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Preface

This volume contains the papers presented at DS-2007: The Tenth International
Conference on Discovery Science held in Sendai, Japan, October 1–4, 2007.

The main objective of the Discovery Science (DS) conference series is to pro-
vide an open forum for intensive discussions and the exchange of new ideas and
information among researchers working in the area of automating scientific dis-
covery or working on tools for supporting the human process of discovery in
science. It has been a successful arrangement in the past to co-locate the DS
conference with the International Conference on Algorithmic Learning Theory
(ALT). This combination of ALT and DS allows for a comprehensive treatment of
the whole range, from theoretical investigations to practical applications. Con-
tinuing this tradition, DS 2007 was co-located with the 18th ALT conference
(ALT 2007). The proceedings of ALT 2007 were published as a twin volume
4754 of the LNCS series.

The International Steering Committee of the Discovery Science conference
series provided important advice on a number of issues during the planning of
Discovery Science 2007. The members of the Steering Committee are Einoshin
Suzuki (Kyushu University, Chair), Achim G. Hoffmann (University of New
South Wales, Vice Chair), Setsuo Arikawa (Kyushu University), Hiroshi Motoda
(Osaka University), Masahiko Sato (Kyoto University), Satoru Miyano (Univer-
sity of Tokyo), Thomas Zeugmann (Hokkaido University), Ayumi Shinohara
(Tohoku University), Alberto Apostolico (Geogia Institute of Technology and
University of Padova), Massimo Melucci (University of Padova), Tobias Scheffer
(Max Planck Institute for Computer Science), Ken Satoh (National Institute of
Informatics), Nada Lavrac (Jozef Stefan Institute), Ljupco Todorovski (Univer-
sity of Ljubljana), and Hiroki Arimura (Hokkaido University).

In response to the call for papers 55 manuscripts were submitted. The Pro-
gram Committee selected for publication 17 submissions as long papers and 10
submissions as regular papers. Each submission was reviewed by at least two
members of the Program Committee, which consisted of international experts
in the field. The selection was made after careful evaluation of each paper based
on clarity, significance, technical quality, and originality, as well as relevance to
the field of discovery science. This volume consists of three parts. The first part
contains the papers/abstracts of the invited talks, the second part contains the
accepted long papers, and the third part contains the accepted regular papers.

We are deeply indebted to the Program Committee members as well as their
subreferees who played the critically important role of reviewing the submitted
papers and contributing to the intense discussions which resulted in the selection
of the papers published in this volume. Without their enormous effort, ensur-
ing the high quality of the work presented at Discovery Science 2007 would not
have been possible. Furthermore, we would like to thank all individuals and
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institutions who contributed to the success of the conference: the authors for
submitting papers, the invited speakers for their acceptance of the invitation
and their stimulating contributions to the conference, the Steering Committee,
and the sponsors for their support. In particular, we acknowledge the gener-
ous financial support from the Air Force Office of Scientific Research (AFOSR),
Asian Office of Aerospace Research and Development (AOARD)1; the Grad-
uate School of Information Sciences (GSIS), Tohoku University for providing
secretarial assistance and equipment; the Research Institute of Electrical Com-
munication (RIEC), Tohoku University; New Horizons in Computing, MEXT
Grant-in-Aid for Scientific Research on Priority Areas; and the Semi-Structured
Data Mining Project, MEXT Grant-in-Aid for Specially Promoted Research.

July 2007 Vincent Corruble
Masayuki Takeda
Einoshin Suzuki

1 AFOSR/AOARD support is not intended to express or imply endorsement by the
U. S. Federal Government.
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Challenge for Info-plosion

Masaru Kitsuregawa

Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

kitsure@tkl.iis.u-tokyo.ac.jp

Abstract. Information created by people has increased rapidly since the
year 2000, and now we are in a time which we could call the “information-
explosion era.” The project “Cyber Infrastructure for the Information-
explosion Era” is a six-year project from 2005 to 2010 supported by
Grant-in-Aid for Scientific Research on Priority Areas from the Min-
istry of Education, Culture, Sports, Science and Technology (MEXT)
of Japan. The project aims to establish the following fundamental tech-
nologies in this information-explosion era: novel technologies for efficient
and trustable information retrieval from explosively growing and hetero-
geneous information resources; stable, secure, and scalable information
systems for managing rapid information growth; and information uti-
lization by harmonized human-system interaction. It also aims to design
a social system that cooperates with these technologies. Moreover, it
maintains the synergy of cutting-edge technologies in informatics.

1 New IT Infrastructure for the Information Explosion
Era

The volume of information generated by mankind has increased exponentially,
i.e., “exploded” since 2000. The purpose of our research project, “Cyber Infras-
tructure for the Info-plosion Era” in the Ministry of Education, Culture, Sports,
Science and Technology (MEXT) Grand-in-Aid for Scientific Research on Prior-
ity Area, is to build advanced IT infrastructure technologies for this information
explosion era [1]. According to the research by the University of California at
Berkeley, the volume of information created by human is explosively increas-
ing [2, 3]. Huge volume of data is also created by sensors and machines. We have
considered that the most important theme for researchers in the field of computer
science is the research on new IT infrastructure for the Information-explosion
Era.

The project has three major research components (Research Groups) to
achieve this goal: build technologies to search for needed information efficiently,
without bias and without being at risk from the rapidly growing volume of in-
formation (A01); build new and sustainable technologies that can operate large-
scale information systems managing enormous amounts of information safely and
securely (A02), and build human-friendly technologies to enable flexible dialogue
between men and machines and enable everyone to utilize information (A03).

V. Corruble, M. Takeda, and E. Suzuki (Eds.): DS 2007, LNAI 4755, pp. 1–8, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 M. Kitsuregawa

Underlying these three components is the research into new social systems that
can facilitate the use of advanced, information-based IT services (B01). In ad-
dition, Large-scale Info-plosion Platform (LIP) is implemented as the shared
platforms used by all Research Groups. The project is interdisciplinary in its
structure, bringing together advanced research methods in information-related
areas. (Project leader: Masaru Kitsuregawa)

2 Infrastructure for Information Management, Fusion
and Utilization in the Information Explosion Era (A01)

This Group focuses on the shortfalls of present internet searches and looks into
new search methods, including better ranking systems (where minority opinions
are not overlooked), interactive searches, reliability assessments and time-space
searches. Currently, for knowledge workers, about 30% of their time on intellec-
tual activities is spent just for retrieval information [4]. The Group will attempt
to create a system of search platforms to search a massive volume of web page
contents.

Another important issue for information retrieval is the dangers associated
with information rankings. Search engines are extensively used in the web world.
When a general word is given, it may hit millions of pages, and only about 10

Fig. 1. Dangers Associated with Information Rankings
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probable candidates are listed as top rankers on the first page of the search
result. Now, is this ranking really reasonable? Who guarantee the correctness
of it? Actually, this is controlled by just a private company. There should be
a possibility that the ranking is sold and bought. In addition, it is possible to
control the ranking deliberately. We have found, as shown in the Fig.1, that the
red island of links suddenly appear on February 2004, while only the black island
of links is found in 2003. This is an example of a trick to raise their own rank
by linking them to a well-known site.

Fig. 2. Next generation searches

Also, in the current ranking system, majority opinions are highlighted while
minority opinions are buried. For example, when “Yutori Kyouiku” (liberal edu-
cation) is searched, majority opinions are found easily like “increasing opposition
to liberal education”. Although there are minority opinions such as “comprehen-
sive learning bearing fruit at last”, they could be completely neglected.

Various technologies, including information searching, natural language pro-
cessing, machine learning, artificial intelligence (AI) and database technology,
are integrated into this system to enable quantitative analysis to be performed
(Fig.2). We hope to enable a remarkable level of interdisciplinary synergy among
different fields. It is better for human to understand by presenting relational in-
formation also than information itself. Several innovative researches are expected
in this area, for example, presenting comparative information [5] and information
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on time sequence [6]. Research on the methods of management, integration and
processing of “exploding” real-world information, including cyber information
and information obtained from remote sensors, will also be conducted. (Group
leader: Masaru Kitsuregawa, University of Tokyo)

3 Infrastructure for Information-Explosion-Proof IT
Systems (A02)

The exponential increase in the amount of information requires far larger IT
systems to handle the volume. According to [7], Google has now over 450,000
servers over 25 locations around the world. The ratio of computers used for
search engines among shipped computers is 5% in total, according to MSRA
(Microsoft Research Asia) Summit in 2006. Data on the Internet is dispersed
over millions of nodes, making the overall system unstable and vulnerable to
information overload.

In order to keep stable operation of such huge systems, real-time monitoring
of behavior of software is inevitable. For such a purpose, explosive volume of
information extracted by software sensors should be analyzed so as to point
out anomaly behavior of the system and stabilize it. Researches on mining huge
volume of data yielded from monitoring very-large-scale systems are particularly
important for the age in which a nation-wide cyber attack becomes reality like
Estonian case.

This Group aims to establish a new “resilient grid” infrastructure which can
automatically allocate computer resources, handle large-scale system faults over

Fig. 3. Infrastructure for large scale system
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the network without human intervention and without the modern-day concerns
of security breaches and intrusion (Fig.3). This is partially based on Autonomic
Computing [8] and interesting research works performed by UC Berkeley and
Stanford University [9]. The resilient grid will allow a high-performance virtual
computing environment to be configured autonomously, on which applications
can be deployed safely and securely. (Group leader: Satoshi Matsuoka, Tokyo
Institute of Technology)

4 Infrastructure for Human Communication in the
Information Explosion Era (A03)

The information explosion has two aspects: qualitative (volume) and quantitative
(complexity). This Group proposes studies of the advancement of human com-
munication to address the issues related to complexity. The underlying concept
is a mutually adaptable multi-modal interaction that can fill the communication
gaps between people and information systems. This is the key to overcoming
the complexity resulting from highly functional and multi-functional informa-
tion systems, and establishing a secure and user-friendly interactive environment
(Fig.4).

Searching information from explosively huge size of information space still
requires advanced skills, since existing tools for such a purpose is not necessarily
easy to use for naive users. Human-friendly interfaces as well as communications

Fig. 4. Infrastructure for human
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with a robot in the near future are extremely important, which is covered by
this Group. Monitoring human behavior also produces explosive volume of data,
which plays essential role to analyze nonverbal communication dynamics.

Recently, new ideas have been demonstrated such as scientific formulation
of “knacks”, which establishes a firm theoretical ground for connecting highly
complex physical dynamics and symbolic information of skillful actions [10].
The effect of the theory is demonstrated by the world’s first experiment on
highly dynamic whole body motion of a humanoid robot. The ultimate goal of
the research is to establish a new framework fusing the robot and information
technology that solves the above stated bidirectional connection problem. (Group
leader: Takashi Matsuyama, Kyoto University)

5 Governing the Development of a Knowledge-Based
Society in the Information Explosion Era (B01)

Advances in technology often race far ahead of consideration of how people will
actually use the accompanying new benefits. Engineers focus on the technology
rather than the laws and regulations that will be required for the technologies
they develop. Support for engineers and keeping them aware of the legal and
social implications of technological advances is indispensable. Practical experi-
ments require cooperation and coordination with a number of partners in the

Fig. 5. Promotion of Society-based Research
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real world. Advances in IT have both a “bright” side and a “dark” side. Social
problems arising from the abuse of the dark side need to be addressed.

The fourth feature of our project is promotion of society-based research. For
investigating IT infrastructure for the Information-explosion era, society-based
research is inevitable, as shown in Fig.5. In order to realize universal social infras-
tructure including medical information network and nursing support information
network, various kind of problems should be resolved, for example, product lia-
bility, personal information protection, intellectual property rights management,
and security management.

In such a situation, cooperation in economic development between technology
providers and receivers is required. Design of new systems that place importance
on informed consent is important. We are making researches into information
governance that cover the explosion in the volume of information. This Group
focuses on social issues and will study the governance of information technology
development, its relationship with the legislative process, and its implications
for new legal and social systems [11]. (Group leader: Osamu Sudoh, University
of Tokyo)

6 The Aims and Roles of the Large-Scale Info-plosion
Platform in the Research Project

One of the most remarkable distinctions of this research project from other
national scientific projects is that we will inject a quarter of the total research
fund into the Large-scale Info-plosion Platform (LIP). This fund will be spent
to implement shared platforms which informatics researchers intriguingly and
collaboratively construct for innovative researches. These platforms enable each
research team to conduct novel and original research activities that cannot be
realized only within a Group. The resources integrated in the platforms will be
expected to be also used by researchers outside the research project.

7 Concluding Remarks

In this article, an overview of our Info-plosion project is introduced. The relation
of all Research Groups is shown in Fig.6. This research project is approved in
2005 and started full part since April 2006. The budget of the project is about
600 million Yen/yr and over 200 researchers from various fields are participating
currently. They are consisting of Planning Researches and Proposal Researches.
Over 300 research themes are applied, and more than 60 Proposal Researches
are accepted and started their innovative research works. Info-plosion project
is in coalition with the Consortium for New Project on “Intellectual Access to
Information” (jouhou-daikoukai) sponsored by the Ministry of Economy, Trade
and Industry (METI) started in 2006 [12].
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Fig. 6. Overall image of research project
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Machine Learning in Ecosystem Informatics

Thomas G. Dietterich

Oregon State University, Corvallis, Oregon, USA
tgd@eecs.oregonstate.edu,

http://web.engr.oregonstate.edu/~tgd

Abstract. The emerging field of Ecosystem Informatics applies meth-
ods from computer science and mathematics to address fundamental and
applied problems in the ecosystem sciences. The ecosystem sciences are
in the midst of a revolution driven by a combination of emerging tech-
nologies for improved sensing and the critical need for better science to
help manage global climate change. This paper describes several initia-
tives at Oregon State University in ecosystem informatics. At the level
of sensor technologies, this paper describes two projects: (a) wireless,
battery-free sensor networks for forests and (b) rapid throughput auto-
mated arthropod population counting. At the level of data preparation
and data cleaning, this paper describes the application of linear gaussian
dynamic Bayesian networks to automated anomaly detection in temper-
ature data streams. Finally, the paper describes two educational activ-
ities: (a) a summer institute in ecosystem informatics and (b) an inter-
disciplinary Ph.D. program in Ecosystem Informatics for mathematics,
computer science, and the ecosystem sciences.

1 Introduction

The late Jim Gray (Gray & Szalay, 2003) describes four general approaches to
scientific research:

– Observational science, in which scientists make direct observations,
– Analytical science, in which scientists develop analytical models capable of

making predictions,
– Computational science, in which scientists employ massive computing power

to study the behavior of analytical models and to make predictions at much
wider scales of time and space, and

– Data exploration science, in which massive amounts of data are automati-
cally collected from sensors, and scientists employ data mining and statistical
learning methods to build models and test hypotheses.

The ecosystem sciences currently employ analytical and computational meth-
ods as illustrated, for example, by the extensive work on coupled ocean-
atmosphere climate models. However, with the exception of data collected via
remote sensing, the ecosystem sciences do not yet have large networks of sensors
that automatically collect massive data sets.

Three steps are required to enable ecological research to become a data explo-
ration science. First, sensors that can measure ecologically-important quantities
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must be developed and deployed in sensor networks. Second, methods for auto-
matically managing and cleaning the resulting data must be developed. Third,
data mining and machine learning algorithms must be applied to generate, refine,
and test ecological hypotheses.

This paper briefly reviews work at Oregon State University on each of these
three steps. Oregon State University has a long history of excellence in the ecosys-
tem sciences. It includes world-leading research groups in forestry, oceanogra-
phy, and atmospheric sciences, as well as strong teams in machine learning,
data mining, and ecological engineering. The campus leadership has made a sig-
nificant investment in new faculty positions in mathematics, computer science,
and forestry with the goal of developing strong interdisciplinary education and
research programs in ecosystem informatics.

This paper is organized as follows. The paper begins with a discussion of two
sensor development projects, one in wireless sensor networks for plant physiology
and the other on computer vision for automated population counting. Then the
paper discusses work on automated data cleaning. Finally, the paper briefly
describes two educational initiatives aimed at preparing computer scientists,
mathematicians, and ecologists to work together in interdisciplinary teams to
address the important scientific problems confronting the ecosystem sciences.

2 New Sensor Technologies for Ecology

The study of complex ecosystems is limited by the kinds of data that can be reli-
ably and feasibly collected. Two recent US National Science Board studies (NSB,
2000; NSB, 2002) emphasize the importance of developing new instrumentation
technologies for ecological research. At Oregon State, we are pursuing several
projects include the following two: (a) wireless, battery-free temperature sensors
for forest physiology and (b) computer vision for rapid throughput arthropod
population counting.

2.1 Battery-Free Forest Sensors

Forests play an important role in absorbing carbon dioxide and producing oxy-
gen. A central challenge in the study of forest physiology is to understand the
exchange of these gasses between the forest and the atmosphere. Existing models
of this exchange only capture vertical interactions, under the simplifying assump-
tion that the forest can be modeled as a planar array of trees. But real forests
are often on mountain slopes where breezes tend to move up the slope during the
day and down the slope at night. Hence, to obtain a more realistic understanding
of forest-atmosphere gas exchange, we need to measure and model these lateral
winds as well.

Many research groups around the world have developed wireless sensor net-
works that rely on on-board batteries to provide electric power (Kahn et al.,
1999; Elson & Estrin, 2004). Unfortunately, these batteries typically contain
toxic chemicals, which means that these sensors must be retrieved after the
batteries have run down. This can be impractical in ecologically-sensitive and
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Fig. 1. Spatial layout of battery-free sensor network with powered base station at
center

inaccessible locations, and it also limits the period of time that the sensor net-
work can be collecting data.

This was the motivation for a team consisting of Barbara Bond (Forest Sci-
ence), and Terri Fiez, Karti Mayaram, Huaping Liu, and Thinh Nguyen (Electri-
cal Engineering), and Mike Unsworth (Atmospheric Sciences) to develop battery-
free sensors for use in the forests of the Pacific Northwest.

The basic design concept is to have a base station that is connected to standard
electric power. This base station broadcasts radio frequency energy across the
RF spectrum. This energy is harvested by ultra-low power sensor units. They
store the energy in a capacitor and use it to make sensor readings and to receive
data from and transmit data to other sensors. The data is relayed from the
peripheral sensors to the central base station in a series of hops (see Figure 1).

The development of such passively-powered sensor nodes requires that all com-
ponents of the sensor employ ultra-low power methods. The initial design includes
a temperature sensor, an RF energy harvesting circuit, a binary frequency shift
keying (BFSK) receiver, and a BFSK transmitter. The receiver and transmitter
share a single antenna. Figure 2 shows the layout of the current prototype sensor.

Note that this prototype contains only a temperature sensor. While it will be
easy to add other sensors to the chip, it turns out that by measuring tempera-
tures, it is possible to infer the lateral winds. So this initial sensor chip will be
sufficient to address the forest physiology question that motivated the project.

The ultra-low power temperature sensor measures the outside temperature
from −10 to 40 degrees Celsius with an accuracy of ±0.5 degrees. It is able to
achieve this accuracy while consuming only 1nJ per measurement, which is a
factor of 85 less energy than is required by state-of-the-art sensors.

The energy harvesting circuit employs a 36-stage “floating gate” design (Le
et al., 2006). It is able to harvest energy up to a distance of 15 meters, which is
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Fig. 2. Layout of prototype battery-free temperature sensor chip

substantially better than the best previously-reported method which only works
out to 4.5 meters. Hence, the maximum size of the sensor network region will be
approximately 30 meters in diameter.

The transceiver consumes the largest amount of power in the sensor. A low
power super-regenerative design based on binary frequency shift keying is em-
ployed in the prototype. Experiments in the Oregon coastal mountains with a
separate test platform show that even when the sensors are only 10cm above the
ground, this design should be able to transmit 10 meters with a raw bit error
rate of 10−4 (see Figure 3). By applying error-correcting coding, the effective bit
error rate will be much lower.

The first version of the chip will be fabricated in summer 2007, which will
make it possible to test the complete sensor network design, including energy
harvesting and communications protocols.

2.2 Rapid-Throughput Arthropod Population Counting

Two central questions in ecology are (a) to explain the observed distribution
of species around the world and (b) to understand the role of biodiversity in
maintaining the health and stability of ecosystems. The key data necessary to
study these questions consists of counting the number of individuals belonging
to each species at many different sites.

There are many thousands of species of arthropods. They populate many
different habitats including freshwater streams, lakes, soils, and the oceans.
They are also generally easy to collect. Despite all of these advantages, the great
drawback of using arthropod population data is the tedious and time-consuming
process of manually classifying each specimen to the genus and species level. At
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Fig. 3. Bit error rate experiments at two different transmission power levels

Oregon State, a team consisting of Tom Dietterich, Eric Mortensen (Com-
puter Science), Robert Paasch (Mechanical Engineering), Andrew Moldenke
(Botany and Plant Pathology), David Lytle (Zoology) along with Linda Shapiro
(Computer Science) from the University of Washington is developing a rapid-
throughput system that combines robotic manipulation with computer vision to
automatically classify and count arthropod specimens.

The first application project has been to classify stonefly larvae that live in the
substrate of freshwater streams. Stoneflies are an excellent indicator of stream
health. They are highly sensitive to pollution, and, because they live in the
stream, they provide a more reliable measurement than a single-point-in-time
chemical assay. Figure 4 shows the mechanical apparatus that we have developed.
In the left image, each individual stonefly specimen is dropped into the plastic
reservoir in the lower right part of the image. This reservoir (and the rest of the
apparatus) contains alcohol, and the specimen is manipulated via pumps and
alcohol jets. The blue part of the apparatus contains a diamond-shaped channel
that is covered with transparent plastic. The specimen is pumped into this tube.
Infrared detectors (not shown, but located at the two vertical posts and the
circular mirror) detect the specimen, cut off the main pump, and turn on a side
jet (see the small metal tube emerging from the left side of the blue base). This
side jet “captures” the specimen within the field of the microscope (see image
(b)). When the side jet is turned off, the specimen falls to the bottom of the
channel and a photo is taken. Then the side jet is turned on, which causes the
specimen to rotate rapidly. The jet is again turned off, and another picture taken.
This continues until a good image of the back (dorsal) side of the specimen is
obtained. The pictures are taken through a mirror apparatus (upper right of
(a)), which allows us to capture two views of the specimen with each photo of
the camera. This increases the likelihood of capturing a good dorsal view.

Figure 5 shows example images captured by the apparatus for four different
taxa. Notice the large variation in size, pose, and coloration.
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(a) (b)

Fig. 4. (a) Prototype mirror and transportation apparatus. (b) Entire stonefly trans-
portation and imaging setup (with microscope and attached digital camera, light boxes,
and computer controlled pumps for transporting and rotating the specimen.

(a) (b) (c) (d)

Fig. 5. Example images of different stonefly larvae species. (a) Calineuria, (b)
Doroneuria, (c) Hesperoperla and (d) Yoraperla.

The next step in the process is to apply a learned visual classifier to classify
the dorsal views into the class. To do this, we employ a variation on the bag-of-
interest-points approach to generic object recognition. This approach consists of
the following steps:

1. Apply region detectors to the image to find “interesting” regions. We apply
three different detectors: The Hessian Affine detector (Mikolajczyk & Schmid,
2004), the Kadir Entropy detector (Kadir & Brady, 2001), and our own PCBR
detector (Deng et al., 2007). Figure 6 shows examples of the detected regions.

2. Represent each detected region as a 128-element SIFT vector (Lowe, 2004).
The SIFT descriptor vector is a set of histograms of the local intensity
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(a) (b) (c)

Fig. 6. Visual Comparison of the regions output by the three detectors on three Ca-
lineuria specimens. (a) Hessian-affine, (b) Kadir Entropy, (c) PCBR.

gradient direction. Although SIFT was originally developed for object track-
ing, it has been found to work well for object recognition.

3. Compute a feature vector from the set of detected SIFT vectors. Let D :
R128 �→ {1, . . . , ND} be a visual dictionary that maps each SIFT vector into
an integer between 1 and ND (ND varied from 65 to 90 in our experiments).
The visual dictionary is constructed by fitting a gaussian mixture model with
ND components to the SIFT vectors observed on a separate “clustering” data
set. The function D takes a SIFT vector and maps it to the gaussian mixture
component most likely to have generated that vector.

Given the visual dictionary, the set of SIFT vectors computed from the
image is converted into a feature vector x such that x[i] is the number of
SIFT vectors v in the image such that D(v) = i. In effect, x is a histogram
where the ith element counts the number of SIFT vectors that matched the
ith dictionary entry.

4. Apply a learned classifier to map x to one of the K possible taxa.

In our work, we learn a separate dictionary Ds,d for each species s and each
detector d. Consequently, we compute a separate histogram vector xs,d for each
dictionary. In our case, we have 3 detectors and 4 species, so we compute 12
dictionaries and 12 histograms. We then concatenate all of these feature vectors
to obtain one very long feature vector which is processed by the learned classifier.

To train the system, our entomology collaborators (Lytle and Moldenke) col-
lected and independently classified 263 stonefly specimens. These were then pho-
tographed resulting in the data summarized in Table 1. These data were then
randomly partitioned into 3 folds (stratifying by specimen and by class), and a
3-fold cross-validation was performed. In each iteration, one fold of the data was
employed to learn the visual dictionaries, one fold to train the classifier, and one
fold to evaluate the results.
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Table 1. Specimens and images employed in the study

Taxon Specimens Images

Calineuria 85 400
Doroneuria 91 463
Hesperoperla 58 253
Yoraperla 29 124

Table 2. Confusion matrix of the combined Kadir, Hessian-affine and PCBR detectors

predicted as ⇒ Cal. Dor. Hes. Yor.
Calineuria 315 79 6 0

Doroneuria 80 381 2 0

Hesperoperla 24 22 203 4

Yoraperla 1 0 0 123

We employed bagged logistic model trees as implemented in the WEKA sys-
tem (Landwehr et al., 2005) as the classifier (with 20 iterations of bagging).
Table 2 shows the results. Overall, the classifier correctly classifies 82.4% of
the images (with a 95% confidence interval of ±2.1%). The distinction between
Calineuria and Doroneuria is the most challenging. Separate experiments have
shown that our accuracy on this 2-class problem is statistically indistinguishable
from human performance, when humans are given the same whole-specimen im-
ages that our program observes.

We have recently extended this work to apply to 9 stonefly taxa, with an
overall accuracy of 85%. This level of accuracy is more than sufficient for use in
routine biomonitoring tasks. Consequently, we are planning a trial with standard
field samples later this year. More details on this work can be found in Larios et
al. (Larios et al., In Press).

We have now begun working on a new apparatus and algorithms for recog-
nizing and classifying soil mesofauna and freshwater zooplankton. We anticipate
that this apparatus will have a broader range of applications in ecological studies
of biodiversity.

3 Automated Data Cleaning for Sensor Networks

As sensors collect data, various things can go wrong. First, the sensors can fail.
Second, the data recording process (e.g., the network connection) can fail. Third,
the semantic connection between the sensor and the environment can be broken.
For example, a thermometer measuring stream water temperature will change
to measuring air temperature if the water level falls too low.

To catch these errors, we need methods for automated data cleaning. These
methods can be applied to automatically flag data values so that scientists using
this data can take appropriate steps to avoid propagating errors into their model
building and testing.
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Ethan Dereszynski, a doctoral student at Oregon State, has developed an
automated data cleaning system for identifying anomalies in temperature data
collected at the H. J. Andrews Experimental Forest, which is one of the NSF-
funded Long Term Ecological Research (LTER) sites. In this forest, there are
three major meteorological stations at three different altitudes. At each station,
there is a tower with four temperature sensors which measure and report tem-
perature every 15 minutes. Hence, for this simple sensor network, there are 12
parallel data streams, one for each thermometer.

This data is collected and posted on a web site in raw form. At regular inter-
vals, the LTER staff manually inspect the data to find and remove errors. They
then post a clean version of the data, which is the version intended for use by
scientists around the world. Our goal is to replace this human data cleaning with
an automated process. But a nice side effect of the existing practice is that we
have several years of supervised training data for constructing and testing data
cleaning methods.

We have adopted a density estimation approach to anomaly detection. Our
goal is to develop a model that can evaluate the probability of a new sensor
reading given past sensor readings. If the new reading is highly unlikely, it is
marked as an anomaly, and it is not used in making subsequent probability
estimates. In our work to date, we have focused only on anomaly detection for a
single sensor data stream. In future work, we will study simultaneous anomaly
detection over the 12 parallel data streams.
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Figure 7 shows typical temperature readings as a function of time for the
2.5m sensor at the Central Meteorological station. Observe that there are sea-
sonal effects (it is colder in the winter and warmer in the summer), diurnal
(daily) effects (colder at night; warmer in the day), and weather system effects.
The weather system effects are the hardest to model. They generally cause the
temperature to be systematically warmer or colder than normal over a period of
3-10 consecutive days.

Anomalies can be divided into easy, medium, and hard cases. The easy cases
are things such as the failure of the connection between the sensor and the data
logger. If the data logger loses contact with the sensor, it records a fixed value
of −53.3. Similarly, if the data logger receives an input voltage outside the legal
bounds, it records a fixed value of −6999. Obviously, these anomalous values are
easy to detect.

Medium anomalies can be detected from a single sensor, but they require
more subtle analysis. Figure 8 (top) shows a case in which the heat shield on
a sensor has been damaged. This causes the sensor to warm up too quickly,
measure incorrectly high readings in the hottest part of the day, and then cool
down too quickly in the evening. Figure 8(bottom) shows what happens when
snow buries the 1.5m and 2.5m sensors. The 1.5m sensor records a steady value
of zero (the freezing point), while the 2.5m sensor’s readings are damped toward
zero. As the snow melts, first the 2.5m sensor recovers and then the 1.5m sensor
recovers.
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Fig. 9. Dynamic Bayesian network for anomaly detection. Square nodes denote dis-
crete variables; circular nodes denote normally-distributed variables. Grey nodes are
observed in the data.

Hard anomalies require the analysis of multiple data streams. One of the most
interesting anomalies arose when the cables for two of the sensors were inter-
changed during maintenance. Normally, the 1.5m, 2.5m, 3.5m, and 4.5m sensors
exhibit a monotonic temperature ordering. At night, the 1.5m sensor is warmest,
because it is closest to the warm soil. In the day time, the 4.5m sensor is warmest
and the 1.5m sensor is coldest. To detect the cable-swap anomaly, we need to
model the joint distribution of the four sensors and detect that this monotonic
relationship is violated. As indicated above, this will be a topic of our future work.

Figure 9 shows our dynamic Bayesian network for anomaly detection. The
heart of the model consists of three variables O (the observed temperature),
T (the predicted temperature), and St (the state of the sensor). The state of
the sensor is quantized into four levels (“very good”, “good”, “bad”, and “very
bad”). If the sensor is “very good”, then O should be equal to T with some slight
variation. This is captured by asserting that

P (O|T ) = Norm(T, 1.0).

That is, the mean value of O is T with a standard deviation of 1.0. If St is
“good”, then the standard deviation is 5.0. If St is “bad”, the standard deviation
is 10.0, and if St is “very bad”, the standard deviation is 100,000 (i.e., effectively
infinite).

In practice, we observe O and, based on previously-observed values, compute
the probability distribution of T . Then the most likely value of St is determined
by how different O and T are.

The key to good anomaly detection in this model is therefore to make good
predictions for T . To do this, we need to capture the seasonal, diurnal, and
weather system variation in temperature. We capture the first two via a “base-
line” temperature B. The weather system variation is captured by a first-order
Markov variable ∆.
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Conceptually, B is the average temperature reading that would be expected
for this particular quarter hour and day of the year ignoring short-term changes
due to weather systems. However, we have only four years of training data, so if
we average only the four readings for the specific time of day and day of year, we
will get a very poor estimate for B. To overcome this problem, we combine the
observed values from the 5 temperature readings before and after the particular
quarter hour and the 3 days before and after the target day. The local trend
within each day and across the 7 days is computed and removed and then the
de-trended temperature values are averaged across the years in the training data.

The ∆ variable attempts to capture the local departure from the baseline
caused by weather systems. It is modeled as a first-order Markov process:

P (∆t|QH, D, ∆t−1) = Norm(µQH,D + ∆t−1, σ
2
QH,D).

QH denotes the quarter hour of each measurement (1, . . . , 96); Day (or D)
denotes the day of the year (1, . . . , 365). The main idea is that ∆t is approxi-
mately equal to ∆t−1 but with a slight offset µQH,D that depends on the time of
day and the day of the year and a variance that similarly depends on the time
of day and the day of the year. A warm spell is represented by ∆t > 0, and a
cold period by ∆t < 0. If ∆t > 0, then it will tend to stay > 0 for a while, and
similarly if ∆t < 0, it will tend to stay < 0 for a while.

Figure 10 illustrates the relationship between the baseline B, the ∆ process,
and the observed and predicted temperatures. The fact that ∆ varies somewhat

Fig. 10. Relationship between the baseline, ∆, and the observed and predicted tem-
peratures. Note that the baseline curve captures the diurnal variation. It is also slowly
dropping, which captures the gradual seasonal change. The ∆ curve starts out negative
and then gradually increases so that the sum of the baseline plus ∆, which gives the
predicted temperature T almost exactly matches the observed temperature O. Where
these two curves differ, the model will declare anomalies.
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erratically reveals that the model still has room for improvement, since ideally,
it would be a fairly smooth curve.

The model is applied one temperature reading at a time. First the observed
temperature O, and the QH and D are asserted as evidence. Then probabilistic
reasoning is performed to compute updated probability distributions for ∆t and
T and the most likely value of St. The data point is tagged with this most likely
value. If the most likely value is “very bad”, then the observed temperature
is removed as evidence, and the value of ∆t is recomputed. Also, the variance
σ2

QH,D is set to a small value, so that the distribution of ∆t remains concentrated
near the value of ∆t−1. Then the next data point is processed and tagged.

The model was trained using four years of data and then evaluated on the
remaining three years. The model correctly detects all of the easy anomalies.
Quantitative evaluation of the medium anomalies is more difficult, because the
domain expert tended to mark long contiguous intervals of time as anomalous
when there was a problem, whereas the model is more selective. For example,
when a sun shield was missing, the expert would label whole days as incorrect,
whereas the model only marks the afternoon temperatures as bad, because the
sensor is still measuring the correct temperature at night. Figure 11 shows the
performance of the model in this case. Notice that it not only detects that the
peak temperatures are too high but also that the temperature rises and falls too
quickly.
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Our overall assessment is that we are achieving near-100% recall for anomalies
but with a false positive rate of roughly 5.3%. This means that we are reducing
by over 94% the amount of data that the domain expert must review manually
without missing any anomalies. More details are available in Dereszynski and
Dietterich (Dereszynski & Dietterich, 2007).

This work shows that carefully-designed dynamic Bayesian networks can do an
excellent job of anomaly detection for challenging single-sensor data streams. As
more sensor networks are deployed, the need for data cleaning will become much
greater, because it will be impossible for human experts to manually inspect and
clean the data. We hope that the methods described here will be able to help
address this challenge.

4 Education and Training

Ecosystem informatics is inherently an interdisciplinary research area that ad-
dresses the scientific problems that arise in various ecological sciences (botany,
zoology, population genetics, forest science, natural resource management, earth
sciences, etc.) with the modeling and computational methods of mathematics,
computer science, and statistics. At Oregon State University, we have developed
two educational programs to prepare students for research careers in ecosystem
informatics.

4.1 Summer Institute in Ecoinformatics

Under funding from the US National Science Foundation, Professor Desiree Tul-
los leads a 10-week summer institute in ecosystem informatics for advanced
undergraduate and first-year graduate students. Students spend the summer in
residence at the Andrews Experimental forest. For the first 3 weeks, they at-
tend an intensive course in ecosystem informatics that introduces them to the
scientific problems, research methods, and the terminology of ecosystem infor-
matics. The next 6 weeks involves working on a research project supervised by
faculty and doctoral students. This typically involves a mix of field work, data
analysis, and mathematical modeling. The final week consists of a series of oral
presentations of the results of their research projects.

4.2 Graduate Program in Ecosystem Informatics

The second educational program is a Ph.D. minor in Ecosystem Informatics.
This was initiated by a five-year IGERT grant (Julia Jones, Principal Investiga-
tor) from the US National Science Foundation that provides graduate fellowship
support for students in the program. This was complemented by the hiring of
four new faculty members to teach and lead research in this program.

One of the challenges of interdisciplinary education is to prepare people to
work together across disciplinary lines without requiring them to become experts
in multiple fields. To address this challenge, we decided to structure the program
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so that students must have a “home” Ph.D. department, and they receive a
doctoral degree in their home department. In addition, they receive a Ph.D.
minor in Ecosystem Informatics. The minor involves the following:

– Participation in the Ecosystem Informatics “Boot Camp”, which is a one
week residential course held at the Andrews Experimental Forest prior to
the start of classes in the fall.

– Participation in a year-long Introduction to Ecosystem Informatics class.
In this class, students are introduced to the problems and terminology of
ecosystem informatics, and they work in cross-disciplinary student teams to
study emerging problems in ecosystem informatics.

– Participation in a 6-month internship, preferrably at an institution outside
the US. The goal of this is to expose students to research questions moti-
vated by ecological problems outside the US and to give them a more global
perspective. Often, this results in a published paper or an idea that can form
the basis of their doctoral research.

– Inclusion of an ecosystem informatics chapter in the doctoral dissertation.
This chapter is devoted to interdisciplinary work, sometimes with another
student in the program. The research topic for this chapter sometimes grows
out of the year-long class or the internship. In addition, to help students
develop these topics, we organize cross-disciplinary brainstorming sessions
for each student. The student presents a proposed problem, and faculty
members and other students brainstorm ideas for how to formulate and
study the problem.

We are now entering the fourth year of this graduate program. One of the
biggest benefits so far has been the development of interesting mathematical
models for analyzing disturbance in forests and habitats in streams. In addition,
the program has served as a nexus for fostering new interdisciplinary projects
including the battery-free sensor network program described in this paper.

5 Concluding Remarks

Many of the most important scientific and policy questions facing humanity
require major advances in the ecological sciences. Ecology has traditionally been
a difficult area to study because of the difficulty of measuring the primary data:
the fluxes of chemicals and nutrients and the distribution and interaction of living
organisms. Fortunately, we are in the midst of a revolution in sensor technology
that is going to make it possible to measure this primary data continuously with
dense networks of sensors. This will enable the ecosystem sciences to apply the
methods of data exploration science including data mining, machine learning,
and statistical model building to make rapid progress.

This paper has briefly described some of the activities in sensors and ecosystem
informatics at Oregon State University. At the level of sensor development, we
have discussed the development of ultra-low power temperature sensor nodes
that can operate by harvesting power from spread-spectrum RF broadcast from
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a central powered base station. We have also described our work on applying
computer vision and robotics to automatically manipulate and classify arthropod
specimens. At the level of data analysis, we have described work on automated
data cleaning for temperature data streams collected over a 7-year period at the
Andrews Experimental Forest. Finally, we have discussed two new educational
programs that seek to train researchers to work in interdisciplinary teams.

Much more research is required in all of these areas. Furthermore, there is a
great need for new kinds of data analysis and data management tools. In par-
ticular, machine learning and data mining methods must be developed that can
deal with spatially explicit models and that can model interactions among hun-
dreds or thousands of species in time and space. I hope this paper will motivate
the reader to consider contributing new ideas to this exciting and important
research area.
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Abstract. I postulate that human or other intelligent agents function or should
function as follows. They store all sensory observations as they come—the data
is ‘holy.’ At any time, given some agent’s current coding capabilities, part of the
data is compressible by a short and hopefully fast program / description / expla-
nation / world model. In the agent’s subjective eyes, such data is more regular
and more beautiful than other data. It is well-known that knowledge of regularity
and repeatability may improve the agent’s ability to plan actions leading to exter-
nal rewards. In absence of such rewards, however, known beauty is boring. Then
interestingness becomes the first derivative of subjective beauty: as the learning
agent improves its compression algorithm, formerly apparently random data parts
become subjectively more regular and beautiful. Such progress in data compres-
sion is measured and maximized by the curiosity drive: create action sequences
that extend the observation history and yield previously unknown / unpredictable
but quickly learnable algorithmic regularity. I discuss how all of the above can be
naturally implemented on computers, through an extension of passive unsuper-
vised learning to the case of active data selection: we reward a general reinforce-
ment learner (with access to the adaptive compressor) for actions that improve
the subjective compressibility of the growing data. An unusually large compres-
sion breakthrough deserves the name discovery. The creativity of artists, dancers,
musicians, pure mathematicians can be viewed as a by-product of this principle.
Several qualitative examples support this hypothesis.

1 Introduction

A human lifetime lasts about 3 × 109 seconds. The human brain has roughly 1010 neu-
rons, each with 104 synapses on average. Assuming each synapse can store not more than
3 bits, there is still enough capacity to store the lifelong sensory input stream with a rate
of roughly 105 bits/s, comparable to the demands of a movie with reasonable resolution.
The storage capacity of affordable technical systems will soon exceed this value.

Hence, it is not unrealistic to consider a mortal agent that interacts with an envi-
ronment and has the means to store the entire history of sensory inputs, which partly
depends on its actions. This data anchors all it will ever know about itself and its role
in the world. In this sense, the data is ‘holy.’

What should the agent do with the data? How should it learn from it? Which actions
should it execute to influence future data?

V. Corruble, M. Takeda, and E. Suzuki (Eds.): DS 2007, LNAI 4755, pp. 26–38, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Simple Algorithmic Principles 27

Some of the sensory inputs reflect external rewards. At any given time, the agent’s
goal is to maximize the remaining reward or reinforcement to be received before it
dies. In realistic settings external rewards are rare though. In absence of such rewards
through teachers etc., what should be the agent’s motivation? Answer: It should spend
some time on unsupervised learning, figuring out how the world works, hoping this
knowledge will later be useful to gain external rewards.

Traditional unsupervised learning is about finding regularities, by clustering the data,
or encoding it through a factorial code [2,14] with statistically independent components,
or predicting parts of it from other parts. All of this may be viewed as special cases of
data compression. For example, where there are clusters, a data point can be efficiently
encoded by its cluster center plus relatively few bits for the deviation from the center.
Where there is data redundancy, a non-redundant factorial code [14] will be more com-
pact than the raw data. Where there is predictability, compression can be achieved by
assigning short codes to events that are predictable with high probability [3]. Generally
speaking we may say that a major goal of traditional unsupervised learning is to im-
prove the compression of the observed data, by discovering a program that computes
and thus explains the history (and hopefully does so quickly) but is clearly shorter than
the shortest previously known program of this kind.

According to our complexity-based theory of beauty [15,17,26], the agent’s cur-
rently achieved compression performance corresponds to subjectively perceived beauty:
among several sub-patterns classified as ‘comparable’ by a given observer, the sub-
jectively most beautiful is the one with the simplest (shortest) description, given the
observer’s particular method for encoding and memorizing it. For example, mathemati-
cians find beauty in a simple proof with a short description in the formal language
they are using. Others like geometrically simple, aesthetically pleasing, low-complexity
drawings of various objects [15,17].

Traditional unsupervised learning is not enough though—it just analyzes and en-
codes the data but does not choose it. We have to extend it along the dimension of
active action selection, since our unsupervised learner must also choose the actions that
influence the observed data, just like a scientist chooses his experiments, a baby its toys,
an artist his colors, a dancer his moves, or any attentive system its next sensory input.

Which data should the agent select by executing appropriate actions? Which are the
interesting sensory inputs that deserve to be targets of its curiosity? I postulate [26]
that in the absence of external rewards or punishment the answer is: Those that yield
progress in data compression. What does this mean? New data observed by the learn-
ing agent may initially look rather random and incompressible and hard to explain. A
good learner, however, will improve its compression algorithm over time, using some
application-dependent learning algorithm, making parts of the data history subjectively
more compressible, more explainable, more regular and more ‘beautiful.’ A beautiful
thing is interesting only as long as it is new, that is, as long as the algorithmic regu-
larity that makes it simple has not yet been fully assimilated by the adaptive observer
who is still learning to compress the data better. So the agent’s goal should be: create
action sequences that extend the observation history and yield previously unknown / un-
predictable but quickly learnable algorithmic regularity or compressibility. To rephrase
this principle in an informal way: maximize the first derivative of subjective beauty.
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An unusually large compression breakthrough deserves the name discovery. How
can we motivate a reinforcement learning agent to make discoveries? Clearly, we cannot
simply reward it for executing actions that just yield a compressible but boring history.
For example, a vision-based agent that always stays in the dark will experience an ex-
tremely compressible and uninteresting history of unchanging sensory inputs. Neither
can we reward it for executing actions that yield highly informative but uncompressible
data. For example, our agent sitting in front of a screen full of white noise will expe-
rience highly unpredictable and fundamentally uncompressible and uninteresting data
conveying a lot of information in the traditional sense of Boltzmann and Shannon [30].
Instead, the agent should receive reward for creating / observing data that allows for
improvements of the data’s subjective compressibility.

The appendix will describe formal details of how to implement this principle on
computers. The next section will provide examples of subjective beauty tailored to hu-
man observers, and illustrate the learning process leading from less to more subjective
beauty. Then I will argue that the creativity of artists, dancers, musicians, pure mathe-
maticians as well as unsupervised attention in general is just a by-product of our prin-
ciple, using qualitative examples to support this hypothesis.

2 Visual Examples of Subjective Beauty and Its ‘First Derivative’
Interestingness

Figure 1 depicts the drawing of a female face considered ‘beautiful’ by some human
observers. It also shows that the essential features of this face follow a very simple
geometrical pattern [17] to be specified by very few bits of information. That is, the data
stream generated by observing the image (say, through a sequence of eye saccades) is
more compressible than it would be in the absence of such regularities. Although few
people are able to immediately see how the drawing was made without studying its grid-
based explanation (right-hand side of Figure 1), most do notice that the facial features
somehow fit together and exhibit some sort of regularity. According to our postulate,
the observer’s reward is generated by the conscious or subconscious discovery of this
compressibility. The face remains interesting until its observation does not reveal any
additional previously unknown regularities. Then it becomes boring even in the eyes of
those who think it is beautiful—beauty and interestingness are two different things.

Figure 2 provides another example: a butterfly and a vase with a flower. The image to
the left can be specified by very few bits of information; it can be constructed through
a very simple procedure or algorithm based on fractal circle patterns [15]. People who
understand this algorithm tend to appreciate the drawing more than those who do not.
They realize how simple it is. This is not an immediate, all-or-nothing, binary process
though. Since the typical human visual system has a lot of experience with circles, most
people quickly notice that the curves somehow fit together in a regular way. But few are
able to immediately state the precise geometric principles underlying the drawing. This
pattern, however, is learnable from the right-hand side of Figure 2. The conscious or
subconscious discovery process leading from a longer to a shorter description of the
data, or from less to more compression, or from less to more subjectively perceived
beauty, yields reward depending on the first derivative of subjective beauty.
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Fig. 1. Left: Drawing of a female face based on a previously published construction plan [17]
(1998). Some human observers report they feel this face is ‘beautiful.’ Although the drawing has
lots of noisy details (texture etc) without an obvious short description, positions and shapes of the
basic facial features are compactly encodable through a very simple geometrical scheme. Hence
the image contains a highly compressible algorithmic regularity or pattern describable by few
bits of information. An observer can perceive it through a sequence of attentive eye movements
or saccades, and consciously or subconsciously discover the compressibility of the incoming data
stream. Right: Explanation of how the essential facial features were constructed [17]. First the
sides of a square were partitioned into 24 equal intervals. Certain interval boundaries were con-
nected to obtain three rotated, superimposed grids based on lines with slopes ±1 or ±1/23 or
±23/1. Higher-resolution details of the grids were obtained by iteratively selecting two previ-
ously generated, neighbouring, parallel lines and inserting a new one equidistant to both. Finally
the grids were vertically compressed by a factor of 1 − 2−4. The resulting lines and their inter-
sections define essential boundaries and shapes of eyebrows, eyes, lid shades, mouth, nose, and
facial frame in a simple way that is obvious from the construction plan. Although this plan is
simple in hindsight, it was hard to find: hundreds of my previous attempts at discovering such
precise matches between simple geometries and pretty faces failed.

3 Compressibility-Based Rewards of Art and Music

The examples above indicate that works of art and music may have important pur-
poses beyond their social aspects [1] despite of those who classify art as superfluous
[10]. Good observer-dependent art deepens the observer’s insights about this world or
possible worlds, unveiling previously unknown regularities in compressible data, con-
necting previously disconnected patterns in an initially surprising way that makes the
combination of these patterns subjectively more compressible, and eventually becomes
known and less interesting. I postulate that the active creation and attentive perception
of all kinds of artwork are just by-products of my curiosity principle yielding reward
for compressor improvements.
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Fig. 2. Left: Image of a butterfly and a vase with a flower, reprinted from Leonardo [15,26].
Right: Explanation of how the image was constructed through a very simple algorithm exploit-
ing fractal circles [15]. The frame is a circle; its leftmost point is the center of another circle of
the same size. Wherever two circles of equal size touch or intersect are centers of two more circles
with equal and half size, respectively. Each line of the drawing is a segment of some circle, its
endpoints are where circles touch or intersect. There are few big circles and many small ones. In
general, the smaller a circle, the more bits are needed to specify it. The drawing to the left is sim-
ple (compressible) as it is based on few, rather large circles. Many human observers report that
they derive a certain amount of pleasure from discovering this simplicity. The observer’s learning
process causes a reduction of the subjective complexity of the data, yielding a temporarily high
derivative of subjective beauty. (Again I needed a long time to discover a satisfactory way of
using fractal circles to create a reasonable drawing.)

Let us elaborate on this idea in more detail, following the discussion in [26]. Artifi-
cial or human observers must perceive art sequentially, and typically also actively, e.g.,
through a sequence of attention-shifting eye saccades or camera movements scanning
a sculpture, or internal shifts of attention that filter and emphasize sounds made by a
pianist, while surpressing background noise. Undoubtedly many derive pleasure and
rewards from perceiving works of art, such as certain paintings, or songs. But differ-
ent subjective observers with different sensory apparati and compressor improvement
algorithms will prefer different input sequences. Hence any objective theory of what is
good art must take the subjective observer as a parameter, to answer questions such as:
Which action sequences should he select to maximize his pleasure? According to our
principle he should select one that maximizes the quickly learnable compressibility that
is new, relative to his current knowledge and his (usually limited) way of incorporating
or learning new data.

For example, which song should some human observer select next? Not the one he
just heard ten times in a row. It became too predictable in the process. But also not
the new weird one with the completely unfamiliar rhythm and tonality. It seems too
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irregular and contain too much arbitrariness and subjective noise. He should try a song
that is unfamiliar enough to contain somewhat unexpected harmonies or melodies or
beats etc., but familiar enough to allow for quickly recognizing the presence of a new
learnable regularity or compressibility in the sound stream. Sure, this song will get
boring over time, but not yet.

The observer dependence is illustrated by the fact that Schönberg’s twelve tone mu-
sic is less popular than certain pop music tunes, presumably because its algorithmic
structure is less obvious to many human observers as it is based on more complicated
harmonies. For example, frequency ratios of successive notes in twelve tone music of-
ten cannot be expressed as fractions of very small integers. Those with a prior education
about the basic concepts and objectives and constraints of twelve tone music, however,
tend to appreciate Schönberg more than those without such an education.

All of this perfectly fits our principle: The current compressor of a given subjective
observer tries to compress his history of acoustic and other inputs where possible. The
action selector tries to find history-influencing actions that improve the compressor’s
performance on the history so far. The interesting musical and other subsequences are
those with previously unknown yet learnable types of regularities, because they lead to
compressor improvements. The boring patterns are those that seem arbitrary or random,
or whose structure seems too hard to understand.

Similar statements not only hold for other dynamic art including film and dance
(taking into account the compressibility of controller actions), but also for painting and
sculpture, which cause dynamic pattern sequences due to attention-shifting actions [29]
of the observer.

Just as observers get intrinsic rewards from sequentially focusing attention on art-
work that exhibits new, previously unknown regularities, the ‘creative’ artists get re-
ward for making it. For example, I found it extremely rewarding to discover (after hun-
dreds of frustrating failed attempts) the simple geometric regularities that permitted the
construction of the drawings in Figures 1 and 2. The distinction between artists and
observers is not clear though. Artists can be observers and vice versa. Both artists and
observers execute action sequences. The intrinsic motivations of both are fully compat-
ible with our simple principle. Some artists, however, crave external reward from other
observers, in form of praise, money, or both, in addition to the internal reward that
comes from creating a new work of art. Our principle, however, conceptually separates
these two types of reward.

From our perspective, scientists are very much like artists. They actively select ex-
periments in search for simple laws compressing the observation history. For example,
different apples tend to fall off their trees in similar ways. The discovery of a law un-
derlying the acceleration of all falling apples helps to greatly compress the recorded
data.

The framework in the appendix is sufficiently formal to allow for implementa-
tion of our principle on computers. The resulting artificial observers will vary in
terms of the computational power of their history compressors and learning algo-
rithms. This will influence what is good art / science to them, and what they find
interesting.
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25. Schmidhuber, J.: Gödel machines: Towards a technical justification of consciousness. In:
Kudenko, D., Kazakov, D., Alonso, E. (eds.) Adaptive Agents and Multi-Agent Systems III.
LNCS (LNAI), vol. 3394, pp. 1–23. Springer, Heidelberg (2005)

26. Schmidhuber, J.: Developmental robotics, optimal artificial curiosity, creativity, music, and
the fine arts. Connection Science 18(2), 173–187 (2006)

27. Schmidhuber, J.: Gödel machines: fully self-referential optimal universal problem solvers.
In: Goertzel, B., Pennachin, C. (eds.) Artificial General Intelligence, pp. 199–226. Springer,
Heidelberg (2006)

28. Schmidhuber, J., Heil, S.: Sequential neural text compression. IEEE Transactions on Neural
Networks 7(1), 142–146 (1996)

29. Schmidhuber, J., Huber, R.: Learning to generate artificial fovea trajectories for target detec-
tion. International Journal of Neural Systems 2(1& 2), 135–141 (1991)

30. Shannon, C.E.: A mathematical theory of communication (parts I and II. Bell System Tech-
nical Journal XXVII, 379–423 (1948)

31. Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and Control 7,
1–22 (1964)

32. Solomonoff, R.J.: Complexity-based induction systems. IEEE Transactions on Information
Theory IT-24(5), 422–432 (1978)

33. Storck, J., Hochreiter, S., Schmidhuber, J.: Reinforcement driven information acquisition in
non-deterministic environments. In: Proceedings of the International Conference on Artificial
Neural Networks, Paris, vol. 2, pp. 159–164. EC2 & Cie (1995)

A Appendix

This appendix is a compactified, compressibility-oriented variant of parts of [26].
The world can be explained to a degree by compressing it. The compressed ver-

sion of the data can be viewed as its explanation. Discoveries correspond to large data
compression improvements (found by the given, application-dependent compressor im-
provement algorithm). How to build an adaptive agent that not only tries to achieve
externally given rewards but also to discover, in an unsupervised and experiment-based
fashion, explainable and compressible data? (The explanations gained through explo-
rative behavior may eventually help to solve teacher-given tasks.)

Let us formally consider a learning agent whose single life consists of discrete cycles
or time steps t = 1, 2, . . . , T . Its complete lifetime T may or may not be known in
advance. In what follows, the value of any time-varying variable Q at time t (1 ≤ t ≤ T )
will be denoted by Q(t), the ordered sequence of values Q(1), . . . , Q(t) by Q(≤ t),
and the (possibly empty) sequence Q(1), . . . , Q(t − 1) by Q(< t). At any given t the
agent receives a real-valued input x(t) from the environment and executes a real-valued
action y(t) which may affect future inputs. At times t < T its goal is to maximize
future success or utility

u(t) = Eμ

[
T∑

τ=t+1

r(τ)

∣∣∣∣∣ h(≤ t)

]
, (1)

 http://www.idsia.ch/~juergen/interest.html
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where r(t) is an additional real-valued reward input at time t, h(t) the ordered triple
[x(t), y(t), r(t)] (hence h(≤ t) is the known history up to t), and Eμ(· | ·) denotes
the conditional expectation operator with respect to some possibly unknown distribu-
tion μ from a set M of possible distributions. Here M reflects whatever is known
about the possibly probabilistic reactions of the environment. For example, M may
contain all computable distributions [31,32,9,4]. There is just one life, no need for pre-
defined repeatable trials, no restriction to Markovian interfaces between sensors and
environment, and the utility function implicitly takes into account the expected remain-
ing lifespan Eμ(T | h(≤ t)) and thus the possibility to extend it through appropriate
actions [21,24,27,25].

Recent work has led to the first learning machines that are universal and optimal in
various very general senses [4,24,27]. Such machines can in principle find out by them-
selves whether curiosity and world model construction are useful or useless in a given
environment, and learn to behave accordingly. The present appendix, however, will as-
sume a priori that compression / explanation of the history is good and should be done;
here we shall not worry about the possibility that ‘curiosity may kill the cat.’ Towards
this end, in the spirit of our previous work [12,11,33,16,18], we split the reward signal
r(t) into two scalar real-valued components: r(t) = g(rext(t), rint(t)), where g maps
pairs of real values to real values, e.g., g(a, b) = a + b. Here rext(t) denotes traditional
external reward provided by the environment, such as negative reward in response to
bumping against a wall, or positive reward in response to reaching some teacher-given
goal state. But I am especially interested in rint(t), the internal or intrinsic or curiosity
reward, which is provided whenever the data compressor / internal world model of the
agent improves in some sense. Our initial focus will be on the case rext(t) = 0 for all
valid t. The basic principle is essentially the one we published before in various variants
[11,12,33,16,18,23,26]:

Principle 1. Generate curiosity reward for the controller in response to improvements
of the history compressor.

So we conceptually separate the goal (explaining / compressing the history) from the
means of achieving the goal. Once the goal is formally specified in terms of an algo-
rithm for computing curiosity rewards, let the controller’s reinforcement learning (RL)
mechanism figure out how to translate such rewards into action sequences that allow
the given compressor improvement algorithm to find and exploit previously unknown
types of compressibility.

A.1 Predictors vs Compressors

Most of our previous work on artificial curiosity was prediction-oriented, e. g.,
[11,12,33,16,18,23,26]. Prediction and compression are closely related though. A pre-
dictor that correctly predicts many x(τ), given history h(< τ), for 1 ≤ τ ≤ t, can
be used to encode h(≤ t) compactly: Given the predictor, only the wrongly predicted
x(τ) plus information about the corresponding time steps τ are necessary to recon-
struct history h(≤ t), e.g., [13]. Similarly, a predictor that learns a probability distri-
bution of the possible next events, given previous events, can be used to efficiently
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encode observations with high (respectively low) predicted probability by few (respec-
tively many) bits [3,28], thus achieving a compressed history representation. Gener-
ally speaking, we may view the predictor as the essential part of a program p that re-
computes h(≤ t). If this program is short in comparison to the rad data h(≤ t), then
h(≤ t) is regular or non-random [31,7,9,19], presumably reflecting essential environ-
mental laws. Then p may also be highly useful for predicting future, yet unseen x(τ)
for τ > t.

A.2 Compressor Performance Measures

At any time t (1 ≤ t < T ), given some compressor program p able to compress history
h(≤ t), let C(p, h(≤ t)) denote p’s compression performance on h(≤ t). An appropriate
performance measure would be

Cl(p, h(≤ t)) = l(p), (2)

where l(p) denotes the length of p, measured in number of bits: the shorter p, the more
algorithimic regularity and compressibility and predictability and lawfulness in the ob-
servations so far. The ultimate limit for Cl(p, h(≤ t)) would be K∗(h(≤ t)), a variant
of the Kolmogorov complexity of h(≤ t), namely, the length of the shortest program
(for the given hardware) that computes an output starting with h(≤ t) [31,7,9,19].

Cl(p, h(≤ t)) does not take into account the time τ(p, h(≤ t)) spent by p on com-
puting h(≤ t). An alternative performance measure inspired by concepts of optimal
universal search [8,22] is

Clτ (p, h(≤ t)) = l(p) + log τ(p, h(≤ t)). (3)

Here compression by one bit is worth as much as runtime reduction by a factor of 1
2 .

A.3 Compressor Improvement Measures

The previous Section A.2 only discussed measures of compressor performance, but
not of performance improvement, which is the essential issue in our curiosity-oriented
context. To repeat the point made above: The important thing are the improvements
of the compressor, not its compression performance per se. Our curiosity reward in
response to the compressor’s progress (due to some application-dependent compressor
improvement algorithm) between times t and t + 1 should be

rint(t + 1) = f [C(p(t + 1), h(≤ t + 1)), C(p(t), h(≤ t + 1))], (4)

where f maps pairs of real values to real values. Various alternative progress measures
are possible; most obvious is f(a, b) = a − b.

Note that both the old and the new compressor have to be tested on the same data,
namely, the complete history so far.

A.4 Asynchronous Framework for Creating Curiosity Reward

Let p(t) denote the agent’s current compressor program at time t, s(t) its current con-
troller, and do:
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Controller: At any time t (1 ≤ t < T ) do:

1. Let s(t) use (parts of) history h(≤ t) to select and execute y(t + 1).
2. Observe x(t + 1).
3. Check if there is non-zero curiosity reward rint(t + 1) provided by the separate,

asynchronously running compressor improvement algorithm (see below). If not, set
rint(t + 1) = 0.

4. Let the controller’s reinforcement learning (RL) algorithm use h(≤ t+1) including
rint(t+1) (and possibly also the latest available compressed version of the observed
data—see below) to obtain a new controller s(t + 1), in line with objective (1).

Compressor: Set pnew equal to the initial data compressor. Starting at time 1, repeat
forever until interrupted by death T :

1. Set pold = pnew; get current time step t and set hold = h(≤ t).
2. Evaluate pold on hold, to obtain C(pold, hold) (Section A.2). This may take many

time steps.
3. Let some (application-dependent) compressor improvement algorithm (such as a

learning algorithm for an adaptive neural network predictor) use hold to obtain a
hopefully better compressor pnew (such as a neural net with the same size but im-
proved prediction capability and therefore improved compression performance).
Although this may take many time steps, pnew may not be optimal, due to limita-
tions of the learning algorithm, e.g., local maxima.

4. Evaluate pnew on hold, to obtain C(pnew, hold). This may take many time steps.
5. Get current time step τ and generate curiosity reward

rint(τ) = f [C(pold, hold), C(pnew , hold)], (5)

e.g., f(a, b) = a − b; see Section A.3.

Obviously this asynchronuous scheme may cause long temporal delays between con-
troller actions and corresponding curiosity rewards. This may impose a heavy burden on
the controller’s RL algorithm whose task is to assign credit to past actions (to inform the
controller about beginnings of compressor evaluation processes etc., we may augment its
input by unique representations of such events). Nevertheless, there are RL algorithms
for this purpose which are theoretically optimal in various senses, to be discussed next.

A.5 Optimal Curiosity & Creativity & Focus of Attention

Our chosen compressor class typically will have certain computational limitations. In
the absence of any external rewards, we may define optimal pure curiosity behavior rel-
ative to these limitations: At time t this behavior would select the action that maximizes

u(t) = Eμ

[
T∑

τ=t+1

rint(τ)

∣∣∣∣∣ h(≤ t)

]
. (6)

Since the true, world-governing probability distribution μ is unknown, the resulting task
of the controller’s RL algorithm may be a formidable one. As the system is revisiting
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previously uncompressible parts of the environment, some of those will tend to become
more compressible, that is, the corresponding curiosity rewards will decrease over time.
A good RL algorithm must somehow detect and then predict this decrease, and act
accordingly. Traditional RL algorithms [6], however, do not provide any theoretical
guarantee of optimality for such situations. (This is not to say though that sub-optimal
RL methods may not lead to success in certain applications; experimental studies might
lead to interesting insights.)

Let us first make the natural assumption that the compressor is not super-complex
such as Kolmogorov’s, that is, its output and rint(t) are computable for all t. Is there
a best possible RL algorithm that comes as close as any other to maximizing objective
(6)? Indeed, there is. Its drawback, however, is that it is not computable in finite time.
Nevertheless, it serves as a reference point for defining what is achievable at best.

A.6 Optimal But Incomputable Action Selector

There is an optimal way of selecting actions which makes use of Solomonoff’s theoreti-
cally optimal universal predictors and their Bayesian learning algorithms [31,32,9,4,5].
The latter only assume that the reactions of the environment are sampled from an un-
known probability distribution μ contained in a set M of all enumerable distributions—
compare text after equation (1). More precisely, given an observation sequence q(≤ t),
we only assume there exists a computer program that can compute the probability of
the next possible q(t+1), given q(≤ t). In general we do not know this program, hence
we predict using a mixture distribution

ξ(q(t + 1) | q(≤ t)) =
∑

i

wiμi(q(t + 1) | q(≤ t)), (7)

a weighted sum of all distributions μi ∈ M, i = 1, 2, . . ., where the sum of the constant
weights satisfies

∑
i wi ≤ 1. This is indeed the best one can possibly do, in a very gen-

eral sense [32,4]. The drawback of the scheme is its incomputability, since M contains
infinitely many distributions. We may increase the theoretical power of the scheme by
augmenting M by certain non-enumerable but limit-computable distributions [19], or
restrict it such that it becomes computable, e.g., by assuming the world is computed by
some unknown but deterministic computer program sampled from the Speed Prior [20]
which assigns low probability to environments that are hard to compute by any method.

Once we have such an optimal predictor, we can extend it by formally including
the effects of executed actions to define an optimal action selector maximizing future
expected reward. At any time t, Hutter’s theoretically optimal (yet uncomputable) RL
algorithm AIXI [4] uses an extended version of Solomonoff’s prediction scheme to
select those action sequences that promise maximal future reward up to some horizon
T , given the current data h(≤ t). That is, in cycle t + 1, AIXI selects as its next action
the first action of an action sequence maximizing ξ-predicted reward up to the given
horizon, appropriately generalizing eq. (7). AIXI uses observations optimally [4]: the
Bayes-optimal policy pξ based on the mixture ξ is self-optimizing in the sense that
its average utility value converges asymptotically for all μ ∈ M to the optimal value
achieved by the Bayes-optimal policy pμ which knows μ in advance. The necessary
and sufficient condition is that M admits self-optimizing policies. The policy pξ is also
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Pareto-optimal in the sense that there is no other policy yielding higher or equal value
in all environments ν ∈ M and a strictly higher value in at least one [4].

A.7 Computable Selector of Provably Optimal Actions, Given Current System

AIXI above needs unlimited computation time. Its computable variant AIXI(t,l) [4] has
asymptotically optimal runtime but may suffer from a huge constant slowdown. To take
the consumed computation time into account in a general, optimal way, we may use
the recent Gödel machines [21,24,27,25] instead. They represent the first class of math-
ematically rigorous, fully self-referential, self-improving, general, optimally efficient
problem solvers. They are also applicable to the problem embodied by objective (6).

The initial software S of such a Gödel machine contains an initial problem solver,
e.g., some typically sub-optimal method [6]. It also contains an asymptotically optimal
initial proof searcher based on an online variant of Levin’s Universal Search [8], which
is used to run and test proof techniques. Proof techniques are programs written in a
universal language implemented on the Gödel machine within S. They are in principle
able to compute proofs concerning the system’s own future performance, based on an
axiomatic system A encoded in S. A describes the formal utility function, in our case
eq. (6), the hardware properties, axioms of arithmetic and probability theory and data
manipulation etc, and S itself, which is possible without introducing circularity [21].

Inspired by Kurt Gödel’s celebrated self-referential formulas (1931), the Gödel ma-
chine rewrites any part of its own code (including the proof searcher) through a self-
generated executable program as soon as its Universal Search variant has found a proof
that the rewrite is useful according to objective (6). According to the Global Optimal-
ity Theorem [21,24,27,25], such a self-rewrite is globally optimal—no local maxima
possible!—since the self-referential code first had to prove that it is not useful to con-
tinue the search for alternative self-rewrites.

If there is no provably useful optimal way of rewriting S at all, then humans will not
find one either. But if there is one, then S itself can find and exploit it. Unlike the pre-
vious non-self-referential methods based on hardwired proof searchers [4], Gödel ma-
chines not only boast an optimal order of complexity but can optimally reduce (through
self-changes) any slowdowns hidden by the O()-notation, provided the utility of such
speed-ups is provable.

A.8 Consequences of Optimal Action Selecton

Now let us apply any optimal RL algorithm to curiosity rewards as defined above. The
expected consequences are: at time t the controller will do the best to select an action
y(t) that starts an action sequence expected to create observations yielding maximal
expected compression progress up to the expected death T , taking into accunt the limi-
tations of both the compressor and the compressor improvement algorithm. In particu-
lar, ignoring issues of computation time, it will focus in the best possible way on things
that are currently still uncompressible but will soon become compressible through addi-
tional learning. It will get bored by things that already are compressible. It will also get
bored by things that are currently uncompressible but will apparently remain so, given
the experience so far, or where the costs of making them compressible exceed those of
making other things compressible, etc.
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Abstract. Kernel methods have proven to be powerful tools in machine
learning. They perform well in many applications, and there is also a
well-developed theory of sufficient conditions for a kernel to be useful for
a given learning problem. However, while a kernel can be thought of as
just a pairwise similarity function that satisfies additional mathematical
properties, this theory requires viewing kernels as implicit (and often
difficult to characterize) maps into high-dimensional spaces. In this talk
I will describe work on developing a theory that applies to more general
similarity functions (not just legal kernels) and furthermore describes the
usefulness of a given similarity function in terms of more intuitive, direct
properties, without need to refer to any implicit spaces.

An interesting feature of the proposed framework is that it can also
be applied to learning from purely unlabeled data, i.e., clustering. In
particular, one can ask how much stronger the properties of a similar-
ity function should be (in terms of its relation to the unknown desired
clustering) so that it can be used to cluster well: to learn well without
any label information at all. We find that if we are willing to relax the
objective a bit (for example, allow the algorithm to produce a hierar-
chical clustering that we will call successful if some pruning is close to
the correct answer), then this question leads to a number of interest-
ing graph-theoretic and game-theoretic properties that are sufficient to
cluster well. This work can be viewed as an approach to defining a PAC
model for clustering.

This talk is based on work joint with Maria-Florina Balcan and San-
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While kernel methods are the basis of many popular techniques in supervised
learning, they are less commonly used in testing, estimation, and analysis of
probability distributions, where information theoretic approaches rule the roost.
However it becomes difficult to estimate mutual information or entropy if the
data are high dimensional.

We present a method which allows us to compute distances between dis-
tributions without the need for intermediate density estimation. Our approach
allows algorithm designers to specify which properties of a distribution are most
relevant to their problems. Our method works by studying the convergence prop-
erties of the expectation operator when restricted to a chosen class of functions.
In a nutshell our method works as follows: denote by X a compact domain and
let H be a Reproducing Kernel Hilbert Space on X with kernel k. Note that in
an RKHS we have f(x) = 〈f, k(x, ·)〉 for all functions f ∈ H. This allows us to
denote the expectation operator of a distribution p via

μ[p] := Ex∼p[k(x, ·)] and hence Ex∼p[f(x)] = 〈μ[p], f〉 for f ∈ H.

Moreover, for a sample X = {x1, . . . , xm} drawn from some distribution p we
may denote the empirical counterparts via

μ[X ] := 1
m

m∑
i=1

k(xi, ·) and hence 1
m

m∑
i=1

f(xi) = 〈μ[X ], f〉 for f ∈ H.

This allows us to compute distances between distributions p, q via D(p, q) :=
‖μ[p] − μ[q]‖ and empirical samples X, X ′ via D(X, X ′) := ‖μ[X ] − μ[X ′]‖ alike.
One can show that under rather benign regularity conditions μ[X ] → μ[p] at rate
O(m−

1
2 ). Such a distance is useful in a number of estimation problems:

– Two-sample tests whether X and X ′ are drawn from the same distribution.
– Density estimation, where we try to find p so as to minimize the distance

between μ[p] and μ[X ], either by mixture models or by exponential families.
– Independence measures where we compute the distance between the joint

distribution and the product of the marginals via D(p(x, y), p(x) · p(y)).

� The full version of this paper is published in the Proceedings of the 18th International
Conference on Algorithmic Learning Theory, ALT 2007, Lecture Notes in Artificial
Intelligence Vol. 4754.
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– Feature selection algorithms which try to find a subset of covariates x max-
imally dependent on the target random variables y.

Our framework allows us to unify a large number of existing feature extrac-
tion and estimation methods, and provides new algorithms for high dimensional
nonparametric statistical tests of distribution properties.
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Abstract. A geometric graph is a labeled graph whose vertices are points in the
2D plane with an isomorphism invariant under geometric transformations such
as translation, rotation, and scaling. While Kuramochi and Karypis (ICDM2002)
extensively studied the frequent pattern mining problem for geometric subgraphs,
the maximal graph mining has not been considered so far. In this paper, we study
the maximal (or closed) graph mining problem for the general class of geometric
graphs in the 2D plane by extending the framework of Kuramochi and Karypis.
Combining techniques of canonical encoding and a depth-first search tree for
the class of maximal patterns, we present a polynomial delay and polynomial
space algorithm, MaxGeo, that enumerates all maximal subgraphs in a given
input geometric graph without duplicates. This is the first result establishing the
output-sensitive complexity of closed graph mining for geometric graphs. We
also show that the frequent graph mining problem is also solvable in polynomial
delay and polynomial time.

Keywords: geometric graphs, closed graph mining, depth-first search, rightmost
expansion, polynomial delay polynomial space enumeration algorithms.

1 Introduction

Background. There has been increasing demands for efficient methods of extracting
useful patterns and rules from weakly structured datasets due to rapid growth of both
the amount and the varieties of nonstandard datasets in scientific, spatial, and relational
domains. Graph mining is one of the most promising approaches to knowledge discov-
ery from such weakly structured datasets. The following topics have been extensively
studied for the last few years: frequent subgraph mining [6,12,17,27], maximal (closed)
subgraph mining [3,9,20,25] and combination with machine learning [21,28]. See sur-
veys, e.g. [8,24], for the overviews.

The Class of Geometric Graphs. In this paper, we address a graph mining problem
for the class G of geometric graphs. Geometric graphs (geographs, for short) [15] are
a special kind of vertex- and edge-labeled graphs whose vertices have coordinates in
the 2D plane R

2, while labels represent geometric features and their relationships. The

V. Corruble, M. Takeda, and E. Suzuki (Eds.): DS 2007, LNAI 4755, pp. 42–55, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Time and Space Efficient Discovery of Maximal Geometric Graphs 43

matching relation for geographs is defined through the invariance under a class of geo-
metric transformations, such as translation, rotation, and scaling in the plane, in addition
to the usual constraint for graph isomorphism. We do not consider the mirror projec-
tion, but the extension is simple (consider the mirror projection when we compute the
canonical form). Geographs are useful in applications concerned with geometric con-
figurations, e.g., the analysis of chemical compounds, geographic information systems,
and knowledge discovery from vision and image data.

Maximal Pattern Discovery Problem. For the class of geometric graphs, Kuramochi
and Karypis presented an efficient mining algorithm gFSG for the frequent geometric
subgraph mining, based on Apriori-like breadth-first search [15]. However, the frequent
pattern mining poses a problem in that it can easily produce an extremely large number
of solutions, which degrades the performance and the comprehensivity of data mining
to a large extent. The maximal subgraph mining problem, on the other hand, asks to
find only all maximal patterns (closed patterns) appearing in a given input geometric
graph D, where a maximal pattern is a geometric graph which is not included in any
properly larger subgraph having the same set of occurrences in D. Since the set M of all
maximal patterns is expected to be much smaller than the set F of all frequent patterns
and still contains the complete information of D, maximal subgraph mining has some
advantages as a compact representation to frequent subgraph mining.

Difficulties of Maximal Pattern Mining. However, there are a number of difficulties
in maximal subgraph mining for geometric graphs. In general, maximal pattern min-
ing has a large computational complexity [4,26]. So far, a number of efficient maximal
pattern algorithms have been proposed for sets, sequences, and graphs [3,9,20,22,25].
Some algorithms use explicit duplicate detection and maximality test by maintaining
a collection of already discovered patterns. This requires a large amount of memory
and delay time, and introduces difficulties in the use of efficient search techniques, e.g.,
depth-first search. For these reasons, output-polynomial time computation for the max-
imal pattern problem is still a challenge in maximal geometric graphs. Moreover, the
invariance under geometric transformation for geometric graphs adds another difficulty
to geometric graph mining. In fact, no depth-first algorithm has been known to date
even for frequent pattern mining.

Main Result. The goal of this paper is to develop a time and space efficient algorithm
that can work well in theory and practice for maximal geometric graphs. As our main
result, we present an efficient depth-first search algorithm MaxGeo that, given an input
geometric graph, enumerates all frequent maximal pattern P in M without duplicates
in O(m(m+n)||D||2 log ||D||) = O(n8 log n) time per pattern and in O(m) = O(n2)
space, with the maximum number m of occurrences of a pattern other than trivial pat-
terns, the number n of vertices in the input graph, and the number ||D|| of vertices and
edges in the input graph. This is a polynomial delay and polynomial time algorithm
for the maximal pattern discovery problem for geometric graphs. This is the first result
establishing the output-sensitive complexity of maximal graph mining for geometric
graphs.
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Other Contributions of This Paper. To cope with the difficulties mentioned above,
we devise some new techniques for geometric graph mining.

(1) We define a polynomial time computable canonical code for all geometric graphs
in G, which is invariant under geometric transformations. We give the first polyno-
mial delay and polynomial space algorithm FreqGeo for the frequent geometric
subgraph mining problem as a bi-product.

(2) We introduce the intersection and the closure operation for G. Using these tools,
we define the tree-shaped search route T for all maximal patterns in G. We pro-
pose a new pattern growth technique arising from reverse search and closure exten-
sion [18] for traversing the search route R by depth-first search.

Related Works. There have been closely related researches on 1D and 2D point set
matching algorithms, e.g. [2], where point sets are the simplest kind of geometric
graphs. However, since they have mainly studied exact and approximate matching of
point sets, the purpose is different from this work.

A number of efficient maximal pattern mining algorithms have been presented for
subclasses of graph, trees, and sequences, e.g., general graphs [25], ordered and un-
ordered trees [9], attribute trees [3,20], and sequences [4,5,23]. Some of them have
output-sensitive time complexity as follows. The first group deal with the mining of
“elastic” or “flexible” patterns, where the closure is not defined. CMTreeMiner [9],
BIDE [23], and MaxFlex [5] are essentially output-polynomial time algorithms for
location-based maximal patterns though it is implicit. They are originally used as prun-
ing for document-based maximal patterns [5].

The second group deal with the mining of “rigid” patterns which have closure-like
operations. LCM [22] proposes ppc-extension for maximal sets, and then CloATT [3]
and MaxMotif [4] generalize it for trees and sequences. They together with this paper
are polynomial delay and polynomial space algorithms.

Some of the other maximal pattern miners for complex graph classes,
e.g.,CloseGraph [25], adopt frequent pattern discovery augmented with,e.g., maximal-
ity test and duplicate detection although output-polynomial time computability seems
difficult to achieve with this approach.

Organization of this paper. Section 2 introduces the maximal pattern mining for ge-
ometric graphs. Section 3 gives the canonical code and the frequent pattern mining. In
Section 4, we present polynomial delay and polynomial space algorithm MaxGeo for
maximal pattern mining, and in Section 5, we conclude.

2 Preliminaries

We prepare basic definitions and notations for maximal geometric graph mining. We
denote by N and R the set of all natural numbers and the set of all real numbers, resp.

2.1 Geometric Transformation and Congruence

We briefly prepare basic of plane geometry [11,13]. In this paper, we consider geo-
metric objects, such as points, lines, point sets, and polygons, on the two-dimensional
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Euclidean space E = R
2, also called the 2D plane. A geometric transformation T is

any mapping T : R
2 → R

2, which transforms geometric objects into other geomet-
ric objects in the 2D plane R

2. In this paper, we consider the class Trgeo called rigid
transformations of geometric transformations consisting of three basic types of geo-
metric transformations: rotation, scaling, and their combinations. In general, any ge-
ometric transformation T ∈ Trgeo can be represented as a 2D affine transformation
T : x �→ Ax + t, where A is a 2 × 2 nonsingular matrix with det(A) �= 0, and t is a
2-vector. Such T is one-to-one and onto. In addition, if T ∈ Trgeo then T preserves the
angle between two lines. It is well-known that any affine transformation can be deter-
mined by a set of three non-collinear points and their images. For Trgeo, we have the
following lemma.

Lemma 1 (Determination of Unknown Transformation). Given two distinct points
in the plane x1, x2 and the two corresponding points x′1, x

′
2, there exists a unique rigid

transformation T in Trgeo, denoted by T(x1x2; x′1x
′
2), such that T (xi) = x′i for every

i = 1, 2.

T(x1x2; x′1x
′
2) is computable in O(1) time. The above lemma is crucial in the follow-

ing discussion. For any geometric object O and T ∈ Trgeo, we denote the image of O
via T by T (O). The inverse image of O via T is T−1(O).

2.2 Geometric Graphs

We introduce the class of geometric graphs according to [15] as follows. Let ΣV and
ΣE be mutually disjoint sets of vertex labels and edge labels associated with total orders
<Σ on ΣV ∪ ΣE. In what follows, a vertex is always an element of N. A graph is a
vertex and edge-labeled graph G = (V, E, λ, μ) with a set V of vertices and a set
E ⊆ V 2 of edges. Each x ∈ V has a vertex label λ(x) ∈ ΣV, and each e = xy ∈ E ⊆
V 2 represents an unordered edge {x, y} with an edge label μ(e) ∈ ΣE. Two graphs
Gi = (Vi, Ei, λi, μi) (i = 1, 2) are isomorphic if they are topologically identical to
each other, i.e., there is a bijection φ : V1 → V2 such that (i) λ1(x) = λ2(φ(x)),
(ii) for every xy ∈ (V1)2, xy ∈ E1 iff φ(x)φ(y) ∈ E2, and (iii) for any xy ∈ E1,
μ1(xy) = μ2(φ(x)φ(y)). The mapping φ is called an isomorphism of G1 and G2.
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A geometric graph is a representation of some geometric object by a set of features
and their relationships on a collection of 2D points.

Definition 1 (Geometric Graph). Formally, a geometric graph (or geograph, for
short) is a structure G = (V, E, c, λ, μ), where (V, E, λ, μ) is an underlying labeled
graph and c : V → R

2 is a one-to-one mapping called the coordinate function. Each
vertex v ∈ V has the associated coordinate c(v) ∈ R

2 in the 2D plane as well as its
vertex label λ(v). We refer to the components V, E, c, λ and μ of G as VG, EG, cG, λG

and μG.

We here assume that no two vertices or edges have the same coordinates, i.e., for any
two vertices v and u, c(v) �= c(v). We note that even if there are vertices mapped
on the same points, we can shrink them into a vertex. This for all such vertices takes
O(|VG| log |VG|) time. We denote by G the class of all geometric graphs over ΣV and
ΣE.

Alternative Representation for Geographs. Alternatively, a geometric graph can
be simply represented as a collection of labeled objects G = V ∪ E, where V =
{ 〈xi, λi〉 | i = 1, . . . , n } ⊆ R

2 × ΣV, and E = { 〈ei, μi〉 | i = 1, . . . , m } ⊆
R

2 × R
2 × ΣE. Each 〈x, λ〉 is a labeled vertex for a vertex v with c(v) = x and

λ(v) = λ, and each 〈c(v), c(u), μ〉 is a labeled edge for an edge e = vu with label
μ(e) = μ. A labeled object refers to either a labeled vertex or a labeled edge. Let
OL = (R2 × ΣV) ∪ (R2 × R

2 × ΣE) be a domain of labeled objects. We assume the
lexicographic order <OL over OL by extending those over N, R2, ΣV and ΣE. Since
the correspondence between G and G is obvious, we will often use both representations
interchangeably. For instance, we may write G ∪ {〈v, x, λ〉} or G \ {〈e, μ〉}. Since c is
one-to-one, we may also write x ∈ G instead of x ∈ c(VG).

2.3 Geometric Isomorphism and Matching

Now, let us extend the notions of isomorphisms and matchings for geographs as in [15].
Let G1, G2 ∈ G be any geographs. Then, G1 and G2 are geometrically isomorphic,
denoted by G1 ≡ G2, if there are an isomorphism φ of G1 and G2 and a transformation
T ∈ Trgeo such that T (c(x)) = c(φ(x)) for every vertex x of G1. The pair 〈φ, T 〉 is a
geometric isomorphism of G1 and G2.

Let G = (V, E, c, λ, μ) be a geograph. A geograph H is a geometric subgraph of
G, denoted by H ⊆ G, if H is a substructure of G, that is, (i) VH ⊆ V and EH ⊆ E
hold, and (ii) mappings λH , μH , and cH are the restrictions of λ, μ, and c, respectively,
on VH . Now, we define the matching of geographs in terms of geometric subgraph
isomorphism.

Definition 2 (Geometric Matching). A geograph P geometrically matches a geograph
G (or, P matches G) if there exists some geometric subgraph H of G that is geograph-
ically isomorphic to P with a geometric isomorphism 〈φ, T 〉. Then, we call the rigid
transformation T a geometric matching function from P to G or an occurrence of P in
G.
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We denote by M(P, G) ⊆ Trgeo the set of all geometric matching functions from P to
G. We omit φ from 〈φ, T 〉 above because if P matches G then, there is at most one
vertex v = φ(u) ∈ VG of G such that c(v) = T (c(u)) for each u ∈ VP of P . Clearly,
P matches G iff M(P, G) �= ∅. If P matches G then we write P � G and say P
occurs in G or P appears in G. If P � Q and Q �� P then we define P � Q. We
can observe that if both P � Q and Q � P hold then P ≡ Q, that is, P and Q are
geometrically isomorphic. If we take the set G of the equivalence classes of geographs
modulo geometric isomorphisms, then � is a partial order over G.

2.4 Patterns, Occurrences, and Frequencies

Let k ≥ 0 be a nonnegative integer. A k-pattern (or k-geograph) is any geograph
P ∈ G with k vertices. From the invariance under Trgeo, we assume without any loss
of generality that if P is a k-pattern then VP = {1, . . . , k}, and if k ≥ 2 then P has
the fixed coordinates c(1) = (0, 0) and c(2) = (0, 1) ∈ R

2 for its first two vertices in
the local Cartesian coordinate. An input geometric database of size n ≥ 0 is a single
geograph D = (V, E, c, λ, μ) ∈ G with |V | = n. We denote |V | + |E|, which is the
total size of D, by ||D||. D is also called an input geograph. Fig. 2 shows an example of
an input geometric database D with V = {1, . . . , 8} over ΣV = ∅, and ΣE = {B, C}.

Let P ∈ G be any k-pattern. Then, the location list of pattern P in D is defined by
the set L(P ) of all rigid transformations that matches P to the input geograph D, i.e.,
L(P ) = M(P, D). The frequency of P is |L(P )| ∈ N. For an integer 0 ≤ σ ≤ n, called
a minimum support (or minsup), P is σ-frequent in D if its frequency is no less than σ.

Unlike ordinary graphs, the number of distinct matching functions in L(P ) is
bounded by polynomial in the input size.

Lemma 2. For any geograph P , |L(P )| is no greater than n2 under Trgeo.

Proof. From Lemma 1, the images x′1x
′
2 of just two points x1x2 in the plane are suffi-

cient to determine T(x1x2; x′1x′2) in Trgeo. Thus, the result follows. ��
Lemma 3 (Monotonicity). Let P, Q be any geographs. (i) If P ≡ Q then L(P ) =
L(Q). (ii) If P � Q then L(P ) ⊇ L(Q). (iii) If P � Q then |L(P )| ≥ |L(Q)|.
2.5 Maximal Pattern Discovery

From the monotonicity of the location list and the frequency in Lemma 3, it is natural
to consider maximal subgraphs in terms of � preserving their location lists as follows.

Definition 3 (Maximal Geometric Patterns). A geometric pattern P ∈ G is said to be
maximal in an input geograph T if there is no other geometric pattern Q ∈ G such that
(i) P � Q and (ii) L(P ) = L(Q) hold.

In other words, P is maximal in D if there is no pattern strictly larger than P that has the
same location list as P ’s. Equivalently, P is maximal iff any addition of a labeled object
to P makes L(P ) strictly smaller than before. We denote by Fσ ⊆ G be the set of all
σ-frequent geometric patterns in D, and by M ⊆ G be the set of all maximal geometric
patterns in D under T. The set of all σ-frequent maximal patterns is Mσ = M ∩ Fσ .

Now, we state our data mining problem as follows.
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Definition 4 (Maximal Pattern Enumeration Problem). The maximal geometric pat-
tern enumeration problem is, given an input geograph D ∈ G of size n and a minimum
support 1 ≤ σ ≤ n, to enumerate every frequent maximal geometric pattern P ∈ Mσ

appearing in D without outputting no isomorphic two.

Our goal is to devise a light-weight and high-throughput mining algorithm for enumer-
ating all maximal patterns appearing in a given input geograph. This is paraphrased in
terms of output-sensitive enumeration algorithms in Section 2.6 as a polynomial delay
and polynomial space algorithm for solving this problem. This goal has been an open
question for M and even for Fσ so far.

We can define a different notion of location list D(P ), called the document list,
defined as the set of input graphs in which a pattern appears, and maximality based on
D(P ) in a similar way. Actually, location-based maximality is a necessary condition
for document-based maximality. However, we do not go further in this direction.

2.6 Model of Computation

We make the following standard assumptions in computational geometry [19]: For ev-
ery point p = (x, y) ∈ E, we assume that its coordinates x and y have infinite precision.
Our model of computation is the random access machine (RAM) model with O(1) unit
time arithmetic operations over real numbers as well as the standard functions of anal-
ysis ((·) 1

2 , sin, cos, etc) [1,19].
An enumeration algorithm A is an output-polynomial time algorithm if A finds all

solutions S ∈ S without duplicates on a given input I in total polynomial time both in
the input size and the output size. A is polynomial delay if the delay, which is the max-
imum computation time between two consecutive outputs, is bounded by polynomials
in the input size. If A is polynomial delay, then A is also output-polynomial time. A is a
polynomial space algorithm if the maximum space A uses is bounded by a polynomial
in the input size.

3 Algorithm for Frequent Pattern Discovery

3.1 Canonical Encoding for Geographs

In this subsection, to properly handle the geometric isomorphism among the isomorphic
patterns, we introduce the canonical code for geometric patterns, which is invariant
under transformations in Trgeo. Let P be any k-pattern with VP = {1, . . . , k}. Recall
that the first two vertices of P have the fixed coordinates c(1) = (0, 0), c(2) = (0, 1) ∈
R

2 in their local 2D plane.

Defining a Code. Suppose that the vertex set VP of P has at least two vertices. Let
o = (

∑
v∈VP

c(v))/|VP | be the centroid (the center) of the vertices in P , which is the
averages of x-coordinates and y-coordinates of all vertices in P . We choose a point
x ∈ P, x �= o having the minimum Euclidean distance to o called the base point.
Denote by Q the pattern obtained by transforming P in a polar coordinate system such
that o is mapped to the origin and x is mapped to (0, 1), where the first element of
the coordinates gives the angle. We define the coordinate of the origin by (0, 0). Let
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Elimination Ordering(P )

1: i = 1; j = 1; P1 = P ;
2: while Pi �= ∅ do
3: 〈o, l〉 = tail(Pi) based on the canonical code Code∗(Pi);
4: Pi+1 = Pi − {〈o, l〉}; ξj = 〈o, l〉 and j = j + 1;
5: end while
6: return elimseq(P ) = (ξk, . . . , ξ1);

Fig. 3. Procedure for computing perfect elimination elimseq(P ) for geometric graph P

O = V Q ∪ {〈c(v), c(u) − c(v), μuv〉, 〈c(u), c(v) − c(u), μuv〉 | uv ∈ EQ}. Then, the
code Code(P, x) of P is defined by the elements of O sorted in lexicographic order.

Clearly, there are at most k distinct Code(P, x) depending on the choice of the base
point x. Then, the canonical code Code∗(P ) for pattern P is defined by the lexico-
graphically minimum code among the codes of P . A pattern P is said to be canonical
if (i) it has no vertex, (ii) it has one vertex at (0, 0), or (iii) its vertices are indexed in the
order of its canonical code.

Theorem 1 (Characterization of Canonical Code). For any P, Q ∈ G of size k ≥ 0,
Code∗(P ) = Code∗(Q) iff P ≡ Q under Trgeo.

A code can be computed in O(k2 log k) time for any k-pattern P and base point x, then
the code for another base point is obtained by shifting it. Hence, we can compute the
canonical code of P in O(k2 log k) time. The purpose of the canonical code and the
canonical pattern is to define a representative pattern among the geometric isomorphic
patterns. Thus, our task is to enumerate all σ-frequent canonical patterns.

3.2 Perfect Elimination Sequences

Before studying enumeration or generation of each pattern, we consider the reverse
process of enumeration, the decomposition of a given geograph. Let P ∈ G be any
k-geograph. We define perfect elimination sequence by the sequence elimseq(P ) =
(ξk, . . . , ξ1) ∈ OL∗ obtained by the procedure Elimination Ordering in Fig. 3. Note
that the elimination sequence (ξk, . . . , ξ1) for P is not identical to the reverse of the
canonical code Code∗(P ) since the i-th element ξi is selected based on the canonical
code of the current geograph Pi not with the order defined on the initial graph P = Pk.

3.3 Algorithm for Frequent Pattern Discovery

Fig. 4 shows the algorithm FreqGeo for the frequent geometric subgraph discovery.
Starting from the empty graph ∅, FreqGeo searches Fσ from smaller to larger by grow-
ing P with adding new labeled objects one by one. To avoid duplicates, FreqGeo adds
a labeled object ξ to the current pattern P only when ξ is the last object in the canonical
code Code∗(P ∪ ξ) of P ∪ ξ. It corresponds to that any pattern P is generated in the
reverse order of the elimination sequence. Thereby any pattern Q = P ∪ ξ is gener-
atedexactly once only from the pattern Q \ ξ where ξ is the last object in Code∗(Q).
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FreqGeo(σ : minsup, D : input database)
1: call Expand FG(∅, σ, D);

Expand FG(P, σ, D)
1: if |L(P )| < σ then return else output P as a frequent subgraph;

2: for each missing object ξ do
3: Q = P ∪ {ξ};
4: if ξ is the last of Code∗(Q) then call Expand FG(Q, σ, D);
5: end for

Fig. 4. Polynomial delay and polynomial space algorithm for the frequent geometric subgraph
enumeration problem

This ensures that each σ frequent pattern is output exactly once.
There are infinitely many candidates for the possible labeled object in Line 2 of

Fig. 4. From the next lemma, we can avoid such a blind search by only focusing on
missing objects for P , which is either labeled vertex or edge ξ such that L(P ) ⊇ L(P ∪
{ξ}) �= ∅ holds. From Lemmas 1 and 3, we have the next lemma.

Lemma 4 (Missing Labeled Objects). Let P be a pattern with nonempty L(P ) in D.
Any missing object ξ = 〈o, l〉 for P is the inverse image of some labeled vertex or
labeled edge π via T for some matching T ∈ L(P ), i.e., ξ = T−1(π) for some π ∈ D.

From Lemma 4 above, we know that there are at most O(|L(P )|·||D||) = O(|V |2(|V |+
|E|)) missing objects. Thus, Line 2 can be done in polynomial time. By using the tech-
nique called occurrence deliver described in [3,4,5,22], we can compute the frequencies
of P ∪ {ξ} for all missing objects for P in O(|V |2(|V | + |E|) log |V |) time. Therefore,
the average computation time for each output pattern is O(|V |2(|V | + |E|)k2 log |V |),
where k is the maximum size of σ-frequent pattern. Combining the above, we have the
following theorem.

Theorem 2 (Frequent Geograph Enumeration). The algorithm FreqGeo in Fig. 4
enumerates all σ-frequent geometric graphs in a given input database D ∈ G in poly-
nomial delay and polynomial space in the total input size.

4 Algorithm for Maximal Pattern Discovery

In this section, we present an efficient algorithm MaxGeo for the maximal pattern enu-
meration problem for the class of geographs that runs in polynomial delay and polyno-
mial space in the input size.

4.1 Outline of the Algorithm

Fig. 5 shows our algorithm MaxGeo for enumerating all σ-frequent maximal geomet-
ric patterns in Mσ using backtracking. The key to the algorithm is a tree-like search
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Algorithm MaxGeo: (D : input geograph, σ : minsup)

1: ⊥ = Clo(∅); //The bottom maximal geograph
2: call Expand MaxGeo(⊥, σ, D);

Algorithm Expand MaxGeo(P, σ, D)
1: if P is not σ-frequent then return; //Frequency test
2: else output P as a σ-frequent maximal geograph;
3: for each missing labeled object ξ = 〈o, �〉 do //Lemma 4
4: Q = Clo(P ∪ { ξ });
5: if ( P(Q) ≡ P ) then
6: call Expand MaxGeo(Q, σ, D); //Recursive call for children
7: endfor

Fig. 5. A polynomial delay and polynomial space algorithm MaxGeo for the maximal geometric
subgraph enumeration problem

route R = R(Mσ) implicitly defined over Mσ. Then, starting at the root of the search
route R, MaxGeo searches R by jumping from a smaller maximal pattern to a larger
one in a depth-first manner. Each jump is done by expanding each maximal pattern in
polynomial time, thus the algorithm is polynomial delay.

4.2 Intersection and Closure Operations for Geographs

Let G1 and G2 be two geographs with VG1 ∩ VG2 �= ∅. The maximally common geo-
metric subgraph (MCGS) of G1 and G2 is a geograph which is represented by labeled
objects common to both G1 and G2. MCGS is unique for geographs, while they are not
unique for ordinary graphs.

The intersection operation ∩ is reflexive, commutative, and associative over G. For
a set G = {G1, . . . , Gm} of geographs, we define ∩G = G1 ∩ G2 ∩ · · · ∩ Gm. We
can see that the computation time for ∩G are bounded by O(||G|| log ||G||). Some lit-
eratures [14] give an intersection of labeled graphs or first-order models in a different
way which is based on the cross product of two structures. However, their iterative ap-
plications causes exponentially large intersections unlike ∩G above. Gariiga et al.[10]
discussed related issues.

Now, let us define the closure operation for G.

Definition 5 (Closure Operator for Geographs). Let P ∈ G be a geograph of size
≥ 2. Then, the closure of P in D is defined by the geograph Clo(P ):

Clo(P ) =
⋂

{ T−1(D) | T ∈ L(P ) }.

Theorem 3 (Correctness of Closure Operation). Let P be a geograph of size ≥ 2
and D be an input database. Then, Clo(P ) is the unique, maximal geograph w.r.t. �
satisfying L(Clo(P )) = L(P ).
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Proof. We give a sketch of the proof. Let T ∈ Trgeo be any rigid transformation. Then,
we can see that P matches D via T iff P is a geometric subgraph of the inverse image of
D via T , i.e., P ⊆ T−1(D). Thus, taking the intersection of the inverse image T−1(D)
for all matching T of P , we obtain the unique maximal subgraph having L(P ). ��
Lemma 5. For any geographs P, Q ∈ G, the following properties hold:

(i) P � Clo(P ). (ii) L(Clo(P )) ≡ L(P ). (iii) Clo(P ) ≡ Clo(Clo(P )).
(iv) P � Q iff L(P ) ⊇ L(Q) for any maximal P, Q ∈ M.
(v) Clo(P ) is the unique, smallest maximal geograph containing P .

(vi) For the empty graph ∅, ⊥ = Clo(∅) is the smallest element of M.

Theorem 4 (Characterization of Maximal Geographs). Let D be an input geograph
and P ∈ G be any geograph. Then, P is maximal in D iff Clo(P ) ≡ P .

4.3 Defining the Tree-Shaped Search Route

In this subsection, we define a tree-like search route R = (Mσ, P, ⊥) for the depth-first
search of all maximal geographs based on a so-called parent function.

Let Q ∈ M be a maximal pattern of vertices at least two such that Q �= ⊥. For any
labeled object ξ ∈ Q, define the ξ-prefix of Q as the pattern Q[ξ] which is the collection
of the labeled objects prior to ξ in Code∗(Q). Then, the core index core i(Q) of Q is
the labeled object ξ such that L(Q[ξ′]) �= L(Q) holds for any ξ′ prior to ξ in Code∗(Q).
We can show that if Q �= ⊥ then core i(Q) is always defined.

Q[core i(Q)] ⊆ Q is the shortest prefix of Q satisfying L(Q[ξ]) = L(Q). More-
over, if we removecore i(Q) from the prefix Q[core i(Q)], then we have a properly
shorter prefix, and then the location list changes. Now, we define the parent function P

that gives the predecessor of Q.

Definition 6 (Parent Function P). The parent of any maximal pattern Q ∈ M (Q �=
⊥) is defined by P(Q) = Clo(Q[ξ] \ {ξ}), where ξ = core i(Q) is the core index of
Q.

Lemma 6. P(Q) is (i) always defined, (ii) unique, and (iii) a maximal pattern in M.
Moreover, P satisfies that (iv) P(Q) ⊂ Q, (v) | P(Q) | < | Q |, and (vi) L(P(Q)) ⊃
L(Q).

Now, we define the search route for Mσ as a rooted directed graph R(Mσ) =
(Mσ, P, ⊥), where Mσ is the vertex set, P is the set of reverse edges, and ⊥ is the
root. For the search route, we have the following theorem.

Theorem 5 (Reverse Search Property). For every σ, the search route R(Mσ) is a
spanning tree with the root ⊥ over all the maximal patterns in Mσ.

4.4 A Polynomial Space Polynomial Delay Algorithm

The remaining thing is to show how we can efficiently traverse the search route R(Mσ)
starting from ⊥. However, this is not a straightforward task since R(Mσ) only has the



Time and Space Efficient Discovery of Maximal Geometric Graphs 53

reverse edges. To cope with this difficulty, we introduce the technique so called reverse
search [7] and the closure extension [18].

Lemma 7. For maximal patterns Q and P , P is the parent of Q only if Q ≡ clo(P ∪ξ)
holds for a missing object ξ for P .

Proof. Suppose that P is the parent of Q, and ξ′ is the labeled object preceding and
next to core i(Q) in the canonical code of Q. ξ′ is included in P , since P =
Clo(Q[ξ′]). Since L(Q) is a collection of T ∈ L(Q[ξ′]) satisfying that T−1(D) in-
cludes core i(Q), together with L(Q[ξ′]) = L(P ), L(P ∪ {ξ}) = L(Q[ξ′] ∪ {ξ}) =
L(Q). Thus the statement holds. ��
The operation of adding a labeled object and taking its closure is called closure exten-
sion. Lemma 7 states that any maximal geometric pattern can be obtained by applying
to ⊥ closure extensions repeatedly.

From Lemma 7, we can see that to find all children of a pattern P , we have to
examine the closure extension for all missing objects for P . Clearly, a closure extension
Q = Clo(P ∪ ξ) of P is a child of P if its parent is P . Since the parent of Q can be
obtained by computing its canonical code, we can check whether a closure extension
is a child or not in O(k2logk) time where k is the number of labeled objects in Q.
Since the computation of clo(Q) takes O(|L(Q)| × ||D|| log ||D||) time, we obtain the
following theorem.

Theorem 6 (correctness and complexity of MaxGeo). Given an input geograph D
with vertex set V and a minimum support threshold σ > 0, the algorithm MAX-
GEO in Fig. 5 enumerates all σ-frequent maximal geographs in O((m||D||) × ((m +
n)||D|| log ||D||)) = O(m(m+n)||D||2 log |D|) per maximal geograph with O(||D||)
space, where m = O(n2) is the maximum size of the location lists.

If σ is not too small, then the number of missing objects to examine will consequently
be small, such as O(n), decreasing the computation time will be short. This is expected
in practical computation. Moreover, in practice, usually almost all (maximal) patterns
to be output have small frequencies close to σ, thus the computation time for the clo-
sure operation is rather short. According to the computational experiments in [4,22],
practical computation time is very short in such cases.

Corollary 1. The maximal geograph enumeration problem is solvable in polynomial
delay and polynomial space.

5 Conclusion

We presented a polynomial delay and polynomial space algorithm that discovers all
maximal geographs in a given geometric configuration without duplicates. As future
works, we intend to implement and evaluate the experimental performance of the algo-
rithm. Dealing with the input of many geographs and document occurrence is a straight-
forward work. Dealing with polygons is also straightforward, by using sophisticated
labels to identify edges of polygons as a group. Extensions with approximation and
constraints, with applications to image processing and geographic information systems,
are other future problems.
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Abstract. We study a new method for improving the classification ac-
curacy of a model composed of classification association rules (CAR).
The method consists in reordering the original set of rules according to
the error rates obtained on a set of training examples. This is done iter-
atively, starting from the original set of rules. After obtaining N models
these are used as an ensemble for classifying new cases. The net effect
of this approach is that the original rule model is clearly improved. This
improvement is due to the ensembling of the obtained models, which
are, individually, slightly better than the original one. This ensembling
approach has the advantage of running a single learning process, since
the models in the ensemble are obtained by self replicating the original
one.

1 Introduction

The use of association rules for classification has proved to be a promising path
in terms of improving predictive performance by enabling a wider search in the
set of patterns supported by the data [12,13,15]. Given a set of association rules,
using them in the best possible way to perform classification is a challenge pro-
portional to the enormous number of rules that can be produced with reasonable
computational resources. Recent work has exploited the use of low-cost ensemble
learning (with a single learning process) to further improve the results of asso-
ciation rule classifiers [9]. The idea is to generate a first set of rules and then to
obtain replications of this set by sampling it in a manner similar to bootstrap.
The replications are then used as an ensemble.

In this paper we study another approach for generating ensembles using a
single rule generation step. The main idea is to obtain the models by iteratively
reweighting/reordering the rules of the original rule set. The initial rule model
M0 is obtained using a learning algorithm. In this initial model, each rule has an
associated predictive value, which can be used to sort the rules for classification.

� Supported by Fundação Ciência e Tecnologia, Project Site-o-matic, FEDER e Pro-
grama de Financiamento Plurianual de Unidades de I & D.

V. Corruble, M. Takeda, and E. Suzuki (Eds.): DS 2007, LNAI 4755, pp. 56–67, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Model M1 is obtained by reweighting the rules on the training set. This reweight-
ing can lead to a different rule ordering, if a decision list approach is used for
model evaluation. Each model in the sequence Mi is obtained from the previous
one in the same way, until we obtain N models. The ensemble {Mi, i = 1..N}
is used to classify new cases. The intended effect is that rule ordering is recom-
puted taking into account global effects on accuracy, instead of local ones. We
call this approach Iterative Reordering Ensembling (IRE).

As referred above, one particular feature of this ensemble approach is that
the learning process that generates the rules runs only once. The sequence of
models is obtained by finding close alternatives to the initial rule ordering. This
process has some similarities to boosting [7,19], where a sequence of models is
generated from iteratively reweighted sets of examples. In boosting, the weights
of the examples are changed, so that misclassified examples get higher weights.

In Iterative Reordering Ensembling, a new model is generated by changing
the order of the rules, where rules with more errors go down. Thus, misclassified
examples improve their chance of being well classified. The main advantage w.r.t.
boosting is the fact that one single learning step is used, whereas in boosting
there as many learning steps as models in the ensemble.

In the remaining of the paper we revisit the research done on classification
with association rules and also on ensemble learning. We describe in detail this
new approach and present an empirical evaluation. The results obtained indicate
that IRE improves the predictive accuracy of classification with association rules
mainly by reducing the bias component of the classification error.

2 Classification with AR

Association rules have been proposed for the first time as complete and com-
petitive classification models by Liu et al. in 1998 [13]. In simple terms, the
produced classifier was a decision list, and each new case was classified by the
best rule that applied to it, i.e., the rule with highest confidence. Later, Li et al.
[12] proposed the use of multiple rules, instead of just one, to classify each new
case. The subset of rules that apply to the new case are grouped by anwered
class, and each of these groups is assessed with a weighted χ2 heuristic that
tried to identify the strongest group. Meretakis and Wüthrich [15] suggested a
well founded procedure to combine multiple rules by using the confidence of the
rules to determine the most likely class for each case, in a kind of näıve Bayes
approach with less independence assumptions. Jovanoski and Lavrac [10] have
studied the effect of simple voting and other simple strategies to improve the
prediction ability of a set of association rules. Jorge and Azevedo [9] have pro-
posed an ensemble strategy based on multiple sets of association rules. The work
presented here is a follow-up of that general approach.

2.1 Obtaining Classifiers from Association Rules

We can regard classification from association rules as a particular case of the
general problem of model combination. Either because we see each rule as a
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separate model or because we consider subsets of the rules for combination. We
first build a set of rules R. Then we select a subset M of rules that will be used
in classification, and finally we choose a prediction strategy π that obtains a
decision for a given unknown case x. To optimize predictive performance we can
fine tune one or more of these three steps.

Strategy for the generation of rules: A standard approach is to employ a
sort of coverage strategy [13]. All association rules are derived. Then, one chooses
the best rule, removes the covered cases and repeat the selection of rules until all
cases are covered. In [12] this standard coverage strategy is generalised to allow
more redundancy between rules. A case is only removed from the training data
when it is covered by a pre-defined number of rules. In our work, we build the
set of rules separately using the CAREN system [9]. CAREN is specialized in
generating association rules for classification and employs a bitwise depth-first
frequent patterns mining algorithm.

Choice of the rule subset: We can use the whole set of rules for prediction,
and count on the predictive strategy to dynamically select the most relevant
ones. Selection of rules is based on some measure of quality, or combination of
measures. The structure of rules can also be used, for example for discarding
rules that are generalizations of others. Discarding rules that are potentially
irrelevant or harmful for prediction is called pruning [12,13].

Strategy for prediction: Most of the previous work on using association rules
for classification has been done on this topic. The simplest approach is to go for
the rule with the highest quality, typically measured as confidence, sometimes
combined with support [13]. Other approaches combine the rules by some kind
of committee method, such as voting [10], or weighted voting [12].

Rule selection, or pruning, can be done right after rule generation. However,
most of the rule selection techniques can be used before, when the rules are being
generated. Pruning techniques rely on the elimination of rules that do not improve
more general versions. For example, rule {a, b, c} → g, may be pruned away if rule
{a, c} → g has similar or better predictive accuracy.CBA[13] uses pessimistic error
pruning. Another possibility is to simply use some measure of improvement [3] on a
chosen rule quality measure.At modeling time we can still reduce the set of rules by
choosing only the N -best ones overall, or the N -best ones for each class [10], where
N is a user provided parameter. This technique may reduce the number of rules in
the model dramatically, but the choice of the best value for N is not clear.

2.2 Combining the Decisions of Rules

In this section we describe the two simplest strategies for using association rule
sets as classification models. In the discussion we assume we have a static set R
of classification association rules, and a predefined set of classes G and that we
want to classify cases with description x, where the description of a case is a set
of statements involving independent attributes. The set of rules that apply to
the case, or that fire upon the case with description x will be F (x) defined as:
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{(x′ → class = g) ∈ R | x′ ⊆ x, g ∈ G} (1)

Best rule. This strategy classifies using one single rule bestrulex:

bestrulex = arg max
r∈F (x)

meas(r) (2)

The meas used is a function that assigns to each rule a value of its predictive
power. Confidence is the natural choice when it comes to prediction. It estimates
the posterior probability of C given A, and is defined as confidence(A → C) =
sup(A ∪ C)/sup(A).

Conviction is another interest measure [5] somewhat inspired in the logical
definition of implication and attempts to measure the degree of implication of
a rule. Conviction is infinite for logical implications (confidence 1), and is 1 if
A and C are independent, and it sometimes outperforms confidence in terms
of prediction [9]. It is defined as conviction(A → C) = (1 − sup(C))/(1 −
confidence(A → C)).

The prediction given by the best rule is the best guess we can have with one
single rule. When the best rule is not unique we can break ties maximizing sup-
port [13]. A kind of best rule strategy, combined with a coverage rule generation
method, provided encouraging empirical results when compared with state of
the art classifiers on some datasets from UCI [16].

Our implementation of Best Rule prediction follows closely the rules ordering
described in CMAR [12]. Thus, R1 is earlier than R2 is defined as:

R1≺R2 if meas(R1) > meas(R2) or meas(R1)==meas(R2)∧ sup(R1)>sup(R2)

or meas(R1)==meas(R2)∧ sup(R1)==sup(R2) ∧ ant(R1)<ant(R2).

where meas is the used interest measure and ant is the length of the antecedent.

Weighted voting. This strategy combines the rules F (x) that fire upon a case
x. The answer of each rule is a vote, and the final decision is obtained by assigning
a specific weight to each vote, according to its perceived quality. In the case of
association rules, this can be done using one of the above defined measures.

predictionwv = arg max
g∈G

∑
x′∈antecedents(F (x))

vote(x′, g). maxmeas(x′ → g) (3)

3 Iterative Reordering

In this paper, we propose an approach to increase the accuracy of a CAR set
by re-evaluating the interest and support of each rule according to its perfor-
mance on a specific dataset. This new evaluation works by running the rules
on the training set. Then, rule’s interest is redefined according to its accuracy
on this set. Rule’s support is also redefined but as a measure of rule’s usage
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Algorithm 1. Iterative reordering trial generation

Input: training set=D, max iterations = MaxI
Generate rule set R from D;1

Trial generation Trial0 = R;2

foreach i in 1 to MaxI do3

foreach x in D do4

using bestrule measure approach see which rule r in Triali−1 fires;5

recomputes interest and support measures of rule in R based on usage6

and accuracy;
Triali = rules used from Triali−1, with new interest and support + rules7

from Triali−2 not used in i − 1 + rules from Trial0 not used in either
i − 1 or i − 2;
(interest and support measures of rules from trials i − 2, i − 1 and 0 are8

the ones calculated there);
accuracyi = accuracy of Triali on D;9

If accuracyi < 0.5 or accuracyi > 0.99 break for;10

end11

end12

Output: Trials

in classification. The redefinition yields a new ordering on the original set of
rules. This process is applied iteratively, yielding a set of rule models that can
be aggregated.

3.1 Ensemble Generation

BestRule prediction is applied to the training dataset using the original CARules.
From this application, rule’s measures (support and interest) are updated accord-
ing to usage and accuracy.

For instance, if confidence is used in BestRule prediction in Triali−1 then in
Triali, the confidence of rule A → C is:

conf(A → C, T riali, D) =
hits(A → C, T riali−1, D)

usage(A → C, T riali−1, D)

where

hits(A→C,Trial,D)=#{x∈D| (A→C)==BestRule(Trial,x) : x�A ∧ x�C}

and
usage(A→C,Trial,D)=#{x∈D| (A→C)==BestRule(Trial,x) : x�A}

and BestRule(Trial, x) represents the best rule in Trial that applies to x.
Other interest measures can be defined referring to conf and support. For

instance, conviction is defined as:

conv(A → C, T riali, D) =
1 − sup(C, D)

1 − conf(A → C, T riali−1, D)
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Notice that the minimal required information to represent trials (rule models)
is the usage and hits associated with each rule. A matrix with 2×n (for n trials)
is enough to represent the ensemble.

Prediction on test cases using the ensemble is obtained using BestRule for each
case on each trial. The overal prediction is obtained by weighted trial voting. Dif-
ferent ensemble predictions can be obtained using different weighing strategies.
For instance, the weight can be the global accuracy of the trial on the training
set. Alternatively, the vote can be the interest measure of the best rule within
the trial. In the sequel, the latter will be referred as IRE.BR.int and the former
as IRE.V.Acc.int, where int is either confidence or conviction.

On each trial, only rules with usage > 0 are considered. During ensemble
formation it may be the case that there is no rule with positive usage in a
given trial that covers a specific case. In that situation the BestRule prediction
consults previous trials looking for rules that may cover the case. Line 8 includes
this contingency mechanism.

Similarly to AdaBoost [7] trial construction, in line 11 the algorithm stops
earlier either if a very good or very bad trial accuracy is achieved. Algoritm 1
summarizes the IRE ensemble construction process. Given n (number of trials)
and a training set, the algorithm derives Trial0 as the set of CAR rules through
an association rule engine. Then, it iteratively derives Triali applying BestRule
to the training set using the rules from Triali−1. After n iterations, the ensemble
construction is complete. A test set is evaluated by weight voting using best rule
prediction on each trial.

4 Experimental Validation

We have conducted experiments comparing the predictive performance of the
ensemble approach with bestrule with AR, using different prediction measures
(for assessing the net effect of this kind of ensembling) and state-of-the-art al-
gorithms (for controlling the results). We have used 17 UCI datasets [16]. The
datasets are described in Table 1. As a reference algorithm, we used the deci-
sion tree inducer c4.5 [17]. Due to its availability and ease of use we have also
compared the results with rpart from the statistical package R [18]. Rpart is a
CART-like decision tree inducer [4].

For the single model association rule classifiers, we used four CAREN vari-
ants, by combining two strategies: “Best rule” and “Weighted Voting” with two
measures (confidence and conviction). Minimal support was set to 0.01 or 10
training cases. The only exception was the sat dataset, where we used 0.02 for
computational reasons. Minimal improvement was 0.01 and minimal confidence
0.5. We have also used the χ2 filter to eliminate potentially trivial rules. For
each combination we ran CAREN with and without IRE-ensembles. Numerical
attributes have been previously discretized using CAREN ’s implementation of
Fayyad and Irani’s supervised discretization method [6]. However, both c4.5 and
rpart runs used the original raw datasets.
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Table 1. Datasets used for the empirical evaluation

Dataset #examples #classes #attr #numerics
australian 690 2 14 6
breast 699 2 9 8
pima 768 2 8 8
yeast 1484 10 8 8
flare 1066 2 10 0
cleveland 303 5 13 5
heart 270 2 13 13
hepatitis 155 2 19 4
german 1000 2 20 7
house-votes 435 2 16 0
segment 2310 7 19 19
vehicle 846 4 18 18
adult 32561 2 14 6
lymphography 148 4 18 0
sat 6435 6 36 36
shuttle 58000 7 9 9
waveform 5000 3 21 21

An estimation of the error of each algorithm (and CAREN variant) was
obtained on each dataset with stratified 10-fold cross-validation (Table 2). From
the estimated errors we ranked the algorithms separately for each dataset, and
used mean ranks as an indication of global rank (Table 3). Besides that, we have
tested the statistical significance of the results obtained.

4.1 Analysis of Results

The first strong observation is that the iterative reordering (IRE) approaches
rank high, when compared to the other approaches. Of the 10 algorithms tested,
the first three employ IRE. Separate experiments, not shown here, indicate that
the IRE gains advantage through the ensemble strategy, rather than the filtering
of rules. Of the two possibilities for combining the rules in the ensemble, the
bestmodel approach works well with confidence but poorly with conviction. Of
the two predictive measures used, confidence seems to be preferable for the top
strategies, but not in general.

In terms of statistical significance, the IRE ensemble approaches are clearly
better than the single model AR classifiers. In a t-test with a significance of 0.01,

Table 2. Average error rates obtained with the algorithms on the datasets (min.
sup.=(0.01 or 10 cases, except sat with 0.02), min. conf.=0.5, imp.=0.01). Key:
BR=best rule, V=Voting, IRE=Iterative Reordering, cf=confidence, cv=conviction,
Acc=trial accuracy voting.

rpart c4.5 BR.cf BR.cv V.cf V.cv IRE.BR.cf1 IRE.BR.cv IRE.V.Acc.cf2 IRE.V.Acc.cv
aus 0.1623 0.1392 0.1378 0.1378 0.1871 0.1552 0.1318 0.1392 0.1333 0.1348
bre 0.0615 0.0500 0.0457 0.0428 0.0386 0.0386 0.0386 0.0500 0.0386 0.0357
pim 0.2472 0.2436 0.2278 0.2212 0.2277 0.2264 0.2329 0.2355 0.2316 0.2316
yea 0.4327 0.4427 0.4214 0.4194 0.4301 0.4240 0.4294 0.4435 0.4327 0.4395
fla 0.1773 0.1744 0.1914 0.2025 0.1810 0.1894 0.1932 0.1950 0.1932 0.2026
cle 0.4616 0.5004 0.4570 0.4570 0.4570 0.4570 0.4570 0.4587 0.4570 0.5021
hea 0.2000 0.2109 0.1778 0.1815 0.1741 0.1815 0.1778 0.1963 0.1741 0.1778
hep 0.2600 0.2132 0.1999 0.1870 0.1420 0.1878 0.1682 0.1823 0.1682 0.1761
ger 0.2520 0.3020 0.2820 0.2620 0.2570 0.2630 0.2710 0.2650 0.2730 0.2540
hou 0.0487 0.0325 0.0786 0.0786 0.1266 0.1334 0.0646 0.0668 0.0622 0.0622
seg 0.0831 0.0321 0.1190 0.1190 0.2030 0.1242 0.0779 0.0978 0.0801 0.0801
veh 0.3176 0.2596 0.3673 0.3662 0.3331 0.3342 0.3176 0.3272 0.3222 0.3234
adu 0.1555 0.1361 0.1873 0.1549 0.1735 0.1617 0.1599 0.2113 0.1592 0.1605
lym 0.2527 0.2307 0.1729 0.1800 0.2666 0.1989 0.1595 0.1729 0.1667 0.1667
sat 0.1904 0.1397 0.1975 0.1939 0.3514 0.2309 0.1523 0.1848 0.1510 0.1563
shu 0.0053 0.0005 0.0251 0.0075 0.0569 0.0083 0.0304 0.0168 0.0310 0.0048
wav 0.2664 0.2273 0.1774 0.1770 0.1990 0.1822 0.1654 0.2336 0.1650 0.1654
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Table 3. Ranks for each algorithm on each dataset (1 is best, x.5 is a draw). Table
lines are sorted by the mean rank, which can be found in the first column.

mean aus bre pim yea fla cle hea hep ger hou seg veh adu lym sat shu wav

IRE.Br.conf 4 1 3.5 7 4 6.5 3.5 4 2.5 7 5 2 2.5 5 1 3 8 2.5
IRE.Vote.Acc.conf 4.06 2 3.5 5.5 6.5 6.5 3.5 1.5 2.5 8 3.5 3.5 4 4 2.5 2 9 1
IRE.Vote.Acc.conv 4.5 3 1 5.5 8 10 10 4 4 2 3.5 3.5 5 6 2.5 4 2 2.5
Best.rule.conv 5.21 4.5 6 1 1 9 3.5 6.5 6 4 7.5 7.5 9 2 6 7 4 4
c4.5 5.53 6.5 8.5 9 9 1 9 10 9 10 1 1 1 1 8 1 1 8
Voting.conv 6.09 8 3.5 2 3 4 3.5 6.5 7 5 10 9 8 7 7 9 5 6
Voting.conf 6.15 10 3.5 3 5 3 3.5 1.5 1 3 9 10 7 8 10 10 10 7
Best.rule.conf 6.21 4.5 7 4 2 5 3.5 4 8 9 7.5 7.5 10 9 4.5 8 7 5
rpart 6.24 9 10 10 6.5 2 8 9 10 1 2 5 2.5 3 9 6 3 10
IRE.Br.conv 7.03 6.5 8.5 8 10 8 7 8 5 6 6 6 6 10 4.5 5 6 9

IRE.Br.conf has 4 significant wins against 0 of Best.rule.conf. When compared to
Best.rule.conv, the advantage is of 3 significant wins. Using the same statistical
test, we see that the single model AR classifiers tend to be worse than rpart
(Best.rule.conv looses 3/1), but the IRE ensemble best strategies beat rpart
(2/0). c4.5 beats the best IRE strategy, in terms of significant wins, by 3/2.

By using Friedman’s test on all the data on Table 2, we may reject the hy-
pothesis that all the approaches have equal performance with a confidence of
0.05 (p-value is 0.033).

4.2 Method Behavior

To understand why IR-ensembling improves the results of a bestrule classifier
we have performed a bias-variance analysis as described in [11]. For each dataset
we proceed as follows. We divide the examples in two sets D and E. This last set
is used for evaluation and is a stratified sample, without replacement, with half
the size of the original dataset. From the set D we generate 50 simple random
samples, without replacement. Each one of these samples is used as training, and
the results of the obtained models on E are used to estimate the contribution of
the bias and of the variance to the global error. For each dataset we decompose
the error into bias and variance for both strategies: bestrule and IR-ensembling.
The parameters used were the same as in the experiments reported above, except
for the minimum support. In this case, since the training sets were smaller (25%
of the original set), we have lifted the admissible support of the rules to values
that guarantee that at least 5 cases are covered (instead of 10, as we used above).
In any case, support never goes below 0.01.

Figure 1 shows the results of the bias-variance analysis for 12 datasets. Each
dataset has two bars, the left for best rule and the right one for IRE. The grey
part of each bar corresponds to the bias component and the white part to the
variance. In terms of the bias-variance decomposition, we can see that for 10 of
the 12 datasets the bias component of the error visibly decreases. For the other



64 P.J. Azevedo and A.M. Jorge

aus bre pim yea fla cle hea hep hou lym veh ger

var
bias

0.0
0.1

0.2
0.3

0.4
0.5

0.6

Fig. 1. The decomposition of bias and variance for 12 of the datasets. For each dataset,
the bar on the left corresponds to the best rule approach and the bar on the right to
the IRE

2 cases (flare and heart) there is at most a small increase in bias. The variance
component tends to increase although not in the same proportion as bias.

We can thus hypothesize that the error reduction caused by IRE is mostly due to
the reduction of the bias component. Since the variance component will converge
to zerowith the size of the datasets, IRE seems advantageous for large datasets.We
should note that dealing with large datasets is not particularly complicated since
the generation of association rules grows linearly with the number of examples [1].
The process of rule reweighting also grows linearly with the number of examples.

In another set of experiments, we have observed how the answers of the models
in the ensemble compare with the answers given by the single model. In Figure 2 we
can see the result for the yeast dataset. The xx axis represents the test examples
and theyy axis thepercentage of correct answers givenby the two strategies for each
case. In the case of the best rule, this percentage is either 0 (failure) or 1 (succes). In
the case of the ensemble approach we have the percentage ofmodels in the ensemble
that gave the correct answer. The examples in the xx axis are sorted by the success
of the best rule and than by the percentage of successes of the ensemble.

With this analysis we can see that there is a good number of “easy cases”
and of “hard cases”. These are the ones at the right and left end of the plot,
respectively. The cases in the middle are in a grey area. These are the ones that
can be more easily recovered by IRE. To be successful, the IRE approach must
recover more examples (improve the answer of the best rule) than the ones it
loses (degrades the answer of the best rule). In the case of yeast, we can see that
many case are recovered (crosses above the 0.5 horizontal line, and to the left
of the vertical solid line), although some others are lost (below the horizontal
line and to the right of the vertical one). In the case of the heart dataset (figure
2), similar observations can be made. Notice the small number of test examples
that perform worst in the ensemble method than in the best rule prediction.
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Fig. 2. Left: percentage of correct answers per test case for the yeast dataset (crosses)
shown against the correct answers given by the best rule approach (solid crisp line).
Right: Similar analysis for the heart dataset.

5 Discussion

Iterative Reordering Ensembling is a technique that produces replications of an
original model without relearning. Each replication is a variant not very different
from the original one. The obtained ensemble is thus more than homogeneous.
Its elements are rather a result of jittering the original model in the version
space. Still, the combined effect of these very similar models reduces the error
consistently, when compared to using the single model, and in many datasets
the reduction is significant.

The study of the bias variance decomposition indicates that IRE tends to
reduce the bias component of the error, more than the variance. This is similar
to what happens in boosting and in contrast to the case of bagging, where the
reduction of the error is mainly due to the reduction in variance [2].

The intuitive explanation for the reduction of the bias component is that the
single model best rule approach is tied to a particular rule ordering, and it is hard
to find an ordering that maximizes the number of examples correctly classified.
This constraint seems to be softened by combining similar versions of the rule
set with different orderings.

6 Related Work

Ensemble learning has concentrated a large number of proposals in the liter-
ature. In [2] a study on the performance of several voting methods (including
Bagging and Boosting) was presented. A careful analysis of the bias/variance
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error decomposition is described as means to explain the error reduction yielded
by the different voting methods variants.

A novel version of model aggregation obtained from bagging is described in
[14]. The main idea is to derive an ordering on the models and to consider the
top of the order. This is obtained by halting the bagging process earlier. Only a
small part of the models is selected (15% to 30% of the total). This fraction of
models are expected to perform best when aggregated.

A similar idea to ours is [8]. The author proposes an iterative version of Naive
Bayes. The aim is to boost accuracy by iteratively updating the distribution
tables yield from Naive Bayes to improve the probability class distribution as-
sociated with each training case. The end product is a single model rather then
an ensemble. Our iterative updating of each rule predictive measure within each
trial can be seen as a form of improving probability class distribution.

The work in [20] investigates the hypothesis that combining effective ensemble
learning strategies leads to the reduction of the test error is explained by the
increase of diversity. These authors argue that by trading a small increase in
individual test error, a reduction in overall ensemble test error is obtained.

The Post-bagging ensemble method proposed in [9] employs a similar general
strategy. Like IRE, Post-bagging derives replications that jitter around the orig-
inal model. However, the combined effect of the similar models minimizes the
test error but mostly due to a reduction on the variance component.

7 Conclusions

Classificaton using association rules can be improved through ensembling. We
have proposed Iterative Reordering Ensembling (IRE), which is a procedure
that generates multiple models with one single learning step. First, a rule set
is obtained from the data. Then, replications of this initial set are obtained by
iteratively recalculating the predictive measures of the rules in the set.

Experimental results with 17 datasets suggest that this ensembling technique
improves best rule prediction and is competitive when compared to rpart and
c4.5. The bias-variance decomposition indicates that most of the improvement
is explained by a reduction of the bias component. This is possibly explained
by the ability of the ensembling technique avoiding being tied to one particular
ordering of the rules.

This kind of ensemble approach obtains multiple models by perturbing an
original one. The resulting models are computationally unexpensive and atend
to be similar to each other. Despite that low variety, their combination results
in an effective improvement with respect to the single model.
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Abstract. The maximum cardinality of a frequent set as well as the
minimum cardinality of an infrequent set are important characteristic
numbers in frequent (item) set mining. Gunopulos et al. [10] have shown
that finding a maximum frequent set is NP-hard. In this paper I show
that the minimization problem is also NP-hard. As a next step I in-
vestigate whether these problems can be approximated. While a simple
greedy algorithm turns out to approximate a minimum infrequent set
within a logarithmic factor one can show that there is no such algorithm
for the maximization problem.

1 Introduction

Finding sets of items that appear concurrently in at least a specified number
of records in a given database is an important task in data mining. This so-
called frequency criterion for sets is used as an additional condition for different
interestingness predicates. Examples are association rules [2], correlations [5], or
emerging patterns [7].

Algorithms usually perform an exhaustive enumeration of the family of fre-
quent sets or of a reduced family like closed frequent sets or maximal frequent
sets. Such an exhaustive enumeration tends to be very time-consuming because
both, the search space and the output size, can be exponential in the size of
the input database. The running time as well as the semantic significance of the
produced output depend on the user-specified frequency parameter. Thus it is
of great value to know as much as possible about the results of an exponential
time pattern mining algorithm prior to its application. This knowledge can be
used to readjust the frequency parameter and thus improve performance and
semantic value of the mining algorithm.

For that purpose frequent sets of maximum cardinality resp. infrequent sets
of minimum cardinality can be used. Many mining algorithms tend to run expo-
nentially long in the cardinality of a longest pattern, i.e. the size of a maximum
frequent set and for level-wise algorithms the size of a minimum infrequent set
determines the level where pruning starts. So knowing either of the two would
allow to upper bound the running time resp. skip initial search levels. In terms
of result quality both indicate whether the chosen frequency threshold provides
a significant gain of information for the resulting patterns. If for instance the
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minimum cardinality of an infrequent set is 18 in a database containing 20 items
this is an indication for a weak parameter choice.

On the one hand, both optimization problems are NP-hard. For the max-
imization problem this was shown by Gunopulos et al. in [10]. For the mini-
mization problem this is shown in Section 3 of this paper. On the other hand,
computing approximate solutions would suffice for the described motivations. In
this paper I show that not even a reasonable approximation algorithm for a max-
imum frequent set is likely to exist based on recent results from computational
complexity [12], while for a minimum infrequent set a simple greedy algorithm
reaches a logarithmic approximation factor. By another recent complexity re-
sult [8] this factor cannot be improved substantially. Note that in contrast to
approaches that aim at approximating the set of all frequent sets (like in [1]) we
consider different problems each aiming to compute only one set. To the best
of my knowledge this is the first investigation on the approximability of these
problems.

The rest of the paper is organized as follows: Section 2 introduces basic def-
initions and notations. In Section 3, the two optimization problems are defined
formally and their NP-hardness is discussed. Section 4 points out the hardness
of approximating the maximization problem, while Section 5 proves the logarith-
mic performance of the greedy algorithm for the minimization problem. Finally,
Section 6 concludes with a summary and ideas for possible future work.

2 Preliminaries

A hypergraph is a triple (V, H, μ) with V a finite set called ground set,
H ⊆ 2V a family whose elements are called hyperedges, and μ : H → N a
mapping representing the multiplicity of each hyperedge. So H can be seen as
a multiset, and thus we mean by its cardinality |H| the sum

∑
H∈H μ(H). For

the purpose of computational problems we assume a hypergraph to be given as
incidence matrix, and thus define size((V, H, μ)) = |V ||H| as the input size. If
μ(H) = 1 for all H ∈ H we omit μ and (V, H) is called proper.

A graph is a hypergraph G = (V, E) with |e| = 2 for all e ∈ E. The elements
of V are called vertices, and the elements of E are called edges1. G is called
bipartite if V can be partitioned into V1, V2 such that all edges are of the form
{v, w} with v ∈ V1 and w ∈ V2. A graph of this form is denoted by (V1, V2, E).
A set of vertices X = X1 ∪ X2 with X1 ⊆ V1, X2 ⊆ V2 is denoted by (X1, X2)
and is called a bipartite clique if for all x1 ∈ X1 and all x2 ∈ X2 there is an
edge {x1, x2} ∈ E. It is called balanced if |X1| = |X2|. The size of a balanced
bipartite clique (X1, X2) is |X1| = |X2|.

An optimization problem is a computational problem formally given by
a 4-tuple P = (X, (Sx)x∈X , c, goal) with a set of instances X , a set of feasible
solutions Sx for all instances, a target function c :

⋃
x∈X Sx → N, and goal ∈

{min, max}. The task is then, given an instance x ∈ X , compute a feasible
1 In this paper we do not consider graphs with parallel edges or loops, i.e. edges with

only one element.
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solution y ∈ Sx with c(y) = goal{c(y′) : y′ ∈ Sx}. If goal = min, P is called a
minimization problem. If goal = max, P is called a maximization problem.

As examples consider the following two well known NP-hard optimization
problems (see [9]):

max balanced clique is the following maximization problem: Given a bi-
partite graph G, compute a balanced bipartite clique in G of maximum
cardinality. Here the instances are bipartite graphs, the feasible solutions for
a graph G are balanced bipartite cliques in G, and the target function maps
a balanced bipartite clique (X, Y ) to its size |X |.

min set cover is the following minimization problem: Given a hypergraph
(V, H) with

⋃ H = V , compute a family H′ ⊆ H of minimum cardinality
covering V , i.e.,

⋃ H′ = V .

Let P = (X, (Sx)x∈X , c, goal) be an optimization problem. A deterministic
algorithm A for P can be thought of as a mapping from the instances X to
the set of all possible outputs

⋃
x∈X Sx. Then A is called an α-approximation

algorithm for P with α : X → R≥1 if for all x ∈ X with goal{c(y) : y ∈
Sx} = OPT it holds that A(x) ∈ Sx, i.e., the algorithm produces only feasible
solutions, A runs in polynomial time, and

1
α(x)

OPT ≤ c(A(x)) ≤ α(x)OPT .

For such an algorithm we say that A approximates P within a factor of α. If
α(x) ≡ 1, A solves the problem exactly. Note that the first inequality applies
only to maximization problems, while the second applies only to minimization
problems. Since we require A to produce always feasible solutions, it holds that
A(x) ≤ OPT in case goal=max and OPT ≤ A(x) in case goal=min.

In frequent set mining (or frequent itemset mining) [2] the input is a hyper-
graph D = (I, T , μ) called dataset and a positive integer t ∈ {1, . . . , |T |} called
frequency threshold. Sometimes the elements of I are called items and the el-
ements of T are called transactions. For X ⊆ I the support set of X is defined
as

T [X ] = {T ∈ T : X ⊆ T } .

X is called t-frequent in D if |T [X ] | ≥ t.

3 Problems and Hardness of Exact Solutions

We are now ready to give a formal definition of the problems of interest: Given
a hypergraph (I, T , μ) and a frequency threshold t ∈ {1, . . . , |T |} we define

max frequent set as the maximization problem to compute a t-frequent set
X ⊆ I of maximum cardinality and

min infrequent set as the minimization problem to compute a set X ⊆ I of
minimum cardinality that is not t-frequent.
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Remark 1. In Section 1 we only discussed the use of the maximum resp. the
minimum cardinality of a frequent resp. infrequent set. Here we require the con-
struction of an actual set in each problem. However, these two tasks are polyno-
mially equivalent. In particular a maximum frequent set can be constructed by
iteratively trying to remove an element and then checking whether the maximum
cardinality has changed.

Next we recall the construction used in [10] to prove hardness of max frequent

set. In Section 4 we will reuse this construction, which is a transformation from
the NP-hard max balanced clique problem to max frequent set that uses
a canonical correspondence between hypergraphs and bipartite graphs:

For a given bipartite graph G = (V, U, E) construct a hypergraph D =
(V, T , μ) with

T = {Γ (u) : u ∈ U}
μ : T 	→ |{u ∈ U : Γ (u) = T }|

where Γ (u) denotes the set of all neighbors of u, i.e., Γ (u) = {v ∈ V : {v, u} ∈
E}. Note that size(D) ≤ size(G). Furthermore, the maximum cardinality of a
balanced bipartite clique in G is the maximum t such that there is a t-frequent
set X in D with |X | ≥ t, which can easily be computed from D with an algorithm
solving max frequent set. This implies:

Theorem 1 (Gunopulos et al. [10]). max frequent set is NP-hard.

To analyze min infrequent set we define the following generalized version of
min set cover:

min general set cover is the following minimization problem: Given a
hypergraph (V, H) and a positive integer p ∈ {0, . . . , |V | − 1}, compute a
minimum family of hyperedges H′ covering at least |V | − p elements of V ,
i.e., |V \ ⋃ H′| ≤ p.

min general set cover contains the NP-hard problem min set cover as
a special case (p = 0), and thus it is itself NP-hard. Moreover, we have the
following equivalence:

Theorem 2. min infrequent set is polynomially equivalent to min general

set cover.

Proof. Construct a polynomial transformation f from min general set cover

to min infrequent set by transposing the given incidence matrix and changing
0-entries to 1-entries and vice versa. The frequency parameter t is set to p + 1.
Note that because of the parameter ranges of t and p this mapping is bijective.
For an instance ((V, H), p) this results in:

f : ((V, H), p) 	→ ((H, V , μ), p + 1)

V = {H \ H [{v}] : v ∈ V }
μ : H′ 	→ |{v ∈ V : H′ = H \ H [{v}]}| .
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Fig. 1. Construction used to proof Theorem 2. Here the hypergraphs are drawn as
bipartite graphs (see proof of Theorem 1) with hyperedges on the left side and ground
set on the right side. The marked set is 2-infrequent in the left hypergraph and covers
all but 1 element in the right.

So the original hyperedges act as items and every element v of the original ground
set becomes a hyperedge, that contains all the sets, which v is not an element
of (in the original min general set cover instance). Now we claim that an
(p+1)-infrequent set in (H, V) corresponds to a set of hyperedges covering at
least all but p elements of (V, H) and vice versa (see Fig. 1). For a subset H′ ⊆ H
it holds that

H′ (p+1)-infrequent in (H, V) ⇔ |V [H′] | < p + 1
⇔ |{v ∈ V : H \ H [{v}] ⊇ H′}| < p + 1
⇔ |{v ∈ V : ∀H ∈ H′ v /∈ H}| < p + 1

⇔ |V \
⋃

H′| < p + 1

⇔ H′ covers at least all but p elements .

So an infrequent set of size k corresponds to a subfamily of size k covering
sufficient many elements and vice versa. Furthermore, f is a bijection implying
polynomial equivalence. �
This implies the main result of this section completing our problem introduction:

Corollary 3. min infrequent set is NP-hard.

4 Hardness of Approximating a Maximum Frequent Set

Since max frequent set is NP-hard, the next step is to ask for an approxima-
tion algorithm. Proving negative results for the approximation of hard problems
has been very successful in recent years. New results have in common that they
use so called ‘probabilistically checkable proofs’ [4] as a characterization of NP.
As indicated by the proof of Theorem 1 the following result proved by Khot [12]
for max balanced clique is of particular importance for our purpose:
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Unless there are probabilistic algorithms with an arbitrary small exponential
time complexity for all problems in NP there is no polynomial approximation
scheme for max balanced clique, i.e., the infimum of all constants k such that
there is a k-approximation algorithm for max balanced clique is bounded
away from 1. It was known before that such a result, once achieved, can be
boosted via derandomized graph products (introduced in [3]). So that the result
of Khot implies in fact:

Theorem 4 (Khot [12]). Unless for all ε > 0 and all decision problems in
NP there is a probabilistic algorithm A accepting a YES-instance resp. rejecting
a NO-instance of size n with probability at least 2/3 in time 2nε

the following
holds: There is a constant δBC > 0 such that there is no algorithm approximating
max balanced clique within a factor of size(x)δBC for instances x.

Now suppose there is an algorithm A approximating max frequent set within
a factor of α(size(x)) for instances x. Then one can construct a hypergraph D
from a given bipartite graph G as for Theorem 1 and find tAPX the maximum
t ∈ {1, . . . , |T |} for which |A(D, t)| ≥ t by running A at most |T | times. Let
(X, Y ) be a maximum balanced bipartite clique in G = (V, U, E) with size tOPT.
Any set of transactions corresponding to a subset Y ′ ⊆ Y contains the tOPT items
corresponding to X—in particular those with |Y ′| = tOPT/α(size(D)) = t∗.
This implies for the maximum cardinality of a t∗-frequent set in D, denoted as
mfs(D, t∗),

mfs(D, t∗) ≥ tOPT ⇒ |A(D, t∗)| ≥ tOPT/α(size(D)) = t∗ .

But then tAPX ≥ t∗ = tOPT/α(size(D)) ≥ tOPT/α(size(G)), because the trans-
formed instance is of equal or smaller size. Since all necessary computations can
be performed in polynomial time, we have a polynomial algorithm approximat-
ing max balanced clique within a factor of α(size(x)) for instances x and
hence

Corollary 5. Under the same assumptions as in Theorem 4 with the same con-
stant δBC > 0 there is no algorithm approximating max frequent set within
a factor of size(x)δBC for instances x.

Although stronger than P �= NP the stated complexity assumption is still widely
believed and thus we have a strong indication that there is no algorithm for max

frequent set with a reasonable approximation factor.

5 Greedy Approximation of a Minimum Infrequent Set

The transformation in Theorem 2 maps instances of min general set cover to
instances of min infrequent set with the same optimum value and vice versa
and there is also a bijection between feasible solutions. So an approximation
algorithm for either one of the two problems will grant the same approximation
factor for the other. To analyze the approximability of the two problems we will
use another related coverage problem:
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max coverage is the following maximization problem: Given a hypergraph
(V, H) and a positive integer k, compute a family H′ ⊆ H of k hyperedges
covering a maximum number of elements.

Using the known fact that the approximation ratio of the greedy algorithm for
this problem is (1−e−1) (see for instance [6]), one can analyze the approximation
performance of the greedy approach for min general set cover.

Theorem 6. min general set cover can be approximated in polynomial time
within a factor of �ln(|V | − p)�+1 for instances ((V, H), p).

Proof. The following algorithm uses the greedy algorithm G for max coverage,
to achieve the desired approximation rate for min general set cover. Denote
with n the number of elements |V | and with gsc(V, H, p) the minimum cardinality
of a hyperedge set covering at least n − p elements.

1. i ← 1, S ← ∅, V1 ← V, H1 ← H
2. while |Vi| > p do
3. ki ← min{j : | ⋃ G(Vi, Hi, j)| ≥ e1−i(1 − 1

e )(|V | − p)}
4. HΔ ← G(Vi, Hi, ki)

S ← S ∪ HΔ, Hi+1 ← Hi \ HΔ, Vi+1 ← Vi \ ⋃ HΔ

5. i ← i + 1
6. return S

Obviously S covers at least n−p elements after termination. We claim that also
|S| ≤ (�ln(n − p)�+1) gsc(V, H, p). To see this, we first analyze the number of
iterations and then the number of hyperedges added to the S in every iteration.
(i) The algorithm terminates after at most �ln(n − p)�+1 iterations.
Proof of (i):
First show |Vi| ≤ p+e1−i(n−p) by induction on i. For i = 1 this is true, because
|V | = |V1| = n. Now assume that |Vi| ≤ p + e1−i(n − p) for a given i. In line 3
ki is chosen such that at least e1−i(1 − e−1)(n − p) elements will be covered. So

|Vi+1| ≤ p +
1

ei−1
(n − p) − e − 1

ei
(n − p) = p +

1
ei

(n − p) .

Since the algorithm terminates when |Vi| ≤ p (and |Vi| cannot be fractional), it
is for the number of iterations t:

t ≤ min{i ∈ N : ei > n − p} = �ln(n − p)�+1

(i)�
(ii)For all iterations i it is ki ≤ gsc(V, H, p).
Proof of (ii):
By definition there is an optimum cover O ⊆ H with

|
⋃

O| ≥ n − p and |O| = gsc(V, H, p) .

So O covers all but p elements. Let mc(V ′, H′, k) denote the maximum number
of elements one can cover with k hyperedges in (V ′, H′). Since in iteration i it is
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Algorithm 1. (�ln(|T | − t)�+1)-approximation for min infrequent set

Require: Dataset D = (I, T , μ) and frequency threshold t
Ensure: X infrequent and |X| ≤ (�ln(|T | − t)�+1)OPT, with OPT the minimum

cardinality of a set that is not t-frequent in D

1. X ← ∅
2. while |T | ≥ t do
3. i ← i ∈ I with |T [{i}] | = min{|T [{i′}] | : i′ ∈ I}
4. X ← X ∪ {i}
5. I ← I \ {i}
6. T ← T [{i}]
7. return X

|Vi| ≤ p + e1−i(n − p), |O| elements can still cover at least e1−i(n − p) elements.
It follows

mc(Vi, Hi, gsc(V, H, p)) ≥ e1−i(n − p)

⇒|
⋃

G(Vi, Hi, gsc(V, H, p))| ≥ (1 − 1
e
)e1−i(n − p)

and because ki is selected in line 3 as the minimum number satisfying this

⇒ki ≤ gsc(V, H, p) .

(ii)�
Since ki sets are added to S in every iteration i, it follows from (i) and (ii)
that |S| ≤ (�ln(n − p)�+1)gsc(V, H, p). The polynomial running time is obvious,
because the polynomial time greedy algorithm is called in every iteration at most
|H| times. �
Remark 2. The formulation of the algorithm in the above proof was tailor-made
for the surrounding analysis. In fact it only selects remaining hyperedges covering
a maximum number of remaining elements and thus the simple greedy strategy
stopping, when all but p elements are covered, will select the same hyperedges
or possibly even some less.

Algorithm 1 takes this into account and incorporates the transformation be-
tween min infrequent set and min general set cover. Note that this
transformation switches the roles of ground set and hyperedges so that the re-
sulting approximation factor does not depend on the number of items but on
the number of transactions. This constitutes the following result:

Corollary 7. min infrequent set can be approximated within a factor of
�ln(|T | − t)�+1 for instances (I, T , μ), t.

The approximation ratio achieved above is close to optimal. Otherwise, since
min general set cover contains min set cover as a special case for p = 0,
a better ratio would imply the existence of subexponential time algorithms with
extremely small exponents for every problem in NP by the following theorem:
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Theorem 8 (Feige [8]). For all ε > 0 there is no algorithm approximating min

set cover within a factor of (1 − ε) ln |V | for instances (V, H), unless for all
problems in NP there is an algorithm running in time nO(log log n) for instances
of size n.

6 Discussion

In this paper, we have analyzed the algorithmical tasks to approximate a max-
imum frequent resp. a minimum infrequent set. This investigation is motivated
by the need for an efficient parameter evaluation procedure that can be ap-
plied before a possibly exponential time pattern mining algorithm. We turned
to approximation algorithms because both problems are NP-hard. In case of the
maximization problem this was well-known. In case of the minimization problem
we proved this hardness by showing it to be equivalent to a generalized version
of the min set cover problem.

Using recent results from computational complexity we have argued that a non-
trivial approximation algorithm for max frequent set is unlikely to exist. For
min infrequent set we gave a polynomial time greedy algorithm, which was
proven to compute an infrequent set of cardinality smaller than �ln(m − t)�+1
times the minimum cardinality of an infrequent set for instances with frequency
threshold t and m transactions. Slav́ık proved in [14] that the approximation
ratio of the greedy algorithm for min set cover can in fact be bounded by
lnn − ln lnn + 0.79. It is likely that his tight analysis can be transfered to min

general set cover, which is a task for possible future work. The fact that the
approximation factor depends on the number of transactions and not on the num-
ber of items indicates that the algorithm is useful for gene expression data [13],
which can contain up to 100,000 items but typically only about 1000 transactions.
In general, knowing the approximation factor allows valuable conclusions. If the
cardinality of the returned set is c this implies that all sets of cardinality smaller
than c/(�ln(m − t)�+1) are frequent. In turn, this provides a lower bound on the
number of frequent sets and for level-wise algorithms determines an earliest level
where pruning can occur so that search need not to be started before this level.

Other important characteristics that can be used for parameter evaluation are
the number of frequent resp. closed or maximal frequent sets resulting from a
given parameter, all of which are hard counting problems [15,10]. It is an inter-
esting question whether the positive results from computing the permanent of a
0-1 matrix can be transfered to those problems. For 0-1-permanent the exis-
tence of a fully polynomial randomized approximation scheme has been shown
[11]. Another question is, how quick parameter evaluation can be done in other
domains with similar problems as frequent set mining (exponential output size
and even greater search space). Examples for such domains are pattern mining
tasks with structured data like sequences or graphs.

Acknowledgments. I would like to thank Prof. Bhaskar DasGupta who
pointed me towards the maximum coverage approach.
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Abstract. We consider the problem of dynamic clustering which has been 
addressed in many contexts and applications including dynamic information 
retrieval, Web documents classification, etc. The goal is to efficiently maintain 
homogenous and well-separated clusters as new data are inserted or existing 
data are removed. We propose a framework called dynamic b-coloring 
clustering based solely on pairwise dissimilarities among all pairs of data and 
on cluster dominance. In experiments on benchmark data sets, we show 
improvements in the performance of clustering solution in terms of quality and 
computational complexity. 

Keywords: Dynamic clustering, graph b-coloring, dissimilarity, dominance. 

1   Introduction 

Cluster analysis is one of the most important aspects in the data mining process for 
discovering groups and identifying interesting distributions or patterns over the 
considered data sets [1]. Clustering algorithms are widely used in many areas 
including information retrieval, image segmentation and so on. 

In [2] a new partitioning clustering scheme is introduced. It is based on the b-
coloring of graph [3]. This technique consists in coloring the vertices of a graph G with 
the maximum number of colors such that (i) no two adjacent vertices (vertices joined by 
an weighted edge representing the dissimilarity between objects) have the same color 
(proper coloring), and (ii) for each color c, there exist at least one vertex with this color 
which is adjacent (has a sufficient dissimilarity degree) to all other colors. This vertex is 
called dominating vertex, there can have many within the same class. This specific 
vertex reflects the properties of the class and also guarantees that the class has a distinct 
separation from all other classes of the partitioning. The b-coloring based clustering 
method in [2] enables to build a fine partition of the data set (numeric or symbolic) in 
clusters when the number of clusters is not specified in advance.  

In dynamic information environments, such as the World Wide Web, it is usually 
desirable to apply adaptive methods for document organization such as clustering. 
Incremental clustering methods are of great interest in particular when we examine 
their ability to cope with a high rate of dataset update. In this paper, we consider the 
problem of online clustering in the form of data insertion and removal. The difference 
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between these learning approaches and the traditional ones in particular is the ability 
to process instances as they are added (new data) or deleted (outmoded or inefficient 
data) from the data collection, eventually with an updating of existing clusters without 
having to frequently performing complete re-clustering. 

In the dynamic setting, instances arrive or leave one by one, and we need to deal with 
an arriving or removed data before seeing any future instances. Problems faced by such 
algorithms include how to find the appropriate cluster to assign for a new object, how to 
deal with deletion of an existing object, and how to reassign objects to other clusters  

Many algorithms are proposed to investigate the dynamic clustering problem. The 
Single-Pass clustering algorithm basically processes instances sequentially, and 
compares each instance to all existing clusters. If the dissimilarity between the 
instance and any cluster1 is above a certain threshold, then the instance is added to the 
closest cluster; otherwise it forms its own cluster. The k-Nearest Neighbor clustering 
[4] algorithm computes for each new instance its dissimilarity to every other instance, 
and chooses the top k instances. The new instance is assigned to the most frequent 
class label among the k nearest training. 

 In this paper, a dynamic algorithm is proposed for the b-coloring based clustering 
approach presented in [2]. It depends only on pairwise dissimilarities among all pairs 
of data and on dominance property of vertices.  

The paper is structured as follows: in Section 2, the b-coloring technique is 
introduced in broad outline. Section 3 is devoted to the dynamic algorithm. Some 
experiments using relevant benchmarks data set are shown in Section 4. Further works 
and applications linked with dynamic clustering will be proposed in conclusion. 

2   Clustering with Graph b-Coloring 

In this section, we briefly introduce the b-coloring based clustering approach and we 
refer the reader to [2] for more details. 

When the dissimilarities among all pairs of data to be clustered {x1,...,xn} are specified, 
these can be summarized as a weighed dissimilarity matrix D in which each element D(xi; 
xj) stores the corresponding dissimilarity. Based on D, the data can also be conceived as a 
weighted linkage graph G = (V, E), where V = {v1,v2,...,vn} is the vertex set which 
correspond to the data (vertex vi for data xi), and E = V × V is the edge set which 
correspond to a pair of vertices (vi; vj) weighted by their dissimilarities D(vi; vj). It must be 
noticed that the possibility of a complete graph would not be interested for clustering 
problem because in such a case, the b-coloring algorithm would provide the trivial 
partition where each cluster is a singleton. Hence, our algorithm starts from a subgraph 
(non complete graph) from the original graph. The subgraph is a superior threshold graph 
which is commonly used in graph theory. Let G>θ=(V,E>θ) be the superior threshold graph 
associated with threshold value θ chosen among the dissimilarity matrix D. In other 
words, G>θ is given by V={v1,...,vn} as vertex set and {(vi,vj)| D(vi,vj) >θ} as edge set. 

The data to be clustered are now depicted by a non-complete edge-weighted graph 
G>θ=(V,E>θ). In order to divide the vertex set V into a partition 

                                                           
1 The dissimilarity between an instance x and a cluster C is the average of dissimilarities 

between x and instances of C. 
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P={C1,C2,..,Ck} where for ∀ Ci,Cj ∈ P, Ci ∩ Cj=∅ for i≠j (when the number of 
clusters k is not pre-defined), our b-coloring based clustering algorithm performed on 
the graph G>θ consists of two steps: 1) generate an initial coloring of vertices using a 
maximum number of colors, and 2) removing each color that has no dominating 
vertices yet using a greedy algorithm. Step 2 is performed until the coloring is stable, 
i.e. each color of G>θ has at least one dominating vertex. 

Let illustrate the b-coloring algorithm on one example. {A,B,C,D,E,F,G,H,I} is the 
data set to analyse for which dissimilarity matrix D is given in table 1. Figure 1 shows 
the superior threshold graph for θ =0.15. Therefore here, the b-coloring of G>0.15 (cf. 
Fig.2) gives four classes, namely: C1={B}, C2={A,D}, C3={C,E,G,H,I} and C4={F}. 
Bold characters show dominating vertices.  

The clustering algorithm is iterative and performs multiple runs, each of them 
increasing the value of the dissimilarity threshold θ. Once all threshold values passed, 
the algorithm provides the optimal partitioning (corresponding to one threshold value 
θo) which maximizes Dunn's generalized index (DunnG) [5]. DunnG is designed to 
offer a compromise between the intercluster separation and the intracluster cohesion. 
So, it is the more appropriated to partition data set in compact and well-separated 
clusters. As an illustration, successive threshold graphs are constructed for each 
threshold θ selected from the dissimilarity Table 1, and our approach is used to give 
the b-coloring partition of each graph. The value of the Dunn's generalized index is 
computed for the obtained partitions. We conclude that the partition θ=0.15 has the 
maximal DunnG among other ones with different θ.  

Table 1. Dissimilarity matrix 

vi A B C D E F G H I 
A 0         
B 0.20 0        
C 0.10 0.30 0       
D 0.10 0.20 0.25 0      
E 0.20 0.20 0.10 0.40 0     
F 0.20 0.20 0.20 0.25 0.65 0    
G 0.15 0.10 0.15 0.10 0.10 0.75 0   
H 0.10 0.20 0.10 0.10 0.05 0.05 0.05 0  
I 0.40 0.075 0.15 0.15 0.15 0.15 0.15 0.15 0 

 
 

 

Fig. 1. Superior threshold graph G>0.15 (θ 
=0.15) 

Fig. 2. b-coloring of graph G>0.15 : four classes 
are identified 
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3   Online b-Coloring Based Clustering Algorithm 

We now present the online clustering algorithm based on the above scheme (the b-
coloring based clustering). The algorithm works incrementally by receiving a new 
document or removing existing data. The principle is; once the best partition (associated 
to the optimal threshold θo) returned from the b-coloring based-clustering algorithm, 
working to assign new instances to their respective clusters as they arrive or to rearrange 
the partition when existing instances leave the system. Let suppose the data set 
X={x1,...,xn} depicted by the optimal threshold graph G=(V,E) and divided into 
P={C1,C2,..,Ck} The adding of new instance xn+1 transforms the vertex set V on 
V∪{vn+1} and the edge set E on E∪{(vi,vn+1)| vi∈V and D(vi,vn+1) >θo}. The deletion 
of one instance xm∈X transforms the vertex set V on V-{vm} and the edge set E on E-
{(vi,vm)| vi∈V and D(vi,vm) >θo}. The main problem is to find the appropriate color to 
assign for vn+1 (i.e. in the case of insertion) or to rearrange the coloring of G (i.e. in 
the case of deletion) which is constrained to incrementally maintain the b-coloring of 
G and the clustering performances in terms of quality (DunnG value) and runtime.  

Assuming that the vertices of G are colored, the following notations will be used: 

• ∆: the maximum degree of G. 
• c(vi): the color (integer value) of the vertex vi in G. 
• N(vi): the neighborhood of vertex vi in G. 
• Nc(vi): the neighborhood colors of vertex vi. 
• Dom(vi): the dominance of vi. Dom(vi)=1 if vi is one dominant vertex of c(vi) 

and 0 otherwise. 
• k: the current number of colors (clusters) in G. 

3.1   Adding a New Instance xn+1  

When a new instance xn+1 is introduced which corresponds to the vertex and edges 
adding in G, the following update operations on G are allowed: 

• vn+1 is assigned to one of the existing k colors of G. 
• vn+1 forms its own color. 
• The insertion of vn+1 in G launches the merge of some colors in G. 

As mentioned above, our dynamic algorithm relies only on the knowledge of the 
dissimilarity matrix and the dominating vertices of each color. Under this hypothesis, 
the following scenarios are to be considered: 

3.1.1   Scenario 1:  vn+1 Is Adjacent to at Least One Dominating Vertex of Each 
Color 

When the neighborhood of vn+1 contains at least one dominating vertex from each k 
colors, vn+1 forms its own color (k+1)th. Otherwise, the next Scenario 2 is performed. 

Proposition 1. After the creation of the new (k+1)th color, the coloring of G is a b-
coloring. 

Proof. ∀Ch∈P={C1,C2,..,Ck} ∃v∈(Ch∩N(vn+1)) such that Dom(v)=1. Thus, 
Dom(vn+1)=1 and the vertex v remains dominating of its color c(v) (i.e. Dom(v)=1). 
Consequently, ∀ Ch∈P={C1,C2,..,Ck,Ck+1} ∃ v∈Ch such that Dom(v)=1: the coloring 
of G using k+1 colors is a b-coloring. 
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In order to improve the quality of the new partition P={C1,C2,..,Ck,Ck+1} in terms 
of DunnG value, the color of some vertices can be changed providing that the coloring 
of G remains a b-coloring. For that, the following definitions are introduced: 

Definition 1. A vertex vs is called "supporting vertex" if vs is the only vertex colored 
with c(vs) in the neighborhood (N(vd)) of one dominating vertex vd. Thus, vs cannot be 
re-colored. 

Definition 2. A vertex vc is called "critical vertex" if vc is a dominating or a 
supporting vertex. Thus, vc cannot be re-colored. 

Definition 3. A vertex v is called "free vertex regarding a color C" if v is a non 
critical vertex and C is not in the neighborhood colors of v (i.e. C∉Nc(v)). Thus, the 
color C can be assigned to v. 

In order to evaluate the efficiency in the color change for one free vertex v regarding 
one color C, we compute the dissimilarity degree from the vertex v to the color C 
which is defined as the average dissimilarity from v to all vertices colored with C 
(eq.(1)). If this latter is lower to the dissimilarity degree from v to its current color, the 
color C is assigned to v.  
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Procedure Scenario 1() 
BEGIN 
c(vn+1):=k+1 ; 
For each free vertex vi regarding the color k+1 do 
If (d(vi,k+1)<d(vi,c(vi)) then  

for each vertex vj from G do 
Update(d(vj,k+1);// using eq.(2)  
Update (d(vj,c(vi));// using eq.(3) 

Enddo 
c(vi):=k+1; 

EndIf 
Enddo 
find_dominating(); 
END. 
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Therefore, after the re-coloring of every free vertex vi regarding the color k, the 
method find_dominating() of order O(n) tries to identify the new dominating vertices 
in G. 

Proposition 2. The procedure Scenario 1() runs in O(n2). 
Proof. After the coloring of vn+1 using the (k+1)th color, the algorithm for Scenario 1 
verifies if the color of each free vertex vi regarding the color k+1  (at most n) can be 
changed by (k+1). In this case, for each vertex vj from G we update the dissimilarities 
d(vj,k+1) and d(vj,c(vi)) using the formulas eq.(2,3) in O(n). Therefore, Scenario 1 
uses at most (n*n) instructions, and the complexity is O(n2). 

 
 
 
 
 
 
 
 
 

 

Fig. 3. Optimal Partition of {A,B,D,F,H,I} 
on 3 clusters for θ=0.15. "*" is used to 
denote the dominating vertices.  

Fig. 4. Insertion of vertex C using Scenario 1: 
the neighborhood of C contains at least one 
dominating vertex of each color 

3.1.2   Scenario 2: Neighborhood of vn+1 Has No Dominating Vertex of m Colors 
The neighborhood of vn+1 does not contain any dominating vertex from m colors 
among the k current colors. These colors are called "available to receive vn+1". Two 
cases are then considered: 

 Scenario 2.1 : m1 colors (m1≤ m) are not present in  vn+1 neighborhood 
colors  

The neighborhood colors of vn+1 does not contain m1 among the m current colors (cf. 
Fig.5). This means that there is no significant dissimilarity between vertex vn+1 and 
these m1 colors. Among m1 colors, the one having the smaller dissimilarity with vn+1 

will color it. Otherwise, the Scenario 2.2 is performed.  

Procedure Scenario 2.1() 
BEGIN 

H := {h | h∉Nc(vn+1)}; 
c(vn+1):= {C| d(vn+1,C)=minh∈H(d(vn+1,h))};  
For each vertex vi from G do 

Update(d(vi, c(vn+1)) ;// using eq.(2) 
Enddo 
For each vertex vi ∈ N(vn+1) do 

test_dominance(vi) ; 
Enddo 
END. 
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After the insertion of vn+1 in the selected color (among m1), some vertices from 
the neighborhood of vn+1 became dominating vertices. These vertices needed only 
one neighbor within the selected color to become dominating. In order to verify this 
situation, we need to recall the method test_dominance(vertex) which is in order 
O(1). 

Proposition 3. The procedure Scenario 2.1() performs in O(n). 
Proof. After the coloring of vn+1 using the selected color, the procedure Scenario 2.1() 
tries to update the dissimilarity d(vi,c(vn+1)) for each vertex vi from G using the 
formula eq.(2) (O(n)). Afterward, it verifies the dominance property of the neighbors 
of vn+1 (at most ∆) using test_dominance method (O(1)). Therefore, the procedure 
Scenario 2.1() uses at most (∆+n*1) instructions, and the complexity is O(n). 

 
 
 
 
 
 
 
 

 

Fig. 5. Insertion of vertex E using Scenario 2.1: the color of C does not belong to the 
neighborhood colors of E. Consequently, the color of C is assigned to E. 

 Scenario 2.2: vn+1 is neighbor to at least one vertex in each m colors. 

Contrary to the previous scenario, vn+1 has at least one non dominating vertex per 
color in its neighborhood. We distinguish here the two following complementary 
sub-cases: 

o Scenario 2.2.1 : number of colors m=1 

If m=1 that is only one color C available to receive vn+1, we assign this color C to 
vn+1. Since this assignment generates a non proper coloring of G due to the presence 
of some neighbors of vn+1 in C, the colors of these vertices must be changed. For each 
vertex vi among the latter the transformation is feasible because it is non dominating. 
As our objective is to find a partition such that the sum of vertex dissimilarities within 
each class is minimized, the color whose dissimilarity with vi is minimal (eq.(1)) will 
be selected if there is a choice between many colors for vi.  

Procedure Scenario 2.2.1() 
BEGIN 
c(vn+1):= C;// C the color available to receive vn+1 
For each vertex vi from G do 
Update(d(vi, c(vn+1)) ;// using eq.(2) 
Enddo 
For each vertex vi ∈ N(vn+1) such that c(vi)=C fo 

H := {h | h∉Nc(vi)}; 
k := {color| d(vi,color)=minh∈H(d(vi,h))};  
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For each vertex vj from G do 
Update (d(vj,k);// using eq.(2) 
Update (d(vj,c(vi));// using eq.(3) 

Enddo 
c(vi):=k ; 

Enddo 
For each vertex vi ∈ N(vn+1) do 

test_dominance(vi) ; 
Enddo 
END. 

Proposition 4. The new coloring given from Scenario 2.2.1 is a b-coloring. 

Proof. ∀vi one vertex from G such that c(vi)=C and vi∈N(vn+1) we have Dom(vi)=0. 
By the dominance property, ∃ h∈{1,2,..,k} such that Ch≠C and Ch∉Nc(vi). Therefore, 
the color Ch will be assigned to vi which guarantees proper coloring. In addition, ∀ 
h∈{1,2,..,k} such that Ch≠C, ∃ v∈(Ch∩N(vn+1)) having Dom(v)=1. Thus, v remains a 
dominating vertex of its color (i.e. Dom(v)=1) and likewise for vn+1 (i.e. Dom(vn+1)=1 
in its color C). Consequently, there is at least one dominating vertex for each color 
(∀Ch ∈ P={C1,C2,..,Ck} ∃ v such that c(v)=Ch and Dom(v)=1): the dominance 
property is satisfied in P.  The coloring of G is a b-coloring. 

Proposition 5. The procedure Scenario 2.2.1() performs in O(n∆). 
Proof. When the color C is assigned to vn+1, the neighbor vertices of vn+1 colored with 
C (at most ∆) change their colors which require the updates of the dissimilarities 
values in O(n). Afterward, the dominance property of the neighbors of vn+1 (at most 
∆) is verified using the test_dominance method (O(1)). Therefore, the procedure 
Scenario 2.2.1() uses at most (∆*n+∆*1) instructions, and the complexity is O(n∆). 

o Scenario 2.2.2 : number of colors m>1 

In this case, several colors are available to receive vn+1 (m>1). The following 
definition of color transformation is required: 

Definition 4. A color C among the m candidate colors to receive vn+1 is called 
"transformation subject" if its transformation does not violates the b-coloring 
constraints for the (m-1) remaining colors. In other words, the color C is a non 
transformation subject if it exists at least one color C’ (among m) such that all the 
neighbors in C for the dominating vertices of C’ are in the neighborhood of vn+1. 

Example: As an illustration, the figure 6 shows two colors C1 and C2 available to 
receive the vertex F (m=2). The unique neighbor in C1 to the dominating vertex of C2 
(the vertex B) is the vertex A (called a supporting vertex) which belong to the 
neighborhood of F. Thus, the color C1 is a non transformation subject. In fact, if the 
color C1 is affected to the vertex F, the vertex A (dissimilar to F) must be re-colored. 
Due to this transformation, the color C2 is removed from the neighborhood colors of 
B which becomes a non dominating vertex and the color C2 without dominating 
vertices. Consequently, the transformation of C1 is forbidden. Contrary to C1, C2 is a 
transformation subject and it is hence available to receive F. 
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Fig. 6. A transformation subject colors identification 

This shows that a color can undergo some transformations when a new vertex is 
presented (exclusion of vertices, change of dominating). Only the colors maintaining 
the b-coloring constraints are transformable. A relevant stage in the incremental 
approach will consist to identifying the number (m2 among m) of transformation 
subject colors. The following sub-cases are then considered: 

 Scenario 2.2.2.1 : one color as a transformation subject 
In this case, only one color (m2=1) is identified as a transformation subject. 

Therefore, the vertex vn+1 is assigned to this color and its transformation is allowed 
alike the previous Scenario 2.2.1. 

 Scenario 2.2.2.2 : m2>1 colors as a transformation subject 
The actual scenario considers the presence of a number m2 (1<m2≤m) 

transformation subject colors. The color whose dissimilarity with vn+1 is minimal 
(eq.(1)) will be selected to receive it. Since the neighbor vertices of vn+1 in these m2 
colors must change their colors behind the inclusion of vn+1, these vertices do not 
contributes to compute the dissimilarity values. Once the color available to receive 
vn+1 being selected, we transform it alike the previous Scenario 2.2.1. 

 Scenario 2.2.2.3 : no color as a transformation subject 

If any color is selected as transformation subject among the m colors, vn+1 forms its 
own color (k+1)th it becomes its dominating vertex  (i.e. Dom(vn+1)=1). Due to this 
transformation, the m colors becomes without dominating vertices. Regarding this 
problem, we define a procedure which tries to find a b-coloring of G where all colors 
are dominating. The idea is the following: each non dominating color C among the m 
no subject transformation colors can be changed. In fact, after removing C from the 
graph G, for each vertex vi colored with C (i.e. c(vi)=C), a new color is assigned to vi 
which is different from those of its neighborhood. As our objective is to find a 
partition such that the sum of vertex dissimilarities within each class is minimized, the 
color whose distance with vi is minimal will be selected if there is a choice between 
many colors for vi. Before starting again with another non dominating color C’ the 
procedure verifies if the remaining colors have now a dominating vertex (in such a 
case, these colors are identified as a dominating color).  

Discussion 

In order to process new data instances as they are arrived, the learning algorithm has 
two steps: initialization and cluster update. It initially adopts the b-coloring partition 
associated to the optimal dissimilarity threshold θo and works to update it. In the 
initialization step it is better if we have a sample of the data set that is significant 
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overall the feature space as that we can get a significant clustering, but we can work 
as well with a normal data set. If the data set used for initialization step does not 
reflect the true clusters structure, the online approach allows an eventual updating of 
existing clusters by re-coloring certain instances. Due to this re-assignment strategy, 
the intraclass dissimilarity, an increasing monotonous function of threshold θ, can 
decrease by improving the partition quality and monotonically decreasing the optimal 
dissimilarity threshold θo during the incremental process. 

For more improving the partition quality, we propose an additional operation to 
optimize the groups of existing clusters called color merging. Typically, two colors 
are merged when the dissimilarity between them is below the optimal 
dissimilarity threshold θo. Consequently, the optimal threshold θo can increase 
although the b-coloring constraints are violated. To solve this problem, the procedure 
used in Scenario 2.2.2.3 to find a b-coloring of G is applied for every color without 
dominating vertices. 

3.2   Removal of an Existing Instance vm  

When an instance xm is introduced which corresponds to the vertex and edges 
deleting in G, we must rearrange the coloring of G in order to maintain the b-
coloring properties and a high quality clustering. Likewise to the previous 
scenarios, our idea is based only on the knowledge of the dissimilarity matrix and 
the dominating vertices of each color. Under this hypothesis, the following 
scenarios are to be considered: 

3.2.1   Scenario 3:  vm Is the Sole Dominating Vertex of Its Color c(vi) 
In this case, vm is the only one dominating vertex of its color. Therefore, by 
removing vm, the color c(vm) becomes without dominating vertices and the coloring 
of G is not a b-coloring. Consequently, the colors of the remaining vertices of c(vm) 
must be changed. For each vertex vi among the latter, the transformation is feasible 
because it is non dominating. As our objective is to find a partition such that the 
sum of vertex dissimilarities within each class is minimized, the color whose 
dissimilarity with vi is minimal (eq.(1)) will be selected if there is a choice between 
many colors for vi. In the opposite case of this scenario, the following Scenario 4 is 
performed.  

3.2.2   Scenario 4:  vm Is a Supporting Vertex of All Dominating Vertices from at 
Least One Color 

In this situation, vm is the sole vertex colored with c(vm) in the neighborhood of all 
dominating vertices from at least one color C. As a result, the deletion of vm, pushes 
these vertices to become non dominating and C without dominating vertices. To solve 
this problem, the procedure used in Scenario 2.2.2.3 to find a b-coloring of G is 
applied for every color C without dominating vertices.  

If vm does not verify any of the previous Scenarios 3 and 4, the dynamic algorithm 
process the deletion of vm without any rearrangement and the new coloring of G is a 
b-coloring. 
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4   Experimental Results 

Experiments have been made using three relevant benchmark data sets chosen from 
UCI database [6]. The first data set (Zoo data) is a collection of 100 animals with 17 
features (1 quantitative, 1 nominal and 15 boolean). The second data set (Auto import 
data) consists of 193 instances of cars with 24 features (14 quantitative and 10 
nominal) and the third data set (Tic-tac-toe data) contains 958 instances, each 
described by 9 categorical attributes. 

In order to examine the effectiveness of the online b-coloring algorithm, the 
experimental methodology in conducted as follows: for each data set, the b-coloring 
partition id firstly generated upon a data sample (which contains 50 instances for Zoo, 
100 for Auto import and 700 for tic-tac-toe) from the original data sets; then the 
partition is updated by adding sequentially the remaining points and the value of 
Dunng index is computed as more instances are included. 

For an interesting assess of the results gained on these data set, our algorithm was 
compared against original b-coloring, Single-Pass2 and k-NN (k=5). The original b-
coloring consists in performing complete re-clustering using b-coloring clustering 
algorithm [2].  

We note that the Euclidian distance is applied to define the dissimilarity level 
between two instances characterized with m features af (f∈{1...m}) as given by the 
following formula:  
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where mf is the normalized coefficient for the attribute af and gf is the comparative 
dissimilarity function between the two attribute values ai,f and aj,f corresponding 
respectively to the instances xi and xj. 

For numeric attributes, gf is:
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The figures 7, 8 and 9 show the evolution of Dunng values according to the number 
of instances. The curves comparisons of the different clustering algorithms show the 
performance of the online b-coloring algorithm. It appears clearly that the online 
algorithm achieves better results than k-NN (k=5) and more significant results than 
Single-Pass. It appears that the incremental algorithm slightly improves the 
performance of the original b-coloring algorithm (except the runtime profit) 
especially due to the efficiency of the re-assignment strategy (re-coloring) which 
improves the partition quality in terms of Dunng value. Finally, one can see that 
similar experiments may be done for removal instances.  

                                                           
2 The dissimilarity threshold used in the Single-Pass algorithm is the optimal threshold θo. 
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Fig. 7. Performances on Zoo Fig. 8. Performances on Auto Import 

 

Fig. 9. Performances on tic-tac-toe 

5   Conclusion 

We proposed a dynamic version for the b-coloring based clustering approach which 
relies only on dissimilarity matrix and cluster dominating vertices in order to cluster 
new data as they are added to the data collection or to rearrange a partition when an 
existing data is removed. A real advantage of this method is that it performs a dynamic 
classification that correctly satisfies the b-coloring properties and the clustering 
performances in terms of quality (DunnG value) and runtime, when the number of 
clusters is not pre-defined and without any exception on the type of data. The results 
obtained over three UCI data sets have illustrated the efficiency of our algorithm to 
generate good results than Single-Pass and k-NN algorithms. 

There are many interesting issues to pursue: (1) leading additional experiments on 
a larger medical data set where a patient stay typology is required and an inlet patient 
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stay is regular and has to be incorporate to the typology, (2) extending the incremental 
concept to add or remove simultaneously sets of instances, and (3) to define some 
operators which permit to combine easily different clusterings constructing on 
different data. 
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Abstract. As mentioned in French secondary school official texts, teaching 
science implies teaching scientific process. This poses the problem of how to 
teach epistemology, as traditional science teaching is mostly dogmatic and 
based on contents. Previous studies show that pupils, science students and 
teachers mostly own positivist and realist spontaneous conceptions of science 
and scientific discovery. Here, we present the evaluation of the didactic impact 
of a network game, Eleusis+Nobel, on third year biology students who aim at 
becoming teachers. This cards game, based on a Popperian epistemology, has 
been designed to reproduce the scientific discovery process in a community. In 
the limits of our study, results obtained with classical social psychology tools 
indicate that students who played this game specifically assimilated the 
subjective dimension of knowledge and the role of the community in their 
conception of science, on the contrary to negative control students, who did not 
play.  

Keywords: epistemology, positivism, constructivism, science education.  

1   Introduction 

Scientific discovery is a complex process including psychological, social and 
historical dimensions. As far as the cognitive psychological dimension is concerned, 
research made an advance since both science products (concept or knowledge) and 
process (experimental design and evidence evaluation skills) have been integrated in 
the descriptive framework of Scientific Discovery as Dual Search [13]. Simulated 
science discovery tasks have then been focalised on domain specific discoveries 
integrating science process consideration (for a review see [21]). However, few 
simulations take into account the social dimension of scientific discovery, which is 
considered as central by epistemologists (e.g. [14]). Here, we are interested in one of 
those: Eleusis+Nobel network game (E+N; [5,6]). 
                                                           
* Corresponding author. 
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1.1   Problematics 

All these interesting developments raise the question of their social utility: what do 
people who take part in such simulations really learn? Are they able to transfer what 
they learn to their conception of science? We try here to provide elements to answer 
these questions, which have not yet occurred, as far as we know.  

In other words, the matter is to know whether such simulations can be used as tools 
to teach epistemology. In France, all secondary science teachers enter a classroom 
very soon, without having entered a research laboratory. That is to say, they do not 
know what science looks like. New French official texts contain the explicit 
obligation for them to teach science process [3], although traditional education always 
put the emphasis on contents. Given the little practical place devoted to epistemology 
during the formation of teachers, and the contradiction of teaching epistemology in a 
dogmatic way, we were willing to evaluate alternative ways of teaching. We propose 
here an evaluation of the impact of E+N game on third year general biology students, 
who aim at becoming secondary biology teachers. 

1.2   E+N Game 

E+N is a card game inspired from Abott's game [9], and was designed in 
collaboration with cognitive scientists [5] to simulate scientific discovery and to study 
the players’ strategies during a collective process of proof and refutation.  

Players have to discover a set of hidden rules, each determining the valid card 
sequences that can be formed during the game. A hidden rule is a set of clauses as “A 
red card can be followed by a black card, and a black card by a red card” using the 
colour and the form of a card (red, heart …) and/or its rank (ace, figure, pair…). 

Each player has access to private experimentation spaces corresponding to each 
hidden rule, in which he/she can play cards and form sequences which are classified 
as true or false by the hidden rule. Players can publish their own theories explaining 
hidden rules, read the ones submitted by other players and possibly refute them when 
they find a sequence which is irrelevant with what was published. This game is based 
on a Popperian conception of science, where validation goes through conjectures and 
refutations. Publications and refutations are sanctioned by the following score system. 
A player scores n points when publishing a theory, and n’ points by refuting an 
existing one, in which case the publisher of this theory looses n’ points.  The game 
ends after a fixed duration (two or three hours), and the player with the highest score 
wins the Nobel Prize. The ratio n/n’ can be changed from one game to another to 
study the variations in player’s strategies. We refer to previous paper [6] for a more 
detailed description of the game's rules and interface. 

1.3   Theoretical Frame of the Study  

In science education and epistemology, a constructivist vision of building knowledge 
has been developed (e.g. [8, 14, 19]), to which a majority of research workers in these 
domains seem to adhere [15]. According to constructivism, all knowledge is linked to 
a subject who knows [8]. So, its profound nature is subjective. Thus conviction, point 
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of views and beliefs are part of science and learning [1, 14]. On the other hand, all 
knowledge is issued from a construction process. This process consists in qualitative 
reorganisation of initial knowledge structure [17], and can be assimilated to change of 
conceptions [19]. Conceptions play an organisational role in thinking and learning 
[19], but affects and values also do [10].  

Here, we refer to personal epistemology as a system of interacting attitudes related 
to knowledge construction objects (such as error, science…). Attitudes are composed 
of a cognitive and an affective component (i.e. conception of an object, and affective 
relation to this object; [11]). They interact together and norms and associated values 
emerge from this epistemic attitudes system [10]. Norms are rules telling how the 
subject should behave in a particular situation and values consist in general principles 
which justify the corresponding norms. 

Most studies on epistemology learning and teaching concern conceptions, i.e. 
what we call the cognitive component of attitudes. Science teachers and students do 
not own constructivist spontaneous science conceptions (e.g. [2, 16, 20]). For 
instance, to future biology teachers, knowledge is an “external truth that can be 
discovered through observation, discussion, sense-making” and also a collection of 
additive facts [16]. In that sense, experiment can constitute a supreme arbitrary to 
verify theories. This naïve, positivist labelled epistemology also contains a realist 
view, given which the world is intimately knowledgeable (in opposition to an idealist 
conception), so that scientific knowledge tells us about a truth: the world as it is. This 
positivist and realist vision is coherent with naïve [18] and traditionalist [4] 
epistemologies evaluated by other authors, in the sense that knowledge would be 
composed of information units which are progressively added, thus allowing 
knowledge progress. In fact, secondary teachers define teaching as a “maximum 
information transfer” and learning as an “every information absorption” [2, 20]. 

In the following, we evaluate E+N playing impact on science conceptions, values, 
and to a less extent, affects. We used the standard pre-test/post-test procedure. The 
test was mostly composed of a Likert-type scale and of Osgood’s semantic 
differentiators (OSD). Values are considered to be implicit in all adjectives, but some 
of those explicitly refer to values, such as good and beautiful. Affects correspond to 
pleasure and pain domain. Conceptions are here considered as moving from a 
positivist and realist extremity to an idealist and constructivist one. One has to notice 
that we refer to philosophical corresponding notions, to be able to characterise 
students’ undifferentiated epistemology. These students initially had no deep thought 
about scientific process. E+N implements the Popperian intersubjective construction 
of objectivity concept, which is a central point of what became constructivism. That is 
why we expected E+N game to favour constructivist epistemology development.  

2   Methodology 

2.1   Procedure and Subjects 

The study has been realized in South France, in the University Montpellier II. In 
January 2007, 43 third year general biology students filled up the initial test (= initial 
experiment). All these students aimed at becoming life and earth science secondary 
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school teachers and were registered to follow the same science education and 
epistemology courses. One and a half month later, 14 of them (=Pl for Players) 
played E+N then filled up the final test (6 days later), whereas 14 others (=NC for 
Negative Controls) filled up the final test without having played. The final test 
corresponds to the initial test plus some additive questions. For both Pl and NC 
groups, the initial experiment is called the pre-test and the final one the post-test. 
Players have been told that this game mimics scientific discovery as it occurs – in 
community. During the game, Pl was mixed together with 24 other students and the 
whole sample was split into 16 teams of 2 or 3 players. All 16 computers were in the 
same room. The game lasted 2 hours and the winner team won a 1kg candy box (the 
Nobel Price). There was a non desired function in the program: players could refute 
themselves and win points whereas they should normally have lost the points gained 
during publication. Particularly, two teams concentrated on this strategy and this 
provoked a revolt atmosphere at the end of the session. 

2.2   Measuring Tools 

Classical tools of socio-psychology have been used for this study. A Likert-type scale 
is a group of propositions which measure the same psychometric variable. Subjects 
have to indicate their degree of agreement for each proposition (see Appendix 1). For 
OSD relative to a term, subjects have to choose a position between two opposite 
adjectives, depending on the one that best describes the term from their point of view. 
For each scale and each individual, we calculated a score, which corresponds to the 
average answer to the scale’s items. 

The pre-test is composed of a questionnaire and an OSD series. The questionnaire 
aims at assessing positivist and realist conceptions in opposition with constructivist 
and idealist ones. It is composed of two subscales: “Realism and truth status” (RTS) 
and “Research worker’s status” (RWS) subscales (Appendix 1). OSD were designed 
to evaluate conceptions (C1 to C3 scores), values (V1 to V4 scores) and affects (A 
score) related to five terms, considered as epistemic objects (Appendix 2).   

The post-test contains additional OSD, relative to conceptions of proof and 
refutation (Appendix 3) and two open questions: “1) Give 3 terms you associate to the 
communication of results in a scientific community” and “2) Give 3 terms you 
associate to scientific discovery”. We respectively expected the occurrence of 
publication and refutation terms specifically for the Pl group. Since these parts did 
not appear in the pre-test, we are not able to observe any change in conceptions. 
Consequently, the results are only indicative. 

2.3   Results Analysis 

Data were collected, reported in ExcelR and analyzed with SPSSR 9.0 software. Non-
parametric tests were used to compare item per item (Wilcoxon signed ranks test on 
paired samples* and Mann-Whitney test on independent samples). Independent or 
paired samples* T-tests allowed scores comparison. (*for pre-test/post-test comparison 
in a given subpopulation – Pl or NC) 
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3   Results 

3.1   Homogeneity of Pl and NC Subpopulations at the Pre-test 

To verify that Pl and NC subpopulations were comparable, we first looked at social 
variables (Table 1A). Both subpopulations were significantly the same average age 
and were composed of the same number of males and females. Concerning parents’ 
socio-professional category, we cannot know much since the majority of subjects 
answered other, although our sampling do not seem to be biased relatively to 
professions linked to scientific research or scientific education.  

Table 1. Comparison of Pl and NC Subpopulations Pre-test Variable Means and Average 
Variable Means for Pooled Pl and NC. 

sd : standard deviation 
for T-test, df = 26 
t is obtained after an independent samples T-test  

A) Social Variables 
  age sexe spc of parents 

t (Pl vs NC) -1.381 0.000a -0.801a 
Mean (Pl+NC); (sd) 20.86 (1.11) 1.29 (0.46) 5.11 (1.64) 

spc : socio-professional category 
a concerning these ordinal variables, Wilcoxon test also leads to the conclusion of population 
homogeneity 
sex : 1 female, 2 male 
spc of parents : 1 scientific education, 2 scientific research , 3 agriculture, 4 industry, 5 health 
and 6 other 

B) Pre-test Scores  
Score RTS RWS V1 V2 V3 V4 A C1 C2 C3 
t (Pl vs NC) -0.245 0.217 2.664* 0.137 0.113 1.168 0.437 -0.303 -0.625 0.077 
Mean (Pl+NC) 

(sd) 
0.18 
(0.60) 

-0.20 
(0.77) 

1.23 
(0.65) 

1.00 
(0.54) 

1.33 
(0.55) 

1.28 
(0.62) 

-1.09 
(0.64) 

0.31 
(0.62) 

-0.08  
(0.57) 

0.23 
(0.73) 

statistical significance: *p<0.05 

Secondly, we compared epistemology scores between each subpopulation through 
a T-test (Table 1B). We can notice that with the exception of the esthetical value V1 
score, all scores can be assumed as similar. Some means have an absolute value 
superior to 1, whereas other means are closer to 0. The former, clear-cut epistemology 
scores, concern the positive values associated to scientific knowledge, science, error, 
teaching and knowledge (V2, V3 and V4) and the negative affects associated to error 
(A). Relatively to the latter, which does not reflect a shared tendency between 
individuals, population is more heterogeneous. Positive RTS, C1 and C3 scores 
means correspond to a dominant positivist and realist epistemology, whereas negative 
C2 and RWS scores means indicate a constructivist tendency.   

V1 score is significantly higher in Pl subpopulation (see Table 2). However, we 
can notice that all Pl and NC subjects have a null or a positive V1 score (not shown), 
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which suggests that if the quantity of this value is not comparable, the quality is the 
same: it is positive. Item per item analysis through Mann-Whitney test indicates that 
only 4 items among 106 initial items were statistically different between Pl and NC 
subpopulations (not shown). Two of those items enter V1 score, one has been 
excluded from the analysis and the last one is part of V4 score.  

We conclude that for all considered scores but V1, NC subpopulation constitutes a 
satisfying negative control for Pl subpopulation. 

3.2   Pl Subpopulation Specific Scores Changes of Answers in the Post-test  

Table 2 shows that only two scores means (RWS and C3) significantly changed in 
Pl’s post-test. For this subpopulation, RWS scores mean is more negative in the post-
test than in the pre-test, whereas C3 scores mean becomes negative in the post-test. 
Among nine RWS subscale items, six concern the role of a research worker’s 
subjectivity in science (Appendix 1). Moreover, all C3 semantic differentiators focus 
on subjectivity (or creativity and imagination) relatively to different epistemology 
objects. So it seems that a major change in players’ conception deals with the central 
role of subjectivity – of subjects – in building knowledge. 

Table 2. Evaluation of E+N Specific Effect on Pl and NC Subpopulations Scores 

sd : standard deviation  
t is obtained following a paired-samples T-test comparing pre-test and post-test scores means  
for T-test, df = 13 
statistical significance: *p<0.05, **p<0.01 

  NC   Pl  
Score 
(sd) 

Mean at the 
pre-test 

Mean at the 
post-test t 

Mean at the 
pre-test 

Mean at the 
post-test t 

RTS 0.21 (0.68) 0.04 (0.65) 1.201 0.15 (0.55) -0.16 (0.52) 1.967 
RWS -0.23 (0.78) -0.56 (0.48) 1.469 -0.17 (0.79) -0.72 (0.54) 3.016** 
V1 0.93 (0.66) 0.81 (0.69) 0.563 1.52 (0.52) 1.31 (0.59) 1.188 
V2 0.99 (0.54) 0.83 (0.38) 1.230 1.01 (0.56) 0.96 (0.53) 0.328 
V3 1.32 (0.60) 1.25 (0.54) 0.479 1.35 (0.51) 1.29 (0.40) 0.359 
V4 1.14 (0.73) 1.10 (0.64) 0.268 1.41 (0.47) 1.59 (0.45) -1.075 
A -1.14 (0.53) -0.79 (0.64) -1.859 -1.04 (0.75) -0.86 (0.77) -1.439 
C1 0.34 (0.76) 0.50 (0.50) -0.962 0.29 (0.47) 0.09 (0.61) 1.129 
C2 -0.01 (0.68) -0.11 (0.56) 0.490 -0.15 (0.46) -0.25 (0.33) 0.766 
C3 0.22 (0.67) 0.00 (0.49) 1.223 0.25 (0.80) -0.32 (0.56) 2.543* 

Item per item analysis revealed only few differences between Pl post-test and pre-
test answers (Table 3). We can notice that among seven significantly changing items, 
four deal with subjectivity (Q2, Q4, D1, D3), and always in the sense of enhancing 
subjectivity integration in their conceptions. The fact that Q2 and Q4 are part of RTS 
score reinforces the previous result obtained with RWS score (Table 2). An 
interesting result is obtained with Q1 item; it seems that the game has convinced a 
third of players (not shown) that an isolated research worker cannot do science.  
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Table 3. Evaluation of E+N Specific Effect on Pl and NC Subpopulations Item Answers 

  NC   Pl  

 Za 
Mean at 

the pre-test 
Mean at the 

post-test Zb 
Mean at the 

pre-test 
Mean at the 

post-test Zb 
Q1 -0.026 0.71 (1.49) 0.29 (1.59) -1.540 0.69 (1.70) -0.57 (1.40) -2.401* 
Q2 -0.951 0.31 (1.38) 0.07 (1.27) -0.666 0.79 (1.58) -0.38 (1.04) -2.476* 
Q3 -0.171 -1.46 (0.88) -1.21 (0.70) -1.000 -1.57 (0.64) -0.86 (1.17) -2.309* 
Q4 -1.278 -1.08 (1.32) -1.14 (1.03) -0.520 -0.29 (1.64) -1.36 (0.84) -2.324* 
D1 -0.025 0.36 (1.08) 0.14 (0.53) -0.918 0.38 (1.04) -0.57 (1.09) -2.220* 
D2 -1.524 0.36 (0.84) 0.07 (0.73) -1.265 -0.29 (1.20) 0.64 (1.01) -2.804** 
D3 -1.135 -0.21 (1.12) 0.14 (1.03) -0.905 0.29 (0.99) -0.50 (1.02) -1.995* 

a Mann-Whitney test variable is issued from comparison of Pl and NC answers at the pre-test. 
b Z is issued from Wilcoxon signed ranks test on paired samples comparing pre-test and post-
test items answers means. All items of initial experiment that present a significant difference 
between Pl and NC subpopulations at the post-test are presented here. 
Q1: “An isolated research worker can do science.” Po. Q2: “Scientific theories are inventions.” 
Co (RTS). Q3: “There is always more than one way to interpret an experiment result.” Co 
(RTS). Q4: “Researchers do not use their beliefs to do science” Po. D1: “scientific knowledge”: 
subjective/objective (C3). D2: error; awful-beautiful. D3: learning; subjective/objective. 
Po indicates that a total agreement is counted as +2 and Co that the answer is reversed (total 
agreement as -2). When the item enters a scale, it is mentioned (Q1, Q4, D2 and D3 have not 
been retained in the scales presented in this paper). 

Another promising result concerns D2; to players, error has significantly become 
more beautiful. This is the only result of our study concerning the change of a value 
after playing E+N. Finally, an unexpected result is found in Q3 answers change.  

3.3   Putative Pl Subpopulation Specific Changes of Conceptions 

Answers to additional open questions (Table 4) indicate that our expectations 
concerning the occurrence of the term publication – which corresponds to E+N 
nomenclature – in subpopulation Pl have not been satisfied : not only did Pl subjects 
mention article instead of publication, but they also did it nearly as much as NC 
subjects. Also, refutation is not mentioned. The only two clear-cut answers specific to 
subpopulation Pl, which were not predicted, are discussion and subjective. As these 
questions were not in the pre-test, we cannot be sure that this specificity appeared 
through the game. However, this result contributes to reinforce previous ones 
concerning subjectivity and the role of community in science. 

Specific OSD relative to proof and refutation in the post-test (Table 5) indicate 
that proof is significantly more relative, temporary, statistic and collective for Pl than 
NC subjects. Again for Pl subjects, both proof and refutation are more collective, 
experimental and complex. It is tempting to think that this corresponds to a game 
effect. Item per item analysis (not shown) reveals that changes concern complexity for 
both proof and refutation and on the experimental property of refutation. 
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Table 4. Number of Five Selected Terms’ Occurrence and Number of Subjects Concerned by 
these Occurrences in Answers to both Additional Open Questions in the Post-test  

 NC Pl 
 N (occurrence) N (subjects) N (occurrence) N (subjects) 

article 4 3 5 5 
eurêkab 1 1 1 1 
experimenta,b 3 3 3 3 
discussion 1 1 6 5 
subjectivea 0 0 4 4 

a or related term : experimentation, subjectivity, … 
b both terms are chosen as negative controls and were not particularly expected.  
 Discussion is the term with the highest overall occurrence. Other terms which are not indicated 
here are very disparate and seem to come under heterogeneous categories.  

Table 5. Comparison of Pl and NC Additional OSD Post-test Scores Means 

  RePr Re Pr 
NC score mean (sd) -0.21 (0.30) -0.11 (0.49) 0.11 (0.57) 
Pl score mean (sd) -0.91 (0.55) -0.07 (0.87) -0.33 (0.48) 
t (NC vs Pl) -4.201*** 0.134 -2.124* 

sd : standard deviation 
t is issued from independent samples T-test 
statistical significance : *** p<0.0005, * p<0.05 

4   Discussion 

4.1   Population Initial Epistemology 

We proposed a pre-test and a post-test to students who played E+N for two hours and 
we compared changes in answers with the ones of negative controls (non-players). 
The test evaluates conceptions, values and affects concerning scientific process. 

Before the game, initial Pl’s and NC’s epistemology where similar, except from 
esthetical values, which were higher for Pl. This heterogeneity effect underlies a limit 
of our study: the smallness of our samples. Future experiment will be done with 
greater samples. Otherwise, positive values were expected from students who aim to 
become science teachers. The negative affective dimension of attitude towards error 
had already been characterized [7] and is explained, together with general conception 
tendencies elsewhere [10]. Slightly negative scores means (RWS and C2) – indicating 
constructivist conceptions – are interpreted as concerning on-going science: these 
students know that error takes part of science and that scientists can have “wrong” 
interpretations or theories. But they think that once the error is detected, knowledge 
which is kept is true. This last point would explain slightly positive scores means 
(RTS, C1 and C3) and correspond to a realist and positivist point of view. 

4.2   Conception Change Through E+N Playing  

We tried to evaluate several aspects linked to constructivism. Among these, the aspect 
which is recurrently and significantly changed – specifically to Pl – concerns the role 
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of subjectivity in scientific process. These results are reinforced by those obtained 
with additional specific post-test questions. Additionally, Q1 item and answers that 
indicate putative conception changes focus on the role of community in scientific 
process. Thus, to us, the game allowed Pl to become aware of these central aspects of 
constructivism, so that they specifically assimilated them in the cognitive components 
of their epistemic attitudes. The only one result which was not predicted is the change 
of Q3 answer; Pl are in fact less likely to believe that several interpretations are 
possible in front of a given result. Maybe they assimilated possible, in the sense of 
what a research worker can propose, with right, in the sense of what is acceptable 
given a theory. This could be due to the strict formalism of the game, in which 
theories are predetermined and perfectly knowledgeable. 

Because of the difficulty to find volunteers, we organised this experiment with our 
students, who were supposed to follow epistemology courses. This could explain why 
NC’s scores also change between the pre-test and the post-test. However, statistics 
give us a clear limit and the significance levels that we use are absolutely standard. So 
no statistically significant score change has been observed in NC subpopulation. 

4.3   Suitability of the Game for Epistemology Teaching 

In the game, hidden rules represent what would be in reality “facts resistance to 
experimentation”. Thus, the conventional law constructed by players’ community do 
not necessarily correspond to the hidden rule. In that way, the game partly modelises 
construction of knowledge by a research worker community. Although we did not 
wanted that auto-refutation could allow point winnings, we noticed that this could 
modelise an existing scientific strategy. It is possible that this parameter greatly 
influenced Pl in their consideration of science as relying on subjectivity; the one who 
wins can do it through cheating! As all observed answers changes do not focus on 
themes that are explicitly dealt with in the game, but just practiced, we infer that this 
constructivist conception has been subconsciously assimilated, in the Piagetian sense. 
We cannot exclude that this effect occurred synergistically with traditional 
epistemology courses. Even so, observed changes are very encouraging, because they 
would have been caused by only two hours of playing.  

An important factor for such a teaching tool is users’ pleasure. Open questions in 
the post-test treated of the matter of feelings during playing (not shown). We noticed 
that answers extremely differed: either players liked it much, or they got “very 
frustrated because of cheats”. This highlights what we also observed during the game: 
they really got involved into it. Previous experiments with 13 or 20-year-old pupils 
lead to the same conclusion. When time was out, a majority was disappointed and 
wanted to continue (that rarely happens with a traditional course!). 

Altogether, it indicates that E+N game can constitute a very interesting 
complementary tool to teach epistemology. In this report, we did not address the 
evaluation of what ability players learn through the game. It would be interesting to 
evaluate students’ skills to apply the refutation principle, to manipulate hypothesis 
and to propose experiences in front of a problem. We shall go deeper into this 
question, which will be dealt with in future investigations. 
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Appendix 

For OSD and questionnaires, we proposed, for each item, five intermediate possible 
choices. As our test is prospective, and given the small size of our samples, we 
calculated scores. Principal Components Analysis (PCA) was made on initial 
experiment results to check and if necessary uncover items that seemed to measure 
the same dimension. Based on these results, we grouped correlated items into scales 
and checked again the internal consistency of these scales by calculating the 
Cronbach’s α. 

A.1   Composition of Questionnaire Subscales Used in Pre-test and Post-test 

The questionnaire used for initial experiment (N=43) questionnaire was composed of 
39 items. Based on these results, we chose 19 items which constitute a robust scale 
(Chronbach’s α = 0.823). PCA allowed to distinguish two subscales. We named the 
subscales according to repartition specificity of observed items, although each 
subscale also contains items assessing comparable themes. 

Research Worker Status (RWS) Subscale 
Po 
Co 
Po 
Po 
Po 
Co 
Po 
Po 
 
Co  

Objectivity is intrinsic to scientific activity. 
Subjectivity is intrinsic to scientific activity. 
Scientific progress consists in a gradual accumulation of knowledge. 
Every scientific observation is neutral. 
Every scientific observation is objective. 
Every scientific theory is likely to be questioned in the future. 
Research workers do not use their beliefs to do science. 
If an experimental result is not compatible with a scientific theory, then this theory will 
necessarily be questioned.  
Even advice from experts should often be questioned.a 

Realism and Truth Status (RTS) Subscale 
Po 
Co 
Co 
Po 
Po 
Co 
Po 
 
Po 
Po 
Co  

Science produces knowledge which progressively accumulates. 
Scientific theories are inventions. 
The notion of atom is an invention.b 
The notion of atom is a discovery.b 
The result of an experimentation imposes a conclusion. 
There are always several possible interpretations for an experimental result. 
There is some scientific knowledge considered as acquired and which will never be 
questioned. 
We can say about a part of scientific knowledge that it is true. 
Before, there were theories which were false, but now we tend more and more towards truth. 
Sometimes I don’t believe the facts in textbooks written by authorities.a 

a propositions which belong to the same epistemological belief scale published elsewhere [4]   
b propositions inspired from an open questionnaire published elsewhere [15]  
 Po indicates a positivism (or realism) measuring item and Co a constructivist (or idealist) 

one. Answers are counted as follow: 

Po item : Agree 2 1 0 -1 -2 Disagree 
Co item : Agree -2 -1 0 1 2 Disagree 

For each subscale and each student, we calculate a score between -2 
(constructivist/idealist extremity) and +2 (positivist/realist, i.e. naïve extremity), 
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which is their average answers to corresponding subscale items. Chronbach’s α of 
RWS and RTS subscales are 0.750 and 0.738, respectively. 

A.2   Composition and Internal Consistency of Osgood’s Semantic 
Differentiators (OSD) Subscales of Pre-test and Post-test 

We classified antagonistic adjectives into three registers. We refer to explicit register 
of values, conceptions and affects because we made the a priori hypothesis that this 
adjectives mostly appeal to the corresponding dimension. However, no term has a 
pure connotation. 

A) Composition of V1, V2, V3, V4, A, C1, C2 and C3 subscales  
Items 

Explicit register of values 
scientific 
knowledgea 

science error teaching knowledgeb 

negative pole (-
2) 

positive pole 
(+2) 

     

awful beautiful V1 V1  V1 V4 
false true  V2    
bad good V2 V2 V3 V3 V4 
negative positive   V3  V3 
useless useful   V2  V3 
not interesting interesting   V3  V4 

Explicit register of affects      
painful pleasant   A  V4 
scaring tempting   A  V4 

Explicit register of conceptions      
non dogmatic 
pole (-2) 

dogmatic 
pole (+2) 

     

approximate exact C1 C1    
imprecise precise C1 C1    
contextual universal C2 C2    
relative absolute C2  C2  C2 
temporary definitive C2     
subjective objective C3 C2 C3 C3 C3 
stemming from 
imagination 

stemming 
from reason 

C3     

created given C3     
 

a “savoir scientifique” in French. b “connaissance” in French 

On an initial amount of 42 differentiators, comprising 3 types of explicit registers, 
we kept this 37 differentiators. From initial experiment, they were shown by PCA to 
be organized into two values groups and two conceptions groups, except for error 
affects which where apart. Then we defined, through two other PCA (one for values 
and one for conceptions), subgroups of differentiators for each category. We can 
notice that explicit registers of knowledge affects work as knowledge specific values. 
Apart from these last differentiators and for those we removed, our a priori explicit 
registers were consistent. 
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B) Internal Consistency (Chronbach’s α) 
subscale V1 V2 V3 V4 A C1 C2 C3 

α 0.7494 0.7126 0.6853 0.7239 0.5837 0.7034 0.7137 0.6844 

A.3   Composition and Internal Consistency of Post-test Specific OSD Subscales  

A) Composition 
explicit register of conceptions proof Refutation 

non dogmatic pole (-2) dogmatic pole (+2)   
relative absolute Pr  
temporary definitive Pr Re 
statistic logic Pr Re 
collective individual Pr RePr 
experimental theoretical RePr RePr 
complex simple RePr RePr 

B) Internal Consistency 
subscale Pr Re RePr 

Chronbach’s α 0.4179 0.6047 0.4267 

 



Learning Locally Weighted C4.4 for Class

Probability Estimation

Liangxiao Jiang1, Harry Zhang2, Dianhong Wang1, and Zhihua Cai1

1 Faculty of Computer Science, China University of Geosciences
Wuhan, Hubei, P.R. China, 430074

ljiang@cug.edu.cn
2 Faculty of Computer Science, University of New Brunswick

P.O. Box 4400, Fredericton, NB, Canada E3B 5A3
hzhang@unb.ca

Abstract. In many real-world data mining applications, accurate class
probability estimations are often required to make optimal decisions. For
example, in direct marketing, we often need to deploy different promotion
strategies to customers with different likelihood (probability) of buying
some products. When our learning task is to build a model with accurate
class probability estimations, C4.4 is the most popular one for achieving
this task because of its efficiency and effect. In this paper, we present a
locally weighted version of C4.4 to scale up its class probability estima-
tion performance by combining locally weighted learning with C4.4. We
call our improved algorithm locally weighted C4.4, simply LWC4.4. We
experimentally tested LWC4.4 using the whole 36 UCI data sets selected
by Weka, and compared it to other related algorithms: C4.4, NB, KNN,
NBTree, and LWNB. The experimental results show that LWC4.4 sig-
nificantly outperforms all the other algorithms in term of conditional log
likelihood, simply CLL. Thus, our work provides an effective algorithm
to produce accurate class probability estimation.

Keywords: class probability estimation, C4.4, locally weighted C4.4,
locally weighted learning, conditional log likelihood.

1 Introduction

Classification has been extensively studied and various learning algorithms have
be developed, such as decision tree, Bayesian network, and k-nearest-neighbor.
The predictive performance of a classifier is usually measured by its classification
accuracy on the testing instances. In fact, most classifiers, including decision
tree, Bayesian network, and k-nearest-neighbor, can also produce probability
estimations or “confidence” of the class prediction. Unfortunately, however, this
information is completely ignored in classification. This is often taken for granted
since the true probability is unknown for the test instances anyway.

In many real-world data mining applications, however, classifiers’ classification
accuracy are not enough, because they can’t express the information how “far-
off” (be it 0.45 or 0.01?) is the prediction of each instance from its target.

V. Corruble, M. Takeda, and E. Suzuki (Eds.): DS 2007, LNAI 4755, pp. 104–115, 2007.
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For example, in direct marketing, we often need to deploy different promotion
strategies to customers with different likelihood (probability) of buying some
products. To accomplish these tasks, we need more than a mere classification
of buyers and non-buyers, namely an accurate class probability estimation of
customers in terms of their likelihood of buying. It is obvious that an accurate
probability estimation of class membership is much more desirable than just an
accurate classification in these cases.

This fact raises the question of wether is there another better criterion than
the classification accuracy to evaluate classifiers that also produce class prob-
ability estimation, if we are aiming at an accurate class probability estimation
from a classifier? Recent research show that the answer is the conditional log
likelihood, simply CLL [1,2]. Now, given a built classifier G and a set of test
instances D = {e1, e2, . . . , ei, . . . , eN}, where ei =< ai1, ai2, . . . , ain >, N is the
number of test instances, n is the number of attributes, and ci is the true (ideal)
class label of the test instance ei. Then, the conditional log likelihood CLL(G|D)
of the built classifier G on the set of test instances D is:

CLL(G|D) =
N∑

i=1

logPG(ci|ai1, ai2 . . . , ain) (1)

In this paper, we firstly conduct an extensive experiment to compare some
state-of-the-art algorithms such as C4.4 [3], NB (naive Bayes) and KNN (k-
nearest-neighbor) in terms of class probability estimation (measured by CLL).
The experimental results show that C4.4 performs significantly better than NB
and KNN. This results indicate that C4.4 is an attractive model for class proba-
bility estimation. Motivated by the success of locally weighted linear regression
and locally weighted naive Bayes [4], we present a locally weighted version of
C4.4 to scale up its class probability estimation performance by combining lo-
cally weighted learning (LWNB) [5] with C4.4. We call our improved algorithm
locally weighted C4.4, simply LWC4.4.

The rest of the paper is organized as follows. In Section 2, we summarize some
related algorithms can be used to class probability estimation. In Section 3, we
present our improved algorithm called Locally Weighted C4.4. In Section 4, we
describe the experimental setup and results in detail. In Section 5, we make a
conclusion and outline our main directions for future research.

2 Related Work

Just as discussed in section 1, many classification models such as decision tree,
Bayesian network, and k-nearest-neighbor can also be used for class probability
estimation. Now, we simply look back them in this section.

2.1 Decision Tree

Decision tree is one of the most widely used classification models. It classifies
an instance by sorting it down the tree from the root node to one leaf node,
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which provides the classification of this instance. Each node in the tree specifies
a test of one attribute of the instance, and each branch descending from that
node corresponds to one of the possible values for this attribute. An instance is
classified by starting at the root node of the tree, testing the attribute specified
by this node, then moving down the tree branch corresponding to the value of
the attribute in the given instance. This process is then repeated for the subtree
rooted at the new node. After the tree is built, a manipulation called tree pruning
is performed to scale up the classification accuracy of the learned tree.

Unfortunately, traditional decision tree algorithms, such as C4.5 [6], have been
observed to produce poor class probability estimation [7]. Aiming at this fact,
Provost and Domingos [3] presented an improved algorithm simply called C4.4
to improve C4.5’s performance on class probability estimation. In C4.4, two
techniques are used to improve C4.5’s class probability estimation:

1. Smooth class probability estimation by Laplace estimation: Assume that
there are p instances of the class at a leaf, N total instances, and C total
classes. The frequency-based estimation calculates the estimated probability
of class membership as p

N . The Laplace estimation calculates the estimated
probability of class membership as p+1

N+C .
2. Turn off pruning: Provost and Domingos show that pruning a large tree

damages the probability estimation. Thus, a simple strategy to improve the
probability estimation is to build a large tree without tree pruning.

2.2 Bayesian Network

A Bayesian network consists of a structural model and a set of conditional proba-
bilities. The structural model is a directed acyclic graph in which nodes represent
attributes and arcs represent attribute dependencies. Attribute dependencies are
quantified by conditional probabilities for each node given its parents. Bayesian
networks are often used for classification problems, in which a learner attempts to
construct a classifier from a given set of training instances with class labels. As-
sume that A1, A2,· · ·, An are n attributes (corresponding to attribute nodes in a
Bayesian network). A test instance e is represented by a vector (a1, a2, , · · · , an),
where ai is the value of Ai. Let C represent the class variable (corresponding to
the class node in a Bayesian network). We use c to represent the value that C
takes and c(e) to denote the class of e. The Bayesian network classifier repre-
sented by a Bayesian network is defined in Equation 2.

c(e) = argmax
c∈C

P (c)P (a1, a2, · · · , an|c). (2)

Assume all attributes are independent given the class. Then, the resulting
classifier is called naive Bayes, simply NB:

c(e) = argmax
c∈C

P (c)
n∏

i=1

P (ai|c). (3)
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In NB, each attribute node has the class node as its parent, but does not have
any parent from attribute nodes. Although naive Bayes is easy to construct,
the attribute conditional independence assumption made by the naive approach
harms the classification accuracy of naive Bayes when it is violated. In order to
relax this assumption effectively, an appropriate language and efficient machinery
to represent and manipulate independence assertions are needed [8]. Both are
provided by Bayesian networks [9]. Unfortunately, however, it has been proved
that learning an optimal Bayesian network is NP-hard [10]. In order to avoid the
intractable complexity for learning Bayesian networks, learning improved naive
Bayes has attracted much attention from researchers. For example, Kohavi [11]
presented an algorithm called naive Bayes tree, simply NBTree. It uses decision
trees to scale up the classification accuracy of naive Bayes. Learning an NBTree
is similar to C4.5 [6] except for its score function of evaluating split attributes.
After a tree is grown, a naive Bayes is constructed for each leaf using the data
associated with that leaf. NBTree classifies a test instance by sorting it to a leaf
and applying the naive Bayes in that leaf to assign a class label to it.

2.3 K-Nearest-Neighbor

KNN (k-nearest-neighbor) has been widely used in classification problems. KNN
is based on a distance function that measures the difference or similarity between
two instances. The standard Euclidean distance d(x, y) between two instance x
and y is often used as the distance function, defined as follows.

d(x, y) =

√√√√ n∑
i=1

(ai(x) − ai(y))2 (4)

Given a test instance x, KNN assigns the most common class of x’s k nearest
neighbors to x, as shown in Equation 5. KNN is a typical example of lazy learn-
ing, which just stores training data at training time and delays its learning until
classification time.

c(x) = argmax
c∈C

k∑
i=1

δ(c, c(yi)) (5)

where y1, y2, · · ·, yk are the k nearest neighbors of x, k is the number of the
neighbors, and δ(c, c(yi)) = 1 if c = c(yi) and δ(c, c(yi)) = 0 otherwise.

KNN uses a simple voting to produce the class probability estimation. That
is say that the class labels of instances in the neighborhood are treated equally.
So, an obvious improved method is to weight the vote of k nearest neighbors dif-
ferently according to their distance to the test instance x. The resulting classifier
is called k-nearest-neighbor with distance weighted defined as follows.

c(x) = argmax
c∈C

k∑
i=1

δ(c, c(yi))
d(yi, x)2

(6)
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Another most efficient approach is deploying a local probability-based clas-
sification model within the neighborhood of the test instance consisting of the
k nearest neighbors. Talking of the local probability-based classification mod-
els, naive Bayes is absolutely necessary. The idea of combining KNN with naive
Bayes is quite straightforward. Whenever a test instance is classified, a local
naive Bayes is trained using the k nearest neighbors of the test instance, with
which the test instance is classified. Locally weighted naive Bayes [4], simply
LWNB, is a state-of-the-art example, which implements the locally weighed ma-
nipulation using locally weighted learning [5]. In LWNB, k nearest neighbors of
a test instance are firstly found and each of them is weighted in terms of its
distance to the test instance. Then a local naive Bayes is built from the locally
weighted training instances.

3 Locally Weighted C4.4

Thinking of C4.5’s bad performance of class probability estimation, Provost and
Domingos [3] presented an improved algorithm simply called C4.4 to improve its
class probability estimation performance. In C4.4, two techniques called Laplace
correction and turning of tree pruning are used.

Locally weighted learning [5] is meta method, which has been successfully used
to improve some efficient and effective algorithms. For example, locally weighted
linear regression, which is a locally weighted version of linear regression. It uses
a local linear regression to fit to a subset of the training instances that is in the
neighborhood of the test instance. The training instances in this neighborhood
are weighted according to its distance from the test instance, with less weight
being assigned to instances that are further from the test instance. A regression
prediction is then obtained from linear regression taking the attribute values of
the test instance as input. Similar to locally weighted linear regression, Li [12]
uses locally weighted learning to improve SMOreg (a support vector machine
algorithm for Regression) for Regression.

For another example, Frank et al. [4] presented a hybrid algorithm called lo-
cally weighted naive Bayes, simply LWNB, by combining locally weighted learn-
ing with naive Bayes. When call upon to classify a test instance, LWNB firstly
finds the k nearest neighbors of this test instance. Then, LWNB assigns different
weights to different instances in the neighborhood according to its distance from
the test instance. At last, a local naive Bayes is built on these locally weighted
training instances, with which this test instance is classified.

For solving the regression problems, the linear regression algorithm is the most
popular one. Its locally weighted version demonstrates great improvement. In the
same way, naive Bayes performs well in classification [8], its improved algorithm
called locally weighted naive Bayes significantly outperforms it in terms of clas-
sification accuracy. Thus, we can draw a conclusion: a remarkable character in
applying locally weighted learning is that local models all need to be efficient
and effective. Fortunately, C4.4 exactly meets this character. These facts raise
the question of whether such a locally weighted learning can be used to improve
the class probability estimation performance of C4.4.
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Responding to this question, we present a locally weighted version of C4.4 by
combining locally weighted learning with C4.4. We call our improved algorithm
locally weighted C4.4 , simply LWC4.4. LWC4.4 use C4.4 in exactly the same way
as naive Bayes is used in locally weighted naive Bayes: a local C4.4 is built on the
subset of the training instances that is in the neighborhood of the test instance
whose probability of class membership is to be estimated. The training instances
in this neighborhood are weighted according to the inverse of its distance from
the test instance, with less weight being assigned to instances that are further
from the test instance. A class probability estimation is then obtained from C4.4
taking the attribute values of the test instance as input.

The subset of the training instances used to training each locally weighted
C4.4 are determined by a k-nearest-neighbor algorithm. A user-specified param-
eter k controls how many instances are used. So, like locally weighted linear
regression and locally weighted naive Bayes, our locally weighted C4.4 also is a
k-related algorithm. Fortunately, we get almost same experimental results with
LWNB: LWC4.4 is not particularly sensitive to the choice of value of k as long
as it is not too small. This makes it a very attractive alternative to the k-related
algorithms, which requires fine-tuning of k to achieve good results.

Although our experimental results show that LWC4.4 significantly outper-
forms the original C4.4 measured by CLL. Our improvements turn an eager
learning algorithm into a lazy learning algorithm. Like all the other lazy learn-
ing algorithms, LWC4.4 simply stores training instances and defers the effort
involved in learning until prediction time. When called upon to predict a test in-
stance, LWC4.4 constructs an C4.4 using a weighted set of training instances in
the neighborhood of the test instance. In a word, an obvious disadvantage with
LWC4.4 is that it has relatively higher time complexity. So, enhancing LWC4.4’s
efficiency is one main direction for our future research.

4 Experimental Methodology and Results

We ran our experiments on 36 UCI data sets [13] selected by Weka [14], which
represent a wide range of domains and data characteristics. In our experiments,
we adopted the following four preprocessing steps.

1. Replacing missing attribute values: We don’t handle missing attribute values.
Thus, we used the unsupervised filter named ReplaceMissingValues in Weka
to replace all missing attribute values in each data set.

2. Discretizing numeric attribute values: We don’t handle numeric attribute
values. Thus, we used the unsupervised filter named Discretize in Weka to
discretize all numeric attribute values in each data set.

3. Removing useless attributes: Apparently, if the number of values of an at-
tribute is almost equal to the number of instances in a data set, it is a useless
attribute. Thus, we used the unsupervised filter named Remove in Weka to
remove this type of attributes. In these 36 data sets, there are only three such
attributes: the attribute “Hospital Number” in the data set “colic.ORIG”,
the attribute “instance name” in the data set “splice” and the attribute
“animal” in the data set “zoo”.
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4. Sampling large data sets: For saving the time of running experiments (three
lazy algorithms are used in our experiments), we used the unsupervised filter
named Resample with the size of 20% in Weka to randomly sample each large
data set having more than 5000 instances. In these 36 data sets, there are
only three such data sets: “letter”, “mushroom”, and “waveform-5000”.

We conducted extensive experiments to compare LWC4.4 on CLL with other
related algorithms: C4.4, NB, KNN, NBTree, and LWNB. In our experiments,
the CLL score of each classifier is computed using Equation 1. We use the im-
plementation of C4.4 (J48 with Laplace smoothing but without tree pruning),
NB (NaiveBayes), KNN (IBk without distance weighting), NBTree, and LWNB
(LWL with NaiveBayes as the basic classifier) in Weka system. We use the LWL
with C4.4 as the basic classifier for the implement of LWC4.4. Besides, we set

Table 1. The detailed experimental results on CLL and standard deviation.
C4.4: C4.5 with laplace correction and without tree pruning; NB: naive Bayes; KNN:
K-Nearest-Neighbor; NBTree: naive Bayes tree; LWNB: locally weighted naive Bayes;
LWC4.4: locally weighted C4.4.

Dataset C4.4 NB KNN NBTree LWNB LWC4.4
anneal -7.72±2.17 -14.08±8.72 -8.25±3.33 -16.61±18.73 -11.95±8.13 -6.5±1.63
anneal.ORIG -22.25±4.16 -23.85±7.26 -28.34±4.13 -29.84±12.46 -22.18±6.96 -20.25±4.3
audiology -14.62±3.68 -65.71±21.12 -31.82±7.66 -87.29±33.27 -59.9±21.59 -14.47±3.47
autos -12.83±2.52 -44.52±20.45 -18.89±6.38 -31.58±12.78 -39.65±19.65 -11.5±2.82
balance-scale -52.4±3.99 -31.77±1.44 -66.96±2.28 -31.77±1.44 -31.63±1.4 -49.79±5.54
breast-cancer -18.47±3.22 -18.12±6.01 -18.05±4.99 -18.89±4.99 -18.01±6.03 -19.49±3.63
breast-w -11.23±4.59 -18.2±16.18 -9.18±5.19 -15.41±12.81 -18.21±16.23 -10.89±4.67
colic -16.84±4.29 -30.29±9.6 -18.49±4.71 -35.19±15.06 -29.61±9.35 -17.65±5.2
colic.ORIG -18.07±3.48 -20.41±5.55 -25.63±5.35 -33.22±11.57 -19.96±5.35 -18.73±3.11
credit-a -27.72±3.16 -28.52±7.77 -30.82±7.76 -32.74±12.46 -28.44±7.83 -29.26±3.67
credit-g -61.8±6.98 -52.42±7.29 -61.16±8.28 -58.95±17.18 -52.26±7.35 -63.4±6.9
diabetes -43.91±4.94 -40.86±8.11 -44.54±6.41 -40.86±8.11 -40.78±8.08 -44.29±4.98
glass -20.31±2.12 -24.16±4.21 -23.46±4.83 -33.31±10.14 -23.65±4.17 -20.21±2.03
heart-c -15.7±4.69 -13.66±5.08 -14.52±5.9 -14.73±4.39 -13.64±5.14 -16.38±4.95
heart-h -14.75±4.4 -13.69±5.2 -14.1±5.56 -14.87±5.61 -13.69±5.24 -15.14±5.2
heart-statlog -13.95±3.45 -12.17±4.52 -12.04±4.46 -15.6±5.99 -12.21±4.53 -13.87±3.87
hepatitis -5.7±2.13 -8.57±4.11 -7.43±4 -7.38±4.33 -8.55±4.08 -5.94±2.28
hypothyroid -90.86±7.72 -97.44±19.4 -133.81±29.3 -97.81±19.8 -96.61±20.2 -91.6±9.1
ionosphere -11.04±2.34 -35.01±13.73 -13.53±6.16 -24.27±12.88 -34.92±13.58 -10.65±2.51
iris -3.67±1.33 -2.56±2.77 -3.1±2.63 -2.76±2.97 -2.53±2.87 -3.53±1.41
kr-vs-kp -8.61±3.69 -93.21±8.36 -58.71±7.16 -34.67±19.94 -85.73±7.67 -7.45±4.11
labor -2.47±1.45 -0.96±1.11 -1.67±0.99 -1.63±2.95 -1.01±1.2 -2.47±1.45
letter -320.96±8.1 -564.72±52.8 -429.4±42.2 -618.49±64.8 -505.48±52.3 -294.91±6.7
lymph -7.57±3.03 -6.43±3.16 -7.05±3.21 -9.67±7.7 -6.3±3.21 -7.12±2.67
mushroom -2.53±0.87 -34.7±16.35 -0.55±0.78 -2.61±5.85 -20.64±11.49 -2.13±0.9
primary-tumor -51.58±2.82 -65.27±10.04 -94.05±11.89 -73.04±15.37 -65.98±10.48 -50.58±2.97
segment -49.66±6.05 -124.26±38.23 -56.84±7.02 -115.81±62.16 -109.49±35.34 -41.97±6.01
sick -20.57±3.31 -45.74±11.62 -26.2±3.84 -41.58±13.58 -42.21±11.12 -20.49±4.61
sonar -11.98±2.28 -20.87±12.2 -9±1.94 -34.68±23.7 -20.5±11.91 -12.21±2.1
soybean -17.84±2.47 -26.41±9.7 -15.51±4.38 -30.65±15.5 -23.74±8.92 -16.61±2.45
splice -66.6±8.6 -46.67±8.63 -178.56±18.2 -46.67±8.63 -45.69±8.82 -66.09±7.68
vehicle -53.61±2.85 -169.76±27.29 -60.78±9.34 -131.69±26.73 -160.81±24.86 -52.37±3.81
vote -7.31±4.78 -27.08±12.99 -10.03±4.48 -5.43±5.23 -24.33±11.9 -7.22±5.14
vowel -70.91±4.74 -87.41±8.91 -61.38±5.2 -42.52±11.4 -66.63±6.95 -64.9±4.94
waveform-5000 -67.31±6.21 -74.37±17.55 -69.42±8.55 -104.36±47.13 -69.95±16.39 -66.48±6.32
zoo -2.96±1.56 -1.21±1.12 -1.61±1.06 -0.96±0.89 -0.99±1.04 -2.67±1.56
Mean -34.62±3.84 -55.14±11.62 -46.25±7.21 -53.82±15.52 -50.77±11.15 -33.31±4.02
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Table 2. The compared results of two-tailed t-test on CLL with a 95%
confidence level. An entry w/t/l in the table means that the algorithm at the corre-
sponding row wins in w data sets, ties in t data sets, and loses in l data sets, compared
to the algorithm at the corresponding column.

C4.4 NB KNN NBTree LWNB
NB 4/19/13
KNN 2/23/11 13/17/6
NBTree 4/21/11 4/29/3 6/21/9
LWNB 5/19/12 19/17/0 5/19/12 5/27/4
LWC4.4 9/26/1 13/18/5 10/25/1 11/21/4 12/19/5

the weighting kernel function to the inverse of their distance in LWNB1 and
LWC4.4, the number of neighbors to 5 in KNN, 50 in LWNB and LWC4.4. The
CLL of each classifier on each data set was obtained via 10-fold cross validation.
Run with the various algorithms were carried out on the same training sets and
evaluated on the same test sets. In particular, the cross-validation folds are the
same for all the experiments on each data set. Finally, we compare each pair of
algorithms via two-tailed t-test with a 95% confidence level. According to the
statistical theory, we speak of two results for a data set as being “significantly
different” only if the probability of significant difference is at least 95%.

Table 1 shows the CLL and standard deviation of each algorithm on the test
sets of each data set, the average CLL and standard deviation are summarized
at the bottom of the table. Table 2 shows the results of two-tailed t-test with
a 95% confidence level between each pair of algorithms in terms of CLL. each
entry w/t/l in Table 2 means that the algorithm at the corresponding row wins
in w data sets, ties in t data sets, and loses in l data sets, compared to the
algorithm at the corresponding column.

The detailed results displayed in Table 1 and Table 2 show that our improved
algorithm LWC4.4 significantly outperforms all the other algorithms used to
compare measured by CLL. Now, let’s summarize the highlights as follows:

1. C4.4 significantly outperforms NB. In the 36 data sets we test, C4.4 wins in
13 data sets, only loses in 4 data sets. C4.4’s average CLL is -34.62, much
higher than that of NB (-55.14). This fact proves that C4.4 is an attractive
alternative for class probability estimation.

2. C4.4 significantly outperforms KNN. In the 36 data sets we test, C4.4 wins
in 11 data sets, only loses in 2 data sets. C4.4’s average CLL is -34.62, much
higher than that of KNN (-46.25). This fact also proves that C4.4 is an
attractive alternative for class probability estimation.

3. LWC4.4 significantly outperforms C4.4. In the 36 data sets we test, LWC4.4
wins in 9 data sets, surprisingly loses in 1 data sets. LWNB’s average CLL is
-33.31, much higher than that of C4.4 (-34.62). This fact proves that locally
weighted learning is an effective method for scaling up the class probability
estimation performance of C4.4.

4. LWC4.4 significantly outperforms other two algorithms: NBTree (11 wins
and 4 losses) and LWNB (12 wins and 5 losses). This fact is another

1 It is a little different from LWNB published in UAI 2003.
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Table 3. The detailed experimental results on AUC and standard deviation.
C4.4: C4.5 with laplace correction and without tree pruning; NB: naive Bayes; KNN:
K-Nearest-Neighbor; NBTree: naive Bayes tree; LWNB: locally weighted naive Bayes;
LWC4.4: locally weighted C4.4.

Dataset C4.4 NB KNN NBTree LWNB LWC4.4
anneal 93.78±2.9 95.9±1.3 93.66±5.92 96.45±0.28 96.1±1.2 96.1±1.31
anneal.ORIG 92.69±3.15 94.49±3.67 93.95±1.44 94.71±3.74 94.63±3.61 94.27±2.1
audiology 70.58±0.63 70.96±0.73 70.59±0.66 71.14±0.71 71.03±0.73 70.88±0.59
autos 90.73±4.52 89.18±4.93 89.29±3.84 93.93±2.68 90.77±5.1 94.1±3.3
balance-scale 63.06±6.18 84.46±4.1 65.84±2.89 84.46±4.1 84.01±4.4 62.24±5.37
breast-cancer 59.3±12.03 69.71±15.21 62.14±13.51 68.95±11.27 69.37±14.79 57.86±12.17
breast-w 97.85±1.86 99.19±0.87 98.71±1.38 99.21±0.73 99.21±0.86 98.29±1.6
colic 85.02±7.03 83.71±5.5 85.3±5.09 85.92±6.3 83.98±5.41 83.21±9.56
colic.ORIG 80.56±8.94 80.67±6.98 71.35±7.56 80.06±8.69 81.45±6.19 79.66±6.75
credit-a 89.42±3.1 92.09±3.43 91±3.14 91.48±3.52 92.22±3.41 88.24±2.89
credit-g 69.62±5 79.27±4.74 74.36±5 77.75±5.97 79.5±4.65 69.06±4.71
diabetes 75.5±5.76 82.31±5.17 77.57±3.98 82.31±5.17 82.44±5.19 75.46±5.87
glass 82.36±4.38 80.5±6.65 83.36±5.86 82.53±8.46 82.23±6.2 85.1±4.48
heart-c 83.1±1.19 84.1±0.54 83.85±0.84 83.96±0.51 84.1±0.56 83±1.24
heart-h 83.04±0.85 83.8±0.7 83.47±0.99 83.78±0.62 83.8±0.71 83.15±0.95
heart-statlog 81.36±9.15 91.3±4.19 89.79±4.36 89.66±3.42 91.06±4.24 82.76±9.13
hepatitis 82.03±14.04 88.99±8.99 83.14±12.51 88.03±8.29 88.99±8.99 81.7±12.83
hypothyroid 81.58±8.8 87.37±8.52 83.12±11.13 87.01±9.1 87.52±8.61 81.85±9.9
ionosphere 93.1±3.76 93.61±3.36 93.85±3.99 96.84±2.16 94.24±3.14 93.06±4.42
iris 97.33±2.63 98.58±2.67 97.75±3.22 98.08±2.67 98.58±2.67 99.25±1.39
kr-vs-kp 99.95±0.06 95.17±1.29 99.33±0.36 99.17±0.68 96.18±1.08 99.96±0.07
labor 74.17±31.04 98.33±5.27 92.5±7.03 100±0 98.33±5.27 88.33±31.48
letter 88.83±1.12 95.51±0.78 96.38±0.58 96.38±0.76 96.35±0.69 90.83±0.89
lymph 87.26±3.75 89.69±1.49 88.41±3.09 89.08±2.08 89.77±1.34 88.63±3.05
mushroom 99.98±0.02 99.59±0.18 99.97±0.02 99.97±0.1 99.86±0.09 100±0
primary-tumor 75.48±2.33 78.85±1.35 77.1±2.08 78.26±1.75 79.08±1.45 76.62±2.3
segment 98.85±0.32 98.51±0.46 99.01±0.16 99.09±0.43 98.73±0.39 99.36±0.2
sick 99.07±0.35 95.91±2.35 98.55±0.54 94.46±2.65 96.46±2.07 99.11±0.5
sonar 77.01±8.59 85.48±10.82 88.32±7.39 79.72±12.51 85.48±10.82 77.64±7.29
soybean 91.43±2.6 99.53±0.6 96.16±1.8 99.33±0.64 99.54±0.61 99.2±0.87
splice 98.14±0.72 99.41±0.22 96.99±0.97 99.41±0.22 99.43±0.22 98.16±0.63
vehicle 86.5±2.28 80.81±3.51 88.48±2.05 85.83±2.9 81.94±3.41 87.24±2.78
vote 96.77±2.96 96.56±2.09 97.39±1.49 98.82±1.61 96.77±1.92 98.21±1.8
vowel 91.28±2.46 95.81±0.84 97.58±0.64 98.66±0.68 97.46±0.55 93.28±2.02
waveform-5000 79.22±3.91 95.26±1.4 85.49±3.18 91.3±4.35 95.83±1.17 80.27±3.06
zoo 88.88±4.5 89.88±4.05 89.7±4.17 89.88±4.05 89.88±4.05 89.88±4.05
Mean 85.69±4.80 89.57±3.58 87.87±3.69 89.88±3.44 89.90±3.49 86.83±4.49

Table 4. The compared results of two-tailed t-test on AUC with a 95%
confidence level. An entry w/t/l in the table means that the algorithm at the corre-
sponding row wins in w data sets, ties in t data sets, and loses in l data sets, compared
to the algorithm at the corresponding column.

C4.4 NB KNN NBTree LWNB
NB 12/20/4
KNN 8/25/3 6/24/6
NBTree 13/21/2 6/30/0 11/24/1
LWNB 14/18/4 13/23/0 8/25/3 3/30/3
LWC4.4 8/28/0 5/19/12 7/23/6 2/24/10 5/19/12

evidence to prove that LWC4.4 is an effective algorithm for addressing the
class probability estimation problems.

In our experiments, we also observe the ranking performance of LWC4.4 in
term of AUC (the area under the Receiver Operating Characteristics curve)
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Table 5. The detailed experimental results on classification accuracy and
standard deviation. C4.4: C4.5 with laplace correction and without tree pruning;
NB: naive Bayes; KNN: K-Nearest-Neighbor; NBTree: naive Bayes tree; LWNB: locally
weighted naive Bayes; LWC4.4: locally weighted C4.4.

Dataset C4.4 NB KNN NBTree LWNB LWC4.4
anneal 99±0.98 94.32±2.38 96.88±2.15 98.33±1.6 95.65±2.13 99.11±0.88
anneal.ORIG 91.76±3.07 87.53±4.69 87.31±3.35 90.98±4.46 87.64±3.57 92.31±3.22
audiology 78.3±8 71.23±7.03 60.57±7.87 79.66±6.6 74.74±6.4 78.28±8.51
autos 81.45±7.48 64.83±11.18 66.29±8.28 78.12±7.02 69.17±8.96 82.9±9.22
balance-scale 69.3±4.25 91.36±1.38 83.84±4.71 91.36±1.38 91.36±1.38 72.02±4.69
breast-cancer 68.57±7.49 72.06±7.97 73.78±4.38 74.53±8.37 71.71±8.35 65.05±7.6
breast-w 92.99±3.66 97.28±1.84 94.99±2.81 96.99±1.85 97.28±1.84 92.99±3.72
colic 80.17±5.95 78.81±5.05 80.68±6.65 83.42±4.49 79.62±4.95 79.08±8.36
colic.ORIG 76.08±8.74 75.26±5.26 70.63±5.06 76.07±5.03 75.53±5.04 75.55±6.1
credit-a 83.19±3.5 84.78±4.28 85.07±3.62 85.07±3.81 85.22±4.36 80.72±4.21
credit-g 68.6±4.3 76.3±4.76 71.5±2.42 75.9±4.48 76.2±4.59 67.2±4.16
diabetes 69.54±5.12 75.4±5.85 69.14±1.84 75.4±5.85 75.4±5.38 69.8±3.85
glass 58.83±7.73 60.32±9.69 58.92±7.8 56.99±10.66 60.35±8.98 56.95±8.11
heart-c 74.26±11.46 84.14±4.16 81.41±12.65 82.16±3.66 84.14±4.16 72.59±11.54
heart-h 72.78±11 84.05±6.69 81.36±6.65 82.36±7.71 84.05±6.07 73.11±9.83
heart-statlog 75.93±8.95 83.7±5 80.74±6 82.59±6.06 83.7±5 74.44±7.29
hepatitis 81.25±11.52 83.79±8.79 84.46±6.25 83.79±9.91 83.13±8.22 79.33±11.15
hypothyroid 92.5±0.58 92.79±1.02 93.03±0.89 93.08±1 92.79±0.99 92.07±0.92
ionosphere 84.63±4.45 90.89±3.49 89.44±3.34 91.45±3.3 90.89±3.49 85.2±5.3
iris 92.67±5.84 94.67±8.2 93.33±6.29 94±7.98 95.33±8.34 92.67±5.84
kr-vs-kp 99.41±0.45 87.89±1.81 96.03±1.19 97.09±2.38 88.86±1.35 99.41±0.43
labor 77.67±15.64 93.33±11.65 91.67±11.79 91.67±11.79 93.33±11.65 79.33±15.22
letter 70.3±1.67 66.15±2.15 73.3±2.24 73.9±1.69 69.7±2.34 72.58±2.28
lymph 74.29±12.56 85.67±9.55 82.33±9.81 83.05±8.01 86.33±8.8 75.67±9.55
mushroom 99.75±0.32 93.84±2.02 99.82±0.3 99.88±0.26 95.57±2.16 99.75±0.32
primary-tumor 38.91±4.97 46.89±4.32 41.26±8.05 46.9±6.22 48.37±4.08 38.03±3.83
segment 92.86±1.39 88.92±1.95 90.74±1.61 92.51±1.77 90±2.14 93.51±1.71
sick 97.83±0.61 96.74±0.53 97.51±0.59 97.96±0.73 96.85±0.48 97.69±0.66
sonar 67.69±10.94 77.5±11.99 80.79±10.06 73.62±13.8 77.98±12.03 66.74±9.25
soybean 92.68±1.56 92.08±2.34 90.76±3.76 92.24±2.08 92.96±2.5 92.67±1.72
splice 91.57±1.37 95.36±1 79.81±2.81 95.36±1 95.42±1 90.78±1.5
vehicle 69.03±2.63 61.82±3.54 70.57±3.02 68.1±5 62.41±4.04 69.5±3.71
vote 94.96±3.83 90.14±4.17 94.03±2.69 95.41±4.03 90.6±3.93 94.95±4.41
vowel 75.66±5.18 67.07±4.21 81.31±1.73 88.59±2.74 75.56±5.08 77.47±4.37
waveform-5000 65.8±3.77 79.7±4 70.4±4.09 79.4±3.31 80.7±3.68 65.8±3.08
zoo 92.18±8.94 94.18±6.6 92.09±6.3 95.09±5.18 96.18±6.54 92.18±8.94
Mean 80.34±5.55 82.24±5.02 81.55±4.81 84.53±4.87 83.19±4.83 80.21±5.43

Table 6. The compared results of two-tailed t-test on classification accuracy
with a 95% confidence level. An entry w/t/l in the table means that the algorithm
at the corresponding row wins in w data sets, ties in t data sets, and loses in l data
sets, compared to the algorithm at the corresponding column.

C4.4 NB KNN NBTree LWNB
NB 11/15/10
KNN 4/26/6 8/23/5
NBTree 10/26/0 10/26/0 9/27/0
LWNB 11/17/8 7/29/0 7/23/6 0/28/8
LWC4.4 2/33/1 10/16/10 6/24/6 0/24/12 9/16/11

[15,16,17] shown in Table 3 and Table 4. Fortunately, LWC4.4 also significantly
outperforms C4.4. In the 36 data sets we test, LWC4.4 wins in 8 data sets,
surprisingly loses in 0 data sets, and ties all the other data sets. Besides, an
interested observation is that LWC4.4 almost ties C4.4 in term of classification
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accuracy shown in Table 5 and Table 6. So, we can draw a conclusion that locally
weighted learning can be used to improve C4.4 for class probability estimation
and ranking but not for classification.

5 Conclusions and Future Work

C4.4 is one of the most popular algorithms for addressing the class probability
estimation problems. C4.4 is an improved version of C4.5, in which two tech-
niques respectively called Laplace correction and turning of tree pruning are
used. Motivated by the success of using locally weighted learning to improve lin-
ear regression for regression and using locally weighted learning to improve naive
Bayes for classification, we present to apply locally weighted learning to C4.4 to
scale up its class probability estimation performance. We call our improved algo-
rithm locally weighted C4.4, simply LWC4.4. Our experimental results show that
LWC4.4 is surprisingly effective in class probability estimation and significantly
outperforms all the other algorithms used to compare.

Aiming at accurate classification, Friedman et al. [18] presented another lazy
decision tree learning algorithm, simply called LazyDT. LazyDT creates a path
in a tree for a test instance instead of a neighborhood. According to the experi-
mental results in [18], LazyDT is certainly effective in classification. However, it
is not clear whether LazyDT also is effective in class probability estimation. In
our future work, we will compare LWC4.4 with LazyDT.
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Abstract. With the spread of the Web, users can obtain a wide variety of in-
formation, and also can access novel content in real time. In this environment, 
finding useful information from a huge amount of available content becomes a 
time consuming process. In this paper, we focus on user modeling for personal-
ization to recommend content relevant to user interests. Techniques used for as-
sociation rules in deriving user profiles are exploited for discovering useful and 
meaningful patterns of users. Each user preference is presented the frequent 
term patterns, collectively called PTP (Personalized Term Pattern) and the pref-
erence terms, called PT (Personalized Term). In addition, a content-based filter-
ing approach is employed to recommend content corresponding with user pref-
erences. In order to evaluate the performance of the proposed method, we com-
pare experimental results with those of a probabilistic learning model and vec-
tor space model. The experimental evaluation on NSF research award datasets 
demonstrates that the proposed method brings significant advantages in terms 
of improving the recommendation quality in comparison with the other meth-
ods. 

1   Introduction 

Thanks to technological developments related to the Internet and the World Wide 
Web, anyone living in today’s information society can access a wealth of content and 
information on the web. However, in accordance with the massive growth of the 
Internet, users have to contend with an immense and huge amount of content, and 
often waste time trying to find content relevant to their interests. In addition, with the 
advent of blogs and RSS (Really Simple Syndication), a tremendous amount of con-
tent is generated overnight. Even if a user subscribes to content of interest, failing to 
read subscribed content for even a single day makes users feel overwhelmed the fol-
lowing day. Recommender systems have been issued as a solution to the problem of 
information overload [10]. In addition, user modeling for efficient personalization has 
become a key technique in recent information filtering systems [7, 9]. 

In this research, we focus on user modeling for personalization to recommend con-
tents relevant to user interests. We exploit the techniques of data mining in deriving 
user preferences for discovering useful and meaningful patterns of users, collectively 
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called PTP (Personalized Term Pattern). By capturing users’ contents of interest, we 
mine the frequent term patterns and the preference terms existing in the user’s con-
tents of interest. The main objective of this research is to develop an effective method 
that provides high-quality recommendations of content relevant to user interests. In 
addition, we employ a content-based filtering approach to recommend content that is 
similar to personalized term patterns. 

The subsequent sections of this paper are organized as follows: The next section 
contains a brief overview of some related work. In section 3, we describe our ap-
proach for modeling user preference and filtering contents. A performance evaluation 
is presented in section 4. Finally, conclusions are presented and future work is dis-
cussed in section 5. 

2   Related Work 

This section briefly explains previous studies related to user modeling and personal-
ized recommendation. Two approaches for recommender systems have been dis-
cussed in the literature, i.e., a content-based filtering approach and a collaborative 
filtering approach. The traditional task in the collaborative filtering is to predict the 
utility of a certain item for the target user from the opinions of other similar users, and 
thereby make appropriate recommendations [10]. Instead of computing the similari-
ties between the users, the content-based filtering systems recommend only the items 
that are highly relevant to the single user profile by computing the similarities be-
tween the items and the user preference [9]. This research focuses only on the con-
tent-based filtering for personalized recommendations. Personalized recommender 
systems based on a single user have been developed learning procedures and need to 
use training data to identify personal preference from information object and their 
contents. Webmate tracks user interests from his positive information only (i.e., 
documents that the user is interested in) and exploits the vector space model using 
TF-IDF method [3]. A classification approach has been explored to recommend arti-
cles relevant user profile, such as NewsDude and ELFI [4, 5]. In NewsDude, two 
types of the user interests are used: short-term interests and long-term interests. To 
avoid recommendations of very similar documents, short-term profile is used. For the 
long-term interests of a user, the probabilities of a document are calculated using Na-
ïve Bayes to classify a document as interesting or not interesting. Instead of learning 
from users’ explicit information, PVA learns a user profile implicitly without user 
intervention, such as relevance feedback, and represents it as keyword vector in the 
form of a hierarchical category structure [8], similar to Alipes [6]. In Newsjunkie, 
novelty-analysis algorithm is employed to present novel information for users by 
identifying novelty of articles in the contexts of articles they have already reviewed 
[12]. Although these systems have their own method to building a user model, they do 
not deliberate on concurrence of terms and offer the ability to identify meaningful or 
useful patterns, which are important features for representing articles or contents [13]. 
For example, when content contains ‘apple Macintosh computer’, the semantic of 
‘apple’ are discriminated from those of apple in ‘apple pie’. Likewise, mouse in ‘opti-
cal mouse’ implies not an animal but an input device of computers. Therefore, our 



118 H.-N. Kim et al. 

motivation is to develop a learning algorithm which supports the identification of use-
ful patterns of a user. 

3   User Preference Modeling for Content Recommendation 

The proposed method is divided into three phases: an observation phase, a user mod-
eling phase, and a content filtering phase. Fig. 1 provides a brief overview of the pro-
posed approach. 

Interest contents

Contents for 
recommendation

User

User Modeling Observation

Frequent 
Pattern Mining

Classify

Filtering

Filter

Relevance feedback
 (Positive content)

Recommend

PT PTP

 

Fig. 1. Overview of the proposed method for personalized content recommendations 

3.1   Modeling User Preference 

The capability to learn users’ preferences is at the heart of a personalized recom-
mender system. Additionally, since every user has different interests, feature selection 
for representing users’ interests should be personalized and be performed individually 
for each user [9]. In this section, we describe our approach to modeling user prefer-
ence, which is mined from the user’s preferred contents (positive contents). 

The first step in user modeling is the extraction of the terms from positive contents 
that have been preprocessed by: removing stop words and stemming words [15]. After 
extracting terms, each positive content Cj is represented as a vector of attribute-value 
pairs as follows: 

)},(),...,,(),,{( ,,22,1,1 jmmjjj wTwTwTC =  

where Ti is the extracted term in Cj and wi,j is the weight of Ti in Cj, which is com-
puted by static TF-IDF term-weighting scheme [1] and defined as follows:  
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where fi,j is the frequency of occurrence of term Ti in content Cj, n is the total number 
of contents in the collections, and ni is the number of contents in which term Ti oc-
curs. The weight indicates the importance of a term in representing the content. All 
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weight values of terms, wi,j, in a positive content Cj are sorted in descending order. 
The first K terms (Top-K terms) are selected as content Cj features and used to mine 
frequent term patterns that occur at least as frequently as a predetermined minimum 
support, i.e., PS > min_sup [16]. 

Definition 1 (Pattern Support, PS). Let T = {T1, T2, … , Tm} be a set of terms, Iu be 
a set of contents of interest of user u where each content C is a set of terms such that 
C ⊆ T. Let pattern Pk be a set of terms. A content C is said to contain pattern Pk if and 
only if Pk ⊆ C. Pattern support for pattern Pk, PS(Pk), in Iu is the ratio of contents in Iu 
that contain pattern Pk. 

In this paper, each transaction corresponds to a positive content of a user and items in 
transaction are terms extracted from the content. For effective mining of the term pat-
terns, we should choose a minimum support threshold. A high min_sup discards more 
patterns, and thus remaining term patterns may not be sufficient to represent user 
preference. In contrast, a low min_sup includes many noise patterns. Therefore, the 
threshold is chosen heuristically through experiments. 

Once the patterns are mined, a model for user u is defined as a tuple Mu= (PTPu, 
PTu) where PTPu models the interest patterns (Definition 2) and PTu models the inter-
est terms (Definition 3). And the model is stored in a prefix tree structure to save 
memory space and explore relationships of terms. 

Definition 2 (Personalized Term Patterns, PTP). If the pattern support of pattern 
Pk, that is composed of at least l different terms (l ≥ 2), satisfies a pre-specified mini-
mum support threshold (min_sup), then pattern Pk is a frequent term pattern. Person-
alized term patterns for user u, PTPu, is defined as a set of frequent term patterns. 

Definition 3 (Personalized Term, PT). Personalized term is a term that occurs 
within personalized term patterns. The set of personalized terms for user u is denoted 

as PTu, PTu ⊆ T. In addition, The vector for PTu is represented by 
→

uPT = (μ1,u, μ2,u, …, 

μt,u), where t is the total number of personalized terms and μi,u is the mean of term 
weight for term Ti and is computed as follows: 

∑ ∈
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where Iu(i) is a set of contents of interest for user u containing term Ti and wi,j is the 
term weight of term Ti in content Cj. 

For example, if five personalized term patterns are found, as shown in Table 1, after 
mining content of interest for user u, a tree structure of a model for user u is then con-
structed as follows. 

All PTu are stored in header table and sorted according to descending their fre-
quency. First, create the root of the tree, labeled with “null”. For the first term pattern, 
{T1, T2, T3} is insert into the tree as a path from root node where T2 is linked as child 
of the root, T1 is linked to T2, and T3 is linked to T1. And PS and length of the pat-
ternPS(P1)=0.56, length=3) are then attached to the last node T3. For the second pat-
tern, since its term pattern, {T1, T2, T3, T4}, shares common prefix {T2, T1, T3} with 
the existing path for the first term pattern, a new node T4 is created and linked as a  
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Table 1. After mining content of interest of user u, five personalized term patterns are found 

Pattern-id PTP PS Length 
 P1 {T1, T2, T3} 0.56 3 
 P2 {T1, T2, T3, T4} 0.51 4 
 P3 {T1, T2, T5} 0.47 3 
 P4 {T4, T5} 0.41 2 
P5 {T2, T3, T4} 0.32 3 

child of node T3. Thereafter, PS(P2) and length(P2) are attached to the last node T4. 
(The third, fourth, and fifth patterns are inserted in a manner similar to the first and 
second patterns. To facilitate tree traversal, header table is built in which each term 
points to its occurrence in the tree via a Node-link. Nodes with the same term-name 
are linked in sequence via such node-links. Finally, a model for user u is constructed 
as shown in Fig. 2. 

 

Fig. 2. A tree structure of Mu for personalized term patterns in Table 1 

3.2   Personalized Content Filtering 

In this paper, we consider two aspects for judging whether content is relevant or ir-
relevant to the user based on user preference. First, cosine similarity [13, 15], which 
quantifies the similarity of two vectors according to their angle, is employed to meas-
ure the similarity values between new content and PT for a user. As noted in Defini-
tions 4, the personalized terms of user u, PTu, are represented as the vector of attrib-

ute-value pairs. Further, the term vector for the new content Cn is represented by 
→

nc = 

(w1,n, w2,n, …, wt,n), where the weight wi,n is the TF-IDF value of term Ti in content Cn. 
Therefore, content Cn and PT of user u, PTu are represented as t-dimensional vectors, 

and the cosine similarity for theses two vectors, 
→

uPT and 
→

nc is measured by equation 

(1) [15]. 
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The second approach considers matched patterns between the new contents and 
PTP for a user. Formally, the similarity between content Cn and user u is defined in 
equation (2). 
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where MP is a set of matched patterns between PTPu and content Cn. PS(Pk) and 
length(Pk) refer to the pattern support value and the length of matched pattern Pk, re-
spectively. The main concept of the second scheme dictates that patterns with numer-
ous occurrences in user preference present a greater contribution with regard to simi-
larity than patterns with a smaller number of occurrences. 

Definition 4 (Matched Pattern). Let TPk = {T1, T2, ... , Tn} be a set of terms con-
tained in pattern Pk such that TPk is a subset of personalized terms for user u, TPk ⊆ 
PTu. If all terms in contained Pk appear content Cn, TPk ⊆ Cn, then pattern Pk is 
deemed a matched pattern between PTPu and content Cn. 

Each similarity value, which is obtained by using the equation (1) and (2), is nor-
malized to [0, 1] and divided by the maximum similarity value, i.e., sim(u, Cn)/maxl 
sim(u, Cl). Once the similarities between user u and the new contents, which the 
user u has not yet read, are computed, the contents are sorted in order of descending 
similarity value. Two strategies can then be used to select the relevant contents to 
user u. First, if the similarity values are greater than a reasonable threshold value 
(i.e., sim(u, Cn)/maxl sim(u, Cl) > θ), the contents are recommended to user u [3, 5]. 
Second, a set of N rank contents that have obtained higher similarity values are 
identified for user u, and then those contents are recommended to user u (Top-N 
recommendation) [10]. We choose the second approach for filtering the personal-
ized contents. 

Definition 5 (Top-N recommendation). Let C be a set of all contents, Iu be a content 
list that user u has already collected or added to his preference list (positive contents), 
and NIu be a content list that user u has not yet read, NIu = C – Iu and Iu ∩ NIu = ∅. 
Given two contents Ci and Cj, Ci ∈NIu and Cj ∈NIu, content Ci will be of more interest 
to user u than content Cj if and only if a similarity value sim(u, Ci) between user u and 
content Ci is higher than that of content Cj, sim(u,C i) > sim(u, Cj). Top-N recommen-
dations for user u identifies an ordered set of N contents, TopNu, that will be of inter-
est to user u such that |TopNu| ≤ N, TopNu ∩ Iu = ∅, and TopNu ⊆ NIu. 

4   Experimental Evaluation 

In this section, experimental results of the proposed approaches are presented. All 
experiments were carried out on a Pentium IV 3.0GHz with 2GB RAM, running a 
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MS-Window 2003 server. In order to mine personalized term patterns, FP-growth 
software implemented by Frans Coenen1 was used. 

The experimental data is taken from NSF (National Science Foundation) research 
award abstracts [14]. The original data set contains 129,000 abstracts describing NSF 
awards for basic research from 1900 to 2003. However, the set is too large to be used 
for experiments, and thus we selected award abstracts from 2000 to 2003, i.e. the se-
lected data set contained 30,384 abstracts and 3,086,090 terms as obtained from the 
abstracts (cf. 22,236 distinct terms). 10 users participated in the experiments by 
scrapping only contents relevant to their interests from the total contents (30,384 con-
tents). Whenever they found the content related to their own preferences, they added 
that content to their preference list. Each user added at least 700 content items. To 
evaluate the performance of the proposed approaches, we divided the preference con-
tents of the users into a test set with exactly 100 contents per user in the test set and a 
training set with the remaining contents. A model Mu of each user was then con-
structed using only the training set. We assume that each user does not change his/her 
interests during the experiments if a user preference is learned (static user profile) [9]. 

The performance was measured by looking at the number of hits, and their ranking 
within the top-N contents and the overall contents that were recommended by a par-
ticular scheme. We computed three quality measures that are defined as follows. 

Hit Rate (HR). In the context of top-N recommendations, hit-rate, a measure of how 
often a list of recommendations contains contents that the user is actually interested 
in, was used for the evaluation metric [6, 10]. The hit-rate for user u is defined as: 
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where Testu is the content list of user u in the test data and TopNu is a top-N recom-
mended content list for user u. Finally, the overall HR of the top-N recommendation 
for all users is computed by averaging these personal HR in test data. 

Reciprocal Hit Rank (RHR). One limitation of the hit-rate measure is that it treats 
all hits equally regardless of the ranking of recommended contents. In other words, 
content that is recommended with a top ranking is treated equally with content that is 
recommended with an Nth ranking [10]. To address this limitation, therefore, we 
adopted the reciprocal hit-rank metric described in [10]. The reciprocal hit-rank for 
user u is defined as: 

∑
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where rank(Cn) refers to a recommended ranking of content Cn within the hit set of 
user u. That is, hit contents that appear earlier in the top-N list are given more weight 
than hit contents that occur later in the list. Finally, the overall RHR for all users is 
computed by averaging the personal RHR(u) in test data. The higher the RHR, the 
more accurately the algorithm recommends contents. 

                                                           
1 The software is available at http://www.csc.liv.ac.uk/~frans/KDD/Software/ 
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Reciprocal Total Rank (RTR). This metric is similar to the reciprocal hit-rank but 
instead of only using the ranking of the hit set it uses the ranking of all test data for 
user u. We refer to this as the reciprocal total rank for user u and is defined as fol-
lows: 

∑
∈

=
un TestC nCrank

uRTR
)(

1
)(  

where rank(Cn) refers to a recommended ranking of content Cn for user u in the test 
data. Likewise, the overall RTR for all users is also computed by averaging the per-
sonal RTR(u) in test data. 

Benchmark Algorithms. In order to compare the performance of the proposed 
scheme, a probabilistic learning algorithm, which applies a naïve Bayesian classifier 
(denoted as NB) [4, 5], and a TF-IDF vector-based algorithm, which is employed in 
the Webmate system (denoted as Webmate) [3], were implemented. To make the 
comparison fair, both of the algorithms were designed to learn users’ preferences 
from positive examples only. For the content filtering process, in the case of NB, con-
tents are ranked using the calculated probability value whereas they are ranked using 
the calculated cosine similarity for Webmate. The top-N recommendation of our strat-
egy was then evaluated in comparison with the benchmark algorithms. 

4.1   Experimental Results 

In this section, we present the experimental results of the proposed algorithms. In our 
algorithms, SimPT denotes when equation (1) is used for the similarity method, 
whereas SimPTP denotes the case of equation (2). The performance evaluation is di-
vided into two dimensions. The sensitivity of the two parameters minimum support 
and Top-K terms were first determined, and then the quality of the top-N recommen-
dations is evaluated. 

4.1.1   Experiments with Minimum Support 
As noted previously, minimum support controls the size of Mu. In general, if the size 
of Mu is too small, some information may be lost. On the other hand, if it is too large, 
some noise patterns may be included. Therefore, different min_sup values were used 
for mining personalized term patterns: 5%, 8%, 10%, and 20%. In addition, we se-
lected all terms as the content feature during the mining process (K=all). Examining 
the average number of patterns in the users’ Mu, in the case of min_sup=5%, we 
found that 2667 patterns had been mined, whereas the average number was 1049, 490, 
and 58 in the case of min_sup=8%, min_sup=10%, and min_sup=20%, respectively. 
The recommendation performance obtained by changing min_sup in terms of RTR is 
shown in Fig. 3 (a). The results demonstrate that, at all min_sup levels, SimPTP pro-
vides more accurate recommendations than SimPT. For example, when min_sup is set 
to 10%, SimPTP yields a RTR of 1.75, which is the best value, whereas SimPT gives 
a RTR of 1.05. It is observed from the graph that the performance of SimPTP is 
slightly affected by min_sup relative to that of SimPT. These results indicate that even 
for a small size of Mu, SimPTP provides reasonably accurate recommendations. Note 
that a suitable size should be selected for vector-based similarity approaches such as 
SimPT. 
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Fig. 3. Reciprocal total rank (RTR) according to variation of min_sup (a) and K (b) 

4.1.2   Experiments with Top-K Terms 
Theoretically, all terms extracted from the contents can be applied immediately to 
mine the personalized term patterns. However, the complexity of the learning process 
is increased by the content feature size. In order to reduce the feature size and refine 
noise terms, the K highest weight terms are selected instead of selecting all terms. In 
these experiments, min_sup=5% was chosen because the sufficient patterns for repre-
senting user preference were not discovered at high thresholds of min_sup (i.e., 
min_sup=10%, 20%). To evaluate the sensitivity to the value of K we performed an 
experiment with K values of 40, 60, 80, and 100. As in the previous experiments, we 
analyze the average number of patterns mined for users. As a result, patterns of 21, 
84, 344, and 1064 were discovered on average when K was set to 40, 60, 80, and 100, 
respectively. That is, the mined patterns were clearly reduced as compared with the 
number of patterns discovered in the previous experiment (min_sup=5%). Fig. 3 (b) 
depicts the variation of RTR according to the value of K. It can be observed from the 
graph that SimPTP yields better RTR than SimPT.  When we compare the results of 
RTR achieved by SimPTP using K=all and K=100, SimPTP in the case of K=100 
(RTR of 1.68) offers reasonable performance comparable to that of K=all (RTR of 
1.69). On the contrary, RTR of the SimPT using K=100 (RTR of 0.93) is superior to 
that of SimPT using K=all (RTR of 0.70). This is particularly important since a small 
amount of content features leads to low computational requirements. 

4.1.3   Comparisons of Performance 
For evaluating the top-N recommendation, the number of recommended contents (the 
value of N) was increased, and we calculated the hit rate (HR) and the reciprocal hit 
rank (RHR) achieved by SimPT, SimPTP, Webmate, and NB. Table 2 summarizes the 
results of RHR while Table 3 summarizes the HR of the algorithms as the value of N 
increased from 100 to 500. In general, with the growth of recommended items N, HR, 
and RHR tend increase. Although HR for all algorithms is unsatisfactorily low at a 
small number of N, SimPTP provides considerably improved HR on all occasions 
compared to the benchmark algorithms. Similar conclusions can be made by looking  
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Table 2. Comparison of the reciprocal hit rank (RHR) as the value of N increases 

Algorithms 100 200 300 400 500 Average 
SimPT 0.8550 0.9300 0.9813 1.0088 1.0238 0.9598 
SimPTP 1.5088 1.6525 1.7250 1.7325 1.7338 1.6705 
Webmate 1.3031 1.3942 1.4213 1.4406 1.4512 1.4003 
NB 1.1575 1.2413 1.2775 1.2863 1.2925 1.2510 

Table 3. Hit rate (HR) as the value of N (number of recommended contents) increases 

Algorithms 100 200 300 400 500 Average 
SimPT 0.17 0.28 0.41 0.50 0.57 0.38 
SimPTP 0.28 0.38 0.57 0.68 0.69 0.52 
Webmate 0.14 0.27 0.35 0.42 0.47 0.33 
NB 0.16 0.27 0.36 0.39 0.43 0.32 

(K=all and min_sup=10% for SimPT and SimPTP) 

at the RHR results as well. In addition, comparing the results achieved by SimPT and 
the benchmark algorithms, HR of the former found to be superior to that of the 
benchmark algorithms. However, with respect to RHR, SimPT is worse than that of 
the benchmark algorithms. Overall, SimPTP achieves 19% and 36% improvement in 
terms of RHR on average, compared to Webmate and NB, respectively, whereas 
SimPT brings 33% and 23% degradation of RHR, respectively. We conclude from 
this experiment that the proposed strategy for top-N recommendation is effective in 
terms of improving the performance, although RHR is diminished in the case of 
SimPT. 

5   Conclusions 

The capability to model users’ preferences is at the heart of a personalized recom-
mender system that discriminates interesting information from uninteresting data.  
In this paper, a new and effective method for learning and modeling user prefer-
ences and for filtering contents relevant user interests is proposed. The major ad-
vantage of the proposed learning method is that it supports the identification of use-
ful patterns of each user. In order to evaluate the effectiveness of the approach, we 
compare our experimental results with those of probabilistic learning model and 
vector space model. The experimental results demonstrate that the proposed method 
offers significant advantages in terms of improving recommendation quality as 
compared to the traditional learning algorithms. A research area that is attractive 
attention at present is collaborative modeling of user preferences among users with 
similar interest. In addition, we are currently extending our algorithm to allow for 
changing user interests. Therefore, we plan to further study the techniques of adap-
tive and incremental learning [6, 13]. 
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Abstract. In this paper, we propose a new concept, thinning-out, for
reducing the number of trials in skill discovery. Thinning-out means to
skip over such trials that are unlikely to improve discovering results, in
the same way as “pruning” in a search tree. We show that our thinning-
out technique significantly reduces the number of trials. In addition, we
apply thinning-out to the discovery of good physical motions by legged
robots in a simulation environment. By using thinning-out, our virtual
robots can discover sophisticated motions that is much different from the
initial motion in a reasonable amount of trials.

1 Introduction

Skill discovery is a task to obtain an ability to perform well in a target domain,
through trial and error. It can be formulated as an optimization problem, in
which the goal is to find a solution x in a vast search space X that maximizes (or
minimizes) a score function f : X → R. When the shape of f is not known and
there is no satisfactory problem-specific algorithm or heuristic, meta-heuristic
guides to pick up the next candidate, based on the previous candidates and
their evaluated scores. Various meta-heuristics are proposed and experimented,
such as Genetic Algorithms (GA) and Simulated Annealing (SA). These meta-
heuristics in general contribute to reduce the number of trials, in order to find
a good solution x in X . Nevertheless, for some problem domains, the number
of trials is still too large, especially when each trial consumes a considerable
amount of time and costs. Skill discovery in robot movements, which we treat
as a target application in this paper, is an instance of them.

When GA or SA picks up the next candidate to try, it is often duplicated: it
could be already experimented in the past trials. Ratle [1] proposed an efficient
method to avoid such duplications using function approximation. He showed
that the method can reduce the number of actual function calls by creating an
approximate model of the score function using kriging interpolation and using
the model instead of the original score function for evaluating some of the next
generations. When the score function can not be regarded as a deterministic
function because of the noisy environment, duplicated trials are meaningful to
increase the certainty of the evaluations. Sano et al. [2] proposed Memory-based
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Fitness Evaluation GA for noisy environment. They estimated more proper fit-
ness values (or scores) by weighted average of neighboring scores, so as to reduce
the number of trials more than multiple sampling methods (i.e., to evaluate
fitness values several times in each trial.)

In this paper, we take another approach to reduce the trials, based on the idea
that we can theoretically determine whether or not the selected candidates are
worth evaluating, if the gradient of the score function is given. If the candidate
x is unlikely to improve the results obtained so far, we do not perform the trial
and just skip it. We call this method thinning-out, which contrasts to pruning in
a search tree. One advantage of our method is that we can naturally combine the
thinning-out with any search methods including GA and SA as well as random
search. In preliminary experiments, we combined it with a simple random search
method, and observed that the resulting number of trials is usually reduced to
logarithmic with respect to the number of candidates. In this paper, we show
that our thinning-out method significantly reduces the number of trials with a
small failure rate with a combination with GA.

We address skill discovery by legged robots in a simulation environment as
its application. For legged robots to function in the real world, they must need
the ability to acquire such basic skills as walking, running, pushing, kicking,
and so on. The ability for robots to learn some skills is known as skill learning,
and is regarded as important. For several years, there have been many studies
conducted on skill learning by legged robots. Kim and Uther [3] studied the
learning of fast quadruped locomotion skills by modeling the locus of their gait
as a quadrangle. Kohl and Stone [4] also studied the learning of stable quadruped
locomotion by modeling the locus of their gait as a semi-ellipsoid. Fidelman and
Stone [5] proposed a learning method for acquiring the ball-grasping skill. The
learning task consists of two layers, the first for walking and the second for
pinching the ball by its chin. Kobayashi et al. [6] studied the reinforcement
learning to trap a moving ball. The goal of the learning was to acquire a good
timing to initiate the catch motion, depending on the distance and the speed of
the ball, whose movement was restricted to one dimension.

In this paper, we make robots to discover good shot motions, as Zagal and
Solar [7] also addressed in their work. Compared with other tasks mentioned
above, discovery of good shot motions could be more challenging, because it
is difficult to construct a good model for shot motions. Although our work is
similar to Zagal and Solar’s, our parameterization is more flexible. On the other
hand, flexibility of parameters implies that it takes many trials in the discovery
process. Lee et al. [8] successfully realized flexible movements of legged robots
to climb over a variety of obstacles by reinforcement learning with supervised
information. Since we can not prepare supervised information for good motions
other than an initial motion, we must find good motions in large search spaces.
Our thinning-out method can reduce the number of trials in such problem and
realize the flexibility in feasible trials.

The remainder of this paper is organized as follows. In Section 2, we de-
scribe the concept of thinning-out and propose two inferring methods for it. In
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Section 3, we evaluate our method using the minimization problem of mathe-
matical test functions. In Section 4, we apply our method to discovery of good
shot motions by legged robots in a simulation environment. Finally, Section 5
presents our conclusions.

2 Thinning-Out

In this section, we treat the maximization problem of unknown score function.
We assume that the score function is continuous and, to some extent, smooth
over the search space. Our assumption seems reasonable because each robot
movement is continuous and thus small changes of parameters will not affect the
score significantly. Based on this assumption, we infer local shapes of the score
function. Given a candidate point to try, we estimate the score of the candidate
point by using the distance from the nearest neighborhood whose score is known.
We thin-out the candidate point if the estimated upperbound of the score is
lower than the current highest score. Note that our method does not take into
account the distance from the current highest point. In other words, we do not
assume that the true highest point lies near the current highest one. Therefore
an expected point with high score, even it is far from the current highest point,
has a chance to be tried. In summary, our method is robust and it is unlikely to
get stuck in local maxima.

Now we define the local smoothness of the score function in terms of Lipschitz
condition, which is found in standard textbooks on calculus. We use g-Lipschitz
continuous for some function g, as natural extension of c-Lipschitz for some
constant c in the textbooks.

Definition 1 (Lipschitz condition). Let R be the set of real numbers, X be
a metric space with metric d, and f : X → R be a score function on it. Given a
function g : R → R, f is said to be g-Lipschitz continuous, if it holds for any
x1, x2 ∈ R that

|f(x1) − f(x2)| ≤ g(d(x1, x2)).

The function g is called Lipschitz function.

Suppose that a score function f is g-Lipschitz continuous. Then, for any points
x1 and x2, an upperbound of f(x1) is obtained by

f(x1) ≤ f(x2) + g(d(x1, x2)).

Our thinning-out strategy is to infer a proper Lipschitz function which charac-
terizes the score function f , so as to obtain an upperbound of the score of a
candidate point. If the upperbound is smaller than the current best score, we do
not have to try the candidate point. We will explain the details of our methods to
infer Lipschitz functions soon. Our thinning-out condition is formally described
as follows:
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Definition 2 (Thinning-out condition). Let xb be the point whose score
f(xb) is the current best. Let xc be a candidate to try. Let xn be the nearest
neighbor of the candidate. Given an inferred function ĝ : R → R, xc is said to
satisfy the thinning-out condition with respect to ĝ, if it holds that

f(xn) + ĝ(d(xc, xn)) ≤ f(xb)

Now we propose two methods to infer Lipschitz functions.

Max Gradient Method

Suppose that we know the maximum gradient

c = max
x1,x2∈X, x1 �=x2

|f(x1) − f(x2)|
d(x1, x2)

of the score function f , over any two different points x1 and x2 in X . Then for
the function defined by g(d) = c · d, it is easy to verify that f is g-Lipschitz
continuous. Thus g can be used to thin-out candidates without errors. Since c
itself is unavailable in practice, we substitute the maximum gradient from every
two points in past trials so far, which will become a good approximation of c
after enough trials. We call it Max Gradient (MG) method. This method may
have small error rate, because it deals with the worst case scenario. However,
it can hardly thin-out candidates in rough score functions obviously, since the
estimated value of the Lipschitz function is too conservative in many cases.

Gathering Differences Method

Meta-heuristics picks up many samples from an interesting region expected to
have the best score. We can get the shape of the interesting region by using
information of points which are densely packed in past trials so far. Thus we infer
Lipschitz functions by gathering the differences of the scores, from the smallest
one in ascending order of the distance between the points, until the summation
of the distances become greater than the distance between xc and xn, as shown
in Algorithm 1. It will become a good approximation after enough trials, since
a line connecting fairly close two points can approximate the gradient of the
function nearby the points. We call it Gathering Differences (GD) method. This
method can thin-out many candidates, since it may infer the local shape of the
score function in the interesting region. However, it may wrongly thin-out them,
because it is just heuristics and does not have any theoretical propriety.

3 Performance Evaluation of Thinning-Out

We need efficient sampling methods for picking up candidates, since our thinning-
out method in the previous section just skips over the candidates. In this paper,
we utilize Genetic Algorithm (GA), which is one of the meta-heuristics methods,
because we intend to address discovery problems in which the score function is
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Algorithm 1. Gathering differences method
input : distance and the set Hist of pairs (x, f(x)) observed so far
output : An inferred value of the Lipschitz function g(distance)

initialize Diff as a map from R to R;
foreach x1, f(x1) in Hist do

foreach x2, f(x2) in Hist do
Diff [d(x1, x2)] ← |f(x1) − f(x2)|;

end
end
sum diff point ← 0;
sum diff score ← 0;
foreach diff point, diff score in Diff in ascending order w.r.t. diff point do

sum diff point ← sum diff point + diff point ;
sum diff score ← sum diff score + diff score ;
if sum diff point ≥ distance then

return sum diff score ;
end

end
return ∞ ;

Algorithm 2. Evaluation of a candidate with thinning-out.
input : candidate
output : score

while candidate satisfies the thinning-out condition do
candidate ← a random perturbation of candidate ;

end
score ← Evaluate(candidate);
return score ;

unknown. We can combine GA and thinning-out by designing the evaluation
function of a candidate as shown in Algorithm 2. Since thinning-out is meta
strategy, we can easily utilize other meta-heuristics methods in the same way
as GA. Although we have experimented other methods such as hill climbing,
simulated annealing, and policy gradient and verified that they worked well
with thinning-out, we omitted them here because of space limitations.

We use the minimization problem of mathematical test functions for verifying
the performance of our thinning-out method. The evaluation by test functions
is commonly performed for verifying the performance of meta-heuristics. In this
paper, we use Rastrigin, Schwefel, Griewank, Rosenbrock, and Ridge functions,
which are used by Hiroyasu et al. [9]. In addition, we add Ackley function [10],
because we think our thinning-out method is not good at the function with deep
rapid valleys. Characteristics of these functions are as follows. Rastrigin, Schwe-
fel, Griewank, and Ackley functions have multiple peaks, although Griewank and
Ackley functions have a single peak with a global view. Griewank, Rosenbrock
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Fig. 1. The shape of test functions in 2 dimensions

Table 1. Thinning-out rate and error rate of GA+MG and GA+GD in 6 test functions
in 2 dimensions. Each rate is the average over 100 experiments using 100 candidates.

function
GA+MG GA+GD

thinning (%) error (%) thinning (%) error (%)

Rastrigin 81.47 0.23 78.60 1.99

Schwefel 82.98 0.18 78.97 1.42

Griewank 82.82 0.24 78.98 1.01

Rosenbrock 82.23 0.05 78.71 0.69

Ridge 81.89 0.00 80.40 0.75

Ackley 79.91 2.77 71.48 2.94

and Ridge functions have the design variables’ dependency. Fig. 1 shows the
shapes of these functions in 2 dimensions.

We compared the performance of our methods by three different viewpoints:
the kind of test functions, the number of candidates, and the dimension of test
functions. In each experiment, the step size parameter (for mutation and pertur-
bation) of GA is 1% of the domain size of each dimension. We used ε-thinning-out
in the same way as ε-greedy in reinforcement learning [11], because our methods
can not always thin-out candidates safely. ε-thinning-out evaluates a candidate
with probability ε, and otherwise, it skips over the candidate. Consequently,
ε-thinning-out can hold out the possibility for evaluating candidates that are
wrongly thinned-out once and avoid never halting by thinning-out all candi-
dates. We set ε = 0.01.

Firstly, we compared the performance by the kind of test functions. Table 1
shows thinning-out rate and error rate of GA+MG and GA+GD in each test
function. The thinning-out rate means the rate of thinned-out candidates in all
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Table 2. Results of minimization by GA, GA+MG, and GA+GD in 6 test functions
in 2 dimensions. Each result means the minimum score of 50 actual trials and is the
average over 100 experiments.

function GA GA+MG GA+GD

Rastrigin 24 13 19

Schwefel 712 435 439

Griewank 43 32 33

Rosenbrock 418 330 296

Ridge 11542427 8233764 8878178

Ackley 19 18 18

candidates, and the error rate means the rate of wrongly thinned-out candidates
in thinned-out candidates. Both MG and GD totally reduced the number of tri-
als by more than 70 % with low error rates. As anticipated, both MG and GD
have slightly higher error rates in Ackley function. Table 2 shows the results
of minimization by GA, GA+MG, and GA+GD. Both GA+MG and GA+GD
always got better results than GA in all test functions. This is because a small
number of errors (i.e., wrongly thinned-out candidates) will not affect final re-
sults as shown in Fig. 2. Contrary to our expectation, these tables indicate that
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the number of actual trials

Fig. 2. This graph shows an example of minimization process with thinning-out. The
example is in an experiment using 1000 candidates in 2 dimensional Rastrigin func-
tion. Circles, triangles, and crosses represent actually evaluated candidates, success-
fully thinned-out candidates, and wrongly thinned-out candidates, respectively. The
dashed line indicates the same number of candidates as actual trials with thinning-out.
The minimum score in the left side of the line means the minimization result without
thinning-out.
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Fig. 3. This graph shows the number of actual trials over the number of candidates
by GA+MG and GA+GD in Rastrigin function in 2 dimensions. Each result is the
average over 10 experiments

the thinning-out rate of MG is higher than that of GD. The later experiment,
however, finds that the thinning-out rate of GD is higher than that of MG in
higher dimensions.

Secondly, we compared the performance by the number of candidates. Fig. 3
shows the relationship between the number of trials and that of candidates.
The graph indicates that the thinning-out rate gets higher as the number of
candidates gets larger. For example, the results of 80 trials by both GA+MG
and GA+GD is almost the same as that of 210 = 1024 trials by GA, if there are
no critical errors. We theoretically analyzed the number of trials with respect to
the number of candidates for a simplified case. For a score function f(x) = x, let
nc be the number of candidates by random search. Then the number of trials is
reduced to O(log(nc)) by our thinning-out method. If we can prove it in more
practical functions (e.g., f(x) = xn), the result has practical significance, because
random sampling with thinning-out worked better than GA in low dimensions.
In this paper, we picked up GA since random search can hardly suggest good
candidates in high dimensions.

Finally, we compared the performance by the dimension of test functions.
Table 3 shows thinning-out rate and error rate of GA+MG and GA+GD in
various dimensions. The table indicates that MG can hardly thin-out the large
number of candidates in high dimensions. On the other hand, GD can also thin-
out almost the same number of candidates in high dimensions as that in low
dimensions. This result indicates that GD is better than MG in high dimensions,
if there are no critical errors. In the next section, we show that there are no
critical errors in our intended problem, skill discovery.
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Table 3. Thinning-out rate and error rate of GA+MG and GA+GD in Rastrigin func-
tion in 2, 5, 10, 50, and 100 dimensions. Each rate is the average over 100 experiments
using 100 candidates

dimension
GA+MG GA+GD

thinning (%) error (%) thinning (%) error (%)

2 82.07 0.41 77.44 2.44

5 59.83 0.16 77.26 4.08

10 45.52 0.12 75.08 5.09

50 35.23 0.19 70.84 6.89

100 35.70 0.13 69.89 6.12

4 Discovery of Good Shot Motions

4.1 Creation of Initial Motions

In this paper, we use AIBO, which was developed by Sony Corporation, as a
legged robot. Physical motions of AIBO are realized by sending frames, consist-
ing of the 15 joint angles for its head and legs, to OVirtualRobot every 8 ms.
OVirtualRobot is a kind of proxy object that is defined in the software develop-
ment kit OPEN-R for AIBO. In our framework, these frames are generated from
key-frames. The key-frames are the characteristic frames shaping the skeleton of
each motion. For example, a kick motion needs at least two key-frames, since
robots must pull and push its leg when executing it. We indicate the number
of interpolations for each key-frame, so that whole frames can be generated by
using a linear interpolation method. Thus, our motion takes 8ni ms, where ni is
the total number of interpolations.

4.2 Discovery Process

We directly utilize the key-frames for discovering good shot motions. All we do is
to create sketchy motions, that is to indicate the key frames for the motion, and
it is possible to realize flexible search in the neighborhood of the skeleton without
modeling the movement and setting extra-parameterization. We fix the number
of key-frames and interpolations. In other words, the search space of our discov-
ery process has 15nk-dimensions, where nk means the number of key-frames. In
the process, we sample x ∈ R15nk , make our robot perform a shot motion gener-
ated from x, and calculate scores as the formula rb · (1 − |θt − θb| /θc), where rb

and θb mean the distance and angle to the kicked ball, and θt means the target
direction for shots. The formula linearly reduces the value in inverse proportion
to the difference between θb and θt. θc is a constant for the degree of reducing,
and we set θc = π/4.

4.3 Experiments and Results

We applied our methods to discovery of good shot motions by legged robots
in a simulation environment. We slightly extended the 3D simulator developed
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Table 4. Results of discovery of good motions by GA, GA+MG, and GA+GD. Each
result means the maximum score of 50 actual trials and is the average of 10 experiments.

GA GA+MG GA+GD

936 940 1058

by Zaratti et al. [12] and used it. Although this simulator can absolutely not
produce complete, real environments, it is suitable for verifying the performance
of such new methods, because we can perform reproducible measurement without
annoying real noise, as well as without damaging our robots.

Our experiments require much more time since the simulation of physical mo-
tions itself requires complex computation, even though our discovery processes
lies in the simulator. Actually, each experiment in this section took a couple
dozens hours. Therefore, thinning-out can make discovery processes more effi-
cient in a simulation environment as well as real environments, because it can
reduce time-consuming trials themselves.

We experimented using the motion for shooting a ball to a left oblique di-
rection with its right leg, as an initial motion. The search space is 75(= 15
joint angles * 5 key frames)-dimensions. The step size parameter of GA is
π/36 in each dimension. Table 4 shows the results using GA, GA+MG and
GA+GD. The table indicates that GA+GD get better results than GA and
GA+MG. Although the difference is small, it should be noted that GA+GD
used several hundred candidates. In other words, the result of GA+GD is al-
most the same result of several hundred trials in GA. The result ought to be
improved by using a better sampling method. Fig. 4 shows the initial motion
and two better motions which were discovered by using our methods. The mo-
tion (b) uses its whole body, although the initial motion (a) uses almost only

(a) Initial motion

(b) Discovered motion using its whole body

(c) Discovered motion using its own weight

Fig. 4. Initial motion and discovered motions
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its right leg. The motion (c) uses its own weight, swinging down its right leg.
It should be noted that the motion (c) is much different from the initial mo-
tion (a). This result can not be achieved by modeling the initial motion and
adjusting the parameters of the model. These results, especially the motion (c),
indicate that our skill discovery method with key-frames has flexibility suitable
for practical use. The movies of these discovered motions are available online
(http://www.shino.ecei.tohoku.ac.jp/∼{}kobayashi/movies.html).

5 Conclusions and Future Work

In this paper, we proposed the concept “thinning-out”, which is effective for
the problems that take much more evaluation time in each trial. We proposed
two methods (MG and GD), which infer Lipschitz functions for thinning-out.
By the experiments on the minimization problem of several test functions, we
verified that MG can safely thin-out few candidates, and conversely GD can
fearlessly thin-out many candidates, especially in high dimensions. The results
of test functions also suggests that thinning-out can be utilized widely in other
different problems. In addition, we applied our methods to discovery of good
shot motions by legged robots in a simulation environment. Our virtual robots
discovered sophisticated motions that is much different from the initial motion
in a feasible number of trials.

From now on, the experiments using real robots will be needed to verify that
thinning-out can treat real noise. Discovery of good shot motions in real envi-
ronments, however, will be unrealistic, because we must estimate the distance
to the kicked ball and restore the ball to the initial point carefully with each
trial for themselves. Therefore, we plan to make our robots perform autonomous
learning in the same way as Kobayashi et al. [6]. Autonomous learning of forward
shots is readily achievable in much the same way as the method of them, and
that of other shots may be possible by utilizing ceiling cameras.

We also need to more accurate inference methods for Lipschitz functions,
because the two methods proposed in this paper have both merits and demerits.
Although we came up with several ideas, which include a method using the
average, median, and weighted average of gradients, other than the two methods,
they did not work well. For example, we may be able to infer more proper values
by utilizing heuristics depending on each problem.
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H-P. (eds.) Proceedings of the Fifth International Conference on Parallel Problem
Solving from Nature (PPSN V). LNCS, vol. 1498, pp. 87–96. Springer, Heidelberg
(1998)

http://www.shino.ecei.tohoku.ac.jp/~{}kobayashi/movies.html


138 H. Kobayashi et al.

2. Sano, Y., Kita, H., Kamihira, I., Yamaguchi, M.: Online Optimization of an En-
gine Controller by means of a Genetic Algorithm using History of Search. In: Pro-
ceedings of the 3rd Asia-Pacific Conference on Simulated Evolution and Learning
(SEAL), pp. 2929–2934 (2000)

3. Kim, M.S., Uther, W.: Automatic Gait Optimisation for Quadruped Robots. In:
Proceedings of 2003 Australasian Conference on Robotics and Automation, pp.
1–9 (2003)

4. Kohl, N., Stone, P.: Machine Learning for Fast Quadrupedal Locomotion. In: The
Nineteenth National Conference on Artificial Intelligence (AAAI2004), pp. 611–616
(2004)

5. Fidelman, P., Stone, P.: The Chin Pinch: A Case Study in Skill Learning on a
Legged Robot. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.)
RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 59–71. Springer, Heidelberg (2007)

6. Kobayashi, H., Osaki, T., Williams, E., Ishino, A., Shinohara, A.: Autonomous
Learning of Ball Trapping in the Four-legged Robot League. In: Lakemeyer, G.,
Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI),
vol. 4434, pp. 86–97. Springer, Heidelberg (2007)

7. Zagal, J.C., del Solar, J.R.: Learning to Kick the Ball Using Back to Reality. In:
Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004.
LNCS (LNAI), vol. 3276, pp. 335–347. Springer, Heidelberg (2005)

8. Lee, H., Shen, Y., Yu, C.H., Singh, G., Ng, A.Y.: Quadruped Robot Obstacle Nego-
tiation via Reinforcement Learning. In: Proceedings of the 2006 IEEE International
conference on robotics and Automation (ICRA2006) (2006)

9. Hiroyasu, T., Miki, M., Sano, M., Shimosaka, H., Tsutsui, S., Dongarra, J.: Dis-
tributed Probabilistic Model-Building Genetic Algorithm. In: Cantú-Paz, E., Fos-
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Abstract. Recently, an efficient method of database analysis using
Zero-suppressed Binary Decision Diagrams (ZBDDs) has been proposed.
BDDs are a graph-based representation of Boolean functions, now widely
used in system design and verification. Here we focus on ZBDDs, a special
type of BDDs, which are suitable for handling large-scale combinatorial
itemsets in frequent itemset mining. In general, it is well-known that
the size of ZBDDs greatly depends on variable ordering; however, in the
specific cases of applying ZBDDs to data mining, the effect of variable
ordering has not been studied well. In this paper, we present a theoretical
study on ZBDD variable ordering for representing frequent itemsets. We
show two instances of databases we composed, where the ZBDD sizes
are exponentially sensitive to the variable ordering. We also show that
there is a case where the ZBDD size must be exponential in any vari-
able ordering. Our theoretical results are helpful for developing a good
heuristic method of variable ordering.

1 Introduction

Discovering useful knowledge from large-scale databases has attracted a consid-
erable attention during the last decade. Frequent pattern mining is one of the
fundamental problems for knowledge discovery. Since the pioneering paper by
Agrawal et al.[1], various algorithms have been proposed to solve the frequent
pattern mining problem (cf., e.g., [11,5]).

Recently, we have attacked the problem of efficiently generating the frequent
patterns in a transactiondatabase by using a data structure calledZero-suppressed
Binary Decision Diagrams (abbr. ZBDDs), see [7,8]. ZBDDs are a special case of
Binary Decision Diagrams (abbr. BDDs)[2]. Using ZBDDs one can implicitly enu-
merate sets of combinations. Moreover, one can then perform efficiently various
operations including the discovery and analysis of frequent patterns.

In general, it is well-known that the size of ZBDDs greatly depends on variable
ordering, however, in the specific cases of applying ZBDDs to data mining, the
effect of variable ordering has not been studied well. In this paper, we present a
theoretical study on ZBDD variable ordering for representing frequent itemsets.
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We show two instances of databases we composed, where the ZBDD sizes are
exponentially sensitive to the variable ordering. We also show that there is a
case where the ZBDD size must be exponential in any variable ordering.

2 Database Representation Using ZBDDs

In this section, we first describe the database representation to be discussed. Here
we consider databases of the following type. Let M �= ∅ be any set. We refer to
the elements of M as to items. In our examples below, we use M = {a, b, c}.
Then the set of all possible combinations is the power set ℘(M) of M . Any
subset C ⊆ ℘(M) is said to be a set of combinations. The elements of a set of
combinations are sets of items, e.g., {a, c}. To simplify notation, we write ac
instead of {a, c} and we refer to the elements of a set of combinations as to
tuples. A transaction database is just a list of tuples.

2.1 BDDs and ZBDDs

A Binary Decision Diagram (BDD) is a graph representation for a Boolean
function. An Example is shown in Fig. 1 for F (a, b, c) = abc ∨ abc.

Given a variable ordering (in our example a, b, c), one can use Bryant’s
algorithm[2] to construct the BDD for any given Boolean function. For many
Boolean functions appearing in practice this algorithm is quite efficient and the re-
sulting BDDs are much more efficient representations than binary decision trees.

BDDs were originally invented to represent Boolean functions. But we can
also map a set of combinations into Boolean space of n variables, where n is
the cardinality of the item set M (see Fig. 2). So, one could also use BDDs to
represent sets of combinations. However, one can even obtain a more efficient
representation by using Zero-suppressed BDDs (ZBDDs)[7].

If there are many similar combinations then the subgraphs are shared resulting
in a smaller representation. In addition, ZBDDs have a special type of node
deletion rule. As shown in Fig. 3, All nodes whose 1-edge directly points to the

Fig. 1. Binary Decision Tree, BDDs and ZBDDs
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a b c F → S
0 0 0 0
0 0 1 0
0 1 0 1 → b
0 1 1 0
1 0 0 0
1 0 1 1 → ac
1 1 0 0
1 1 1 0

As a Boolean function:
F = abc ∨ abc

As a set of combinations:
S = {ac, b}

Fig. 2. Correspondence of Boolean functions and sets of combinations

Fig. 3. BDD and ZBDD reduction rule

0-terminal node are deleted. Because of this, the nodes of items that do not
appear in any sets of combinations are automatically deleted as shown in Fig.1.
This ZBDD reduction rule is extremely effective if we handle a set of sparse
combinations. If the average appearance ratio of each item is 1%, ZBDDs are
possibly more compact than ordinary BDDs, up to 100 times.

ZBDD representation has another good property that each path from the root
node to the 1-terminal node corresponds to each combination in the set. Namely,
the number of such paths in the ZBDD equals to the number of combinations
in the set. This beautiful property indicates that, even if there are no equivalent
nodes to be shared, the ZBDD structure explicitly stores all items of each com-
bination, as well as using an explicit linear linked list data structure. In other
words, (the order of) ZBDD size never exceeds the explicit representation. If
more nodes are shared, the ZBDD is more compact than linear list.

2.2 ZBDD-Based Representation for Frequent Itemsets

Frequent itemset mining (or frequent pattern mining) is the problem of enumer-
ating all possible subsets of itemset M (also called patterns) which appear more
than or equal to α times in the database, for given α. Since their introduction by
Agrawal et al.[1], many papers have been published about new algorithms and
improvements for solving such mining problems[4,5,11]. Recently, graph-based
methods, such as FP-growth[5], have received a great deal of attention, because
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they can quickly manipulate large-scale itemset data by constructing compact
graph structures in main memory.

The ZBDD-based method is a similar approach to handling sets of combina-
tions in main memory but is more efficient because ZBDD is a kind of DAG for
representing itemsets, while FP-growth uses a tree representation for the same
objects. In general, DAGs can be more compact than trees.

Recently, our research group has developed an efficient algorithm ZBDD-
growth[9] to generate ZBDDs compactly representing all frequent itemsets for
given databases. Our method is not only enumerating/listing the frequent pat-
terns but also efficiently analyzing the huge size of mining results by using ZBDD
operations. For example, extracting all patterns including a certain items, or
computing the intersection/union/difference set for given two sets of patterns.
The computation time of those operations does not directly depend on the num-
ber of patterns but almost linear to the (compressed) ZBDD size. It is an im-
portant advantage of using ZBDDs.

3 Variable Ordering of ZBDDs for Representing Frequent
Itemsets

As described above, it is possible for us to represent histograms of frequent
pattern sets compactly by using the ZBDD data structure. However, the ZBDD
size is quite sensitive with respect to the underlying ordering of the variables. So,
it is important to find a good variable ordering such that the resulting ZBDD
size is close to the smallest size possible.

3.1 Properties of Variable Ordering in Ordinary BDDs

In the field of logic VLSI circuit design, many researchers have dealt with the
problem of finding good variable orderings for BDDs. For ordinary BDDs, two
features of the variable ordering are known that affect the size of the resulting
BDDs [3].

(1) Pairs of inputs having the local computability property had better be kept
close to one another in the ordering.

(2) Inputs having a strong controllability to the output had better be located
at higher order.

As a typical example where the local computability dominates the BDD size,
the following AND-OR two-level logic function is known.

x1x2 ∨ x3x4 ∨ x5x6 ∨ · · ·x2n−1x2n

This function can be represented by only 2n BDD nodes with the variable or-
der: x1, x2, x3, x4, . . . , x2n, where each pair of variables in the same product
term are kept together, while we need (2n+1 − 2) BDD nodes with the order:
x1, x3, . . . , x2n−1, x2, x4, . . . , x2n, where those pairs are kept away from each
other. (see Fig. 4.)
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Fig. 4. Effect of BDD variable ordering for the AND-OR two-level logic function

On the other hand, the data-selector function is known as another example
where the output controllability dominates the BDD size. For example, 8-bit
data-selector with three control inputs and eight data inputs has the function
that one of the data input is just selected by the 3-bit binary code of control
inputs. In this case, the function can be represented by a linear size of BDDs
when the control inputs are higher than data inputs, but the BDD becomes an
exponential size in the reversal order. (see Fig. 5.)

As shown the above, each of the both properties may have an exponen-
tial impact to the BDD size. Although one should try to come up with or-
derings obeying these two features, it may be difficult to do so, since these
requirements are sometimes contradictory. The problem of finding the opti-
mal variable ordering for BDDs is known to be NP-complete [10]. In addi-
tion, there exist functions which always require an exponential number of BDD
nodes for any variable ordering, so in such cases, variable ordering will be
useless.

3.2 Consideration on ZBDDs Representing Frequent Patterns

Now we consider the effect of variable ordering for the ZBDDs representing fre-
quent itemsets. For the sake of simple discussion, first we assume the minimum
frequency α = 1, namely, we consider the ZBDD enumerating all possible pat-
terns which appear at least once in the database. In this case, each tuple with
k items generates 2k patterns, and the total number of patterns may become
O(2n) when n is the size of database description. Thus, the ZBDD size may
become exponential in the worst case.

The ZBDD of all patterns in the given database can be generated by comput-
ing the union of P (Tk) for all tuples T1, T2, . . . , Tm in the database, where P (Tk)
means the sets of all patterns included in a tuple Tk. Here we can observe the fol-
lowing property. If an item x appears in a tuple Tk, the patterns in P (Tk) may
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Fig. 5. Effect of BDD variable ordering for the data-selector function

or may not include x, therefore, the item x contributes to double the number of
patterns in P (Tk). On the other hand, if x does not appear in Tk, the patterns in
P (Tk) never include x, and thus the item x does not contribute to increase the
patterns.

Let us consider the analogy with the process of generating an ordinary BDD
for a given logic expression. When an input variable x appears in a product
term Tk in the logic expression, the variable x should be true to satisfy Tk, so
the variable x does not contribute to increase the satisfiable solutions for the logic
of Tk. On the other hand, if x does not appear in Tk, the value of x may be false
or true, both possible to satisfy Tk, so the number of solutions becomes twice.

Consequently, we can observe the completely opposite effects between the
two facts that a variable appears in a term of the logic expression, and that an
item appears in a tuple of the database. This observation indicates that we may
discuss the effect of ZBDD variable ordering by looking the missing items in a
tuple as well as the variables appearing in the logic expressions.

3.3 An Instance Dominated by Local Computability

Based on the above consideration, we made an artificial database where the
property of local computability dominates the ZBDD size, as follows.

T1 a2 a3 a4 · · · an b2 b3 b4 · · · bn

T2 a1 a3 a4 · · · an b1 b3 b4 · · · bn

T3 a1 a2 a4 · · · an b1 b2 b4 · · · bn

...
...

...
...

...
...

...
...

...

Tn a1 a2 a3 · · · an−1 b1 b2 b3 · · · bn−1
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Table 1. Experimental results for the databases dominated by local computability

Order1: a1 b1 a2 b2 . . . an bn

Order2: a1 a2 . . . an b1 b2 . . . bn

n ZBDD size (order1) ZBDD size (order2) Total patterns

3 10 16 37
4 15 39 175
5 20 86 781
6 25 181 3,367
7 25 372 14,197
8 30 755 58,975
9 35 1,522 242,461
10 40 3,057 989,527
11 45 6,128 4,017,157
12 50 12,271 16,245,775

This database consists of the tuples Tk (k = 1, ..., n) each of which has almost
all items a1 a2 ... an b1 b2 ... bn but only one pair of items ak and bk are
missing. If we consider the opposite property of item appearance, this database
corresponds to the AND-OR two-level logic expression shown in Section 3.1, and
we can expect that the pairs of two items missing from the same tuple have the
property of local computability.

To confirm our consideration, we generated the ZBDDs representing all pat-
terns included in the database. Table 1 shows the ZBDD size of the two different
variable orders, and the two ZBDDs for n = 8 are shown in Fig. 6. The re-
sult obviously shows an exponential difference between the two ordering. It is

Fig. 6. ZBDDs for the instance dominated by local computability (n = 8)
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intuitively explained as follows. In the order2, the items a1 to ak are ordered
in the higher positions, but there is no opportunity to share the ZBDD nodes
only by the item a’s information without b’s, so just a binary tree are generated
for the first n stages and thus at least (2n − 1) nodes are generated. On the
other hand, when we use the other order such that ak and bk are kept closer, the
ZBDD nodes can be shared by using combinatorial information of ak and bk on
each stage, thus the ZBDD size becomes O(n).

3.4 An Instance Dominated by Output Controllability

Based on the above consideration, we made an artificial database where the prop-
erty of output controllability dominates the ZBDD size. The following database
corresponds to the 8-bit data-selector function, shown in Section 3.1.

T0 x1 x2 x3 x4 x5 x6 x7 y0 y2 y4

T1 x0 x2 x3 x4 x5 x6 x7 y0 y2 y5

T2 x0 x1 x3 x4 x5 x6 x7 y0 y3 y4

T3 x0 x1 x2 x4 x5 x6 x7 y0 y3 y5

T4 x0 x1 x2 x3 x5 x6 x7 y1 y2 y4

T5 x0 x1 x2 x3 x4 x6 x7 y1 y2 y5

T6 x0 x1 x2 x3 x4 x5 x7 y1 y3 y4

T7 x0 x1 x2 x3 x4 x5 x6 y1 y3 y5

This database has the items x0 x1 . . . xn−1 as the data inputs and
y0 y1 . . . ym (m = 2�log2 n�) as the control inputs. The control inputs have

Fig. 7. ZBDDs for the instance dominated by output controllability (n = 8)
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Table 2. Experimental results for the databases dominated by output controllability

n (number of x’s) ZBDD size(y’s higher) ZBDD size(x’s higher) Total patterns

8 126 579 5,023
12 339 5,117 227,295
16 650 137,444 4,159,487
20 1,151 2,435,284 161,496,559

the pair-wise structure as (y0, y1), (y2, y3), . . ., each of which represents a digit of
binary coded number. Either of odd or even numbered y appears on each tuple
Tk in the database, to represent the value 0/1 of the binary code for k. The
tuple Tk also includes all items x0 to xn except xk. With the opposite property
of item appearance, we can consider that this database selects one of the data
input xk according to the binary coded number specified by the control inputs,
as well as the data-selector function shown in Section 3.1.

Figure 7 shows ZBDDs for the instance of n = 8 with two different variable
orders. We can observe that the ZBDD will become a polynomial size when
the control inputs y’s are higher than data inputs x’s, but it will become an
exponential size in the reversal order. It is explained as follows. If we first assign
a set of values into all the items y’s, the rest of patterns of x’s are related only to
one or two tuples in the database, so each ZBDD subgraph for items x’s becomes
a beautiful array structure with n nodes. A pair of (yi, yi+1) may cause three
patterns: only yi appears, only yi+1 appears, or both absent, so, the upper part
of ZBDD for y’s become a ternary tree for the �log2 n�-bit of binary code. The
total ZBDD nodes are bounded by O(n · 3log2 n) ≈ O(n2.7).

On the other hand, when we use the reversal order such that x’s are higher
than y’s, there is no opportunity to share the ZBDD nodes only by x’s informa-
tion without y’s, so just a binary tree are generated for the first n stages and
thus at least (2n − 1) nodes are required.

To confirm our consideration, we generated the ZBDDs representing all pat-
terns included in the database. Table 2 shows the ZBDD size of the two different
variable orders. The result obviously shows an exponential difference between the
two orders. Thus, we can see that there exists an example where the property of
output controllability has an exponential impact for the ZBDD size.

3.5 A Case of Generating Exponential ZBDD in Any Variable
Ordering

Based on the above observation, we can show that there exists a database where
the ZBDD representing the set of patterns must be an exponential size in any
variable ordering. The “data-selector” database, shown in the last section, con-
sists of the two sorts of items x’s and y’s. We must put the y’s higher than x’s to
avoid exponential explosion of ZBDD size. Now, let us define N as the total num-
ber of items (= n+2�log2 n�), then we make N copies of the databases with the
N different variable orders by rotating the items one by one, as shown in Fig. 8,
and finally we merge the all N blocks into one database. If we generate a ZBDD
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Fig. 8. N copies of “data-selector” databases with the rotated variable orders

for the sets of all patterns in this database, any variable ordering cannot avoid a
bad variable order, because, at least one of the blocks, more than n

2�log2 n� items

of x’s become higher than y’s. So, we need at least O(2
n

2�log2 n� ) ZBDD nodes
for representing the patterns for the block of the bad variable order. Since the
given database has a polynomial size O(N3), we can conclude that this database
requires an exponential size of ZBDD in any variable ordering.

3.6 Effect of the Minimum Frequency Threshold

In the above discussions, we assume the minimum frequency threshold α = 1, it
means that the ZBDDs represent the sets of all possible patterns included in the
databases. However, in the real applications, we specify a larger α to reduce the
number of frequent patterns into a feasible amount, and the size of the ZBDD is
also reduced. If the number of frequent patterns are not exponential for a given
large α, then the ZBDD size never become exponential, and in such cases, the
variable ordering does not have an exponential effect to the ZBDD size.

Table 3 is the experimental result for the same database as shown in Section3.3
with a different threshold α = n/2, namely, representing the set of frequent

Table 3. Same database as Table 1 with the different threshold α = n/2

Order1: a1 b1 a2 b2 . . . an bn

Order2: a1 a2 . . . an b1 b2 . . . bn

n ZBDD size (order1) ZBDD size (order2) Total patterns

3 8 8 67
4 16 30 106
5 22 47 781
6 33 142 694
7 42 222 1,156
8 56 616 7,459
9 68 969 12,896
10 85 2,564 81,922
11 100 4,074 143,980
12 120 10,503 912,718
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patterns which appears at more than half tuples in the database. The result
shows that the variable ordering still has an exponential impact to the ZBDD
size when α = n/2. In this example, we expect that as long as we specify an α
proportional to n (i.e. α = c · n, 0 < c < 1), the similar exponential impact will
be observed.

4 Conclusion

In this paper, we presented a theoretical study on ZBDD variable ordering for
representing frequent itemsets. We composed two instances of databases where
the ZBDD sizes are exponentially sensitive to the variable ordering, and we dis-
cussed why such a remarkable difference occurs. In addition, we also showed that
there is a case where the ZBDD size must be exponential in any variable order-
ing. These discussions clarify the property of variable ordering when we apply
the ZBDD-based data structure to data mining problems. Recently, we proposed
a heuristic variable ordering method[6] that finds a good variable order before
generating ZBDDs, by using the structural information of the given database.
Such a heuristic method is developed based on the theoretical results discussed
in this paper.
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Abstract. The Minimum Description Length (MDL) is an information-
theoretic principle that can be used for model selection and other statis-
tical inference tasks. One way to implement this principle in practice is
to compute the Normalized Maximum Likelihood (NML) distribution for
a given parametric model class. Unfortunately this is a computationally
infeasible task for many model classes of practical importance. In this
paper we present a fast algorithm for computing the NML for the Naive
Bayes model class, which is frequently used in classification and cluster-
ing tasks. The algorithm is based on a relationship between powers of
generating functions and discrete convolution. The resulting algorithm
has the time complexity of O(n2), where n is the size of the data.

1 Introduction

The information-theoretical Minimum Description Length (MDL) principle [15,
4, 17, 3] for model selection is based on the conceptually simple idea that given
a data set, the best model for the data is the one which results in the shortest
description for the data together with the model. Hence, we wish to select a
model representing a balance between too simple models (in which case the
code length for the data is large) and too complex models (in which case the
code length for the data is small, but for the model itself large).

Consider a parametric probabilistic model class, i.e., a set of models each
defining a probability distribution over all possible data sets. Let us call the
shortest possible code length obtainable with the given set of models stochastic
complexity. Consequently, given a data set, we can choose between alternative
parametric models (model classes) with different number of parameters by com-
paring the corresponding stochastic complexities for the given data.

However, there remains the question of how to formally define the stochastic
complexity for a model class. As each of the probability distributions in a prob-
abilistic model class corresponds to a code length, it is obvious that no code can
be shorter than all the other codes in the model class for all data sets, because
no probability distribution can dominate another probability distribution over
all data sets. A universal model is a model (code) which can imitate any model
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in a given parametric model class. The normalized maximum likelihood (NML)
distribution [16, 18] is the worst-case optimal universal model giving a desired
formal definition for the stochastic complexity (see the next Section).

Unfortunately, computing the NML is very difficult for many model classes
of practical interest. In this paper we consider Bayesian networks, probabilistic
model classes defined by acyclic directed graphs [14, 5]. The Naive Bayes model is
a simple Bayesian network, which is continuously used with success in areas such
as clustering and classification. It has been earlier shown [11] how to compute the
NML for the Naive Bayes model family in O(n2 log L) time, where L denotes the
number of values of the class variable of the Naive Bayes model. In this paper we
introduce a faster O(n2) algorithm for this task, based on generating functions.

2 The Problem

The normalized maximum likelihood (NML) distribution [16, 18] is defined by

PNML(xn|M) =
P (xn|θ̂(xn, M))∑
yn P (yn|θ̂(yn, M))

, (1)

where the numerator is the maximum likelihood for the observed data xn within
the model class M. The normalizing term in the denominator is the sum over
maximum likelihoods of all possible data sets of size n, with respect to the
model class. As shown in [18], this yields the worst case universal distribution
with respect to the model class M.

Although NML was defined as the worst-case optimal universal model, with-
out considering model complexity regularization, it is interesting to note how it
behaves as a model class selection criterion. Namely, if the model class is very
complex, then the maximum likelihood for the given data (the numerator in (1))
is large, but so is also the denominator as a complex model gives a high max-
imum likelihood for many data sets. For simple model classes the sum in the
denominator is small, but so is the numerator. Consequently, the denominator
behaves a a regularization term, and the model class optimizing the stochastic
complexity − log(PNML(xn|M)) has to balance between model complexity and
fit to the given data.

Let us now consider Naive Bayes models. The Naive Bayes is a Bayesian
network with one root node and m leaf nodes attached to the root node. Vari-
ables related to nodes are multinomially distributed. The joint distribution cor-
responding to the Naive Bayes is defined by

P (x) = P (x0)
m∏

i=1

P (xi|x0), (2)

where x = (x0, x1, . . . , xm) is a vector of variable value assignments and x0 is
the value in the root.

For Naive Bayes models, computing the numerator of (1) is trivial, but this is
not the case with the denominator. In this paper we derive an efficient algorithm
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for computing the normalizing term for this model family and call it the Naive
Bayes normalizing term.

3 Generating Functions and the Naive Bayes

The normalizing term for a single multinomial variable is called multinomial
normalizing term. We can compute the multinomial normalizing term efficiently:
the most efficient known method is proved using generating functions [9, 10]. We
now use this same methodology in the Naive Bayes case. First we have to define
the needed operations, which we use with generating functions, and then take a
closer look at the Naive Bayes normalizing term.

3.1 Generating Functions

An ordinary generating function (OGF) of a sequence an is

F (z) =
∞∑

n=0

anzn = a0 + a1z + a2z
2 + · · · , (3)

where z ∈ C [2]. We are only interested in coefficients an, not the value of the
function F (z) itself. The function F (z) is only used for computation of some an

coefficients or in derivation of recurrence formulas. With a recurrence formula
we can compute the coefficient an+1 with the help of the fixed and finite set of
previous coefficients. A generating function may have a closed form, in which
case manipulation is easier.

As a generating function is also a formal power series, all general formal power
series operations are applicable. In the case of the multinomial normalizing term,
however, we need the exponential generating function (EGF), which is of form

G(z) =
∞∑

n=0

bn
zn

n!
. (4)

We need to define for later use also two operations: a coefficient extraction from a
formal power series and taking the power of the exponential generating function.
The first operation is defined by

[zn]G(z) =
bn

n!
, (5)

which means that [zn] gives us the coefficient of term zn. The second opera-
tion defines what happens to coefficients when we exponentiate the generating
function. Rising the generating function G(z) to the power of two, denoted by

G2(z) =

( ∞∑
n=0

bn
zn

n!

)2

=
∞∑

n=0

cn
zn

n!
, (6)
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corresponds to the binomial convolution

cn =
n∑

h=0

(
n

h

)
bhbn−h (7)

in the level of coefficients. Similarly, the power of L gives

dn =
∑

h1+···+hL=n

(
n!

h1!h2! · · · hL!

)
bh1bh2 · · · bhL , (8)

which is the multinomial convolution [2, 8]. This relation between the expanded
form and the power form is the key feature for achieving a new, more efficient
algorithm for computing the Naive Bayes normalizing term.

3.2 Naive Bayes Generating Function in the Power Form

First we have to define the generating function for the multinomial normalizing
term. We do not give this function in the expanded form, but use a more compact
notation: Lth power of a generating function [9, 10]. The power form is

BL(z) =

( ∞∑
n=0

nn zn

n!

)L

. (9)

We call the series inside the parentheses a basic series. The basic series here is
of exponential type and formal power series coefficients are now nn

n! . Coefficients
of the exponential generating function are nn. When we expand power L, we get
an exponential generating function

BL(z) =
∞∑

n=0

CMN (L, n)nn zn

n!
, (10)

where CMN (L, n) is the multinomial normalizing term with L values and n data
vectors [9, 10]. By a strict definition of generating functions this is not such a
function, as it is not explicitly defined. However, we misuse the definition here
slightly and in same way also later in the Naive Bayes case, because the implicit
form is sufficient for our purposes. There are efficient ways to compute the term
CMN (L, n), and we will show one of them later.

Now we focus on the Naive Bayes normalizing term. The normalizing term is
represented in the previous papers only using the expanded form. We denote the
Naive Bayes normalizing term by CNB(L, K1, . . . , Km, n), where L is the number
of values of the root variable and Ki is the number of values in leaf variable i.
The following theorem shows the simple power form of the normalizing term.

Theorem 1

nn

n!
CNB(L, K1, . . . , Km, n) = [zn]

( ∞∑
n=0

nn

(
m∏

i=1

CMN (Ki, n)

)
zn

n!

)L

.
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Proof. A vector (h1, . . . , hL) is a sufficient statistics i.e. data counts of the root
variable. The used formula for the Naive Bayes normalizing term is from the
paper [11]. With standard manipulation we get

nn

n!
CNB(L, K1, . . . , Km, n) (11)

=
nn

n!

∑
h1+···+hL=n

n!
h1! · · · hL!

(
L∏

k=1

(
hk

n

)hk
)

m∏
i=1

L∏
k=1

CMN (Ki, hk) (12)

=
nn

n!

∑
h1+···+hL=n

n!
h1! · · · hL!

(
1
nn

L∏
k=1

hhk

k

)
L∏

k=1

(
m∏

i=1

CMN (Ki, hk)

)
(13)

=
1
n!

∑
h1+···+hL=n

n!
h1! · · · hL!

L∏
k=1

(
hhk

k

m∏
i=1

CMN (Ki, hk)

)
(14)

= [zn]

( ∞∑
n=0

nn

(
m∏

i=1

CMN (Ki, n)

)
zn

n!

)L

. (15)

The last form is the power form, from where we can easily extract the ba-
sic series. We started from the expanded form and ended up with the power
form. �
Let us compare the generating functions of the multinomial and the Naive Bayes
normalizing terms. In the multinomial case we have( ∞∑

n=0

nn zn

n!

)L

(16)

and in the Naive Bayes case we have

EL =

( ∞∑
n=0

CMN (K1, n) · · · CMN (Km, n)nn zn

n!

)L

. (17)

The two forms seem to be quite similar, except that in the Naive Bayes case
we have additional multinomial normalizing terms inside the basic series terms.
These extra multinomial normalizing terms makes the expanded form look quite
ugly. However, despite of the complex terms, there exists an O(n2 log L) algo-
rithm for computing the Naive Bayes normalizing term [11]. The basic idea is
very simple: we can split the exponent L into two parts. Let’s call these parts L∗

and L − L∗. Then we get EL = EL∗EL−L∗
. Now we can simply take the normal

discrete convolution in the right hand side to get one term of the series in the
left hand side. If we require that the result is also a normalizing term, we get
the known recurrence formula

CNB(L, K1, . . . , Km, n) =
n∑

k=0

(
n

k

) (
k

n

)k (
n − k

n

)n−k

· CNB(L∗, K1, . . . , Km, k) CNB(L − L∗, K1, . . . , Km, n − k). (18)
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So two lower exponents produce a higher one. To achieve the log L -term in the
time complexity, we have to merge exponents wisely, so that we do not make any
unnecessary steps. For example, if we want to compute EL with L = 16, we first
compute E2 and then compute E2E2 to get E4. In the same way we get the series
E8 and finally the series E16. If the target value is not two to some power, then
we have to do more complicated multiplications based on same idea. However,
in the next section we present a novel, even more efficient way for computing
the Naive Bayes normalizing term.

4 Powers of Formal Power Series

As basic series are formal power series, we can use some known powers of formal
power series formula. One of these formulas is the Miller formula [6]. It is origi-
nally a result of Euler and it has time complexity of O(n2) for any real number
exponent, but of course only natural numbers are meaningful in our case.

The proof of the Miller formula has been sketched many times in history
[7, 13, 6], but we were not able to find a detailed proof in the literature. The
detailed proof is relatively straightforward and uses only standard manipulation.
We complete below the missing parts of Knuth’s proof for sake of clarity.

Theorem 2 (The Miller formula). If two formal power series are V (z) =
1 +

∑∞
k=1 vkzk and W (z) =

∑∞
k=0 wkzk and W (z) = (V (z))α, α ∈ R, then

w0 = 1 and wn =
∑n

k=1

(
(α+1

n )k − 1
)
vkwn−k.

Proof. It is evident that w0 = 1, since v0 = 1 and 1 = 1α. Next we derivate the
basic equation of the theorem and get

W ′(z) = αV (z)α−1V ′(z).

Then we multiply both sides with V (z) and substitute V (z)α = W (z), which
gives us the equation

W ′(z)V (z) = αW (z)V ′(z).

Let us now look at the zn−1-coefficients of both sides:

[zn−1]W ′(z)V (z) = α[zn−1]W (z)V ′(z) (19)
n∑

k=0

kwkvn−k = α

n∑
k=0

(n − k)wkvn−k (20)

n−1∑
k=0

kwkvn−k + nwnv0 = α

n−1∑
k=0

(n − k)wkvn−k + 0 (21)

nwnv0 =
n−1∑
k=0

(
α(n − k)wkvn−k − kwkvn−k

)
(22)

wn =
1

nv0

n−1∑
k=0

(
(α(n − k) − k)wkvn−k

)
(23)
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wn =
n−1∑
k=0

(
α(n − k) − k

n

)
wkvn−k (24)

wn =
n∑

k=1

(
α(n − n + k) − n + k

n

)
wn−kvn−n+k (25)

wn =
n∑

k=1

((
α + 1

n

)
k − 1

)
wn−kvk. (26)

After some straightforward manipulation we get the result. �

We can obviously use this method for computing the normalizing term of the
Naive Bayes model. It should be noted that while this result is elegant, if we use
the discrete Fourier transform, we can achieve the time complexity O(n log n)
by using the basic identity (V (z))α = exp(α log(V (z))) and the fast Fourier
transform (FFT). The FFT method involves utilization of Newton’s method
and is explained in the paper [1]. However, the usefulness of this approach is
unclear as some earlier tests with the multinomial normalizing term [12] show
that the used floating point numbers must have very high precision in practical
cases. This is due to the fact that the values of the normalizing terms can be quite
large, and consequently, as the data size increases, the precision of the floating
point numbers must also increase. This means that increasing the precision will
affect the efficiency of the algorithm, although the number of operations remains
in principle the same.

5 Computation of the Naive Bayes Normalizing Term

The computation of the Naive Bayes normalizing term is quite straightforward
given the results derived above. Now we collect these results in a form of an algo-
rithm. As we did not describe earlier how to compute efficiently the multinomial
normalizing term, we start by defining that.

5.1 Recurrence Formula for the Multinomial Normalizing Term

The multinomial normalizing term can be computed by using a recurrence for-
mula [9, 10]. Initial values for this formula are

CMN (1, n) = 1 and (27)

CMN (2, n) =
n∑

k=0

(
n

k

) (
k

n

)k (
n − k

n

)n−k

, (28)

where CMN (2, n) is a binomial normalizing term. After this we use the recurrence
formula

CMN (L + 2, n) = CMN (L + 1, n) +
n

L
CMN (L, n) (29)
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to get the normalizing term with the wanted number of values in a multinomial
variable. Time complexity of this whole method is O(n), as the number of values
in a variable is usually much smaller than the number of the data points n. If
we have to compute all normalizing terms between [0, n] and we choose to use
FFT, then binomial normalizing terms should be computed using (16). For the
multiplication we can apply FFT.

5.2 The Algorithm

Now we have all the components we need for our algorithm. As said before, our
main theorem is quite obvious given the earlier results (Theorems 1 and 2) and
needs no proof.

Theorem 3. The Naive Bayes normalizing term can be efficiently calculated in
following way:

1. Compute first n + 1 binomial normalizing terms.
2. Use the recurrence formula to get the needed multinomial normalizing terms.
3. Compute the basic series

∑n
k=0 CMN (K1, k) · · · CMN (Km, k)kk zk

k! .
4. Use the Miller formula to compute a new series, which is the basic series to

the power of L.
5. Extract the Naive Bayes normalizing terms from the computed series by ex-

tracting coefficients and multiplying every coefficient so that the kth coeffi-
cient is multiplied by k!

kk .

Time complexity is O(n2) for any exponent, because complexities of the steps
are O(n2), O(n · max(Ki)), O(n · m), O(n2) and O(n), respectively. This way
we get all the Naive Bayes normalizing terms between [0, n] in the given time,
not just the nth of them. Notice that if the FFT approach could be used, time
complexities of the first (explained in the Sect. 5.1) and the fourth steps would
become O(n log n). In this case the Miller formula in the fourth step is replaced
with the algorithm mentioned in Section 4. Theorem 3 gives us actually a general
framework for designing this kind of algorithms, as step 4 can be replaced with
any exponentiation algorithm.

The method given in Theorem 3 is more efficient than the O(n2 log L)-algo-
rithm presented in [11]. This is easy to see, as the previous algorithm essentially
performs in the fourth step at minimum log L- power series multiplications in-
stead of something which corresponds just one power series multiplication. In
fact even when using the previous method, in some case it can be wise to compute
series coefficients and not to require that all sub-results has to be normalizing
terms. This way we can replace (18) just with normal convolution and achieve
some more efficiency by omitting unnecessary multipliers present in the old for-
mula. Furthermore, the old formula is applicable for values L greater than 2, but
we can use normal convolution for values L greater than 1. In the fifth step we
then convert wanted series coefficients into normalizing terms.

The new Miller method algorithm works perfectly fine with exact rational
numbers. However our preliminary implementations show that in practice this is
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not necessarily the case with fixed precision floating point numbers and all formal
power series: for some tested basic series, small errors in elementary operations
tend to corrupt the normalizing terms very fast as n grows (because the algorithm
uses iteratively previous values). Therefore with finite precision floating point
numbers, using the previous, slower algorithm may be more advisable.

We have derived an efficient algorithm for computing the Naive Bayes nor-
malizing term exactly. The computational complexity of computing the NML
criterion for a Naive Bayes model is the same as for this algorithm, as the
numerator of (1) is trivial to compute. Further information on computing the
stochastic complexity for Naive Bayes models can be found in papers [11, 12].

6 Concluding Remarks

We presented an O(n2) time algorithm for computing the normalizing term of the
NML distribution exactly in the case of the Naive Bayes model. As the remaining
term of the NML distribution is trivial to compute in this case, this result leads
to a computationally efficient algorithm for computing the NML exactly for
Naive Bayes models. We also defined a general framework for developing efficient
algorithms for the NML computation in the Naive Bayes case and showed how
the old O(n2 log L)-algorithm can be seen as an special case of the framework,
and how to make the algorithm more efficient.

We believe that it is not possible to do formal power series exponentiation in
this case faster than O(n2) without resorting to the Fast Fourier transform, which
would easily lead to numerical problems, as discussed earlier. So unless the basic
series for the Naive Bayes model reveals new hidden regularities with respect to
exponentiation, our algorithm meets the lower limit of the time complexity for
computing the NML exactly for Naive Bayes models.
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[3] Grünwald, P.: The Minimum Description Length Principle. MIT Press, Cambridge
(2007)

[4] Grünwald, P., Myung, J., Pitt, M. (eds.): Advances in Minimum Description
Length: Theory and Applications. MIT Press, Cambridge (2005)

[5] Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning 20(3), 197–243
(1995)

[6] Henrici, P.: Automatic computations with power series. Journal of the ACM 3(1),
11–15 (1956)

[7] Knuth, D.E.: The Art of Computer Programming, volume. 2: Seminumerical Al-
gorithms, 3rd edn. Addison-Wesley, Reading (1998), ISBN: 0201896842

[8] Knuth, D.E., Pittel, B.: A recurrence related to trees. Proceedings of the American
Mathematical Society 105(2), 335–349 (1989)
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Abstract. We propose an unsupervised method for detecting spam doc-
uments from a given set of documents, based on equivalence relations on
strings. We give three measures for quantifying the alienness (i.e. how
different they are from others) of substrings within the documents. A
document is then classified as spam if it contains a substring that is in an
equivalence class with a high degree of alienness. The proposed method
is unsupervised, language independent, and scalable. Computational ex-
periments conducted on data collected from Japanese web forums show
that the method successfully discovers spams.

1 Introduction

Due to its remarkable development, the Web has become a major means of
advertisement [1]. Not only normal websites, but CGM (Consumer Generated
Media), such as Weblogs, forums and SNS, made and written by the casual
user, is also exploited as an advertisement media. Spam messages, which are
unsolicited, unwanted advertisement messages sent or posted by spammers, is
becoming a huge issue on this media, because in general, any user can freely and
easily post messages.

There exist various types of spam: webspam (spam in web sites), linkspam
(spam used linkfarm), wikispam (spam in Wikis), splog (spam in Weblogs) [2],
commentspam (spam in forums), spam mail (spam in email), and more recently,
spim (spam over Instant Messaging) [3], and spit (spam over IP Telephony).
These spams advertise their goods and websites, mislead users to access other
websites, manipulate the PageRank [4] of their sites and so on. Not only do
these messages interfere with the user trying to obtain useful information, but
they can overload the servers which provide various services to the users. Hence,
developing methods to detect such spams automatically is an important problem.

In this paper, we consider an unsupervised and language independent method
for the detection of spam in document sets, based on the alienness of the sub-
strings contained in each document. In order to effectively transmit their adver-
tisement message to their potential customers (victims), spammers send many
identical, or nearly identical spam messages. We assume that such redundancies
in spam causes their substring frequencies distribution to deviate from that of
other normal messages, and quantify this amount using several measures based

V. Corruble, M. Takeda, and E. Suzuki (Eds.): DS 2007, LNAI 4755, pp. 161–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



162 K. Narisawa et al.

on the substring equivalence relation defined in [5]. A document is then classi-
fied as spam if it contains a substring that is in an equivalence class with a high
degree of alienness.

In Section 2, we review related work. In Section 3, we introduce some no-
tations, as well as the substring amplification method [6] which is our previous
unsupervised method for detecting spam. In Section 4, we describe our new spam
detection method. We show results of computational experiments conducted on
Japanese web forum postings in Section 5. In Section 6, we conclude the paper.

2 Related Work

There are roughly three strategies for detecting spam.

Link Analysis: This detects malicious link sets called linkfarms, by analyzing
link structures [7,8,9]. It can detect linkspams with high accuracy, and does
not depend on languages. However, it suffers from the drawback that it
generally has a high computational cost, and that it can only be used for
spam messages that contain links.

Machine Learning: There are various machine learning based filters such as
Bayesian filters [10], which are fairly effective for spam mails using header
information in addition to contents. However, such supervised methods must
first be fed with a large amount of training message data marked as spam
or nonspam, which may be costly to generate.

Statistical Analysis: This approach detects spams by considering various sta-
tistics of words or n-grams in documents [11]. However, word statistics re-
quires word segmentation for languages that do not have word boundaries,
such as Japanese or Chinese. Concerning n-gram statistics, a good n must
somehow be chosen.

Our proposed method can be classified as a Statistical Analysis strategy, and
uses the entire set of substrings instead of words or n-grams. Although the
number of substrings in a document is quadratic in its length, our method runs
in linear time by grouping the substrings into equivalence classes.

3 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string. Strings x, y and
z are said to be a prefix, substring, and suffix of the string u = xyz, respectively,
and the string u is said to be a superstring of y. The length of a string u is denoted
by |u|. The empty string is denoted by ε, that is, |ε| = 0. Let Σ+ = Σ∗−{ε}. The
i-th character of a string u is denoted by u[i] for 1 ≤ i ≤ |u|, and the substring
of u that begins at position i and ends at position j is denoted by u[i : j] for
1 ≤ i ≤ j ≤ |u|. For convenience, let u[i : j] = ε for j < i. The set of substrings
of a string w is denoted by Sub(w), and let Sub(S) =

⋃
w∈S Sub(w) for a set S of

strings. The elements of Sub(S) are called substrings of S. Let Subf(S) denote
the set of substrings appearing f times in S. Let |S| denote the cardinality of S.
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3.1 Our Previous Method: Substring Amplification

We describe the Substring Amplification Method presented in [6], which is an
unsupervised spam detection method. It is conceptually similar to the method
in this paper in that it tries to detect spams by finding deviations in occurrence
frequencies of substrings in documents. Unlike n-gram analysis and word anal-
ysis, it uses the frequency distribution of all substrings of the input documents.
We assume that the Zipf’s law [12,13] holds between the frequencies f and the
number |Subf(S)| of distinct substrings with frequency f , and look for outliers.
Figure 1 is an example plot for the web data described in Section 4 (forum 4314).
Looking more closely at this graph, outliers from the distribution with unexpect-
edly large |Subf(S)| are observed to be due to substrings from spam documents.
Figure 2 shows the performance of the Substring Amplification Method run on
the same data.

The Substring Amplification Method finds suspicious frequencies f and out-
puts the set of substrings with frequency f . However, this set is comprised of
substrings of essentially identical occurrences, as well as substrings that just hap-
pened to have the same frequency. Moreover, it was observed that usually, only
a single group of substrings having essentially identical occurrences correspond
to spam, and is responsible for large |Subf(S)| values. In order to improve the
accuracy of the Substring Amplification Method, we formalize this observation
and propose a new method using the equivalence relation on substrings defined
by [14]. In the next section, we describe our method in detail.

4 New Method

We consider the equivalence relation over substrings, introduced by Blumer et
al. [14] based on their occurrences. Intuitively, each equivalence class gathers the
substrings whose “occurrences” are the same.

We note that by using the suffix array data structure [15] together with its
lcp array, we can enumerate in linear time, the equivalence classes, as well as
their values for each of the measures that will be used in this paper as shown
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in [16]. The algorithm is a non-trivial extension of the algorithm of [17], but it
is beyond the scope of this paper.

4.1 Equivalence Relations on Substrings

In this subsection, we give definitions of the equivalence relations of Blumer et
al. [14], and then state some properties.

Definition 1. Let S be a non-empty finite subset of Σ+. For any x in Sub(S),
let

BegPosS(x) =
{〈w, j〉 ∣∣w ∈ S, 0 ≤ j ≤ |w|, x = w[j + 1 : j + |x|] }

,

EndPosS(x) =
{〈w, j〉 ∣∣w ∈ S, 0 ≤ j ≤ |w|, x = w[j − |x| + 1 : j]

}
.

For any x /∈ Sub(S), let BegPosS(x) = EndPosS(x) = ∅. In this paper, we omit
the set S, and write simply BegPos and EndPos .

For example, if S = {discover, cover, November, vertical}, then the sets
BegPos and EndPos for their substrings are as follows. BegPos(o)=BegPos(ov)
= BegPos(ove) = {〈discover, 4〉, 〈cover, 1〉, 〈November, 1〉}, BegPos(c)
= {〈 discover, 3〉, 〈cover, 0〉, 〈vertical, 5〉}, BegPos(co) = BegPos(cov)
=BegPos(cove)=BegPos(cover)={〈discover, 3〉, 〈cover, 0〉}, and EndPos(r)
= EndPos(er) = {〈discover, 8〉, 〈cover, 5〉, 〈November, 8〉, 〈vertical, 3〉},
EndPos(o) = {〈discover, 5〉, 〈cover, 2〉, 〈November, 2〉}, EndPos(over) =
EndPos(cover) = {〈discover, 5〉, 〈cover, 2〉}.

Definition 2. Let x and y be arbitrary strings in Σ∗. The equivalence relations
≡L and ≡R are defined by

x ≡L y ⇔ BegPos(x) = BegPos(y),
x ≡R y ⇔ EndPos(x) = EndPos(y).

The equivalence class of a string x in Σ∗ with respect to ≡L and ≡R is denoted
by [x]≡L and [x]≡R , respectively.

For example, if S = {discover, cover, November, vertical}, then [ε]≡L = [ε]≡R

= {ε}, [o]≡L = [ov]≡L = [ove]≡L = {o, ov, ove}, [c]≡L = {c}, [co]≡L = [cov]≡L

= [cove]≡L = [cover]≡L = {co, cov, cove, cover}, and [r]≡R = [er]≡R = {r,
er}, [o]≡R = {o}, [over]≡R = [cover]≡R = {over, cover}.

Definition 3. For any string x in Sub(S), let
→
x and

←
x denote the unique

longest members of [x]≡L and [x]≡R , respectively.

For example, if S = {discover, cover, November, vertical}, then −→ε = ←−ε = ε,−→o = −→ov = −−→ove = ove, −→c = c, −→co = −−→cov = −−→cove = −−−→cover = cover, and ←−r = ←−er
= er, ←−o = o, ←−−over = ←−−−cover = cover.

Definition 4. For any string x in Sub(S), let
↔
x be the string αxβ such that α

and β are the strings satisfying
←
x= xβ and

→
x= αx.
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For example, if S = {discover, cover, November, vertical}, then ←→ε = ε, ←→o
= ←→ov = ←→ove = ove, ←→c = c, ←→r = ←→er = er, and ←→co = ←→cov = ←−→cove = ←−→over
= ←−−→cover = cover.

Intuitively,
↔
x= αxβ means that:

– Every time x occurs in S, it is preceded by α and followed by β.
– Strings α and β are as long as possible.

Definition 5. Strings x and y are said to be equivalent on S if and only if:

1. x /∈ Sub(S) and y /∈ Sub(S), or
2. x, y ∈ Sub(S) and

↔
x=
↔
y .

This equivalence relation is denoted by ≡. The equivalence class of a string x in
Sub(S) with respect to ≡ is denoted by [x]≡.

For example, if S = {discover, cover, November, vertical}, then the strings
in Sub(S) are divided into the equivalence classes: {ε}, {o, ov, ove}, {c}, {r,
er}, and {co, cov, cove, over, cover}.

A string x in Sub(S) is said to be prime if
↔
x= x. Let Prime(S) denote the

set of prime substring of S, that is, Prime(S) = {↔x | x ∈ Sub(S)}. For example,
if S = {discover, cover, November, vertical}, then Prime(S) = {c, i, er, ve,
ove, ver, cover, discover, November, vertical}.

We regard each prime string x as the representative of the equivalence classes
[x]≡.

For any x, y in Σ∗, we write x � y if x is a substring of y. For any x in
Prime(S), let Minimal(x) denote the set of minimal elements of [x]≡, that is,
Minimal(x) = {y ∈ [x]≡ | z � y and z ∈ [x]≡ imply z = y}. Let Maximin(x)
denote the maximum length of strings in Minimal(x).

For example, if S = { discover, cover, November, vertical }, then
Minimal(cover) = {co, over} and Maximin(x) = |over| = 4.

The following lemma states that any equivalence class that contains a sub-
string of S is represented by its representative and its minimal elements.

Lemma 1 ([5]). For any x in Prime(S), let y1, . . . , yk be the elements of
Minimal(x). Then, [x]≡ = Pincer(y1, x)∪· · ·∪Pincer(yk, x), where Pincer(yi, x)
is the set of strings z with y � z � x.

It can also be shown that such representations of all equivalence classes of sub-
strings in S require only linear space [16].

4.2 Measures with Equivalence Classes

In this subsection, we give three measures for quantifying the alienness of equiv-
alence classes. We use a data set obtained from the Web in order to evaluate
these measures. The data set consists of postings from the YahooJapanFinance1

1 http://quote.yahoo.co.jp/

http://quote.yahoo.co.jp/
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forum. This forum is surveyed by the forum administrator, and postings are
manually deleted if they are judged to be spam. Therefore, we can obtain spam
and non-spam document examples by gathering the postings of a given forum
over a certain period of time. We regard the postings which have been deleted
as spams, and the writings not deleted as nonspams. This data set contains 1087
postings including 226 spam posts and 861 nonspam posts.

We will not regard strings only occurring once as spam, and only consider the
equivalence classes whose elements appear at least twice in the documents.

Length: In general, spams are different from natural sentences in that they tend
to be lengthy and appear more frequently. Hence, we first consider the length of
the representative of an equivalence class as a measure for spam detection:

measureLength(x) = | ↔x |

There seems to exist a power law between the length of the representative of
an equivalence class and the number of equivalence classes with the length (see
Figure 3-(1)). In this plot, “Spam” denotes that all equivalence classes with
that Length measure are substrings of spam documents only. “NonSpam” de-
notes that all equivalence classes with that Length measure are substrings of
nonspam documents only. “Spam and NonSpam” denotes otherwise, and equiv-
alence classes with that Length measure are included in both spam and nonspam
documents. In this plot, we can see that spam equivalence classes are distributed
on high length parts. We can say that an equivalence class has a high degree of
probability for being spam if the length of the representative of the equivalence
class is long.

Figure 3-(4) shows the ROC curve for the Length measure. The x-axis is the
negative ratio for each equivalence class, that is

negative ratio =
# of detected nonspam documents

# of detected documents
,

and y-axis is the positive ratio for each equivalence class, that is

positive ratio =
# of detected spam documents

# of detected documents
.

The graph is drawn by considering all possible Length measure values as a thresh-
old, and plotting the above values by classifying documents which contain the
equivalence class whose length is longer than the threshold value as spam, and
nonspam otherwise. As can be seen in Figure 3-(4), the length of the representa-
tive of an equivalence class seems to be an effective measure for spam detection.

Size: Next, we consider the size of an equivalence class as a measure for spam
detection:

measureSize(x) = |[x]≡|
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Fig. 3. Measure value distribution of equivalence classes for (1)Length, (2)Size and
(3)Maximin. The threshold line is obtained by our method described in Section 4.3.
(4)Length, (5)Size and (6)Maximin measure ROC curve for discriminating between
spam and nonspam documents.

Although there is a strong relationship between the length of the representative
of equivalence classes and the size of equivalence classes (see Figure 4), there
are equivalence classes whose representative is long, but whose size is not large.
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There also seems to exist a power law between the size of an equivalence class
and the number of equivalence classes with the size (see Figure 3-(2)). In this
plot, there are more spam specific points than that of the length measure when
the measurement is high.

Figure 3-(5) is the ROC curve for the Size measure. This curve shows that
the Size measure is also effective.

Maximin: The Maximin measure is defined as the difference between the length
of the representative and the length of the longest minimal element of the equiv-
alence class:

measureMaximin(x) = | ↔x | − Maximin(x)

This measure represents a lower bound on how much a representative string
can be shortened (by removing its prefix and/or suffix) and still be in the same
equivalence class.

Figure 3-(3) shows the relation between the measureMaximin(x) and the num-
ber of the equivalence classes with the measure.

Figure 3-(6) shows the ROC curve for this measure, showing that this measure
is also effective for spam detection. In addition, the area under the ROC curve
given the negative ratio is less than 0.3 is larger than those of other measures
(see Table 1). Hence, we expect that this measure has lower false-positive error.

4.3 Determining the Threshold Value

Our method takes an unlabeled document set as input. We simply use a threshold
to determine whether an equivalence class with some measure value is “alien”
or not. Documents are then judged as spam if it includes an “alien” substring
equivalence class. Below, we describe an unsupervised method for determining
the threshold value.

Looking at each of the measure plots, Figure 3-(1), (2), (3), we can see that
there are roughly two parts. One is the spam specific part on right area, and
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Table 1. The area under the ROC curve for each measure

negative ratio ≤ 0.3 ≤ 0.5 ≤ 1.0 (all)

Length 0.282 0.485 0.913

Size 0.243 0.469 0.915

Maximin 0.318 0.559 0.919

the rest is on the left area. We propose heuristics to find a point that separates
the spam part from the nonspam part, and regard the point as the threshold.
More precisely, we model each of the two parts using a linear model, and we look
for the point of separation where the two linear models best explains the data
points.

Let S = ((x1, y1), . . . , (xn, yn)) be a sequence of n points, where x1 ≤ x2 ≤
· · · ≤ xn. For 1 ≤ k < n, let Sk

1 be the sequence of the first k points in S, and let
Sk

2 be the remaining sequence in S. We choose the k∗-th point that minimizes
the sum of the least square errors in the left and the right sides of points. That
is, we choose

k∗ = argmin
1≤k<n

(LSE(Sk
1 ) + LSE(Sk

2 )),

where
LSE(S′) = min

a,b

∑
i=1,...,n′

(y′i − ax′i − b)2

for S′ = ((x′1, y′1), . . . , (x′n′ , y′n′)). It is well known that

LSE(S′) =
∑

i=1,...,n′

(y′i − âx′i − b̂)2,

where

â =
n′

∑n′

i=1 x′iy
′
i − ∑n′

i=1 xi

∑n′

i=1 y′i
n′

∑n′

i=1 x′i
2 − (

∑n′

i=1 x′i)2
,

and

b̂ =
n

∑n′

i=1 x′i
2 ∑n′

i=1 y′i − ∑n′

i=1 x′iy
′
i

∑n′

i=1 x′i
n′

∑n′

i=1 x′i
2 − (

∑n′

i=1 x′i)2
.

5 Computational Experiments

We detect spams in four forums of Yahoo Japan Finance 2, which are collected
in the same way as the data used for evaluating the measures in Section 4. If
spam is posted in these forums, the spam is manually deleted by the forum
administrator. We regard the deleted posts as spam.
2 http://quote.yahoo.co.jp

http://quote.yahoo.co.jp
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Table 2. The results of each measure for YahooJapanFinance forum data

forum # of spam # of nonspam measure Recall Precision F-score nonspam(%)

Length 0.45 0.57 0.50 2.67
4314 291 1424 Size 0.89 0.60 0.72 7.51

Maximin 0.80 0.80 0.80 6.18

Length 0.39 0.77 0.52 4.33
4974 331 1315 Size 0.63 0.69 0.66 11.56

Maximin 0.60 0.75 0.67 9.81

Length 0.40 0.72 0.52 3.47
6830 317 1613 Size 0.74 0.57 0.64 17.73

Maximin 0.69 0.69 0.69 13.95

Length 0.57 0.76 0.65 4.32
8473 264 1597 Size 0.72 0.63 0.67 8.14

Maximin 0.67 0.69 0.68 9.39

We selected and collected data from four forums: 43143, 49744, 68305, 84736.
We detect spams from these four data sets using the three measures proposed in
Section 4. The results are shown in Table 2, where the values Recall, Precision,
F-score in the table are defined as follows:

Recall =
# of detected spam documents

# of spam documents

Precision =
# of detected spam documents

# of detected documents

F -score =
2 ∗ Recall ∗ Precision

Recall + Precision

As shown in Table 2, the measure Maximin has the highest F-scores, which
vary from 68% to 80%, among three measures for all of the data sets. On the
other hand, as for recall values, the measure Size outperforms others, while its
F-scores remain close to those of Maximin. We also evaluate the three measures
when the inputs are nonspam documents only. The percentages of documents
judged as spams in this setting are summarized in the column “nonspam” of
Table 2. Note that the value nonspam should be 0% ideally. The measure Length
has the lowest nonspam values over all the data sets. In summary, none of the
three measures completely outperforms the others.

We examined the false positive strings (nonspams which our method judges
to be spams) and the false negative strings (spams which our method judges to
be nonspams). In the former case, most of the false positive strings were difficult
to distinguish from spams by their contents, even for human. In the latter case,
many false negative strings contained abusive language, which are not spams in
3 http://messages.yahoo.co.jp/?action=q&board=4314
4 http://messages.yahoo.co.jp/?action=q&board=4974
5 http://messages.yahoo.co.jp/?action=q&board=6830
6 http://messages.yahoo.co.jp/?action=q&board=8473

http://messages.yahoo.co.jp/?action=q&board=4314
http://messages.yahoo.co.jp/?action=q&board=4974
http://messages.yahoo.co.jp/?action=q&board=6830
http://messages.yahoo.co.jp/?action=q&board=8473
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general but are deleted by the forum administrator. So, in a practical point of
view, our method detects spams well.

6 Conclusions and Discussions

We proposed a new, unsupervised, language independent method for spam de-
tection based on the alienness of strings. We provided three alienness measures,
namely Length, Size and Maximin. We observed that spam documents seem to
give rise to equivalence classes with measurements larger than nonspam docu-
ments, and developed a method for finding a threshold value for discriminating
between spam and nonspam. To the best of our knowledge, our method is the
only method that is truly unsupervised, and requires no tuning of parameters.

Since our method depends on the redundant information contained in spam
documents, most existing benchmark datasets that remove this could not be
used. The data used in our experiments was the only data readily available to us
that consisted of manually annoated positive and negative examples taken from
an unprocessed, “natural” distribution of documents. It should also be noted
that Japanese is a very popular language on the Web, and according to [18], it
is the most frequently used language for blogs. We are currently collecting more
data in order to further evaluate and improve our method.
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Abstract. Abductive inference has long been associated with the logic
of scientific discovery and automated abduction is now being used in real
scientific tasks. But few methods can exploit the full potential of clausal
logic and abduce non-ground explanations with indefinite answers. This
paper shows how the consequence finding method of Skip Ordered Linear
(SOL) resolution can overcome the limitations of existing systems by
proposing a method that is sound and complete for finding minimal
abductive solutions under a variety of pruning mechanisms. Its utility is
shown with an example based on metabolic network modelling.

1 Introduction

The importance of abductive inference in scientific discovery was recognised
by C.S. Peirce over a century ago. He saw abduction as a form of reasoning,
from known effects to possible causes, which underlies the process of hypotheses
formation [6]. Recent advances in Artificial Intelligence have shown that (some
aspects of) abductive logic can be automated and exploited in real domains like
diagnosis [10, 4] and bioinformatics [21, 17]. The benefit of logic-based methods
is their ability to use prior background knowledge and return meaningful testable
hypotheses. For example, in [12], abduction was used to infer functional genomic
hypotheses that were experimentally tested by a ‘Robot Scientist’. The abductive
reasoning used in these tasks all follow a simple but very useful logical pattern:
given a theory T , a goal G, and a set of possible assumptions A, find a minimal
consistent subset of A which can be added to T in order to ensure that (some
instance of) G is satisfied.

In general, T , G and the elements of A are arbitrary first order formulae
and an abductive solution consists of two parts: a set of formulae Δ, called
an explanation, stating which assumptions in A should be added to T ; and a
set of substitutions Θ, called an answer, stating which instances of the free
variables in G are satisfied. By utilising standard normalisation techniques, it
suffices to consider the case when T is clausal theory, G is a conjunction of
literals, and A is a set of literals called abducibles. But, existing approaches for
abduction typically impose additional restrictions that rule out the possibility of
unrestricted abductive reasoning in full clausal logic. In particular, most insist
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that either the goal or abducibles should be ground, and most only allow Horn
clauses to appear in the theory.

The restrictions imposed by existing abductive systems reflect certain issues
arising in non-Horn logic. Many use input resolution methods, which are not
complete in general and cannot handle indefinite answers [20]. Moreover, non-
ground abducibles complicate the relationship between variables in the query and
explanation. Finally, the possibility of non-ground explanations and indefinite
answers makes it harder to compare alternative solutions and define appropriate
notions of minimality. A great deal of recent work in abduction has focussed on
the framework of logic programming [11], which uses Negation as Failure (NAF)
to avoid the need for non-Horn reasoning. But these approaches inherit a number
of more serious logical concerns regarding the semantics of NAF, the difficulty
of floundering, and the complexity of reasoning in a non-monotonic formalism
where standard pruning strategies are inapplicable.

This paper gives a sound and complete method for finding minimal abductive
answers in full clausal (classical) logic that overcomes the syntactic restrictions of
existing systems. By treating abduction as a form of conditional query answering,
we propose a semantics for abduction and minimality that correctly handles
indefinite answers and non-ground explanations. We present a proof procedure,
based on the clausal consequence finding approach of Skip Ordered Linear (SOL)
resolution [7], which includes a rule for ‘skipping’ or assuming literals during a
proof. To do this, we introduce a method for lifting a previous limitation on
the language bias for specifying skipped literals that would otherwise prevent us
from using arbitrary sets of abducibles. Previous results ensure our approach is
sound and complete under a combination of efficient pruning strategies [8, 9].

The paper is structured as follows. Section 2 gives the relevant notation and
background material on abduction, consequence finding and SOL. Section 3
formalises the semantics of minimal abduction in full clausal logic. Section 4
presents our abductive procedure. Section 5 compares our approach with related
work. The paper concludes with a summary and directions for future work.

2 Background

2.1 Notation and Terminology

This paper assumes a first-order language L (without equality) containing the
connectives ∧ , ∨ , ¬ , ← , → , ↔ , logical constants �, ⊥, and quantifiers ∀, ∃.
It also assumes standard first-order entailment |= and equivalence ≡ relations
whose semantics is purely classical (and not restricted to Herbrand models).
The term ‘iff’ abbreviates ‘if and only if’ and the term ‘wrt’ abbreviates ‘with
respect to’. A literal L is either an atom A or its negation ¬A. The complement
of L, denoted L, is defined as ¬A (resp. A) if L = A (resp. ¬A). A maximally
general literal is one, e.g., p(X, Y, Z), whose arguments are distinct variables. If
S is a set of literals then

∧
L∈S L (resp.

∨
L∈S L) denotes the conjunction (resp.

disjunction) of the literals in S and is defined as � (resp. ⊥) when S is empty.
A clause C is a disjunction of literals L1 ∨ . . . ∨ Lm that, for convenience, will
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often be identified with the set {Li|1 ≤ i ≤ m} of its disjuncts. As usual, any
free variables are implicitly universally quantified at the front of the clause. A
clause is Horn iff it has at most one positive literal and is full otherwise. A clause
is a tautology iff it contains a literal L and its complement L. The empty clause
is denoted �. A variable binding is an expression of the form X/t where X is a
variable and t is a term. In this case, we say that X is bound to t. A substitution is
a set of variable bindings for distinct variables. The application of a substitution
σ to an expression E is written Eσ and denotes the expression obtained from E
by (simultaneously) replacing each free variable X by the corresponding term t
for each binding X/t in σ. For any (set of) expressions E, let Inst(E) denote the
set of all instances of (members of) E. A clause D subsumes C, written D ≥ C,
iff D has no more literals than C and there is a substitution θ such that Dθ ⊆ C.
Moreover D properly subsumes C, written D > C, iff D ≥ C and C �≥ D. A
theory T is a conjunction of clauses C1 ∧ . . . ∧ Cn that, for convenience, will
often be identified with the set {Ci|1 ≤ i ≤ n} of its conjuncts. A theory is Horn
iff all of its clauses are Horn and is full otherwise. For any theory T , let μ(T )
denote the theory obtained from T by removing all clauses properly subsumed by
another clause in T , and let Th(T ) denote the set of all clauses logically entailed
by T . A goal G is a conjunction of literals. An underscore ‘ ’ is sometimes used
to denote an anonymous variable.

2.2 Abduction

Abduction is an established AI technique for hypothetical reasoning [11]. In
essence, abduction computes the conditions under which a goal G follows from a
given theory T . Implicitly, G is understood as an existentially quantified query
asking “is some instance of G satisfied in an extension of T ”? If so, then the
abductive computation should succeed, returning a set of assumptions Δ which
must be added to T and a substitution σ stating which instances of the free
variables in G are entailed. The assumptions in Δ are usually restricted to the
instances of a set A of literals, called abducibles. Intuitively, these are literals
whose truth is not specified in the intended domain: e.g., potential faults in a
diagnosis task and possible actions in a planning problem. Each explanation Δ
is implicitly understood as an existentially quantified conjunction that should be
consistent with T and should be minimal in the sense of not containing atoms
which could be removed to leave a smaller explanation Δ′. These notions are
typically formalised in the literature as shown in Definition 1 below.1

Definition 1 (Naive Abduction). Let T be a theory, G be a goal, and A be
a set of literals. A (naive) abductive solution (for G wrt T and A) consists of
a set of literals Δ ⊆ Inst(A) (called an explanation) and a substitution σ for
G (called an answer) such that (i) T ∧ Δ |= Gσ and (ii) T ∧ Δ �|= ⊥. The
explanation Δ is minimal iff there is no other explanation Δ′ such that Δ′ ⊂ Δ.
1 Analogous characterisations are obtained for logic program formalisms by replacing

classical entailment with some appropriate completion or preferred model semantics.
For convenience, we assume integrity constraints IC are included in the theory T .
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2.3 Consequence Finding

Consequence finding is a general reasoning technique for computing the logical
theorems entailed by a set of axioms [7]. Since the deductive closure of a logical
theory may be infinite, it is generally infeasible or undesirable to compute all
possible consequences. It is often more useful to consider a refinement of this
task where it is required to compute the clausal consequences of a given theory
that satisfy a given vocabulary and are minimal with respect to subsumption. If
the vocabulary is specified by a form of language bias called a production field,
the resulting consequences are known as characteristic clauses [7]. A production
field P is a pair 〈L, Cond〉, where L is a set of literals and Cond is a certain
condition to be satisfied. When Cond is not specified, P is just written as 〈L〉.
A clause C is said to belong to P = 〈L, Cond〉 iff (i) every literal in C is an
instance of a literal in L and (ii) C satisfies Cond. A production field P is stable
iff, for any two clauses C and D such that C ≥ D, the clause D belongs to P
only if C belongs to P . If LP denotes the set of clauses that belong to P , then
the characteristic clauses of a theory T with respect to P are the set of clauses
Carc(T, P ) = μ(Th(T ) ∩ LP ). The importance of these notions lies in the fact
that many reasoning tasks, such as abduction, induction, and theorem proving,
can be reduced to the computation of characteristic clauses [7].

2.4 SOL Resolution

Characteristic clauses can be computed a procedure called SOL resolution [7],
which can be seen as extending the Model Elimination [14] calculus with a rule
for ‘skipping’ literals. Intuitively, skipped literals represent assumptions that are
needed for a proof to succeed. As explained in [7], this feature is needed to
ensure the completeness of SOL for consequence finding. SOL deductions are
defined using the notion of a structured clause, which is a pair 〈A, B〉 consisting
of two clauses A and B, where the latter may contain so-called framed literals
of the form L denoting previously resolved upon literals. SOL deductions are
formalised in Definition 2, which is recalled from [8].

Definition 2 (SOL Deduction). Let T be a theory, S be a clause, and P be
a production field. An SOL deduction of S from T and P (of length n) is a
sequence of structured clauses D0, . . . , Dn satisfying rules 1-6 below.

1. D0 = 〈�, C〉 for some clause C ∈ T .
2. Dn = 〈S, �〉.
3. For each Di = 〈Ai, Bi〉 clause Ai ∪ Bi is not a tautology.
4. For each Di = 〈Ai, Bi〉 clause Bi is not subsumed by any Bj with the empty

substitution, where Dj = 〈Aj , Bj〉 is a previous structured clause with j < i.
5. For each Di = 〈Ai, Bi〉 clause Ai belongs to P .
6. Di+1 = 〈Ai+1, Bi+1〉 is obtained from Di = 〈Ai, Bi〉 as follows:

(a) let L be the left-most literal of Bi. Then Ai+1 and Ri+1 are obtained by
applying one of the rules:
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i. Skip: if Ai ∪ {L} belongs to P , then Ai+1 = Ai ∪ {L} and Ri+1 is
the clause obtained by removing L from Bi.

ii. Resolve: if there is a clause Ei from T ∪ {C} such that ¬K ∈ Ei

and L and K have a most general unifier θ, then Ai+1 = Aiθ and
Ri+1 is the clause obtained by concatenating Eiθ and Biθ, framing
Lθ, and removing ¬Kθ.

iii. Factoring: Ai or Bi contains an unframed literal K such that L and
K have a most general unifier θ, then Ai+1 = Aiθ and Ri+1 is
obtained from Biθ by deleting Lθ.

iv. Reduction: Bi contains a framed literal ¬K , and L and K have a
most general unifier θ, then Ai+1 = Aiθ and Ri+1 is obtained from
Biθ by deleting Lθ.

(b) Bi+1 is obtained from Ri+1 by deleting every framed literal not preceded
by an unframed literal in the remainder (truncation).

It has been shown Carc(T, P ) is equal to the set of subsume-minimal clauses
derivable by SOL from T and P [7]. Moreover, an efficient implementation of
SOL has been developed [16] that uses several pruning mechanisms [9] to further
constrain SOL deductions. These include mandatory rules native to SOL, such as
merge and regularity for skipped literals, as well as some generic theorem proving
methods, such as order preserving reduction, lemma matching, and local failure
caching. It has been shown that these pruning strategies do not compromise the
completeness of SOL if the production field P is stable [9].

3 Full Clausal Abduction

This section shows full clausal abduction can be efficiently realised by SOL
resolution. Section 3.1 presents a semantics for abduction that correctly handles
non-ground abducibles and disjunctive answers. It then shows how computing
minimal abductive solutions can be reduced to the computation of characteristic
clauses. Section 3.2 explains why unstable production fields arise in abductive
problems and how this leads to the incompleteness of SOL. It then shows how
to overcome this limitation by means of an efficient program transformation.

3.1 Semantics

The naive formulation of abduction in Definition 1 is only satisfactory when G
and Δ are ground. Even though the implicit existential quantification on G and
Δ correctly specifies if the goal should succeed, it does not adequately constrain
the returned solutions. First, just like the answers returned by standard Prolog
systems [13], every instance of the computed answer Gσ should be entailed by T
(and Δ). Otherwise it suffices to simply take σ=∅. Second, as in other non-Horn
extensions of Prolog [20], it is necessary to return a set of answer substitutions to
account for indefinite answers. For example, the goal q(X) should succeed from
the theory q(a) ∨ q(b) with answer {{X/a}, {X/b}}, indicating that X must be
bound to either a or b in any model of T .
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All of these issues are resolved in Definition 3 below, which gives a general
clausal formalisation of abduction.2 In effect, this formulation treats abduction
as a type of conditional query answering [3, 8] with the explanation Δ denoting
the assumptions under which the answer σ is valid. Intuitively, in order for
〈Δ, Θ〉 to solve G wrt T , condition (i) states that the conjunction of assumed
literals L in Δ must imply the disjunction of answers obtained by applying each
substitution σ in Θ to G. All variables are universally quantified at the front
of the implication. Analogously, the consistency condition (ii) can be viewed as
saying that Δ should not be an explanation for the contradictory goal G = ⊥.

Definition 3 (General Abduction). Let T be a theory, G be a goal, and A
be a set of (abducible) literals. An abductive solution (for G wrt T and A) is a
pair 〈Δ, Θ〉 consisting of a set of literals Δ ⊆ Inst(A) (called an explanation)
and a set of substitutions Θ for G (called an answer) such that

(i) T |= ∀ (∧
L∈Δ L → ∨

σ∈Θ Gσ
)

and (ii) T �|= ∀ (∧
L∈Δ L → ⊥)

Example 1. Let T , G and A be as defined below. Theory T says there is a
metabolic pathway from X to Z if there is a reaction from X to Y and a path-
way from Y to Z; or if there is a reaction from X to Z. It also says there is a
reaction from a to either b or c; and a reaction from either b or c to d; but no
reaction from c to b. Goal G asks “from which metabolites U is there a pathway
to d”? Abducibles A allow all instances of the predicate reaction to be assumed.

T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

¬reaction(X, Y ) ∨ ¬pathway(Y, Z) ∨ pathway(X, Z)
¬reaction(Y, Z) ∨ pathway(Y, Z)
reaction(a, b) ∨ reaction(a, c)
reaction(b, d) ∨ reaction(c, d)
¬reaction(c, b)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

G =
{

pathway(U, d)
}

A =
{

reaction(V, W )
}

From the 4th clause in T , there is a pathway from b or c to d: i.e., 〈Δ=∅, Θ=
{{U/b}, {U/c}}〉 is a solution. Moreover, there is a pathway from b to d if we
assume a reaction from b to c: i.e., 〈Δ={reaction(b, c)}, Θ={{U/b}}〉 is also a
solution. But, 〈Δ = {reaction(c, b)}, Θ = {{U/c}}〉 is not valid as it contradicts
the 5th clause in T . However, there is a pathway from a to d given reactions from
both b and c to d: i.e., 〈Δ = {reaction(b, c), reaction(b, d)}, Θ = {{U/a}}〉 is a
solution. Similarly, we have 〈Δ = {reaction(a, b), reaction(a, c)}, Θ = {{U/a}}〉.
In general, there is a pathway from any X to d if there is a reaction from X
to d: i.e., we have 〈Δ = {reaction(X, d)}, Θ = {{U/X}}〉. Additionally, there is
a pathway X or b to d if there is a reaction from X to c: i.e., we have 〈Δ =
{reaction(X, c)}, Θ = {{U/X}, {U/b}}〉. In this case, Definition 3 is satisfied
since (i) T |= ∀X

(
reaction(X, c) → pathway(X, d) ∨ pathway(b, d)

)
, and (ii)

T �|= ∀X
(
reaction(X, c) → ⊥ )

as it is consistent to let X =a, for example.

2 We assume that all instances of the abducible literals in A can be added to Δ and
we assume Θ only binds variables in G. If G is ground, we can always set Θ = {∅}.
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While the view of abduction presented above imposes the correct semantics
on Δ and Θ, this pathway example shows that, in general, a large number of
solutions are possible. It is therefore desirable to introduce a minimality criterion
for eliminating redundant hypotheses. A simple subsumption test, formalised in
Definition 5, can be used based on the notion of a solution clause, given in
Definition 4.3 This clause contains the complement of each abducible in Δ and
an answer literal [5], with predicate φ, for each substitution in Θ. An abductive
solution 〈Δ, Θ〉 can then be defined as minimal iff its solution clause is not
strictly subsumed by the solution clause of another solution 〈Δ′, Θ′〉.
Definition 4 (Solution Clause). Given a theory T , goal G, and abducibles A,
let Δ ⊆ Inst(A) be a set of literals, and let Θ be a set of substitutions for G. Let
X1, . . . , Xn be the variables in G, and let φ be a predicate not appearing in G, T
or A. A solution clause for 〈Δ, Θ〉, denoted Soln(Δ, Θ), is a clause of the form:

Soln(Δ, Θ) =
∨

L∈Δ L ∨ ∨
σ∈Θ φ(X1, . . . , Xn)σ.

Definition 5 (Minimal Solution). Let T be a theory, G be goal, and A be a
set of literals. A minimal solution for G wrt T and A is an abductive solution
〈Δ, Θ〉 (for G wrt T and A) for which there is no other abductive answer 〈Δ′, Θ′〉
(for G wrt T and A) such that Soln(Δ′, Θ′) > Soln(Δ, Θ).

Example 2. All of the solutions mentioned in Example 1 are minimal except
〈Δ = {reaction(a, b), reaction(a, c)}, Θ = {{U/a}}〉 — as its solution clause
Soln(Δ, Θ) = ¬reaction(a, b) ∨ ¬reaction(a, c) ∨ φ(a) is subsumed by the solu-
tion clause Soln(Δ′, Θ′) = ¬reaction(X, b) ∨ ¬reaction(X, c) ∨ φ(X) of the min-
imal solution 〈Δ′ = {reaction(X1, b), reaction(X1, c)}, Θ′ = {{U/X1}}〉. There
are infinitely many other minimal solutions of the form 〈Δn ={reaction(X1, X2),
. . . , reaction(Xn−1, Xn), reaction(Xn, b), reaction(Xn, c)}, Θn ={{U/X1}}〉.
Proposition 1 shows that the solution clause Soln(Δ, Θ) of any abductive so-
lution 〈Δ, Θ〉 can be deduced from the theory T augmented with a so-called
answer clause. As formalised in Definition 6, the answer clause Ansr(G) of a
goal G is composed of the complement of each literal in G and an answer literal,
with predicate φ and arguments corresponding to the variables in G. Thus, in
Example 1, Ansr(G) is the clause ¬pathway(U, d) ∨ φ(U).

Definition 6 (Answer Clause). Let G be a goal with the variables X1, . . . , Xn.
An answer clause for G, denoted Ansr(G), is a clause of the form:

Ansr(G) =
∨

L∈G L ∨ φ(X1, . . . , Xn).

Proposition 1. Let T be a theory, G be a goal, and A be a set of literals. Let
Δ ⊆ Inst(A) be a set of literals, and Θ be a set of substitutions for G. Then
〈Δ, Θ〉 is an abductive solution for G wrt T and A iff

(i) T ∧ Ansr(G) |= Soln(Δ, Θ) and (ii) T ∧ Ansr(G) �|= Soln(Δ, ∅)
3 We assume the variables X1, . . . , Xn are always written in some standard order and

we assume that the predicate φ does not appear in T , G or A.
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3.2 Proof Procedure

Proposition 1 shows that the computation of abductive solutions can be reduced
to a consequence finding problem by adding an answer clause to the theory
and searching for any solution clauses that are entailed (i). This can be done
using a production field containing the answer literal and the complement of
every abducible. In this case, subsume minimal consequences, i.e., characteristic
clauses, correspond to minimal solutions and thus can be computed by SOL
resolution. Moreover, Proposition 1 also shows that inconsistent explanations
can be avoided by simply rejecting solution clauses with no answer literals (ii).

Example 3. Let T , G and A be as defined in Example 1 and apply the method
suggested above. First form the answer clause Ansr(G)=¬pathway(U, d) ∨ φ(U)
and the production field P = 〈{¬reaction( , ), φ( )}〉. Then search for all SOL
deductions from T ∧ Ansr(G) and P . One such deduction is shown below. For
clarity, each step is annotated with its index and predicates are abbreviated.
The deduction starts with Ansr(G). Referring to Definition 2, clauses 2,3,4,5
& 10 are obtained by resolution; 7,9 & 12 are obtained by truncation; 8 is
obtained by reduction; while 6 & 13 are obtained by skipping. The derived clause
¬r(c, d) ∨ ¬r(b, d) ∨ φ(a) gives the abductive solution Δ = {r(c, d), r(b, d)} and
Θ = {{U/a}}. Similar deductions yield the other minimal solutions. Note that
the inconsistent explanation Δ = {reaction(c, b)} is easily recognised by the lack
of answer literals in its solution clause.

1〈 � , ¬p(U, d) ∨ φ(U) 〉
2〈 � , ¬r(U, Y ) ∨ ¬p(Y, d) ∨ ¬p(U, d) ∨ φ(U) 〉
3〈 � , r(a, c) ∨ ¬r(a, b) ∨ ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉
4〈 � , ¬p(c, Z) ∨ p(a, Z) ∨ r(a, c) ∨ ¬r(a, b) ∨ ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉
5〈 �, ¬r(c, Z) ∨ ¬p(c, Z) ∨ p(a, Z) ∨ r(a, c) ∨ ¬r(a, b) ∨ ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉
6〈 ¬r(c, Z) , ¬p(c, Z) ∨ p(a,Z) ∨ r(a, c) ∨ ¬r(a, b) ∨ ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉
7〈 ¬r(c, Z) , p(a,Z) ∨ r(a, c) ∨ ¬r(a, b) ∨ ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉
8〈 ¬r(c, d) , r(a, c) ∨ ¬r(a, b) ∨ ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉
9〈 ¬r(c, d) , ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉
10〈 ¬r(c, d) , ¬r(b, d) ∨ ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉
11〈 ¬r(c, d) ∨ ¬r(b, d) , ¬p(b, d) ∨ ¬p(a, d) ∨ φ(a) 〉
12〈 ¬r(c, d) ∨ ¬r(b, d) , φ(a) 〉
13〈 ¬r(c, d) ∨ ¬r(b, d) ∨ φ(a) , � 〉
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Example 3 shows SOL can be used for abductive query answering. But, a
potential flaw is that the completeness of SOL is only true for stable production
fields. This holds only if all abducibles are maximally general literals, which, in
practice, will not be the case. For instance, suppose that we only wish to assume
the existence of reactions that produce d. The most efficient way to do this is
by using the abducibles A′ =

{
reaction(V, d)

}
. But the new production field

P ′ = 〈{¬reaction( , d), φ( )}〉 is not stable as ¬reaction(X, Y ) does not belong
to P ′ even though it subsumes a clause ¬reaction(X, d) that does.

However, using an unstable production field results in a loss of completeness.
In particular the explanation Δ = {reaction(c, d), reaction(b, d)} is no longer
computed even though it falls within the given language bias. Under this new
production field P ′, the SOL deduction shown in Example 3 is invalid, as it
becomes impossible to apply the skip operation after step 5. While it is possible,
in this particular case, to construct a deduction by postponing the skip until
after the reduction binding Z to d between steps 7 and 8, such re-orderings are
not considered as they would dramatically increase the search space.

Fortunately, completeness is restored by the procedure in Definition 9 which
uses a transformation formalised in Definition 7. For each literal L in A, a
bridge clause is added to T which contains L and the negation of an atom
pL(X1, . . . , Xn), which becomes a new abducible in place of L. The predicate pL

is a new predicate symbol which, just like an answer literal, represents any bind-
ings to the variables Xi in L.4 This transformation ensures all abducibles are
maximally general and that abductive solutions to the transformed and original
problems are isomorphic by simply propagating the bindings from pL back to L.

Definition 7 (Bridge Theory). Let A be a set of literals. A bridge theory for
A, denoted Brdg(A) is a theory of the form

Brdg(A) =
∧

L∈A ¬pL(X1, . . . , Xn) ∨ L

where X1, . . . , Xn are the variables in L, and where pL is a new predicate symbol.

Definition 8 (SOL Procedure). Let T be a theory, P be a production field,
and k be a positive integer. SOL(T, P, k) denotes the set of clauses S for which
there exists an SOL deduction (from T and P ) of length n ≤ k.

Definition 9 (Abduce Procedure). Given a theory T , goal G, literals A, and
integer k, let Abduce(T, G, A, k) denote the set S computed as follows:

1. Let B be the theory T ∪ Ansr(G) ∪ Brdg(A)
2. Let N be the answer literal φ(X1, . . . , Xn) appearing in Ansr(G)
3. Let M be the set of bridge literals ¬pL(X1, . . . , Xm) appearing in Brdg(A)
4. Let P be the production field 〈{N} ∪ M〉
5. Let Q be the set of clauses obtained from SOL(B, P, k) by replacing each

bridge literal of the form pL(t1, . . . , tm) with the literal L{X1/t1, . . . , Xm/tm}
6. Let S be the set of solutions 〈Δ, Θ〉 such that Ansr(Δ, Θ) ∈ μQ and Θ �= ∅
4 A new (predicate) proposition pL is used for each (non-) ground abducible L.
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The soundness and completeness result in Proposition 2 follows immediately
from analogous results on the soundness and completeness of SOL for minimal
conditional answers under stable production fields [8]. Note that minimality is
ensured by applying the μ operator in step 6 after the computed bindings are
transferred back to the original abducibles in step 5. Note also how consistency
is ensured by removing in step 6 any explanations with an empty answer. Finally
note that the transformation needed to ensure a stable production field is very
efficient, resulting in the addition of only one theory clause for each abducible
and incurring just one additional resolution step per abduced literal.

Proposition 2. Let T be a theory, G be a goal, and A be a set of literals. 〈Δ, Θ〉
is a minimal solution of G wrt T and A iff there exists an integer k such that
〈Δ, Θ〉 ∈ Abduce(T, G, A, n) for all n ≥ k.

This formulation reflects the fact that, in practice, some bound k must be im-
posed on the depth of SOL derivations. A minimal solution is a solution that
is computed at some depth k and not later subsumed by another solution of
higher depth. While the existence of k is guaranteed, it follows from previous
work [8] that its value may be undecidable. This is due to the undecidability
of (consistency and) minimality checking. In practice, the procedure can only
return those solutions that are minimal with respect to the depth bound k. But
this is true of any abductive procedure and is often good enough in practice.

Returning to the previous example, the abducibles A′ =
{

reaction(V, d)
}

result in the bridge theory {¬pr(V ) ∨ reaction(V, d)} and production field
〈{¬pr( ), φ( )}〉. The literal ¬reaction(c, Z), selected at step 5 of the earlier
derivation now resolves with the bridge clause to leave the goal ¬pr(Z) which
can be skipped. The SOL derivation, which proceeds just as before, results in
the clause ¬pr(c) ∨ ¬pr(b) ∨ φ(a), which is subsequently replaced by the clause
¬reaction(c, d) ∨ ¬reaction(b, d) ∨ φ(a). Thus, our transformation overcomes
the restriction of SOL to stable production fields and ensures the completeness
of our abductive procedure for computing minimal solutions.

4 Related Work

Several other procedures have been proposed for abductive reasoning. Poole [18]
describes a method for compiling full clausal abductive problems into Prolog.
This approach handles indefinite answers, but only returns ground explanations.
Kakas et al. [11] review several procedures for abductive logic programs. Some
of these include constraint solvers, which allow the computation of non-ground
explanations, but none of them compute indefinite answers. Mayer and Pirri [15]
propose a general first-order abductive proof procedure, based on the tableaux
and sequent calculi, which uses dynamic Skolemisation and anti-Skolemisation
to avoid a conversion to clausal form. Their approach is complete for finding
entailment-minimal explanations, but does not return answer substitutions and
does not exploit the many resolution pruning strategies used by SOL.
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Abductive reasoning is closely related to conditional query answering, which
could, in principle, be used to implement abduction [2]. Baumgartner et al. [1]
give a calculus for conditional answer computation, but this is incomplete for
finding minimal solutions [8]. Demolombe [3] gives a calculus for computing
minimal conditional answers, but this does not support function symbols or
indefinite answers. Iwanuma and Inoue [8] show SOL resolution is complete
for minimal answer computation, but only under the assumption of a stable
production field and without addressing the issue of consistency.

In effect, the approach introduced in this paper overcomes the restriction of
SOL resolution to stable production fields and can potentially be built directly
into SOL so that other applications can benefit from this generalisation. We have
also developed a slightly extended transformation that allows abducibles to be
annotated with goals in order to impose typing and validity constraints on the
terms in abduced literals, e.g., A = {reaction(U, V ) : node(U), node(V )}. These
goal literals are simply added to the bridge clause along with the abducible and
thereby afford a finer degree of control over the abductive bias.

5 Conclusions

This paper presented a proof procedure and semantics for full clausal abduction
that caters for indefinite answers and non-ground abducibles. Viewing abduction
as a form of conditional query answering, it showed how the consequence finding
approach of SOL resolution can be used to overcome the syntactic restrictions
imposed by other systems. In so doing, it revealed the significance of a stability
restriction underlying all previous work on SOL, and gave an efficient program
transformation to overcome this assumption. The approach was illustrated on
a small example motivated by metabolic pathway analysis which also showed
the potential utility of logical abduction in Discovery Science. In this example,
non-Horn clauses were used to represent incomplete knowledge and non-ground
solutions were used to suggest possible refinements of the initial knowledge by
inferring the presence of missing nodes and arcs. While our approach is not yet
mature enough to tackle real scientific discovery tasks, we intend to validate our
methodology more fully on a more realistic model of biochemical networks. We
are also developing an extension of our method to allow the induction of general
laws from examples and a background theory. This extended approach, called
Hybrid Abductive Inductive Learning [19], uses abductive explanations returned
by (a simplified version of) our procedure to seed the formation of a ground unit
theory that is subsequently generalised by an inductive search procedure. In this
way we eventually hope to utilise our abductive method in the process scientific
knowledge discovery.
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Abstract. The massive, ever-growing literature in life science makes
it increasingly difficult for individuals to grasp all the information rel-
evant to their interests. Since even experts’ knowledge is likely to be
incomplete, important findings or associations among key concepts may
remain unnoticed in the flood of information. This paper brings and
extends a formal model from information retrieval in order to discover
those implicit, hidden knowledge. Focusing on the biomedical domain,
specifically, gene-disease associations, this paper demonstrates that our
proposed model can identify not-yet-reported genetic associations and
that the model can be enhanced by existing domain ontology.

Keywords: Hypothesis discovery, Text data mining, Inference network,
Implicit association, Gene Ontology.

1 Introduction

With the advance of computer technologies, the amount of scientific knowledge
is rapidly growing beyond the pace we could digest. For example, Medline1—
the most comprehensive bibliographic database in life science—currently indexes
over 17 million articles and the number keeps increasing by 1,500–3,000 per day.
Given the substantial volume of the publications, it is virtually impossible to
deal with the information without the aid of intelligent information processing
techniques, such as information retrieval (IR), information extraction (IE), and
text data mining (TDM).

In contrast to IR and IE, which find information explicitly stated in docu-
ments, TDM aims to discover heretofore unknown knowledge through an au-
tomatic analysis on textual data [1]. A pioneering work in TDM, also known
as literature-based discovery, was conducted by Swanson in the 1980’s. He ar-
gued that there were two premises logically connected but the connection had
been unnoticed due to overwhelming publications and/or over-specialization. To
demonstrate the validity of the basic idea, he manually analyzed numbers of
articles and identified logical connections implying a hypothesis that fish oil was
effective for clinical treatment of Raynaud’s disease [2]. The hypothesis was later
supported by experimental evidence.
1 http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed
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This study is motivated by Swanson’s work and attempts to advance the re-
search in literature-based discovery. Specifically, we target implicit associations
between genes and hereditary diseases as a test bed. Gene-disease associations
are the links between genetic variants and diseases to which the genetic variants
influence the susceptibility. For example, BRCA1 is a human gene encoding a
protein that suppresses tumor formation. A mutation of this gene increases a
risk of breast cancer. Identification of these genetic associations has tremendous
importance for prevention, prediction, and treatment of diseases. To this end,
we develop a discovery framework by extending the models and techniques de-
veloped for IR. Furthermore, we propose the use of domain ontologies for more
robust predictions. To demonstrate the effectiveness of the proposed framework,
we conduct various evaluative experiments on realistic benchmark data.

2 Related Work

Over two decades, Swanson has argued the potential use of a literature to dis-
cover new knowledge that has implicitly existed for years but has not been
noticed by anybody. His discovery framework is based on a syllogism; i.e., two
premises, “A causes B” and “B causes C,” suggest a potential association, “A
causes C,” where A and C do not have a known, explicit relation. Such an as-
sociation can be seen as a hypothesis testable for verification to produce new
knowledge, such as the above-mentioned association between Raynaud’s disease
and fish oil. For this particular example, Swanson manually inspected two sets
of articles concerning Raynaud’s disease and fish oil and identified premises that
“Raynaud’s disease is characterized by high platelet affregability, high blood
viscosity, and vasoconstriction” and that “dietary fish oil reduces blood lipids,
platelet affregability, blood viscosity, and vascular reactivity,” which together
suggest a potential benefit of fish oil for Raynaud’s patients.

Based on the groundwork, Swanson himself and other researchers developed
computer programs to aid hypothesis discovery. The following briefly introduces
some of the representative studies.

Weeber et al. [3] implemented a system, called DAD-system, taking advan-
tage of a natural language processing tool. The key feature of their system is
that the Unified Medical Language System (UMLS) Metathesaurus2 was in-
corporated for knowledge representation and pruning. While the previous work
focused on words or phrases appearing in Medline records for reasoning, DAD-
system maps them to a set of concepts defined in the UMLS Metathesaurus using
MetaMap [4]. An advantage of using MetaMap is that it can automatically col-
lapse different wordforms (e.g., inflections) and synonyms to a single concept.
In addition, using semantic types (e.g., “Body location or region”) under which
each Metathesaurus concept is categorized, irrelevant concepts can be excluded
from further exploration if particular semantic types of interest are given. This

2 UMLS is an NLM’s project to develop and distribute multi-purpose, electronic
knowledge sources and its associated lexical programs.
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filtering step can drastically reduce the number of potential associations, en-
abling more focused knowledge discovery.

Srinivasan [5] developed another system, called Manjal, for literature-based
discovery. A key difference of Manjal from the previous work is that it solely
relies on MeSH terms assigned to Medline records, disregarding all textual infor-
mation, so as to study the utility of MeSH terms for hypothesis discovery. Manjal
conducts a Medline search for a given concept and extracts MeSH terms from the
retrieved articles. Then, according to a predefined mapping, the MeSH terms are
grouped into their corresponding UMLS semantic types. Similar to DAD-system,
the subsequent processes can be applied only to the concepts under particular
semantic types of interest, so as to narrow down the potential associations. Man-
jal uses the semantic types also for grouping resultant concepts to help its user
browse system output. With Manjal, Srinivasan demonstrated that most of the
hypotheses Swanson had proposed were successfully replicated.

Despite the prolonged efforts partly mentioned above, however, the research
in literature-based discovery can be seen to be at an early stage of development
in terms of the models, approaches, and evaluation methodologies. Most of the
previous work was largely heuristic without a formal model and their evalua-
tion was limited only on a small number of Swanson’s hypotheses. In contrast,
this study adapts a formal IR model to literature-based discovery and conducts
quantitative experiments based on real-world data.

3 Our Proposed Approach

Focusing on gene-disease associations, we extend a formal IR model, specifically,
the inference network [6] for this related but different problem targeting unknown
associations. This section details the proposed model and how to estimate the
probabilities involved in the model.

In this study, we assume a disease name and known causative genes, if any, as
system input. In addition, a target region in the human genome may be specified
to limit search space. Given such input, we attempt to predict an unknown
causative gene and produce a ranked list of candidate genes.

3.1 An Inference Network for Gene-Disease Associations

In the original IR model, a user query and documents are represented as nodes in
a network and are connected via intermediate nodes representing keywords that
compose the query and documents. To adapt the model to represent gene-disease
associations, we treat disease as query and genes as documents and use two types
of intermediate nodes: gene functions and phenotypes which characterize genes
and disease, respectively (Fig. 1). An advantage of using this particular IR model
is that it is essentially capable of incorporating multiple layers of intermediate
nodes. Other popular IR models, such as the vector space models, are not easily
applicable as documents and queries are represented by a single layer of the same
vocabularies.
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(MeSH C terms)

Gene functions
(GO terms)
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Fig. 1. Inference network for representing gene-disease associations

The network consists of four types of nodes: genes (g), gene functions (f) rep-
resented by Gene Ontology (GO) terms,3 phenotypes (p) represented by MeSH
C terms,4 and disease (d). Each gene node g represents a gene and corresponds
to the event that the gene is found in the search for the causative genes underly-
ing d. Each gene function node f represents a function of gene products. There
are directed arcs from genes to functions, representing that instantiating a gene
increases the belief in its functions. Likewise, each phenotype node p represents
a phenotype of d and corresponds to the event that the phenotype is observed.
The belief in p is dependent on the belief in f ’s since phenotypes are (partly) de-
termined by gene functions. Finally, observing certain phenotypes increases the
belief in d. As described in the followings, the associations between genes and
gene functions (g → f) are obtained from an existing database, Entrez Gene,5

whereas both the associations between gene functions and phenotypes (f → p)
and the associations between phenotypes and disease (p → d) are derived from
the biomedical literature.

Given the inference network model, disease-causing genes can be predicted
based on the probability defined below.

P (d|G) =
∑

i

∑
j

P (d|pi) × P (pi|fj) × P (fj |G) (1)

Eq. (1) quantifies how much a given set of genes, G ⊆ {g1, g2, · · · , gl}, increases
the belief in the development of disease d. In the equation, pi (or fj) is defined
as a vector of random variables with i-th (or j-th) element being positive (1)
and all others negative (0). By applying Bayes’ theorem and some independence
assumptions discussed later, we derive

P (d|G) ∝
∑

i

∑
j

(
P (pi|d)
P (p̄i|d)

× P (fj |pi)P (f̄j |p̄i)
P (f̄j |pi)P (fj |p̄i)

×F (pi)×F (fj)×P (fj|G)
)

(2)

3 http://www.geneontology.org
4 http://www.nlm.nih.gov/mesh
5 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=gene
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where

F (pi) =
m∏

h=1

P (f̄h|pi)
P (f̄h|p̄i)

, F (fj) =
n∏

k=1

P (f̄j)P (fj |p̄k)
P (fj)P (f̄j |p̄k)

(3)

The first factor of the right-hand side of Eq. (2) represents the interaction be-
tween disease d and phenotype pi, and the second factor represents the interac-
tion between pi and gene function fj, which is equivalent to the odds ratio of
P (fj |pi) and P (fj |p̄i). The third and fourth factors are functions of pi and fj ,
respectively, representing their main effects. The last factor takes either 0 or 1,
indicating whether fj is a function of any gene in G under consideration.

The inference network described above assumes independence among pheno-
types, among gene functions, and among genes. We assert that, however, the
effects of such associations are minimal in the proposed model. Although there
may be strong associations among phenotypes (e.g., phenotype px is often ob-
served with phenotype py), the model does not intend to capture those asso-
ciations. That is, phenotypes are attributes of the disease in question and we
only need to know those that are frequently observed with disease d so as to
characterize d. The same applies to gene functions; they are only attributes of
the genes to be examined and are simply used as features to represent the genes
under consideration.

3.2 Probability Estimation

Conditional Probability P (p|d). This probability can be seen as a degree of
belief that phenotype p is observed when disease d has developed. To estimate
the probability, we take advantage of the literature data. Briefly, given a disease
name d, a Medline search is conducted to retrieve articles relevant to d and,
within the retrieved articles, we identify phenotypes (MeSH C terms) strongly
associated with the disease based on chi-square statistics. Given disease d and
phenotype p, the chi-square statistic is computed as

χ2(d, p) = N(n11·n22−n21·n12)
2

(n11+n21) (n12+n22) (n11+n12) (n21+n22)
(4)

where N is the total number of articles in Medline, n11 is the number of articles
assigned p and included in the retrieved set (denoted as R), n22 is the number of
articles not assigned p and not included in R, n21 is the number of articles not
assigned p and included in R, and n12 is the number of articles assigned p and
not in R. The resulting chi-square statistics are normalized by the maximum to
treat them as probabilities P (p|d).

Incidentally, for the reason described later, the Medline search is limited to
the articles published up to 6/30/2003.

Conditional Probability P (f |p). This probability indicates the degree of
belief that gene function f underlies phenotype p. For probability estimation,
we adopt the framework similar to the one proposed by Perez-Iratxeta et al. [7].
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Unlike them, however, this study focuses on the use of textual data and domain
ontologies and investigate their effects for literature-based discovery.

We estimate these probabilities by exploiting the Medline records that were
used as the source of the Genetic Association Database (GAD) [8] entries. GAD
is a manually-curated archive of human genetic studies, containing pairs of gene
and disease that are known to have causative relations. Since each of those
Medline records reports experimental evidence indicating causative genetic as-
sociations, it is likely to contain descriptions regarding causative associations
between phenotypes and gene functions. We can obtain a set of phenotypes
(MeSH C terms) associated with a given disease by the same procedure for es-
timating P (p|d) and can obtain a set of gene functions associated with the gene
paired with the disease by consulting the Entrez Gene database. Given the sets
of phenotypes and gene functions, our task is to identify which phenotypes and
which gene functions have true causative associations and to what degree.

We estimate these associations using three different schemes, i.e., SchemeK,
SchemeT, and SchemeK+T. SchemeK simply assumes a link between every pair
of the phenotypes and gene functions with equal strength, whereas SchemeT
seeks for evidence in the textual portion of the Medline record to better estimate
the strength of associations. Lastly, SchemeK+T combines the two schemes by
linearly interpolating association scores, S(f, p), described shortly.

SchemeT essentially searches for co-occurrences of gene functions (GO terms)
and phenotypes (MeSH terms) in a sliding window, assuming that associated
concepts tend to co-occur more often in proximity than unassociated ones. How-
ever, a problem is that gene functions and phenotypes are descriptive by nature
and may not be expressed in concise GO or MeSH term. To deal with it, we
apply the idea of query expansion, a technique used in IR to enrich a query
by adding related terms. If GO and MeSH terms are expanded, there is more
chance that they could co-occur in text. For this purpose, we use the definitions
(or scope notes) of GO and MeSH terms and identify representative terms by in-
verse document frequencies (IDF), which have been used in IR to quantify term
specificity in a document collection. We treat term definitions as documents and
define IDF for term t as log(N/Freq(t)), where N denotes the total number of
MeSH C (or GO) terms and Freq(·) denotes the number of MeSH C (or GO)
terms whose definitions contain term t. Only the terms with high IDF are used
as proxy terms to represent the original concept, i.e., gene function or phenotype.

Each co-occurrence of the two sets of proxy terms (one representing a gene
function and the other representing a phenotype) can be seen as evidence that
supports the association between the gene function and phenotype, increasing
the strength of their association. We define the increased strength by the product
of the term weights, w, for the two co-occurring proxy terms. Then, the strength
of the association between gene function f and phenotype p within article a,
denoted as S(f, p, a), can be defined as the sum of the increases for all co-
occurrences of the proxy terms in a. That is,

S(f, p, a) =
∑

(tf ,tp,a)

w(tf ) · w(tp)
|Proxy(f)| · |Proxy(p)| (5)
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where tf and tp denote any terms in the proxy term sets for f and p, respectively,
and (tf , tp, a) denotes a set of all co-occurrences of tf and tp within a. The
product of the term weights is normalized by the proxy size, |Proxy(·)|, to
eliminate the effect of different proxy size. (Note that a larger proxy size generally
produces a greater numerator.) As term weight w, we used the TF·IDF weighting
scheme. For term tp for instance, we define TF(tp) as 1 + log Freq(tp, Def(p)),
where Def(p) denote p’s definition and Freq(tp, Def(p)) denotes the number of
occurrences of tp in Def(p).

The association scores, S(f, p, a), are computed for each GAD entry by either
SchemeK or SchemeT and are accumulated over all entries to estimate the
associations between f ’s and p’s, denoted as S(f, p). Based on the associations,
we define probability P (f |p) as S(f, p)/

∑
p S(f, p).

A possible shortcoming of the approach described above is that the obtained
associations S(f, p) are symmetric despite the fact that the network in Fig. 1
is directional. However, since it is well-known that an organism’s genotype (in
part) determines its phenotype, we assume the estimated associations between
gene functions and phenotypes to be directed from the former to the latter.

Enhancing P (f |p) by Domain Ontology. The proposed framework may not
be able to establish true associations between gene functions and phenotypes for
various reasons, e.g., the amount of training data may be insufficient. Those true
associations may be uncovered using the structure of MeSH and/or GO. MeSH
and GO have a hierarchical structure6 and those located nearby in the hierarchy
are semantically close to each other. Taking advantage of these properties, we
enhance the estimated probabilities P (f |p) as follows.

Let A denote the matrix whose element aij is probability estimate P (fj |pi)
and A′ denote the enhanced or updated matrix. Then, A′ is formalized as A′ =
WpAWf , where Wp denotes an n × n matrix with element wp(i, j) indicating a
proportion of a probability to be transmitted from phenotypes pj to pi. Similarly,
Wf is an m × m matrix with wf (i, j) indicating a proportion transmitted from
gene functions fi to fj . This study experimentally uses only direct child-to-parent
and parent-to-child relations and defines the weight function wp(i, j) as

wp(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if i = j
1

# of children of pj
if pi is a child of pj

1
# of parents of pj

if pi is a parent of pj

0 otherwise

(6)

Eq. (6) means that the amount of probability is equally split among its children
(or parents). Similarly, wf (i, j) is defined by replacing i and j in the right-hand
side of Eq. (6). Note that this enhancement can be iteratively applied to take
advantage of more distant relationships than children/parents.

6 To be precise, GO’s structure is directed acyclic graph, allowing multiple parents.
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Table 1. Number of gene-disease associations in the benchmark data

Cancer
Cardio-
vascular

Immune Metabolic Psych Unknown Total

Training 258 305 376 313 172 864 2,288
Test 45 36 61 23 12 80 257

Total 303 341 437 336 184 944 2,545

4 Empirical Evaluation

4.1 Benchmark Data

To evaluate the validity of the proposed approach, we implemented a prototype
system and conducted various experiments on the benchmark data sets created
from GAD. The following details the creation of the benchmark data.

1. Associate a gene-disease pair from each GAD entry with the publication date
of the article from which the entry was created. The date can be seen as the
time when the causative relation became public knowledge.

2. Group gene-disease pairs based on disease names. (As GAD deals with com-
plex diseases, a single disease may be paired with multiple genes.)

3. For each pair of a disease and its causative genes,
(a) Identify the gene whose relation to the disease was most recently reported
based on the publication date. If the date is on or after 7/1/2003, the gene
will be used as the target (i.e., new knowledge), and the disease and the rest
of the causative genes will be used as system input (i.e., old knowledge). In
other words, the target-input pair will be an instance composing test data.
If the date is before 7/1/2003, the pair of the disease and the gene is added
to training data.
(b) Remove the most recently reported gene from the set of causative genes
and return to step (3a).

The separation by publication dates ensures that a training phase does not
use new knowledge in order to simulate gene-disease association discovery. The
particular date was arbitrarily chosen by considering the size of the resulting
data sets. Table 1 shows the number of gene-disease associations in the resulting
data sets under six disease classes defined in GAD. In the following experiments,
the cancer class is used for system development and parameter tuning.

4.2 Experimental Setup

Given input (disease name d, known causative genes C, and target region r),
the system computes the probability P (d|G) as in Eq. (3) for each candidate
gene g located in r, where G is C plus g. For instance, d, C, and r might be
hepatocellular carcinoma, {APC,IL1}, and 8q24, respectively. The candidate
genes are then output in a decreasing order of their probabilities.



Literature-Based Discovery by an Enhanced Information Retrieval Model 193

Table 2. System performance in AUC for each disease class. The figures in the paren-
theses indicate percent increase/decrease relative to SchemeK.

Cardio-
vascular

Immune Metabolic Psych Unknown Overall

K 0.707 0.612 0.681 0.628 0.684 0.661

T
0.731 0.611 0.614 0.667 0.761 0.686
(3.4%) (-0.2%) (-9.9%) (6.2%) (11.2%) (3.8%)

K+T 0.697 0.656 0.682 0.702 0.743 0.699
(-1.4%) (7.2%) (0.1%) (11.8%) (8.5%) (5.9%)

As evaluation metrics, we use area under the ROC curve (AUC) for its attrac-
tive property as compared to the F -score measure (see Fawcett [9] for details).
ROC curves are two dimensional measure for system performance with x axis
being true positive proportion (TPP) and y axis being false positive proportion
(FPP). TPP is defined as TP/(TP+FN), and FPP as FP/(FP+TN), where TP,
FP, FN, and FP denote the number of true positives, false positives, false nega-
tives, and false positives, respectively. AUC takes a value between 0 and 1 with 1
being the best. Intuitively AUC indicates the probability that a gene randomly
picked from positive set is scored more highly than one from negative set.

Probabilities P (f |p) were pre-computed using the training data. Then the
test data in the cancer class were used to determine several parameters for each
scheme, including the number of Medline articles as the source of phenotypes
(nm), threshold for chi-square statistics (tc), threshold for IDF to determine
proxy terms (tt), and window size for co-occurrences (ws). For example, for
SchemeT, they were set as nm=400, tc=2.706, tt=4.0, and ws=100 (words) by
testing numbers of their combinations.

4.3 Results and Discussions

Overall Performance. With the optimal parameter settings identified with
the cancer class, the system was applied to all the other disease classes. Table 2
summarizes the system performance in AUC.

All the schemes achieved significantly higher AUC than 0.5 (which corre-
sponds to a random guess), indicating the validity of the general framework
using the inference network for discovering implicit associations. For individ-
ual disease classes, it is observed that SchemeT yielded the best AUC for the
Cardiovascular and Unknown classes and SchemeK+T for the others. Over-
all, SchemeK+T works the best, followed by SchemeT. The difference between
SchemeK+T and SchemeK is significant (p < 0.01), which proves the benefit of
textual information.

Enhancing P (f |p) by Domain Ontology. Section 3.2 discussed that ontol-
ogy could be exploited to enhance probability estimates P (f |p). In brief, con-
sidering parent-to-child (P-to-C) and child-to-parent (C-to-P) relations between
two concepts defined in MeSH and GO, one could deduce associations between
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Fig. 2. Transitions of AUC for different source and direction of relations

the concepts that were not observed in the training phase. Again, using the
cancer class data, we investigated an effective use of domain ontologies.

Eq. (6) was defined to use both MeSH and GO and both P-to-C and C-to-P
relations. However, it is expected that each knowledge source and each direction
of the relations would have different effects on the outcome. To determine the
best strategy, we compare the combination of the following alternative settings:
only MeSH, only GO, or both for the source of the semantic relations, and only
P-to-C, only C-to-P, or both for the direction of the relations. Because these
two properties are independent, there are 3 × 3 = 9 different combinations to
be examined. Fig. 2 shows plots for these combinations, where x and y axes
represent the number of iterations and AUC, respectively. Note that, due to the
limitation of computer memory used for this experiment, we could iterate the
computation only once or twice for some cases.

Contrary to our expectation, the use of the ontologies rather deteriorated
AUC for many cases. Especially, when C-to-P relations were considered (the
left and right columns), AUC dropped as the number of iterations increased
regardless of the scheme used. On the other hand, when GO and only P-to-C
relations were used (the center and bottom middle), AUC mildly improved at
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Table 3. System performance in AUC after enhancing probability estimates with only
parent-to-child relations in GO hierarchy. The figures in the parentheses indicate per-
cent increase/decrease relative to the corresponding cells in Table 2.

# of
iterations

Cardio-
vascular

Immune Metabolic Psych Unknown Overall

K 1
0.707 0.601 0.702 0.672 0.706 0.673
(0.0%) (-1.8%) (3.0%) (7.0%) (3.2%) (1.8%)

T
1

0.727 0.609 0.618 0.750 0.774 0.695
(-0.5%) (-0.4%) (0.6%) (12.4%) (1.7%) (1.4%)

2
0.726 0.613 0.633 0.768 0.782 0.703

(-0.6%) (0.4%) (3.1%) (15.0%) (2.7%) (2.5%)

K+T 1
0.703 0.631 0.698 0.765 0.763 0.708
(0.9%) (-3.8%) (2.3%) (8.9%) (2.7%) (1.3%)

least at the first iteration. These results suggest that the associations between
gene functions and phenotypes could be safely enhanced only downwards in the
hierarchies. Among the two plots, using only GO hierarchy (the center) shows
constant improvement of AUC with the number of iterations, whereas the other
(the bottom middle) gradually declines from the second iteration. The best AUC
(=0.776) was achieved with SchemeT after three iterations using only GO and
P-to-C relations.

Based on these observations, the same strategy (i.e., GO with P-to-C) was
applied to all the other disease classes; The results are summarized in Table 3.

As shown, the system performance more or less improved except for the Car-
diovascular and Immune classes. Overall, AUC marginally increased irrespective
of the schemes. After applying two times of iterations to SchemeT, it further im-
proved to 0.703. (It could not be applied to the other two due to the memory
limitation.) These experiments verify that the strategy of using P-to-C relations
in the GO hierarchy is generally effective in other types of diseases and that sys-
tem performance slightly but steadily increases with the number of iterations.
The improvement of SchemeT is statistically significant at the 5% level.

In the experiments above, considering the MeSH hierarchy was found harmful
in enhancing P (f |p). It may have been caused by a possible difference in the
nature of the MeSH and GO hierarchies. To investigate, we compared their
organizational structures (e.g., the number of children per node) but were not
able to find notable difference in this regard. Another cause of the problem may
be possible spurious phenotypes associated with a query disease. Remember that
while GO terms are obtained from Entrez Gene given a candidate gene (i.e., a
simple database lookup), MeSH terms are harvested from Medline search results
with a disease name being a query, assuming that MeSH terms annotated with
the retrieved articles are representative phenotypes of the disease. Thus, some
of those MeSH terms may not be associated with the disease at all. Enhancing
associations based on those spurious phenotypes, if any, would degrade system
prediction. More work needs to be done to determine the benefit of MeSH.
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5 Concluding Remarks

This paper explored a novel discovery framework targeting implicit gene-disease
associations and proposed an extension of IR models/techniques in conjunction
with domain-specific resources, such as the literature, gene database, and ontol-
ogy. To examine the validity of the framework, we created realistic benchmark
data, where old and new knowledge were carefully separated to simulate knowl-
edge discovery. The key findings identified by empirical observations include that
a) the consideration of textual information improved system prediction by 5.9%
in AUC over simply relying on co-annotations of keywords, and b) semantic re-
lations defined in domain ontologies could be leveraged to enhance probability
estimates, where MeSH were found rather harmful in the current scheme.

For future work, we plan to investigate more sophisticated schemes, e.g., the
semantic distance [10], in propagating the probabilities P (f |p). In addition, we
would like to compare the proposed framework with the previous work and with
other IR models so as to study the characteristics/advantages of our model.
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Foundation, the Japanese Ministry of Education, Culture, Sports, Science and
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Abstract. Researchers are assessed from a researcher-centric perspec-
tive — by quantifying a researcher’s contribution to the field. Citation
and publication counts are some typical examples. We propose a student-
centric measure to assess researchers on their mentoring abilities. Our
approach quantifies benefits bestowed by researchers upon their students
by characterizing the publication dynamics of research advisor-student
interactions in author collaboration networks. We show that our mea-
sures could help aspiring students identify research advisors with proven
mentoring skills. Our measures also help in stratification of researchers
with similar ranks based on typical indices like publication and citation
counts while being independent of their direct influences.

1 Introduction

In scientific research, rankings of journals are decided through impact factors,
and researchers are rated based on their publication and citation counts. Most
of these approaches are researcher-centric. They do not capture the context
in which a ranking attribute was acquired. For example, they do not reveal if
highly cited authors actually contributed to the growth and success of their ju-
nior collaborators. We present a student-centric approach to quantifying benefits
derived by students from their associations with their advisors. We show that
mentorship credentials, an important socio-academic aspect of research, could
be inferred and quantified by a meaningful data mining of publication databases.

Research on citation networks and ranking of journals and conferences dates
back to the influential works authored by Price [1] and Garfield [2]. Availability
of large bibliographic social-network data has resulted in a renewed interest to
understand the underpinnings of research collaborations and citations [3,4,5,6,7].
Impact factor [2] is used to rank the importance of journals. This is based on the
number of publications appearing in a journal and the number of citations they
attract. Bollen [8,9] devised a measure called Y-factor that combines Google’s
� Contact author.
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PageRank algorithm [10] and impact factor [2]. Publications and citations are
traditionally associated with a scientist’s research output. Recently, Hirsch [11],
proposed h-index to quantify a scientist’s research output that is not affected by
the publication or citation counts of the researcher. Mohan’s [12] heuristic as-
signed ranks to researchers in Computer Science based on the nurturing provided
to their students. Till date, this is the only student-centric approach.

The road map for the rest of the paper is as follows. In the following section, we
provide motivation for our work. Section 3 describes the scoring mechanism that
quantifies mentoring skills of researchers. Section 4 contains the results obtained
from applying the proposed mechanism on real-world scientometric databases.
This is followed by a comparative analysis with relevant work in the literature.
Finally we present our conclusions in Section 6.

2 Assessing Research Mentorship

Research advisor selection is a complex procedure involving several factors in-
cluding: time constraints, large number of universities and a larger pool of
researchers, financial constraints and penalty of making wrong choices. While
choosing their prospective research advisors, applicants usually consult informa-
tion available in home pages of researchers along with graduate school rankings.
In addition to this, knowledge about mentoring abilities of researchers would
also be of immense help in making such choices.

Good Mentoring: The Premise. Academic research outputs are usually pre-
sented in the form of peer-reviewed publications. Thus a student’s career in re-
search depends on the publications with his advisor. Apart from helping students
get publications, the advisor should ensure that the quality of publications gives
a status to the students thus helping them acquire future research collaborators.
In addition, a student may gain immensely by way of research introductions,
the process by which research advisors leverage their relationships in the aca-
demic community to enable their students acquire new co-authors. These are
the general expectations of a student from his research mentor. Thus there is a
natural student-centric formulation to assessing the credentials of a researcher
as a mentor. In the next section we show that these expectations are quantifiable
thereby arriving at a scoring mechanism to assess mentorship.

Other Conventions for Mentoring. Defining and quantifying the qualities
of good mentoring is a difficult task [13]. Although there is no single convention
for capturing all aspects of student-advisor interactions, the available publica-
tion data makes it possible to perform a quantitative analysis for measuring
the impact of mentorship of advisors on students. There could be many non-
publication oriented conventions and practices that may influence mentorship.
However, these otherwise valuable information are not available to a prospective
student who has limited time and resources. Our approach assumes publica-
tions as an important base for assessing advisor-student interaction because of
its amenability to computational analysis. We study the prospects of a student
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to get established in the scientific community by acquiring publications on the
basis of his foundational interactions with the advisor.

3 Scoring Mechanism

We quantify the attributes of good mentorship into two broad categories: Direct
Benefits and Indirect Benefits. In real world, these benefits usually take the form
of internships, postdoctoral fellowships and faculty positions. It is reasonable to
assume that these benefits could form a basis for future success in a student’s
research career. Our mechanism computes scores for direct and indirect benefits
that are bestowed by researchers upon their students. A researcher’s potential
for mentoring students is quantified based on the researchers interactions with
his current as well as past students.

3.1 Direct Benefits

A student’s direct benefit is computed with respect to each new joint-publication
with the research advisor. These publications are outcomes of the student’s past
association with the research advisor. Strength of the past association is cap-
tured by the number of prior publications the student has had with the advisor.
Consider a publication

pub : {a1, a2, . . . , an, t, id}

where ai’s are the authors of the paper, t is the time of publication and id
denotes information such as title of the paper and category of publication (con-
ference/journal). Let a1 be the student and a2 be the advisor. a2’s coauthoring
a new publication with a1 could be deemed beneficial to a1. Suppose a2 has p
prior publications with a1, we assign a2 the score

DB = p + 1,

where DB denotes the direct benefit derived by a1 from a2, and it takes the
new joint-publication into account. We note that this score does not depend on
the publication count of the advisor. The advisor might have a high publication
count. However, only a minuscule part of it would overlap with the initial pub-
lications of a single student. As far as the student is concerned joint-publication
count is all that matters. This aspect is inbuilt in our simple update rule.

3.2 Indirect Benefits

Research collaboration with the advisor helps a student secure new positions
and collaborators. This becomes visible when the student stops publishing with
the advisor and starts publishing with a new set of co-authors. An advisor’s
mentoring effect in this direction may be classified as: association benefits and
introduction benefits. In the following sections, we use the terms “advisors”,
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“co-authors” and “past co-authors” interchangeably. It is often unknown from
publication databases whether a co-author of a given publication is a research
advisor or not. We overcome this by assigning roles to authors of a publication.
Those with publication counts above a certain threshold are considered as advi-
sors and others as students. This is in accordance with the intuitions about the
publication counts of research advisors. This is applied in computing DB scores
as well. The importance of this is elaborated in section 3.3.

Association Benefits. Students publish with researchers other than their re-
search advisors during internships and postdoctoral fellowships. The process of
acquiring new co-authors is a result of the quality of the student’s past work. A
new collaboration arising from joint publications with the advisor can be viewed
as the student deriving association benefit from the advisor. This benefit is intu-
itively captured by the publication count of the new co-author. We assign each
past co-author a score computed as a function f(nP ), where n is the number of
joint-publications this past coauthor has had with the student and P is the pub-
lication count of the new co-author. The intuition for this is as follows. The new
co-author’s academic reputation is reflected in the publication count. This co-
author’s association with the student is founded on the joint-publication count
of the advisor with the student. One might consider other parameters such as
citation count or h-index as better ways to capture the new co-author’s reputa-
tion. As for this experiment, we consider only publication count as it is much
simpler to obtain and handle. We explain association benefits for a publication

pub : {a1, a2, . . . , an, t, id}.

Suppose a1 is the student and a2 is a new co-author of a1 with P publications.
Let {b1, b2, . . . , bm} be a1’s past co-authors, each of them with {n1, n2, . . . , nm}
past joint-publications with a1 respectively. Then each of the past co-author bi is
assigned a score of f(niP ) corresponding to student a1 deriving an association
benefit by acquiring a new co-author a2. This is computed for each (student,
new co-author) pair. We denote scores arising out of an association benefit as
AB. Note that the scores assigned to the past-coauthors are independent of their
publication counts.

Choice for f(nP ). From our trials we found that square root is a good candi-
date for f(nP ) in computing AB scores as it helps to bring down the intensity of
disparities induced by the linear product nP . This is illustrated with the follow-
ing example. Let a student acquire a new co-author who has 300 publications.
Suppose this is founded on a joint-publication count of 5 with his advisor. One
would like to compare this with benefits derived by another student acquiring
two new co-authors each having 50 and 60 publications, founded on a joint-
publication count of 3 with his advisor. Linear products are not appropriate for
such intuitive comparisons. Square root serves as a suitable sublinear function
for this purpose. For the present experiment f(nP ) =

√
nP . Other sub-linear

functions in addition to square root may be suited for this task — we found
log2(nP ) being one such. log10(nP ) on the other hand, compresses scores into a
narrow band thus making it unsuitable for meaningful comparisons.
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Introduction Benefits. In the above publication, let a2, the new co-author
of a1, also be a past co-author of b1. One could assume b1 introduced a2 to a1.
The strength of this introduction is quantified by the total joint-publications, q,
shared by b1 and a2. and the publication count P of a2. b1 is assigned a score√

qP for helping a1 get a new co-author by way of introduction. We denote this
as IB. If the author list of the present publication has authors in common with
bi’s past collaborators then this score is computed for each bi. AB and IB scores
are computed only with respect to students acquiring new co-authors. The co-
authors are considered new only for a period of one year. Then onwards they
become past co-authors and stop generating AB and IB scores. This convention
is adopted due to lack of fine-grained time-stamps in publication databases.

3.3 Data Mining Parameters

DB, AB and IB scores for advisors are computed with the help of a curated
public domain databases like DBLP (http://dblp.uni-trier.de). It is straightfor-
ward to compute the benefit scores and find good mentors if we know the exact
roles of authors in a publication. However, publication databases lack such social
context. This makes mentorship assessment a difficult problem. Therefore, we
make reasonable assumptions as an aide to compute scores for research-advisors.
These assumptions can be easily relaxed to test their effect on DB, AB and IB
scores. These assumptions are also made with the purpose of removing certain
inequities that might result in lopsided scores. We have presented these assump-
tions in an order that progressively refines the social context. Coarse graining of
the context may be obtained by truncating this list. The conducted experiment
applies our heuristic to assess mentorships in Computer Science on DBLP. How-
ever, the assumptions we make are not specific to DBLP.

Assessment Period for Advisors. We compute DB, AB and IB scores for
advisors over a specific time period. In our experiment we assess mentorship
over the 10 year period 1996 − 2005. This period is chosen primarily to study
the mentorship of researchers who are still active. By choosing this period, we
hope to capture a summary of mentorship of researchers in the recent past.

Roles. These databases are role neutral in that the roles played by the co-
authors (student/research-advisor/co-worker) in the real-world are not docu-
mented. To overcome this limitation, we assign roles to the authors by using
a simple thumb-rule: authors who have publication count above a threshold
number at the start of the assessment period are deemed “advisors” and those
with counts below this threshold are deemed “students”. For our experiments
this is taken as 10. This might result in publications that involve more than
one “advisor” and more than one “student”. However this does not limit our
approach. Direct, Association and Introduction benefits are still computable,
but now should be computed for all advisor-student pairs in a publication. It is
common knowledge that, in the social context, students benefit from co-authors
other than their advisors. Our simple role assignment heuristic gives credit to
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this social phenomenon. From now on, the terms student and advisor refer to
the roles assigned to the authors.

Early-Phase. Students contribute to scores of their advisors only until they
are in the early-phase of their research careers. The early-phase of a researcher
needs to be defined in terms of time and publications so that benefits derived
from the advisor are within reasonable bounds. This is to capture the notion that
the student is independent and requires little mentoring after a certain stage.
Since information regarding the early-phase is not available from the publication
databases, we assign the role: “student” for a maximum period of 10 years. This
heuristic estimate is arrived at in the following way: 5 years for graduation, a
post doctoral position for 2 years and a margin of 2 − 3 years.

Skewness in scores could be generated by students who get inordinately large
number of publications within the early phase. Hence we refine the early phase
by imposing a threshold on the number of publications. We assume 10 as a
reasonable number of publications achievable in the early phase (amounting to
one publication per year in this phase). A students exits early phase once he
attains 10 publications even if he is yet to complete 10 years.

Not all students who enter the assessment window (1996−2005 for the present
experiment) are without prior publications. Students who enter the window with
prior publications should not be given the same 10 year period as they are already
in their early-phase. We apply a simple rule: every prior publication reduces the
early-phase by a year. We use this linear scheme as an approximation since we
do not have models for the non-uniform spread of publications with respect to
time. This normalization is liberal in the following sense. A student’s present
publications usually have a logical flow from the publications of the immediate
past. In general, a student who has prior publications is more likely to acquire
larger number of publications than students who enter the window without any
publications.

Wean Period. While computing association and introduction benefits, we as-
sume a wean period to erode the strength of a student’s past relationship with
the advisor. If a student has not published for a certain number of years with
the advisor, the effect of acquiring a new co-author is not attributable to the
advisor. Otherwise, long dormant relationships could derive skewed benefits de-
spite lack of part in the student’s acquisition of new collaborators. For example,
a student’s Master’s advisor could get inordinate amount of AB and IB scores
from the student’s post-doctoral work.

Capturing weaning periods through functions that diminish with time pose
difficulties. Publications are results of social interactions, new collaborators be-
come new co-authors after a gestation period. For example, a dormancy with
respect to doctoral advisors appears when a doctoral student graduates and
joins a research lab or a gets a post doctoral position. Thus some associations
are inevitably dormant for short intervals. We simplify the situation by apply-
ing a fixed threshold of 5 years as wean-period. This margin is 50% of the year
component of the early-phase we chose for the present experiment (10 years).
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4 Experiments and Results

We quantified mentorship of researchers in Computer Science by applying our
heuristic on DBLP. The efficacy of our approach was also tested on physics
publication data from arXiv [3]. Similar characteristics were observed in the
mentorship dynamics of physicists (data not shown) despite the presence of
more multi-author publications as against computer science. This suggests that
the heuristics may be applicable to diverse fields. However, interpretation of
the results may require specific post processing to account for the area specific
characteristics (such as tendency towards multiauthorships). Experiments were
conducted on DBLP for the period 1996 − 2005. A publication threshold of 10
determined the role of an author (advisor or student). The first 10 publications
of students were tracked for a maximum period of 10 years with a wean period
of 5 years. DB, AB and IB scores were computed for 7752 advisors during this
time period.

4.1 Analysis

Results reveal a good correlation between DB and AB scores of researchers.
This implies students who get a good number of publications with their advisors
during their graduate studies acquire new co-authors after graduation. This may
seem common sense. However, while choosing an advisor one would typically
underestimate the number of researchers possessing such characteristics. As we
describe later, this number is good enough to give a wider scope to genuine
applicants. We observe that, high DB scores do not necessarily imply high IB
scores. This means that not all students derive the benefit of getting introduced
to the co-authors of their advisors. Hence advisors possessing high IB could be
valued by prospective students. These may be inferred from Figure 1.

Figure 2 shows that DB, AB and IB scores do not necessarily correlate with
publication counts. This suggests that publication counts of research-advisors
need not translate into opportunities for their students. These figures also stratify
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Fig. 1. Left: DB and AB scores correlate; deviations though present are not the norm.
Right: IB scores seem to be individual characteristic of researchers and do not correlate
with DB scores.
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Fig. 2. Publications Vs: DB scores (Left), AB scores (Middle) and IB scores (Right).
High publication count need not necessarily translate into DB, AB or IB benefits for
students.

authors with same or comparable number of publications, on three counts: DB,
AB and IB scores. Thus a socially neutral information like publication count can
be resolved into components using our heuristics and be given a social context.

AB and IB scores are not mutually exclusive. This is again due to the lack
of social information in publication databases. If a new co-author of the student
happens to be a past co-author of the advisor, we are not sure if this new co-
author was introduced by the advisor or was the result of the student’s individual
effort. For this reason, such publications fetch advisors both AB and IB scores.
Thus some AB scores could be the result of introductions. A better way to study
the Association scores of researchers would be by computing AB − IB. This
removes the effect of Introductions from the AB scores of the researchers. We
observe that for some researchers, IB scores dominate their AB scores making
AB − IB values negative. This indicates presence of cliques. This trend is on
the increase in terms of the number of researchers when compared to similar
values computed for 1986 − 1995. These are shown in Figure 3. We also note
that multiauthorships is on the ascent. Increase in the author-cliques could be
attributed to the current trend towards multiauthorship.
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Fig. 3. Comparison of DB with AB − IB scores for period (a) 1996-2005 (7752 re-
searchers) (b) 1986-1995 (1191 researchers)
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4.2 An Advisory on Choosing Research Mentors

Let us take a closer look at Figure 1. The graph has been demarcated into
three regions. The region labeled I comprises advisors who offer high DB and
AB benefits to their students. This is sparsely populated — has around 150
researchers (∼ 2% of all advisors) — and hence competitive. The region close to
the origin (labeled III ) comprises advisors who offer low DB and AB benefits
to their students. This is densely populated with roughly 80% of the researchers
clustered here. On the other hand, the region in the middle (II ) comprises
researchers who offer reasonable enough benefits to students towards furthering
their research careers. This region comprises around 15% of all advisors. Thus
our heuristic gives scope for students to make informed choices, lack of which
could lead to choosing advisors from inappropriate regions.

Advisors in region III could be those without tenure or in early periods of
their tenure. Some highly successful mentors who have stopped taking students
in the present time window could also fall in this region. In any case, their men-
torships are not available to prospective students. Hence their getting clustered
in this region is not unreasonable. High DB scores and low AB scores imply
that their students do not enjoy association benefits by working with them. This
does not mean that their students do not have successful research careers. If
they do, then it is despite the lack of association benefits from their mentors.
Alternately, it could be that such students have crossed their early-phase be-
fore beginning to contribute to their advisors’ AB scores. This crossover could
be rectified by increasing the number of publications related to the early-phase
for such students. In any case, it shows lack of association benefits before these
students acquire a reasonable number of publications. The analysis thus far is
summarized in Table 1.

Introduction of old research contacts who have been dormant in the recent
past with advisors could result in high IB scores. We checked for the presence
of this effect by computing scores after ignoring publications earlier to 1986.
This is to observe the effect of old publications (pre-1986) on the IB scores

Table 1. Categorizing mentorship through DB, AB, IB score ranges

DB AB IB AB - IB Advisory

1 low low low low wary

2 low low high low wary

3 low high low high caution

4 low high high
low
high

caution/clique-like
caution

5 high low low low wary

6 high low high low caution/wary/clique-like

7 high high low high optimistic

8 high high high
low
high

clique-like/optimistic
optimistic
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of researchers. We found that the IB scores of authors are largely unaffected
by this. This means researchers are more likely to collaborate with their recent
co-authors and benefits derived by students are largely dependent on the advi-
sors’ more recent collaborations.

It might seem that interactions present in inter-disciplinary research pose a
problem to our scoring mechanism. Consider the case of an advisor who is an
expert in Mathematics, mentoring a research student working in Computer Sci-
ence. The advisor’s research contributions may not be visible in a publication
database like DBLP that compiles bibliographic records of Computer Science
publications. Our mining parameters would even ascribe the role of student to
such researchers. This scenario has more to do with the limitations of database
coverage rather than our scoring mechanism or mining parameters. Such dis-
crepancies may be rectified fully by an integrated study of publication databases
cutting across research areas involved in these interactions.

5 Comparisons to Related Work

Researchers are ranked based on parameters such as h-index, citation and pub-
lication counts. These researcher-centric measures quantify researchers’ impact
on the field. These measures were not intended to be advisory for prospective
students. These are scalar ranking indices. Ours is a multi-dimensional charac-
terization of researchers’ social ability to mentor research students thus giving
them a head start towards successful research careers. We observe that these
characteristics are essentially independent of h-index, publication and citation
counts of researchers. We also show that researchers with similar researcher-
centric measures could be stratified using our approach, thereby adding social
context to such rankings. Table 2 is a summary of these aspects of our approach.
Here we identify “top 10 mentors” from region I of Figure 1 based on their

Table 2. Top 10 mentors from Region I of Figure 1 — listing based on publication
count. For each mentor in the list: P refers to the total publication count, h is the
h-index, n is the number of students interacted within the period 1996-2005 and Ps is
the number of publications coauthored with the students during this period.

P h Mentors n Ps DB AB IB
349 33 Kang G. Shin 95 187 885 7206 1031
346 50 A. Sangiovanni-Vincentelli 171 156 1017 13775 15787
326 17 Edwin R. Hancock 37 189 931 3833 1086
318 32 Elisa Bertino 96 157 590 6444 7022
305 46 Thomas S. Huang 129 207 1021 7973 2633
295 18 Chin-Chen Chang 99 211 832 4296 749
277 57 Anil K. Jain 109 169 874 5186 744
260 8 Donald F. Towsley 102 154 812 10433 13234
258 17 Sajal K. Das 94 166 701 5565 2481
256 29 HongJiang Zhang 158 204 961 11416 10036
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publication counts. Despite having comparable publication counts, these highly
successful researchers differ in the number of students they have interacted with
and the number of publications that resulted from these interactions. It can be
seen that the h-index of these mentors are unrelated to the number of students
and the joint publications counts. Parameters such as these, indicative of the
social context, are not included in researcher-centric parameters like publication
count and h-index. The DB, AB and IB scores provided by our approach add
relevant social context to these conventional indices and help in identifying good
mentors.

Another approach to quantify researchers is in terms of the study of author
collaboration networks [3,5]. One may view our approach as counting two paths
(AB scores) and triangles (IB scores) on such hyper-graphs. In a broader sense,
our approach analyzes the interactions of high degree nodes with low degree
nodes thus unraveling hidden or implicit social contexts. Our approach could
supplement existing network measures to understand the topology of author
collaboration networks and other social networks.

Mohan [12] proposed Nurturer Heuristic to rank researchers for their ability
to nurture their young associates. This is the only student-centric measure avail-
able in the literature. Our approach computes scores that cover a wide range
of student-advisor interaction dynamics in the form of DB, AB and IB. Nur-
turer heuristic lacks the equivalent of direct and introduction benefits. Tribute
of nurturer heuristic, a distant equivalent of our AB score, is scaled by 1/n for
an n−author publication. This unwittingly discriminates against multiauthor-
ships. Further, it assumes that students with single author publications do not
require as much mentoring as other students. Unlike Nurturer Heuristic, our
approach mines the social context in terms of parameters such as roles, early-
phase and wean period. Nurturer heuristic, like other assessment mechanisms,
falls in the class of ranking metric while ours computes a much richer dynamics of
the student-advisor interaction on author collaboration networks. We show how
mentoring skills of researchers could be assessed meaningfully without resorting
to explicit rankings as this could inadvertently obscure important details. As
against Nurturer Heuristic, our scoring scheme is non-iterative, therefore, it is
adequate to have information corresponding to the present students and the ad-
visors concerned for computing scores. Further, a non-iterative scheme like ours
is resistant to perturbations in publication databases. The proposed heuristic is
suited for distributed computation of scores and could enable real-time systems
to compute scores for different mining parameters.

6 Conclusions

We studied the dynamics of collaborations between students and advisors on
author collaboration networks and presented a new heuristic measure to quantify
mentoring abilities of advisors. This is a student-centric index for assessing a
researcher as against indices like publication and citation counts that do not
take into account a researcher’s mentoring skills. We computed our measures
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on author collaborations (availabe from publication databases), studied their
characteristics and discussed their usefulness in assessing mentorship.

Additional empirical data on mentors as outlined by Lee et. al [13] will be
useful to extend and validate our approach. Apart from author collaboration net-
works, the present approach offers scope to evolve mechanisms to assess benefits
in other social networks like friendships, weblinks etc., that could be fashioned
into recommendor systems.
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Abstract. In the paper we show that active contour methods can be
interpreted as knowledge discovery methods. Application area is not re-
stricted only to image segmentation, but it covers also classification of
any other objects, even objects of higher granulation. Additional power
of the presented method is that expert knowledge of almost any type
can be used to classifier construction, which is not always possible in
case of classic techniques. Moreover, the method introduced by the au-
thors, earlier used only for supervised classification, is here applied in an
unsupervised case (clustering) and examined on examples.

1 Introduction

The classification techniques are widely used e.g. in diagnostic or decision sys-
tems. So far many different methods of classification have been developed. All
of them solve the problem of the optimal classifier construction. In this paper a
new approach, potential active hypercontour, to the problem of supervised and
unsupervised classification is proposed. The idea of this approach comes from
active contour methods, which are used for image segmentation. The main ad-
vantage of this technique is that it is quite intuitive and allows to use any expert
knowledge during optimal classifier construction (which is not always possible
in case of classic methods). That additional knowledge can significantly improve
classification results, which is illustrated by the examples.

The paper is organized as follows: in section 2 the relationship between active
contour methods and classifier construction is presented, in section 3 potential
active hypercontour method is described, the next three sections presents the
examples of the proposed approach and finally the paper concludes with the
summary of the proposed method.

V. Corruble, M. Takeda, and E. Suzuki (Eds.): DS 2007, LNAI 4755, pp. 209–218, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Relationship Between Active Contours and Classifier
Construction

2.1 Active Contours

Active contour (AC) methods were firstly introduced and applied for image
segmentation in [9]. Their aim is to find the optimal contour c ∈ C describing
object in the image by optimization of energy function E : C → R where C
denotes a space of all considered contours. Energy evaluates quality of contour
which is changing its shape. The specific feature of the method is the use of
higher-level knowledge for detection of objects composed of lower-level image
elements (pixels). Since the first description of the snakes method ([9]) a variety
of different techniques has been proposed: active shape models ([10]), geodesic
active contours ([11]), Brownian strings ([12]), etc.

2.2 Classifier Construction

Classifiers can be considered as functions k : X → L(L) where X denotes the
feature space (each object has uniquely assigned element of feature space), L(L)
denotes set of labels and L denotes the number of labels (in the whole paper L(L) =
{1, . . . , N} for N ∈ N will be used). It is obvious, that many correctly constructed
classifiers can be found. The problem is, however, to find the optimal one from
the set of all possible classifiers K that map X into L(L). The optimality criterion
used here should express the available expert knowledge (e.g. a training set with
correctly labeled objects) and can be formulated as a performance index Q : K →
R evaluating the quality of each classifier. Consequently, the problem of optimal
classifier construction is optimization problem (e.g. neural network training).

Unsupervised Classification. When the available knowledge used for con-
struction of the classifier does not contain any information about the expected
object labels and is based only on inner similarities or dissimilarities of consid-
ered objects, one speaks about unsupervised classification (clustering). The goal
here is to divide the given set of objects into groups where homogeneity criteria
inside the groups and heterogeneity criteria between them are fulfilled. Addition-
ally, the number of classes L can be unknown. There exist many approaches to
clustering, such as: single-link, complete-link and average-link clustering, Hard
C-Means (HCM), Fuzzy C-Means (FCM), Possibilistic C-Means (PCM) cluster-
ing ([6,8]), Kohonen neural network ([1,3,4]), knowledge-based clustering ([6]),
etc.

Supervised Classification. If information about the expected assignments of
labels to the objects is available and consequently the number of classes L is
precisely known, the supervised classification (or simply classification) is consid-
ered. There are also many techniques of supervised classification, for example: k
nearest neighbors (k-NN) ([3,5]), Multi-layer Perceptron (MLP) ([1,3,5]), proba-
bilistic classification ([2,5]), Support Vector Machines (SVM) ([4]), etc.
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2.3 Relationship

In [16], relationship between active contour methods and classification techniques
has been discussed. It was shown that contours can be considered as contextual
classifiers of pixels and contour evolution can be understood as optimization
method of classifier parameters where energy function E is a performance index
Q. The result of this notice is introduction of active hypercontour (AH) concept
in [17] which is a generalization of AC (hypercontours are the boundaries be-
tween regions in feature space that contain objects with different labels). That
relationship allows also to exchange experiences (methods, algorithms) between
those, so far separately developed, domains. Practical realization of active hyper-
contours are potential active hypercontours described in this work. The strongest
advantage of AC, which is its ability to use external expert knowledge of any
type during classifier’s construction, can also be of use here.

3 Potential Active Hypercontours

Potential active contours (PAC) and their generalization potential active hy-
percontours (PAH) were firstly proposed in [18]. They base on the well known
potential function method of classification ([5]) where the label assigned to the
object depends on the distribution of other known and already classified objects.
Their influence on the classification results depends on the distances between
them and the object that is classified In the classic formulation of this approach,
the known objects are fixed (e.g. the training set can be of use here). In the PAH
algorithm, their position and parameters are subject of optimization. Formally,
the can be described by the classifier:

k(x) = argmaxl∈L(L)

N∑
i=1

PΨi,μi(ρ(xi,x)) δ(li, l) (1)

where xi ∈ X and li ∈ L(L) for i ∈ L(N) denote features of known objects
and corresponding to them labels, respectively, P : R → R denotes a strictly
decreasing potential function, ρ : X × X → R is a metric in the space X ,
δ : N × N → {0, 1} denotes Kronecker delta and finally Ψi and μi for i ∈ L(N)
are parameters of potential functions. Here, the Euclidean metric and inverse
potential function were used, where the latter was defined as follows:

PΨ,μ(d) =
Ψ

1 + μd2
(2)

Optimization of the distribution of labeled objects and the parameters of po-
tential functions has been performed using simulated annealing (SA) ([14]) with
exponential cooling scheme (parameters were randomly modified to stay in the
neighborhood of their previous values).

So far in [18] the supervised classification was considered where the external
knowledge was gathered in training set of Ntr objects xtr

i ∈ X with labels ltri ∈
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a) b)

c) d)

e) f)

Fig. 1. Sample results of the supervised and unsupervised classification used for image
segmentation and for classification of data: (a) - supervised segmentation using PAH,
(b) - unsupervised segmentation using PAH, (c) - PAH algorithm used for supervised
segmentation (Es, F s = 0.986), (d) - PAH algorithm used for unsupervised classifica-
tion (Eu, F u = 0.889), (e) - result of k-NN algorithm (k = 7, F s = 0.986), (f) - result
of HCM algorithm (F u = 0.889)

L(L) for i ∈ L(Ntr) and where the optimization objective function (the energy of
the hypercontour and consequently the energy of the classifier) was was defined
in the following way:
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Es(k) = 1
Ntr

∑Ntr

i=1 (1 − δ(ltri , k(xtr
i )) (3)

Unsupervised classification can be performed by the use of potential active hy-
percontour controlled by the energy function of the following form:

Eu(k) = 1
Ntr2

∑Ntr

i=1

∑Ntr

j=1 ρ(xtr
i ,xtr

j ) δ(k(xtr
i ), k(xtr

j ))+

1

1+ 1
Ntr2

∑ Ntr

i=1
∑Ntr

j=1 ρ(xtr
i ,xtr

j ) (1−δ(k(xtr
i ),k(xtr

j )))

(4)

It assures that the dissimilarity (in this case distance) between objects in the
same group is minimal and between objects from different groups is maximal.
Both formula (3) and (4) are only the examples, which allow to present the idea
of the approach.

To verify the results of both supervised and unsupervised classification some
methods of the quality evaluation of the constructed classifiers must be used.
In this work for supervised classification, the number of correct classifications
in the testing set, which contains Nte objects xte

i ∈ X with labels ltei ∈ L(L) for
i ∈ L(Nte), was used:

F s(k) = 1
Nte

∑Nte

i=1 δ(ltei , k(xte
i )) (5)

In case of the unsupervised classification, the quality measure described in [15]
was applied. It compares the achieved clusters with the clusters determined by
known labeling of objects in the testing set (in this case training and testing sets
are identical and consequently Nte = Ntr):

Fu(k) =
2

Nte

Ltr∑
ltr=1

Lte∑
lte=1

nlte

ltr logLtrLte

(
nlte

ltrNte

nltr nlte

)
(6)

where:

– nlte

ltr denotes the number of objects from group ltr with label lte

nlte

ltr =
Nte∑
i=1

δ(ltr, k(xte
i ))δ(lte, ltei ) (7)

– nltr denotes the number of objects in group ltr

nltr =
Nte∑
i=1

δ(ltr, k(xte
i )) (8)

– nlte

denotes the number of objects with label lte

nlte

=
Nte∑
i=1

δ(lte, ltei ) (9)
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In this paper, the number of groups Ltr and the number of expected classes Lte

are equal L but PAH algorithm can be of use in more general case, as well.
In our previous works ([18]) the extension of the PAH method, namely adap-

tive potential active contours (APAH) were proposed. Its main novel feature is
that classification abilities of the hypercontour can be modified during the opti-
mization process (the number of objects N is changing). This concept can also
be applied for unsupervised classification but is not discussed here.

4 Examples

4.1 Segmentation

Active contour methods are the special case of active hypercontours where the
classified objects are pixels. The only features of the pixel that can be considered
are its color components and coordinates. In the presented example only the
intensity of the pixel was considered (it was the gray-scale image), consequently
X = R. Of course L = 2 because usually image is divided into two regions: object
and background:

In the Fig. 1a and Fig. 1b two sample images with localized contours are pre-
sented. Those contours are not a direct visualization of hypercontour boundaries
in feature space. They only reflect the division of that space which is possible
because the space of image coordinates has larger discriminative power than
space X (pixel coordinates identify them uniquely). In both cases the training
set contained all the image pixels. In Fig. 1a the result of supervised classi-
fication is presented (Es) where the information about the expected labels of
pixels, depending on their color intensity, was utilized. And in the the Fig. 1b
the unsupervised segmentation was used (Eu) where only the mutual similarity
of pixels’ color was considered. It is worth mentioning that during unsupervised
segmentation, depending on initial distribution of points defining contour, the
contour can describe either object (as in the first example) or the background
(the second one).

The presented examples and energy functions are of course very simple and in
case of the image segmentation they cannot be used because of many practical
reasons (e.g. calculation of Eu even for the image of average size would be very
time-consuming and in presented paper it had to be optimized). They are good
enough, to illustrate the presented concept. In general, however, in practical
applications energy usually possesses information both about the expected shape
of the contour (internal energy) and about the desired position of the contour
in the image (external energy) ([9,10,11,12]). It allows to take into account the
relations between color and coordinates of pixels (context). Those aspects were
described in [16] and are not discussed in this paper.

4.2 Classification

The second example presented also in Fig. 1 considers randomly generated data
where X = R

2 (it can be visualized) and L = 3. In Fig. 1c and Fig. 1e the
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results of supervised classification (Es) are presented. They were obtained with
PAH and k-NN classifier (k = 7), respectively (in the figures the data from
training set are shown but the test set was also prepared to compare results by
means of quality measure F s). Similarly, in Fig. 1d and Fig. 1f the results of
clustering are presented. The first one was obtained with PAH algorithm while in
the second the HCM algorithm was used. In all the experiments the set of points
controlling the hypercontour contained 3 objects, one for each class (it can be
changed for example by the mentioned above APAH algorithm). In both cases
here, though hypercontours are different, the results of classification measured
by F s and Fu are identical, which proves that PAH can be used for supervised
and unsupervised data classification task. Here again it can be noticed that in
the case of grouping the the initial distribution of points generating hypercntour
causes that assignment of the labels to the groups can differ.

The presentedPAH approachhas other advantages,which are not analyzedhere
but are still under investigation.One of the is fact it canbe used for anymetric space
X . The other is that potential hypercontours can have different topologywhich can
be of use in case of more complicated data (for example the other similarity mea-
sure than metric used for hypercontour description can be applied in the clustering
algorithm). Finally, the number of expected groups need not be known as it is in
the examples (the PAH algorithm could allow to adapt it during optimization).

4.3 Expert Knowledge

In some cases the knowledge gathered in the training set may be insufficient
to obtain satisfactory results. In such situations the other additional informa-
tion must be used. Classic algorithms of classification like k-NN or HMC have
problems with utilization of other types of knowledge. The presented PAH algo-
rithm does not possess such limitations. It can relatively easily incorporate any
information into energy function.

In Fig. 2a and Fig. 2c the results of k-NN (k = 7) and PAH algorithms are pre-
sented for other (but also randomly generated) set of training data. The problem
is that data for one of the classes are not representative enough. There are only
a few points covering important, for that class, part of the feature space. Conse-
quently the classifiers considered so far have problems with proper classification
of the testing set where underrepresented objects can occur. This problem can be
solved thanks to additional information about the importance of certain training
points. That knowledge can be used in the energy function of the following form:

Esk(k) = 1
Ntr

∑Ntr

i=1 utr
i (1 − δ(ltri , k(xtr

i )) (10)

where utr
i ∈ [0, 1] denotes the weight of the object xtr

i for i ∈ L(Ntr). The results
obtained by means of that energy are presented in Fig. 2e.

Similar approach can be used for unsupervised classification. The method
described below bases on the approach proposed in [7]. The problem that can
appear is that the distribution of training points in feature space not always
reflects the desired grouping of those points (it can be caused by the inability
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a) b)

c) d)

e) f)

Fig. 2. The influence of additional expert knowledge on the classification results: (a)
- PAH algorithm (Es, F s = 0.888), (b) - PAH algorithm (Eu, F u = 0.710), (c) - k-
NN method (k = 7, F s = 0.894), (d) - HCM method (F u = 0.667), (e) - PAH with
additional knowledge (Esk, F s = 0.958), (f) - PAH with additional knowledge (Euk,
F u = 0.908)

to extract better features). Such a problem is presented in Fig. 2b and Fig. 2d
together with the solutions generated by HCM and PAH (Eu) methods. To solve
it again the additional knowledge must be used:
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Euk(k) = 1
Ntr2

∑Ntr

i=1

∑Ntr

j=1 utr
ijρ(xtr

i ,xtr
j ) δ(k(xtr

i ), k(xtr
j ))+

1

1+ 1
Ntr2

∑ Ntr

i=1
∑Ntr

j=1 utr
ij ρ(xtr

i ,xtr
j ) (1−δ(k(xtr

i ),k(xtr
j )))

(11)

where utr
ij ∈ [0, 1] denotes the similarity of objects xtr

i and xtr
j for i ∈ L(Ntr)

and j ∈ L(Ntr). The sample result of PAH algorithm after such modification
of energy function together with corresponding quality measures is presented in
Fig. 2f.

The presented above usage of additional weights to improve classification re-
sults is not entirely a new concept because this form of expert knowledge can
be used also in traditional techniques. It presents, however, how other types
of knowledge could be utilized by simple redefinition of energy function (Es or
Eu). Other, novel approaches can be considered here: neural networks trained
on the examples to properly evaluate classifiers and fuzzy expert systems able to
use expert knowledge expressed in linguistic form. These concepts are still being
investigated.

5 Summary

Potential active contours and their extension called hypercontours can be used
for both tasks: classification and grouping. To the best knowledge of authors,
they are novel, powerful methods, which can operate on objects of diverse gran-
ulation. Consequently, image segmentation performed on pixels and grouping
performed on vectors become similar tasks. The additional power of the method
is that expert knowledge can be incorporated and used for modification of hyper-
contour during its automatic modification, which can significantly improve su-
pervised and unsupervised classification result there where classic techniques fail.
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Abstract. Mining frequently appearing patterns in a database is a ba-
sic problem in informatics, especially in data mining. Particularly, when
the input database is a collection of subsets of an itemset, the problem
is called the frequent itemset mining problem, and has been extensively
studied. In the real-world use, one of difficulties of frequent itemset min-
ing is that real-world data is often incorrect, or missing some parts. It
causes that some records which should include a pattern do not have it.
To deal with real-world problems, one can use an ambiguous inclusion
relation and find patterns which are mostly included in many records.
However, computational difficulty have prevented such problems from
being actively used in practice. In this paper, we use an alternative in-
clusion relation in which we consider an itemset P to be included in an
itemset T if at most k items of P are not included in T , i.e., |P \T | ≤ k.
We address the problem of enumerating frequent itemsets under this
inclusion relation and propose an efficient polynomial delay polynomial
space algorithm. Moreover, To enable us to skip many small non-valuable
frequent itemsets, we propose an algorithm for directly enumerating fre-
quent itemsets of a certain size.

1 Introduction

The frequent pattern mining problem is to find patterns frequently appearing in
a given database. It is one of the central tasks in data mining, and has been a
focus of recent informatics studies. Particularly, when the database is a collection
of transactions and the patterns to be found are also subsets of itemsets, the
problem is called the frequent itemset mining problem[1,4,10,11,12]D Precisely,
we define the frequency of an itemset by the number of transactions including
the pattern, and say an itemset is a frequent itemset if its frequency is no less
than the given threshold value σ, called minimum support.

Frequent pattern mining is often used especially for data analysis. For data so
huge that humans can not get any intuition from an overview of it, the frequent
pattern mining is a useful way to capture the features of the data’s features, both
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in a global sense and in a local sense. However, in the real world use, we often
encounter difficulties in trying to use the frequent pattern mining on real-world
data. One difficulty is that data are often incorrect or missing parts. Such errors
mean that some records that should include a pattern P do not include P , thus P
may be overlooked because its frequency appears to be too low. A way to deal with
this difficulty is to consider an ambiguous inclusion relation whereby we consider
that a transaction T includes a pattern P if most items of P are included in T .

There are several studies on the frequent pattern mining with ambiguous
inclusions. In some contexts, these patterns are called fault-tolerant frequent
itemsets[5,6,7,8,14]. In some of these studies, ambiguous inclusion is defined such
that an itemset P is included in a transactionT if the fraction of items ofP included
in T is no less than a given threshold θ, i.e., |P ∩ T |/|P | ≥ θ[14]. Given this defi-
nition, the family of frequent itemsets is not always anti-monotone; thus the usual
apriori based algorithms are not output sensitive in the sense of time complexity.

If an item of the itemset is not included in a transaction, then it can be consid-
ered to be a fault. Some studies, such as Boulicaut et al., Liu et al., and Seppanen
et al.[5,6,7,8], treat mining pairs of an itemset and a transaction set such that
there are few faults between their elements. When the size of the transaction set
is large, we can regard the itemset as a frequent pattern with ambiguous inclu-
sions. Many mining algorithms have been devised for solving both problems, but
enumeration difficulties prevent them from having the completeness that ensures
that they output exactly all frequent patterns.

On the other hand, in sequence pattern mining and text mining, ambiguous
matching is used to define the occurrence of a pattern, i.e., if a pattern is homoge-
neous to a substring of the input string, then we regard that the pattern appears
at the position. Such patterns are called degenerate patterns in some contexts,
especially in genome sciences, and several algorithms have been proposed[9,13].

There are possibly several models for such ambiguous inclusions. In this paper,
we define our ambiguous relation with a constant k that a pattern P is included
in a transaction (or pattern) T if at most k items are not included in T . In this
paper, we address the problem of enumerating all frequent itemsets under this
inclusion relation, for given a transaction database, minimum support σ, and k.
When σ is large, such as 90% of the number of transactions, the problem can be
considered to be one to find combinations of items i1, . . . , ih such that at least h−k
items are included in 90% of transactions, thus such combinations characterize the
database. These combinations can also be used as rules separating the database
from other database, thus has applications to learning theory and practice.

For the frequent itemset mining with our ambiguous relation, we propose a
polynomial delay polynomial space algorithm. To best of our knowledge, this
is the first result of even output polynomial time algorithm for this problem.
Although the algorithm is polynomial time, we still encounter a problem in
the real-world applications, that is, quite many uninteresting small patterns are
frequent in our ambiguous inclusion relation. We can avoid this problem by
directly enumerating all frequent patterns of given size l, and we propose an
efficient algorithm for this task.
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The organization of the paper is as follows. We introduce several notations and
notions concerning to our ambiguous inclusion in Section 2, and propose a basic al-
gorithm for frequent itemset mining under the condition of he ambiguous inclusion
in Section 3. The algorithm is improved in Section 4. Section 5 describes an algo-
rithm for directly enumerating those of size l, and Section 6 is for the conclusion.

2 Preliminary

Let an itemset I be a set of items 1, . . . n. A transaction database D is a collection
of transactions where a transaction is a subset of I1. We denote the number of
transactions in D by |D|, and the size of D by ||D||. Here the size of D is the
sum of |D| and the sizes of the transactions in D, i.e., ||D|| = |D| +

∑
T∈D |T |.

Note that ||D|| is not defined in the usual sense. The aim of this definition is to
consider the computation time for empty transactions, which is O(1). Hereafter,
we fix the database D for the input of the algorithm.

A pattern P is a subset of itemset I. The largest item in P is called the
tail of P and is denoted by tail(P ). A transaction of D including P is called an
occurrence of P . We denote the set of occurrences of P by Occ(P ). The frequency
frq(P ) of a pattern P is defined by the number of transactions including P , i.e.,
|Occ(P )|. Given a transaction database D and constant number σ, a pattern
with frequency no less than σ is called a frequent itemset. The frequency is often
called support, and σ is called the minimum support. The problem of finding
all frequent itemsets for given a transaction database and minimum support is
called the frequent itemset enumeration problem2.

For a constant k and two patterns P, T ⊆ I, we write P ⊆k T if |P \ T | ≤
k holds. We call the binary relation ⊆k the k-pseudo inclusion relation. For
a pattern P , a transaction T is a k-pseudo occurrence of P if P ⊆k T . We
denote the set of k-pseudo occurrences of P by Occ≤k(P ). Particularly, the
set of transactions satisfying |P \ T | = k is denoted by Occ=k(P ). We have
Occ(P ), Occ=k(P ) ⊆ Occ≤k(P ). See the example in Fig. 1. We define the k-
pseudo frequency of P by |Occ≤k(P )|, and denote it by frqk(P ). A k-pseudo
frequent itemset is a pattern P such that its k-pseudo frequency is no less than
σ. Here, we define our problem as follows.

Pseudo Frequent Itemset Enumeration Problem
Input: transaction database D, minimum support σ, constant k
Output: all k-pseudo frequent itemsets in D

1 In the literatures, a transaction is often defined by a pair of an item subset and its
ID. However, we will here omit the ID since ID has no meaning in the arguments in
this paper.

2 This problem is also called frequent itemset/pattern mining/discovery. Usually, the
terms mining and discovery do not require the output to be complete, thus here
we use the term enumeration which is used in the problem of outputting all the
solutions completely.
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A: 1,2,4,5,6
B: 2,3,4
C: 1,2,7
D: 1,5
E: 2,3,7
F: 2,7
G: 4
H: 6

Occ 0({2,7})        = {E,F}
Occ 1({1,2,4})     = {A,B,C}
Occ=1({1,3,7})     = {C,E}

Occ 2({1,2,4,7})  = {A,B,C,E,F}
Occ=2({1,2,4,7})  = {B,C,E,F}
Occ 2({1,2,4,7} U {3}) 
= Occ 1({1,2,4,7}) U (Occ=2({1,2,4,7}) Occ({3})) 
= {A,E}

Fig. 1. Examples of pseudo occurrences and update by addition of an item

A: 1,2,5
B: 1,4
C: 1,2
D: 1,3
E: 2,3
F: 2
G: 1

42 31

1,51,41,2 1,3

5

1,2,3

2,52,42,3

Fig. 2. An example of backtrack algorithm execution for minimum support σ = 4

If an algorithm terminates in polynomial time for both the input size and the
output size, the algorithm is called output polynomial. Output polynomiality is a
popular measure of the theoretical efficiency of the algorithm. If the computation
time between any two consecutive output solutions is bounded by a polynomial
of the input size, the algorithm is called polynomial delay. If an algorithm is
polynomial delay, the computation time is linear in the number of outputs, and
hence better in practice. If the memory usage of the algorithm is bounded by a
polynomial of the input size, the algorithm is called polynomial space. Here our
goal is to develop an efficient polynomial delay polynomial space algorithm for
solving the pseudo frequent itemset enumeration problem.

3 Basic Algorithm

The frequent itemset enumeration problem is, from the viewpoint of complex-
ity theory, an easy problem. The reason is that the frequency has a monotone
property, thus obviously any frequent itemset can be obtained by iteratively
adding items to the emptyset by passing through only frequent itemsets. Al-
though a naive implementation may produce duplicate solutions, we can avoid
duplications by using tail extension. For a frequent itemset P , a pattern obtained
fromP by adding an item larger than the tail of P is called a tail extension of P .
By generating frequent patterns only via tail extensions, each pattern is gener-
ated only from the pattern obtained by removing its tail, thus we can enumerate
all frequent itemsets without duplicates. A backtrack algorithm generates tail
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extensions in a depth-first manner, and thus is a polynomial time delay polyno-
mial space algorithm. Precisely, the computation time for each frequent itemset
is linear in the size of the database, i.e., O(||D||). The space complexity is also
optimal, that is, O(||D||).

Regarding the practical use of frequent itemset enumeration, the number of
frequent itemsets is usually not so large compared to the input size, but the
input size is usually large. Thus, linear time in the input size for each solutionis
too long. To reduce the practical computation time, several techniques have been
proposed. One of the most efficient techniques is called database reduction.

Consider the following operation: Remove all items included in less than σ
transactions, and unify the same transactions into one transaction. Then, the
database shrinks, and its size becomes small. We can further reduce the size by
using trie or prefix tree. This operation is called database reduction. Database
reduction performs well in practice, especially when σ is large, Moreover, if we
apply database reduction to conditional databases to recursively reduce their
sizes, we can further reduce the computation time. Here a conditional database
is the database restricted to items larger than the tail of the current operating
pattern P and transactions including P , which is the input of an iteration with
respect to P . This technique is called iterated database reduction.

These techniques can be applied to pseudo frequent itemsets in a similar way.
We begin with the following proposition to see the monotonicity.

Proposition 1. For any patterns P and P ′ satisfying P ⊆ P ′, Occ≤k(P ′) ⊆
Occ≤k(P ) holds.

The statement holds since any transaction T ∈ Occ≤k(P ′) does not include at
most k items in P . From this proposition, we can see that the family of k-
pseudo frequent itemsets satisfies anti-monotonicity. Hereafter, we assume that
the minimum support is from 1 to |D| thus the emptyset is always k-pseudo
frequent. For a k-pseudo frequent itemset P , let the children set of P , denoted
by CHD(P ), be the set of items i such that i > tail(P ) and P ∪ {i} is k-pseudo
frequent. The monotone property leads to the following backtrack algorithm. By
calling Backtrack(∅), we can enumerate all k-pseudo frequent itemsets.

backtrack(P )
1. Output P
2. Compute CHD(P )
3. for each i ∈ CHD(P ) call backtrack (P ∪ {i})

It is easy to see the correctness of this algorithm. Figure 2 shows an execution
of the backtrack algorithm. Each iteration inputs a k-pseudo frequent itemset
P , outputs P , computes the k-pseudo frequency for all tail extensions of P to
obtain CHD(P ), and generates recursive calls for each item in CHD(P ). Thus,
any iteration outputs a k-pseudo frequent itemset, and the computation time
for each k-pseudo frequent itemset is bounded by the maximum computation
time of an iteration. Computing k-pseudo frequency of each tail extension takes
O(||D||) time thus the computation time of an iteration is O(n||D||). This can
be shortened as follows.
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Suppose that we have Occ=0(P ), ..., Occ=k(P ) for the current processing pat-
tern P . Here we consider the computation of Occ=0(P ∪{i}), ..., Occ=k(P ∪{i})
for all i > tail(P ). First, we prove the following proposition.

Proposition 2. For a transaction T included in Occ=h(P ) for some h, 0 ≤ h ≤
k, T ∈ Occ=h(P ∪ {i}) holds if T includes i. Otherwise, T ∈ Occ=h+1(P ∪ {i}).

Proof. Since T ∈ Occ=h(P ), T does not include exactly h items of (P ∪ {i}) if
T includes i, and exactly h items otherwise. Then the statement follows. 	


Now we have the following lemma.

Lemma 1. The following two equations hold,
(a) Occ=0(P ∪ {i}) = Occ=0(P ) ∩ Occ({i})
(b) Occ=h(P ∪{i}) = (Occ=h(P )∩Occ({i}))∪ (Occ=h−1(P ) \Occ({i})) for any
h ≥ 1.

Proof. Any transaction T ∈ Occ=h(P ∪ {i}), 0 ≤ h ≤ k, includes at least h − 1
and at most h items of P . This implies that T is included in Occ=h(P ) or
Occ=h−1(P ) only when h > 0. On the other hand, from Proposition 2, we have

Occ=h(P ∪ {i}) ∩ Occ=h(P ) = Occ=h(P ) ∩ Occ({i}), and

Occ=h(P ∪ {i}) ∩ Occ=h−1(P ) = Occ=h−1(P ) \ Occ({i}), for h > 0.

Thus, the statement of the lemma holds. 	

The next proposition is a consequence of the lemma.

Proposition 3. Occ≤k(P ∪ {i}) = Occ≤k−1(P ) ∪ (Occ=k(P ) ∩ Occ({i})).

From Lemma 1, we can see that all we have to do is take intersection of occur-
rences for all i. For this task, the technique so called occurrence deliver described
in [10,12,11] is efficient.

Let us consider the task of computing Occ=k(P ∪{i}) for all i > tail(P ). First,
we prepare an empty bucket for each item i. Next, for each transaction T in
Occ=k(P ), we do “insert T into the bucket of i for each item i ∈ T, i > tail(P )”.
After performing this operation for all transactions in Occ=k(P ), the content of
the bucket of i is equal to Occ=k(P ∪{i}). The pseudo code of occurrence deliver
is described as follows. The code inputs a set of transactions S and pattern P ,
then sets bucket[i] to S∩Occ({i}) for all i > tail(P ). We suppose that the bucket
of any item i is initialized, and thus is empty at the beginning.

Occurrence deliver(S, P)
1. for each T ∈ S do
2. for each i ∈ T, i > tail(P ) do
3. insert T into bucket[i]
4. end for
5. end for
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A: 1,2,5,6,7,9
B: 2,3,4,5
C: 1,2,7,8,9
D: 1,7,9
E: 2,3,7,9
F: 2,7,9

4: B
5: A, B
6: A
7: A,C,D,E,F
8: C
9: A,C,D,E,F

Fig. 3. Example execution of occurrence deliver

Fig. 3 shows an example of the execution of occurrence deliver. Let S>h =
{T ∩ {h + 1, . . . , |I|} | T ∈ S}). Hereafter, we assume that each transaction T is
stored in memory so that the items in T are sorted in increasing order of items.
Bucket sort or radix sort to all transactions at once can be done in O(||D||+ |I|)
time. The following proposition is proved in [10,11,12].

Lemma 2. Algorithm Occurrence deliver takes O(||S>tail(P ) ||) time and
computes S ∩ Occ({i}) for all i > tail(P ).

Lemma 2 leads in turn to the following proposition.

Proposition 4. For pattern P , we can compute the k-pseudo frequency
of all P ∪ {i}, i > tail(P ) having non-zero k-pseudo frequency in
O(||Occ=k(P )>tail(P )||) time.

From Proposition 4, we can see that computation of CHD(P ) can be done in
O(||Occ=k(P )>tail(P )||) = O(||D||) time. Next let us consider the cost of com-
puting Occ=0(P ∪ {i}), ..., Occ=k(P ∪ {i}) for each i ∈ CHD(P ). From Lemma
1, we can see that it can be computed by taking the intersection of Occ≤k(P )
and Occ({i}) in O(|Occ≤k(P )| + |Occ({i})|) time. The following proposition is
stated for the memory use[10,12,11].

Proposition 5. For any set S ⊆ D of transactions and item i, the size of the
bucket of i does not exceed |Occ({i})| after applying occurrence deliver.

We can see from Proposition 5 that the memory used by an iteration is bounded
by O(||D||). The depth of the recursion of Backtrack is at most n, and the
accumulated memory usage is O(n||D||).
Theorem 1. For given a database D, minimum support σ and constant k, algo-
rithm Backtrack enumerates k-pseudo frequent itemsets in O(N · ||D||) time with
using O(n||D||) memory, where N is the number of k-pseudo frequent itemsets.

Corollary 1. Algorithm Backtrack is a polynomial delay polynomial space al-
gorithm for enumerating all k-pseudo frequent itemsets.

4 Reducing Computational Cost

In this section, we improve the efficiency of the algorithm proposed in the pre-
vious section by reducing both time and space complexities. Our basic idea is to
re-use one bucket in all iterations. This results in a reduction of memory usage.
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Here we denote a transaction T in Occ=h(P ∪ {i}) by a pair (T, h). Instead
of having all Occ=0(P ∪ {i}), ..., Occ=k(P ∪ {i}), we maintain Occ′≤k(P ) =
{(T, h) | T ∈ Occ=h(P ∪ {i})} keeping that all elements (T, h) in Occ′≤k(P )
are sorted in increasing order of h. Then, by applying occurrence deliver to
Occ′≤k(P ), we can obtain Occ′≤k(P ∪ {i}) while keeping the order in
O(||Occ=k(P )>tail(P )||) time. By looking at the bottom of each bucket, we can
easily take Occ=k(P ) in O(|Occ=k(P )|) time. This simplifies the operation to
maintain the Occ=h for all h.

A technique called rightmost sweep is useful for the re-use of buckets[10]. The
following propositions and lemmas regard the availability of buckets.

Proposition 6. For an iteration inputting pattern P , no bucket of i ≤ tail(P )
is accessed from the beginning of the iteration to the termination of the iteration,
including the execution of the recursive calls.

An iteration adds items i larger than tail(P ), and tail(P ∪{i}) > tail(P ) always
holds. Occurrence deliver accesses only the buckets of i satisfying i > tail(P );
thus the statement holds. Proposition 6 indicates that when we generate a re-
cursive call with respect to P ∪ {i}, the bucket of any j < i is preserved until
the end of the recursive call. Thus, we consider the following algorithm PFIM
(Pseudo Frequent Itemset minor) that generates recursive calls in decreasing
order of indices.

PFIM(P , Occ′≤k(P ))
1. Output P
2. Apply occurrence deliver to Occ′≤k(P )
3. if |Occ≤k−1(P )| ≥ σ then L := {tail(P ) + 1, . . . , n}
4. else L := {i | |Occ=k(P ∪ {i})| > 0}
remove i �∈ CHD(P ) from L and initialize the bucket of i

5. end if
6. sort items in L in the decreasing order
7. while L �= ∅ do
8. extract the head i of L
9. call PFIM (P ∪ {i}, Occ′≤k(P ∪ {i}))
10. initialize the bucket of i
11. end while

This algorithm re-uses buckets; thus the buckets to be used seem to be not
initialized at the beginning of an iteration. However, if we can prove that those
buckets are actually initialized at the beginning, we can be assured of the cor-
rectness of the algorithm.

Lemma 3. If all buckets of i > tail(P ) are initialized at the beginning of an
iteration of PFIM inputting pattern P , then the buckets of i > tail(P ) are also
initialized at the termination of the iteration.

Proof. We prove the statement by the induction, starting from the leaves of the
computation tree of the algorithm. For any iteration, we define its height by 0
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if it generates no recursive call, and the maximum height plus one otherwise.
The height is the distance to the farthest leaf among its descendants in the
computation tree.

First, we consider an iteration that generates no recursive call. In such an it-
eration, all buckets inserted some elements in step 2 are initialized in step 4,
thereby L has no element. Thus, the statement holds.

Next, we suppose that for any iteration of height at most h satisfies the
statement, and we consider an iteration I of height h + 1. Let P be the input
pattern of I and suppose that at the beginning of I, the bucket of any i > tail(P )
is initialized. Of the buckets holding some elements in step2, the buckets of
i �∈ CHD(P ) are initialized in step 4. Several recursive calls are generated in the
loop from step 7 to step 12. Suppose that i is the head of L. When we generate
the recursive call with P ∪{i}, the bucket of any j > tail(P ∪{i1}) is initialized
since L is sorted in decreasing order. From the assumption of the induction, the
bucket of any j > tail(P ∪{i}) is initialized after the termination of the recursive
call. Then, the bucket of i is initialized. Since i is extracted from L, for the new
head i′ of L, the bucket of any j > i′ is again initialized. In this way, recursive
calls are generated with satisfying the assumption of the statement. Thus, after
generating recursive calls for all items in L, the bucket of any j > tail(P ) is
initialized. 	

Form the lemma, we obtain the following theorem.

Theorem 2. Algorithm PFIM uses O(||D||) memory and enumerates all k-
pseudo frequent itemsets in D in O(

∑
P∈F ||Occ≤k(P )>tail(P )|| + log n) =

O(|F| × ||D||) time, where F is the family of k-pseudo frequent itemsets.

Proof. The correctness of the algorithm is obvious from the correctness of Algo-
rithm Backtrack and Lemma 3. The statement for the memory usage is clear
from the re-use of buckets.

Next, we discuss the computation time. Step 2 is done in
O(||Occ≤k(P )>tail(P )||) time, and step 6 is done in O(|CHD(P )| log n)
time. Other steps can be done in O(|CHD(P )|) time. Thus, by taking the sum
over all k-pseudo frequent itemsets, the total computation time is bounded by
O(

∑
P∈F (||Occ≤k(P )>tail(P )|| + log n)) = O(|F| × ||D||). 	


The structure of the algorithms is almost equal to that of LCM[10,11,12] for
the frequent itemset enumeration. Our algorithm can be used together with
practical efficient techniques such as database reduction, thus our algorithm
should perform well in practice.

5 Efficient Computation in Practice

In this paper, we use the k-pseudo inclusion relation as a model of ambiguous in-
clusion. Although this is a natural modeling, it has a weak point in practice; that
is, many small patterns are k-pseudo frequent. For example, any pattern whose
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size is no greater than k is a k-pseudo frequent itemset, and an addition of any
item to a (k − 1)-pseudo frequent itemset also yields a k-pseudo frequent itemset.
In the real-world problems, we may not have much interest in these small patterns.

To cope with this difficulty, we often enumerate only the maximal patterns
in the sense of set inclusion. However, possibly so many small itemsets have k-
pseudo frequencies close to the minimum support, many of these small patterns
become maximal. Moreover, we lose non-maximal but large k-pseudo frequent
itemsets. Thus, we here address the method for enumerating k-pseudo frequent
itemsets of given size l directly. For a pattern P and its item i, let Occ∗=k(P, i)
be the set of k-pseudo occurrences T of P such that T does not include i, i.e.,
Occ∗=k(P, i) = {T | T ∈ Occ=k(P ), i �∈ T }.

Lemma 4. For any pattern P , there exists a sequence of its items
(i1, i2, . . . , i|P |) such that for any y, |Occ≤k−1({i1, . . . , iy})| ≥ |Occ≤k(P )| |P |−y

|P |
holds.

Proof. Let (i1, i2, . . . , i|P |) be the items of P sorted in increasing order of
|Occ∗=k(P, ij)|, i.e., for any 1 ≤ y < |P |, |Occ∗=k(P, iy)| ≤ |Occ∗=k(P, iy+1)| holds.
Consider the (k−1)-pseudo frequency of pattern {1, . . . , y} for some 1 ≤ y < |P |.
For any j > y, {1, . . . , y} is included in any transaction of Occ∗=k(P, ij) in the
sense of (k−1)-pseudo inclusion. Observe that the average of |Occ∗=k(P, ij)|, 1 ≤
j ≤ |P | is at most |Occ=k(P )| k

|P | , and one transaction is included in Occ∗=k(P, ij)

at most k j’s. Thus, we see that the cardinality of
⋃|P |

j=y+1 Occ∗=k(P, ij) is at least

(|P |−y)×|Occ=k(P )| k
|P |/k = |Occ=k(P )| |P |−y

|P | . Since |Occ≤k−1({i1, . . . , iy})| =

|Occ≤k−1(P )| + | ⋃|P |j=y+1 Occ∗=k(P, ij)|, the sequence (i1, . . . , i|P |) satisfies the
statement. 	

For given a constant l and a pattern P such that |P | < l, we call the condition
|Occ≤k−1(P )| ≥ σ l−|P |

l the partial frequency condition, and we denote by K the
set of all k-pseudo frequent itemsets of size less than l satisfying the partial
frequency condition. From the lemma, we can see that any k-pseudo frequent
itemset of size l can be generated by adding items by passing through only
patterns in K, thus we can use the condition for pruning the iterations. The size
of K is expected to be smaller than that of k-pseudo frequent itemsets of sizes
of at most l, thus the computation time will be short.

For such a generation, we can not use the usual tail extension, since for some
P ∈ K, P \ {tail(P )} may not be in K. On the other hand, if we add items
smaller than the tail, we may produce a pattern P = {i1, . . . , ih} ∈ K twice
from P \ {ij}, and P \ {ig} for some j �= g, Thus, we consider the following
generation rule to avoid duplicates.

Generation Rule: Generate each pattern P ∈ K only from the pattern P \
{i}, i ∈ P maximizing |Occk−1(P \{i})| among all patterns obtained by removing
an item from P . Ties are broken by lexicographical order.

Lemma 5. Adding items under the generation rule, any P ∈ K is generated
exactly once.
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An enumeration algorithm using such a generation rule is called reverse search[3].
The algorithm is as follows.

ReverseSearch (P )
1. if |P | = l then output P ; return
2. for each i �∈ P do
3. if |Occ≤k(P ∪ {i})| ≥ σ then // k-pseudo frequency check
4. if |Occ≤k−1(P ∪ {i})| ≥ σ

l (l − |P |) then // partial frequency check
5. if P and P ∪ {i} satisfy the generation rule then

call ReverseSearch (P ∪ {i})
6. end for

Lemma 6. The computation time of an iteration of the algorithm Revers-
eSearch is O(|P | × ||D||).

Proof. The key to the computation time is steps 3, 4 and 5. For steps 3 and 4,
we explained that they can be done in O(||D||) time, thus we have to consider
only step 5. It checks the generation rule, by computing |Occ≤k−1(P ∪{i}\{j})|
for all j ∈ P . This takes O(||D|| × |P |) in a straightforward way, we thereby
explain how to decrease it.

Observe that |Occ≤k−1(P∪{i}\{j})| = |Occ≤k−1(P∪{i})|+|Occ= k(P∪{i})\
Occ({j})|. Since Occ≤k−1(P ∪{i}) can be obtained in O(||D||) time, all we have
to do is to compute |Occ=k(P ∪{i})\Occ({j})| quickly. For the task, we maintain
the set Occ=k(P ) ∩ Occ({j}) for j ∈ P in memory, and update them in each
iteration. This takes O(||D||) time by occurrence deliver. Using these, we can
compute |Occ=k(P ∪{i}) \Occ({j})| for all j ∈ P in O(||Occ=k(P ∪{i})||× |P |)
time. Since the sum of ||Occ=k(P ∪ {i})|| over all i �∈ P never exceed ||D||,
the time to compute |Occ=k(P ∪ {i}) \ Occ({j})| for all pairs of i and j is
O(|P | × ||D||). 	


6 Conclusion and Future Work

In this paper, we introduced an ambiguous inclusion relation to the frequent
itemset mining as a meaning of dealing with errors and ambiguities. We chose a
model for ambiguous inclusion by relaxing the inclusion relation so that several
items can be excluded, and formulated the pseudo frequent itemset enumeration
problem by the inclusion relation. To solve the problem, we proposed an efficient
polynomial delay polynomial space algorithm. The algorithm inherits the struc-
ture from the existing efficient frequent itemset mining algorithms, thus we ex-
pect that it will have high performance in practical use. To skip many small and
non-valuable frequent itemsets, we propose an algorithm for directly enumerat-
ing frequent itemsets of a certain size. As future works, to evaluate the efficiency
in the real-world problems implementation of the algorithm and computational
experiments are crucial. Another interesting research topic is extensions of the
technique in this paper to other frequent pattern mining problems.
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Abstract. A number of explicit and implicit feedback mechanisms have
been proposed to improve the quality of the search engine results. The
current approaches to information retrieval depends heavily on the web
linkage structure which is a form of relevance judgment by the page au-
thors. However, to overcome spamming attempts and the huge volumes
of data, it is important to also incorporate the user feedback on the page
relevance of a document. Since users hardly give explicit/direct feedback
on search quality, it becomes necessary to consider implicit feedback
that can be collected from search engine logs. In this article we evaluate
two implicit feedback measures, namely click sequence and time spent in
reading a document. We develop a mathematical programming model to
collate the feedback collected from different sessions into a partial rank
ordering of documents. The two implicit feedback measures, namely the
click sequence and time spent in reading a document are compared for
their feedback information content using Kendall’s τ measure. Experi-
mental results based on actual log data from AlltheWeb.com demon-
strate that these two relevance judgment measures are not in perfect
aggrement and hence incremental information can be derived from them.

Keywords: implicit feedback, search engines, relevance judgment.

1 Introduction

The World Wide Web (WWW) is a very important tool to locate information.
In the early 90’s the number of pages in the web was of the order of thousands
and web directories was quite sufficient to locate the needed information. But
the growth of WWW has complicated the information retrieval process. The
April 2007 web server survey estimated a total of 113,658,468 active sites in the
web [1]. Given this volume of data, browsing through all the sites even with
the help of directories becomes impossible. Search engines came into existence
in the mid 90’s to overcome this problem. Search engines are information re-
trieval systems which help the user to find the needed information by posting
queries.

Initially, search engines were using traditional information retrieval (IR) tech-
niques, in which the keyword similarity between the query and the documents
was used to identify the required documents [2]. These techniques suffered from
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problems such as, lack of coherence, lack of self description and manipulations
done by site owners to mislead the search engines (spamming) [3]. To overcome
these problems, web linkage structures were used in Page Rank [4] and HITS
algorithms [5] in addition to the traditional IR techniques. Though the web link-
age structure captures the importance of the pages to a larger extent, it still does
not satisfy user requirements in many situations . It still demands the users to
reformulate their queries until they identify the information.

Hence, it would be preferable, if the search engine learns to incorporate the
thinking process with which a user reformulates his queries and the intelligence
with which he/she selects certain pages to visit from the big list of results. User
feedback (explicit and implicit) can be used to decipher this user intelligence.
Since most of the users cannot be convinced to give direct feedback (explicit)
on search results it becomes imperative to use implicit feedback. Whenever a
user searches the web using a search engine the user will leave a trace of his
activities in the log files of the search engine server. This log can be used as a
source of information for relevance feedback (i.e., the relative importance of the
pages with respect to the query posed). But the most challenging part of using
the log file lies is in interpreting the log files. In this article we evaluate the
information content of the different fields in the search engine log file. Specifi-
cally we evaluate the information content of click sequence and the time spent
by the user in reading through a document for its utility as implicit relevance
feedbacks.

The rest of this paper is structured as follows: It starts with a literature
review that briefly discusses about implicit and explicit feedback mechanisms
explored by other researchers. Section 3 formally introduces the problem and
it also describes how the click sequence and time spent in reading a document
can be converted in to preference orders. Section 4 develops a mathematical
programming model that aggregates the user preferences across multiple sessions
into a combined ranking. Finally in Section 5 we discuss the experimental results
that demonstrates the differential information content in the.click sequence and
time sequence ranks.

2 Literature Review

A search engine is an automated system which will search for the documents
matching a query on behalf of the user. Initially information retrieval (IR) tech-
niques like term matching was used for the document retrieval [6][7][2]. Later
the linkage structure of the web was used in addition to the IR techniques [4][5].
Active spamming by site owners reduces the quality of the results presented
by the search engine. The web linkages structure only captures the relevance
judgment of authors of web-pages and not that of the readers/users. The users
know the best about their information needs and hence are the right persons to
give judgment on it. Hence the need is to identify and incorporate user experi-
ence/feedback in the search engine.
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The idea of relevance feedback has been used to incorporate the user expe-
rience in improving the query and the results for the future sessions. It is the
information given by the user during and/or after his search and it could be
explicit or implicit. In explicit feedback, the users could be asked to rank the
documents. Such a task imposes an increased burden and increased cognitive
load on the users and many users may not be willing to share this information
[8][9]. The alternate solution is to acquire implicit ratings by watching user be-
havior. Implicit ratings include measures of interest such as whether the user
read a document and, if so, the order in which users read the documents and
how much time the user spent reading them. White et.al [9] and Claypool et.al
[10] had done experiments to compare the explicit and implicit relevance feed-
back systems. They concluded that implicit feedbacks are viable to substitute
the explicit counterparts. Since they are hard to come by.

The implicit feedback mechanism can be used for query expansion during
short-term modeling of users’ immediate information need and user profiling
during the long-term modeling of users’ persistent interests and preferences [11].
The chain of queries posted by the user and the subsequent documents visited
by them can be stored in the log files of the search engines and this information
can be used to develop a recommender system which will help reformulating
the queries [12] [13] [14]. Radlinski et.al [15] used the set of queries used by the
users within a session to help refining the queries for the future users. But in
this paper only the users’ relevance judgment of documents presented by search
engines gathered through implicit feedback is studied.

Goecks et.al [8] used the hyperlinks clicked, mouse and scroll activity of the
user as an implicit feedback to learn his/her profile. Kim et.al [16] used the read-
ing time and the printing behavior of the user as a proxy to the users’ document
preference. Kelly et.al [17] discussed the possibility of using the display time of a
document in the browser as an implicit feedback to measure the document pref-
erence. In all these works, the implicit feedbacks were recorded at the browser
end by suitably designing the browser and the feedbacks were used to model the
user profile.

Joachims [18] used the set of pages selected by the users to develop a partial
ranking and SVM has been used to convert these preference orders into weights
which forms the ranking function. It was assumed that the pages requested by
the users are relatively more important than the other pages in the results. A
variation of this technique has been proposed by Tan et.al [19]. It includes the
co-training of SVM weights by considering different features and augmenting
them into single preference weight. But information in form of preference rela-
tions within the set of pages selected by the user has been ignored in these two
models.

Even though many researchers have confirmed the fact that the time is an
effective implicit feedback measure, they all recorded it only at the browser end
[16][17]. Only few attempts had been made to use the time entry of the log file,
as a feedback [20]. Ramachandran studies the use of time measures as relevance
feedback and identifies the issues to be addressed in using them [21]. This paper
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attempts to extract the time spent by the users on the selected documents from
the log file. It also contrasts this feedback information with the order in which
the user visited the pages to discover user relevance judgments.

3 Mining User Preferences from Log Files

Usually, the user of a search engine will pose a query based on his/her infor-
mation needs. Once that need is satisfied he/she will stop searching further.
Unfortunately not all the users are experts to be able to identify the needed
information in their first attempt. The order in which the user visits the URLs
can be taken as a measure to judge the relative preference of the user. The time
spent in those selected pages is also a measure of importance of the page for
the query posed. These two information (i.e., sequence of pages visited and time
spent on each page) can be stored in the search engine log files. The click se-
quence is an indication of the relevance judgment given by the user based on
the short abstract accompanying the links. The time spent on the pages selected
gives the relevance judgment of the user after visiting the page. So, intuitively
the rank orders based on these two pieces of information individually need not
be same. This is because a person who felt a URL to be interesting by reading
the abstract, may feel the page to be irrelevant after spending some time on it.
Also these two ranking schemes can be different from the rankings published by
the search engines [18] [19] [20]. The objective of this article is to generate two
ranking schemes based on these two feedback measured and to contrast the two
using the standard Kendels τ measure.

Let Q be the the set of queries, D be the set of documents visited through
those queries, S be set of sessions and Sq ⊆ S be the set of sessions in which the
same query q ∈ Q has been posted. Then the preference order or rank order rs

given by the user in the session s ∈ S in response to query q can be represented as
a binary relation � rs over D×D that will establish the properties of strict weak
ordering (i.e., anti-symmetric and transitive). For any two documents di, dk ∈ D,
if di � rsdk, then it means that the user prefers di than dk in session s. These
preferences across various sessions need to be aggregated to get a single ranking
for a particular query.

3.1 Preference Orders Based on Click Sequence

The click sequence is the order in which the user has visited the documents
presented by the search engine. In this paper it is assumed that the user takes a
partially informed decision based on the short abstract accompanying the link in
the results page. So, if an user visits a link, it means that the user has selected
that link only after reading the short abstract of all the links that was presented
before selecting and visiting the link. Hence, this order is a clear indication of the
user’s relative preference and it can be directly taken as the relative preference
order ro

(s) for the session. The implicit assumption here is that the user has
reviewed all the results, even though typically only 10 limits are presented in
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one page. Studies have shown that 62% of users abandon after the first page,
and nearly 90% after the first 3 pages [iProspect Search Engine User Behavior
Study, April 11, 2006, White paper].

3.2 Preference Orders Based on Time Measure

The click sequence gives only the ranking given by the user based on the ab-
stract accompanying the URLs in the search results page. This inference is based
on incomplete/partial information. Since the relevance judgment is based only
on the text accompanying the result, the user may feel it irrelevant immedi-
ately after seeing its content and may return back to the search results page to
visit another link. Hence, the click sequence alone is not very reliable feedback
measure. This necessitates the search for additional measures which can give
relative relevance judgment of the user given after reading the document. The
user will read a document for a longer time, if he/she feels it’s contents to be
relevant. Hence, time spent on a document will be a useful relevance judgment
measure.

The time spent in a particular document can be calculated from the click time
of that document and the click time of the next immediate click in the same ses-
sion. It is assumed that the user is not opening more than one window/tab at
a time and he/she is reading the selected page till he find, it irrelevant. Further
it is assumed that the user is not distracted by other activities while reading
the document and hence the time measures are assumed to be unbiased. Let Tl

be the time of selection of URL l and Tl+1 be the time of selection of the URL
which is immediate next to l in the log file, then the time spent on URL l is
given by:

tl = Tl+1 − Tl (1)

Here the time spent is only an indicator to establish the partial ordering over
the document set D. Hence, it can be directly used. Otherwise normalization,
inter and intra session comparability issues need to be addressed [21]. The visited
documents can be sorted based on the time spent, to get the partial ordering
rt

(s).

4 Preference Aggregation

The rank orders r(s) given in all sessions s ∈ Sq need to be combined to get a
single rank order for the query q. The combined ranking should order the doc-
uments with a minimum deviation from the multiple rank orders sourced from
the different sessions. Such an aggregation can be done indirectly by deriving
a function which will assign weights to all the documents, so that most of the
rank ordered pairs gets satisfied. The combined ranking can be obtained by or-
dering the documents based on these weights. Let F be the family of functions
that for each query ’q’ assigns a weight to each document in Dq. A function
f ∈ {F : q −→ R

|Dq|} has to be chosen such that most of the ordered pairs
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across the sessions with the same query are satisfied. Let rf(q) be the ranking
over Dq established by the weights from f(q), then it implies:

(di, dk) ∈ rf(q) ⇐⇒ wi > wk (2)

If (di, dk) ∈ rf(q), then it implies that di is preferred over dk as per the ranking
rf(q) (i.e., di ≺ rf(q)dk). So, the function f(q) has to assign weights to the docu-
ments in such a way that wi > wk ∀i < k (di, dk) ∈ rf(q). Such a functionf can
be trained by using the margin maximization technique. The following notations
are used in the model:

Indices/Sets:
Q : Set of queries in the training sample
D : Set of documents in the training sample
Dq : Set of documents visited by the users for the query q
Ds : Set of documents visited by in the session s
Sq : Set of sessions having the same query q
q : Index for the queries
i, k : Indices for the documents in Dq

j : Rank index
s : Index for the sessions

Parameters:
r(s) : Rank order given in session s
Rs : Function that maps the document i to the rank j given by the

rank order r(s). Rs(i) = {j : j is the rank of document di ∈ Dq

as per r(s)}
φs : Function that maps the rank j from r(s) to the index i of the

document in the set Dq. φs(j) = {i : di ∈ Dq, Rs(i) = j})
C : Control parameter to tradeoff between the training error and margin size
ξiks : Non-negative slack variables (deviations) for the document pair (di, dk)

in the session s

Decision Variables:
wi : weight of the document di

The weights of the documents for a query q can be calculated by considering
each of the preference relation given by the user as a constraint and the basic
formulation is as follows:

Minimize :
1
2
wTw

Subject to :
wi > wk ∀(di, dk) ∈ r(s), ∀s ∈ Sq

wi ≥ 0 ∀i

This formulation will be feasible only when the preference order given by the
users are consistent. But most of the times the users’ preference orders will be
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conflicting, so, while aggregating there is a possibility that the above formulation
might lead to an infeasible solution. So, a non-negative deviation variable ξijs

is added while considering each of the documents pair (di, dk) with respect to
session s. But still there is a possibility to get 0 weights for all the documents
except any one of the document. In order to force the weights to move from
this trivial solution 1 − ξiks is added for each pairwise comparisons in the above
model.

Minimize :
1
2
wTw + C

∑
iks

ξiks

Subject to :
wi > wk + 1 − ξiks ∀(di, dk) ∈ r(s), ∀s ∈ Sq

ξiks ≥ 0 ∀i, k, s

wi ≥ 0 ∀i

In general a user does not visit all the documents in Dq and hence the ranking r(s)

given in the session s will not be complete. If the rankings given are over a subset
of Dq then the weights obtained from the above model might be misleading. For
instance, let Dq = {d1, d2, d3, d4, d5} and there are 3 sessions (3 rankings). Let
r(1) =⇒ d2 ≺ d5 ≺ d3, r(2) =⇒ d2 ≺ d4 and r(3) =⇒ d1 ≺ d2. In the first
two sessions the document d2 is preferred than other documents and in the third
session the document d1 is preferred than d2. The document d2 has been selected
in all the 3 sessions and out of those three, twice it was ranked 1, hence, d2 is
expected to get more weigtage. But the above model will rate d1 as the best
because the document d1 has got selected only once and in that session it was
ranked better than d2 which is the best document in the other two sessions.
Hence, the above model needs to be tuned to overcome this drawback.

Let Ds ⊆ Dq be the set of documents visited in the session s, then the ranking
r(s) will establish an ordering over the set Ds rather than in Dq. In this article it
is assumed that all the documents in the set Ds are preferred to the documents
in Dq−Ds and all the documents in Dq−Ds are equally ranked. Establishing the
order given over Ds is more important than the comparisons given over Dq −Ds.
So those comparisons given over Ds should be given more consideration than
the others. The weights can be assigned as follows.

Consider the session 1 (r(1) =⇒ d2 ≺ d5 ≺ d3) in the above example. If the
relations are consistent and taken together then the relation d2 ≺ d5 is not only
explaining the relation d2 ≺ d5 but it also explains all the other relations of
d2 like d2 ≺ d3, d2 ≺ d1 and d2 ≺ d4, hence, it should be given a weight of 4.
Similarly the relation d5 ≺ d3 should be given a weight of 3. Since the documents
d1 and d4 were not visited in session s they both are considered to be equally
preferred and hence the relations d3 ≺ d1 and d3 ≺ d4 doesn’t explain any thing
more than what it is, therefore, they should be given a weight of 1 each. The
weights to these comparisons (constraints) can be incorporated in the model
by giving the respective weights to the deviational variable ξis in the objective
function. The modified model is given below:
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Minimize :
1
2
wT w + C

|Sq|∑
s=1

⎡
⎣|Ds|−1∑

j=1

(|Dq| − j) ξφs(j)s +
∑

di∈|Dq−Ds|
ξis

⎤
⎦

Subject to :
wφs(j) > wφs(j+1) + 1 − ξφs(j)s ∀(dφs(j), dφs(j+1)) ∈ Ds, ∀s ∈ Sq

wφs(|Ds|) > wi + 1 − ξis ∀di ∈ Dq − Ds, ∀s ∈ Sq

ξis ≥ 0 ∀i, s

wi ≥ 0 ∀i

The above model will assign weight to all the documents in Dq such that the
rank ordering implied by those weights will satisfy most of the preference orders
given by the users of the individual sessions. We denote this optimal preference
order by rf(q) and it can be taken as ro

(q) or rt
(q) depending on the type of

feedback used in the model.
Next we use this model on an actual search engine log file to test the infor-

mation content in the two types of feedback measures under consideration.

5 Experimental Results

In this experiment a 24 hour (i.e., one day ) log data recorded on 6th February
2001 by AlltheWeb.com has been used. This data set has been previously
used to study the emerging trends in web searching by Jansen et.al [22]. A small
description of the dataset is given in the Table 1.

A snapshot of this dataset is given in Table 2. Each tuple in the dataset
corresponds to a click event made by a user. The log contains the userID (masked
IP), clickTime (i.e., the time at which the click has been made), the query posed
and the URL on which the click has been made. In the experiment the entries
that have same userID, same query and the clickTime within 30 minutes are
considered to belong to the same session. For example in the Table 2 the user
4.16.116.98 has posted two queries “free pics” and “free download mp3“ one
after the other and in this experiment this will be split into two sessions. In this
experiment, 30 non-trivial queries (omitting queries like ”google“) were chosen
that had sufficient number of sessions (≥ 8). These 30 queries will form the query

Table 1. Descriptive statistics of the log data

Variables Count Percentage

Queries 451,551
Mean terms per query 2.4
Mean pages viewed per query 2.2
Terms per query
1 term 113,447 25%
2 terms 161,541 36%
3+ terms 176,563 39%
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Table 2. A snapshot from the log file

UserID clickTime query clickURL

4.16.103.153 14:47:19 mp3 to wave www.mp3towave.com/
4.16.103.153 15:00:23 cd to mp3 www.zy2000.com/
4.16.103.153 15:06:29 cd to mp3 www.birdcagesoft.com/
4.16.116.98 22:19:03 free pics kingdomcum.com/
4.16.116.98 22:19:14 free pics kingdomcum.com/
4.16.116.98 22:19:46 free pics www.adult-worx.com/pics/
4.16.116.98 22:22:23 free download mp3 www.mp3dd.net/

Table 3. Order-based and time-based rank frequency distribution of the documents
for query “waitangi day”

Order-based Time-based
URLs 1 2 3 4 5 6 7 1 2 3 4 5 6 7

www.hpl.govt.nz/Waitangi.html 1 4 3 2 0 0 0 4 3 2 1 0 0 0
www.kidlink.org/KIDPROJ/MCC/mcc0361.html 1 0 1 1 1 0 0 2 0 1 1 0 0 0
www.maaori.com/develop/waitangi99.html 0 1 0 0 0 0 0 1 0 0 0 0 0 0
www.mtcarmelchurch.org/waitangi/ 15 1 3 0 1 0 0 9 5 3 2 1 0 0
www.muaupoko.iwi.nz/claims.htm 0 1 0 0 0 0 0 0 1 0 0 0 0 0
www.nzhistory.net.nz/gallery/treaty/ 2 8 2 2 1 1 1 1 6 5 2 1 1 1
www.pasifika.net/ 0 0 0 0 1 0 0 0 0 0 0 1 0 0

set Q and the documents visited through these queries put together will form
the set D.

For each query, the order in which the user has clicked the URL is considered
as the judgment made by the user before reading the document. This judgment
is based only on the short text accompanying the link. It is the order in which
the URL gets logged in the log file. But the time based preference order is not
explicit. The time spent by the user in a document is calculated as described
in Section 3. The documents were then sorted based on the relative time spent
by the user within the same session. This sorted order is used as the user’s
preference order given after glancing the document. For example the click order
based and time order based ranking of the documents with respect to the query
“baby names” is given in the Table 4.

The order based information is ordinal and the time based information is con-
tinuous, so, the time based ranking will be more sensitive and hence less skewed,
but, the order based ranking will be skewed. It is highly probable that a page
which has been selected first by many of the users to get a different ranks in the
time based ranking. This fact is very much seen in the distribution of these two
ranks. One such instance is explained in the Table 3. In Table 3 the order based
rank frequency distribution for the page www.mtcarmelchurch.org/waitangi/
is highly skewed when compared to the time based rank frequency distribu-
tion.
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Table 4. A Few sessions for query “baby names“

session click Time click Order Time
ID Time Spent(s) URL Rank Rank

1 5:22:54 37 www.kabalarians.com/ 1 3
1 5:23:31 53 www.babynamer.com/ 2 2
1 5:24:24 122 www.babycenter.com/babyname/ 3 1
1 5:26:26 0 www.heptune.com/names/nameinde.html - -
2 18:24:32 5 www.babynames.com/ 1 3
2 18:24:37 24 www.kabalarians.com/ 2 2
2 18:25:01 57 www.babycenter.com/babyname/ 3 1
2 18:25:58 0 www.babycenter.com/babyname/ - -

If the user visits n documents in a session, there won’t be sufficient information
to calculate the time spent by the user in the nth (last) document. So the time
spent on the nth document is assumed to be 0. But this information loss is not
very predominent in the dataset, since in most of the sessions the last visited
pages is not the same. It is evident in the example given in Table 4.

These session based rankings were combined using the quadratic program
mentioned Section 4. The quadratic program will give the weight of each pages
with respect to a particular query. The pages were arranged based on their
weights to get the combined ranking. But these rankings are partial rankings
(with ties). The partial rankings got from the quadrating programming for the
query “baby names” is given in Table 5.

For all the 30 queries the partial rankings were calculated as explained above
and they were compared using the Kendall τ rank correlation coefficient[23]. In
this article pairs that are tied in both the rankings are considered to be concor-
dant. The distribution of Kendall’s τ for the 30 queries is shown in Figure 6.

Table 5. Combined Ranking for query “baby names”

URLs Order Rank Time Rank

www.babynames.com/ 1 3
www.babynamer.com/ 2 1
www.babyuniversity.com/ 2 6
www.kabalarians.com/ 2 3
www.babycenter.com/babyname/ 5 1
www.indiaexpress.com/specials/babynames/ 6 6
www.heptune.com/names/nameinde.html 6 6
www.girlbabynames.com/ 6 6
bnf.parentsoup.com/ 6 3
callmenames.com/ 6 6
www.zelo.com/firstnames/ 11 6
babyzone.com/babynames 12 12
www.thinkupnames.com/ 12 12
www.4babynames.com/ 12 12
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Table 6. Kendall’s τ distribution for the test data set

Kendall’s
measure

<0.2 0.2-0.4 0.4-0.6 0.6-0.8 >0.8

Frequency 3 13 10 4 0

Table 6 shows the distribution of τ to be skewed towards 0. For around 86%
of the queries the Kendall’s τ measure is less than 0.6 and for nearly 55% of
the queries the Kendall’s τ measure is less than 0.4. This indicates a strong
tendency of the two ranking mechanisms to be independent. This observation
is quite interesting because it indicates that the information content in the two
feedback measures are not in complete conformity with each other and hence
some incremental information can be gathered from them.

6 Conclusion

The need to overcome spamming attempts by page authors highlights the im-
portance of incorporating the user relevance judgments on the quality of a page.
However, users can rarely be motivated to give direct/explicit feedback on page
quality. In this article we evaluated two implicit feedback measures that can
be collected from search engine log files. Specifically we considered the click
sequence and the time spent by a user in reading a document as measures of
document importance for a query. Initially, we developed a mathematical pro-
gramming model to collate the feedback from different session and provide an
overall partial ordering of the documents. These partial ordering were then eval-
uated to determine if they conveyed the same information or not by Kendall’s
τ measure. Further experiments were conducted on an actual search engine log,
which indicated that the partial ordering of documents are different and hence
there is incremental information content in the two implicit feedback measures.
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Abstract. Studies on the structure–activity relationship of drugs essentially 
require a relational learning scheme in order to extract meaningful chemical 
subgraphs; however, most relational learning systems suffer from a vast search 
space. On the other hand, some propositional logic mining methods use the 
presence or absence of chemical fragments as features, but rules so obtained 
give only crude knowledge about part of the pharmacophore structure. This 
paper proposes a knowledge refinement method in the chemical structure space 
for the latter approach. A simple hill-climbing approach was shown to be very 
useful if the seed fragment contains the essential characteristic of the 
pharmacophore. An application to the analysis of dopamine D1 agonists is 
discussed as an illustrative example. 

Keywords: Knowledge refinement, Chemical structure space, Structure activity 
relationship, Pharmacophore. 

1   Introduction 

It is important to establish relationships between the structures of chemical 
compounds and their physiological activities. After King et al. succeeded in applying 
the inductive logic programming method to mutagenicity analysis [3], several 
techniques were proposed for extracting characteristic substructures from chemical 
compounds with a variety of structures [7]. In one of these approaches, a mining 
technique is confined to propositional logic, and numerous substructures are 
generated initially and used as features. Then, a combination of a few features is 
expected to explain the pharmacophore. The problem with this approach is that the 
description of the pharmacophore is limited by the space expressed in the features. 
Therefore, the classifiers do not always show a substructure that medicinal chemists 
can understand easily, even if the classifiers possess strong discriminating power. 

We applied this approach using linear fragments and the cascade model [5], and 
succeeded in determining new pharmacophore structures. However, chemists must 
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inspect all of the rule conditions and collateral correlations carefully, referring to the 
supporting chemical structures in translating rules to the pharmacophore structure, 
and the time and effort involved in this work is truly prohibitive. The purpose of this 
study was to find an easier way to obtain the pharmacophore. 

In this paper, we start from obtained rules, and place the essential fragment of the 
rule into the chemical structural formula space. The seed fragment is then refined to 
give the pharmacophore structure using a simple hill-climbing procedure. We expect 
this method to provide information that chemists can understand easily. 

2   Refinement Method 

The knowledge refinement system accepts a seed and searches its neighborhood to 
reach a pertinent piece of information. The pharmacophore knowledge is a 
substructure pattern that affects an activity, and we use the SMILES/SMARTS 
language as a way to specify chemical structures and the pattern. The Simplified 
Molecular Input Line Entry System (SMILES) is a line notation developed to enter 
and represent molecules and reactions using short ASCII strings [8]. SMARTS is a 
straightforward extension of SMILES language that describes molecular patterns 
[1]. 

We can easily retrieve molecules with a specified pattern when we apply a 
chemical structure database system using SMILES/SMARTS expressions. In 
addition, a chemist can enter a seed pattern based on an idea and start the refinement 
procedure. Once molecules matching the pattern are retrieved, their adequacy as the 
pharmacophore can be judged using the BSS values, and we can apply a hill-climbing 
approach in the search. It shares the idea of using SMILES string in the detection of 
the pharmacophore with SMIREP [2], but its building blocks and the optimization 
criterion is completely different from the refinement process proposed here. 

The refinement process necessitates a seed SMARTS pattern, a database of specific 
structures written in SMILES, and lists of atom and bond types (Table 1) to be 
inserted into the pattern. The following algorithm describes the refinement process: 

Algorithm 1. Refinement algorithm from a SMARTS pattern. 

(1) Set Alist to atom types and Blist to bond types. 
(2) Set ptrn to initial seed fragment written in SMARTS. 
(3) Compute BSS from the instances retrieved by ptrn. 
(4) Set maxBSS = 0.0. 
(5) For each combination of atom in Alist and bond in Blist, 
(6) For each position in ptrn, 
(7) Generate newptrn by inserting atom and bond at the position in ptrn. 
(8) Set tuples to the instances retrieved by newptrn. 
(9) Compute newBSS from tuples. 
(10) If newBSS > maxBSS,  

    set maxBSS = newBSS; maxptrn = newptrn. 
(11) If maxBSS < BSS then return ptrn. 
(12) Set ptrn = maxptrn; BSS = maxBSS 
(13) Goto step (4). 
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Table 1. Default atom and bond types lists that can be inserted into the seed fragment in the 
system. Lowercase letters indicate atoms in a conjugated system, and [ ] implies that one of the 
atoms in parentheses is to be chosen. 

List Elements 
Atom list: C, O, N, S, c, o, n, s, [I, Br, Cl, F] 
Bond list: -, =, : 

We employ the between-groups sum of squares (BSS), computed in step (9), to 
indicate the strength of the pattern [5], which is calculated by the following formula: 

∑ −=
α

αα 2g ))()((
2

BSS pp
n g

g
 (1) 

where p(α) and pg(α) are the probabilities of active/inactive compounds retrieved 
using the initial seed fragment and the newptrn, respectively, and ng is the number of 
compounds selected by newptrn. 

3   Results and Discussion 

The MDDR database by MDL Inc. was used as the data source [4]. It contains 369 
records that describe dopamine (D1, D2, and autoreceptor) agonist activity, with 63, 
143, and 186 active compounds possessing D1, D2, and autoreceptor activity, 
respectively. Some of the compounds affected multiple receptors. 

The knowledge refinement system is applied to the pharmacophore of the 
dopamine D1 agonist activity. Previously we analyzed this activity using the cascade 
model and obtained 16 rules, from which chemists selected the four rules. Here, we 
examine the strongest rule R1 shown in Table 2. The linear fragment in this rules is 
given to the refinement system as a seed pattern, and the resulting pharmacophore is 
evaluated comparing to the hand-carved pharmacophore shown in Fig. 1. 

Rule R1 has [O2H-c3:c3-O2H: y] as main condition and no preconditions exist. 
The change in the activity ratio is very sharp, from 17% in 369 compounds to 96% in 
52 compounds, and this might be detected using any mining method. However, this is 
not the final pharmacophore that chemists expect. 

Table 2. Rule suggesting the strongest characteristic of dopamine D1 agonist activity 

Rule ID #compounds Main condition Preconditions Distribution change 
R1 369 → 52 [O2H-c3:c3-O2H: y] none 17% →96% 

NH2OH

OH  

Fig. 1. Pharmacophore structure derived from the strongest rule for dopamine D1 agonist 
activity 
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Table 3. Structural formula of the seed fragment and five patterns generated from the seed in 
the refinement procedure 

 Step 0 Step 1 Step 2 Step 3 Step 4 Step 8 
BSS 12.2 12.2 14.0 14.0 22.3 22.3 
Support (Y/N) 57 / 58 57 / 58 35 / 15 35 / 15 35 / 2 35 / 2 
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Fig. 2. Example of structures supporting the refined pharmacophore at step 8 in Table 3. The 
bold line part indicates the final pattern obtained. Red is used instead of the bold line in the 
actual application. 

Let us examine the refinement results starting from the initial pattern OccO, which 
is a simplified interpretation of the main condition. Table 3 summarizes the process at 
steps 0–4 and 8. We can see that the BSS value increases at steps 2 and 4, while the 
value does not change at the other steps. Few alternative pattern candidates occur with 
the same BSS at every refinement step, but we reach the same final pattern even if we 
use other pattern expressions in the refinement process. The BSS increases at steps 2 
and 4 suggest that the attached components at these steps have significant meaning for 
understanding the pharmacophore. The decreases in the number of supporting 
negative instances are the main reason of these BSS increase, and chemists can 
recognize the group of compounds excluded by growth of the pattern. 

The resulting pharmacophore shown in step 8 of Table 3 is very similar to the hand-
carved one illustrated in Fig. 1. Some supporting molecules that form the final pattern are 
shown in Fig. 2, where the bold line indicates the pattern. Active and inactive molecules 
are shown at the top and bottom of the browser window. This illustration makes it very 
easy for chemists to evaluate the adequacy of the proposed pharmacophore. 

Another refinement starting from the initial pattern: [O;H1]cc[O;H1] has reached 
the identical structure to that in Fig. 1. This seed has attached hydrogen atoms at the 
oxygen, and it is the strict interpretation of the rule fragment. The seed had 52 
supporting compounds, of which 50 had dopamine D1 agonist activity. Only one 
inactive compound was deleted from the supporting compounds during the refinement 
process. This result shows that the fragment that appeared under the main condition of 
R1 has captured the essential point of the pharmacophore, and the refinement process 
has succeeded to capture the total pharmacophore structure. 
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4   Conclusions 

We have shown that knowledge refinement is very effective at determining valid 
pharmacophore hypotheses. The method used was a simple hill-climbing approach 
based on optimizing the BSS value. We cannot attain a valid conclusion if we start 
from an invalid initial pattern. Therefore, the success of our approach can be 
attributed to two reasons. First, we can start the refinement process from a fragment 
with good characteristics. Second, the BSS criterion used is an effective guide leading 
to a satisfactory hypothesis. 

Similar approaches are expected to provide high-quality knowledge in other 
domains. That is, a good starting hypothesis is obtained using the standard mining 
method, and then refinement proceeds in the original problem space. Some examples 
involve mining from sentences in natural language and from plant operations in which 
the quality of knowledge should be judged in the problem-specific representation space. 

From the viewpoint of applications in chemistry, the burden of rule interpretation 
has been reduced greatly. Moreover, the system allows chemists to incorporate their 
own ideas in the initial hypothesis, which can then give a somewhat unconstrained 
feeling to users. Our system is now one of the principal software components in the 
pharmacophore knowledge-base project being developed in our laboratory. 
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Abstract. Our aim is to reconstruct Claude Bernard’s empirical investigations
with a computational model. We suppose that he had in mind what we call “ker-
nel models” that provide simplified views of physiology, which allowed him to
make hypotheses and to draw out their logical consequences. We show how those
“kernel models” can be specified using both description logics and multi-agent
systems. Then, the paper will explain how it is possible to build a virtual experi-
ment laboratory, which lets us construct and conduct virtual experiments.

1 Introduction

During the past, there have been many attempts to rationally reconstruct scientific dis-
coveries with Artificial Intelligence techniques [5,2]. In a way, the science of discovery
results from those attempts. Nevertheless, a question remains concerning the logical
status of the discovery: is it mainly an inductive, a deductive on an abductive process?
Philosophers do not agree in this point; but whatever their underlying theories, it ap-
pears that inferences involved in discovery are many in number and various. Neverthe-
less, up to now, most of the simulations of scientific discovery processes that have been
achieved in Artificial Intelligence correspond to the simulation of inductive processes.
This paper constitutes an attempt to reconstruct some of the Claude Bernard’s scientific
steps that are mainly abductive. It explores with the help of Knowledge Representation
and Multi-Agent techniques, some aspects of the discovery science that are not directly
related to inductive processes.

Let us recall that Claude Bernard (1813–1878) was not only one of the most eminent
19th century physiologists, but also a theoretician who generalized his experimental
method in his famous book, “Experimental Medicine” [1], which is nowadays a classic
that all young students in medicine are supposed to have read. The goal of our project
[3] is mainly to clarify and to generalize this experimental method by formalizing it
with artificial intelligence techniques and by simulating it on computers.

More precisely, Claude Bernard had in mind an ontology of the physiology which
he used to express scientific hypotheses concerning both the organ functions and the
activity of toxic and/or medicinal substances. He also used this ontology to design ex-
periments that were intended to discriminate among the different scientific hypotheses.
Our first aim here is to rebuild the ontology described in the Claude Bernard’s works
with modern knowledge representations techniques. Then, we want to construct, on
the top of this ontology, “kernel models”, which simulate the experiments that Claude
Bernard’s had in mind when he investigated the effects of toxic substances, e.g. carbon
monoxide and curare.
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The first part formalizes the Bernard’s medical ontology. The second is dedicated to
the description of a two level model built to simulate his experimental method. The third
describes the notion of “kernel model”; the fourth, the virtual laboratory on the top of
which virtual experiments may be done. The final and last part envisages the hypothesis
generation module and other possible generalizations.

2 The Claude Bernard’s Ontology

In his writings, Claude Bernard presumes that organisms are composed of organs, them-
selves analogous to organisms since each of them has its own aliments, poisons, exci-
tations, actions etc. Organs are categorized into three classes – skeleton, tissues (e.g.
epithelium, glandular tissue or mucous membrane) and fibers (i.e. muscles and nerves)
– that are recursively sub-categorized into subclasses, sub-subclasses etc. Each class
and subclass has its own characteristics, which can easily be formulated, according to
Claude Bernard’s explanations.

The internal environment – i.e. the “milieu intérieur” –, mainly the blood, carries
organ poisons and aliments, while the organ actions may have different effects on other
organs and, consequently, on the whole organism. More precisely, for Claude Bernard,
life is synonymous of exchanges. The organisms exchange through the external medium
that is the air for outside animals or the water for fish. The external medium may also
carry aliments, poisons etc. Similarly, organs can be viewed as some sorts of organisms
living in the body and participating to its life. Their life is also governed by exchanges;
but the medium that supports exchanges is not air or water; it is the so-called “milieu
intérieur”, which mainly corresponds to blood.

The Claude Bernard’s ontology may simply be derived from these considerations. It
is then easy to formulate it in an ontology description language similar to those that are
nowadays used in the life sciences to represent biological and medical knowledge [7].
Note that most of the ontologies used in the biomedical community, for instance the
OBO – the Open Biological Ontologies http://obofoundry.org/ – refer to three levels:
one for the organs and the anatomy, the second for the cells and the third for molecules.
For obvious reasons the Claude Bernard’s ontology refers mainly to the first, i.e. to
organs and anatomy. However, it would possible to extend our model to a three level
ontology that is more appropriate in contemporaneous medicine. For instance, below
are some of the previous assertions expressed with description logics [6]:

– The organs are parts of the organism: Organ � ∃PART.Organism.
– The organs are tissues, skeleton or fibers: Organ ≡ T issue � Skeleton � Fiber
– Fibers may be nerves or muscles: Fiber ≡ Nerve � Muscle
– Nerves may be sensitive or motor: Nerve ≡ Sensitive Nerve � Motor Nerve
– Epithelium, glandular tissue, mucous membrane etc. are tissues: T issue �

Epithelium � Glandular T issue � Mucous Membrane � · · ·

3 Two-Level Model

As previously stated, abduction played a crucial role in Claude Bernard’s investigations.
More precisely, he always considered an initial hypothesis, which he called an “idea”
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or a “theory”. He then tried to test it by designing in vivo experiments. According to the
observational results of his experiments, he changed his hypotheses, until he reached a
satisfying theoretical explanation of empirical phenomena.

To design a computational model that simulates the intellectual pathways leading
Claude Bernard to his discoveries, we have supposed that he had in mind what we
call “kernel models”. Those “kernel models” contain basic physiological concepts —
such as internal environment, organ names etc. — upon which he builds his “ideas”.
More precisely, “ideas” correspond to hypothetical organ functions that Claude Bernard
wanted to elucidate, while “kernel models” describe the physical architecture of the
simplified organisms on the top of which his experiments were designed. Claude
Bernard assumed that one can use toxic substances as tools of investigation — he
evoked the idea of “chemical scalpel” — to dissociate and identify the functions of
different organs. He presupposed, as an underlying principle, that each toxic substance
neutralizes one organ first. The simulation of a “kernel model” makes explicit the con-
sequences of each working hypothesis. All his “ideas”, i.e. all his working hypothe-
ses, were then evaluated by the confrontation of their potential consequences, i.e. the
consequences derived from “kernel models” simulation, to the consequences observed
through empirical experiments.

Our aim, in this paper, is to build and to simulate those “kernel models” using multi-
agent architectures. Such simulations have to show, on a simplified view, both the nor-
mal behavior of the organism and the consequences of an organ dysfunction.

Nevertheless, other questions need to be solved when we want to rationally recon-
struct the discovery process: how are “ideas”, i.e. working hypotheses, generated and
how are validating experiments designed? In order to answer the first question, we add
to the “kernel model” a “working hypothesis management” module that has both to
guide working hypothesis generation and to design experiments. The second is out of
the scope of our study.

4 “Kernel Model” Simulation

The “kernel models” contain organs and connections between organs through the inter-
nal environment, mainly the blood. Both organs — e.g. muscles, hart, lung, nerves etc.
— and connections between organs are represented using agents that communicate with
other organs and evolves in the “milieu intérieur” viewed as the internal environment.
The agents correspond to the concepts of the previously described ontology. It is possi-
ble, for the internal environment, to lose or gain some substance, for instance oxygen,
and some pressure when passing by an organ. In the usual case, e.g. for muscles, the
input internal environment corresponds to arterial blood while the output corresponds
to venous blood. The organism, which is a set of connected organs, is modeled as a syn-
chronous multi-agent system, where each agent has its own inputs, transfer function and
states. The organ activation cycle follows the blood circulation. The time is supposed to
be discrete and after each period of time, the states of the different agents belonging to
the “kernel model” and their outputs are modified.

The implementation makes use of object oriented programming techniques. It helps
both to simulate the “kernel model” evolutions and to conduct virtual experimentations
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(see next section) on those “kernel models”, which fully validates our first ideas con-
cerning the viability of the notion of “kernel model”. Within this implementation, or-
gans, i.e. instantiations of concepts of the initial ontology, and connections between
organs are associated to objects that implement agents. The inheritance and instantia-
tion mechanisms of object oriented programming facilitate the implementation of those
agents. However, since our ultimate goal is to simulate the hypothesis generation and
especially the abductive reasoning on which relies the discovery process, we chose to
build “kernel models” using logic programming techniques on which it is easy to sim-
ulate logical inferences, whatever they are, either deductive or abductive.

The logic programming implementation is programmed in SWI Prolog1. It makes
use of modules to emulate object oriented programing techniques, i.e. mainly the in-
stantiation, inheritance and message sending mechanisms.

5 Virtual “Thought Experiments”

Once the “kernel model” is built, it is not only possible to simulate normal organism
behavior, but also to introduce pathologies (i.e. organ deficiencies) in the multi-agent
system that models the organism and then emulate its evolution. In a way, these ab-
normal behavior simulations can be viewed as virtual experiments: they help to draw
consequences of virtual situations under a working hypothesis, i.e. a supposition con-
cerning both the effect of a substance on some organs and the function of the implied
organs. In order to complete the range of virtual experiments, we introduce, according to
Claude Bernard’s practices, some virtual experimental operators, such as injection and
ingestion of substances, application of tourniquet on members, excitations, etc. For in-
stance, if one wants to understand the effects of a substance A, one can hypothesize that
its concentration in the blood may affect such or such organ subclass, which has such
or such function in the organism. Under these hypotheses, it is possible with the “ker-
nel model” simulation to predict the consequences of a direct injection of A combined
with any combination of experimental operations (applying a tourniquet on a member
and/or exciting another part of the organism before or after injecting the substance A
etc.). In other words, it is possible to specify virtual experiments and to anticipate the
subsequent model behavior under a working hypothesis.

To be concrete, take a simple example of intoxication with curare that is presented
in Claude Bernard’s personal writings. In this experiment, Claude Bernard poisons an
animal. The voluntary movements are the first to be paralyzed. This is only when respi-
ratory disorders appear, due to the paralysis of lung muscles, that the animal is asphyx-
iated. To simulate such an evolution, we introduced a virtual organism with a voluntary
muscle, a kidney that is progressively evacuating the curare and a muscle that control
the lung movements. We supposed that curare affects the muscles. We injected a dose
of curare in the virtual organism and we obtained the following evolution: if the curare
dose is sufficient, after 5 steps, the voluntary muscle is progressively paralyzed, but it
takes more than 30 steps to see the lung paralyzed and the animal asphyxiated. If the
curare dose is very low, the muscle is paralyzed, but there is no asphyxia, and the curare
is evacuated. etc.

1 See http://www.swi-prolog.org/ for more details.
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6 Conclusion

A virtual laboratory has been programmed in PROLOG. It allows to build virtual exper-
iments associated with different working hypotheses about the toxic effects of carbon
monoxide and curare. It was then possible to correlate those virtual experiments to ac-
tual experiments done by Claude Bernard, and then to corroborate or refute working
hypotheses according to the observations. As a consequence, we are able to computa-
tionally reconstruct part of Claude Bernard’s intellectual pathway. As it was previously
suggested, the virtual experiments are achieved under working hypotheses that assume,
for instance, that a substance A affects such or such a function of such or such an or-
gan class. Being given a toxic substance, one has to explore all the possible hypotheses
and suggest, for each, experiments that could corroborate or refute them by showing
observable consequences. It is the role of the working hypothesis management module
to investigate all these hypotheses. Nevertheless, the goal is neither to achieve, nor to
generate experiments, as would be the case with a robot scientist (see for instance [4]).
The next step is to build such an hypothesis management module.

We also investigate the possibility to build multi-scale “kernel models” in which
physiological behaviors can be studied at different scales — organ, cell, molecule etc.
—. It should open new perspectives to modern clinical medicine. As a matter of fact,
principles on which lay down Claude Bernard’s empirical method are always valid, even
if the ontology on which are built the “kernel models” considerably changed with time.
Today, the effect of new substances is usually studied at the cell or molecule scale, while
the organ scale was dominant at Claude Bernard’s epoch. A model that could help to
simulate the consequences of physiological dysfunctions at different levels would be of
great help to determine the effects of new substances by recording different experiments
and by ensuring that all the plausible hypotheses have already been explored.
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Abstract. In this paper, we show the different steps of an annotation
process that allows one to annotate data tables with the relations of a
domain ontology. The columns of a table are first segregated according
to whether they represent numeric or symbolic data. Then, we anno-
tate the numeric columns with their corresponding numeric type, and
the symbolic columns with their corresponding symbolic type, combin-
ing different evidences from the ontology. The relations represented by
a table are recognized using both the table title and the types of the
columns. We give experimental results for our annotation method.

1 Introduction

In the scientific world, many experimental data are produced and continually
published on the web; a lot of these data are presented synthetically in the form
of tables. Our aim is to create an XML data warehouse in which tables are
annotated with a domain ontology for subsequent querying. Our work is applied
to food microbiology and is integrated within an existing system called MIEL [1]
in which data are manually entered into a relational database, indexed with a
domain ontology. In this ontology, users select the food products, microorganisms
and relations that they are interested in: the database is then queried to find
data corresponding to or close to the users selection criteria. Our XML data
warehouse is designed to be queried simultaneously with the relational database:
the data in the tables from the web are annotated with the same ontology as
the one used in the MIEL system. The ontology is structured as follows:

– numeric types are described by the type name, the units for the type and
the interval of possible values for the type;

– symbolic types are described by the type name and the type hierarchy (the
possible values for the type, partially ordered by the subsumption relation);

– relations are described by the relation name and the relation signature, com-
pounded of a result type (the measure the experiment was set for) and access
types (controlled factors that vary according to the experimental plan);
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– the “no-result indicators” are terms used to represent the absence of data,
for example “No Result” or “NS” (for Not Specified);

– the stop-list lists words with low semantic content (articles, conjunc-
tions,. . . ).

There has been a lot of research on table recognition [2], but works on table
annotation using an ontology are rare. Techniques of wrapper induction based
on the structure, such as presented in Lixto [3], are not adapted to our problem
since each author structures his tables differently. The work in [4] is more similar
to ours: frames are constructed from tables using the table signature which is
deduced from an ontology. However, their ontology is generic and relations have
no a priori meaning as they are constructed directly from the table signatures,
whereas we want to recognize predefined relations in an ontology specific to
the targetted domain. In [5], relations from an ontology are instanciated using
various HTML structures including tables. They identify binary concept-role re-
lations between instances that are assumed to be recognized by a pre-treatment
which is not part of their process. Our work differs as we focus on the recog-
nition of n-ary relations and we propose a step-by-step algorithm including the
recognition of element types.

This paper is a following work of [6] with several enhancements: (1) we use a
different similarity measure between the terms from the web and the terms from
the ontology; (2) numeric columns are treated specifically; (3) column annotation
is more robust as it takes into account both column title and column content;
(4) scoring relations helps choosing which relations to use to annotate the table.

The first step of our annotation process consists in classifying columns as
numeric or symbolic (Sect. 2). The similarity measure between the terms from
the web and the terms from the ontology that we use through our annotation
process is presented in Sect. 3. Then we present the way of finding the type of a
numeric column (Sect. 4) and the type of a symbolic column (Sect. 5). We then
explain how we find the relations represented in the table (Sect. 6).

2 Distinction Between Numeric and Symbolic Columns

Let col be a column of the table we want to annotate. We search col for all
occurrences of numbers (in decimal or scientific format) and of units of numeric
types described in the ontology. We also count the words occuring in col: a
word is an alphabetic character sequence that is neither a unit nor a “no result
indicator”. Let c be a cell of the column col. We apply the following rules:

– if c contains a number immediately followed by a unit, or a number in sci-
entific format, then c is numeric;

– else, if c contains more numbers and units than words, then c is numeric;
– else, if c contains more words than numbers and units, then c is symbolic;
– if words are as numerous as numbers+units, the status of c is unknown.

Once all cells of the column col are classified using those rules, col is classified
as symbolic if it contains more symbolic cells than numeric cells: it is then fur-
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ther annotated according to Sect.5. Else, col is classified as numeric and further
annotated according to Sect.4.

3 Similarity Measure Between a Term from the Web and
a Term from the Ontology

Throughout our whole annotation process, we will be using a similarity measure
that allows to compare a term from the web with a term from the ontology, a
term being a set of consecutive words. The initial similarity measure used in [6]
was the proportion of words in common between the two terms. We go further
by manually weighting the words in terms from the ontology, according to their
importance in the meaning of the term. The different weights are: 0 for non-
informative words listed in the stop-list, 1 for the most informative word(s) of
the term, 0.2 for secondary words.Weighted terms are represented as vectors, in
which the coordinates represent the different possible lemmatised words and their
weight in the term (0 if the word does not belong to the term). The similarity
between a term from the web and a term from the ontology is then the cosine
similarity measure between the two vectors. Let w be a term from the web,
represented as the weighted vector w = (w1, . . . , wn) and o a term from the
ontology, represented as the weighted vector o = (o1, . . . , on).

sim(w, o) =
∑n

k=1 wk × ok√∑n
k=1 w2

k × ∑n
k=1 o2

k

(1)

We will call score of a type t for a column col, noted scoretitle(t, col), the simi-
larity between the type name and the column title. We will as well call score of a
relation rel for a table tab according to the table title, noted scoretitle(rel, tab),
the similarity between the relation name and the table title.

4 Numeric Column Annotation

Let u be a unit and Tu the set of numeric types that can be expressed in this
unit, the score of a type t for the unit u is score(t, u) = 0 if t �∈ Tu, and
score(t, u) = 1

|Tu| if t ∈ Tu.
The score of a numeric type t for the column col according to the units in the

column is computed as the maximum of the scores of t for each unit present in col.
If no unit was identified in the column col, then col is considered as presenting
the unit “no unit”, which is a treated as a normal unit in the ontology.

If all numbers in the column col are compatible with the range of the numeric
type t, the final score of t for col is scorefinal(t, col) = 1−(1−scoretitle(t, col))(1−
scoreunit(t, col)). Else scorefinal(t, col) = 0.

Numeric types of the ontology are ordered according to their final score for
the column: let best be the type with the best score and secondBest be the type
with the second best score. We compute the proportional advantage of best over
secondBest on the column col:
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advantage(best, col) =
scorefinal(best, col) − scorefinal(secondBest, col)

scorefinal(best, col)
(2)

If advantage(best, col) is greater than a threshold θnumCol, then the column col
is annotated with the type best. Else the type of col is considered as unknown.

5 Symbolic Column Annotation

Let c be the term in a cell of a symbolic column col, let t be a symbolic type and
hier(t) the set of all terms in the hierarchy of the type t. The score of the type
t for the cell c is score(t, c) =

∑
x∈hier(t) sim(c, x). Let best be the type having

the best score for the cell c. If the proportional advantage of best is higher than
a threshold θsymbCell, then the c is annotated with the type best, else c has an
unknown type. Let n be the number of cells in the column col and nt the number
of cells having the type t, then the score of t for the column col according to the
column contents is scorecontents(t, col) = nt

n .
The final score of a symbolic type t for the symbolic column col is computed

as scorefinal(t, col) = 1 − (1 − scoretitle(t, col))(1 − scorecontents(t, col)). If the
proportional advantage of the best type for the column is greater than a threshold
θsymbCol, then the column is annotated with this best type, else the type of the
column is considered as unknown.

6 Finding the Semantic Relations Represented by the
Table

Let Signrel be the set of types in the signature of a relation rel (i.e. the ac-
cess types and the result type), and Signtab the set of types that were rec-
ognized for the columns of table tab. If the result type of rel was recognized
among the columns of tab then scoresignature(rel, tab) = |Signrel∩Signtab|

|Signrel| . Else
scoresignature(rel, tab) = 0.

The final score of a relation rel for the table tab is computed as
scorefinal(rel, tab) = 1 − (1 − scoretitle(rel, tab))(1 − scoresignature(rel, tab))

Two relations are called concurrent if they have the same result type. If a
relation has a non-zero score for the table and has no concurrent relation, this
relation is used to annotate the table. If there are several concurrent relations
with non-zero scores for the table, then we only keep the one(s) with the highest
score for the annotation of the table.

We have experimented this annotation method on 60 tables from publica-
tions on food microbiology. Those tables were manually annotated with the 16
relations of the ontology: each table was annotated with 1 to 5 relations, which
gives a total of 123 relations. 117 relations were correctly annotated with our
annotation system, only 6 were not recognized but 52 relations were recognized
while not present in the manual annotations.
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Fig. 1. Quality measures of relation annotation given the value of the threshold θrel

In order to improve precision, we have tried to apply a score threshold on the
relations: only relations with score greater than a threshold θrel are used for the
annotation. The variation of precision, recall and F1-value with the value of θrel

is shown in Fig. 1.

7 Conclusion and Perspectives

In this paper, we have shown the different steps of the annotation of data tables
with a domain ontology. The columns of a table are first classified as numeric
or symbolic. Then, we annotate the columns using both the column title and
the column contents (units for numeric columns, terms inside cells for symbolic
columns). The relations represented by a table are recognized using both the ta-
ble title and the types of the columns. When all steps are run one after the other,
we obtain a high recall on relation recognition, with an acceptable precision level.

Our future works will aim at instanciating the relations according to the
content of the cells in the table. Fuzzy sets [7] will be used to represent similarities
between symbolic cells and terms from the ontology, and to represent imprecise
data for numeric cells.Then we will focus on the querying of the annotated data
tables: the querying system must be integrated to the one already used in the
MIEL system, which means that we will have to deal with user preferences, also
expressed as fuzzy sets. Our querying system will have to take into account the
different scores that we have computed during the annotation, that give hints
about how sure we are of these annotations.
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1. Buche, P., Dervin, C., Haemmerlé, O., Thomopoulos, R.: Fuzzy querying of incom-
plete, imprecise, and heterogeneously structured data in the relational model using
ontologies and rules. IEEE T. Fuzzy Systems 13(3), 373–383 (2005)

2. Zanibbi, R., Blostein, D., Cordy, J.R.: A survey of table recognition: Models, obser-
vations, transformations, and inferences. IJDAR 7, 1–16 (2004)

3. Baumgartner, R., Flesca, S., Gottlob, G.: Visual web information extraction with
Lixto. In: VLDB, pp. 119–128 (2001)

4. Pivk, A., Cimiano, P., Sure, Y.: From tables to frames. In: McIlraith, S.A., Plex-
ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 166–181.
Springer, Heidelberg (2004)

5. Tenier, S., Toussaint, Y., Napoli, A., Polanco, X.: Instantiation of relations for se-
mantic annotation. In: WI, pp. 463–472 (2006)

6. Gagliardi, H., Haemmerlé, O., Pernelle, N., Säıs, F.: An automatic ontology-based
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Abstract. Subjective opinions of domain experts are often encountered
in data analysis projects. Often, it is difficult to express the experts’
opinions in model form or integrate their professional knowledge in the
analysis. In this paper, we approach the problem directly in the con-
text of model selection and estimation: we ask the expert for subjective
preferences between readily computed model solutions, and compute an
optimal solution based on the recorded opinions. We consider the pre-
computed models as graph nodes, and calculate the preferential relations
between the nodes based on the recorded opinions as conditional proba-
bilities. Using a random surfer model from the Web analysis community,
we compute the stationary distribution of the preferences. The station-
ary distribution can be used in model selection by selecting the most
probable model or in model estimation by averaging over the models ac-
cording to their posterior probabilities. We present a real-life application
in a regression problem of tree-ring width series data.

1 Introduction

The standard solution to estimating a regression function yi = f(xi; θ)+εi from
a given data set (xi, yi), i = 1, . . . , N , is to minimize the sum of squared resid-
uals as a function of the parameters θ [5]. This approach uses the data only and
depending on the optimization framework used and the difficulty of the problem,
solution of differing quality can be achieved. Sometimes this approach may be
flawed in the sense that it is desirable for the residual signal to contain infor-
mation that can be related to other data. In the application of our interest in
this paper, we focus on modeling non-climatic component in the tree-ring width
series related to the age-related growth and wish to leave the climatic signal as
the residual. In this case, the standard solution is not satisfactory. A qualified
domain expert — a senior researcher involved in quantitative modeling of forest
growth and qualified to judge regression models — was asked to express his sub-
jective opinions in terms of preferential choices. From a controlled experiment
collecting a relatively large number of preferential choices between two random-
ized pairs of pre-computed models, we compute an optimal model based on a
preference graph using a random surfer model [1].
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Fig. 1. Two precomputed solutions to the regression problem are illustrated. The left
panel presents a simple smooth regression function, whereas the right function models
more detailed variation in the data. The comparison between two given models is the
basis of the controlled experiment: the expert is forced to select a better, or preferred,
model out of the two presented models.

2 Model Selection and Estimation Problem

The basis of our proposed solution is to compute a set of solutions to the
modeling problem and to let the expert express his subjective opinion during
a controlled experiment. The model selection and estimation problem is illus-
trated in Figure 2. Two pre-computed solutions to modeling the phenomenon
with different complexities are presented to the domain expert. The merit of
the model is not, however, calculated based on the fit to the data but rather
defined how well it satisfies experts’ interest in the modeling task. In our ap-
plication of modeling tree growth, the task was defined as to “model the age-
related growth trend while leaving most of the long-term variability related to
climatic information as a residual signal”. This judgment was left to the domain
expert.

For the purpose of recording the experts’ opinions, we implemented a Web
based tool that presents two solutions of different complexity simultaneously.
The task of the expert is to select the model which better suits his purpose.
The pre-computed models were selected in random order and the choices were
recorded. The experimental setting corresponds to the two-alternatives, forced
choice (2AFC) experiment [4].

In the experimental setting, the expert is shown two examples out of the
k possible solutions, and a forced choice is recorded. As a result, the logged
choices will be of the form (i, j, k), where i and j represent the indices of the
presented stimuli and k the preferred one. In our application, the indices range
from 1 to 9. Because of human error, inconsistencies, and other factors, the
result of an individual trial may be different in different repeats. Therefore,
we turn to probabilistic modeling of choices and represent the probabilities of
preference.
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3 Experiments

Now we will turn our attention to the application, for which we developed the
methodology. The problem is to model the tree-ring width series and to model
the non-climatic variation (assumed, hypothetical normal tree growth) so that
the climatic variation would be left as a residual signal. Standard regression
analysis would attempt to model as much of the signal as possible, leaving only
a non-explanatory random signal. Our data consists of the age of the tree as the
x variable and the annual growth recorded from the tree-rings as the y variable.
From a set of trees, the task is to estimate a model for normal growth as a
regression function: y = f(x).

3.1 Smoothing Splines as a Model Class

We will use smoothing splines as our model class for removing the non-climatic
variance of forest interior tree-ring width series [3,2]. The smoothing splines [6]
are regression functions built on local polynomials that are connected together
in a way that ensures a smooth function. In estimation, the error function to be
minimized consists of a squared error term summarizing the discrepancy between
the measurements and the model and a term penalizing for large curvatures. The
trade-off between selecting the accuracy of the function and the smoothness is
controlled by the parameter p; large values of p will give importance to the model
fit, small values of p will underline the smoothness of the mapping. The selection
of the parameter p through recorded subjective choices of the expert is the focus
of this paper. The optimization problem for estimating the smoothing spline for
the interval [a, b] is

min
p

{
p ×

n∑
i=1

(yi − f(xi))
2 + (1 − p) ×

∫ b

a

(f ′′)2
}

The model selection and estimation problem is to find an optimal p that would
reflect the subjective opinions of the expert. The domain expert is presented
with two instances of model solutions simultaneously and is told to select the
preferred solution. In all, 2395 pairs of random pairs modeling the growths of the
same tree (same data) were presented, and the results were logged. 34 different
trees were included in the set of stimuli.

The sufficient statistics for the conditional probability distributions represent-
ing the preferential relations are the counts nij where the model i is preferred
over the model j. By normalizing the rows of the matrix containing the recorded
preferences, the matrix becomes a stochastic matrix with non-negative entries. In
essence, the entries pij can be given an interpretation of preferring j over i when
a stimulus pair (i, j) has been presented. The stochastic matrix defines a fully
connected graph, in which the arcs and the associated probabilities imply the
preference relations between the models. Assimilating the model with a Web sites
and links between the sites, we can use techniques for scoring the sites by using
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Fig. 2. The optimal models computed from the expert preferences

the random surfer model [1]. Initializing a state of preference randomly and surf-
ing the connected preference graph repeatedly, we approach the stationary dis-
tribution, which reflects the posterior probability of preferences. The stationary
distribution under the random surfer model for the normalized stochastic matrix
is sj = (0.0482, 0.0514, 0.1312, 0.2325, 0.2280, 0.2098, 0.0776, 0.0214, 0). Station-
ary distribution can be used in selecting the most probable model; also, all the
information in the distribution can be used in model averaging: parameter values
for the smoothing parameter p can be calculated as the weighted average of the
possible values as

p̂ =
9∑

j=1

sj × pj

and we get the estimate p̂ = 10−4.4129. This solution, is approximately of the
same complexity as the models perceived to be satisfactory in the article [3].
However, the authors only comment the complexity of the models qualitatively.
The optimal solution is illustrated for two example trees in Figure 2.

In the experiment, the expert was presented with the interpolating model,
which goes through all the data points. The interpolating function was never
judged to be superior to any other model. In the subsequent versions, the in-
terpolating function will be removed from the experiment. Interestingly, during
the initial testing with a non-expert, an interpolating function was sometimes
judged better, underlying different perceptions in assessing model quality. In the
future, we will repeat the experiment with a number of experts as it would be
interesting to compare the perceptions of different experts and also to compare
the individual opinions with the pooled consensus opinion of all experts together.

4 Summary and Conclusions

We presented a solution to a problem, where the model complexity is determined
with the help of expert opinion, rather than data analytic considerations such as
generalization ability measured with the cross-validation error. For this purpose,



Model Selection and Estimation Via Subjective User Preferences 263

a two-alternatives, forced choice experiment was conducted and the individual
choices were summarized as preferential relations. Furthermore, we can summa-
rize the preferences with conditional probability tables. Given the probabilistic
preferential relations, a random surfer model is applied to yield the equilibrium
distribution. The posterior probabilities of the equilibrium distribution is used
to yield the final model. Most probable model may be chosen for the purpose of
model selection and model averaging may be used for model estimation.
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Abstract. Detecting concept drift is important for dealing with real-
world online learning problems. To detect concept drift in a small num-
ber of examples, methods that have an online classifier and monitor its
prediction errors during the learning have been developed. We have de-
veloped such a detection method that uses a statistical test of equal pro-
portions. Experimental results showed that our method performed well
in detecting the concept drift in five synthetic datasets that contained
various types of concept drift.

1 Introduction

A difficult problem in learning scenarios is that the underlying distribution of
the target concept may change over time. This is generally known as “concept
drift” [1]. We have developed a method to detect concept drift in an online learn-
ing scenario in which a classifier is sequentially presented with training examples.
The classifier outputs a class prediction for the given input, xt, at each time step
and then updates its hypothesis based on the true class label, yt. Each exam-
ple is independently drawn from the current distribution of the target concept,
Prt(x, y). If concept drift occurs at time t, Prt(x, y) differs from Prt−1(x, y).
The task of the method is to detect changes quickly and accurately to enable
the classifier to minimize cumulative prediction errors during online learning.

The detection of changes is one way to respond to concept drift. Examples of
real problems where change detection is relevant include user modeling, moni-
toring in biomedicine and industrial processes, fault detection and diagnosis [2].
There has been much work on detecting changes in online data streams [2,3,4];
however, most of it is based on estimating the underlying distribution of exam-
ples, which requires a large number of examples.

Detection methods that monitor classification errors in an online classifier
during online learning have been proposed recently [5,6,7]. These methods do
not depend on the type of input attribute. Moreover, they are able to detect
concept drift from a small number of examples and thus have low computational
costs.
� This study was partly supported by a Grant-in-Aid for JSPS Fellows (18-4475) from

the Japan Society for the Promotion of Science.
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We have proposed such a drift detection method that uses a statistical test
of equal proportions (STEPD) to detect various types of concept drift quickly
and accurately. We demonstrated experimentally the performance of the method
using five synthetic datasets that contain concept drift.

2 Related Drift Detection Methods

Gama et al. proposed a drift detection method with an online classifier
(DDM) [5]. For each time, t, the error rate is the probability of misclassifying,
pt, with standard deviation, st =

√
pt(1 − pt)/t. It is assumed that pt decreases

as time advances if the target concept is stationary, and any significant increase
of pt suggests that the concept is changing. If the concept is unchanged, then the
1−α confidence interval for pt with n>30 examples is approximately pt ±zα/2st,
where zα/2 denotes the (1−α/2)th percentile of the standard normal distri-
bution. DDM stores the values of pt and st when pt + st reaches its minimum
value (obtaining pmin and smin) and stores examples in short-term memory while
pt + st ≥ pmin + 2smin is satisfied. DDM then rebuilds the classifier from the
stored examples and resets all variables if pt + st ≥ pmin +3smin. DDM performs
well for sudden changes; however, it has difficulties detecting gradual changes.

To improve the detection of gradual changes, Baena-Garćıa et al. developed
the early drift detection method (EDDM) [6]. Their key idea is to consider the
time interval (distance) between two occurrences of classification errors. They
assume that any significant decrease in the distance suggests that the concept is
changing. Thus, EDDM calculates the average distance between two errors, p′t,
and its standard deviation, s′t, and stores these values when p′t + 2s′t reaches its
maximum value (obtaining p′max and s′max). EDDM stores examples in short-term
memory while vt (= (p′t + 2s′t)/(p′max + 2s′max)) < α is satisfied. It then rebuilds
the classifier from the stored examples and resets all variables if vt < β. Note
that it starts detecting drift after 30 errors have occurred. EDDM performs well
for gradual changes; however, it is not good at detecting drift in noisy examples.

We previously developed a drift detection method in a multiple classifier sys-
tem [7]. We have now simplified it. This simplified method (ACED) uses only an
online classifier. ACED observes the predictive accuracy of the online classifier
for recent W examples, qt, and calculates the 1−αd confidence interval for qt

at every time t. Our key idea is that qt will not fall below the lower endpoint
of the interval at time t−W , ql

t−W , if the target concept is stationary. Thus,
it initializes the classifier if qt < ql

t−W . Note that it starts detecting drift after
receiving 2W examples. ACED is able to detect concept drift quickly when W
is small; however, such small windows often cause misdetection.

3 STEPD: Detection Method Using Statistical Testing

STEPD has been developed to achieve quick and accurate detection. The basic
principle is to consider two accuracies: the recent one and the overall one. We
assume two things: the accuracy of a classifier for recent W examples will be equal
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to the overall accuracy from the beginning of the learning if the target concept
is stationary; and a significant decrease of recent accuracy suggests that the
concept is changing. The test is performed by calculating the following statistic,

T (ro, rr, no, nr) =
|ro/no − rr/nr| − 0.5(1/no + 1/nr)√

p̂(1 − p̂)(1/no + 1/nr)
, (1)

and comparing its value to the percentile of the standard normal distribution
to obtain the observed significance level (P-value)1. ro is the number of correct
classifications among the overall no examples except for recent W examples, rr

is the number of correct classifications among the W (=nr) examples, and p̂ =
(ro+rr)/(no+nr). If the P-value, P , is less than a significance level, then the null
hypothesis (ro/no = rr/nr) is rejected and the alternative hypothesis (ro/no >
rr/nr) is accepted, namely concept drift has been detected. STEPD uses two
significance levels: αw and αd. It stores examples in short-term memory while
P < αw is satisfied. It then rebuilds the classifier from the stored examples and
resets all variables if P < αd. Note that it starts detecting drift after satisfying
no + nr ≥ 2W and the stored examples are removed if P ≥ αw.

4 Experiment and Results

We used five synthetic datasets based on sets used in other papers concerning
concept drift [5,6,8]. All the datasets have two classes. Each concept has 1000
examples. The number of training examples is 4000, except for STAGGER, which
has 3000. The number of test examples is 100. The training and test examples
were generated randomly according to the current concept.

– STAGGER (1S). sudden. The dataset has three nominal attributes:
size (small , medium , large), color (red , blue, green), and shape (circle, square,
triangle), and has three concepts: 1) [size = small and color = red ], 2) [color
= green or shape = circle ], and 3) [size = medium or large].

– GAUSS (2G). sudden, noisy. The examples are labeled according to two dif-
ferent but overlapped Gaussian, N([0, 0], 1]) and N([2, 0], 4). The overlapping
can be considered as noise. After each change, the classification is reversed.

– MIXED2 (3M). sudden, noisy. The dataset has two boolean attributes (v, w)
and two continuous attributes (x, y) from [0, 1]. The examples are classified
as positive if at least two of the three following conditions are satisfied: v,
w, y < 0.5 + 0.3 sin(3πx). After each change, the classification is reversed.
Noise is introduced by switching the labels of 10% of the examples.

– CIRCLES (4C). gradual. The examples are labeled according to the condi-
tion: if an example is inside the circle, then its label is positive. The change
is achieved by displacing the center of the circle ((0.2, 0.5) → (0.4, 0.5) →
(0.6, 0.5)→(0.8, 0.5)) and growing its radius (0.15→0.2→0.25→0.3).

1 We should use the Fisher’s exact test where sample sizes are small; however, we did
not use it due to its high computational costs. The statistic in Eq. (1) is equivalent
to the chi-square test with Yates’s continuity correction.
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Table 1. Cumulative prediction error rate with 95% confidence interval, number of
drift detection (Nd), and number of required examples to detect drift correctly (Ne)

Data
Method

IB1 Naive Bayes (NB)
set Error Rate Nd Ne Error Rate Nd Ne

1S

STEPD .0059± .0001 2.000– .000 4.29 .0076± .0002 1.998 – .010 4.89
DDM .0064 ± .0001 2.000– .106 7.35 .0087 ± .0002 2.000– .370 8.94

EDDM .0214 ± .0000 2.000– .000 47.3 .0208 ± .0000 2.000– .000 42.0
ACED .0085 ± .0001 2.000– .000 11.4 .0100 ± .0002 2.000– .008 11.4
Not Use .3134 ± .0007 .3351 ± .0006

2G

STEPD .1676± .0007 2.966–1.102 10.6 .1109± .0004 2.964 – 1.180 7.89
DDM .2039 ± .0044 2.766 – .892 35.2 .1347 ± .0029 2.970–1.008 26.0

EDDM .1898 ± .0016 2.918 –10.56 26.4 .1250 ± .0009 2.934 – 7.682 18.0
ACED .1749 ± .0008 2.880 –5.306 12.0 .1156 ± .0005 2.910 – 3.434 9.68
Not Use .4456 ± .0006 .4737 ± .0007

3M

STEPD .2143± .0009 2.968– .932 12.8 .1885± .0006 2.976– .586 11.2
DDM .2439 ± .0036 2.672 – .748 43.9 .2008 ± .0013 2.942 – .364 36.8

EDDM .2443 ± .0014 2.884 –13.20 33.6 .2175 ± .0009 2.952 – 8.704 33.5
ACED .2262 ± .0009 2.866 –6.690 14.1 .2043 ± .0008 2.850 – 5.604 12.8
Not Use .4534 ± .0007 .4864 ± .0007

4C

STEPD .0286± .0002 2.952– .190 26.8 .0956 ± .0007 1.584 –2.292 42.5
DDM .0320 ± .0003 2.318 –1.490 58.9 .1072 ± .0010 .686 – 3.450 60.9

EDDM .0318 ± .0002 2.618 – .462 49.5 .0920± .0004 1.588– 7.934 50.0
ACED .0529 ± .0002 1.498 – .908 31.6 .1046 ± .0009 .786 – 2.952 37.5
Not Use .1365 ± .0004 .1536 ± .0005

5H

STEPD .2254± .0012 1.406 .1182 ± .0014 2.000
DDM .2361 ± .0016 .048 .1278 ± .0017 1.518

EDDM .2327 ± .0013 6.834 .1110± .0011 4.800
ACED .2326 ± .0009 7.486 .1176 ± .0011 3.398
Not Use .2465 ± .0021 .1590 ± .0028

Notes: The prediction error rate is only calculated from the error on training data.
The form of the Nd column (ex. n –m) means that n is the number of detection
within 100 examples after each change and m is otherwise one (corresponding to
the number of misdetection). We excluded misdetection in the calculation of Ne.

– HYPERP(5H). very gradual. The examples uniformly distributed in multi-
dimensional space [0, 1]10 are labeled satisfying

∑10
i=1 aixi ≥ a0 as positive.

The weights of the moving hyperplane, {ai}, which are initialized to [−1, 1]
randomly, are updated as ai ← ai +0.001si at each time, where si ∈ {−1, 1}
is the direction of change for each weight. The threshold a0 is calculated as
a0 = 1

2

∑10
i=1 ai at each time. {si} is reset randomly every 1000 examples.

We compared STEPD with DDM, EDDM, ACED, and classifiers that did not
use any methods (Not Use). The parameters of STEPD and ACED were W =30,
αd =0.003, and αw =0.05. Those of EDDM were α=0.95 and β =0.90. We used
two distinct classifiers with the methods: the Weka implementations of IB1 and
Naive Bayes (NB) [9]. All results were averaged over 500 trials.
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Fig. 1. Test error rate with 95% confidence intervals for a) 2G–IB1 and b) 5H–NB

Figure 1 and Table 1 show that all the detection methods improved the per-
formance of the two classifiers in all the datasets. STEPD performed the best
for sudden changes. Moreover, its performance was comparable to EDDM for
gradual changes. ACED and EDDM were able to detect gradual changes well,
whereas much misdetection occurred while the target concept was static because
they were too sensitive to errors and noise (see Nd values for 2G and 3M). DDM
detected sudden changes correctly; however, its detection speed was very slow.
STEPD performed well in the presence of sudden and gradual changes and noise.

5 Conclusions

Our proposed drift detection method, STEPD, uses the statistical test of equal
proportions. Experiments showed the test enables STEPD to detect various types
of concept drift quickly and accurately. Future work will involve reducing mis-
detection and improving drift detection when changes are gradual.
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Abstract. This paper deals with novel approaches for discovering
phrases expressing technical capabilities in technical literature (such as
patents), intended to support strategic consultants introducing new tech-
nologies and their capabilities to their clients. An extracted capability
phrase is scored based on its expected business impact, which can also be
considered as unexpectedness of the capability in a specified technology
field. The proposed capability extraction method and unexpectedness
estimation method are implemented in a “Future Technology Projection
tool.” The tool will be utilized by the consultants to provide lists of capa-
bility phrases related to a technology field of interest to the consultants.

1 Introduction

Many corporate executives pay attention to “innovation” these days [1], and
they need business insights as well as new technologies for innovation. A strate-
gic consultation is a key activity for such companies, and the consultants need
to present new technologies that can be utilized for innovative business ideas.
Currently, the consultants manually survey websites and books to search for the
seeds of future new technologies which may have large impacts on business, but
such manual processes may not be able to collect sufficient amounts of informa-
tion. The insufficiency of manual survey would also decrease reliability of the
resulted technology lists.

In such situations, we found that natural language processing technologies are
able to support consultants by analyzing technical articles [2]. In this paper, we
solve two types of problem: First, a method to extract capability phrases from
technical literature such as patent documents is introduced. A capability phrase
is a phrase mentioning a technical capability such as “enables high performance
computing,” or “providing a new experience for a speech-recognized kitchen.”
Second, a scoring method for the extracted capability phrases is also proposed.
Our method estimates potential business impact of the technical capabilities
and use the estimated business impact for the scoring (High/Low). We partic-
ularly focus on unexpectedness of the technical capability, since it is one of the
important factors to determine the business impact.
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Fig. 1. The phrasal patterns utilized to extract capability phrases from Japanese patent
documents and examples of the extracted phrases

2 Capability Phrase Extraction

Before the capability phrase extraction method is introduced, we describe the
data collection used in this work. The original document collection was first
morphologically analyzed and parsed as preprocessing. In this paper, 290,889
Japanese patent documents that were filed from 2004 to 2006 are used as the
original document set. A Japanese patent document consists of an abstract,
claims, a background section, the embodiment, and an effect section. We ex-
tracted the abstract sections, which consist of issue and solution subsections,
and the effect sections from the original patent journals, since these two sections
describe important information for future technology projection, such as what
problem is solved by the technology and how.

We found that the phrases in Japanese patents mentioning certain technical
capabilities are able to be extracted by using phrasal patterns in the left column
in Figure 1. By using those patterns, phrases such as those in the right column
in Figure 1 are extracted from the parsing results.

In each runtime process, an arbitrary technology field of interest to the user
is input as a query. The query is a string standing for the field such as “voice
recognition” or “robot” in this work. By this query input, documents containing
the input string are selected, since they are expected to be related to the field.
Then the capability phrases in the collected documents are extracted and scored
in the following process.

3 Scoring of Extracted Capability Phrases

This process gives capability phrases high or low score based on estimated busi-
ness impact. Actual business impact is given by many factors, but we first focus
on the impact due to the unexpectedness of the product or solution in the speci-
fied technology field. The unexpectedness is estimated by whether the capability
phrase contains nouns that are normally unrelated to the technology field. In
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the case of robotics, for example, words such as “houses” or “intentions” would
be more unexpected than words such as “throughput” or “hands.” Difference of
the given score is based on the different degrees of unexpectedness among the
nouns used in the capability phrases. If a phrase contains unexpected nouns for
that technology field, then high business impact is associated with the phrase,
on otherwise low business impact is assigned.

The unexpected nouns Wu in the capability phrases are determined with
Eq. (1). Wn denotes all nouns in the extracted capability phrases, and a noun is
considered as “unexpected” in the field if it is not in any of Wc, Wt, or Ws. Wc

denotes common nouns in the given technical document collection and deter-
mined with Eq. (2), where N(w) denotes the number of documents containing
the word w. If the noun w appears in more than n documents, the noun is re-
garded as common1. For Japanese patent documents, words such as “Hatsu-mei”
(invention) and “Souchi” (device) are in Wc. Wt denotes nouns typical of the
specified technology field and is determined with Eq. (3), where RRF (w) de-
notes the ratio of relative frequency, N(w ∧ q) denotes the number of documents
in Dq having the word w, and Dq denotes the documents collected by the input
query q. A noun w is considered as typical of the technology field if the ratio of
its relative frequency is higher than x, so the noun is relatively common in the
selected document set compared with its appearances in all of the documents2.
Ws denotes a stop list and contains manually selected uninformative words.

Wu = Wn ∩ Wc ∪ Wt ∪ Ws (1)

Wc = {w|N(w) > n} (2)

Wt = {w|RRF (w) > x}, RRF (w) =
N(w ∧ q)/NDq

N(w)/NDall

(3)

The capability phrase extraction method described in the previous section
and the scoring method for the extracted phrases are implemented in a “Future
Technology Projection tool,” and the tool outputs a list of capability phrases that
are expected to be related to the technology field input by the user. Samples of
the results will be shown in the next section.

4 Case Study

In this case study, the input query to specify a technology field was “robot,”
and 601 patent documents containing the string were collected. By using the
capability phrase extraction method, 1,236 capability phrases were obtained from
the selected documents, and 406 phrases out of the 1,236 were given high business
impact score and other phrases were given low business impact score using the

1 The value of n was set to 600 in the following case study. The least frequent nouns
in Wc appear in approximately one-tenth of the document collection (290,889 doc-
uments).

2 The value of x was set to 1.0 in the following case study.
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Fig. 2. Example capability phrases extracted for the field of “robot” with scores (high
or low)

unexpectedness estimation method. Figure 2 shows selected examples of the
1,236 phrases with their scores.

In the output list, the phrases given low business impact contain words show-
ing normally anticipated improvements given by robot technology, e.g. “Kou-
throughput-ka wo jitsugen-dekiru” (enables high throughput) and “Kouritsu-
yoku hansousuru-koto ga dekiru” (can efficiently convey). On the other hand,
several phrases given high business impact showed capabilities expected to
make major impressions on the market in coming years, e.g. “Kaoku-nai wo
soujisuru-koto ga dekiru” (can clean inside of the house), “Akisasenai wadai wo
teikyousuru-koto ga dekiru” (can provide topics which do not make users bored).

In fact, Toshiba Corporation announced its new housecleaning robot, which
was the first such consumer product in Japan, in 20023. In 2005, NEC Corpo-
ration also developed a robot companion that can talk with the user to make
a good impression4. Those real business cases support the validity of our pro-
posed estimation method for business impact related to the unexpectedness of
the application or product as described in the capability phrases.

5 Discussion and Conclusion

In this paper, we introduced a new technical document analysis method to sup-
port strategic consultants introducing new technologies and their capabilities
3 http://www.toshiba.co.jp/about/press/2002 09/pr j0501.htm (in Japanese)
4 http://www.incx.nec.co.jp/robot/english/papero2005/index.html
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to corporate executives. The tool implementing the proposed phrase extraction
method and the scoring method is able to list the phrases mentioning technical
capabilities with their business impact scores given by their estimated unexpect-
edness in the technology field. A case study showed examples of the extracted
phrases and their estimated business impact scores. Several high-scored phrases
supported by real business cases were also introduced.

There are few methods aiming at extracting phrases mentioning technical capa-
bilities from patents and other technical documents. Most conventional analysis
methods for patents aimed at summarizing the documents by classification [3,4],
and several other methods focus on the occurrences of noun phrases in the docu-
ments to estimate trends in the technology field [5,6]. Those conventional methods
could support the strategic consultation for innovation, but they require profes-
sional knowledge of the technology field to match the information to the customer-
specific business cases. That is why our tool allows consultants and client execu-
tives to perceive how they can utilize the technology for their situations.

Future study will involve extension of the capability phrase extraction method
for English documents and other types of documents such as Web news or aca-
demic papers. The evaluation of the unexpectedness estimation method will also
be done with consultants, who are the expected users of the tool.

Acknowledgement. The authors would like to thank Tetsuya Nasukawa in
IBM Research and Junji Maeda, Toshiyuki Kuramochi, Akihiro Kuroda, and Eiji
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Abstract. In this work we study the mining of top-K frequent closed
itemsets, a recently proposed variant of the classical problem of min-
ing frequent closed itemsets where the support threshold is chosen as
the maximum value sufficient to guarantee that the itemsets returned
in output be at least K. We discuss the effectiveness of parameter K in
controlling the output size and develop an efficient algorithm for mining
top-K frequent closed itemsets in order of decreasing support, which ex-
hibits consistently better performance than the best previously known
one, attaining substantial improvements in some cases. A distinctive fea-
ture of our algorithm is that it allows the user to dynamically raise the
value K with no need to restart the computation from scratch.

1 Introduction

The discovery of frequent (closed) itemsets is a fundamental primitive in data
mining. Let I be a set of items, and D a (multi)set of transactions, where each
transaction t ∈ D is a subset of I. For an itemset X ⊆ I we define its conditional
dataset DX ⊆ D as the (multi)set of transactions t ∈ D that contain X , and
define the support of X w.r.t. D, suppD(X) for short, as the number of transac-
tions in DX . An itemset X is closed w.r.t. D if there exists no itemset Y , with
X ⊂ Y ⊆ I, such that suppD(Y ) = suppD(X). The standard formulation of the
problem requires to discover, for a given support threshold σ, the set F(D, σ)
of all itemsets with support at least σ, which are called frequent itemsets [1].
In order to avoid the redundancy inherent in F(D, σ), it was proposed in [5] to
restrict the discovery to the subset FC(D, σ) ⊆ F(D, σ) of all closed itemsets
with support at least σ, called frequent closed itemsets.

A challenging aspect regarding the above formulation of the problem is related
to the difficulty of predicting the actual number of frequent (closed) itemsets for
a given dataset D and support threshold σ. Indeed, in some cases setting σ too
small could yield a number of frequent itemsets impractically large, possibly
exponential in the dataset size [11], while setting σ too big could yield very few
or no frequent itemsets.
� This work was supported in part by MIUR of Italy under project MAINSTREAM,

and by the EU under the EU/IST Project 15964 AEOLUS.
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In [10], an elegant variant of the problem has been proposed which, for a
given “desired” output size K ≥ 1, requires to discover the set FCK(D) of top-
K frequent closed itemsets (top-K f.c.i., for short), defined as the set FC(D, σK)
where σK is the maximum support threshold that such that |FC(D, σK)| ≥ K.
Although one is not guaranteed that |FCK(D)| = K, it is conceivable that pa-
rameter K be more effective than an independently fixed support threshold σ
in controlling the output size. In the same paper, the authors present an effi-
cient algorithm, called TFP, for mining the top-K f.c.i. TFP discovers frequent
itemsets starting with a low support threshold which is progressively increased,
as the execution proceeds, by means of several heuristics, until the final value
σK is reached. TFP allows also the user to specify a minimum length min� for
the closed itemsets to be returned. The main drawbacks of TFP are that no
bound is given on the number of non-closed or infrequent itemsets that the al-
gorithm must process, and that an involved itemset closure checking scheme
is required. Moreover, TFP does not appear to be able to handle efficiently a
dynamic scenario where the user is allowed to raise the value K. A number of
results concerning somewhat related problems can be found in [3,4,8].

The mining of top-K f.c.i. is the focus of this paper. In Section 2, we study
the effectiveness of parameter K in controlling the output size by proving tight
bounds on |FCK(D)|. In Section 3 we present a new algorithm, TopKMiner, for
mining top-K f.c.i. in order of decreasing support. Unlike algorithm TFP, Top-
KMiner features a provable bound on the number of itemsets touched during the
mining process, and, moreover, it allows the user to dynamically raise the value
K efficiently without restarting the computation from scratch. Section 4 reports
some results from extensive experiments which show that TopKMiner consis-
tently exhibits better performance than TFP, with substantial improvements in
some cases (more than two orders of magnitude). The efficiency of TopKMiner
becomes considerably higher when used in the dynamic scenario1.

2 Effectiveness of K in Controlling the Output Size

Let Δ(n) be the family of all datasets D whose transactions comprise n distinct
items. Define ρ(n, K) = maxD∈Δ(n)(|FCK(D)|/K), which provides a worst-case
estimation of the deviation of the output size from K when mining top-K closed
frequent itemsets. Building on a result by [2] we can prove the following theorem.

Theorem 1. For every n ≥ 1 and K ≥ 1, we have ρ(n, K) ≤ n. Moreover, for
every n ≥ 1 and every constant c, there are Ω (nc) distinct values of K such that
ρ(n, K) ∈ Ω (n).

We note that in several tests we performed on real and synthetic datasets with
values of K between 100 and 10000, the ratio |FCK(D)|/K turned out to be
much smaller than n and actually very close to 1. In fact, it can be shown that

1 For lack of space many details have been omitted from the paper and can be found
in the companion technical report [6].
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ρ(n, K) = n is attained only for K = 1, and we conjecture that ρ(n, K) is a
decreasing function of K.

3 TopKMiner

In this section, we briefly describe our algorithm TopKMiner for mining the top-
K f.c.i. for a dataset D defined over the set of items I = {a1, a2, . . . , an} (the
indexing of the items is fixed but arbitrary). The algorithm crucially relies on
the notion of ppc-extension introduced in [9] and recalled below. For an itemset
X ⊆ I, we define its j-th prefix as X(j) = X ∩ {ai : 1 ≤ i ≤ j}, with
1 ≤ j ≤ n, and define CloD(X) =

⋂
t∈DX

t, which is the smallest closed itemset
that contains X . The core index of a closed itemset X , denoted by core(X), is
defined as the minimum j such that DX = DX(j). A closed itemset X is a called
a prefix-preserving closure extension (ppc-extension) of a closed itemset Y if: (1)
X = CloD(Y ∪ {aj}), for some aj 	∈ Y with j > core(Y ); and (2) X(j − 1) =
Y (j − 1). Clearly, if X is a ppc-extension of Y , then supp(X) < supp(Y ). Let
⊥= CloD(∅), which is the possibly empty closed itemset consisting of the items
occurring in all transactions. It is shown in [9] that any closed itemset X 	=⊥
is the ppc-extension of exactly one closed itemset Y . Hence, all closed itemsets
can be conceptually organized in a tree whose root is ⊥, and where the children
of a closed itemset Y are its ppc-extensions.

TopKMiner generates the frequent closed itemsets in order of decreasing sup-
port by performing a best-first (i.e., highest-support-first) exploration of the
nodes of the tree defined above. Specifically, the algorithm receives in input
the dataset D, the value K for which the top-K f.c.i. are sought, and a value
K∗ ≥ K. During the course of the algorithm, the user is allowed to dynamically
raise K up to K∗. The algorithm makes use of a priority queue Q (implemented
as a max heap), whose entries correspond to closed itemsets. Let E(Y, s) denote
an entry of Q relative to a closed itemset Y with support s. The value s is the
key for the entry. Q is initialized with entries corresponding to the ppc-extension
of ⊥. Then, a main loop is executed where in each iteration the entry E(Y, s)
with maximum s is extracted from Q, the corresponding itemset Y is generated
and returned in output, and entries for all ppc-extensions of Y are inserted into
Q.

A variable σ is used to maintain an approximation from below to the support
σK∗ of the K∗-th most frequent closed itemset. This variable is initialized by
suitable heuristics similar to those employed in [10], and it is updated in each
iteration of the main loop to reflect the support of the K∗-th most frequent
closed itemset seen so far. The value σ is used to avoid inserting entries with
support smaller that σ into Q. Also, after each update of σ, entries with support
smaller than σ, previously inserted into Q, can be removed from the queue.

After the K-th closed itemset is generated, its support is stored in a variable
σ′. The main loop ends when the last closed itemset of support σ′ is generated.
At this point the user may decide to raise K to a new value Knew. In this case,
the main loop is reactivated and the termination condition will depend now on
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Knew. It can be shown that TopKMiner processes (i.e., inserts into Q) at most
nK∗ closed itemsets2, while one such bound is not known for TFP [10].

Implementation. The efficient implementation of TopKMiner is a challenging
task. For lack of space, we will limit ourself to briefly mention the key ingredients
of our implementation. More details can be found in [6]. As in [7] the dataset D
is represented through a Patricia trie TD built on the set of transactions with
items sorted by decreasing support. An entry E(Y, s) of Q, corresponding to some
closed itemset Y , is represented by the quadruple (DY , s, i, Y (i − 1)), where i is
the core index of Y . For space and time efficiency, we represent DY through the
list LD(Y ) of nodes of TD which contain the core index item ai of Y and belong
to paths associated with transactions in DY . We observe that (DY , s, i, Y (i−1))
contains only a prefix, Y (i − 1), of Y . The actual generation of Y is delayed to
the time when the entry (DY , s, i, Y (i − 1)) is extracted from Q. At this point
a clever traversal of the subtrie of TD whose leaves are the nodes of LD(Y ), is
employed to generate Y and the quadruples for all of its ppc-extensions to be
inserted into Q.

4 Experimental Evaluation

We experimentally compared the performance of TopKMiner and TFP
[10] on all real and synthetic datasets from the FIMI repository
(http://fimi.cs.helsinki.fi). The experiments have been conducted on a
HP Proliant, using one AMD Opteron 2.2GHz processor, with 8GB main mem-
ory, 64KB L1 cache and 1MB L2 cache. Both TopKMiner and TFP have been
coded in C++ and the source code for TFP has been provided to us by its au-
thors. Due to lack of space, we report only a few representative results relative to
datasets kosarac and accidents. The results for the other datasets are consistent
with those reported here. The characteristics of the datasets are reported in the
following table, including the values σK/|D| for K = 1000 and K = 10000:

Dataset #Items Avg. Trans. Length # Transactions σ1000/|D| σ10000/|D|
accidents 468 33.8 340,183 0.656 0.483
kosarac 41,270 8.1 990,002 0.006 0.002

Figure 1.(a) and 1.(b) show the relative running times of TopKMiner and TFP
on kosarac and accidents, respectively, for values of K ranging from 1000 to 10000
with step 1000. For TopKMiner, we imposed K = K∗ so to assess the relative
performance of the two algorithms when focused on the basic task of mining top-
K f.c.i. In another experiment, we tested the effectiveness of the TopKMiner’s
feature which allows the user to dynamically raise the value K up to a maximum
value K∗. To this purpose we simulated a scenario where K is raised from 1000
to 10000 with step 1000 and run TopKMiner with K∗ = 10000 measuring the

2 In fact, with a slight modification of the algorithm the bound can be lowered to nK.
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Fig. 1. Running times of TopKMiner and TFP for: (a) kosarac without dynamic update
of K; (b) accidents without dynamic update of K; and (c) accidents with dynamic
update of K

running time after the computation for each value K ended. We compared these
running times with those attained by executing TFP from scratch for each value
K and accumulating the running times of previous executions. The results are
shown in Figure 1.(c) for dataset accidents.

We also analyzed the memory usage of TFP and TopKMiner on all datasets,
for K between 1000 and 10000. TopKMiner requires less memory than TFP in
almost all cases and, in the worst case, requires a factor 1.5 more memory.
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Abstract. This paper presents a kernel function class KRNA which is
based on the concept of the intentional kernel (Doi et al., 2006) as op-
posed to that of the convolution kernel (Haussler, 1999). A kernel func-
tion in KRNA computes the similarity between two RNA sequences from
the viewpoint of secondary structures. As an instance of KRNA, we give
the definition and the algorithm of KN

RNA which takes a pair of RNA
sequences as its inputs, and facilitates Support Vector Machine (SVM)
classifying RNA sequences in a higher dimension space. Our experimen-
tal results show a high performance of KN

RNA, compared with the string
kernel which is a convolution kernel.

1 Introduction

Much attention has been paid to computational analysis and prediction of non-
coding RNA sequences [1]. The greatest characteristic of RNA sequences is that
every RNA sequence has a secondary structure (Fig. 1) determined by interactions
betweenWatson-Crick complementary base pairs (a-u, c-g).Various attempts have
so far beenmadeatmodeling anRNAsecondary structurebyusingStochasticCon-
text Free Grammars (SCFGs) [2]. Because few great advance with these meth-
ods are expected in decreasing time-complexity or in improving classification
accuracy, the Support Vector Machine (SVM) technique combined with kernel
functions is now attracting much attention in this field. Several kernel functions
have been proposed to compute the similarity between two RNA sequences [3].

The purpose of this paper is to devise a new kernel function class KRNA based
on the intentional kernel [4], and to show that the kernel function KN

RNA, which
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c
a

c

a u

g

u
a

c

a

a

g

a

c

u

u
5’ 3’

a u g u a c a a g a c u ua cc
3’5’

Fig. 1. An RNA sequence and its secondary structure
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is an instance of KRNA is better suitable to RNA classification than the string
kernel [5], which is a convolution kernel [6].

2 Designing a New Kernel Function

2.1 Convolution Kernel and Intentional Kernel for Structured Data

SVM is a high-powered classifier which constructs a linear separating function in
an input space. If input data cannot be linearly separated, by using some kernel
functions, SVM maps any data to a point in a high dimensional feature space so
that the mapped data can be linearly separated [7]. Recently, kernel functions
for not only numerical vectors but also non-numerical structured data have been
proposed in many scientific areas, for example, bioinformatics.

Such kernel functions for structured data are usually instances of the con-
volution kernel. A convolution kernel K(x, y) computes its value by summing
up the kernel values of every pair of substructure data from x and y, that is,
K(x, y) =

∑
s∈s(x)

∑
t∈s(y) Ks(s, t), where s(x) represents the set of substruc-

tures in x.
On the other hand, the intentional kernel is a class radically contrasted with

the convolution kernel. We assume that all data are in a partially ordered set P ,
and for elements x and y in P , an intentional kernel K(x, y) is defined with the
set E(x, y) = {z | z � x, z � y}. The name is from the point that a � b can be
interpreted as “a subsumes b”. A typical intentional kernel KTERM [4], which
takes a pair of first-order terms, is defined as KTERM(x, y) = #(E(x, y)), where
# represents the cardinality.

2.2 Definition of KRNA

The intentional kernel KRNA for RNA sequences is designed by representing an
RNA secondary structure with a simple Context Free Grammar G. The grammar
G has non-terminal symbols P , L, R, S, E: P for emitting a canonical base pair,
L and R for emitting only one base to the left and right respectively, and S and E
for representing the start and the end of a derivation. The grammar G consists of
the following production rules: S → P | L | R | E, P → xPy | xLy | xRy | xEy,
L → xP | xL | xR | xE, R → Px | Lx | Rx | Ex, where x is in {a, u, c, g}, and
(x, y) is a pair in {(a, u), (u, a), (c, g), (g, c)}.

The partial ordered set P for KRNA is defined as the set of congruence classes
of derivations starting with S. Two derivations are equivalent if they become
same after (1) removing terminals, (2) removing Ls, Rs and an E following the
last P , and (3) sorting subsequences consisting of Ls and Rs. For two congruence
classes x and y, we define x � y if a shortest derivation in x is the substring of
one in y. For example, a derivation S → R → Lu → aPu → aaEuu → aauu is
equivalent to a derivation S → L → aR → aPu → auEau → auau, and theyare
the elements in the congruence class [S → L → R → P ]. We define KRNA by
counting the number of common congruence classes for two input sequences.

Computing the value of KRNA is equivalent to counting the number of
common candidates of the secondary structures for two input sequences. For
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example, we consider RNA sequences aauu and auau. The common congruence
classes of derivations for the two sequences are (1)[S → P → P ], (2)[S → P ],
(3)[S → L → R → P ], and (4)[S]. These four congruence classes are correspond
to the secondary structures in Fig. 2, and every common derivation to aauu and
auau represents exactly one of the secondary structures in Fig. 2. For example,
the derivation S → R → L → P represents the same secondary structure of (3).
So the number of congruence classes for aauu and auau is 4.

We introduce a kernel function KN
RNA as an instance of KRNA for treating

input pairs of which a sequence is much larger than another. For two RNA se-
quences x and y of length n and m respectively, KN

RNA(x, y) is defined with an N -
length window (Fig. 4) which extracts the two subsequences x(i) = xi · · · xi+N−1

(i = 0, . . . , n − N), and y(j) = yj · · · yj+N−1(j = 0, . . . , m − N) of equal
length. We define the number of secondary structures shared by x(i) and y(j) as
Kcommon(x(i), y(j)).

The number N can take any integer which is no more than the least length
of all training input sequences. So the definition of KN

RNA is

KN
RNA(x, y) =

n−N∑
i=0

m−N∑
j=0

Kcommon(x(i), y(j)).

The feature space of KN
RNA has coordinates each of which corresponds to a

secondary structure that RNA sequences of N -length can take, and the value of
each coordinate is 1 if the input RNA sequence has the corresponding secondary
structure, and is 0, otherwise.

This model is so simple that it cannot represent the complicated structures
such as pseudoknot-structures and bifurcations. We outlive this problem by tak-
ing known structures of RNA families into account, and we apply KN

RNA to each
substructure of input RNA sequences. For example, tRNA sequences have four
substructures (Fig. 3), and so we calculate the value of KN

RNA for each of the
four substructures and sum them up.

2.3 Algorithm for KN
RNA

We represent the computing of Kcommon(s, t) in a recursive expression, where
s = s0s1 · · · sN−1 and t = t0t1 · · · tN−1 are N -length sequences. We let K(i, j) =
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Kcommon(s(i, j), t(i, j)), where s(i, j) = sisi+1 · · · sN−1−j , and t(i, j) = titi+1 · · ·
tN−1−j (Fig. 5). It holds that Kcommon(s, t) = K(0, 0). Now, we consider com-
puting the value of K(i, j − 1) from the value of K(i, j). We let C(i, j) = {l |
sl = s̄N−j , tl = t̄N−j, i ≤ l ≤ N − 1 − j}, where x̄ represents the complementary
base pair of x, and get the following recursive expression:

K(i, j − 1) = K(i, j) +
∑

l∈C(i,j)

K(l + 1, j). (1)

We have to give the initial values for computing K(i, j) with (1). There are two
cases where a pair of sequences of length 2 are both forming the complementary
base pair or not, and the value of K(i, j) is 2 or 1, so we can get the following
expression by sliding the 2-length window from the position 0 to N − 2:

K(i, N − 2 − i) =
{

2 if si = s̄i+1 and ti = t̄i+1,
1 otherwise, (i = 0, . . . , N − 2),

and, for sequences of length 1 and 0, we let K(i, j) = 1. Thus we can compute the
values of Kcommon(s, t) = K(0, 0) with (1) and the default values of K(i, j) in
O(N2), and KN

RNA(x, y) in O(mnN) with a little ingenuity, omitting the details
due to the lack of space.

3 Experimental Results

In order to evaluate the performance of KN
RNA, we used three RNA

families; tRNA, miRNA, and 5SrRNA taken from the Rfam database
(http://www.sanger.ac.uk/Software/Rfam/), extracted 2500, 347, and 1955
sequences respectively from each family as positive examples, and generated
a same number of negative examples by shuffling the bases in the sequences.
We trained SVM classifiers combined with KN

RNA and the string kernel [5] for
comparison of performance, with these examples in each family, and conducted
10-fold cross-validation. We implemented KN

RNA and the string kernel as the
original kernel function for SV M light [8]. For tRNA family, we applied KN

RNA to
its four substructures, for 5SrRNA family, we applied KN

RNA to its five substruc-
tures. After trying classifications with several values of N , we decide the value
of N which is for the best accuracy. We also used the weighted subsequences
version of the string kernel.

http://www.sanger.ac.uk/Software/Rfam/
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Table 1. Comparison of KN
RNA and the string kernel

KN
RNA string kernel

family length # sub-parts N accuracy precision recall accuracy precision recall

tRNA 65 − 93 4 16 98.1 98.6 97.6 57.2 61.2 73.2
miRNA 60 − 187 1 60 65.1 65.0 65.2 55.0 54.0 68.0
5SrRNA 81 − 130 5 18 74.1 74.3 73.8 58.3 65.9 57.2

We show the result in Table 1. This result shows the high performance of
KN

RNA, on the point that it gives the highest classification accuracy of tRNA
family. This is because KN

RNA fully takes secondary structures of tRNA into
account. On the other hand, the accuracy of miRNA is not high. We conjecture
that this is caused by the large difference between the length of the longest
(sub)sequence and the window length N .

4 Conclusions and Future Work

In this paper, we devised an intentional kernel class KRNA and showed that the
kernel function KN

RNA which is an instance of KRNA has a high performance,
compared with the string kernel which is a convolution kernel. The window
length N is an important parameter for performance, so we have to select the
value carefully in experiments. In the future, we will make an improvement to
KN

RNA by weighting parameters on the secondary structures.
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Abstract. We study a novel problem of mining subtrees with frequent
occurrence of similar subtrees, and propose an algorithm for this prob-
lem. In our problem setting, frequency of a subtree is counted not only
for equivalent subtrees but also for similar subtrees. According to our
experiment using tag trees of web pages, this problem can be solved fast
enough for practical use. An encouraging result was obtained in a pre-
liminary experiment for data record extraction from web pages using our
mining method.

1 Introduction

Mining frequent subtrees from labeled trees is now a popular research field in the
area of data mining and has a lot of application areas such as computer networks,
web mining, bioinformatics, XML document mining, etc. [1]. In this field, various
types of subtrees are mined. The most simple one is an ordered bottom-up subtree
[2]. However, ordered bottom-up subtrees are too simple to catch frequent sub-
structures of ordered trees. Therefore, richer classes of subtrees such as the class
of ordered induced subtrees [3] and the class of ordered embedded subtrees [4] have
been targeted.

In this paper, we study the problem of mining ordered bottom-up subtrees
with frequent occurrence of similar subtrees. The difference from previously stud-
ied problems is the way of frequency counting. In our problem setting, not only
equivalent subtrees but also similar subtrees are counted for a given similarity
measure. Using previous frequent mining methods for induced or embedded sub-
trees, common substructures among similar subtrees might be found, however,
such substructures do not always exist. Furthermore, the fact that two bottom-
up subtrees have a common substructures does not imply that those are similar
with respect to our similarity measure.

In this paper, we give a definition of our mining problem and show an algo-
rithm to solve the problem. In order not to doubly count essentially the same
parts of a tree, only maximal ones among similar subtrees are counted. As a
similarity measure, we use measures based on the tree alignment/edit distance
[5]/[6]. An algorithm for the problem can be easily created using the algorithm
of calculating tree alignment/edit distance between two trees [5]/[6] because it
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calculates distance for all pairs of subtrees on the way. We propose tree conver-
sion to the compact form before distance calculation to speed up the algorithm
for trees containing many equivalent subtrees.

By virtue of the conversion, our algorithm runs in time practically usable
according to our experiment for web pages of e-commerce search engine. En-
couraging result was also obtained for an application of our subtree mining to
extracting data records from those web pages.

2 Problem Setting

In this section, we define the problem of finding subtrees with frequent occurrence
of similar subtrees in a labeled ordered tree. Note that the term “trees” are
always used to refer to labeled ordered trees throughout this paper.

Since an ordered tree is a kind of a rooted tree, all branches are supposed to
be directed from parent nodes to child nodes. |T | denotes the number of nodes in
T . If there is a path from node u to node v, node u is called an ancestor of node v
(node v is called a descendant of node u). A (bottom-up) subtree of tree T rooted
by node u, denoted by Tu, is a tree that is composed of all descendants of node
u. We define S (T ) as the set of all subtrees of tree T . For U ⊆ S (T ), we say
that Tu is maximal in U if Tu ∈ U and no node v(�= u) is an ancestor of node u
for all node v with Tv ∈ U . Let sim be a similarity function on labeled ordered
trees. For a given similarity threshold k ≥ 0, a tree S is said to be similar to a
tree T if sim(T, S) ≥ k. Let Su(T ) denote the set of all subtrees in S (T ) similar
to Tu. For a given minimum support σ ≥ 0, a subtree Tu is said to be a subtree
with frequent occurrence of similar subtrees, an SFOSS for short, if Su(T ) has
at least σ maximal subtrees.

Let us now define our mining problem.

Problem. Given a tree T , a similarity threshold k ≥ 0 and a minimum support
σ ≥ 0, find all maximal subtrees of T in the set of SFOSSs.

Remark. Frequency of similar subtrees should be counted by counting the num-
ber of independent occurrences. Thus, in the above problem setting, we take
account of only maximal ones in frequency counting. Only maximal SFOSSs
are enumerated in our problem setting for reducing result complexity.

As a similarity function sim(T, S),

max{1 − d(T, S)
d(T, θ)

, 0}, 1 − d(T, S)
max

|T ′|=|T |,|S′|=|S|
d(T ′, S′)

and so on are considered, where d is the tree alignment/edit distance [5]/[6] and
θ is the empty tree.

Here, we only consider similarity functions defined using the tree align-
ment/edit distance.
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3 Algorithm

Our algorithm consists of three steps: conversion to the compact form, distance
table calculation and enumeration of maximal SFOSSs.

First step of our algorithm is conversion to the compact form. The compact
form R of a tree T [7] is a factored representation that is an edge-ordered rooted
DAG (directed acyclic graph) in which all common subtrees are shared being
represented only once. Although this conversion takes time O(|T |) [7], it reduces
the computation time of the following steps when T contains many equivalent
subtrees.

Next, the algorithm calculates the distance table that contains distance for
all the pairs of subtrees in the compact form R. Fortunately, this can be done by
applying a conventional algorithm calculating the tree alignment/edit distance
[5]/[6] to the same two DAG R, because distance for all the pairs of subtrees are
calculated by the algorithm on the way. Note that the algorithm is applicable
to DAGs without modification though it is not designed for DAGs but for trees.
Also notice that redundant calculation for the same pairs of subtrees can be
avoided using the compact form instead of the tree itself.

The last step of our algorithm is enumeration of maximal SFOSSs. In this
step, frequency of maximal subtrees similar to each subtree represented by a
node in R is calculated. Similarity between two subtrees are obtained using the
distance table. Counting only maximal ones can be realized by returning to the
parent right after the subtree represented by the current node becomes known to
be a similar tree in the preorder traversal of DAG R. Enumerating only maximal
SFOSSs can be realized similarly.

Computation time needed for making distance table is known to be O(|T |2 ·
deg2(T )) for the tree alignment distance, which is the rate-determining step of
our algorithm. Here, deg(T ) is the maximum number of children of any node
in the tree T . By converting to the compact form first, our algorithm for that
distance runs in time O(|T | + edge2(R) · deg2(T )), where edge(R) is the number
of edges in R.

4 Experiments

We conducted two experiments, a running time performance experiment and a
preliminary experiment for data record extraction from web pages. The data set
we used in our experiments is data set 3 used in [8]. The data set is composed of
50 web pages collected from 50 different websites, and each page was randomly
selected from the pages of the same site included in Omini testbed [9], which
contains more than 2000 pages. The data set mainly consists of result pages of
e-commerce search engines.

Running time of our algorithms for the above data set is shown in Table 1. In
this experiment, we used the similarity function sim(S, T ) = max{1− d(T,S)

d(T,θ) , 0},
where d is the tree alignment distance, and set a similarity threshold k to 0.5
and a minimum support σ to 5. We implemented our algorithms by Java and
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Table 1. Running Time(k = 0.5, σ = 5)

Algorithm Mean [s] Max [s] Min [s]

without CF 2.635 19.886 0.034

with CF 0.786 5.282 0.024

CF: compact form conversion
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Fig. 1. Speed-up ratio for each data

conducted this experiment using a Linux computer with 3.4GHz CPU and 2GB
memory. Average running time of our algorithm with CF was 0.786 seconds,
which indicates practical usefulness of the algorithm. Conversion to the compact
form was actually effective. The algorithm with CF is 3 times faster than that
without CF on average. Speed-up ratio for each data is shown in Fig. 1. The
larger the edge reduction ratio, the larger the speed-up ratio.

The second experiment is on data record extraction from web pages. Since
data records of the same type in a web page have similar tag structure, they must
be frequent. Furthermore, main data records such as search result records (SRRs)
have the largest structure among those with high probability. We considered a
simple algorithm using this idea, and conducted experiments using a part of the
data set.

The algorithm we used is the following. First, we fixed minimum support σ and
similarity threshold k to a certain number (σ = 5, k = 0.7 in our experiment).
This means that we gave up extraction of data records with occurrence less
than σ. Next, our subtree mining algorithm is executed and SFOSS Tmax with
the maximum number of nodes is picked up. Since Tmax might be too far from
the smallest SFOSS of the same-type data records with respect to alignment
distance, the algorithm picks up one maximal SFOSS Tfreq with the largest
frequency among the maximal similar subtrees of Tmax. The final estimated
data records of our algorithm are those corresponding to all maximal similar
subtrees of Tfreq.

Our subtree mining algorithm cannot find frequent subforests, so the algo-
rithm above cannot extract data records with forest tag structure. Thus, we
used a smaller data set that is made by removing 14 pages that have SRRs with
forest tag structure or occurrence less than σ(= 5).

We compared performance of our method with those of ViNTs [8] and MDR
[10] calculated from the detailed result table1. Recalls for our method, ViNTs
and MDR were 91.9%, 98.9% and 50.4%, respectively. Precisions for the three
methods were 99.3%, 99.2% and 98.0%, respectively. Considering that ViNTs
and MDR are complicated methods that make use of domain knowledge and
heuristics, this result looks encouraging.
1 http://www.data.binghamton.edu:8080/vints/mdrCompare.html
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5 Concluding Remarks

In our experiment, we used the tree alignment distance instead of the tree edit
distance, but which distance should be used depends on applications. As for data
record extraction from web pages, the tree alignment distance looks suitable
because the next step of the data record extraction is alignment of component
item/fields in extracted data records [11].

Extension to mining sub-forests would make our mining method more effective
and it is our future work.
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Abstract. This paper addresses to use the latent semantic topology to real-time 
cluster the literatures retrieved by PubMed in response to clinical queries and 
evaluates its performance by professional experts. The result shows that semantic 
clusters properly offer an exploratory view on the returned search results, which 
saves users’ time to understand them. Besides, most experts conceive that the 
documents assigned to the identical cluster are similar and the concepts of 
clusters are appropriate.  

Keywords: real-time, semantic clustering, combinatorial topology, Web Mining. 

1   Introduction 

An overwhelming amount of biomedical literatures stored in PubMed grows rapidly 
and becomes quickly diverse. Online Mendelian Inheritance in Man (OMIM) classifies 
varied PubMed literatures base on a biomedical taxonomy ontology. XplorMed [1] and 
GoPubMed [2] use the predefined classes from the MeSH or GeneOntology to classify 
biomedical literatures. However, the taxonomy needs a pile of laborious maintenance 
work and is unable to satisfy medical specialists’ requests. It is necessary to classify the 
immensely retrieved literatures from PubMed immediately. Therefore, latent semantic 
clustering is considered to be one predominant approach [3] to automatically cluster 
data into meaningful groups.  

Document clustering has been contemplated as one of the most pivotal techniques 
for dealing with the diverse and enormous amount of information on the World Wide 
Web. Traditional methods based on k-means, hierarchical clustering, and nearest 
neighbor clustering select a set of key terms or phrases to organize the feature vectors 
corresponding to different documents. Zamir et al. [4] presented a suffix-tree clustering 
(STC), which identified the sets of documents that share common phrases and formed 
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document clusters depending on the similarity between documents. Ertoz et al.[5] 
proposed a clustering approach that found out the nearest neighbors of each data point 
and then identified core points and then built clusters. 

The semantic topology-based method [3,6] yielded better results than the k-means, 
AutoClass, HCA, and PDDP [7] on classifying the high-dimensional data, such as the 
Web pages from [7], the newswire articles from the Reuters-21578, and so forth. In this 
paper, we apply it to produce a real-time clustering on a vast amount of biomedical 
literatures retrieved by PubMed in response to clinical queries. In our framework, 
documents are represented as a topology of features, e.g., keywords. An agglomerative 
clustering algorithm to construct a semantic hierarchy based on the combination of 
those features is in use to discover latent semantics behind those documents. 

This paper is organized as follows. We briefly review feature selections and the 
latent semantic topology method in the next section. Section 3 discusses some 
experimental results and evaluations, followed by the conclusion. 

2   The Method 

We use Hidden Markov Models (HMMs) to generate a part-of-speech tagger [8] for 
biomedical literatures to extract noun phrases in a sentence. All the collections of noun 
phases are considered to be the key features in a document. Then tfidf indexing is 
applied to weight features. Those features with higher tfidf values are selected and put 
in the feature list of the document collection.  We believe that the set of co-occurred key 
features (within in a short distance, e.g., a sentence or a paragraph; in our paper, we use 
a paragraph) reflects latent semantics in the collection. According to topological 
property it naturally organized a hierarchical lattice of the co-occurred feature sets, 
which is called semantic topology. The upper level hierarchy filters the verbose terms 
contained in the lower lever hierarchy, therefore, it induces more concrete and kernel 
information brings from some lower sets in the topology. 

A latent semantic topology illustrates a hierarchy of concept disciplines associated 
with the extracting features. Basically, the algorithm is divided into three main parts 
(referring [6] in detail): first, to construct an undirected connected graph, i.e., a skeleton 

1
0S  of the simplicial complex, from a data set; second, to generate the concepts from 

graph recursively; third, to cluster the data based on generated concepts.  
We built a Web-based clustering search engine, it consists three layers as follows. 

1. Presentation layer: This layer presents the search results and their hierarchical 
semantic structures.  

2. Business layer: This layer contains the main processing logic of clustering.  The 
statistical mechanism, Hidden Markov Model (HMM), is used for feature extraction.  
The features are extracted from the returned search results using the HMM-based 
part-of-speech tagger [8] to generate simplical complex to make an agglomerative 
clustering of the search results. 

3. Data layer: The data layer stores metadata of the returned PubMed literatures, such 
as title, abstract, authors, and so on. Different parts of PubMed documents will be 
assigned different weights for document clustering.  
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3   PubMed Experiments and Results 

We conducted an expert evaluation of total twenty-six volunteers who are pharmacists, 
medical engineers, physicians and public health experts. Three types of test queries, 
ambiguous, entity, and general terms showed in Table 1 were selected by them. 
Ambiguous terms yield multiple interpretations in biomedical fields. General terms 
cause common concepts in biomedical fields. Besides, they provided three entity terms 
in their respective fields for the evaluation. Some qualitative parameters [9-10] are 
chosen to evaluate the comprehension of auto-generated hierarchies.  

Table 1.  Three types of query terms  

Type Query terms 
Ambiguous 

terms 
cure, drug, NEC, peer, neglect, response, channel, quality control, 
prime, order 

Entity terms NTG, celecoxib, metformin, vaccine, hospital, addiction,  
parkinson's disease, schizophrenia, spinal cord 

General 
terms 

NSAIDs, antibiotics, sex hormones, POCT, video game, medical 
devices, Speech Recognition, patient safety, X-ray, immunity  

The definition of each parameter used in the experiment is described in the 
following:  

1.Summarization: whether the clusters at top level are enough summarization. 
2.Missing concepts: whether the clusters at top level have any missing concepts. 
3.Redundancy: whether the concepts of clusters at top level have redundancy. 
4.Cohesiveness:whether the documents assigned to the identical cluster are similar. 
5.Isolation: whether the clusters at the same level are discriminating and their concepts 

do not subsume one another. 
6.General to specific concept: whether the generated concept hierarchy is traversed 

from broader concepts at the higher levels to narrower concepts at the lower levels. 
7.Navigation balance: whether the fan-out at each level of the hierarchy is appropriate. 
8.Readability:whether the concepts of clusters are appropriate. 
9.Search Time: whether our online system compared with PubMed really helps in 

reducing time to locate information. 

For each parameter, the evaluators were asked to rate each type on a scale of 1-10: a 
higher value indicates a higher agreement. Table 2 shows the results, median and 
quartile deviation for all terms. To evaluate reliability, internal consistency methods are 
widely used and Cronbach α  is used to evaluate it. The 0.67 of Cronbach α  implies a 
good reliability and credibility [11]. We find that the expert's opinions have a wide 
discrepancy even though they have the same discipline such as Physician. The results 
show a high diversity of “redundancy at top level” in ambiguous terms and entity terms 
for physician. One of the reasons is just like the feedback from some evaluators that the 
ambiguous terms have their innate equivocation, especially in biomedical domain. 
Besides, 3 evaluators replied in support of the cluster-based information retrieval that 
the clusters from the retrieved search results aroused them to concretize their 
information needs. The results (table 2 and fig.1) show that almost all evaluators agree 
our clustering search engine can reduce search time as compared with PubMed (V9).In 
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addition, most experts conceive that the documents assigned to the identical cluster are 
similar (V4) and the concepts of clusters are appropriate (V8). 

Table 2. Expert study for evaluating the concept hierarchies 

Ambiguous 
terms

Entity terms for 
pharmacist 

Entity terms for 
physician 

Entity terms for 
public health 

General 
termsItem 

Me Q.D. Me Q.D. Me Q.D. Me Q.D. Me Q.D. 
Summarization at 

top level(V1) 7.0 1.5 7.0 0.5 4.0 2.1 7.0 0.5 7.0 0.6 
Missing concepts 
at top level(V2) 7.0 1.0 8.0 1.5 4.0 1.4 6.0 0.5 7.0 0.6 

Redundancy at top 
level(V3) 3.0 2.5 6.0 2.0 6.5 3.4 5.0 0.0 6.0 1.4 
Overall 

cohesiveness(V4) 8.0 1.0 7.0 1.5 6.5 1.3 8.0 0.0 7.0 1.0 
Overall 

isolation(V5) 5.0 2.0 7.0 0.5 6.0 1.8 7.0 0.5 6.0 0.5 
Overall general to 

specific 
concept(V6) 

7.0 2.5 7.0 0.5 6.0 1.8 6.0 0.0 6.0 0.6 

Overall navigation 
balance(V7) 5.0 1.0 6.0 1.0 6.0 1.8 7.0 0.5 6.5 0.6 

Overall 
readability(V8) 6.0 0.5 9.0 1.0 6.0 1.0 7.0 0.5 7.0 1.0 
Overall search 

Time(V9) 7.0 2.0 7.0 1.0 7.0 1.1 7.0 0.0 7.0 0.1 

Note:1. Me indicates Median; 2. Q.D. indicates quartile deviation.  
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Fig. 1. The boxplots of items response 

4   Conclusion 

This paper applies the combinatorial topology-based semantic clustering method to 
real-time cluster search results from PubMed. Although the real-time clustering is not 
easy to be objectively evaluated, we attempt to built several measures as a tool of 
overall appraisal. The results demonstrate that building meaningful clustering search 
results from PubMed is useful for health professionals to save their time. Besides, most 
experts are in agreement on that the documents assigned to the identical cluster are 
similar and the concepts of clusters are appropriate. 
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