4.4 also significantly
outperforms C4.4. In the 36 data sets we test, LWC4.4 wins in 8 data sets,
surprisingly loses in 0 data sets, and ties all the other data sets. Besides, an
interested observation is that LWC4.4 almost ties C4.4 in term of classification
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accuracy shown in Table 5 and Table 6. So, we can draw a conclusion that locally
weighted learning can be used to improve C4.4 for class probability estimation
and ranking but not for classification.

5 Conclusions and Future Work

C4.4 is one of the most popular algorithms for addressing the class probability
estimation problems. C4.4 is an improved version of C4.5, in which two tech-
niques respectively called Laplace correction and turning of tree pruning are
used. Motivated by the success of using locally weighted learning to improve lin-
ear regression for regression and using locally weighted learning to improve naive
Bayes for classification, we present to apply locally weighted learning to C4.4 to
scale up its class probability estimation performance. We call our improved algo-
rithm locally weighted C4.4, simply LWC4.4. Our experimental results show that
LWC4.4 is surprisingly effective in class probability estimation and significantly
outperforms all the other algorithms used to compare.

Aiming at accurate classification, Friedman et al. [18] presented another lazy
decision tree learning algorithm, simply called LazyDT. LazyDT creates a path
in a tree for a test instance instead of a neighborhood. According to the experi-
mental results in [18], LazyDT is certainly effective in classification. However, it
is not clear whether LazyDT also is effective in class probability estimation. In
our future work, we will compare LWC4.4 with LazyDT.
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